

Developers the world over talk about
Programming Ruby and the Ruby language. . .

“Ruby is a wonderfully powerful and useful language, and whenever I’m working

with it, this book is at my side.”

Martin Fowler, Chief Scientist, ThoughtWorks

“If your world revolves around Java, as mine did, then you need this outstanding book

to learn all the wonderful things you’re missing. There’s just one catch: you’ll be

spoiled from then on. Indeed, after reading just a few pages of Programming Ruby,

programming in any language other than Ruby will feel like you’re pushing rope.”

Mike Clark, Author and Consultant

“Ruby is smart, elegant, and fun, and it deserves a book that’s smart, elegant, and fun.

The first edition of Programming Ruby was such a book; the second edition is even

better.”

James Britt, Administrator, http://ruby-doc.org

“The best reason to learn a new programming language is to learn to think differently.

The best way to learn to think the Ruby way is to read Programming Ruby. Several

years ago, with the first edition of this book, I did just that. Since then, I’ve had a

constant stream of enjoyable Ruby programming experiences. This is due in no

insignificant part to the quality of the source from which I learned the language. I’m

not the only person I’ve heard say that every language should have a book like this.”

Chad Fowler, Codirector, Ruby Central, Inc.

“The PickAxe got me started on Ruby. It is still the first book I turn to.”

Ryan Davis, Founder, Seattle.rb

“This book changed my life. Sounds rather clichéd, but it’s the truth. After six years

and 300,000 lines of Java code, I needed a change. That change occurred upon reading

the first edition of this book. With the support of a solid community and ever-growing

foundation of superb libraries, I founded a company that largely profits from applying

Ruby to solve real-world problems. Ruby is ready for prime time, and this new

version of the PickAxe will show a waiting world what a gem Ruby really is.”

Rich Kilmer, President and CEO, InfoEther LLC

“The first edition of PickAxe has been a desk-side companion for years. The second

edition will be an eagerly awaited replacement.”

Tom Enebo, JRuby Developer

http://ruby-doc.org

“The first edition of Programming Ruby brought about no less than the introduction of

Ruby on a large scale outside of Japan, in the process becoming the de facto standard

published language reference and an oft-cited model of clear, effective technical

writing. The appearance of the second, expanded edition is exciting for Ruby

programmers around the world and will no doubt attract a fresh wave of newcomers to

this elegant, versatile language.”

David A. Black, Ph.D., Codirector, Ruby Central, Inc.

“Ruby is my definite choice for all scripting and prototyping issues, and this book will

help you to discover its usefulness as well as its beauty. Apart from that, it’s really fun

to read!”

Robert Klemme

“I bought the first edition of this book the day it was released and had a fantastic time

using it to learn Ruby. I eventually bought a second copy to keep at home. But Ruby

has changed since then. I’m delighted that this second edition of Programming Ruby

is available to help a new round of programmers learn about this fantastic, beautiful

language. And it’s not just good news for Ruby newbies, of course—like me, most

Ruby developers will want a copy (no, make that two) so that all of the details about

today’s Ruby will be close at hand.”

Glenn Vanderburg, Software Architect, Countrywide Financial

“Ruby is one of those great languages that takes an afternoon to start using and years

(maybe a lifetime) to master. In C, I’m always having to work around the limitations

of the language; in Ruby, I’m always discovering a neater, cleaner, more efficient way

to do things. Programming Ruby is the essential reference to the Ruby language. More

than just teaching you the syntax, it teaches you the spirit and the feel of the language.”

Ben Giddings

“Confucius said, “What you hear, you forget.” He also said, “What you do you

understand.” But it’s not easy to actually “do” things unless you’re using a great

language with strength in quick and clean prototyping. In my case, this language is

Ruby! Thank you!”

Michael Neumann

Programming Ruby
The Pragmatic Programmers’ Guide

Second Edition

Dave Thomas
with Chad Fowler

and Andy Hunt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC, was aware
of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility
for errors or omissions or for damages that may result from the use of information (including program
listings) contained herein.

This book is a heavily revised version of the book Programming Ruby, originally published by Addison
Wesley. This book is printed with their permission.

Our Pragmatic courses, workshops, and other products can help you and your team create better software
and have more fun. For more information, as well as the latest Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2005 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-5-5

Text printed on acid-free paper.

Second Printing, November 2004

Version: 2004-10-26

http://www.pragmaticprogrammer.com

Contents

FOREWORD TO THE FIRST EDITION xvii

FOREWORD TO THE SECOND EDITION xix

PREFACE xx

ROAD MAP xxvi

PART I—FACETS OF RUBY

1 GETTING STARTED 2
Installing Ruby . 2
Running Ruby . 4
Ruby Documentation: RDoc and ri . 7

2 RUBY.NEW 9
Ruby Is an Object-Oriented Language 9
Some Basic Ruby . 11
Arrays and Hashes . 14
Control Structures . 16
Regular Expressions . 17
Blocks and Iterators . 19
Reading and ’Riting . 21
Onward and Upward . 22

3 CLASSES, OBJECTS, AND VARIABLES 23
Inheritance and Messages . 25
Objects and Attributes . 27
Class Variables and Class Methods . 31
Access Control . 35
Variables . 37

Prepared exclusively for Margus Pau v

CONTENTS vi

4 CONTAINERS, BLOCKS, AND ITERATORS 40
Containers . 40
Blocks and Iterators . 46
Containers Everywhere . 54

5 STANDARD TYPES 55
Numbers . 55
Strings . 57
Ranges . 62
Regular Expressions . 64

6 MORE ABOUT METHODS 74
Defining a Method . 74
Calling a Method . 76

7 EXPRESSIONS 81
Operator Expressions . 82
Miscellaneous Expressions . 83
Assignment . 84
Conditional Execution . 87
Case Expressions . 92
Loops . 94
Variable Scope, Loops, and Blocks . 99

8 EXCEPTIONS, CATCH, AND THROW 101
The Exception Class . 101
Handling Exceptions . 102
Raising Exceptions . 106
Catch and Throw . 108

9 MODULES 110
Namespaces . 110
Mixins . 111
Iterators and the Enumerable Module . 113
Composing Modules . 113
Including Other Files . 116

10 BASIC INPUT AND OUTPUT 119
What Is an IO Object? . 119
Opening and Closing Files . 120
Reading and Writing Files . 121
Talking to Networks . 125

Prepared exclusively for Margus Pau

CONTENTS vii

11 THREADS AND PROCESSES 127
Multithreading . 127
Controlling the Thread Scheduler . 132
Mutual Exclusion . 133
Running Multiple Processes . 139

12 UNIT TESTING 143
Test::Unit Framework . 144
Structuring Tests . 148
Organizing and Running Tests . 151

13 WHEN TROUBLE STRIKES 155
Ruby Debugger . 155
Interactive Ruby . 156
Editor Support . 157
But It Doesn’t Work! . 159
But It’s Too Slow! . 162

PART II—RUBY IN ITS SETTING

14 RUBY AND ITS WORLD 167
Command-Line Arguments . 167
Program Termination . 170
Environment Variables . 171
Where Ruby Finds Its Modules . 172
Build Environment . 173

15 INTERACTIVE RUBY SHELL 174
Command Line . 174
Configuration . 179
Commands . 183
Restrictions . 185
rtags and xmp . 185

16 DOCUMENTING RUBY 187
Adding RDoc to Ruby Code . 187
Adding RDoc to C Extensions . 195
Running RDoc . 199
Displaying Program Usage . 200

Prepared exclusively for Margus Pau

CONTENTS viii

17 PACKAGE MANAGEMENT WITH RUBYGEMS 203
Installing RubyGems . 204
Installing Application Gems . 204
Installing and Using Gem Libraries . 206
Creating Your Own Gems . 211

18 RUBY AND THE WEB 222
Writing CGI Scripts . 222
Cookies . 231
Improving Performance . 234
Choice of Web Servers . 234
SOAP and Web Services . 236
More Information . 240

19 RUBY TK 241
Simple Tk Application . 241
Widgets . 242
Binding Events . 246
Canvas . 247
Scrolling . 249
Translating from Perl/Tk Documentation 251

20 RUBY AND MICROSOFT WINDOWS 253
Getting Ruby for Windows . 253
Running Ruby Under Windows . 254
Win32API . 254
Windows Automation . 255

21 EXTENDING RUBY 261
Your First Extension . 261
Ruby Objects in C . 264
The Jukebox Extension . 270
Memory Allocation . 279
Ruby Type System . 280
Creating an Extension . 282
Embedding a Ruby Interpreter . 287
Bridging Ruby to Other Languages . 290
Ruby C Language API . 291

Prepared exclusively for Margus Pau

CONTENTS ix

PART III—RUBY CRYSTALLIZED

22 THE RUBY LANGUAGE 302
Source Layout . 302
The Basic Types . 304
Names . 313
Variables and Constants . 315
Expressions . 323
Method Definition . 330
Invoking a Method . 333
Aliasing . 336
Class Definition . 337
Module Definitions . 339
Access Control . 341
Blocks, Closures, and Proc Objects . 341
Exceptions . 345
Catch and Throw . 347

23 DUCK TYPING 349
Classes Aren’t Types . 350
Coding like a Duck . 354
Standard Protocols and Coercions . 355
Walk the Walk, Talk the Talk . 361

24 CLASSES AND OBJECTS 362
How Classes and Objects Interact . 362
Class and Module Definitions . 370
Top-Level Execution Environment . 376
Inheritance and Visibility . 376
Freezing Objects . 377

25 LOCKING RUBY IN THE SAFE 379
Safe Levels . 380
Tainted Objects . 381

26 REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY 384
Looking at Objects . 385
Looking at Classes . 386
Calling Methods Dynamically . 388
System Hooks . 391
Tracing Your Program’s Execution . 393
Marshaling and Distributed Ruby . 395
Compile Time? Runtime? Anytime! . 400

Prepared exclusively for Margus Pau

CONTENTS x

PART IV—RUBY LIBRARY REFERENCE

27 BUILT-IN CLASSES AND MODULES 402
Alphabetical Listing . 403

Array . 406
Bignum . 420
Binding . 423
Class . 424
Comparable . 426
Continuation . 427
Dir . 428
Enumerable . 433
Errno . 439
Exception . 440
FalseClass . 443
File . 444
File::Stat . 456
FileTest . 462
Fixnum . 463
Float . 466
GC . 470
Hash . 471
Integer . 480
IO . 482
Kernel . 495
Marshal . 514
MatchData . 516
Math . 519
Method . 522
Module . 524
NilClass . 540
Numeric . 541
Object . 546
ObjectSpace . 557
Proc . 559
Process . 562
Process::GID . 568
Process::Status . 570
Process::Sys . 573
Process::UID . 575
Range . 576
Regexp . 579

Prepared exclusively for Margus Pau

CONTENTS xi

Signal . 583
String . 585
Struct . 605
Struct::Tms . 609
Symbol . 610
Thread . 612
ThreadGroup . 619
Time . 621
TrueClass . 629
UnboundMethod . 630

28 STANDARD LIBRARY 632
Abbrev . 634
Base64 . 635
Benchmark . 636
BigDecimal . 637
CGI . 638
CGI::Session . 640
Complex . 641
CSV . 642
Curses . 643
Date/DateTime . 644
DBM . 645
Delegator . 646
Digest . 647
DL . 648
dRuby . 649
English . 650
Enumerator . 651
erb . 652
Etc . 654
expect . 655
Fcntl . 656
FileUtils . 657
Find . 658
Forwardable . 659
ftools . 660
GDBM . 661
Generator . 662
GetoptLong . 663
GServer . 664
Iconv . 665
IO/Wait . 666

Prepared exclusively for Margus Pau

CONTENTS xii

IPAddr . 667
jcode . 668
Logger . 669
Mail . 670
mathn . 671
Matrix . 673
Monitor . 674
Mutex . 675
Mutex_m . 676
Net::FTP . 677
Net::HTTP . 678
Net::IMAP . 680
Net::POP . 681
Net::SMTP . 682
Net::Telnet . 683
NKF . 684
Observable . 685
open-uri . 686
Open3 . 687
OpenSSL . 688
OpenStruct . 689
OptionParser . 690
ParseDate . 692
Pathname . 693
PP . 694
PrettyPrint . 695
Profile . 696
Profiler_ _ . 697
PStore . 698
PTY . 699
Rational . 700
readbytes . 701
Readline . 702
Resolv . 703
REXML . 704
Rinda . 706
RSS . 707
Scanf . 708
SDBM . 709
Set . 710
Shellwords . 711
Singleton . 712
SOAP . 713

Prepared exclusively for Margus Pau

CONTENTS xiii

Socket . 714
StringIO . 715
StringScanner . 716
Sync . 717
Syslog . 719
Tempfile . 720
Test::Unit . 721
thread . 722
ThreadsWait . 723
Time . 724
Timeout . 725
Tk . 726
tmpdir . 727
Tracer . 728
TSort . 729
un . 730
URI . 731
WeakRef . 732
WEBrick . 733
Win32API . 734
WIN32OLE . 735
XMLRPC . 736
YAML . 737
Zlib . 738

PART V—APPENDIXES

A SOCKET LIBRARY 740
BasicSocket . 741
Socket . 743
IPSocket . 747
TCPSocket . 748
SOCKSSocket . 749
TCPServer . 750
UDPSocket . 751
UNIXSocket . 753
UNIXServer . 754

Prepared exclusively for Margus Pau

CONTENTS xiv

B MKMF REFERENCE 755
mkmf . 755

C SUPPORT 758
Web Sites . 758
Download Sites . 759
Usenet Newsgroup . 759
Mailing Lists . 759

D BIBLIOGRAPHY 761

Prepared exclusively for Margus Pau

List of Tables
2.1 Example variable and class names . 15
5.1 Character class abbreviations . 68
7.1 Common comparison operators . 89
11.1 Two threads in a race condition . 135
13.1 Debugger commands . 165
14.1 Environment variables used by Ruby 172
15.1 irb command-line options . 175
17.1 Version operators . 206
18.1 Command-line options for erb . 230
21.1 C/Ruby data type conversion functions and macros 266
22.1 General delimited input . 304
22.2 Substitutions in double-quoted strings 306
22.3 Reserved words . 314
22.4 Ruby operators (high to low precedence) 324
25.1 Definition of the safe levels . 383
27.1 Class Array: pack directives . 414
27.2 Class File: match-mode constants . 447
27.3 Class File: path separators . 449
27.4 Class File: open-mode constants . 451
27.5 Class File: lock-mode constants . 455
27.6 Class IO: mode strings . 483
27.7 Module Kernel: sprintf flag characters 510
27.8 Module Kernel: sprintf field types 511
27.9 Module Kernel: file tests with a single argument 512
27.10 Module Kernel: file tests with two arguments 512
27.11 Class Numeric: methods and subclasses 543
27.12 Class Numeric: divmod, modulo, and remainder 544
27.13 Class String: backslash sequences in substitution strings 593
27.14 Class String: unpack directives . 603
27.15 Class Time: strftime directives . 627
28.1 Class ERB: inline directives . 653
28.2 Class OptionParser: option definitions 691

Prepared exclusively for Margus Pau xv

List of Figures
3.1 Variables hold object references. 39
4.1 How arrays are indexed . 42
8.1 Ruby exception hierarchy . 103
12.1 Roman numerals generation (with bugs) 145
12.2 Test::Unit assertions . 154
13.1 Sample irb session . 158
13.2 Comparing variable access costs using benchmark 163
16.1 Browse RDoc output for class counter 188
16.2 Browse RDoc output when source has comments 189
16.3 Using ri to read documentation . 190
16.4 Document for class Proc generated by RDoc/ri 191
16.5 Ruby source file documented with RDoc 196
16.6 C source file documented with RDoc 198
16.7 Sample program using RDoc::usage 201
16.8 Help generated by sample program . 202
17.1 MomLog package structure . 220
18.1 Sample CGI Form . 225
18.2 Erb processing a file with loops . 232
19.1 Drawing on a Tk Canvas . 248
21.1 Wrapping objects around C data types 272
21.2 Building an extension . 283
22.1 State transitions for boolean range . 327
24.1 A basic object, with its class and superclass 363
24.2 Adding a metaclass to Guitar . 364
24.3 Adding a virtual class to an object . 367
24.4 An included module and its proxy class 369
27.1 Standard exception hierarchy . 441
27.2 Method#arity in action . 523

Prepared exclusively for Margus Pau xvi

Foreword to the
First Edition

Man is driven to create; I know I really love to create things. And while I’m not good
at painting, drawing, or music, I can write software.

Shortly after I was introduced to computers, I became interested in programming lan-
guages. I believed that an ideal programming language must be attainable, and I wanted
to be the designer of it. Later, after gaining some experience, I realized that this kind of
ideal, all-purpose language might be more difficult than I had thought. But I was still
hoping to design a language that would work for most of the jobs I did everyday. That
was my dream as a student.

Years later I talked with colleagues about scripting languages, their power and possi-
bility. As an object-oriented fan for more than fifteen years, it seemed to me that OO
programming was very suitable for scripting too. I did some research on the ’net for a
while, but the candidates I found, Perl and Python, were not exactly what I was look-
ing for. I wanted a language more powerful than Perl and more object-oriented than
Python.

Then, I remembered my old dream and decided to design my own language. At first I
was just toying around with it at work. But gradually it grew to be a tool good enough
to replace Perl. I named it Ruby—after the precious red stone—and released it to the
public in 1995.

Since then a lot of people have become interested in Ruby. Believe it or not, Ruby is
actually more popular than Python in Japan right now. I hope that eventually it will be
just as well received all over the world.

I believe that the purpose of life is, at least in part, to be happy. Based on this belief,
Ruby is designed to make programming not only easy but also fun. It allows you to
concentrate on the creative side of programming, with less stress. If you don’t believe
me, read this book and try Ruby. I’m sure you’ll find out for yourself.

I’m very thankful to the people who have joined the Ruby community; they have helped
me a lot. I almost feel like Ruby is one of my children, but in fact, it is the result of the

Prepared exclusively for Margus Pau xvii

FOREWORD xviii

combined efforts of many people. Without their help, Ruby could never have become
what it is.

I am especially thankful to the authors of this book, Dave Thomas and Andy Hunt.
Ruby has never been a well-documented language. Because I have always preferred
writing programs over writing documents, the Ruby manuals tend to be less thorough
than they should be. You had to read the source to know the exact behavior of the
language. But now Dave and Andy have done the work for you.

They became interested in a lesser-known language from the Far East. They researched
it, read thousands of lines of source code, wrote uncountable test scripts and e-mails,
clarified the ambiguous behavior of the language, found bugs (and even fixed some of
them), and finally compiled this great book. Ruby is certainly well documented now!

Their work on this book has not been trivial. While they were writing it, I was modi-
fying the language itself. But we worked together on the updates, and this book is as
accurate as possible.

It is my hope that both Ruby and this book will serve to make your programming easy
and enjoyable. Have fun!

Yukihiro Matsumoto, a.k.a. “Matz”

Japan, October 2000

Prepared exclusively for Margus Pau

Foreword to the
Second Edition

No one in 1993 would have believed that an object-oriented language created by a
Japanese amateur language designer would end up being used worldwide and that the
language would become almost as popular as Perl. It was insane. I admit that. I didn’t
believe it either.

But it happened, far exceeding my expectations. It was caused—at least in part—by
the first edition of this book. The famous Pragmatic Programmers chose a dynamic
language that was virtually unknown to anyone outside of Japan and wrote a good
book about it. It was just like a miracle.

That’s now history. The future starts now. We have the second edition of Programming
Ruby, which is better than the first one. It’s no longer a miracle. This time, the grown-
up Ruby community helped to develop the book. I just needed to sit and watch the
community working together.

I really appreciate the Pragmatic Programmers, Dave Thomas and Andy Hunt, and
other people from the community who helped with this book (guys, sorry for not nam-
ing you personally). I love the friendliness of the Ruby community. It’s the best soft-
ware community I have ever seen. I also appreciate every programmer in the world who
uses Ruby.

The stone has started rolling. It will become a great mountain and fill the whole earth.

Yukihiro Matsumoto, a.k.a. “Matz”

Japan, August 2004

Prepared exclusively for Margus Pau xix

Preface

This book is the second edition of the PickAxe, as Programming Ruby is known to
Rubyists. It is a tutorial and reference for the Ruby programming language. If you have
the first edition, you’ll find that this version is a significant rewrite.

When Andy and I wrote the first edition, we had to explain the background and appeal
of Ruby. Among other things, we wrote “When we discovered Ruby, we realized that
we’d found what we’d been looking for. More than any other language with which we
have worked, Ruby stays out of your way. You can concentrate on solving the problem
at hand, instead of struggling with compiler and language issues. That’s how it can help
you become a better programmer: by giving you the chance to spend your time creating
solutions for your users, not for the compiler.”

That belief is even stronger today. Four years later. Ruby is still our language of choice:
I use it for client applications, I use it to run our publishing business, and I use it for all
those little programming jobs I do just to get things running smoothly.

In those four years, Ruby has progressed nicely. A large number of methods have been
added to the built-in classes and modules, and the size of the standard library (those
libraries included in the Ruby distribution) has grown tremendously. The community
now has a standard documentation system (RDoc), and RubyGems may well become
the system of choice for packaging Ruby code for distribution.

This change has been wonderful, but it left the original PickAxe looking a tad dated.
This book remedies that: like its predecessor, it is written for the very latest version of
Ruby.

Ruby Versions
This version of the PickAxe documents Ruby 1.8 (and in particular covers changes
incorporated into Ruby 1.8.2).1

1. Ruby version numbering follows the same scheme used for many other open-source projects. Releases
with even subversion numbers—1.6, 1.8, and so on—are stable, public releases. These are the releases that
are prepackaged and made available on the various Ruby Web sites. Development versions of the software

Prepared exclusively for Margus Pau xx

PREFACE xxi

Exactly what version of Ruby did I use to write this book? Let’s ask Ruby.

% ruby -v
ruby 1.8.2 (2004-08-24) [powerpc-darwin7.5.0]

This illustrates an important point. Most of the code samples you see in this book
are actually executed each time I format the book. When you see some output from a
program, that output was produced by running the code and inserting the results back
into the book.

Changes in the Book
Apart from the updates to support Ruby 1.8, you’ll find that the book has changed
somewhat from the original edition.

In the first half of the book, I’ve added six new chapters. Getting Started is a more
complete introduction to getting up-and-running with Ruby than we had in the first
book. The second new chapter, Unit Testing, reflects a growing emphasis on using
testing among Rubyists. Three new chapters cover tools for the Ruby programmer: irb
for experimenting with Ruby, RDoc for documenting your code, and RubyGems for
packing code for distribution. Finally, a new chapter covers duck typing, that slightly
slippery philosophy of programming that fits in so well with the ideas behind Ruby.

That’s not all that’s new. You’ll also find that the chapter on threads has been extended
significantly with a discussion on synchronization and that the chapter on writing Ruby
extensions has been largely rewritten. The chapter on Web programming now discusses
alternative templating systems and has a section on SOAP. The language reference
chapter has been significantly extended (particularly when dealing with the new rules
for blocks, procs, breaks, and returns).

The next quarter of the book, which documents the built-in classes and modules, has
more than 250 significant changes. Many of them are new methods, some are depre-
cated old methods, and some are methods with significant new behavior. You’ll also
find a number of new modules and classes documented.

Finally, the book includes a section on the standard library. The library has grown
extensively since Ruby 1.6 and is now so big that I couldn’t document it to any level
of detail without making the book thousands of pages long. At the same time, the
Ruby Documentation project has been busy adding RDoc documentation to the library
source itself. (I explain RDoc in Chapter 16 on page 187.) This means that you will
increasingly be able to get accurate, up-to-date documentation on a library module

have odd subversion numbers, such as 1.7 and 1.9. These you’ll have to download and build for yourself, as
described on page 3.

Prepared exclusively for Margus Pau

PREFACE xxii

using the ri utility that comes with your Ruby distribution. As a consequence of all
this, I decided to change the style of the library documentation—it is now a road map
to available libraries, showing code samples and describing the overall use. I’ll leave
the lower-level details to RDoc.

Throughout the book I’ve tried to mark changes between 1.6 and 1.8 using a small
symbol in the margin,1.8 like the one here. One change I didn’t make: I decided to continue
to use the word we when talking about the authors in the body of the book. Many of the
words there come from the first edition, and I certainly don’t want to claim any credit
for Andy’s work on that book.

In all, this book is a significant overhaul of the first version. I hope you find it useful.

Resources
Visit the Ruby Web site http://www.ruby-lang.org to see what’s new. Chat with
other Ruby users on the newsgroup or mailing lists (see Appendix C).

And I’d certainly appreciate hearing from you. Comments, suggestions, errors in the
text, and problems in the examples are all welcome. E-mail us at

rubybook@pragmaticprogrammer.com

If you tell us about errors in the book, I’ll add them to the errata list at

http://www.pragmaticprogrammer.com/titles/ruby/errata.html

You’ll find links to the source code for almost all the book’s example code at

http://www.pragmaticprogrammer.com/titles/ruby

Acknowledgments
For the second edition of the PickAxe, I asked on the Ruby mailing list if anyone would
consider helping review the text. I was overwhelmed with the response: almost one
hundred people volunteered. To keep it manageable, I had to restrict the list on a first-
come basis. Even so, my wonderful reviewers produced more than 1.5Mb of review
text. These folks picked on everything, from misplaced commas to missing methods. I
couldn’t have gotten better help. So a big “thank you” to Richard Amacker, David A.
Black, Tony Bowden, James Britt, Warren Brown, Mike Clark, Ryan Davis (thanks for
the Japanese PDF!), Guy Decoux, Friedrich Dominicus, Thomas Enebo, Chad Fowler,
Hal Fulton, Ben Giddings, Johan Holmberg, Andrew Johnson, Rich Kilmer, Robert
Klemme, Yukihiro Matsumoto, Marcel Molina Jr., Roeland Moors, Michael Neumann,

Prepared exclusively for Margus Pau

http://www.ruby-lang.org
http://www.pragmaticprogrammer.com/titles/ruby/errata.html
http://www.pragmaticprogrammer.com/titles/ruby

PREFACE xxiii

Paul Rogers, Sean Russell, Hugh Sasse, Gavin Sinclair, Tanaka Akira, Juliet Thomas,
Glenn Vanderburg, Koen Vervloesem, and Austin Ziegler.

Chad Fowler wrote the chapter on RubyGems. In fact, he wrote it twice. The first time,
he was on vacation in Europe. On his way home, his Powerbook was stolen, and he lost
all his work. So, when he got back, he cheerfully sat down and did it all again. I can’t
thank him enough.

Kim Wimpsett had the unenviable job of copyediting the book. She did a tremendous
job (and in record time), which was made even more amazing by both the volume of
jargon in the book and by my inability to string together more than two words without
breaking one or more rules of grammar. Ed Giddens did a great job creating the cover,
which nicely blends the old with the new. Thanks to you both!

Finally, I’m still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.
Throughout this period of growth and change, he has remained helpful, cheery, and
dedicated to polishing this gem of a language. The friendly and open spirit of the Ruby
community is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
THE PRAGMATIC PROGRAMMERS

http://www.pragmaticprogrammer.com

Prepared exclusively for Margus Pau

http://www.pragmaticprogrammer.com

PREFACE xxiv

Notation Conventions
Throughout this book, we use the following typographic notations.

Literal code examples are shown using a typewriter-like font.

class SampleCode
def run
#...

end
end

Within the text, Fred#do_something is a reference to an instance method (in this case
do_something) of class Fred, Fred.new2 is a class method, and Fred::EOF is a class
constant. The decision to use a hash character to indicate instance methods was a tough
one: it isn’t valid Ruby syntax, but we thought that it was important to differentiate
between the instance and class methods of a particular class. When you see us write
File.read, you know we’re talking about the class method read. When instead we
write File#read, we’re referring to the instance method read.

The book contains many snippets of Ruby code. Where possible, we’ve tried to show
what happens when they run. In simple cases, we show the value of expressions on the
same line as the expression. For example:

a = 1
b = 2
a + b → 3

Here, you can see that the result of evaluating a + b is the value 3, shown to the right
of the arrow. Note that if you simply run this program, you wouldn’t see the value 3
output—you’d need to use a method such as puts to write it out.

At times, we’re also interested in the values of assignment statements, in which case
we’ll show them.

a = 1 → 1
b = 2 → 2
a + b → 3

If the program produces more complex output, we show it below the program code.

3.times { puts "Hello!" }

produces:

Hello!
Hello!
Hello!

2. In some other Ruby documentation, you may see class methods written as Fred::new. This is perfectly
valid Ruby syntax; we just happen to think that Fred.new is less distracting to read.

Prepared exclusively for Margus Pau

PREFACE xxv

In some of the library documentation, we wanted to show where spaces appear in the
output. You’ll see these spaces as “ ” characters.

Command-line invocations are shown with literal text in a Roman font, and parameters
you supply are shown in an italic font. Optional elements are shown in large square
brackets.

ruby [flags ...] [progname] [arguments ...]

Prepared exclusively for Margus Pau

Road Map

The main text of this book has four separate parts, each with its own personality, and
each addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting
Ruby running on your system followed by a short chapter on some of the terminology
and concepts that are unique to Ruby. This chapter also includes enough basic syntax
so that the other chapters will make sense. The rest of the tutorial is a top-down look
at the language. There we talk about classes and objects, types, expressions, and all
the other things that make up the language. We end with chapters on unit testing and
digging yourself out when trouble strikes.

One of the great things about Ruby is how well it integrates with its environment.
Part II, Ruby in Its Setting, investigates this. Here you’ll find practical information on
using Ruby: using the interpreter options, using irb, documenting your Ruby code, and
packaging your Ruby gems so that others can enjoy them. You’ll also find tutorials on
some common Ruby tasks: using Ruby with the Web, creating GUI applications using
Tk, and using Ruby in a Microsoft Windows environment (including wonderful things
such as native API calls, COM integration, and Windows Automation). And you’ll
discover just how easy it is to extend Ruby and to embed Ruby within your own code.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll find all the
gory details about the language, the concept of duck typing, the metaclass model,
tainting, reflection, and marshaling. You could probably speed-read this the first time
through, but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 950 methods
in more than 48 built-in classes and modules (up from 800 methods in 40 classes and
modules in the previous edition).1.8 On top of that, we now document the library modules
that are included in the standard Ruby distribution (98 of them).

So, how should you read this book? Well, depending on your level of expertise with
programming in general, and OO in particular, you may initially want to read just a few
portions of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep
the library reference close at hand as you start to write programs. Get familiar with

Prepared exclusively for Margus Pau xxvi

PREFACE xxvii

the basic classes such as Array, Hash, and String. As you become more comfortable
in the environment, you may want to investigate some of the more advanced topics in
Part III.

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we suggest
reading Chapter 1 on page 2, which talks about installing and running Ruby, followed
by the introduction in Chapter 2. From there, you may want to take the slower approach
and keep going with the tutorial that follows, or you can skip ahead to the gritty details
starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the
language reference in Chapter 22, which begins on page 302, skim the library reference,
then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don’t forget, if you run into a problem that you can’t figure out, help is available.
See Appendix C, beginning on page 758, for more information.

Prepared exclusively for Margus Pau

Part I

Facets of Ruby

Prepared exclusively for Margus Pau 1

Chapter 1

Getting Started

Before we start talking about the Ruby language, it’d be useful if we helped you get
Ruby running on your computer. That way you can try sample code and experiment on
your own as you read along. We’ll also show you some different ways to run Ruby.

Installing Ruby
Quite often, you won’t even need to downloadRuby. It now comes preinstalled on many
Linux distributions, and Mac OS X includes Ruby (although the version of Ruby pre-
installed on OS X is normally several minor releases behind the current Ruby version).
Try typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system, or if you’d like to upgrade to a newer
version, you can install it pretty simply. But first, you have a choice to make: go for a
binary distribution, or build Ruby from source?

Binary Distributions
A binary distribution of Ruby simply works out of the box. You install it, and it runs.
Binary distributions are prebuilt for a particular operating environment and are conve-
nient if you don’t want to mess around with building Ruby from source. The downside
of a binary distribution is that you have to take it as given: it may be a minor release
or two behind the leading edge, and it may not have the optional libraries that you
might want. If you can live with that, you’ll need to find a binary distribution for your
operating system and machine architecture.

For RPM-based Linux systems, you can search on http://www.rpmfind.net for a
suitable Ruby RPM. Enter ruby as a search term, and select from the listed version
numbers, architectures, and distributions. For example, ruby-1.8.2.i386 is a binary
distribution of Ruby 1.8.2 for Intel x86 architectures.

Prepared exclusively for Margus Pau 2

http://www.rpmfind.net

INSTALLING RUBY 3

For Debian dpkg-based Linux systems, you can use the apt-get system to find and
install Ruby. You can use the apt-cache command to search for Ruby packages.

apt-cache search ruby interpreter
libapache-mod-ruby - Embedding Ruby in the Apache web server
liberb-ruby1.6 - Tiny eRuby for Ruby 1.6
liberb-ruby1.8 - Tiny eRuby
ruby - An interpreter of object-oriented scripting language Ruby
ruby1.7 - Interpreter of object-oriented scripting language Ruby
ruby1.8 - Interpreter of object-oriented scripting language Ruby

You can install any of these packages using apt-get.

apt-get install ruby1.8
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
libruby1.8

Suggested packages:
ruby1.8-examples

The following NEW packages will be installed:
libruby1.8 ruby1.8

: : :

Note that you have to have superuser access to install global packages on a Unix or
Linux box, which is why we show the prompt as a #.

If you’re running on Microsoft Windows, you’ll find the home page of the One-Click
Installer at http://rubyinstaller.rubyforge.org.

Building Ruby from Source
Because Ruby is an open-source project, you can download the source code to the inter-
preter and build it on your own system. Compared to using a binary distribution, this
gives you a lot more control over where things go, and you can keep your installation
totally up-to-date. The downside is that you’re taking on the responsibility of managing
the build and installation process. This isn’t onerous, but it can be scary if you’ve never
installed an open-source application from source.

The first thing to do is to download the source. This comes in three flavors, all from
http://www.ruby-lang.org.

1. The stable release in tarball format. A tarball is an archive file, much like a zip
file. Click the Download Ruby link, and then click the stable release link.

2. The stable snapshot. This is a tarball, created nightly, of the latest source code in
Ruby’s stable development branch. The stable branch is intended for production
code and in general will be reliable. However, because the snapshot is taken daily,
new features may not have received thorough testing yet—the stable tarball in
item (1) will be generally more reliable.

Prepared exclusively for Margus Pau

http://rubyinstaller.rubyforge.org
http://www.ruby-lang.org

RUNNING RUBY 4

3. The nightly development snapshot. This is again a tarball, created nightly. Unlike
the stable code in (1) and (2), this code is leading edge, as it is taken from the head
of the development branch. Expect things to be broken in here.

If you plan on downloading either of the nightly snapshots regularly, it may be easier
to subscribe to the source repository directly. The sidebar on the next page gives more
details.

Once you’ve loaded a tarball, you’ll have to expand the archive into its constituent
files. Use the tar command for this (if you don’t have tar installed, you can try using
another archiving utility, as many now support tar-format files).

% tar xzf snapshot.tar.gz
ruby/
ruby/bcc32/
ruby/bcc32/Makefile.sub
ruby/bcc32/README.bcc32
: : :

This installs the Ruby source tree in the subdirectory ruby/. In that directory you’ll find
a file named README, which explains the installation procedure in detail. To summa-
rize, you build Ruby on POSIX-based systems using the same four commands you use
for most other open-source applications: ./configure, make, make test, and make
install. You can build Ruby under other environments (including Windows) by using
a POSIX emulation environment such as cygwin1 or by using native compilers—see
README.win32 in the distribution’s win32 subdirectory as a starting point.

Source Code from This Book
We’ve made the source code from this book available for download from our web site
at http://pragmaticprogrammer.com/titles/ruby/code . Sometimes, the listings
of code in the book correspond to a complete source file. Other times, the book contains
just a part of the source in a file—the program file may contain additional scaffolding
to make the code compile.

Running Ruby
Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby—you can type in code interactively, or you
can create program files and run them. Typing in code interactively is a great way to
experiment with the language, but for code that’s more complex, or that you will want
to run more than once, you’ll need to create program files and run them.

1. See http://www.cygwin.com for details.

Prepared exclusively for Margus Pau

http://pragmaticprogrammer.com/titles/ruby/code
http://www.cygwin.com

RUNNING RUBY 5

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use CVS (Concurrent Version System, freely
available from https://www.cvshome.org) as their revision control
system. You can check files out as an anonymous user from their
archive by executing the following CVS commands:

% cvs -z4 -d :pserver:anonymous@cvs.ruby-lang.org:/src←↩
login

(Logging in to anonymous@cvs.ruby-lang.org)
CVS password: ENTER
% cvs -z4 -d :pserver:anonymous@cvs.ruby-lang.org:/src←↩

checkout ruby

The complete source code tree, just as the developers last left it, will
now be copied to a ruby subdirectory on your machine.

This command will check out the head of the development tree. If you
want the Ruby 1.8 branch, add -r ruby_1_8 after the word checkout
in the second command.

If you use the CVSup mirroring utility (conveniently available from
http://www.cvsup.org), you can find Ruby supfiles on the ruby-lang
site at http://cvs.ruby-lang.org/cvsup/.

Interactive Ruby
One way to run Ruby interactively is simply to type ruby at the shell prompt. Here
we typed in the single puts expression and an end-of-file character (which is Ctrl+D
on our system). This process works, but it’s painful if you make a typo, and you can’t
really see what’s going on as you type.

% ruby
puts "Hello, world!"
^D
Hello, world!

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby inter-
actively. irb is a Ruby Shell, complete with command-line history, line-editing capabil-
ities, and job control. (In fact, it has its own chapter beginning on page 174.) You run
irb from the command line. Once it starts, just type in Ruby code. It will show you the
value of each expression as it evaluates it.

Prepared exclusively for Margus Pau

https://www.cvshome.org
http://www.cvsup.org
http://cvs.ruby-lang.org/cvsup/

RUNNING RUBY 6

% irb
irb(main):001:0> def sum(n1, n2)
irb(main):002:1> n1 + n2
irb(main):003:1> end
=> nil
irb(main):004:0> sum(3, 4)
=> 7
irb(main):005:0> sum("cat", "dog")
=> "catdog"

We recommend that you get familiar with irb so you can try some of our examples
interactively.

There’s a trick when you want to use irb to try our example code that’s already in a file.
Say, for example, you wanted to try the Fibonacci module listed on page 196. You can
do this from within irb by loading in the program file and then calling the methods it
contains. In this case, the program file is in code/rdoc/fib_example.rb.

% irb
irb(main):001:0> load "code/rdoc/fib_example.rb"
=> true
irb(main):002:0> Fibonacci.upto(20)
=> [1, 1, 2, 3, 5, 8, 13]

Ruby Programs
You can run a Ruby program from a file as you would any other shell script, Perl
program, or Python program. Simply run the Ruby interpreter, giving it the script name
as an argument.

% ruby myprog.rb

You can also use the Unix “shebang” notation as the first line of the program file.2

#!/usr/local/bin/ruby -w

puts "Hello, world!"

If you make this source file executable (using, for instance, chmod +x myprog.rb),
Unix lets you run the file as a program.

% ./myprog.rb
Hello, world!

You can do something similar under Microsoft Windows using file associations, and
you can run Ruby GUI applications by double-clicking their names in Explorer.

2. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

Prepared exclusively for Margus Pau

RUBY DOCUMENTATION: RDOC AND RI 7

Ruby Documentation: RDoc and ri
As the volume of the Ruby libraries has grown, it has become impossible to docu-
ment them all in one book; the standard library that comes with Ruby now contains
more than 9,000 methods. Fortunately, an alternative to paper documentation exists for
these methods (and classes and modules). Many are now documented internally using
a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and
converted into HTML and ri formats.

Several sites on the Web contain a complete set of the RDoc documentation for Ruby,
but http://www.ruby-doc.org is probably the best known. Browse on over, and
you should be able to find at least some form of documentation for any Ruby library.
They’re adding new documentation all the time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby
distributions now also install the resources used by the ri program.

To find the documentation for a class, type ri ClassName. For example, the following
lists the summary information for the GC class. (For a list of classes with ri documenta-
tion, type ri -c.)

% ri GC
--- Class: GC

The GC module provides an interface to Ruby's mark and sweep
garbage collection mechanism. Some of the underlying methods are
also available via the ObjectSpace module.

Class methods:
disable, enable, start

Instance methods:
garbage_collect

For information on a particular method, give its name as a parameter.

% ri enable
-- GC::enable

GC.enable => true or false

Enables garbage collection, returning true if garbage collection
was previously disabled.

GC.disable #=> false
GC.enable #=> true
GC.enable #=> false

Prepared exclusively for Margus Pau

http://www.ruby-doc.org

RUBY DOCUMENTATION: RDOC AND RI 8

If the method you pass to ri occurs in more than one class or module, ri will list all of
the alternatives. Reissue the command, prefixing the method name with the name of
the class and a dot.

% ri start
More than one method matched your request. You can refine
your search by asking for information on one of:

Date#new_start, Date#start, GC::start, Logger::Application#start,
Thread::start

% ri GC.start
--- GC::start

GC.start => nil
gc.garbage_collect => nil
ObjectSpace.garbage_collect => nil

Initiates garbage collection, unless manually disabled.

For general help on using ri, type “ri --help”. In particular you might want to experi-
ment with the “--format” option, which tells ri how to render decorated text (such as
section headings). If your terminal program supports ANSI escape sequences, using
“--format ansi” will generate a nice, colorful display. Once you find a set of options
you like, you can set them into the RI environment variable. Using my shell (zsh), this
would be done using:

% export RI="--format ansi --width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over
at suggestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor
to the shell prompt. But, in reality, it isn’t that difficult, and the power you get from
being able to string together commands this way is often surprising. Stick with it, and
you’ll be well on your way to mastering both Ruby and your computer.

Prepared exclusively for Margus Pau

Chapter 2

Ruby.new

When we originally designed this book, we had a grand plan (we were younger then).
We wanted to document the language from the top down, starting with classes and
objects and ending with the nitty-gritty syntax details. It seemed like a good idea at the
time. After all, most everything in Ruby is an object, so it made sense to talk about
objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write
examples of classes. Throughout our top-down description, we kept coming across
low-level details we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing).
We’d still describe Ruby starting at the top. But before we did that, we’d add a short
chapter that described all the common language features used in the examples along
with the special vocabulary used in Ruby, a kind of minitutorial to bootstrap us into the
rest of the book.

Ruby Is an Object-Oriented Language
Let’s say it again. Ruby is a genuine object-oriented language. Everything you manip-
ulate is an object, and the results of those manipulations are themselves objects. How-
ever, many languages make the same claim, and their users often have a different inter-
pretation of what object-oriented means and a different terminology for the concepts
they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that
we’ll be using.

Prepared exclusively for Margus Pau 9

RUBY IS AN OBJECT-ORIENTED LANGUAGE 10

When you write object-oriented code, you’re normally looking to model concepts from
the real world in your code. Typically during this modeling process you’ll discover
categories of things that need to be represented in code. In a jukebox, the concept of
a “song” could be such a category. In Ruby, you’d define a class to represent each of
these entities. A class is a combination of state (for example, the name of the song) and
methods that use that state (perhaps a method to play the song).

Once you have these classes, you’ll typically want to create a number of instances
of each. For the jukebox system containing a class called Song, you’d have separate
instances for popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String
of Pearls,” “Small Talk,” and so on. The word object is used interchangeably with
class instance (and being lazy typists, we’ll probably be using the word object more
frequently).

In Ruby, these objects are created by calling a constructor, a special method associated
with a class. The standard constructor is called new.

song1 = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they have unique charac-
teristics. First, every object has a unique object identifier (abbreviated as object ID).
Second, you can define instance variables, variables with values that are unique to
each instance. These instance variables hold an object’s state. Each of our songs, for
example, will probably have an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of func-
tionality that may be called from within the class and (depending on accessibility con-
straints) from outside the class. These instance methods in turn have access to the
object’s instance variables and hence to the object’s state.

Methods are invoked by sending a message to an object. The message contains the
method’s name, along with any parameters the method may need.1 When an object
receives a message, it looks into its own class for a corresponding method. If found,
that method is executed. If the method isn’t found. . .well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is
very natural. Let’s look at some method calls.

"gin joint".length → 9
"Rick".index("c") → 2
-1942.abs → 1942
sam.play(song) → "duh dum, da dum de dum ..."

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Prepared exclusively for Margus Pau

SOME BASIC RUBY 11

(Remember, in the code examples in this book, the arrows show the value of an expres-
sion. The result of executing -1942.abs is 1942. If you just typed this code into a
file and ran it using Ruby, you’d see no output, because we didn’t tell Ruby to display
anything. If you’re using irb, you’d see the values we show in the book.)

Here, the thing before the period is called the receiver, and the name after the period is
the method to be invoked. The first example asks a string for its length, and the second
asks a different string to find the index of the letter c. The third line has a number
calculate its absolute value. Finally, we ask Sam to play us a song.

It’s worth noting here a major difference between Ruby and most other languages. In
(say) Java, you’d find the absolute value of some number by calling a separate function
and passing in that number. You could write

number = Math.abs(number) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take
care of the details internally. You simply send the message abs to a number object and
let it do the work.

number = number.abs

The same applies to all Ruby objects: in C you’d write strlen(name), but in Ruby it’s
name.length, and so on. This is part of what we mean when we say that Ruby is a
genuine object-oriented language.

Some Basic Ruby
Not many people like to read heaps of boring syntax rules when they’re picking up a
new language, so we’re going to cheat. In this section we’ll hit some of the highlights—
the stuff you’ll just have to know if you’re going to write Ruby programs. Later, in
Chapter 22, which begins on page 302, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery,
personalized greeting. We’ll then invoke that method a couple of times.

def say_goodnight(name)
result = "Good night, " + name
return result

end

Time for bed...
puts say_goodnight("John-Boy")
puts say_goodnight("Mary-Ellen")

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends
of statements as long as you put each statement on a separate line. Ruby comments
start with a # character and run to the end of the line. Code layout is pretty much up to

Prepared exclusively for Margus Pau

SOME BASIC RUBY 12

you; indentation is not significant (but using two-character indentation will make you
friends in the community if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this
case, say_goodnight) and the method’s parameters between parentheses. (In fact, the
parentheses are optional, but we like to use them.) Ruby doesn’t use braces to delimit
the bodies of compound statements and definitions. Instead, you simply finish the body
with the keyword end. Our method’s body is pretty simple. The first line concatenates
the literal string "Good night, " and the parameter name and assigns the result to the
local variable result. The next line returns that result to the caller. Note that we didn’t
have to declare the variable result; it sprang into existence when we assigned to it.

Having defined the method, we call it twice. In both cases we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to
the next line of output).

Good night, John-Boy
Good night, Mary-Ellen

The line puts say_goodnight("John-Boy") contains two method calls, one to the
method say_goodnight and the other to the method puts. Why does one call have its
arguments in parentheses while the other doesn’t? In this case it’s purely a matter of
taste. The following lines are both equivalent.

puts say_goodnight("John-Boy")
puts(say_goodnight("John-Boy"))

However, life isn’t always that simple, and precedence rules can make it difficult to
know which argument goes with which method invocation, so we recommend using
parentheses in all but the simplest cases.

This example also shows some Ruby string objects. You have many ways to create
a string object, but probably the most common is to use string literals: sequences of
characters between single or double quotation marks. The difference between the two
forms is the amount of processing Ruby does on the string while constructing the literal.
In the single-quoted case, Ruby does very little. With a few exceptions, what you type
into the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions—
sequences that start with a backslash character—and replaces them with some binary
value. The most common of these is \n, which is replaced with a newline character.
When a string containing a newline is output, the \n forces a line break.

puts "And good night,\nGrandma"

produces:

And good night,
Grandma

Prepared exclusively for Margus Pau

SOME BASIC RUBY 13

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression.
We could use this to rewrite our previous method.

def say_goodnight(name)
result = "Good night, #{name}"
return result

end
puts say_goodnight('Pa')

produces:

Good night, Pa

When Ruby constructs this string object, it looks at the current value of name and
substitutes it into the string. Arbitrarily complex expressions are allowed in the #{...}
construct. Here we invoke the capitalize method, defined for all strings, to output
our parameter with a leading uppercase letter.

def say_goodnight(name)
result = "Good night, #{name.capitalize}"
return result

end
puts say_goodnight('uncle')

produces:

Good night, Uncle

As a shortcut, you don’t need to supply the braces when the expression is simply a
global, instance, or class variable (which we’ll talk about shortly).

$greeting = "Hello" # $greeting is a global variable
@name = "Prudence" # @name is an instance variable
puts "#$greeting, #@name"

produces:

Hello, Prudence

For more information on strings, as well as on the other Ruby standard types, see Chap-
ter 5, which begins on page 55.

Finally, we could simplify this method some more. The value returned by a Ruby
method is the value of the last expression evaluated, so we can get rid of the temporary
variable and the return statement altogether.

def say_goodnight(name)
"Good night, #{name}"

end
puts say_goodnight('Ma')

produces:

Good night, Ma

Prepared exclusively for Margus Pau

ARRAYS AND HASHES 14

We promised that this section would be brief. We’ve got just one more topic to cover:
Ruby names. For brevity, we’ll be using some terms (such as class variable) that we
aren’t going to define here. However, by talking about the rules now, you’ll be ahead of
the game when we actually come to discuss class variables and the like later.

Ruby uses a convention to help it distinguish the usage of a name: the first characters of
a name indicate how the name is used. Local variables, method parameters, and method
names should all start with a lowercase letter or with an underscore. Global variables
are prefixed with a dollar sign ($), and instance variables begin with an “at” sign (@).
Class variables start with two “at” signs (@@). Finally, class names, module names,
and constants must start with an uppercase letter. Samples of different names are given
in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and
underscores (with the proviso that the character following an @ sign may not be a digit).
However, by convention multiword instances variables are written with underscores
between the words, and multiword class names are written in MixedCase (with each
word capitalized).

Arrays and Hashes
Ruby’s arrays and hashes are indexed collections. Both store collections of objects,
accessible using a key. With arrays, the key is an integer, whereas hashes support any
object as a key. Both arrays and hashes grow as needed to hold new elements. It’s more
efficient to access array elements, but hashes provide more flexibility. Any particular
array or hash can hold objects of differing types; you can have an array containing an
integer, a string, and a floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that
Ruby array indices start at zero.

a = [1, 'cat', 3.14] # array with three elements
access the first element
a[0] → 1
set the third element
a[2] = nil
dump out the array
a → [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many
languages, the concept of nil (or null) means “no object.” In Ruby, that’s not the case;
nil is an object, just like any other, that happens to represent nothing. Anyway, back
to arrays and hashes.

Prepared exclusively for Margus Pau

ARRAYS AND HASHES 15

Table 2.1. Example variable and class names

Variables Constants and
Local Global Instance Class Class Names

name $debug @name @@total PI
fish_and_chips $CUSTOMER @point_1 @@symtab FeetPerMile
x_axis $_ @X @@N String
thx1138 $plan9 @_ @@x_pos MyClass
_26 $Global @plan9 @@SINGLE JazzSong

Sometimes creating arrays of words can be a pain, what with all the quotes and com-
mas. Fortunately, Ruby has a shortcut: %w does just what we want.

a = ['ant', 'bee', 'cat', 'dog', 'elk']
a[0] → "ant"
a[3] → "dog"
this is the same:
a = %w{ ant bee cat dog elk }
a[0] → "ant"
a[3] → "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the
value.

For example, you may want to map musical instruments to their orchestral sections.
You could do this with a hash.

inst_section = {
'cello' => 'string',
'clarinet' => 'woodwind',
'drum' => 'percussion',
'oboe' => 'woodwind',
'trumpet' => 'brass',
'violin' => 'string'

}

The thing to the left of the => is the key, and that on the right is the corresponding value.
Keys in a particular hash must be unique—you can’t have two entries for “drum.” The
the keys and values in a hash can be arbitrary objects—you can have hashes where the
values are arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays.

inst_section['oboe'] → "woodwind"
inst_section['cello'] → "string"
inst_section['bassoon'] → nil

Prepared exclusively for Margus Pau

CONTROL STRUCTURES 16

As the last example shows, a hash by default returns nil when indexed by a key it
doesn’t contain. Normally this is convenient, as nil means false when used in condi-
tional expressions. Sometimes you’ll want to change this default. For example, if you’re
using a hash to count the number of times each key occurs, it’s convenient to have the
default value be zero. This is easily done by specifying a default value when you create
a new, empty hash.

histogram = Hash.new(0)
histogram['key1'] → 0
histogram['key1'] = histogram['key1'] + 1
histogram['key1'] → 1

Array and hash objects have lots of useful methods: see the discussion starting on
page 40, and the reference sections starting on pages 406 and 471, for details.

Control Structures
Ruby has all the usual control structures, such as if statements and while loops. Java,
C, and Perl programmers may well get caught by the lack of braces around the bodies
of these statements. Instead, Ruby uses the keyword end to signify the end of a body.

if count > 10
puts "Try again"

elsif tries == 3
puts "You lose"

else
puts "Enter a number"

end

Similarly, while statements are terminated with end.

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions.
For example, the method gets returns the next line from the standard input stream or
nil when end of file is reached. Because Ruby treats nil as a false value in conditions,
you could write the following to process the lines in a file.

while line = gets
puts line.downcase

end

Here, the assignment statement sets the variable line to either the next line of text or
nil, and then the while statement tests the value of the assignment, terminating the
loop when it is nil.

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 17

Ruby statement modifiers are a useful shortcut if the body of an if or while statement
is just a single expression. Simply write the expression, followed by if or while and
the condition. For example, here’s a simple if statement.

if radiation > 3000
puts "Danger, Will Robinson"

end

Here it is again, rewritten using a statement modifier.

puts "Danger, Will Robinson" if radiation > 3000

Similarly, a while loop such as

square = 2
while square < 1000

square = square*square
end

becomes the more concise

square = 2
square = square*square while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Regular Expressions
Most of Ruby’s built-in types will be familiar to all programmers. A majority of lan-
guages have strings, integers, floats, arrays, and so on. However, regular expression
support is typically built into only scripting languages, such as Ruby, Perl, and awk.
This is a shame: regular expressions, although cryptic, are a powerful tool for working
with text. And having them built in, rather than tacked on through a library interface,
makes a big difference.

Entire books have been written about regular expressions (for example, Mastering Reg-
ular Expressions [Fri02]), so we won’t try to cover everything in this short section.
Instead, we’ll look at just a few examples of regular expressions in action. You’ll find
full coverage of regular expressions starting on page 64.

A regular expression is simply a way of specifying a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing a pattern
between slash characters (/pattern/). And, Ruby being Ruby, regular expressions are
objects and can be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or
the text Python using the following regular expression.

/Perl|Python/

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 18

The forward slashes delimit the pattern, which consists of the two things we’re match-
ing, separated by a pipe character (|). This pipe character means “either the thing on
the right or the thing on the left,” in this case either Perl or Python. You can use paren-
theses within patterns, just as you can in arithmetic expressions, so you could also have
written this pattern as

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an
a followed by one or more b’s, followed by a c. Change the plus to an asterisk, and
/ab*c/ creates a regular expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common exam-
ples are character classes such as \s, which matches a whitespace character (space, tab,
newline, and so on); \d, which matches any digit; and \w, which matches any character
that may appear in a typical word. A dot (.) matches (almost) any character. A table of
these character classes appears on page 68.

We can put all this together to produce some useful regular expressions.

/\d\d:\d\d:\d\d/ # a time such as 12:34:56
/Perl.*Python/ # Perl, zero or more other chars, then Python
/Perl Python/ # Perl, a space, and Python
/Perl *Python/ # Perl, zero or more spaces, and Python
/Perl +Python/ # Perl, one or more spaces, and Python
/Perl\s+Python/ # Perl, whitespace characters, then Python
/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Once you have created a pattern, it seems a shame not to use it. The match operator
=~ can be used to match a string against a regular expression. If the pattern is found in
the string, =~ returns its starting position, otherwise it returns nil. This means you can
use regular expressions as the condition in if and while statements. For example, the
following code fragment writes a message if a string contains the text Perl or Python.

if line =~ /Perl|Python/
puts "Scripting language mentioned: #{line}"

end

The part of a string matched by a regular expression can be replaced with different text
using one of Ruby’s substitution methods.

line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby'
line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'

You can replace every occurrence of Perl and Python with Ruby using

line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 19

Blocks and Iterators
This section briefly describes one of Ruby’s particular strengths. We’re about to look
at code blocks: chunks of code you can associate with method invocations, almost as
if they were parameters. This is an incredibly powerful feature. One of our reviewers
commented at this point: “This is pretty interesting and important, and so if you weren’t
paying attention before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anony-
mous inner classes), to pass around chunks of code (but they’re more flexible than C’s
function pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do. . .end.

{ puts "Hello" } # this is a block

do ###
club.enroll(person) # and so is this
person.socialize #

end ###

Why are there two kinds of delimiter? It’s partly because sometimes one feels more
natural to write than another. It’s partly too because they have different precedences:
the braces bind more tightly than the do/end pairs. In this book, we try to follow what
is becoming a Ruby standard and use braces for single-line blocks and do/end for
multiline blocks.

Once you’ve created a block, you can associate it with a call to a method. You do this
by putting the start of the block at the end of the source line containing the method call.
For example, in the following code, the block containing puts "Hi" is associated with
the call to the method greet.

greet { puts "Hi" }

If the method has parameters, they appear before the block.

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. You can think of yield as being something like a method call that calls out
to the block associated with the method containing the yield.

The following example shows this in action. We define a method that calls yield twice.
We then call this method, putting a block on the same line, after the call (and after any
arguments to the method).2

2. Some people like to think of the association of a block with a method as a kind of parameter passing.
This works on one level, but it isn’t really the whole story. You may be better off thinking of the block and
the method as coroutines, which transfer control back and forth between themselves.

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 20

def call_block
puts "Start of method"
yield
yield
puts "End of method"

end

call_block { puts "In the block" }

produces:

Start of method
In the block
In the block
End of method

See how the code in the block (puts "In the block") is executed twice, once for
each call to yield.

You can provide parameters to the call to yield: these will be passed to the block.
Within the block, you list the names of the arguments to receive these parameters
between vertical bars (|).

def call_block
yield("hello", 99)

end

call_block {|str, num| ... }

Code blocks are used throughout the Ruby library to implement iterators: methods that
return successive elements from some kind of collection, such as an array.

animals = %w(ant bee cat dog elk) # create an array
animals.each {|animal| puts animal } # iterate over the contents

produces:

ant
bee
cat
dog
elk

Let’s look at how we could implement the Array class’s each iterator that we used
in the previous example. The each iterator loops through every element in the array,
calling yield for each one. In pseudo-code, this may look like

within class Array...
def each
for each element # <-- not valid Ruby
yield(element)

end
end

Prepared exclusively for Margus Pau

READING AND ’RITING 21

Many of the looping constructs that are built into languages such as C and Java are
simply method calls in Ruby, with the methods invoking the associated block zero or
more times.

['cat', 'dog', 'horse'].each {|name| print name, " " }
5.times { print "*" }
3.upto(6) {|i| print i }
('a'..'e').each {|char| print char }

produces:

cat dog horse *****3456abcde

Here we ask the object 5 to call a block five times and then ask the object 3 to call a
block, passing in successive values until it reaches 6. Finally, the range of characters
from a to e invokes a block using the method each.

Reading and ’Riting
Ruby comes with a comprehensive I/O library. However, in most of the examples in this
book we’ll stick to a few simple methods. We’ve already come across two methods that
do output. puts writes its arguments, adding a newline after each. print also writes
its arguments, but with no newline. Both can be used to write to any I/O object, but by
default they write to standard output.

Another output method we use a lot is printf, which prints its arguments under the
control of a format string (just like printf in C or Perl).

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")

produces:

Number: 1.23,
String: hello

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf
to substitute in a floating-point number (allowing five characters in total, with two after
the decimal point) and a string. Notice the newlines (\n) embedded in the string; each
moves the output onto the next line.

You have many ways to read input into your program. Probably the most traditional is
to use the routine gets, which returns the next line from your program’s standard input
stream.

line = gets
print line

Prepared exclusively for Margus Pau

ONWARD AND UPWARD 22

Ruby Escapes Its Past

In the old days Ruby borrowed a lot from the Perl language. One of
these features is a certain “magic” when it comes to global variables,
and probably no global is more magical than $_. For example, the
gets method has a side effect: as well as returning the line just read,
it also stores it into $_. If you call print with no argument, it prints the
contents of $_. If you write an if or while statement with just a regular
expression as the condition, that expression is matched against $_.
As a result of all this magic, you could write the following program to
look for all lines in a file containing the text Ruby.

while gets
if /Ruby/
print

end
end

However, this style of Ruby programming is rapidly falling out of fash-
ion with purists. As one of these purists happens to be Matz, you’ll
now find that Ruby issues warnings for many of these special uses:
expect to see these features go away in the future.

That doesn’t mean you have to write more verbose programs. The
“Ruby way” to write this would be to use an iterator and the predefined
object ARGF, which represents the program’s input files.

ARGF.each {|line| print line if line =~ /Ruby/ }

You could write it even more concisely.

print ARGF.grep(/Ruby/)

In general, there’s a move away from some of the Perlisms in the
Ruby community. If you run your programs with the -w flag to enable
warnings (you do run with warnings enabled, don’t you?), you’ll find
the Ruby interpreter catches most of them.

Onward and Upward
That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby.
We’ve had a look at objects, methods, strings, containers, and regular expressions, seen
some simple control structures, and looked at some rather nifty iterators. We hope this
chapter has given you enough ammunition to be able to attack the rest of this book.

Time to move on, and up—up to a higher level. Next, we’ll be looking at classes and
objects, things that are at the same time both the highest-level constructs in Ruby and
the essential underpinnings of the entire language.

Prepared exclusively for Margus Pau

Chapter 3

Classes, Objects, and
Variables

From the examples we’ve shown so far, you may be wondering about our earlier asser-
tion that Ruby is an object-oriented language. Well, this chapter is where we justify
that claim. We’re going to be looking at how you create classes and objects in Ruby
and at some of the ways in which Ruby is more powerful than most object-oriented lan-
guages. Along the way, we’ll be implementing part of our next billion-dollar product,
the Internet Enabled Jazz and Bluegrass jukebox.

After months of work, our highly paid Research and Development folks have deter-
mined that our jukebox needs songs. So it seems like a good idea to start by setting
up a Ruby class that represents things that are songs. We know that a real song has a
name, an artist, and a duration, so we’ll want to make sure that the song objects in our
program do, too.

We’ll start by creating the basic class Song,1 which contains just a single method,
initialize.

class Song
def initialize(name, artist, duration)
@name = name
@artist = artist
@duration = duration

end
end

initialize is a special method in Ruby programs. When you call Song.new to create
a new Song object, Ruby allocates some memory to hold an uninitialized object and

1. As we mentioned on page 14, class names start with an uppercase letter, and method names normally
start with a lowercase letter.

