
Mac/PC compatible

US $34.99
www.friendsofed.com

ISBN-13: 978-1-59059-752-1
ISBN-10: 1-59059-752-4

9 781590 597521

53499

this print for reference only—size & color not accurate spine = 0.675"  288 page count

Justin Williams 

In this book you’ll learn:

How to develop web applications quickly and easily with the Ruby on Rails framework

The basics of programming principles and Ruby syntax, so you can begin to understand what’s going on 
under the hood

How to implement must-have web application features, such as user accounts, data validation, sending e-mail, 
image uploading, and more 

How to use Ajax techniques with Rails and when not to use them

How to implement other Web 2.0 features in Rails, such as tag clouds and microformats

If you’re a web designer or developer who thinks that
the coding involved in  developing dynamic web
applications is too difficult, think again. This book, and
the framework it covers, is the perfect solution to your
needs. Ruby on Rails provides an easy-to-use method
for quickly developing web applications, simplifying
potentially complicated subjects such as web
architecture, JavaScript, and SQL/database creation. 
The simplicity of Rails belies its power, though—this
technology is used by major companies such as
37Signals and Google.

Rails Solutions: Ruby on Rails Made Easy is an
introduction to Ruby on Rails with the web designer in
mind. Instead of focusing on the intricate syntax of each
method, the book focuses on the tasks you’ll want to
perform on your website and then walks you through
how to implement that functionality with Rails. Design

and usability are kept in mind throughout, ensuring that
your site both looks and works great.

The book begins by covering how to set up your
computer as a Rails development environment
(including the MySQL database) and then follows with
an introduction to Ruby and the basics of the Rails
framework. Next, you are taken through several
practical examples that work together to build up a
complete modern web application, covering essential
and useful website features such as user login, adding
and editing data, data validation, image uploading, and
much more. The book even covers more-advanced Rails
topics such as the Rails test suite, plug-ins and
components, debugging techniques, and deploying your
web applications using Capistrano.

W
illiam

s

CYAN YELLOW
MAGENTA BLACK

R
A

ILS SO
LU

T
IO

N
S

Create dynamic web applications as
painlessly as possible—no programming
knowledge required

Enhance your user experience easily
with Ajax techniques—Rails makes it
easy for you

Filled with practical techniques
you can use right away

SHELVING CATEGORY
1. WEB DEVELOPMENT

Also Available



Rails Solutions
Ruby on Rails Made Easy

Justin Williams

7524fm.qxd  12/13/06  4:41 PM  Page i



Rails Solutions: Ruby on Rails Made Easy
Copyright © 2007 by Justin Williams

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-59059-752-1

ISBN-10 (pbk): 1-59059-752-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, 

or visit www.springeronline.com. 

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, 
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, 

or visit www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work. 

The source code for this book is freely available to readers at www.friendsofed.com in the 
Downloads section.

Credits

Lead Editor 
Chris Mills

Technical Reviewers
Ashish Bansal

Ryan J. Bonnell

Editorial Board
Steve Anglin

Ewan Buckingham
Gary Cornell 

Jason Gilmore
Jonathan Gennick
Jonathan Hassell

James Huddleston
Chris Mills

Matthew Moodie
Dominic Shakeshaft

Jim Sumser
Keir Thomas

Matt Wade

Project Manager 
Beth Christmas

Copy Edit Manager 
Nicole Flores

Copy Editor 
Nancy Sixsmith

Assistant Production Director 
Kari Brooks-Copony

Production Editor 
Katie Stence

Compositor 
Molly Sharp

Artist 
April Milne

Proofreader 
Linda Seifert

Indexer 
Michael Brinkman

Interior and Cover Designer 
Kurt Krames

Manufacturing Director 
Tom Debolski

7524fm.qxd  12/13/06  4:41 PM  Page ii



CONTENTS AT A GLANCE

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1: Introduction to Ruby on Rails . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Installing Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3: Ruby for Rails Developers . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 4: Getting Started with Rails . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5: More Advanced Rails . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 6: Formatting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 7: Introduction to Ajax . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 8: Bringing Forms to Life with Ajax . . . . . . . . . . . . . . . 127

Chapter 9: Uploading Files and Sending Attachments . . . . . . . . 149

Chapter 10: User Authentication and Session Management . . . 161

Chapter 11: Customizing Rails Views . . . . . . . . . . . . . . . . . . . . . 183

7524fm.qxd  12/13/06  4:41 PM  Page iii



Chapter 12: Using Rails Plug-ins and Engines . . . . . . . . . . . . . . . 203

Chapter 13: Deploying with Capistrano . . . . . . . . . . . . . . . . . . . 223

Appendix A: Caching Your Content . . . . . . . . . . . . . . . . . . . . . . 239

Appendix B: Testing Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

CONTENTS AT A GLANCE

iv

7524fm.qxd  12/13/06  4:41 PM  Page iv



CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1: Introduction to Ruby on Rails . . . . . . . . . . . . . . . . . . . . 3

A history of Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Object-oriented programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Riding the Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Components of Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Model, View, Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Rails’ database support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Who uses Rails? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Is Rails safe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2: Installing Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Installing Rails on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Installing Xcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Semiautomatic Rails install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Manual install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Setting the file path correctly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Setting up Ruby on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Installing the Rails framework on Mac OSX...finally! . . . . . . . . . . . . . . . . . 24
Installing FastCGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Installing Lighttpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Installing MySQL on Mac OSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Locomotive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Extra tools for Mac OSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7524fm.qxd  12/13/06  4:41 PM  Page v



Installing Rails on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Installing Ruby on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Installing MySQL on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
InstantRails—Rails for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Extra tools for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Ready? Let’s do it! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3: Ruby for Rails Developers . . . . . . . . . . . . . . . . . . . . . . 39

Basic Ruby syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Ruby variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Classes and objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Calling objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Arrays and hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Decision structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

while . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Exception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4: Getting Started with Rails . . . . . . . . . . . . . . . . . . . . . . 53

Creating a Rails project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Configuring the web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Viewing the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Creating the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Using the command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Telling Rails about the databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Creating the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Rails migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Creating the controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Creating the views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Creating the first objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Updating existing ads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Removing an ad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Adding some style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 5: More Advanced Rails . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Validating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Implementing validations in railslist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Other common validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Adding categories with migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

CONTENTS

vi

7524fm.qxd  12/13/06  4:41 PM  Page vi



Creating associations between models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Working with the new relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Controlling the categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Modifying URLs using routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Defining your own routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Defining route en masse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Named routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Basic debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Rails console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Reading existing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
breakpointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Debugging views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 6: Formatting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

NumberHelper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Other helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

DateHelper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Defining date formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Using natural language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 7: Introduction to Ajax . . . . . . . . . . . . . . . . . . . . . . . . . 117

A history of web interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
What is Ajax? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Where is Ajax used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
How does Rails do Ajax? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
When to use Ajax? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
What’s the catch? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 8: Bringing Forms to Life with Ajax . . . . . . . . . . . . . . . 127

Ajaxing your application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Creating the categories controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Adding a touch of Ajax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Adding dynamic JavaScript functionality using RJS . . . . . . . . . . . . . . . . . . . . . . 135

What about validation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Deleting items with Ajax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Searching classifieds with Ajax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Creating the search box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Sending e-mail with Action Mailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Configuring Action Mailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Let’s send some e-mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A bit of CSS style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

CONTENTS

vii

7524fm.qxd  12/13/06  4:41 PM  Page vii



Chapter 9: Uploading Files and Sending Attachments . . . . . . . . 149

Uploading images to your database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Reading files from the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Securing your data field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Updating the remaining views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Sending e-mail with attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Adding some style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 10: User Authentication and Session Management . . . 161

Before you begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Windows XP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Creating the user model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Adding data model validations and associations . . . . . . . . . . . . . . . . . . . . . 165
Adding a new controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Creating a signup form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Securing the users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Creating a login form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Adding the login code to the backend . . . . . . . . . . . . . . . . . . . . . . . . . . 172

How to store session data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Working with the sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Locking railslist down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Securing the categories controller . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assigning classifieds to users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Removing the email field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Logging out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Chapter 11: Customizing Rails Views . . . . . . . . . . . . . . . . . . . . . 183

Organizing listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Using helper methods in views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Adding Web 2.0 style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Creating a tag cloud from the categories . . . . . . . . . . . . . . . . . . . . . . . . . 189
Adding microformats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Adding microformats to Railslist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Chapter 12: Using Rails Plug-ins and Engines . . . . . . . . . . . . . . . 203

Building applications with scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Creating a new application with scaffolding . . . . . . . . . . . . . . . . . . . . . . . 204

Testing the scaffolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Analyzing the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Scaffolded model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Adding functionality with plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Using plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Using acts_as_taggable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

CONTENTS

viii

7524fm.qxd  12/13/06  4:41 PM  Page viii



Using engines in the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Migrating the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Configuring login_engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A note on components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Chapter 13: Deploying with Capistrano . . . . . . . . . . . . . . . . . . . 223
What is deployment? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Tool requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Installing Subversion for Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Installing Subversion for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Before you begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Creating the MySQL database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Setting up the server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Committing the project to Subversion . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Installing Capistrano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Connecting to the server on a Mac . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Connecting to the server on Windows . . . . . . . . . . . . . . . . . . . . . . . . 236

Deploying the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Appendix A: Caching Your Content . . . . . . . . . . . . . . . . . . . . . . 239
Setting up the caching strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Implementing caching in the application . . . . . . . . . . . . . . . . . . . . . . . . . 242

Using fragment caching explicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Expiring caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Appendix B: Testing Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
What is test-driven development? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Test directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Fixtures folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Functional folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Integration folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Mock folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Test folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Unit folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Creating a test database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
On Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
On Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Preparing the test database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Unit-testing the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Running the first test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Other unit test assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Functional testing of the controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Running all the tests at once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

CONTENTS

ix

7524fm.qxd  12/13/06  4:41 PM  Page ix



7524fm.qxd  12/13/06  4:41 PM  Page x

ec485c062154164361ec627c7ec9db74



ABOUT THE AUTHOR

Justin Williams is a software developer in Evansville, IN. He is the
owner of Second Gear (www.secondgearllc.com), a web and desk-
top application development firm, and was lead developer of the
Porchlight issue-tracking system for small development teams. He
graduated from Purdue University in West Lafayette, IN with a
degree in Computer & Information Technology. His personal blog is
located at www.carpeaqua.com.

When not building software, Justin spends countless hours playing
video games, listening to talk radio, and visiting friends and family. 

7524fm.qxd  12/13/06  4:41 PM  Page xi



7524fm.qxd  12/13/06  4:41 PM  Page xii



ABOUT THE TECHNICAL REVIEWERS

Ashish Bansal, a Senior Manager of Technology at Sapient (www.
sapient.com), has more than eight years of experience in the IT
world. He has been coding for more than 15 years (counting the
games he wrote for his ZX Spectrum 128K). He has extensive expe-
rience in web application development and EAI. 

Ashish is an avid open source follower and contributor. He is always
looking to learn new things, including Google WebToolkit and Ruby
on Rails, when he is not playing with his daughter. He is currently
working on an Apress book on the Google WebToolkit and has pub-

lished various articles on IBM developerWorks. Ashish has been a member of IEEE for more
than 10 years. He can be reached at abansal@ieee.org.

Ashish lives in Mississauga, a suburb of Toronto, with his wife and daughter. He dreams of
being a karate black belt who can also play the piano.

From the first two lines of code he wrote in 1984 on a 64K Apple computer, Ryan J. Bonnell
discovered his one true love—and it’s been a passionate affair ever since.

A self-starter and problem solver, Ryan’s been working with the Web since the early
1990s and currently enjoys his position as lead web developer for Creative Arc (http://
creativearc.com), a Minneapolis web design firm.

When he’s not working, Ryan can be found refining his photography skills or sipping on a
latté at the nearby Starbucks. A fine cigar or premium single-malt scotch is his celebration
after a hard day’s work.

7524fm.qxd  12/13/06  4:41 PM  Page xiii



7524fm.qxd  12/13/06  4:41 PM  Page xiv



INTRODUCTION

This book covers the Ruby on Rails programming framework, but don’t let that frighten you.
Unlike many other programming books out there, this one isn’t written for programmers. This
is a book for web designers and developers who are not at home when trawling through reams
of code. More generally, this book is intended for anyone who is comfortable with Cascading
Style Sheets (CSS) and XHTML, but might not have dabbled with any other languages. 

Learning to program for the first time might seem to be a scary process because many peo-
ple associate the process with memorizing strange keywords and syntax. I assure you that
it’s not. Ruby on Rails takes the pain and suffering out of web application programming, and
what little bits it leaves in I hope to alleviate by putting things in plain English that anyone
can understand. 

The purpose of this book is to not only introduce you to programming and Ruby on Rails but
also to make you comfortable enough that you can begin working on Rails applications on
your own or as part of a team. This book covers the most important aspects of Ruby on Rails
in depth, looking at the functionality you'll want to implement in your web applications from
a task-based perspective instead of obsessing over all the code syntax. You'll be shown the
code you need when you need it (and not before), and everything is explained thoroughly.

What lies ahead?

Chapter 1 introduces you to Rails, gives you a little bit of history, and explains the basics of
how Rails works in terms of its overall architecture—just enough to give you what you need
without going too deep.

Chapter 2 takes you step by step through installing Rails on Mac or Windows. The install
process is not an easy one, but I'll take you very carefully through it.

The basics of programming are discussed in Chapter 3, in the context of the Ruby language
on which Rails is built. Again, there is just enough to give you a basic grounding—giving you
what you need.

Chapter 4 shows you how to build a bare-bones Rails application, including setting up a data-
base to store the application data.

7524fm.qxd  12/13/06  4:41 PM  Page xv



Chapters 5–11 build on this application, adding useful functionality, including forms for
adding and editing data, user login, user interface enhancements, viewing user profiles,
form validation, and more. Throughout this section of the book, you'll be looking at best
practices and usability, and you’ll learn about cutting-edge techniques such as Ajax, DOM
scripting, and microformats—all made easier by Rails.

Chapters 12–13 introduce peripheral topics that although not essential to building up the
application, are still useful to know about when developing Rails applications. These topics
include plugins, engines, and scaffolding to further speed up your development, and effi-
cient deployment of applications to a web server via Capistrano.

The book is rounded off with two appendices that cover caching and testing, which you
will find useful after you master the basics.

Everything included in this book is something I have used in a real-world application. A lot
of books focus on theory more than practice. Not here. I want to give you real-world
knowledge (and code) that you can plug into your applications after you finish the book.

Code download and support

Speaking of the code, if you aren’t a fan of typing, you can grab all the code used in this
book from www.friendsofed.com. Just find this book’s page on the site; you’ll find a handy
link to download all the code. If you do find any problems with the book, feel free to e-mail
feedback@friendsofed.com. Folks there will be happy to help you.

Beyond that, there is also a companion website at www.railssolutions.com that will con-
tinue the discussion of Rails. My goal is to make the site a central location for all readers
of this book to discuss their new knowledge and learn more than what is written on the
forthcoming pages. 

Let's get started—enjoy the book! 

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout:

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

When I want to draw your attention to something, I highlight it like this:

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xvi

7524fm.qxd  12/13/06  4:41 PM  Page xvi



Sometimes code doesn’t fit on a single line in a book. When this happens, I use an arrow
like this: ➥.

This is a very, very long section of code that should be written all on ➥

the same line without a break.

INTRODUCTION

xvii

7524fm.qxd  12/13/06  4:41 PM  Page xvii



7524ch01.qxd  12/13/06  4:40 PM  Page 2



1 INTRODUCTION TO RUBY 
ON RAILS

7524ch01.qxd  12/13/06  4:40 PM  Page 3



Let’s take a trip down memory lane back to 1991. Bryan Adams had the number one song,
Terminator 2 was the number one movie, and Tim Berners-Lee became the first web
developer by posting the first website online in August. Berners-Lee is credited as being
the father of the World Wide Web because he developed the project as a method of writ-
ing hypertext on the Internet. That hypertext language was HTML.

As the Web matured, users and developers wanted more from the platform—mainly shop-
ping and discussion areas. Obviously, this development couldn’t be done with only HTML,
so the Common Gateway Interface (CGI) was created in 1993. CGI enables client machines
to pass data back to the web server. Instead of users just receiving static data on websites,
they can now send data back to the site, be it messages to be posted or feedback to tell the
site’s creator that something is wrong with it. This is the basis of dynamic websites. The cre-
ation of CGI to send data back and forth between servers and client machines was a major
breakthrough from the passive days of the first web pages. The first popular means of cre-
ating dynamic websites using CGI was the Perl programming language.

From the mid-90s to the beginning of the 21st century, languages such as PHP and
Microsoft Active Server Pages (ASP) began to take the place of Perl as the de facto stan-
dards in terms of web application programming. While Perl still was used by many devel-
opers (and still is to this day), PHP and ASP enabled developers to easily create dynamic
websites by adding dynamic code into regular HTML documents. 

Another language that was giving developers the ability to embed dynamic behavior into
the Web was JavaScript. Unlike PHP and ASP, whose code was executed on a web server,
JavaScript was run on the client side in the user’s browser. The beginning uses of JavaScript
were basic form validation, rollover effects, and scrolling a banner across the browser sta-
tus bar. It wasn’t until recently that the full power of JavaScript began to be harnessed by
web developers with the growth of Ajax (more on that later).

In 2006, PHP, ASP, and Perl are still on the scene, but the current trend is toward develop-
ing a site based off of a framework instead of writing everything from scratch in a pro-
gramming language. Frameworks are semicomplete applications that provide specific
functionality for common or repetitive tasks. In layperson’s terms, frameworks provide a
lot of prewritten functionality so that you don’t have to reinvent the wheel. Frameworks
are nothing new to the desktop development scene: Microsoft has been touting its .Net
framework for many years as the preferred way to write new Windows applications, and
Apple has given developers the Cocoa framework with the release of Mac OS X. 

Both Apple and Microsoft realized that by giving third-party developers so much function-
ality from the start, they could release applications faster and more easily than ever
before. By making the developer’s life easier, both companies are helping to ensure that
developers keep writing software for their respective platforms in the future. 

Now the Web is beginning to catch up with the desktop in terms of both usability and
development. The ability to easily collaborate with other users via web applications can be
credited with the growth. Before eBay, there wasn’t an easy way to put things up for auc-
tion with your computer. Now anyone can get online and easily set up an auction.
Wikipedia has taken the creation of an encyclopedia out of the hands of a few authors at
a single company and given that ability to the entire world. Anyone who is an expert on a

RAILS SOLUTIONS:  RAILS MADE EASY

4

7524ch01.qxd  12/13/06  4:40 PM  Page 4



subject can contribute to that subject’s page on the wikipedia. This growth in collaborative
web applications has been dubbed Web 2.0. 

Because of the gain in popularity, in the past year more web application frameworks have
come on the scene for every developer’s language of choice. For instance, PHP developers
have Cake, and Python has Django. The framework with the most buzz at the moment
however is Rails, a framework built on the Ruby programming language.

This section takes a quick look at the history of Ruby and Rails before discussing the com-
ponents that make up the Rails framework, the anatomy of a rail application, and how the
application works with databases. Later on, I’ll also say a few words about how secure Rails
is. As you probably already know—or if not, you will know very soon—security is a very
important issue in developing web applications.

A history of Ruby
Ruby is an object-oriented, interpreted programming language. Interpreted programming
languages are read line by line instead of by compiling the code into an executable that is
unreadable to a human being (but is much quicker to process by a computer.) Other inter-
preted languages include JavaScript and BASIC. If you open up your web browser on a
page that uses JavaScript, you can read the source code by using your browser’s window.
Try opening up an application like your system’s Calculator in a text editor. All you see is
some garbled text because the Calculator application was written in a compiled language.

As Figure 1-1 shows, Ruby was developed in 1993 by Yukihiro Matsumoto, but first
released to the public in 1995. Matsumoto designed Ruby primarily to reduce the work-
load of developers by following the principle of least surprise, meaning that the language
typically behaves as the programmer expects: methods are named using common English
terms that appropriately define the action being performed. For example, Ruby has
actions called strip, split, delete, and upcase to perform actions on strings of text. Each
of those names intuitively explains the action they perform. 

Figure 1-1. The Ruby timeline

Ruby started to gain popularity in 2001 with the commencement of Ryan Leavengood’s
work on RubyGems, which is an easy way to package and distribute applications and
libraries. RubyGems’ development stalled for several years because Leavengood left the
project at version 0.4.0. In 2003, a group of developers reincarnated the RubyGems project
and released a totally rewritten version under the same name. While they didn’t share any
of the same code, they shared the same principle: simple software distribution for Ruby. 

INTRODUCTION TO RUBY ON RAILS

5

1

7524ch01.qxd  12/13/06  4:40 PM  Page 5



Object-oriented programming 

As mentioned previously, Ruby is an object-oriented programming language. The object-
oriented programming paradigm is built on the premise that a computer application can
be built using a collection of individual units called objects. These objects perform actions
on one another. Object-oriented programming is different from its predecessor, known as
procedural programming, in which applications are written simply as a list of instructions
to the computer.

Object-oriented programming is built on three basic principles: inheritance, encapsulation,
and polymorphism. Inheritance is the process of starting with a base object, taking the
structure and actions of that base object, and then adding them to a dependent object.
For example, you could create a base object called Person that defines height, weight, and
a few other attributes. You could then inherit those characteristics as you create both a
Student and Teacher object that each has its own unique characteristics, but also inherits
the characteristics of Person as well. You can see an example of this in Figure 1-2.

Figure 1-2. A simple diagram to illustrate objects and how they relate.

In Figure 1-2, you see a Person object that has the attributes of height, weight, hair color
and sex. Where does the Person object get that data? It comes from a class, which is a
blueprint for an object to be built from containing information about the attributes (called
properties) and actions (called methods) that any object based on the class can have. In the
case of a Person, its properties are the attributes that define the class; the methods it can
perform might include eat, sleep, or walk. The creator of the class determines what prop-
erties it has to manipulate and what methods it has to perform actions with.

Encapsulation prevents outside objects from being able to see the implementation details
of a specific object. The objects see only what they need to see to send data between the
objects, which helps enforce the modularity of objects. Having little to no dependency on
other objects is an essential concept for object-oriented programming. For the most part,
objects need to be independent units of functionality, not reliant on each other for neces-
sary information.

RAILS SOLUTIONS:  RAILS MADE EASY

6

7524ch01.qxd  12/13/06  4:40 PM  Page 6



Finally, polymorphism describes the behavior of an object that varies depending on the
input. The literal interpretation of the word polymorphism is many shapes, which is a
great way to explain the concept. Let’s assume that your Person object has a method
called enroll. A Student and a Teacher can both enroll in a subject, but in different
ways. If a Student enrolls in a subject, it is to take the course; if a Teacher enrolls, it is to
teach the course.

Riding the Rails
In late 2003, David Heinemeier Hansson and 37Signals began working on a web-based
project management solution for small teams. Initially, Hansson looked to create the
application using PHP, but became frustrated with some of the shortcomings of the lan-
guage. Many PHP programmers find themselves in the same shoes, repeating the same
code in multiple places while building a system, for example. This process can be monoto-
nous, redundant, and time-consuming, so why do it if you don’t have to? Again, object ori-
ented programming helps to clear up redundancy.

Instead of succumbing to the same development process again by using PHP, Hansson
looked for a savior. He found Ruby. Using Ruby, Hansson developed 37Signals’ popular
web-based project management application called Basecamp on his own in two man-
months. While developing Basecamp, Hansson realized that a lot of the code he was writ-
ing could be extracted into a framework that could be used as part of other future
applications. In July 2004, he released his framework, Ruby on Rails, to the public. 

Similar to the way the Ruby language itself follows the principle of least surprise, Rails was
designed with the principle of don’t repeat yourself (DRY) in mind. DRY basically means
that no piece of a system should ever be duplicated. Changes to any one part of an appli-
cation should have to be made in only a single place, similar in concept to the way you can
use Cascading Style Sheets (CSS) to ensure that a change made to an h1 header has to be
made in only one place. 

Another principle followed by Rails is Convention Over Configuration. Rails does not have
many configurable options, as other frameworks such as Cocoa and .Net do. Instead, it is
opinionated and accomplishes tasks in a way that the Hansson and the Rails core team
think is best. Because of this rationale, Rails is often referred to as selfish or opinionated
software, which has been a point of contention for many of Rails’ dissenters. Despite what
they say, however, Rails’ Convention Over Configuration mantra makes rapid application
development a reality because developers can dive right into building applications.  

Convention Over Configuration does not necessarily mean that you can’t modify the
framework’s defaults to work the way you desire and that you are locked into a single
way of thinking. That isn’t the case. Advanced developers can modify the way the
framework interacts with their applications with a bit of work. Most of the time, how-
ever, there is not a need to alter the way Rails behaves by default.

INTRODUCTION TO RUBY ON RAILS

7

1

7524ch01.qxd  12/13/06  4:40 PM  Page 7



Components of Rails
A Ruby on Rails application consists of several components, as you can see in Figure 1-3. 

Figure 1-3. A generic Rails application

A simple web request can take quite a journey in Ruby on Rails. When a user first requests
a page via the browser, the Rails controller (Action Controller) receives the request and
redirects to the correct method based on the routing URL. After the correct method is
called, the method is executed and grabs any data it needs from the SQL database using
the Active Record model. After it has all the data it needs, it renders the final view (HTML,
CSS, and images) in the user’s browser.

At the base of any application are the data models that describe the business rules of your
application. Models are based on real-world items such as a person, bank account, or
vehicle. Each piece of data is represented by using a database table and is managed using
Active Record, which is a Rails-provided object to simplify access to databases. 

Active Record connects the data models and database tables by turning rows from the
database into objects that can be manipulated. It also enables you to describe business
rules via the use of an English-like syntax called Associations, which describes relationships
between the different data models in your application. A person’s family relationships can
be described as follows: 

class Person < ActiveRecord::Base  
has_many :brothers  
has_many  :sister  
belongs_to :mother  
belongs_to :father 

end  

RAILS SOLUTIONS:  RAILS MADE EASY

8

7524ch01.qxd  12/13/06  4:40 PM  Page 8



To manipulate these data models, there are controllers that perform all the actions your
application performs. An application can have many controllers for each portion of the
application. For example, if you have a model that describes a vehicle, you might also have
a controller that describes how to add a new car, change its color, or remove it from the
inventory. The controller logic is handled with the Rails component called Action
Controller. 

The previous two items are visible only from your perspective as the developer. The users
of your application see only the views, which are built using a mix of HTML and basic Ruby
embedded inside. The main method of creating the view is using Rails’ Action View. Action
View consists of embedded Ruby templates (RHTML), which have a syntax similar to a PHP
page. A basic line to output a user’s first name using RHTML templates could be described
this way:

<p>Good morning, <strong><%= @user.first_name %></strong></p>

After the user submits a request, and Action Controller retrieves the results of the request,
Action Controller then renders the result using RHTML templates in standard HTML. It
replaces all instances of escaped Ruby code (the code between <%= %>) with standard
HTML elements so the browser can fully understand the resulting page. 

Being able to interpret a variety of results using the same standard RHTML view is an
advantage of designing your applications using dynamic templates like this: even if the
information you are working with changes over time, you can still continue using the same
page to serve the information to your users. 

Here’s a quick example of a basic Rails application that manages a car dealership’s inven-
tory. Don’t bother trying to run this code yet—you’ll get to that point in the next few
chapters. Right now, just observe the syntax and let’s walk through how it functions. 

First, I created three models: Salesman, Customer, and Vehicle. Salesmen sell many vehi-
cles, and each customer can own many vehicles. Each vehicle is owned by a single cus-
tomer and sold by a single employee. You can define these business rules using a Rails
model: 

class Vehicle < ActiveRecord::Base
belongs_to :customer
belongs_to :salesman

end

class Salesman < ActiveRecord::Base
has_many :vehicles

end

class Customer < ActiveRecord::Base
has_many :vehicles

end

INTRODUCTION TO RUBY ON RAILS

9

1

7524ch01.qxd  12/13/06  4:40 PM  Page 9



With the models defined, you can then create a controller to work with vehicle data. This
example controller is very basic: it adds new cars, lists all the cars in the system, and
enables a car to be sold to a customer. This isn’t exactly production-ready code (it doesn’t
take into account security issues or error correction, for example), but it gives you a taste
of what Ruby code looks like.

class VehicleController < ApplicationController
def new
@car = Car.new(params[:car])
if @car.save
redirect_to :controller => "vehicle", :action => "view_all"

end
end

def delete
@vehicle = Vehicle.find(params[:id])
@vehicle.destroy

end

def sell
@car = Car.find(params[:id])
@salesman = Salesman.find(params[:salesman][:id])
@customer = Customer.find(params[:customer][:id])
@car.customer = @customer
@car.salesman = @salesman
if @car.update_attributes(params['car'])
redirect_to :controller => "vehicle", :action => "view_all"

end
end

def view_all
@cars = Vehicle.find(:all)

end
end

Finally, here’s a very basic view for only one of the methods: view_all. The view_all
method gives the user a listing of all the cars in the database. Rather than write out the
entire HTML, you can focus on the Ruby portion of the template. This portion of the tem-
plate iterates through the @cars variable defined in the controller to output the name of
each of the cars.

<ul>
<% @cars.each do |c| %>
<li><%= c.name %></li>

<% end %>
</ul>

RAILS SOLUTIONS:  RAILS MADE EASY

10

7524ch01.qxd  12/13/06  4:40 PM  Page 10



Model, View, Controller

Separating the basic anatomy of a Rails application into three separate model, controller
and view components means that Rails is built using the Model-View-Controller (MVC)
architecture. MVC separates an application’s data model, user interface, and controller
logic into separate components, as you can see in Figure 1-4. 

Figure 1-4. MVC architecture and how Rails handles it

The MVC architecture is great from a programmer’s perspective because it separates each
component of a Rails application into an isolated code base that is easily managed without
having to worry about breaking other parts of your application. For instance, you can nor-
mally modify the layout of your views without having to worry about it having any impact
on the controller or model code. If all this code were interspersed through a single HTML
file that contained the template HTML as well as all the model and controller data, it
would not be nearly as manageable and capable of being debugged. Design patterns such
as MVC are created to make a developer’s life easier. This is where Rails scores over PHP
and even ASP, which don’t follow any sort of paradigm. 

You might be a bit confused right now, but don’t worry. After you start working with Rails,
you won’t even realize that you are working in a design pattern. It all becomes natural 
to you after awhile.

Don’t worry if all this code seems scary to you right now. This is only the beginning of your
journey, and you’ll be going through every part of the Rails architecture and code syntax
in detail and with multiple examples. It’ll seem like child’s play by the end of the book.

INTRODUCTION TO RUBY ON RAILS

11

1

7524ch01.qxd  12/13/06  4:40 PM  Page 11



Rails’ database support
Active Record takes your model class and connects it with a table in your database using
an object-relational mapping pattern. The most frequently used database for Rails devel-
opment is MySQL, which is widely available on multiple platforms, easy to install, and freely
available for development. 

Aside from MySQL, there are database adapters for several other production databases,
including PostreSQL, SQLite, Microsoft SQL Server, Oracle, and most other major database
vendors. 

Luckily, Rails makes the choice of a database vendor almost an afterthought because
Active Record does not expose you directly to the database itself. Instead, you perform all
your actions by calling Active Record and let it do the heavy lifting. 

Who uses Rails?
While still in its infancy, many major developers have gotten aboard the Ruby on Rails
bandwagon. 37Signals is one of the main developers, having released five applications
powered by the framework. One of its most recent offerings, Campfire, is pushing the lim-
its of the framework. Campfire is a web-based chat client that functions almost exactly like
a normal Internet chat client, but uses Ajax technologies in your browser.

Many modern web companies have adopted Rails because it enables them to release their
applications to the public faster than ever before. Joyent released its online file storage
system, Strongspace, as a Rails application. Second Gear’s Porchlight bug-tracking system
(see Figure 1-5) was built using Rails. Odeo (see Figure 1-6) released its podcast sharing
and recording center early in the life of Rails. Even Google is on board with Rails because
it recently purchased Measure Map, the Rails’ blog statistics package.

Ajax is the common method by which websites can load new data without having to
reload the entire web page, enabling some impressive dynamic functionality and inter-
action not previously available on websites. A prime example of Ajax is Google’s Gmail
service. When Gmail checks for new e-mail messages, it doesn’t refresh the web page.
Instead, it pings the Google servers and pushes out the new messages almost instantly. 

RAILS SOLUTIONS:  RAILS MADE EASY

12

7524ch01.qxd  12/13/06  4:40 PM  Page 12



Figure 1-5. Second Gear’s Porchlight bug-tracking system was built using Ruby on Rails in three months.

Figure 1-6. Odeo is a podcasting creation-and-sharing tool built on Rails. 

INTRODUCTION TO RUBY ON RAILS

13

1

7524ch01.qxd  12/13/06  4:40 PM  Page 13



Is Rails safe?
One of the questions developers ask as they consider a new framework or programming
language in general is how safe it is. As with many other frameworks, Rails is as safe and
secure as your knowledge of the topic. As long as you follow some general security pre-
cautions that I will outline in future chapters, your applications should be safe and secure. 

For example, one of the most common security vulnerabilities you can run into when
developing web applications is SQL injection, which allows hackers to execute SQL state-
ments via your website. For example, a remote attacker could craft an SQL query to delete
all the items in your database. The query could be passed into a form element and could
be executed and cause havoc inside your application if not properly handled. Rails’ Active
Record functionality prevents SQL injection if you are not working directly with SQL state-
ments by automatically quoting any dangerous characters in the data that is passed
through.

Another type of attack is a cross-site scripting (XSS) attack, which allows hackers to steal
the cookies from another user of the site, thereby stealing their private details—such as
login name and password. Rails can prevent these attacks by wrapping your data with the
h() helper method that prevents HTML from being executed by users.

An example of the safety built into Rails is its transaction-based database manipulation.
Using transactions, if there is any sort of problem with your database commit, the entire
set of actions will be undone without affecting your existing data. By using transactions,
data anomalies can be a thing of the past. 

Summary
This chapter looked at the history of web programming from its very beginnings to today
as well as the components of a Rails application. It covered the basics of Active Record,
Action Controller, and Action View. It also discussed the database support afforded to
Rails applications and who is using Rails. Finally, it wrapped everything up with a discussion
of the security provided by the Rails framework. This introduction gives you a foundation
from which to build your Rails knowledge. 

Sound interesting? Let’s get started!

Cookies, which are small files stored on your local computer, persist data when you are
using a website and want to store details for later use, such as personal site preferences
or the contents of your shopping cart. 

RAILS SOLUTIONS:  RAILS MADE EASY

14

7524ch01.qxd  12/13/06  4:40 PM  Page 14



7524ch01.qxd  12/13/06  4:40 PM  Page 15



7524ch02.qxd  11/30/06  11:18 AM  Page 16



2 INSTALLING RAILS

7524ch02.qxd  11/30/06  11:18 AM  Page 17



Before you can begin to learn how to create a Ruby on Rails application, you have to take the
time to set up a proper development environment. Since all development tasks are best
done on your local machine, you will be installing a few applications and utilities. For a very
basic Ruby on Rails development environment, your toolbox needs to include the following:

Ruby 1.8.4

RubyGems 0.8.11

Ruby on Rails framework itself

Lighttpd 1.4.11

MySQL 5.0.21

MySQL bindings for Ruby

You don’t need to download these tools yet because you will be doing it all in the next few
pages as you work through the installation. 

While this bare-bones system will get you up and running, your life will be easier with the
installation of a few more utilities:

FastCGI 2.4.0

Readline 5.1

PCRE 6.6

FastCGI bindings for Ruby

The FastCGI libraries speed up the execution of your Rails application, and the FastCGI
bindings enable the libraries to interface with Rails. Readline is needed so that the Rails’
console mode will work. The console is an essential tool for debugging, and it’s hard to
imagine developing without it. Finally, the PCRE libraries enable regular expressions to be
executed via Lighttpd. 

I’ll cover building a development environment for Rails on both Mac OS X 10.4 “Tiger” and
Windows XP from the ground up. Building the system from scratch is the best way to
ensure that it’s easily upgradeable and capable of running the application independent of
any required operating system. First, I’ll cover installing Rails on Mac OS X. Grab a bever-
age of choice because this might take awhile.

Installing Rails on Mac OS X
Depending on your desires and proficiency with Mac OS X, you have two options for
installing Rails on your system. The first is to do a manual installation, in which you install
all the relevant applications onto your system locally. This simulates a production environ-
ment more closely than the alternative: using Locomotive. Locomotive is an all-in-one
solution for using Rails that is simply a standard Mac OS X application. 

There are benefits and tradeoffs with Locomotive. Locomotive enables you to test out
Ruby on Rails with little commitment. Instead of going through the process of updating
your Mac OS X system to use Rails, you can simply download the Locomotive application

RAILS SOLUTIONS:  RAILS MADE EASY

18

7524ch02.qxd  11/30/06  11:18 AM  Page 18



2

INSTALLING RAILS

19

and then get up and running. This procedure is great if you aren’t sure that Rails is for you
and doesn’t hinder your ability to move to a dedicated Rails install later on. 

While Locomotive is easy to install and use, it does not allow for some more advanced uses
of Rails that you might want to dive into as you become more proficient in using Rails. It is
also not as up-to-date as a manual installation of Rails. If this is not an issue to you, you
can skip to the Locomotive section a few pages away. 

Before you begin these installation instructions, check a few things. First, ensure that you
are running Mac OS X 10.4.8 or greater and that you have the Xcode development tools
installed. You also need administrator privileges on your Mac.

Installing Xcode

The Xcode tools are available for free from the Apple Developer Connection (ADC)
(http://developer.apple.com/). All you have to do is create a free ADC account to
acquire them.

1. After signing up with ADC, log in to your new account and go to the Downloads
section of the website. There should be a download for Xcode 2.3 or greater on the
main page (see Figure 2-1). Download the disk image. 

These instructions might work in Mac OS X 10.3 Panther or versions of Tiger prior to
10.4.6, but I have not tested them on such environments. If you want more explicit
instructions for installing Rails on Mac OS X Panther, see Scott Lewis’ instructions at
http://scotfl.ca/2005/03/13/how-to-install-ruby-on-rails-on-mac-os-x-1038/.

Figure 2-1.
Downloading Xcode
from the ADC

7524ch02.qxd  11/30/06  11:18 AM  Page 19



2. After it is downloaded, double-click the disk image, if it is not already mounted, and run the Xcode
Tools installer, as shown in Figure 2-2. 

Figure 2-2. Running the Xcode Tools installer

3. When the Installer window pops up, click Continue, accept the license agreement, and set the installa-
tion destination to be your Mac’s main hard drive (where your System folder is). Mine is shown in
Figure 2-3. 

Figure 2-3. You need to install Xcode on your main hard drive.

RAILS SOLUTIONS:  RAILS MADE EASY

20

7524ch02.qxd  11/30/06  11:18 AM  Page 20



4. Next, you have the option to customize your installation (for what you are doing,
go ahead and just click Continue). At this point, the installation commences.
Depending on your machine’s speed, the process can take anywhere from a few
minutes to an hour or more. Go grab a cup of coffee or a soda while it performs
the installation. 

After the installation is complete, you shouldn’t have to restart your machine. 

With the requirements out of the way, you now have another decision to make. You can
run a script to perform the downloading, compiling, and installing Ruby on Rails semiau-
tomatically—or you can go through the different steps manually.

Semiautomatic Rails install

To do the semiautomatic install, the only effort you have to put forth is to download the script
and enter your Mac OS X password a few times. If that is the route you want to take, visit this
book’s page at www.friendsofed.com (or try the support site at www.railssolutions.com),
download the script, and save it to your desktop. After you download it, open up the Mac
OS X Terminal application (found in /Applications/Utilities) and run the following
command:

sh ~/Desktop/rs_railsinstall.sh

The install takes a few minutes. After you reach the end, you can skip to the installing
MySQL portion of this chapter.

IMPORTANT: Installing your Ruby on Rails environment involves quite a
few different pieces of software, all of which are downloaded from the
Web automatically by the script and installed. If you find that the script
gives you any problems, it is probably because the version (and therefore
name) or location of one of the pieces of software might have changed.
Consult www.friendsofed.com or www.railssolutions.com and look for
the install script changelog to see whether it has changed recently; then
try to download it again.

You might be wondering exactly why you need the developer tools for Mac
OS X if you are doing web development. Well, by default, Apple doesn’t
include some important command-line utilities such as make when you get
your new Mac. Apple assumes that most people will not have a use for
tools such as these. 

This is a good assumption, but a lot of these tools are requirements for
building Ruby and the Rails framework. Luckily, Apple makes it pretty easy
to install Xcode.

INSTALLING RAILS

21

2

7524ch02.qxd  11/30/06  11:18 AM  Page 21



Manual install

1. The manual install is for more-advanced users who want to walk through the instal-
lation manually. First, open up the Mac OS X Terminal application (found in
/Applications/Utilities).

2. Now you create a folder to hold all the source code for the files you’ll be working
with. Type the following two lines (press Return after each).

mkdir src
cd src

By default, this folder is at the root of your home folder alongside Desktop,
Documents, Music, and so on. It doesn’t really matter where this folder actually
lives; I created it in the home folder, but it can be on the desktop or in
/usr/local/src, for example. All operations should take place there.

Setting the file path correctly
Next, you need to set your path so that it looks in /usr/local first for the tools you’ll be
using. This is an important step that you cannot skip! I say this because if you run into prob-
lems in a few pages, a majority of them can be related to not correctly setting your path. 

3. To set the path, open the .bash_login file in your home directory. Open up a new
TextMate window (or your preferred text editor) and select File ➤ Open. 

4. In the TextMate Open menu, select Show Hidden Files, as shown in Figure 2-4.

5. Select .bash_login if it exists. If it does not exist, press the Cancel button and just
create a new file by selecting File ➤ New. 

Figure 2-4. Electing to show hidden files in your text editor can reveal a lot!

RAILS SOLUTIONS:  RAILS MADE EASY

22

7524ch02.qxd  11/30/06  11:18 AM  Page 22



6. Add the following line to the very end of the file and then save it:

export PATH="/usr/local/bin:/usr/local/sbin:$PATH" 

7. If you are saving a new file, save it as .bash_login at the base of your home
directory.

8. To make sure that the changes to the file are picked up immediately, you now need
to execute the file with the following command in the Terminal window:

. ~/.bash_login

There will probably be no response from the shell here—that’s OK. This command enables
you to execute the installation commands in the forthcoming pages without having to
open up a new Terminal window. With all the prerequisites out of the way, you can move
on to actually installing Ruby and the Rails framework.

Setting up Ruby on Mac OS X
Even though Mac OS X Tiger comes with a version of Ruby preinstalled, it is not the latest
version and it doesn’t include the readline library, which is essential for working with Rails’
console application. With that in mind, you need to install readline first. 

9. Type the following lines into Terminal one by one, pressing Return between each
one. There might be a lot of information dumped onto your screen after specific
commands, so just wait until it finishes before typing the next one.

curl -O ftp://ftp.gnu.org/gnu/readline/readline-5.1.tar.gz
tar xzvf readline-5.1.tar.gz
cd readline-5.1
./configure --prefix=/usr/local
make
sudo make install
cd ..

What you just did was download the readline libraries using the curl command, which is a
Unix command that makes it easy to download files from the Web from the command
line. It downloaded a file called readline-5.1.tar.gz. The next command extracted the
readline-5.1 folder. The cd command changes into the readline-5.1 directory and is
followed by a configure command that gets the code ready for compiling. The make com-
mand builds the source code, and the make install command installs it in the appropriate
folder. 

Next, you install Ruby itself. The next set of commands downloads Ruby, extracts the files
from an archive, and then compiles and installs it.

10. Again, type the following lines into Terminal one by one, pressing Return between
each one:

curl -O ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.4.tar.gz
tar xzvf ruby-1.8.4.tar.gz 
cd ruby-1.8.4
./configure --prefix=/usr/local --enable-pthread --with-readline-
dir=/usr/local

INSTALLING RAILS

23

2

7524ch02.qxd  11/30/06  11:18 AM  Page 23



make
sudo make install
cd ..

Next, you turn your attention to RubyGems, which is the package manager that makes
downloading and installing the actual Rails framework a simple one-line command. Like
Ruby before, you need to manually compile and install the Gems package.

11. Type the following commands into Terminal one by one, pressing Return between
each one:

curl -O http://rubyforge.org/frs/download.php/5207/rubygems-0.8.11.tgz
tar xzvf rubygems-0.8.11.tgz
cd rubygems-0.8.11
sudo /usr/local/bin/ruby setup.rb
cd ..

Installing the Rails framework on Mac OSX...finally!
This is probably the portion of the installation where not properly setting your path a few
pages earlier comes back to bite you.

12. If you are confident that you have the path set correctly, type the following line
into Terminal:

sudo gem install rails --include-dependencies

The gem install command downloads the relevant files for installing Rails, configures them
for your system, and then installs them where appropriate—all without you having to do
any heavy lifting!

Even with your path set correctly, you might see an RDoc failure error. This one is actually
nothing to worry about. Just rerun the previous original command above—or don’t. Things
should be fine either way (really). RDoc is the documentation that comes with Rails, but 
I have always found it easier to just access it via the Web.

Installing FastCGI
FastCGI is an extension to CGI that speeds up the performance exponentially. This isn’t
necessarily required for a Rails installation, but it will make developing your Rails applica-
tions a much more enjoyable process because you won’t be waiting around for the exe-
cution of your code.

13. First, you need to install the actual extensions with the following command
sequence:

curl -O http://www.fastcgi.com/dist/fcgi-2.4.0.tar.gz
tar xzvf fcgi-2.4.0.tar.gz
cd fcgi-2.4.0
./configure --prefix=/usr/local
make
sudo make install
cd ..