Prepared exclusively for Margus Pau 23

24

then calls that object’s initialize method, passing in any parameters that were passed
to new. This gives you a chance to write code that sets up your object’s state.

For class Song, the initialize method takes three parameters. These parameters act
just like local variables within the method, so they follow the local variable naming
convention of starting with a lowercase letter.

Each object represents its own song, so we need each of our Song objects to carry
around its own song name, artist, and duration. This means we need to store these
values as instance variables within the object. Instance variables are accessible to all
the methods in an object, and each object has its own copy of its instance variables.

In Ruby, an instance variable is simply a name preceded by an “at” sign (@). In our
example, the parameter name is assigned to the instance variable @name, artist is
assigned to @artist, and duration (the length of the song in seconds) is assigned to
@duration.

Let’s test our spiffy new class.

song = Song.new("Bicylops", "Fleck", 260)
song.inspect → #<Song:0x1c7ca8 @name="Bicylops", @duration=260,

@artist="Fleck">

Well, it seems to work. By default, the inspect message, which can be sent to any
object, formats the object’s ID and instance variables. It looks as though we have them
set up correctly.

Our experience tells us that during development we’ll be printing out the contents of
a Song object many times, and inspect’s default formatting leaves something to be
desired. Fortunately, Ruby has a standard message, to_s, that it sends to any object it
wants to render as a string. Let’s try it on our song.

song = Song.new("Bicylops", "Fleck", 260)
song.to_s → "#<Song:0x1c7ec4>"

That wasn’t too useful—it just reported the object ID. So, let’s override to_s in our
class. As we do this, we should also take a moment to talk about how we’re showing
the class definitions in this book.

In Ruby, classes are never closed: you can always add methods to an existing class.
This applies to the classes you write as well as the standard, built-in classes. Just open
a class definition for an existing class, and the new contents you specify will be added
to whatever’s there.

This is great for our purposes. As we go through this chapter, adding features to our
classes, we’ll show just the class definitions for the new methods; the old ones will
still be there. It saves us having to repeat redundant stuff in each example. Obviously,
though, if you were creating this code from scratch, you’d probably just throw all the
methods into a single class definition.

Prepared exclusively for Margus Pau

INHERITANCE AND MESSAGES 25

Enough detail! Let’s get back to adding a to_s method to our Song class. We’ll use the
character in the string to interpolate the value of the three instance variables.

class Song
def to_s
"Song: #@name--#@artist (#@duration)"

end
end
song = Song.new("Bicylops", "Fleck", 260)
song.to_s → "Song: Bicylops--Fleck (260)"

Excellent, we’re making progress. However, we’ve slipped something subtle into the
mix. We said that Ruby supports to_s for all objects, but we didn’t say how. The answer
has to do with inheritance, subclassing, and how Ruby determines what method to run
when you send a message to an object. This is a subject for a new section, so. . . .

Inheritance and Messages
Inheritance allows you to create a class that is a refinement or specialization of another
class. For example, our jukebox has the concept of songs, which we encapsulate in
class Song. Then marketing comes along and tells us that we need to provide karaoke
support. A karaoke song is just like any other (it doesn’t have a vocal track, but that
doesn’t concern us). However, it also has an associated set of lyrics, along with timing
information. When our jukebox plays a karaoke song, the lyrics should flow across the
screen on the front of the jukebox in time with the music.

An approach to this problem is to define a new class, KaraokeSong, that is just like
Song but with a lyric track.

class KaraokeSong < Song
def initialize(name, artist, duration, lyrics)
super(name, artist, duration)
@lyrics = lyrics

end
end

The “< Song” on the class definition line tells Ruby that a KaraokeSong is a sub-
class of Song. (Not surprisingly, this means that Song is a superclass of KaraokeSong.
People also talk about parent-child relationships, so KaraokeSong’s parent would be
Song.) For now, don’t worry too much about the initialize method; we’ll talk about
that super call later.

Let’s create a KaraokeSong and check that our code worked. (In the final system, the
lyrics will be held in an object that includes the text and timing information.) To test
our class, though, we’ll just use a string. This is another benefit of dynamically typed
languages—we don’t have to define everything before we start running code.

Prepared exclusively for Margus Pau

INHERITANCE AND MESSAGES 26

song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")
song.to_s → "Song: My Way--Sinatra (225)"

Well, it ran. But why doesn’t the to_s method show the lyric?

The answer has to do with the way Ruby determines which method should be called
when you send a message to an object. During the initial parsing of the program source,
when Ruby comes across the method invocation song.to_s, it doesn’t actually know
where to find the method to_s. Instead, it defers the decision until the program is run.
At that time, it looks at the class of song. If that class implements a method with the
same name as the message, that method is run. Otherwise, Ruby looks for a method in
the parent class, and then in the grandparent, and so on up the ancestor chain. If it runs
out of ancestors without finding the appropriate method, it takes a special action that
normally results in an error being raised.2

Back to our example. We sent the message to_s to song, an object of class Karaoke-
Song. Ruby looks in KaraokeSong for a method called to_s but doesn’t find it. The
interpreter then looks in KaraokeSong’s parent, class Song, and there it finds the to_s
method that we defined on page 24. That’s why it prints out the song details but not the
lyrics—class Song doesn’t know anything about lyrics.

Let’s fix this by implementing KaraokeSong#to_s. You have a number of ways to do
this. Let’s start with a bad way. We’ll copy the to_s method from Song and add on the
lyric.

class KaraokeSong
...
def to_s
"KS: #@name--#@artist (#@duration) [#@lyrics]"

end
end
song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")
song.to_s → "KS: My Way--Sinatra (225) [And now, the...]"

We’re correctly displaying the value of the @lyrics instance variable. To do this, the
subclass directly accesses the instance variables of its ancestors. So why is this a bad
way to implement to_s?

The answer has to do with good programming style (and something called decoupling).
By poking around inside our parent’s internal structure, and explicitly examining its
instance variables, we’re tying ourselves tightly to its implementation. Say we decided
to change Song to store the duration in milliseconds. Suddenly, KaraokeSong would
start reporting ridiculous values. The idea of a karaoke version of “My Way” that lasts
for 3,750 minutes is just too frightening to consider.

2. In fact, you can intercept this error, which allows you to fake out methods at runtime. This is described
under Object#method_missing on page 551.

Prepared exclusively for Margus Pau

OBJECTS AND ATTRIBUTES 27

We get around this problem by having each class handle its own implementation details.
When KaraokeSong#to_s is called, we’ll have it call its parent’s to_s method to get
the song details. It will then append to this the lyric information and return the result.
The trick here is the Ruby keyword super. When you invoke super with no arguments,
Ruby sends a message to the parent of the current object, asking it to invoke a method
of the same name as the method invoking super. It passes this method the parameters
that were passed to the originally invoked method. Now we can implement our new
and improved to_s.

class KaraokeSong < Song
Format ourselves as a string by appending
our lyrics to our parent's #to_s value.
def to_s
super + " [#@lyrics]"

end
end
song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")
song.to_s → "Song: My Way--Sinatra (225) [And now, the...]"

We explicitly told Ruby that KaraokeSong was a subclass of Song, but we didn’t spec-
ify a parent class for Song itself. If you don’t specify a parent when defining a class,
Ruby supplies class Object as a default. This means that all objects have Object as
an ancestor and that Object’s instance methods are available to every object in Ruby.
Back on page 24 we said that to_s is available to all objects. Now we know why; to_s
is one of more than 35 instance methods in class Object. The complete list begins on
page 546.

So far in this chapter we’ve been looking at classes and their methods. Now it’s time to
move on to the objects, such as the instances of class Song.

Objects and Attributes
The Song objects we’ve created so far have an internal state (such as the song title and
artist). That state is private to those objects—no other object can access an object’s
instance variables. In general, this is a Good Thing. It means that the object is solely
responsible for maintaining its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then
you can’t do anything with it. You’ll normally define methods that let you access and
manipulate the state of an object, allowing the outside world to interact with the object.
These externally visible facets of an object are called its attributes.

For our Song objects, the first thing we may need is the ability to find out the title and
artist (so we can display them while the song is playing) and the duration (so we can
display some kind of progress bar).

Prepared exclusively for Margus Pau

OBJECTS AND ATTRIBUTES 28

Inheritance and Mixins

Some object-oriented languages (such as C++) support multiple
inheritance, where a class can have more than one immediate par-
ent, inheriting functionality from each. Although powerful, this tech-
nique can be dangerous, as the inheritance hierarchy can become
ambiguous.

Other languages, such as Java and C#, support single inheritance.
Here, a class can have only one immediate parent. Although cleaner
(and easier to implement), single inheritance also has drawbacks—in
the real world objects often inherit attributes from multiple sources (a
ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you
the simplicity of single inheritance and the power of multiple inheri-
tance. A Ruby class has only one direct parent, so Ruby is a single-
inheritance language. However, Ruby classes can include the func-
tionality of any number of mixins (a mixin is like a partial class defi-
nition). This provides a controlled multiple-inheritance-like capability
with none of the drawbacks. We’ll explore mixins more beginning on
page 111.

class Song
def name
@name

end
def artist
@artist

end
def duration
@duration

end
end
song = Song.new("Bicylops", "Fleck", 260)
song.artist → "Fleck"
song.name → "Bicylops"
song.duration → 260

Here we’ve defined three accessor methods to return the values of the three instance
variables. The method name(), for example, returns the value of the instance variable
@name. Because this is such a common idiom, Ruby provides a convenient shortcut:
attr_reader creates these accessor methods for you.

class Song
attr_reader :name, :artist, :duration

end

Prepared exclusively for Margus Pau

OBJECTS AND ATTRIBUTES 29

song = Song.new("Bicylops", "Fleck", 260)
song.artist → "Fleck"
song.name → "Bicylops"
song.duration → 260

This example has introduced something new. The construct :artist is an expression
that returns a Symbol object corresponding to artist. You can think of :artist as
meaning the name of the variable artist, and plain artist as meaning the value
of the variable. In this example, we named the accessor methods name, artist, and
duration. The corresponding instance variables, @name, @artist, and @duration,
will be created automatically. These accessor methods are identical to the ones we
wrote by hand earlier.

Writable Attributes
Sometimes you need to be able to set an attribute from outside the object. For example,
let’s assume that the duration that is initially associated with a song is an estimate
(perhaps gathered from information on a CD or in the MP3 data). The first time we
play the song, we get to find out how long it actually is, and we store this new value
back in the Song object.

In languages such as C++ and Java, you’d do this with setter functions.

class JavaSong { // Java code
private Duration _duration;
public void setDuration(Duration newDuration) {
_duration = newDuration;

}
}
s = new Song(....);
s.setDuration(length);

In Ruby, the attributes of an object can be accessed as if they were any other variable.
We’ve seen this above with phrases such as song.name. So, it seems natural to be able
to assign to these variables when you want to set the value of an attribute. In Ruby you
do that by creating a method whose name ends with an equals sign. These methods can
be used as the target of assignments.

class Song
def duration=(new_duration)
@duration = new_duration

end
end
song = Song.new("Bicylops", "Fleck", 260)
song.duration → 260
song.duration = 257 # set attribute with updated value
song.duration → 257

Prepared exclusively for Margus Pau

OBJECTS AND ATTRIBUTES 30

The assignment song.duration = 257 invokes the method duration= in the song
object, passing it 257 as an argument. In fact, defining a method name ending in an
equals sign makes that name eligible to appear on the left side of an assignment.

Again, Ruby provides a shortcut for creating these simple attribute-setting methods.

class Song
attr_writer :duration

end
song = Song.new("Bicylops", "Fleck", 260)
song.duration = 257

Virtual Attributes
These attribute-accessing methods do not have to be just simple wrappers around an
object’s instance variables. For example, you may want to access the duration in min-
utes and fractions of a minute, rather than in seconds as we’ve been doing.

class Song
def duration_in_minutes
@duration/60.0 # force floating point

end
def duration_in_minutes=(new_duration)
@duration = (new_duration*60).to_i

end
end
song = Song.new("Bicylops", "Fleck", 260)
song.duration_in_minutes → 4.33333333333333
song.duration_in_minutes = 4.2
song.duration → 252

Here we’ve used attribute methods to create a virtual instance variable. To the out-
side world, duration_in_minutes seems to be an attribute like any other. Internally,
though, it has no corresponding instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Con-
struction [Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding
the difference between instance variables and calculated values, you are shielding the
rest of the world from the implementation of your class. You’re free to change how
things work in the future without impacting the millions of lines of code that use your
class. This is a big win.

Attributes, Instance Variables, and Methods
This description of attributes may leave you thinking that they’re nothing more than
methods—why’d we need to invent a fancy name for them? In a way, that’s absolutely
right. An attribute is just a method. Sometimes an attribute simply returns the value
of an instance variable. Sometimes an attribute returns the result of a calculation. And

Prepared exclusively for Margus Pau

CLASS VARIABLES AND CLASS METHODS 31

sometimes those funky methods with equals signs at the end of their names are used to
update the state of an object. So the question is, where do attributes stop and regular
methods begin? What makes something an attribute, and not just a plain old method?
Ultimately, that’s one of those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how
that state is to appear on the outside (to users of your class). The internal state is
held in instance variables. The external state is exposed through methods we’re call-
ing attributes. And the other actions your class can perform are just regular methods.
It really isn’t a crucially important distinction, but by calling the external state of an
object its attributes, you’re helping clue people in to how they should view the class
you’ve written.

Class Variables and Class Methods
So far, all the classes we’ve created have contained instance variables and instance
methods: variables that are associated with a particular instance of the class, and meth-
ods that work on those variables. Sometimes classes themselves need to have their own
states. This is where class variables come in.

Class Variables
A class variable is shared among all objects of a class, and it is also accessible to
the class methods that we’ll describe later. Only one copy of a particular class variable
exists for a given class. Class variable names start with two “at” signs, such as @@count.
Unlike global and instance variables, class variables must be initialized before they
are used. Often this initialization is just a simple assignment in the body of the class
definition.

For example, our jukebox may want to record how many times each song has been
played. This count would probably be an instance variable of the Song object. When
a song is played, the value in the instance is incremented. But say we also want to
know how many songs have been played in total. We could do this by searching for all
the Song objects and adding their counts, or we could risk excommunication from the
Church of Good Design and use a global variable. Instead, we’ll use a class variable.

class Song
@@plays = 0
def initialize(name, artist, duration)
@name = name
@artist = artist
@duration = duration
@plays = 0

end

Prepared exclusively for Margus Pau

CLASS VARIABLES AND CLASS METHODS 32

def play
@plays += 1 # same as @plays = @plays + 1
@@plays += 1
"This song: #@plays plays. Total #@@plays plays."

end
end

For debugging purposes, we’ve arranged for Song#play to return a string containing
the number of times this song has been played, along with the total number of plays for
all songs. We can test this easily.

s1 = Song.new("Song1", "Artist1", 234) # test songs..
s2 = Song.new("Song2", "Artist2", 345)
s1.play → "This song: 1 plays. Total 1 plays."
s2.play → "This song: 1 plays. Total 2 plays."
s1.play → "This song: 2 plays. Total 3 plays."
s1.play → "This song: 3 plays. Total 4 plays."

Class variables are private to a class and its instances. If you want to make them acces-
sible to the outside world, you’ll need to write an accessor method. This method could
be either an instance method or, leading us neatly to the next section, a class method.

Class Methods
Sometimes a class needs to provide methods that work without being tied to any par-
ticular object. We’ve already come across one such method. The new method creates a
new Song object but is not itself associated with a particular song.

song = Song.new(....)

You’ll find class methods sprinkled throughout the Ruby libraries. For example, objects
of class File represent open files in the underlying file system. However, class File
also provides several class methods for manipulating files that aren’t open and there-
fore don’t have a File object. If you want to delete a file, you call the class method
File.delete, passing in the name.

File.delete("doomed.txt")

Class methods are distinguished from instance methods by their definition; class meth-
ods are defined by placing the class name and a period in front of the method name (but
also see the sidebar on page 34).

class Example

def instance_method # instance method
end

def Example.class_method # class method
end

end

Prepared exclusively for Margus Pau

CLASS VARIABLES AND CLASS METHODS 33

Jukeboxes charge money for each song played, not by the minute. That makes short
songs more profitable than long ones. We may want to prevent songs that take too long
from being available on the SongList. We could define a class method in SongList
that checked to see if a particular song exceeded the limit. We’ll set this limit using
a class constant, which is simply a constant (remember constants? They start with an
uppercase letter) that is initialized in the class body.

class SongList
MAX_TIME = 5*60 # 5 minutes

def SongList.is_too_long(song)
return song.duration > MAX_TIME

end
end
song1 = Song.new("Bicylops", "Fleck", 260)
SongList.is_too_long(song1) → false
song2 = Song.new("The Calling", "Santana", 468)
SongList.is_too_long(song2) → true

Singletons and Other Constructors
Sometimes you want to override the default way in which Ruby creates objects. As an
example, let’s look at our jukebox. Because we’ll have many jukeboxes, spread all over
the country, we want to make maintenance as easy as possible. Part of the requirement
is to log everything that happens to a jukebox: the songs played, the money received,
the strange fluids poured into it, and so on. Because we want to reserve the network
bandwidth for music, we’ll store these log files locally. This means we’ll need a class
that handles logging. However, we want only one logging object per jukebox, and we
want that object to be shared among all the other objects that use it.

Enter the Singleton pattern, documented in Design Patterns [GHJV95]. We’ll arrange
things so that the only way to create a logging object is to call MyLogger.create, and
we’ll ensure that only one logging object is ever created.

class MyLogger
private_class_method :new
@@logger = nil
def MyLogger.create
@@logger = new unless @@logger
@@logger

end
end

By making MyLogger’s new method private, we prevent anyone from creating a log-
ging object using the conventional constructor. Instead, we provide a class method,
MyLogger.create. This method uses the class variable @@logger to keep a reference

Prepared exclusively for Margus Pau

CLASS VARIABLES AND CLASS METHODS 34

Class Method Definitions

Back on page 32 we said that class methods are defined by putting
the class name and a period in front of the method name. That was
actually a simplification (but one that works all the time).

In fact, you can define class methods in a number of ways, but under-
standing why those ways work will have to wait until Chapter 24. For
now, we’ll just show you the idioms that people use, in case you come
across them in Ruby code.

The following all define class methods within class Demo.

class Demo
def Demo.meth1
...

end

def self.meth2
...

end

class <<self
def meth3
...

end
end

end

to a single instance of the logger, returning that instance every time it is called.3 We
can check this by looking at the object identifiers the method returns.

MyLogger.create.id → 936550
MyLogger.create.id → 936550

Using class methods as pseudo-constructors can also make life easier for users of your
class. As a trivial example, let’s look at a class Shape that represents a regular polygon.
Instances of Shape are created by giving the constructor the required number of sides
and the total perimeter.

class Shape
def initialize(num_sides, perimeter)
...

end
end

3. The implementation of singletons that we present here is not thread-safe; if multiple threads were
running, it would be possible to create multiple logger objects. Rather than add thread safety ourselves,
however, we’d probably use the Singleton mixin supplied with Ruby, which is described on page 712.

Prepared exclusively for Margus Pau

ACCESS CONTROL 35

However, a couple of years later, this class is used in a different application, where the
programmers are used to creating shapes by name and by specifying the length of one
side, not the perimeter. Simply add some class methods to Shape.

class Shape
def Shape.triangle(side_length)
Shape.new(3, side_length*3)

end
def Shape.square(side_length)
Shape.new(4, side_length*4)

end
end

Class methods have many interesting and powerful uses, but exploring them won’t get
our jukebox finished any sooner, so let’s move on.

Access Control
When designing a class interface, it’s important to consider just how much access to
your class you’ll be exposing to the outside world. Allow too much access into your
class, and you risk increasing the coupling in your application—users of your class will
be tempted to rely on details of your class’s implementation, rather than on its logical
interface. The good news is that the only easy way to change an object’s state in Ruby
is by calling one of its methods. Control access to the methods, and you’ve controlled
access to the object. A good rule of thumb is never to expose methods that could leave
an object in an invalid state. Ruby gives you three levels of protection.

• Public methods can be called by anyone—no access control is enforced. Methods
are public by default (except for initialize, which is always private).

• Protected methods can be invoked only by objects of the defining class and its
subclasses. Access is kept within the family.

• Private methods cannot be called with an explicit receiver—the receiver is always
self. This means that private methods can be called only in the context of the
current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in
Ruby than in most common OO languages. If a method is protected, it may be called
by any instance of the defining class or its subclasses. If a method is private, it may
be called only within the context of the calling object—it is never possible to access
another object’s private methods directly, even if the object is of the same class as the
caller.

Prepared exclusively for Margus Pau

ACCESS CONTROL 36

Ruby differs from other OO languages in another important way. Access control is
determined dynamically, as the program runs, not statically. You will get an access
violation only when the code attempts to execute the restricted method.

Specifying Access Control
You specify access levels to methods within class or module definitions using one or
more of the three functions public, protected, and private. You can use each func-
tion in two different ways.

If used with no arguments, the three functions set the default access control of subse-
quently defined methods. This is probably familiar behavior if you’re a C++ or Java
programmer, where you’d use keywords such as public to achieve the same effect.

class MyClass

def method1 # default is 'public'
#...

end

protected # subsequent methods will be 'protected'

def method2 # will be 'protected'
#...

end

private # subsequent methods will be 'private'

def method3 # will be 'private'
#...

end

public # subsequent methods will be 'public'

def method4 # and this will be 'public'
#...

end
end

Alternatively, you can set access levels of named methods by listing them as arguments
to the access control functions.

class MyClass

def method1
end

... and so on

public :method1, :method4
protected :method2
private :method3

end

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this
rule, we’ll make the methods that do the debits and credits private, and we’ll define our
external interface in terms of transactions.

Prepared exclusively for Margus Pau

VARIABLES 37

class Accounts

def initialize(checking, savings)
@checking = checking
@savings = savings

end

private

def debit(account, amount)
account.balance -= amount

end
def credit(account, amount)

account.balance += amount
end

public

#...
def transfer_to_savings(amount)

debit(@checking, amount)
credit(@savings, amount)

end
#...

end

Protected access is used when objects need to access the internal state of other objects
of the same class. For example, we may want to allow individual Account objects to
compare their raw balances but may want to hide those balances from the rest of the
world (perhaps because we present them in a different form).

class Account
attr_reader :balance # accessor method 'balance'

protected :balance # and make it protected

def greater_balance_than(other)
return @balance > other.balance

end
end

Because the attribute balance is protected, it’s available only within Account objects.

Variables
Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t
lose them. Variables are used to keep track of objects; each variable holds a reference
to an object.

Let’s confirm this with some code.

person = "Tim"
person.id → 936870
person.class → String
person → "Tim"

Prepared exclusively for Margus Pau

VARIABLES 38

On the first line, Ruby creates a new String object with the value “Tim.” A reference to
this object is placed in the local variable person. A quick check shows that the variable
has indeed taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference
to an object. Objects float around in a big pool somewhere (the heap, most of the time)
and are pointed to by variables.

Let’s make the example slightly more complicated.

person1 = "Tim"
person2 = person1

person1[0] = 'J'

person1 → "Jim"
person2 → "Jim"

What happened here? We changed the first character of person1, but both person1
and person2 changed from “Tim” to “Jim.”

It all comes back to the fact that variables hold references to objects, not the objects
themselves. The assignment of person1 to person2 doesn’t create any new objects;
it simply copies person1’s object reference to person2 so that both person1 and
person2 refer to the same object. We show this in Figure 3.1 on the following page.

Assignment aliases objects, potentially giving you multiple variables that reference the
same object. But can’t this cause problems in your code? It can, but not as often as
you’d think (objects in Java, for example, work exactly the same way). For instance,
in the example in Figure 3.1, you could avoid aliasing by using the dup method of
String, which creates a new String object with identical contents.

person1 = "Tim"
person2 = person1.dup
person1[0] = "J"
person1 → "Jim"
person2 → "Tim"

You can also prevent anyone from changing a particular object by freezing it (we talk
more about freezing objects on page 377). Attempt to alter a frozen object, and Ruby
will raise a TypeError exception.

person1 = "Tim"
person2 = person1
person1.freeze # prevent modifications to the object
person2[0] = "J"

produces:

prog.rb:4:in `[]=': can't modify frozen string (TypeError)
from prog.rb:4

Prepared exclusively for Margus Pau

VARIABLES 39

Figure 3.1. Variables hold object references.

person1 = "Tim"
person1

Tim

String

...

person2 = person1
person1

person2
Tim

String

...

person1[0] = "J"
person1

person2
Jim

String

That concludes our look at classes and objects in Ruby. This material is important;
everything you manipulate in Ruby is an object. And one of the most common things
we do with objects is create collections of them. But that’s the subject of our next
chapter.

Prepared exclusively for Margus Pau

Chapter 4

Containers, Blocks,
and Iterators

A jukebox with one song is unlikely to be popular (except perhaps in some very, very
scary bars), so pretty soon we’ll have to start thinking about producing a catalog of
available songs and a playlist of songs waiting to be played. Both of these are contain-
ers: objects that hold references to one or more other objects.

Both the catalog and the playlist need a similar set of methods: add a song, remove
a song, return a list of songs, and so on. The playlist may perform additional tasks,
such as inserting advertising every so often or keeping track of cumulative play time,
but we’ll worry about these things later. In the meantime, it seems like a good idea to
develop some kind of generic SongList class, which we can specialize into catalogs
and playlists.

Containers
Before we start implementing, we’ll need to work out how to store the list of songs
inside a SongList object. We have three obvious choices. We could use the Ruby
Array type, use the Ruby Hash type, or create our own list structure. Being lazy, for
now we’ll look at arrays and hashes and choose one of these for our class.

Arrays
The class Array holds a collection of object references. Each object reference occupies
a position in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A
literal array is simply a list of objects between square brackets.

Prepared exclusively for Margus Pau 40

CONTAINERS 41

a = [3.14159, "pie", 99]
a.class → Array
a.length → 3
a[0] → 3.14159
a[1] → "pie"
a[2] → 99
a[3] → nil

b = Array.new
b.class → Array
b.length → 0
b[0] = "second"
b[1] = "array"
b → ["second", "array"]

Arrays are indexed using the [] operator. As with most Ruby operators, this is actu-
ally a method (an instance method of class Array) and hence can be overridden in
subclasses. As the example shows, array indices start at zero. Index an array with a
non-negative integer, and it returns the object at that position or returns nil if nothing
is there. Index an array with a negative integer, and it counts from the end.

a = [1, 3, 5, 7, 9]
a[-1] → 9
a[-2] → 7
a[-99] → nil

This indexing scheme is illustrated in more detail in Figure 4.1 on the following page.

You can also index arrays with a pair of numbers, [start, count]. This returns a
new array consisting of references to count objects starting at position start.

a = [1, 3, 5, 7, 9]
a[1, 3] → [3, 5, 7]
a[3, 1] → [7]
a[-3, 2] → [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are sepa-
rated by two or three periods. The two-period form includes the end position, and the
three-period form does not.

a = [1, 3, 5, 7, 9]
a[1..3] → [3, 5, 7]
a[1...3] → [3, 5]
a[3..3] → [7]
a[-3..-1] → [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the
array. If used with a single integer index, the element at that position is replaced by
whatever is on the right side of the assignment. Any gaps that result will be filled with
nil.

Prepared exclusively for Margus Pau

CONTAINERS 42

Figure 4.1. How arrays are indexed

Positive → 0 1 2 3 4 5 6 Negative
indices −7 −6 −5 −4 −3 −2 −1 ← indices

a = “ant” “bat” “cat” “dog” “elk” “fly” “gnu”

a[2] → “cat”

a[-3] → “elk”

a[1..3] → “bat” “cat” “dog”

a[-3..-1] → “elk” “fly” “gnu”

a[4..-2] → “elk” “fly”

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]
a[1] = ’bat’ → [1, "bat", 5, 7, 9]
a[-3] = ’cat’ → [1, "bat", "cat", 7, 9]
a[3] = [9, 8] → [1, "bat", "cat", [9, 8], 9]
a[6] = 99 → [1, "bat", "cat", [9, 8], 9, nil, 99]

If the index to []= is two numbers (a start and a length) or a range, then those elements
in the original array are replaced by whatever is on the right side of the assignment.
If the length is zero, the right side is inserted into the array before the start position;
no elements are removed. If the right side is itself an array, its elements are used in
the replacement. The array size is automatically adjusted if the index selects a different
number of elements than are available on the right side of the assignment.

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]
a[2, 2] = ’cat’ → [1, 3, "cat", 9]
a[2, 0] = ’dog’ → [1, 3, "dog", "cat", 9]
a[1, 1] = [9, 8, 7] → [1, 9, 8, 7, "dog", "cat", 9]
a[0..3] = [] → ["dog", "cat", 9]
a[5..6] = 99, 98 → ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using these, you can treat arrays
as stacks, sets, queues, dequeues, and fifos. A complete list of array methods starts on
page 406.

Hashes
Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to
arrays in that they are indexed collections of object references. However, while you
index arrays with integers, you can index a hash with objects of any type: strings,
regular expressions, and so on. When you store a value in a hash, you actually supply

Prepared exclusively for Margus Pau

CONTAINERS 43

two objects—the index, normally called the key, and the value. You can subsequently
retrieve the value by indexing the hash with the same key. The values in a hash can be
objects of any type.

The example that follows uses hash literals: a list of key => value pairs between braces.

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length → 3
h['dog'] → "canine"
h['cow'] = 'bovine'
h[12] = 'dodecine'
h['cat'] = 99
h → {"cow"=>"bovine", "cat"=>99, 12=>"dodecine",

"donkey"=>"asinine", "dog"=>"canine"}

Compared with arrays, hashes have one significant advantage: they can use any object
as an index. However, they also have a significant disadvantage: their elements are not
ordered, so you cannot easily use a hash as a stack or a queue.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A
full list of the methods implemented by class Hash starts on page 471.

Implementing a SongList Container
After that little diversion into arrays and hashes, we’re now ready to implement the
jukebox’s SongList. Let’s invent a basic list of methods we need in our SongList.
We’ll want to add to it as we go along, but this will do for now.

append(song) → list
Append the given song to the list.

delete_first() → song
Remove the first song from the list, returning that song.

delete_last() → song
Remove the last song from the list, returning that song.

[index] → song
Return the song at the integer index.

with_title(title) → song
Return the song with the given title.

This list gives us a clue to the implementation. The ability to append songs at the end,
and remove them from both the front and end, suggests a dequeue—a double-ended
queue—which we know we can implement using an Array. Similarly, the ability to
return a song at an integer position in the list is supported by arrays.

Prepared exclusively for Margus Pau

CONTAINERS 44

However, you also need to be able to retrieve songs by title, which may suggest using
a hash, with the title as a key and the song as a value. Could we use a hash? Well,
possibly, but this causes problems. First, a hash is unordered, so we’d probably need to
use an ancillary array to keep track of the list. A second, bigger problem is that a hash
does not support multiple keys with the same value. That would be a problem for our
playlist, where the same song may be queued for playing multiple times. So, for now
we’ll stick with an array of songs, searching it for titles when needed. If this becomes
a performance bottleneck, we can always add some kind of hash-based lookup later.

We’ll start our class with a basic initialize method, which creates the Array we’ll
use to hold the songs and stores a reference to it in the instance variable @songs.

class SongList
def initialize
@songs = Array.new

end
end

The SongList#append method adds the given song to the end of the @songs array. It
also returns self, a reference to the current SongList object. This is a useful convention,
as it lets us chain together multiple calls to append. We’ll see an example of this later.

class SongList
def append(song)
@songs.push(song)
self

end
end

Then we’ll add the delete_first and delete_last methods, trivially implemented
using Array#shift and Array#pop, respectively.

class SongList
def delete_first
@songs.shift

end
def delete_last
@songs.pop

end
end

So far, so good. Our next method is [], which accesses elements by index. These
kind of simple delegating methods occur frequently in Ruby code: don’t worry if your
code ends up containing a bunch of one- or two-line methods—it’s a sign that you’re
designing things correctly.

class SongList
def [](index)
@songs[index]

end
end

Prepared exclusively for Margus Pau

CONTAINERS 45

At this point, a quick test may be in order. To do this, we’re going to use a testing
framework called TestUnit that comes with the standard Ruby distributions. We won’t
describe it fully yet (we do that in the Unit Testing chapter starting on page 143). For
now, we’ll just say that the method assert_equal checks that its two parameters are
equal, complaining bitterly if they aren’t. Similarly, the method assert_nil complains
unless its parameter is nil. We’re using these assertions to verify that the correct songs
are deleted from the list.

The test contains some initial housekeeping, necessary to tell Ruby to use the TestUnit
framework and to tell the framework that we’re writing some test code. Then we create
a SongList and four songs and append the songs to the list. (Just to show off, we use
the fact that append returns the SongList object to chain together these method calls.)
We can then test our [] method, verifying that it returns the correct song (or nil) for a
set of indices. Finally, we delete songs from the start and end of the list, checking that
the correct songs are returned.

require 'test/unit'
class TestSongList < Test::Unit::TestCase
def test_delete
list = SongList.new
s1 = Song.new('title1', 'artist1', 1)
s2 = Song.new('title2', 'artist2', 2)
s3 = Song.new('title3', 'artist3', 3)
s4 = Song.new('title4', 'artist4', 4)

list.append(s1).append(s2).append(s3).append(s4)

assert_equal(s1, list[0])
assert_equal(s3, list[2])
assert_nil(list[9])

assert_equal(s1, list.delete_first)
assert_equal(s2, list.delete_first)
assert_equal(s4, list.delete_last)
assert_equal(s3, list.delete_last)
assert_nil(list.delete_last)

end
end

produces:

Loaded suite -
Started
.
Finished in 0.002314 seconds.

1 tests, 8 assertions, 0 failures, 0 errors

The running test confirms that eight assertions were executed in one test method, and
they all passed. We’re on our way to a working jukebox!

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 46

Now we need to add the facility that lets us look up a song by title. This is going to
involve scanning through the songs in the list, checking the title of each. To do this, we
first need to spend a couple of pages looking at one of Ruby’s neatest features: iterators.

Blocks and Iterators
Our next problem with SongList is to implement the method with_title that takes
a string and searches for a song with that title. This seems straightforward: we have an
array of songs, so we’ll go through it one element at a time, looking for a match.

class SongList
def with_title(title)
for i in 0...@songs.length

return @songs[i] if title == @songs[i].name
end
return nil

end
end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What
could be more natural?

It turns out there is something more natural. In a way, our for loop is somewhat too
intimate with the array; it asks for a length, and it then retrieves values in turn until it
finds a match. Why not just ask the array to apply a test to each of its members? That’s
just what the find method in Array does.

class SongList
def with_title(title)
@songs.find {|song| title == song.name }

end
end

The method find is an iterator—a method that invokes a block of code repeatedly.
Iterators and code blocks are among the more interesting features of Ruby, so let’s
spend a while looking into them (and in the process we’ll find out exactly what that
line of code in our with_title method actually does).

Implementing Iterators
A Ruby iterator is simply a method that can invoke a block of code. At first sight, a
block in Ruby looks just like a block in C, Java, C#, or Perl. Unfortunately, in this
case looks are deceiving—a Ruby block is a way of grouping statements, but not in the
conventional way.

First, a block may appear only in the source adjacent to a method call; the block is
written starting on the same line as the method call’s last parameter (or the closing

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 47

parenthesis of the parameter list). Second, the code in the block is not executed at the
time it is encountered. Instead, Ruby remembers the context in which the block appears
(the local variables, the current object, and so on) and then enters the method. This is
where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using
the yield statement. Whenever a yield is executed, it invokes the code in the block.
When the block exits, control picks back up immediately after the yield.1 Let’s start
with a trivial example.

def three_times
yield
yield
yield

end
three_times { puts "Hello" }

produces:

Hello
Hello
Hello

The block (the code between the braces) is associated with the call to the method
three_times. Within this method, yield is called three times in a row. Each time, it
invokes the code in the block, and a cheery greeting is printed. What makes blocks inter-
esting, however, is that you can pass parameters to them and receive values from them.
For example, we could write a simple function that returns members of the Fibonacci
series up to a certain value.2

def fib_up_to(max)
i1, i2 = 1, 1 # parallel assignment (i1 = 1 and i2 = 1)
while i1 <= max
yield i1
i1, i2 = i2, i1+i2

end
end

fib_up_to(1000) {|f| print f, " " }

produces:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

1. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the
yield function in Liskov’s language CLU, a language that is more than 20 years old and yet contains features
that still haven’t been widely exploited by the CLU-less.

2. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent
term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in
analyzing natural phenomena.

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 48

In this example, the yield statement has a parameter. This value is passed to the asso-
ciated block. In the definition of the block, the argument list appears between vertical
bars. In this instance, the variable f receives the value passed to the yield, so the block
prints successive members of the series. (This example also shows parallel assignment
in action. We’ll come back to this on page 85.) Although it is common to pass just one
value to a block, this is not a requirement; a block may have any number of arguments.

If the parameters to a block are existing local variables, those variables will be used as
the block parameters, and their values may be changed by the block’s execution. The
same thing applies to variables inside the block: if they appear for the first time in the
block, they’re local to the block. If instead they first appeared outside the block, the
variables will be shared between the block and the surrounding environment.3

In this (contrived) example, we see that the block inherits the variables a and b from
the surrounding scope, but c is local to the block (the method defined? returns nil if
its argument is not defined).

a = [1, 2]
b = 'cat'
a.each {|b| c = b * a[1] }
a → [1, 2]
b → 2
defined?(c) → nil

A block may also return a value to the method. The value of the last expression evalu-
ated in the block is passed back to the method as the value of the yield. This is how the
find method used by class Array works.4 Its implementation would look something
like the following.

class Array
def find
for i in 0...size

value = self[i]
return value if yield(value)

end
return nil

end
end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } → 7

This passes successive elements of the array to the associated block. If the block returns
true, the method returns the corresponding element. If no element matches, the method
returns nil. The example shows the benefit of this approach to iterators. The Array

3. Although extremely useful at times, this feature may lead to unexpected behavior and is hotly debated
in the Ruby community. It is possible that Ruby 2.0 will change the way blocks inherit local variables.

4. The find method is actually defined in module Enumerable, which is mixed into class Array.

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 49

class does what it does best, accessing array elements, leaving the application code to
concentrate on its particular requirement (in this case, finding an entry that meets some
mathematical criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find
already. Two others are each and collect. each is probably the simplest iterator—all
it does is yield successive elements of its collection.

[1, 3, 5, 7, 9].each {|i| puts i }

produces:

1
3
5
7
9

The each iterator has a special place in Ruby; on page 97 we’ll describe how it’s used
as the basis of the language’s for loop, and starting on page 113 we’ll see how defining
an each method can add a whole lot more functionality to your class for free.

Another common iterator is collect, which takes each element from the collection
and passes it to the block. The results returned by the block are used to construct a new
array. For instance:

["H", "A", "L"].collect {|x| x.succ } → ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in
the Fibonacci example, an iterator can return derived values. This capability is used by
Ruby input/output classes, which implement an iterator interface that returns successive
lines (or bytes) in an I/O stream. (This example uses do. . .end to define a block. The
only difference between this notation and using braces to define blocks is precedence:
do. . .end binds lower than {. . . }. We discuss the impact of this on page 341.)

f = File.open("testfile")
f.each do |line|
puts line

end
f.close

produces:

This is line one
This is line two
This is line three
And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named) inject
method1.8 (defined in the module Enumerable) lets you accumulate a value across the

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 50

members of a collection. For example, you can sum all the elements in an array, and
find their product, using code such as

[1,3,5,7].inject(0) {|sum, element| sum+element} → 16
[1,3,5,7].inject(1) {|product, element| product*element} → 105

inject works like this: the first time the associated block is called, sum is set to
inject’s parameter and element is set to the first element in the collection. The second
and subsequent times the block is called, sum is set to the value returned by the block
on the previous call. The final value of inject is the value returned by the block the
last time it was called. There’s one final wrinkle: if inject is called with no parameter,
it uses the first element of the collection as the initial value and starts the iteration with
the second value. This means that we could have written the previous examples as

[1,3,5,7].inject {|sum, element| sum+element} → 16
[1,3,5,7].inject {|product, element| product*element} → 105

Internal and External Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of lan-
guages such as C++ and Java. In the Ruby approach, the iterator is internal to the
collection—it’s simply a method, identical to any other, that happens to call yield
whenever it generates a new value. The thing that uses the iterator is just a block of
code associated with this method.

In other languages, collections don’t contain their own iterators. Instead, they generate
external helper objects (for example, those based on Java’s Iterator interface) that
carry the iterator state. In this, as in many other ways, Ruby is a transparent language.
When you write a Ruby program, you concentrate on getting the job done, not on
building scaffolding to support the language itself.

It’s probably also worth spending a paragraph looking at why Ruby’s internal itera-
tors aren’t always the best solution. One area where they fall down badly is where you
need to treat an iterator as an object in its own right (for example, passing the iter-
ator into a method that needs to access each of the values returned by that iterator).
It’s also difficult to iterate over two collections in parallel using Ruby’s internal iter-
ator scheme. Fortunately, Ruby 1.81.8 comes with the Generator library (described on
page 662), which implements external iterators in Ruby for just such occasions.

Blocks for Transactions
Although blocks are often the target of an iterator, they also have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-
actional control. For example, you’ll often open a file, do something with its contents,
and then want to ensure that the file is closed when you finish. Although you can do this

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 51

using conventional code, an argument exists for making the file responsible for closing
itself. We can do this with blocks. A naive implementation (ignoring error handling)
could look something like the following.

class File

def File.open_and_process(*args)
f = File.open(*args)
yield f
f.close()

end

end

File.open_and_process("testfile", "r") do |file|

while line = file.gets
puts line

end

end

produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is a class method—it may be called independently of any particu-
lar file object. We want it to take the same arguments as the conventional File.open
method, but we don’t really care what those arguments are. To do this, we speci-
fied the arguments as *args, meaning “collect the actual parameters passed to the
method into an array named args.” We then call File.open, passing it *args as
a parameter. This expands the array back into individual parameters. The net result
is that open_and_process transparently passes whatever parameters it received to
File.open.

Once the file has been opened, open_and_process calls yield, passing the open file
object to the block. When the block returns, the file is closed. In this way, the responsi-
bility for closing an open file has been passed from the user of file objects back to the
files themselves.

The technique of having files manage their own life cycle is so useful that the class
File supplied with Ruby supports it directly. If File.open has an associated block,
then that block will be invoked with a file object, and the file will be closed when
the block terminates. This is interesting, as it means that File.open has two different
behaviors: when called with a block, it executes the block and closes the file. When
called without a block, it returns the file object. This is made possible by the method
Kernel.block_given?, which returns true if a block is associated with the current
method. Using this method, you could implement something similar to the standard
File.open (again, ignoring error handling) using the following.

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 52

class File
def File.my_open(*args)
result = file = File.new(*args)
If there's a block, pass in the file and close
the file when it returns
if block_given?

result = yield file
file.close

end

return result
end

end

This has one last twist: in the previous examples of using blocks to control resources,
we haven’t addressed error handling. If we wanted to implement these methods prop-
erly, we’d need to ensure that we closed files even if the code processing that file some-
how aborted. We do this using exception handling, which we talk about later (starting
on page 101).

Blocks Can Be Closures
Let’s get back to our jukebox for a moment (remember the jukebox?). At some point
we’ll be working on the code that handles the user interface—the buttons that people
press to select songs and control the jukebox. We’ll need to associate actions with
those buttons: press START and the music starts. It turns out that Ruby’s blocks are
a convenient way to do this. Let’s start by assuming that the people who made the
hardware implemented a Ruby extension that gives us a basic button class. (We talk
about extending Ruby beginning on page 261.)

start_button = Button.new("Start")
pause_button = Button.new("Pause")
...

What happens when the user presses one of our buttons? In the Button class, the hard-
ware folks rigged things so that a callback method, button_pressed, will be invoked.
The obvious way of adding functionality to these buttons is to create subclasses of
Button and have each subclass implement its own button_pressed method.

class StartButton < Button
def initialize
super("Start") # invoke Button's initialize

end
def button_pressed
do start actions...

end
end

start_button = StartButton.new

Prepared exclusively for Margus Pau

BLOCKS AND ITERATORS 53

This has two problems. First, this will lead to a large number of subclasses. If the
interface to Button changes, this could involve us in a lot of maintenance. Second, the
actions performed when a button is pressed are expressed at the wrong level; they are
not a feature of the button but are a feature of the jukebox that uses the buttons. We can
fix both of these problems using blocks.

songlist = SongList.new

class JukeboxButton < Button

def initialize(label, &action)
super(label)
@action = action

end

def button_pressed
@action.call(self)

end

end

start_button = JukeboxButton.new("Start") { songlist.start }
pause_button = JukeboxButton.new("Pause") { songlist.pause }

The key to all this is the second parameter to JukeboxButton#initialize. If the last
parameter in a method definition is prefixed with an ampersand (such as &action),
Ruby looks for a code block whenever that method is called. That code block is con-
verted to an object of class Proc and assigned to the parameter. You can then treat
the parameter as any other variable. In our example, we assigned it to the instance
variable @action. When the callback method button_pressed is invoked, we use the
Proc#call method on that object to invoke the block.

So what exactly do we have when we create a Proc object? The interesting thing is that
it’s more than just a chunk of code. Associated with a block (and hence a Proc object)
is all the context in which the block was defined: the value of self and the methods,
variables, and constants in scope. Part of the magic of Ruby is that the block can still
use all this original scope information even if the environment in which it was defined
would otherwise have disappeared. In other languages, this facility is called a closure.

Let’s look at a contrived example. This example uses the method lambda, which con-
verts a block to a Proc object.

def n_times(thing)
return lambda {|n| thing * n }

end

p1 = n_times(23)
p1.call(3) → 69
p1.call(4) → 92
p2 = n_times("Hello ")
p2.call(3) → "Hello Hello Hello "

Prepared exclusively for Margus Pau

CONTAINERS EVERYWHERE 54

The method n_times returns a Proc object that references the method’s parameter,
thing. Even though that parameter is out of scope by the time the block is called, the
parameter remains accessible to the block.

Containers Everywhere
Containers, blocks, and iterators are core concepts in Ruby. The more you write in
Ruby, the more you’ll find yourself moving away from conventional looping constructs.
Instead, you’ll write classes that support iteration over their contents. And you’ll find
that this code is compact, easy to read, and a joy to maintain.

Prepared exclusively for Margus Pau

Chapter 5

Standard Types

So far we’ve been having fun implementing pieces of our jukebox code, but we’ve been
negligent. We’ve looked at arrays, hashes, and procs, but we haven’t really covered
the other basic types in Ruby: numbers, strings, ranges, and regular expressions. Let’s
spend a few pages on these basic building blocks now.

Numbers
Ruby supports integers and floating-point numbers. Integers can be any length (up to a
maximum determined by the amount of free memory on your system). Integers within a
certain range (normally−230 to 230−1 or −262 to 262−1) are held internally in binary
form and are objects of class Fixnum. Integers outside this range are stored in objects
of class Bignum (currently implemented as a variable-length set of short integers). This
process is transparent, and Ruby automatically manages the conversion back and forth.

num = 81
6.times do
puts "#{num.class}: #{num}"
num *= num

end

produces:

Fixnum: 81
Fixnum: 6561
Fixnum: 43046721
Bignum: 1853020188851841
Bignum: 3433683820292512484657849089281
Bignum: 11790184577738583171520872861412518665678211592275841109096961

You write integers using an optional leading sign, an optional base indicator (0 for
octal, 0d for decimal [the default], 0x for hex, or 0b for binary), followed by a string
of digits in the appropriate base. Underscore characters are ignored in the digit string
(some folks use them in place of commas in larger numbers).

Prepared exclusively for Margus Pau 55

NUMBERS 56

123456 => 123456 # Fixnum
0d123456 => 123456 # Fixnum
123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
0xaabb => 43707 # Fixnum - hexadecimal
0377 => 255 # Fixnum - octal
-0b10_1010 => -42 # Fixnum - binary (negated)
123_456_789_123_456_789 => 123456789123456789 # Bignum

The integer values of control characters can be generated using ?\C-x and ?\cx (the
control version of x is x&0x9f). Metacharacters (x|0x80) can be generated using
?\M-x. The combination of meta and control is generated using and ?\M-\C-x. You can
get the integer value of a backslash character using the sequence ?\\.

?a => 97 # ASCII character
?\n => 10 # code for a newline (0x0a)
?\C-a => 1 # control a = ?A & 0x9f = 0x01
?\M-a => 225 # meta sets bit 7
?\M-\C-a => 129 # meta and control a
?\C-? => 127 # delete character

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must both precede1.8
and follow the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to
invoke the method e3 in class Fixnum).

All numbers are objects and respond to a variety of messages (listed in full starting on
pages 420, 463, 466, 480, and 541). So, unlike (say) C++, you find the absolute value
of a number by writing num.abs, not abs(num).

Integers also support several useful iterators. We’ve seen one already: 6.times in the
code example on the preceding page. Others include upto and downto, for iterating up
and down between two integers. Class Numeric also provides the more general method
step, which is more like a traditional for loop.

3.times { print "X " }
1.upto(5) {|i| print i, " " }
99.downto(95) {|i| print i, " " }
50.step(80, 5) {|i| print i, " " }

produces:

X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not
automatically converted into numbers when used in expressions. This tends to bite
most often when reading numbers from a file. For example, we may want to find the
sum of the two numbers on each line for a file such as

3 4
5 6
7 8

Prepared exclusively for Margus Pau

STRINGS 57

The following code doesn’t work.

some_file.each do |line|
v1, v2 = line.split # split line on spaces
print v1 + v2, " "

end

produces:

34 56 78

The problem is that the input was read as strings, not numbers. The plus operator con-
catenates strings, so that’s what we see in the output. To fix this, use the Integer
method to convert the string to an integer.

some_file.each do |line|
v1, v2 = line.split
print Integer(v1) + Integer(v2), " "

end

produces:

7 11 15

Strings
Ruby strings are simply sequences of 8-bit bytes. They normally hold printable charac-
ters, but that is not a requirement; a string can also hold binary data. Strings are objects
of class String.

Strings are often created using string literals—sequences of characters between delim-
iters. Because binary data is otherwise difficult to represent within program source,
you can place various escape sequences in a string literal. Each is replaced with the
corresponding binary value as the program is compiled. The type of string delimiter
determines the degree of substitution performed.Within single-quoted strings, two con-
secutive backslashes are replaced by a single backslash, and a backslash followed by a
single quote becomes a single quote.

'escape using "\\"' → escape using "\"
'That\'s right' → That's right

Double-quoted strings support a boatload more escape sequences. The most common
is probably \n, the newline character. Table 22.2 on page 306 gives the complete list. In
addition, you can substitute the value of any Ruby code into a string using the sequence
#{ expr }. If the code is just a global variable, a class variable, or an instance variable,
you can omit the braces.

"Seconds/day: #{24*60*60}" → Seconds/day: 86400
"#{'Ho! '*3}Merry Christmas!" → Ho! Ho! Ho! Merry Christmas!
"This is line #$." → This is line 3

Prepared exclusively for Margus Pau

STRINGS 58

The interpolated code can be one or more statements, not just an expression.1.8

puts "now is #{ def the(a)
'the ' + a

end
the('time')

} for all good coders..."

produces:

now is the time for all good coders...

You have three more ways to construct string literals: %q, %Q, and here documents.

%q and %Q start delimited single- and double-quoted strings (you can think of %q as a
thin quote ', and %Q as a thick quote ").

%q/general single-quoted string/ → general single-quoted string
%Q!general double-quoted string! → general double-quoted string
%Q{Seconds/day: #{24*60*60}} → Seconds/day: 86400

The character following the q or Q is the delimiter. If it is an opening bracket “[”, brace
“{”, parenthesis “(”, or less-than sign “<”, the string is read until the matching close
symbol is found. Otherwise the string is read until the next occurrence of the same
delimiter. The delimiter can be any nonalphanumeric or nonmultibyte character.1.8

Finally, you can construct a string using a here document.

string = <<END_OF_STRING
The body of the string
is the input lines up to
one ending with the same
text that followed the '<<'

END_OF_STRING

A here document consists of lines in the source up to, but not including, the terminating
string that you specify after the << characters. Normally, this terminator must start in
the first column. However, if you put a minus sign after the << characters, you can
indent the terminator.

print <<-STRING1, <<-STRING2
Concat
STRING1

enate
STRING2

produces:

Concat
enate

Note that Ruby does not strip leading spaces of the contents of the strings in these
cases.

Prepared exclusively for Margus Pau

STRINGS 59

Working with Strings
String is probably the largest built-in Ruby class, with more than 75 standard methods.
We won’t go through them all here; the library reference has a complete list. Instead,
we’ll look at some common string idioms—things that are likely to pop up during day-
to-day programming.

Let’s get back to our jukebox. Although it’s designed to be connected to the Internet, it
also holds copies of some popular songs on a local hard drive. That way, if a squirrel
chews through our ’net connection, we’ll still be able to entertain the customers.

For historical reasons (are there any other kind?), the list of songs is stored as rows in
a flat file. Each row holds the name of the file containing the song, the song’s duration,
the artist, and the title, all in vertical bar–separated fields. A typical file may start

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

: : : :

Looking at the data, it’s clear that we’ll be using some of class String’s many methods
to extract and clean up the fields before we create Song objects based on them. At a
minimum, we’ll need to

• break each line into fields,
• convert the running times from mm:ss to seconds, and
• remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#split will do the job nicely.
In this case, we’ll pass split a regular expression, /\s*\|\s*/, that splits the line
into tokens wherever split finds a vertical bar, optionally surrounded by spaces. And,
because the line read from the file has a trailing newline, we’ll use String#chomp to
strip it off just before we apply the split.

File.open("songdata") do |song_file|
songs = SongList.new

song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
songs.append(Song.new(title, name, length))

end

puts songs[1]
end

produces:

Song: Wonderful World--Louis Armstrong (2:58)

Unfortunately, whoever created the original file entered the artists’ names in columns,
so some of them contain extra spaces. These will look ugly on our high-tech, super-
twist, flat-panel, Day-Glo display, so we’d better remove these extra spaces before

Prepared exclusively for Margus Pau

STRINGS 60

we go much further. We have many ways of doing this, but probably the simplest is
String#squeeze, which trims runs of repeated characters. We’ll use the squeeze!
form of the method, which alters the string in place.

File.open("songdata") do |song_file|
songs = SongList.new

song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze!(" ")
songs.append(Song.new(title, name, length))

end

puts songs[1]
end

produces:

Song: Wonderful World--Louis Armstrong (2:58)

Finally, we have the minor matter of the time format: the file says 2:58, and we want
the number of seconds, 178. We could use split again, this time splitting the time field
around the colon character.

mins, secs = length.split(/:/)

Instead, we’ll use a related method. String#scan is similar to split in that it breaks
a string into chunks based on a pattern. However, unlike split, with scan you specify
the pattern that you want the chunks to match. In this case, we want to match one or
more digits for both the minutes and seconds component. The pattern for one or more
digits is /\d+/.

File.open("songdata") do |song_file|
songs = SongList.new
song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze!(" ")
mins, secs = length.scan(/\d+/)
songs.append(Song.new(title, name, mins.to_i*60+secs.to_i))

end

puts songs[1]
end

produces:

Song: Wonderful World--Louis Armstrong (178)

Our jukebox has a keyword search capability. Given a word from a song title or an
artist’s name, it will list all matching tracks. Type in fats, and it may come back with
songs by Fats Domino, Fats Navarro, and Fats Waller, for example. We’ll implement
this by creating an indexing class. Feed it an object and some strings, and it will index
that object under every word (of two or more characters) that occurs in those strings.
This will illustrate a few more of class String’s many methods.

Prepared exclusively for Margus Pau

STRINGS 61

class WordIndex
def initialize
@index = {}

end
def add_to_index(obj, *phrases)
phrases.each do |phrase|

phrase.scan(/\w[-\w']+/) do |word| # extract each word
word.downcase!
@index[word] = [] if @index[word].nil?
@index[word].push(obj)

end
end

end
def lookup(word)
@index[word.downcase]

end
end

The String#scan method extracts elements from a string that match a regular expres-
sion. In this case, the pattern \w[-\w'’]+ matches any character that can appear in a
word, followed by one or more of the things specified in the brackets (a hyphen, another
word character, or a single quote). We’ll talk more about regular expressions beginning
on page 64. To make our searches case insensitive, we map both the words we extract
and the words used as keys during the lookup to lowercase. Note the exclamation mark
at the end of the first downcase! method name. As with the squeeze! method we used
previously, this is an indication that the method will modify the receiver in place, in
this case converting the string to lowercase.1

We’ll extend our SongList class to index songs as they’re added and add a method to
look up a song given a word.

class SongList
def initialize
@songs = Array.new
@index = WordIndex.new

end
def append(song)
@songs.push(song)
@index.add_to_index(song, song.name, song.artist)
self

end
def lookup(word)
@index.lookup(word)

end
end

1. This code sample contains a minor bug: the song “Gone, Gone, Gone” would get indexed three times.
Can you come up with a fix?

Prepared exclusively for Margus Pau

RANGES 62

Finally, we’ll test it all.

songs = SongList.new
song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze!(" ")
mins, secs = length.scan(/\d+/)
songs.append(Song.new(title, name, mins.to_i*60+secs.to_i))

end
puts songs.lookup("Fats")
puts songs.lookup("ain't")
puts songs.lookup("RED")
puts songs.lookup("WoRlD")

produces:

Song: Ain't Misbehavin'--Fats Waller (225)
Song: Ain't Misbehavin'--Fats Waller (225)
Song: Texas Red--Strength in Numbers (249)
Song: Wonderful World--Louis Armstrong (178)

In the preceding code, the lookup method returns an array of matches. When we pass
an array to puts, it simply writes each element in turn, separated by a newline.

We could spend the next 50 pages looking at all the methods in class String. However,
let’s move on instead to look at a simpler data type: the range.

Ranges
Ranges occur everywhere: January to December, 0 to 9, rare to well-done, lines 50
through 67, and so on. If Ruby is to help us model reality, it seems natural for it to
support these ranges. In fact, Ruby goes one better: it actually uses ranges to implement
three separate features: sequences, conditions, and intervals.

Ranges as Sequences
The first and perhaps most natural use of ranges is to express a sequence. Sequences
have a start point, an end point, and a way to produce successive values in the sequence.
In Ruby, these sequences are created using the “. .” and “. . .” range operators. The two-
dot form creates an inclusive range, and the three-dot form creates a range that excludes
the specified high value.

1..10
'a'..'z'
my_array = [1, 2, 3]
0...my_array.length

Prepared exclusively for Margus Pau

RANGES 63

In Ruby, unlike in some earlier versions of Perl, ranges are not represented internally
as lists: the sequence 1..100000 is held as a Range object containing references to two
Fixnum objects. If you need to, you can convert a range to a list using the to_a method.

(1..10).to_a → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
('bar'..'bat').to_a → ["bar", "bas", "bat"]

Ranges implement methods that let you iterate over them and test their contents in a
variety of ways.

digits = 0..9
digits.include?(5) → true
digits.min → 0
digits.max → 9
digits.reject {|i| i < 5 } → [5, 6, 7, 8, 9]
digits.each {|digit| dial(digit) } → 0..9

So far we’ve shown ranges of numbers and strings. However, as you’d expect from
an object-oriented language, Ruby can create ranges based on objects that you define.
The only constraints are that the objects must respond to succ by returning the next
object in sequence and the objects must be comparable using <=>. Sometimes called
the spaceship operator, <=> compares two values, returning −1, 0, or +1 depending
on whether the first is less than, equal to, or greater than the second.

Here’s a simple class that represents rows of # signs. We may want to use it as a text-
based version of the jukebox volume control.

class VU
include Comparable

attr :volume

def initialize(volume) # 0..9
@volume = volume

end

def inspect
'#' * @volume

end

Support for ranges
def <=>(other)
self.volume <=> other.volume

end

def succ
raise(IndexError, "Volume too big") if @volume >= 9
VU.new(@volume.succ)

end
end

Because our VU class implements succ and <=>, it can participate in ranges.

medium_volume = VU.new(4)..VU.new(7)
medium_volume.to_a → [####, #####, ######, #######]
medium_volume.include?(VU.new(3)) → false

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 64

Ranges as Conditions
As well as representing sequences, ranges may also be used as conditional expressions.
Here, they act as a kind of toggle switch—they turn on when the condition in the first
part of the range becomes true, and they turn off when the condition in the second
part becomes true. For example, the following code fragment prints sets of lines from
standard input, where the first line in each set contains the word start and the last line
contains the word end.

while line = gets
puts line if line =~ /start/ .. line =~ /end/

end

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show
some examples of this in the description of loops that starts on page 94.

In older versions of Ruby, bare ranges could be used as conditions in if, while, and
similar statements.1.8 You could, for example, have written the previous code fragment as

while gets
print if /start/../end/

end

This is no longer supported. Unfortunately, no error is raised; the test will simply suc-
ceed each time.

Ranges as Intervals
A final use of the versatile range is as an interval test: seeing if some value falls within
the interval represented by the range. We do this using ===, the case equality operator.

(1..10) === 5 → true
(1..10) === 15 → false
(1..10) === 3.14159 → true
('a'..'j') === 'c' → true
('a'..'j') === 'z' → false

The example of a case expression on page 92 shows this test in action, determining a
jazz style given a year.

Regular Expressions
Back on page 59 when we were creating a song list from a file, we used a regular
expression to match the field delimiter in the input file. We claimed that the expression
line.split(/\s*\|\s*/) matched a vertical bar surrounded by optional whitespace.
Let’s explore regular expressions in more detail to see why this claim is true.

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 65

Regular expressions are used to match patterns against strings. Ruby provides built-
in support that makes pattern matching and substitution convenient and concise. In this
section we’ll work through all the main features of regular expressions. We won’t cover
some details here: have a look at page 309 for more information.

Regular expressions are objects of type Regexp. They can be created by calling the
constructor explicitly or by using the literal forms /pattern/ and %r{pattern}.

a = Regexp.new('^\s*[a-z]') → /^\s*[a-z]/
b = /^\s*[a-z]/ → /^\s*[a-z]/
c = %r{^\s*[a-z]} → /^\s*[a-z]/

Once you have a regular expression object, you can match it against a string using
Regexp#match(string) or the match operators =~ (positive match) and !~ (negative
match). The match operators are defined for both String and Regexp objects. At least
one operand of the match operator must be a regular expression.1.8 (In previous versions
of Ruby, both could be strings, in which case the second operand was converted into a
regular expression behind the scenes.)

name = "Fats Waller"
name =~ /a/ → 1
name =~ /z/ → nil
/a/ =~ name → 1

The match operators return the character position at which the match occurred. They
also have the side effect of setting a whole load of Ruby variables. $& receives the part
of the string that was matched by the pattern, $` receives the part of the string that
preceded the match, and $' receives the string after the match. We can use this to write
a method, show_regexp, that illustrates where a particular pattern matches.

def show_regexp(a, re)
if a =~ re
"#{$`}<<#{$&}>>#{$'}"

else
"no match"

end
end

show_regexp('very interesting', /t/) → very in<<t>>eresting
show_regexp('Fats Waller', /a/) → F<<a>>ts Waller
show_regexp('Fats Waller', /ll/) → Fats Wa<<ll>>er
show_regexp('Fats Waller', /z/) → no match

The match also sets the thread-global variables $~ and $1 through $9. The variable
$~ is a MatchData object (described beginning on page 516) that holds everything you
may want to know about the match. $1, and so on, hold the values of parts of the match.
We’ll talk about these later. And for people who cringe when they see these Perl-like
variable names, stay tuned. There’s good news at the end of the chapter.

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 66

Patterns
Every regular expression contains a pattern, which is used to match the regular expres-
sion against a string.

Within a pattern, all characters except ., |, (,), [,], {, }, +, \, ^, $, *, and ? match
themselves.

show_regexp('kangaroo', /angar/) → k<<angar>>oo
show_regexp('!@%&-_=+', /%&/) → !@<<%&>>-_=+

If you want to match one of these special characters literally, precede it with a back-
slash. This explains part of the pattern we used to split the song line, /\s*\|\s*/.
The \| means “match a vertical bar.” Without the backslash, the | would have meant
alternation (which we’ll describe later).

show_regexp('yes | no', /\|/) → yes <<|>> no
show_regexp('yes (no)', /\(no\)/) → yes <<(no)>>
show_regexp('are you sure?', /e\?/) → are you sur<<e?>>

A backslash followed by an alphanumeric character is used to introduce a special match
construct, which we’ll cover later. In addition, a regular expression may contain #{...}
expression substitutions.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string.
Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting
at position one. But what if you want to force a pattern to match only at the start or end
of a string?

The patterns ^ and $match the beginning and end of a line, respectively. These are often
used to anchor a pattern match: for example, /^option/ matches the word option only
if it appears at the start of a line. The sequence \A matches the beginning of a string,
and \z and \Z match the end of a string. (Actually, \Zmatches the end of a string unless
the string ends with a \n, it which case it matches just before the \n.)

show_regexp("this is\nthe time", /^the/) → this is\n<<the>> time
show_regexp("this is\nthe time", /is$/) → this <<is>>\nthe time
show_regexp("this is\nthe time", /\Athis/) → <<this>> is\nthe time
show_regexp("this is\nthe time", /\Athe/) → no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries,
respectively. Word characters are letters, numbers, and underscores.

show_regexp("this is\nthe time", /\bis/) → this <<is>>\nthe time
show_regexp("this is\nthe time", /\Bis/) → th<<is>> is\nthe time

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 67

Character Classes

A character class is a set of characters between brackets: [characters] matches any
single character between the brackets. [aeiou] will match a vowel, [,.:;!?] matches
punctuation, and so on. The significance of the special regular expression characters—
.|()[{+^$*?—is turned off inside the brackets. However, normal string substitution
still occurs, so (for example) \b represents a backspace character and \n a newline
(see Table 22.2 on page 306). In addition, you can use the abbreviations shown in
Table 5.1 on the following page so that (for example) \s matches any whitespace char-
acter, not just a literal space. The POSIX character classes in the second half of the
table correspond to the ctype(3) macros of the same names.

show_regexp('Price $12.', /[aeiou]/) → Pr<<i>>ce $12.
show_regexp('Price $12.', /[\s]/) → Price<< >>$12.
show_regexp('Price $12.', /[[:digit:]]/) → Price $<<1>>2.
show_regexp('Price $12.', /[[:space:]]/) → Price<< >>$12.
show_regexp('Price $12.', /[[:punct:]aeiou]/) → Pr<<i>>ce $12.

Within the brackets, the sequence c1-c2 represents all the characters between c1 and c2,
inclusive.

a = 'see [Design Patterns-page 123]'
show_regexp(a, /[A-F]/) → see [<<D>>esign Patterns-page 123]
show_regexp(a, /[A-Fa-f]/) → s<<e>>e [Design Patterns-page 123]
show_regexp(a, /[0-9]/) → see [Design Patterns-page <<1>>23]
show_regexp(a, /[0-9][0-9]/) → see [Design Patterns-page <<12>>3]

If you want to include the literal characters] and - within a character class, they must
appear at the start. Put a ^ immediately after the opening bracket to negate a character
class: [^a-z] matches any character that isn’t a lowercase alphabetic.

a = 'see [Design Patterns-page 123]'
show_regexp(a, /[]]/) → see [Design Patterns-page 123<<]>>
show_regexp(a, /[-]/) → see [Design Patterns<<->>page 123]
show_regexp(a, /[^a-z]/) → see<< >>[Design Patterns-page 123]
show_regexp(a, /[^a-z\s]/) → see <<[>>Design Patterns-page 123]

Some character classes are used so frequently that Ruby provides abbreviations for
them. These abbreviations are listed in Table 5.1 on the next page—they may be used
both within brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) → It<< >>costs $12.
show_regexp('It costs $12.', /\d/) → It costs $<<1>>2.

Finally, a period (.) appearing outside brackets represents any character except a new-
line (though in multiline mode it matches a newline, too).

a = 'It costs $12.'
show_regexp(a, /c.s/) → It <<cos>>ts $12.
show_regexp(a, /./) → <<I>>t costs $12.
show_regexp(a, /\./) → It costs $12<<.>>

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 68

Table 5.1. Character class abbreviations

Sequence As [. . .] Meaning

\d [0-9] Digit character
\D [^0-9] Any character except a digit
\s [\s\t\r\n\f] Whitespace character
\S [^\s\t\r\n\f] Any character except whitespace
\w [A-Za-z0-9_] Word character
\W [^A-Za-z0-9_] Any character except a word character

POSIX Character Classes

[:alnum:] Alphanumeric
[:alpha:] Uppercase or lowercase letter
[:blank:] Blank and tab
[:cntrl:] Control characters (at least 0x00–0x1f, 0x7f)
[:digit:] Digit
[:graph:] Printable character excluding space
[:lower:] Lowercase letter
[:print:] Any printable character (including space)
[:punct:] Printable character excluding space and alphanumeric
[:space:] Whitespace (same as \s)
[:upper:] Uppercase letter
[:xdigit:] Hex digit (0–9, a–f, A–F)

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we
wanted to match a vertical bar surrounded by an arbitrary amount of whitespace. We
now know that the \s sequences match a single whitespace character, so it seems likely
that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is one of a
number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

r* matches zero or more occurrences of r.
r+ matches one or more occurrences of r.
r? matches zero or one occurrence of r.
r{m,n} matches at least “m” and at most “n” occurrences of r.
r{m,} matches at least “m” occurrences of r.
r{m} matches exactly “m” occurrences of r.

These repetition constructs have a high precedence—they bind only to the immediately
preceding regular expression in the pattern. /ab+/ matches an a followed by one or

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 69

more b’s, not a sequence of ab’s. You have to be careful with the * construct too—the
pattern /a*/ will match any string; every string has zero or more a’s.

These patterns are called greedy, because by default they will match as much of the
string as they can. You can alter this behavior, and have them match the minimum, by
adding a question mark suffix.

a = "The moon is made of cheese"
show_regexp(a, /\w+/) → <<The>> moon is made of cheese
show_regexp(a, /\s.*\s/) → The<< moon is made of >>cheese
show_regexp(a, /\s.*?\s/) → The<< moon >>is made of cheese
show_regexp(a, /[aeiou]{2,99}/) → The m<<oo>>n is made of cheese
show_regexp(a, /mo?o/) → The <<moo>>n is made of cheese

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape
it with a backslash. That’s because an unescaped vertical bar (|) matches either the
regular expression that precedes it or the regular expression that follows it.

a = "red ball blue sky"
show_regexp(a, /d|e/) → r<<e>>d ball blue sky
show_regexp(a, /al|lu/) → red b<<al>>l blue sky
show_regexp(a, /red ball|angry sky/) → <<red ball>> blue sky

There’s a trap for the unwary here, as | has a very low precedence. The last example
above matches red ball or angry sky, not red ball sky or red angry sky. To match red
ball sky or red angry sky, you’d need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within
the group is treated as a single regular expression.

show_regexp('banana', /an*/) → b<<an>>ana
show_regexp('banana', /(an)*/) → <<>>banana
show_regexp('banana', /(an)+/) → b<<anan>>a

a = 'red ball blue sky'
show_regexp(a, /blue|red/) → <<red>> ball blue sky
show_regexp(a, /(blue|red) \w+/) → <<red ball>> blue sky
show_regexp(a, /(red|blue) \w+/) → <<red ball>> blue sky
show_regexp(a, /red|blue \w+/) → <<red>> ball blue sky

show_regexp(a, /red (ball|angry) sky/) → no match
a = 'the red angry sky'
show_regexp(a, /red (ball|angry) sky/) → the <<red angry sky>>

Parentheses also collect the results of pattern matching. Ruby counts opening parenthe-
ses, and for each stores the result of the partial match between it and the corresponding
closing parenthesis. You can use this partial match both within the rest of the pattern

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 70

and in your Ruby program. Within the pattern, the sequence \1 refers to the match of
the first group, \2 the second group, and so on. Outside the pattern, the special variables
$1, $2, and so on, serve the same purpose.

"12:50am" =~ /(\d\d):(\d\d)(..)/ → 0
"Hour is #$1, minute #$2" → "Hour is 12, minute 50"
"12:50am" =~ /((\d\d):(\d\d))(..)/ → 0
"Time is #$1" → "Time is 12:50"
"Hour is #$2, minute #$3" → "Hour is 12, minute 50"
"AM/PM is #$4" → "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for
various forms of repetition.

match duplicated letter
show_regexp('He said "Hello"', /(\w)\1/) → He said "He<<ll>>o"
match duplicated substrings
show_regexp('Mississippi', /(\w+)\1/) → M<<ississ>>ippi

You can also use back references to match delimiters.

show_regexp('He said "Hello"', /(["']).*?\1/) → He said
<<"Hello">>

show_regexp("He said 'Hello'", /(["']).*?\1/) → He said
<<'Hello'>>

Pattern-Based Substitution
Sometimes finding a pattern in a string is good enough. If a friend challenges you to
find a word that contains the letters a, b, c, d, and e in order, you could search a word
list with the pattern /a.*b.*c.*d.*e/ and find abjectedness, absconded, ambuscade,
and carbacidometer, among others. That has to be worth something.

However, sometimes you need to change things based on a pattern match. Let’s go
back to our song list file. Whoever created it entered all the artists’ names in lowercase.
When we display them on our jukebox’s screen, they’d look better in mixed case. How
can we change the first character of each word to uppercase?

The methods String#sub and String#gsub look for a portion of a string matching
their first argument and replace it with their second argument. String#sub performs
one replacement, and String#gsub replaces every occurrence of the match. Both rou-
tines return a new copy of the String containing the substitutions. Mutator versions
String#sub! and String#gsub! modify the original string.

a = "the quick brown fox"
a.sub(/[aeiou]/, '*') → "th* quick brown fox"
a.gsub(/[aeiou]/, '*') → "th* q**ck br*wn f*x"
a.sub(/\s\S+/, '') → "the brown fox"
a.gsub(/\s\S+/, '') → "the"

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 71

The second argument to both functions can be either a String or a block. If a block is
used, it is passed the matching substring, and the block’s value is substituted into the
original string.

a = "the quick brown fox"
a.sub(/^./) {|match| match.upcase } → "The quick brown fox"
a.gsub(/[aeiou]/) {|vowel| vowel.upcase } → "thE qUIck brOwn fOx"

So, this looks like the answer to converting our artists’ names. The pattern that matches
the first character of a word is \b\w—look for a word boundary followed by a word
character. Combine this with gsub, and we can hack the artists’ names.

def mixed_case(name)
name.gsub(/\b\w/) {|first| first.upcase }

end

mixed_case("fats waller") → "Fats Waller"
mixed_case("louis armstrong") → "Louis Armstrong"
mixed_case("strength in numbers") → "Strength In Numbers"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern,
standing for the nth group matched so far. The same sequences are available in the
second argument of sub and gsub.

"fred:smith".sub(/(\w+):(\w+)/, '\2, \1') → "smith, fred"
"nercpyitno".gsub(/(.)(.)/, '\2\1') → "encryption"

Additional backslash sequences work in substitution strings: \& (last match), \+ (last
matched group), \` (string prior to match), \' (string after match), and \\ (a literal
backslash).

It gets confusing if you want to include a literal backslash in a substitution. The obvious
thing is to write

str.gsub(/\\/, '\\\\')

Clearly, this code is trying to replace each backslash in str with two. The programmer
doubled up the backslashes in the replacement text, knowing that they’d be converted
to \\ in syntax analysis. However, when the substitution occurs, the regular expression
engine performs another pass through the string, converting \\ to \, so the net effect
is to replace each single backslash with another single backslash. You need to write
gsub(/\\/, '\\\\\\\\')!

str = 'a\b\c' → "a\b\c"
str.gsub(/\\/, '\\\\\\\\') → "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write

str = 'a\b\c' → "a\b\c"
str.gsub(/\\/, '\&\&') → "a\\b\\c"

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 72

If you use the block form of gsub, the string for substitution is analyzed only once
(during the syntax pass) and the result is what you intended.

str = 'a\b\c' → "a\b\c"
str.gsub(/\\/) { '\\\\' } → "a\\b\\c"

Finally, as an example of the wonderful expressiveness of combining regular expres-
sions with code blocks, consider the following code fragment from the CGI library
module, written by Wakou Aoyama. The code takes a string containing HTML escape
sequences and converts it into normal ASCII. Because it was written for a Japanese
audience, it uses the n modifier on the regular expressions, which turns off wide-
character processing. It also illustrates Ruby’s case expression, which we discuss start-
ing on page 92.

def unescapeHTML(string)
str = string.dup
str.gsub!(/&(.*?);/n) {
match = $1.dup
case match
when /\Aamp\z/ni then '&'
when /\Aquot\z/ni then '"'
when /\Agt\z/ni then '>'
when /\Alt\z/ni then '<'
when /\A#(\d+)\z/n then Integer($1).chr
when /\A#x([0-9a-f]+)\z/ni then $1.hex.chr
end

}
str

end

puts unescapeHTML("1<2 && 4>3")
puts unescapeHTML(""A" = A = A")

produces:

1<2 && 4>3
"A" = A = A

Object-Oriented Regular Expressions
We have to admit that while all these weird variables are very convenient to use, they
aren’t very object oriented, and they’re certainly cryptic. And didn’t we say that every-
thing in Ruby was an object? What has gone wrong here?

Nothing, really. It’s just that when Matz designed Ruby, he produced a fully object-
oriented regular expression handling system. He then made it look familiar to Perl
programmers by wrapping all these $-variables on top of it all. The objects and classes
are still there, underneath the surface. So let’s spend a while digging them out.

We’ve already come across one class: regular expression literals create instances of
class Regexp (documented beginning on page 579).

Prepared exclusively for Margus Pau

REGULAR EXPRESSIONS 73

re = /cat/
re.class → Regexp

The method Regexp#match matches a regular expression against a string. If unsuc-
cessful, the method returns nil. On success, it returns an instance of class MatchData,
documented beginning on page 516. And that MatchData object gives you access to
all available information about the match. All that good stuff that you can get from the
$-variables is bundled in a handy little object.

re = /(\d+):(\d+)/ # match a time hh:mm
md = re.match("Time: 12:34am")
md.class → MatchData
md[0] # == $& → "12:34"
md[1] # == $1 → "12"
md[2] # == $2 → "34"
md.pre_match # == $` → "Time: "
md.post_match # == $' → "am"

Because the match data is stored in its own object, you can keep the results of two
or more pattern matches available at the same time, something you can’t do using the
$-variables. In the next example, we’re matching the same Regexp object against two
strings. Each match returns a unique MatchData object, which we verify by examining
the two subpattern fields.

re = /(\d+):(\d+)/ # match a time hh:mm
md1 = re.match("Time: 12:34am")
md2 = re.match("Time: 10:30pm")
md1[1, 2] → ["12", "34"]
md2[1, 2] → ["10", "30"]

So how do the $-variables fit in? Well, after every pattern match, Ruby stores a refer-
ence to the result (nil or a MatchData object) in a thread-local variable (accessible
using $~). All the other regular expression variables are then derived from this object.
Although we can’t really think of a use for the following code, it demonstrates that all
the other MatchData-related $-variables are indeed slaved off the value in $~.

re = /(\d+):(\d+)/
md1 = re.match("Time: 12:34am")
md2 = re.match("Time: 10:30pm")
[$1, $2] # last successful match → ["10", "30"]
$~ = md1
[$1, $2] # previous successful match → ["12", "34"]

Having said all this, we have to ’fess up. We normally use the $-variables rather than
worrying about MatchData objects. For everyday use, they just end up being more
convenient. Sometimes we just can’t help being pragmatic.

Prepared exclusively for Margus Pau

Chapter 6

More about Methods

So far in this book, we’ve been defining and using methods without much thought. Now
it’s time to get into the details.

Defining a Method
As we’ve seen, a method is defined using the keyword def. Method names should begin
with a lowercase letter.1 Methods that act as queries are often named with a trailing ?,
such as instance_of?. Methods that are “dangerous,” or modify the receiver, may
be named with a trailing !. For instance, String provides both a chop and a chop!.
The first one returns a modified string; the second modifies the receiver in place. And
methods that can be assigned to (a feature we discussed on page 29) end with an equals
sign (=). ?, !, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some
parameters. These are simply a list of local variable names in parentheses. (The paren-
theses are optional around a method’s arguments; our convention is to use them when
a method has arguments and omit them when it doesn’t.)

def my_new_method(arg1, arg2, arg3) # 3 arguments
Code for the method would go here

end

def my_other_new_method # No arguments
Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used
if the caller doesn’t pass them explicitly. You do this using the assignment operator.

1. You won’t get an immediate error if you use an uppercase letter, but when Ruby sees you calling the
method, it will first guess that it is a constant, not a method invocation, and as a result it may parse the call
incorrectly.

Prepared exclusively for Margus Pau 74

DEFINING A METHOD 75

def cool_dude(arg1="Miles", arg2="Coltrane", arg3="Roach")
"#{arg1}, #{arg2}, #{arg3}."

end

cool_dude → "Miles, Coltrane, Roach."
cool_dude("Bart") → "Bart, Coltrane, Roach."
cool_dude("Bart", "Elwood") → "Bart, Elwood, Roach."
cool_dude("Bart", "Elwood", "Linus") → "Bart, Elwood, Linus."

The body of a method contains normal Ruby expressions, except that you may not
define a nonsingleton class or module within a method. If you define a method inside
another method,1.8 the inner method gets defined when the outer method executes. The
return value of a method is the value of the last expression executed or the result of an
explicit return expression.

Variable-Length Argument Lists
But what if you want to pass in a variable number of arguments or want to capture
multiple arguments into a single parameter? Placing an asterisk before the name of the
parameter after the “normal” parameters does just that.

def varargs(arg1, *rest)
"Got #{arg1} and #{rest.join(', ')}"

end

varargs("one") → "Got one and "
varargs("one", "two") → "Got one and two"
varargs "one", "two", "three" → "Got one and two, three"

In this example, the first argument is assigned to the first method parameter as usual.
However, the next parameter is prefixed with an asterisk, so all the remaining arguments
are bundled into a new Array, which is then assigned to that parameter.

Methods and Blocks
As we discussed in the section on blocks and iterators beginning on page 46, when a
method is called, it may be associated with a block. Normally, you simply call the block
from within the method using yield.

def take_block(p1)
if block_given?
yield(p1)

else
p1

end
end

take_block("no block") → "no block"
take_block("no block") {|s| s.sub(/no /, '') } → "block"

Prepared exclusively for Margus Pau

CALLING A METHOD 76

However, if the last parameter in a method definition is prefixed with an ampersand,
any associated block is converted to a Proc object, and that object is assigned to the
parameter.

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block

end
def get_tax(amount)
"#@name on #{amount} = #{ @block.call(amount) }"

end
end

tc = TaxCalculator.new("Sales tax") {|amt| amt * 0.075 }

tc.get_tax(100) → "Sales tax on 100 = 7.5"
tc.get_tax(250) → "Sales tax on 250 = 18.75"

Calling a Method
You call a method by specifying a receiver, the name of the method, and optionally
some parameters and an optional block.

connection.download_MP3("jitterbug") {|p| show_progress(p) }

In this example, the object connection is the receiver, download_MP3 is the name
of the method, "jitterbug" is the parameter, and the stuff between the braces is the
associated block.

For class and module methods, the receiver will be the class or module name.

File.size("testfile") → 66
Math.sin(Math::PI/4) → 0.707106781186548

If you omit the receiver, it defaults to self, the current object.

self.class → Object
self.frozen? → false
frozen? → false
self.id → 967900
id → 967900

This defaulting mechanism is how Ruby implements private methods. Private methods
may not be called with a receiver, so they must be methods available in the current
object.

Also, in the previous example we called self.class, but we could not call the method
class without a receiver. This is because class is also a keyword in Ruby (it intro-
duces class definitions), so its stand-alone use would generate a syntax error.

Prepared exclusively for Margus Pau

CALLING A METHOD 77

The optional parameters follow the method name. If no ambiguity exists, you can omit
the parentheses around the argument list when calling a method.2 However, except in
the simplest cases we don’t recommend this—some subtle problems can trip you up.3

Our rule is simple: if you have any doubt, use parentheses.

a = obj.hash # Same as
a = obj.hash() # this.

obj.some_method "Arg1", arg2, arg3 # Same thing as
obj.some_method("Arg1", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between
the method name and the opening parenthesis. This made it hard to parse: is the paren-
thesis the start of the parameters or the start of an expression? As of Ruby 1.81.8 you get
a warning if you put a space between a method name and an open parenthesis.

Method Return Values
Every called method returns a value (although no rule says you have to use that value).
The value of a method is the value of the last statement executed during the method’s
execution. Ruby has a return statement, which exits from the currently executing
method. The value of a return is the value of its argument(s). It is idiomatic Ruby
to omit the return if it isn’t needed.

def meth_one
"one"

end
meth_one → "one"

def meth_two(arg)
case
when arg > 0
"positive"

when arg < 0
"negative"

else
"zero"

end
end

meth_two(23) → "positive"
meth_two(0) → "zero"

2. Other Ruby documentation sometimes calls these method calls without parentheses commands.

3. In particular, you must use parentheses on a method call that is itself a parameter to another method
call (unless it is the last parameter).

Prepared exclusively for Margus Pau

CALLING A METHOD 78

def meth_three
100.times do |num|
square = num*num
return num, square if square > 1000

end
end
meth_three → [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns
them in an array. You can use parallel assignment to collect this return value.

num, square = meth_three
num → 32
square → 1024

Expanding Arrays in Method Calls

Earlier we saw that if you put an asterisk in front of a formal parameter in a method
definition, multiple arguments in the call to the method will be bundled into an array.
Well, the same thing works in reverse.

When you call a method, you can explode an array, so that each of its members is taken
as a separate parameter. Do this by prefixing the array argument (which must follow all
the regular arguments) with an asterisk.

def five(a, b, c, d, e)
"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) → "I was passed 1 2 3 4 5"
five(1, 2, 3, *['a', 'b']) → "I was passed 1 2 3 a b"
five(*(10..14).to_a) → "I was passed 10 11 12 13 14"

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call.

list_bones("aardvark") do |bone|
...

end

Normally, this is perfectly good enough—you associate a fixed block of code with a
method in the same way you’d have a chunk of code after an if or while statement.

Sometimes, however, you’d like to be more flexible. For example, we may be teaching
math skills.4 The student could ask for an n-plus table or an n-times table. If the student

4. Of course, Andy and Dave would have to learn math skills first. Conrad Schneiker reminded us that
there are three kinds of people: those who can count and those who can’t.

Prepared exclusively for Margus Pau

CALLING A METHOD 79

asked for a 2-times table, we’d output 2, 4, 6, 8, and so on. (This code does not check
its inputs for errors.)

print "(t)imes or (p)lus: "
times = gets
print "number: "
number = Integer(gets)

if times =~ /^t/
puts((1..10).collect {|n| n*number }.join(", "))

else
puts((1..10).collect {|n| n+number }.join(", "))

end

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if state-
ment. If would be nice if we could factor out the block that does the calculation.

print "(t)imes or (p)lus: "
times = gets
print "number: "
number = Integer(gets)

if times =~ /^t/
calc = lambda {|n| n*number }

else
calc = lambda {|n| n+number }

end
puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it
is a Proc object. It removes it from the parameter list, converts the Proc object into a
block, and associates it with the method.

Collecting Hash Arguments

Some languages feature keyword arguments—that is, instead of passing arguments in a
given order and quantity, you pass the name of the argument with its value, in any order.
Ruby 1.8 does not have keyword arguments (making us liars, because in the previous
version of this book we said it would have. Perhaps in Ruby 2.0). In the meantime,
people are using hashes as a way of achieving the same effect. For example, we could
consider adding a more powerful named-search facility to our SongList.

Prepared exclusively for Margus Pau

CALLING A METHOD 80

class SongList
def create_search(name, params)
...

end
end
list.create_search("short jazz songs",

{
'genre' => "jazz",
'duration_less_than' => 270

})

The first parameter is the search name, and the second is a hash literal containing search
parameters. The use of a hash means we can simulate keywords: look for songs with a
genre of “jazz” and a duration less than 4 1

2 minutes. However, this approach is slightly
clunky, and that set of braces could easily be mistaken for a block associated with the
method. So, Ruby has a shortcut. You can place key => value pairs in an argument list, as
long as they follow any normal arguments and precede any array and block arguments.
All these pairs will be collected into a single hash and passed as one argument to the
method. No braces are needed.

list.create_search('short jazz songs',
'genre' => 'jazz',
'duration_less_than' => 270)

Finally, in idiomatic Ruby you’d probably use symbols rather than strings, as symbols
make it clearer that you’re referring to the name of something.

list.create_search('short jazz songs',
:genre => :jazz,
:duration_less_than => 270)

A well-written Ruby program will typically contain many methods, each quite small,
so it’s worth getting familiar with the options available when defining and using Ruby
methods.

Prepared exclusively for Margus Pau

Chapter 7

Expressions

So far we’ve been fairly cavalier in our use of expressions in Ruby. After all, a = b + c is
pretty standard stuff. You could write a whole heap of Ruby code without reading any
of this chapter.

But it wouldn’t be as much fun ;-).

One of the first differences with Ruby is that anything that can reasonably return a value
does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together.

a = b = c = 0 → 0
[3, 1, 7, 0].sort.reverse → [7, 3, 1, 0]

Perhaps less obvious, things that are normally statements in C or Java are expressions
in Ruby. For example, the if and case statements both return the value of the last
expression executed.

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)
Song::TradJazz

else
Song::Jazz

end
else

Song::Other
end

rating = case votes_cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else Rating::Rave
end

We’ll talk more about if and case starting on page 90.

Prepared exclusively for Margus Pau 81

OPERATOR EXPRESSIONS 82

Operator Expressions
Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A
complete list of the operators, and their precedences, is given in Table 22.4 on page 324.

In Ruby, many operators are actually implemented as method calls. For example, when
you write a*b + c you’re actually asking the object referenced by a to execute the
method * , passing in the parameter b. You then ask the object that results from that
calculation to execute the + method, passing c as a parameter. This is equivalent to
writing

(a.*(b)).+(c)

Because everything is an object, and because you can redefine instance methods, you
can always redefine basic arithmetic if you don’t like the answers you’re getting.

class Fixnum
alias old_plus +

Redefine addition of Fixnums. This
is a BAD IDEA!
def +(other)
old_plus(other).succ

end
end

1 + 2 → 4
a = 3
a += 4 → 8
a + a + a → 26

More useful is that classes you write can participate in operator expressions just as if
they were built-in objects. For example, we may want to be able to extract a number
of seconds of music from the middle of a song. We could do this using the indexing
operator [] to specify the music to be extracted.

class Song

def [](from_time, to_time)
result = Song.new(self.title + " [extract]",

self.artist,
to_time - from_time)

result.set_start_time(from_time)

result
end

end

This code fragment extends class Songwith the method [], which takes two parameters
(a start time and an end time). It returns a new song, with the music clipped to the given
interval. We could then play the introduction to a song with code such as

song[0, 15].play

Prepared exclusively for Margus Pau

MISCELLANEOUS EXPRESSIONS 83

Miscellaneous Expressions
As well as the obvious operator expressions and method calls, and the (perhaps) less
obvious statement expressions (such as if and case), Ruby has a few more things that
you can use in expressions.

Command Expansion
If you enclose a string in backquotes (sometimes called backticks), or use the delimited
form prefixed by %x, it will (by default) be executed as a command by your underlying
operating system. The value of the expression is the standard output of that command.
Newlines will not be stripped, so it is likely that the value you get back will have a
trailing return or linefeed character.

`date` → "Thu Oct 21 16:01:42 CDT 2004\n"
`ls`.split[34] → "book.bbl"
%x{echo "Hello there"} → "Hello there\n"

You can use expression expansion and all the usual escape sequences in the command
string.

for i in 0..3
status = `dbmanager status id=#{i}`
...

end

The exit status of the command is available in the global variable $?.

Redefining Backquotes

In the description of the command output expression, we said that the string in back-
quotes would “by default” be executed as a command. In fact, the string is passed to
the method called Kernel.` (a single backquote). If you want, you can override this.

alias old_backquote `
def `(cmd)
result = old_backquote(cmd)
if $? != 0
fail "Command #{cmd} failed: #$?"

end
result

end
print `date`
print `data`

produces:

Thu Oct 21 16:01:42 CDT 2004
prog.rb:10: command not found: data
prog.rb:5:in ``': Command data failed: 32512 (RuntimeError)
from prog.rb:10

Prepared exclusively for Margus Pau

ASSIGNMENT 84

Assignment
Just about every example we’ve given so far in this book has featured assignment.
Perhaps it’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the lvalue) to
refer to the value on the right (the rvalue). It then returns that value as the result of the
assignment expression. This means you can chain assignments, and you can perform
assignments in some unexpected places.

a = b = 1 + 2 + 3
a → 6
b → 6
a = (b = 1 + 2) + 3
a → 6
b → 3
File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a
variable or constant. This form of assignment is hardwired into the language.

instrument = "piano"
MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference
on the left side.

song.duration = 234
instrument["ano"] = "ccolo"

These forms are special, because they are implemented by calling methods in the
lvalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method
name ending in an equals sign. This method receives as its parameter the assignment’s
rvalue.

class Song
def duration=(new_duration)
@duration = new_duration

end
end

These attribute-setting methods don’t have to correspond with internal instance vari-
ables, and you don’t need an attribute reader for every attribute writer (or vice versa).

class Amplifier
def volume=(new_volume)
self.left_channel = self.right_channel = new_volume

end
end

Prepared exclusively for Margus Pau

ASSIGNMENT 85

In older Ruby versions, the result of the assignment was the value returned by the
attribute-setting method.1.8 In Ruby 1.8, the value of the assignment is always the value
of the parameter; the return value of the method is discarded.

class Test
def val=(val)
@val = val
return 99

end
end

t = Test.new
a = t.val = 2
a → 2

In older versions of Ruby, a would be set to 99 by the assignment, and in Ruby 1.8 it
will be set to 2.

Parallel Assignment
During your first week in a programming course (or the second semester if it was a
party school), you may have had to write code to swap the values in two variables.

int a = 1;
int b = 2;
int temp;

temp = a;
a = b;
b = temp;

You can do this much more cleanly in Ruby.

a, b = b, a

Ruby assignments are effectively performed in parallel, so the values assigned are not
affected by the assignment itself. The values on the right side are evaluated in the order
in which they appear before any assignment is made to variables or attributes on the left.
A somewhat contrived example illustrates this. The second line assigns to the variables
a, b, and c the values of the expressions x, x += 1, and x += 1, respectively.

x = 0 → 0
a, b, c = x, (x += 1), (x += 1) → [0, 1, 2]

When an assignment has more than one lvalue, the assignment expression returns an
array of the rvalues. If an assignment contains more lvalues than rvalues, the excess
lvalues are set to nil. If a multiple assignment contains more rvalues than lvalues, the
extra rvalues are ignored. If an assignment has just one lvalue and multiple rvalues, the
rvalues are converted to an array and assigned to the lvalue.

Prepared exclusively for Margus Pau

ASSIGNMENT 86

Using Accessors within a Class

Why did we write self.left_channel in the example on page 84?
Well, writable attributes have a hidden gotcha. Normally, methods
within a class can invoke other methods in the same class and its
superclasses in functional form (that is, with an implicit receiver of
self). However, this doesn’t work with attribute writers. Ruby sees
the assignment and decides that the name on the left must be a local
variable, not a method call to an attribute writer.

class BrokenAmplifier
attr_accessor :left_channel, :right_channel
def volume=(vol)
left_channel = self.right_channel = vol

end
end

ba = BrokenAmplifier.new
ba.left_channel = ba.right_channel = 99
ba.volume = 5
ba.left_channel → 99
ba.right_channel → 5

We forgot to put “self.” in front of the assignment to left_channel,
so Ruby stored the new value in a local variable of method volume=;
the object’s attribute never got updated. This can be a tricky bug to
track down.

You can collapse and expand arrays using Ruby’s parallel assignment operator. If the
last lvalue is preceded by an asterisk, all the remaining rvalues will be collected and
assigned to that lvalue as an array. Similarly, if the last rvalue is an array, you can
prefix it with an asterisk, which effectively expands it into its constituent values in
place. (This is not necessary if the rvalue is the only thing on the right side—the array
will be expanded automatically.)

a = [1, 2, 3, 4]
b, c = a → b == 1, c == 2
b, *c = a → b == 1, c == [2, 3, 4]
b, c = 99, a → b == 99, c == [1, 2, 3, 4]
b, *c = 99, a → b == 99, c == [[1, 2, 3, 4]]
b, c = 99, *a → b == 99, c == 1
b, *c = 99, *a → b == 99, c == [1, 2, 3, 4]

Nested Assignments

Parallel assignments have one more feature worth mentioning. The left side of an
assignment may contain a parenthesized list of terms. Ruby treats these terms as if they

Prepared exclusively for Margus Pau

CONDITIONAL EXECUTION 87

were a nested assignment statement. It extracts the corresponding rvalue, assigning it
to the parenthesized terms, before continuing with the higher-level assignment.

b, (c, d), e = 1,2,3,4 → b == 1, c == 2, d == nil, e == 3
b, (c, d), e = [1,2,3,4] → b == 1, c == 2, d == nil, e == 3
b, (c, d), e = 1,[2,3],4 → b == 1, c == 2, d == 3, e == 4
b, (c, d), e = 1,[2,3,4],5 → b == 1, c == 2, d == 3, e == 5
b, (c,*d), e = 1,[2,3,4],5 → b == 1, c == 2, d == [3, 4], e == 5

Other Forms of Assignment
In common with many other languages, Ruby has a syntactic shortcut: a = a + 2 may be
written as a += 2.

The second form is converted internally to the first. This means that operators you have
defined as methods in your own classes work as you’d expect.

class Bowdlerize
def initialize(string)
@value = string.gsub(/[aeiou]/, '*')

end
def +(other)
Bowdlerize.new(self.to_s + other.to_s)

end
def to_s
@value

end
end

a = Bowdlerize.new("damn ") → d*mn
a += "shame" → d*mn sh*m*

Something you won’t find in Ruby are the autoincrement (++) and autodecrement (--)
operators of C and Java. Use the += and-= forms instead.

Conditional Execution
Ruby has several different mechanisms for conditional execution of code; most of them
should feel familiar, and many have some neat twists. Before we get into them, though,
we need to spend a short time looking at boolean expressions.

Boolean Expressions
Ruby has a simple definition of truth. Any value that is not nil or the constant false
is true. You’ll find that the library routines use this fact consistently. For example,
IO#gets, which returns the next line from a file, returns nil at end of file, enabling
you to write loops such as

Prepared exclusively for Margus Pau

CONDITIONAL EXECUTION 88

while line = gets
process line

end

However, C, C++, and Perl programmers sometimes fall into a trap. The number zero
is not interpreted as a false value. Neither is a zero-length string. This can be a tough
habit to break.

Defined?, And, Or, and Not

Ruby supports all the standard boolean operators and introduces the new operator
defined?.

Both and and && evaluate to true only if both operands are true. They evaluate the sec-
ond operand only if the first is true (this is sometimes known as shortcircuit evaluation).
The only difference in the two forms is precedence (and binds lower than &&).

Similarly, both or and || evaluate to true if either operand is true. They evaluate their
second operand only if the first is false. As with and, the only difference between or
and || is their precedence.

Just to make life interesting, and and or have the same precedence, and && has a higher
precedence than ||.

not and ! return the opposite of their operand (false if the operand is true, and true if
the operand is false). And, yes, not and ! differ only in precedence.

All these precedence rules are summarized in Table 22.4 on page 324.

The defined? operator returns nil if its argument (which can be an arbitrary expres-
sion) is not defined; otherwise it returns a description of that argument. If the argument
is yield, defined? returns the string “yield” if a code block is associated with the
current context.

defined? 1 → "expression"
defined? dummy → nil
defined? printf → "method"
defined? String → "constant"
defined? $_ → "global-variable"
defined? Math::PI → "constant"
defined? a = 1 → "assignment"
defined? 42.abs → "method"

In addition to the boolean operators, Ruby objects support comparison using the meth-
ods ==, ===, <=>, =~, eql?, and equal? (see Table 7.1 on the next page). All but <=>
are defined in class Object but are often overridden by descendents to provide appro-
priate semantics. For example, class Array redefines == so that two array objects are
equal if they have the same number of elements and corresponding elements are equal.

Prepared exclusively for Margus Pau

CONDITIONAL EXECUTION 89

Table 7.1. Common comparison operators

Operator Meaning

== Test for equal value.
=== Used to compare each of the items with the target in the when clause of

a case statement.
<=> General comparison operator. Returns −1, 0, or +1, depending on

whether its receiver is less than, equal to, or greater than its argument.
<, <=, >=, > Comparison operators for less than, less than or equal, greater than or

equal, and greater than.
=~ Regular expression pattern match.
eql? True if the receiver and argument have both the same type and equal

values. 1 == 1.0 returns true, but 1.eql?(1.0) is false.
equal? True if the receiver and argument have the same object ID.

Both == and =~ have negated forms, != and !~. However, these are converted by Ruby
when your program is read. a != b is equivalent to !(a == b), and a !~ b is the same
as !(a =~ b). This means that if you write a class that overrides == or =~ you get a
working != and !~ for free. But on the flip side, this also means that you cannot define
!= and !~ independent of == and =~, respectively.

You can use a Ruby range as a boolean expression. A range such as exp1..exp2 will
evaluate as false until exp1 becomes true. The range will then evaluate as true until
exp2 becomes true. Once this happens, the range resets, ready to fire again. We show
some examples of this on page 94.

Prior to Ruby 1.8, you could use a bare regular expression as a boolean expression.1.8 This
is now deprecated. You can still use the ~ operator (described on page 580) to match
$_ against a pattern.

The Value of Logical Expressions
In the text, we said things such as “and evaluates to true if both operands are true.” But
it’s actually slightly more subtle than that. The operators and, or, && and || actually
return the first of their arguments that determine the truth or falsity of the condition.
Sounds grand. What does it mean?

Take the expression “val1 and val2”. If val1 is either false or nil, then we know
the expression cannot be true. In this case, the value of val1 determines the overall
value of the expression, so it is the value returned. If val1 has some other value, then
the overall value of the expression depends on val2, so its value is returned.

Prepared exclusively for Margus Pau

CONDITIONAL EXECUTION 90

nil and true → nil
false and true → false
99 and false → false
99 and nil → nil
99 and "cat" → "cat"

Note that despite all this magic, the overall truth value of the expression is correct.

The same evaluation takes place for or (except an or expression’s value is known early
if val1 is not false).

false or nil → nil
nil or false → false
99 or false → 99

A common Ruby idiom makes use of this.

words[key] ||= []
words[key] << word

The first line is equivalent to words[key] = words[key] || []. If the entry in the
hash words for key is unset (nil), the value of || will be the second operand, a new,
empty array. Thus, this line of code will assign an array to a hash element that doesn’t
already have a value, leaving it untouched otherwise. You’ll sometimes see this written
on one line:

(words[key] ||= []) << word

If and Unless Expressions
An if expression in Ruby is pretty similar to “if” statements in other languages.

if song.artist == "Gillespie" then
handle = "Dizzy"

elsif song.artist == "Parker" then
handle = "Bird"

else
handle = "unknown"

end

If you lay out your if statements on multiple lines, you can leave off the then keyword.

if song.artist == "Gillespie"
handle = "Dizzy"

elsif song.artist == "Parker"
handle = "Bird"

else
handle = "unknown"

end

However, if you want to lay out your code more tightly, you can separate the boolean
expression from the following statements with the then keyword.

Prepared exclusively for Margus Pau

CONDITIONAL EXECUTION 91

if song.artist == "Gillespie" then handle = "Dizzy"
elsif song.artist == "Parker" then handle = "Bird"
else handle = "unknown"
end

You can get even terser and use a colon (:) in place of the then.1.8

if song.artist == "Gillespie": handle = "Dizzy"
elsif song.artist == "Parker": handle = "Bird"
else handle = "unknown"
end

You can have zero or more elsif clauses and an optional else clause.

As we’ve said before, if is an expression, not a statement—it returns a value. You don’t
have to use the value of an if expression, but it can come in handy.

handle = if song.artist == "Gillespie" then
"Dizzy"

elsif song.artist == "Parker" then
"Bird"

else
"unknown"

end

Ruby also has a negated form of the if statement.

unless song.duration > 180
cost = 0.25

else
cost = 0.35

end

Finally, for the C fans out there, Ruby also supports the C-style conditional expression.

cost = song.duration > 180 ? 0.35 : 0.25

A conditional expression returns the value of either the expression before or the expres-
sion after the colon, depending on whether the boolean expression before the question
mark evaluates to true or false. In this case, if the song duration is greater than three
minutes, the expression returns 0.35. For shorter songs, it returns 0.25. Whatever the
result, it is then assigned to cost.

If and Unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional state-
ments onto the end of a normal statement.

mon, day, year = $1, $2, $3 if date =~ /(\d\d)-(\d\d)-(\d\d)/
puts "a = #{a}" if debug
print total unless total.zero?

Prepared exclusively for Margus Pau

CASE EXPRESSIONS 92

For an if modifier, the preceding expression will be evaluated only if the condition is
true. unless works the other way around.

File.foreach("/etc/fstab") do |line|
next if line =~ /^#/ # Skip comments
parse(line) unless line =~ /^$/ # Don't parse empty lines

end

Because if itself is an expression, you can get really obscure with statements such as

if artist == "John Coltrane"
artist = "'Trane"

end unless use_nicknames == "no"

This path leads to the gates of madness.

Case Expressions
The Ruby case expression is a powerful beast: a multiway if on steroids. And just to
make it even more powerful, it comes in two flavors.

The first form is fairly close to a series of if statements: it lets you list a series of con-
ditions and execute a statement corresponding to the first one that’s true. For example,
leap years must be divisible by 400, or divisible by 4 and not by 100.

leap = case
when year % 400 == 0: true
when year % 100 == 0: false
else year % 4 == 0
end

The second form of the case statement is probably more common. You specify a target
at the top of the case statement, and each when clause lists one or more comparisons.

case input_line

when "debug"
dump_debug_info
dump_symbols

when /p\s+(\w+)/
dump_variable($1)

when "quit", "exit"
exit

else
print "Illegal command: #{input_line}"

end

As with if, case returns the value of the last expression executed, and you can use a
then keyword if the expression is on the same line as the condition.

Prepared exclusively for Margus Pau

CASE EXPRESSIONS 93

kind = case year
when 1850..1889 then "Blues"
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
when 1940..1950 then "Bebop"
else "Jazz"
end

As with if statements, you can use a colon (:) in place of the then.1.8

kind = case year
when 1850..1889: "Blues"
when 1890..1909: "Ragtime"
when 1910..1929: "New Orleans Jazz"
when 1930..1939: "Swing"
when 1940..1950: "Bebop"
else "Jazz"
end

case operates by comparing the target (the expression after the keyword case) with
each of the comparison expressions after the when keywords. This test is done using
comparison === target. As long as a class defines meaningful semantics for === (and
all the built-in classes do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match.

case line
when /title=(.*)/
puts "Title is #$1"

when /track=(.*)/
puts "Track is #$1"

when /artist=(.*)/
puts "Artist is #$1"

end

Ruby classes are instances of class Class, which defines === to test if the argument
is an instance of the class or one of its superclasses. So (abandoning the benefits of
polymorphism and bringing the gods of refactoring down around your ears), you can
test the class of objects.

case shape
when Square, Rectangle
...

when Circle
...

when Triangle
...

else
...

end

Prepared exclusively for Margus Pau

LOOPS 94

Loops
Don’t tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true.
For example, this common idiom reads until the input is exhausted.

while line = gets
...

end

The until loop is the opposite; it executes the body until the condition becomes true.

until play_list.duration > 60
play_list.add(song_list.pop)

end

As with if and unless, you can use both of the loops as statement modifiers.

a = 1
a *= 2 while a < 100
a -= 10 until a < 100
a → 98

On page 89 in the section on boolean expressions, we said that a range can be used as
a kind of flip-flop, returning true when some event happens and then staying true until
a second event occurs. This facility is normally used within loops. In the example that
follows, we read a text file containing the first ten ordinal numbers (“first,” “second,”
and so on) but print only the lines starting with the one that matches “third” and ending
with the one that matches “fifth.”

file = File.open("ordinal")
while line = file.gets
puts(line) if line =~ /third/ .. line =~ /fifth/

end

produces:

third
fourth
fifth

You may find folks who come from Perl writing the previously example slightly differ-
ently.

file = File.open("ordinal")
while file.gets
print if ~/third/ .. ~/fifth/

end

produces:

third
fourth
fifth

Prepared exclusively for Margus Pau

LOOPS 95

This uses some behind-the-scenes magic behavior: gets assigns the last line read to
the global variable $_, the ~ operator does a regular expression match against $_, and
print with no arguments prints $_. This kind of code is falling out of fashion in the
Ruby community.

The elements of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example,
the following code uses the fact that the variable $. contains the current input line
number to display line numbers one through three and those between a match of /eig/
and /nin/.

File.foreach("ordinal") do |line|
if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)
print line

end
end

produces:

first
second
third
eighth
ninth

You’ll come across a wrinkle when you use while and until as statement modifiers.
If the statement they are modifying is a begin/end block, the code in the block will
always execute at least one time, regardless of the value of the boolean expression.

print "Hello\n" while false
begin
print "Goodbye\n"

end while false

produces:

Goodbye

Iterators
If you read the beginning of the previous section, you may have been discouraged.
“Ruby has pretty primitive built-in looping constructs,” it said. Don’t despair, gentle
reader, for we have good news. Ruby doesn’t need any sophisticated built-in loops,
because all the fun stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a “for” loop—at least not the kind you’d find in C,
C++, and Java. Instead, Ruby uses methods defined in various built-in classes to provide
equivalent, but less error-prone, functionality.

Let’s look at some examples.

Prepared exclusively for Margus Pau

LOOPS 96

3.times do
print "Ho! "

end

produces:

Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times,
period. In addition to times, integers can loop over specific ranges by calling downto
and upto, and all numbers can loop using step. For instance, a traditional “for” loop
that runs from 0 to 9 (something like i=0; i < 10; i++) is written as follows.

0.upto(9) do |x|
print x, " "

end

produces:

0 1 2 3 4 5 6 7 8 9

A loop from 0 to 12 by 3 can be written as follows.

0.step(12, 3) {|x| print x, " " }

produces:

0 3 6 9 12

Similarly, iterating over arrays and other containers is made easy using their each
method.

[1, 1, 2, 3, 5].each {|val| print val, " " }

produces:

1 1 2 3 5

And once a class supports each, the additional methods in the Enumerable module
(documented beginning on page 433 and summarized on pages 113–113) become avail-
able. For example, the File class provides an each method, which returns each line of
a file in turn. Using the grep method in Enumerable, we could iterate over only those
lines that meet a certain condition.

File.open("ordinal").grep(/d$/) do |line|
puts line

end

produces:

second
third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator
called loop.

Prepared exclusively for Margus Pau

LOOPS 97

loop do
block ...

end

The loop iterator calls the associated block forever (or at least until you break out of
the loop, but you’ll have to read ahead to find out how to do that).

For . . . In
Earlier we said that the only built-in Ruby looping primitives were while and until.
What’s this for thing, then? Well, for is almost a lump of syntactic sugar. When you
write

for song in songlist
song.play

end

Ruby translates it into something like

songlist.each do |song|
song.play

end

The only difference between the for loop and the each form is the scope of local
variables that are defined in the body. This is discussed on page 99.

You can use for to iterate over any object that responds to the method each, such as
an Array or a Range.

for i in ['fee', 'fi', 'fo', 'fum']
print i, " "

end
for i in 1..3
print i, " "

end
for i in File.open("ordinal").find_all {|line| line =~ /d$/}
print i.chomp, " "

end

produces:

fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop to traverse
its objects.

class Periods
def each
yield "Classical"
yield "Jazz"
yield "Rock"

end
end

Prepared exclusively for Margus Pau

LOOPS 98

periods = Periods.new
for genre in periods
print genre, " "

end

produces:

Classical Jazz Rock

Break, Redo, and Next
The loop control constructs break, redo, and next let you alter the normal flow
through a loop or iterator.

break terminates the immediately enclosing loop; control resumes at the statement
following the block. redo repeats the loop from the start, but without reevaluating the
condition or fetching the next element (in an iterator). next skips to the end of the loop,
effectively starting the next iteration.

while line = gets
next if line =~ /^\s*#/ # skip comments
break if line =~ /^END/ # stop at end

substitute stuff in backticks and try again
redo if line.gsub!(/`(.*?)`/) { eval($1) }
process line ...

end

These keywords can also be used with any of the iterator-based looping mechanisms.

i=0
loop do
i += 1
next if i < 3
print i
break if i > 4

end

produces:

345

As of Ruby 1.8,1.8 break and next can be given arguments. When used in conventional
loops, it probably makes sense only to do this with break (as any value given to next
is effectively lost). If a conventional loop doesn’t execute a break, its value is nil.

result = while line = gets
break(line) if line =~ /answer/

end

process_answer(result) if result

If you want the nitty-gritty detail of how break and next work with blocks and procs,
have a look at the reference description starting on page 343. If you are looking for a

Prepared exclusively for Margus Pau

VARIABLE SCOPE, LOOPS, AND BLOCKS 99

way of exiting from nested blocks or loops, have a look at Kernel.catch, described
on pages 347 and 498.

Retry
The redo statement causes a loop to repeat the current iteration. Sometimes, though,
you need to wind the loop right back to the very beginning. The retry statement is just
the ticket. retry restarts any kind of iterator loop.

for i in 1..100
print "Now at #{i}. Restart? "
retry if gets =~ /^y/i

end

Running this interactively, you may see

Now at 1. Restart? n
Now at 2. Restart? y
Now at 1. Restart? n
. . .

retry will reevaluate any arguments to the iterator before restarting it. Here’s an exam-
ple of a do-it-yourself until loop.

def do_until(cond)
break if cond
yield
retry

end

i = 0

do_until(i > 10) do
print i, " "
i += 1

end

produces:

0 1 2 3 4 5 6 7 8 9 10

Variable Scope, Loops, and Blocks
The while, until, and for loops are built into the language and do not introduce new
scope; previously existing locals can be used in the loop, and any new locals created
will be available afterward.

The blocks used by iterators (such as loop and each) are a little different. Normally,
the local variables created in these blocks are not accessible outside the block.

Prepared exclusively for Margus Pau

VARIABLE SCOPE, LOOPS, AND BLOCKS 100

[1, 2, 3].each do |x|
y = x + 1

end
[x, y]

produces:

prog.rb:4: undefined local variable or method `x' for
main:Object (NameError)

However, if at the time the block executes a local variable already exists with the same
name as that of a variable in the block, the existing local variable will be used in the
block. Its value will therefore be available after the block finishes. As the following
example shows, this applies both to normal variables in the block and to the block’s
parameters.

x = nil
y = nil
[1, 2, 3].each do |x|
y = x + 1

end
[x, y] → [3, 4]

Note that the variable need not have been given a value in the outer scope: the Ruby
interpreter just needs to have seen it.

if false
a = 1

end
3.times {|i| a = i }

a → 2

The whole issue with variable scope and blocks is one that generates considerable dis-
cussion in the Ruby community. The current scheme has definite problems (particularly
when variables are unexpectedly aliased inside blocks), but at the same time no one has
managed to come up with something that’s both better and acceptable to the wider com-
munity. Matz is promising changes in Ruby 2.0, but in the meantime, we have a couple
of suggestions to minimize the problems with local and block variables interfering.

• Keep your methods and blocks short. The fewer variables, the smaller the chance
that they’ll clobber each other. It’s also easier to eyeball the code and check that
you don’t have conflicting names.

• Use different naming schemes for local variables and block parameters. For exam-
ple, you probably don’t want a local variable called “i,” but that might be perfectly
acceptable as a block parameter.

In reality, this problem doesn’t arise in practice as often as you may think.

Prepared exclusively for Margus Pau

Chapter 8

Exceptions,
Catch, and Throw

So far we’ve been developing code in Pleasantville, a wonderful place where nothing
ever, ever goes wrong. Every library call succeeds, users never enter incorrect data, and
resources are plentiful and cheap. Well, that’s about to change. Welcome to the real
world!

In the real world, errors happen. Good programs (and programmers) anticipate them
and arrange to handle them gracefully. This isn’t always as easy as it may sound. Often
the code that detects an error does not have the context to know what to do about it.
For example, attempting to open a file that doesn’t exist is acceptable in some circum-
stances and is a fatal error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The open method returns some specific
value to say it failed. This value is then propagated back through the layers of calling
routines until someone wants to take responsibility for it.

The problem with this approach is that managing all these error codes can be a pain.
If a function calls open, then read, and finally close, and each can return an error
indication, how can the function distinguish these error codes in the value it returns to
its caller?

To a large extent, exceptions solve this problem. Exceptions let you package informa-
tion about an error into an object. That exception object is then propagated back up the
calling stack automatically until the runtime system finds code that explicitly declares
that it knows how to handle that type of exception.

The Exception Class
The package that contains the information about an exception is an object of class
Exception or one of class Exception’s children. Ruby predefines a tidy hierarchy of

Prepared exclusively for Margus Pau 101

HANDLING EXCEPTIONS 102

exceptions, shown in Figure 8.1 on the next page. As we’ll see later, this hierarchy
makes handling exceptions considerably easier.

When you need to raise an exception, you can use one of the built-in Exception
classes, or you can create one of your own. If you create your own, you may want
to make it a subclass of StandardError or one of its children. If you don’t, your
exception won’t be caught by default.

Every Exception has associated with it a message string and a stack backtrace. If you
define your own exceptions, you can add additional information.

Handling Exceptions
Our jukebox downloads songs from the Internet using a TCP socket. The basic code is
simple (assuming that the filename and the socket are already set up).

op_file = File.open(opfile_name, "w")
while data = socket.read(512)
op_file.write(data)

end

What happens if we get a fatal error halfway through the download? We certainly don’t
want to store an incomplete song in the song list. “I Did It My *click*.”

Let’s add some exception-handling code and see how it helps. To do exception han-
dling, we enclose the code that could raise an exception in a begin/end block and use
one or more rescue clauses to tell Ruby the types of exceptions we want to handle. In
this particular case we’re interested in trapping SystemCallError exceptions (and, by
implication, any exceptions that are subclasses of SystemCallError), so that’s what
appears on the rescue line. In the error-handling block, we report the error, close and
delete the output file, and then reraise the exception.

op_file = File.open(opfile_name, "w")
begin
Exceptions raised by this code will
be caught by the following rescue clause
while data = socket.read(512)
op_file.write(data)

end

rescue SystemCallError
$stderr.print "IO failed: " + $!
op_file.close
File.delete(opfile_name)
raise

end

When an exception is raised, and independent of any subsequent exception handling,
Ruby places a reference to the associated Exception object into the global variable $!

Prepared exclusively for Margus Pau

HANDLING EXCEPTIONS 103

Figure 8.1. Ruby exception hierarchy

Exception
fatal (used internally by Ruby)
NoMemoryError
ScriptError

LoadError
NotImplementedError
SyntaxError

SignalException
Interrupt

StandardError
ArgumentError
IOError

EOFError
IndexError
LocalJumpError
NameError

NoMethodError
RangeError

FloatDomainError
RegexpError
RuntimeError
SecurityError
SystemCallError

system-dependent exceptions (Errno::xxx)
ThreadError
TypeError
ZeroDivisionError

SystemExit
SystemStackError

(the exclamation point presumably mirroring our surprise that any of our code could
cause errors). In the previous example, we used the $! variable to format our error
message.

After closing and deleting the file, we call raise with no parameters, which reraises
the exception in $!. This is a useful technique, as it allows you to write code that
filters exceptions, passing on those you can’t handle to higher levels. It’s almost like
implementing an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can
specify multiple exceptions to catch. At the end of each rescue clause you can give

Prepared exclusively for Margus Pau

HANDLING EXCEPTIONS 104

Ruby the name of a local variable to receive the matched exception. Many people find
this more readable than using $! all over the place.

begin
eval string

rescue SyntaxError, NameError => boom
print "String doesn't compile: " + boom

rescue StandardError => bang
print "Error running script: " + bang

end

How does Ruby decide which rescue clause to execute? It turns out that the processing
is pretty similar to that used by the case statement. For each rescue clause in the
begin block, Ruby compares the raised exception against each of the parameters in
turn. If the raised exceptionmatches a parameter, Ruby executes the body of the rescue
and stops looking. The match is made using parameter===$!.1.8 For most exceptions,
this means that the match will succeed if the exception named in the rescue clause
is the same as the type of the currently thrown exception, or is a superclass of that
exception.1 If you write a rescue clause with no parameter list, the parameter defaults
to StandardError.

If no rescue clause matches, or if an exception is raised outside a begin/end block,
Ruby moves up the stack and looks for an exception handler in the caller, then in the
caller’s caller, and so on.

Although the parameters to the rescue clause are typically the names of Exception
classes, they can actually be arbitrary expressions (including method calls) that return
an Exception class.

System Errors1.8

System errors are raised when a call to the operating system returns an error code. On
POSIX systems, these errors have names such as EAGAIN and EPERM. (If you’re on a
Unix box, you could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is
a subclass of SystemCallError, and each is defined in a module called Errno. This
means you’ll find exceptions with class names such as Errno::EAGAIN, Errno::EIO,
and Errno::EPERM. If you want to get to the underlying system error code, Errno
exception objects each have a class constant called (somewhat confusingly) Errno that
contains the value.

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The
=== method is defined for modules, returning true if the class of the operand is the same as or an ancestor
of the receiver.

Prepared exclusively for Margus Pau

HANDLING EXCEPTIONS 105

Errno::EAGAIN::Errno → 35
Errno::EPERM::Errno → 1
Errno::EIO::Errno → 5
Errno::EWOULDBLOCK::Errno → 35

Note that EWOULDBLOCK and EAGAIN have the same error number. This is a feature of the
operating system of the computer used to produce this book—the two constants map to
the same error number. To deal with this, Ruby arranges things so that Errno::EAGAIN
and Errno::EWOULDBLOCK are treated identically in a rescue clause. If you ask to
rescue one, you’ll rescue either. It does this by redefining SystemCallError#=== so
that if two subclasses of SystemCallError are compared, the comparison is done on
their error number and not on their position in the hierarchy.

Tidying Up
Sometimes you need to guarantee that some processing is done at the end of a block of
code, regardless of whether an exception was raised. For example, you may have a file
open on entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains
a chunk of code that will always be executed as the block terminates. It doesn’t matter
if the block exits normally, if it raises and rescues an exception, or if it is terminated by
an uncaught exception—the ensure block will get run.

f = File.open("testfile")
begin
.. process

rescue
.. handle error

ensure
f.close unless f.nil?

end

The else clause is a similar, although less useful, construct. If present, it goes after the
rescue clauses and before any ensure. The body of an else clause is executed only
if no exceptions are raised by the main body of code.

f = File.open("testfile")
begin
.. process

rescue
.. handle error

else
puts "Congratulations-- no errors!"

ensure
f.close unless f.nil?

end

Prepared exclusively for Margus Pau

RAISING EXCEPTIONS 106

Play It Again
Sometimes you may be able to correct the cause of an exception. In those cases, you
can use the retry statement within a rescue clause to repeat the entire begin/end
block. Clearly, tremendous scope exists for infinite loops here, so this is a feature to
use with caution (and with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, have a look at the following, adapted
from Minero Aoki’s net/smtp.rb library.

@esmtp = true

begin
First try an extended login. If it fails because the
server doesn't support it, fall back to a normal login

if @esmtp then
@command.ehlo(helodom)

else
@command.helo(helodom)

end

rescue ProtocolError
if @esmtp then
@esmtp = false
retry

else
raise

end
end

This code tries first to connect to an SMTP server using the EHLO command, which
is not universally supported. If the connection attempt fails, the code sets the @esmtp
variable to false and retries the connection. If this fails a second time, the exception
is raised up to the caller.

Raising Exceptions
So far we’ve been on the defensive, handling exceptions raised by others. It’s time
to turn the tables and go on the offensive. (Some say your gentle authors are always
offensive, but that’s a different book.)

You can raise exceptions in your code with the Kernel.raise method (or its somewhat
judgmental synonym, Kernel.fail).

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure", caller

Prepared exclusively for Margus Pau

RAISING EXCEPTIONS 107

The first form simply reraises the current exception (or a RuntimeError if there is no
current exception). This is used in exception handlers that need to intercept an excep-
tion before passing it on.

The second form creates a new RuntimeError exception, setting its message to the
given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument and the stack trace to the third argument. Typically
the first argument will be either the name of a class in the Exception hierarchy or a
reference to an object instance of one of these classes.2 The stack trace is normally
produced using the Kernel.caller method.

Here are some typical examples of raise in action.

raise

raise "Missing name" if name.nil?

if i >= names.size
raise IndexError, "#{i} >= size (#{names.size})"

end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is
often useful in library modules. We can take this further: the following code removes
two routines from the backtrace by passing only a subset of the call stack to the new
exception.

raise ArgumentError, "Name too big", caller[1..-1]

Adding Information to Exceptions
You can define your own exceptions to hold any information that you need to pass out
from the site of an error. For example, certain types of network errors may be transient
depending on the circumstances. If such an error occurs, and the circumstances are
right, you could set a flag in the exception to tell the handler that it may be worth
retrying the operation.

class RetryException < RuntimeError
attr :ok_to_retry
def initialize(ok_to_retry)
@ok_to_retry = ok_to_retry

end
end

2. Technically, this argument can be any object that responds to the message exception by returning an
object such that object.kind_of?(Exception) is true.