RAILS SOLUTIONS:  RAILS MADE EASY

24

7524ch02.qxd  11/30/06  11:18 AM  Page 24



14. Now install the Ruby-FastCGI bindings, like so:

curl -O http://sugi.nemui.org/pub/ruby/fcgi/ruby-fcgi-0.8.6.tar.gz
tar xzvf ruby-fcgi-0.8.6.tar.gz
cd ruby-fcgi-0.8.6
/usr/local/bin/ruby install.rb config --prefix=/usr/local
/usr/local/bin/ruby install.rb setup
sudo /usr/local/bin/ruby install.rb install
cd ..

15. Finally, you need to install the fcgi RubyGem so that your Rails application can talk
to everything you installed previously. Luckily, it’s a simple one-line installation,
thanks to RubyGems.

sudo gem install fcgi

Installing Lighttpd
LightTPD is the web server that you will be using to use to test and deploy your Rails-based
applications. It is an up-and-coming web server that has gained its appeal in the commu-
nity because of its light footprint and its capability to handle heavy server loads more effi-
ciently than Apache. Before you can install Lighty (as it’s referred to), you need to install
one of its prerequisites: the PCRE libraries. These libraries are required for Lighty to be
able to read its configuration file as it supports regular expressions—PCRE is a type of
Regular Expression.

16. Type the following lines into Terminal, pressing Return between each one, as before:

curl -O ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-
6.6.tar.gz
tar xzvf pcre-6.6.tar.gz
cd pcre-6.6
./configure --prefix=/usr/local CFLAGS=-O1
make
sudo make install
cd ..

17. With the libraries installed, you can actually install Lighttpd by using the following
commands: 

curl -O http://lighttpd.net/download/lighttpd-1.4.11.tar.gz
tar xzvf lighttpd-1.4.11.tar.gz
cd lighttpd-1.4.11
./configure --prefix=/usr/local --with-pcre=/usr/local
make
sudo make install
cd ..

You still need to create a configuration file, but you will do that when you start working on
an actual application. For now, move on to the last few portions of the installation process.

INSTALLING RAILS

25

2

7524ch02.qxd  11/30/06  11:18 AM  Page 25



Installing MySQL on Mac OSX
As mentioned before, MySQL is the most common database used in conjunction with Rails
(and in fact, any development language) to develop web applications. Unlike before, you
don’t actually need to compile MySQL yourself. While it is possible, the MySQL parent
company, MySQL AB, provides excellent precompiled versions of its database for a variety
of platforms, Mac OS X included.

18. First, you need to download a copy of MySQL 5.0 for your specific architecture
(PowerPC or Intel) from the MySQL download site (http://dev.mysql.com/
downloads/mysql/5.0.html#Mac_OS_X).

19. After it downloads, double-click the disk image to mount it. 

20. Locate the MySQL installer (a file named something like mysql-standard-5.0.21-
apple-darwin8.2.0-intel.pkg) and run it, providing your username and password
as needed.

21. Double-click MySQLStartupItem.pkg, authenticate, and let it install. This sets the
MySQL server to run each time your machine starts up. It’s easier to just automate
this than to have to remember to manually launch the server from System
Preferences every time you reboot.

22. Finally, double-click MySQL.prefPane and install it, deciding whether to make it
available to just the current user or to all system users. This lets you start and stop
MySQL via the System Preferences application.

23. After the install is complete, start the MySQL server using the newly installed
Control Panel. 

24. You should add MySQL to your path so that you can easily run the mysql client
from Terminal without having to type its full path. Like before, edit your
.bash_login file and make your PATH statement look like this:

export PATH="/usr/local/bin:/usr/local/sbin:/usr/local/mysql/bin:$PATH"

25. Save your changes and close the file.

26. Finally, you need to install the MySQL bindings for Ruby and Rails. Type the follow-
ing line into Terminal:

sudo gem install mysql -- --with-mysql-dir=/usr/local/mysql

27. You are prompted to select a gem for your specific platform. Select the mysql 2.7.1
(ruby) option, as shown in Figure 2-5 (option 2).

A word of warning: MySQL installs with a default user of root, which has no password.
This is a major security hole that you need to patch. In your terminal, type the following:

/usr/local/mysql/bin/mysqladmin -u root password _new_password_here_ 

Obviously, you should replace _new_password_here_ with your password of choice!
Make sure you don’t forget it—you will be in trouble if you do.

RAILS SOLUTIONS:  RAILS MADE EASY

26

7524ch02.qxd  11/30/06  11:18 AM  Page 26



Figure 2-5. Select the right Ruby gem for your platform.

You should now have a working Ruby on Rails development environment!

Locomotive

If running through all the previous commands seems daunting to you, Ryan Raaum has
created a free, all-in-one solution called Locomotive (http://locomotive.raaum.org/).

1. To install it, first download the Locomotive disk image, mount it on your desktop,
and drag the Locomotive folder into your /Applications folder. 

2. Next, start Locomotive by navigating into the folder and running Locomotive.app.
Locomotive enables you to import existing Rails projects and create new projects. 

Its main window displays a list of all the Rails projects it is managing, as shown in Figure 2-6,
and enables you to start and stop those applications. You edit your application’s files out-
side Locomotive. One word of warning: when using Locomotive, you must use its console
to type commands. Access it from the Rails ➤ Open Terminal menu option. If you try to just
open a Terminal window outside of Locomotive (just launching it from the Dock, for exam-
ple), it won’t have a reference to the Locomotive bundles and can cause you problems
down the road.

Figure 2-6. Locomotive main console
window

INSTALLING RAILS

27

2

7524ch02.qxd  11/30/06  11:18 AM  Page 27



Extra tools for Mac OSX

Whether you built Rails from scratch or using Locomotive, there are a few other tools that
you and other Mac OS X Rails developers will find useful. 

CocoaMySQL: When you need to create or manually edit data in your MySQL data-
base, it’s a lot easier to work with a graphical user interface (GUI) such as
CocoaMySQL instead of manually typing SQL update queries via a command line.
Using CocoaMySQL, you can perform 90 percent of the database-related tasks
afforded to you as a Rails developer through its interface. The application is free
and can be found at http://cocoamysql.sourceforge.net/. 

TextMate: Most Mac users who are also Rails developers are using TextMate
(http://macromates.com/) as their text editor of choice. If you have watched the
Rails screencasts on http://rubyonrails.com/, the editor that the author is using
is, in fact, TextMate. TextMate's main advantage for Rails developers is its liberal use
of macros and code snippets, which makes a developer’s life much easier. TextMate
costs about $50.00, but it is worth every penny. If you are on a tight budget, a 
freeware text editor such as Bare Bones’ TextWrangler (http://barebones.com/
products/textwrangler/) works just as well.

Installing Rails on Windows
Installing Ruby on Rails for Windows is a bit easier than it is for Mac OS X solely because
you don’t have to manually compile the software yourself. The process is fairly similar,
however. Before you can move forward with installing on Windows, make sure that you
have Administrator privileges on your Windows account. If you are the single user on the
machine and not connected to a corporate network, you probably have Administrator
privileges. If you are connected to a corporate network, ask your system administrator. 

Installing Ruby on Windows

1. First, you need to install Ruby itself. This is simple: just download the one-click installer
from the Ruby Installer project page (http://rubyinstaller.rubyforge.org/)
and run through the Setup Wizard.

2. After installation is complete, you need to ensure that the path to ruby\bin is in
your path variable. You can do this by opening Start ➤ Run, typing cmd, and press-
ing Enter.

3. In the window that pops up, type path. Make sure that your path contains c:\ruby,
as shown in Figure 2-7.

If you don’t have administrative access to your Windows PC, InstantRails might be the
only option for you. It bundles Rails, MySQL, and a web server in a single application
that you can run on your machine. Skip over a few pages to read more about it.

RAILS SOLUTIONS:  RAILS MADE EASY

28

7524ch02.qxd  11/30/06  11:18 AM  Page 28



If it isn’t set correctly for some reason, you can edit it manually. Skip steps 4–7 if your path
did set correctly.

4. From the Windows desktop, right-click My Computer and select Properties.

5. In the System Properties window, click the Advanced tab.

6. Click the Environment Variables button.

7. Finally, in the Environment Variables window, highlight the path variable in the
System Variables section, as shown in Figure 2-8, and click Edit. Add or modify the
path lines with the paths you want the computer to access. Each different directory
is separated with a semicolon.

What is so great about the one-click installer is that it includes RubyGems preinstalled—so
you don’t have to worry about installing it yourself. All that’s left is to install Rails itself. In
the command prompt window type gem install rails --include-dependencies. 

Figure 2-8. Edit the path variable
to set it correctly.

INSTALLING RAILS

29

2

Figure 2-7. Make sure that
your PATH variable is set
correctly for Rails to run.

7524ch02.qxd  11/30/06  11:18 AM  Page 29



Installing MySQL on Windows

The most complicated part of the Windows installation is installing and configuring MySQL.
First, download and run the latest Windows Essentials (x86) version of MySQL from the
MySQL download site (http://dev.mysql.com/downloads/mysql/5.0.html). At the end of
the wizard is a MySQL Server Instance Configuration Wizard that you should run. 

8. Select Detailed Configuration, as shown in Figure 2-9, and then click Next.

Figure 2-9. Choose Detailed Configuration.

9. Choose Developer Machine, as shown in Figure 2-10, and then click Next.

Figure 2-10. Choose Developer Machine.

RAILS SOLUTIONS:  RAILS MADE EASY

30

7524ch02.qxd  11/30/06  11:18 AM  Page 30



10. Choose Multifunctional Database, as shown in Figure 2-11, and then click Next.

Figure 2-11. Choose Multifunctional Database. 

11. Leave the next screen unchanged (see Figure 2-12) and then click Next.

Figure 2-12. Leave the InnoDB Tablespace Settings unchanged. 

INSTALLING RAILS

31

2

7524ch02.qxd  11/30/06  11:18 AM  Page 31



12. Choose Decision Support (DSS)/OLAP, as shown in Figure 2-13, and then click Next.

Figure 2-13. Choose Decision Support (DSS)/OLAP.

13. Choose Enable TCP/IP Networking and leave Enable Strict Mode checked, as shown
in Figure 2-14. Click Next.

Figure 2-14. Choose Enable TCP/IP Networking and leave Enable Strict Mode checked.

RAILS SOLUTIONS:  RAILS MADE EASY

32

7524ch02.qxd  11/30/06  11:18 AM  Page 32



14. Choose Best Support for Multilingualism, as shown in Figure 2-15, so MySQL will use
Unicode for stored data. If you are planning to support only English and western
European languages, you can use the Standard Character set to save some hard
drive space.

Figure 2-15. Choose Best Support for Multilingualism.

15. Make sure that both Install As Windows Service and Include Bin Directory in Windows
PATH are checked, as shown in Figure 2-16, before clicking Next.

Figure 2-16. Make sure that all the options are selected in this screen.

INSTALLING RAILS

33

2

7524ch02.qxd  11/30/06  11:18 AM  Page 33



16. Create a password for the root account and leave Enable Root Access From Remote
Machines unchecked, as shown in Figure 2-17.

Figure 2-17. Create a root password and enable root access from remote machines.

17. Click Execute. If everything went OK, you should have blue check marks for all
installation steps, as shown in Figure 2-18. You can now click Finish to exit the
MySQL installer.

Figure 2-18. Everything’s A-OK.

RAILS SOLUTIONS:  RAILS MADE EASY

34

7524ch02.qxd  11/30/06  11:18 AM  Page 34



18. The next step is to ensure that your MySQL instance is working properly. Open a
command prompt again and type the following line:

mysql.exe -h 127.0.0.1 -u root -p

You are asked to type your password; if everything is fine, you should see the message
Welcome to the MySQL Monitor and the MySQL prompt.

InstantRails—Rails for Windows

Similar to the Locomotive project for Mac OS X, InstantRails is an all-in-one solution
put together by Curt Hibbs for developers using Ruby on Rails (http://
instantrails.rubyforge.org/), as shown in Figure 2-19.

Instead of using Lighttpd for the web server, InstantRails bundles Apache as well as
Ruby, Rails, and MySQL—all preconfigured and ready to go. To install InstantRails, follow
these steps. 

19. First, create a folder to contain the InstantRails installation files. This folder cannot
contain spaces. I suggest c:\rails. 

20. Next, visit the InstantRails site and download the latest ZIP file. If the archive isn’t
automatically unzipped, unzip it into the directory you created in your previous step. 

21. Finally, go to the directory into which you installed the application and run
InstantRails.exe. You might be asked whether or not to unblock Apache.
Unblock it. A small window should appear. This is where all your active projects will
exist. If you need access to Rails’ console in future chapters, it can be accessed via
InstantRails by clicking the I (I-beam) button in the top-left corner of the window.
From the menu, select Rails Applications ➤ Open Ruby Console Window. Whenever
you want to enter commands in a console window, you must use the console
started from the InstantRails menu. It doesn’t work otherwise.

Extra tools for Windows

When you installed Ruby, it should have bundled the SciTE text editor
(www.scintilla.org/SciTE.html), which is a good freeware text editor for Windows.
SciTE features automatic syntax highlighting, sessions, and code folding.  

Figure 2-19. InstantRails

INSTALLING RAILS

35

2

7524ch02.qxd  11/30/06  11:18 AM  Page 35



Besides SciTE, you might also want to get SQLyog (www.sqlyog.com/) for working with
MySQL with a GUI. SQLyog makes it easy to create and delete databases, edit the data
structure of an existing database, and manipulate data. SQLyog’s community edition is
open source and freely available from their Web site. 

If you are a fan of the Eclipse development environment or if you long for a development
environment that is more advanced, check out RadRails (www.radrails.org/). RadRails
includes a built-in web server, web browser, database browser, and support for Rails gen-
erators. Best of all, it’s free! I didn’t choose to use it in this book because I wanted to keep
things as simple as possible.

Ready? Let’s do it!
Whether you are using Windows or Mac OS X, you should now have a fully functional Rails
development environment to work in. The rest of this book is platform-independent, so it
shouldn’t matter which development environment you chose. If there are differences
along the way, they will be pointed out.

Ready to start riding the Rails?

RAILS SOLUTIONS:  RAILS MADE EASY

36

7524ch02.qxd  11/30/06  11:18 AM  Page 36



7524ch02.qxd  11/30/06  11:18 AM  Page 37



7524ch03.qxd  12/13/06  4:51 PM  Page 38



3 RUBY FOR RAILS DEVELOPERS

7524ch03.qxd  12/13/06  4:51 PM  Page 39



Before you dive into developing Rails applications, you should take the time to get
acquainted with the foundation of Rails: Ruby. All the code that you will be writing in the
forthcoming chapters is in Ruby, so it’s only natural to give you a gentle introduction to
the language. After all, you don’t try to build a house if you’ve never used a hammer
before. 

This introduction assumes that you have a little bit of knowledge of programming. If
you’ve ever done any work with PHP, JavaScript, BASIC, or other similar programming lan-
guages, you are in good shape. If not, there are many excellent tutorials online that can
get you caught up to speed, such as Introduction to Programming by JoAnne Allen
(http://www.wired.com/webmonkey/98/37/index3a.html?tw=backend).

Basic Ruby syntax
Ruby is a very clean and readable programming language. Unlike languages such as PHP, it
is not littered with curly braces and hard-to-understand method names. When Yukihiro
Matsumoto created Ruby, he designed it with ease of development in mind.

Instead of trying to explain the idioms and structure of Ruby code, let’s walk through a few
basic examples first. Type the following code into a new text document and save it as
helloPerson.rb:

def helloPerson(name)
result =  "Hello, " + name
return result

end

puts helloPerson("Justin")

Open up the Mac OS X Terminal or a Windows command prompt, go to the directory in
which you stored the file (using the cd command you discovered in Chapter 2) and type
ruby helloPerson.rb. You should see an output of Hello, Justin. Congratulations! You just
wrote and ran your first Ruby application. While it’s nothing spectacular, it does offer a few
things to discuss. 

The first line of the Hello Person application is the method definition. Methods are actions
that you want to perform: calculating a value, printing out your name, or saving data to a
database. Any action can be a method. Between the parentheses is a parameter called
name. Parameters are values that help the method accomplish its task. You don’t have to
provide a value for all parameters because some can be set as optional. In Rails, many
methods have an optional parameter called options = {}. Although you can provide data
to this argument that will be passed to the method, the method still executes if you don’t. 

Methods can trail with a ? or !. A trailing ? defines a method as a query. For example, if
you want to check whether the value in the name parameter is defined, you can use the
nil? method: 

name.nil?

RAILS SOLUTIONS:  RAILS MADE EASY

40

7524ch03.qxd  12/13/06  4:51 PM  Page 40



The returned result is either true or false.

Adding a trailing ! to a method means that it modifies the receiver. For instance, String
provides both a strip method and a strip! method to remove the leading and trailing
spaces from the value that it receives. The difference between the two is that strip
returns a modified copy of the string, and strip! modifies the receiving string itself. 

The second line begins with an instance variable that simply contains the result of
prepending the word Hello to the name parameter. Variables are simply placeholders for
values that you don’t know when you initially run an application. Variables can contain text
strings, numbers, or even objects. 

Unlike other programming languages, you don’t have to explicitly define the type of vari-
able you are working with. Ruby is capable of determining it based on the value it receives.

The third line simply returns the value of the result variable. Methods do not always
require a return value. 

The fourth line simply lets the Ruby interpreter know that the method helloPerson is now
complete. All methods must end with an end statement.

The last line is the actual action that the helloPerson.rb file is performing. The puts
method is a standard Ruby method that prints a value onto the screen. On this line, you
merely return the resulting value of the helloPerson method onto the screen.

Figure 3-1. After running the Ruby script, you see a single line of output in your Terminal or
command prompt window.

Ruby variables
The Ruby language has four types of variables: local variables, class variables, instance vari-
ables, and global variables. You already dealt with local variables in the previous example.
They are merely used inside a specific Ruby method and cannot be accessed outside of it.
For example, using only local variables, this code is allowed:

def returnFoo
bar = "Ramone, bring me my cup."
return bar

end

puts returnFoo

RUBY FOR RAILS DEVELOPERS

41

3

7524ch03.qxd  12/13/06  4:51 PM  Page 41



But this code is not allowed:

def returnFoo
bar = "Ramone, bring me my cup."
return bar

end

puts bar

It is not allowed because bar is not visible outside of the returnFoo method. To solve this
problem, Ruby has global variables, which can be accessed anywhere in a Ruby application.
They are prefixed with a dollar sign ($). In general, you should not use global variables in
your application because most of the time you can use either a local or instance variable.
Using global variables makes your application harder to debug since the source of your
error could be anywhere in your application—the variable could have been defined in any
of your Ruby files! How do you find it if you have 100+ files?

An instance variable is unique to each instance of a class and begins with an at sign (@).
Instance variables are what you will probably use the majority of your time when develop-
ing in Rails because you usually work with specific instances of classes. 

For example, if you had a class called Apple that defined the features and characteristics
of an apple, each time you wanted to manipulate the characteristics of that apple, you
could create it as a new instance variable.

@apple = Apple.new
@apple.seeds = 15
@apple.color = "Green"

These values are unique within this specific instance of the Apple class. You could create
another instance variable that references a second Apple and give it completely different
attributes.

@apple2 = Apple.new
@apple2.seeds = 22
@apple2.color = "Red"

Both apples can exist in the same context because they reference two different objects.

Classes and objects
Classes are the basis of object-oriented programming; they define the structure and
actions that should be performed on a specific instance of that class. Here’s a sample class
definition that contains two methods:

RAILS SOLUTIONS:  RAILS MADE EASY

42

7524ch03.qxd  12/13/06  4:51 PM  Page 42



class Course
def initialize(dept, number, name, professor)
@dept = dept
@number = number
@name = name
@professor = professor

end

def to_s
"Course Information: #@dept #@number - #@name [#@professor]" 

end
def 
self.find_all_students
...

end
end

In Ruby, everything is an object. In the real world, an object is anything you can see or
touch. In programming terms, it’s somewhat similar. An object is an actualized version of a
class. Classes begin with the keyword class, followed by the class name. In Ruby, the class
name must start with an uppercase letter. 

The first method in the preceding Course class is called initialize, which is a special
Ruby method called a constructor. The constructor is the first thing called each time you
convert your class into a real Ruby object. The initialize method takes the parameters
that define the variables that are a part of the class: dept, number, name, and professor.

Let’s look at it in terms of building a house. Before you can begin construction, you need
to have some sort of blueprints that outline the layout of the house, the square footage,
and so on. Basically, this is what a class is: it’s a blueprint of your object. When you take the
blueprints and actually build the house, you have created an object. The house is just like
an object. 

Looking at the previous example, the find_all_students method is prefixed with the
self keyword. Defining a method as self means that it is a class method and can be called
on the actual class itself instead of an object. In other words, it is not specific to a particu-
lar course. 

Course.find_all_students(@course.id)

Nonclass methods, or regular methods, can be called on realized versions of the class (that
is, specific courses). By default, your class’s methods are public, which means that anyone
can call them. This behavior can be manipulated by setting your methods as either
protected or private. Declaring all your methods as private would defeat the concept of
information hiding. 

Let’s look at an example of a body.

class Body 
def leftEye
end

RUBY FOR RAILS DEVELOPERS

43

3

7524ch03.qxd  12/13/06  4:51 PM  Page 43



def rightEye
end    

private
def heart
end

def leftLung
end

def rightLung
end

end

The leftEye and rightEye methods are declared as public since a body’s eyes are visible
to an observer. The heart, leftLung, and rightLung methods are declared as private
because the organs they represent are hidden in the body. If you declared them as public,
it would be the equivalent of having those organs exposed on a physical body. 

To understand the concept of protected, let’s look a different example.

class Employee
def name
end

protected
def employeeID
end

private
def salary
end

end

In the Employee class, the employee’s name should be public so that everyone can see
the name. The salary should be private so that only the employee can see it. The
employee ID should not be public information, but if you create subclasses of Employee
such as CEO or Manager, you want those classes that inherit from the base Employee class
to have access to the ID. That’s where protected should be used.

Now, let’s relate this knowledge back to the student example. 

class Student
def login_student

puts "login_student is running" 
end

private
def delete_students
puts "delete_students is running"

RAILS SOLUTIONS:  RAILS MADE EASY

44

7524ch03.qxd  12/13/06  4:51 PM  Page 44



end
protected
def encrypt_student_password
puts "encrypt_student_password is running"

end
end

Using these methods, you can now do a few things. Let’s create a new Student object and
try to use the protected and private methods you created.

@student = Student.new
@student.delete_students # This will fail

Try running this code snippet; you should receive an error that tells you that you cannot run
the private method delete_students. If you comment out the private line in the Student
class definition and run the same code again, it will work successfully because Ruby sets all
methods to be public by default. If you want to use the delete_students method, you
need to reference it inside the actual Student class definition. For instance, you could call
the delete_students method inside any of the methods of the class definition and it would
run just fine. Modify the login_student method to look like the following:

def login_student
puts "login_student is running"
delete_students

end

Then change the @student.delete_student line at the bottom of your code to read as
follows:

@student.login_student

Now run your code sample and you should see the output of both the login_student and
the delete_students methods. Since delete_students is private, you can call it from
within another method in the Student class, but not from outside that class. 

Next, let’s try to use the protected method. Replace the @student.login_student line
with the following line and run your code.

@student.encrypt_student_password

Again, you get a warning that you cannot run a protected method in this way. You can,
however, run it inside the Student class itself. Modify the login_student method to look
like the following:

def login_student
puts "login_student is running"
delete_students
encrypt_student_password

end

RUBY FOR RAILS DEVELOPERS

45

3

7524ch03.qxd  12/13/06  4:51 PM  Page 45



And change the @student.encrypt_student_password line back to @student.login_student
and run your code sample. You should now see the output of all three methods on your
screen. 

Inheritance

One of the coolest features of object-oriented programming is inheritance, which is the
process of taking a base object and extending its existing functionality with new methods
and data attributes. For example, you can inherit from the previous generic Course class
and create a new class called GradClass with data unique to graduate courses. 

class GradCourse < Course
def initialize(dept, number, name, professor, semester)
@dept = dept
@number = number
@name = name
@professor = professor
@semester = semester

end

def find_all_fall_semester
end

def to_s
super + " [Offered in [#@semester]]" 

end
end

The first line still defines the class name; after the name of the class is a less-than sign, fol-
lowed by the parent class name. This tells Ruby that the GradClass class inherits all the data
and functionality of the Course class. The constructor for the new class takes all the same
parameters as its parent, but it also adds the semester parameter that will define whether
a course is offered in the spring or fall semester.

The class also offers a new method called find_all_fall_semester. This method and the
semester data attribute are visible only to GradCourse objects or any objects that inherit
from GradCourse. 

An interesting part of the new subclass is that you inherited the default to_s method, but
enhanced it. You took the output from the Course class’s implementation and appended
the semester information to it. The super keyword is what causes the parent classes’ data
to be inherited into the new implementation.

RAILS SOLUTIONS:  RAILS MADE EASY

46

7524ch03.qxd  12/13/06  4:51 PM  Page 46



Polymorphism

As mentioned before, since Ruby is an object-oriented programming language, it also sup-
ports polymorphism. Polymorphism describes the behavior of an object that varies
depending on the input. 

Let’s say you have a base object called Person that has two subclasses: Student and
Teacher. The two subclasses inherited the features of the Person class, in addition to each
having its own unique characteristics. 

Each subclass has a method that enables the person to enroll in a class. Teachers and stu-
dents enroll in different ways. If a student enrolls in a class, it is to take the course; if a
teacher enrolls, it is to teach the course. 

You can define this situation as follows:

class Person
# Generic features

end

class Teacher < Person  
# A Teacher can enroll in a course for a semester as either
# a professor or a teaching assistant
def enroll(course, semester, role)
...

end
end

class Student < Person
# A Student can enroll in a course for a semester
def enroll(course, semester)
...  

end
end

This code sample shows the generic Person class and then has the Teacher and Student
classes inheriting from Person. Both the Teacher and Student classes have a method called
enroll with a different method signature. In the case of the Teacher, you are passing in
the course name, the semester in which it will take place, and the role the Teacher plays in
the course (instructor, teaching assistant). The Student is registering only for a specific
class at a specific semester. 

Now when you create a Teacher object and a Student object, and then call the enroll
method, the correct version of enroll is called depending on which object you are work-
ing with. That’s the power of polymorphism.

RUBY FOR RAILS DEVELOPERS

47

3

7524ch03.qxd  12/13/06  4:51 PM  Page 47



Calling objects

After you take the time to create classes and subclasses, you probably want to convert
them into objects that you can work with in your applications. This process is called
instantiation. Let’s create a few courses. 

@course1 = Course.new("CPT","380","Beginning Java Programming","Lutes")
@course2 = GradCourse.new("CPT","499d","Small Scale Digital
Forensics",➥

"Mislan", "Spring")

p @course1.to_s
p @course2.to_s

What you just did was create an instance variable called @course1 that contains informa-
tion about a Course. @course2 is another instance variable, but it contains information
about a GradClass object. The instantiation of a class into an object takes place by calling
the class name and appending .new to it. Afterward, the information is passed into the
constructor so that you have data to work with in the class. 

The last two lines call the to_s method to print out data about the new objects. Notice
that the @course2 variable has the semester data as well as previous Course data.

Arrays and hashes
An easy way to think about arrays and hashes is that they are variables that store more
than one value. The primary difference between the two is that arrays reference each item
of data using a numeric ID, and hashes use an object as a key. Most of your Rails develop-
ment will involve the use of arrays because they are much easier to work with. Even so,
hashes are covered because there might be times when you will find them more beneficial
in your work down the road. Let’s look at a code sample. 

fruit  = ['Apple', 'Orange', 'Squash']
puts fruit[0]
fruit << 'Corn'
puts fruit[3]

The first line defines a new array called fruit that contains three values. The second line
outputs the first value in the array: Apple. Arrays in Ruby start at an index value of 0. The
third line appends a new value to the end of the fruit array using the << method. The last
line outputs that new value. 

Hashes use braces instead of brackets to let the Ruby interpreter know what is being
created. You must also supply two pieces of information when you define a new entry in
the hash. 

RAILS SOLUTIONS:  RAILS MADE EASY

48

7524ch03.qxd  12/13/06  4:51 PM  Page 48



fruit = {
:apple => 'fruit',
:orange => 'fruit',
:squash => 'vegetable'

} 
puts fruit[:apple]
fruit[:corn] = 'vegetable'
puts fruit[:corn]

The first value you provide, which is known as the key, must be a unique value for that par-
ticular hash. Accessing values is done by referencing the key instead of the object’s
numeric identifier, as you did in an array. 

In line 7, you append a value to the hash by simply setting a new key and providing a
value for it. 

Decision structures
Decision structures are an integral part of any programming language. Unlike PHP, there
are no braces surrounding the body of each statement. Instead, the end of a line is sig-
naled by an end keyword (just like classes and methods). There are two main types of deci-
sion structures that you will use when working on your Rails application: while and if. The
if statement, which is a staple of any programming language, enables the programmer to
test a value against an infinite number of possibilities and thus return a specific value
based on the criteria met. Let’s look at an example.

age = 40
if age < 12 
puts "You are too young to play"

elsif age < 30
puts "You can play for the normal price"

elsif age == 35
puts "You can play for free"

elsif age < 65
puts "You get a senior discount"

else
puts "You are too old to play"

end

This if statement merely checks to see whether the value of age fits any of the criteria. The
first criterion is if the age value is less than 12; it’s not. The next statement uses the elsif
keyword instead of if. This statement enables you to continue a single if statement across
multiple value checks. 

You set the value of age to be 40 so it will print out You get a senior discount because the
value of age is less than 65. 

RUBY FOR RAILS DEVELOPERS

49

3

7524ch03.qxd  12/13/06  4:51 PM  Page 49



while

The other type of decision structure you need to become familiar with is while. This struc-
ture is useful when you want to continually loop through a set of commands while a spe-
cific situation is true or false. For example, suppose you participate in a football match
(or a soccer match, as referred to by Americans) and want to continue kicking the ball
until the clock reaches 90. If you were to describe that using Ruby code, it might look
something like this:

clock = 0
while clock < 90
puts "I kicked the ball to my team mate in the " + count.to_s + "

minute of the match."
clock += 1

end

All this code did was output that you kicked the ball in a certain minute of the match. Each
time after it printed the line, it incremented the clock variable by one. After the value of
clock was equal to 90, the printing stopped. 

Iterators
An iterator loops through a collection of values like an array. In most programming lan-
guages, the for loop is the main iterator used. It is available in Ruby, but there is a much
better solution: each. 

fruit  = ['Apple', 'Orange', 'Squash']
fruit.each do |f|
puts f

end

An each iterator begins with appending the each keyword followed by do and an instance
variable |f| that defines the specific item in the array being worked with. Like decision
structures, the value is contained between the each and end statements. The previous
example simply prints out the name of the fruits in the array on a new line. 

If you need access to the index of each object in your array, Ruby also includes
each_with_index. 

fruit  = ['Apple', 'Orange', 'Squash']
fruit.each_with_index do |f,i|
puts "#{i} is for #{f}"

end

This example contains two values between the goalposts: f and i. When you print out your
data, you tell Ruby that f contains the array value, and i contains the index of that value.

How does using an each loop differ from a for loop? One major difference is that you
don’t need to pass along the size of your array since the each loop is smart enough to
know when it has reached the end of your array or hash. Second, an each loop reads more

RAILS SOLUTIONS:  RAILS MADE EASY

50

7524ch03.qxd  12/13/06  4:51 PM  Page 50



naturally than a for loop. As mentioned before, Ruby is designed to be elegant. Compare
the previous code sample to the following:

fruit  = ['Apple', 'Orange', 'Squash']
for i in 0...fruit.length
puts fruit[i]

end

Which do you think is more readable?

Exception handling
Exception handling is the process of protecting your users from the atypical events that
might occur during the execution of your application. It’s undeniable that at one time or
another your user will do something that can cause your application to behave irregularly,
or a server error will cause erratic behavior in your application. For example, if your net-
work connection is lost during an action, you need a way to protect the application from
bad data that might come as a result. By wrapping code that you anticipate could cause
problems in an exception block, you can set rescue actions that are executed in the event
certain exceptions are thrown. 

begin
@user = User.find(1)
@user.name

rescue
STDERR.puts "A bad error occurred"

end

An exception block is preceded by a begin keyword, which is followed by the code that
you want wrapped. When you want to intercept a specific exception, you put that code
under a rescue block. This may not make much sense right now, but once you start work-
ing with Rails, you can actually put exception handling into action. 

Summary
Obviously, I have not covered Ruby from top to bottom, but what this chapter should have
given you is enough of a start with the language to be able to get your feet wet with writ-
ing Rails applications. A great online reference for Ruby is the RubyCentral class and library
reference (www.rubycentral.com/ref/). It provides a quick reference to all the methods
that are a part of the Ruby language. I find myself constantly going there to look up a
method I need. 

If you are looking for a more in-depth introduction to Ruby, the Why’s Poignant Guide to
Ruby is a great online introduction to the language. It’s unlike any other programming
tutorial on the Web with its use of cartoons to help illustrate facets of Ruby. You can find
it at http://poignantguide.net/. 

Now that the basics are out of the way, it is now time to start building your first Rails
application.

RUBY FOR RAILS DEVELOPERS

51

3

7524ch03.qxd  12/13/06  4:51 PM  Page 51



7524ch04.qxd  12/13/06  4:52 PM  Page 52



4 GETTING STARTED WITH RAILS

7524ch04.qxd  12/13/06  4:52 PM  Page 53



Figure 4-1. The railslist architecture

Now it’s time to get your hands dirty and create your first Rails application. This chapter
focuses on the basics of using Ruby on Rails: creating projects, adding models and con-
trollers to your application, and writing some basic code that gets your application off the
ground and running. Before you begin, let’s go over what exactly you will be building.

Throughout the course of the book, you will be spending the majority of your time work-
ing on a classified ad application similar to craigslist. The application, cleverly titled railslist,
will enable users to post their classified ads on the site, assign them to a category, add
photos, and create their own user accounts to track their listings. Users will also be able to
search through listings to find what they are looking for. The architecture of the applica-
tion is shown in Figure 4-1.

RAILS SOLUTIONS:  RAILS MADE EASY

54

7524ch04.qxd  12/13/06  4:52 PM  Page 54



The application has a basic architecture and will be built using three ActiveRecord models
to describe the types of data that is stored:

Classified, which describes an actual listing

Category, which is used to group classified ads together

User, which is used for user accounts

Each time you create an ActiveRecord model object, it is built from a row in the MySQL
database. You need to be concerned only with creating the database fields and assigning
some validation rules to the models; ActiveRecord handles all the heavy lifting. 

Besides the models, there are three controllers—User, Category, and Classified—which
enable you to work with each of the model objects. You could use a single controller for
the application, but it would not follow the Model-View-Controller (MVC) paradigm well. 

The Classified controller enables you to perform the basic create, read, update, delete (CRUD)
functionality on your classified ads and enables users to contact the seller to purchase an
item. The Category controller enables you to manipulate categories that you can then associ-
ate with classified ads. Finally, you have the User controller that enables users to sign up for
accounts and then log in to that account. The controllers are where you will write most of
your Ruby code (you got the foundation you need to do that in the previous chapter).

The user front-end will be the views that you create for each of the actions in the con-
troller. In terms of the actual users of the railslist application, the front-end is the only
thing they are concerned with. 

Luckily, Rails makes everything you want to do incredibly easy to accomplish. 

The goal of building railslist is to introduce you to as much of the Ruby on Rails framework
as possible. As you work through the book, my goal is to show you how easy it is to itera-
tively develop an application from something very basic into something that can easily be
used by anyone around the Web. 

There are a few basic steps that are followed each time you create a new Rails application:

1. Use the rails command to create the basic skeleton of the application.

2. Create a database on the MySQL server to hold your data.

3. Configure the application to know where your database is located and the login
credentials for it.

4. Start the web server inside the Rails application.

5. Build and test the application.

I’ll discuss more of the internals of the application as you proceed through the book. 

You’ll be writing a lot of code in this chapter and subsequent chapters. If you aren’t too
keen on all that typing, you can visit this book’s website and download all the sample code.
There's a separate folder for each chapter that contains the completed code as it stands at
the end of that chapter.

Let’s get started.

GETTING STARTED WITH RAILS

55

6

7524ch04.qxd  12/13/06  4:52 PM  Page 55



Creating a Rails project
The first task that any Rails developer has to do when starting a new project is create the
application, which can be done by using one of the many command-line tools available
when the framework is installed. The command-line tools can be used with the Mac OS X
Terminal application (found in /Application/Utilities/) or the Windows command
prompt (Start ➤ Run ➤ cmd). 

1. The rails command is used to create the skeleton of a new Rails application. Open
up a new Terminal or command prompt window and navigate to the directory in
which you want to store your application. It doesn’t matter where it goes, but I sug-
gest somewhere in the home folder for Mac users and at the root of the c:\ drive
for Windows users. 

2. After you select a directory, type rails railslist at the command prompt and press
Enter. Your output should look similar to Figure 4-2. 

3. Type cd railslist and press Enter.

4. Type ls on Mac OS X or dir on Windows.

Figure 4-2. The output when you use the rails command to create a new application
skeleton

RAILS SOLUTIONS:  RAILS MADE EASY

56

7524ch04.qxd  12/13/06  4:52 PM  Page 56



The rails command created a lot of directories that are a part of the application. Let’s go
through each directory and define its purpose.

app: Home to all MVC code. 

components: Miniapplications that can bundle controllers, models, and views
together. (This subject is covered in Chapter 13.)

config: Database configuration, routing configuration, and environment settings. 

db: Database schema files and Rails migration files.

doc: Documentation for an application.

lib: Application-specific custom code that doesn’t belong in controllers, models, or
helpers (for instance, background processes that work in conjunction with an appli-
cation are put here). For example, if you were running a stock market tracker, you
could write a background process that would ping your stock quote provider for
data and put it in this directory.

log: Error and access log files for an application.

public: Cascading Style Sheets (CSS), JavaScript, and other static files.

script: Generator scripts, debugging tools, and performance utilities.

test: Files for testing an application, including unit, fixture, and integration test
code. (This subject is covered in Chapter 5.)

tmp: Holds cache files, session information, and socket files used by the web
server.

vendor: Where Rails plug-ins are installed. (This subject is covered in Chapter 13.)

Configuring the web server

Rails bundles a web server called WEBrick in the script folder, which makes the barrier to
entry as low as possible for any platform. Since WEBrick is built using Ruby, anyone who
has the Ruby language installed (as shown in Chapter 2) can run it. Included in the script
directory is a tool called server. By default, server launches the WEBrick web server that is
bundled with Ruby, but if it detects Lighttpd, it instead creates a default lighttpd config-
uration file and uses Lighttpd instead of WEBrick.

If you’re using Locomotive or InstantRails to work through this book, all
you need to do is use walk through each application’s specific project cre-
ation wizards to create your new application. You can also skip the forth-
coming "Configuring the web server" section because your web server is
built in. 

GETTING STARTED WITH RAILS

57

6

7524ch04.qxd  12/13/06  4:52 PM  Page 57



That said, to launch WEBrick or Lighttpd, go back to the Terminal or command prompt
window you used to create your Rails application and type ruby script/server and execute
the command. You should get an output that looks like this:

Zoey:~/railslist justin$ ruby script/server 
=> Booting lighttpd (use 'script/server webrick' to force WEBrick)
=> Rails application started on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server (see config/lighttpd.conf for options)

What the server just did was create a basic lighttpd.conf file in the application’s config
directory and then launch lighttpd using that file if you are using Lighttpd. If you are on
Windows, WEBrick was launched instead. There is no configuration file for it since it is a
fairly basic (yet functional) browser. 

You will use the lighttpd.conf file in Chapter 13 when you deploy the application to a
production server. 

Viewing the application
Open up a web browser and go to http://localhost:3000. You should see a Rails wel-
come screen like the one shown in Figure 4-3.

If you’re a Mac user, you might ask why I had you go through the process of
installing Lighty if Rails is bundled with a web server. The reasoning is that
I want you to have experience with a production web server such as
Lighttpd when developing your applications so that you can have your
development environment as close to production quality as possible. Since
a majority of Rails applications are deployed using Lighttpd, it only makes
sense to show you how to use it in conjunction with developing with Ruby
on Rails. 

Unfortunately, it is not yet easy enough to configure Lighttpd to work with
Windows and Ruby on Rails, so I recommend using WEBrick if you are
developing on that platform. The Rails code you write works the same way
in both environments. 

RAILS SOLUTIONS:  RAILS MADE EASY

58

7524ch04.qxd  12/13/06  4:52 PM  Page 58



Figure 4-3. Default Rails application page

This is the default page for your Rails application. It gives you some pointers on how to get
started in developing your Rails application and some links for documentation and sup-
port. More importantly, the page shows that your server is working properly. Let’s follow
its suggestions on how to get started and create the MySQL database.

Creating the database

Your database server should still be running if you are running either Mac OS X or
Windows. If you aren’t sure that it is running, you can check it via the following methods:

Windows: Open the Windows Control Panel and go to Administrative Tools. Open
the Services application and find the MySQL service. If it does not say it is started,
double-click it and push the Start button.

Mac OS X: Open the System Preferences application and go to the MySQL prefer-
ence pane. Click the Start MySQL Server button if it does not already say that the
MySQL server instance is running. 

GETTING STARTED WITH RAILS

59

6

7524ch04.qxd  12/13/06  4:52 PM  Page 59



When working with Rails, you need to define a separate database for each environment in
which you run the application. In this case, it is three environments: development, test,
and production. The development database is what you will work with most of the time,
but having a production copy on the local machine can be beneficial if you want to test
how the application works in a simulated production environment. The test database will
be used by Rails’ testing framework (covered in Appendix B). 

The easiest way to create and manipulate the databases is by using the graphical user
interface (GUI) tools you learned about in Chapter 2. For Mac users, it is CocoaMySQL
(http://cocoamysql.sourceforge.net/); for Windows users, it is SQLyog (http://
www.sqlyog.com/). If you didn’t install the applications before, I recommend downloading
and installing them now. The installation process is straightforward for both applications.
SQLyog has a basic setup.exe file to walk you through the installation, and CocoaMySQL
is an easy drag-and-drop install like most other Mac applications. 

Windows
To create a database using SQLyog on Windows, launch the application and follow these
steps:

1. In the Connect To MySQL window, enter localhost as the MySQL host address. 

2. Enter root as the User Name and your MySQL password in the Password field. 

3. Click the Test Connection button to ensure your login credentials work. 

4. Under the DB menu, select Create Database.

5. Enter railslist_development in the Create Database popup window.

6. Under the Open Session window, double-click the new Rails Development session. 

Mac OS X
For Mac users using CocoaMySQL, the instructions are similar. After launching CocoaMySQL,
follow these steps:

1. In the sheet that pops up, enter localhost as your host, root as your username, and
the password to be what you set in Chapter 2. Leave everything else blank so it
picks up the default values.

2. Click the Connect button.

Figure 4-4. 
Setting the name of
the railslist databases
on Windows.

RAILS SOLUTIONS:  RAILS MADE EASY

60

7524ch04.qxd  12/13/06  4:52 PM  Page 60



3. Under Databases in the top-left corner, click the Add database button, as shown in
Figure 4-5.

4. A dialog box appears. Type railslist_development and click Add. 

5. Repeat this process two more times, creating the railslist_test and railslist_production
databases, respectively.

Using the command line
If the thought of using GUIs insults your inner geek, you can also create your database using
the mysql command-line tool. 

1. In Windows, go to Start Menu ➤ All Programs ➤ MySQL ➤ MySQL Server 5.0 ➤

MySQL Command Line Tool (Mac users should just open up a new Terminal window
and type mysql –u root -p). 

2. When prompted for your password, enter it. 

The MySQL command prompt is not too exciting; it is just a blank screen with
mysql> preceding it. 

3. At the prompt, type the following three commands (shown in Figure 4-6): 

create database railslist_development;
create database railslist_test;
create database railslist_deployment;

Figure 4-6. Creating the databases by using the command prompt instead 
is not too difficult.

You just created three blank databases that will be the home of the application data.

Figure 4-5. 
Adding a database in
CocoaMySQL on Mac OS X.

GETTING STARTED WITH RAILS

61

6

7524ch04.qxd  12/13/06  4:52 PM  Page 61



Telling Rails about the databases
The final step of creating the databases is to tell Rails about them. Database information is
stored in the database.yml file in the application’s config directory. 

4. Open the file in your text editor of choice and take a few moments to examine it. 

The database.yml file is written using YAML. YAML, which stands for YAML Ain’t
Another Markup Language, is used to develop configuration files for scripting lan-
guages such as Ruby. Notice that the file is pretty human-readable, and configura-
tion information is stored in key:value pairs. It defines the three execution
environments and the database information for each one, respectively. 

Since you took some care in the way you named the databases, the only area you
need to change in the YAML file is the password for each database. 

5. Change all three password fields to contain the MySQL password. When you’re
done, your file should look similar to Figure 4-7. 

Figure 4-7. Updating your YAML file to point to your databases

You might be wondering about creating the database tables—don't worry about this
for now. Later in this chapter, you’ll handle this easily using Rails!

RAILS SOLUTIONS:  RAILS MADE EASY

62

7524ch04.qxd  12/13/06  4:52 PM  Page 62



Creating the model
With the database creation out of the way, you can start focusing on building the applica-
tion. My recommended workflow (see Figure 4-8) is to first define the model classes
because they are the business objects you’ll be working with in your controllers. The
model also gives you an idea of how to define the fields in your database. 

Figure 4-8. Recommended workflow for creating Rails applications

To create a model, you simply use the generate model command to create the basic skele-
ton. Generators, which are a major part of Rails development, enable you to call a single
command and perform several tasks at once. Generators are found throughout Rails: cre-
ating models, controllers, database migrations, and more. 