Prepared exclusively for Margus Pau

CATCH AND THROW 108

Somewhere down in the depths of the code, a transient error occurs.

def read_data(socket)
data = socket.read(512)
if data.nil?
raise RetryException.new(true), "transient read error"

end
.. normal processing

end

Higher up the call stack, we handle the exception.

begin
stuff = read_data(socket)
.. process stuff

rescue RetryException => detail
retry if detail.ok_to_retry
raise

end

Catch and Throw
While the exception mechanism of raise and rescue is great for abandoning execu-
tion when things go wrong, it’s sometimes nice to be able to jump out of some deeply
nested construct during normal processing. This is where catch and throw come in
handy.

catch (:done) do
while line = gets
throw :done unless fields = line.split(/\t/)
songlist.add(Song.new(*fields))

end
songlist.play

end

catch defines a block that is labeled with the given name (which may be a Symbol or
a String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch
block with a matching symbol. When it finds it, Ruby unwinds the stack to that point
and terminates the block. So, in the previous example, if the input does not contain
correctly formatted lines, the throw will skip to the end of the corresponding catch,
not only terminating the while loop but also skipping the playing of the song list. If the
throw is called with the optional second parameter, that value is returned as the value
of the catch.

The following example uses a throw to terminate interaction with the user if ! is typed
in response to any prompt.

Prepared exclusively for Margus Pau

CATCH AND THROW 109

def prompt_and_get(prompt)
print prompt
res = readline.chomp
throw :quit_requested if res == "!"
res

end

catch :quit_requested do
name = prompt_and_get("Name: ")
age = prompt_and_get("Age: ")
sex = prompt_and_get("Sex: ")
..
process information

end

As this example illustrates, the throw does not have to appear within the static scope
of the catch.

Prepared exclusively for Margus Pau

Chapter 9

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give
you two major benefits.

1. Modules provide a namespace and prevent name clashes.

2. Modules implement the mixin facility.

Namespaces
As you start to write bigger and bigger Ruby programs, you’ll naturally find your-
self producing chunks of reusable code—libraries of related routines that are generally
applicable. You’ll want to break this code into separate files so the contents can be
shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set
of interrelated classes) into a file.

However, there are times when you want to group things together that don’t naturally
form a class.

An initial approach may be to put all these things into a file and simply load that file
into any program that needs it. This is the way the C language works. However, this
approach has a problem. Say you write a set of the trigonometry functions sin, cos,
and so on. You stuff them all into a file, trig.rb, for future generations to enjoy.
Meanwhile, Sally is working on a simulation of good and evil, and she codes a set of
her own useful routines, including be_good and sin, and sticks them into moral.rb.
Joe, who wants to write a program to find out how many angels can dance on the head
of a pin, needs to load both trig.rb and moral.rb into his program. But both define
a method called sin. Bad news.

Prepared exclusively for Margus Pau 110

MIXINS 111

The answer is the module mechanism. Modules define a namespace, a sandbox in
which your methods and constants can play without having to worry about being
stepped on by other methods and constants. The trig functions can go into one module

module Trig
PI = 3.141592654
def Trig.sin(x)
..
end
def Trig.cos(x)
..
end

end

and the good and bad “moral” methods can go into another.

module Moral
VERY_BAD = 0
BAD = 1
def Moral.sin(badness)
...

end
end

Module constants are named just like class constants, with an initial uppercase letter.
The method definitions look similar, too: these module methods are defined just like
class methods.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require statement, which we discuss on page 116) and reference the qualified
names.

require 'trig'
require 'moral'

y = Trig.sin(Trig::PI/4)
wrongdoing = Moral.sin(Moral::VERY_BAD)

As with class methods, you call a module method by preceding its name with the mod-
ule’s name and a period, and you reference a constant using the module name and two
colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need
for multiple inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought may well be “what happens if I define instance methods within a module?”

Prepared exclusively for Margus Pau

MIXINS 112

Good question. A module can’t have instances, because a module isn’t a class. How-
ever, you can include a module within a class definition. When this happens, all the
module’s instance methods are suddenly available as methods in the class as well. They
get mixed in. In fact, mixed-in modules effectively behave as superclasses.

module Debug
def who_am_i?
"#{self.class.name} (\##{self.id}): #{self.to_s}"

end
end
class Phonograph
include Debug
...

end
class EightTrack
include Debug
...

end
ph = Phonograph.new("West End Blues")
et = EightTrack.new("Surrealistic Pillow")

ph.who_am_i? → "Phonograph (#935520): West End Blues"
et.who_am_i? → "EightTrack (#935500): Surrealistic Pillow"

By including the Debug module, both Phonograph and EightTrack gain access to the
who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on. First,
it has nothing to do with files. C programmers use a preprocessor directive called
#include to insert the contents of one file into another during compilation. The Ruby
include statement simply makes a reference to a named module. If that module is in a
separate file, you must use require (or its less commonly used cousin, load) to drag
that file in before using include. Second, a Ruby include does not simply copy the
module’s instance methods into the class. Instead, it makes a reference from the class
to the included module. If multiple classes include that module, they’ll all point to the
same thing. If you change the definition of a method within a module, even while your
program is running, all classes that include that module will exhibit the new behavior.1

Mixins give you a wonderfully controlled way of adding functionality to classes. How-
ever, their true power comes out when the code in the mixin starts to interact with code
in the class that uses it. Let’s take the standard Ruby mixin Comparable as an example.
You can use the Comparable mixin to add the comparison operators (<, <=, ==, >=, and
>), as well as the method between?, to a class. For this to work, Comparable assumes
that any class that uses it defines the operator <=>. So, as a class writer, you define one
method, <=>, include Comparable, and get six comparison functions for free. Let’s

1. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Prepared exclusively for Margus Pau

ITERATORS AND THE ENUMERABLE MODULE 113

try this with our Song class, by making the songs comparable based on their duration.
All we have to do is include the Comparable module and implement the comparison
operator <=>.

class Song
include Comparable
def initialize(name, artist, duration)
@name = name
@artist = artist
@duration = duration

end
def <=>(other)
self.duration <=> other.duration

end
end

We can check that the results are sensible with a few test songs.

song1 = Song.new("My Way", "Sinatra", 225)
song2 = Song.new("Bicylops", "Fleck", 260)

song1 <=> song2 → -1
song1 < song2 → true
song1 == song1 → true
song1 > song2 → false

Iterators and the Enumerable Module
You’ve probably noticed that the Ruby collection classes support a large number of
operations that do various things with the collection: traverse it, sort it, and so on.
You may be thinking, “Gee, it’d sure be nice if my class could support all these neat-o
features, too!” (If you actually thought that, it’s probably time to stop watching reruns
of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins
and module Enumerable. All you have to do is write an iterator called each, which
returns the elements of your collection in turn. Mix in Enumerable, and suddenly your
class supports things such as map, include?, and find_all?. If the objects in your
collection implement meaningful ordering semantics using the <=> method, you’ll also
get methods such as min, max, and sort.

Composing Modules
Back on page 49 we discussed the inject method of Enumerable. Enumerable is
another standard mixin, implementing a bunch of methods in terms of the host class’s

Prepared exclusively for Margus Pau

COMPOSING MODULES 114

each method. Because of this, we can use inject in any class that includes the Enum-
erable module and defines the method each. Many built-in classes do this.

[1, 2, 3, 4, 5].inject {|v,n| v+n } → 15
('a'..'m').inject {|v,n| v+n } → "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets inject
support.

class VowelFinder
include Enumerable

def initialize(string)
@string = string

end

def each
@string.scan(/[aeiou]/) do |vowel|

yield vowel
end

end
end

vf = VowelFinder.new("the quick brown fox jumped")

vf.inject {|v,n| v+n } → "euiooue"

Notice that we’ve used the same pattern in the call to inject in these examples—we’re
using it to perform a summation. When applied to numbers, it returns the arithmetic
sum, when applied to strings it concatenates them. We can use a module to encapsulate
this functionality too.

module Summable
def sum
inject {|v,n| v+n }

end
end

class Array
include Summable

end

class Range
include Summable

end

class VowelFinder
include Summable

end

[1, 2, 3, 4, 5].sum → 15
('a'..'m').sum → "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")
vf.sum → "euiooue"

Prepared exclusively for Margus Pau

COMPOSING MODULES 115

Instance Variables in Mixins
People coming to Ruby from C++ often ask us, “What happens to instance variables
in a mixin? In C++, I have to jump through some hoops to control how variables are
shared in a multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question, we tell them. Remember how instance
variables work in Ruby: the first mention of an @-prefixed variable creates the instance
variable in the current object, self.

For a mixin, this means that the module you mix into your client class (the mixee?) may
create instance variables in the client object and may use attr_reader and friends to
define accessors for these instance variables. For instance, the Observable module in
the following example adds an instance variable @observer_list to any class that
includes it.

module Observable
def observers
@observer_list ||= []

end

def add_observer(obj)
observers << obj

end

def notify_observers
observers.each {|o| o.update }

end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash
with those of the host class or with those of other mixins. The example that follows
shows a class that uses our Observer module but that unluckily also uses an instance
variable called @observer_list. At runtime, this program will go wrong in some
hard-to-diagnose ways.

class TelescopeScheduler

other classes can register to get notifications
when the schedule changes
include Observable

def initialize
@observer_list = [] # folks with telescope time

end

def add_viewer(viewer)
@observer_list << viewer

end

...
end

For the most part, mixin modules don’t try to carry their own instance data around—
they use accessors to retrieve data from the client object. But if you need to create

Prepared exclusively for Margus Pau

INCLUDING OTHER FILES 116

a mixin that has to have its own state, ensure that the instance variables have unique
names to distinguish them from any other mixins in the system (perhaps by using the
module’s name as part of the variable name). Alternativly, the module could use a
module-level hash, indexed by the current object ID, to store instance-specific data
without using Ruby instance variables.

module Test
State = {}
def state=(value)
State[id] = value

end
def state
State[id]

end
end

class Client
include Test

end

c1 = Client.new
c2 = Client.new
c1.state = 'cat'
c2.state = 'dog'

c1.state → "cat"
c2.state → "dog"

Resolving Ambiguous Method Names
One of the other questions folks ask about mixins is, how is method lookup handled?
In particular, what happens if methods with the same name are defined in a class, in
that class’s parent class, and in a mixin included into the class?

The answer is that Ruby looks first in the immediate class of an object, then in the
mixins included into that class, and then in superclasses and their mixins. If a class has
multiple modules mixed in, the last one included is searched first.

Including Other Files
Because Ruby makes it easy to write good, modular code, you’ll often find yourself
producing small files containing some chunk of self-contained functionality—an inter-
face to x, an algorithm to do y, and so on. Typically, you’ll organize these files as class
or module libraries.

Prepared exclusively for Margus Pau

INCLUDING OTHER FILES 117

Having produced these files, you’ll want to incorporate them into your new programs.
Ruby has two statements that do this. The load method includes the named Ruby
source file every time the method is executed.

load 'filename.rb'

The more commonly used require method loads any given file only once.2

require 'filename'

Local variables in a loaded or required file are not propagated to the scope that loads or
requires them. For example, here’s a file called included.rb .

a = 1
def b
2

end

And here’s what happens when we include it into another file.

a = "cat"
b = "dog"
require 'included'
a → "cat"
b → "dog"
b() → 2

require has additional functionality: it can load shared binary libraries. Both routines
accept relative and absolute paths. If given a relative path (or just a plain name), they’ll
search every directory in the current load path ($:, discussed on page 173) for the file.

Files loaded using load or require can, of course, include other files, which include
other files, and so on. What may not be obvious is that require is an executable
statement—it may be inside an if statement, or it may include a string that was just
built. The search path can be altered at runtime as well. Just add the directory you want
to the array $:.

Since load will include the source unconditionally, you can use it to reload a source
file that may have changed since the program began. The example that follows is (very)
contrived.

2. This is not strictly true. Ruby keeps a list of the files loaded by require in the array $". However, this
list contains just the names of files as given to require. It’s possible to fake Ruby out and get the same file
loaded twice.

require '/usr/lib/ruby/1.9/English.rb'
require '/usr/lib/ruby/1.9/rdoc/../English.rb'

$" → ["/usr/lib/ruby/1.9/English.rb", "/usr/lib/ruby/1.9/rdoc/../English.rb"]

In this case, both require statements ended up pointing at the same file but used different paths to load it.
Some consider this a bug, and this behavior may well change in later releases.

Prepared exclusively for Margus Pau

INCLUDING OTHER FILES 118

5.times do |i|
File.open("temp.rb","w") do |f|

f.puts "module Temp"
f.puts " def Temp.var"
f.puts " #{i}"
f.puts " end"
f.puts "end"

end
load "temp.rb"
puts Temp.var

end

produces:

0
1
2
3
4

For a less contrived use of this facility, consider a Web application that reloads compo-
nents while running. This allows it to update itself on the fly; it needn’t be restarted for
new version of the software to be integrated. This is one of the many benefits of using
a dynamic language such as Ruby.

Prepared exclusively for Margus Pau

Chapter 10

Basic Input and Output

Ruby provides what at first sight looks like two separate sets of I/O routines. The first
is the simple interface—we’ve been using it pretty much exclusively so far.

print "Enter your name: "
name = gets

A whole set of I/O-related methods is implemented in the Kernel module—gets,
open, print, printf, putc, puts, readline, readlines, and test—that makes it
simple and convenient to write straightforward Ruby programs. These methods typi-
cally do I/O to standard input and standard output, which makes them useful for writing
filters. You’ll find them documented starting on page 495.

The second way, which gives you a lot more control, is to use IO objects.

What Is an IO Object?
Ruby defines a single base class, IO, to handle input and output. This base class is
subclassed by classes File and BasicSocket to provide more specialized behavior,
but the principles are the same. An IO object is a bidirectional channel between a Ruby
program and some external resource.1 An IO object may have more to it than meets the
eye, but in the end you still simply write to it and read from it.

In this chapter, we’ll be concentrating on class IO and its most commonly used subclass,
class File. For more details on using the socket classes for networking, see the section
beginning on page 740.

1. For those who just have to know the implementation details, this means that a single IO object can
sometimes be managing more than one operating system file descriptor. For example, if you open a pair of
pipes, a single IO object contains both a read pipe and a write pipe.

Prepared exclusively for Margus Pau 119

OPENING AND CLOSING FILES 120

Opening and Closing Files
As you may expect, you can create a new file object using File.new.

file = File.new("testfile", "r")
... process the file
file.close

You can create a File object that is open for reading, writing, or both, according to the
mode string. (Here we opened testfile for reading with an "r". We could also have
used "w" for write or "rw" for read-write. The full list of allowed modes appears on
page 483.) You can also optionally specify file permissions when creating a file; see the
description of File.new on page 449 for details. After opening the file, we can work
with it, writing and/or reading data as needed. Finally, as responsible software citizens,
we close the file, ensuring that all buffered data is written and that all related resources
are freed.

But here Ruby can make life a little bit easier for you. The method File.open also
opens a file. In regular use, it behaves just like File.new. However, if a block is asso-
ciated with the call, open behaves differently. Instead of returning a new File object,
it invokes the block, passing the newly opened File as a parameter. When the block
exits, the file is automatically closed.

File.open("testfile", "r") do |file|
... process the file

end

This second approach has an added benefit. In the earlier case, if an exception is raised
while processing the file, the call to file.close may not happen. Once the file variable
goes out of scope, then garbage collection will eventually close it, but this may not
happen for a while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside
the block, the file is closed before the exception is propagated on to the caller. It’s as if
the open method looks like the following.

class File
def File.open(*args)
result = f = File.new(*args)
if block_given?

begin
result = yield f

ensure
f.close

end
end

return result
end

end

Prepared exclusively for Margus Pau

READING AND WRITING FILES 121

Reading and Writing Files
The same methods that we’ve been using for “simple” I/O are available for all file
objects. So, gets reads a line from standard input (or from any files specified on the
command line when the script was invoked), and file.gets reads a line from the file
object file.

For example, we could create a program called copy.rb.

while line = gets
puts line

end

If we run this program with no arguments, it will read lines from the console and copy
them back to the console. Note that each line is echoed once the return key is pressed.
(In this and later examples, we show user input in a bold font.)

% ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
^D

We can also pass in one or more filenames on the command line, in which case gets
will read from each in turn.

% ruby copy.rb testfile
This is line one
This is line two
This is line three
And so on...

Finally, we can explicitly open the file and read from it.

File.open("testfile") do |file|
while line = file.gets
puts line

end
end

produces:

This is line one
This is line two
This is line three
And so on...

As well as gets, I/O objects enjoy an additional set of access methods, all intended to
make our lives easier.

Prepared exclusively for Margus Pau

READING AND WRITING FILES 122

Iterators for Reading
As well as using the usual loops to read data from an IO stream, you can also use
various Ruby iterators. IO#each_byte invokes a block with the next 8-bit byte from
the IO object (in this case, an object of type File).

File.open("testfile") do |file|
file.each_byte {|ch| putc ch; print "." }

end

produces:

T.h.i.s. .i.s. .l.i.n.e. .o.n.e.
.T.h.i.s. .i.s. .l.i.n.e. .t.w.o.
.T.h.i.s. .i.s. .l.i.n.e. .t.h.r.e.e.
.A.n.d. .s.o. .o.n.......
.

IO#each_line calls the block with each line from the file. In the next example, we’ll
make the original newlines visible using String#dump, so you can see that we’re not
cheating.

File.open("testfile") do |file|
file.each_line {|line| puts "Got #{line.dump}" }

end

produces:

Got "This is line one\n"
Got "This is line two\n"
Got "This is line three\n"
Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will
break up the input accordingly, returning the line ending at the end of each line of data.
That’s why you see the \n characters in the output of the previous example. In the next
example, we’ll use the character e as the line separator.

File.open("testfile") do |file|
file.each_line("e") {|line| puts "Got #{ line.dump }" }

end

produces:

Got "This is line"
Got " one"
Got "\nThis is line"
Got " two\nThis is line"
Got " thre"
Got "e"
Got "\nAnd so on...\n"

Prepared exclusively for Margus Pau

READING AND WRITING FILES 123

If you combine the idea of an iterator with the autoclosing block feature, you get
IO.foreach. This method takes the name of an I/O source, opens it for reading, calls
the iterator once for every line in the file, and then closes the file automatically.

IO.foreach("testfile") {|line| puts line }

produces:

This is line one
This is line two
This is line three
And so on...

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines.

read into string
str = IO.read("testfile")
str.length → 66
str[0, 30] → "This is line one\nThis is line "

read into an array
arr = IO.readlines("testfile")
arr.length → 4
arr[0] → "This is line one\n"

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised
on most errors, and you should be ready to rescue them and take appropriate action.

Writing to Files
So far, we’ve been merrily calling puts and print, passing in any old object and
trusting that Ruby will do the right thing (which, of course, it does). But what exactly
is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts
and print is converted to a string by calling that object’s to_s method. If for some
reason the to_s method doesn’t return a valid string, a string is created containing the
object’s class name and ID, something like #<ClassName:0x123456>.

The exceptions are simple, too. The nil object will print as the string “nil,” and an array
passed to puts will be written as if each of its elements in turn were passed separately
to puts.

What if you want to write binary data and don’t want Ruby messing with it? Well,
normally you can simply use IO#print and pass in a string containing the bytes to be
written. However, you can get at the low-level input and output routines if you really
want—look at the documentation for IO#sysread and IO#syswrite on page 493.

And how do you get the binary data into a string in the first place? The three common
ways are to use a literal, poke it in byte by byte, or use Array#pack.

Prepared exclusively for Margus Pau

READING AND WRITING FILES 124

str1 = "\001\002\003" → "\001\002\003"
str2 = ""
str2 << 1 << 2 << 3 → "\001\002\003"
[1, 2, 3].pack("c*") → "\001\002\003"

But I Miss My C++ iostream

Sometimes there’s just no accounting for taste. . . . However, just as you can append an
object to an Array using the << operator, you can also append an object to an output
IO stream.

endl = "\n"
STDOUT << 99 << " red balloons" << endl

produces:

99 red balloons

Again, the << method uses to_s to convert its arguments to strings before sending them
on their merry way.

Although we started off disparaging the poor << operator, there are actually some good
reasons for using it. Because other classes (such as String and Array) also implement
a << operator with similar semantics, you can quite often write code that appends to
something using << without caring whether it is added to an array, a file, or a string.
This kind of flexibility also makes unit testing easy. We discuss this idea in greater
detail in the chapter on duck typing, starting on page 349.

Doing I/O with Strings1.8

There are often times where you need to work with code that assumes it’s reading from
or writing to one or more files. But you have a problem: the data isn’t in files. Perhaps
it’s available instead via a SOAP service, or it has been passed to you as command-line
parameters. Or maybe you’re running unit tests, and you don’t want to alter the real file
system.

Enter StringIO objects. They behave just like other I/O objects, but they read and
write strings, not files. If you open a StringIO object for reading, you supply it with a
string. All read operations on the StringIO object then read from this string. Similarly,
when you want to write to a StringIO object, you pass it a string to be filled.

require 'stringio'

ip = StringIO.new("now is\nthe time\nto learn\nRuby!")
op = StringIO.new("", "w")

ip.each_line do |line|
op.puts line.reverse

end
op.string → "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Prepared exclusively for Margus Pau

TALKING TO NETWORKS 125

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set
of classes in the socket library (documented starting on page 740). These classes give
you access to TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional
socket types supported on your architecture. The library also provides helper classes to
make writing servers easier. Here’s a simple program that gets information about the
“mysql” user on our local machine using the finger protocol.

require 'socket'

client = TCPSocket.open('127.0.0.1', 'finger')
client.send("mysql\n", 0) # 0 means standard packet
puts client.readlines
client.close

produces:

Login: mysql Name: MySQL Server
Directory: /var/empty Shell: /usr/bin/false
Never logged in.
No Mail.
No Plan.

At a higher level, the lib/net set of library modules provides handlers for a set of
application-level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are
documented starting on page 677. For example, the following program lists the images
that are displayed on the Pragmatic Programmer home page.

require 'net/http'

h = Net::HTTP.new('www.pragmaticprogrammer.com', 80)

response = h.get('/index.html', nil)

if response.message == "OK"
puts response.body.scan(/<img src="(.*?)"/m).uniq

end

produces:

images/title_main.gif
images/dot.gif
/images/Bookshelf_1.5_in_green.png
images/sk_all_small.jpg
images/new.jpg

Although attractively simple, this example could be improved significantly. In particu-
lar, it doesn’t do much in the way of error handling. It should really report “Not Found”
errors (the infamous 404), and should handle redirects (which happen when a web
server gives the client an alternative address for the requested page).

Prepared exclusively for Margus Pau

TALKING TO NETWORKS 126

We can take this to a higher level still. By bringing the open-uri library into a pro-
gram, the Kernel.open method suddenly recognizes http:// and ftp:// URLs in
the filename. Not just that: it also handles redirects automatically.

require 'open-uri'

open('http://www.pragmaticprogrammer.com') do |f|
puts f.read.scan(/<img src="(.*?)"/m).uniq

end

produces:

images/title_main.gif
images/dot.gif
/images/Bookshelf_1.5_in_green.png
images/sk_all_small.jpg
images/new.jpg

Have a look at Chapter 18 on page 222 for more information on using Ruby on the
Internet.

Prepared exclusively for Margus Pau

Chapter 11

Threads and Processes

Ruby gives you two basic ways to organize your program so that you can run different
parts of it “at the same time.” You can split up cooperating tasks within the program,
using multiple threads, or you can split up tasks between different programs, using
multiple processes. Let’s look at each in turn.

Multithreading
Often the simplest way to do two things at once is by using Ruby threads. These
are totally in-process, implemented within the Ruby interpreter. That makes the Ruby
threads completely portable—they don’t rely on the operating system. At the same
time, you don’t get certain benefits from having native threads. What does this mean?

You may experience thread starvation (that’s where a low-priority thread doesn’t get a
chance to run). If you manage to get your threads deadlocked, the whole process may
grind to a halt. And if some thread happens to make a call to the operating system that
takes a long time to complete, all threads will hang until the interpreter gets control
back. Finally, if your machine has more than one processor, Ruby threads won’t take
advantage of that fact—because they run in one process, and in a single native thread,
they are constrained to run on one processor at a time.

All this sounds scary. In practice, though, in many circumstances the benefits of using
threads far outweigh any potential problems that may occur. Ruby threads are an effi-
cient and lightweight way to achieve parallelism in your code. You just need to under-
stand the underlying implementation issues and design accordingly.

Creating Ruby Threads
Creating a new thread is pretty straightforward. The code that follows is a simple exam-
ple. It downloads a set of Web pages in parallel. For each URL that it is asked to down-
load, the code creates a separate thread that handles the HTTP transaction.

Prepared exclusively for Margus Pau 127

MULTITHREADING 128

require 'net/http'

pages = %w(www.rubycentral.com slashdot.org www.google.com)
threads = []

for page_to_fetch in pages

threads << Thread.new(page_to_fetch) do |url|

h = Net::HTTP.new(url, 80)
puts "Fetching: #{url}"
resp = h.get('/', nil)
puts "Got #{url}: #{resp.message}"

end

end

threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.com
Fetching: slashdot.org
Fetching: www.google.com
Got www.google.com: OK
Got www.rubycentral.com: OK
Got slashdot.org: OK

Let’s look at this code in more detail, as a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains
the code to be run in a new thread. In our case, the block uses the net/http library
to fetch the top page from each of our nominated sites. Our tracing clearly shows that
these fetches are going on in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter
is passed to the block as url. Why do we do this, rather than simply using the value of
the variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the
time the thread starts. As anyone with a kid brother can tell you, sharing isn’t always
a good thing. In this case, all three threads would share the variable page_to_fetch.
The first thread gets started, and page_to_fetch is set to "www.rubycentral.com".
In the meantime, the loop creating the threads is still running. The second time around,
page_to_fetch gets set to "slashdot.org". If the first thread has not yet finished
using the page_to_fetch variable, it will suddenly start using this new value. These
kinds of bug are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—
each thread will have its own copy of these variables. In our case, the variable url will
be set at the time the thread is created, and each thread will have its own copy of the
page address. You can pass any number of arguments into the block via Thread.new.

Prepared exclusively for Margus Pau

MULTITHREADING 129

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join
on each of the threads we created?

When a Ruby program terminates, all threads are killed, regardless of their states. How-
ever, you can wait for a particular thread to finish by calling that thread’s Thread#join
method. The calling thread will block until the given thread is finished. By calling join
on each of the requestor threads, you can make sure that all three requests have com-
pleted before you terminate the main program. If you don’t want to block forever,1.8 you
can give join a timeout parameter—if the timeout expires before the thread terminates,
the join call returns nil. Another variant of join, the method Thread#value, returns
the value of the last statement executed by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The
current thread is always accessible using Thread.current. You can obtain a list of all
threads using Thread.list, which returns a list of all Thread objects that are runnable
or stopped. To determine the status of a particular thread, you can use Thread#status
and Thread#alive?.

In addition, you can adjust the priority of a thread using Thread#priority= . Higher-
priority threads will run before lower-priority threads. We’ll talk more about thread
scheduling, and stopping and starting threads, in just a bit.

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.
Variables local to the block containing the thread code are local to the thread and are
not shared.

But what if you need per-thread variables that can be accessed by other threads—
including the main thread? Class Thread features a special facility that allows thread-
local variables to be created and accessed by name. You simply treat the thread object
as if it were a Hash, writing to elements using []= and reading them back using []. In
the example that follows, each thread records the current value of the variable count
in a thread-local variable with the key mycount. To do this, the code uses the string
"mycount" when indexing thread objects. (A race condition1 exists in this code, but
we haven’t talked about synchronization yet, so we’ll just quietly ignore it for now.)

1. A race condition occurs when two or more pieces of code (or hardware) both try to access some shared
resource, and where the outcome changes depending on the order in which they do so. In the example here,
it is possible for one thread to set the value of its mycount variable to count, but before it gets a chance
to increment count, the thread gets descheduled and another thread reuses the same value of count. These
issues are fixed by synchronizing the access to shared resources (such as the count variable).

Prepared exclusively for Margus Pau

MULTITHREADING 130

count = 0
threads = []
10.times do |i|
threads[i] = Thread.new do
sleep(rand(0.1))
Thread.current["mycount"] = count
count += 1

end
end
threads.each {|t| t.join; print t["mycount"], ", " }
puts "count = #{count}"

produces:

4, 1, 0, 8, 7, 9, 5, 6, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints out the value of count
captured by each. Just to make it more interesting, we have each thread wait a random
time before recording the value.

Threads and Exceptions
What happens if a thread raises an unhandled exception? It depends on the setting of
the abort_on_exception flag (documented on pages 612 and 615) and on the setting
of the interpreter’s debug flag (described on page 168).

If abort_on_exception is false and the debug flag is not enabled (the default con-
dition), an unhandled exception simply kills the current thread—all the rest continue
to run. In fact, you don’t even hear about the exception until you issue a join on the
thread that raised it.

In the following example, thread 2 blows up and fails to produce any output. However,
you can still see the trace from the other threads.

threads = []
4.times do |number|
threads << Thread.new(number) do |i|
raise "Boom!" if i == 2
print "#{i}\n"

end
end
threads.each {|t| t.join }

produces:

0
1
3
prog.rb:4: Boom! (RuntimeError)
from prog.rb:8:in `join'
from prog.rb:8
from prog.rb:8:in `each'
from prog.rb:8

Prepared exclusively for Margus Pau

MULTITHREADING 131

We can rescue the exception at the time the threads are joined.

threads = []
4.times do |number|
threads << Thread.new(number) do |i|
raise "Boom!" if i == 2
print "#{i}\n"

end
end
threads.each do |t|
begin
t.join

rescue RuntimeError => e
puts "Failed: #{e.message}"

end
end

produces:

0
1
3
Failed: Boom!

However, set abort_on_exception to true, or use -d to turn on the debug flag, and
an unhandled exception kills all running threads. Once thread 2 dies, no more output is
produced.

Thread.abort_on_exception = true
threads = []
4.times do |number|
threads << Thread.new(number) do |i|
raise "Boom!" if i == 2
print "#{i}\n"

end
end
threads.each {|t| t.join }

produces:

0
1
prog.rb:5: Boom! (RuntimeError)
from prog.rb:4:in `initialize'
from prog.rb:4:in `new'
from prog.rb:4
from prog.rb:3:in `times'
from prog.rb:3

This code also illustrates a gotcha. Inside the loop, the threads use print to write out
the number, rather than puts. Why? Because behind the scenes, puts splits its work
into two chunks: it writes its argument, and then it writes a newline. Between these
two, a thread could get scheduled, and the output would be interleaved. Calling print
with a single string that already contains the newline gets around the problem.

Prepared exclusively for Margus Pau

CONTROLLING THE THREAD SCHEDULER 132

Controlling the Thread Scheduler
In a well-designed application, you’ll normally just let threads do their thing; building
timing dependencies into a multithreaded application is generally considered to be bad
form, as it makes the code far more complex and also prevents the thread scheduler
from optimizing the execution of your program.

However, sometimes you need to control threads explicitly. Perhaps the jukebox has a
thread that displays a light show. We may need to stop it temporarily when the music
stops. You may have two threads in a classic producer-consumer relationship, where
the consumer has to pause if the producer gets backlogged.

Class Thread provides a number of methods to control the thread scheduler. Invoking
Thread.stop stops the current thread, and invoking Thread#run arranges for a par-
ticular thread to be run. Thread.pass deschedules the current thread, allowing others
to run, and Thread#join and Thread#value suspend the calling thread until a given
thread finishes.

We can demonstrate these features in the following, totally pointless program. It creates
two child threads, t1 and t2, each of which runs an instance of class Chaser. The chase
method increments a count but doesn’t let it get more than two higher than the count
in the other thread. To stop it getting higher, the method issues a Thread.pass, which
allows the chase in the other thread to catch up. To make it interesting (for some minor
definition of interesting), we have the threads suspend themselves initially and then
start a random one first.

class Chaser
attr_reader :count
def initialize(name)
@name = name
@count = 0

end
def chase(other)
while @count < 5

while @count - other.count > 1
Thread.pass

end
@count += 1
print "#@name: #{count}\n"

end
end

end

c1 = Chaser.new("A")
c2 = Chaser.new("B")

threads = [
Thread.new { Thread.stop; c1.chase(c2) },
Thread.new { Thread.stop; c2.chase(c1) }

]

Prepared exclusively for Margus Pau

MUTUAL EXCLUSION 133

start_index = rand(2)

threads[start_index].run
threads[1 - start_index].run

threads.each {|t| t.join }

produces:

B: 1
B: 2
A: 1
B: 3
A: 2
B: 4
A: 3
B: 5
A: 4
A: 5

However, using these primitives to achieve synchronization in real-life code is not
easy—race conditions will always be waiting to bite you. And when you’re working
with shared data, race conditions pretty much guarantee long and frustrating debugging
sessions. In fact, the previous example includes just such a bug; it is possible for count
to be incremented in one thread, but before that count can be output, the second thread
gets scheduled and outputs its count. The resulting output will be out of sequence.

Fortunately, threads have one additional facility—the idea of mutual exclusion. Using
this, we can build a number of secure synchronization schemes.

Mutual Exclusion
The lowest-level method of blocking other threads from running uses a global thread-
critical condition. When the condition is set to true (using the Thread.critical=
method), the scheduler will not schedule any existing thread to run. However, this does
not block new threads from being created and run. Certain thread operations (such as
stopping or killing a thread, sleeping in the current thread, and raising an exception)
may cause a thread to be scheduled even when in a critical section.

Using Thread.critical= directly is certainly possible, but it isn’t terribly conven-
ient. In fact, we strongly recommend you don’t use it unless you have a black belt in
multithreading (and a penchant for long debugging sessions). Fortunately, Ruby comes
packaged with several alternatives. Right now we’ll look at one of these, the Monitor
library. You may also want to look at the Sync library (on page 717), the Mutex_m
library (beginning on page 676), and the Queue class implemented in the thread library
(on page 722).

Prepared exclusively for Margus Pau

MUTUAL EXCLUSION 134

Monitors
While the threading primitives provide basic synchronization, they can be tricky to use.
Over the years, various folks have come up with higher-level alternatives. One that
works particularly well in object-oriented systems is the concept of a monitor.

Monitors wrap an object containing some kind of resource with synchronization func-
tions. To see them in action, let’s look at a simple counter that is accessed from two
threads.

class Counter
attr_reader :count
def initialize
@count = 0
super

end
def tick
@count += 1

end
end

c = Counter.new

t1 = Thread.new { 10000.times { c.tick } }
t2 = Thread.new { 10000.times { c.tick } }

t1.join
t2.join

c.count → 11319

Perhaps surprisingly, the count doesn’t equal 20,000. The reason is a simple line of
code.

@count += 1

This line is actually more complex than it first appears. Within the Ruby interpreter, it
might break down into

val = fetch_current(@count)
add 1 to val
store val back into @count

Now imagine two threads executing this code at the same time. Table 11.1 on the next
page shows the thread number (t1 and t2), the code being executed, and the value of
the counter (which we initialize to 0).

Even though our basic set of load/add/store instructions executed five times, we ended
up with a count of three. Because thread 1 interrupted the execution of thread 2 in the
middle of a sequence, when thread 2 resumed it stored a stale value back into @count.

Prepared exclusively for Margus Pau

MUTUAL EXCLUSION 135

Table 11.1. Two threads in a race condition

Thread Executes. . . Result
t1: val = fetch_current(@count) @count = 0
t1: add 1 to val 0
t1: store val back into @count @count = 1
t2: val = fetch_current(@count) 1
t2: add 1 to val 1
t2: store val back into @count @count = 2
t1: val = fetch_current(@count) 2
t2: val = fetch_current(@count) 2
t1: add 1 to val 2
t1: store val back into @count @count = 3
t1: val = fetch_current(@count) 3
t1: add 1 to val 3
t1: store val back into @count @count = 4
t2: add 1 to val 4
t2: store val back into @count @count = 3

The solution is to arrange things so that only one thread can execute the tick method’s
increment at any one time. This is easy using monitors.

require 'monitor'
class Counter < Monitor
attr_reader :count
def initialize
@count = 0
super

end
def tick
synchronize do

@count += 1
end

end
end

c = Counter.new
t1 = Thread.new { 10000.times { c.tick } }
t2 = Thread.new { 10000.times { c.tick } }

t1.join; t2.join
c.count → 20000

By making our counter a monitor, it gains access to the synchronize method. Only
one thread can be executing code within a synchronize block for a particular monitor
object at any one time, so we no longer have two threads caching intermediate results
at the same time, and our count has its expected value.

Prepared exclusively for Margus Pau

MUTUAL EXCLUSION 136

We don’t have to make our class a subclass of Monitor to gain these benefits. We could
also mix in a variant, MonitorMixin.

require 'monitor'

class Counter
include MonitorMixin
. . .

end

The previous example put the synchronization inside the resource being synchronized.
This is appropriate when all accesses to all objects of the class require synchronization.
But if you want to control access to objects that require synchronization only in some
circumstances, or if the synchronization is spread across a group of objects, then it may
be better to use an external monitor.

require 'monitor'

class Counter
attr_reader :count
def initialize
@count = 0

end
def tick
@count += 1

end
end

c = Counter.new
lock = Monitor.new

t1 = Thread.new { 10000.times { lock.synchronize { c.tick } } }
t2 = Thread.new { 10000.times { lock.synchronize { c.tick } } }
t1.join; t2.join

c.count → 20000

We can even make specific objects into monitors.

require 'monitor'

class Counter
as before...

end

c = Counter.new
c.extend(MonitorMixin)

t1 = Thread.new { 10000.times { c.synchronize { c.tick } } }
t2 = Thread.new { 10000.times { c.synchronize { c.tick } } }

t1.join; t2.join
c.count → 20000

Prepared exclusively for Margus Pau

MUTUAL EXCLUSION 137

Here, because class Counter doesn’t know it is a monitor at the time it’s defined, we
have to perform the synchronization externally (in this case by wrapping the calls to
c.tick). This is clearly a tad dangerous: if some other code calls tick but doesn’t
realize that synchronization is required, we’re back in the same mess we started with.

Queues
Most of the examples in this chapter use the Monitor class for synchronization. How-
ever, another technique is useful, particularly when you need to synchronize work
between producers and consumers. The Queue class, located in the thread library,
implements a thread-safe queuing mechanism. Multiple threads can add and remove
objects from the queue, and each addition and removal is guaranteed to be atomic. For
an example of this, see the description of the thread library on page 722.

Condition Variables
Monitors give us half of what we need, but there’s a problem. Say we have two threads
accessing a shared queue. One needs to add entries, and the other needs to read them
(perhaps the list represents songs waiting to be played on our jukebox: it gets added to
when customers make selections, and gets emptied as records get played).

We know we need to synchronize access, so we try something like

require 'monitor'

playlist = []
playlist.extend(MonitorMixin)

Player thread
Thread.new do
record = nil
loop do
playlist.synchronize do # < < BUG!!!

sleep 0.1 while playlist.empty?
record = playlist.shift

end
play(record)

end
end

Customer request thread thread
Thread.new do
loop do
req = get_customer_request
playlist.synchronize do

playlist << req
end

end
end

Prepared exclusively for Margus Pau

MUTUAL EXCLUSION 138

But this code has a problem. Inside the player thread, we gain access to the monitor
and then loop waiting for something to be added to the playlist. But because we own
the monitor, the customer thread will never be able to enter its synchronized block, and
will never add something to the playlist. We’re stuck. What we need is to be able to sig-
nal that the playlist has something in it and to provide synchronization between threads
based on this condition, all while staying within the safety of a monitor. More gener-
ally, we need to be able to give up temporarily the exclusive use of the critical region
and simultaneously tell people that we’re waiting for a resource. When the resource
becomes available, we need to be able to grab it and reobtain the lock on the critical
region, all in one step.

That’s where condition variables come in. A condition variable is a controlled way of
communicating an event (or a condition) between two threads. One thread can wait on
the condition, and the other can signal it. For example, we could rewrite our jukebox
using condition variables. (For the purposes of this code we’ll write stub methods for
receiving customer requests and playing records. We also have to add a flag to tell the
player that it’s OK to shut down; normally it would run forever.)

require 'monitor'

SONGS = [
'Blue Suede Shoes',
'Take Five',
'Bye Bye Love',
'Rock Around The Clock',
'Ruby Tuesday'

]

START_TIME = Time.now

def timestamp
(Time.now - START_TIME).to_i

end

Wait for up to two minutes between customer requests

def get_customer_request
sleep(120 * rand)
song = SONGS.shift
puts "#{timestamp}: Requesting #{song}" if song
song

end

Songs take between two and three minutes

def play(song)
puts "#{timestamp}: Playing #{song}"
sleep(120 + 60*rand)

end

ok_to_shutdown = false

and here's our original code

playlist = []
playlist.extend(MonitorMixin)

Prepared exclusively for Margus Pau

RUNNING MULTIPLE PROCESSES 139

plays_pending = playlist.new_cond

Customer request thread thread
customer = Thread.new do
loop do
req = get_customer_request
break unless req
playlist.synchronize do

playlist << req
plays_pending.signal

end
end

end

Player thread
player = Thread.new do
loop do
song = nil
playlist.synchronize do

break if ok_to_shutdown && playlist.empty?
plays_pending.wait_while { playlist.empty? }
song = playlist.shift

end
break unless song
play(song)

end
end

customer.join
ok_to_shutdown = true
player.join

produces:

26: Requesting Blue Suede Shoes
28: Playing Blue Suede Shoes
72: Requesting Take Five
188: Requesting Bye Bye Love
214: Playing Take Five
288: Requesting Rock Around The Clock
299: Requesting Ruby Tuesday
396: Playing Bye Bye Love
563: Playing Rock Around The Clock
708: Playing Ruby Tuesday

Running Multiple Processes
Sometimes you may want to split a task into several process-sized chunks—or perhaps
you need to run a separate process that was not written in Ruby. Not a problem: Ruby
has a number of methods by which you may spawn and manage separate processes.

Prepared exclusively for Margus Pau

RUNNING MULTIPLE PROCESSES 140

Spawning New Processes
You have several ways to spawn a separate process; the easiest is to run some command
and wait for it to complete. You may find yourself doing this to run some separate
command or retrieve data from the host system. Ruby does this for you with the system
and backquote (or backtick) methods.

system("tar xzf test.tgz") → true
result = `date`
result → "Thu Aug 26 22:36:55 CDT 2004\n"

The method Kernel.system executes the given command in a subprocess; it returns
true if the command was found and executed properly and false otherwise. In case
of failure, you’ll find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same
destination as your program’s output, which may not be what you want. To capture the
standard output of a subprocess, you can use the backquote characters, as with `date`
in the previous example. Remember that you may need to use String#chomp to remove
the line-ending characters from the result.

OK, this is fine for simple cases—we can run some other process and get the return
status. But many times we need a bit more control than that. We’d like to carry on a
conversation with the subprocess, possibly sending it data and possibly getting some
back. The method IO.popen does just this. The popen method runs a command as
a subprocess and connects that subprocess’s standard input and standard output to a
Ruby IO object. Write to the IO object, and the subprocess can read it on standard
input. Whatever the subprocess writes is available in the Ruby program by reading
from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that
reads words from standard input and prints them in pig latin (or igpay atinlay). We
can use this when our Ruby programs need to send us output that our five-year-olds
shouldn’t be able to understand.

pig = IO.popen("/usr/local/bin/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close_write
puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the real-world complexi-
ties involved in driving subprocesses through pipes. The code certainly looks simple
enough: open the pipe, write a phrase, and read back the response. But it turns out that
the pig program doesn’t flush the output it writes. Our original attempt at this exam-
ple, which had a pig.puts followed by a pig.gets, hung forever. The pig program

Prepared exclusively for Margus Pau

RUNNING MULTIPLE PROCESSES 141

processed our input, but its response was never written to the pipe. We had to insert
the pig.close_write line. This sends an end-of-file to pig’s standard input, and the
output we’re looking for gets flushed as pig terminates.

popen has one more twist. If the command you pass it is a single minus sign (–), popen
will fork a new Ruby interpreter. Both this and the original interpreter will continue
running by returning from the popen. The original process will receive an IO object
back, and the child will receive nil. This works only on operating systems that support
the fork(2) call (and for now this excludes Windows).

pipe = IO.popen("-","w+")
if pipe
pipe.puts "Get a job!"
STDERR.puts "Child says '#{pipe.gets.chomp}'"

else
STDERR.puts "Dad says '#{gets.chomp}'"
puts "OK"

end

produces:

Dad says 'Get a job!'
Child says 'OK'

In addition to the popen method, some platforms support the methods Kernel.fork,
Kernel.exec, and IO.pipe. The file-naming convention of many IO methods and
Kernel.open will also spawn subprocesses if you put a | as the first character of the
filename (see the introduction to class IO on page 482 for details). Note that you cannot
create pipes using File.new; it’s just for files.

Independent Children
Sometimes we don’t need to be quite so hands-on: we’d like to give the subprocess its
assignment and then go on about our business. Sometime later, we’ll check to see if it
has finished. For instance, we may want to kick off a long-running external sort.

exec("sort testfile > output.txt") if fork.nil?
The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait

The call to Kernel.fork returns a process ID in the parent, and nil in the child, so the
child process will perform the Kernel.exec call and run sort. Sometime later, we issue
a Process.wait call, which waits for the sort to complete (and returns its process ID).

Prepared exclusively for Margus Pau

RUNNING MULTIPLE PROCESSES 142

If you’d rather be notified when a child exits (instead of just waiting around), you can
set up a signal handler using Kernel.trap (described on page 513). Here we set up a
trap on SIGCLD, which is the signal sent on “death of child process.”

trap("CLD") do
pid = Process.wait
puts "Child pid #{pid}: terminated"

end

exec("sort testfile > output.txt") if fork.nil?

do other stuff...

produces:

Child pid 25816: terminated

For more information on using and controlling external processes, see the documenta-
tion for Kernel.open, IO.popen, and the section on the Process module on page 562.

Blocks and Subprocesses
IO.popen works with a block in pretty much the same way as File.open does. If you
pass it a command, such as date, the block will be passed an IO object as a parameter.

IO.popen("date") {|f| puts "Date is #{f.gets}" }

produces:

Date is Thu Aug 26 22:36:55 CDT 2004

The IO object will be closed automatically when the code block exits, just as it is with
File.open.

If you associate a block with Kernel.fork, the code in the block will be run in a Ruby
subprocess, and the parent will continue after the block.

fork do
puts "In child, pid = #$$"
exit 99

end
pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"

produces:

In child, pid = 25823
Child terminated, pid = 25823, status = 99

$? is a global variable that contains information on the termination of a subprocess.
See the section on Process::Status beginning on page 570 for more information.

Prepared exclusively for Margus Pau

Chapter 12

Unit Testing

Unit testing (described in the sidebar on the next page) is a technique that helps devel-
opers write better code. It helps before the code is actually written, as thinking about
testing leads you naturally to create better, more decoupled designs. It helps as you’re
writing the code, as it gives you instant feedback on how accurate your code is. And it
helps after you’ve written code, both because it gives you the ability to check that the
code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Because unit
testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby
makes writing tests easy, and the tests make it easier to verify that your code is working.
Once you get into the swing of it, you’ll find yourself writing a little code, writing a
test or two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial—run a program that calls part of your application’s
code, get back some results, and then check the results are what you expected.

Let’s say we’re testing a Roman number class. So far the code is pretty simple: it just
lets us create an object representing a certain number and display that object in Roman
numerals. Figure 12.1 on page 145 shows our first stab at an implementation.

We could test this code by writing another program, like this.

require 'roman'

r = Roman.new(1)
fail "'i' expected" unless r.to_s == "i"

r = Roman.new(9)
fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad-hoc approach can
start to get complicated to manage. Over the years, various unit testing frameworks
have emerged to help structure the testing process. Ruby comes with one preinstalled,
Nathaniel Talbott’s Test::Unit framework.

Prepared exclusively for Margus Pau 143

TEST::UNIT FRAMEWORK 144

What is Unit Testing?

Unit testing focuses on small chunks (units) of code, typically individ-
ual methods or lines within methods. This is in contrast to most other
forms of testing, which consider the system as a whole.

Why focus in so tightly? Because ultimately all software is constructed
in layers: code on one layer relies on the correct operation of the code
in the layers below. If this underlying code turns out to contain bugs,
then all higher layers are potentially affected. This is a big problem.
Fred may write the code with a bug one week, and then you may end
up calling it, indirectly, two months later. When your code generates
incorrect results, it will take you a while to track down the problem in
Fred’s method. And when you ask Fred why he wrote it that way, the
likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things
would have happened. First, he’d have found the bug while the code
was still fresh in his mind. Second, because the unit test was only
looking at the code he’d just written, when the bug did appear, he’d
only have to look through a handful of lines of code to find it, rather
than doing archaeology on the rest of the code base.

Test::Unit Framework
The Test::Unit framework is basically three facilities wrapped into a neat package.

1. It gives you a way of expressing individual tests.
2. It provides a framework for structuring the tests.
3. It gives you flexible ways of invoking the tests.

Assertions == Expected Results
Rather than have you write series of individual if statements in your tests, Test::Unit
provides a series of assertions that achieve the same thing. Although a number of dif-
ferent styles of assertion exist, they all follow basically the same pattern. Each assertion
gives you a way of specifying a desired result or outcome and a way of passing in the
actual outcome. If the actual doesn’t equal the expected, the assertion outputs a nice
message and records the fact as a failure.

For example, we could rewrite our previous test of the Roman class in Test::Unit. For
now, ignore the scaffolding code at the start and end, and just look at the assert_equal
methods.

Prepared exclusively for Margus Pau

TEST::UNIT FRAMEWORK 145

Figure 12.1. Roman numerals generation (with bugs)

class Roman
MAX_ROMAN = 4999

def initialize(value)
if value <= 0 || value > MAX_ROMAN

fail "Roman values must be > 0 and <= #{MAX_ROMAN}"
end
@value = value

end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 50], ["xl", 40],
["x", 10], ["ix", 9], ["v", 5], ["iv", 4],
["i", 1]]

def to_s
value = @value
roman = ""
for code, factor in FACTORS

count, value = value.divmod(factor)
roman << code unless count.zero?

end
roman

end
end

require 'roman'
require 'test/unit'
class TestRoman < Test::Unit::TestCase
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Loaded suite -
Started
.
Finished in 0.001672 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

The first assertion says that we’re expecting the Roman number string representation
of 1 to be “i”, and the second test says we expect 9 to be “ix”. Luckily for us, both
expectations are met, and the tracing reports that our tests pass.

Let’s add a few more tests.

Prepared exclusively for Margus Pau

TEST::UNIT FRAMEWORK 146

require 'roman'
require 'test/unit'
class TestRoman < Test::Unit::TestCase
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Loaded suite -
Started
F
Finished in 0.021083 seconds.

1) Failure:
<"ii"> expected but was
<"i">.

1 tests, 2 assertions, 1 failures, 0 errors
test_simple(TestRoman) [prog.rb:6]:

Uh oh! The second assertion failed. See how the error message uses the fact that the
assert knows both the expected and actual values: it expected to get “ii” but instead got
“i”. Looking at our code, you can see a clear bug in to_s. If the count after dividing
by the factor is greater than zero, then we should output that many Roman digits. The
existing code outputs just one. The fix is easy.

def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code * count)

end
roman

end

Now let’s run our tests again.

Loaded suite -
Started
.
Finished in 0.002869 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

Looking good. We can now go a step further and remove some of that duplication.

Prepared exclusively for Margus Pau

TEST::UNIT FRAMEWORK 147

require 'roman'
require 'test/unit'
class TestRoman < Test::Unit::TestCase

NUMBERS = [
[1, "i"], [2, "ii"], [3, "iii"],
[4, "iv"], [5, "v"], [9, "ix"]

]

def test_simple
NUMBERS.each do |arabic, roman|

r = Roman.new(arabic)
assert_equal(roman, r.to_s)

end
end

end

produces:

Loaded suite -
Started
.
Finished in 0.002638 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

What else can we test? Well, the constructor checks that the number we pass in can
be represented as a Roman number, throwing an exception if it can’t. Let’s test the
exception.

require 'roman'
require 'test/unit'
class TestRoman < Test::Unit::TestCase

def test_range
assert_raise(RuntimeError) { Roman.new(0) }
assert_nothing_raised() { Roman.new(1) }
assert_nothing_raised() { Roman.new(4999) }
assert_raise(RuntimeError) { Roman.new(5000) }

end
end

produces:

Loaded suite -
Started
.
Finished in 0.002588 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

We could do lot more testing on our Roman class, but let’s move on to bigger and better
things. Before we go, though, we should say that we’ve only scratched the surface of
the set of assertions available inside Test::Unit. Figure 12.2 on page 154 gives a full
list. The final parameter to every assertion is a message, which is output before any

Prepared exclusively for Margus Pau

STRUCTURING TESTS 148

failure message. This normally isn’t needed, as Test::Unit’s messages are normally
pretty reasonable. The one exception is the test assert_not_nil, where the message
“<nil> expected to not be nil” doesn’t help much. In that case, you may want to add
some annotation of your own.

require 'test/unit'
class TestsWhichFail < Test::Unit::TestCase
def test_reading
assert_not_nil(ARGF.read, "Read next line of input")

end
end

produces:

Loaded suite -
Started
F
Finished in 0.022314 seconds.

1) Failure:
Read next line of input.
<nil> expected to not be nil.

1 tests, 1 assertions, 1 failures, 0 errors
test_reading(TestsWhichFail) [prog.rb:4]:

Structuring Tests
Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look
at it.

You include Test::Unit facilities in your unit test with the following line.

require 'test/unit'

Unit tests seem to fall quite naturally into high-level groupings, called test cases, and
lower level groupings, the test methods themselves. The test cases generally contain all
the tests relating to a particular facility or feature. Our Roman number class is fairly
simple, so all the tests for it will probably be in a single test case. Within the test
case, you’ll probably want to organize your assertions into a number of test methods,
where each method contains the assertions for one type of test: one method could check
regular number conversions, another could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The
methods that hold the assertions must have names that start with test. This is impor-
tant: Test::Unit uses reflection to find tests to run, and only methods whose names start
with test are eligible.

Prepared exclusively for Margus Pau

STRUCTURING TESTS 149

Quite often you’ll find all of the test methods within a test case setting up a particu-
lar scenario. Each test method then probes some aspect of that scenario. Finally, each
method may then tidy up after itself. For example, we could be testing a class that
extracts jukebox playlists from a database.

require 'test/unit'
require 'playlist_builder'
require 'dbi'

class TestPlaylistBuilder < Test::Unit::TestCase

def test_empty_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
assert_equal([], pb.playlist())
db.disconnect

end

def test_artist_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_artist("krauss")
assert(pb.playlist.size > 0, "Playlist shouldn't be empty")
pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)
end
db.disconnect

end

def test_title_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_title("midnight")
assert(pb.playlist.size > 0, "Playlist shouldn't be empty")
pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)
end
db.disconnect

end

...
end

produces:

Loaded suite -
Started
...
Finished in 0.23465 seconds.

3 tests, 23 assertions, 0 failures, 0 errors

Each test starts by connecting to the database and creating a new playlist builder. Each
test ends by disconnecting from the database. (The idea of using a real database in unit

Prepared exclusively for Margus Pau

STRUCTURING TESTS 150

tests is questionable, as unit tests are supposed to be fast running, context independent,
and easy to set up, but it illustrates a point.)

We can extract all this common code into setup and teardown methods. Within a
TestCase class, a method called setup will be run before each and every test method,
and a method called teardown will be run after each test method finishes. Let’s empha-
size that: the setup and teardown methods bracket each test, rather than being run
once per test case.

Our test would then become

require 'test/unit'
require 'playlist_builder'
require 'dbi'

class TestPlaylistBuilder < Test::Unit::TestCase

def setup
@db = DBI.connect('DBI:mysql:playlists')
@pb = PlaylistBuilder.new(@db)

end

def teardown
@db.disconnect

end

def test_empty_playlist
assert_equal([], @pb.playlist())

end

def test_artist_playlist
@pb.include_artist("krauss")
assert(@pb.playlist.size > 0, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)
end

end

def test_title_playlist
@pb.include_title("midnight")
assert(@pb.playlist.size > 0, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)
end

end

...
end

produces:

Loaded suite -
Started
...
Finished in 0.248365 seconds.

3 tests, 23 assertions, 0 failures, 0 errors

Prepared exclusively for Margus Pau

ORGANIZING AND RUNNING TESTS 151

Organizing and Running Tests
The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example,
the test case for the Roman class was in a file called test_roman.rb, we could run the
tests from the command line using

% ruby test_roman.rb
Loaded suite test_roman
Started
..
Finished in 0.039257 seconds.

2 tests, 9 assertions, 0 failures, 0 errors

Test::Unit is clever enough to notice that there’s no main program, so it collects up all
the test case classes and runs each in turn.

If we want, we can ask it to run just a particular test method.

% ruby test_roman.rb --name test_range
Loaded suite test_roman
Started
.
Finished in 0.006445 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

Where to Put Tests
Once you get into unit testing, you may well find yourself generating almost as much
test code as production code. All of those tests have to live somewhere. The problem
is that if you put them alongside your regular production code source files, your direc-
tories start to get bloated—effectively you end up with two files for every production
source file.

A common solution is to have a test/ directory where you place all your test source
files. This directory is then placed parallel to the directory containing the code you’re
developing. For example, for our Roman numeral class, we may have

roman
lib/

roman.rb
other files. . .

test/
test_roman.rb
other tests. . .

other stuff

Prepared exclusively for Margus Pau

ORGANIZING AND RUNNING TESTS 152

This works well as a way of organizing files but leaves you with a small problem: how
do you tell Ruby where to find the library files to test? For example, if our TestRoman
test code was in a test/ subdirectory, how does Ruby know where to find the roman.
rb source file, the thing we’re trying to test?

An option that doesn’t work reliably is to build the path into require statements in the
test and run the tests from the test/ subdirectory.

require 'test/unit'
require '../lib/roman'

class TestRoman < Test::Unit::TestCase
...

end

Why doesn’t it work? Because our roman.rb file may itself require other source files in
the library we’re writing. It’ll load them using require (without the leading “../lib/”),
and because they aren’t in Ruby’s $LOAD_PATH, they won’t be found.Our test just won’t
run. A second, less immediate problem is that we won’t be able to use these same tests
to test our classes once installed on a target system, as then they’ll be referenced simply
using require 'roman'.

A better solution is to run the tests from the directory containing the library being
tested. Because the current directory is in the load path, the test code will be able to
find it.

% ruby ../test/test_roman.rb

However, this approach breaks down if you want to be able to run the tests from some-
where else on your system. Perhaps your scheduled build process runs tests for all the
software in the application by simply looking for files called test_xxx and executing
them. In this case, you need a little load path magic. At the front of your test code (for
example in test_roman.rb), add the following line:

$:.unshift File.join(File.dirname(__FILE__), "..", "lib")

require ...

This magic works because the test code is in a known location relative to the code being
tested. It starts by working out the name of the directory from which the test file is run
and then constructing the path to the files under test. This directory is the prepended
to the load path (the variable $:). From then on, code such as require 'roman' will
search the library being tested first.

Test Suites
After a while, you’ll grow a decent collection of test cases for your application. You
may well find that these tend to cluster: one group of cases tests a particular set of
functions, and another group tests a different set of functions. If so, you can group
those test cases together into test suites, letting you run them all as a group.

Prepared exclusively for Margus Pau

ORGANIZING AND RUNNING TESTS 153

This is easy to do in Test::Unit. All you have to do is create a Ruby file that requires
test/unit, and then requires each of the files holding the test cases you want to group.
This way, you build yourself a hierarchy of test material

• You can run individual tests by name.
• You can run all the tests in a file by running that file.
• You can group a number of files into a test suite and run them as a unit.
• You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,
testing just one method or testing the entire application.

At this point, it’s worthwhile thinking about naming conventions. Nathaniel Talbott,
the author of Test::Unit, uses the convention that test cases are in files named tc_xxx
and test suites are in files named ts_xxx.

file ts_dbaccess.rb
require 'test/unit'
require 'tc_connect'
require 'tc_query'
require 'tc_update'
require 'tc_delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the
four files you’ve required.

Is that all there is to it? No, you can make it more complicated if you want. You can
manually create and populate TestSuite objects, but there doesn’t seem to be much
point in practice. If you want to find more information, ri Test::Unit should help.

Test::Unit comes with a number of fancy GUI test runners. As real programmers use
the command line, however, these aren’t described here. Again, see the documentation
for details.

Prepared exclusively for Margus Pau

ORGANIZING AND RUNNING TESTS 154

Figure 12.2. Test::Unit assertions

assert(boolean, [message])
Fails if boolean is false or nil.

assert_nil(obj, [message])
assert_not_nil(obj, [message])

Expects obj to be (not) nil.

assert_equal(expected, actual, [message])
assert_not_equal(expected, actual, [message])

Expects obj to equal/not equal expected, using ==.

assert_in_delta(expected_float, actual_float, delta, [message])
Expects that the actual floating-point value is within delta of the expected value.

assert_raise(Exception, . . .) { block }
assert_nothing_raised(Exception, . . .) { block }

Expects the block to (not) raise one of the listed exceptions.

assert_instance_of(klass, obj, [message])
assert_kind_of(klass, obj, [message])

Expects obj to be a kind/instance of klass.

assert_respond_to(obj, message, [message])
Expects obj to respond to message (a symbol).

assert_match(regexp, string, [message])
assert_no_match(regexp, string, [message])

Expects string to (not) match regexp.

assert_same(expected, actual, [message])
assert_not_same(expected, actual, [message])

Expects expected.equal?(actual).

assert_operator(obj1, operator, obj2, [message])
Expects the result of sending the message operator to obj1 with parameter obj2 to
be true.

assert_throws(expected_symbol, [message]) { block }
Expects the block to throw the given symbol.

assert_send(send_array, [message])
Sends the message in send_array[1] to the receiver in send_array[0], passing the
rest of send_array as arguments. Expects the return value to be true.

flunk(message="Flunked")
Always fail.

Prepared exclusively for Margus Pau

Chapter 13

When Trouble Strikes

Sad to say, it is possible to write buggy programs using Ruby. Sorry about that.

But not to worry! Ruby has several features that will help debug your programs. We’ll
look at these features, and then we’ll show some common mistakes you can make in
Ruby and how to fix them.