1. To use the model generator for this example, open up a command prompt or
Terminal window, go to the directory in which the application is located, and then
type ruby script/generate model Classified. You should see the following:

Zoey:~ justin$ cd ~/railslist/
Zoey:~/railslist justin$ ruby script/generate model Classified

exists  app/models/
exists  test/unit/
exists  test/fixtures/
create  app/models/classified.rb
create  test/unit/classified_test.rb
create  test/fixtures/classifieds.yml
create  db/migrate
create  db/migrate/001_create_classifieds.rb

You’re telling the generator to create a model called Classified to store instances of
classified ads. Each time you create a Classified model, you’re pulling a row from
the database table. Notice that you are capitalizing Classified and using the singular
form. This is a Rails paradigm that you should follow each time you create a model. 

GETTING STARTED WITH RAILS

63

6

7524ch04.qxd  12/13/06  4:52 PM  Page 63



When you use the generate tool, Rails creates the actual model file that holds all
the methods unique to the model and the business rules you define, a unit test file
for performing test-driven development, a sample data file (called fixtures) to use
with the unit tests, and a Rails migration that makes creating database tables and
columns easy. (Appendix B covers the unit test and fixtures files.) Right now, let’s
focus on the model itself and the migrations file. 

Rails migrations

Web developers used to have it really hard having to know multiple languages. Besides the
basic HTML and CSS knowledge, their tool belts usually included PHP, SQL, and JavaScript
as a bare minimum. Rails aims to eliminate two of those languages from the tool belt by
making it incredibly easy to write SQL and JavaScript using Ruby. (Rails’ solution for com-
plex JavaScript, called RJS, is covered in later chapters.) For now, let’s focus on the Rails
way of making SQL and database management a snap: migrations. 

Migrations were created because the developers of Ruby on Rails realized that data mod-
els for an application can change over time and that deploying those changes can some-
times be a difficult task. They also didn’t want to have to work with complex SQL queries
that could sometimes take line upon line of code. 

A migration file contains basic Ruby syntax that describes the data structure of a database
table. Let’s describe the Classified model using the migration created when you gener-
ated it. 

2. Go to your railslist directory and open up the 001_create_classifieds.rb file
in the db/migrate folder.

3. After the file is open, look at the first line. Notice that a migration is just another
class that inherits from ActiveRecord, which is why you can use many of the luxu-
ries of Rails to manipulate the data structure. A migration file starts with two
methods: self.up and self.down. With Rails you can migrate to specific versions
of the data model at any point in time. The code in the self.up method is exe-
cuted when migrating forward while self.down is executed when migrating back-
ward (that is, creating a new version of the database or rolling back to a previous
version).

An easy way to think about it is that self.up is the action you want to perform in
the migration file, and self.down is the exact opposite. It is just like using the Undo
command in Word or some other application—you’re just undoing the changes
you made. So, for example, if you want to create a table called classifieds, you cre-
ate it in the self.up method and then destroy it in self.down. Let’s look at how
you do that. 

If you are using TextMate on Mac OS X, drag your entire railslist folder onto
the TextMate icon. A project window displays, which contains all your applica-
tion’s files in a single window. I find this a much easier way to work. 

RAILS SOLUTIONS:  RAILS MADE EASY

64

7524ch04.qxd  12/13/06  4:52 PM  Page 64



4. Replace the default code in your 001_create_classifieds.rb migration file with
the following and save your changes:

class CreateClassifieds < ActiveRecord::Migration
def self.up
create_table :classifieds do |t|
t.column :title, :string
t.column :price, :float
t.column :location, :string
t.column :description, :text
t.column :email, :string
t.column :created_at, :timestamp
t.column :updated_at, :timestamp

end
end

def self.down
drop_table :classifieds

end
end

When you think about a basic classified ad, it contains only a minimal amount of data: a
title for the item, a price for the item, a location for the item, a description of the item,
and a way to contact the seller. You just created it in this migration. The self.up method
calls create_table, which lets Rails know that it should create this table and then add any
columns that are defined between the create_table structure.

Migrations support all the basic data types: :string, :text, :integer, :float, :datetime,
:timestamp, :time, :date, :binary and :boolean:

:string is for small data types such as a classified title

:text is for longer pieces of textual data, such as the description

:integer is for whole numbers

:float is for decimals

:datetime and :timestamp store the date and time into a column

:date and :time store either the date only or time only

:binary is for storing data such as images, audio, or movies

:boolean is for storing true or false values

Rails tables should always be named the pluralized version of your model’s name. In the
case of the Classified model, the table was named classifieds. If you had a model called
Food, you would create a table called foods. Rails is even smart enough to know com-
mon pluralizations for words like People, so it will create a table called persons. If you
have trouble figuring out the pluralized version of your model, you'll be pleased to
know that Geoffrey Grosenbach has created Pluralizer to assist you. It can be found at
http://nubyonrails.com/tools/pluralize.

GETTING STARTED WITH RAILS

65

6

7524ch04.qxd  12/13/06  4:52 PM  Page 65



You are making use of many of these data types in the table. Code was written to create a
column for each of the pieces of data you want to store as well as two special columns:
created_at and updated_at. They are two special database columns that Rails can modify
on its own. The created_at column is modified only when the row is created with the cur-
rent time stamp. On the other hand, updated_at is modified with the current timestamp
each time the row’s data is manipulated.

Looking back at the self.up method, the create_table call is followed by do |t|, which
enables you to easily define the columns that are a part of this table inside the
create_table call. The t between the goalposts is stuck at the beginning of each column
definition, so Rails knows for sure that this column belongs to the classifieds table. The
basic structure of a column definition is t.column :column_name, :data_type. 

The self.down method is incredibly simple because it has only one line. All it does is
remove the classifieds table from the database. If you’re familiar with basic SQL, it is the
same as drop table classifieds.

Now that you have created the migration file, you can execute it against the database. 

5. To do this, go to a command prompt and go to the railslist directory, in which
the application is located, and then type rake migrate. 

Zoey:~/railslist justin$ rake migrate
(in /Volumes/Data/Users/justin/railslist)
== CreateClassifieds: migrating ======================================
-- create_table(:classifieds)

-> 0.1674s
== CreateClassifieds: migrated (0.1678s)
======================================

Rake is a Ruby build program similar to the Unix make program that Rails takes advantage
of to simplify the execution of complex tasks (such as updating a database’s structure, for
example). Over the course of reading this book, you will become very familiar with exe-
cuting tasks via Rake. 

The database now has a table in which to store the classified ad data, and you didn’t have
much work to do to accomplish this. Just for comparison, this is what the SQL query looks
like if you want to create your table by hand-writing the SQL statement:

CREATE TABLE classifieds (
`id` int(11) DEFAULT NULL auto_increment 
PRIMARY KEY, `title` varchar(255), `price` float, 
`location` varchar(255), `description` text, `email` varchar(255), 
`created_at` datetime, `updated_at` datetime) ENGINE=InnoDB

I don’t know about you, but I’d rather write a few lines of Ruby than try to match the syn-
tax and data types of that SQL statement.

RAILS SOLUTIONS:  RAILS MADE EASY

66

7524ch04.qxd  12/13/06  4:52 PM  Page 66



The next time you want to modify the data model, you can create a new migration file and
then run rake migrate again. Each time you run the migrate command, it starts at the first
migration file (based on the number at the beginning of the filename) and checks to see
whether it has been executed. If it has been run, it skips to the next file until it finds a
starting point to begin executing. After it finds that point, it runs that migration and all
migrations after that until it reaches the end.

Creating the controller
Aside from defining and running the migration, you won’t work with the model just yet.
Instead, you’ll focus on writing the basic code to manipulate the model. That code is
stored in a controller class, as you learned in the discussion of MVC in Chapter 1. As out-
lined before, Ruby on Rails is built using the MVC paradigm, which separates the business
objects from the code that manipulates them and hides it all behind a user interface that
is visible to your users. 

1. To create a controller, open up a command prompt and go to the directory in
which the application is located; then type ruby script/generate controller Classified. 

Zoey:~/railslist justin$ ruby script/generate controller Classified
exists  app/controllers/
exists  app/helpers/
create  app/views/classified
exists  test/functional/
create  app/controllers/classified_controller.rb
create  test/functional/classified_controller_test.rb
create  app/helpers/classified_helper.rb

Creating controllers is just as easy as models because they both use the generate
command-line tool. Besides the controller itself, generate also creates a classified
folder under views that will be where you store the RHTML views (the pages that the
user actually sees), a functional test in the test folder for test-driven development,
and a helper file that interfaces with your views (more on that in future chapters). 

2. Let’s first take a look at the classified_controller.rb file. It is located under
app/controllers. 

class ClassifiedController < ApplicationController
end

Controller classes inherit from ApplicationController, which is the other file in 
the controllers folder: application.rb. The ApplicationController contains code
that can be run in all your controllers and it inherits from Rails’ ActionController::Base
class. You don’t need to worry with the ApplicationController yet, so let’s go back
to classified_controller.rb and define a few method stubs. 

GETTING STARTED WITH RAILS

67

6

7524ch04.qxd  12/13/06  4:52 PM  Page 67



3. Modify the file to look like the following and save your changes: 

class ClassifiedController < ApplicationController
def list
end

def show
end

def new
end

def create
end

def edit
end

def update
end

def delete
end

end

These are all the methods that will be a part of the ClassifiedController. First,
concentrate on the reading methods: list and show. The list method gives you a
printout of all the classifieds in the database, while show displays only further
details on a single classified ad. 

4. Modify your code so that the show and list methods look like the following and
then save again:

def list
@classifieds = Classified.find(:all)

end

def show
@classified = Classified.find(params[:id])

end

You added only a single line of code to each method, and that’s all you need so far. The
@classifieds = Classified.find(:all) line in the list method tells Rails to search the
classifieds table and store each row it finds in the @classifieds instance object. The show
method’s @classified = Classified.find(params[:id]) line tells Rails to find only the
classified ad that has the id defined in params[:id]. The params object is a container that
enables you to pass values between method calls. For example, when you’re on the page

RAILS SOLUTIONS:  RAILS MADE EASY

68

7524ch04.qxd  12/13/06  4:52 PM  Page 68



called by the list method, you can click a link for a specific classified ad, and it passes the
id of that ad via the params object so show can find the specific ad. You can then output
that ad's information to the screen (more on this later).

Creating the views
Let’s see what happens when you try to execute the list method via the web browser. 

1. Open up a browser and go to http://localhost:3000/classified/list. You’ll
probably see the message shown in Figure 4-9.

Figure 4-9. You created some application code, but you don’t yet have anything to display
the data!

Rails lets you know that you need to create the view file for the new method. Each
method you define in the controller needs to have a corresponding RHTML file,
with the same name as the method, to display the data that the method is collect-
ing. Unfortunately, Rails can’t read your mind, so it can’t create a view file for each
of the controller’s methods. It’s not a big deal, though. Do the following:

2. Create a file called list.rhtml using your favorite text editor and save it to
app/views/classified.

3. After creating and saving the file, refresh your web browser. You should see a blank
page; if you don’t, check the spelling of your file and make sure that it is the exactly
the same as your controller’s method. 

GETTING STARTED WITH RAILS

69

6

7524ch04.qxd  12/13/06  4:52 PM  Page 69



4. A blank screen is rather boring, so put some code into the list.rhtml file. 

<% if @classifieds.blank? %>
<p>There are not any ads currently in the system.</p>

<% else %>
<p>These are the current classified ads in our system</p>

<ul id="classifieds">
<% @classifieds.each do |c| %>

<li><%= link_to c.title, {:action => 'show', :id => c.id} -%></li>
<% end %>
</ul>

<% end %>
<p><%= link_to "Add new ad", {:action => 'new' }%></p>

This is a lot to digest, so let’s go through it line by line. The first line is enclosed in
<% %>, which lets Rails know that this is Rails code that should be interpreted. The
code to be executed is to check whether the @classifieds array has any objects in
it. The .blank? method returns true if the array is empty and false if it contains
any objects. 

The next line outputs a line of HTML if the @classifieds array is blank. The third line
is a continuation of the line 1 if statement and gives the else clause (that is, if
@classifieds is not blank). 

The first two lines after the else clause print some basic HTML tags. After that,
things get interesting. You have an each iterator that loops through each item in
the @classifieds array. Each loop prints out a list item (<li></li>) that contains a
link to the item. 

Notice that the list item line contains <%= %> instead of <% %>. By appending the 
= sign to the escape clause, you tell Rails that you want to display the output of this
Ruby code. The code between the <%= %> tags is a link_to method call. The first
parameter of link_to is the text to be displayed between the <a> tags. The second
parameter is what action is called when the link is clicked. In this case, it is the show
method. The final parameter is the id of the classified item that is passed via the
params object. 

By using <%= %>, Rails puts each output on its own new line, which can cause a
bit of clutter in your HTML source. If you are a tidy person, you can use <%= -%>,
which keeps the code on the same line as the previous line of code. 

Figure 4-10. 
A link is converted into a
standard HTML tag, with the
title and href values mapped
accordingly.

RAILS SOLUTIONS:  RAILS MADE EASY

70

7524ch04.qxd  12/13/06  4:52 PM  Page 70



5. Refresh your browser window; you should see a single line that says there are no
ads in the system and an Add new ad link. (This link currently doesn't go anywhere,
but you'll be creating the page it targets in the next section, so never fear.) If not,
check your code syntax to make sure that everything looks exactly as it does here.

Creating the first objects

Having an application that doesn’t have any classifieds is boring, so you need to start pop-
ulating the application with some real data.

1. Go back to your classified_controller.rb file in app/controllers and edit the
new method to look like this:

def new
@classified = Classified.new

end

2. The line you added to the new method lets Rails know that you will create a 
new object in this view. Create the corresponding new.rhtml file in app/views/
classified. 

3. You’ll create a basic input form to accept new classified postings. Add the following
code to the new.rhtml file and save it:

<h1>Post new classified</h1>

<%= start_form_tag :action => 'create' %>

<p><label for="classified_title">Title</label><br/>
<%= text_field 'classified', 'title'  %></p>

<p><label for="classified_price">Price</label><br/>
<%= text_field 'classified', 'price'  %></p>

<p><label for="classified_location">Location</label><br/>
<%= text_field 'classified', 'location'  %></p>

<p><label for="classified_description">Description</label><br/>
<%= text_area 'classified', 'description'  %></p>

<p><label for="classified_email">Email</label><br/>
<%= text_field 'classified', 'email'  %></p>

<%= submit_tag "Create" %>
<%= end_form_tag %>

<%= link_to 'Back', {:action => 'list'} %>

GETTING STARTED WITH RAILS

71

6

7524ch04.qxd  12/13/06  4:52 PM  Page 71



There are a few new Rails method calls in this template that should be discussed.
The first one you will encounter is start_form_tag(). This method interprets the
Ruby code into a regular HTML <form> tag using all the information supplied to it.
This tag, for example, outputs the following HTML:

<form action="/classified/create" method="post">

Two lines below that is a text_field method that outputs an <input> text field.
The parameters for text_field are object and field name. In this case, the
object is classified and the name is title. The next new tag you encounter is
submit_tag, which outputs an <input> button that submits the form. Finally,
there is the end_form_tag method that simply translates into </form>.

After creating the form, you need to edit the create method so it can take the data
submitted by the user and turn it into a row of data in the database.

4. Edit the create method in the classified_controller.rb to match the following:

def create
@classified = Classified.new(params[:classified])
if @classified.save
redirect_to :action => 'list'

else
render :action => 'new'

end
end

The first line creates a new instance variable called @classified that holds a
Classified object built from the data the user submitted. The data was passed
from the new method to create using the params object (which is why the text
fields had their object set to classified). 

The next line is a conditional that redirects the user to the list method if the
object saves correctly to the database. If it doesn’t save, the user is sent back to the
new method. The redirect_to method is similar to performing a meta refresh on a
web page: it automatically forwards you to your destination without any user inter-
action. 

Since the create method called a redirect_to and render method for both of the
if statement conditionals, you don’t need to create a template for the create
method because it will never have any output on the screen. 

5. Go to your browser and visit http://localhost:3000/classified/new, enter
some data into the form (as seen in Figure 4-11), and submit it.

RAILS SOLUTIONS:  RAILS MADE EASY

72

7524ch04.qxd  12/13/06  4:52 PM  Page 72



Figure 4-11. The form to create a new classified ad

The data should submit successfully and redirect you to the list page, in which you now
have a single item listed. If you click the link, you should see another Template is missing
error since you haven’t created the template file yet.

Why should you bother learning new methods such as start_form_tag, text_field,
and submit_tag instead of just writing straight HTML? Simplicity. Rails has made it
very easy to create complex forms more rapidly by simply defining a keyword plus its
parameters and then having Rails output the valid HTML for it. Take a look at the
source code output by the form you just created and compare it with the code you
wrote. You get a lot of payoff for less effort by using Rails’ built-in form methods.
Unfortunately, not all tags have Rails helpers, which is why you use regular <label>
tags. Check out http://www.rubyonrails.org/docs for more information.

GETTING STARTED WITH RAILS

73

6

7524ch04.qxd  12/13/06  4:52 PM  Page 73



6. Create a show.rhtml file under app/views/classified and populate it with the
following code:

<h1><%= @classified.title %></h1>

<p><strong>Price: </strong> $<%= @classified.price %><br />
<strong>Location: </strong> <%= @classified.location %><br />
<strong>Date Posted:</strong> <%= @classified.created_at %><br />
<strong>Last updated:</strong> <%= @classified.updated_at %>

</p>

<p><%= @classified.description %></p>

<hr />

<p>Interested?  Contact <%= mail_to @classified.email -%></p>

<%= link_to 'Back', {:action => 'list'} %>

There’s not much new to this view other than the use of mail_to to display the e-mail
address. It is similar to link_to, but instead creates a mailto: link. Also of note is the use
of the created_at and updated_at fields. They are pretty ugly right now, but in later chap-
ters you will do some things to make the display more appealing.

Updating existing ads

The final pieces of the basic implementation of railslist include allowing the user to edit
and delete listings from the application. Let’s tackle editing first.

1. Modify the classified_controller.rb edit and update methods to look like the
following:

def edit
@classified = Classified.find(params[:id])

end

def update
@classified = Classified.find(params[:id])
if @classified.update_attributes(params[:classified])
redirect_to :action => 'show', :id => @classified

else
render :action => 'edit'

end
end

Notice that the edit method looks nearly identical to the show method. Both
methods are used to retrieve a single object based on its id and display it on a
page. The only difference is that the show method is not editable.

RAILS SOLUTIONS:  RAILS MADE EASY

74

7524ch04.qxd  12/13/06  4:52 PM  Page 74



The update method has a bit more going on, but it is strikingly similar to the create
method you detailed before. The only difference is in line 3 of the method: if
@classified.update_attributes(params[:classified]). The update_attributes
method is similar to the save method used by create but instead of creating a new
row in the database, it overwrites the attributes of the existing row (described in the
@classified object) with the new data provided.

Now let’s create the view for the edit method.

2. Create a new file called edit.rhtml and save it in app/views/classified. Populate
it with the following code:

<h1>Editing Classified: <%= @classified.title -%></h1>

<%= start_form_tag :action => 'update', :id => @classified %>

<p><label for="classified_title">Title</label><br/>
<%= text_field 'classified', 'title'  %></p>

<p><label for="classified_price">Price</label><br/>
<%= text_field 'classified', 'price'  %></p>

<p><label for="classified_location">Location</label><br/>
<%= text_field 'classified', 'location'  %></p>

<p><label for="classified_description">Description</label><br/>
<%= text_area 'classified', 'description'  %></p>

<p><label for="classified_email">Email</label><br/>
<%= text_field 'classified', 'email'  %></p>

<%= submit_tag "Save changes" %>
<%= end_form_tag %>

<%= link_to 'Back', {:action => 'list' } %>

Other than line 1 printing the title of the classified ad and modifying the
start_form_tag action to be update instead of create and defining an id, it is
exactly the same form as the new method. You need to provide the user with an
outlet for editing the classifieds, so let’s edit the list.rhtml file.

3. Go to the <li></li> element and modify it to look like the following:

<li>
<%= link_to c.title, {:action => "show", :id => c.id} -%> 
<small> <%= link_to 'Edit', {:action => "edit", 
:id => c.id} %></small>

</li>

All you did was add a link called Edit that takes the user to the edit form.

GETTING STARTED WITH RAILS

75

6

7524ch04.qxd  12/13/06  4:52 PM  Page 75



4. Point your browser to http://localhost:3000/classified/list and test the new
functionality. The list page should now look like Figure 4-12.

Figure 4-12. The list page, updated with the new edit link

Removing an ad

Removing information from a database using Ruby on Rails is almost too easy. Before you
dive into the controller code, let’s modify list.rhtml again and add a delete link. 

1. Go to the <li></li> element and modify it to look like the following: 

<li>
<%= link_to c.title, {:action => 'show', :id => c.id} -%> 
<small> <%= link_to 'Edit', {:action => 'edit', :id => c.id} %></small> 
<small> <%= link_to "Delete", {:action => 'delete', 
:id => c.id} %></small> 

</li>

2. Open classified_controller.rb and modify the delete method as follows:

def delete
Classified.find(params[:id]).destroy
redirect_to :action => 'list'

end

The first line finds the classified based on the parameter passed via the params
object and then deletes it using the destroy method. The second line redirects the
user to the list method using a redirect_to call. This is almost too easy, and you
should probably add a confirmation process to protect users against deleting items
accidentally. Let’s modify list.rhtml to confirm the deletions before proceeding.

RAILS SOLUTIONS:  RAILS MADE EASY

76

7524ch04.qxd  12/13/06  4:52 PM  Page 76



3. Go back to the <li></li> element and edit it to be like the following:

<li>
<%= link_to c.title, {:action => 'show', :id => c.id} -%> 
<small> <%= link_to 'Edit', {:action => 'edit', 
:id => c.id} %></small> 
<small> <%= link_to "Delete", {:action => 'delete', :id => c.id}, 
:confirm => "Are you sure you want to delete this item?" %></small> 

</li>

The main difference is that you added a :confirm parameter that presents a JavaScript
confirmation box asking if you really want to perform the action. If the user clicks OK, the
action proceeds, and the item is deleted.

Adding some style
Since this is a friends of ED book, and most of us are designers at heart, it is probably mak-
ing you cringe that there isn’t much style on the railslist application. Before wrapping up this
chapter, let’s work on implementing a layout and some CSS to the application. Ruby on Rails
supports the use of layouts for defining a standard layout that is rendered for all actions. 

Most websites make use of a layout or templating system. If you look at www.apress.com,
as seen in Figure 4-13, you can see that on most pages there is a standard feature set: a
logo at the top, navigation bar, and so on. In the main content area, the content changes
depending on the book (or set of books) you look at.

GETTING STARTED WITH RAILS

77

6

Figure 4-13. 
In this screenshot,
the darkened areas
are part of the
template. The
lighter area is
changing content
per page.

7524ch04.qxd  12/13/06  4:52 PM  Page 77



Rails has built-in support for easily adding templating to your applications. The process
involves defining a layout template and then letting the controller know that it exists and
to use it. First, let’s create the template. 

1. Add a new file called standard.rhtml to app/views/layouts. You let the con-
trollers know what template to use by the name of the file, so following a sane
naming scheme is advised.

2. Add the following code to the new standard.rhtml file and save your changes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;➥

charset=iso-8859-1" />
<meta http-equiv="Content-Language" content="en-us" />
<title>railslist</title>

<%= stylesheet_link_tag "style" %>
</head>
<body id="rails-list">
<div id="container">
<div id="header">
<h1>Railslist</h1>
<h3>Classifieds powered by Ruby on Rails</h3>

</div>
<div id="content">
<%= yield -%>

</div>
<div id="sidebar"></div>

</div>
</body>
</html>

Everything you just added were standard HTML elements, except line 7 and 15,
which each have a single line of Rails code. Line 7 uses the stylesheet_link_tag
helper method that outputs a stylesheet <link>. On line 15, the yield command
lets Rails know that it should put the RHTML for the method called here. 

Next, you need to let the Classified controller know about the new template.

3. Open up the classified_controller.rb file in app/controllers and add the fol-
lowing line just below the first line:

layout 'standard'

You are telling the controller that you want to use the layout in the standard.rhtml
file.

4. If you go to http://localhost:3000/classified/list you should see that the
template is now implemented, as shown in Figure 4-14. 

RAILS SOLUTIONS:  RAILS MADE EASY

78

7524ch04.qxd  12/13/06  4:52 PM  Page 78



Figure 4-14. The template is now applied to the application.

By creating the stylesheet link using the Rails helper method, the fonts were con-
verted to a sans-serif, even though you did not create a stylesheet for the applica-
tion. This is because Rails defaults to linking to an internal stylesheet when it
cannot find the actual CSS file you are referencing. Let’s create the CSS file now.

5. Create a new file called style.css and save it in /public/stylesheets.

Anything you store in the /public directory is viewable by anyone who accesses
the application from the web browser. So after you create the style.css file, you
can access it via the Web at http://localhost:3000/stylesheets/style.css. 

6. Add the following code to the CSS file and save your changes:

* { 
margin: 0;
padding:0;

}

body {
font-family: Helvetica, Geneva, Arial, sans-serif;
font-size: small;
font-color: #000;
background-color: #fff;

}

a:link, a:active, a:visited {
color: #CD0000;

}

GETTING STARTED WITH RAILS

79

6

7524ch04.qxd  12/13/06  4:52 PM  Page 79



a:hover {
color: #F70000;

}

input { margin-bottom: 5px;}

p { line-height: 150%; }

div#container {
width: 760px;
margin: 0 auto;

}

div#header {
text-align: center;
padding-bottom: 15px;

}

div#content {
float: left;
width: 450px;
padding: 10px;

}

div#content h3 {
margin-top: 15px;

}

ul#classifieds {
list-style-type:  none;

}

ul#classifieds li {
line-height:  140%;

}

div#sidebar {
width: 200px;
margin-left: 480px;

}

7. Refresh your browser and you should see your application displayed with a bit
more style, as shown in Figure 4-15.

RAILS SOLUTIONS:  RAILS MADE EASY

80

7524ch04.qxd  12/13/06  4:52 PM  Page 80



Figure 4-15. railslist in style!

Summary
This chapter covered a lot of territory. You started by creating the basics of your first Ruby
on Rails application, which gave you a valuable hands-on introduction to the Rails way of
doing things. You created your model and database migration, and then added a con-
troller and methods with corresponding views to allow users to view and modify data.
Next, you styled the application using a template and a stylesheet.

In the next chapter, you will begin to expand on your Rails knowledge by introducing
model validations to the data model and learning some basic debugging skills. 

GETTING STARTED WITH RAILS

81

6

7524ch04.qxd  12/13/06  4:52 PM  Page 81



7524ch05.qxd  12/1/06  11:03 AM  Page 82



5 MORE ADVANCED RAILS

7524ch05.qxd  12/1/06  11:03 AM  Page 83



You’ve now covered enough ground to have basic introduction to the functionality of
Rails. Your railslist application is working at a basic level. You can create and view listings,
update them with new information, and destroy them if necessary. You also have applied
a default layout and stylesheet to your application. If you left the application in that state,
it would be fine and functional, but not nearly as useful as it could be. For instance, there
are no categories for items, so each item is listed on only a single listed page. This might
be fine if you have only 10 listings, but if your application becomes popular, how can you
handle tens of thousands of listings with that single page? 

You’re also not doing any sort of data validation, so users can just add any data they see fit
to the application. They can also leave fields blank that might cause havoc when trying to
render the pages. Let’s try and address some of these issues in this chapter by using some
of the other parts of the Ruby on Rails framework.

This chapter covers the following:

Validating data on the server side

Using migrations to add new data fields to the application

Creating relationships between data models

Customizing URLs

Using transactions to improve data integrity

Debugging controllers and views

Using the Rails console to work with the application via the command line

Validating data
In a perfect world, all the data that users enter into forms would be perfect. They would
know which fields to fill out automatically and would submit information in the exact for-
mat needed. Unfortunately, that is not the case. Users make mistakes. There are also users
who enter bad data for malicious purposes. It is the developer’s job to protect users and
applications from those mistakes, which is why you validate data. 

There are two ways to validate data in a Rails application. The first is on the client side
using JavaScript. This is typically done by appending an onSubmit JavaScript event to the
web form, which can catch many errors but also raises several issues. First, it increases the
load time and complexity of the application. Second, it isn’t foolproof. What if the user is
using a browser with JavaScript turned off? Your validation won’t even be triggered. 

The second way to validate data is on the server side. Server-side validation works by send-
ing a user’s form data to the web server and testing it against various conditions. If those
conditions are met, the action the user is trying to perform proceeds. If not, the user is
returned to the form and told what the problem is and hopefully how to fix it. By performing

RAILS SOLUTIONS:  RAILS MADE EASY

84

7524ch05.qxd  12/1/06  11:03 AM  Page 84



server-side validation, you are ensuring that the database is protected from faulty data.
You’re also protecting the database from malicious data. You can use server-side validation
to make sure that a user is not sending data that might be used as part of an SQL injection
or cross-site scripting attack. 

Server-side validation is what Rails offers. Even better, the framework makes it incredibly
easy to implement this validation by using very little code. 

Implementing validations in railslist

Think about your railslist Classified model for a moment. You are storing five pieces of
user-submitted data (title, description, price, item location, and e-mail address) and you
need to see whether the user entered all five. You also need to ensure that the user enters
only a numeric value for the price. Finally, you want to make sure that the user provides a
valid e-mail address. To do that, you can check the format of the e-mail address to make
sure it includes a beginning, an at sign (@), and a fully qualified domain name. 

The implementation of validations is done in a Rails model. The data you are entering into
the database is defined in the actual Rails model, so it only makes sense to define what
valid data entails in the same location. 

1. Open up the classified.rb file in your app/models directory. At this point, it
should look like this:

class Classified < ActiveRecord::Base
end

Pretty bare bones so far. The validation definitions will go between the class and
end lines. First, implement the required data validations. 

2. Add the following three lines to your classified.rb file, before the closing end
statement, and save your changes:

validates_presence_of :title
validates_presence_of :price
validates_presence_of :location
validates_presence_of :description
validates_presence_of :email

Like most everything in Rails, each of these lines is readable and descriptive. For the
model to be valid, the user needs to have entered something in each database
field. If nothing is entered, the line won't validate. Let's look at the validation in
action.

3. Open up your web browser, navigate to the railslist application (http://
localhost:3000), and create a new classified ad. When you fill in all the fields, it
should create an item as normal.

MORE ADVANCED RAILS

85

5

7524ch05.qxd  12/1/06  11:03 AM  Page 85



4. Now try it again, except leave some fields blank this time. When you submit the
form, instead of being forwarded onto the listing screen as usual, you are redi-
rected back to your form with all your previous data still filled in. Your data did not
pass the validation process.

This is all well and good, but unfortunately your users do not know an error
occurred because you have not yet told Rails to display error messages. Let's
remedy it now.

5. Open the new.rhtml file in app/views/classified and add the following line
below the <h1> tag:

<%= error_messages_for 'classified' -%>

6. Save the file and go back to your browser.

7. Resubmit the form using the same data you entered before. You should now be
notified that an error occurred, as shown in Figure 5-1. 

Figure 5-1. Now railslist displays some error messages to let you know what's going on.

This is what the default error handler provided by the Rails framework looks like. It
lists the number of errors and what those errors are. The description is somewhat
bare and to the point. If you want to modify the wording, you can.

8. Go back to the classified.rb file and change line 2 to look like the following:

validates_presence_of :title, :message => "cannot be blank. Make your➥

title descriptive"

Now when you try to submit a classified ad with a blank title, your description will
look similar to the way you defined it. 

Next, ensure that the user can enter only a numeric value for the item’s price.

9. Add the following line below your other validation rules in classified.rb: 

validates_numericality_of :price

RAILS SOLUTIONS:  RAILS MADE EASY

86

7524ch05.qxd  12/1/06  11:03 AM  Page 86



validates_numericality_of is another one of Rails’ built-in validations. It ensures
that the only data entered into a numeric field are numbers and periods (.). Like
other validations, you can also modify the output of the error provided by adding
the :message parameter. 

10. Use the :message parameter to let the user know not to include the dollar sign.
Change the line as follows:

validates_numericality_of :price, :message => "must be a numeric➥

value (do not include a dollar sign)"

11. Now try to post an ad, but include a price with a nonnumeric value, and you should
see it fail.

You are also not checking to see whether the user is entering a positive value. This
doesn’t make much sense because you are dealing with financial values.

12. Add the following method to the Classified model again, just before the end state-
ment. Rails automatically calls the method called validate before trying to save
the values.

protected 
def validate
errors.add(:price, "should be a positive value") if price.nil?➥

|| price < 0.01
end

Because the validate method is automatically called, it throws another error if you
are entering a null value or a price that is not a positive value. 

Finally, you can validate the format of a user’s e-mail address. Since interested par-
ties need to contact the seller to complete the transaction, it is important to make
sure that the user enters a valid e-mail address. The best way to ensure this is to
use validate_format_of, which compares a user submitted value with a regular
expression. 

13. Add the following line to classified.rb, just before the last end statement:

validates_format_of :email, ➥

:with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i

If you're not familiar with regular expressions, don’t worry about trying to under-
stand anything after :with =>. It’s merely a common regular expression for e-mail
addresses.

14. Now try entering an e-mail address without the at (@) sign; railslist tells you that
the address is invalid.

Another interesting parameter you could add is :only_integer, which checks
to see whether the value entered is a whole number only (no decimal places).

MORE ADVANCED RAILS

87

5

7524ch05.qxd  12/1/06  11:03 AM  Page 87



Other common validations

Besides the three validations already discussed, there are a few more common ones that
you will use in your Rails applications.

validates_acceptance_of: If you provide users with a check box that they need to
check (such as a terms-of-service agreement), this ensures that it is checked: 

validates_acceptance_of :eula, :message => "must be accepted"

validates_confirmation_of: This validation is used primarily with storing pass-
words. Usually, when you want users to set their passwords, you have them enter it
twice to make sure it is what they intend. This makes sure the first value is the same
as the second:

validates_confirmation_of :password, ➥

:message => "should match confirmation"

validates_length_of: Sometimes you might want to limit the number of charac-
ters that a user can enter in your field. This enables you to set the maximum: 

validates_length_of :first_name, :maximum => 30

validates_uniqueness_of: When you create a user account, you want to make
sure that each user has a unique name. validates_uniqueness_of ensures that the
value the user enters does not match any of the other values presently stored in
the database:

validates_uniqueness_of :login

Adding categories with migrations
Up to this point, the application has only one model. However, Rails applications can have
as many models as you need—they are used to define different types of data in the appli-
cation. Models are also used to let Rails know how other models are related with each
other. In this case, you tell the Classified model that it is associated with a Category model.

You can add another model that describes a category. Each category is capable of holding
multiple categories, and each classified has a single category, as illustrated in Figure 5-2.

If you want to learn more about regular expressions, check out http://
www.regular-expressions.info/.

RAILS SOLUTIONS:  RAILS MADE EASY

88

7524ch05.qxd  12/1/06  11:03 AM  Page 88



Figure 5-2. Each category in railslist can house multiple listings based on the type of item it is.

In the old days before Ruby on Rails, modifying the application’s data model would be a
complex task. It would require complex SQL queries to insert the new fields and even
more complex routines to populate those fields if necessary. Not so with Rails, though.
Migrations were discussed when you created the initial Classified model, and now you can
use a single migration to both create a new model and to modify the existing one.

1. First, open up a Terminal or command prompt window and go to the railslist direc-
tory. Once there, type the following command to create the new model and press
Enter.

ruby script/generate model Category

This command creates the model file itself as well as a migration file and the unit
tests for the new model.

2. Go to the db/migrate directory and open up the 002_create_categories.rb file.
Besides defining the category data, you also need to modify the classifieds table to
hold a category reference. 

3. Modify the file to look like the following and then save it:

class CreateCategories < ActiveRecord::Migration
def self.up
create_table :categories do |t|
t.column :name, :string

end

Category.create :name => "Electronics"
Category.create :name => "Real Estate"

MORE ADVANCED RAILS

89

5

7524ch05.qxd  12/1/06  11:03 AM  Page 89



Category.create :name => "Furniture"
Category.create :name => "Miscellaneous"

add_column :classifieds, :category_id, :integer
Classified.find(:all).each do |c|
c.update_attribute(:category_id, 4)

end
end

def self.down
drop_table :categories
remove_column :classifieds, :category_id

end
end

What this migration does is create a new categories table in the database that has a sin-
gle column called name. It also adds a column called id that will act as the primary key.
(The primary key is the unique attribute in a row that distinguishes it from all others in
that table.) You also added a few starter categories to the database and a new column to
the existing classifieds table that does enable you to associate a category’s id field to a
classified. 

The most interesting portion of the code you just typed includes the last three lines of the
self.up method. You want to set a default category for existing classifieds in the system,
so you find all the items and then iterate through them setting the value to be 4, which is
the id of the miscellaneous category (it was the fourth one you created).

In the self.down method, you made sure to undo the changes caused by this migration. In
other words, you tell Rails to remove the new table and remove the category_id column
from the classifieds table. That way, if you decide to migrate to a previous version of the
database, the migration scripts remove any modifications you made.

4. Go back to your command prompt and run rake migrate. The new categories
table and the category_id column are now added to the railslist database.

Creating associations between models
You now have two models in the railslist application, but you have not created any con-
nection between those two models in the application. You can do this via associations.
Active Record supports three types of associations: one-to-one, one-to-many, and many-
to-many. These types of associations are called relationships. Let’s examine what each of
them means: 

one-to-one: A one-to-one relationship exists when one item has exactly one of
another item. For example, a person has exactly one birthday or a dog has exactly
one owner.

RAILS SOLUTIONS:  RAILS MADE EASY

90

7524ch05.qxd  12/1/06  11:03 AM  Page 90



one-to-many: A one-to-many relationship exists when a single object can be a
member of many other objects. For instance, if you are designing a shopping cart,
a product can be a part of multiple orders. 

many-to-many: A many-to-many relationship exists when the first object is related
to one or more of a second object, and the second object is related to one or many
of the first object. If you were designing a class schedule for a college, students and
classes have a many-to-many relationship because a student can have many classes,
and a class can have many students.

The relationship between the Classified and Category objects is a one-to-many relation-
ship because a classified is associated with a single category, and a category can contain
multiple classifieds, as illustrated in Figure 5-3. 

Figure 5-3. This diagram shows a has_many relationship for a category in the railslist application. 

The Classified model has a belongs_to method because a classified belongs to a single
category. How do you describe that in Rails? With ease, of course!

1. Open up the classified.rb model file and add the following at line 2:

belongs_to :category

2. Save your changes and then open the category.rb file that has been created in
app/models. Add the following at line 2:

has_many :classifieds

Save those changes. Now you have a relationship that you can work with. When modifying
the Classified model, you told Rails that it belongs to a single category. That is where the
category_id field you created in the migration will come in. It will hold the row id of the
category. The Category model defines the many part of the one-to-many relationship by
saying that a single category can have many classifieds be a part of it. 

MORE ADVANCED RAILS

91

5

7524ch05.qxd  12/1/06  11:03 AM  Page 91



Working with the new relationship

The first thing you need to do is modify the Classified controller to give a listing of all the
categories in the new method.

1. Open classified_controller.rb and add the following line to both the new and
create methods, just before the closing end statements:

@categories = Category.find(:all)

All this does is to grab all the categories from the database and puts them in an
array called @categories.

Next, modify the new classified view to allow users to assign a category to the
listing. 

2. Open up the new.rhtml file in app/views/classified/ and add the following lines
between the description and e-mail fields. 

<p><label for="classified_category">Category</label><br />
<%= collection_select(:classified, :category_id, @categories, ➥

:id, :name) %></p>

Here you have encountered a new Rails method called collection_select, which
creates an HTML select menu built from an array, such as the @categories one.
There are five parameters, which are as follows:

:classified: The object you are manipulating. In this case, it’s a Classified
object.

:category_id: The field that is populated when the classified is saved. 

@categories: The array you are working with.

:id: The value that is stored in the database. In terms of HTML, this is the
<option> tag’s value parameter.

:name: The output that the user sees in the pull-down menu. This is the value
between the <option> tags.

3. Now return again to the new classified listing page and you should see a drop-
down menu that contains all the categories you created in the migration.

Now modify the edit.rhtml view with the same data.

4. Add a @categories array to the edit and update methods in classified_con-
troller.rb.

def edit
@classified = Classified.find(params[:id])
@categories = Category.find(:all)

end

def update
@classified = Classified.find(params[:id])
@categories = Category.find(:all)

...
end

RAILS SOLUTIONS:  RAILS MADE EASY

92

7524ch05.qxd  12/1/06  11:03 AM  Page 92



5. Add the following two lines to your edit.rhtml file, just as you did for the
new view:

<p><label for="classified_category">Category</label><br />
<%= collection_select(:classified, :category_id, @categories, ➥

:id, :name) %></p>

Now that you've displayed the drop-down menu in the edit view as well as the new
view, the last step of implementing categories in the classified listings is to show the
category in the single item view.

6. Open show.rhtml in app/views/classifieds and add the following line between
price and location:

<strong>Category: </strong> <%= @classified.category.name %><br />

This is the first time you have taken full advantage of associations, which enable you to eas-
ily pull data from related objects. The format used is @variable.relatedObject.column. In
this instance, you can pull the category’s name value through the @classified variable
using the belongs_to associations.

Controlling the categories

Before you move on, you should create a view to enable users to get a listing of classifieds
based on a category.

1. Add the following method to classified_controller.rb:

def show_category
@category = Category.find(params[:id])

end

2. Create a new file, show_category.rhtml, in the app/views/classified directory.

3. Add the following code to it and save your changes:

<h1><%= @category.name -%></h1>
<ul>
<% @category.classifieds.each do |c| %>
<li><%= link_to c.title, :action => "show", :id => c.id -%></li>

<% end %>
</ul>

You are once again taking advantage of associations by iterating through a single
category’s many classified listings. But you are not yet finished; you now need to
add a mechanism to the application for the users to access this list of categories.

To bring uniformity throughout the application, modify a few more views to show
category links.

MORE ADVANCED RAILS

93

5

7524ch05.qxd  12/1/06  11:03 AM  Page 93



4. Modify the Category: line of show.rhtml so that the category listing shows a link.

<strong>Category: </strong> <%= link_to @classified.category.name,➥

:action => "show_category", :id => @classified.category.id %><br />

Output a list of categories on the index page, so that users can access them
directly.

5. Open list.rhtml and add the following to the top of the file:

<ul id="categories">
<% Category.find(:all).each do |c| %>
<li><%= link_to c.name, :action => "show_category", ➥

:id => c.id %></li>
<% end %>
</ul>

Go to http://localhost:3000/classified/list and you should see a listing of
categories at the top that you can navigate through, as shown in Figure 5-4.

This is functional, but it currently looks pretty horrible, so you need to add some
style to the category navigation.

6. Add the following CSS styles to the style.css file in /public/stylesheets:

ul#categories {
width: 700px;
text-align: center;
padding: 5px;
background-color: #ececec;
border: 1px solid #ccc;
margin-bottom: 20px;

}

Figure 5-4. 
You've added
category navigation
to the listing page,
but it looks in need
of some style.

RAILS SOLUTIONS:  RAILS MADE EASY

94

7524ch05.qxd  12/1/06  11:03 AM  Page 94



ul#categories li {
display: inline;
padding-left: 5px;

}

Refresh the page; you now have better-looking category navigation, as shown in Figure 5-5.

Figure 5-5. That's better!

Modifying URLs using routing
One of the often-overlooked aspects of designing a new web application is taking into
account how clean your URLs are. In an online shopping site such as Amazon the URLs are
long and confusing strings of text and numbers. If users want to easily return to a product
listing they were looking at before, there is almost no way they can do it by committing
the URL to memory. Instead, they have to search for the product again or create a book-
mark in their browser. 

One of the growing trends in web development over the past few years has been thought-
ful URL design. Planning your URLs to be intuitive to users makes it easier for them to
return to your products or e-mail a link to a friend without it being broken or wrapped
onto two or more lines. 

One of the best instances of this thoughtful design is by Apple, which follows a traditional
URL design for its product pages. Want to check out the new iMac? Just visit apple.com/
imac/. Want to learn more about iPhoto? The URL is apple.com/iphoto/. Users don’t have
to worry about drilling through several pages just to get where they want to be. Instead,
they can just guess the URL—and they are most likely going to be correct.

Ruby on Rails allows for this thoughtful URL design using routing. Routing gives Rails
developers an easy way to craft clean URLs without having to manipulate the configuration
files of your web server. All the route does is redirect your application’s incoming requests
to the correct controller and action—it’s like an internal forwarding service. Like migra-
tions, Rails uses actual Ruby code to define the routing rules. 

MORE ADVANCED RAILS

95

5

7524ch05.qxd  12/1/06  11:03 AM  Page 95



Defining your own routes

The routing rules for your application are stored in the routes.rb file in the config folder. 

1. Open it up and inspect what is already there. 

ActionController::Routing::Routes.draw do |map|
map.connect ':controller/service.wsdl', :action => 'wsdl'

# Install the default route as the lowest priority.
map.connect ':controller/:action/:id'

end

The comments at the top of the file were omitted for brevity. 

Think of routing as a map for your requests. The map tells the application where to
go based on predefined parameters. Each route has a certain priority that is defined
by the appearance of the route in the routes.rb file, ordered from top to bottom,
so the last route you have defined is the lowest priority. In the case of this default
configuration, the lowest route is map.connect ':controller/:action/:id', which
is what has been creating the URLs up to this point. :controller maps to the
controller name, :action maps to the controller’s action to execute, and :id is the
actual database row to manipulate. Notice that all the URLs in the application have
followed the same format so far, as illustrated in Figure 5-6.

Figure 5-6. Standard Rails URL format

The URL for showing a certain classified ad does indeed use the lowest priority
route. These URLs are fine, but what if you want to modify how the URLs look so
that users can go straight to http://localhost:3000/classifieds/:id instead?
It’s as easy as adding a new line to the top of the routes.rb file.

2. Add the following to line 2 and then save your changes:

map.connect 'classifieds/:id', :controller => 'classified',➥

:action => 'show'

After map.connect is the URL you will use; in this case, it is classifieds, followed by the
id of the classified. Next, you define which controller and action the route will be for-
warded to.

Let's try it out! Go to http://localhost:3000/classified/list, click one of your classi-
fieds, and notice the new URL, as shown in Figure 5-7.

Figure 5-7. 
The ad URLs just became more compact.

RAILS SOLUTIONS:  RAILS MADE EASY

96

7524ch05.qxd  12/1/06  11:03 AM  Page 96



Defining route en masse

The classified controller has eight methods thus far that all share a common attribute:
a :controller parameter. You can save some typing by wrapping everything in 
another block.

1. Delete the new route you created and add the following code in its place:

map.with_options(:controller => 'classified') do |classified|  
classified.connect 'classifieds/new', :action => 'new'
classified.connect 'classifieds/create', :action => 'create'
classified.connect 'classifieds/edit/:id', :action => 'edit'
classified.connect 'classifieds/update/:id', :action => 'update'
classified.connect 'classifieds/delete/:id', :action => 'delete'
classified.connect 'classifieds/categories/:id', ➥

:action => 'show_category'
classified.connect 'classifieds/:id', :action => 'show'
classified.connect '', :action => 'list'

end

You just added a lot of code, so let’s walk through it:

map.with_options enables you to define a common :controller for a set of
routes and have it apply to all the routes within the code block. Below that line is a
route for each of the controller’s actions. Instead of using the map.connect line,
you are using |classified| since that is what you defined as the iterator. This has
a similar syntax to an each block. 

The bottom route in the block is '' (two single quotes,) which is the route for the
root of your site, or http://localhost:3000/. 

2. If you go to that URL, you would now expect to see a listing of all your classifieds,
but unfortunately this is not yet the case—you need to take an extra step before
the route takes effect. There is a file called index.html in the /public folder that
will take precedence over your routes, so if you go to http://localhost:3000, you
will get the default Rails page that you first saw when you first created your appli-
cation skeleton.

3. Remove that file from the public folder and then refresh your browser. You
should now see your classified listings.

Named routes

As you continue developing your application, you will probably have a few links that you
use throughout your application. For example, you will probably often be putting a link
back to the main listings page. Instead of having to add the following line throughout your

The old :controller/:action/:id route is still intact because it is the lowest priority. It
is best to just leave it be and then create everything else above it. Without it, you can-
not use the default controller_name/action_name route.

MORE ADVANCED RAILS

97

5

7524ch05.qxd  12/1/06  11:03 AM  Page 97



application, you can instead create a named route that enables you to link to a shorthand
version of that link:

link_to 'Home', :controller => 'classified', :action => 'list'

1. Add the following line below the map.with_options block:

map.home '', :controller => 'classified', :action => 'list'

The name of the route is defined after the map keyword. Instead of using connect,
you are using a unique name that you can define. In this case, the route is called
home. The rest of the route looks similar to the others you have created. 

Now you can use this in the controllers or views.

2. Open up show.rhtml under app/views/classifieds and modify this line:

<%= link_to 'Back', {:action => 'list'} %>

It should look like the following:

<%= link_to 'Back', home_url %>

3. Save your changes.

Instead of listing the :controller and :action to which you will be linking, you
are instead putting the name of the route followed by _url. Your user shouldn’t
notice any difference. Named routing is merely a convenience for the Rails devel-
oper to save some typing. 

Like I said, you can also modify the controllers to use named routes.

4. Open up classified_controller.rb in app/controllers and modify the create
method to look like the following:

def create
@classified = Classified.new(params[:classified])
@categories = Category.find(:all)
if @classified.save
redirect_to home_url

else
render :action => 'new'

end
end

Again, the user doesn’t notice anything, but it does save the developer a bit of
typing. 

You can also use parameters in named routes. Let’s create a named route for the
show method. 

5. Add this line to the routes.rb file above the maps.home route:

map.show 'classifieds/:id', :controller => 'classified', :action =>➥

'list'

RAILS SOLUTIONS:  RAILS MADE EASY

98

7524ch05.qxd  12/1/06  11:03 AM  Page 98



6. Open up the list.rhtml file and modify the classified listings iterator (the code
inside the <ul> with the id of classifieds) to look like the following:

<% @classifieds.each do |c| %>
<li><%= link_to c.title, show_url(:id => c.id) -%> 
<small><%= link_to 'Edit', {:action => 'edit', ➥

:id => c.id} %></small> 
<small><%= link_to "Delete", {:action => 'delete', :id => c.id}, 
:confirm => "Are you sure you want to delete this item?" %>➥

</small> </li>
<% end %>

The named route for show passes the parameter between a set of parentheses.

7. Test your application to make sure that everything is working okay. If not, check the
code carefully against this chapter's code in the code download.

Basic debugging 
Up to this point (assuming that you have been typing everything correctly), you shouldn’t
have run into any issues with the code you have developed. If you have experienced any
problems, you probably mistyped something. Again, compare your work against the code
download files for typos or other errors.

In the real world, however, it is rare that nothing will go wrong in your code. The Rails
framework understands this and includes several tools that make it easy to debug your
Rails applications. In this section, you'll look at them—specifically the following:

Rails console 

breakpointer

Debugging views

Rails console

The console is an extremely useful tool for development debugging of Rails applications.
The console is based on Irb (Interactive Ruby), which is a command shell that is bundled
with all Ruby installations. Using the console, you can create new (or manipulate existing)
objects, find existing objects, and perform actions against them. You can perform the fol-
lowing tasks using console to show its power: 

Create a new classified object

Save it to the database

Read an existing classified

Change its category

Save those changes

Delete the classified

MORE ADVANCED RAILS

99

5

7524ch05.qxd  12/1/06  11:03 AM  Page 99



First, you need to launch a console window. A copy of the console application is included
with each Rails application in the script directory.

1. Open up a Terminal or command prompt window and go to your railslist directory.
Once there, run the following command:

ruby script/console

You should be presented with a command prompt. It will look like this: >>. It’s
nothing too spectacular to look at, but it is quite powerful. You can use the console
to create a new Classified object.

2. Type the following commands into your console window, pressing Enter at the end
of each line:

@classified = Classified.new
@classified.title = "Rails Solutions: Rails Made Easy – Like New"
@classified.category = Category.find(:first, ➥

:conditions => "name = 'Miscellaneous'")
@classified.price = 40
@classified.location = "Chicago, IL"
@classified.email = "justin@secondgearllc.com"
@classified.description = "A great book for web designers to learn ➥

how to use Rails!"
@classified.valid?
@classified.save

You should see the overall output shown in Figure 5-8.

Figure 5-8. This is what the output of your commands should look like.

RAILS SOLUTIONS:  RAILS MADE EASY

100

7524ch05.qxd  12/1/06  11:03 AM  Page 100



What you just did was create a new Classified object under the @classified
instance variable. You then defined the attributes of the object. You set its title,
category, price, and e-mail address. Of interest is the category in which you do a
search for the category you are looking for by using a Rails find() method. 

3. Finally, you check to see whether the item is valid and then save it.

4. Open your browser and go to your railslist application, and you should see a new
item in the list containing the data you just entered in the console.

Reading existing data
Besides creating new objects, you can also read existing data in from the console. All the
methods available to your controller are available via the Rails console, which includes the
find() method. Let’s test it out.

1. Type the following commands into the console:

@classified2 = Classified.find(:first)
@classified2.title
@classified2.price
@classified2.update_attribute(:price, 45)

What you just did was create a new instance variable called @classified2 that
contains the first classified in the database. Next, you output the title of the classi-
fied and the existing price. The last thing you did was update the price attribute to
be 45. update_attribute is a Rails method that enables you to easily update a sin-
gle attribute for an object.

2. Go back to the browser and find the classified you just manipulated. Notice that
the price change is now visible on the site. 

3. Keep your browser there, but go back to the console window, type the following,
and press Enter:

@classified2.destroy

4. You just deleted this classified from the database. Try to view it in your browser
again—it’s nowhere to be found. 

breakpointer

When you work with code, sometimes you might want to inspect variables or test the exe-
cution of certain portions of the code while the application is running. This inspection is
something that is done in almost all development environments. With each newly created
Ruby on Rails application, a copy of the breakpointer application is included in the
scripts folder. breakpointer, which runs in the background in a command prompt or
Terminal window, serves as a go-between for the Rails application and the web browser 
for all requests from your application. All breakpointer does is look for the keyword
breakpoint in the application. After it finds one, it stops the execution of the application
and sends you to an Irb console.

MORE ADVANCED RAILS

101

5

7524ch05.qxd  12/1/06  11:03 AM  Page 101



After the console appears, it works just like the Rails console you outlined previously, but
it contains the values from all your initialized variables so you can inspect them. You can
also run methods against those variables. Let’s see it in action.

1. First, open classified_controller.rb and put the keyword breakpoint in the
update method right after the @classified declaration.

def update
@classified = Classified.find(params[:id])
@categories = Category.find(:all)
breakpoint
if @classified.update_attributes(params[:classified])

...
end

2. Next, open up a Terminal or command prompt window and go to the railslist
directory. Once there, type the following command into the window:

ruby script/breakpointer 

3. Your window should launch breakpointer and present you with a message about
waiting for a breakpoint. 

4. Open a browser and go into the railslist application.

5. Select one of the classifieds, edit it (modify some of the data), and click the Save
button. The application’s execution should grind to a standstill.

6. Hop over to the breakpointer Terminal/command prompt window and you should
see a Irb prompt, as shown in Figure 5-9.

Figure 5-9. Ouput of the breakpointer application

The execution of the update method is stopped in its tracks. Anything that was
executed up to the breakpoint keyword is available to you in breakpointer.

7. As an example, type in @classified and press Enter. You should see an output of the
object’s data.

=> #<Classified:0x2429ee4 @attributes={"updated_at"=>"2006-07-02
23:00:36", "price"=>"400", "title"=>"Apple iPod", "id"=>"1",
"category_id"=>"1", "description"=>"This is a new iPod Video",
"created_at"=>"2006-07-02 22:57:21",
"email"=>"justin@secondgearllc.com", "location"=>"Newburgh, IN"}>

RAILS SOLUTIONS:  RAILS MADE EASY

102

7524ch05.qxd  12/1/06  11:03 AM  Page 102



8. Make sure that you have a valid object. Type in @classified.valid? and press Enter.
Assuming that you entered nothing but valid data, the output is true.  

After you finish working with the data and if you want to continue executing the code, just
type exit and the code will continue. To stop the breakpoint service running, press Ctrl+C.
Remember to remove the breakpoint from the code after you're done testing.

Debugging views

Controllers aren’t the only areas that can be debugged in Rails; you can have debugging
information output into views as well. Debugging info is useful when you are rendering an
action and want to get more information about an object than just what is output by the
view. For example, in the category listing, you are outputting only the title of the listing,
but you can also show the other attributes.

1. Open the show_category.rhtml file from app/views/classifieds. Modify the
listing output block to look like the following:

<ul>
<% @category.classifieds.each do |c| %>
<%= debug c %>
<li><%= link_to c.title, :action => "show", :id => c.id -%></li>

<% end %>
</ul>

The only line you added was another output that used the debug method to output
the values of each object in the @classifieds array.

2. View one of the categories; you should see an output similar to that shown in
Figure 5-10.

Figure 5-10. Debugging view on a categories page

MORE ADVANCED RAILS

103

5

7524ch05.qxd  12/1/06  11:03 AM  Page 103



As you can see, the other values in the object are all that the debug method outputs. It’s
nothing special, but it does offer a bit of convenience over having to execute a breakpoint
and jumping between browser and breakpointer windows. 

Summary
You covered several important topics in this chapter. You started by creating a new model
and adding a migration to the application. Next, you created an association between the
two models and discussed the types of relationships you can create. You also learned how
to create customized URLs using Rails’ routing functionality. Finally, you focused on debug-
ging the application using the console, breakpointer, and debugging view. 

In the next chapter, you will be formatting data to be friendlier to your users, which
includes modifying the way dates and numbers are displayed.

RAILS SOLUTIONS:  RAILS MADE EASY

104

7524ch05.qxd  12/1/06  11:03 AM  Page 104



7524ch05.qxd  12/1/06  11:03 AM  Page 105



7524ch06.qxd  11/30/06  11:09 AM  Page 106



6 FORMATTING DATA

7524ch06.qxd  11/30/06  11:09 AM  Page 107



When working with programming languages such as Ruby, one of the things you notice is
that programming languages do not output friendly data when it comes to numbers and
dates. Although they are readable by techies, it’s clear that most of the time you want a
date formatted to be more readable by the application's users and match a user’s country
and time zone instead of the default output given by a computer. 

But with Rails, help is at hand. Rails has helpers, which enable you to easily format your
data in a variety of ways. You can format a number stored in the database to be formatted
as a currency. If you are working with dates, you can modify the date output to match
standard human-readable date formats. If you want, you can also output the date using
natural language like 5 days ago. 

Specifically, this chapter covers the following:

Formatting numbers using NumberHelper

Formatting dates using DateHelper

NumberHelper
NumberHelper is a built-in Rails set of helper methods that provides methods for convert-
ing a number into a formatted string of text. Using NumberHelper, a string of text can eas-
ily be converted into any of the following formats: phone number, percentage, money, or
decimal precision. While in Railslist, you aren’t storing any percentages or phone numbers;
you can work with the money helpers. Let’s implement that in the classified listing. 

Open up the show.rhtml file under app/views/classifieds. Look for the line that con-
tains the price. It should look like the following:

<strong>Price: </strong> $<%= @classified.price %><br />

Notice that you were just tacking a dollar sign ($) in front of the code for a classified’s
price, which doesn’t take into account any sort of decimal places or cents, as well as
assuming that the amount is U.S. dollars, not another currency, such as Euros. If you had a
high-priced item in the classified system, the user might see something like the number
shown in Figure 6-1.

Figure 6-1. 
This currency format isn't very intuitive.

This chapter isn’t a discussion of writing your own Rails helpers. Chapter 10 covers it in
its discussion of user authentication and management. 

RAILS SOLUTIONS:  RAILS MADE EASY

108

7524ch06.qxd  11/30/06  11:09 AM  Page 108



It’s hard to tell that you are selling an item that is $4,000,020.00. Let’s format that field by
using the number_to_currency helper.

1. Modify the line of code you highlighted before to look like the following and then
save your changes: 

<strong>Price: </strong> <%= number_to_currency(@classified.price)
%><br />

2. If you refresh your browser, the format of the number now looks like that shown in
Figure 6-2. 

Notice how much cleaner the number is to read. If you were running a U.K. version
of railslist, you wouldn’t want to display prices using U.S. dollars since you would
have stored your prices in pounds.

3. To display your data using pounds, modify the line to look like the following and
then save the file:

<strong>Price: </strong> <%= number_to_currency(@classified.price, 
{:unit => "&pound;", :separator => ".", :delimiter => ","}) %><br /> 

4. Refresh your browser again, and the output will look like Figure 6-3.

To accomplish the transformation of the classified values into a currency format, you are
using some of the built-in parameters for number_to_currency. :unit takes the HTML
entity for the currency you are working with. In this case, you are using &pound; to display
the pound sign. The next parameter is :separator, which defines the unit separator (in
the preceding case, pounds and pence). The default is a period (.), but you can set it to be
any character. The final parameter is :delimiter, which defaults to a comma (,).

For a complete list of HTML entities that you can use
(including other currencies such as Yen), check out
http://www.w3.org/MarkUp/html3/latin1.html.

Figure 6-3. 
Displaying the currency in U.K. pounds
instead of U.S. dollars.

Figure 6-2. 
This is much more readable!

FORMATTING DATA

109

6

7524ch06.qxd  11/30/06  11:09 AM  Page 109



Other helpers

Besides number_to_currency, there are a few other number-related methods that you
might find yourself using in your Rails application development:

number_to_human_size: If you are working with file sizes, you can wrap the
numeric value with this method to output the size of a file in bytes, kilobytes,
megabytes, or gigabytes. 

number_to_human_size(123) => 123 bytes

number_to_human_size(1234) => 1.2KB

number_to_human_size(12345) => 12.1KB

number_to_human_size(1234567) => 1.2MB

number_to_human_size(1234567890) => 1.1GB

number_to_percentage: Formats a number as a percentage. If you use the
:precision parameter, you can further format the level of precision (the default is
three decimal places).

number_to_percentage(100) => 100.00%

number_to_percentage(99.5565, {:precision => 2}) => 99.56%

number_to_phone: Formats a number as a phone number. This method enables a
lot of variations about how you format the number. If you want to wrap the area
code in parentheses, set the :area_code parameter to true. By default, the delim-
iter used for separating parts of the phone number is a dash (-). You can modify
the separator by using the :delimiter parameter.

number_to_phone(1234567890)  => 123-456-7890

number_to_phone(1234567890, {:area_code => true}) => (123) 456-7890

number_to_phone(1234567890, {:delimiter => " "}) => 123 456 7890

number_to_phone(1234567890, {:area_code => true, :extension => 987}) =>
(123) 456-7890 x 987

DateHelper
Besides cleaning up the formatting of the numbers using the NumberHelper methods, you
can also perform similar actions with dates. If you look at the dates on the classified list-
ing, notice that it’s chaotic (see Figure 6-4.)

Figure 6-4. 
The dates are also hard to read by default.

RAILS SOLUTIONS:  RAILS MADE EASY

110

7524ch06.qxd  11/30/06  11:09 AM  Page 110



If you look at the date posted and last updated fields, it will probably take you a few sec-
onds to decipher the format.

Tue Sep 26 15:41:17 CDT 2006

Day Name Month Day's Date Time Time Zone Year

Most people don’t write out dates in this format. Rails understands this and provides a few
methods that you can use to clean up the formatting of dates. Let’s work with them now. 

1. Go back to the show.rhtml file you opened earlier and look for the following two
lines of code:

<strong>Date Posted:</strong> <%= @classified.created_at %><br />
<strong>Last updated:</strong> <%= @classified.updated_at %></p>

All you are doing in these two lines is outputting the date string as it is stored in the
MySQL database. While the format may be friendly for the database, it could use a
bit of work to be legible for users. There isn’t a helper explicitly defined in Rails to
do this, but with good reason. Ruby includes a method called strftime that
enables you to easily format date and time values.

2. Modify the two preceding lines to look like the following and then save your
changes:

<strong>Date Posted:</strong> 
<%= @classified.created_at.strftime("%B %d %Y") %><br />

<strong>Last updated:</strong> 
<%= @classified.updated_at.strftime("%B %d %Y") %></p>

3. Now if you go to your browser and look at the dates, notice that they are quite a
bit more readable, as shown in Figure 6-5.

The strftime method takes different format string parameters to define how you output
the dates. In this case, the %B says to output the full month, %d is to post the day's date,
and %Y outputs the full year.

You stripped the time out of the posting. It’s not really relevant to the users to know
exactly what time a classified was posted—only that it was posted on a specific day. 

Figure 6-5. 
You now cleaned up the dates as well!

FORMATTING DATA

111

6

7524ch06.qxd  11/30/06  11:09 AM  Page 111



There are several formatting codes you can use. The following are supported by Ruby:

Format Meaning

%a Abbreviated weekday name (Sun)

%A Full weekday name (Sunday)

%b Abbreviated month name (Jan)

%B Full month name (January)

%c Preferred local date and time representation set by the server

%d Day of the month (01...31)

%H Hour of the day, 24-hour clock (00...23)

%I Hour of the day, 12-hour clock (01...12)

%j Day of the year (001...366)

%m Month of the year (01...12)

%M Minute of the hour (00...59)

%p Meridian indicator (AM or PM)

%S Second of the minute (00...60)

%U Week number of the current year, starting with the first Sunday as
the first day of the first week (00...53)

%W Week number of the current year, starting with the first Monday as
the first day of the first week (00...53)

%w Day of the week (Sunday is 0; 0...6)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00...99)

%Y Year with a century

%Z Time zone name

%% Literal % character

RAILS SOLUTIONS:  RAILS MADE EASY

112

7524ch06.qxd  11/30/06  11:09 AM  Page 112



Defining date formats

It’s probably safe to assume that you will want to use the same date format throughout
your application. While it’s not much effort to add the strftime string at the end of your
dates, what if down the road you decide to change how you format the dates? That could
potentially turn into a lot of work for you. 

Wouldn’t it be better to just define the format of the dates once and then use it whenever
you want to display a date in the application? This is possible by creating your own date
formatter. Date formatting is implemented in one of Rails’ ActiveSupport classes that
extend the functionality of Rails. 

1. You define the date formats in the environment.rb file (found in railslist/
config.) Open it up and add the following code to the bottom: 

my_date_formats = {
:us_date => '%B %d, %Y',
:uk_date  => '%d %b %Y'

}

ActiveSupport::CoreExtensions::Time::Conversions::
DATE_FORMATS.merge!(my_date_formats)

ActiveSupport::CoreExtensions::Date::Conversions::
DATE_FORMATS.merge!(my_date_formats)

2. Save your changes.

What you just did was create a code block called my_date_formats with two differ-
ent values inside. The first, :us_date, defines a date format of the order of January
01, 2006. The second, :uk_date, defines a date format that looks like 06 Jan 2006. 

The next two lines tell the ActiveSupport DATE_FORMATS module to include the
custom date formats for use in the application. 

3. Before you go forward, restart your Rails application so that the changes take
effect. Remember that you need to restart the application any time you change the
environment files. You can restart your application by killing your server (Ctrl+C)
and then restarting it with another Ruby script/server command.

4. Now implement the date formats in place of the strftime methods you were
using before. Go back to the show.rhtml file and modify the two date lines to look
like the following:

<strong>Date Posted:</strong> 
<%= @classified.created_at.to_formatted_s(:us_date) %><br />

<strong>Last updated:</strong> 
<%= @classified.updated_at.to_formatted_s(:uk_date) %></p>

Instead of using strftime, you are using the to_formatted_s method and each of
the date formats you defined earlier to format the dates.

FORMATTING DATA

113

6

7524ch06.qxd  11/30/06  11:09 AM  Page 113



5. Save your changes, go back to the browser, and do a refresh; you can now see how
each of these is outputted (see Figure 6-6.)

Using natural language

While it’s nice to be able to format the dates literally, sometimes it’s better to use natural
language to describe when a date occurred. For example, if something happened yester-
day, why not just be explicit and say yesterday? Rails includes methods to do this in the
DateHelper. Let’s implement them. 

1. Go back to the show.rhtml file you have been working with and modify the date
fields to look like the following:

<strong>Date Posted:</strong> 
<%= distance_of_time_in_words_to_now(@classified.created_at) %> ago➥

<br />
<strong>Last updated:</strong> 
<%= distance_of_time_in_words(@classified.updated_at, Time.now) %>➥

ago</p>

2. Save your changes.

You are using the two natural language methods. The first one you are using 
is distance_of_time_in_words_to_now. The only parameter you provide is the
date you want to compare. The method’s purpose is to compare the provided date
against the current date and time. It then outputs the result using natural language
such as less than a minute; an hour; 10 days. 

The second method, distance_of_time_in_words, enables you to compare two
dates instead of just one date against the current time. The first date provided is
the start time and the second is the end time. 

3. Refresh your application again to see how they render in a browser (see Figure 6-7.)

Figure 6-7. 
Using natural language to express the dates.

Figure 6-6. 
You can fine-tune the format of the dates
(and other data) as much as you want.

RAILS SOLUTIONS:  RAILS MADE EASY

114

7524ch06.qxd  11/30/06  11:09 AM  Page 114



Summary
In this chapter, you implemented the last bits of the Railslist application. You formatted
the numbers and dates using the built-in helpers and defined your own date formats to be
used throughout the application. 

The next few chapters will discuss Ajax. They will cover what Ajax is and isn’t, how Rails
implements it, and where it's appropriate to use.

FORMATTING DATA

115

6

7524ch06.qxd  11/30/06  11:09 AM  Page 115



7524ch07.qxd  11/27/06  4:26 PM  Page 116



7 INTRODUCTION TO AJAX

7524ch07.qxd  11/27/06  4:26 PM  Page 117



One of the reasons why Rails has become so popular in such a short amount of time is its
capability to make complex application development seem easy. This book has covered
many instances thus far, but in my opinion, the best example is in terms of Ajax. If you have
been following web development trends lately, you have no doubt heard about Ajax and its
rise to prominence among web professionals because it enables the creation of a much
more dynamic, desktop-like user experience. Whether you are new to Ajax or already using
the technology, you will read about what Ajax is and how to implement it in Rails.

This chapter will discuss the following:

A history of interactivity on the Web

What Ajax is and where it’s used

How Rails implements Ajax

Best practices for using Ajax

A history of web interaction
Prior to 1995, the Web was fairly basic. Servers sent web pages with nothing but HTML
markup and images to web browsers. There was no interactivity. In 1995, Brendan Eich of
Netscape wanted to change this, so he developed Mocha. Mocha was designed to bring
interactivity to the Web by enabling users to run scripts inside web browsers. When Eich’s
creation finally made its public debut in December of 1995 with Netscape 2.0, it had a new
name: JavaScript.

JavaScript's purpose is to enable you to add complex functionality to a web page without
the overhead of having to compile any code (it's just interpreted by the browser, not
compiled like many other programming languages). The web browser interprets the
JavaScript code line by line and then outputs the result for the user. In languages such as
C++ and Java, the code has to be compiled and run on its own. Since JavaScript eliminates
the complex task of code compilation, it offers a low barrier of entry for programmers
and nonprogrammers.

After Netscape 2 was released, Microsoft soon followed with its own implementation of
JavaScript, called JScript, which shared many of the same features of JavaScript but in a
totally different implementation. Because of the differences between JScript and JavaScript,
Netscape and Sun worked to standardize the JavaScript language with the European
Computer Manufacturers Association (EMCA). This standardization resulted in EMCAScript,
which is what is today known as JavaScript. 

Despite its name, JavaScript has absolutely nothing to do with Sun’s Java development
platform. While Sun did play a part in the development of JavaScript with Netscape, it is
not a variant of Java. The name JavaScript was probably chosen over LiveScript (its orig-
inal name after Mocha) for marketing reasons. Unfortunately, there was much confu-
sion because web browsers can run Java applets and JavaScripts.

RAILS SOLUTIONS:  RAILS MADE EASY

118

7524ch07.qxd  11/27/06  4:26 PM  Page 118



In 1997, Netscape 4 and Internet Explorer 4 were both released with much fanfare. Both
browsers promised improvements from previous versions and expanded JavaScript’s func-
tionality. The main selling point of both browsers was Dynamic HTML (DHTML). DHTML
was not a technology, but a buzzword to describe the combination of HTML, CSS, and
JavaScript working together.

Many sites began to implement DHTML because it enabled developers to animate things
across the screen using JavaScript. Unfortunately, the ways in which IE and Netscape
implemented the Document Object Model (DOM) were different, which required web
developers to produce two versions of their scripts—one for each browser.

Figure 7-1. In the DOM, a web page is
shown as a hierarchical structure, or “tree,”
of elements (called nodes in DOM-speak).

The DOM conceptualizes the contents of a web page in a tree format, as illustrated in
Figure 7-1 (taken from the Firefox DOM Inspector). Using the DOM, you can access var-
ious elements of any web page in a uniform way. For example, you can get the contents
of a form field via document.myForm.firstName.value. For more on the DOM, check
out Jeremy Keith’s book, DOM Scripting (friends of ED 2005, ISBN: 1590595335). 

INTRODUCTION TO AJAX

119

7

7524ch07.qxd  11/27/06  4:26 PM  Page 119



In 1999, Microsoft released IE 5, which included a new function call named XMLHttpRequest
that enabled JavaScript inside a web page to get more data from the server without having
to request an entirely new page. Netscape added this functionality to its browsers as well,
but it was rarely—if ever—used until it got its new name in 2005: Ajax.

What is Ajax?
Ajax stands for Asynchronous JavaScript and XML. The term was coined by Jesse James
Garrett of Adaptive Path in his article, “Ajax: A New Approach to Web Applications” (http://
www.adaptivepath.com/publications/essays/archives/000385.php). Like DHTML in the
late 1990s, Ajax is not a single technology; it is a suite of several technologies. Ajax incorpo-
rates the following:

XHTML for the markup of web pages

CSS for the styling

Dynamic display and interaction using the DOM

Data manipulation and interchange using XML

Data retrieval using XMLHttpRequest

JavaScript as the glue that meshes all this together

In layperson’s terms, Ajax enables you to retrieve data for a web page without having to
refresh the contents of the entire page. In the classic web architecture, the user clicks a link
or submits a form. The form is submitted to the server, which then sends back a response.
The response is then displayed for the user on a new page. There is nothing necessarily
wrong with this model, but it’s somewhat archaic and slow compared with how users inter-
act with desktop applications.

Imagine that you’re writing a book such as this one and are looking for a word in the doc-
ument. You open the Microsoft Word Find panel, type in your query, and press Submit.
The results are then showed instantaneously. If Word were like a non-Ajax–powered web
application, you would enter the query you wanted to search for, and then your entire
document would refresh with the word you were looking for highlighted. Obviously, this
is not the way Word works. Ajax aims to make the Web give instant gratification in a sim-
ilar fashion to desktop applications such as Word.

When you interact with an Ajax-powered web page, it loads an Ajax engine in the back-
ground. The engine is written in JavaScript and its responsibility is to both communicate
with the web server and display the results to the user. When you submit data using an
Ajax-powered form, the server returns an HTML fragment that contains the server’s
response and displays only the data that is new or changed (as opposed to refreshing the
entire page).

RAILS SOLUTIONS:  RAILS MADE EASY

120

7524ch07.qxd  11/27/06  4:26 PM  Page 120



The A in Ajax stands for asynchronous. After you trigger the Ajax engine embedded in your
application’s page, it starts listening for input in the background while your users are inter-
acting with the page. This interaction is done concurrently, so users are never staring at a
blank page waiting for the server to do something. Instead, they are seeing the results of
their actions almost instantly. This enables you to add very slick functionalities to web
pages (more like that of a desktop application than a traditional web page experience)
such as drag and drop, and customizable interfaces.

Where is Ajax used?
Ajax first started to be noticed when Google created Google Suggest (http://
labs.google.com/suggest). Google Suggest looks like a normal Google homepage, but
instantly suggests terms as you began typing. Shortly thereafter, Google released Google
Maps, which used Ajax technology to quickly display locations on a map.

After Google, many companies began to implement Ajax. One of the most widely used
Ajax-powered sites is Flickr. Flickr (http://www.flickr.com) is a photo-sharing service that
enables users to upload photos they have taken, adding their own titles and captions.
Other Flickr users can add notes, comments, and tags to pictures. When you edit the title
or description of the photo, the data is saved using Ajax, so the page doesn’t need to 
be refreshed to see the changes. Flickr’s Organizr (http://www.flickr.com/tools/
organizr.gne), which enables users to sort their photos into sets, is also written using Ajax.

Today, as Ajax goes mainstream, many major companies are implementing the technology
in their websites and applications. Apple recently began experimenting with Ajax in its sup-
port section. To see whether your machine is still under warranty, you can enter your serial
number in a form; it pings Apple’s servers and returns the result instantly.

How does Rails do Ajax?
Before Ruby on Rails, constructing web applications that took advantage of Ajax was a
time-consuming task that involved writing (and debugging) a lot of JavaScript code. This
lack of simplicity is probably why the XMLHttpRequest feature sat dormant in browsers for
so long. With the introduction of Rails, developers now have an easier way of working with
Ajax. First, each Rails application comes bundled with two JavaScript libraries that make

For the budget-conscious, Ajax can save you money. Besides making the usability of
your web applications easier to use for your users, the use of HTML fragments saves
bandwidth. Instead of having to keep refreshing the entire page and reloading several
kilobytes of data for each submission, you have to load only a few kilobytes. This
process definitely cuts down on your bandwidth bill.

INTRODUCTION TO AJAX

121

7

7524ch07.qxd  11/27/06  4:26 PM  Page 121



Ajax development a bit easier. The first is the Prototype library by Sam Stephenson, which
provides the foundation for Rails’ Ajax implementation (http://prototype.conio.net/).
The second library is Thomas Fuch’s script.aculo.us effects library (http://
script.aculo.us/), which includes several visual effects that can enhance the look and
feel of your applications. These included effects enable you to draw attention to newly
added elements of a page. Examples of visual effects include sliding elements in, fading
them out, or using the Yellow Fade Technique popularized by 37Signals (among many
others).

The second part of the Rails Ajax formula is JavaScriptHelper, which is an included Rails
module that wraps all the functionality in the Prototype library behind Ruby methods. For
example, if you want to create a form that automatically adds an item to a list of similar
items, the JavaScript code looks like this:

<form action="/projects/1/project/add_category" id="newCategoryForm"➥

method="post" 
onsubmit="if (Field.present('category_name')) { 
new Ajax.Updater({success:'categoriesList',failure:'notice'}, 
'/projects/1/project/add_category',
{asynchronous:true, evalScripts:true, insertion:Insertion.Bottom, 
onComplete:function(request){
categoriesManager.newCategoryComplete(request)

}, 
onLoading:function(request){categoriesManager.loading()}, 
parameters:Form.serialize(this)}); }; return false;">

With JavaScriptHelper, this is all you need to write:

<% form_remote_for :category,
Category.new,
:url => {:project => @project, :action => 'add_category'},
:loading => "Element.show('category_busy');",
:complete => "Element.hide('category_busy');",
:condition => "Field.present('category_name')",
:html => {:id => 'newCategoryForm'} do |f| 

%> 

As you can see, the JavaScriptHelper way is a lot cleaner and easier to understand. The
third and final part of Rails’ Ajax implementation is the Ruby JavaScript (RJS) template.
Unlike regular RHTML templates, which render the results of an action, RJS templates pro-
vide instructions to Rails on how to modify an already rendered page. Using RJS, you can
define how to insert the new HTML fragment and what sort of script.aculo.us effects (if
any) to perform on the fragment.

By combining both JavaScriptHelper and RJS templates, you can almost totally eliminate
the need to write any JavaScript code in your Rails applications.

RAILS SOLUTIONS:  RAILS MADE EASY

122

7524ch07.qxd  11/27/06  4:26 PM  Page 122



When to use Ajax?
Like most things on the Web, there is a time and place for new technology to be used. Not
every site needs to scrap its current offering and relaunch with everything dynamically
rendered via Ajax calls. There is a common set of instances in which using an Ajax-powered
implementation is a good idea. 

Quick form submissions for small data: When you visit a weblog, you are some-
times inclined to leave a comment on the article you just read. This is a small bit of
data that can easily be appended to the article using Ajax. It is not the primary
focus of the page and can quickly be rendered. Another example of a small piece
of data is a tag. Tags are a new Web 2.0 phenomenon, which involves the use of sin-
gle words to describe objects on the Web. For example, when I upload a new pic-
ture of my dog to Flickr, I can tag it with words such as dog, yorkie, bichon, romeo,
bonnie. Each time I add a tag, it is sent to the server via Ajax, so I don’t have to
refresh the page.

Retrieving search results: Like Google Suggest, getting search results is a great
example of when Ajax is appropriate. As users type the query they want to find the
answer to, the search results window is displayed with results that are related to
the query. An example of this is Gmail’s capability to match the e-mail address you
type in the To: field to someone in your address book or previous contacts.

Filtering data: If you have a large data set of 100 or more rows, you can easily fil-
ter it down to a smaller set based on the criteria entered using Ajax. This smaller
set enables the users to quickly find what they are looking for without the hassle of
having to refresh the page to get the results. This is similar to iTunes on the Mac or
PC. When you search the Library for a song you want to listen to, iTunes removes
any songs that don’t match the search criteria each time you modify the search
query. 

What’s the catch?
While Ajax solves many issues with user experience on the Web, not everything is perfect.
There are a few cons to implementing Ajax technology that can make the user’s experi-
ence less than stellar, including the following:

Accessibility: If you are concerned with ensuring that the application is accessible
to those with disabilities in compliance with the regulations (for example, the Web
Accessibility Initiative’s guidelines, http://www.w3.org/TR/WAI-WEBCONTENT/, or
the U.S. Government’s Section 508 standards, http://www.section508.gov/),
implementing Ajax can be more time-consuming because you need to implement
fallback methods for browsers that do not support JavaScript to a lesser or greater
degree (screen readers, for example). This isn’t impossible, but it does require
thought in how you design the site.

INTRODUCTION TO AJAX

123

7

7524ch07.qxd  11/27/06  4:26 PM  Page 123



Security: Non-Ajax web applications typically conform to a policy that constrains
them to connect only to the web server that delivered the base page. That is not
the case using Ajax (the XMLHttpRequest object, to be more specific). A malicious
scripter could create a script that could steal data stored in cookies or gain direct
access to the originating server.

Usability: Naysayers to the Ajax movement on the Web consistently bring up how
the technology breaks the browser’s Back button functionality. Like most things in
web development, there are workarounds for it, but none of them is necessarily
simple or intuitive to implement. It usually involves enabling a JavaScript that will
roll back the changes the user has made. 

None of these issues is incapable of being overcome. It just takes some extra thought and
work to make sure that you take these issues into account. This is covered in the next
chapter.

Summary
This chapter covered the basics of Ajax. You should be familiar with the concepts around
this new technology and have a general idea of how Ruby on Rails makes it easy to imple-
ment Ajax without having to write hundreds of lines of complex JavaScript code. In the
next chapter, you will learn how to convert parts of your railslist application to use Ajax.
Instead of trying to post new classifieds using Ajax, you will create a second control that
allows for the management of categories that is powered entirely by Ajax. 

RAILS SOLUTIONS:  RAILS MADE EASY

124

7524ch07.qxd  11/27/06  4:26 PM  Page 124



7524ch07.qxd  11/27/06  4:26 PM  Page 125



7524ch08.qxd  11/30/06  11:12 AM  Page 126



8 BRINGING FORMS TO LIFE
WITH AJAX

7524ch08.qxd  11/30/06  11:12 AM  Page 127



The last chapter covered the basics of Ajax: its history, where it is used, and how Rails
implements it. Ajax is such a broad topic, however, that I decided to spend two chapters
discussing it. This chapter covers how you can implement Ajax in web applications. More
specifically, the following topics are discussed:

Creating an Ajax-powered form

Using Ruby JavaScript (RJS) to enhance the style of your forms

Creating a live search box

Sending e-mail by using Action Mailer

Ajaxing your application
Based on the discussion of when Ajax is and isn’t appropriate, it wouldn’t make much
sense to convert the classified posting form to be Ajax-powered. There are several data
fields that need to be filled in by the user, and having such a large form on the listing page
would be somewhat intrusive.

Instead, let’s address one of the limits of your railslist application thus far: the fact that you
have very few categories. When you added categories to the application, you added only
four defaults, which are very limiting to the user.

One thing you can do to make things easier is enable categories to be created from within
the railslist application itself. Even better, you can make it seamless and almost instant by
using Ajax. Since you are defining only the name of a category and no other data, you can
quickly add multiple categories using Ajax instead of having to go through the process of
adding a category, saving it, having to refresh the page, and repeating. With Ajax, a user
can add a new category and see it instantly appear—all without refreshing the page.

Creating the categories controller

The first thing you need to do is add a new controller to the application to manage the
categories code. You could add this code to the existing classifieds controller, but I like to
keep different aspects of an application as separated as possible. Not only is it easier to find
a specific function intuitively but it also makes the code more manageable.

1. Open up a Terminal or command prompt window and go to your railslist directory.
Type the following command:

ruby script/generate controller Category

This command creates the new category controller under the app/controllers
directory.

You have already written a lot of the code for this previously, in the original controller.
You are just moving it (refactoring it in geek speak) to the new controller.

RAILS SOLUTIONS:  RAILS MADE EASY

128

7524ch08.qxd  11/30/06  11:12 AM  Page 128



2. Open the category_controller.rb file in your text editor and stub out a skeleton
to work from. Edit your file to look like the following listing:

class CategoryController < ApplicationController
layout 'standard'

def list
end

def show
end

def new
end

def delete
end

end

This is pretty bare bones so far, but it gives you an idea about where you will go
through this chapter. The first line is the class definition, as always. The second line
of code lets Rails know to use the standard.rhtml layout file you created earlier,
which gives the non-Ajax methods such as show and list the same style as the rest
of the site.

Next, you create definitions for the four methods you will use to manage the cate-
gories. The list method gives you a listing of all the categories in the system. The
show method shows you items from a specific category. The new method adds a
new category to the application using Ajax, and delete removes a category via
Ajax. Throughout this chapter, you will work to add functionality to each of these
methods. 

Write the code for the list method. All you need to do is get a listing of all the
categories in the system and display them to the user. You can do that with a single
line of code.

3. Modify your list method to look like the following:

def list
@categories = Category.find(:all)

end

All the new line of code does is to use Rails’ find functionality to get all the cate-
gories from the database and store them in the @categories array.

4. You need to create the view for this method, so create a new file called list.rhtml
and save it under app/views/category.

5. Type the following code into the new file and save your changes:

<h1>Categories</h1>

<ul id="category_list">
<% @categories.each do |c| %>

BRINGING FORMS TO LIFE WITH AJAX

129

8

7524ch08.qxd  11/30/06  11:12 AM  Page 129



<li><%= link_to c.name, :action => 'show', :id => c.id %> 
<%= "(#{c.classifieds.count})" -%></li>

<% end %>
</ul>

You saw code similar to this before. All you are doing is iterating through the
@categories array and outputting a <li> element containing a link to the category
it is referencing for each item in the array. Additionally, you are outputting the
number of classifieds in that specific category inside parentheses. Rails’ associations
make it easy to step through a relationship and get information like this. 

6. Open up your browser and go to http://localhost:3000/category/list; Figure 8-1
shows the output of what you created.

Figure 8-1. Categories listing page in desperate need of some style

7. It is somewhat tacky at this point, so add a few style definitions to the style.css
file in /public/stylesheets. Add the following rules to your stylesheet and then
save your changes:

ul#category_list {
padding: 20px;
list-style-type: square;

}

ul#category_list li {
line-height: 140%;

}

8. Next, add some code to the show method. This will be pretty easy since you already
wrote it.

RAILS SOLUTIONS:  RAILS MADE EASY

130

7524ch08.qxd  11/30/06  11:12 AM  Page 130



9. Open up your classifieds controller (classified_controller.rb) and go to the
show_category method.

10. Copy the single line of code in it and paste it into the category controller’s show
method. Your method should now look like this:

def show
@category = Category.find(params[:id])

end

Now, go back to the classified controller and remove the show_category method
entirely. You no longer need it since you are moving the functionality into the new
Category controller.

11. Next, you need to create a view for this file, but instead of reinventing the wheel,
just use the show_category method view.

12. Go to app/views/classified, grab show_category.rhtml, and move it to app/
views/category.

13. Rename it show.rhtml.

14. You need to change only a bit of the code in the new show.rhtml file. Open the file
and modify the <li> line to look like the following:

<li>
<%= link_to c.title, :controller => "classified", :action => "show",➥

:id => c.id -%>
</li> 

Now make sure that other parts of the application know that the show_category
no longer exists.

15. Under app/views/classified, open list.rhtml. Modify line 3 to look like the
following:

<li><%= link_to c.name, :controller => "category", :action => "show",➥

:id => c.id %></li>

What you just did was modify the main classified listings page to show the cate-
gory listings using the category controller’s show method instead of the old
show_category method under the classified controller. 

16. Let's repeat this process for the show.rhtml file under app/views/classified as
well. Modify the line that displays the category type of the item to look like the
following:

<strong>Category: </strong> <%= link_to @classified.category.name,➥

:controller => "category", :action => "show",➥

:id => @classified.category.id %><br />

Finally, before moving on, clean up the URLs that are created by Rails to be some-
thing more meaningful.

BRINGING FORMS TO LIFE WITH AJAX

131

8

7524ch08.qxd  11/30/06  11:12 AM  Page 131



17. Open up the routes.rb file under the config folder and add the following four
lines below the classified controller routes:

map.with_options(:controller => 'category') do |category|      
category.connect 'categories', :action => 'list'
category.connect 'categories/show/:id', :action => 'show'

end

18. Now test the application again. Refresh the category listing page (http://
localhost:3000/category/list) and you should see the new URLs when you
hover over a category link.

When you click one of the category links, you are taken to (for example) /categories/
show/5 instead of category/show/5. It’s a subtle change, but it makes the URL much more
readable. 

Adding a touch of Ajax

Now that you have the bare essentials of the new category controller out of the way, you
can now focus on adding and removing categories by using Ajax. What you want to do is
add the capability to type in the name of a new category and have it automatically appear
in the unordered list in the list.rhtml view.

To get Ajax support in the Rails application, you need to include the necessary JavaScript files
in the layout. Rails is bundled with several libraries that make using Ajax incredibly easy.
The first is the Prototype library by Sam Stephenson (http://prototype.conio.net/);
the other library is Thomas Fuch’s script.aculo.us (http://script.aculo.us/). The
script.aculo.us library’s main focus is adding style and visual effects to the Ajax you build
using Prototype. When you see a web page highlight a newly created item with a yellow
fade or a <div> slide off the side of a browser window, script.aculo.us is probably
responsible.

1. To add Prototype and script.aculo.us support to the application, open up the
standard.rhtml layout file in app/views/layouts, add the following line just
before the </head> tag, and save your changes:

<%= javascript_include_tag :defaults %>

This includes both the Prototype and script.aculo.us libraries in the template so
their effects will be accessible from any of the views.

2. With that out of the way, open up the list.rhtml file in app/views/category and
create the new form.

3. Add the following lines of code to the bottom of the file and save your changes:

<p id="add_link"><%= link_to_function("Add a category",   
"Element.remove('add_link');Element.show('add_category')")%></p>

<div id="add_category" style="display:none;">
<%= form_remote_tag(:url => {:action => 'new'},➥

:update => "category_list", :position => :bottom,➥

RAILS SOLUTIONS:  RAILS MADE EASY

132

7524ch08.qxd  11/30/06  11:12 AM  Page 132



:html => {:id => 'category_form'})%>
Name: <%= text_field "category", "name" %>
<%= submit_tag 'Add' %>
<%= end_form_tag %>

</div>

The first line of new code is a link called "Add a category". Notice that you
aren’t using the trusty link_to method; instead, you use a new one called
link_to_function. Why? The link_to method you have come to know and love
does a great job at redirecting the browser to new actions as you click the links it
provides, but not much else. The link_to_function method, on the other hand,
enables you to harness the power of the Prototype JavaScript library to do some
neat DOM manipulations. For instance, in this line of code you are removing the
"Add a category" link and showing the add_category <div>. 