Ruby Debugger
Ruby comes with a debugger, which is conveniently built into the base system. You can
run the debugger by invoking the interpreter with the -r debug option, along with any
other Ruby options and the name of your script.

ruby -r debug [debug-options] [programfile] [program-arguments]

The debugger supports the usual range of features you’d expect, including the ability
to set breakpoints, to step into and step over method calls, and to display stack frames
and variables. It can also list the instance methods defined for a particular object or
class, and it allows you to list and control separate threads within Ruby. Table 13.1 on
page 165 lists all the commands that are available under the debugger.

If your Ruby installation has readline support enabled, you can use cursor keys to
move back and forth in command history and use line-editing commands to amend
previous input.

To give you an idea of what the Ruby debugger is like, here is a sample session (with
user input in bold face type).

% ruby -r debug t.rb
Debug.rb
Emacs support available.
t.rb:1:def fact(n)
(rdb:1) list 1-9
[1, 10] in t.rb

Prepared exclusively for Margus Pau 155

INTERACTIVE RUBY 156

=> 1 def fact(n)
2 if n <= 0
3 1
4 else
5 n * fact(n-1)
6 end
7 end
8
9 p fact(5)

(rdb:1) b 2
Set breakpoint 1 at t.rb:2
(rdb:1) c
breakpoint 1, fact at t.rb:2
t.rb:2: if n <= 0
(rdb:1) disp n
1: n = 5

(rdb:1) del 1
(rdb:1) watch n==1
Set watchpoint 2
(rdb:1) c
watchpoint 2, fact at t.rb:fact
t.rb:1:def fact(n)
1: n = 1
(rdb:1) where
--> #1 t.rb:1:in `fact'

#2 t.rb:5:in `fact'
#3 t.rb:5:in `fact'
#4 t.rb:5:in `fact'
#5 t.rb:5:in `fact'
#6 t.rb:9

(rdb:1) del 2
(rdb:1) c
120

Interactive Ruby
If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is
essentially a Ruby “shell” similar in concept to an operating system shell (complete
with job control). It provides an environment where you can “play around” with the
language in real time. You launch irb at the command prompt.

irb [irb-options] [ruby_script] [program-arguments]

irb will display the value of each expression as you complete it. For instance:

% irb
irb(main):001:0> a = 1 +
irb(main):002:0* 2 * 3 /
irb(main):003:0* 4 % 5

Prepared exclusively for Margus Pau

EDITOR SUPPORT 157

=> 2
irb(main):004:0> 2+2
=> 4
irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end
=> nil
irb(main):008:0> test
Hello, world!
=> nil
irb(main):009:0>

irb also allows you to create subsessions, each one of which may have its own context.
For example, you can create a subsession with the same (top-level) context as the orig-
inal session or create a subsession in the context of a particular class or instance. The
sample session shown in Figure 13.1 on the next page is a bit longer but shows how
you can create subsessions and switch between them.

For a full description of all the commands that irb supports, see the reference beginning
on page 174.

As with the debugger, if your version of Ruby was built with GNU readline support,
you can use arrow keys (as with Emacs) or vi-style key bindings to edit individual lines
or to go back and reexecute or edit a previous line—just like a command shell.

irb is a great learning tool: it’s very handy if you want to try an idea quickly and see if
it works.

Editor Support
The Ruby interpreter is designed to read a program in one pass; this means you can
pipe an entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs,
for instance, you can select a region of Ruby text and use the command Meta-| to
execute Ruby. The Ruby interpreter will use the selected region as standard input, and
output will go to a buffer named *Shell Command Output*. This feature has come
in quite handy for us while writing this book—just select a few lines of Ruby in the
middle of a paragraph and try it!

You can do something similar in the vi editor using :%!ruby which replaces the pro-
gram text with its output, or :w !ruby, which displays the output without affecting the
buffer. Other editors have similar features.

While we are on the subject, this would probably be a good place to mention that a
Ruby mode for Emacs is included in the Ruby source distribution as ruby-mode.el
in the misc/ subdirectory. You can also find syntax-highlighting modules for vim

Prepared exclusively for Margus Pau

EDITOR SUPPORT 158

Figure 13.1. Sample irb session

In this same irb session,
we’ll create a new
subsession in the context
of class VolumeKnob.

We can use fg 0 to
switch back to the main
session, take at look at all
current jobs, and see what
instance methods
VolumeKnob defines.

Make a new VolumeKnob
object, and create a new
subsession with that
object as the context.

% irb
irb(main):001:0> irb
irb#1(main):001:0> jobs
#0->irb on main (#<Thread:0x401bd654>: stop)
#1->irb#1 on main (#<Thread:0x401d5a28>: running)
irb#1(main):002:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>
irb(main):002:0> class VolumeKnob
irb(main):003:1> end
=> nil
irb(main):004:0> irb VolumeKnob
irb#2(VolumeKnob):001:0> def initialize
irb#2(VolumeKnob):002:1> @vol=50
irb#2(VolumeKnob):003:1> end
=> nil
irb#2(VolumeKnob):004:0> def up
irb#2(VolumeKnob):005:1> @vol += 10
irb#2(VolumeKnob):006:1> end
=> nil
irb#2(VolumeKnob):007:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>
irb(main):005:0> jobs
#0->irb on main (#<Thread:0x401bd654>: running)
#1->irb#1 on main (#<Thread:0x401d5a28>: stop)
#2->irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)
irb(main):006:0> VolumeKnob.instance_methods
=> ["up"]
irb(main):007:0> v = VolumeKnob.new
#<VolumeKnob: @vol=50>
irb(main):008:0> irb v
irb#3(#<VolumeKnob:0x401e7d40>):001:0> up
=> 60
irb#3(#<VolumeKnob:0x401e7d40>):002:0> up
=> 70
irb#3(#<VolumeKnob:0x401e7d40>):003:0> up
=> 80
irb#3(VolumeKnob):004:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>
irb(main):009:0> kill 1,2,3
=> [1, 2, 3]
irb(main):010:0> jobs
#0->irb on main (#<Thread:0x401bd654>: running)
irb(main):011:0> exit

Switch back to the main
session, kill the
subsessions, and exit.

Prepared exclusively for Margus Pau

BUT IT DOESN’T WORK! 159

(an enhanced version of the vi editor), jed, and other editors on the ’net. Check the
Ruby FAQ (http://www.rubygarden.org/iowa/faqtotum) for an up-to-date list
and pointers to resources.

But It Doesn’t Work!
So you’ve read through enough of the book, you start to write your very own Ruby
program, and it doesn’t work. Here’s a list of common gotchas and other tips.

• First and foremost, run your scripts with warnings enabled (the -w command-line
option).

• If you happen to forget a “,” in an argument list—especially to print—you can
produce some very odd error messages.

• A parse error at the last line of the source often indicates a missing end keyword,
sometimes quite a bit earlier.

• An attribute setter is not being called. Within a class definition, Ruby will parse
setter= as an assignment to a local variable, not as a method call. Use the form
self.setter= to indicate the method call.

class Incorrect
attr_accessor :one, :two
def initialize
one = 1 # incorrect - sets local variable
self.two = 2

end
end

obj = Incorrect.new
obj.one → nil
obj.two → 2

• Objects that don’t appear to be properly set up may have been victims of an incor-
rectly spelled initialize method.

class Incorrect
attr_reader :answer
def initialise # < < < spelling error
@answer = 42

end
end

ultimate = Incorrect.new
ultimate.answer → nil

The same kind of thing can happen if you misspell the instance variable name.

Prepared exclusively for Margus Pau

http://www.rubygarden.org/iowa/faqtotum

BUT IT DOESN’T WORK! 160

class Incorrect
attr_reader :answer
def initialize
@anwser = 42 #<« spelling error

end
end

ultimate = Incorrect.new
ultimate.answer → nil

• Block parameters are in the same scope as local variables. If an existing local
variable with the same name as a block parameter exists when the block executes,
that variable will be modified by the call to the block. This may or may not be a
Good Thing.

c = "carbon"
i = "iodine"
elements = [c, i]
elements.each_with_index do |element, i|
do some chemistry

end
c → "carbon"
i → 1

• Watch out for precedence issues, especially when using {} instead of do/end.

def one(arg)
if block_given?
"block given to 'one' returns #{yield}"

else
arg

end
end

def two
if block_given?
"block given to 'two' returns #{yield}"

end
end

result1 = one two {
"three"

}

result2 = one two do
"three"

end

puts "With braces, result = #{result1}"
puts "With do/end, result = #{result2}"

produces:

With braces, result = block given to 'two' returns three
With do/end, result = block given to 'one' returns three

Prepared exclusively for Margus Pau

BUT IT DOESN’T WORK! 161

• Output written to a terminal may be buffered. This means you may not see a mes-
sage you write immediately. In addition, if you write messages to both $stdout
and $stderr, the output may not appear in the order you were expecting. Always
use nonbuffered I/O (set sync=true) for debug messages.

• If numbers don’t come out right, perhaps they’re strings. Text read from a file will
be a String and will not be automatically converted to a number by Ruby. A call
to Integer will work wonders (and will throw an exception if the input isn’t a
well-formed integer). A common mistake Perl programmers make is

while line = gets
num1, num2 = line.split(/,/)
...

end

You can rewrite this as

while line = gets
num1, num2 = line.split(/,/)
num1 = Integer(num1)
num2 = Integer(num2)
...

end

Or, you could convert all the strings using map.

while line = gets
num1, num2 = line.split(/,/).map {|val| Integer(val) }
...

end

• Unintended aliasing—if you are using an object as the key of a hash, make sure it
doesn’t change its hash value (or arrange to call Hash#rehash if it does).

arr = [1, 2]
hash = { arr => "value" }
hash[arr] → "value"
arr[0] = 99
hash[arr] → nil
hash.rehash → {[99, 2]=>"value"}
hash[arr] → "value"

• Make sure the class of the object you are using is what you think it is. If in doubt,
use puts my_obj.class.

• Make sure your method names start with a lowercase letter and class and constant
names start with an uppercase letter.

• If method calls aren’t doing what you’d expect, make sure you’ve put parentheses
around the arguments.

Prepared exclusively for Margus Pau

BUT IT’S TOO SLOW! 162

• Make sure the open parenthesis of a method’s parameter list butts up against the
end of the method name with no intervening spaces.

• Use irb and the debugger.

• Use Object#freeze. If you suspect that some unknown portion of code is setting
a variable to a bogus value, try freezing the variable. The culprit will then be
caught during the attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your
applications incrementally. Write a few lines of code, and then run them. Perhaps use
Test::Unit to write some tests. Write a few more lines of code, and then exercise them.
One of the major benefits of a dynamically typed language is that things don’t have to
be complete before you use them.

But It’s Too Slow!
Ruby is an interpreted, high-level language, and as such it may not perform as fast as a
lower-level language such as C. In the following sections, we’ll list some basic things
you can do to improve performance; also have a look in the index under Performance
for other pointers.

Typically, slow-running programs have one or two performance graveyards, places
where execution time goes to die. Find and improve these, and suddenly your whole
program springs back to life. The trick is finding them. The Benchmark module and the
Ruby profilers can help.

Benchmark
You can use the Benchmark module, also described on page 636, to time sections of
code. For example, we may wonder which is faster: a large loop using variables local
to the loop’s block or using variables from the surrounding scope. Figure 13.2 on the
following page shows how to use Benchmark to find out.

You have to be careful when benchmarking, because oftentimes Ruby programs can run
slowly because of the overhead of garbage collection. Because this garbage collection
can happen any time during your program’s execution, you may find that benchmark-
ing gives misleading results, showing a section of code running slowly when in fact the
slowdown was caused because garbage collection happened to trigger while that code
was executing. The Benchmark module has the bmbm method that runs the tests twice,
once as a rehearsal and once to measure performance, in an attempt to minimize the dis-
tortion introduced by garbage collection. The benchmarking process itself is relatively
well mannered—it doesn’t slow down your program much.

Prepared exclusively for Margus Pau

BUT IT’S TOO SLOW! 163

Figure 13.2. Comparing variable access costs using benchmark

require 'benchmark'
include Benchmark

LOOP_COUNT = 1_000_000

bm(12) do |test|
test.report("normal:") do
LOOP_COUNT.times do |x|

y = x + 1
end

end
test.report("predefine:") do
x = y = 0
LOOP_COUNT.times do |x|

y = x + 1
end

end
end

produces:
user system total real

normal: 3.110000 0.000000 3.110000 (4.954929)
predefine: 2.560000 0.000000 2.560000 (3.009354)

The Profiler
Ruby comes with a code profiler (documentation begins on page 696). The profiler
shows you the number of times each method in the program is called and the average
and cumulative time that Ruby spends in those methods.

You can add profiling to your code using the command-line option -r profile or
from within the code using require 'profile'. For example:

require 'profile'

count = 0
words = File.open("/usr/share/dict/words")

while word = words.gets
word = word.chomp!
if word.length == 12
count += 1

end
end

puts "#{count} twelve-character words"

The first time we ran this (without profiling) against a dictionary of almost 235,000
words, it takes several seconds to complete. This seems excessive, so we added the
-r profile command-line option and tried again. Eventually we saw output that
looked like the following.

Prepared exclusively for Margus Pau

BUT IT’S TOO SLOW! 164

20460 twelve-character words
% cumulative self self total
time seconds seconds calls ms/call ms/call name
7.76 12.01 12.01 234937 0.05 0.05 String#chomp!
7.75 24.00 11.99 234938 0.05 0.05 IO#gets
7.71 35.94 11.94 234937 0.05 0.05 String#length
7.62 47.74 11.80 234937 0.05 0.05 Fixnum#==
0.59 48.66 0.92 20460 0.04 0.04 Fixnum#+
0.01 48.68 0.02 1 20.00 20.00 Profiler__.start_profile
0.00 48.68 0.00 1 0.00 0.00 File#initialize
0.00 48.68 0.00 1 0.00 0.00 Fixnum#to_s
0.00 48.68 0.00 1 0.00 0.00 File#open
0.00 48.68 0.00 1 0.00 0.00 Kernel.puts
0.00 48.68 0.00 2 0.00 0.00 IO#write
0.00 48.68 0.00 1 0.00 154800.00 #toplevel

The first thing to notice is that the timings shown are a lot slower than when the program
runs without the profiler. Profiling has a serious overhead, but the assumption is that
it applies across the board, and therefore the relative numbers are still meaningful.
This particular program clearly spends a lot of time in the loop, which executes almost
235,000 times. We could probably improve performance if we could either make the
stuff in the loop less expensive or eliminate the loop altogether. One way of doing the
latter is to read the word list into one long string, then use a pattern to match and extract
all twelve character words.

require 'profile'

words = File.read("/usr/share/dict/words")
count = words.scan(PATT= /^............\n/).size

puts "#{count} twelve-character words"

Our profile numbers are now a lot better (and the program runs more than five times
faster when we take the profiling back out).

20460 twelve-character words
% cumulative self self total
time seconds seconds calls ms/call ms/call name
96.67 0.29 0.29 1 290.00 290.00 String#scan
6.67 0.31 0.02 1 20.00 20.00 Profiler__.start_profile
0.00 0.31 0.00 1 0.00 0.00 Array#size
0.00 0.31 0.00 1 0.00 0.00 Kernel.puts
0.00 0.31 0.00 2 0.00 0.00 IO#write
0.00 0.31 0.00 1 0.00 0.00 Fixnum#to_s
0.00 0.31 0.00 1 0.00 300.00 #toplevel
0.00 0.31 0.00 1 0.00 0.00 File#read

Remember to check the code without the profiler afterward, though—sometimes the
slowdown the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the
programmer of the need to apply common sense: creating unnecessary objects, per-
forming unneeded work, and creating bloated code will slow down your programs
regardless of the language.

Prepared exclusively for Margus Pau

BUT IT’S TOO SLOW! 165

Table 13.1. Debugger commands

b [reak] [file|class:]line Set breakpoint at given line in file (default current file) or class.
b [reak] [file|class:]name Set breakpoint at method in file or class.
b [reak] Display breakpoints and watchpoints.
wat [ch] expr Break when expression becomes true.
del [ete] [nnn] Delete breakpoint nnn (default all).
cat [ch] exception Stop when exception is raised.
cat [ch] List current catches.
tr [ace] (on|off) [all] Toggle execution trace of current or all threads.

disp [lay] expr Display value of nnn every time debugger gets control.
disp [lay] Show current displays.
undisp [lay] [nnn] Remove display (default all).

c [ont] Continue execution.
s [tep] nnn=1 Execute next nnn lines, stepping into methods.
n [ext] nnn=1 Execute next nnn lines, stepping over methods.
fin [ish] Finish execution of the current function.
q [uit] Exit the debugger.

w [here] Display current stack frame.
f [rame] Synonym for where.
l [ist] [start–end] List source lines from start to end.
up nnn=1 Move up nnn levels in the stack frame.
down nnn=1 Move down nnn levels in the stack frame.

v [ar] g [lobal] Display global variables.
v [ar] l [ocal] Display local variables.
v [ar] i [stance] obj Display instance variables of obj.
v [ar] c [onst] Name Display constants in class or module name.

m [ethod] i [nstance] obj Display instance methods of obj.
m [ethod] Name Display instance methods of the class or module name.

th [read] l [ist] List all threads.
th [read] [c[ur[rent]]] Display status of current thread.
th [read] [c[ur[rent]]] nnn Make thread nnn current, and stop it.
th [read] stop nnn Make thread nnn current, and stop it.
th [read] resume nnn Resume thread nnn.
th [read] [sw[itch]] nnn Switch thread context to nnn.

[p] expr Evaluate expr in the current context. expr may include assignment
to variables and method invocations.

h[elp] Show summary of commands.

empty A null command repeats the last command.

Prepared exclusively for Margus Pau

Part II

Ruby in Its Setting

Prepared exclusively for Margus Pau 166

Chapter 14

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world.
In this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Win-
dows users will probably also want to look at platform-specific information beginning
on page 253.

Command-Line Arguments
“In the beginning was the command line.”1Regardless of the system in which Ruby is
deployed, whether it be a super high-end scientific graphics workstation or an embed-
ded PDA device, you’ve got to start the Ruby interpreter somehow, and that gives us
the opportunity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, option-
ally the name of a program to run, and optionally a set of arguments for that program.

ruby [options] [--] [programfile] [arguments]

The Ruby options are terminated by the first word on the command line that doesn’t
start with a hyphen, or by the special flag -- (two hyphens).

If no filename is present on the command line, or if the filename is a single hyphen (-),
Ruby reads the program source from standard input.

Arguments for the program itself follow the program name. For example:

% ruby -w - "Hello World"

will enable warnings, read a program from standard input, and pass it the quoted string
"Hello World" as an argument.

1. This is the title of a marvelous essay by Neal Stephenson (available online at
http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine).

Prepared exclusively for Margus Pau 167

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine

COMMAND-LINE ARGUMENTS 168

Command-Line Options
-0[octal]

The 0 flag (the digit zero) specifies the record separator character (\0, if no digit
follows). -00 indicates paragraph mode: records are separated by two successive
default record separator characters. -0777 reads the entire file at once (as it is an
illegal character). Sets $/.

-a Autosplit mode when used with -n or -p; equivalent to executing $F = $_.split
at the top of each loop iteration.

-C directory
Changes working directory to directory before executing.

-c Checks syntax only; does not execute the program.

--copyright
Prints the copyright notice and exits.

-d, --debug
Sets $DEBUG and $VERBOSE1.8 to true. This can be used by your programs to enable
additional tracing.

-e 'command'
Executes command as one line of Ruby source. Several -e’s are allowed, and the
commands are treated as multiple lines in the same program. If programfile is
omitted when -e is present, execution stops after the -e commands have been
run. Programs1.8 run using -e have access to the old behavior of ranges and regular
expressions in conditions—ranges of integers compare against the current input
line number, and regular expressions match against $_.

-F pattern
Specifies the input field separator ($;) used as the default for split() (affects the
-a option).

-h, --help
Displays a short help screen.

-I directories
Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I options
may be present. Multiple directories may appear following each -I, separated
by a colon (:) on Unix-like systems and by a semicolon (;) on DOS/Windows
systems.

-i [extension]
Edits ARGV files in place. For each file named in ARGV, anything you write to stan-
dard output will be saved back as the contents of that file. A backup copy of the
file will be made if extension is supplied.

% ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.txt

Prepared exclusively for Margus Pau

COMMAND-LINE ARGUMENTS 169

-K kcode
Specifies the code set to be used. This option is useful mainly when Ruby is used
for Japanese-language processing. kcode may be one of: e, E for EUC; s, S for
SJIS; u, U for UTF-8; or a, A, n, N for ASCII.

-l Enables automatic line-ending processing; sets $\ to the value of $/ and chops
every input line automatically.

-n Assumes a while gets; ...; end loop around your program. For example, a
simple grep command could be implemented as

% ruby -n -e "print if /wombat/" *.txt

-p Places your program code within the loop while gets; ...; print; end.

% ruby -p -e "$_.downcase!" *.txt

-r library
requires the named library before executing.

-S Looks for the program file using RUBYPATH or PATH environment variable.

-s Any command-line switches found after the program filename, but before any
filename arguments or before a --, are removed from ARGV and set to a global
variable named for the switch. In the following example, the effect of this would
be to set the variable $opt to "electric".

% ruby -s prog -opt=electric ./mydata

-T[level]
Sets the safe level, which among other things enables tainting checks (see page
379). Sets $SAFE.

-v, --verbose
Sets $VERBOSE to true1.8 , which enables verbose mode. Also prints the version num-
ber. In verbose mode, compilation warnings are printed. If no program filename
appears on the command line, Ruby exits.

--version
Displays the Ruby version number and exits.

-w Enables verbose mode. Unlike -v, reads program from standard input if no pro-
gram files are present on the command line. We recommend running your Ruby
programs with -w.1.8

-W level
Sets the level of warnings issued. With a level or two (or with no level specified),
equivalent to -w—additional warnings are given. If level is 1, runs at the standard
(default) warning level. With -W0 absolutely no warnings are given (including
those issued using Kernel.warn).

Prepared exclusively for Margus Pau

PROGRAM TERMINATION 170

-X directory
Changes working directory to directory before executing. Same as -C directory.

-x [directory]
Strips off text before #!ruby line and changes working directory to directory if
given.

-y, --yydebug
Enables yacc debugging in the parser (waaay too much information).

ARGV
Any command-line arguments after the program filename are available to your Ruby
program in the global array ARGV. For instance, assume test.rb contains the following
program:

ARGV.each {|arg| p arg }

Invoke it with the following command line:

% ruby -w test.rb "Hello World" a1 1.6180

It’ll generate the following output:

"Hello World"
"a1"
"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the
program, not the program name. The name of the current program is available in the
global variable $0. Notice that all the values in ARGV are strings.

If your program attempts to read from standard input (or uses the special file ARGF,
described on page 321), the program arguments in ARGV will be taken to be filenames,
and Ruby will read from these files. If your program takes a mixture of arguments and
filenames, make sure you empty the nonfilename arguments from the ARGV array before
reading from the files.

Program Termination
The method Kernel#exit terminates your program, returning a status value to the
operating system. However, unlike some languages, exit doesn’t terminate the pro-
gram immediately. Kernel#exit first raises a SystemExit exception, which you may
catch, and then performs a number of cleanup actions, including running any registered
at_exit methods and object finalizers. See the reference for Kernel#exit beginning
on page 500 for details.

Prepared exclusively for Margus Pau

ENVIRONMENT VARIABLES 171

Environment Variables
You can access operating system environment variables using the predefined variable
ENV. It responds to the same methods as Hash.2

ENV['SHELL'] → "/bin/sh"
ENV['HOME'] → "/Users/dave"
ENV['USER'] → "dave"
ENV.keys.size → 34
ENV.keys[0, 7] → ["MANPATH", "TERM_PROGRAM", "TERM", "SHELL",

"SAVEHIST", "HISTSIZE", "MAKEFLAGS"]

The values of some environment variables are read by Ruby when it first starts. These
variables modify the behavior of the interpreter, as shown in Table 14.1 on the next
page.

Writing to Environment Variables
A Ruby program may write to the ENV object. On most systems this changes the values
of the corresponding environment variables. However, this change is local to the pro-
cess that makes it and to any subsequently spawned child processes. This inheritance
of environment variables is illustrated in the code that follows. A subprocess changes
an environment variable, and this change is inherited by a process that it then starts.
However, the change is not visible to the original parent. (This just goes to prove that
parents never really know what their children are doing.)

puts "In parent, term = #{ENV['TERM']}"
fork do
puts "Start of child 1, term = #{ENV['TERM']}"
ENV['TERM'] = "ansi"
fork do
puts "Start of child 2, term = #{ENV['TERM']}"

end
Process.wait
puts "End of child 1, term = #{ENV['TERM']}"

end
Process.wait
puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xterm-color
Start of child 1, term = xterm-color
Start of child 2, term = ansi
End of child 1, term = ansi
Back in parent, term = xterm-color

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

Prepared exclusively for Margus Pau

WHERE RUBY FINDS ITS MODULES 172

Table 14.1. Environment variables used by Ruby

Variable Name Description

DLN_LIBRARY_PATH Search path for dynamically loaded modules.
HOME Points to user’s home directory. Used when expanding ~ in file

and directory names.
LOGDIR Fallback pointer to the user’s home directory if $HOME is not set.

Used only by Dir.chdir.
OPENSSL_CONF Specify location of OpenSSL configuration file.1.8
RUBYLIB Additional search path for Ruby programs ($SAFE must be 0).
RUBYLIB_PREFIX (Windows only) Mangle the RUBYLIB search path by adding

this prefix to each component.
RUBYOPT Additional command-line options to Ruby; examined after real

command-line options are parsed ($SAFE must be 0).
RUBYPATH With -S option, search path for Ruby programs (defaults to

PATH).
RUBYSHELL Shell to use when spawning a process under Windows; if not

set, will also check SHELL or COMSPEC.
RUBY_TCL_DLL Override default name for TCL shared library or DLL.
RUBY_TK_DLL Override default name for Tk shared library or DLL. Both this

and RUBY_TCL_DLL must be set for either to be used.

Where Ruby Finds Its Modules
You use require or load to bring a library module into your Ruby program. Some
of these modules are supplied with Ruby, some you may have installed off the Ruby
Application Archive, and some you may have written yourself. How does Ruby find
them?

When Ruby is built for your particular machine, it predefines a set of standard directo-
ries to hold library stuff. Where these are depends on the machine in question. You can
determine this from the command line with something like

% ruby -e 'puts $:'

On a typical Linux box, you’ll probably find something such as the following. Note
that as of Ruby 1.8,1.8 the order of these directories has changed—architecture-specific
directories now follow their machine-independent counterparts.

/usr/local/lib/ruby/site_ruby/1.8
/usr/local/lib/ruby/site_ruby/1.8/i686-linux
/usr/local/lib/ruby/site_ruby
/usr/local/lib/ruby/1.8
/usr/local/lib/ruby/1.8/i686-linux
.

Prepared exclusively for Margus Pau

BUILD ENVIRONMENT 173

The site_ruby directories are intended to hold modules and extensions that you’ve
added. The architecture-dependent directories (i686-linux in this case) hold executa-
bles and other things specific to this particular machine. All these directories are auto-
matically included in Ruby’s search for modules.

Sometimes this isn’t enough. Perhaps you’reworking on a large project written in Ruby,
and you and your colleagues have built a substantial library of Ruby code. You want
everyone on the team to have access to all this code. You have a couple of options to
accomplish this. If your program runs at a safe level of zero (see Chapter 25 beginning
on page 379), you can set the environment variable RUBYLIB to a list of one or more
directories to be searched.3 If your program is not setuid, you can use the command-line
parameter -I to do the same thing.

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen,
this variable is initialized to the list of standard directories, plus any additional ones
you specified using RUBYLIB and -I. You can always add additional directories to this
array from within your running program.

Just to make things more interesting, a new way of organizing libraries came along
just in time to make it into this book. Chapter 17 on page 203 describes RubyGems, a
network-enabled package management system.

Build Environment
When Ruby is compiled for a particular architecture, all the relevant settings used to
build it (including the architecture of the machine on which it was compiled, compiler
options, source code directory, and so on) are written to the module Config within the
library file rbconfig.rb. After installation, any Ruby program can use this module to
get details on how Ruby was compiled.

require 'rbconfig.rb'
include Config
CONFIG["host"] → "powerpc-apple-darwin7.5.0"
CONFIG["libdir"] → "/Users/dave/ruby1.8/lib"

Extension libraries use this configuration file in order to compile and link properly on
any given architecture. See Chapter 21 beginning on page 261 and the reference for
mkmf beginning on page 755 for details.

3. The separator between entries depends on your platform. For Windows, it’s a semicolon; for Unix, it’s
a colon.

Prepared exclusively for Margus Pau

Chapter 15

Interactive Ruby Shell

Back on page 156 we introduced irb, a Ruby module that lets you enter Ruby programs
interactively and see the results immediately. This chapter goes into more detail on
using and customizing irb.

Command Line
irb is run from the command line.

irb [irb-options] [ruby_script] [program arguments]

The command-line options for irb are listed in Table 15.1 on the next page. Typically,
you’ll run irb with no options, but if you want to run a script and watch the blow-
by-blow description as it runs, you can provide the name of the Ruby script and any
options for that script.

Once started, irb displays a prompt and waits for input. In the examples that follow,
we’ll use irb’s default prompt, which shows the current binding, the indent (nesting)
level, and the line number.

At a prompt, you can type Ruby code. irb includes a Ruby parser, so it knows when
statements are incomplete. When this happens, the prompt will end with an asterisk.
You can leave irb by typing exit or quit, or by entering an end-of-file character (unless
IGNORE_EOF mode is set).

% irb
irb(main):001:0> 1 + 2
=> 3
irb(main):002:0> 3 +
irb(main):003:0* 4
=> 7
irb(main):004:0> quit
%

Prepared exclusively for Margus Pau 174

COMMAND LINE 175

Table 15.1. irb command-line options

Option Description

--back-trace-limit n Display backtrace information using the top n and
last n entries. The default value is 16.

-d Set $DEBUG to true (same as ruby -d).
-f Suppress reading ~/.irbrc.
-I path specify the $LOAD_PATH directory.
--inf-ruby-mode Set up irb to run in inf-ruby-mode under Emacs.

Change the prompt and suppress --readline.
--inspect Use Object#inspect to format output (the default,

unless in math mode).
--irb_debug n Set internal debug level to n (only useful for irb

development).
-m Math mode (fraction and matrix support is available).
--noinspect Do not use inspect for output.
--noprompt Do not display a prompt.
--noreadline Do not use Readline extension module.
--prompt prompt-mode Switch prompt. Predefined prompt modes are null,

default, classic, simple, xmp, and inf-ruby.
--prompt-mode prompt-mode Same as --prompt.
-r load-module Same as ruby -r.
--readline Use readline extension module.
--simple-prompt Use simple prompts.
--tracer Display trace for execution of commands.
-v, --version Print the version of irb.

During an irb session, the work you do is accumulated in irb’s workspace. Variables
you set, methods you define, and classes you create are all remembered and may be
used subsequently.

irb(main):001:0> def fib_up_to(n)
irb(main):002:1> f1, f2 = 1, 1
irb(main):003:1> while f1 <= n
irb(main):004:2> puts f1
irb(main):005:2> f1, f2 = f2, f1+f2
irb(main):006:2> end
irb(main):007:1> end
=> nil
irb(main):008:0> fib_up_to(4)
1
1
2
3
=> nil

Prepared exclusively for Margus Pau

COMMAND LINE 176

Notice the nil return values. These are the results of defining the method and then
running it. The method output the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you’ve already written. Perhaps you want
to track down a bug, or maybe you just want to play. If you load your program into
irb, you can then create instances of the classes it defines and invoke its methods. For
example, the file code/fib_up_to.rb contains the following method definition.

def fib_up_to(max)
i1, i2 = 1, 1
while i1 <= max
yield i1
i1, i2 = i2, i1+i2

end
end

We can load this into irb and play with the method.

% irb
irb(main):001:0> load 'code/fib_up_to.rb'
=> true
irb(main):002:0> result = []
=> []
irb(main):003:0> fib_up_to(20) {|val| result << val}
=> nil
irb(main):004:0> result
=> [1, 1, 2, 3, 5, 8, 13]

In this example, we use load, rather than require, to include the file in our session.
We do this as a matter of practice: load allows us to load the same file multiple times,
so if we find a bug and edit the file, we could reload it into our irb session.

Tab Completion
If your Ruby installation has readline support, then you can use irb’s completion
facility. Once loaded (and we’ll get to how to load it shortly), completion changes the
meaning of the TAB key when typing expressions at the irb prompt. When you press
TAB partway through a word, irb will look for possible completions that make sense at
that point. It there is only one, irb will fill it in automatically. If there’s more than one
valid option, irb initially does nothing. However, if you hit TAB again, it will display
the list of valid completions at that point.

For example, you may be in the middle of an irb session, having just assigned a string
object to the variable a.

irb(main):002:0> a = "cat"
=> "cat"

You now want to try the method String#reverse on this object. You start by typing
a.re and then hit TAB twice.

Prepared exclusively for Margus Pau

COMMAND LINE 177

irb(main):003:0> a.re TAB TAB
a.reject a.replace a.respond_to? a.reverse a.reverse!

irb lists all the methods supported by the object in a whose names start with “re.” We
see the one we want, reverse, and enter the next character of its name, v, followed by
the TAB key.

irb(main):003:0> a.rev TAB
irb(main):003:0> a.reverse
=> "tac"
irb(main):004:0>

irb responds to the TAB key by expanding the name as far as it can go, in this case
completing the word reverse. If we keyed TAB twice at this point, it would show us
the current options, reverse and reverse!. However, as reverse is the one we want,
we instead hit ENTER , and the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab
completion works when we try to invoke one of its methods.

irb(main):004:0> class Test
irb(main):005:1> def my_method
irb(main):006:2> end
irb(main):007:1> end
=> nil
irb(main):008:0> t = Test.new
=> #<Test:0x35b724>
irb(main):009:0> t.my TAB
irb(main):009:0> t.my_method

Tab completion is implemented as an extension library, irb/completion. You can
load it when you invoke irb from the command line.

% irb -r irb/completion

You can also load the completion library when irb is running.

irb(main):001:0> require 'irb/completion'
=> true

If you use tab completion all the time, it’s probably most convenient to put the require
command into your .irbrc file.

require 'irb/completion'

Subsessions
irb supports multiple, concurrent sessions. One is always current; the others lie dormant
until activated. Entering the command irb within irb creates a subsession, entering the
jobs command lists all sessions, and entering fg activates a particular dormant session.

Prepared exclusively for Margus Pau

COMMAND LINE 178

This example also illustrates the -r command-line option, which loads in the given file
before irb starts.

% irb -r code/fib_up_to.rb
irb(main):001:0> result = []
=> []
irb(main):002:0> fib_up_to(10) {|val| result << val }
=> nil
irb(main):003:0> result
=> [1, 1, 2, 3, 5, 8]
irb(main):004:0> # Create a nested irb session
irb(main):005:0* irb
irb#1(main):001:0> result = %w{ cat dog horse }
=> ["cat", "dog", "horse"]
irb#1(main):002:0> result.map {|val| val.upcase }
=> ["CAT", "DOG", "HORSE"]
irb#1(main):003:0> jobs
=> #0->irb on main (#<Thread:0x331740>: stop)
#1->irb#1 on main (#<Thread:0x341694>: running)
irb#1(main):004:0> fg 0
irb(main):006:0> result
=> [1, 1, 2, 3, 5, 8]
irb(main):007:0> fg 1
irb#1(main):005:0> result
=> ["cat", "dog", "horse"]

Subsessions and Bindings
If you specify an object when you create a subsession, that object becomes the value
of self in that binding. This is a convenient way to experiment with objects. In the
following example, we create a subsession with the string “wombat” as the default
object. Methods with no receiver will be executed by that object.

% irb
irb(main):001:0> self
=> main
irb(main):002:0> irb "wombat"
irb#1(wombat):001:0> self
=> "wombat"
irb#1(wombat):002:0> upcase
=> "WOMBAT"
irb#1(wombat):003:0> size
=> 6
irb#1(wombat):004:0> gsub(/[aeiou]/, '*')
=> "w*mb*t"
irb#1(wombat):005:0> irb_exit
irb(main):003:0> self
=> main
irb(main):004:0> upcase
NameError: undefined local variable or method `upcase' for main:Object

Prepared exclusively for Margus Pau

CONFIGURATION 179

Configuration
irb is remarkably configurable. You can set configuration options with command-line
options, from within an initialization file, and while you’re inside irb itself.

Initialization File
irb uses an initialization file in which you can set commonly used options or execute
any required Ruby statements. When irb is run, it will try to load an initialization file
from one of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and
$irbrc.

Within the initialization file you may run any arbitrary Ruby code. You can also set
configuration values. The list of configuration variables is given starting on page 181—
the values that can be used in an initialization file are the symbols (starting with a
colon). You use these symbols to set values into the IRB.conf hash. For example, to
make SIMPLE the default prompt for all your irb sessions, you could have the following
in your initialization file.

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc
object. This proc will be invoked whenever the irb context is changed and will receive
the configuration for that context as a parameter. You can use this facility to change the
configuration dynamically based on the context. For example, the following .irbrc
file sets the prompt so that only the main prompt shows the irb level, but continuation
prompts and the result still line up.

IRB.conf[:IRB_RC] = proc do |conf|
leader = " " * conf.irb_name.length
conf.prompt_i = "#{conf.irb_name} --> "
conf.prompt_s = leader + ' \-" '
conf.prompt_c = leader + ' \-+ '
conf.return_format = leader + " ==> %s\n\n"
puts "Welcome!"

end

An irb session using this .irbrc file looks like the following.

% irb
Welcome!
irb --> 1 + 2

==> 3

irb --> 2 +
\-+ 6
==> 8

Prepared exclusively for Margus Pau

CONFIGURATION 180

Extending irb
Because the things you type to irb are interpreted as Ruby code, you can effectively
extend irb by defining new top-level methods. For example, you may want to be able to
look up the documentation for a class or method while in irb. If you add the following to
your .irbrc file, you’ll add a method called ri, which invokes the external ri command
on its arguments.

def ri(*names)
system(%{ri #{names.map {|name| name.to_s}.join(" ")}})

end

The next time you start irb, you’ll be able to use this method to get documentation.

irb(main):001:0> ri Proc
--- Class: Proc

Proc objects are blocks of code that have been bound to a set of
local variables. Once bound, the code may be called in different
contexts and still access those variables.
and so on...

irb(main):002:0> ri :strftime
--- Time#strftime

time.strftime(string) => string

Formats time according to the directives in the given format
string. Any text not listed as a directive will be passed through
to the output string.

Format meaning:
%a - The abbreviated weekday name (``Sun'')
%A - The full weekday name (``Sunday'')
%b - The abbreviated month name (``Jan'')
%B - The full month name (``January'')
%c - The preferred local date and time representation
%d - Day of the month (01..31)

and so on...

irb(main):003:0> ri "String.each"
--- String#each

str.each(separator=$/) |substr| block => str
str.each_line(separator=$/) |substr| block => str

Splits str using the supplied parameter as the record separator
($/ by default), passing each substring in turn to the supplied
block. If a zero-length record separator is supplied, the string
is split on \n characters, except that multiple successive
newlines are appended together.

print "Example one\n"
"hello\nworld".each |s| p s
and so on...

Prepared exclusively for Margus Pau

CONFIGURATION 181

Interactive Configuration
Most configuration values are also available while you’re running irb. The list starting
on the current page shows these values as conf.xxx. For example, to change your
prompt back to DEFAULT, you could use the following.

irb(main):001:0> 1 +
irb(main):002:0* 2
=> 3
irb(main):003:0> conf.prompt_mode = :SIMPLE
=> :SIMPLE
>> 1 +
?> 2
=> 3

irb Configuration Options
In the descriptions that follow, a label of the form :XXX signifies a key used in the
IRB.conf hash in an initialization file, and conf.xxx signifies a value that can be set
interactively. The value in square brackets at the end of the description is the option’s
default.

:AUTO_INDENT / conf.auto_indent_mode
If true, irb will indent nested structures as you type them. [false]

:BACK_TRACE_LIMIT / conf.back_trace_limit
Displays lines n initial and n final lines of backtrace. [16]

:CONTEXT_MODE

What binding to use for new workspaces: 0→ proc at the top level, 1→ binding in a loaded,

anonymous file, 2→ per thread binding in a loaded file, 3→ binding in a top-level function.

[3]

:DEBUG_LEVEL / conf.debug_level
Sets the internal debug level to n. Useful if you’re debugging irb’s lexer. [0]

:IGNORE_EOF / conf.ignore_eof
Specifies the behavior of an end of file received on input. If true, it will be ignored; other-
wise, irb will quit. [false]

:IGNORE_SIGINT / conf.ignore_sigint
If false, ^C (Ctrl+c) will quit irb. If true, ^C during input will cancel input and return to the
top level; during execution, ^C will abort the current operation. [true]

:INSPECT_MODE / conf.inspect_mode
Specifies how values will be displayed: true means use inspect, false uses to_s, and

nil uses inspect in nonmath mode and to_s in math mode. [nil]

Prepared exclusively for Margus Pau

CONFIGURATION 182

:IRB_RC

Can be set to a proc object that will be called when an irb session (or subsession) is started.

[nil]

conf.last_value

The last value output by irb. [. . .]

:LOAD_MODULES / conf.load_modules
A list of modules loaded via the -r command-line option. [[]]

:MATH_MODE / conf.math_mode
If true, irb runs with the mathn library loaded (see page 671). [false]

conf.prompt_c

The prompt for a continuing statement (for example, immediately after an “if”). [depends]

conf.prompt_i

The standard, top-level prompt. [depends]

:PROMPT_MODE / conf.prompt_mode
The style of prompt to display. [:DEFAULT]

conf.prompt_s

The prompt for a continuing string. [depends]

:PROMPT

See Configuring the Prompt on page 184. [{ . . . }]

:RC / conf.rc
If false, do not load an initialization file. [true]

conf.return_format

The format used to display the results of expressions entered interactively. [depends]

:SINGLE_IRB

If true, nested irb sessions will all share the same binding; otherwise a new binding will be
created according to the value of :CONTEXT_MODE. [nil]

conf.thread

A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER / conf.use_loader
Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / conf.use_readline
irb will use the readline library if available (see page 702) unless this option is set to
false, in which case readline will never be used, or nil, in which case readline will

not be used in inf-ruby-mode. [depends]

Prepared exclusively for Margus Pau

COMMANDS 183

:USE_TRACER / conf.use_tracer
If true, traces the execution of statements. [false]

:VERBOSE / conf.verbose
In theory switches on additional tracing when true; in practice almost no extra tracing
results. [true]

Commands
At the irb prompt, you can enter any valid Ruby expression and see the results. You can
also use any of the following commands to control the irb session.

exit, quit, irb_exit, irb_quit
Quits this irb session or subsession. If you’ve used cb to change bindings (see
below), exits from this binding mode.

conf, context, irb_context
Displays current configuration. Modifying the configuration is achieved by invok-
ing methods of conf. The list starting on page 181 shows the available conf set-
tings. For example, to set the default prompt to something subservient, you could
use

irb(main):001:0> conf.prompt_i = "Yes, Master? "
=> "Yes, Master? "
Yes, Master? 1 + 2

cb, irb_change_binding 〈 obj 〉
Creates and enters a new binding that has its own scope for local variables. If obj
is given, it will be used as self in the new binding.

irb 〈 obj 〉
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs
Lists irb subsessions.

fg n, irb_fg n

Switches into the specified irb subsession. n may be any of: an irb subsession
number, a thread ID, an irb object, or the object that was the value of self when a
subsession was launched.

kill n, irb_kill n

Kills an irb subsession. n may be any of the values as described for irb_fg.

Prepared exclusively for Margus Pau

COMMANDS 184

Configuring the Prompt
You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts
are stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called “MY_PROMPT”, you could enter
the following (either directly at an irb prompt or in the .irbrc file).

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode
:PROMPT_I => '-->', # normal prompt
:PROMPT_S => '--"', # prompt for continuing strings
:PROMPT_C => '--+', # prompt for continuing statement
:RETURN => " ==>%s\n" # format to return value

}

Once you’ve defined a prompt, you have to tell irb to use it. From the command line,
you can use the --prompt option. (Notice how the name of the prompt mode is auto-
matically converted to uppercase, with hyphens changing to underscores.)

% irb --prompt my-prompt

If you want to use this prompt in all your future irb sessions, you can set it as a config-
uration value in your .irbrc file.

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols PROMPT_I, PROMPT_S, and PROMPT_C specify the format for each of the
prompt strings. In a format string, certain “%” sequences are expanded.

Flag Description

%N Current command.
%m to_s of the main object (self).
%M inspect of the main object (self).
%l Delimiter type. In strings that are continued across a line break, %l will display

the type of delimiter used to begin the string, so you’ll know how to end it. The
delimiter will be one of ", ', /,], or `.

%ni Indent level. The optional number n is used as a width specification to printf,
as printf("%nd").

%nn Current line number (n used as with the indent level).
%% A literal percent sign.

For instance, the default prompt mode is defined as follows.

IRB.conf[:PROMPT_MODE][:DEFAULT] = {
:PROMPT_I => "%N(%m):%03n:%i> ",
:PROMPT_S => "%N(%m):%03n:%i%l ",
:PROMPT_C => "%N(%m):%03n:%i* ",
:RETURN => "%s\n"

}

Prepared exclusively for Margus Pau

RESTRICTIONS 185

Restrictions
Because of the way irb works, it is slightly incompatible with the standard Ruby inter-
preter. The problem lies in the determination of local variables.

Normally, Ruby looks for an assignment statement to determine if something is a
variable—if a name hasn’t been assigned to, then Ruby assumes that name is a method
call.

eval "var = 0"
var

produces:

prog.rb:2: undefined local variable or method `var'
for main:Object (NameError)

In this case, the assignment is there, but it’s within a string, so Ruby doesn’t take it into
account.

irb, on the other hand, executes statements as they are entered.

irb(main):001:0> eval "var = 0"
0
irb(main):002:0> var
0

In irb, the assignment was executed before the second line was encountered, so var is
correctly identified as a local variable.

If you need to match the Ruby behavior more closely, you can place these statements
within a begin/end pair.

irb(main):001:0> begin
irb(main):002:1* eval "var = 0"
irb(main):003:1> var
irb(main):004:1> end
NameError: undefined local variable or method `var'
(irb):3:in `irb_binding'

rtags and xmp
Just in case irb wasn’t already complex enough, let’s add a few more wrinkles. Along
with the main irb program, the irb suite includes some extra goodies. In the next sec-
tions we’ll look at two: rtags and xmp.

rtags

rtags is a command used to create a TAGS file for use with either the Emacs or vi
editor.

Prepared exclusively for Margus Pau

RTAGS AND XMP 186

rtags [-vi] [files]...

By default, rtags makes a TAGS file suitable for Emacs (see etags.el). The -vi
option makes a TAGS file for use with vi.

rtags needs to be installed in the same manner as irb (that is, you need to install irb in
the library path and make a link from irb/rtags.rb to bin/rtags).

xmp

irb’s xmp is an “example printer”—that is, a pretty-printer that shows the value of each
expression as it is run (much like the script we wrote to format the examples in this
book). There is also another stand-alone xmp in the archives.

xmp can be used as follows.

require 'irb/xmp'

xmp <<END
artist = "Doc Severinsen"
artist.upcase
END

produces:

artist = "Doc Severinsen"
==> "Doc Severinsen"

artist.upcase
==> "DOC SEVERINSEN"

Or, xmp can be used as an object instance. Used in this fashion, the object maintains
context between invocations.

require 'irb/xmp'

x = XMP.new
x.puts 'artist = "Louis Prima"'
x.puts 'artist.upcase'

produces:

artist = "Louis Prima"
==> "Louis Prima"

artist.upcase
==> "LOUIS PRIMA"

You can explicitly provide a binding with either form; otherwise, xmp uses the caller’s
environment.

xmp code_string, abinding
XMP.new(abinding)

Note that xmp does not work with multithreading.

Prepared exclusively for Margus Pau

Chapter 16

Documenting Ruby

As of version 1.8,1.8 Ruby comes bundled with RDoc, a tool that extracts and formats
documentation that’s embedded in Ruby source code files. This tool is used to doc-
ument the built-in Ruby classes and modules. An increasing number of libraries and
extensions are also documented this way.

RDoc does two jobs. First, it analyzes Ruby and C source files, looking for information
to document.1 Second, it takes this information and converts it into something readable.
Out of the box, RDoc produces two kinds of output: HTML and ri. Figure 16.1 on the
following page shows some HTML-format RDoc output in a browser window. This is
the result of feeding RDoc a Ruby source file with no additional documentation—RDoc
does a credible job of producing something meaningful. If our source code contains
comments, RDoc can use them to spice up the documentation it produces. Typically,
the comment before an element is used to document that element, as shown in Fig-
ure 16.2 on page 189.

RDoc can also be used to produce documentation that can be read by the ri command-
line utility. For example, if we ask RDoc to document the code in Figure 16.2 this way,
we can then access the documentation using ri, as shown in Figure 16.3 on page 190.
New Ruby distributions have the built-in classes and modules (and some libraries) doc-
umented this way. Figure 16.4 on page 191 shows the output produced if you type ri
Proc.

Adding RDoc to Ruby Code
RDoc parses Ruby source files to extract the major elements (classes, modules, meth-
ods, attributes, and so on). You can choose to associate additional documentation with
these by simply adding a comment block before the element in the file.

1. RDoc can also document Fortran 77 programs.

Prepared exclusively for Margus Pau 187

ADDING RDOC TO RUBY CODE 188

class Counter
 attr_reader :counter
 def initialize(initial_value=0)
 @counter = initial_value
 end
 def inc
 @counter += 1
 end
end

This figure shows some RDoc output in a browser window. The overlaid box
shows the source program from which this output was generated. Even though
the source contains no internal documentation, RDoc still manages to extract
interesting information from it. We have three panes at the top of the screen
showing the files, classes, and methods for which we have documentation.
For class Counter, RDoc shows us the attributes and methods (including the
method signatures). And if we clicked a method signature, RDoc would pop up
a window containing the source code for the corresponding method.

Figure 16.1. Browse RDoc output for class counter

Prepared exclusively for Margus Pau

ADDING RDOC TO RUBY CODE 189

Implements a simple accumulator, whose
value is accessed via the attribute
counter. Calling the method Counter#inc
increments this value.

class Counter

 # The current value of the count
 attr_reader :counter

 # create a new Counter with the given
 # initial value
 def initialize(initial_value=0)
 @counter = initial_value
 end

 # increment the current value of the count
 def inc
 @counter += 1
 end
end

Notice how the comments before each element now appear in the RDoc out-
put, reformatted into HTML. Less obvious is that RDoc has detected hyperlink
opportunities in our comments: in the class-level comment, the reference to
Counter#inc is a hyperlink to the method description, and in the command for
the new method, the reference to class Counter hyperlinks back to the class
documentation. This is a key feature of RDoc: it is designed to be unintrusive
in the Ruby source files and to make up for this by trying to be clever when
producing output.

Figure 16.2. Browse RDoc output when source has comments

Prepared exclusively for Margus Pau

ADDING RDOC TO RUBY CODE 190

Figure 16.3. Using ri to read documentation

% ri Counter
-- Class: Counter

Implements a simple accumulator, whose value is
accessed via the attribute counter. Calling the
method Counter#inc increments this value.

Class methods:
new

Instance methods:
inc

Attributes:
counter

% ri Counter.inc
--- Counter#inc

inc()

increment the current value of the count

Comment blocks can be written fairly naturally, either using # on successive lines of
the comment or by including the comment in a =begin. . .=end block. If you use the
latter form, the =begin line must be flagged with an rdoc tag, to distinguish the block
from other styles of documentation.

=begin rdoc
Calculate the minimal-cost path though the graph
using Debrinkski's algorithm, with optimized
inverse pruning of isolated leaf nodes.
=end
def calculate_path
. . .

end

Within a documentation comment, paragraphs are lines that share the left margin. Text
indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter
fonts, you can use _word_, *word*, and +word+ respectively. If you want to do this
to multiple words, or text containing non-word characters, you can use multiple
words, more words, and <tt>yet more words</tt>. Putting a back-
slash before inline markup stops it being interpreted.

Prepared exclusively for Margus Pau

ADDING RDOC TO RUBY CODE 191

Figure 16.4. Document for class Proc generated by RDoc/ri

% ri Proc
--- Class: Proc

Proc objects are blocks of code that have been
bound to a set of local variables. Once bound,
the code may be called in different contexts and
still access those variables.

def gen_times(factor)
return Proc.new |n| n*factor

end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12) #=> 36
times5.call(5) #=> 25
times3.call(times5.call(4)) #=> 60

Class methods:
new

Instance methods:
==, [], arity, binding, call, clone, eql?, hash,
to_proc, to_s

RDoc stops processing comments if it finds a comment line starting #--. This can be
used to separate external from internal comments or to stop a comment being associated
with a method, class, or module. Documenting can turned back on by starting a line
with #++.

Extract the age and calculate the
date of birth.
#--
FIXME: fails if the birthday falls on
February 29th, or if the person
was born before epoch and the installed
Ruby doesn't support negative time_t
#++
The DOB is returned as a Time object.
#--
But should probably change to use Date.

def get_dob(person)
...

end

Prepared exclusively for Margus Pau

ADDING RDOC TO RUBY CODE 192

Hyperlinks
Names of classes, source files, and any method names containing an underscore or
preceded by a hash character are automatically hyperlinked from comment text to their
description.

Hyperlinks to the ’net starting http:, mailto:, ftp:, and www: are recognized. An
HTTP URL that references an external image file is converted into an inline <IMG. . . >
tag. Hyperlinks starting link: are assumed to refer to local files whose paths are rela-
tive to the --op directory, where output files are stored.

Hyperlinks can also be of the form label[url], in which case the label is used in
the displayed text and url is used as the target. If the label contains multiple words,
surround it in braces: {two words}[url].

Lists
Lists are typed as indented paragraphs with

• a * or - (for bullet lists),

• a digit followed by a period for numbered lists,

• an uppercase or lowercase letter followed by a period for alpha lists.

For example, you could produce something like the previous text with

Lists are typed as indented paragraphs with:
* a '*' or '-' (for bullet lists)
* a digit followed by a period for
numbered lists
* an upper or lower case letter followed
by a period for alpha lists.

Note how subsequent lines in a list item are indented to line up with the text in the
element’s first line.

Labeled lists (sometimes called description lists) are typed using square brackets for
the label.

[cat] small domestic animal
[+cat+] command to copy standard input
to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets
the result in tabular form, so the descriptions all line up.

cat:: small domestic animal
+cat+:: command to copy standard input
to standard output

Prepared exclusively for Margus Pau

ADDING RDOC TO RUBY CODE 193

For both kinds of labeled lists, if the body text starts on the same line as the label, then
the start of that text determines the block indent for the rest of the body. The text may
also start on the line following the label, indented from the start of the label. This is
often preferable if the label is long. Both the following are valid labeled list entries

<tt>--output</tt> <i>name [, name]</i>::
specify the name of one or more output files. If multiple
files are present, the first is used as the index.
#
<tt>--quiet:</tt>:: do not output the names, sizes, byte counts,
index areas, or bit ratios of units as
they are processed.

Headings
Headings are entered on lines starting with equals signs. The more equals signs, the
higher the level of heading.

= Level One Heading
== Level Two Heading
and so on...

Rules (horizontal lines) are entered using three or more hyphens.

and so it goes...

The next section...

Documentation Modifiers
Method parameter lists are extracted and displayed with the method description. If a
method calls yield, then the parameters passed to yield will also be displayed. For
example, consider the following code.

def fred
...
yield line, address

This will get documented as:

fred() {|line, address| ... }

You can override this using a comment containing :yields: ... on the same line as
the method definition.

def fred # :yields: index, position
...
yield line, address

which will get documented as

fred() {|index, position| ... }

Prepared exclusively for Margus Pau

ADDING RDOC TO RUBY CODE 194

:yields: is an example of a documentation modifier. These appear immediately after
the start of the document element they are modifying.

Other modifiers include

:nodoc: [all]
Don’t include this element in the documentation. For classes and modules, the
methods, aliases, constants, and attributes directly within the affected class or
module will also be omitted from the documentation. By default, though, mod-
ules and classes within that class or module will be documented. This is turned
off by adding the all modifier. For example, in the following code, only class
SM::Input will be documented.

module SM #:nodoc:
class Input
end

end
module Markup #:nodoc: all
class Output
end

end

:doc:
Force a method or attribute to be documented even if it wouldn’t otherwise be.
Useful if, for example, you want to include documentation of a particular private
method.

:notnew:
(Only applicable to the initialize instance method.) Normally RDoc assumes
that the documentation and parameters for #initialize are actually for the cor-
responding class’s new method and so fakes out a new method for the class. The
:notnew: modifier stops this. Remember that #initialize is protected, so you
won’t see the documentation unless you use the -a command-line option.

Other Directives

Comment blocks can contain other directives.

:call-seq: lines. . .
Text up to the next blank comment line is used as the calling sequence when
generating documentation (overriding the parsing of the method parameter list).
A line is considered blank even if it starts with a #. For this one directive, the
leading colon is optional.

:include: filename
Include the contents of the named file at this point. The file will be searched for
in the directories listed by the --include option or in the current directory by

Prepared exclusively for Margus Pau

ADDING RDOC TO C EXTENSIONS 195

default. The contents of the file will be shifted to have the same indentation as the
: at the start of the :include: directive.

:title: text
Sets the title for the document. Equivalent to the --title command-line parame-
ter. (The command-line parameter overrides any :title: directive in the source.)

:main: name
Equivalent to the --main command-line parameter, setting the initial page dis-
played for this documentation.

:stopdoc: / :startdoc:
Stop and start adding new documentation elements to the current container. For
example, if a class has a number of constants that you don’t want to document, put
a :stopdoc: before the first and a :startdoc: after the last. If you don’t specify
a :startdoc: by the end of the container, disables documentation for the entire
class or module.

:enddoc:
Document nothing further at the current lexical level.

Figure 16.5 on the following page shows a more complete example of a source file
documented using RDoc.

Adding RDoc to C Extensions
RDoc also understands many of the conventions used when writing extensions to Ruby
in C.

Most C extensions have an Init_Classname function. RDoc takes this as the class
definition—any C comment before the Init_ method will be used as the class’s docu-
mentation.

The Init_ function is normally used to associate C functions with Ruby method names.
For example, a Cipher extension may define a Ruby method salt=, implemented by
the C function salt_set using a call such as

rb_define_method(cCipher, "salt=", salt_set, 1);

RDoc parses this call, adding the salt= method to the class documentation. RDoc then
searches the C source for the C function salt_set. If this function is preceded by a
comment block, RDoc uses this for the method’s documentation.

This basic scheme works with no effort on your part beyond writing the normal doc-
umentation in the comments for functions. However, RDoc cannot discern the calling
sequence for the corresponding Ruby method. In this example, the RDoc output will

Prepared exclusively for Margus Pau

ADDING RDOC TO C EXTENSIONS 196

Figure 16.5. Ruby source file documented with RDoc

This module encapsulates functionality related to the
generation of Fibonacci sequences.
#--
Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.
Licensed under the same terms as Ruby. No warranty is provided.
module Fibonacci

Calculate the first _count_ Fibonacci numbers, starting with 1,1.
#
:call-seq:
Fibonacci.sequence(count) -> array
Fibonacci.sequence(count) {|val| ... } -> nil
#
If a block is given, supply successive values to the block and
return +nil+, otherwise return all values as an array.
def Fibonacci.sequence(count, &block)
result, block = setup_optional_block(block)
generate do |val|
break if count <= 0
count -= 1
block[val]

end
result

end

Calculate the Fibonacci numbers up to and including _max_.
#
:call-seq:
Fibonacci.upto(count) -> array
Fibonacci.upto(count) {|val ... } -> nil
#
If a block is given, supply successive values to the
block and return +nil+, otherwise return all values as an array.
def Fibonacci.upto(max, &block)
result, block = setup_optional_block(block)
generate do |val|
break if val > max
block[val]

end
result

end

private

Yield a sequence of Fibonacci numbers to a block.
def Fibonacci.generate
f1, f2 = 1, 1
loop do
yield f1
f1, f2 = f2, f1+f2

end
end

If a block parameer is given, use it, otherwise accumulate into an
array. Return the result value and the block to use.
def Fibonacci.setup_optional_block(block)
if block.nil?
[result = [], lambda {|val| result << val }]

else
[nil, block]

end
end

end

Prepared exclusively for Margus Pau

ADDING RDOC TO C EXTENSIONS 197

show a single argument with the (somewhat meaningless) name “arg1.” You can over-
ride this using the call-seq directive in the function’s comment. The lines following
call-seq (up to a blank line) are used to document the calling sequence of the method.

/*
* call-seq:

* cipher.salt = number

* cipher.salt = "string"

*
* Sets the salt of this cipher to either a binary +number+ or

* bits in +string+.

*/

static VALUE
salt_set(cipher, salt)
...

If a method returns a meaningful value, it should be documented in the call-seq
following the characters ->.

/*
* call-seq:

* cipher.keylen -> Fixnum or nil

*/

Although RDoc heuristics work well for finding the class and method comments for
simple extensions, it doesn’t always work for more complex implementations. In these
cases, you can use the directives Document-class: and Document-method: to indi-
cate that a C comment relates to a given class or method, respectively. The modifiers
take the name of the Ruby class or method that’s being documented.

/*
* Document-method: reset

*
* Clear the current buffer and prepare to add new

* cipher text. Any accumulated output cipher text

* is also cleared.

*/

Finally, it is possible in the Init_ method to associate a Ruby method with a C func-
tion in a different C source file. RDoc would not find this function without your help:
you add a reference to the file containing the function definition by adding a special
comment to the rb_define_method call. The following example tells RDoc to look in
the file md5.c for the function (and related comment) corresponding to the md5 method.

rb_define_method(cCipher, "md5", gen_md5, -1); /* in md5.c */

Figure 16.6 on the next page shows a C source file documented using RDoc. Note that
the bodies of several internal methods have been elided to save space.

Prepared exclusively for Margus Pau

ADDING RDOC TO C EXTENSIONS 198

Figure 16.6. C source file documented with RDoc

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;
static void cd_free(void *p) { ... }
static VALUE cd_alloc(VALUE klass) { ... }
static void progress(CDJukebox *rec, int percent) { ... }

/* call-seq:

* CDPlayer.new(unit) -> new_cd_player

*
* Assign the newly created CDPlayer to a particular unit

*/
static VALUE cd_initialize(VALUE self, VALUE unit) {
int unit_id;
CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);

return self;
}

/* call-seq:

* player.seek(int_disc, int_track) -> nil

* player.seek(int_disc, int_track) {|percent| } -> nil

*
* Seek to a given part of the track, invoking the block

* with the percent complete as we go.