The next line is the creation of the add_category <div>. Notice that you set its
visibility to be hidden by default using the CSS display property. The preceding
link_to_function is what will change this property and show the <div> to 
the user. 

Next, you are creating the Ajax form using the form_remote_tag. This Rails helper
is similar to the start_form_tag you have used in the past, but it is used here to let
the Rails framework know that it needs to trigger an Ajax action for this method.
The form_remote_tag takes the :action parameter just like its counterpart:
start_form_tag.

You also have two additional parameters: :update and :position. The :update
parameter tells Rails’ Ajax engine which element to update based on its id. In this
case, it’s the <ul> tag. The :position parameter tells the engine where to place the
newly added object in the DOM. You can set it to be at the bottom of the
unordered list (:bottom) or at the top (:top).

Next, you create the standard form fields and submit buttons as before and then
wrap things up with an end_form_tag to close the <form> tag. Make sure that
things are semantically correct and valid XHTML.

4. Now write the controller code. Modify the new method in the category_controller.rb
file to look like the following:

def new
@category = Category.new(params[:category])
if @category.save
render :partial => 'category', :object => @category

end
end

Just like other parts of the new Ajax code, there isn’t too much terribly different about this
method, either. You are creating a new Category object based on params[:category] and
saving it to the database. The interesting part is the line after the if... line:

render :partial => 'category', :object => @category

Instead of redirecting to a new page, you are rendering a partial.

BRINGING FORMS TO LIFE WITH AJAX

133

8

7524ch08.qxd  11/30/06  11:12 AM  Page 133



Partials
What’s a partial, you ask? Imagine that you are at a gas station and you purchase a bottle
of water for a total price of $1.03 after tax. You hand the salesclerk a one-dollar bill and
three pennies. The three pennies are a fragment (or a partial) of a dollar. When a full dol-
lar won’t do, you can use pennies as partial bits of that dollar. Think of Rails partials as a
code fragment that is dynamically called when it’s needed without having to call a whole
page in the process. One of the major benefits of partials is that they help you to eliminate
code duplication in the application. Instead of having to copy the HTML involved with dis-
playing information about a category into multiple views, you can instead put it in a single
partial and call that from multiple controllers or views (similar to includes in other server-
side languages such as PHP).

After you save a category, you want to render a partial called _category using the new
@category object. You don’t yet have this partial created, so go ahead and do that.

1. Under app/views/category, create a new file called _category.rhtml.

2. Type the following lines into your partial and save your changes:

<li id="category_<%= category.id %>">
<%= link_to category.name, :action => 'show', :id => category.id %> 
<%= "(#{category.classifieds.count})" -%></li>

This line of code is just like what you use in the iteration of the list.rhtml
method. In fact, you can replace the iteration with the partial.

3. Replace all the code between the <ul></ul> tags with the following bold line and
save your changes:

<ul id="category_list">
<%= render :partial => 'category', :collection => @categories %>

</ul>

What you are doing here is rendering each item in the @categories array using the
new _category.rhtml partial. It’s the exact same functionality as before, but with
the code in one central, easy-to-update location.

4. Let’s test things out at this stage. Go to http://localhost:3000/categories and
add a new category. It should appear at the bottom of your list of preexisting cate-
gories (see Figure 8-2).

Take note that partials are all named with an underscore (_) at the beginning.
It’s one of the design decisions Rails makes for you.

Partials aren’t just good for rendering bits of an Ajax page; they also make a great
tool for rendering common areas of a template such as headers or footers. If you have
a complex template with thousands of lines of code, breaking it up into smaller bits
can sometimes be beneficial. In this fashion, partials can be compared to the more
common usage of Server Side Includes (SSIs). 

To render a partial in a view, just use <%= render :partial => 'partialname' %>.

RAILS SOLUTIONS:  RAILS MADE EASY

134

7524ch08.qxd  11/30/06  11:12 AM  Page 134



Figure 8-2. Ajax makes it easy to add categories to the application.

You can now easily add several categories without having to wait for the page to refresh
after each category is added. Very nice!

Adding dynamic JavaScript functionality
using RJS

The new category-adding functionality is pretty neat, but there are a few issues that are
rather annoying. First, there is no visual cue for users to let them know that the new item
has been successfully added. Second, after a new item is added, the form’s data to add a
new category is not cleared. You could write some JavaScript to solve both of those issues,
but you don’t have to.

Ruby on Rails (as of version 1.1) includes functionality called Ruby JavaScript (RJS) that
enables you to write small bits of Ruby code that will call the Prototype and script.aculo.us
JavaScript libraries included with Rails. RJS introduces a new type of template to the appli-
cation called a JavaScriptGeneratorTemplate. It has a file extension of .rjs. 

Let’s use RJS to highlight the newly created category and clear the form.

1. Create a new file called new.rjs under app/views/category.

2. Add the following three lines of code to this file and save your changes:

page.insert_html :bottom, 'category_list', :partial => 'category'
page.visual_effect :highlight, "category_#{@category.id}"
page.form.reset 'category_form'

BRINGING FORMS TO LIFE WITH AJAX

135

8

7524ch08.qxd  11/30/06  11:12 AM  Page 135



The first line of code tells RJS to insert the new category at the bottom of the ele-
ment with an id of category_list using the _category partial, which is what the
:update and :bottom parameters of the form_remote_tag are doing. 

The second line tells RJS to highlight the newly created item using the
script.aculo.us highlight effect. It determines the item to highlight based on the id
of that item (constructed from category_ and the database id of the category). 

Finally, you tell the category_form to reset itself.

3. Before you can test out the new RJS functionality, you need to clean up the
form_remote_tag in list.rhtml. You no longer need the :bottom and :update
parameters (since they’re in the RJS template), so remove them. Your new
form_remote_tag line should look like the following:

<%= form_remote_tag(:url => {:action => 'new'},➥

:html => {:id => 'category_form'}) %>

4. Let’s also add a line to the new method in category_controller.rb. After the if
@category.save line, add the following:

return if request.xhr?

This code tells the controller to escape to RJS if a method is passed via Ajax.
Without this line, the RJS template won’t be called. The xhr? method checks to see
whether you are sending an Ajax request (XmlHttpRequest, to be more specific).

Now refresh the categories listing page and add a new category. Notice that the new cate-
gory appears highlighted in yellow. The yellow then fades, and the new category form
resets itself after submission. Not only does it look cool, but it is also giving your visitors a
better user experience.

What about validation?

Before RJS, validating Ajax submissions was a difficult process. As you know by now, Rails
makes it easy to define data validations in your models such as validates_uniquesness_of
or validates_presence_of, but it wasn’t easy to test those conditions with Ajax. With RJS,
that is a thing of the past. To illustrate this, let’s prevent a user from adding a category with
the same name twice. 

1. First, open up your category.rb model file in app/models and add the following
line to it (in bold in the following listing):

class Category < ActiveRecord::Base
has_many :classifieds
validates_uniqueness_of :name

end

2. Save your changes and close the file.

3. Go back to the new.rjs file and modify it to look like the following:

if @category.new_record?
page.alert @category.errors.full_messages.join("\n")

RAILS SOLUTIONS:  RAILS MADE EASY

136

7524ch08.qxd  11/30/06  11:12 AM  Page 136



else
page.insert_html :bottom, 'categories', :partial => 'category'
page.visual_effect :highlight, "category_#{@category.id}"
page.form.reset 'category_form'

end

What you are doing is a bit of a hack since there isn’t any sort of standard for per-
forming Ajax validations in Rails, but it works well for what you want to achieve.
When the RJS file is executed, it checks to see whether the @category object has
been saved. If it hasn’t, you can assume that there is a validation error of some sort
and you display it in a JavaScript message box. The new_record? method in line 1
returns true if the object is not saved. 

4. Refresh your page and try to create a new item with the same name as something
you have already created. You should see the error message shown in Figure 8-3.

Deleting items with Ajax

Let’s finish the implementation of the category controller by enabling the user to delete
categories from the system. 

The first thing you need to do is decide how to handle the situation in which a classified’s
category is deleted, resulting in classifieds that are no longer in a category. You have a few
options, as follows:

You can delete the classifieds from the system.

You can set the category_id to NULL (this basically means "uncategorized").

You can reassign the classified to another category (miscellaneous perhaps?).

The first option isn’t a great idea because the classifieds contained under that category
might be relevant to another category. More importantly, your users might be unhappy
about their data loss! The third option isn’t ideal, either, because you are changing the

In a real-world system, not everyone should have the ability to perform a destruction
action such as deleting a category. In Chapter 10, you will learn about security and user
authentication. The chapter discusses how to secure your application so that only
authorized users have the ability to delete a category.

Figure 8-3. When you try 
to add another category
with the same name as 
an existing one, this error
pops up.

BRINGING FORMS TO LIFE WITH AJAX

137

8

7524ch08.qxd  11/30/06  11:12 AM  Page 137



user’s data in a way that they might not want So go with option two and just set the clas-
sifieds not be categorized. Users can be sent a mail alert; they can come and assign a new
category to their classifieds.

To accomplish this, you need to set a parameter in the category model’s has_many
association.

1. Open the category.rb file under app/models and modify the has_many line to look
like the following:

has_many :classifieds, :dependent => :nullify

The :dependent parameter tells Rails how to deal with any associated entities.
In this case, you tell Rails to set the category_id of any associated classified to
be NULL. 

Next, modify the item listings to take into account the new business rule of a clas-
sified not necessarily needing a category.

2. Open up the show.rhtml file in app/views/classified and modify the category
line to look like the following:

<% if not @classified.category.blank? %>
<strong>Category: </strong> <%= link_to @classified.category.name,➥

:controller => "category", :action => "show",➥

:id => @classified.category.id %><br />
<% end %>

What you just did was add a conditional check that shows only the category if one
is assigned to the classified. This prevents the application from crashing because it
is trying to retrieve a nonexistent object. 

3. Next, you will add a small delete button to the _category.rhtml partial in
app/views/category. Add the following just before the </li> tag:

<small><%= link_to_remote 'Delete',➥

:url => {:action => 'delete', :id => category} -%></small>

You use the link_to_remote method to create an Ajax-powered link that will
delete the category. You pass the :action and :id parameters to link_to_remote
to let it know what action to perform and on what object to perform said action.

4. With that out of the way, you can work on the category controller
(category_controller.rb) delete method. Modify it to look like the following:

def delete    
@category = Category.find(params[:id])
@category.destroy
return if request.xhr?
render :nothing, :status => 200

end

There is nothing much that you haven’t seen before in this method. You find the
category based on the :id parameter passed by link_to_remote and then destroy
it. If you have an Ajax-supported Web browser, Rails uses the RJS template. If not,
nothing is rendered.

RAILS SOLUTIONS:  RAILS MADE EASY

138

7524ch08.qxd  11/30/06  11:12 AM  Page 138



5. Create a file called delete.rjs in the app/views/category folder and add this sin-
gle line to it:

page.visual_effect :drop_out, "category_#{@category.id}"

All this line does is use the script.aculo.us dropout effect to remove the item from
the list of items available.

6. Refresh the browser page and click one of the delete links. Notice that when you
click a delete link, the item slides off the page. Very fancy!

Searching classifieds with Ajax
As the data in the application increases, it is more and more difficult for users to easily
find what they are looking for. Sure, they can browse by category, but what if you are
dealing with thousands of items per category? Every good website these days offers a
search feature. You could go about developing standard search functionality (type query,
submit, receive results), but that does not give you instant gratification. Fortunately, Ajax
search does.

Similar to Google Suggest, you can filter search results as the user types in the query. To do
this, you need to query the <input> box’s value at a specified interval, query the database
with it, and return the results. This workflow is similar to traditional search applications,
except that results are returned without needing the page to refresh. 

Rails makes it easy to query the text field using the observe_field helper method, in
which observe_field binds itself to an <input> text box, grabs the value in that box, and
then triggers a method in one of the controllers.

Let’s implement this on the classified listing page. The first thing you need to do is convert
the classified listing to use partials so it’s easier to display the search results. It also pre-
vents duplicate code in two places.

1. Create a new partial called _classified.rhtml under app/views/classified with
the following code:

<li><%= link_to classified.title, {:action => 'show',➥

:id => classified.id} -%> 
<small><%= link_to 'Edit',➥

{:action => 'edit', :id => classified.id} %></small> 
<small><%= link_to "Delete", {:action => 'delete', ➥

:id => classified.id}, ➥

:confirm => "Are you sure you want to delete this item?" %></small>
</li>

Before the category is deleted, Rails goes through the classifieds table and
searches for all instances of the category_id of the item you want to delete and
replaces them with a NULL value. This is why you set the :dependent parameter
in the model.

BRINGING FORMS TO LIFE WITH AJAX

139

8

7524ch08.qxd  11/30/06  11:12 AM  Page 139



2. Open list.rhtml in app/views/classified and remove the following code
(everything in-between the second set of <ul></ul> tags):

<% @classifieds.each do |c| %>
<li>
<%= link_to c.title, {:action => 'show', :id => c.id} -%> 
<small>
<%= link_to 'Edit', {:action => 'edit', :id => c.id} %>

</small> 
<small><%= link_to "Delete", {:action => 'delete', :id => c.id}, 
:confirm => "Are you sure you want to delete this item?" %>

</small>
</li>

<% end %>

You no longer need to iterate through the @classifieds array using the code you
removed. Instead, you can just render a collection of partials from it.

3. Add this code in place of the code you just removed in list.rhtml:

<%= render :partial => 'classified', :collection => @classifieds %>

Creating the search box

You now need to create the search box.

1. Add the following bit of code to the same list.rhtml file you just edited right
before the <ul id="classifieds"> tag.

<%= text_field "classified", "title" -%>

<%= observe_field :classified_title, 
:frequency => 1.0, 
:update => 'classifieds', 
:url => { :controller => 'classified', :action=> 'search' }, 
:with => "'search=' + encodeURIComponent(value)" 

%>

You use the observe_field helper and tell it to retrieve its value from
:classified_title (the text field) every second (the :frequency). You pass
observe_field a URL just like the other Ajax methods you have used and tell it to
update the HTML element with an ID of classifieds. In this instance, that is the
unordered list of classifieds. 

The :with parameter is a JavaScript expression that specifies the parameters to be
passed for the XMLHttpRequest. You are using JavaScript’s encodeURIComponent
function so that it will automatically encode all the characters in the query. This
prevents any text-encoding issues that may arise when using the search box with
special characters.

Next, you need to create the search method in the controller.

RAILS SOLUTIONS:  RAILS MADE EASY

140

7524ch08.qxd  11/30/06  11:12 AM  Page 140



2. Open the classified controller, classified_controller.rb, and add the following
method to it:

def search
@classifieds = Classified.find(:all,➥

:conditions => ["lower(title) like ?",➥

"%" + params[:search].downcase + "%"])
if params['search'].to_s.size < 1
render :nothing => true

else
if @classifieds.size > 0
render :partial => 'classified', :collection => @classifieds

else
render :text => "<li>No results found</li>", :layout => false

end
end

end

The first thing you do in this method is compile an array with classified objects that
meet the criteria. Notice that the :condition parameter is a bit different from
before. MySQL databases store information as case-sensitive, so Apple is different
from apple, which is different from ApPle. So you use MySQL’s lower() function to
set the value of all the titles in the database table to be entirely lowercase. You also
convert the user’s text input to be lowercase by using Ruby’s downcase method.
This way, the comparison logic works regardless of the case-sensitiveness.

You are also wrapping the params[:search] parameter in a set of percentage signs
(%) so that MySQL can search for the query anywhere in the title. For example, if
the user’s query is rail, the query will return values such as guardrail, trail, or braille
(think of the percentage signs as a wildcard that tries to match characters). 

3. Test the search (see Figure 8-4). Type in a query and notice that the results are
dynamically updated as you type. After you clear the text field, all the items are
displayed once more.

BRINGING FORMS TO LIFE WITH AJAX

141

8

Figure 8-4. Ajax-powered
live search makes it easier
for users to instantly find
what they are looking for.

7524ch08.qxd  11/30/06  11:12 AM  Page 141



Sending e-mail with Action Mailer
Action Mailer is the Rails component that enables applications to send and receive 
e-mail. With Action Mailer you can configure the application to enable interested parties
to contact sellers via e-mail. Action Mailer works as a gateway between the Rails applica-
tion and the e-mail server to facilitate sending data via e-mail. That data could be the
results of a contact form, a welcome message for a new user who signs up for your serv-
ice, or just a daily e-mail sent to your administrator with various statistics—the possibilities
are endless. 

You will create a web-based form on the classified listing page that enables you to send
the classified’s information to another user’s e-mail address.

Configuring Action Mailer

Rails can do a lot on its own, but it cannot determine your mail server settings, so you
need to do a bit of configuration before you can begin using Action Mailer. You can con-
figure either globally or based on the environment in which the application is running. In
this instance, let’s work globally:

1. Go to the config folder and open environment.rb.

2. Add the following line to the bottom of the file:

ActionMailer::Base.delivery_method = :smtp

You are telling Action Mailer that you want to deliver e-mail using an SMTP server.
You can also set it to be :sendmail if you are using a Unix-based operating system
such as Mac OS X or Linux. 

Since you are using SMTP, you need to let Rails know about the SMTP server.

3. Add the following lines of code to the bottom of your environment.rb as well as
replacing the placeholder values with your specific values:

ActionMailer::Base.server_settings = { 
:address => "smtp.railssolutions.com", 
:port => 25, 
:domain => "railssolutions.com", 
:authentication => :login, 
:user_name => "username", 
:password => "password", 
}

If you don’t know the settings of your SMTP server, you can usually get that
information from your system administrator or Internet Service Provider (ISP). 

RAILS SOLUTIONS:  RAILS MADE EASY

142

7524ch08.qxd  11/30/06  11:12 AM  Page 142



:address references the SMTP server you are trying to connect to, and :port is the
port you connect through. By default, the port is 25. :domain is the actual domain
name that Action Mailer should use to identify itself to the SMTP server. If you
aren’t sure what to put in this value, just use the domain name of your SMTP
server. :authentication is the method of logging into the server, and :login and
:password should be self-explanatory.

Let’s send some e-mail

Let’s create the form to enable the user to send e-mail.

1. Open up show.rhtml in app/views/classified and remove the following line 
of code:

<p>Interested?  Contact <%= mail_to @classified.email -%></p>

2. In its place, put this code into the view:

<p>Interested?  <%= link_to_function('Contact the seller',➥

"Element.show('contact_seller')") %></p>

<div id="contact_seller" style="display:none;">
<%= form_remote_tag(:url => {:action => 'contact',➥

:id => @classified.id },➥

:html => {:id => "contact_form"}) -%>
Your e-mail: <%= text_field "contact", "email" -%><br />
Message: <br />
<%= text_area "contact", "message", {:rows => 10} -%><br />
<%= submit_tag 'Contact seller' -%>
<%= end_form_tag -%>

</div>

You have replaced the static e-mail link with a web form that will let interested
buyers provide their e-mail addresses and short messages to the buyer. You now
need to create a mailer to define the e-mail messages.

3. Like many things, there is a generator for this, so open up a Terminal or command
prompt window, go to the railslist directory, and type in the following command:

ruby script/generate mailer ClassifiedMailer contact

Rails creates a new file under the models directory called classified_mailer.rb
(as well as a bunch of other files you don’t need to be concerned with at this
point). It also creates a default method called contact, as you defined at the end of
the generate command.

Action Mailer provides a wealth of features and configuration beyond the exam-
ple here, so consult the documentation if you need to set more options for your
SMTP server: http://wiki.rubyonrails.org/rails/pages/ActionMailer.

BRINGING FORMS TO LIFE WITH AJAX

143

8

7524ch08.qxd  11/30/06  11:12 AM  Page 143



4. Open the classified_mailer.rb file and examine the contact method.

def contact(sent_at = Time.now)
@subject    = 'ClassifiedMailer#contact'
@body       = {}
@recipients = ''
@from       = ''
@sent_on    = sent_at
@headers    = {}

end

The contact method has a single parameter, sent_at, which defines when the 
e-mail is sent. The method also defines six standard parameters that are a part of
every ActionMailer method:

@subject defines the e-mail subject.

@body is a Ruby hash that contains values with which you can populate the mail
template. 

@recipients is a list of the people to whom the message is being sent.

@from defines who the e-mail is from.

@sent_on takes the sent_at parameter and sets the timestamp of the e-mail.

@headers is another hash that enables you to modify the e-mail headers. For
example, you can set the MIME type of the e-mail if you want to send either
plain text or HTML e-mail.

The stub is a nice start, but you can modify it to better fit your needs. You want to
be able to pass a classified object to the mailer so that you can easily populate the
@body hash with values that you can then plug into the e-mail template. This
enables the URL of a classified to be automatically included in the e-mail body.

5. Change your contact method to look like the following:

def contact(classified, buyer, sent_at = Time.now)
@subject    = 'Railslist: A potential buyer has contacted you'
@recipients = classified.email
@from       = 'no-reply@yourdomain.com'
@sent_on    = sent_at
@body["title"] = classified.title
@body["email"] = buyer[:email]
@body["message"] = buyer[:message]

end

Notice that you added two new parameters to the method: classified and
contact. The first accepts classified model objects; the second accepts the param-
eters of the contact form you created earlier. You modified the @subject and
@from variables to have relevant data. You set the @recipient to be the value of
the classified object’s e-mail field.

The most interesting part of this method is how to use the @body hash. You created
three key-value pairs: title, email, and message. You can now plug these values
into the template.

RAILS SOLUTIONS:  RAILS MADE EASY

144

7524ch08.qxd  11/30/06  11:12 AM  Page 144



6. Open contact.rhtml in app/views/classified_mailer and modify it to look like
the following:

Hi there!

Just wanted to let you know that your classified, <%= @title -%>, ➥

has an interested buyer. Their e-mail address is <%= @email %>.➥

They left you the following message:
<%= @message -%>

Thanks!

- railslist

An Action Mailer template is just text with standard Rails <%= %> placeholders scat-
tered throughout. Notice that the name of each placeholder variable is the same as
the key in the @body hash.

Now that Action Mailer is configured, and the method and template are created,
let’s write a method in the classified controller to handle the e-mail contact.

7. Open classified_controller.rb and add the following method to it before the
last end:

def contact
@classified = Classified.find(params[:id])
ClassifiedMailer.deliver_contact(@classified,params[:contact])
return if request.xhr?
render :nothing => true

end

First, you are creating a classified object based on the classified the potential buyer
is interested in. You then use ClassifiedMailer to send the e-mail. To deliver 
e-mail using the mailer’s contact method, you have to add deliver_ to the begin-
ning of the method name. You add a return if request.xhr? line so that you can
escape to RJS (if the browser doesn’t support JavaScript) and then tell the method
to render nothing so it doesn’t try to reload the template.

As the last step, create an RJS template that cleans up the form and alerts the user
that the message was sent successfully.

8. Create a new file named contact.rjs under app/views/classified and add the
following code to it:

page.alert 'Message successfully sent to seller.'
page.form.reset 'contact_form'
page.hide 'contact_seller'

You use RJS to alert the user that the message was successfully sent via a message
box. Next, you reset the contact form and then hide the contact_seller <div>. 

Let’s test the new functionality. Select one of your existing classifieds and then try to send
an e-mail from it using the new contact form. If you run into any issues when sending a
message, make sure that the settings you added to environment.rb for your SMTP server

BRINGING FORMS TO LIFE WITH AJAX

145

8

7524ch08.qxd  11/30/06  11:12 AM  Page 145



are correct. You might run into problems if your provider is stringent about whom or what
can send mail. Check with your administrator to make sure that you can send mail via a
web form like the one you created.

A bit of CSS style

Before you wrap up this section, let’s add a bit of padding to the contact_seller <div>.

1. Add the following to the bottom of your style.css file in /public/stylesheets
and save your changes:

div#contact_seller {
padding: 10px;

}

div#contact_seller input {
margin-top: 5px;

}

2. Test your application again. The form now has some room to breathe (see
Figure 8-5).

Figure 8-5. Some style is added to the contact form.

RAILS SOLUTIONS:  RAILS MADE EASY

146

7524ch08.qxd  11/30/06  11:12 AM  Page 146



Summary
This chapter covered a lot of topics. You discovered how to use Ajax to add and remove
data from the application and how to add styles and manipulate the DOM using Ruby
JavaScript. The chapter covered how to create a live search box using observe_field.
Finally, you were introduced to Action Mailer, which enables you to send e-mail from the
application.

Hopefully, you now see the power that Ajax offers and how it can make your application
behave more like a desktop application—with smoother and more dynamic functionality.

The next chapter will cover how to upload files to the application and how to send e-mail
with attachments.

BRINGING FORMS TO LIFE WITH AJAX

147

8

7524ch08.qxd  11/30/06  11:12 AM  Page 147



7524ch09.qxd  12/1/06  11:08 AM  Page 148



9 UPLOADING FILES AND SENDING
ATTACHMENTS

7524ch09.qxd  12/1/06  11:08 AM  Page 149



Up to this point, you have been dealing only with character data: letters and numbers, in
other words. Although this usually covers the majority of the data that you will be dealing with
when working with any application, there are times when it is beneficial to enable the user
to send and receive binary data such as images, audio files, or other types of complex data.

As always, Rails makes it easy to implement this sort of functionality in your applications.

This chapter covers the following:

Uploading images and other files to your database

Securing your application from malicious uploads

Sending e-mail with attachments using ActionMailer

Uploading images to your database
Since you are building a classifieds application, it is safe to assume that sellers want to be
able to provide a photo of the item they are selling. Not only does it provide a small bit of
proof that the seller actually possesses the item but it also enables potential buyers to eas-
ily see what they are buying before they commit to the sale. 

Traditionally, there are two methods of storing images in a Web application:

Saving it to the server’s file system in a directory

Uploading it to a database

One of the major advantages of storing images on the file system instead of in a database
is performance. The gains achieved from storing images outside a database are far greater
than that of storing files in a database. MySQL and other database packages have
improved their capability to handle noncharacter data such as images in the past few
years, so the gap between storing files in the file system and database is far less than
before. Even so, most professional developers suggest storing any nontext data in the file
system instead of the database because it results in much better performance—accessing
a database every time you want to access an image results in a performance hit.

On the upside, uploading files to a database enables easier portability of the application to
multiple servers, requires less configuration on the server side, and makes it easier to
migrate your application since you are required to keep track only of the database and the
application code itself.

In railslist, you’ll be storing your images in a database. Even though performance might be
greater by storing the data in a file system, it can become much more complex to manage. 

If you are interested in storing files in the file system instead of the database, check out
the file_column plugin (http://www.kanthak.net/opensource/file_column/). Rails’
plugin architecture will be covered in Chapter 12, so you might want to make note of
that link for later.

RAILS SOLUTIONS:  RAILS MADE EASY

150

7524ch09.qxd  12/1/06  11:08 AM  Page 150



The first thing you need to do is add a new column to the classifieds table to store the
classifieds’ image(s).

1. In a Terminal or command prompt window, type the following command:

ruby script/generate migration AddPhotoColumn

2. Open the newly created 003_add_photo_column.rb file that was added under
/db/migrate and modify it to look like the following:

class AddPhotoColumn < ActiveRecord::Migration
def self.up

add_column :classifieds, :content_type, :string,➥

:default => "image/png"
execute 'ALTER TABLE classifieds ADD COLUMN picture LONGBLOB'

end

def self.down
remove_column :classifieds, :content_type
remove_column :classifieds, :picture

end
end

All you do in this file is to tell Rails to add two new columns to the classifieds table
called picture and content_type. You are setting the picture column’s type to be
LONGBLOB, which is a MySQL-specific column type for storing large amounts of non-
character data such as images. LONGBLOB is not a default migration type for Rails
(there is a migration database called :binary for the BLOB datatype), hence having to
use some actual SQL commands to add the second column. Since there is a chance
that an image might be more than 65KB, using LONGBLOB is a better solution.

The content_type field stores the data type of the uploaded image, which gives the
browser a hint of what type of file you are trying to work with so it knows how to
render it.

3. Save the changes to your migration file and then run rake migrate in the Terminal
or command prompt window. Your new column should now be created.

Let’s continue with the quest of enabling a seller to upload an image when creating
a new classified. The first thing you should do is update your new classified view.

4. Open up the new.rhtml file in app/views/classified and add the
following code before the submit_tag line:

<p><label for="classified_picture">Picture</label><br /> 
<%= file_field 'classified', 'pictureimg' %></p>

This snippet of code introduces the file_field helper. The helper
works just like a text_field helper, but instead returns an input tag
of the “file” type instead of “text” (so it allows the user to upload a
file instead of input text, as shown in Figure 9-1).

UPLOADING FILES AND SENDING ATTACHMENTS

151

9

Figure 9-1. Clicking the Choose File
button brings up a file browser in
which you can select the image you
want to upload.

7524ch09.qxd  12/1/06  11:08 AM  Page 151



5. Next, modify your start_form_tag to have the :multipart parameter set to true
by changing the start_form_tag line to the following:

<%= start_form_tag ({:action => 'create'}, :multipart => true) %>

By setting the multipart parameter, you ensure that your action properly passes
along the binary data from the file field to the database.

6. Next, open up the classified.rb in the app/models file and the following meth-
ods to it just above the protected keyword:

def pictureimg=(picture_field)
return if picture_field.blank?
self.content_type = picture_field.content_type.chomp
self.picture = picture_field.read

end

Save your changes. The purpose of the pictureimg accessor method is to take the
data from the file_field helper in our view and then associate the uploaded
image’s content type with our content_type field and the image itself with our
picture field. 

7. Now let's test your new picture upload functionality. Open your browser and try
creating a new classified and adding an image to it—the new form should look like
Figure 9-2.

RAILS SOLUTIONS:  RAILS MADE EASY

152

Figure 9-2. 
Adding a new classified
to your application with

an attached image.

7524ch09.qxd  12/1/06  11:08 AM  Page 152



Of course, this great new functionality isn't much use yet because you can upload images,
but you can't yet do anything else with them, like display them on the show pages! You'll
remedy this next.

Reading files from the database

Although it can be beneficial to store images into your database, they are of no use to
you if you cannot extract them to view on the Web. Since you are storing the actual data
of an image in your database, you need to find a way to extract that data and rebuild it
as an image. To accomplish this, you can use the send_data method, which is a part of
ActionController and enables you to stream binary data—such as an image from the
database—to the user and convert it into a readable format. 

Think of send_data as an automatic puzzle solver. When you upload an image to your
database, it converts the pixels into a bunch of 1s and 0s. When you retrieve those 1s and
0s from the database, they are all jumbled up like a puzzle when you first take it out of the
box. With send_data, you can then put the pieces of the puzzle back together as an actual
image and send it to the user’s screen.

To work with send_data, you need to create a new method in the controller called image.
The image method’s sole purpose is to retrieve the data from the picture column and
send it to the user’s screen via send_data.

1. Copy the following method to classified_controller.rb:

def image 
@image = Classified.find(params[:id])
send_data @image.picture, :filename => "photo.jpg",➥

:type => @image.content_type, :disposition => "inline"
end

The send_data method has four parameters. The first is the actual column you are
retrieving data from. The second is the name you want to give the file when it’s
saved to your database—you have set this hard-coded value to be photo.jpg.
When an image is uploaded and inserted into your database, it always has the
name photo.jpg (you can modify the name to be whatever you want, of course).

The :type parameter defines the HTTP content type that you will be returning.
Finally, and most importantly, :disposition tells Rails to display the image in the
actual web page instead of treating it as a downloadable file.

Of course, it makes more sense to enable readers to specify their own image
name when uploading their classified ad, but you're going for simplicity here to
make the upload code as simple to understand as possible.

UPLOADING FILES AND SENDING ATTACHMENTS

153

9

7524ch09.qxd  12/1/06  11:08 AM  Page 153



2. Next, open up the show.rhtml file under app/views/classified and add the fol-
lowing code just before the <hr />:

<% unless @classified.picture.blank? %>
<%= image_tag(url_for({:action => 'image', :id => @classified.id})) -%>
<% end %>

You are creating an image_tag with the src of the image being retrieved from the
controller’s image method. You are wrapping the tag in an unless decision state-
ment because there might not be an image uploaded (or previously created clas-
sifieds do not have images). In this case, if the picture field has no data, the
image_tag will not be included in the HTML code.

3. In your browser, look at the classified you created a few pages ago. You should now
see the image you uploaded.

Figure 9-3. Showing an image of your products makes it much more appealing to the
potential buyer.

Securing your data field

As a developer, you hope that your users will never make a mistake in the application and
that they will provide perfect data 100 percent of the time. Unfortunately, that is not
always the case. You already implemented validations for the other data fields, so now you

RAILS SOLUTIONS:  RAILS MADE EASY

154

7524ch09.qxd  12/1/06  11:08 AM  Page 154



need to implement it for your file upload field. In this case, you want to ensure that only
JPEG, GIF, or PNG files are uploaded. 

To do this, you need to check the content type of the uploaded file before you commit it
to the database. 

1. Go back to your classified.rb file and add the following validation rule below
the belongs_to :category line:

validates_format_of :content_type, :with => /^image/, ➥

:message => "You can only upload pictures"

2. Save your changes.

You are using validates_format_of along with a regular expression to make sure
that the content type passed with the image begins with image/. This enables you
to be able to upload an image that has a content type like the following: 

image/jpeg: JPEG images

image/pjpeg: Progressive JPEGs

image/gif: GIF images

image/png: PNG images

image/x-png: Alternative content type for PNG images

A content type is simply a header that is sent with a file over the Web. It gives your
browser a hint of what type of file you are trying to work with so it knows how to
render it. 

3. Open your browser and try out the new security function by trying to upload a PDF
or other type of document to a new classified. 

Updating the remaining views

Now that you have implemented image handling in your new classified and show views,
you should implement the same code elsewhere in your application. For example, you
need to create a way for users to modify or remove the image from their classified listing. 

1. Open up the edit.rhtml file under app/views/classifieds and modify the
start_form_tag to look like the following. You need to tell it to support the
:multipart attribute as you did with the create form.

<%= start_form_tag ({:action => 'update', :id => @classified},➥

:multipart => true) %>

One thing not discussed is protecting the user from uploading huge files. For
example, a user could upload a 2MB image straight from a digital camera. The
best way to restrict the file size of an upload is in Lighttpd config. For more infor-
mation on this, check out the Lighttpd manual (http://trac.lighttpd.net/
trac/wiki/#ReferenceDocumentation). 

UPLOADING FILES AND SENDING ATTACHMENTS

155

9

7524ch09.qxd  12/1/06  11:08 AM  Page 155



2. Add the following lines right before the submit_tag:

<p><label for="classified_picture">Picture</label><br /> 
<% unless @classified.picture.blank? %>
<%= image_tag (url_for({:action => 'image',➥

:id => @classified.id})) -%><br /><br />
<% end %>

Change Photo<br />
<%= file_field 'classified', 'pictureimg' %></p>

3. Save your changes.

You are adding an <img> tag that contains the currently uploaded picture if it exists
and then putting a file_field helper below it if the user wants to change the
photo. If no picture currently exists in the database, the <img> tag is disregarded.

4. Try editing one of your classifieds and changing the image associated with it.

Sending e-mail with attachments
In the last chapter, you were introduced to Rails’ ActionMailer. You used it to enable
potential buyers to notify an item’s owner of interest in purchasing it. These e-mail mes-
sages merely contained text and didn’t have any HTML formatting or images. In some
cases, you might want to allow users to add an attachment to their e-mail. For example, if
you want to e-mail a Web page to a user, you need to include the images as attachments. 

You can include this functionality in your application. Add a button to the show form that
enables a user to e-mail a classified to another person.

1. Open show.rhtml under app/views/classifieds and add the following link next
to Contact The Seller: 

<%= link_to_function('E-mail to a friend', "Element.show('email')") %>

2. Add the following block of code near the bottom of the file, just before the 
<%= link_to 'Back', home_url %> line:

<div id="email" style="display: none;">
<%= form_remote_tag(:url => {:action => 'email', ➥

:id => @classified.id}, :multipart => true) -%>

One thing not covered in this chapter is how to resize an image before
it is uploaded. You need to install and use the Rmagick libraries to
accomplish such a task. You can find out more about using Rails with 
Rmagick at http://www.rubyonrailsblog.com/articles/2006/09/08/ 
ruby-on-rails-and-rmagick-crop-resize-rotate-thumbnail-and-
upload-images.

RAILS SOLUTIONS:  RAILS MADE EASY

156

7524ch09.qxd  12/1/06  11:08 AM  Page 156



E-mail: <%= text_field "user", "email" -%><br />
<%= submit_tag 'Email classified' -%>

<%= end_form_tag -%>
</div>

3. Save your changes.

4. Go to classified_controller.rb and add the following method to the bottom
before the last end keyword:

def email
@classified = Classified.find(params[:id])
url = "#{request.env["SERVER_NAME"]}/classified/#{@classified.id}"
if request.post?
ClassifiedMailer.deliver_classified_with_attachment(➥

params[:user][:email], @classified, url)
end

end

You create a @picture variable that holds the image file built from the send_data
method. You then pass @picture along with your @classified and the user’s 
e-mail address to ClassifiedMailer. You are using the same ClassifiedMailer
ActionMailer class you created in the last chapter since most of the settings will be
similar.

5. Open classified_mailer.rb in the app/models folder and add the following
method:

def classified_with_attachment(email, classified, url, ➥

sent_at = Time.now)
@subject    = 'RailsList: This item may be of interest to you'
@recipients = email
@from       = 'no-reply@yourdomain.com'
@sent_on    = sent_at
@body["title"] = classified.title
@body["description"] = classified.description
@body["price"] = classified.price
@body["url"] = url
unless classified.picture.blank?
attachment :body => classified.picture, ➥

:content_type => classified.content_type
end

end

6. Save your changes.

There’s nothing you haven’t seen before here except for the last three lines. You
are using an unless decision structure that will attach the picture associated with a
classified if it exists. 

Let’s also create an ERb template for the new method.

UPLOADING FILES AND SENDING ATTACHMENTS

157

9

7524ch09.qxd  12/1/06  11:08 AM  Page 157



7. Under app/views/classified_mailer, create a new file called classified_with_
attachment.rhtml and populate it with the following code:

Hi!

Someone thought you might be interested in knowing ➥

about this classified.

Title: <%= @title -%>

Description: <%= @description -%>

Price: <%= @price -%>

You can view more information at <%= @url %>

Thanks!
- Railslist

8. Save your changes and then test the new “e-mail a classified” functionality.

Notice that there isn’t any sort of feedback telling the user whether or not a mes-
sage was successfully sent. Let’s add that notification.

9. Create a new file called email.rjs under app/views/classified. Add the follow-
ing lines to it and save your changes:

page.alert 'Message successfully sent.'
page.hide 'email' 

10. Refresh the classified page in your browser and try to send a classified e-mail again.
You should now get an alert box letting you know that the message was success-
fully sent.

If you don’t receive the successful message alert message, ensure that your SMTP settings
are correct. There isn’t much that can currently be done in terms of error handling with
ActionMailer in Rails. 

Adding some style

Let’s now add some style.

1. Before you wrap up, add the following style to your style.css file in /public/
stylesheets: 

div#email {
padding: 10px;
border: 1px solid #cecece;
background-color: #ececec;

}

RAILS SOLUTIONS:  RAILS MADE EASY

158

7524ch09.qxd  12/1/06  11:08 AM  Page 158



2. After you save your changes, refresh a classified listing’s page to see your changes.

Summary
In this chapter, you learned how to upload files to your database so that you can have
more than just text in your Rails applications. You learned how to secure the uploading
functionality by restricting the types of data that is allowed to be uploaded. You also saw
how to send an e-mail with attachments using Rails’ ActionMailer framework.

In the next chapter, you will be working to secure your user's data by creating user
accounts and having visitors log in to perform certain tasks.

Figure 9-4. 
CSS makes everything
look better.

UPLOADING FILES AND SENDING ATTACHMENTS

159

9

7524ch09.qxd  12/1/06  11:08 AM  Page 159



7524ch10.qxd  12/6/06  5:17 PM  Page 160



10 USER AUTHENTICATION AND
SESSION MANAGEMENT

7524ch10.qxd  12/6/06  5:17 PM  Page 161



Prior to this chapter, you allowed anyone to add, edit, and delete classifieds and cate-
gories. This is not really an ideal implementation because malicious users could delete
someone else’s classified or they might edit the details of it. A much better solution is to
tie each classified to a user account, so only authorized users can edit classifieds—not just
any casual browser who visits the site. The focus of this chapter is on allowing authorized
users edit rights to a site.

This chapter discusses the following:

Creating a new Rails model and database table to store user information

Associating classifieds to a user account

Implementing password protection into the application

Implementing sessions to keep users logged in

Discussing the security issues that surround sessions

Before you begin
Before you begin implementing the new user model, wipe the database clean. Previous
versions of the application did not store any data about users, and there is not much sense
in keeping that data now. Since you are gradually building this application throughout the
book, you have thus far taken a different workflow approach to that of building a profes-
sional production application. Experienced Rails developers include vital data such as user
accounts to start off with when planning the application, so everything they need is in
place before the system is launched.

To delete the data from the database, you need to use SQLyog (Windows) or CocoaMySQL
(Mac OS X) and remove all the rows from the classifieds table.

Mac OS X

To remove tables in MySQL, open up CocoaMySQL and follow these steps:

1. Open CocoaMySQL from the /Applications folder.

2. Log in to the MySQL server using the username and password you set in Chapter 2.

3. Select the railslist_development database from the pull-down menu in the
Databases section of the CocoaMySQL window.  

4. Select the classifieds table in the Tables section of the window. 

5. Switch to the Content tab (see Figure 10-1) and then highlight all the rows. Click the
Delete selected row(s) button.

RAILS SOLUTIONS:  RAILS MADE EASY

162

7524ch10.qxd  12/6/06  5:17 PM  Page 162



Figure 10-1. The railslist_development database should have only two data tables thus far. You need to remove all the 
data only from the classifieds table. 

USER AUTHENTICATION AND SESSION MANAGEMENT

163

10
Windows XP

To remove tables in MySQL, open up SQLyog and follow these steps:

1. Under the Connect to MySQL Host window, select the MySQL server instance and
click Connect.

2. Under the Open Session window, select the MySQL server instance.

3. In the left column, find the railslist_development database.

4. Right-click the railslist_development database and select the classifieds table. Next,
select Truncate Table. This process removes all data from the database (see
Figure 10-2).

7524ch10.qxd  12/6/06  5:17 PM  Page 163



Figure 10-2. Deleting all the data from the database is a bit easier with SQLyog in Windows than with CocoaMySQL on
Mac OS X.

RAILS SOLUTIONS:  RAILS MADE EASY

164

Creating the user model
The first thing you should do before creating the actual model file is to decide what data
you need to store to handle user accounts. Since the central focus of the application is
outlining a classified listing’s details, you don’t need to store too much data about the
user. You’ll collect the following information when creating a new user account:

Login name

Password

E-mail address

You need to create a new model to store the user information.

1. In the Terminal or command prompt window, navigate to the Railslist directory and
type the following command:

ruby script/generate model User

7524ch10.qxd  12/6/06  5:17 PM  Page 164



This creates the model file user.rb and a migration file so you can manipulate the
database. Let’s edit that migration file, adding the database table information to it.

2. Open the 004_create_users.rb in db/migrate and edit it to look like the following:

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t|
t.column :login, :string
t.column :password, :string
t.column :email, :string

end
add_column :classifieds, :user_id, :integer
end

def self.down
drop_table :users
remove_column :classifieds, :user_id

end
end

3. Save your changes. This code creates a new table in the database called users and
populates it with three fields: login, password, and email. You are also adding a col-
umn called user_id to the classifieds table, which is for when you associate each
classified with a specific user in the railslist application.

4. Run rake migrate in the Terminal or command prompt window.

Adding data model validations and associations

Since the application will have user accounts, you need to add some additional validation
to the user model for everything to work.

1. Open up the model file user.rb under app/models.

The model needs to define the following rules:

A user can have multiple classifieds.

A user must have a value for login, password, and e-mail.

A user’s login must be unique.

A user’s e-mail must be unique.

A classified is associated with one user.

2. Each of them is fairly easy to implement. Now modify the user.rb file to look like
the following:

class User < ActiveRecord::Base
validates_presence_of :login
validates_presence_of :password
validates_presence_of :email

USER AUTHENTICATION AND SESSION MANAGEMENT

165

10

7524ch10.qxd  12/6/06  5:17 PM  Page 165



validates_confirmation_of :email
validates_uniqueness_of :login
validates_uniqueness_of :email
has_many :classifieds

end

These are all validations and associations that you have seen in previous chapters. 

The last rule you need to implement is to associate the classifieds to a single user
account. 

3. Open up the classified.rb model file and add the following line to it just below
the belongs_to :category line:

belongs_to :user

Save your changes. Now that you have implemented these associations, you can retrieve
user information easily. For example, you could get a list of all the classifieds for a single
user like this:

@user = User.find(:first)
@user.classifieds

You could also get the user’s login name from a classified ad with the following code:

@classified = Classified.find(:first)
@classified.user.login

It doesn’t get any easier than that!

Adding a new controller

You need to add a new controller to the application to manage your user data. Although
you could add the user management methods to another controller, it is best to separate
application functions out logically.

1. Create the new controller via the Terminal or command prompt window by run-
ning the following command in the terminal/command prompt:

ruby script/generate controller User

Rails has generated a new user_controller.rb file under app/controllers.

One design decision you made was to limit an e-mail address to be able to
be tied to only a single user account. If you want your users to be able to cre-
ate multiple user accounts with a single e-mail address, you can remove the
validates_uniqueness_of validation for the email field.

RAILS SOLUTIONS:  RAILS MADE EASY

166

7524ch10.qxd  12/6/06  5:17 PM  Page 166



2. Open that controller file and edit it to look like the following:

class UserController < ApplicationController
layout 'standard'

def signup
end

def login
end

end

Here you have two simple methods: signup, which controls how users set themselves up
with a user account, and login, which controls how a user logs in to the site.

Now that you have finished setting up all the background code that controls the user
signups, you can turn your attention to the front end of the user account system. Let’s
implement the signup form first.

Creating a signup form

1. Create a new file called signup.rhtml under app/views/user and add the follow-
ing code to it. It’s just a simple HTML form with the three standard fields you'd
expect for creating a user login: username, password/confirm password, and e-mail
address.

<h3>Signup</h3>
<%= error_messages_for 'user' -%>

<%= start_form_tag({:action => 'signup'}) -%>
<fieldset>
<label for="user_login">Desired Login: 
<%= text_field :user, :login -%></label>

<label for="user_password">Password: 
<%= password_field :user, :password -%></label>

<label for="user_email">Your Email: 
<%= text_field :user, :email -%></label>

<label for="user_email_confirmation">Confirm Email: 
<%= text_field :user, :email_confirmation -%></label>

<%= submit_tag 'Create my account' -%>
</fieldset>
<%= end_form_tag %>

2. Save your changes.

Now add some Cascading Style Sheet (CSS) style to the user signup form.

USER AUTHENTICATION AND SESSION MANAGEMENT

167

10

7524ch10.qxd  12/6/06  5:17 PM  Page 167



3. Open up the style.css in /public/stylesheets, add the following CSS to the
bottom and then save your changes:  

fieldset {
display: block;
width: 255px;
margin: 20px; 
padding: 10px;
background-color: #eee;

}

fieldset > label {
display: block;
margin-bottom: 2px;
font-weight: bold;

}

4. Test the signup page in the web browser (http://localhost:3000/user/signup/).
Don't try to submit it yet—it doesn’t work since you haven’t added any code to the
signup method in the user_controller.rb file. 

5. Add it now—update the signup method so it looks as follows:

def signup
case request.method
when :post
@user = User.new(params[:user])
if @user.save
redirect_to :controller => 'classified', :action => 'list'

end
end

end

This method is a bit different from the data-creation methods you used before. In
previous examples, you created two methods, new and create, when you wanted to
create data such as a classified. The new method would be called when the form
was displayed, and the <form> action was set to create. In the signup method, you
are consolidating the new and create methods into a single method using a Ruby
case statement.

The entire reason behind having the two methods was because one called for an
HTTP GET call and the second for an HTTP POST call. You can differentiate between
those two by getting the value of Rails’ request.method parameter. You pass that
value to the case statement and execute a different code branch depending on the
value of that parameter.

When :post is returned, the actual process of creating a user account happens.
You don’t need to do any processing for when :get is passed. You just show the
user the signup form.

RAILS SOLUTIONS:  RAILS MADE EASY

168

7524ch10.qxd  12/6/06  5:17 PM  Page 168



6. Test out creating a new account.

If it is successfully created, you will be redirected to the classifieds listing. If you omit data
or pass in bad values (such as not including an e-mail address), it returns the errors by
using the error_messages_for Rails helper. 

Securing the users

One issue that you have in the current implementation is that you are storing the pass-
words in the database as plain text, as shown in Figure 10-3. Users with access to the data-
base can see the password for each user and easily log in to the account. If hackers got
access to that data, they could create havoc inside your system.

To make the application more secure, encrypt the password before it is stored in the data-
base. There are several ways to do this, but here you learn how to encrypt it by using an
SHA1 hash. SHA is a set of cryptographic hash functions that are available in many pro-
gramming languages. SHA1 is the most commonly used one in terms of web applications.
Another type of hash function you can use is MD5, but SHA1 is generally believed to be the
more secure of the two. Both encryption algorithms work by taking your plain text pass-
word and then passing it through several levels of filtering and manipulation to convert
your password into something that is not readable by a human and (hopefully) a computer.

To learn more about how SHA1 works, check out http://nsfsecurity.pr.erau.edu/
crypto/sha1.html.

Figure 10-3. Plain text data is not
very secure.

HTTP GET and POST are merely methods of the HTTP protocol that define how
data is passed between the browser and web server. You use GET when you want
to retrieve data from the server, and you use POST when you want to pass data to
the server. By using POST instead of GET to pass data, you are not passing the
form values in the URL. If you have created HTML forms before, you are probably
familiar with the <form> tag’s method parameter. It takes either GET or POST,
depending on the form’s purpose.

USER AUTHENTICATION AND SESSION MANAGEMENT

169

10

7524ch10.qxd  12/6/06  5:17 PM  Page 169



1. Open up the user.rb model file in your text editor—it’s located in app/models.

You will override the password-creation method to encrypt the value provided by
the user with SHA1.

2. Add the following method just before the last end keyword and save your changes:

def password=(value)
write_attribute("password", Digest::SHA1.hexdigest(value))

end

What you just created was an accessor method for the password attribute. When
you create an instance of the user model and then save the data to the database,
the password value provided by the user is sent through this password method, and
the returned value is saved to the database. When you name a method the same as
a column in your database, Rails assumes that it is an accessor method and uses
that method to read or write data values instead of the default Ruby methods. If
you think back to the Ruby introduction in Chapter 3, you are overriding the
default accessor method provided by Ruby with your own via inheritance. 

3. Now try creating another user account. The password is encrypted before being
saved to the database, as shown in Figure 10-4. 

Figure 10-4. Now that the password is encrypted, the third user account 
seen here is more secure.

Creating a login form

While it is nice to allow users to create their own unique logins for the railslist application,
it doesn’t do much good if there is no functionality available for them to log in to their
account. So, now create a login form.

Keep in mind that encrypting your password does not absolutely guarantee that a
hacker cannot get your users’ passwords. Encryption provides a very good barrier
between your data and the hacker, but it is by no means unbreakable. 

RAILS SOLUTIONS:  RAILS MADE EASY

170

7524ch10.qxd  12/6/06  5:17 PM  Page 170



You can also add the login form to the standard template’s sidebar. If users aren’t logged
into the system, they are presented with a form to enable them to do so (or sign up for an
account). If they are signed in, you can just offer them a greeting.

1. Open up the standard.rhtml file under app/views/layouts and modify the
#sidebar to look like the following:

<div id="sidebar">
<%= start_form_tag({:controller => 'user', :action => 'login'}, ➥

{:id => "login_form"}) -%>
<label for="user_login">Login:</label><br />
<%= text_field :user, :login -%><br />
<label for="user_login">Password:</label><br />
<%= password_field :user, :password -%><br />
<%= submit_tag 'Login' -%>

<%= end_form_tag%>
Need an account?  <%= link_to 'Signup today!', :controller => 'user', ➥

:action => 'signup' %>
</div>

All you’ve done thus far is create a standard login form.

2. Look at it in your browser and notice that it is a bit out of place. Add some CSS
styles to the bottom of the style.css file in /public/stylesheets to remedy it.

form#login_form {
border: 1px solid #ccc;
padding: 3px;

}

form#login_form label {
font-size: 80%;

}

form#login_form input[type=text],
form#login_form input[type=password] {
width: 150px;

}

3. Modify the #sidebar CSS rule to look like the following:

div#sidebar {
width: 200px;
margin-left: 480px;
margin-top: 50px;

}

4. Try viewing the page again; the front page now looks like Figure 10-5.

USER AUTHENTICATION AND SESSION MANAGEMENT

171

10

7524ch10.qxd  12/6/06  5:17 PM  Page 171



Figure 10-5. The sidebar now features a login form for the user accounts.

Adding the login code to the backend

Now that you have the form nicely styled, you can implement the actual login method in
the User controller.

The logic behind the login method is that you will search the database looking for a user
account with the login name and password provided. If the account exists and the values
match, you allow the user to log in.

If you remember back to a few pages ago, you started encrypting login passwords by using
SHA1, so you need to decrypt the password stored in the database and compare it with
the user’s input. You need to implement this code in the model, so do that first.

1. Open up the user.rb model file under app/models and add the following method
to it just before the last end keyword:

def self.authenticate(login,password)
find(:first, :conditions => ["login = ? and password = ?",➥

login, Digest::SHA1.hexdigest(password)])
end

This method is fairly simple, save for the nasty-looking Digest::SHA1.
hexdigest(password) parameter in the find method. It is telling Ruby to encrypt
the value provided by the user so you can compare it with the stored password.
Next, implement this method in the User controller’s login method.

RAILS SOLUTIONS:  RAILS MADE EASY

172

7524ch10.qxd  12/6/06  5:17 PM  Page 172



2. Edit the login method of app/controllers/user_controller.rb to look like the
following:

def login
if session[:user] = User.authenticate(params[:user][:login], ➥

params[:user][:password])    
redirect_to :controller => 'classified', :action => 'list'

else
redirect_to :controller => 'classified', :action => 'list'

end
end

The login method’s main purpose is to try and authenticate users based on the parame-
ters they provide in the login form. If the values submitted are found in the database, you
store the users’ information into a session so that the users can remain logged in until they
decide that they want to stop using the application for now (end the session.) This doesn't
just happen by default—you will set this up next.

How to store session data
Even though Rails makes it easy to work with sessions, choosing the right type of session
management is an important decision. Rails offers four different ways to store the ses-
sion data: 

Memory Store: Rails keeps your session data in memory. Be aware that you can
run into issues if your application has lots of users. Each session variable takes
about 50KB of data on average. If you have 1000 sessions, that’s ~50MB of memory
overhead. 

ActiveRecord Store: Using ActiveRecord means that you are storing the session
data in a table of the database. The database then automatically retrieves the ses-
sion data using SQL queries. This is a more convenient method of managing sessions
since it keeps all the session data in the database with the other data, but it is also
more secure. There is a slight performance hit taken from Active Record, but it is
not significant.

A session is a method of storing object data temporarily between different requests. A
session makes it easy to work with logged-in users because you do not have to authen-
ticate them each time they access a protected area of the application. Instead, you can
authenticate them once and store their data in a session. A session is merely a container
for storing a user’s current state in a web application. Unlike a cookie, session informa-
tion is stored on the server instead of the client’s computer. You don’t necessarily have
to store only user data in a session. If you want, you can store a listing of all the classi-
fieds in the application in a session. It doesn’t make much sense, but Rails doesn’t stop
you from doing so. 

USER AUTHENTICATION AND SESSION MANAGEMENT

173

10

7524ch10.qxd  12/6/06  5:17 PM  Page 173



Drb Store: This store uses distributed Ruby to store a user’s session data. The per-
formance is great, but it requires a bit more setup than the other stores. 

PStore: This is the default solution that is used in Rails. Using PStore, your session
data is stored in small temporary files on your hard drive. These files are usually
located in the tmp/sessions folder for the Rails app. The main downside of using
the PStore is that you will have to do some session-pruning periodically because
performance decreases as the number of sessions stored increases.

For these purposes, you will implement the ActiveRecord Store. The first step is to modify
the environment.rb file to let Rails know what you are doing.

1. Open up environment.rb (it’s in the config folder). Uncomment the following line:

# config.action_controller.session_store = :active_record_store

2. Save your changes. 

Next, create the sessions table. Since this type of session storage is built into Ruby
on Rails, it’s fairly easy to create this table.

3. Open up the Terminal or command prompt window and type the following
command:

rake db:sessions:create

This command creates a new migration file, 005_add_sessions.rb, which contains
the fields for the sessions table. Since you don't need to modify this migration file,
go ahead and migrate the database so you have the new sessions table.

4. Run the rake migrate command from the Terminal or command prompt.

Since you modified an environment file, you now need to restart the application so
the change takes effect.

5. Kill the web server by typing Control-C in the command prompt or terminal win-
dow in which it is running.

6. After it has gone down, restart it by using the Ruby script/server command.

7. Now if users log in, their session data will be stored in the new sessions table—try
logging yourself in!

If you ever want to wipe all the values in your sessions table easily, there’s a rake
command for that too. Just open a Terminal or command prompt and type rake
db:sessions:clear. Easy enough!

If you want to use another store besides the ActiveRecord Store, check out
http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionStore.

RAILS SOLUTIONS:  RAILS MADE EASY

174

7524ch10.qxd  12/6/06  5:17 PM  Page 174



Working with the sessions
Now that you have users logged in and have created a session for them, it doesn’t make
much sense to show them the login form. Instead, welcome users to the application. Later
on, you will also add a logout link so they can log out after they finish and aren’t logged in
forever. 

1. Jump back to the standard.rhtml template; you'll wrap the form in a decision
structure.

2. Before the start_form_tag, add the following line.

<% unless session[:user] %>

3. After the Need An Account signup link, add the following lines:

<% else %>
<p><%= "Welcome #{session[:user].login}!" -%></p>

<% end %>

This decision structure tells Rails to show the login form unless there is already a session
stored for the user. If there is already a session, welcome that user by the login name.

Locking railslist down

Setting up the application to enable a user to create an account and login is great, but it
really doesn’t serve a purpose unless you are locking down portions of the application to
allow users to edit only their own data, not other people's.

Initially you should not allow other users to edit or delete another user’s classifieds. Let’s
create a new helper method to accomplish this:

1. Open up the application_helper.rb file under app/helpers and add the follow-
ing method to it before the last end keyword:

def can_edit?(classified)
if classified.user == session[:user]
return true

else
return false

end
end

The can_edit? method returns true if the classified is owned by the user defined
in the session. If not, it returns false. You can take this method and use it to hide
the edit and delete links next to each classified in the listings. If the returned value
of the can_edit? method is true, users see edit and delete controls for the classi-
fied. If it returns false, users don’t see any controls—they can only view the clas-
sified, not change it.

USER AUTHENTICATION AND SESSION MANAGEMENT

175

10

7524ch10.qxd  12/6/06  5:17 PM  Page 175



2. Next, open up the _classified.rhtml file under app/views/classified and mod-
ify it to look like the following:

<li><%= link_to classified.title, {:action => 'show',➥

:id => classified.id} -%> 
<% if can_edit?(classified) %>
<small><%= link_to 'Edit', {:action => 'edit', ➥

:id => classified.id} %></small> 
<small><%= link_to "Delete", {:action => 'delete', ➥

:id => classified.id},➥

:confirm => "Are you sure you want to delete this item?" %></small>
<% end %>

</li>

All you did here is wrap the edit and delete links with a decision structure using the
new can_edit? method. If the value returned is true, the edit links work.
Otherwise, users can’t see the edit or delete buttons. Regardless, everyone—
whether they have an account or are logged in—can still see the classified listings. 

Next, you need to restrict the functionality, allowing users to add classifieds to reg-
istered users only. The first step you can take is to hide the “add new ad” link from
nonlogged-in users.

3. Create another helper method called logged_in?. Add it to your application_helper
file just before the last end keyword and save the changes.

def logged_in?
return true if session[:user]
return false

end

This method returns true if you have a session stored. Let’s wrap the new add link
with this code now.

4. Open up list.rhtml under app/views/classifieds and edit the “Add new ad”
link to be like the following:

<% if logged_in? %>
<p><%= link_to "Add new ad", {:action => 'new' }%></p>
<% end %>

5. Test railslist again—now you'll see the “Add new ad” link only if you are logged in,
as shown in Figure 10-6.

RAILS SOLUTIONS:  RAILS MADE EASY

176

7524ch10.qxd  12/6/06  5:17 PM  Page 176



Figure 10-6. By default, the login box is shown in the right sidebar. If users are logged in,
they get a welcome message in the sidebar and have access to the “Add new ad” link. 

Next, you need to protect the actual methods from unauthorized users. Even
though you have hidden the link from the views, users could still go to http://
localhost:3000/classified/new and create a new ad without any authentication. 

6. Edit the new method in classified_controller.rb to look like the following:

def new
redirect_to :action => 'list' if session[:user].blank?
@classified = Classified.new
@categories = Category.find(:all)

end

USER AUTHENTICATION AND SESSION MANAGEMENT

177

10

7524ch10.qxd  12/6/06  5:17 PM  Page 177



Here you added a line that instructs Railslist to redirect users back to the classified listings
page if they attempt to access the Post new classified page when a session does not exist
(that is, they are not logged in).

Securing the categories controller
It would be remiss to not put some sort of access restrictions in the categories controller.
If you were to leave the categories controller exposed in the wild, people who found the
site on the Web could add their own categories to the application. You would no doubt
have several ads for V1@gra or Free H0me Mortgage from the Spam bots that plague the
Internet these days. 

Since the categories controller is something that a nonuser shouldn’t have any access to,
you can create a filter that you can execute before any action is run in the controller. Rails
includes a feature called filters that enables you to run a piece of code based on a condi-
tion in your controller or a specific method.

Rails supports three types of filters: before, after, and around:

The before and after filters are run just before or just after a method.

An around filter wraps around your method when it is run. The filter runs its first
set of actions before the method executes and stops when it reaches a yield key-
word. After it hits the yield keyword, the method’s code executes. Upon comple-
tion, the rest of the filter is executed.

When restricting the categories controller, it makes the most sense to use a before filter so
that you can see whether a user is logged in before providing access to the controller’s
methods. 

1. Open your category_controller.rb file in app/controllers and add the follow-
ing to the bottom just before the last end keyword:

protected
def logged_in?
unless session[:user]
redirect_to :controller => 'classified', :action => 'list'

else
return true
end

end

This method, logged_in?, checks to see whether a session[:user] object exists
for the user trying to access the category controller. If the session object exists, the
user can work with the category controller. If it doesn’t exist, the user is redirected
to the classified controller’s list method. 

The second step of implementing a filter is actually letting the controller know that
a method is a filter.

2. Add the following bold code to the category controller so that it matches the code
listing and then save your changes:

RAILS SOLUTIONS:  RAILS MADE EASY

178

7524ch10.qxd  12/6/06  5:17 PM  Page 178



class CategoryController < ApplicationController
layout 'standard'

before_filter :logged_in?, :except => [:show]

def list
@categories = Category.find(:all)

end
...
end

The before_filter call lets Rails know that it should run the logged_in? method before
any other method in the controller. There is a hierarchy of filters that you should be aware
of. Filters are executed in the order in which they are read in the Ruby code, so if you have
a bit of code like the following, the code executes the is_dog? method before the
is_mammal? method:

before_filter :is_dog?
before_filter :is_mammal?

If you switch the order so the is_mammal? filter is listed first, it reverses the listing. 

Now if you try to access the categories listing while not being logged in, you cannot access it. 

Assigning classifieds to users
Back when you designed the user model, you set up an association stating that users
could have many classifieds assigned to them. Now that you are restricting classified cre-
ation to logged-in, registered users, you need to make some modifications to the
classified_controller.rb create method: you have to associate each new classified
listing with a user account.

1. Add the following line to the create method below the @classified instance vari-
able declaration in classified_controller.rb:

@classified.user = session[:user]

2. Save your changes and create a new classified.

The classified should now be assigned to the user account, and you should be able to edit
and delete it. If you were to log in with a secondary account and create another classified,
edit controls would be hidden from any classified not owned by that new login.

Try adding a few classifieds to your system to see how everything works. 

You might be wondering why you are still letting any user create a category. You have
earned a gold star for that astute observation! If you were to deploy Railslist as a pub-
licly available application, you would want to use a permissions-based authentication
system so only system administrators could add data like that. That process is beyond
the scope of this introductory book, however.

USER AUTHENTICATION AND SESSION MANAGEMENT

179

10

7524ch10.qxd  12/6/06  5:17 PM  Page 179



Removing the email field

Since you are storing the e-mail address along with the newly created user accounts’ func-
tionality, it doesn’t make much sense to require users to provide an e-mail address each
time they create a new classified. Instead, just grab the value associated with their account. 

1. Open new.rhtml under app/views/classified and remove the following lines:

<p><label for="classified_email">Email</label><br/>
<%= text_field 'classified', 'email' %></p>

2. Open edit.rhtml under app/views/classified and remove these lines:

<p><label for="classified_email">Email</label><br/>
<%= text_field 'classified', 'email' %></p>

3. Save the changes to both files. 

Now, you need to associate the email address with a classified in the controller.

4. Open classified_controller.rb in app/controllers and modify the create
method to look like the following:

def create
@classified = Classified.new(params[:classified])
@classified.user = session[:user]
@classified.email = session[:user].email
if @classified.save
redirect_to home_url    

else
render :action => 'new'

end
end

The only line you added is in bold (you associated the e-mail address stored in the user’s
session object with the email field of the @classified instance). Now users have a bit less
information to enter each time they create a new listing.

Logging out

The last thing you need to implement for the basic user system is the ability to log out.
Logging out sets the session to nil and removes any authenticated privileges users had
when they were logged in.

1. First, you need to add a logout method to the user_controller.rb controller in
app/controllers. Add the following method before the last end keyword and save
your changes:

def logout
reset_session
redirect_to :controller => 'classified', :action => 'list'

end

RAILS SOLUTIONS:  RAILS MADE EASY

180

7524ch10.qxd  12/6/06  5:17 PM  Page 180



Here you are introduced to the Rails method called reset_session. This method
clears out all the data stored in the user’s session. After you reset the session, you
redirect the user back to the classifieds listings. 

2. You need to add a logout link to the template as well, so open up standard.rhtml
in app/views/layouts and add the bold line shown here:

<% else %>
<p><%= "Welcome #{session[:user].login}!" -%></p>
<p><%= link_to 'Logout', :controller => 'user', ➥

:action => 'logout' -%></p>
<% end %>

3. Save your changes and then go back to the web browser to test out the logout
functionality, as shown in Figure 10-7.

Figure 10-7. Clicking the logout link in the sidebar resets the users’ session data and forces
them to log in the next time they want to edit their data or create a new classified. 

Summary
This chapter implemented some important functionality in the application. Most web
applications have some sort of user authentication system, and Rails makes it incredibly
easy to add that functionality. This is a very basic system that can be expanded further by
adding functionality such as role-based permissions for users and other account privileges. 

In the next chapter, you will complete the Railslist application by customizing and styling
the views even more. You will add a tag cloud to the application so that users can see the
most popular category visually. The chapter also introduces microformats and discusses
how they can be beneficial to an application such as Railslist.

USER AUTHENTICATION AND SESSION MANAGEMENT

181

10

7524ch10.qxd  12/6/06  5:17 PM  Page 181



7524ch11.qxd  12/6/06  5:19 PM  Page 182



11 CUSTOMIZING RAILS VIEWS

7524ch11.qxd  12/6/06  5:19 PM  Page 183



At this point, the Railslist application is a fully functional web application powered by Ruby
on Rails. If you wanted to, you could release it on the Internet right now and start signing
up users and posting classifieds. If I let you do that now, though, I wouldn’t be able to
sleep at night. While the application works just fine, there is more you could do to make it
look better and function more intuitively for users. 

By the end of this chapter, the application will be more visually appealing, more user-
friendly, and function more like a polished web application.

This chapter covers the following:

Separating listings by date

Creating a Rails helper method for the views to show edit controls

Adding the Web 2.0 style to the application

Implementing and using microformats to display contact information

Organizing listings
Right now you probably don’t have that many listings in your Railslist database. You have
been adding new classifieds each time you want to test something. If you opened the
application up to an Internet full of real users, that wouldn’t be the case. As more and
more classifieds get listed, it will be increasingly difficult to visually separate classifieds on
the listing page. Wouldn’t it be nice if you separated them by the date they were posted?
Let’s do that now.

1. First, open up the list.rhtml file under app/views/classified. Before, you were
listing the classifieds as a collection of partials in an unordered list. You were also
using that list to do the live searching.

2. Because of that design decision, leave the <ul> tags, but remove the following line:

<%= render :partial "classified", :collection => @classifieds %>

This code line ensures that the live searching will continue working, but it will no
longer be used to display the classifieds. To do that, you will use some different
code. There is no easy way to sort items in a view by date, so you need to use a lit-
tle bit of logic in the code.

3. Add the following code snippet to your list.rhtml below the </ul> tag; then you
will walk through it:

<% previous_day = "" %>
<% @classifieds.each do |classified| %>
<% if classified.created_at.strftime("%m/%d/%Y").to_s ➥

!= previous_day %>
<h4><%= classified.created_at.strftime("%B %d, %Y") %></h4>

<% end %>
<p class="classified">
<%= link_to classified.title, {:action => 'show', ➥

:id => classified.id} -%>

RAILS SOLUTIONS:  RAILS MADE EASY

184

7524ch11.qxd  12/6/06  5:19 PM  Page 184



<% if can_edit?(classified) %>  
<small><%= link_to 'Edit', {:action => 'edit',➥

:id => classified.id} %></small> 
<small><%= link_to "Delete", {:action => 'delete', ➥

:id => classified.id}, ➥

:confirm => "Are you sure you want to delete this item?" %></small> 
<% end %>

</p>
<% previous_day = classified.created_at.strftime("%m/%d/%Y").to_s %>

<% end %>

In the first line, you define a variable called previous_day. You will use it to store the
previous created_at date’s value as you iterate through all the classifieds in the sys-
tem. After you start iterating through the @classifieds array, the first thing you do
is compare the current classified's created_at column value to previous_day. You
pass the value for created_at so it appears as month/day/year. This is done using
Ruby’s built-in strftime method. If the values of created_at and previous_day do
not match, output a new <h4> tag with the date the classified was created. If the two
dates match, just skip to the next line without outputting a new <h4> tag.

Output the actual classifieds information. It’s similar to what you were using in the
_classified partial, but you are wrapping everything in a paragraph tag instead of
a list item.

Finally, you set the value of the previous_day variable to the current classifieds
creation date so that you can compare the next classified to the date of the previ-
ous one. 

4. Let’s see how this new code looks. Open your browser and go to the classified list-
ing page. You should see a much better organized layout, as shown in Figure 11-1. 

Figure 11-1. By separating the classifieds by date, returning users can quickly identify new posts. 

CUSTOMIZING RAILS VIEWS

185

11

7524ch11.qxd  12/6/06  5:19 PM  Page 185



Using helper methods in views
Helper methods are used to extract commonly used processing code into a single method
definition that you can share throughout the application. You can also create helper meth-
ods that are restricted to a specific controller instead of the entire application. 

You have already created a few helper methods in the application. In the last chapter, you
created one called can_edit? that you added to the views to show and hide content,
depending on whether or not users were logged into their account and had edit privileges.
If users create a lot of classifieds in the system, the page can become somewhat cluttered
with those links. Let’s create a helper method to extract those links into a single method
and then show or hide them only as the user hovers over the classified link. Let’s use
helpers now to clean up the classified listings page.

1. Open up the classified_helper.rb file under app/helpers.

Since you are manipulating only the classifieds listing page, it’s best to keep these
methods under the helper for the Classified controller’s views. The first method
you need to create extracts the Edit and Delete links.

2. Add the following code to the bottom of the file—just before the last end keyword:

def admin_tools_for(classified)
tag = [ ]    
tag << content_tag("span",
link_to("Edit", { 
:action => "edit", :id => classified

}, :class => "admintools")  << 
link_to("Delete", {
:action => "delete",
:id => classified.id,

},
:post => true,
:confirm => "Are you sure you want to delete #{classified.title}", 
:class => "admintools"),
:id => "classified_#{classified.id}")

end

This method might look complex, but it’s really simple. All you are doing is defining
an array called tag and then adding the Edit and Delete links to it. You are wrap-
ping those links in a span using the content_tag Rails method and giving that tag
an id of classified_x, where x is the value of the id column in the classifieds data-
base for that specific item.

Let’s add the helper to the list.rhtml view under app/views/classified.

3. Replace the code inside the can_edit? decision structure with the helper method.
The code should look like the following after you finish:

<p class="classified">
<%= link_to classified.title, {:action => 'show',➥

:id => classified.id} -%>

RAILS SOLUTIONS:  RAILS MADE EASY

186

7524ch11.qxd  12/6/06  5:19 PM  Page 186



<% if can_edit?(classified) %>
<%= admin_tools_for (classified) %>
<% end %>

</p>

4. Now load the classified listing page in the browser and then log in. You will see Edit
and Delete links next to all your classifieds (but no one else’s).

5. The new links are looking cool, but they could still use a bit of styling, so add the
following Cascading Style Sheets (CSS) to the bottom of the style.css file and
then save your changes:

a.admintools {
font-size:  75%;
margin-right: 3px;
color:  #333;

}

Try the page again—now the links will be a bit smaller and have a different color to make
them stand out more, as shown in Figure 11-2.

Figure 11-2. When a user owns a classified, the edit controls appear.

Adding Web 2.0 style
You added a search capability to the application using Ajax back in Chapter 8. The search
functionality works just fine, but it could use a dash of spice to make it more usable and
attractive. One issue with the search right now is that users don’t get any notification that
a search is in progress. It would be nice if you could show them a visual indicator that a
search is in progress. Let’s do that now.

CUSTOMIZING RAILS VIEWS

187

11

7524ch11.qxd  12/6/06  5:19 PM  Page 187



1. Open up the list.rhtml template under app/views/classified in your text editor.

You want to add a new <div> that will appear when the users’ search query is trig-
gered. The <div> merely shows a message letting users know that their search is in
progress.

2. Add the following bolded line of code below the observe_field declaration:

<%= observe_field :classified_title, 
:frequency => 1.0, 
:update => 'classifieds', 
:url => { :controller => 'classified', :action=> 'search' }, 
:with => "'search=' + encodeURIComponent(value)" 

%>
<div id="loading" style="display:none;"><p>Searching...</p></div>

You set the style of the new #loading <div> to be hidden by default so that if a
search is not in progress, nothing will display. You can set its appearance in the
observe_field method. 

3. Add the following bolded lines into the observe_field method in list.rhtml and
then save your changes: 

<%= observe_field :classified_title, 
:frequency => 0.5, 
:update => 'classifieds', 
:loading => 'Element.show("loading")',
:complete => 'Element.hide("loading")',
:url => { :controller => 'classified', :action=> 'search' }, 
:with => "'search=' + encodeURIComponent(value)"
%>

The changes you made are highlighted with the previous bold text. You merely
added two new parameters to the method. The first, :loading, tells the
observe_field method an action to trigger as it’s searching. In this case, it is show-
ing the #loading <div>. The second parameter, :complete, is called after the
search query is completed. You are telling :complete to hide the #loading <div>
since you no longer need to show users that a search is in progress. 

4. Open your browser and perform a search. You should notice that the Searching…
text appears below the input field during your search.

5. It doesn’t stand out as much as you want, so add the following CSS to the bottom
of the style.css file:

div#loading {
padding: 5px;
background-color: #ffffcc;
border: 1px solid #ececec;

}

div#loading p {
font-weight: bold;
font-size:  110%;

}

RAILS SOLUTIONS:  RAILS MADE EASY

188

7524ch11.qxd  12/6/06  5:19 PM  Page 188



6. Now when you perform a search, the Searching… message is bold and displayed
with a light yellow background, as shown in Figure 11-3. The search results then
appear just below the search box.

Figure 11-3. When you search for a value, you will be shown a Searching… message.

As a final bit to the search code, let’s include add some styling to the search results so they
can stand out a little bit more. Let’s modify the classifieds styles in the style.css file.
Make them look like the following and save your changes:

ul#classifieds {
list-style-type: none;

}

ul#classifieds li {
background-color: #ececec;
padding: 5px;
font-weight:bold;
line-height: 140%;

}

Creating a tag cloud from the categories

Up until now, you have had the categories listed at the top of the classified listing. This is
fine, but what if you start adding more than a few categories? It can get a bit confusing to
sort through. Instead, you could move the categories listing to the sidebar of the layout
and display it as a tag cloud, which will not only be fun but also more readable when there
are lots of categories.

Unless you have several hundred or thousands of classifieds in your system, the
message shouldn’t appear very long because the search will be really quick.

CUSTOMIZING RAILS VIEWS

189

11

7524ch11.qxd  12/6/06  5:19 PM  Page 189



A tag cloud is a great way to see what the most popular items in a listing are by giving
them a larger font than less-popular items in a list. Clouds are most often seen when used
in conjunction with tags. One of the most popular uses of tags is on the del.icio.us social
bookmarking site (http://del.icio.us). It has a tag cloud of the 100 most popular tags
that have been used when posting bookmarks on the site (see Figure 11-4).

Figure 11-4. The del.icio.us tag cloud gives a listing of the most used tags by all users of the service.

Anyway, without further ado, let's implement this on the Railslist application. You first
need to move the categories listing to the sidebar, as suggested previously.

1. Remove the following code from the list.rhtml view under app/views/classified:

<ul id="categories">
<% Category.find(:all).each do |c| %>
<li><%= link_to c.name, :controller => "category", :action => "show", ➥

:id => c.id %></li>
<% end %>
</ul> 

RAILS SOLUTIONS:  RAILS MADE EASY

190

7524ch11.qxd  12/6/06  5:19 PM  Page 190



2. Open up the standard.rhtml layout under app/views/layouts. Add the following
code to the sidebar <div>, just before its closing </div> tag:

<h3>Categories</h3>
<% Category.find(:all, :order => "name ASC").each do |c| %>
<%= link_to c.name, :controller => "category", :action => "show",➥

:id => c.id %>
<% end %>

The biggest change to the code (beyond the HTML semantics) is that you are sort-
ing the categories by their name so that they will be listed in alphabetical order.
This is done using the :order parameter on the find method. name ASC tells Rails
that you want to sort the method by the name column in the database and sort
them ascending (A-Z). (If you want reverse-alphabetical order, you use DESC
instead of ASC.)

3. Try the main page again in your browser; it should look like Figure 11-5.

Figure 11-5. By moving the category listings to the sidebar, you have room to grow if the
users begin adding more categories.

Now, let’s create a tag cloud from the category listing. You can do this by empha-
sizing the most popular categories with a larger font size. The first thing you should
do is define a helper method to render the cloud in the Railslist sidebar.

4. Open up the application_helper.rb file under app/helpers/.

You will put the cloud method in the Application helper because you are rendering
the action in the layout. Since what is displayed in the sidebar propagates through
all the other controllers, it makes more sense to store the cloud method there
instead of in the Categories helper. 

CUSTOMIZING RAILS VIEWS

191

11

7524ch11.qxd  12/6/06  5:19 PM  Page 191



5. Add the following method to the application helper just before the last end statement:

def cloud(categories)
return if categories.blank?
output = ""
mid = categories.collect {|i| i.classifieds.count}.max / 1.5

categories.each do |c|
size = 100 * c.classifieds.count / mid
size = 75 if size < 75
output << link_to(c.name, {:controller => "category", :action =>➥

"show", :id => c}, :style => "font-size: #{size}%") << " "
end
return output

end

This method is a bit more complex than anything else you have written thus far, so
let’s walk through it line by line. 

The method definition, cloud, takes an array called categories as its parameter.
Next, you define a variable called output that will hold the HTML that you will display
in the browser window. The third line of the method involves a bit of math. You are
creating a variable called mid that returns a new array. That new array gathers the
number of classifieds under each category. For example, a computer category might
have 4 classifieds, a furniture category might have 12 classifieds, and an auto cate-
gory might have 2 classifieds. In this array, you are just storing those numeric values.

After those values are in the mid array, you use Ruby’s max method to get the
largest value of classifieds held by a single category and then divide that by 1.5.
(The 1.5 was selected because I want the maximum font size to be 150 percent.) If
you want something smaller or larger, you can manipulate that number by taking
the desired number you want and dividing it by 100.

With the math out of the way, you iterate through all the categories that contain
classifieds. First, define another variable called size that holds the font size (in a
percentage value) for the current classified. That value is computed by multiplying
the number of classifieds in that category by 100 and then dividing it by mid. The
line below that sets the minimum font size value to 75 percent. Therefore you’ll
have a nice variation of fonts ranging from 75 percent up to 150 percent. If the
value returned by size is less than 75, set the value to 75 so that the minimum font
size for the category cloud is a legible 75 percent.

The last part of the iteration adds the current category to the output variable. The
output contains a link to the category name and then sets the font size using inline
CSS styling. You can choose to use external styles if you want, but by just using an
inline style, you can modify the styles mathematically instead of using predefined sizes. 

Now that you have the cloud method, let’s add it to the template.

6. Open up the standard.rhtml template under app/views/layouts and remove the
following code block:

<% Category.find(:all, :order => "name ASC").each do |c| %>
<%= link_to c.name, :controller => "category", :action => "show",➥

:id => c.id %>
<% end %>

RAILS SOLUTIONS:  RAILS MADE EASY

192

7524ch11.qxd  12/6/06  5:19 PM  Page 192



7. In its place, insert this single line and save your changes:

<%= cloud(Category.find(:all, :order => "name ASC")) %>

Now open up your Railslist application in a browser; you should see your own cat-
egories cloud, as shown in Figure 11-6.

To get a better idea of how your tag cloud can develop, you could try adding 10 or 15
more categories to your Railslist application and then create new classified ads that are
associated with those new categories. You would see something like Figure 11-7.

Down the road, if you start to notice that you have hundreds of categories and want to
limit the size of your cloud to say 100, you can easily do that by modifying the call to your
cloud method in the standard.rhtml layout file.

<%= cloud(Category.find(:all, :limit => 100)) %>

Figure 11-7. Notice that the tag cloud’s size grows as you add more categories and items to it. The
categories with the most classifieds have the biggest font sizes.

Figure 11-6. The tag cloud you create from the
categories uses different font sizes to show the more
popular tags. 

CUSTOMIZING RAILS VIEWS

193

11

7524ch11.qxd  12/6/06  5:19 PM  Page 193



Adding microformats
Microformats is a web technology that will be exploding over the next couple of years. Put
simply, a microformat is a set of open data formats to semantically describe data using
standards that already exist. In layperson’s terms, microformats are a simple and easy way
to describe things such as contact information and calendar events in a common language.
Microformats are built using XHTML tags and class attributes instead of proprietary for-
mats built by a single company. 

The contents of a microformat are designed to be machine readable and human readable.
Imagine some different web applications that store music reviews. The reviews on differ-
ent sites might grade the album in different ways. For example, look at the HTML for the
following three reviews:

<p><strong>Chris Mills <em>(August 12, 2006)</em></strong> - 
I loved the album. I give it a big thumbs up!</p>

<p><b>Justin Williams <i>(October 31, 2006)</i></b> - 
The album was their best in ten years. 8 out of 10.

Ryan J. Bonnell (December 22, 2006) - <em>I think you should 
go out and buy this CD immediately. Essential listening.</em>

Each one of these reviews is doing the exact same thing—telling you that the CD is a great
listen and you should check it out. You can decipher it, but a computer can’t—it would
have trouble trying to parse all those reviews in a uniform manner because the HTML
semantics are different for each review. 

What you can do is use microformats to standardize the way you review albums on the web-
site and then publish the reviews using a common format. In fact, there is already a micro-
format called hReview that will do just the trick. hReview (http://microformats.org/
wiki/hreview) was designed by the father of microformats, Tantek Çelik. If you were to
format the reviews using hReview, it would look like this:

<div class="hreview">
<span class="reviewer vcard">
<span class="fn">Chris Mills</span>, 
<abbr class="dtreviewed" title="20060812">August 12th, 2006</abbr>

</span>
<div class="item">
<a lang="en" class="url fn" ➥

href="http://www.amazon.com/Dont-Believe➥

-Truth-Oasis/dp/B00097A5I6">
Oasis - Don't Believe The Truth
</a>

</div>
<div class="description"><p>
I loved the album. I give it a big thumbs up!

</p></div>
</div>

RAILS SOLUTIONS:  RAILS MADE EASY

194

7524ch11.qxd  12/6/06  5:19 PM  Page 194



<div class="hreview">
<span class="reviewer vcard">
<span class="fn">Justin Williams</span>, 
<abbr class="dtreviewed" title="20061031">October 31st, 2006</abbr>

</span>
<div class="item">

<a lang="en" class="url fn" href="http://www.amazon.com/Dont-
Believe➥

-Truth-Oasis/dp/B00097A5I6">
Oasis - Don't Believe The Truth
</a>

</div>
<div class="description"><p>
The album was their best in ten years.  8 out of 10!

</p></div>
</div>

<div class="hreview">
<span class="reviewer vcard">
<span class="fn">Ryan J. Bonnell</span>, 
<abbr class="dtreviewed" title="20061222">➥

December 22nd, 2006</abbr>
</span>
<div class="item">
<a lang="en" class="url fn" ➥

href="http://www.amazon.com/Dont-Believe➥

-Truth-Oasis/dp/B00097A5I6">
Oasis - Don't Believe The Truth
</a>

</div>
<div class="description"><p>
I think you should go out and buy this CD immediately.
Essential listening.

</p></div>
</div>

Notice that the HTML for each of these reviews is exactly the same. The same tags and
class attribute names are used for each review. If you render these three reviews on the
Web, they are still readable by a human (see Figure 11-8), but they would also be able to
be understood by a computer. An application or search engine that was aware of the
hReview microformat could parse and aggregate all the hReview-formatted reviews off any
music review sites that mark their data up with hReview and then display them to a user in
a variety of different ways. 

Being able to use data in a variety of ways is one of the main goals of the semantic Web
and microformats in particular. One of the best examples (although on a larger scale than
a microformat) is Really Simple Syndication (RSS). When a file is created using the RSS for-
mat, it uses the same set of tags so that an RSS aggregator such as NetNewsWire or
FeedDemon can easily parse it and display its data to a user in a human-readable format.
The same idea is being used with microformats.

CUSTOMIZING RAILS VIEWS

195

11

7524ch11.qxd  12/6/06  5:19 PM  Page 195



Figure 11-8. Even after formatting the reviews using hReview, they can still be read 
by a web browser—and thus by people. This is the beauty of using standard HTML 
to mark up the data.

One of the biggest implementations of microformats is Technorati, which has created a
search engine specifically for searching for microformats posted on the Web (including
hReview). You can check it out at http://kitchen.technorati.com/search. 

Although still a relatively new technology, microformats have already been adopted in a lot
of places. Another popular microformat is called hCard—an easy way to represent company
and personal data that can then be read by a variety of different applications. hCard evolved
from the vCard format that has been used for years in contact managers such as Microsoft
Outlook and Apple Address Book. To better understand microformats, let’s look an example
comparing a person’s contact information stored as a vCard versus an hCard. First, the vCard:

BEGIN:VCARD 
VERSION:3.0 
N:Justin;Williams 
FN:Justin Williams 
URL: http://secondgearllc.com/ 
ORG:Second Gear 
END:VCARD

Now, let’s look at the same data as an hCard:

<div class="vcard"> 
<a class="url fn" href="http://secondgearllc.com/"> 
Justin Williams 

</a> 
<div class="org">Second Gear</div> 

</div>

RAILS SOLUTIONS:  RAILS MADE EASY

196

7524ch11.qxd  12/6/06  5:19 PM  Page 196



Notice how legible the two formats are, yet how much more meaning can be extracted
from the hCard—you are just using standard HTML elements such as <div> and anchor
tags, which is something that has been used since the beginning of the Web. Microformats
support the same fields as vCard, but instead use standard class attributes to define the
data contained in the field, whereas a vCard uses colons to delimit the data.

When beginning an hCard, the outer container is always a <div> with a class attribute of
vcard. Next, you define the website address of the organization, logically using the href
attribute value of the anchor tag. This links to the organization address and is displayed in
the browser as the same value as the vCard FN field. Also included alongside the url class
name is the fn attribute, which stands for full name. It can be either a company name (for
a business) or a person’s name (for an individual). Finally, you create a second <div> tag
that wraps around the organization’s name represented by a class of org.

If you were to view this on a web page, it would show up just like standard HTML. The
power of microformats comes from how easily the information can be gathered and dis-
played (like the Technorati engine I mentioned before). The Firefox extension, Tails (http://
blog.codec.com/tasils-firefox-extension-03/), provides a practical, real-world usage of
a microformat. If browsing a website using Firefox with Tails installed, the extension will
search the page and look for any embedded microformats. If it finds any on the page, it will
display the formats as icons in Firefox’s status bar, as shown in Figure 11-9. 

While you’re using only a few basic fields for the hCard implementation in Railslist, the
entire hCard specification—including many other common fields—can be seen online
at http://microformats.org/wiki/hcard.

CUSTOMIZING RAILS VIEWS

197

11

Figure 11-9. When
using the Tails Firefox
extension, extracting
microformats is easy.

7524ch11.qxd  12/6/06  5:19 PM  Page 197



As you can see, microformats can be a helpful addition to any website. By adding them to
your site, you are empowering Firefox extensions such as Tails or search engines such as
Technorati to parse your data and enable people to use that data in a variety of different
ways. Wouldn’t it be great if you could surf any website and import a person’s contact
information into your address book with just a button click? With hCard and microfor-
mats, that might soon be a possibility. Even the new Apple .Mac Webmail service is using
hCard for its address book, giving even more weight to the microformats movement.

Adding microformats to Railslist

So how can you leverage the hCard format in the Rails application? Let’s create a profile
page for each user who formats contact information as an hCard. You can then use
Technorati to enable another user to download and save the information as a vCard. 

First, add a link to a few views that will enable a user to view another user’s profile.

1. Open up the standard.rhtml file under app/views/layouts and add the following
bold code into the sidebar <div>:

<% else %>
<p><%= "Welcome #{session[:user].login}!" -%></p>
<p><%= link_to 'View My Profile', :controller => 'user', ➥

:action => 'show', :login => session[:user].login -%> | 
<%= link_to 'Logout', :controller => 'user', ➥

:action => 'logout' -%></p>
<% end %>

This link enables you to quickly view your own profile. Next, add a profile link to
each classified listing to enable users to view the profile of each person who posts
a classified ad. 

2. Open up show.rhtml under app/views/classified and add the following link
(highlighted in bold) right above the price listing: 

<p>
<strong>Seller: </strong> <%= link_to @classified.user.login, ➥

:controller => 'user', :action => 'show', :login => ➥

@classified.user.login -%><br />
<strong>Price: </strong> <%= number_to_currency(@classified.price,➥

{:unit => "&pound;", :separator => ".", :delimiter => ","}) %><br /> 

Now a user who looks at a classified listing can quickly view the user’s profile page.
The next thing you need to do is actually create the profile method and view it in
the User controller.