*/
static VALUE
cd_seek(VALUE self, VALUE disc, VALUE track) {
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);

jukebox_seek(jb, NUM2INT(disc), NUM2INT(track), progress);
return Qnil;

}

/* call-seq:

* player.seek_time -> Float

*
* Return the average seek time for this unit (in seconds)

*/
static VALUE
cd_seek_time(VALUE self)
{
double tm;
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
tm = get_avg_seek_time(jb);
return rb_float_new(tm);

}

/* Interface to the Spinzalot[http://spinzalot.cd]

* CD Player library.

*/

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);
rb_define_method(cCDPlayer, "seek", cd_seek, 2);
rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);

}

Prepared exclusively for Margus Pau

RUNNING RDOC 199

Running RDoc
You run RDoc from the command line.

% rdoc [options] [filenames...]

Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is pro-
duced. This allows cross-references between all files to be resolved. If a name is a
directory, it is traversed. If no names are specified, all Ruby files in the current direc-
tory (and subdirectories) are processed.

A typical use may be to generate documentation for a package of Ruby source (such as
RDoc itself).

% rdoc

This command generates HTML documentation for all the Ruby and C source files in
and below the current directory. These will be stored in a documentation tree starting
in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames ending .rb
and .rbw are assumed to be Ruby source. Files ending .c are parsed as C files. All other
files are assumed to contain just markup (with or without leading # comment markers).
If directory names are passed to RDoc, they are scanned recursively for C and Ruby
source files only. To include nonsource files such as READMEs in the documentation
process, their names must be given explicitly on the command line.

When writing a Ruby library, you often have some source files that implement the
public interface, but the majority are internal and of no interest to the readers of your
documentation. In these cases, construct a .document file in each of your project’s
directories. If RDoc enters a directory containing a .document file, it will process only
the files in that directory whose names match one of the lines in that file. Each line
in the file can be a filename, a directory name, or a wildcard (a file system “glob”
pattern). For example, to include all Ruby files whose names start main, along with the
file constants.rb, you could use a .document file containing

main*.rb
constants.rb

Some project standards ask for documentation in a top-level README file. You may find
it convenient to write this file in RDoc format, and then use the :include: directive to
incorporate this document into that for the main class.

Prepared exclusively for Margus Pau

DISPLAYING PROGRAM USAGE 200

Create Documentation for ri
RDoc is also used to create documentation which will be later displayed using ri.

When you run ri, it by default looks for documentation in three places:2

1. the system documentation directory, which holds the documentation distributed
with Ruby, and which is created by the Ruby install process,

2. the site directory, which contains sitewide documentation added locally, and

3. the user documentation directory, stored under the user’s own home directory.

You can find these three directories in the following locations.

• $datadir/ri/<ver>/system/...

• $datadir/ri/<ver>/site/...

• ~/.rdoc/....

The variable $datadir is the configured data directory for the installed Ruby. Find
your local datadir using

ruby -r rbconfig -e 'p Config::CONFIG["datadir"]'

To add documentation to ri, you need to tell RDoc which output directory to use. For
your own use, it’s easiest to use the --ri option.

% rdoc --ri file1.rb file2.rb

If you want to install sitewide documentation, use the --ri-site option.

% rdoc --ri-site file1.rb file2.rb

The --ri-system option is normally used only to install documentation for Ruby’s
built-in classes and standard libraries. You can regenerate this documentation from the
Ruby source distribution (not from the installed libraries themselves).

% cd <ruby source base>/lib
% rdoc --ri-system

Displaying Program Usage
Most command line programs have some kind of facility to describe their correct usage;
give them invalid parameters and they’ll report a short error message followed by a syn-
opsis of their actual options. And, if you’re using RDoc, you’ll probably have described

2. You can override the directory location using the --op option to RDoc, and subsequently using the
--doc-dir option with ri.

Prepared exclusively for Margus Pau

DISPLAYING PROGRAM USAGE 201

Figure 16.7. Sample program using RDoc::usage

== Synopsis
#
Display the current date and time, optionally honoring
a format string.
#
== Usage
#
ruby showtime.rb [-h | --help] [-f | --fmt fmtstring]
#
fmtstring::
A +strftime+ format string controlling the
display of the date and time. If omitted,
use "%Y-%M-%d %H:%m"
#
== Author
Dave Thomas, The Pragmatic Programmers, LLC
#
== Copyright
Copyright (c) 2004 The Pragmatic Programmers.
Licensed under the same terms as Ruby.

require 'optparse'
require 'rdoc/usage'

fmt = "%Y-%M-%d %H:%m"
opts = OptionParser.new
opts.on("-h", "--help") { RDoc::usage }
opts.on("-f", "--fmt FMTSTRING") {|str| fmt = str }
opts.parse(ARGV) rescue RDoc::usage('usage')

puts Time.now.strftime(fmt)

how the program should be used in a RDoc comment at the start of the main pro-
gram. Rather than duplicate all this information in a puts somewhere, you can use
RDoc::usage to extract it straight from the command and write it to the user.

You can pass RDoc::usage a number of string parameters. If present, it extracts from
the comment block only those sections named by parameters (where a section starts
with a heading equal to the parameter, ignoring case). With no string parameters,
RDoc::usage displays the entire comment. In addition, RDoc::usage exits the pro-
gram after displaying the usage message. If the first parameter in the call is an integer,
it is used as the program’s exit code (otherwise RDoc::usage exits with a zero error
code). If you don’t want to exit the program after displaying a usage message, call
RDoc::usage_no_exit.

Figure 16.7 shows a trivial program that displays the time. It uses RDoc::usage to
display the complete comment block if the user asks for help, and to display just the

Prepared exclusively for Margus Pau

DISPLAYING PROGRAM USAGE 202

Figure 16.8. Help generated by sample program

usage section if the user gives an invalid option. Figure 16.8 shows the output generated
in response to a --help option.

RDoc::usage honors the RI environment variable, which can be used to set the display
width and output style. The output in Figure 16.8 was generated with the RI option set
to “-f ansi.” Although not too apparent if you’re looking at this figure in the black-and-
white book, the section headings, code font, and emphasized font are shown in different
colors using ANSI escape sequences.

Prepared exclusively for Margus Pau

Chapter 17

Package Management
with RubyGems

Chad Fowler is a leading figure in the Ruby
community. He’s on the board of Ruby Central,
Inc. He’s one of the organizers of RubyConf. And
he’s one of the writers of RubyGems. All this
makes him uniquely qualified to write this chapter.

RubyGems is a standardized packaging and installation framework for libraries and
applications, making it easy to locate, install, upgrade, and uninstall Ruby packages. It
provides users and developers with four main facilities.

1. A standardized package format,

2. A central repository for hosting packages in this format,

3. Installation and management of multiple, simultaneously installed versions of the
same library,

4. End-user tools for querying, installing, uninstalling, and otherwise manipulating
these packages.

Before RubyGems came along, installing a new library involved searching the Web,
downloading a package, and attempting to install it—only to find that its dependencies
haven’t been met. If the library you want is packaged using RubyGems, however, you
can now simply ask RubyGems to install it (and all its dependencies). Everything is
done for you.

In the RubyGems world, developers bundle their applications and libraries into single
files called gems. These files conform to a standardized format, and the RubyGems
system provides a command-line tool, appropriately named gem, for manipulating these
gem files.

In this chapter, we’ll see how to

1. Install RubyGems on your computer.
2. Use RubyGems to install other applications and libraries.
3. Write your own gems.

Prepared exclusively for Margus Pau 203

INSTALLING RUBYGEMS 204

Installing RubyGems
To use RubyGems, you’ll first need to download and install the RubyGems system from
the project’s home page at http://rubygems.rubyforge.org. After downloading
and unpacking the distribution, you can install it using the included installation script.

% cd rubygems-0.7.0
% ruby install.rb

Depending on your operating system, you may need suitable privileges to write files
into Ruby’s site_ruby/ and bin/ directories.

The best way to test that RubyGems was installed successfully also happens to be the
most important command you’ll learn.

% gem help
RubyGems is a sophisticated package manager for Ruby. This is
a basic help message containing pointers to more information.

Usage:
gem -h/--help
gem -v/--version
gem command [arguments...] [options...]

Examples:
gem install rake
gem list --local
gem build package.gemspec
gem help install

Further help:
gem help commands list all 'gem' commands
gem help examples show some examples of usage
gem help <COMMAND> show help on COMMAND

(e.g. 'gem help install')
Further information:
http://rubygems.rubyforge.org

Because RubyGems’ help is quite comprehensive, we won’t go into detail about each
of the available RubyGems commands and options in this chapter.

Installing Application Gems
Let’s start by using RubyGems to install an application that is written in Ruby. Jim
Weirich’s Rake (http://rake.rubyforge.org) holds the distinction of being the first
application that was available as a gem. Not only that, but it’s generally a great tool to
have around, as it is a build tool similar to Make and Ant. In fact, you can even use
Rake to build gems!

Locating and installing Rake with RubyGems is simple.

Prepared exclusively for Margus Pau

http://rubygems.rubyforge.org
http://rake.rubyforge.org

INSTALLING APPLICATION GEMS 205

% gem install -r rake
Attempting remote installation of 'Rake'
Successfully installed rake, version 0.4.3
% rake --version
rake, version 0.4.3

RubyGems downloads the Rake package and installs it. Because Rake is an application,
RubyGems downloads both the Rake libraries and the command-line program rake.

You control the gem program using subcommands, each of which has its own options
and help screen. In this example, we used the install subcommandwith the -r option,
which tells it to operate remotely. (Many RubyGems operations can be performed either
locally or remotely. For example, you can use the query command either to display all
the gems that are available remotely for installation or to display a list of gems you
already have installed. For this reason, subcommands accept the options -r and -l,
specifying whether an operation is meant to be carried out remotely or locally.)

If for some reason—perhaps because of a potential compatibility issue—you wanted
an older version of Rake, you could use RubyGems’ version requirement operators to
specify criteria by which a version would be selected.

% gem install -r rake -v "< 0.4.3"
Attempting remote installation of 'rake'
Successfully installed rake, version 0.4.2
% rake --version
rake, version 0.4.2

Table 17.1 on the following page lists the version requirement operators. The -v argu-
ment in our previous example asks for the highest version lower than 0.4.3.

There’s a subtlety when it comes to installing different versions of the same application
with RubyGems. Even though RubyGems keeps separate versions of the application’s
library files, it does not version the actual command you use to run the application. As
a result, each install of an application effectively overwrites the previous one.

During installation, you can also add the -t option to the RubyGems install com-
mand, causing RubyGems to run the gem’s test suite (if one has been created). If the
tests fail, the installer will prompt you to either keep or discard the gem. This is a good
way to gain a little more confidence that the gem you’ve just downloaded works on
your system the way the author intended.

% gem install SomePoorlyTestedProgram -t
Attempting local installation of 'SomePoorlyTestedProgram-1.0.1'
Successfully installed SomePoorlyTestedProgram, version 1.0.1
23 tests, 22 assertions, 0 failures, 1 errors...keep Gem? [Y/n] n
Successfully uninstalled SomePoorlyTestedProgram version 1.0.1

Had we chosen the default and kept the gem installed, we could have inspected the gem
to try to determine the cause of the failing test.

Prepared exclusively for Margus Pau

INSTALLING AND USING GEM LIBRARIES 206

Table 17.1. Version operators
Both the require_gem method and the add_dependency attribute in a Gem::Specification

accept an argument that specifies a version dependency. RubyGems version dependencies are
of the form operator major.minor.patch_level. Listed below is a table of all the possible
version operators.

Operator Description

= Exact version match. Major, minor, and patch level must be identical.
!= Any version that is not the one specified.
> Any version that is greater (even at the patch level) than the one specified.
< Any version that is less than the one specified.
>= Any version greater than or equal to the specified version.
<= Any version less than or equal to the specified version.
~> “Boxed” version operator. Version must be greater than or equal to the

specified version and less than the specified version after having its minor
version number increased by one. This is to avoid API incompatibilities
between minor version releases.

Installing and Using Gem Libraries
Using RubyGems to install a complete application was a good way to get your feet
wet and to start to learn your way around the gem command. However, in most cases,
you’ll use RubyGems to install Ruby libraries for use in your own programs. Since
RubyGems enables you to install and manage multiple versions of the same library,
you’ll also need to do some new, RubyGems-specific things when you require those
libraries in your code.

Perhaps you’ve been asked by your mother to create a program to help her maintain and
publish a diary. You have decided that you would like to publish the diary in HTML
format, but you are worried that your mother may not understand all of the ins and outs
of HTML markup. For this reason, you’ve opted to use one of the many excellent tem-
plating packages available for Ruby. After some research, you’ve decided on Michael
Granger’s BlueCloth, based on its reputation for being very simple to use.

You first need to find and install the BlueCloth gem.

% gem query -rn Blue

*** REMOTE GEMS ***
BlueCloth (0.0.4, 0.0.3, 0.0.2)

BlueCloth is a Ruby implementation of Markdown, a text-to-HTML
conversion tool for web writers. Markdown allows you to write using
an easy-to-read, easy-to-write plain text format, then convert it
to structurally valid XHTML (or HTML).

Prepared exclusively for Margus Pau

INSTALLING AND USING GEM LIBRARIES 207

This invocation of the query command uses the -n option to search the central gem
repository for any gem whose name matches the regular expression /Blue/. The results
show that three available versions of BlueCloth exist (0.0.4, 0.0.3, and 0.0.2). Because
you want to install the most recent one, you don’t have to state an explicit version on
the install command; the latest is downloaded by default.

% gem install -r BlueCloth
Attempting remote installation of 'BlueCloth'
Successfully installed BlueCloth, version 0.0.4

Generating API Documentation
Being that this is your first time using BlueCloth, you’re not exactly sure how to use it.
You need some API documentation to get started. Fortunately, with the addition of the
--rdoc option to the install command, RubyGems will generate RDoc documen-
tation for the gem it is installing. For more information on RDoc, see Chapter 16 on
page 187.

% gem install -r BlueCloth --rdoc

Attempting remote installation of 'BlueCloth'
Successfully installed BlueCloth, version 0.0.4
Installing RDoc documentation for BlueCloth-0.0.4...
WARNING: Generating RDoc on .gem that may not have RDoc.

bluecloth.rb: cc..............................

Generating HTML...

Having generated all this useful HTML documentation, how can you view it? You
have at least two options. The hard way (though it really isn’t that hard) is to open
RubyGems’ documentation directory and browse the documentation directly. As with
most things in RubyGems, the documentation for each gem is stored in a central, pro-
tected, RubyGems-specific place. This will vary by system and by where you may
explicitly choose to install your gems. The most reliable way to find the documents is
to ask the gem command where your RubyGems main directory is located. For exam-
ple:

% gem environment gemdir
/usr/local/lib/ruby/gems/1.8

RubyGems stores generated documentation in the doc/ subdirectory of this directory,
in this case /usr/local/lib/ruby/gems/1.8/doc. You can open the file index.
html and view the documentation. If you find yourself using this path often, you can
create a shortcut. Here’s one way to do that on Mac OS X boxes.

% gemdoc=`gem environment gemdir`/doc
% ls $gemdoc
BlueCloth-0.0.4
% open $gemdoc/BlueCloth-0.0.4/rdoc/index.html

Prepared exclusively for Margus Pau

INSTALLING AND USING GEM LIBRARIES 208

To save time, you could declare $gemdoc in your login shell’s profile or rc file.

The second (and easier) way to view gems’ RDoc documentation is to use RubyGems’
included gem_server utility. To start gem_server, simply type

% gem_server
[2004-07-18 11:28:51] INFO WEBrick 1.3.1
[2004-07-18 11:28:51] INFO ruby 1.8.2 (2004-06-29) [i386-mswin32]
[2004-07-18 11:28:51] INFO WEBrick::HTTPServer#start: port=8808

gem_server starts a Web server running on whatever computer you run it on. By
default, it will start on port 8808 and will serve gems and their documentation from
the default RubyGems installation directory. Both the port and the gem directory are
overridable via command-line options, using the -p and -d options, respectively.

Once you’ve started the gem_server program, if you are running it on your local com-
puter, you can access the documentation for your installed gems by pointing your Web
browser to http://localhost:8808. There, you will see a list of the gems you have
installed with their descriptions and links to their RDoc documentation.

Let’s Code!
Now you’ve got BlueCloth installed and you know how to use it, you’re ready to write
some code. Having used RubyGems to download the library, we can now also use
it to load the library components into our application. Prior to RubyGems, we’d say
something like

require 'bluecloth'

With RubyGems, though, we can take advantage of its packaging and versioning sup-
port. To do this, we use require_gem in place of require.

require 'rubygems'
require_gem 'BlueCloth', ">= 0.0.4"
doc = BlueCloth::new <<MARKUP
This is some sample [text][1]. Just learning to use [BlueCloth][1].
Just a simple test.

[1]: http://ruby-lang.org
MARKUP

puts doc.to_html

produces:

<p>This is some sample text. Just
learning to use BlueCloth.
Just a simple test.</p>

The first two lines are the RubyGems-specific code. The first line loads the RubyGems
core libraries that we’ll need in order to work with installed gems.

require 'rubygems'

Prepared exclusively for Margus Pau

http://localhost:8808

INSTALLING AND USING GEM LIBRARIES 209

The second line is where most of the magic happens.

require_gem 'BlueCloth', '>= 0.0.4'

This line adds the BlueCloth gem to Ruby’s $LOAD_PATH and uses require to load any
libraries that the gem’s creator specified to be autoloaded. Let’s say that again a slightly
different way.

Each gem is considered to be a bundle of resources. It may contain one library file
or one hundred. In an old-fashioned, non-RubyGems library, all these files would be
copied into some shared location in the Ruby library tree, a location that was in Ruby’s
predefined load path.

RubyGems doesn’t work this way. Instead, it keeps each version of each gem in its own
self-contained directory tree. The gems are not injected into the standard Ruby library
directories. As a result, RubyGems needs to do some fancy footwork so that you can
get to these files. It does this by adding the gem’s directory tree to Ruby’s load path.
From inside a running program, the effect is the same: require just works. From the
outside, though, RubyGems gives you far better control over what’s loaded into your
Ruby programs.

In the case of BlueCloth, the templating code is distributed as one file, bluecloth.rb;
that’s the file that require_gem will load. require_gem has an optional second argu-
ment, which specifies a version requirement. In this example, you’ve specified that
BlueCloth version 0.0.4 or greater be installed to use this code. If you had required ver-
sion 0.0.5 or greater, this program would fail, because the version you’ve just installed
is too low to meet the requirement of the program.

require 'rubygems'
require_gem 'BlueCloth', '>= 0.0.5'

(produces no output)

As we said earlier, the version requirement argument is optional, and this example is
obviously contrived. But, it’s easy to imagine how this feature can be useful as different
projects begin to depend on multiple, potentially incompatible, versions of the same
library.

Dependent on RubyGems?
Astute readers (that’s all of you) will have noticed that the code we’ve created so far
is dependent on the RubyGems package being installed. In the long term, that’ll be a
fairly safe bet (we’re guessing that RubyGems will make its way into the Ruby core
distribution). For now, though, RubyGems is not part of the standard Ruby distribution,
so users of your software may not have RubyGems installed on their computers. If we
distribute code that has require 'rubygems' in it, that code will fail.

Prepared exclusively for Margus Pau

INSTALLING AND USING GEM LIBRARIES 210

The Code Behind the Curtain

So just what does happen behind the scenes when you call the magic
require_gem method?

First, the gems library modifies your $LOAD_PATH, including any direc-
tories you have added to the gemspec’s require_paths. Second,
it calls Ruby’s require method on any files specified in the gem-
spec’s autorequires attribute (described on page 212). It’s this
$LOAD_PATH-modifying behavior that enables RubyGems to manage
multiple installed versions of the same library.

You can use at least two techniques to get around this issue. First, you can wrap the
RubyGems-specific code in a block and use Ruby’s exception handling to rescue the
resultant LoadError should RubyGems not be found during the require.

begin
require 'rubygems'
require_gem 'BlueCloth', ">= 0.0.4"

rescue LoadError
require 'bluecloth'

end

This code first tries to require in the RubyGems library. If this fails, the rescue stanza
is invoked, and your program will try to load BlueCloth using a conventional require.
This latter require will fail if BlueCloth isn’t installed, which is the same behavior users
see now if they’re not using RubyGems.

Alternatively, RubyGems can generate and install a stub file during gem installation.
This stub file is inserted into the standard Ruby library location and will be named after
the gem package contents (so the stub for BlueCloth will be called bluecloth.rb).
People using this library can then simply say

require 'bluecloth'

This is exactly what they would have said in pre-RubyGems days. The difference now
is that rather than loading BlueCloth directly, they’ll instead load the stub, which will
in turn call require_gem to load the correct package. A stub file for BlueCloth would
look something like this.

require 'rubygems'
$".delete('bluecloth.rb')
require_gem 'BlueCloth'

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 211

The stub keeps all the RubyGems-specific code in one place, so dependent libraries
won’t need to include any RubyGems code in their source. The require_gem call will
load whatever library files the gem maintainer has specified as being autoloaded.

As of RubyGems 0.7.0, stub installation is enabled by default. During installation, you
can disable it with the --no-install-stub option. The biggest disadvantage of using
the library stubs is that you lose RubyGems’ ability to manage multiple installed ver-
sions of the same library. If you need a specific version of a library, it’s better to use the
LoadError method described previously.

Creating Your Own Gems
By now, you’ve seen how easy RubyGems makes things for the users of an applica-
tion or library and are probably ready to make a gem of your own. If you’re creating
code to be shared with the open-source community, RubyGems are an ideal way for
end-users to discover, install, and uninstall your code. They also provide a powerful
way to manage internal, company projects, or even personal projects, since they make
upgrades and rollbacks so simple. Ultimately, the availability of more gems makes the
Ruby community stronger. These gems have to come from somewhere; we’re going to
show you how they can start coming from you.

Let’s say you’ve finally gotten your mother’s online diary application, MomLog, fin-
ished, and you have decided to release it under an open-source license. After all, other
programmers have mothers, too. Naturally, you want to release MomLog as a gem
(moms love it when you give them gems).

Package Layout
The first task in creating a gem is organizing your code into a directory structure that
makes sense. The same rules that you would use in creating a typical tar or zip archive
apply in package organization. Some general conventions follow.

• Put all of your Ruby source files under a subdirectory called lib/. Later, we’ll
show you how to ensure that this directory will be added to Ruby’s $LOAD_PATH
when users load this gem.

• If it’s appropriate for your project, include a file under lib/yourproject.rb that
performs the necessary require commands to load the bulk of the project’s func-
tionality. Before RubyGems’ autorequire feature, this made things easier for others
to use a library. Even with RubyGems, it makes it easier for others to explore your
code if you give them an obvious starting point.

• Always include a README file including a project summary, author contact infor-
mation, and pointers for getting started. Use RDoc format for this file so you

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 212

can add it to the documentation that will be generated during gem installation.
Remember to include a copyright and license in the README file, as many com-
mercial users won’t use a package unless the license terms are clear.

• Tests should go in a directory called test/. Many developers use a library’s unit
tests as a usage guide. It’s nice to put them somewhere predictable, making them
easy for others to find.

• Any executable scripts should go in a subdirectory called bin/.

• Source code for Ruby extensions should go in ext/.

• If you’ve got a great deal of documentation to include with your gem, it’s good to
keep it in its own subdirectory called docs/. If your README file is in the top level
of your package, be sure to refer readers to this location.

This directory layout is illustrated in Figure 17.1 on page 220.

The Gem Specification
Now that you’ve got your files laid out as you want them, it’s time to get to the heart of
gem creation: the gem specification, or gemspec. A gemspec is a collection of metadata
in Ruby or YAML (see page 737) that provides key information about your gem. The
gemspec is used as input to the gem-building process. You can use several different
mechanisms to create a gem, but they’re all conceptually the same. Here’s your first,
basic MomLog gem.

require 'rubygems'

SPEC = Gem::Specification.new do |s|
s.name = "MomLog"
s.version = "1.0.0"
s.author = "Jo Programmer"
s.email = "jo@joshost.com"
s.homepage = "http://www.joshost.com/MomLog"
s.platform = Gem::Platform::RUBY
s.summary = "An online Diary for families"
candidates = Dir.glob("{bin,docs,lib,tests}/**/*")
s.files = candidates.delete_if do |item|

item.include?("CVS") || item.include?("rdoc")
end

s.require_path = "lib"
s.autorequire = "momlog"
s.test_file = "tests/ts_momlog.rb"
s.has_rdoc = true
s.extra_rdoc_files = ["README"]
s.add_dependency("BlueCloth", ">= 0.0.4")

end

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 213

Let’s quickly walk through this example. A gem’s metadata is held in an object of class
Gem::Specification. The gemspec can be expressed in either YAML or Ruby code.
Here we’ll show the Ruby version, as it’s generally easier to construct and more flexible
in use. The first five attributes in the specification give basic information such as the
gem’s name, the version, and the author’s name, e-mail, and home page.

In this example, the next attribute is the platform on which this gem can run. In this
case, the gem is a pure Ruby library with no operating system–specific requirements, so
we’ve set the platform to RUBY. If this gem were written for Windows only, for example,
the platform would be listed as WIN32. For now, this field is only informational, but in
the future it will be used by the gem system for intelligent selection of precompiled
native extension gems.

The gem’s summary is the short description that will appear when you run a gem query
(as in our previous BlueCloth example).

The files attribute is an array of pathnames to files that will be included when the
gem is built. In this example, we’ve used Dir.glob to generate the list and filtered out
CVS and RDoc files.

Runtime Magic
The next two attributes, require_path and autorequire, let you specify the direc-
tories that will be added to the $LOAD_PATH when require_gem loads the gem, as
well as any files that will automatically be loaded using require. In this example,
lib refers to a relative path under the MomLog gem directory, and the autorequire
will cause lib/momlog.rb to be required when require_gem "MomLog" is called.
For each of these two attributes, RubyGems provides corresponding plural versions,
require_paths and autorequires. These take arrays, allowing you to have many
files automatically loaded from different directories when the gem is loaded using
require_gem.

Adding Tests and Documentation
The test_file attribute holds the relative pathname to a single Ruby file included
in the gem that should be loaded as a Test::Unit test suite. (You can use the plural
form, test_files, to reference an array of files containing tests.) For details on how
to create a test suite, see Chapter 12 on page 143 on unit testing.

Finishing up this example, we have two attributes controlling the production of local
documentation of the gem. The has_rdoc attribute specifies that you have added RDoc
comments to your code. It’s possible to run RDoc on totally uncommented code, pro-
viding a browsable view of its interfaces, but obviously this is a lot less valuable than
running RDoc on well-commented code. has_rdoc is a way for you to tell the world,
“Yes. It’s worth generating the documentation for this gem.”

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 214

RDoc has the convenience of being very readable in both source and rendered form,
making it an excellent choice for an included README file with a package. By default,
however, the rdoc command will run only on source code files. The extra_rdoc_file
attribute takes an array of paths to non-source files in your gem that you would like to
be included in the generation of RDoc documentation.

Adding Dependencies
For your gem to work properly, users are going to need to have BlueCloth installed.

We saw earlier how to set a load-time version dependency for a library. Now we need
to tell our gemspec about that dependency, so the installer will ensure that it is present
while installing MomLog. We do that with the addition of a single method call to our
Gem::Specification object.

s.add_dependency("BlueCloth", ">= 0.0.4")

The arguments to our add_dependency method are identical to those of require_gem,
which we explained earlier.

After generating this gem, attempting to install it on a clean system would look some-
thing like this.

% gem install pkg/MomLog-1.0.0.gem
Attempting local installation of 'pkg/MomLog-1.0.0.gem'
/usr/local/lib/ruby/site_ruby/1.8/rubygems.rb:50:in `require_gem':

(LoadError)
Could not find RubyGem BlueCloth (>= 0.0.4)

Because you are performing a local installation from a file, RubyGems won’t attempt to
resolve the dependency for you. Instead, it fails noisily, telling you that it needs Blue-
Cloth to complete the installation. You could then install BlueCloth as we did before,
and things would go smoothly the next time you attempted to install the MomLog gem.

If you had uploaded MomLog to the central RubyGems repository and then tried to
install it on a clean system, you would be prompted to automatically install BlueCloth
as part of the MomLog installation.

% gem install -r MomLog
Attempting remote installation of 'MomLog'
Install required dependency BlueCloth? [Yn] y
Successfully installed MomLog, version 1.0.0

Now you’ve got both BlueCloth and MomLog installed, and your mother can start
happily publishing her diary. Had you chosen not to install BlueCloth, the installation
would have failed as it did during the local installation attempt.

As you add more features to MomLog, you may find yourself pulling in additional
external gems to support those features. The add_dependency method can be called
multiple times in a single gemspec, supporting as many dependencies as you need it to
support.

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 215

Ruby Extension Gems
So far, all of the examples we’ve looked at have been pure Ruby code. However, many
Ruby libraries are created as native extensions (see Chapter 21 on page 261). You have
two ways to package and distribute this kind of library as a gem. You can distribute the
gem in source format and have the installer compile the code at installation time. Alter-
natively, you can precompile the extensions and distribute one gem for each separate
platform you want to support.

For source gems, RubyGems provides an additional Gem::Specification attribute
called extensions. This attribute is an array of paths to Ruby files that will generate
Makefiles. The most typical way to create one of these programs is to use Ruby’s mkmf
library (see Chapter 21 on page 261 and the appendix about mkmf on page 755). These
files are conventionally named extconf.rb, though any name will do.

Your mom has a computerized recipe database that is near and dear to her heart. She
has been storing her recipes in it for years, and you would like to give her the ability
to publish these recipes on the Web for her friends and family. You discover that the
recipe program, MenuBuilder, has a fairly nice native API and decide to write a Ruby
extension to wrap it. Since the extension may be useful to others who aren’t necessarily
using MomLog, you decide to package it as a separate gem and add it as an additional
dependency for MomLog.

Here’s the gemspec.

require 'rubygems'

spec = Gem::Specification.new do |s|
s.name = "MenuBuilder"
s.version = "1.0.0"
s.author = "Jo Programmer"
s.email = "jo@joshost.com"
s.homepage = "http://www.joshost.com/projects/MenuBuilder"
s.platform = Gem::Platform::RUBY
s.summary = "A Ruby wrapper for the MenuBuilder recipe database."
s.files = ["ext/main.c", "ext/extconf.rb"]
s.require_path = "."
s.autorequire = "MenuBuilder"
s.extensions = ["ext/extconf.rb"]

end

if $0 == __FILE__
Gem::manage_gems
Gem::Builder.new(spec).build

end

Note that you have to include source files in the specification’s files list so they’ll be
included in the gem package for distribution.

When a source gem is installed, RubyGems runs each of its extensions programs and
then executes the resultant Makefile.

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 216

% gem install MenuBuilder-1.0.0.gem
Attempting local installation of 'MenuBuilder-1.0.0.gem'
ruby extconf.rb inst MenuBuilder-1.0.0.gem
creating Makefile

make
gcc -fPIC -g -O2 -I. -I/usr/local/lib/ruby/1.8/i686-linux \

-I/usr/local/lib/ruby/1.8/i686-linux -I. -c main.c
gcc -shared -L"/usr/local/lib" -o MenuBuilder.so main.o \

-ldl -lcrypt -lm -lc

make install
install -c -p -m 0755 MenuBuilder.so \

/usr/local/lib/ruby/gems/1.8/gems/MenuBuilder-1.0.0/.
Successfully installed MenuBuilder, version 1.0.0

RubyGems does not have the capability to detect system library dependencies that
source gems may have. Should your source gems depend on a system library that is
not installed, the gem installation will fail, and any error output from the make com-
mand will be displayed.

Distributing source gems obviously requires that the consumer of the gem have a work-
ing set of development tools. At a minimum, they’ll need some kind of make program
and a compiler. Particularly for Windows users, these tools may not be present. You
can get around this limitation by distributing precompiled gems.

Creation of precompiled gems is simple—add the compiled shared object files (DLLs
on Windows) to the gemspec’s files list, and make sure these files are in one of the
gem’s require_path attributes. As with pure Ruby gems, the require_gem command
will modify Ruby’s $LOAD_PATH, and the shared object will be accessible via require.

Since these gems will be platform specific, you can also use the platform attribute
(remember this from the first gemspec example?) to specify the target platform for
the gem. The Gem::Specification class defines constants for Windows, Intel Linux,
Macintosh, and pure Ruby. For platforms not included in this list, you can use the value
of the RUBY_PLATFORM variable. This attribute is purely informational for now, but it’s
a good habit to acquire. Future RubyGems releases will use the platform attribute to
intelligently select precompiled gems for the platform on which the installer is running.

Building the Gem File
The MomLog gemspec we just created is runnable as a Ruby program. Invoking it will
create a gem file, MomLog-0.5.0.gem.

% ruby momlog.gemspec
Attempting to build gem spec 'momlog.gemspec'
Successfully built RubyGem
Name: MomLog
Version: 0.5.0
File: MomLog-0.5.0.gem

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 217

Alternatively, you can use the gem build command to generate the gem file.

% gem build momlog.gemspec
Attempting to build gem spec 'momlog.gemspec'
Successfully built RubyGem
Name: MomLog
Version: 0.5.0
File: MomLog-0.5.0.gem

Now that you’ve got a gem file, you can distribute it like any other package. You can
put it on an FTP server or a Web site for download or e-mail it to your friends. Once
your friends have got this file on their local computers (downloading from your FTP
server if necessary), they can install the gem (assuming they have RubyGems installed
too) by calling

% gem install MomLog-0.5.0.gem
Attempting local installation of 'MomLog-0.5.0.gem'
Successfully installed MomLog, version 0.5.0

If you would like to release your gem to the Ruby community, the easiest way is to use
RubyForge (http://rubyforge.org). RubyForge is an open-source project manage-
ment Web site. It also hosts the central gem repository. Any gem files released using
RubyForge’s file release feature will be automatically picked up and added to the cen-
tral gem repository several times each day. The advantage to potential users of your
software is that it will be available via RubyGems’ remote query and installation oper-
ations, making installation even easier.

Building with Rake
Last but certainly not least, we can use Rake to build gems (remember Rake, the pure-
Ruby build tool we mentioned back on page 204). Rake uses a command file called a
Rakefile to control the build. This defines (in Ruby syntax!) a set of rules and tasks.
The intersection of make’s rule-driven concepts and Ruby’s power make for a build and
release automator’s dream environment. And, what release of a Ruby project would be
complete without the generation of a gem?

For details on how to use Rake, see http://rake.rubyforge.org. Its documents are
comprehensive and always up-to-date. Here, we’ll focus on just enough Rake to build
a gem. From the Rake documentation:

Tasks are the main unit of work in a Rakefile. Tasks have a name (usually given as
a symbol or a string), a list of prerequisites (more symbols or strings), and a list of
actions (given as a block).

Normally, you can use Rake’s built-in task method to define your own named tasks
in your Rakefile. For special cases, it makes sense to provide helper code to automate
some of the repetitive work you would have to do otherwise. Gem creation is one of

Prepared exclusively for Margus Pau

http://rubyforge.org
http://rake.rubyforge.org

CREATING YOUR OWN GEMS 218

these special cases. Rake comes with a special TaskLib, called GemPackageTask, that
helps integrate gem creation into the rest of your automated build and release process.

To use GemPackageTask in your Rakefile, create the gemspec exactly as we did pre-
viously, but this time place it into your Rakefile. We then feed this specification to
GemPackageTask.

require 'rubygems'
Gem::manage_gems
require 'rake/gempackagetask'

spec = Gem::Specification.new do |s|
s.name = "MomLog"
s.version = "0.5.0"
s.author = "Jo Programmer"
s.email = "jo@joshost.com"
s.homepage = "http://www.joshost.com/MomLog"
s.platform = Gem::Platform::RUBY
s.summary = "An online Diary for families"
s.files = FileList["{bin,tests,lib,docs}/**/*"].exclude("rdoc").to_a
s.require_path = "lib"
s.autorequire = "momlog"
s.test_file = "tests/ts_momlog.rb"
s.has_rdoc = true
s.extra_rdoc_files = ["README"]
s.add_dependency("BlueCloth", ">= 0.0.4")
s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Rake::GemPackageTask.new(spec) do |pkg|
pkg.need_tar = true

end

Note that you’ll have to require the rubygems package into your Rakefile. You’ll also
notice that we’ve used Rake’s FileList class instead of Dir.glob to build the list
of files. FileList is smarter than Dir.glob for this purpose in that it automatically
ignores commonly unused files (such as the CVS directory that the CVS version control
tool leaves lying around).

Internally, the GemPackageTask generates a Rake target with the identifier

package_directory/gemname-gemversion.gem

In our case, this identifier will be pkg/MomLog-0.5.0.gem. You can invoke this task
from the same directory where you’ve put the Rakefile.

% rake pkg/MomLog-0.5.0.gem
(in /home/chad/download/gembook/code/MomLog)
Successfully built RubyGem
Name: MomLog
Version: 0.5.0
File: MomLog-0.5.0.gem

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 219

Now that you’ve got a task, you can use it like any other Rake task, adding dependencies
to it or adding it to the dependency list of another task, such as deployment or release
packaging.

Maintaining Your Gem
(and One Last Look at MomLog)
You’ve released MomLog, and it’s attracting new, adoring users every week. You have
taken great care to package it cleanly and are using Rake to build your gem.

Your gem being “in the wild” with your contact information attached to it, you know
that it’s only a matter of time before you start receiving feature requests (and fan mail!)
from your users. But, your first request comes via a phone call from none other than
dear old Mom. She has just gotten back from a vacation in Florida and asks you how
she can include her vacation pictures in her diary. You don’t think an explanation of
command-line FTP would be time well spent, and being the ever-devoted son or daugh-
ter, you spend your evening coding a nice photo album module for MomLog.

Since you have added functionality to the application (as opposed to just fixing a bug),
you decide to increase MomLog’s version number from 1.0.0 to 1.1.0. You also add
a set of tests for the new functionality and a document about how to set up the photo
upload functionality.

Figure 17.1 on the next page shows the complete directory structure of your final Mom-
Log 1.1.0 package. The final gem specification (extracted from the Rakefile) looks like
this.

spec = Gem::Specification.new do |s|
s.name = "MomLog"
s.version = "1.1.0"
s.author = "Jo Programmer"
s.email = "jo@joshost.com"
s.homepage = "http://www.joshost.com/MomLog"
s.platform = Gem::Platform::RUBY
s.summary = "An online diary, recipe publisher, " +

"and photo album for families."
s.files = FileList["{bin,tests,lib,docs}/**/*"].exclude("rdoc").to_a
s.require_path = "lib"
s.autorequire = "momlog"
s.test_file = "tests/ts_momlog.rb"
s.has_rdoc = true
s.extra_rdoc_files = ["README", "docs/DatabaseConfiguration.rdoc",

"docs/Installing.rdoc", "docs/PhotoAlbumSetup.rdoc"]
s.add_dependency("BlueCloth", ">= 0.0.4")
s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 220

Figure 17.1. MomLog package structure

momlog/
README
Rakefile
bin/

momlog_server
docs/

Installing.rdoc
DatabaseConfiguration.rdoc
PhotoAlbumSetup.rdoc

lib/
momlog.rb
momlog/

diary.rb
recipes.rb
db.rb
upload.rb
photo_album.rb
rss.rb

tests/
ts_momlog.rb
tc_recipe.rb
tc_photo_album.rb
tc_upload.rb
tc_diary.rb
tc_rss.rb

You run Rake over your Rakefile, generating the updated MomLog gem, and you’re
ready to release the new version. You log into your RubyForge account, and upload
your gem to the “Files” section of your project. While you wait for RubyGems’ auto-
mated process to release the gem into the central gem repository, you type a release
announcement to post to your RubyForge project.

Within about an hour, you log in to your mother’s Web server to install the new software
for her. RubyGems makes things easy, but we have to take special care of Mom.

% gem query -rn MomLog

*** REMOTE GEMS ***

MomLog (1.1.0, 1.0.0)
An online diary, recipe publisher, and photo album for families.

Prepared exclusively for Margus Pau

CREATING YOUR OWN GEMS 221

Great! The query indicates that there are two versions of MomLog available now. You
type the install command without specifying a version argument, because you know
that the default is to install the most recent version.

% gem install -r MomLog
Attempting remote installation of 'MomLog'
Successfully installed MomLog, version 1.1.0

You haven’t changed any of the dependencies for MomLog, so your existing BlueCloth
and MenuBuilder installations meet the requirements for MomLog 1.1.0.

Now that Mom’s happy, it’s time to go try some of her recently posted recipes.

Prepared exclusively for Margus Pau

Chapter 18

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP
daemon, or Web server in Ruby, but you can also use Ruby for more usual tasks such
as CGI programming or as a replacement for PHP.

Many options are available for using Ruby to implement Web applications, and a single
chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and
point you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Inter-
face (CGI) programs.

Writing CGI Scripts
You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate
HTML output, all you need is something like

#!/usr/bin/ruby
print "Content-type: text/html\r\n\r\n"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it
via your browser. (If your Web server doesn’t automatically add headers, you’ll need
to add the response header yourself.)

#!/usr/bin/ruby
print "HTTP/1.0 200 OK\r\n"
print "Content-type: text/html\r\n\r\n"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You’d need to write your own
request parsing, session management, cookie manipulation, output escaping, and so
on. Fortunately, options are available to make this easier.

Prepared exclusively for Margus Pau 222

WRITING CGI SCRIPTS 223

Using cgi.rb
Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,
cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large
class, but we’ll take a quick look at its capabilities here.

Quoting
When dealing with URLs and HTML code, you must be careful to quote certain char-
acters. For instance, a slash character (/) has special meaning in a URL, so it must
be “escaped” if it’s not part of the pathname. That is, any / in the query portion of the
URL will be translated to the string %2F and must be translated back to a / for you to
use it. Space and ampersand are also special characters. To handle this, CGI provides
the routines CGI.escape and CGI.unescape.

require 'cgi'
puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")

produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters.

require 'cgi'
puts CGI.escapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a
string.

require 'cgi'
puts CGI.escapeElement('<hr>Click Here
','A')

produces:

<hr>Click Here

Here only the A element is escaped; other elements are left alone. Each of these methods
has an “un-” version to restore the original string.

require 'cgi'
puts CGI.unescapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

Prepared exclusively for Margus Pau

WRITING CGI SCRIPTS 224

Query Parameters
HTTP requests from the browser to your application may contain parameters, either
passed as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name
may be returned multiple times in the same request. For example, say we’re writing a
survey to find out why folks like Ruby. The HTML for our form looks like this.

<html>
<head><title>Test Form</title></head>
<body>
I like Ruby because:

<form target="cgi-bin/survey.rb">
<input type="checkbox" name="reason" value="flexible" />

It's flexible

<input type="checkbox" name="reason" value="transparent" />

It's transparent

<input type="checkbox" name="reason" value="perlish" />

It's like Perl

<input type="checkbox" name="reason" value="fun" />

It's fun

<p>
Your name: <input type="text" name="name">

</p>

<input type="submit"/>

</form>

</body>
</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as
shown in Figure 18.1 on the following page). In this case, the form data corresponding
to the name reason will have three values, corresponding to the three checked boxes.

Class CGI gives you access to form data in a couple of ways. First, we can just treat the
CGI object as a hash, indexing it with field names and getting back field values.

require 'cgi'
cgi = CGI.new
cgi['name'] → "Dave Thomas"
cgi['reason'] → "flexible"

However, this doesn’t work well with the reason field: we see only one of the three
values.1.8 We can ask to see them all by using the CGI#params method. The value returned
by params acts like a hash containing the request parameters. You can both read and
write this hash (the latter allows you to modify the data associated with a request). Note
that each of the values in the hash is actually an array.

Prepared exclusively for Margus Pau

WRITING CGI SCRIPTS 225

Figure 18.1. Sample CGI Form

require 'cgi'
cgi = CGI.new
cgi.params → {"name"=>["Dave Thomas"],

"reason"=>["flexible", "transparent",
"fun"]}

cgi.params['name'] → ["Dave Thomas"]
cgi.params['reason'] → ["flexible", "transparent", "fun"]
cgi.params['name'] = [cgi['name'].upcase]
cgi.params → {"name"=>["DAVE THOMAS"],

"reason"=>["flexible", "transparent",
"fun"]}

You can determine if a particular parameter is present in a request using CGI#has_key?.

require 'cgi'
cgi = CGI.new
cgi.has_key?('name') → true
cgi.has_key?('age') → false

Generating HTML

CGI contains a huge number of methods that can be used to create HTML—one method
per element. To enable these methods, you must create a CGI object by calling CGI.new,
passing in the required level of HTML. In these examples, we’ll use html3.

Prepared exclusively for Margus Pau

WRITING CGI SCRIPTS 226

To make element nesting easier, these methods take their content as code blocks. The
code blocks should return a String, which will be used as the content for the element.
For this example, we’ve added some gratuitous newlines to make the output fit on the
page.

require 'cgi'
cgi = CGI.new("html3") # add HTML generation methods
cgi.out {
cgi.html {
cgi.head { "\n"+cgi.title{"This Is a Test"} } +
cgi.body { "\n"+

cgi.form {"\n"+
cgi.hr +
cgi.h1 { "A Form: " } + "\n"+
cgi.textarea("get_text") +"\n"+
cgi.br +
cgi.submit

}
}

}
}

produces:

Content-Type: text/html
Content-Length: 302

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><HTML><HEAD>
<TITLE>This Is a Test</TITLE></HEAD><BODY>
<FORM METHOD="post" ENCTYPE="application/x-www-form-urlencoded">
<HR><H1>A Form: </H1>
<TEXTAREA NAME="get_text" ROWS="10" COLS="70"></TEXTAREA>

<INPUT TYPE="submit"></FORM></BODY></HTML>

This code will produce an HTML form titled “This Is a Test,” followed by a horizontal
rule, a level-one header, a text input area, and finally a submit button. When the submit
comes back, you’ll have a CGI parameter named get_text containing the text the user
entered.

Although quite interesting, this method of generating HTML is fairly laborious and
probably isn’t used much in practice. Most people seem to write the HTML directly,
use a templating system, or use an application framework, such as Iowa. Unfortunately,
we don’t have space here to discuss Iowa—have a look at the online documentation at
http://enigo.com/projects/iowa, or look at Chapter 6 of The Ruby Developer’s
Guide [FJN02]—but we can look at templating.

Templating Systems

Templating systems allow you separate the presentation and logic of your application.
It seems that just about everyone who writes a Web application using Ruby at some

Prepared exclusively for Margus Pau

http://enigo.com/projects/iowa

WRITING CGI SCRIPTS 227

point also writes a templating system: the RubyGarden wiki lists quite a few,1 and even
this list isn’t complete. For now, let’s just look at three: RDoc templates, Amrita, and
erb/eruby.

RDoc Templates

The RDoc documentation system (described in Chapter 16 on page 187) includes a
very simple templating system that it uses to generate all its XML and HTML output.
Because RDoc is distributed as part of standard Ruby, the templating system is available
wherever Ruby 1.8.2 or later is installed. However, the templating system does not use
conventional HTML or XML markup (as it is intended to be used to generate output in
many different formats), so files marked up with RDoc templates may not be easy to
edit using conventional HTML editing tools.

require 'rdoc/template'

HTML = %{Hello, %name%.
<p>
The reasons you gave were:

START:reasons

%reason_name% (%rank%)
END:reasons

}

data = {
'name' => 'Dave Thomas',
'reasons' => [
{ 'reason_name' => 'flexible', 'rank' => '87' },
{ 'reason_name' => 'transparent', 'rank' => '76' },
{ 'reason_name' => 'fun', 'rank' => '94' },

]
}

t = TemplatePage.new(HTML)
t.write_html_on(STDOUT, data)

produces:

Hello, Dave Thomas.
<p>
The reasons you gave were:

flexible (87)
transparent (76)
fun (94)

1. http://www.rubygarden.org/ruby?HtmlTemplates

Prepared exclusively for Margus Pau

http://www.rubygarden.org/ruby?HtmlTemplates

WRITING CGI SCRIPTS 228

The constructor is passed a string containing the template to be used. The method
write_html_on is then passed a hash containing names and values. If the template
contains the sequence %xxxx%, the hash is consulted, and the value corresponding to
the name xxx is substituted in. If the template contains START:yyy, the hash value
corresponding to yyy is assumed to be an array of hashes. The template lines between
START:yyy and END:yyy are repeated for each element in that array. The templates also
support conditions: lines between IF:zzz and ENDIF:zzz are included in the output
only if the hash has a key zzz.

Amrita

Amrita2 is a library that generates HTML documents from a template that is itself valid
HTML. This makes Amrita easy to use with existing HTML editors. It also means that
Amrita templates display correctly as freestanding HTML pages.

Amrita uses the id tags in HTML elements to determine the values to be substituted.
If the value corresponding to a given name is nil or false, the HTML element won’t
be included in the resulting output. If the value is an array, it iterates the corresponding
HTML element.

require 'amrita/template'
include Amrita

HTML = %{<p id="greeting" />
<p>The reasons you gave were:</p>

<li id="reasons">,

}

data = {
:greeting => 'Hello, Dave Thomas',
:reasons => [
{ :reason_name => 'flexible', :rank => '87' },
{ :reason_name => 'transparent', :rank => '76' },
{ :reason_name => 'fun', :rank => '94' },

]
}

t = TemplateText.new(HTML)
t.prettyprint = true
t.expand(STDOUT, data)

produces:

<p>Hello, Dave Thomas</p>
<p>The reasons you gave were:</p>

2. http://www.brain-tokyo.jp/research/amrita/rdocs/

Prepared exclusively for Margus Pau

http://www.brain-tokyo.jp/research/amrita/rdocs/

WRITING CGI SCRIPTS 229

flexible, 87
transparent, 76
fun, 94

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in some other sort of a
document, especially in an HTML page. Generically, this is known as “eRuby.” Specif-
ically, several different implementations of eRuby exist, including eruby and erb.
eruby, written by Shugo Maeda, is available for download from the Ruby Applica-
tion Archive. erb, its little cousin, is written in pure Ruby and is included with the
standard distribution. We’ll look at erb here.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equiv-
alent of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is normally used as a filter. Text within the input file is passed through untouched,
with the following exceptions

Expression Description

<% ruby code %> Execute the Ruby code between the delimiters.
<%= ruby expression %> Evaluate the Ruby expression, and replace the sequence

with the expression’s value.
<%# ruby code %> The Ruby code between the delimiters is ignored (useful for

testing).
% line of ruby code A line that starts with a percent is assumed to contain just

Ruby code.

You invoke erb as

erb [options] [document]

If the document is omitted, eruby will read from standard input. The command-line
options for erb are shown in Table 18.1 on the following page.

Let’s look at some simple examples. We’ll run the erb executable on the following
input.

% a = 99
<%= a %> bottles of beer...

Prepared exclusively for Margus Pau

WRITING CGI SCRIPTS 230

Table 18.1. Command-line options for erb

Option Description

-d Sets $DEBUG to true.
-Kkcode Specifies an alternate encoding system (see page 169).
-n Display resulting Ruby script (with line numbers).
-r library Loads the named library.
-P Doesn’t do erb processing on lines starting %.
-S level Sets the safe level.
-T mode Sets the trim mode.
-v Enables verbose mode.
-x Displays resulting Ruby script.

The line starting with the percent sign simply executes the given Ruby statement. The
next line contains the sequence <% a %>, which substitutes in the value of a.

erb f1.erb

produces:

99 bottles of beer...

erb works by rewriting its input as a Ruby script and then executing that script. You
can see the Ruby that erb generates using the -n or -x option.

erb -x f1.erb

produces:

_erbout = ''; a = 99
_erbout.concat((a).to_s); _erbout.concat " bottles of beer...\n"
_erbout

Notice how erb builds a string, _erbout, containing both the static strings from the
template and the results of executing expressions (in this case the value of a).

Of course, you can embed Ruby within a more complex document type, such as HTML.
Figure 18.2 on page 232 shows a couple of loops in an HTML document.

Installing eruby in Apache
If you want to use erb-like page generation for a Web site that gets a reasonable amount
of traffic, you’ll probably want to switch across to using eruby, which has better per-
formance. You can then configure the Apache Web server to automatically parse Ruby-
embedded documents using eRuby, much in the same way that PHP does. You create
Ruby-embedded files with an .rhtml suffix and configure the Web server to run the
eruby executable on these documents to produce the desired HTML output.

Prepared exclusively for Margus Pau

COOKIES 231

To use eruby with the Apache Web server, you need to perform the following steps.

1. Copy the eruby binary to the cgi-bin directory.

2. Add the following two lines to httpd.conf.

AddType application/x-httpd-eruby .rhtml
Action application/x-httpd-eruby /cgi-bin/eruby

3. If desired, you can also add or replace the DirectoryIndex directive such that
it includes index.rhtml. This lets you use Ruby to create directory listings for
directories that do not contain an index.html. For instance, the following direc-
tive would cause the embedded Ruby script index.rhtml to be searched for and
served if neither index.html nor index.shtml existed in a directory.

DirectoryIndex index.html index.shtml index.rhtml

Of course, you could also simply use a sitewide Ruby script as well.

DirectoryIndex index.html index.shtml /cgi-bin/index.rb

Cookies
Cookies are a way of letting Web applications store their state on the user’s machine.
Frowned upon by some, cookies are still a convenient (if unreliable) way of remember-
ing session information.

The Ruby CGI class handles the loading and saving of cookies for you. You can access
the cookies associated with the current request using the CGI#cookies method, and you
can set cookies back into the browser by setting the cookies parameter of CGI#out to
reference either a single cookie or an array of cookies.

#!/usr/bin/ruby

COOKIE_NAME = 'chocolate chip'

require 'cgi'

cgi = CGI.new

values = cgi.cookies[COOKIE_NAME]

if values.empty?
msg = "It looks as if you haven't visited recently"

else
msg = "You last visited #{values[0]}"

end

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)

cookie.expires = Time.now + 30*24*3600 # 30 days

cgi.out("cookie" => cookie) { msg }

Prepared exclusively for Margus Pau

COOKIES 232

Figure 18.2. Erb processing a file with loops

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>eruby example</title>
</head>
<body>
<h1>Enumeration</h1>

%5.times do |i|
number <%=i%>

%end

<h1>"Environment variables starting with "T"</h1>
<table>
%ENV.keys.grep(/^T/).each do |key|
<tr><td><%=key%></td><td><%=ENV[key]%></td></tr>

%end
</table>
</body>
</html>

produces:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>eruby example</title>
</head>
<body>
<h1>Enumeration</h1>

number 0
number 1
number 2
number 3
number 4

<h1>"Environment variables starting with "T"</h1>
<table>
<tr><td>TERM_PROGRAM</td><td>iTerm.app</td></tr>
<tr><td>TERM</td><td>xterm-color</td></tr>

</table>
</body>
</html>

Prepared exclusively for Margus Pau

COOKIES 233

Sessions
Cookies by themselves still need a bit of work to be useful. We really want session:
information that persists between requests from a particular Web browser. Sessions
are handled by class CGI::Session, which uses cookies but provides a higher-level
abstraction.

As with cookies, sessions emulate a hashlike behavior, letting you associate values with
keys. Unlike cookies, sessions store the majority of their data on the server, using the
browser-resident cookie simply as a way of uniquely identifying the server-side data.
Sessions also give you a choice of storage techniques for this data: it can be held in
regular files, in a PStore (see the description on page 698), in memory, or even in your
own customized store.

Sessions should be closed after use, as this ensures that their data is written out to the
store. When you’ve permanently finished with a session, you should delete it.

require 'cgi'
require 'cgi/session'

cgi = CGI.new("html3")
sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",
"prefix" => "web-session."
)

if sess['lastaccess']
msg = "You were last here #{sess['lastaccess']}."

else
msg = "Looks like you haven't been here for a while"

end

count = (sess["accesscount"] || 0).to_i
count += 1

msg << "<p>Number of visits: #{count}"

sess["accesscount"] = count
sess["lastaccess"] = Time.now.to_s
sess.close

cgi.out {
cgi.html {
cgi.body {

msg
}

}
}

The code in the previous example used the default storage mechanism for sessions: per-
sistent data was stored in files in your default temporary directory (see Dir.tmpdir).
The filenames will all start web-session. and will end with a hashed version1.8 of the
session number. See ri CGI::Session for more information.

Prepared exclusively for Margus Pau

IMPROVING PERFORMANCE 234

Improving Performance
You can use Ruby to write CGI programs for the Web, but, as with most CGI programs,
the default configuration has to start a new copy of Ruby with every cgi-bin page access.
That’s expensive in terms of machine utilization and can be painfully slow for Web
surfers. The Apache Web server solves this problem by supporting loadable modules.

Typically, these modules are dynamically loaded and become part of the running Web
server process—you have no need to spawn another interpreter over and over again to
service requests; the Web server is the interpreter.

And so we come to mod_ruby (available from the archives), an Apache module that
links a full Ruby interpreter into the Apache Web server itself. The README file included
with mod_ruby provides details on how to compile and install it.

Once installed and configured, you can run Ruby scripts pretty much as you could
without mod_ruby, except that now they will come up much faster. You can also take
advantage of the extra facilities that mod_ruby provides (such as tight integration into
Apache’s request handling).

You have some things to watch, however. Because the interpreter remains in mem-
ory between requests, it may end up handling requests from multiple applications. It’s
possible for libraries in these applications to clash (particularly if different libraries
contain classes with the same name). You also cannot assume that the same interpreter
will handle the series of requests from one browser’s session—Apache will allocate
handler processes using its internal algorithms.

Some of these issues are resolved using the FastCGI protocol. This is an interesting
hack, available to all CGI-style programs, not just Ruby. It uses a very small proxy
program, typically running as an Apache module. When requests are received, this
proxy then forwards them to a particular long-running process that acts like a normal
CGI script. The results are fed back to the proxy, and then back to the browser. FastCGI
has the same advantages as running mod_ruby, as the interpreter is always running
in the background. It also gives you more control over how requests are allocated to
interpreters. You’ll find more information at http://www.fastcgi.com.

Choice of Web Servers
So far, we’ve been running Ruby scripts under the control of the Apache Web server.
However, Ruby 1.81.8 and later comes bundled with WEBrick, a flexible, pure-Ruby
HTTP server toolkit. Basically, it’s an extensible plug in–based framework that lets
you write servers to handle HTTP requests and responses. Here’s a basic HTTP server
that serves documents and directory indexes.

Prepared exclusively for Margus Pau

http://www.fastcgi.com

CHOICE OF WEB SERVERS 235

#!/usr/bin/ruby
require 'webrick'
include WEBrick

s = HTTPServer.new(
:Port => 2000,
:DocumentRoot => File.join(Dir.pwd, "/html")

)

trap("INT") { s.shutdown }

s.start

The HTTPServer constructor creates a new Web server on port 2000. The code sets
the document root to be the html/ subdirectory of the current directory. It then uses
Kernel.trap to arrange to shut down tidily on interrupts before starting the server
running. If you point your browser at http://localhost:2000, you should see a
listing of your html subdirectory.

WEBrick can do far more that serve static content. You can use it just like a Java
servlet container. The following code mounts a simple servlet at the location /hello.
As requests arrive, the do_GET method is invoked. It uses the response object to display
the user agent information and parameters from the request.

#!/usr/bin/ruby

require 'webrick'
include WEBrick

s = HTTPServer.new(:Port => 2000)

class HelloServlet < HTTPServlet::AbstractServlet
def do_GET(req, res)
res['Content-Type'] = "text/html"
res.body = %{

<html><body>
Hello. You're calling from a #{req['User-Agent']}
<p>
I see parameters: #{req.query.keys.join(', ')}

</body></html>
}

end
end

s.mount("/hello", HelloServlet)

trap("INT"){ s.shutdown }

s.start

More information on WEBrick is available from http:///www.webrick.org. There
you’ll find links to a set of useful servlets, including one that lets you write SOAP
servers in Ruby.

Prepared exclusively for Margus Pau

http://localhost:2000
http:///www.webrick.org

SOAP AND WEB SERVICES 236

SOAP and Web Services
Speaking of SOAP,1.8 Ruby now comes with an implementation of SOAP.3 This lets you
write both servers and clients using Web services. By their nature, these applications
can operate both locally and remotely across a network. SOAP applications are also
unaware of the implementation language of their network peers, so SOAP is a conve-
nient way of interconnecting Ruby applications with those written in languages such as
Java, Visual Basic, or C++.

SOAP is basically a marshaling mechanism which uses XML to send data between two
nodes in a network. It is typically used to implement remote procedure calls, RPCs,
between distributed processes. A SOAP server publishes one or more interfaces. These
interfaces are defined in terms of data types and methods that use those types. SOAP
clients then create local proxies that SOAP connects to interfaces on the server. A call
to a method on the proxy is then passed to the corresponding interface on the server.
Return values generated by the method on the server are passed back to the client via
the proxy.

Let’s start with a trivial SOAP service. We’ll write an object that does interest calcula-
tions. Initially, it offers a single method, compound, that determines compound interest
given a principal, an interest rate, the number of times interested is compounded per
year, and the number of years. For management purposes, we’ll also keep track of how
many times this method was called and make that count available via an accessor. Note
that this class is just regular Ruby code—it doesn’t know that it’s running in a SOAP
environment.

class InterestCalculator

attr_reader :call_count

def initialize
@call_count = 0

end

def compound(principal, rate, freq, years)
@call_count += 1
principal*(1.0 + rate/freq)**(freq*years)

end

end

Now we’ll make an object of this class available via a SOAP server. This will enable
client applications to call the object’s methods over the network. We’re using the stand-
alone server here, which is convenient when testing, as we can run it from the command
line. You can also run Ruby SOAP servers as CGI scripts or under mod_ruby.

3. SOAP once stood for Simple Object Access Protocol. When folks could no longer stand the irony, the
acronym was dropped, and now SOAP is just a name.

Prepared exclusively for Margus Pau

SOAP AND WEB SERVICES 237

require 'soap/rpc/standaloneServer'
require 'interestcalc'

NS = 'http://pragprog.com/InterestCalc'

class Server2 < SOAP::RPC::StandaloneServer

def on_init
calc = InterestCalculator.new
add_method(calc, 'compound', 'principal', 'rate', 'freq', 'years')
add_method(calc, 'call_count')

end

end

svr = Server2.new('Calc', NS, '0.0.0.0', 12321)
trap('INT') { svr.shutdown }

svr.start

This code defines a class which implements a standalone SOAP server. When it is
initialized, the class creates a InterestCalculator object (an instance of the class
we just wrote). It then uses add_method to add the two methods implemented by this
class, compound and call_count. Finally, the code creates and runs an instance of
this server class. The parameters to the constructor are the name of the application, the
default namespace, the address of the interface to use, and the port.