Want to see how an hCard can quickly be created? Check out the hCard creator here:
http://microformats.org/code/hcard/creator. For more information on micro-
formats, check out Microformats: Empowering Your Markup for Web 2.0, by John
Allsop (friends of ED, March 2007, ISBN: 1590598148.)

RAILS SOLUTIONS:  RAILS MADE EASY

198

7524ch11.qxd  12/6/06  5:19 PM  Page 198



3. Add the following method to the bottom of the user_controller.rb under
app/controllers just before the end keyword; then save your changes:

def show
@user = User.find(:first, :conditions => ➥

["login = ?", params[:login]])
end

This method simply creates an @user instance variable that is built from a user that
has the login passed by the :login parameter. 

4. Now, let’s create a show.rhtml view under app/views/user. Populate the file with
the following code (the bold code will be the hCard):

<h1><%= @user.login -%></h1>

<div class="vcard">
<span class="fn"><%= @user.login -%></span>
<a class="email" href="mailto:<%= @user.email -%>">
<%= @user.email %></a>
</div>

This profile page puts the login name in an <h1> tag and then implements the
hCard with the user’s login name as the given name and includes the e-mail
address. 

5. Open up Railslist in a browser and click a My Profile link. You should notice two
things: the page needs some CSS, and the URL (seen in Figure 11-10) is ugly.

Figure 11-10. Without routes, the profile page URLs are not as attractive as they could be.

To make the URL more “friendly,” you need to add a route to the routes.rb file to
rewrite everything after /show.

6. Open up routes.rb under the config directory and add the following route (the
bold line) just above the classified listing route:

map.connect 'profile/:login', :controller => 'user', :action => 'show'
map.show 'classifieds/:id', :controller => 'classified', :action =>
'list'
map.home '', :controller => 'classified', :action => 'list'

Save your changes and then restart your server. Now if you click a Profile link, it has
a much cleaner (and readable) URL, as shown in Figure 11-11.

Figure 11-11. This looks much nicer!

CUSTOMIZING RAILS VIEWS

199

11

7524ch11.qxd  12/6/06  5:19 PM  Page 199



7. Now let’s take care of the CSS style for the profile. Add the following to the bottom
of the style.css file:

div.vcard {
margin:  5px;
padding:  15px;
border: 1px solid #ccc;
background-color:  #ececec;
font-size: 120%;
}

span.fn { 
font-weight:  bold;
font-size: 110%;
width:  100%; 
display:  block;

}

a.email { 
width:  100%; 
display:  block;
padding-top: 5px;

}

If you refresh the page, it now looks a lot better (see Figure 11-12.)

If you look at the site using Firefox with the Tails extension installed (see Figure 11-12), you
can easily extract the hCard and import it into the address book. 

RAILS SOLUTIONS:  RAILS MADE EASY

200

Figure 11-12. Using
hCard in Railslist
enables users to be
able to extract a
person’s contact
information from 
the profile page 
and optionally 
import it into their
address book.

7524ch11.qxd  12/6/06  5:19 PM  Page 200



If you want to go further with microformats, you can use the rel-tag format in conjunction
with the categories or the hListing format that is currently under review to be adopted
as an official microformat. hListing is designed to create a standard markup for auction
or classified listings. For more information on those two microformats, visit http://
microformats.org/wiki/rel-tag and http://microformats.org/wiki/hlisting-proposal,
respectively.

Summary
This chapter covered a variety of topics related to cleaning up the formatting of the
Railslist application’s views. You organized the listings based by date to make the pages
more readable, cleaned up the display of the search results, added a cloud of categories to
the sidebars that help users can see the most-used categories in the system, and imple-
mented microformats to help build a more semantic Web. 

Now that you have completed the Railslist application, all it needs is a Beta tag so that it
will match all the other Web 2.0 applications available today!

CUSTOMIZING RAILS VIEWS

201

11

7524ch11.qxd  12/6/06  5:19 PM  Page 201



7524ch12.qxd  12/6/06  9:20 PM  Page 202



12 USING RAILS PLUG-INS
AND ENGINES

7524ch12.qxd  12/6/06  9:20 PM  Page 203



Over the course of reading this book, you have learned a lot about Ruby and the Ruby on
Rails framework. You have used your knowledge to implement the Railslist sample appli-
cation using 100 percent custom code. What if I told you that you did too much work and
that you could get a lot of what you already did for free?

While it’s incredibly simple to build a basic Rails application from scratch (especially com-
pared with the old method of nonframework development), there are ways you could
have saved some time using a few bits of Rails functionality that haven’t yet been covered.
In this chapter, you will rebuild the core of the Railslist application using these new
techniques.

This chapter covers the following:

Using Rails scaffolding for rapid application development

Using plug-ins in the application

Using engines in the application

Building applications with scaffolding
Scaffolding is one of the most touted features of Ruby on Rails. Scaffolding gives you basic
create, read, update, delete (CRUD) functionality in your newly created controllers so you
can instantly start working with your application. 

In many other Ruby on Rails books on the market, one of the first few things a new devel-
oper learns about Rails is its scaffolding functionality. Usually, this is done to show how
easy it is to build a functional application with little work. The problem with that approach
is that it teaches many new Rails developers to rely on scaffolding code. 

The problem with relying on this code is that it almost always needs some sort of modifi-
cations. By introducing you to writing your own Rails code before showing you the short-
cuts, I think you will gain a greater understanding of how the code works, so you will be
better equipped to make modifications when necessary and to deal with any errors and
exceptions that arise. 

Creating a new application with scaffolding

1. Start by creating a new Rails application in your chosen directory. Navigate to it using
the Terminal or command prompt window; then enter the following command.

rails railslist2 

This command creates the basic foundation of the application just as you did way
back in Chapter 4. 

2. Next, create a new database called railslist2_development, as you did for the
original databases in Chapter 4.

RAILS SOLUTIONS:  RAILS MADE EASY

204

7524ch12.qxd  12/6/06  9:20 PM  Page 204



3. Add the username and password for your MySQL server into the database.yml file
in your new Rails app’s config directory. 

The classifieds table needs to be created by default so that Rails’ scaffolding gener-
ator won’t throw an error, so let’s create a migration for the new table.

4. Navigate into the railslist2 directory in the command prompt; then run the fol-
lowing command:

ruby script/generate migration CreateClassifieds

This command creates a migration file under db/migrate: 001_create_classifieds.rb.

5. Open the file and modify it to look like the following:

class CreateClassifieds < ActiveRecord::Migration
def self.up
create_table :classifieds do |t|
t.column  :title, :string
t.column  :price, :float
t.column  :location, :string
t.column  :description, :text
t.column  :email, :string
t.column  :created_at, :datetime
t.column  :updated_at, :datetime

end
end

def self.down
drop_table :classifieds

end
end

6. Save your changes.

This is the same code you used a few chapters back to create the classifieds table,
so all the code should look familiar to you.

7. Run the migration with the following command:

rake migrate

Next, you'll use scaffolding to create a new classified model and controller. The
process is similar to creating a regular controller, but the wording is a bit different.

8. In your command prompt, type the following command:

ruby script/generate scaffold Classified

Your output should look similar to Figure 12-1.

USING RAILS PLUG-INS AND ENGINES

205

12

7524ch12.qxd  12/6/06  9:20 PM  Page 205



When you created a controller before, it generated the controller file and some test files.
By using scaffolding, you are getting not only those files but also a Rails model, the test
files for it, a layout along with Cascading Style Sheets (CSS), plus all the default views. In
other words, you are getting everything you need for a basic application automatically!

Testing the scaffolds
Before you even look at the basic code, let’s launch the application and see how it works. 

1. In your command prompt, start the server using the following command:

ruby script/server

2. Launch the browser and go to http://localhost:3000/classifieds/list. You
should see a basic page with a headline, column headers, and a link to create a new
classified, as shown in Figure 12-2.

Figure 12-2. By default, the scaffolding pages are not very attractive, but they give you a
quick way to test your application.

Figure 12-1. Running the
scaffolding generator creates
the models and controllers
automatically.

RAILS SOLUTIONS:  RAILS MADE EASY

206

7524ch12.qxd  12/6/06  9:20 PM  Page 206



3. Click the New Classified link to go to the New Classified form. It might not be the
most attractive form ever created, but it enables you to hash out a data model.

4. Add a new classified to the database by filling out the form and submitting your
information. When you are redirected to the list view again, there should now be a
classified displayed (see Figure 12-3).

USING RAILS PLUG-INS AND ENGINES

207

12

Figure 12-3. After you add in classifieds, you can see a quick overview of all the data in each row.

Again, the view isn’t that attractive, but you won't keep it like this, so don't worry about it
for now. 

Analyzing the code
Since you know that scaffolding gives you a lot of basic functionality for free, let’s look
under the hood and see how it is done. First, let’s analyze the scaffolding code created in
the Classified controller.

1. Open up classifieds_controller.rb; it will look like so:

class ClassifiedsController < ApplicationController
def index
list
render :action => 'list'

end

# GETs should be safe (see http://www.w3.org/2001/tag/doc/whenToUseGet.html)
verify :method => :post, :only => [ :destroy, :create, :update ],
:redirect_to => { :action => :list }

7524ch12.qxd  12/6/06  9:20 PM  Page 207



def list
@classified_pages, @classifieds = paginate :classifieds,➥

:per_page => 10
end

def show
@classified = Classified.find(params[:id])

end

def new
@classified = Classified.new

end

def create
@classified = Classified.new(params[:classified])
if @classified.save
flash[:notice] = 'Classified was successfully created.'
redirect_to :action => 'list'

else
render :action => 'new'

end
end

def edit
@classified = Classified.find(params[:id])

end

def update
@classified = Classified.find(params[:id])
if @classified.update_attributes(params[:classified])
flash[:notice] = 'Classified was successfully updated.'
redirect_to :action => 'show', :id => @classified

else
render :action => 'edit'

end
end

def destroy
Classified.find(params[:id]).destroy
redirect_to :action => 'list'

end
end

Although most of the preceding code is easy to follow, the verify command
toward the top might not be familiar to you. This method runs a verification that
certain prerequisites are true before allowing an action to be completed. If an
action does not pass verification, the user is forwarded elsewhere. In this case, you
are verifying that any data-manipulation method is sent using an HTTP POST call. If
it isn’t, the user is redirected to the list method. (This is a security precaution.)

RAILS SOLUTIONS:  RAILS MADE EASY

208

7524ch12.qxd  12/6/06  9:20 PM  Page 208



If you look at the Railslist code you created, you implemented something similar to
this in the actual method using a decision structure (if request.post?). Either
method accomplishes the same goal; it’s all a matter of personal preference.

The next bit of code that might not be familiar to you is in the list method: 

def list
@classified_pages, @classifieds = paginate :classifieds,➥

:per_page => 10
end

Scaffolding uses Rails’ built-in pagination methods to break up the classified list-
ings into multiple pages. The preceding code gives each page access to an
@classifieds instance variable that has all classifieds in the database. It also cre-
ates an @classified_pages variable that contains an instance of the Paginator
object, which is what handles all the pagination and, by default, instructs Rails to
split up each page to contain no more than 10 listings per page. 

2. Now look at the list.rhtml view, and you will see how the Paginator is implemented:

<h1>Listing classifieds</h1>

<table>
<tr>
<% for column in Classified.content_columns %>
<th><%= column.human_name %></th>

<% end %>
</tr>

<% for classified in @classifieds %>
<tr>
<% for column in Classified.content_columns %>
<td><%=h classified.send(column.name) %></td>

<% end %>
<td><%= link_to 'Show', :action => 'show', ➥

:id => classified %></td>
<td><%= link_to 'Edit', :action => 'edit', ➥

:id => classified %></td>
<td><%= link_to 'Destroy', { :action => 'destroy', :id =>

classified }, :confirm => 'Are you sure?', :post => true %></td> ➥

</tr>
<% end %>
</table>

<%= link_to 'Previous page', { ➥

:page => @classified_pages.current.previous } 
if @classified_pages.current.previous %> ➥

<%= link_to 'Next page', { :page => @classified_pages.current.next } ➥

if @classified_pages.current.next %> 

<br />

<%= link_to 'New classified', :action => 'new' %>

USING RAILS PLUG-INS AND ENGINES

209

12

7524ch12.qxd  12/6/06  9:20 PM  Page 209



The list view first creates a <table> to hold the classified listings. The table headers are
implemented by iterating through the column names. 

<% for column in Classified.content_columns %>
<th><%= column.human_name %></th>

<% end %>
</tr>

content_columns is a method that gets the names of each column in the database. Rails then
iterates through the database table and outputs the column name using the human_name
method. Using human_name removes any underscores (_) or hyphens (-) and then capitalizes
the first letter of each word. A column named first_name is output as First Name. 

Next, Rails outputs the values of each column by iterating through the @classifieds array
and puts the value of each column in its own table column. Of most interest is this line:

<td><%=h classified.send(column.name) %></td>

You are using Ruby’s send method to extract the column value for the classified row you
are iterating through at that moment. You are also wrapping the output using the h()
method. This method strips any JavaScript code that might have been stored in the data-
base to prevent XSS (Cross Site Scripting) attacks against your application. Another
instance of Rails’ scaffolding putting security first.

The final bit of code you should pay attention to are the lines that create the next and pre-
vious links:

<%= link_to 'Previous page', ➥

{ :page => @classified_pages.current.previous } 
if @classified_pages.current.previous %> ➥

<%= link_to 'Next page', { :page => @classified_pages.current.next } ➥

if @classified_pages.current.next %> 

You are using the @classified_pages Paginator object you created in the controller to
create these links. Using that object, you can get the value of the current page and then
create links using the next and previous values. All of it is pretty seamless because Rails
takes care of most of the heavy lifting.

Scaffolded model
The final piece of scaffolded code you should look at is the data model.

1. Open up the classified.rb model file. It’s pretty bare, as you can see:

One of the points against pagination is that it slows performance of your application.
There has been much discussion in the Rails community about the merits of pagination.
It is a personal decision about whether you think pagination will benefit your applica-
tion. If you have a lot of data and want to make it easier to navigate and stabilize page
load times, do try pagination. Just be aware of the performance issues. 

RAILS SOLUTIONS:  RAILS MADE EASY

210

7524ch12.qxd  12/6/06  9:20 PM  Page 210



class Classified < ActiveRecord::Base
end

There’s not much here since ActiveRecord takes care of the basic business logic. If
you want to add in some validation methods you can do so—and the scaffolding
picks them up immediately.

2. To illustrate this, add the following line to classified.rb and save your changes:

validates_presence_of :title

3. Now try to create a new classified but leave the title field blank—you will see the
error_messages_for helper doing its job. Notice that scaffolding also styles 
the error messages by default, as shown in Figure 12-4.

Figure 12-4. Notice that when an error appears, the error_messages_for 
helper is automatically styled by the scaffolded CSS file.

USING RAILS PLUG-INS AND ENGINES

211

12

7524ch12.qxd  12/6/06  9:20 PM  Page 211



Just by adding that validation method to the model, you could put in a basic business rule
and let Rails handle the rest. You can now add in all the other validation that you had in
the original Railslist application, safe in the knowledge that it can be carried across more
than comfortably.

Now that you have this basic classified creation implemented, let’s investigate the Rails
plug-in functionality and how you can leverage it to create categories in the application.

Adding functionality with plug-ins
Since this chapter is focused on getting free functionality, you should discuss the Rails
plug-in architecture. A plug-in is an extension or modification to the Ruby on Rails core
framework. Using plug-ins, you can add functionality to the application with little effort. 

Plug-ins were created by the core Rails development team from a desire to add function-
ality to the Rails framework between releases. Developers wanted to add functionality to
the framework, but the timeline for inclusion was either too long or their enhancement
request was rejected. So the core team added a plug-in architecture to enable developers
to release features separate of the Rails core. 

A Rails plug-in is merely a collection of files comprised of models, views, and controllers
just like a Rails application. The major difference is that a plug-in cannot be run independ-
ently of a host application. 

Using plug-ins
Let’s use plug-ins to add tagging capabilities to the new version of Railslist. In the first ver-
sion, you created the own categories controller to help sort classifieds. This was similar to
tagging in many ways, so it was certainly acceptable to use tagging in place of categories
(in fact, it makes Railslist even more Web 2.0!). 

The first thing you should do is search for a plug-in that will handle this functionality for
you. The best way I have found to find plug-ins is through the Rails plug-in search engine
at Agile Web Development (www.agilewebdevelopment.com/plugins).

If you search for a plug-in for tagging, you see there is a result that looks very promising:
acts_as_taggable (www.agilewebdevelopment.com/plugins/acts_as_taggable), as seen
in Figure 12-5. From the information page, you can discover more about the plug-in.

RAILS SOLUTIONS:  RAILS MADE EASY

212

7524ch12.qxd  12/6/06  9:20 PM  Page 212



Figure 12-5. The Agile Web Development directory is a great resource for finding plug-ins to enhance
your application easily.

This mixin provides an easy way for adding tagging capabilities (also known as folksonomy)
to your active record objects. It enables you to add tags to your objects as well as search
for tagged objects.

It assumes that you are using a fully normalized tagging database schema. For that, you
need a table (named tags by default) to hold all tags in your application and this table
must have a primary key (normally an id int autonumber column) and a name varchar col-
umn. You must also define a model class related to this table (named Tag by default).

It sounds like this is just what you need. 

To install plug-ins, there is a script included in the scripts folder called plugin. You can
take the repository URL from the Agile Web Development page and use that as the source.

1. At the command prompt, navigate to the railslist2 folder, type the following,
and press Return:

ruby script/plugin install ➥

http://dev.rubyonrails.com/svn/rails/plugins/acts_as_taggable/

USING RAILS PLUG-INS AND ENGINES

213

12

7524ch12.qxd  12/6/06  9:20 PM  Page 213



This installs the acts_as_taggable plug-in in the vendor/plugins directory of the
Rails application. The output should look like Figure 12-6.

Figure 12-6. Installing plug-ins pulls the code into your Rails application and stores it in the
vendor/plugins directory.

2. You need to restart your Rails application after the installation. In fact, you need 
to do this before you can begin using any Rails plug-in. Do this as soon as it has
finished. 

Using acts_as_taggable
Now that you have installed the plug-in, the first thing to do is create the tags table.

1. At the command prompt, type the following:

ruby script/generate migration AddTagSupport

2. Open the migration file db/migrate/ 002_add_tag_support.rb and modify it to
look like the following:

class AddTagSupport < ActiveRecord::Migration
def self.up
create_table :tags do |t|
t.column :name, :string

end

create_table :taggings do |t|
t.column :tag_id, :integer
t.column :taggable_id, :integer
t.column :taggable_type, :string

end
end

def self.down
drop_table :tags
drop_table :taggings

end
end

You are creating two tables, tags and taggings, to house the tag information. The
tags table houses all the tags that are stored in the database, whereas the taggings
table maps the relationships between a classified and its tags. 

RAILS SOLUTIONS:  RAILS MADE EASY

214

7524ch12.qxd  12/6/06  9:20 PM  Page 214



3. You now need to migrate the database so the new tables show up, so type the fol-
lowing command in your command prompt or Terminal window:

rake migrate

Now you need to let the classified model know that you have an association with
the acts_as_taggable plug-in.

4. Open classified.rb in app/models and modify it to look like the following:

class Classified < ActiveRecord::Base
validates_presence_of :title 
acts_as_taggable

end

Next, you need to implement the tagging functionality in the application.

5. Open the _form.rhtml file under app/views/classifieds/ and add the following
bold lines to it:

<p><label for="classified_updated_at">Updated at</label><br/>
<%= datetime_select 'classified', 'updated_at'  %></p>

<p><label for="tags_list">Tags:</label>
<%= text_field_tag 'tag_list', @classified.tags.collect{|t| ➥

t.name}.join(" ") %></p>

<!--[eoform:classified]-->

6. Save your changes.

This creates a text_field called tag_list that enables users to add tags to describe
their new classified item. Each tag should be separated by a space. If you want to
have a multiword tag, put the full tag in parentheses. 

Next, you need to tell the controller to save that information, so you can open the
Classified controller and modify the create method.

7. Open up classifieds_controller.rb and add the code highlighted in bold (on
line 3 following) to the create method. It should look like this:

def create
@classified = Classified.new(params[:classified])
@classified.tag_with(params[:tag_list])

...

end

The line of code you added uses a method created by acts_as_taggable called
tag_with that will associate the user submitted tag(s) with the classified.

8. Now go back to your application and try creating a new classified with the New
Classified form again. You will now be able to enter tags to describe your classified,
as shown in Figure 12-7. 

USING RAILS PLUG-INS AND ENGINES

215

12

7524ch12.qxd  12/6/06  9:20 PM  Page 215



Next, let’s add functionality to show the tags when you view each specific classified.

9. Open up show.rhtml, add the following lines to it just before the two link_to tags,
and save your changes: 

<% unless @classified.tags.blank? %>
<p><strong>Tags:</strong> 
<%= @classified.tags.collect{|tag| link_to tag.name, 
:action => 'tag', :id => tag}.join(", ") %></p>

<% end %>

10. Go to a classified and try it out. Your show view should now look as seen in
Figure 12-8.

Figure 12-8. You can see a listing of your tags in each classified listing.

Finally, you want to be able to show other classifieds that share the same tag.

Figure 12-7. Adding tags is a
process of putting descriptive
words into a text field and
separating them by a space.

RAILS SOLUTIONS:  RAILS MADE EASY

216

7524ch12.qxd  12/6/06  9:20 PM  Page 216



11. Create a new method called tag in the classifieds_controller.rb controller just
before the last end keyword.

def tag
@tag = Tag.find_by_id(params[:id]).tagged 

end

Again, you are using a method given to you by the acts_as_taggable plug-in. You
are using the plug-in’s tag model to find the tag with the id passed. 

You also need to create a view to give a listing of all classifieds that share that spe-
cific tag. 

12. Create a file called tag.rhtml file under app/views/classifieds and add the fol-
lowing code to it:

<ul>
<% @tag.each do |t| %>
<li><%= link_to t.title, :action => "show", :id => t -%></li>

<% end %>
</ul>

Now if you click on one of the tag links in the show.rhtml file, a new page appears with a
basic listing of other classifieds sharing the same tag. Obviously, this needs some CSS to be
production-worthy, but the main point of this exercise was to show you how easy it is to
add functionality to your application using plug-ins with minimal effort.

Using engines in the application
Another method of adding almost-instant functionality to the application is the use of
Rails engines. The Rails engines system is a plug-in that builds on the plug-in architecture
to allow for more advanced use cases. Unlike a standard plug-in, an engine is capable of
working with almost any type of file you would find in a regular Rails application: models,
views, controllers, libraries, database schemas, and so on. 

Like a regular plug-in, the engine is stored under the vendor/plugin directory of your
application so that it is completely self-contained from the code that you have written
yourself. Unlike a regular plug-in, you can also manipulate the behavior of the engine to
suit your specific application needs easily. 

For example, you can use Rails engines to implement a user account system in the appli-
cation. Let’s do that now.

The first thing you need to do is install the engine’s plug-in itself, which gives you the foun-
dation you need to use other engines built on top of that architecture. 

1. At a Terminal or command prompt window, type the following commands:

ruby script/plugin source http://svn.rails-engines.org/plugins
ruby script/plugin install engines

These commands install the engines plug-in in your vendor/plugins directory.

USING RAILS PLUG-INS AND ENGINES

217

12

7524ch12.qxd  12/6/06  9:20 PM  Page 217



2. Next, you need to install the login_engine, which provides the actual user account
system functionality. Do this with the following command:

ruby script/plugin install login_engine

The login_engine is a bit more complex than the user system you created, but it
covers the same basic functionality. It enables a user to create a new user account
and log in to the system. Beyond that, it also allows you to enable account author-
izations via e-mail if you wish.

You have to tell the Rails application that you have added a new engine to the
application and where to find it. You do this in the environment.rb file.

3. Open the file (it’s in the config directory) and add the following to the bottom 
of the file, just below the comment that says # Include your application
configuration below:

module LoginEngine
config :salt, "rails-solutions"
config :use_email_notification, false

end

Engines.start :login

You just set two parameters for the engine. The first is to use the phrase rails-
solutions as the salt for the password encryption. Salting a password is a technique
to enhance the security strength of a password. Before storing it as a hash (as you
did in the previous login system), you append the rails-solutions string to the pass-
word to throw off hackers if the physical database is compromised—even if they get
the information from the database tables, they still don't get the right values. (You
don’t necessarily have to use the phrase rails-solutions; it can be anything you want.)

The second configuration option is to disable e-mail notifications. By default,
login_engine requires users to activate their account by sending out an e-mail and
requiring the user to click on a link in the message to confirm their account. For
the purposes of this exercise, it isn’t necessary.

4. Save your changes and restart your Rails application so that your changes go into
effect.

Migrating the database

Engines also provide us with a way to migrate the database easily to patch in the engine
functionality. The login_engine includes the migration information for a users table, so
let’s run it to add the users table to the database.

For a list of available engines, the best place to look is the Rails wiki at
http://wiki.rubyonrails.org. Official documentation page for the login_engine
can be found at http://api.rails-engines.org/login_engine/.

RAILS SOLUTIONS:  RAILS MADE EASY

218

7524ch12.qxd  12/6/06  9:20 PM  Page 218



1. In a Terminal or command prompt window, run the following command:

rake db:migrate:engines ENGINE=login_engine

The migration runs just like any other migration you have written yourself. The only
difference is that you are telling Rake to get its migration information from an
engine: the login_engine specifically. The output should look like Figure 12-9.

Figure 12-9. The command for migrating from an engine is a bit more complex 
than migrating from your own code, but it does the exact same thing.

Configuring login_engine

The first thing you should do to configure the engine is set up a default route so that the
application is aware of the UserController that is packaged with the plug-in.

1. Open up routes.rb in the config directory and add the following line above the
default routes:

map.connect '/user/:action', :controller => 'user'

2. Save your changes.

The next step in setting up the login_engine is telling it how to restrict access to
certain functionality in the application.

3. Open up the application.rb file under app/controllers and modify it to look
like the following:

require 'login_engine'

class ApplicationController < ActionController::Base
include LoginEngine
helper :user
model :user

end

By adding the references to the login_engine in the main ApplicationController,
you are ensuring that other controllers will be made aware of it without you having
to declare it again. 

4. Open the classifieds_controller.rb file and add the following filter just under
the first line in the file (it restricts access to the data-manipulation methods in the
file to users who are logged in):

before_filter :login_required, :only => ➥

[:edit, :update, :new, :create, :destroy]

USING RAILS PLUG-INS AND ENGINES

219

12

7524ch12.qxd  12/6/06  9:20 PM  Page 219



5. Save your changes.

6. Now try to create a new classified, and you will be redirected to a login page like
the one shown in Figure 12-10.

Figure 12-10. With just a bit of configuration, you have a fully functional login system 
in the application. You also are getting the forgot password functionality for free. 

7. Since you don’t have an account yet, go ahead and create one.

After you create your account and login, you should be able to create a new classified in
the system. 

Working with the login engine is pretty much the same as if you had created the code
yourself. As you continue work on the application, you can set up relationships between
the engine’s user model and a classified to associate them with one another or restrict
access to classifieds by a user (just as you did in the original Railslist application). The main
difference is that you have built up the code base so much more quickly.

After you install and configure an engine, it’s almost seamless to use it in your application
as if it were your own code. 

A note on components
There is another approach—components—which enable a developer to call actions from
within another view or action. For example, if you were building an e-commerce site and
had a shopping cart that would display the price and number of items in your cart on mul-
tiple pages in your application, you could create a component to do that.

For more information on the login_engine, visit http://api.rails-engines.org/
login_engine/. 

RAILS SOLUTIONS:  RAILS MADE EASY

220

7524ch12.qxd  12/6/06  9:20 PM  Page 220



The problem with components is that they are incredibly slow compared with other parts
of the Rails framework and will most likely be removed from the Rails core framework and
extracted as a plug-in by the time Rails reaches 2.0. So I decided not to cover them here.
Besides, almost anything you can accomplish using components can be done using partials
and/or plug-ins instead. 

Summary
In this chapter, you built a basic skeleton application that had most of the functionality of
the previous Railslist application using only Rails’ scaffolding, plug-ins, and engines. The
purpose of this exercise was to show you how easy it is to add functionality into your
application using these powerful Rails technologies, ultimately saving you precious devel-
opment time. 

In the next chapter, you will learn how to deploy a Rails application to a remote Web
server using Capistrano.

USING RAILS PLUG-INS AND ENGINES

221

12

7524ch12.qxd  12/6/06  9:20 PM  Page 221



7524ch13.qxd  12/7/06  10:29 PM  Page 222



13 DEPLOYING WITH CAPISTRANO

7524ch13.qxd  12/7/06  10:29 PM  Page 223



As you finish the development process of the Railslist application, you want to enable
people to access it from the Web, just like any other website or web application.
Therefore, you need to put it on a production server for all to come and find. The final
step in the development process is configuring the application so that it can be deployed
to and run on such a server. 

This chapter discusses the following:

What deployment is and why it is necessary

What is needed for deployment

Setting up the server for deployment

Installing and configuring Capistrano

What is deployment?
Deployment is the process of transferring your web application onto a production web
server so that it can be accessed by other users on the Web. In other languages you might
have used, such as PHP, you go through the deployment process by removing comments,
obfuscating code, and then uploading it to an FTP server. With Rails, after you finish devel-
oping your application on your local Mac or PC, you can finalize and transfer the code
automatically to a remote web server that supports Ruby on Rails and your chosen data-
base (in this case, MySQL). After configuring your remote database for storing your data
and setting your Rails application to run in the production environment, your users can
then access the application from their browsers over the Internet (the process is a lot
more streamlined with Rails deployment than if you were to manually prepare your code
and upload it). Figure 13-1 illustrates the setup between your development machine and
the web server.

Ruby on Rails makes deployment easy with its Capistrano utility, which was developed by
Jamis Buck of 37Signals to enable developers to easily deploy new versions of their many
applications to multiple servers with minimal effort. Prior to Capistrano, deploying a Rails
application involved a complicated system of disabling a running application, moving the
previous version and replacing it with the latest version, and trying to restart the applica-
tion—hoping no issues would arise. 

Imagine how this process might lead to problems as you build your application. The goal
of deployment is to have as little downtime as possible so that your users don’t notice. If
you run into complications with deployment, you now have to trace your steps backward
to get the application running again on the previous working version.

In this Web 2.0 world, your first public access version will no doubt be dubbed beta. 

RAILS SOLUTIONS:  RAILS MADE EASY

224

7524ch13.qxd  12/7/06  10:29 PM  Page 224



Capistrano addresses this issue by providing a set of Rake scripts to automate the deploy-
ment by sending a set of tasks as a single command. Capistrano also makes it easy to han-
dle problems during deployment because it can automatically roll back to a previous
version of your application. 

Second, Capistrano assumes that you have your code stored in a source code management
repository. In this case, you use Subversion, which is a popular, open-source source code
management system that is used by most Rails developers.

Don’t worry if this sounds intimidating right now. Capistrano makes it incredibly easy to
get your application up and running on your production server(s). 

What about Concurrent Version System (CVS)? Subversion is a newer, more modern
source code management system that addresses many of the weaknesses of CVS.

Capistrano, like Rails itself, is opinionated software. It assumes that you will be deploy-
ing to a Unix-based system such as Linux, Solaris, or Mac OS X. While it is possible to use
Capistrano to deploy a Rails application to a Windows server, it’s not easy to do. Maybe
this is why no major Rails application has yet to be deployed onto a production
Windows server?

DEPLOYING WITH CAPISTRANO

225

13

Figure 13-1. After you have developed your application locally, you can then deploy it to a remote web server where
others can access it via a web browser.

7524ch13.qxd  12/7/06  10:29 PM  Page 225



Tool requirements
Deploying with Capistrano involves installing a few more utilities and applications on the
local machines: 

Capistrano utility

Subversion command-line utilities (http://subversion.tigris.org/)

Geoffrey Grosenbach’s Shovel scripts for Capistrano deployments (http://
nubyonrails.com/pages/shovel)

Web host that supports Ruby on Rails, Lighttpd, Subversion, and MySQL

For the purposes of the Rails deployment, I will walk you through the process using
TextDrive (http://www.textdrive.com). While there are other web hosts on the Internet
that support Rails, TextDrive is the official host for Ruby on Rails and has all the required
tools you need for deployment. The Shovel scripts are built for easy Rails deployment on
TextDrive.

Installing Subversion for Mac OS X

If you are using Mac OS X, you need to install the Subversion binaries from Martin Ott
(http://www.codingmonkeys.de/mbo/). Ott’s binary package is a simple Mac OS X installer
that will put the Subversion command-line tools on your system. svnX (a Mac Subversion
client) requires them to communicate with the remote Subversion server. 

1. Go to Ott’s site and grab the latest version of the Subversion installer (I used
Subversion-1.4.2.pkg) and download it to your Mac.

2. Launch the installer (see Figure 13-2) and click through the screens, selecting the
default options.

After you finish the installer, the svn client is installed on your Mac.

If you are not keen on TextDrive, you can find a list of all the web hosts that support
deploying Ruby on Rails web applications in the Rails wiki at http://wiki.rubyonrails.
org/rails/pages/RailsWebHosts. Pricing ranges from a few dollars a month for a
shared hosting account up to hundreds or thousands per month if you need a dedicated
server. 

RAILS SOLUTIONS:  RAILS MADE EASY

226

7524ch13.qxd  12/7/06  10:29 PM  Page 226



Figure 13-2. The Subversion installer walks you through the process of putting 
the Subversion command-line tools on your Mac.

Installing Subversion for Windows

The Windows installation is similar to the Mac installation. You need to download an
installer that will install the Subverison binaries. You can grab them from http://
subversion.tigris.org/servlets/ProjectDocumentList?folderID=91.

1. Grab the latest svn-1.x.x-setup.exe (where x.x is a minor version number) from
the preceding location.

2. Once downloaded, install it using the default options, as shown in Figure 13-3. 

Figure 13-3. After
installation completes,
you can access remote
Subversion servers from
your Windows PC.

DEPLOYING WITH CAPISTRANO

227

13

7524ch13.qxd  12/7/06  10:29 PM  Page 227



3. Open your command prompt and type svn help so Subversion will create its con-
figuration settings. 

Windows users need to download puTTY (http://www.chiark.greenend.org.uk/
~sgtatham/putty/download.html) since Windows does not support SSH by default.

4. Download putty.exe and plink.exe. The download and install procedure is very
simple. Move the files from your desktop into c:\putty. 

5. Edit C:\Documents and Settings\yourname\Application Data\Subversionconfig
using your favorite text editor.

6. Change the line that looks like this:

#ssh = $SVN_SSH ssh

to look like this:

ssh = c:\plink.exe -ssh

7. Replace the path /to/putty with the actual path to the application. 

8. Save your changes.

Before you begin
To host your Rails application to a production environment, you need a web host that sup-
ports Rails. Since you’ll use TextDrive as the host, the first thing you need to do is sign up for
an account. (Even the minimum plan—which as of this writing costs $15/month, plus a $25
initial setup fee—will suffice for what you’ll be doing.) After you complete the signup process,
you receive a welcome e-mail with all the relevant login and password credentials you need.

After you have your account set up, you need to submit a support request for a server
port on which you can run the Rails application. A port is an access portal that enables you
to access a web address from a URL such as http://www.railssolutions.com:8888 (8888
is the port). You request a port by filing a support ticket in their web-based support system
at http://help.textdrive.com/index.php?pg=request. All you need to do is tell them
that you want to host Ruby on Rails applications and need a port for it. 

The TextDrive folks will then assign a unique port number to you. Keep track of that num-
ber because you will need it later. 

Creating the MySQL database
You need to create a database on the TextDrive server to hold all the data stored in the
application. To do this, you first need to modify the database.yml file to let Railslist know
about the new database.

RAILS SOLUTIONS:  RAILS MADE EASY

228

7524ch13.qxd  12/7/06  10:29 PM  Page 228



1. Open up the database.yml file in the config directory and modify it to look like
the following:

development:
adapter: mysql
database: railslist_development
username: root
password:
host: localhost

test:
adapter: mysql
database: railslist_test
username: root
password:
host: localhost

production:
adapter: mysql
database: yourtextdrivelogin_railslist
username: yourtextdrivelogin
password: yourtextdrivepassword
host: localhost

You are modifying the values for the production environment’s database to work
with TextDrive. You have to replace yourtextdrivelogin with the relevant value in
the database name. Also, replace yourtextdrivelogin and yourtextdrivepasssword
with their respective values. If you aren’t sure of them, check the welcome e-mail
you received.

Next, you need to create the database. You can do this via the Web using a piece of
software called phpMyAdmin, which is a tool written in PHP intended to handle the
administration of MySQL through a web browser. 

2. Open the web browser and go to http://mysql.server.textdrive.com/ (replac-
ing server with the server you were assigned to by TextDrive).

3. When prompted, enter your TextDrive login and password.

The main phpMyAdmin window can be somewhat intimidating, as you can see in
Figure 13-4.

DEPLOYING WITH CAPISTRANO

229

13

7524ch13.qxd  12/7/06  10:29 PM  Page 229



Figure 13-4. phpMyAdmin is a web-based management tool for creating and working with MySQL databases.

RAILS SOLUTIONS:  RAILS MADE EASY

230

Luckily, you have to perform only a single task.

4. Find the text field below the Create new database text (where Justin... was entered
in Figure 13-4) and enter the value for the production database you set when you
modified the database.yml file. For example, if you set the database name to be
railslist_production, enter it in the text field.

5. Click the Create button to create your new database.

This process creates your new database on the TextDrive server, so that you can begin
adding new data to it after you get the application running on Capistrano.

Setting up the server
Subversion is a code-management repository that enables you to keep your source code
stored on a remote server that can be accessed by multiple users. Subversion makes

7524ch13.qxd  12/7/06  10:29 PM  Page 230



collaborating with multiple users a breeze because users can check out copies of the source
code to their local machines, make edits, and then send the changes back to the Subversion
server. At that point, team members can update their local copies with all the team’s
changes. Subversion manages the changes made to each file so that you aren’t automati-
cally overwriting your teammates’ work: that’s one of the biggest selling points of version
control.

Even if you are a sole developer, storing your code in a Subversion repository is a great
way to keep a remote backup of your code in case your development machine is compro-
mised or if you fall victim to a situation resulting in data loss. 

The first thing you need to do is set up a Subversion repository on TextDrive. You can
manage it all by using Webmin, TextDrive’s web-based control panel. 

1. Log in to http://webmin.server.textdrive.com/, where server is the name of the
server you were assigned to. 

2. Once logged in, click Servers ➤ Subversion Repositories, as shown in Figure 13-5.

DEPLOYING WITH CAPISTRANO

231

13

Figure 13-5. Webmin is the all-in-one management console for your TextDrive hosting account.

3. Enter railslist as the name for your repository, as shown in Figure 13-6. Leave all
other fields at their defaults. 

7524ch13.qxd  12/7/06  10:29 PM  Page 231



Figure 13-6. After naming
the repository, Webmin
takes care of creating
everything you need 
to get started with
Subverison.

Figure 13-7. After
creating the Subversion
repository, you need 
to add a user to your
account so you can 
access the repository.

RAILS SOLUTIONS:  RAILS MADE EASY

232

4. Click the Create button to create your repository.

5. Click Return to return to the main page.

Next, you need to create a Subversion user to access the repository. 

6. Under Servers, click Virtualmin Virtual Servers, as shown in Figure 13-7.

7524ch13.qxd  12/7/06  10:29 PM  Page 232



7. From the list of domains, find the domain you added your repository to (if you are
starting with a bare account, it should only be one account) and click the List… link
under the Mailboxes column.

8. Click Add A User To This Domain to get to the screen shown in Figure 13-8.

9. Enter a username, real name, and password for the account.

10. Under Allow Access To Repositories, select your repository.

11. Change Primary Email Address Enabled? to No.

12. Set Home And Mail Quota to Unlimited.

Figure 13-8. Creating a Subversion user involves creating a user Mailbox. Just make sure you
disable the Mailbox and leave only the Subversion login enabled.

13. Click Create.

At this point you should now have the Subversion repository available at http://
yourdomain.com/svn/railslist. You can log in to it using the username and password
you created previously.

Committing the project to Subversion

Now that you have the repository set up, you need to commit the Railslist application.
Committing is the process of sending code changes to the Subversion repository. The
process is similar on both Windows and Mac OS X using the Subversion command-line
utilities.

DEPLOYING WITH CAPISTRANO

233

13

7524ch13.qxd  12/7/06  10:29 PM  Page 233



1. Open up the Terminal or command prompt window and go to the Railslist directory.

2. Run the following command to commit your project:

svn import --m 'Initial Import' . ➥

http://yourdomain.com/svn/repos/railslist/  

3. You will be prompted for your Subversion username and password. Provide them.

This process sends all the files that are a part of your project to the Subversion
repository.

Next, you need to check out a working copy of the application. Many first-time
source code management users don’t understand why they need to check out a
copy of the code they just imported to Subversion, but it is necessary so that you
are working with a copy of the code that has the hooks Subversion can use to
determine changes in your code. 

4a. In the Mac OS X Terminal, type the following:

cd ..
mv railslist railslist_bak
svn co http://yourdomain.tld/svn/repos/railslist

4b. If you are using Windows, type the following:

cd ..
ren railslist railslist_bak
svn co http://yourdomain.tld/svn/repos/railslist

Now you have a working copy of the code on the local development environment that you
can set up for Capistrano.

Installing Capistrano
To install and use Capistrano, you use the Shovel script created by Geoffrey Grosenbach
(http://nubyonrails.com/pages/shovel). Shovel automates the setup of Lighttpd and
Capistrano on the TextDrive server using Rake tasks. 

The first thing you need to do is install Capistrano.

1. In a Terminal or command prompt window go to your railslist directory and type the
following commands, pressing Return at the end of each line (Mac OS X users should
append the word sudo to the beginning of the first command to run it as root):

gem install capistrano --include-dependencies
cap --apply-to .

The first command installs the Capistrano gem onto your system.

RAILS SOLUTIONS:  RAILS MADE EASY

234

7524ch13.qxd  12/7/06  10:29 PM  Page 234



2. You will probably be asked if you want to install a bunch of dependent software
such as net-ssh along with Capistrano. Accept all of them because they are required
for Capistrano to function correctly.

The second command uses the actual cap application to put the Railslist applica-
tion on Capistrano. It creates a deploy.rb file in your config directory. The deploy
file contains all the tasks that you can perform via Capistrano. You will be overwrit-
ing this file with the Shovel file.

3. Open up your web browser and go to http://topfunky.net/svn/shovel/deploy.rb.
The file should render as a text file in your browser.

4. Save it to your desktop.

5. Next, go to your Rails application’s config directory and replace the deploy.rb file
with the one you just downloaded.

You just removed the default deploy.rb file that was created by Capistrano and
replaced it with Shovel. If you examine the actual Shovel file you will see that it is
filled with hundreds of lines of code. Luckily, you only have a few lines to manipulate.

6. Open up the deploy.rb file and modify the values in bold on following lines (which
appear starting around line 40):

set :application, 'railslist'
set :user, "textdrivelogin"
set :txd_primary_domain, 'yourdomain.com'
set :lighty_port, 00000000

:application is the name of the application. It needs to match the name of the
folder you stored the application in on the Subversion server (railslist in this case).
:user is the login name you set up when you signed up for TextDrive. If you don’t
remember this, consult the welcome e-mail you received from them. :lighty_port
is the port that you asked TextDrive to assign to you earlier.

7. Save your changes. 

Connecting to the server on a Mac
Next, you need to connect to the TextDrive server and check out a copy of the application
so that the Subversion password is cached on the hosting account.

1. If you are on a Mac, type the following into your Terminal window, replacing
yourtextdrivelogin and yourdomain.com with the relevant values.

ssh --l yourtextdrivelogin yourdomain.com

2. You’re prompted to enter your password; do so after confirming that you trust the
identity of the remote server you’re connecting to. 

DEPLOYING WITH CAPISTRANO

235

13

7524ch13.qxd  12/7/06  10:29 PM  Page 235



Connecting to the server on Windows
Windows users need to use puTTY since Windows does not support SSH by default.

1. Launch putty, as seen in Figure 13-9.

2. Under Host Name, enter yourdomain.com and then click Open at the bottom of the
screen.

3. You’re prompted for your login; enter your TextDrive username.

4. When prompted for your password, provide it.

5. Once logged in, enter the following commands at the prompt:

mkdir tmp
cd tmp
svn co http://yourdomain.com/svn/railslist/railslist/

6. Enter your Subversion login and password when prompted.

7. After the checkout of your code is complete, you can enter the exit command to
safely disconnect from the TextDrive server.

Now that you are back on the local machine, you are ready to start using Shovel.

Deploying the application
1. Now that you have everything set up, you should be able to run the following

command from the Terminal or puTTY prompt to start the deployment process: 

rake remote:exec ACTION=setup_lighty

2. You’re prompted for your SSH password. Enter it.

Figure 13-9. Windows doesn’t
support SSH by default, but the
freely available puTTY client
makes up for it.

RAILS SOLUTIONS:  RAILS MADE EASY

236

7524ch13.qxd  12/7/06  10:29 PM  Page 236



This sets up the Lighttpd server on TextDrive and checks out a copy of the Railslist
application to run against that Lighttpd instance. 

3. Next, you need to migrate the database to the remote server. Type the following
command in your Terminal or command prompt:

rake remote:migrate

4. Again you’re prompted for your SSH password; enter it now. 

5. Restart the application so that all the processes pick up the new database. Do this
by entering the following command:

rake remote:restart

After the rake commands complete, you should be able to go to http://
yourdomain.com:your_port and view Railslist running on a live server. If you don’t
see anything, you might need to SSH into your TextDrive server again and run the
following command to manually start Lighttpd:

./lighttpd/lightttpdctrl restart

Now that the application is set up to use Capistrano, deploying changes is an easy
process.

6. The first thing you need to do is commit the changes to the Subversion server. You
can do this with a command similar to the following:

svn commit --m 'Commit Message' /path/to/railslist

7. After the commit is completed, you can deploy the changes using the following
command:

rake deploy

This command checks out a new version of your code from the Subversion server and
associates it with your Lighttpd instance. 

Summary
This chapter covered a lot of topics. You only skimmed the surface of the power of
Subversion, but it can be beneficial to learn more about how to work with it so that you
are completely comfortable with your deployment environment. (If you want to learn
more about Subversion, visit http://svnbook.red-bean.com/.)

You can also learn more about Capistrano by reading its online manual (http://
manuals.rubyonrails.com/read/book/17). It is a powerful utility that can ease your
deployment woes. It just has a bit of a learning curve.

Like most new things, deployment is by no means an exact science at this point. It has
improved substantially over the past year thanks to Capistrano, but there is still room for
improvement. To keep abreast of the changes in deployment, be sure to subscribe to the
Ruby on Rails weblog (http://weblog.rubyonrails.org/).

DEPLOYING WITH CAPISTRANO

237

13

7524ch13.qxd  12/7/06  10:29 PM  Page 237



7524appa.qxd  12/7/06  10:36 PM  Page 238



A CACHING YOUR CONTENT

7524appa.qxd  12/7/06  10:36 PM  Page 239



As your database grows, and more users begin using your application, the web server will
start to see some performance hits. Each time a user requests an action, the web server
has to query your database and retrieve the information (among other behind-the-scene
things). Each time this occurs independently is not much of a performance hit, but when
hundreds and thousands of users are doing it at the same time, the performance loss
becomes noticeable. Luckily, Ruby on Rails enables you to implement caching to keep the
result of calculations, rendered views, and database calls around for subsequent requests.
Caching is the process of saving a copy of the results of a web request on the server or a
local machine for subsequent requests. Instead of having to query the database each time
a user requests something, you can serve a cached copy of the result that one user
retrieved to subsequent users in an attempt to save server resources and speed up the
application.

With Rails, there are three types of caching. First, page caching is the fastest method of
caching because the entire page is generated once and then stored on the server's hard
drive, so the next time a user requests the page, it can just retrieve the cached page
instead of invoking the Rails application. Page caching relies on the entire page being
static. In other words, if you want to greet your user with a Welcome username message on
your page, this wouldn't work for you since that username value changes per user.
However, a page that doesn’t change often—such as an about section—would be an ideal
candidate for page caching.

Cache Type When to Use

Page You need to cache an entire static page

Action You need to cache a page with dynamic content such as login
information

Fragment You only want to cache a portion of a page like a header or footer

The next type of caching is action caching, which is similar to page caching in that the
entire response is cached, but differs because every request still goes through the Rails
ActionPack. This makes action caching useful for any pages that need to be accessed by
authenticated users. It also gives you the ability to keep dynamic content in the sidebar
(Welcome username).

The final (and most flexible) type of caching is fragment caching, which is used to cache
various blocks within templates without caching the entire action or page. It is useful when
certain elements of an action change frequently, but others do not. Those parts that do
not change can be wrapped in a caching statement in your templates. 

RAILS SOLUTIONS:  RAILS MADE EASY

240

7524appa.qxd  12/7/06  10:36 PM  Page 240



Just as you did for storing your session data, you need to choose where to store your
caches to use fragment caching by assigning a fragment store. There are four types to
choose from, as follows:

MemoryStore: This store keeps the fragments in your application's memory, which
can potentially take up a lot of memory on your server. It is used by default, but it
is hard to manage and scale if your application becomes popular.

FileStore: This store keeps the fragments on the hard disk instead of in memory. It
works well if you have a lot of file storage and have outgrown the MemoryStore.

DRbStore: This store keeps the fragments in the memory on a separate shared Drb
server (Drb stands for Distributed Ruby). It keeps only one cache around for all
processes. This is a complex solution because it involves setting up a secondary
server. 

MemCacheStore: Similar to DRbStore in that it stores your caches on a separate
server, but uses the MemCache library. It also requires you to install the ruby-mem-
cache library. 

Setting up the caching strategy

For Railslist, I think the best solution is to use the default MemoryStore for caching. It has
a no-frills setup and gives you the results you are looking for. If you notice that your appli-
cation is starting to have more and more users, you can easily switch between the differ-
ent types of stores used for caching.

By default, caching is enabled only in production environments. You can turn it on or 
off manually by setting the config.action_controller.perform_caching option in the
config/environments/production.rb file.

If in the future you decide to use a cache store besides the MemoryStore, you can add one
of the following lines of code to your config/environments/production.rb file:

ActionController::Base.fragment_cache_store = ➥

:memory_store
ActionController::Base.fragment_cache_store = ➥

:file_store, "/path/to/cache/directory"
ActionController::Base.fragment_cache_store = ➥

:drb_store, "druby://localhost:9192"
ActionController::Base.fragment_cache_store = ➥

:mem_cache_store, "localhost"

CACHING YOUR CONTENT

241

A

7524appa.qxd  12/7/06  10:36 PM  Page 241



Implementing caching in the application

Let's implement page caching in the application. The most logical place is on a page like
the signup form, since the form fields don't change too often.

1. Open up the user_controller.rb file in app/controllers and add the following
line to it:

caches_page :signup

That's all there is to it. Now when a user views the signup page for the first time,
the page is on the server. Or is it?

2. Look at the signup form in a browser (see Figure A-1).

Figure A-1. The signup form for the railslist application with the login form in the sidebar

Notice the categories listing in the sidebar? It is dynamically generated in your
application's layout template, so page caching is not a suitable strategy for this
page; you can use action caching, however. Action caching is achieved in the same
way as page caching except that you use caches_action instead of caches_page. 

3. Modify the line in the user controller to use action caching and then save your
changes.

Let's also implement action caching in the classified controller. You can cache the
multiple listings, the single listing, and the new classified pages.

4. Add the following line to classified_controller.rb:

caches_action :show, :list, :new

5. Save your changes.

Now when those three actions are accessed, the pages are cached. In the case of the show
method, a new page cache is created for each classified listing because action caching uses
fragment caching to store its data so that classified/show/1 will be a different cache
from classified/show/2. 

Using fragment caching explicitly
At the bottom of each classified listing is a form that enables you to contact the seller or
e-mail the listing to a friend. These fields rarely change, so let's implement fragment
caching to store those bits of data in memory.

RAILS SOLUTIONS:  RAILS MADE EASY

242

7524appa.qxd  12/7/06  10:36 PM  Page 242



1. Open up the show.rhtml template under app/views/classified and wrap that
area of code with a cache do statement. 

2. Modify the bottom of the file so that the interested and contact links are being
cached. When you finish, it should look like the following:

<% cache do %>
<p>Interested?  
<%= link_to_function('Contact the seller', ➥

"Element.show('contact_seller')") %></p>
...
<p><%= link_to_function('E-mail to a friend', ➥

"Element.show('email')") %></p>
...
<%= end_form_tag -%>
</div>

<% end %>

Now that you have implemented this fragment cache, it will be bound to the name of the
action that called it, which in this case is show. 

Expiring caches

One issue with caching is that it can lead to out-of-date information being displayed to the
user. For example, if you cache the listing of a classified, and the poster then goes to
update the listing, you want to make sure that anyone who looks at the listing from that
point forward sees the most up-to-date data. To do this, you need to set up expirations on
the caches. You do this in the controller methods.

1. Open up the classified controller file classified_controller.rb, which is located
in app/controllers. 

2. Modify the update method to look as follows (you need to add only the line in bold): 

def update
...
if @classified.update_attributes(params[:classified])
expire_action(:controller => "classifieds", :action => "show"),➥

:id => @classified
redirect_to :action => 'show', :id => @classified

else
render :action => 'edit'

end
end

You can cache any block of code in your Rails app by enclosing the code block in a
cache do statement.

CACHING YOUR CONTENT

243

A

7524appa.qxd  12/7/06  10:36 PM  Page 243



The only change you made was to add the expire_action call after the update method.
This tells Rails to wipe the cache you already created (if it existed) and recache the 
new data. If you want to expire the cache of a page cache, use expire_page instead of
expire_action.

expire_page(:controller => "user", :action => "signup")

And if you want to expire a fragment cache, you have to pass the actual cache name.

expire_fragment("/classified/listing/1")

Obviously, expiring a fragment cache isn't ideal in certain instances, but the option is there
if you need it.

Summary
This appendix covered the basics of caching, but there is much more to the topic that you
can explore if you’re interested. 

Rails documentation on caching: http://api.rubyonrails.com/classes/
ActionController/Caching.html

Scott Laird’s presentation on caching: http://scottstuff.net/blog/articles/
2005/09/28/rails-caching-presentation

Ruby on Rails caching benchmarks: http://www.maxdunn.com/typo/articles/
2006/09/12/ruby-on-rails-caching-benchmarks

RAILS SOLUTIONS:  RAILS MADE EASY

244

7524appa.qxd  12/7/06  10:36 PM  Page 244



7524appa.qxd  12/7/06  10:36 PM  Page 245



7524appb.qxd  12/7/06  10:38 PM  Page 246



B TESTING RAILS

7524appb.qxd  12/7/06  10:38 PM  Page 247



As you develop applications with Ruby on Rails, you will undoubtedly be adding new fea-
tures and functionality to existing code bases. If it’s a large application with several users,
the chances of creating a new bug in the application can be increased. If you deploy the
new feature to your users with that bug, you might have to deal with hundreds of support
requests from users who cannot get the application to work properly.

You shouldn’t assume that you have the time or desire to manually run through every sin-
gle method and function of the application. Luckily, Ruby on Rails comes with the capabil-
ity to automatically test the functionality of the application using a little bit of Ruby code
and few simple Rake commands. In short, Rails comes with test-driven development func-
tionality built in.

This appendix covers the following:

What test-driven development is

Why testing is important

The types of testing available

How to implement those tests into applications

What is test-driven development?
Test-driven development is a programming technique that emphasizes writing tests that
will check the functionality of the application’s code before you actually write it into the
production application. Test-driven development got its roots in the Extreme Programming
methodology that many developers took to in the early 2000s. Now, testing has been
extracted from Extreme Programming and is used in more general programming practice. 

Ruby on Rails includes the functionality needed to test the application by default when
you first create the application using the rails command. The framework includes several
different types of tests you can run. For testing models, Rails uses unit tests. Unit tests test
the business logic and functionality of the data models. When you add a method to the
model, you should write a unit test to test its functionality. 

To test the functionality of the controllers, the framework uses functional tests. Functional
tests help you to ensure that the methods perform as they should. If you were to test a
login method, you’d check to see that it will display the login form, enable a user with the
proper credentials to log in, and restrict unauthorized users from proceeding through the
login process. 

The last major type of testing, integration testing, tests the interaction between multiple
controllers. In the case of the Railslist application, you can create an integration test that
allows a user to sign up for an account, log in to that account, and then create a new clas-
sified ad. You are testing the interaction between both the user and classified controller.

For more information on Extreme Programming and the ideas behind test-driven devel-
opment, visit www.extremeprogramming.org/.

RAILS SOLUTIONS:  RAILS MADE EASY

248

7524appb.qxd  12/7/06  10:38 PM  Page 248



Test directory

As outlined in Chapter 4, creating a new Rails application creates several directories. One
of those directories is called test. Take a peek at the test directory; you'll see the follow-
ing files and folders: 

fixtures: Sample data for unit tests

functional: Functional test files

integration: Integration test files

mocks: Container for mock objects

test_helper.rb: Ruby helper file used in testing

unit: Unit test files

Fixtures folder
The fixtures folder houses YAML files containing sample data that you can run through
the unit tests instead of having to worry about creating new data inside the actual test
database itself each time you run the tests. You can define the data fields in an easy-to-
read text file and have Rails import it automatically. Each time you create a new model by
using the generator, it also creates a fixtures file that is associated with the model. Let's
utilize the fixture files now.

1. Remove the existing code in the fixtures/classifieds.yml file; then add the fol-
lowing to it (this is a sample fixture for a classified from the Railslist application): 

first:
id: 1
title: 60GB iPod For Sale
price: 499.00
location: Evansville, IN
description: Black iPod video.  Like new condition 
created_at: <%= 5.days.ago.utc.to_s(:db) %>
updated_at: <%= 2.days.ago.utc.to_s(:db) %>
email: justin@secondgearllc.com

Pay special attention to the formatting of the following code. YAML is very sensitive
in terms of spacing. Each item needs be spaced with a tab. If the YAML isn’t valid,
the testing will fail. 

2. Replace the data in the categories.yml file with the following code (you will need
this when you start testing the categories model):

first:
id: 1
name: Sample Category

another:
id: 2
name: Sample Category 2

TESTING RAILS

249

B

7524appb.qxd  12/7/06  10:38 PM  Page 249



Functional folder
The functional folder contains a functional test file for each controller you have created
in the application. Since you have three controllers in the application, you have three func-
tional test files: classified_controller_test.rb, category_controller_test.rb, and
user_controller_test.rb. The code inside the classified_controller_test.rb file is
not the same as the Classified controller; it instead calls the Classified controller’s methods
and tests functionality to ensure that things are working properly. 

Integration folder
The integration folder is empty at first because you have to manually create each of the
integration test files. 

Mock folder
The most complex folder is mock, which contains a separate folder for each environment
used by the application. Each folder contains mock object implementations. A mock object
is a "double agent" used to test the behavior of other objects. If you are writing an appli-
cation that checks the availability of a domain name through a third-party provider such as
Enom (www.enom.com/), you can use mock objects to imitate the check so that you don't
have to keep pinging Enom's servers while you develop the application. It also eliminates
the dependency on an active network connection while you are developing the applica-
tion. The mock objects are not covered in this book because they're a bit advanced and out
of scope.

Test folder
The test_helper.rb file contains configuration options for the Rails’ testing suite. (You
won't be manipulating this file.)

Unit folder
The unit folder is the home of all the unit tests. Similar to functional tests, a file is created
for each model you create in the application. You write the tests that will check the valid-
ity of the data models in the file associated with each model. In the case of the Classified
model, you would write tests against it in the classified_test.rb file. 

Creating a test database

As discussed before, a Rails application can run under several different environments, and
each separate environment requires a database of its own. One of the environments cre-
ated by default is test, so you need to create a new database for the test environment that
you will be working with in this appendix. 

Why can’t you just use the same development database that you have already created
for the test environment? Besides the environment issue, the test environment is designed
so its database is completely erased each time you run the unit, functional, and integra-
tion tests. So each time you run the tests, you are running it against fresh data. 

RAILS SOLUTIONS:  RAILS MADE EASY

250

7524appb.qxd  12/7/06  10:38 PM  Page 250



You should have created the railslist_test database in Chapter 4. In case you haven't, here
are the instructions for creating it again.

On Windows
To create the database using SQLyog on Windows, launch the application and follow these
steps:

1. Open the Connect To MySQL Host window. 

2. Double-click the Rails Development session you created previously.

3. Under the menu bar, select Database ➤ New ➤ Database. 

4. Name the database railslist_test. Leave everything else the same and click OK. 

On Mac
To create the database using CocoaMySQL on Mac OS X, follow these steps. 

1. In the dialog box that pops up, enter localhost as the host, root as the username,
and the password as defined in Chapter 2. Leave everything else blank so it picks up
the default values.

2. Click the Connect button.

3. Under Databases in the top-left corner, click the Add button. 

4. Another sheet appears. Type in railslist_development and click Add.

Preparing the test database
After the database is created, you still need to populate it with the database schema by
running migrations against it. 

1. Open a command prompt or Terminal window and go to the railslist directory.

2. Type rake db:test:prepare, which populates the database with the same tables that
are found in the development database because it is running the same migrations.

Now that you know the basics of Rails’ testing implementation and have the test database
ready to go, let’s start by creating a few tests and running them. 

Unit-testing the models
To recap: a unit test is a test that runs against a data model. When you created the
Classified model in Chapter 4, it also created a unit test in the test/unit folder called
classified_test.rb. Let’s open that file and examine what is created by default:

require File.dirname(__FILE__) + '/../test_helper'

class ClassifiedTest < Test::Unit::TestCase
fixtures :classifieds

TESTING RAILS

251

B

7524appb.qxd  12/7/06  10:38 PM  Page 251



# Replace this with your real tests.
def test_truth
assert true

end
end

The first line is a require statement that imports the test_helper.rb file discussed earlier.
Next, you have a class definition. Like almost everything else in Ruby on Rails, a unit test is
just another Ruby class. In this instance, ClassifiedTest inherits the attributes and meth-
ods from Test::Unit::TestCase, which is a part of Ruby’s unit testing implementation
Test::Unit. 

The second line imports the fixtures file classifieds.yml. Calling fixtures imports the
data from the YAML file into the test database. 

Below that is a single method that is created by default called test_truth. Starting the
method name with test means that it will be run as a test by the Test::Unit framework.
The test_truth method is merely a stub implementation method of a test that will always
pass. It’s like testing to see if 1 equals 1—the value will always be correct. It’s basically just
a placeholder for the real tests.

The assert method is another method that is part of Ruby’s testing framework—it expects
a logical expression as an argument. If the logical expression evaluates to true, the test is
deemed to pass. There are many different types of assertions included with Ruby, such as
assert_equal, assert_match, assert_not_equal, and so on. Notice that each one of
these assertions has an easy-to-understand method name. For the most part, the func-
tionality of the assertion is self-explanatory just by reading the name. 

Running the first test

Let’s see what its like to run a unit test inside of Rails before you start modifying the
classified_test.rb file.

1. Type the following at the Rails command prompt:

ruby test/unit/classified_test.rb

The output should look similar to Figure B-1. 

Figure B-1. After running a unit test, the results are shown like this.

RAILS SOLUTIONS:  RAILS MADE EASY

252

7524appb.qxd  12/7/06  10:38 PM  Page 252



What just happened? First, Ruby loaded the Test::Unit suite and then started exe-
cuting the classified_test.rb file’s methods sequentially. The period (.) is an
indicator that a test method executed successfully. If the test did not pass, the
period would be replaced with an F (for failure).

There isn’t much going on here yet, so let’s start adding some meat to this unit test
file. The first thing you can do is make use of the fixture you created a few pages
ago and test it against a newly created classified.

2. Add the following method to the classified_test.rb file, just before the last end
keyword, and then save the file:

def test_create
c = Classified.new
c.title = "Test Title"
c.price = 566.00
c.location = "Chicago"
c.description = "This is a sample description that➥

is not very interesting"
c.email = "justin@secondgearllc.com"
assert c.save

# This will pass
d = Classified.find(c.id)
assert_equal c, d

# This will fail
e = Classified.find(1)
assert_equal d, e

end 

This method does a few basic things that should help introduce you to unit testing.
First, you create a new Classified object, c, and populate it with some sample
data. On line 8, you call assert c.save, which tests to make sure that the object
will save. It should return true because you input valid data. 

Below that you create a new variable, d, which is a clone of the c object. To test to
make sure that they are exactly identical, call Ruby’s assert_equal assertion
against it. It should return true as well. assert_equal has a specific format that
you should pass parameters to. The first parameter should be the expected value;
the second value should be what the actual output is from the object. In this case,
you expect the output to be the c object and the actual value to be the d object.

I added the last two lines to this method to give you a taste of what a failed test
looks like. You create another Classified object that contains the fixture from
before. When it was created, it had a database id of 1. The line below that tries to
run assert_equal against the new e object and the preexisting d object. 

What happens when you run a failing test?

TESTING RAILS

253

B

7524appb.qxd  12/7/06  10:38 PM  Page 253



3. Go back to the command prompt or Terminal window and run the test again. The
output should look similar to Figure B-2.

Figure B-2. After running the method, Rails tells you that it failed and how it failed.

The output for a failed test gives you a lot of useful information. It gives you the
method name, the file in which it occurred, and the line number of the failure. In
this case, that would be test_create, classified_test.rb, and line 26. Below that
it gives an output of each of the objects you were using. 

4. As you can plainly see, object 1 does not equal object 2. Let’s fix this error by mod-
ifying the failing line to look like the following and saving your changes:

# This will fail
e = Classified.find(1)
assert_not_equal d, e

end 

5. Run the test again and everything should pass.

You ran a different assertion method called assert_not_equal that checks to make
sure that two objects are not the same. Obviously, they aren’t, so everything will
pass now.

Keep in mind that when you write the unit tests, you should write a test method for
each method in the model class as well as for each validation method you have. For
example, in the classifieds model, you have seven validations:

class Classified < ActiveRecord::Base
validates_presence_of :title, ➥

:message => "cannot be blank. Make your title descriptive"
validates_presence_of :price
validates_presence_of :location
validates_presence_of :description

RAILS SOLUTIONS:  RAILS MADE EASY

254

7524appb.qxd  12/7/06  10:38 PM  Page 254



validates_presence_of :email
validates_numericality_of :price
validates_format_of :email, ➥

:with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i
...
end

Each validation should have a corresponding test in the classified_test.rb file to ensure
that they work properly in the application. Although you can write a single test method to
test all the functionality of the classified model, the best way to accomplish it is with sev-
eral small, to-the-point methods.

Other unit test assertions

You have been introduced to only two assertions thus far, but Rails offers quite a few more
that you can use during the test-driven development. Here are just a few: 

assert_block: The base assertion upon which all others are based. Test whether
the code you are executing returns true. 

assert_nil: Checks to see whether an object returns nil. If so, the test passes.

assert_delta: A math assertion that checks to see whether an expected decimal
value (float for the programmers in the house) matches the actual decimal value
within a certain number of decimal points (the delta value).

assert_raise: Checks to see whether an exception is called. Passes if it does.

assert_not_raise: Checks to see whether an exception is not called. Passes if it
doesn’t.

assert_valid: Checks whether an ActiveRecord object passes all its data validations. 

1. Let’s add a few unit tests to the Category controller as well. Open category_test.rb
and add the following to it just before the last end keyword:

def test_valid
c = Category.new(:name => "Furniture")
assert_valid c

end

def test_unique_name
c = Category.new(:name => "Sample Category")
assert !c.valid?

end

The first test uses the assert_valid assertion to make sure that the Category
instance passes all the data validations it finds in the model. The next test,
test_unique_name, checks to see whether the assertion will fail. Unfortunately,
there is no assert_invalid assertion built into Rails. Instead, the best way to do
this is by using the standard assert keyword and Rails’ valid? method.

2. Run the category_test.rb file and make sure that everything passes.

TESTING RAILS

255

B

7524appb.qxd  12/7/06  10:38 PM  Page 255



Functional testing of the controller
A functional test is a test against a single controller. When writing functional tests, the
main goal is to make sure that each of the actions the user can perform results in a suc-
cessful experience. If the user is creating a new classified ad, for example, you want to
make sure that it goes off without a hitch. Functional testing makes it easy to test all the
common problems that might arise from the development and squash them before the
problem is pushed onto the users. Think of it as the computer imitating what users would
do in their browsers when using the application for real.

Each controller you create also comes with a functional test file. You have only one con-
troller in the application so far, ClassifiedController, so it shouldn’t be too difficult to cre-
ate a few tests to make sure that all the actions result in success for the user. Under the
test/functional directory, there is a file called classified_controller_test.rb. Open
it up and inspect it.

require File.dirname(__FILE__) + '/../test_helper'
require 'classified_controller'

# Re-raise errors caught by the controller.
class ClassifiedController; def rescue_action(e) raise e end; end

class ClassifiedControllerTest < Test::Unit::TestCase
def setup
@controller = ClassifiedController.new
@request    = ActionController::TestRequest.new
@response   = ActionController::TestResponse.new

end

# Replace this with your real tests.
def test_truth
assert true

end
end

The first line should look familiar to you because it’s exactly the same as the first line of
the Classified model test file. The test file imports the settings from the test_helper.rb
file. Below that, the actual Classified controller is imported by calling another require
statement. 

The following line is used by the test controller to raise exceptions that are thrown.
Exceptions are errors that arise from the application not behaving as it is expected to. The
goal is to make sure that any time a user encounters one of these exceptions, you handle
it appropriately. Functional testing is part of the cure that will help ensure it. 

The actual class you are working with is called ClassifiedControllerTest and, like its unit test
counterpart, it inherits from Test::Unit::TestCase. This sample contains two methods:
setup and test_truth. The setup method, which is an integral part of functional testing,
initializes three objects that will be used by all functional tests that you write: 

RAILS SOLUTIONS:  RAILS MADE EASY

256

7524appb.qxd  12/7/06  10:38 PM  Page 256



@controller: The actual instance of the controller you are working with. In this
instance, it is ClassifiedController.

@request: Contains the data from incoming requests sent by the user to the Rails
application: POST and GET data, for example. 

@response: Contains the data you send back to the user’s browser window. HTTP
status codes and the actual data you are returning is encapsulated in an @response
object.

Similar to the Classified unit test, ClassifiedControllerTest also contains a stub test called
test_truth that simply returns true. 

Let’s add a new functional to ensure that the user can get a listing of all the classified ads.

1. Copy the following code into the classified_controller_test.rb file, just before
the last end keyword: 

def test_list
get :list 
assert_response :success
assert_rendered_file "list"

end

This simple test_list method does three things. First, it calls the list action from
the Classified controller using the get method provided by Rails. The get method
simulates an actual request sent to a web server by a user’s browser and then
retrieves the response. 

Second, it makes sure that the response you receive from that call is that of success
(status code 200 for the HTTP geeks). assert_response has several different status
code keywords it can accept. 

:success: The file was successfully retrieved with no problems.

:missing: The file cannot be found (404).

:redirect: The action redirected you to another page than the one you
intended.

:error: The request returned an error not covered by :missing or :redirect.

It can also take the actual HTTP status code instead of the keyword. 

Finally, it ensures that the list template is rendered.

2. To run the new functional test, let’s run the test. Type the following at the Rails
command prompt:

ruby test/functional/classified_controller_test.rb 

The output should be similar to what you received when you were working with
unit tests because everything you are doing in functional testing is using the same
testing classes as the unit testing side of things. 

Never remove the setup method from a functional test. It will cause much chaos. 

TESTING RAILS

257

B

7524appb.qxd  12/7/06  10:38 PM  Page 257



3. Let’s create one more test that will test searching all the Classified objects. Add the
following to the classified_controller_text.rb file, again just before the last
end statement; then save the changes.

def test_search
post :search, "search" => "iPod"
assert_response :success

end

4. Run the classified_controller_test.rb file one more time to make sure that
the method works.

The first line calls the post method to send a simulated HTTP POST message that calls the
controller’s search method. Along with the POST, you are passing the values of the new
search as params[:search]. After sending the request, you use assert_response to make
sure that it ran successfully. 

Let’s look at the actual controller code you wrote for the create method to see how it
matches up with the functional test:

def search
@classifieds = Classified.find(:all, 
:conditions => ["lower(title) like ?", 
"%" + params[:search].downcase + "%"])

if params['search'].to_s.size < 1
render :nothing => true

else
if @classifieds.size > 0
render :partial => 'classified', :collection => @classifieds
else
render :text => "<li>No results found</li>", :layout => false

end
end

end

The bold lines are ones that are directly referenced in the functional test. Notice that the
first line creates a new object using the params[:search] values. If results are rendered,
you are given a successful response. 

Running all the tests at once
It's not really convenient to run each test file manually, so Rails has a built-in way of run-
ning all the unit and functional tests at once. In the Terminal or command prompt window,
type the following command and press Enter.

rake test

Running this command runs all tests that it finds in the test directory. It runs each file one
by one and then outputs a final results tally on the tests at the end. 

RAILS SOLUTIONS:  RAILS MADE EASY

258

7524appb.qxd  12/7/06  10:38 PM  Page 258



Besides the rake test command, there are also more finely grained rake tasks you can run: 

rake test:functionals: Runs all tests that it finds in the test/functional direc-
tory and outputs the results.

rake test:plugins: Runs all tests that are associated with any plugins that you
installed during the course of the application development.

rake test:units: Runs all tests that it finds in the test/unit directory and outputs
the results.

Summary
This appendix gave you a basic introduction to test-driven development and its role in
Ruby on Rails. You also learned how to write basic unit tests and functional tests. There is
still a wealth of information related to test-driven development and Ruby on Rails that you
might want to uncover. For more information, visit the following websites:

A Guide To Testing With Rails: http://manuals.rubyonrails.com/read/book/5

Why and How: Ruby (and Rails) Unit Testing: http://glu.ttono.us/articles/
2005/10/30/why-and-how-ruby-and-rails-unit-testing

Testing with Rails: www.linuxjournal.com/article/8625

The ActionMailer tests fail because you changed how the scaffolded method worked in
Chapter 8 by modifying the parameters it accepts. I left this in deliberately as a reader
exercise—see if you can fix the test to match the modified contact method.

TESTING RAILS

259

B

7524appb.qxd  12/7/06  10:38 PM  Page 259



7524index.qxd  12/13/06  4:50 PM  Page 260



INDEX

7524index.qxd  12/13/06  4:50 PM  Page 261



A
accessibility and Ajax, 123
action caching, 240, 242
Action Controller, 8, 9

image method, 154
send_data method, 153

Action Mailer
adding CSS style, 146
configuring, 142
sending email with, 142
using, 143–146

Active Record
associations supported, 90
database support, 12
function of, 8
preventing SQL injection, 14
storing data, 55, 173–174

acts_as_taggable plug-in, 212–214
using, 214–217

Agile Web Development, 212
Ajax, 118

forms, 128–132
adding and removing categories, 132–135
adding dynamic JavaScript functionality with RS, 135–138
creating search box, 140–141
searching classifieds, 139–140

introduction, 120–122
problems with, 123–124
when to use, 123
where it is used, 121

ApplicationController
controller classes inherit from, 67
referencing login_engine, 219

arrays, 48–49
ashes, 48–49
assertions, 252, 255
assert_block method, 255
assert_delta method, 255
assert_equal method, 252–253
assert_match method, 252
assert_nil method, 255
assert_not_equal method, 252, 254–255
assert_not_raise method, 255
assert_raise method, 255
assert_response method, 257
assert_valid method, 255
associations

creating between models, 90–91
creating for user model, 165–166
working with new relationship, 92–93

asynchronous behavior of Ajax, 121
Asynchronous JavaScript and XML. See Ajax
attachments, 156–159
authentication, 162–181

INDEX

262

B
Basecamp, development of, 7
belongs_to method

Classified model, 91
breakpointer, 101–103
browsers, development of, 119

C
caching content, 240–241

expiring caches, 243–244
implementing in application, 242–243
setting up caching strategy, 241

Campfire, 12
Capistrano

See also Railslist project
deployment with, 224
installing, 234–235

connecting to server on Mac, 235
connecting to server on Windows, 236

case sensitivity and class names, 43
categories

adding and removing, 132–133
adding tag cloud from, 189, 191–193
adding to Railslist project, 128
controlling, 93–95
listings page, 130 
with migrations, adding, 88–90

categories controller
creating, 128–132
securing, 178–179

Category Controller
adding unit tests to, 255
associating with Classified model, 88–91
enabling user to delete categories, 137 
delete method, 138
show method, 131–132

Category model
working with new relationship, 92–93

Category object, creating, 133
CGI (Common Gateway Interface), 4
classes

introduction, 42–46 
methods, 43
variables, 41

Classified controller
create method, 215
functionality, 55 
functional testing of, 256–258

Classified model
associating to user accounts, 162, 179
associating with Category model, 88, 90–91
working with new relationship, 92–93

client side data validation, 84

7524index.qxd  12/13/06  4:50 PM  Page 262



CocoaMySQL, 28
creating database on Mac OS X, 60
wiping database, 162

collection_select method, 92
Common Gateway Interface. See CGI
components, 220–221
Concurrent Version System. See CVS
constructors, 43
content_type field, 151
controllers

adding to user model, 166–167
creating for Railslist project, 67–69

creating the first objects, 71–74
creating the views, 69–71
removing ads, 76–77
updating existing ads, 74–76

using for working with model objects, 55
Convention Over Configuration, 7
create method

Classified controller, 215
create, read, update, delete. See CRUD
Cross Site Scripting). See XSS
cross-site scripting. See XXS
CRUD functionality

scaffolding, 204
CSS (Cascading Style Sheets)

adding style emails, 146
customizing views, 184

helper methods, 186–187
CVS (Concurrent Version System)

compared to Subversion, 225

D
database

creating for Railslist project, 59–60
command line, 61
Mac OS X, 60
telling Rails, 62
Windows, 60

migrating, 218–219
reading files from, 153–154
securing data field, 155
support, 12
updating remaining views, 155–156
uploading images to, 150–152
wiping with CocoaMySQL, 162
wiping with SQLyog, 163

DateHelper, 110–113
dates

defining date formats, 113–114
formatting using DateHelper, 110–113

debugging, 99
breakpointer, 101–103

INDEX

263

Rails console, 99–101
reading existing data, 101
views, 103–104

decision structures, 49–50
delete method

CategoryController class, 138
deleting items, 137–138
deployment

See also Railslist project
deploying application, 236–237
introduction, 224–225
tool requirements, 226

development environment requirements, 18
DHTML (Dynamic HTML)

development of browsers, 119
distance_of_time_in_words method, 114
distance_of_time_in_words_to_now method, 114
Document Object Model. See DOM
DOM (Document Object Model), 119
don’t repeat yourself (DRY), 7
DRbStore, 174

storing fragment caching, 241
DRY (don’t repeat yourself), 7
Dynamic HTML. See DHTML
dynamic websites, development of, 4

E
elsif statements, 49
emails

adding CSS style, 146
attachments, 156–159
configuring Action Mailer, 142–143
removing field from user model, 180
sending with Action Mailer, 143–146
using Action Mailer, 142

encapsulation, 6
end keyword, 253, 258
engines

configuring login_engine, 219–220
introduction, 217–218
migrating the database, 218–219

exception handling, 51
expiring caches, 243–244
Extreme Programming and test-driven development, 248

F
FastCGI

bindings, 18 
installing on Mac OS X, 24 
libraries, 18

FileStore
storing fragment caching, 241

7524index.qxd  12/13/06  4:50 PM  Page 263



file_column plugin, 150
file_field helper, 152
filtering data, Ajax, 123
fixtures folder, 249
formating data, 108

dates, 110–114
numbers, 108–110

forms
adding and removing categories, 132–133

partials, 134–135
adding dynamic JavaScript functionality with RS,

135–136
deleting items, 137–138
validation, 136–137

creating search box, 140–141
searching classifieds, 139–140

form_remote_tag, 133, 136
fragment caching, 240

implementing, 242–243
storing caches, 241

frameworks
introduction of, 4
Rails, 5

Fuch, Thomas
script.aculo.us library, 132

function tests of controller, 256–258
functional folder, 250
functional tests, 248

G
GET method, 168–169
global variables, 42
Grosenbach, Geoffrey

Shovel scripts for Capistrano deployment, 226

H
h() method

preventing XXS attacks, 14
has_many relationship, 91
head tag, 132
helper methods

using in views, 186–187
HTTP

GET method, 168–169
POST method, 168–169, 208

I
if statements, 49
image method

Action Controller, 154
Images, uploading to database, 150–153

INDEX

264

image_tag, 154
<img> tag, 156
inheritance, 6, 46
installing Rails on Mac OS X, 18

extra tools, 28
installing Xcode, 19–21
Locomotive, 27
manual install, 22

installing FastCGI, 24
installing Lighttdp, 25
installing MySQL, 26–27
setting file path, 22–23
setting up Rails framework, 24
setting up Ruby, 23–24

semiautomatic install, 21
installing Rails on Windows, 28

extra tools, 35
installing MySQL, 30–35
installing Ruby, 28–29
InstantRails, 35

instance variables, 42
instantiation, 48
InstantRailsL

installing Rails on Windows, 35
integration testing, 248
iterators, 50–51

J
JavaScript

development of dynamic websites, 4, 119
JavaScriptHelper module

Rails and Ajax, 122

L
Lighttpd

installing on Mac OS X, 25
launching, 58
setting up on TextDrive server, 234
using, 57

link_to method, 133
list method

CategoryController class, 129–130
listings organization, 184–185
local variables, 41
Locomotive

installing Rails on Mac OS X, 27
logging out

user model, 180–181
login form

creating for user model, 170–173
login method

User controller, 172–173

7524index.qxd  12/13/06  4:50 PM  Page 264



login_engine, 218
configuring, 219–220

LONGBLOB
MySQL-specific column type, 151

M
Mac OS X

connecting to TextDrive server, 235
creating database with CocoaMySQ, 60
creating test database, 251
installing Rails, 18

extra tools, 28
installing Xcode, 19–21
Locomotive, 27
manual install, 22–27
semiautomatic install, 21

installing Subversion, 226
wiping database with CocoaMySQL, 162

many-to-many relationships, 91
Measure Map

as Rails application, 12
MemCacheStore

storing fragment caching, 241
Memory Store, 173

storing fragment caching, 241
methods, 43

introduction to objects, 6
microformats

adding to Railslist, 198–201
introduction, 194–198

migrations
See also categories with migrations
creating model for Railslist project, 64–67
database, 218–219
methods, 64

mock folder, 250
Model-View-Controller. See MVC
models

creating associations, 90–91
creating model for Railslist project, 63–64
description, 8–9
working with new relationships, 92–93

MVC (Model-View-Controller)
introduction, 11

MySQL
installing on Mac OS X, 26–27
installing on Windows, 30–35
wiping database in Mac OS X, 162
wiping database in Windows, 163

MySQL command
creating database for Railslist project, 61

MySQL database
creating, 228–230

INDEX

265

N
named routes, 97–99
namining conventions, tables, 65
natural language methods

defining date formats, 114
nonclass methods, 43
NumberHelper

introduction, 108–109
numbers

formatting using natural language, 114
formatting with NumberHelper, 108–109
other helpers, 110

number_to_currency method, 109
number_to_human_size method, 110
number_to_percentage method, 110
number_to_phone method, 110

O
object-oriented programming, 6–7
objects

calling, 48
introduction, 6, 42–46

Odeo, 12
one-to-many relationships, 91

creating between Classified and Category models, 91
working with new relationships, 92–93

P
page caching, 240

implementing, 242
partials, 134–135
PCRE libraries, 18
plug-ins

adding functionality with, 212
using, 212–214
using acts_as_taggable, 214–217

polymorphism, 6–7, 47
Porchlight bug-tracking system

as Rails application, 12
POST method, 168–169, 208
private methods, 43
procedural programming, 6
properties, 6
protected methods, 45
Prototype library

Stephenson, Sam, 132
PStore, 174
public methods, 43

7524index.qxd  12/13/06  4:50 PM  Page 265



R
RadRails, 36
Rails

See also installing Rails,
and Ajax, 121
basic application example, 9–11
components, 8–9
creating a project, 54–57

adding style, 77–80
configuring web server, 57–58
creating the controller, 67–77
creating the database, 59–62
creating the model, 63–67

database support, 12
framework built on Ruby, 5
introduction, 7
MVC (Model-View-Controller), 11
safety of, 14
who uses, 12

Rails console
debugging, 99–101
reading existing data, 101

Rails framework
setting up on Mac OS X, 24

Railslist project
adding and removing categories, 132–135
adding categories with migrations, 88–90
adding dynamic JavaScript functionality with RS,

135–136
deleting items, 137–138
validation, 136–137

adding microformats, 198–201
adding style, 77–80
architecture, 54–55
categories controller, 128–132
configuring the web server, 57–58

viewing the application, 58
creating, 56–57
creating the controller, 67–69

creating first objects, 71–74
creating views, 69–71
removing ads, 76–77
updating existing ads, 74–76

creating the database, 59–60
command line, 61
Mac OS X, 60
telling Rails, 62
Windows, 60

creating the model, 63–64
Rails migrations, 64–67

customizing views, 184
adding eb 2.0 style, 187–189
creating tag cloud from categories, 189–193
helper methods, 186–187

INDEX

266

deployment, 224, 226
committing project to Subversion, 233–234
creating MySQL database, 228–230
deploying application, 236–237
installing Capistrano, 234–236
preparations, 228
setting up server, 231–233
tool requirements, 226

implementing content caching, 242–243
implementing validations, 85–88
organizing listings, 184–185
searching classifieds, 139–140

creating search box, 140–141
user model

adding new controller, 166–167
creating, 164–165
creating login form, 170–173
creating signup form, 167–169
locking down, 175–179
logging out, 180–181
removing email field, 180
securing users, 169–170
storing session data, 173–175
validations and associations, 165–166

rake migrate, 90
rake tasks, test commands, 259
reading files from database, 153–154
Readline, 18
require statement, 252
retrieving search results with Ajax, 123
routing

defining, 96
defining route en masse, 97
modifying URLs, 95
named routes, 97–99

RSS (Really Simple Syndication), 195
Ruby

arrays and hashes, 48–49
calling objects, 48
classes and objects, 42–46
decision structures, 49

while, 50
exception handling, 51
history of, 5
inheritance, 46
installing on Windows, 28–29
iterators, 50–51
polymorphism, 47
setting up on Mac OS X, 23–24
syntax, 40–41
variables, 41–42

Ruby on Rails framework
Capistrano, 224
more advanced features, 84

7524index.qxd  12/13/06  4:50 PM  Page 266



S
scaffolding

creating an application, 204–205
analyzing code, 207–210
data model, 210, 212
testing scaffolds, 206–207

introduction, 204
SciTE text editor, 35
script.aculo.us library

Fuch, Thomas, 132
search box, creating, 140–141
search functionality, adding visual indicator, 187–189
searching classifieds, 139–140
Section 508 standards and Ajax, 123
security

and Ajax, 124
safety of Rails, 14

self keyword, 43
self.down method, 64
self.up method, 64
send_data method

Action Controller, 153
server side data validation, 84
session data, storing, 173–174
session management, 162–181
setup method, 256
SHA1 hash, 169–170
Shovel scripts

Grosenbach, Geoffrey, 226
setting up Lighttpd and Capistrano on TextDrive, 234

show method
CategoryController class, 131–132

signup form, 167–169
SQL injection, preventing, 14
SQLFront, 36

creating database on Windows, 60
SQLypg, wiping database, 163
start_form_tag, 133, 152
Stephenson, Sam

Prototype library, 132
Strongspace, 12
Subversion

committing project, 233–234
installing on Mac OS X, 226
installing on Windows, 227
setting up repository on TextDrive, 231
source code management repository, 225

super keyword, 46

T
tables, namining conventions, 65
tagging capabilities

acts_as_taggable plug-in, 214–217
adding to Railslist, 212–214

INDEX

267

test database, creating, 250–251
test directory, 249

folders, 249–250
test folder, 250
test-driven development

creating a test database, 250–251
functional testing of controller, 256–258
introduction, 248
preparing a test database, 251
running all the tests at once, 258
test directory, 249–250
unit testing models, 251–255

TestCase class, 256
Test::Unit framework, 256
test_truth method, 252, 256
TextDrive, 226

creating an account, 228
setting up Subversion repository, 231
Webmin, 231

TextMate, 28
text_field helper, 151

U
<u>l tag, 133
unit folder, 250
unit tests, 248

assertions, 255
testing the models, 251–254

uploading files, 150
uploading images to database, 150–153

uploading images
securing data field, 155
updating remaining views, 155–156

URLs, modifying with routing, 95–99
usability and Ajax, 124
user accounts, associating classifieds, 162, 179
User controller

login method, 172–173
user model

adding new controller, 166–167
adding validations and associations, 165–166
creating, 164–165
creating login form, 170–173
creating signup form, 167–169
locking down, 175–178

securing categories controller, 178–179
logging out, 180–181
removing email field, 180
securing users, 169–170
storing session data, 173–174
working with sessions, 175

UserController
packaged with plug-in, 219

users, securing, 169–170
utilities, 18

7524index.qxd  12/13/06  4:50 PM  Page 267



V
validate method, 87
validates_acceptance_of built-in validation, 88
validates_confirmation_of built-in validation, 88
validates_length_of built-in validation, 88
validates_numericality_of built-in validation, 87
validates_uniqueness_of built-in validation, 88
validate_format_of built-in validation, 87
validating data, 84

implementing in railslist, 85–87
other common validations, 88

validation, 136–137
creating for user model, 165–166

variables, 41–42
defining type of, 41

views, debugging, 103–104
views, customizing, 184

helper methods, 186–187

W
WAI (Web Accessibility Initiative)

accessibility guidelines, 123
Web 2.0

creating tag cloud from categories, 189–193
adding visual indicator to search functionality, 187–189

Web Accessibility Initiative. See WAI
web hosts

TextDrive, 226
web interaction, history, 118–120
web server

configuring for Railslist project, 57–58

INDEX

268

Webmin
TextDrive, 231

WEBrick
launching, 58
recommendation for, 57

while, 50
Windows

connecting to TextDrive server, 236
creating database with SQLFront, 60
creating test database, 251
installing Rails, 28

extra tools, 35
InstantRails, 35
MySQL, 30–35
Ruby, 28–29

installing Subversion, 227
Windows XP

wiping database withSQLyog, 163

X
Xcode tools, 19–21
XMLHttpRequest function, 120
XSS (Cross Site Scripting)

preventing, 210
XXS (cross-site scripting)

prevention of, 14

Y
yield keyword, 178

7524index.qxd  12/13/06  4:50 PM  Page 268


	Rails Solutions: Ruby on Rails Made Easy
	Table of Content
	Chapter 1 Introduction to Ruby on Rails
	Chapter 2 Installing Rails
	Chapter 3 Ruby for Rails Developers
	Chapter 4 Getting Started with Rails
	Chapter 5 More Advanced Rails
	Chapter 6 Formatting Data
	Chapter 7 Introduction to Ajax
	Chapter 8 Bringing Forms to Life with Ajax
	Chapter 9 Uploading Files and Sending Attachments
	Chapter 10 User Authentication and Session Management
	Chapter 11 Customizing Rails Views
	Chapter 12 Using Rails Plug-ins and Engines
	Chapter 13 Deploying with Capistrano
	Appendix A Caching Your Content
	Appendix B Testing Rails
	Index