We then need to write some client code to access this server. The client creates a local
proxy for the InterestCalculator service on the server, adds the methods it wants
to use, and then calls them.

require 'soap/rpc/driver'

proxy = SOAP::RPC::Driver.new("http://localhost:12321",
"http://pragprog.com/InterestCalc")

proxy.add_method('compound', 'principal', 'rate', 'freq', 'years')

proxy.add_method('call_count')

puts "Call count: #{proxy.call_count}"
puts "5 years, compound annually: #{proxy.compound(100, 0.06, 1, 5)}"
puts "5 years, compound monthly: #{proxy.compound(100, 0.06, 12, 5)}"
puts "Call count: #{proxy.call_count}"

To test this, we can run the server in one console window (the output here has been
reformated slightly to fit the width of this page).

% ruby server.rb
I, [2004-07-26T10:55:51.629451 #12327] INFO

-- Calc: Start of Calc.
I, [2004-07-26T10:55:51.633755 #12327] INFO

-- Calc: WEBrick 1.3.1
I, [2004-07-26T10:55:51.635146 #12327] INFO

-- Calc: ruby 1.8.2 (2004-07-26) [powerpc-darwin]
I, [2004-07-26T10:55:51.639347 #12327] INFO

-- Calc: WEBrick::HTTPServer#start: pid=12327 port=12321

We then run the client in another window.

Prepared exclusively for Margus Pau

SOAP AND WEB SERVICES 238

% ruby client.rb
Call count: 0
5 years, compound annually: 133.82255776
5 years, compound monthly: 134.885015254931
Call count: 2

Looking good! Flush with success, we call all our friends over and run it again.

% ruby client.rb
Call count: 2
5 years, compound annually: 133.82255776
5 years, compound monthly: 134.885015254931
Call count: 4

Notice how the call count now starts at two the second time we run the client. The
server creates a single InterestCalculator object to service incoming requests, and
this object is reused for each request.

SOAP and Google
Obviously the real benefit of SOAP is the way it lets you interoperate with other
services on the Web. As an example, let’s write some Ruby code to send queries to
Google’s Web API.

Before sending queries to Google, you need a developer key. This is available from
Google—go to http://www.google.com/apis and follow the instructions in step 2,
Create a Google Account. After you fill in your e-mail address and supply a password,
Google will send you a developer key. In the following examples, we’ll assume that
you’ve stored this key in the file .google_key in your home directory.

Let’s start at the most basic level. Looking at the documentation for the Google API
method doGoogleSearch, we discover it has ten (!) parameters.

key The developer key
q The query string
start The index of the first required result
maxResults The maximum number of results to return per query
filter If enabled, compresses results so that similar pages and pages from the

same domain are only shown once
restrict Restricts the search to a subset of the Google Web index
safeSearch If enabled, removes possible adult content from the results
lr Restricts the search to documents in a given set of languages
ie Ignored (was input encoding)
oe Ignored (was output encoding)

We can use the add_method call to construct a SOAP proxy for the doGoogleSearch
method. The following example does just that, printing out the first entry returned if
you search Google for the term pragmatic.

Prepared exclusively for Margus Pau

http://www.google.com/apis

SOAP AND WEB SERVICES 239

require 'soap/rpc/driver'
require 'cgi'

endpoint = 'http://api.google.com/search/beta2'
namespace = 'urn:GoogleSearch'

soap = SOAP::RPC::Driver.new(endpoint, namespace)

soap.add_method('doGoogleSearch', 'key', 'q', 'start',
'maxResults', 'filter', 'restrict',
'safeSearch', 'lr', 'ie', 'oe')

query = 'pragmatic'
key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false, nil,
false, nil, nil, nil)

printf "Estimated number of results is %d.\n",
result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime
first = result.resultElements[0]
puts first.title
puts first.URL
puts CGI.unescapeHTML(first.snippet)

Run this, and you’ll see something such as the following (notice how the query term
has been highlighted by Google).

Estimated number of results is 550000.
Your query took 0.123762 seconds.
The Pragmatic Programmers, LLC
http://www.pragmaticprogrammer.com/
Home of Andrew Hunt and David Thomas's best-selling book 'The
Pragmatic Programmer'
 and The 'Pragmatic Starter Kit
(tm)' series. ... The Pragmatic Bookshelf TM. ...

However, SOAP allows for the dynamic discovery of the interface of objects on the
server. This is done using WSDL, the Web Services Description Language. A WSDL
file is an XML document that describes the types, methods, and access mechanisms for
a Web services interface. SOAP clients can read WSDL files to create the interfaces to
a server automatically.

The Web page http://api.google.com/GoogleSearch.wsdl contains the WSDL
describing the Google interface. We can alter our search application to read this WSDL,
which removes the need to add the doGoogleSearch method explicitly.

require 'soap/wsdlDriver'
require 'cgi'

WSDL_URL = "http://api.google.com/GoogleSearch.wsdl"

soap = SOAP::WSDLDriverFactory.new(WSDL_URL).createDriver

query = 'pragmatic'
key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false,
nil, false, nil, nil, nil)

Prepared exclusively for Margus Pau

http://api.google.com/GoogleSearch.wsdl

MORE INFORMATION 240

printf "Estimated number of results is %d.\n",
result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime
first = result.resultElements[0]
puts first.title
puts first.URL
puts CGI.unescapeHTML(first.snippet)

Finally, we can take this a step further using Ian Macdonald’s Google library (available
in the RAA). It encapsulates the Web services API behind a nice interface (nice if for no
other reason than it eliminates the need for all those extra parameters). The library also
has methods to construct the date ranges and other restrictions on a Google query and
provides interfaces to the Google cache and the spell-checking facility. The following
code is our “pragmatic” search using Ian’s library.

require 'google'
require 'cgi'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

google = Google::Search.new(key)
result = google.search('pragmatic')

printf "Estimated number of results is %d.\n",
result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime
first = result.resultElements[0]
puts first.title
puts first.url
puts CGI.unescapeHTML(first.snippet)

More Information
Ruby Web programming is a big topic. To dig deeper, you may want to look at Chapter
9 in The Ruby Way [Ful01], where you’ll find many examples of network and Web
programming, and Chapter 6 of The Ruby Developer’s Guide [FJN02], where you’ll
find some good examples of structuring CGI applications, along with some example
Iowa code.

If SOAP strikes you being complex, you may want to look at using XML-RPC, which
is described briefly on page 736.

A number of other Ruby Web development frameworks are available on the ’net. This
is a dynamic area: new contenders appear constantly, and it is hard for a printed book to
be definitive. However, two frameworks that are currently attracting mindshare in the
Ruby community are

• Rails (http://www.rubyonrails.org), and
• CGIKit (http://www.spice-of-life.net/cgikit/index_en.html).

Prepared exclusively for Margus Pau

http://www.rubyonrails.org
http://www.spice-of-life.net/cgikit/index_en.html

Chapter 19

Ruby Tk

The Ruby Application Archive contains several extensions that provide Ruby with a
graphical user interface (GUI), including extensions for Fox, GTK, and others.

The Tk extension is bundled in the main distribution and works on both Unix and
Windows systems. To use it, you need to have Tk installed on your system. Tk is a
large system, and entire books have been written about it, so we won’t waste time or
resources by delving too deeply into Tk itself but instead concentrate on how to access
Tk features from Ruby. You’ll need one of these reference books in order to use Tk with
Ruby effectively. The binding we use is closest to the Perl binding, so you probably
want to get a copy of Learning Perl/Tk [Wal99] or Perl/Tk Pocket Reference [Lid98].

Tk works along a composition model—that is, you start by creating a container (such as
a TkFrame or TkRoot) and then create the widgets (another name for GUI components)
that populate it, such as buttons or labels. When you are ready to start the GUI, you
invoke Tk.mainloop. The Tk engine then takes control of the program, displaying
widgets and calling your code in response to GUI events.

Simple Tk Application
A simple Tk application in Ruby may look something like this.

require 'tk'
root = TkRoot.new { title "Ex1" }
TkLabel.new(root) do
text 'Hello, World!'
pack { padx 15 ; pady 15; side 'left' }

end
Tk.mainloop

Let’s look at the code a little more closely. After loading the tk extension module,
we create a root-level frame using TkRoot.new. We then make a TkLabel widget as a

Prepared exclusively for Margus Pau 241

WIDGETS 242

child of the root frame, setting several options for the label. Finally, we pack the root
frame and enter the main GUI event loop.

It’s a good habit to specify the root explicitly, but you could leave it out—along with
the extra options—and boil this down to a three-liner.

require 'tk'
TkLabel.new { text 'Hello, World!'; pack }
Tk.mainloop

That’s all there is to it! Armed with one of the Perl/Tk books we reference at the start of
this chapter, you can now produce all the sophisticated GUIs you need. But then again,
if you’d like to stick around for some more details, here they come.

Widgets
Creating widgets is easy. Take the name of the widget as given in the Tk documentation
and add a Tk to the front of it. For instance, the widgets Label, Button, and Entry
become the classes TkLabel, TkButton, and TkEntry. You create an instance of a
widget using new, just as you would any other object. If you don’t specify a parent
for a given widget, it will default to the root-level frame. We usually want to specify
the parent of a given widget, along with many other options—color, size, and so on.
We also need to be able to get information back from our widgets while our program
is running by setting up callbacks (routines invoked when certain events happen) and
sharing data.

Setting Widget Options
If you look at a Tk reference manual (the one written for Perl/Tk, for example), you’ll
notice that options for widgets are usually listed with a hyphen—as a command-line
option would be. In Perl/Tk, options are passed to a widget in a Hash. You can do that
in Ruby as well, but you can also pass options using a code block; the name of the
option is used as a method name within the block and arguments to the option appear
as arguments to the method call. Widgets take a parent as the first argument, followed
by an optional hash of options or the code block of options. Thus, the following two
forms are equivalent.

TkLabel.new(parent_widget) do
text 'Hello, World!'
pack('padx' => 5,

'pady' => 5,
'side' => 'left')

end
or
TkLabel.new(parent_widget, 'text' => 'Hello, World!').pack(...)

Prepared exclusively for Margus Pau

WIDGETS 243

One small caution when using the code block form: the scope of variables is not what
you think it is. The block is actually evaluated in the context of the widget’s object, not
the caller’s. This means that the caller’s instance variables will not be available in the
block, but local variables from the enclosing scope and globals will be (not that you
use global variables, of course.) We’ll show option passing using both methods in the
examples that follow.

Distances (as in the padx and pady options in these examples) are assumed to be in
pixels but may be specified in different units using one of the suffixes c (centimeter), i
(inch), m (millimeter), or p (point). "12p", for example, is twelve points.

Getting Widget Data
We can get information back from widgets by using callbacks and by binding variables.

Callbacks are very easy to set up. The command option (shown in the TkButton call in
the example that follows) takes a Proc object, which will be called when the callback
fires. Here we pass the proc in as a block associated with the method call, but we could
also have used Kernel.lambda to generate an explicit Proc object.

require 'tk'
TkButton.new do
text "EXIT"
command { exit }
pack('side'=>'left', 'padx'=>10, 'pady'=>10)

end
Tk.mainloop

We can also bind a Ruby variable to a Tk widget’s value using a TkVariable proxy.
This arranges things so that whenever the widget’s value changes, the Ruby variable
will automatically be updated, and whenever the variable is changed, the widget will
reflect the new value.

We show this in the following example. Notice how the TkCheckButton is set up;
the documentation says that the variable option takes a var reference as an argu-
ment. For this, we create a Tk variable reference using TkVariable.new. Accessing
mycheck.value will return the string “0” or “1” depending on whether the checkbox
is checked. You can use the same mechanism for anything that supports a var reference,
such as radio buttons and text fields.

require 'tk'

packing = { 'padx'=>5, 'pady'=>5, 'side' => 'left' }

checked = TkVariable.new

def checked.status
value == "1" ? "Yes" : "No"

end

Prepared exclusively for Margus Pau

WIDGETS 244

status = TkLabel.new do
text checked.status
pack(packing)

end

TkCheckButton.new do
variable checked
pack(packing)

end

TkButton.new do
text "Show status"
command { status.text(checked.status) }
pack(packing)

end

Tk.mainloop

Setting/Getting Options Dynamically
In addition to setting a widget’s options when it’s created, you can reconfigure a widget
while it’s running. Every widget supports the configure method, which takes a Hash
or a code block in the same manner as new. We can modify the first example to change
the label text in response to a button click.

require 'tk'
root = TkRoot.new { title "Ex3" }

top = TkFrame.new(root) { relief 'raised'; border 5 }

lbl = TkLabel.new(top) do
justify 'center'
text 'Hello, World!'
pack('padx'=>5, 'pady'=>5, 'side' => 'top')

end

TkButton.new(top) do
text "Ok"
command { exit }
pack('side'=>'left', 'padx'=>10, 'pady'=>10)

end

TkButton.new(top) do
text "Cancel"
command { lbl.configure('text'=>"Goodbye, Cruel World!") }
pack('side'=>'right', 'padx'=>10, 'pady'=>10)

end

top.pack('fill'=>'both', 'side' =>'top')
Tk.mainloop

Now when the Cancel button is clicked, the text in the label will change immediately
from “Hello, World!” to “Goodbye, Cruel World!”

You can also query widgets for particular option values using cget.

Prepared exclusively for Margus Pau

WIDGETS 245

require 'tk'
b = TkButton.new do
text "OK"
justify "left"
border 5

end
b.cget('text') → "OK"
b.cget('justify') → "left"
b.cget('border') → 5

Sample Application
Here’s a slightly longer example, showing a genuine application—a pig latin generator.
Type in the phrase such as Ruby rules, and the Pig It button will instantly translate
it into pig latin.

require 'tk'

class PigBox
def pig(word)
leading_cap = word =~ /^[A-Z]/
word.downcase!
res = case word

when /^[aeiouy]/
word+"way"

when /^([^aeiouy]+)(.*)/
$2+$1+"ay"

else
word

end
leading_cap ? res.capitalize : res

end

def show_pig
@text.value = @text.value.split.collect{|w| pig(w)}.join(" ")

end

def initialize
ph = { 'padx' => 10, 'pady' => 10 } # common options

root = TkRoot.new { title "Pig" }
top = TkFrame.new(root) { background "white" }

TkLabel.new(top) {text 'Enter Text:' ; pack(ph) }

@text = TkVariable.new
TkEntry.new(top, 'textvariable' => @text).pack(ph)

pig_b = TkButton.new(top) { text 'Pig It'; pack ph}
pig_b.command { show_pig }
exit_b = TkButton.new(top) {text 'Exit'; pack ph}
exit_b.command { exit }
top.pack('fill'=>'both', 'side' =>'top')

end
end

PigBox.new
Tk.mainloop

Prepared exclusively for Margus Pau

BINDING EVENTS 246

Geometry Management

In the example code in this chapter, you’ll see references to the wid-
get method pack. That’s a very important call, as it turns out—leave it
off and you’ll never see the widget. pack is a command that tells the
geometry manager to place the widget according to constraints that
we specify. Geometry managers recognize three commands.

Command Placement Specification

pack Flexible, constraint-based placement
place Absolute position
grid Tabular (row/column) position

As pack is the most commonly used command, we’ll use it in our
examples.

Binding Events
Our widgets are exposed to the real world; they get clicked, the mouse moves over
them, the user tabs into them; all these things, and more, generate events that we can
capture. You can create a binding from an event on a particular widget to a block of
code, using the widget’s bind method.

For instance, suppose we’ve created a button widget that displays an image. We’d like
the image to change when the user’s mouse is over the button.

require 'tk'

image1 = TkPhotoImage.new { file "img1.gif" }
image2 = TkPhotoImage.new { file "img2.gif" }

b = TkButton.new(@root) do
image image1
command { exit }
pack

end

b.bind("Enter") { b.configure('image'=>image2) }
b.bind("Leave") { b.configure('image'=>image1) }

Tk.mainloop

First, we create two GIF image objects from files on disk, using TkPhotoImage. Next
we create a button (very cleverly named “b”), which displays the image image1. We
then bind the Enter event so that it dynamically changes the image displayed by the
button to image2 when the mouse is over the button, and the Leave event to revert back
to image1 when the mouse leaves the button.

Prepared exclusively for Margus Pau

CANVAS 247

This example shows the simple events Enter and Leave. But the named event given as
an argument to bind can be composed of several substrings, separated with dashes, in
the order modifier-modifier-type-detail. Modifiers are listed in the Tk reference and
include Button1, Control, Alt, Shift, and so on. Type is the name of the event
(taken from the X11 naming conventions) and includes events such as ButtonPress,
KeyPress, and Expose. Detail is either a number from 1 to 5 for buttons or a keysym
for keyboard input. For instance, a binding that will trigger on mouse release of button 1
while the control key is pressed could be specified as

Control-Button1-ButtonRelease
or

Control-ButtonRelease-1

The event itself can contain certain fields such as the time of the event and the x and y

positions. bind can pass these items to the callback, using event field codes. These are
used like printf specifications. For instance, to get the x and y coordinates on a mouse
move, you’d specify the call to bind with three parameters. The second parameter is
the Proc for the callback, and the third parameter is the event field string.

canvas.bind("Motion", lambda {|x, y| do_motion (x, y)}, "%x %y")

Canvas
Tk provides a Canvas widget with which you can draw and produce PostScript out-
put. Figure 19.1 on the following page shows a simple bit of code (adapted from the
distribution) that will draw straight lines. Clicking and holding button 1 will start a
line, which will be “rubber-banded” as you move the mouse around. When you release
button 1, the line will be drawn in that position.

A few mouse clicks, and you’ve got an instant masterpiece.

As they say, “We couldn’t find the artist, so we had to hang the picture. . . .”

Prepared exclusively for Margus Pau

CANVAS 248

Figure 19.1. Drawing on a Tk Canvas

require 'tk'

class Draw
def do_press(x, y)
@start_x = x
@start_y = y
@current_line = TkcLine.new(@canvas, x, y, x, y)

end

def do_motion(x, y)
if @current_line

@current_line.coords @start_x, @start_y, x, y
end

end

def do_release(x, y)
if @current_line

@current_line.coords @start_x, @start_y, x, y
@current_line.fill 'black'
@current_line = nil

end
end

def initialize(parent)
@canvas = TkCanvas.new(parent)
@canvas.pack
@start_x = @start_y = 0
@canvas.bind("1", lambda {|e| do_press(e.x, e.y)})
@canvas.bind("B1-Motion",

lambda {|x, y| do_motion(x, y)}, "%x %y")
@canvas.bind("ButtonRelease-1",

lambda {|x, y| do_release(x, y)},
"%x %y")

end
end

root = TkRoot.new { title 'Canvas' }
Draw.new(root)
Tk.mainloop

Prepared exclusively for Margus Pau

SCROLLING 249

Scrolling
Unless you plan on drawing very small pictures, the previous example may not be all
that useful. TkCanvas, TkListbox, and TkText can be set up to use scrollbars, so you
can work on a smaller subset of the “big picture.”

Communication between a scrollbar and a widget is bidirectional. Moving the scrollbar
means that the widget’s view has to change; but when the widget’s view is changed by
some other means, the scrollbar has to change as well to reflect the new position.

Since we haven’t done much with lists yet, our scrolling example will use a scrolling list
of text. In the following code fragment, we’ll start by creating a plain old TkListbox
and an associated TkScrollbar. The scrollbar’s callback (set with command) will call
the list widget’s yview method, which will change the value of the visible portion of
the list in the y direction.

After that callback is set up, we make the inverse association: when the list feels the
need to scroll, we’ll set the appropriate range in the scrollbar using TkScrollbar#set.
We’ll use this same fragment in a fully functional program in the next section.

list_w = TkListbox.new(frame) do
selectmode 'single'
pack 'side' => 'left'

end

list_w.bind("ButtonRelease-1") do
busy do
filename = list_w.get(*list_w.curselection)
tmp_img = TkPhotoImage.new { file filename }
scale = tmp_img.height / 100
scale = 1 if scale < 1
image_w.copy(tmp_img, 'subsample' => [scale, scale])
image_w.pack

end
end

scroll_bar = TkScrollbar.new(frame) do
command {|*args| list_w.yview *args }
pack 'side' => 'left', 'fill' => 'y'

end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }

Just One More Thing
We could go on about Tk for another few hundred pages, but that’s another book. The
following program is our final Tk example—a simple GIF image viewer. You can select
a GIF filename from the scrolling list, and a thumb nail version of the image will be
displayed. We’ll point out just a few more things.

Prepared exclusively for Margus Pau

SCROLLING 250

Have you ever used an application that creates a “busy cursor” and then forgets to reset
it to normal? A neat trick in Ruby will prevent this from happening. Remember how
File.new uses a block to ensure that the file is closed after it is used? We can do a
similar thing with the method busy, as shown in the next example.

This program also demonstrates some simple TkListbox manipulations—adding ele-
ments to the list, setting up a callback on a mouse button release,1 and retrieving the
current selection.

So far, we’ve used TkPhotoImage to display images directly, but you can also zoom,
subsample, and show portions of images as well. Here we use the subsample feature to
scale down the image for viewing.

require 'tk'

class GifViewer

def initialize(filelist)
setup_viewer(filelist)

end

def run
Tk.mainloop

end

def setup_viewer(filelist)
@root = TkRoot.new {title 'Scroll List'}
frame = TkFrame.new(@root)

image_w = TkPhotoImage.new
TkLabel.new(frame) do

image image_w
pack 'side'=>'right'

end

list_w = TkListbox.new(frame) do
selectmode 'single'
pack 'side' => 'left'

end

list_w.bind("ButtonRelease-1") do
busy do
filename = list_w.get(*list_w.curselection)
tmp_img = TkPhotoImage.new { file filename }
scale = tmp_img.height / 100
scale = 1 if scale < 1
image_w.copy(tmp_img, 'subsample' => [scale, scale])
image_w.pack

end
end

1. You probably want the button release, not the press, as the widget gets selected on the button press.

Prepared exclusively for Margus Pau

TRANSLATING FROM PERL/TK DOCUMENTATION 251

filelist.each do |name|
list_w.insert('end', name) # Insert each file name into the list

end

scroll_bar = TkScrollbar.new(frame) do
command {|*args| list_w.yview *args }
pack 'side' => 'left', 'fill' => 'y'

end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }
frame.pack

end

Run a block with a 'wait' cursor
def busy
@root.cursor "watch" # Set a watch cursor
yield

ensure
@root.cursor "" # Back to original

end

end

viewer = GifViewer.new(Dir["screenshots/gifs/*.gif"])
viewer.run

Translating from Perl/Tk Documentation
That’s it, you’re on your own now. For the most part, you can easily translate the doc-
umentation given for Perl/Tk to Ruby. There are a few exceptions; some methods are
not implemented, and some extra functionality is undocumented.Until a Ruby/Tk book
comes out, your best bet is to ask on the newsgroup or read the source code.

But in general, it’s pretty easy to see what’s happening. Remember that options may be
given as a hash, or in code block style, and the scope of the code block is within the
TkWidget being used, not your class instance.

Object Creation
In the Perl/Tk mapping, parents are responsible for creating their child widgets. In
Ruby, the parent is passed as the first parameter to the widget’s constructor.

Perl/Tk: $widget = $parent->Widget([option => value])
Ruby: widget = TkWidget.new(parent, option-hash)

widget = TkWidget.new(parent) { code block }

You may not need to save the returned value of the newly created widget, but it’s there
if you do. Don’t forget to pack a widget (or use one of the other geometry calls), or it
won’t be displayed.

Prepared exclusively for Margus Pau

TRANSLATING FROM PERL/TK DOCUMENTATION 252

Options
Perl/Tk: -background => color
Ruby: 'background' => color

{ background color }

Remember that the code block scope is different.

Variable References
Perl/Tk: -textvariable => \$variable

-textvariable => varRef
Ruby: ref = TkVariable.new

'textvariable' => ref
{ textvariable ref }

Use TkVariable to attach a Ruby variable to a widget’s value. You can then use the
value accessors in TkVariable (TkVariable#value and TkVariable#value=) to
affect the contents of the widget directly.

Prepared exclusively for Margus Pau

Chapter 20

Ruby and Microsoft Windows

Ruby runs in a number of different environments. Some of these are Unix-based, and
others are based on the various flavors of Microsoft Windows. Ruby came from people
who were Unix-centric, but over the years it has also developed a whole lot of useful
features in the Windows world, too. In this chapter, we’ll look at these features and
share some secrets to using Ruby effectively under Windows.

Getting Ruby for Windows
Two flavors of Ruby are available for the Windows environment.

The first is a version of Ruby that runs natively—that is, it is just another Windows
application. The easiest way to get this distribution is to use the One-Click Installer,
which loads a ready-made binary distribution onto your box. Follow the links from
http://rubyinstaller.rubyforge.org/ to get the latest version.

If you’re feeling more adventurous, or if you need to compile in libraries that aren’t sup-
plied with the binary distribution, then you can build Ruby from source. You’ll need the
Microsoft VC++ compiler and associated tools to do this. Download the source of Ruby
from http://www.ruby-lang.org , or use CVS to check out the latest development
version. Then read the file win32\README.win32 for instructions.

A second alternative uses an emulation layer called Cygwin. This provides a Unix-
like environment on top of Windows. The Cygwin version of Ruby is the closest to
Ruby running on Unix platforms, but running it means you must also install Cygwin.
If you want to take this route, you can download the Cygwin version of Ruby from
http://ftp.ruby-lang.org/pub/ruby/binaries/cygwin/. You’ll also need Cyg-
win itself. The download link has a pointer to the required dynamic link library (DLL),
or you can go to http://www.cygwin.com and download the full package (but be
careful: you need to make sure the version you get is compatible with the Ruby you
downloaded).

Prepared exclusively for Margus Pau 253

http://rubyinstaller.rubyforge.org/
http://www.ruby-lang.org
http://ftp.ruby-lang.org/pub/ruby/binaries/cygwin/
http://www.cygwin.com

RUNNING RUBY UNDER WINDOWS 254

Which version to choose? When the first edition of this book was produced, the Cygwin
version of Ruby was the distribution of choice. That situation has changed:1.8 the native
build has become more and more functional over time, to the point where this is now
our preferred Windows build of Ruby.

Running Ruby Under Windows
You’ll find two executables in the Ruby Windows distribution.

ruby.exe is meant to be used at a command prompt (a DOS shell), just as in the Unix
version. For applications that read and write to the standard input and output, this is
fine. But this also means that anytime you run ruby.exe, you’ll get a DOS shell even
if you don’t want one—Windows will create a new command prompt window and
display it while Ruby is running. This may not be appropriate behavior if, for example,
you double-click a Ruby script that uses a graphical interface (such as Tk), or if you
are running a Ruby script as a background task or from inside another program.

In these cases, you’ll want to use rubyw.exe. It is the same as ruby.exe except that
it does not provide standard in, standard out, or standard error and does not launch a
DOS shell when run.

The installer (by default) sets file associations so that files with the extension .rb will
automatically use rubyw.exe. By doing this, you can double-click Ruby scripts, and
they will simply run without popping up a DOS shell.

Win32API
If you plan on doing Ruby programming that needs to access some Windows 32 API
functions directly, or that needs to use the entry points in some other DLLs, we’ve got
good news for you—the Win32API library.

As an example, here’s some code that’s part of a larger Windows application used
by our book fulfillment system to download and print invoices and receipts. A Web
application generates a PDF file, which the Ruby script running on Windows downloads
into a local file. The script then uses the print shell command under Windows to print
this file.

arg = "ids=#{resp.intl_orders.join(",")}"
fname = "/temp/invoices.pdf"

site = Net::HTTP.new(HOST, PORT)
site.use_ssl = true
http_resp, = site.get2("/fulfill/receipt.cgi?" + arg,

'Authorization' => 'Basic ' +
["name:passwd"].pack('m').strip)

Prepared exclusively for Margus Pau

WINDOWS AUTOMATION 255

File.open(fname, "wb") {|f| f.puts(http_resp.body) }

shell = Win32API.new("shell32","ShellExecute",
['L','P','P','P','P','L'], 'L')

shell.Call(0, "print", fname, 0,0, SW_SHOWNORMAL)

You create a Win32API object that represents a call to a particular DLL entry point by
specifying the name of the function, the name of the DLL that contains the function,
and the function signature (argument types and return type). In the previous example,
the variable shell wraps the Windows function ShellExecute in the shell22 DLL.
It takes six parameters (a number, four string pointers, and a number) and returns a
number. (These parameter types are described on page 734.) The resulting object can
then be used to make the call to print the file that we downloaded.

Many of the arguments to DLL functions are binary structures of some form. Win32API
handles this by using Ruby String objects to pass the binary data back and forth. You
will need to pack and unpack these strings as necessary (see the example on page 734).

Windows Automation
If groveling around in the low-level Windows API doesn’t interest you, Windows
Automation may—you can use Ruby as a client for Windows Automation thanks to
a Ruby extension called WIN32OLE, written by Masaki Suketa. Win32OLE is part of
the standard Ruby distribution.1.8

Windows Automation allows an automation controller (a client) to issue commands
and queries against an automation server, such as Microsoft Excel, Word, PowerPoint,
and so on.

You can execute a method of an automation server by calling a method of the same
name from a WIN32OLE object. For instance, you can create a new WIN32OLE client that
launches a fresh copy of Internet Explorer and commands it to visit its home page.

ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
ie.gohome

You could also make it navigate to a particular page.

ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
ie.navigate("http://www.pragmaticprogrammer.com")

Methods that aren’t known to WIN32OLE (such as visible, gohome, or navigate) are
passed on to the WIN32OLE#invoke method, which sends the proper commands to the
server.

Prepared exclusively for Margus Pau

WINDOWS AUTOMATION 256

Getting and Setting Properties
You can set and get properties from the server using normal Ruby hash notation. For
example, to set the Rotation property in an Excel chart, you could write

excel = WIN32OLE.new("excel.application")
excelchart = excel.Charts.Add()
...
excelchart['Rotation'] = 45
puts excelchart['Rotation']

An OLE object’s parameters are automatically set up as attributes of the WIN32OLE
object. This means you can set a parameter by assigning to an object attribute.

excelchart.rotation = 45
r = excelchart.rotation

The following example is a modified version of the sample file excel2.rb (found in
the ext/win32/samples directory). It starts Excel, creates a chart, and then rotates it
on the screen. Watch out, Pixar!

require 'win32ole'

-4100 is the value for the Excel constant xl3DColumn.
ChartTypeVal = -4100;

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel['Visible'] = TRUE

excel.Workbooks.Add()
excel.Range("a1")['Value'] = 3
excel.Range("a2")['Value'] = 2
excel.Range("a3")['Value'] = 1

excel.Range("a1:a3").Select()

excelchart = excel.Charts.Add()
excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|
excelchart.rotation = rot
sleep(0.1)

end

excel.ActiveWorkbook.Close(0)
excel.Quit()

Named Arguments
Other automation client languages such as Visual Basic have the concept of named
arguments. Suppose you had a Visual Basic routine with the signature

Song(artist, title, length): rem Visual Basic

Prepared exclusively for Margus Pau

WINDOWS AUTOMATION 257

Instead of calling it with all three arguments in the order specified, you could use named
arguments.

Song title := 'Get It On': rem Visual Basic

This is equivalent to the call Song(nil, ’Get It On’, nil).

In Ruby, you can use this feature by passing a hash with the named arguments.

Song.new('title' => 'Get It On')

for each
Where Visual Basic has a “for each” statement to iterate over a collection of items in a
server, a WIN32OLE object has an each method (which takes a block) to accomplish the
same thing.

require 'win32ole'

excel = WIN32OLE.new("excel.application")

excel.Workbooks.Add
excel.Range("a1").Value = 10
excel.Range("a2").Value = 20
excel.Range("a3").Value = "=a1+a2"

excel.Range("a1:a3").each do |cell|
p cell.Value

end

Events
Your automation client written in Ruby can register itself to receive events from other
programs. This is done using the WIN32OLE_EVENT class. This example (based on code
from the Win32OLE 0.1.1 distribution) shows the use of an event sink that logs the
URLs that a user browses to when using Internet Explorer.

require 'win32ole'

$urls = []

def navigate(url)
$urls << url

end

def stop_msg_loop
puts "IE has exited..."
throw :done

end

def default_handler(event, *args)
case event
when "BeforeNavigate"
puts "Now Navigating to #{args[0]}..."

end
end

Prepared exclusively for Margus Pau

WINDOWS AUTOMATION 258

ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = TRUE
ie.gohome
ev = WIN32OLE_EVENT.new(ie, 'DWebBrowserEvents')

ev.on_event {|*args| default_handler(*args)}
ev.on_event("NavigateComplete") {|url| navigate(url)}
ev.on_event("Quit") {|*args| stop_msg_loop}

catch(:done) do
loop do
WIN32OLE_EVENT.message_loop

end
end

puts "You Navigated to the following URLs: "
$urls.each_with_index do |url, i|
puts "(#{i+1}) #{url}"

end

Optimizing
As with most (if not all) high-level languages, it can be all too easy to churn out code
that is unbearably slow, but that can be easily fixed with a little thought.

With WIN32OLE, you need to be careful with unnecessary dynamic lookups. Where pos-
sible, it is better to assign a WIN32OLE object to a variable and then reference elements
from it, rather than creating a long chain of “.” expressions.

For example, instead of writing

workbook.Worksheets(1).Range("A1").value = 1
workbook.Worksheets(1).Range("A2").value = 2
workbook.Worksheets(1).Range("A3").value = 4
workbook.Worksheets(1).Range("A4").value = 8

we can eliminate the common subexpressions by saving the first part of the expression
to a temporary variable and then make calls from that variable.

worksheet = workbook.Worksheets(1)

worksheet.Range("A1").value = 1
worksheet.Range("A2").value = 2
worksheet.Range("A3").value = 4
worksheet.Range("A4").value = 8

You can also create Ruby stubs for a particular Windows type library. These stubs wrap
the OLE object in a Ruby class with one method per entry point. Internally, the stub
uses the entry point’s number, not name, which speeds access.

Generate the wrapper class using the olegen.rb script in the ext\win32ole\samples
directory, giving it the name of the type library to reflect on.

C:\> ruby olegen.rb 'NetMeeting 1.1 Type Library' >netmeeting.rb

Prepared exclusively for Margus Pau

WINDOWS AUTOMATION 259

The external methods and events of the type library are written as Ruby methods to the
given file. You can then include it in your programs and call the methods directly. Let’s
try some timings.

require 'netmeeting'
require 'benchmark'
include Benchmark

bmbm(10) do |test|

test.report("Dynamic") do
nm = WIN32OLE.new('NetMeeting.App.1')
10000.times { nm.Version }

end

test.report("Via proxy") do
nm = NetMeeting_App_1.new
10000.times { nm.Version }

end
end

produces:

Rehearsal ---
Dynamic 0.600000 0.200000 0.800000 (1.623000)
Via proxy 0.361000 0.140000 0.501000 (0.961000)
------------------------------------ total: 1.301000sec

user system total real
Dynamic 0.471000 0.110000 0.581000 (1.522000)
Via proxy 0.470000 0.130000 0.600000 (0.952000)

The proxy version is more than 40 percent faster than the code that does the dynamic
lookup.

More Help
If you need to interface Ruby to Windows NT, 2000, or XP, you may want to have a look
at Daniel Berger’s Win32Utils project (http://rubyforge.org/projects/win32utils/).
There you’ll find modules for interfacing to the Windows’ clipboard, event log, sched-
uler, and so on.

Also, the DL library (described briefly on page 648) allows Ruby pragrams to invoke
methods in dynamically loaded shared objects. On Windows, this means that your Ruby
code can load and invoke entry points in a Windows DLL. For example, the following
code, taken from the DL source code in the standard Ruby distribution, pops up a mes-
sage box on a Windows machine, and determines which button the user clicked.

require 'dl'

User32 = DL.dlopen("user32")

MB_OKCANCEL = 1

Prepared exclusively for Margus Pau

http://rubyforge.org/projects/win32utils/

WINDOWS AUTOMATION 260

message_box = User32['MessageBoxA', 'ILSSI']
r, rs = message_box.call(0, 'OK?', 'Please Confirm', MB_OKCANCEL)

case r
when 1
print("OK!\n")

when 2
print("Cancel!\n")

end

This code opens the User32 DLL. It then creates a Ruby object, message_box, that
wraps the MessageBoxA entry point. The second paramater, "ILSSI", declares that the
method returns an Integer, and takes a Long, two Strings, and an Integer as parameters.

The wrapper object is then user to call the message box entry point in the DLL. The
return values are the result (in this case, the identifier of the button pressed by the user)
and an array of the parameters passed in (which we ignore).

Prepared exclusively for Margus Pau

Chapter 21

Extending Ruby

It is easy to extend Ruby with new features by writing code in Ruby. But every now and
then you need to interface to things at a lower level. Once you start adding in low-level
code written in C, the possibilities are endless. Having said this, the stuff in this chapter
is pretty advanced and should probably be skipped the first time through the book.

Extending Ruby with C is pretty easy. For instance, suppose we are building a custom
Internet-ready jukebox for the Sunset Diner and Grill. It will play MP3 audio files from
a hard disk or audio CDs from a CD jukebox. We want to be able to control the jukebox
hardware from a Ruby program. The hardware vendor gave us a C header file and a
binary library to use; our job is to construct a Ruby object that makes the appropriate
C function calls.

Much of the information in this chapter is taken from the README.EXT file that is
included in the distribution. If you are planning on writing a Ruby extension, you may
want to refer to that file for more details as well as the latest changes.

Your First Extension
Just to introduce extension writing, let’s write one. This extension is purely a test of the
process—it does nothing that you couldn’t do in pure Ruby. We’ll also present some
stuff without too much explanation—all the messy details will be given later.

The extension we write will have the same functionality as the following Ruby class.

class MyTest
def initialize
@arr = Array.new

end
def add(obj)
@arr.push(obj)

end
end

Prepared exclusively for Margus Pau 261

YOUR FIRST EXTENSION 262

That is, we’ll be writing an extension in C that is plug-compatible with that Ruby class.
The equivalent code in C should look somewhat familiar.

#include "ruby.h"

static int id_push;

static VALUE t_init(VALUE self)
{
VALUE arr;

arr = rb_ary_new();
rb_iv_set(self, "@arr", arr);
return self;

}

static VALUE t_add(VALUE self, VALUE obj)
{
VALUE arr;

arr = rb_iv_get(self, "@arr");
rb_funcall(arr, id_push, 1, obj);
return arr;

}

VALUE cTest;

void Init_my_test() {
cTest = rb_define_class("MyTest", rb_cObject);
rb_define_method(cTest, "initialize", t_init, 0);
rb_define_method(cTest, "add", t_add, 1);
id_push = rb_intern("push");

}

Let’s go through this example in detail, as it illustrates many of the important concepts
in this chapter. First, we need to include the header file ruby.h to obtain the necessary
Ruby definitions.

Now look at the last function, Init_my_test. Every extension defines a C global func-
tion named Init_name. This function will be called when the interpreter first loads the
extension name (or on startup for statically linked extensions). It is used to initialize
the extension and to insinuate it into the Ruby environment. (Exactly how Ruby knows
that an extension is called name we’ll cover later.) In this case, we define a new class
named MyTest, which is a subclass of Object (represented by the external symbol
rb_cObject; see ruby.h for others).

Next we set up add and initialize as two instance methods for class MyTest. The
calls to rb_define_method establish a binding between the Ruby method name and
the C function that will implement it. If Ruby code calls the add method on one of our
objects, the interpreter will in turn call the C function t_add with one argument.

Similarly, when new is called for this class, Ruby will construct a basic object and then
call initialize, which we have defined here to call the C function t_init with no
(Ruby) arguments.

Prepared exclusively for Margus Pau

YOUR FIRST EXTENSION 263

Now go back and look at the definition of t_init. Even though we said it took no
arguments, it has a parameter here! In addition to any Ruby arguments, every method
is passed an initial VALUE argument that contains the receiver for this method (the equiv-
alent of self in Ruby code).

The first thing we’ll do in t_init is create a Ruby array and set the instance variable
@arr to point to it. Just as you would expect if you were writing Ruby source, ref-
erencing an instance variable that doesn’t exist creates it. We then return a pointer to
ourselves.

WARNING: Every C function that is callable from Ruby must return a VALUE, even if
it’s just Qnil. Otherwise, a core dump (or GPF) will be the likely result.

Finally, the function t_add gets the instance variable @arr from the current object and
calls Array#push to push the passed value onto that array. When accessing instance
variables in this way, the @ prefix is mandatory—otherwise the variable is created but
cannot be referenced from Ruby.

Despite the extra, clunky syntax that C imposes, you’re still writing in Ruby—you can
manipulate objects using all the method calls you’ve come to know and love, with the
added advantage of being able to craft tight, fast code when needed.

Building Our Extension
We’ll have a lot more to say about building extensions later. For now, though, all we
have to do is follow these steps.

1. Create a file called extconf.rb in the same directory as our my_text.c C source
file. The file extconf.rb should contain the following two lines.

require 'mkmf'
create_makefile("my_test")

2. Run extconf.rb. This will generate a Makefile.

% ruby extconf.rb
creating Makefile

3. Use make to build the extension. This is what happens on an OS X system.

% make
gcc -fno-common -g -O2 -pipe -fno-common -I.

-I/usr/lib/ruby/1.9/powerpc-darwin7.4.0
-I/usr/lib/ruby/1.9/powerpc-darwin7.4.0 -I. -c my_test.c

cc -dynamic -bundle -undefined suppress -flat_namespace
-L'/usr/lib' -o my_test.bundle my_test.o -ldl -lobjc

The result of all this is the extension, all nicely bundled up in a shared object (a .so,
.dll, or [on OS X] a .bundle).

Prepared exclusively for Margus Pau

RUBY OBJECTS IN C 264

Running Our Extension
We can use our extension from Ruby simply by require-ing it dynamically at runtime
(on most platforms). We can wrap this up in a test to verify that things are working as
we expect.

require 'my_test'
require 'test/unit'

class TestTest < Test::Unit::TestCase

def test_test
t = MyTest.new
assert_equal(Object, MyTest.superclass)
assert_equal(MyTest, t.class)

t.add(1)
t.add(2)

assert_equal([1,2], t.instance_eval("@arr"))
end

end

produces:

Finished in 0.002589 seconds.
1 tests, 3 assertions, 0 failures, 0 errors

Once we’re happy that our extension works, we can then install it globally by running
make install.

Ruby Objects in C
When we wrote our first extension, we cheated, because it didn’t really do anything
with the Ruby objects—it didn’t do calculations based on Ruby numbers, for example.
Before we can do this, we need to find out how to represent and access Ruby data types
from within C.

Everything in Ruby is an object, and all variables are references to objects. When we’re
looking at Ruby objects from within C code, the situation is pretty much the same.
Most Ruby objects are represented as C pointers to an area in memory that contains the
object’s data and other implementation details. In C code, all these references are via
variables of type VALUE, so when you pass Ruby objects around, you’ll do it by passing
VALUEs.

This has one exception. For performance reasons, Ruby implements Fixnums, Symbols,
true, false, and nil as so-called immediate values. These are still stored in variables
of type VALUE, but they aren’t pointers. Instead, their value is stored directly in the
variable.

Prepared exclusively for Margus Pau

RUBY OBJECTS IN C 265

So sometimes VALUEs are pointers, and sometimes they’re immediate values. How does
the interpreter pull off this magic? It relies on the fact that all pointers point to areas of
memory aligned on 4- or 8-byte boundaries. This means that it can guarantee that the
low 2 bits in a pointer will always be zero. When it wants to store an immediate value,
it arranges to have at least one of these bits set, allowing the rest of the interpreter code
to distinguish immediate values from pointers. Although this sounds tricky, it’s actually
easy to use in practice, largely because the interpreter comes with a number of macros
and methods that simplify working with the type system.

This is how Ruby implements object-oriented code in C: A Ruby object is an allocated
structure in memory that contains a table of instance variables and information about
the class. The class itself is another object (an allocated structure in memory) that
contains a table of the methods defined for that class. Ruby is built upon this foundation.

Working With Immediate Objects
As we said above, immediate values are not pointers: Fixnum, Symbol, true, false,
and nil are stored directly in VALUE.

Fixnum values are stored as 31-bit numbers1 that are formed by shifting the original
number left 1 bit and then setting the LSB, or least significant bit (bit 0), to 1. When
VALUE is used as a pointer to a specific Ruby structure, it is guaranteed always to have
an LSB of zero; the other immediate values also have LSBs of zero. Thus, a simple bit
test can tell you whether you have a Fixnum. This test is wrapped in a macro, FIXNUM_P.
Similar tests let you check for other immediate values.

FIXNUM_P(value) → nonzero if value is a Fixnum
SYMBOL_P(value) → nonzero if value is a Symbol
NIL_P(value) → nonzero if value is nil
RTEST(value) → nonzero if value is neither nil nor false

Several useful conversion macros for numbers as well as other standard data types are
shown in Table 21.1 on the following page.

The other immediate values (true, false, and nil) are represented in C as the con-
stants Qtrue, Qfalse, and Qnil, respectively. You can test VALUE variables against
these constants directly or use the conversion macros (which perform the proper cast-
ing).

Working with Strings
In C, we’re used to working with null-terminated strings. Ruby strings, however, are
more general and may well included embedded nulls. The safest way to work with

1. Or 63-bit on wider CPU architectures.

Prepared exclusively for Margus Pau

RUBY OBJECTS IN C 266

Table 21.1. C/Ruby data type conversion functions and macros

C Data Types to Ruby Objects:

INT2NUM(int) → Fixnum or Bignum
INT2FIX(int) → Fixnum (faster)
LONG2NUM(long → Fixnum or Bignum
LONG2FIX(int) → Fixnum (faster)
LL2NUM(long long) → Fixnum or Bignum (if native

system supports long long type)
ULL2NUM(long long) → Fixnum or Bignum (if native

system supports long long type)
CHR2FIX(char) → Fixnum
rb_str_new2(char *) → String
rb_float_new(double) → Float

Ruby Objects to C Data Types:

int NUM2INT(Numeric) (Includes type check)
int FIX2INT(Fixnum) (Faster)

unsigned int NUM2UINT(Numeric) (Includes type check)
unsigned int FIX2UINT(Fixnum) (Includes type check)

long NUM2LONG(Numeric) (Includes type check)
long FIX2LONG(Fixnum) (Faster)

unsigned long NUM2ULONG(Numeric) (Includes type check)
char NUM2CHR(Numeric or String) (Includes type check)

double NUM2DBL(Numeric)
see text for strings. . .

Ruby strings, therefore, is to do what the interpreter does and use both a pointer and a
length. In fact, Ruby String objects are actually references to an RString structure,
and the RString structure contains both a length and a pointer field. You can access
the structure via the RSTRING macro.

VALUE str;
RSTRING(str)->len → length of the Ruby string
RSTRING(str)->ptr → pointer to string storage

However, life is slightly more complicated than that. Rather than using the VALUE
object directly when you need a string value, you probably want to call the1.8 method
StringValue, passing it the original value. It’ll return an object that you can use
RSTRING on or throw an exception if it can’t derive a string from the original. This
is all part of Ruby 1.8’s duck typing initiative, described in more detail on pages 280
and 349. The StringValue method checks to see if its operand is a String. If not, it
tries to invoke to_str on the object, throwing a TypeError exception if it can’t.

Prepared exclusively for Margus Pau

RUBY OBJECTS IN C 267

So, if you want to write some code that iterates over all the characters in a String
object, you may write:

static VALUE iterate_over(VALUE original_str) {
int i;
char *p
VALUE str = StringValue(original_str);

p = RSTRING(str)->ptr; // may be null

for (i = 0; i < RSTRING(str)->len; i++, p++) {

// process *p

}

return str;
}

If you want to bypass the length, and just access the underlying string pointer, you can
use the conveniencemethod StringValuePtr, which both resolves the string reference
and then returns the C pointer to the contents.

If you plan to use a string to access or control some external resource, you proba-
bly want to hook into Ruby’s tainting mechanism. In this case you’ll use the method
SafeStringValue, which works like StringValue but throws an exception if its argu-
ment is tainted and the safe level is greater than zero.

Working with Other Objects
When VALUEs are not immediate, they are pointers to one of the defined Ruby
object structures—you can’t have a VALUE that points to an arbitrary area of mem-
ory. The structures for the basic built-in classes are defined in ruby.h and are named
RClassname: RArray, RBignum, RClass, RData, RFile, RFloat, RHash, RObject,
RRegexp, RString, and RStruct.

You can check to see what type of structure is used for a particular VALUE in a number
of ways. The macro TYPE(obj) will return a constant representing the C type of the
given object: T_OBJECT, T_STRING, and so on. Constants for the built-in classes are
defined in ruby.h. Note that the type we are referring to here is an implementation
detail—it is not the same as the class of an object.

If you want to ensure that a value pointer points to a particular structure, you can use
the macro Check_Type, which will raise a TypeError exception if value is not of the
expected type (which is one of the constants T_STRING, T_FLOAT, and so on).

Check_Type(VALUE value, int type)

Again, note that we are talking about “type” as the C structure that represents a partic-
ular built-in type. The class of an object is a different beast entirely. The class objects
for the built-in classes are stored in C global variables named rb_cClassname (for
instance, rb_cObject); modules are named rb_mModulename.

Prepared exclusively for Margus Pau

RUBY OBJECTS IN C 268

Pre 1.8 String Access

Prior to Ruby 1.81.8 , if a VALUE was supposed to contain a string, you’d
access the RSTRING fields directly, and that would be it. In 1.8, how-
ever, the gradual introduction of duck typing, along with various opti-
mizations, mean that this approach probably won’t work the way you’d
like. In particular, the ptr field of an STRING object might be null for
zero-length strings. If you use the 1.8 StringValue method, it handles
this case, resetting null pointers to reference instead a single, shared,
empty string.

So, how do you write an extension that will work with both Ruby 1.6
and 1.8? Carefully, and with macros. Perhaps something such as this.

#if !defined(StringValue)
define StringValue(x) (x)
#endif
#if !defined(StringValuePtr)
define StringValuePtr(x) ((STR2CSTR(x)))
#end

This code defines the 1.8 StringValue and StringValuePtr macros
in terms of the older 1.6 counterparts. If you then write code in terms
of these macros, it should compile and run on both older and newer
interpreters.

If you want your code to have 1.8 duck-typing behavior, even when
running under 1.6, you may want to define StringValue slightly differ-
ently. The difference between this and the previous implementation is
described on page 280.

#if !defined(StringValue)
define StringValue(x) do { \

if (TYPE(x) != T_STRING) x = rb_str_to_str(x); \
} while (0)

#end

It isn’t advisable to alter with the data in these C structures directly, however—you
may look, but don’t touch. Instead, you’ll normally use the supplied C functions to
manipulate Ruby data (we’ll talk more about this in just a moment).

However, in the interests of efficiency you may need to dig into these structures to
obtain data. To dereference members of these C structures, you have to cast the generic
VALUE to the proper structure type. ruby.h contains a number of macros that perform
the proper casting for you, allowing you to dereference structure members easily. These
macros are named RCLASSNAME, as in RSTRING or RARRAY. We’ve already seen the use
of RSTRING when working with strings. You can do the same with arrays.

Prepared exclusively for Margus Pau

RUBY OBJECTS IN C 269

VALUE arr;
RARRAY(arr)->len → length of the Ruby array
RARRAY(arr)->capa → capacity of the Ruby array
RARRAY(arr)->ptr → pointer to array storage

There are similar accessors for hashes (RHASH), files (RFILE), and so on. Having said
all this, you need to be careful about building too much dependence on checking types
into your extension code. We have more to say about extensions and the Ruby type
system on page 280.

Global Variables
Most of the time, your extensions will implement classes, and the Ruby code uses those
classes. The data you share between the Ruby code and the C code will be wrapped
tidily inside objects of the class. This is how it should be.

Sometimes, though, you may need to implement a global variable, accessible by both
your C extension and by Ruby code.

The easiest way to do this is to have the variable be a VALUE (that is, a Ruby object).
You then bind the address of this C variable to the name of a Ruby variable. In this case,
the $ prefix is optional, but it helps clarify that this is a global variable. And remember:
making a stack-based variable a Ruby global is not going to work (for long).

static VALUE hardware_list;

static VALUE Init_SysInfo() {
rb_define_class(....);

hardware_list = rb_ary_new();
rb_define_variable("$hardware", &hardware_list);
...
rb_ary_push(hardware_list, rb_str_new2("DVD"));
rb_ary_push(hardware_list, rb_str_new2("CDPlayer1"));
rb_ary_push(hardware_list, rb_str_new2("CDPlayer2"));

}

The Ruby side can then access the C variable hardware_list as $hardware.

$hardware → ["DVD", "CDPlayer1", "CDPlayer2"]

Sometimes, though, life is more complicated. Perhaps you want to define a global vari-
able whose value must be calculated when it is accessed. You do this by defining hooked
and virtual variables. A hooked variable is a real variable that is initialized by a named
function when the corresponding Ruby variable is accessed. Virtual variables are sim-
ilar but are never stored: their value purely comes from evaluating the hook function.
See the API section that begins on page 294 for details.

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 270

If you create a Ruby object from C and store it in a C global variable without export-
ing it to Ruby, you must at least tell the garbage collector about it, lest ye be reaped
inadvertently.

static VALUE obj;
// ...
obj = rb_ary_new();
rb_global_variable(obj);

The Jukebox Extension
We’ve covered enough of the basics now to return to our jukebox example—interfacing
C code with Ruby and sharing data and behavior between the two worlds.

Wrapping C Structures
We’ve got the vendor’s library that controls the audio CD jukebox units, and we’re
ready to wire it into Ruby. The vendor’s header file looks like this.

typedef struct _cdjb {
int statusf;
int request;
void *data;
char pending;
int unit_id;
void *stats;

} CDJukebox;

// Allocate a new CDJukebox structure
CDJukebox *new_jukebox(void);

// Assign the Jukebox to a player
void assign_jukebox(CDJukebox *jb, int unit_id);

// Deallocate when done (and take offline)
void free_jukebox(CDJukebox *jb);

// Seek to a disc, track and notify progress
void jukebox_seek(CDJukebox *jb,

int disc,
int track,
void (*done)(CDJukebox *jb, int percent));

// ... others...

// Report a statistic
double get_avg_seek_time(CDJukebox *jb);

This vendor has its act together; while they might not admit it, the code is written
with an object-oriented flavor. We don’t know what all those fields mean within the
CDJukeBox structure, but that’s OK—we can treat it as an opaque pile of bits. The
vendor’s code knows what to do with it; we just have to carry it around.

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 271

Anytime you have a C-only structure that you would like to handle as a Ruby object,
you should wrap it in a special, internal Ruby class called DATA (type T_DATA). Two
macros do this wrapping, and one macro retrieves your structure back out again.

API: C Data Type Wrapping

VALUE Data_Wrap_Struct(VALUE class, void (*mark)(),
void (*free)(), void *ptr)

Wraps the given C data type ptr, registers the two garbage collection
routines (see below), and returns a VALUE pointer to a genuine Ruby
object. The C type of the resulting object is T_DATA, and its Ruby
class is class.

VALUE Data_Make_Struct(VALUE class, c-type, void (*mark)(),
void (*free)(), c-type *)

Allocates and sets to zero a structure of the indicated type first and
then proceeds as Data_Wrap_Struct. c-type is the name of the C
data type that you’re wrapping, not a variable of that type.

Data_Get_Struct(VALUE obj,c-type,c-type *)

Returns the original pointer. This macro is a type-safe wrapper
around the macro DATA_PTR(obj), which evaluates the pointer.

The object created by Data_Wrap_Struct is a normal Ruby object, except that it has
an additional C data type that can’t be accessed from Ruby. As you can see in Fig-
ure 21.1 on the following page, this C data type is separate from any instance variables
that the object contains. But since it’s a separate thing, how do you get rid of it when
the garbage collector claims this object? What if you have to release some resource
(close some file, clean up some lock or IPC mechanism, and so on)?

Ruby uses a mark and sweep garbage collection scheme. During the mark phase, Ruby
looks for pointers to areas of memory. It marks these areas as “in use” (because some-
thing is pointing to them). If those areas themselves contain more pointers, the memory
these pointers reference is also marked, and so on. At the end of the mark phase, all
memory that is referenced will have been marked, and any orphaned areas will not have
a mark. At this point the sweep phase starts, freeing off memory that isn’t marked.

To participate in Ruby’s mark-and-sweep garbage collection process, you must define
a routine to free your structure and possibly a routine to mark any references from
your structure to other structures. Both routines take a void pointer, a reference to your
structure. The mark routine will be called by the garbage collector during its “mark”
phase. If your structure references other Ruby objects, then your mark function needs
to identify these objects using rb_gc_mark(value). If the structure doesn’t reference
other Ruby objects, you can simply pass 0 as a function pointer.

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 272

Figure 21.1. Wrapping objects around C data types

jukebox1
@unit: 1

C
struct

CDPlayer

jukebox2
@unit: 2

C
struct

CDPlayer

When the object needs to be disposed of, the garbage collector will call the free rou-
tine to free it. If you have allocated any memory yourself (for instance, by using
Data_Make_Struct), you’ll need to pass a free function—even if it’s just the stan-
dard C library’s free routine. For complex structures that you have allocated, your free
function may need to traverse the structure to free all the allocated memory.

Let’s look at our CD player interface. The vendor library passes the information around
between its various functions in a CDJukebox structure. This structure represents the
state of the jukebox and therefore is a good candidate for wrapping within our Ruby
class. You create new instances of this structure by calling the library’s CDPlayerNew
method. You’d then want to wrap that created structure inside a new CDPlayer Ruby
object. A fragment of code to do this may look like the following. (We’ll talk about that
magic klass parameter in a minute.)

CDJukebox *jukebox;
VALUE obj;

// Vendor library creates the Jukebox
jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object
obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

Once this code had executed, obj would hold a reference to a newly allocated CDPlayer
Ruby object, wrapping a new CDJukebox C structure. Of course, to get this code to
compile, we’d need to do some more work. We’d have to define the CDPlayer class
and store a reference to it in the variable cCDPlayer. We’d also have to define the
function to free off our object, cdplayer_free. That’s easy: it just calls the vendor
library dispose method.

static void cd_free(void *p) {
free_jukebox(p);

}

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 273

However, code fragments do not a program make. We need to package all this stuff in
a way that integrates it into the interpreter. And to do that, we need to look at some of
the conventions the interpreter uses.

Object Creation
Ruby 1.8 has rationalized the creation and initialization of objects.1.8 Although the old
ways still work, the new way, using allocation functions, is much tidier (and is less
likely to be deprecated in the future).

The basic idea is simple. Let’s say you’re creating an object of class CDPlayer in your
Ruby program.

cd = CDPlayer.new

Underneath the covers, the interpreter calls the class method new for CDPlayer. As
CDPlayer hasn’t defined a method new, Ruby looks into its parent, class Class.

The implementation of new in class Class is fairly simple: it allocates memory for the
new object and then calls the object’s initialize method to initialize that memory.

So, if our CDPlayer extension is to be a good Ruby citizen, it should work within this
framework. This means that we’ll need to implement an allocation function and an
initialize method.

Allocation Functions

The allocation function is responsible for creating the memory used by your object. If
the object you’re implementing doesn’t use any data other that Ruby instance variables,
then you don’t need to write an allocation function—Ruby’s default allocator will work
just fine. But if your class wraps a C structure, you’ll need to allocate space for that
structure in the allocation function. The allocation function gets passed the class of the
object being allocated. In our case it will in all likelihood be a cCDPlayer, but we’ll
use the parameter as given, as this means that we’ll work correctly if subclassed.

static VALUE cd_alloc(VALUE klass) {
CDJukebox *jukebox;
VALUE obj;

// Vendor library creates the Jukebox
jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object
obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

return obj;
}

You then need to register your allocation function in your class’s initialization code.

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 274

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
// ...

}

Most objects probably need to define an initializer too. The allocation function creates
an empty, uninitialized object, and we’ll need to fill in specific values. In the case of the
CD player, the constructor is called with the unit number of the player to be associated
with this object.

static VALUE cd_initialize(VALUE self, VALUE unit) {
int unit_id;
CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);

return self;
}

One of the reasons for this multistep object creation protocol is that it lets the interpreter
handle situations where objects have to be created by “back-door means.” One example
is when objects are being deserialized from their marshaled form. Here, the interpreter
needs to create an empty object (by calling the allocator), but it cannot call the initializer
(as it has no knowledge of the parameters to use). Another common situation is when
objects are duplicated or cloned.

One further issue lurks here. Because users can choose to bypass either the construc-
tor, you need to ensure that your allocation code leaves the returned object in a valid
state. It may not contain all the information it would have had, had it been set up be
#initialize, but it at least needs to be usable.

Cloning Objects
All Ruby objects can be copied using one of two methods, dup and clone. The two
methods are similar: Both produce a new instance of their receiver’s class by calling
the allocation function. Then they copy across any instance variables from the original.
clone then goes a bit further and copies the original’s singleton class (if it has one) and
flags (such as the flag that indicates that an object is frozen). You can think of dup as
being a copy of the contents and clone as being a copy of the full object.

However, the Ruby interpreter doesn’t know how to handle copying the internal state of
objects that you write as C extensions. For example, if your object wraps a C structure
that contains an open file descriptor, it’s up to the semantics of your implementation
whether that descriptor should simply be copied to the new object or whether a new file
descriptor should be opened.

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 275

Pre-1.8 Object Allocation

Prior to Ruby 1.8, if you wanted to allocate additional space in an
object,1.8 either you had to put that code in the initialize method,
or you had to define a new method for your class. Guy Decoux rec-
ommends the following hybrid approach for maximizing compatibility
between 1.6 and 1.8 extensions.

static VALUE cd_alloc(VALUE klass) {
// same as before

}

static VALUE cd_new(int argc, VALUE *argv, VALUE klass) {
VALUE obj = rb_funcall2(klass,

rb_intern("allocate"), 0, 0);
rb_obj_call_init(obj, argc, argv);
return obj;

}

void init_CDPlayer() {

// ...

#if HAVE_RB_DEFINE_ALLOC_FUNC
// 1.8 allocation
rb_define_alloc_func(cCDPlayer, cd_alloc);

#else
// define manual allocation function for 1.6
rb_define_singleton_method(cCDPlayer, "allocate",

cd_alloc, 0);
#endif
rb_define_singleton_method(cCDPlayer, "new", cd_new, -1);

// ...
}

If you’re writing code that should run on both recent and old versions
of Ruby, you’ll need to take an approach similar to this. However, you’ll
probably also need to handle cloning and duplication, and you’ll need
to consider what happens when your object gets marshaled.

To handle this, the interpreter delegates to your code the responsibility of copying the
internal state of objects that you implement. After copying the object’s instance vari-
ables, the interpreter invokes the new object’s initialize_copy method, passing in a
reference to the original object. It’s up to you to implement meaningful semantics in
this method.

For our CDPlayer class we’ll take a fairly simple approach to the cloning issue: we’ll
simply copy across the CDJukebox structure from the original object.

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 276

There’s a wee chunk of strange code in this example. To test that the original object
is indeed something we can clone the new one from, the code checks to see that the
original

1. has a TYPE of T_DATA (which means that it’s a noncore object), and

2. has a free function with the same address as our free function.

This is a relatively high-performance way of verifying that the original object is com-
patible with our own (as long as you don’t share free functions between classes). An
alternative, which is slower, would be to use rb_obj_is_kind_of and do a direct test
on the class.

static VALUE cd_init_copy(VALUE copy, VALUE orig) {

CDJukebox *orig_jb;
CDJukebox *copy_jb;

if (copy == orig)
return copy;

// we can initialize the copy from other CDPlayers
// or their subclasses only

if (TYPE(orig) != T_DATA ||
RDATA(orig)->dfree != (RUBY_DATA_FUNC)cd_free) {

rb_raise(rb_eTypeError, "wrong argument type");
}

// copy all the fields from the original
// object's CDJukebox structure to the
// new object

Data_Get_Struct(orig, CDJukebox, orig_jb);
Data_Get_Struct(copy, CDJukebox, copy_jb);
MEMCPY(copy_jb, orig_jb, CDJukebox, 1);

return copy;
}

Our copy method does not have to allocate a wrapped structure to receive the original
objects CDJukebox structure: the cd_alloc method has already taken care of that.

Note that in this case it’s correct to do type checking based on classes: we need the
original object to have a wrapped CDJukebox structure, and the only objects that have
one of these are derived from class CDPlayer.

Putting It All Together
OK, finally we’re ready to write all the code for our CDPlayer class.

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 277

// Helper function to free a vendor CDJukebox
static void cd_free(void *p) {
free_jukebox(p);

}

// Allocate a new CDPlayer object, wrapping
// the vendor's CDJukebox structure

static VALUE cd_alloc(VALUE klass) {
CDJukebox *jukebox;
VALUE obj;

// Vendor library creates the Jukebox
jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object
obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

return obj;
}

// Assign the newly created CDPLayer to a
// particular unit
static VALUE cd_initialize(VALUE self, VALUE unit) {
int unit_id;
CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);

return self;
}

// Copy across state (used by clone and dup). For jukeboxes, we
// actually create a new vendor object and set its unit number from
// the old

static VALUE cd_init_copy(VALUE copy, VALUE orig) {

CDJukebox *orig_jb;
CDJukebox *copy_jb;

if (copy == orig)
return copy;

// we can initialize the copy from other CDPlayers or their
// subclasses only

if (TYPE(orig) != T_DATA ||
RDATA(orig)->dfree != (RUBY_DATA_FUNC)cd_free) {

rb_raise(rb_eTypeError, "wrong argument type");
}

// copy all the fields from the original object's CDJukebox
// structure to the new object

Data_Get_Struct(orig, CDJukebox, orig_jb);
Data_Get_Struct(copy, CDJukebox, copy_jb);
MEMCPY(copy_jb, orig_jb, CDJukebox, 1);

return copy;
}

Prepared exclusively for Margus Pau

THE JUKEBOX EXTENSION 278

// The progress callback yields to the caller the percent complete
static void progress(CDJukebox *rec, int percent) {

if (rb_block_given_p()) {
if (percent > 100) percent = 100;
if (percent < 0) percent = 0;
rb_yield(INT2FIX(percent));

}
}

// Seek to a given part of the track, invoking the progress callback
// as we go
static VALUE
cd_seek(VALUE self, VALUE disc, VALUE track) {

CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);

jukebox_seek(jb,
NUM2INT(disc),
NUM2INT(track),
progress);

return Qnil;
}

// Return the average seek time for this unit
static VALUE
cd_seek_time(VALUE self)
{
double tm;
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
tm = get_avg_seek_time(jb);
return rb_float_new(tm);

}

// Return this player's unit number
static VALUE
cd_unit(VALUE self) {

CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);

return INT2NUM(jb->unit_id);;
}

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);

rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);
rb_define_method(cCDPlayer, "initialize_copy", cd_init_copy, 1);

rb_define_method(cCDPlayer, "seek", cd_seek, 2);
rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);
rb_define_method(cCDPlayer, "unit", cd_unit, 0);

}

Prepared exclusively for Margus Pau

MEMORY ALLOCATION 279

Now we can control our jukebox from Ruby in a nice, object-oriented way.

require 'CDPlayer'
p = CDPlayer.new(13)
puts "Unit is #{p.unit}"
p.seek(3, 16) {|x| puts "#{x}% done" }
puts "Avg. time was #{p.seek_time} seconds"

p1 = p.dup
puts "Cloned unit = #{p1.unit}"

produces:

Unit is 13
26% done
79% done
100% done
Avg. time was 1.2 seconds
Cloned unit = 13

This example demonstrates most of what we’ve talked about so far, with one additional
neat feature. The vendor’s library provided a callback routine—a function pointer that
is called every so often while the hardware is grinding its way to the next disc. We’ve
set that up here to run a code block passed as an argument to seek. In the progress
function, we check to see if there is an iterator in the current context and, if there is,
run it with the current percent done as an argument.

Memory Allocation
You may sometimes need to allocate memory in an extension that won’t be used for
object storage—perhaps you’ve got a giant bitmap for a Bloom filter, an image, or a
whole bunch of little structures that Ruby doesn’t use directly.

To work correctly with the garbage collector, you should use the following memory
allocation routines. These routines do a little bit more work than the standard malloc.
For instance, if ALLOC_N determines that it cannot allocate the desired amount of mem-
ory, it will invoke the garbage collector to try to reclaim some space. It will raise a
NoMemError if it can’t or if the requested amount of memory is invalid.

API: Memory Allocation

type * ALLOC_N(c-type, n)

Allocates n c-type objects, where c-type is the literal name of the C
type, not a variable of that type.

type * ALLOC(c-type)

Allocates a c-type and casts the result to a pointer of that type.

Prepared exclusively for Margus Pau

RUBY TYPE SYSTEM 280

REALLOC_N(var, c-type, n)

Reallocates n c-types and assigns the result to var, a pointer to a
variable of type c-type.

type * ALLOCA_N(c-type, n)

Allocates memory for n objects of c-type on the stack—this memory
will be automatically freed when the function that invokes ALLOCA_N
returns.

Ruby Type System
In Ruby, we1.8 rely less on the type (or class) on an object and more on its capabilities.
This is called duck typing. We describe it in more detail in Chapter 23 on page 349
You’ll find many examples of this if you examine the source code for the interpreter
itself. For example, the following code implements the Kernel.exec method.

VALUE
rb_f_exec(argc, argv)

int argc;
VALUE *argv;

{
VALUE prog = 0;
VALUE tmp;

if (argc == 0) {
rb_raise(rb_eArgError, "wrong number of arguments");

}

tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {

if (RARRAY(tmp)->len != 2) {
rb_raise(rb_eArgError, "wrong first argument");

}
prog = RARRAY(tmp)->ptr[0];
SafeStringValue(prog);
argv[0] = RARRAY(tmp)->ptr[1];

}
if (argc == 1 && prog == 0) {

VALUE cmd = argv[0];

SafeStringValue(cmd);
rb_proc_exec(RSTRING(cmd)->ptr);

}
else {

proc_exec_n(argc, argv, prog);
}
rb_sys_fail(RSTRING(argv[0])->ptr);
return Qnil; /* dummy */

}

Prepared exclusively for Margus Pau

RUBY TYPE SYSTEM 281

The first parameter to this method may be a string or an array containing two strings.
However, the code doesn’t explicitly check the type of the argument. Instead, it first
calls rb_check_array_type, passing in the argument. What does this method do?
Let’s see.

VALUE
rb_check_array_type(ary)

VALUE ary;
{

return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
}

The plot thickens. Let’s track down rb_check_convert_type.

VALUE
rb_check_convert_type(val, type, tname, method)

VALUE val;
int type;
const char *tname, *method;

{
VALUE v;

/* always convert T_DATA */
if (TYPE(val) == type && type != T_DATA) return val;
v = convert_type(val, tname, method, Qfalse);
if (NIL_P(v)) return Qnil;
if (TYPE(v) != type) {

rb_raise(rb_eTypeError, "%s#%s should return %s",
rb_obj_classname(val), method, tname);

}
return v;

}

Now we’re getting somewhere. If the object is the correct type (T_ARRAY in our exam-
ple), then the original object is returned. Otherwise, we don’t give up quite yet. Instead
we call our original object and ask if it can represent itself as an array (we call its
to_ary method). If it can, we’re happy and continue. The code is saying “I don’t need
an Array, I just need something that can be represented as an array.” This means that
Kernel.exec will accept as an array any parameter that implements a to_ary method.
We discuss these conversion protocols in more detail (but from the Ruby perspective)
starting on page 355.

What does all this mean to you as an extension writer? There are two messages. First,
try to avoid checking the types of parameters passed to you. Instead, see if there’s a
rb_check_xxx_type method that will convert the parameter into the type that you
need. If not, look for an existing conversion function (such as rb_Array, rb_Float,
or rb_Integer) that’ll do the trick for you. Second, it you’re writing an extension
that implements something that may be meaningfully used as a Ruby string or array,
consider implementing to_str or to_ary methods, allowing objects implemented by
your extension to be used in string or array contexts.

Prepared exclusively for Margus Pau

CREATING AN EXTENSION 282

Creating an Extension
Having written the source code for an extension, we now need to compile it so Ruby
can use it. We can either do this as a shared object, which is dynamically loaded at
runtime, or statically link the extension into the main Ruby interpreter itself. The basic
procedure is the same.

1. Create the C source code file(s) in a given directory.
2. Optionally create an supporting Ruby files in a lib subdirectory.
3. Create extconf.rb.
4. Run extconf.rb to create a Makefile for the C files in this directory.
5. Run make.
6. Run make install.

Creating a Makefile with extconf.rb
Figure 21.2 on the next page shows the overall workflow when building an extension.
The key to the whole process is the extconf.rb program that you, as a developer,
create. In extconf.rb, you write a simple program that determines what features are
available on the user’s system and where those features may be located. Executing
extconf.rb builds a customized Makefile, tailored for both your application and the
system on which it’s being compiled. When you run the make command against this
Makefile, your extension is built and (optionally) installed.

The simplest extconf.rb may be just two lines long, and for many extensions this is
sufficient.

require 'mkmf'
create_makefile("Test")

The first line brings in the mkmf library module (described starting on page 755). This
contains all the commands we’ll be using. The second line creates a Makefile for an
extension called “Test.” (Note that “Test” is the name of the extension; the makefile
will always be called Makefile.) Test will be built from all the C source files in the
current directory. When your code is loaded, Ruby will call its Init_Test method.

Let’s say that we run this extconf.rb program in a directory containing a single source
file, main.c. The result is a makefile that will build our extension. On a Linux box, this
executes the following commands.

gcc -fPIC -I/usr/local/lib/ruby/1.8/i686-linux -g -O2 \
-c main.c -o main.o

gcc -shared -o Test.so main.o -lc

The result of this compilation is Test.so, which may be dynamically linked into Ruby
at runtime with require.

Prepared exclusively for Margus Pau

CREATING AN EXTENSION 283

Figure 21.2. Building an extension

extconf.rb

ruby extconf.rb

Produces

Makefile

make

Produces

Test.so

mkmf

libraries*.c

Under Mac OS X, the commands are different, but the result is the same: a shared
object (a bundle on the Mac) is created.

gcc -fno-common -g -O2 -pipe -fno-common \
-I/usr/lib/ruby/1.8/powerpc-darwin \
-I/usr/lib/ruby/1.8/powerpc-darwin -c main.c

cc -dynamic -bundle -undefined suppress -flat_namespace \
-L'/usr/lib' -o Test.bundle main.o -ldl -lobjc

See how the mkmf commands have automatically located platform-specific libraries and
used options specific to the local compiler. Pretty neat, eh?

Although this basic extconf.rb program works for many simple extensions, you may
have to do some more work if your extension needs header files or libraries that aren’t
included in the default compilation environment or if you conditionally compile code
based on the presence of libraries or functions.

A common requirement is to specify nonstandard directories where include files and
libraries may be found. This is a two-step process. First, your extconf.rb should
contain one or more dir_config commands. This specifies a tag for a set of directories.
Then, when you run the extconf.rb program, you tell mkmf where the corresponding
physical directories are on the current system.

Prepared exclusively for Margus Pau

CREATING AN EXTENSION 284

Dividing Up the Namespace

Increasingly, extension writers are being good citizens. Rather than
install their work directory into one of Ruby’s library directories,
they’re using subdirectories to group their files together. This is easy
with extconf.rb. If the parameter to the create_makefile call con-
tains forward slashes, mkmf assumes that everything before the last
slash is a directory name and that the remainder is the extension
name. The extension will be installed into the given directory (relative
to the Ruby directory tree). In the following example, the extension
will still be named Test.

require 'mkmf'
create_makefile("wibble/Test")

However, when you require this class in a Ruby program, you’d write

require 'wibble/Test'

If extconf.rb contains the line dir_config(name), then you give the location of the
corresponding directories with the command-line options

--with-name-include=directory
Add directory/include to the compile command.

--with-name-lib=directory
Add directory/lib to the link command.

If (as is common) your include and library directories are subdirectories called include
and lib of some other directory, you can take a shortcut.

--with-name-dir=directory
Add directory/lib and directory/include to the link command and compile com-
mand, respectively.

As well as specifying all these --with options when you run extconf.rb, you can also
use the --with options that were specified when Ruby was built for your machine. This
means you can discover and use the locations of libraries that are used by Ruby itself.

To make all this concrete, let’s say you need to use the vendor’s CDJukebox libraries
and include files for the CD player we’re developing. Your extconf.rb may contain

require 'mkmf'
dir_config('cdjukebox')
.. more stuff
create_makefile("CDPlayer")

Prepared exclusively for Margus Pau

CREATING AN EXTENSION 285

You’d then run extconf.rb with something like

% ruby extconf.rb --with-cdjukebox-dir=/usr/local/cdjb

The generated Makefile would assume that /usr/local/cdjb/lib contained the
libraries and /usr/local/cdjb/include the include files.

The dir_config command adds to the list of places to search for libraries and include
files. It does not, however, link the libraries into your application. To do that, you’ll
need to use one or more have_library or find_library commands.

have_library looks for a given entry point in a named library. If it finds the entry
point, it adds the library to the list of libraries to be used when linking your extension.
find_library is similar but allows you to specify a list of directories to search for the
library. Here are the contents of the extconf.rb that we use to link our CD player.

require 'mkmf'
dir_config("cdjukebox")
have_library("cdjukebox", "new_jukebox")
create_makefile("CDPlayer")

A particular library may be in different places depending on the host system. The X
Window system, for example, is notorious for living in different directories on differ-
ent systems. The find_library command will search a list of supplied directories to
find the right one (this is different from have_library, which uses only configuration
information for the search). For example, to create a Makefile that uses X Windows
and a JPEG library, extconf.rb may contain

require 'mkmf'

if have_library("jpeg","jpeg_mem_init") and
find_library("X11", "XOpenDisplay",

"/usr/X11/lib", # list of directories
"/usr/X11R6/lib", # to check
"/usr/openwin/lib") # for library

then
create_makefile("XThing")

else
puts "No X/JPEG support available"

end

We’ve added some additional functionality to this program. All the mkmf commands
return false if they fail. This means we can write an extconf.rb that generates a
Makefile only if everything it needs is present. The Ruby distribution does this so that
it will try to compile only those extensions that are supported on your system.

You also may want your extension code to be able to configure the features it uses
depending on the target environment. For example, our CD jukebox may be able to use
a high-performance MP3 decoder if the end user has one installed. We can check by
looking for its header file.

Prepared exclusively for Margus Pau

CREATING AN EXTENSION 286

require 'mkmf'
dir_config('cdjukebox')
have_library('cdjb', 'CDPlayerNew')
have_header('hp_mp3.h')
create_makefile("CDJukeBox")

We can also check to see if the target environment has a particular function in any of
the libraries we’ll be using. For example, the setpriority call would be useful but
isn’t always available. We can check for it with

require 'mkmf'
dir_config('cdjukebox')
have_func('setpriority')
create_makefile("CDJukeBox")

Both have_header and have_func define preprocessor constants if they find their tar-
gets. The names are formed by converting the target name to uppercase and prepending
HAVE_. Your C code can take advantage of this using constructs such as

#if defined(HAVE_HP_MP3_H)
include <hp_mp3.h>
#endif

#if defined(HAVE_SETPRIORITY)
err = setpriority(PRIOR_PROCESS, 0, -10)

#endif

If you have special requirements that can’t be met with all these mkmf commands, your
program can directly add to the global variables $CFLAGS and $LFLAGS, which are
passed to the compiler and linker, respectively.

Sometimes you’ll create an extconf.rb, and it just doesn’t seem to work. You give it
the name of a library, and it swears that no such library has ever existed on the entire
planet. You tweak and tweak, but mkmf still can’t find the library you need. It would
be nice if you could find out exactly what it’s doing behind the scenes. Well, you can.
Each time you run your extconf.rb script, mkmf generates a log file containing details
of what it did. If you look in mkmf.log, you’ll be able to see what steps the program
used to try to find the libraries you requested. Sometimes trying these steps manually
will help you track down the problem.

Installation Target

The Makefile produced by your extconf.rb will include an “install” target. This will
copy your shared library object into the correct place on your (or your users’) local
file system. The destination is tied to the installation location of the Ruby interpreter
you used to run extconf.rb in the first place. If you have multiple Ruby interpreters
installed on your box, your extension will be installed into the directory tree of the one
that ran extconf.rb.

Prepared exclusively for Margus Pau

EMBEDDING A RUBY INTERPRETER 287

In addition to installing the shared library, extconf.rb will check for the presence of a
lib/ subdirectory. If it finds one, it will arrange for any Ruby files there to be installed
along with your shared object. This is useful if you want to split the work of writing
your extension between low-level C code and higher-level Ruby code.

Static Linking
Finally, if your system doesn’t support dynamic linking, or if you have an extension
module that you want to have statically linked into Ruby itself, edit the file ext/Setup
in the distribution and add your directory to the list of extensions in the file. In your
extension’s directory, create a file named MANIFEST containing a list of all the files
in your extension (source, extconf.rb, lib/, and so on). Then rebuild Ruby. The
extensions listed in Setup will be statically linked into the Ruby executable. If you
want to disable any dynamic linking, and link all extensions statically, edit ext/Setup
to contain the following option.

option nodynamic

A Shortcut
If you are extending an existing library written in C or C++, you may want to investigate
SWIG (http://www.swig.org). SWIG is an interface generator: it takes a library def-
inition (typically from a header file) and automatically generates the glue code needed
to access that library from another language. SWIG supports Ruby, meaning that it can
generate the C source files that wrap external libraries in Ruby classes.

Embedding a Ruby Interpreter
In addition to extending Ruby by adding C code, you can also turn the problem around
and embed Ruby itself within your application. You have two ways to do this. The first
is to let the interpreter take control by calling ruby_run. This is the easiest approach,
but it has one significant drawback—the interpreter never returns from a ruby_run call.
Here’s an example.

#include "ruby.h"

int main(void) {
/* ... our own application stuff ... */
ruby_init();
ruby_init_loadpath();
ruby_script("embedded");
rb_load_file("start.rb");
ruby_run();
exit(0);

}

Prepared exclusively for Margus Pau

http://www.swig.org

EMBEDDING A RUBY INTERPRETER 288

To initialize the Ruby interpreter, you need to call ruby_init(). But on some plat-
forms, you may need to take special steps before that.

#if defined(NT)
NtInitialize(&argc, &argv);

#endif
#if defined(__MACOS__) && defined(__MWERKS__)
argc = ccommand(&argv);

#endif

See main.c in the Ruby distribution for any other special defines or setup needed for
your platform.

You need the Ruby include and library files accessible to compile this embedded code.
On my box (Mac OS X) I have the Ruby 1.8 interpreter installed in a private directory,
so my Makefile looks like this.

WHERE=/Users/dave/ruby1.8/lib/ruby/1.8/powerpc-darwin/
CFLAGS=-I$(WHERE) -g
LDFLAGS=-L$(WHERE) -lruby -ldl -lobjc

embed: embed.o
$(CC) -o embed embed.o $(LDFLAGS)

The second way of embedding Ruby allows Ruby code and your C code to engage in
more of a dialogue: the C code calls some Ruby code, and the Ruby code responds.
You do this by initializing the interpreter as normal. Then, rather than entering the
interpreter’s main loop, you instead invoke specific methods in your Ruby code. When
these methods return, your C code gets control back.

There’s a wrinkle, though. If the Ruby code raises an exception and it isn’t caught, your
C program will terminate. To overcome this, you need to do what the interpreter does
and protect all calls that could raise an exception. This can get messy. The rb_protect
method call wraps the call to another C function. That second function should invoke
our Ruby method. However, the method wrapped by rb_protect is defined to take just
a single parameter. To pass more involves some ugly C casting.

Let’s look at an example. Here’s a simple Ruby class that implements a method to
return the sum of the numbers from one to max.

class Summer
def sum(max)
raise "Invalid maximum #{max}" if max < 0
(max*max + max)/2

end
end

Let’s write a C program that calls an instance of this class multiple times. To create
the instance, we’ll get the class object (by looking for a top-level constant whose name
is the name of our class). We’ll then ask Ruby to create an instance of that class—
rb_class_new_instance is actually a call to Class.new. (The two initial 0 parame-

Prepared exclusively for Margus Pau

EMBEDDING A RUBY INTERPRETER 289

ters are the argument count and a dummy pointer to the arguments themselves.) Once
we have that object, we can invoke its sum method using rb_funcall.

#include "ruby.h"

static int id_sum;

int Values[] = { 5, 10, 15, -1, 20, 0 };

static VALUE wrap_sum(VALUE args) {
VALUE *values = (VALUE *)args;
VALUE summer = values[0];
VALUE max = values[1];
return rb_funcall(summer, id_sum, 1, max);

}

static VALUE protected_sum(VALUE summer, VALUE max) {
int error;
VALUE args[2];
VALUE result;

args[0] = summer;
args[1] = max;
result = rb_protect(wrap_sum, (VALUE)args, &error);

return error ? Qnil : result;
}

int main(void) {
int value;
int *next = Values;

ruby_init();
ruby_init_loadpath();
ruby_script("embedded");
rb_require("sum.rb");

// get an instance of Summer
VALUE summer = rb_class_new_instance(0, 0,

rb_const_get(rb_cObject, rb_intern("Summer")));

id_sum = rb_intern("sum");

while (value = *next++) {
VALUE result = protected_sum(summer, INT2NUM(value));
if (NIL_P(result))

printf("Sum to %d doesn't compute!\n", value);
else

printf("Sum to %d is %d\n", value, NUM2INT(result));
}

ruby_finalize();
exit(0);

}

One last thing: the Ruby interpreter was not originally written with embedding in mind.
Probably the biggest problem is that it maintains state in global variables, so it isn’t
thread-safe. You can embed Ruby—just one interpreter per process.

Prepared exclusively for Margus Pau

BRIDGING RUBY TO OTHER LANGUAGES 290

A good resource for embedding Ruby in C++ programs is at
http://metaeditor.sourceforge.net/embed/ . This page also contains links to
other examples of embedding Ruby.

API: Embedded Ruby API

void ruby_init()

Sets up and initializes the interpreter. This function should be called
before any other Ruby-related functions.

void ruby_init_loadpath()

Initializes the $: (load path) variable; necessary if your code loads
any library modules.

void ruby_options(int argc, char **argv)

Gives the Ruby interpreter the command-line options.

void ruby_script(char *name)

Sets the name of the Ruby script (and $0) to name.

void rb_load_file(char *file)

Loads the given file into the interpreter.

void ruby_run()

Runs the interpreter.

void ruby_finalize()

Shuts down the interpreter.

For another example of embedding a Ruby interpreter within another program, see also
eruby, which is described beginning on page 229.

Bridging Ruby to Other Languages
So far, we’ve discussed extending Ruby by adding routines written in C. However, you
can write extensions in just about any language, as long as you can bridge the two
languages with C. Almost anything is possible, including awkward marriages of Ruby
and C++, Ruby and Java, and so on.

But you may be able to accomplish the same thing without resorting to C code. For
example, you could bridge to other languages using middleware such as SOAP or
COM. See the section on SOAP (page 236) and the section on Windows Automation
beginning on page 255 for more details.

Prepared exclusively for Margus Pau

http://metaeditor.sourceforge.net/embed/

RUBY C LANGUAGE API 291

Ruby C Language API
Last, but by no means least, here are some C-level functions that you may find useful
when writing an extension.

Some functions require an ID: you can obtain an ID for a string by using rb_intern
and reconstruct the name from an ID by using rb_id2name.

As most of these C functions have Ruby equivalents that are already described in detail
elsewhere in this book, the descriptions here will be brief.

The following listing is not complete. Many more functions are available—too many
to document them all, as it turns out. If you need a method that you can’t find here,
check ruby.h or intern.h for likely candidates. Also, at or near the bottom of each
source file is a set of method definitions that describes the binding from Ruby methods
to C functions. You may be able to call the C function directly or search for a wrap-
per function that calls the function you need. The following list, based on the list in
README.EXT, shows the main source files in the interpreter.

Ruby Language Core
class.c, error.c, eval.c, gc.c, object.c, parse.y, variable.c

Utility Functions
dln.c, regex.c, st.c, util.c

Ruby Interpreter
dmyext.c, inits.c, keywords main.c, ruby.c, version.c

Base Library
array.c, bignum.c, compar.c, dir.c, enum.c, file.c, hash.c, io.c,
marshal.c, math.c, numeric.c, pack.c, prec.c, process.c,
random.c, range.c, re.c, signal.c, sprintf.c, string.c, struct.c,
time.c

API: Defining Classes

VALUE rb_define_class(char *name, VALUE superclass)

Defines a new class at the top level with the given name and super-
class (for class Object, use rb_cObject).

VALUE rb_define_module(char *name)

Defines a new module at the top level with the given name.

VALUE rb_define_class_under(VALUE under, char *name,
VALUE superclass)

Defines a nested class under the class or module under.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 292

VALUE rb_define_module_under(VALUE under, char *name)

Defines a nested module under the class or module under.

void rb_include_module(VALUE parent, VALUE module)

Includes the given module into the class or module parent.

void rb_extend_object(VALUE obj, VALUE module)

Extends obj with module.

VALUE rb_require(const char *name)

Equivalent to require name. Returns Qtrue or Qfalse.

API: Defining Structures

VALUE rb_struct_define(char *name, char *attribute..., NULL)

Defines a new structure with the given attributes.

VALUE rb_struct_new(VALUE sClass, VALUE args..., NULL)

Creates an instance of sClass with the given attribute values.

VALUE rb_struct_aref(VALUE struct, VALUE idx)

Returns the element named or indexed by idx.

VALUE rb_struct_aset(VALUE struct, VALUE idx, VALUE val)

Sets the attribute named or indexed by idx to val.

API: Defining Methods
In some of the function definitions that follow, the parameter argc specifies how many
arguments a Ruby method takes. It may have the following values.

argc Function Prototype

0..17 VALUE func(VALUE self, VALUE arg...)
The C function will be called with this many actual arguments.

−1 VALUE func(int argc, VALUE *argv, VALUE self)
The C function will be given a variable number of arguments passed as a C
array.

−2 VALUE func(VALUE self, VALUE args)
The C function will be given a variable number of arguments passed as a Ruby
array.

In a function that has been given a variable number of arguments, you can use the C
function rb_scan_args to sort things out (see below).

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 293

void rb_define_method(VALUE classmod, char *name,
VALUE(*func)(), int argc)

Defines an instance method in the class or module classmod with
the given name, implemented by the C function func and taking argc
arguments.

void rb_define_alloc_func(VALUE classmod, VALUE(*func)())

Identifies the allocator for classmod.

void rb_define_module_function(VALUE module, char *name,
VALUE(*func)(), int argc))

Defines a method in class module with the given name, implemented
by the C function func and taking argc arguments.

void rb_define_global_function(char *name, VALUE(*func)(),
int argc)

Defines a global function (a private method of Kernel) with the
given name, implemented by the C function func and taking argc
arguments.

void rb_define_singleton_method(VALUE classmod, char *name,
VALUE(*func)(), int argc)

Defines a singleton method in class classmod with the given name,
implemented by the C function func and taking argc arguments.

int rb_scan_args(int argcount, VALUE *argv, char *fmt, ...)

Scans the argument list and assigns to variables similar to scanf:
fmt is a string containing zero, one, or two digits followed by some
flag characters. The first digit indicates the count of mandatory argu-
ments; the second is the count of optional arguments. A * means to
pack the rest of the arguments into a Ruby array. A & means that
an attached code block will be taken and assigned to the given vari-
able (if no code block was given, Qnil will be assigned). After the
fmt string, pointers to VALUE are given (as with scanf) to which the
arguments are assigned.

VALUE name, one, two, rest;
rb_scan_args(argc, argv, "12", &name, &one, &two);
rb_scan_args(argc, argv, "1*", &name, &rest);

void rb_undef_method(VALUE classmod, const char *name)

Undefines the given method name in the given classmod class or
module.

void rb_define_alias(VALUE classmod, const char *newname,
const char *oldname)

Defines an alias for oldname in class or module classmod.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 294

API: Defining Variables and Constants

void rb_define_const(VALUE classmod, char *name, VALUE value)

Defines a constant in the class or module classmod, with the given
name and value.

void rb_define_global_const(char *name, VALUE value)

Defines a global constant with the given name and value.

void rb_define_variable(const char *name, VALUE *object)

Exports the address of the given object that was created in C to the
Ruby namespace as name. From Ruby, this will be a global variable,
so name should start with a leading dollar sign. Be sure to honor
Ruby’s rules for allowed variable names; illegally named variables
will not be accessible from Ruby.

void rb_define_class_variable(VALUE class, const char *name,
VALUE val)

Defines a class variable name (which must be specified with a @@
prefix) in the given class, initialized to value.

void rb_define_virtual_variable(const char *name,
VALUE(*getter)(),
void(*setter)())

Exports a virtual variable to a Ruby namespace as the global $name.
No actual storage exists for the variable; attempts to get and set the
value will call the given functions with the prototypes.

VALUE getter(ID id, VALUE *data,
struct global_entry *entry);

void setter(VALUE value, ID id, VALUE *data,
struct global_entry *entry);

You will likely not need to use the entry parameter and can safely
omit it from your function declarations.

void rb_define_hooked_variable(const char *name,
VALUE *variable,
VALUE(*getter)(),
void(*setter)())

Defines functions to be called when reading or writing to variable.
See also rb_define_virtual_variable.

void rb_define_readonly_variable(const char *name,
VALUE *value)

Same as rb_define_variable, but read-only from Ruby.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 295

void rb_define_attr(VALUE variable, const char *name, int read,
int write)

Creates accessor methods for the given variable, with the given
name. If read is nonzero, create a read method; if write is nonzero,
create a write method.

void rb_global_variable(VALUE *obj)

Registers the given address with the garbage collector.

API: Calling Methods

VALUE rb_create_new_instance((int argc, VALUE *argv,
VALUE klass))

Return a new instance of class klass. argv is a pointer to an array of
argc parameters.

VALUE rb_funcall(VALUE recv, ID id, int argc, ...)

Invokes the method given by id in the object recv with the given
number of arguments argc and the arguments themselves (possibly
none).

VALUE rb_funcall2(VALUE recv, ID id, int argc, VALUE *args)

Invokes the method given by id in the object recv with the given
number of arguments argc and the arguments themselves given in
the C array args.

VALUE rb_funcall3(VALUE recv, ID id, int argc, VALUE *args)

Same as rb_funcall2 but will not call private methods.

VALUE rb_apply(VALUE recv, ID name, int argc, VALUE args)

Invokes the method given by id in the object recv with the given
number of arguments argc and the arguments themselves given in
the Ruby Array args.

ID rb_intern(char *name)

Returns an ID for a given name. If the name does not exist, a symbol
table entry will be created for it.

char * rb_id2name(ID id)

Returns a name for the given id.

VALUE rb_call_super(int argc, VALUE *args)

Calls the current method in the superclass of the current object.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 296

API: Exceptions

void rb_raise(VALUE exception, const char *fmt, ...)

Raises an exception. The given string fmt and remaining arguments
are interpreted as with printf.

void rb_fatal(const char *fmt, ...)

Raises a Fatal exception, terminating the process. No rescue blocks
are called, but ensure blocks will be called. The given string fmt and
remaining arguments are interpreted as with printf.

void rb_bug(const char *fmt, ...)

Terminates the process immediately—no handlers of any sort will be
called. The given string fmt and remaining arguments are interpreted
as with printf. You should call this function only if a fatal bug has
been exposed. You don’t write fatal bugs, do you?

void rb_sys_fail(const char *msg)

Raises a platform-specific exception corresponding to the last known
system error, with the given msg.

VALUE rb_rescue(VALUE (*body)(), VALUE args, VALUE(*rescue)(),
VALUE rargs)

Executes body with the given args. If a StandardError exception is
raised, then execute rescue with the given rargs.

VALUE rb_ensure(VALUE(*body)(), VALUE args, VALUE(*ensure)(),
VALUE eargs)

Executes body with the given args. Whether or not an exception is
raised, execute ensure with the given rargs after body has completed.

VALUE rb_protect(VALUE (*body)(), VALUE args, int *result)

Executes body with the given args and returns nonzero in result if
any exception was raised.

void rb_notimplement()

Raises a NotImpError exception to indicate that the enclosed func-
tion is not implemented yet or not available on this platform.

void rb_exit(int status)

Exits Ruby with the given status. Raises a SystemExit exception
and calls registered exit functions and finalizers.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 297

void rb_warn(const char *fmt, ...)

Unconditionally issues a warning message to standard error. The
given string fmt and remaining arguments are interpreted as with
printf.

void rb_warning(const char *fmt, ...)

Conditionally issues a warning message to standard error if Ruby
was invoked with the -w flag. The given string fmt and remaining
arguments are interpreted as with printf.

API: Iterators

void rb_iter_break()

Breaks out of the enclosing iterator block.

VALUE rb_each(VALUE obj)

Invokes the each method of the given obj.

VALUE rb_yield(VALUE arg)

Transfers execution to the iterator block in the current context, pass-
ing arg as an argument. Multiple values may be passed in an array.

int rb_block_given_p()

Returns true if yield would execute a block in the current context—
that is, if a code block was passed to the current method and is avail-
able to be called.

VALUE rb_iterate(VALUE (*method)(), VALUE args,
VALUE (*block)(), VALUE arg2)

Invokes method with argument args and block block. A yield from
that method will invoke block with the argument given to yield and
a second argument arg2.

VALUE rb_catch(const char *tag, VALUE (*proc)(), VALUE value)

Equivalent to Ruby catch.

void rb_throw(const char *tag , VALUE value)

Equivalent to Ruby throw.

API: Accessing Variables

VALUE rb_iv_get(VALUE obj, char *name)

Returns the instance variable name (which must be specified with a
@ prefix) from the given obj.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 298

VALUE rb_ivar_get(VALUE obj, ID name)

Returns the instance variable name from the given obj.

VALUE rb_iv_set(VALUE obj, char *name, VALUE value)

Sets the value of the instance variable name (which must be specified
with a @ prefix) in the given obj to value. Returns value.

VALUE rb_ivar_set(VALUE obj, ID name, VALUE value)

Sets the value of the instance variable name in the given obj to value.
Returns value.

VALUE rb_gv_set(const char *name, VALUE value)

Sets the global variable name (the $ prefix is optional) to value.
Returns value.

VALUE rb_gv_get(const char *name)

Returns the global variable name (the $ prefix is optional).

void rb_cvar_set(VALUE class, ID name, VALUE val)

Sets the class variable name in the given class to value.

VALUE rb_cvar_get(VALUE class, ID name)

Returns the class variable name from the given class.

int rb_cvar_defined(VALUE class, ID name)

Returns Qtrue if the given class variable name has been defined for
class; otherwise, returns Qfalse.

void rb_cv_set(VALUE class, const char *name, VALUE val)

Sets the class variable name (which must be specified with a @@ pre-
fix) in the given class to value.

VALUE rb_cv_get(VALUE class, const char *name)

Returns the class variable name (which must be specified with a @@
prefix) from the given class.

API: Object Status

OBJ_TAINT(VALUE obj)

Marks the given obj as tainted.

int OBJ_TAINTED(VALUE obj)

Returns nonzero if the given obj is tainted.

OBJ_FREEZE(VALUE obj)

Marks the given obj as frozen.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 299

int OBJ_FROZEN(VALUE obj)

Returns nonzero if the given obj is frozen.

SafeStringValue(VALUE str)

Raises1.8 SecurityError if current safe level > 0 and str is tainted, or
raises a TypeError if str is not a T_STRING or if $SAFE >= 4.

int rb_safe_level()

Returns the current safe level.

void rb_secure(int level)

Raises SecurityError if level <= current safe level.

void rb_set_safe_level(int newlevel)

Sets the current safe level to newlevel.

API: Commonly Used Methods

VALUE rb_ary_new()

Returns a new Array with default size.

VALUE rb_ary_new2(long length)

Returns a new Array of the given length.

VALUE rb_ary_new3(long length, ...)

Returns a new Array of the given length and populated with the
remaining arguments.

VALUE rb_ary_new4(long length, VALUE *values)

Returns a new Array of the given length and populated with the C
array values.

void rb_ary_store(VALUE self, long index, VALUE value)

Stores value at index in array self.

VALUE rb_ary_push(VALUE self, VALUE value)

Pushes value onto the end of array self. Returns value.

VALUE rb_ary_pop(VALUE self)

Removes and returns the last element from the array self.

VALUE rb_ary_shift(VALUE self)

Removes and returns the first element from the array self.

Prepared exclusively for Margus Pau

RUBY C LANGUAGE API 300

VALUE rb_ary_unshift(VALUE self, VALUE value)

Pushes value onto the front of array self. Returns value.

VALUE rb_ary_entry(VALUE self, long index)

Returns array self ’s element at index.

int rb_respond_to(VALUE self, ID method)

Returns nonzero if self responds to method.

VALUE rb_thread_create(VALUE (*func)(), void *data)

Runs func in a new thread, passing data as an argument.

VALUE rb_hash_new()

Returns a new, empty Hash.

VALUE rb_hash_aref(VALUE self, VALUE key)

Returns the element corresponding to key in self.

VALUE rb_hash_aset(VALUE self, VALUE key, VALUE value)

Sets the value for key to value in self. Returns value.

VALUE rb_obj_is_instance_of(VALUE obj, VALUE klass)

Returns Qtrue if obj is an instance of klass.

VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)

Returns Qtrue if klass is the class of obj or class is one of the super-
classes of the class of obj.

VALUE rb_str_new(const char *src, long length)

Returns a new String initialized with length characters from src.

VALUE rb_str_new2(const char *src)

Returns a new String initialized with the null-terminated C string
src.

VALUE rb_str_dup(VALUE str)

Returns a new String object duplicated from str.

VALUE rb_str_cat(VALUE self, const char *src, long length)

Concatenates length characters from the string src onto the String
self. Returns self.

VALUE rb_str_concat(VALUE self, VALUE other)

Concatenates other onto the String self. Returns self.

VALUE rb_str_split(VALUE self, const char *delim)

Returns an array of String objects created by splitting self on delim.

Prepared exclusively for Margus Pau

Part III

Ruby Crystallized

Prepared exclusively for Margus Pau 301

Chapter 22

The Ruby Language

This chapter is a bottom-up look at the Ruby language. Most of what appears here is the
syntax and semantics of the language itself—we mostly ignore the built-in classes and
modules (these are covered in depth starting on page 402). However, Ruby sometimes
implements features in its libraries that in most languages would be part of the basic
syntax. We’ve included these methods here and have tried to flag them with “Library”
in the margin.

The contents of this chapter may look familiar—with good reason. We’ve covered just
about all of this in the earlier tutorial chapters. Consider this chapter to be a self-
contained reference to the core Ruby language.

Source Layout
Ruby programs are written in 7-bit ASCII, Kanji (using EUC or SJIS), or UTF-8. If
a code set other than 7-bit ASCII is used, the KCODE option must be set appropriately,
as shown on page 169.

Ruby is a line-oriented language. Ruby expressions and statements are terminated at
the end of a line unless the parser can determine that the statement is incomplete—for
example if the last token on a line is an operator or comma. A semicolon can be used to
separate multiple expressions on a line. You can also put a backslash at the end of a line
to continue it onto the next. Comments start with # and run to the end of the physical
line. Comments are ignored during syntax analysis.

a = 1

b = 2; c = 3

d = 4 + 5 +
6 + 7 # no '\' needed

e = 8 + 9 \
+ 10 # '\' needed

Prepared exclusively for Margus Pau 302

SOURCE LAYOUT 303

Physical lines between a line starting with =begin and a line starting with =end are
ignored by Ruby and may be used to comment out sections of code or to embed docu-
mentation.

Ruby reads its program input in a single pass, so you can pipe programs to the Ruby
interpreter’s standard input stream.

echo 'puts "Hello"' | ruby

If Ruby comes across a line anywhere in the source containing just “__END_ _”, with
no leading or trailing whitespace, it treats that line as the end of the program—any
subsequent lines will not be treated as program code. However, these lines can be read
into the running program using the global IO object DATA, described on page 322.

BEGIN and END Blocks
Every Ruby source file can declare blocks of code to be run as the file is being loaded
(the BEGIN blocks) and after the program has finished executing (the END blocks).

BEGIN {
begin code

}

END {
end code

}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in
the order they are encountered. END blocks are executed in reverse order.

General Delimited Input
As well as the normal quoting mechanism, alternative forms of literal strings, arrays,
regular expressions, and shell commands are specified using a generalized delimited
syntax. All these literals start with a percent character, followed by a single character
that identifies the literal’s type. These characters are summarized in Table 22.1 on the
following page; the actual literals are described in the corresponding sections later in
this chapter.

Following the type character is a delimiter, which can be any nonalphabetic or non-
multibyte character.1.8 If the delimiter is one of the characters (, [, {, or <, the literal
consists of the characters up to the matching closing delimiter, taking account of nested
delimiter pairs. For all other delimiters, the literal comprises the characters up to the
next occurrence of the delimiter character.

%q/this is a string/
%q-string-
%q(a (nested) string)

Prepared exclusively for Margus Pau

THE BASIC TYPES 304

Table 22.1. General delimited input

Type Meaning See Page

%q Single-quoted string 305
%Q, % Double-quoted string 305

%w, %W Array of strings 307
%r Regular expression pattern 309
%x Shell command 323

Delimited strings may continue over multiple lines; the line endings and all spaces at
the start of continuation lines will be included in the string.

meth = %q{def fred(a)
a.each {|i| puts i }

end}

The Basic Types
The basic types in Ruby are numbers, strings, arrays, hashes, ranges, symbols, and
regular expressions.

Integer and Floating-Point Numbers
Ruby integers are objects of class Fixnum or Bignum. Fixnum objects hold integers that
fit within the native machine word minus 1 bit. Whenever a Fixnum exceeds this range,
it is automatically converted to a Bignum object, whose range is effectively limited only
by available memory. If an operation with a Bignum result has a final value that will fit
in a Fixnum, the result will be returned as a Fixnum.

Integers are written using an optional leading sign, an optional base indicator (0 for
octal, 0d for decimal,1.8 0x for hex, or 0b for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string.

123456 => 123456 # Fixnum
0d123456 => 123456 # Fixnum
123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
0xaabb => 43707 # Fixnum - hexadecimal
0377 => 255 # Fixnum - octal
-0b10_1010 => -42 # Fixnum - binary (negated)
123_456_789_123_456_789 => 123456789123456789 # Bignum

You can get the integer value corresponding to an ASCII character by preceding that
character with a question mark. Control characters can be generated using ?\C-x and

Prepared exclusively for Margus Pau

THE BASIC TYPES 305

?\cx (the control version of x is x&0x9f). Meta characters (x | 0x80) can be gener-
ated using ?\M-x. The combination of meta and control is generated using and ?\M-\C-x.
You can get the integer value of a backslash character using the sequence ?\\.

?a => 97 # ASCII character
?\n => 10 # code for a newline (0x0a)
?\C-a => 1 # control a = ?A & 0x9f = 0x01
?\M-a => 225 # meta sets bit 7
?\M-\C-a => 129 # meta and control a
?\C-? => 127 # delete character

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must follow the dec-
imal point with a digit, as 1.e3 tries to invoke the method e3 in class Fixnum. As of
Ruby 1.81.8 you must also place at least one digit before the decimal point.

12.34 → 12.34
-0.1234e2 → -12.34
1234e-2 → 12.34

Strings

Ruby provides a number of mechanisms for creating literal strings. Each generates
objects of type String. The different mechanisms vary in terms of how a string is
delimited and how much substitution is done on the literal’s content.

Single-quoted string literals ('stuff' and %q/stuff /) undergo the least substitution. Both
convert the sequence \\ into a single backslash, and the form with single quotes con-
verts \' into a single quote. All other backslashes appear literally in the string.

'hello' → hello
'a backslash \'\\\'' → a backslash '\'
%q/simple string/ → simple string
%q(nesting (really) works) → nesting (really) works
%q no_blanks_here ; → no_blanks_here

Double-quoted strings ("stuff ", %Q/stuff /, and %/stuff /) undergo additional substitu-
tions, shown in Table 22.2 on the next page.

a = 123
"\123mile" → Smile
"Say \"Hello\"" → Say "Hello"
%Q!"I said 'nuts'," I said! → "I said 'nuts'," I said
%Q{Try #{a + 1}, not #{a - 1}} → Try 124, not 122
%<Try #{a + 1}, not #{a - 1}> → Try 124, not 122
"Try #{a + 1}, not #{a - 1}" → Try 124, not 122
%{ #{ a = 1; b = 2; a + b } } → 3

Strings can continue across multiple input lines, in which case they will contain newline
characters. It is also possible to use here documents to express long string literals.
Whenever Ruby parses the sequence <<identifier or <<quoted string, it replaces it with

Prepared exclusively for Margus Pau

THE BASIC TYPES 306

Table 22.2. Substitutions in double-quoted strings

\a Bell/alert (0x07) \nnn Octal nnn
\b Backspace (0x08) \xnn Hex nn
\e Escape (0x1b) \cx Control-x
\f Formfeed (0x0c) \C-x Control-x
\n Newline (0x0a) \M-x Meta-x
\r Return (0x0d) \M-\C-x Meta-control-x
\s Space (0x20) \x x
\t Tab (0x09) #{code} Value of code
\v Vertical tab (0x0b)

a string literal built from successive logical input lines. It stops building the string
when it finds a line that starts with identifier or quoted string. You can put a minus sign
immediately after the << characters, in which case the terminator can be indented from
the left margin. If a quoted string was used to specify the terminator, its quoting rules
will be applied to the here document; otherwise, double-quoting rules apply.

print <<HERE
Double quoted \
here document.
It is #{Time.now}
HERE

print <<-'THERE'
This is single quoted.
The above used #{Time.now}
THERE

produces:

Double quoted here document.
It is Tue Oct 26 11:32:15 CDT 2004

This is single quoted.
The above used #{Time.now}

Adjacent single- and double-quoted strings in the input are concatenated to form a
single String object.

'Con' "cat" 'en' "ate" → "Concatenate"

Strings are stored as sequences of 8-bit bytes,1 and each byte may contain any of the
256 8-bit values, including null and newline. The substitution sequences in Table 22.2
allow nonprinting characters to be inserted conveniently and portably.

1. For use in Japan, the jcode library supports a set of operations of strings written with EUC, SJIS, or
UTF-8 encoding. The underlying string, however, is still accessed as a series of bytes.

Prepared exclusively for Margus Pau

THE BASIC TYPES 307

Every time a string literal is used in an assignment or as a parameter, a new String
object is created.

3.times do
print 'hello'.object_id, " "

end

produces:

937140 937110 937080

The documentation for class String starts on page 585.

Ranges
Outside the context of a conditional expression, expr..expr and expr...expr construct
Range objects. The two-dot form is an inclusive range; the one with three dots is a
range that excludes its last element. See the description of class Range on page 576 for
details. Also see the description of conditional expressions on page 327 for other uses
of ranges.

Arrays
Literals of class Array are created by placing a comma-separated series of object ref-
erences between square brackets. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

Arrays of strings can be constructed using the shortcut notations %w and %W.1.8 The low-
ercase form extracts space-separated tokens into successive elements of the array. No
substitution is performed on the individual strings. The uppercase version also converts
the words to an array, but performs all the normal double-quoted string substitutions on
each individual word. A space between words can be escaped with a backslash. This is
a form of general delimited input, described on pages 303–304.

arr = %w(fred wilma barney betty great\ gazoo)
arr → ["fred", "wilma", "barney", "betty", "great gazoo"]
arr = %w(Hey!\tIt is now -#{Time.now}-)
arr → ["Hey!\\tIt", "is", "now", "-#{Time.now}-"]
arr = %W(Hey!\tIt is now -#{Time.now}-)
arr → ["Hey!\tIt", "is", "now", "-Tue Oct 26 11:32:16 CDT 2004-"]

Hashes
A literal Ruby Hash is created by placing a list of key/value pairs between braces, with
either a comma or the sequence => between the key and the value. A trailing comma is
ignored.

Prepared exclusively for Margus Pau

THE BASIC TYPES 308

colors = { "red" => 0xf00,
"green" => 0x0f0,
"blue" => 0x00f

}

There is no requirement for the keys and/or values in a particular hash to have the same
type.

Requirements for a Hash Key

Hash keys must respond to the message hash by returning a hash code, and the hash
code for a given key must not change. The keys used in hashes must also be comparable
using eql?. If eql? returns true for two keys, then those keys must also have the same
hash code. This means that certain classes (such as Array and Hash) can’t conveniently
be used as keys, because their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key, and use that reference
to alter the object, thus changing its hash code, the hash lookup based on that key may
not work.

Because strings are the most frequently used keys, and because string contents are often
changed, Ruby treats string keys specially. If you use a String object as a hash key,
the hash will duplicate the string internally and will use that copy as its key. The copy
will be frozen.1.8 Any changes made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to
make sure that either (a) the hashes of the key objects don’t change once the objects
have been created or (b) you remember to call the Hash#rehash method to reindex the
hash whenever a key hash is changed.

Symbols
A Ruby symbol is an identifier corresponding to a string of characters, often a name.
You construct the symbol for a name by preceding the name with a colon, and you can
construct the symbol for an arbitrary string by preceding a string literal with a colon.1.8
Substitution occurs in double-quoted strings. A particular name or string will always
generate the same symbol, regardless of how that name is used within the program.

:Object
:my_variable
:"Ruby rules"
a = "cat"
:'catsup' → :catsup
:"#{a}sup" → :catsup
:'#{a}sup' → :"\#{a}sup"

Other languages call this process interning, and call symbols atoms.

Prepared exclusively for Margus Pau

THE BASIC TYPES 309

Regular Expressions
Regular expression literals are objects of type Regexp. They are created explicitly by
calling the Regexp.new constructor or implicitly by using the literal forms, /pattern/
and %r{pattern}. The %r construct is a form of general delimited input (described on
pages 303–304).

/pattern/
/pattern/options
%r{pattern}
%r{pattern}options
Regexp.new('pattern' [, options])

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern
matches strings. If you’re using literals to create the Regexp object, then the options
are one or more characters placed immediately after the terminator. If you’re using
Regexp.new, the options are constants used as the second parameter of the constructor.

i Case Insensitive. The pattern match will ignore the case of letters in the pattern and
string. Setting $=1.8 to make matches case insensitive is now deprecated.

o Substitute Once. Any #... substitutions in a particular regular expression literal
will be performed just once, the first time it is evaluated. Otherwise, the substitu-
tions will be performed every time the literal generates a Regexp object.

m Multiline Mode. Normally, “.” matches any character except a newline. With the
/m option, “.” matches any character.

x Extended Mode. Complex regular expressions can be difficult to read. The x option
allows you to insert spaces, newlines, and comments in the pattern to make it more
readable.

Another set of options allows you to set the language encoding of the regular expres-
sion. If none of these options is specified, the interpreter’s default encoding (set using
-K or $KCODE) is used.

n: no encoding (ASCII) e: EUC
s: SJIS u: UTF-8

Regular Expression Patterns
regular characters

All characters except ., |, (,), [, \, ^, {, +, $, *, and ? match themselves.
To match one of these characters, precede it with a backslash.

^ Matches the beginning of a line.

$ Matches the end of a line.

\A Matches the beginning of the string.

Prepared exclusively for Margus Pau

THE BASIC TYPES 310

\z Matches the end of the string.

\Z Matches the end of the string unless the string ends with a \n, in which
case it matches just before the \n.

\b, \B Match word boundaries and nonword boundaries respectively.

\G The position where a previous repetitive search completed (but only in
some situations). See the additional information on the next page.

[characters] A bracket expression matches any of a list of characters between the
brackets. The characters |, ., (,), [, ^, $, *, and ?, which
have special meanings elsewhere in patterns, lose their special signifi-
cance between brackets. The sequences \nnn, \xnn, \cx, \C-x, \M-x,
and \M-\C-x have the meanings shown in Table 22.2 on page 306. The
sequences \d, \D, \s, \S, \w, and \W are abbreviations for groups of
characters, as shown in Table 5.1 on page 68. The sequence [:class:]
matches a POSIX character class, also shown in Table 5.1 on page 68.
(Note that the open and close brackets are part of the class, so the
pattern /[_[:digit:]]/ would match a digit or an underscore.) The
sequence c1-c2 represents all the characters between c1 and c2, inclu-
sive. Literal] or - characters must appear immediately after the open-
ing bracket. A caret character (^) immediately following the opening
bracket negates the sense of the match—the pattern matches any char-
acter that isn’t in the character class.

\d, \s, \w Abbreviations for character classes that match digits, whitespace, and
word characters, respectively. These abbreviations are summarized in
Table 5.1 on page 68.

\D, \S, \W The negated forms of \d, \s, and \w, matching characters that are not
digits, whitespace, or word characters.

. (period) Appearing outside brackets, matches any character except a newline.
(With the /m option, it matches newline, too).

re* Matches zero or more occurrences of re.

re+ Matches one or more occurrences of re.

re{m,n} Matches at least “m” and at most “n” occurrences of re.

re{m,} Matches at least “m” occurrences of re.

re{m} Matches exactly “m” occurrences of re.

re? Matches zero or one occurrence of re. The *, +, and {m,n} modifiers
are greedy by default. Append a question mark to make them minimal.

re1|re2 Matches either re1 or re2. | has a low precedence.

Prepared exclusively for Margus Pau

THE BASIC TYPES 311

(...) Parentheses are used to group regular expressions. For example, the
pattern /abc+/ matches a string containing an a, a b, and one or more
c’s. /(abc)+/ matches one or more sequences of abc. Parentheses are
also used to collect the results of pattern matching. For each opening
parenthesis, Ruby stores the result of the partial match between it and
the corresponding closing parenthesis as successive groups. Within the
same pattern, \1 refers to the match of the first group, \2 the second
group, and so on. Outside the pattern, the special variables $1, $2, and
so on, serve the same purpose.

The anchor \G1.8 works with the repeating match methods String#gsub, String#gsub!,
String#index, and String#scan. In a repetitive match, it represents the position in
the string where the last match in the iteration ended. \G initially points to the start of
the string (or to the character referenced by the second parameter of String#index).

"a01b23c45 d56".scan(/[a-z]\d+/) → ["a01", "b23", "c45", "d56"]
"a01b23c45 d56".scan(/\G[a-z]\d+/) → ["a01", "b23", "c45"]
"a01b23c45 d56".scan(/\A[a-z]\d+/) → ["a01"]

Substitutions

#{...} Performs an expression substitution, as with strings. By default, the
substitution is performed each time a regular expression literal is eval-
uated. With the /o option, it is performed just the first time.

\0, \1, \2, ... \9, \&, \`, \', \+
Substitutes the value matched by the nth grouped subexpression, or by
the entire match, pre- or postmatch, or the highest group.

Regular Expression Extensions

In common with Perl and Python, Ruby regular expressions offer some extensions over
traditional Unix regular expressions. All the extensions are entered between the char-
acters (? and). The parentheses that bracket these extensions are groups, but they do
not generate back references: they do not set the values of \1 and $1 etc.

(?# comment)
Inserts a comment into the pattern. The content is ignored during pat-
tern matching.

(?:re) Makes re into a group without generating backreferences. This is often
useful when you need to group a set of constructs but don’t want the
group to set the value of $1 or whatever. In the example that follows,
both patterns match a date with either colons or spaces between the
month, day, and year. The first form stores the separator character in $2
and $4, but the second pattern doesn’t store the separator in an external
variable.

Prepared exclusively for Margus Pau

THE BASIC TYPES 312

date = "12/25/01"
date =~ %r{(\d+)(/|:)(\d+)(/|:)(\d+)}
[$1,$2,$3,$4,$5] → ["12", "/", "25", "/", "01"]
date =~ %r{(\d+)(?:/|:)(\d+)(?:/|:)(\d+)}
[$1,$2,$3] → ["12", "25", "01"]

(?=re) Matches re at this point, but does not consume it (also known charm-
ingly as zero-width positive lookahead). This lets you look forward for
the context of a match without affecting $&. In this example, the scan
method matches words followed by a comma, but the commas are not
included in the result.

str = "red, white, and blue"
str.scan(/[a-z]+(?=,)/) → ["red", "white"]

(?!re) Matches if re does not match at this point. Does not consume the match
(zero-width negative lookahead). For example, /hot(?!dog)(\w+)/
matches any word that contains the letters hot that aren’t followed by
dog, returning the end of the word in $1.

(?>re) Nests an independent regular expression within the first regular expres-
sion. This expression is anchored at the current match position. If it
consumes characters, these will no longer be available to the higher-
level regular expression. This construct therefore inhibits backtrack-
ing, which can be a performance enhancement. For example, the pat-
tern /a.*b.*a/ takes exponential time when matched against a string
containing an a followed by a number of b’s, but with no trailing a.
However, this can be avoided by using a nested regular expression
/a(?>.*b).*a/. In this form, the nested expression consumes all the
the input string up to the last possible b character. When the check for
a trailing a then fails, there is no need to backtrack, and the pattern
match fails promptly.

require 'benchmark'
include Benchmark

str = "a" + ("b" * 5000)

bm(8) do |test|
test.report("Normal:") { str =~ /a.*b.*a/ }
test.report("Nested:") { str =~ /a(?>.*b).*a/ }

end

produces:

user system total real
Normal: 1.070000 0.010000 1.080000 (1.762961)
Nested: 0.000000 0.000000 0.000000 (0.000814)

(?imx) Turns on the corresponding i, m, or x option. If used inside a group,
the effect is limited to that group.

Prepared exclusively for Margus Pau

NAMES 313

(?-imx) Turns off the i, m, or x option.

(?imx:re) Turns on the i, m, or x option for re.

(?-imx:re) Turns off the i, m, or x option for re.

Names
Ruby names are used to refer to constants, variables, methods, classes, and modules.
The first character of a name helps Ruby to distinguish its intended use. Certain names,
listed in Table 22.3 on the following page, are reserved words and should not be used
as variable, method, class, or module names.

Method names are described in the section beginning on page 330.

In these descriptions, lowercase letter means the characters a though z, as well as _, the
underscore. Uppercase letter means A though Z, and digit means 0 through 9. A name
is an uppercase letter, lowercase letters, or an underscore, followed by name characters:
any combination of upper- and lowercase letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name characters. It is
conventional to use underscores rather than camelCase to write multiword names, but
the interpreter does not enforce this.

fred anObject _x three_two_one

An instance variable name starts with an “at” sign (@) followed by a name. It is gen-
erally a good idea to use a lowercase letter after the @.

@name @_ @size

A class variable name starts with two “at” signs (@@) followed by a name.

@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class
names and module names are constants and follow the constant naming conventions.
By convention, constant object references are normally spelled using uppercase letters
and underscores throughout, while class and module names are MixedCase.

module Math
ALMOST_PI = 22.0/7.0

end
class BigBlob
end

Global variables, and some special system variables, start with a dollar sign ($) fol-
lowed by name characters. In addition, Ruby defines a set of two-character global vari-
able names in which the second character is a punctuation character. These predefined

Prepared exclusively for Margus Pau

NAMES 314

Table 22.3. Reserved words

__FILE__ and def end in or self unless
__LINE__ begin defined? ensure module redo super until

BEGIN break do false next rescue then when

END case else for nil retry true while

alias class elsif if not return undef yield

variables are listed starting on page 318. Finally, a global variable name can be formed
using $- followed by a single letter or underscore.1.8 These latter variables typically mir-
ror the setting of the corresponding command-line option (see the table starting on
page 320 for details).

$params $PROGRAM $! $_ $-a $-K

Variable/Method Ambiguity
When Ruby sees a name such as a in an expression, it needs to determine if it is a local
variable reference or a call to a method with no parameters. To decide which is the case,
Ruby uses a heuristic. As Ruby parses a source file, it keeps track of symbols that have
been assigned to. It assumes that these symbols are variables. When it subsequently
comes across a symbol that could be a variable or a method call, it checks to see if
it has seen a prior assignment to that symbol. If so, it treats the symbol as a variable;
otherwise it treats it as a method call. As a somewhat pathological case of this, consider
the following code fragment, submitted by Clemens Hintze.

def a
print "Function 'a' called\n"
99

end

for i in 1..2
if i == 2
print "a=", a, "\n"

else
a = 1
print "a=", a, "\n"

end
end

produces:

a=1
Function 'a' called
a=99

During the parse, Ruby sees the use of a in the first print statement and, as it hasn’t yet
seen any assignment to a, assumes that it is a method call. By the time it gets to the
second print statement, though, it has seen an assignment, and so treats a as a variable.

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 315

Note that the assignment does not have to be executed—Ruby just has to have seen it.
This program does not raise an error.

a = 1 if false; a

Variables and Constants
Ruby variables and constants hold references to objects. Variables themselves do not
have an intrinsic type. Instead, the type of a variable is defined solely by the messages
to which the object referenced by the variable responds.2

A Ruby constant is also a reference to an object. Constants are created when they are
first assigned to (normally in a class or module definition). Ruby, unlike less flexible
languages, lets you alter the value of a constant, although this will generate a warning
message.

MY_CONST = 1
MY_CONST = 2 # generates a warning

produces:

prog.rb:2: warning: already initialized constant MY_CONST

Note that although constants should not be changed, you can alter the internal states of
the objects they reference.

MY_CONST = "Tim"
MY_CONST[0] = "J" # alter string referenced by constant
MY_CONST → "Jim"

Assignment potentially aliases objects, giving the same object different names.

Scope of Constants and Variables
Constants defined within a class or module may be accessed unadorned anywhere
within the class or module. Outside the class or module, they may be accessed using the
scope operator, :: prefixed by an expression that returns the appropriate class or mod-
ule object. Constants defined outside any class or module may be accessed unadorned
or by using the scope operator :: with no prefix. Constants may not be defined in meth-
ods. Constants may be added1.8 to existing classes and modules from the outside by using
the class or module name and the scope operator before the constant name.

OUTER_CONST = 99

2. When we say that a variable is not typed, we mean that any given variable can at different times hold
references to objects of many different types.

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 316

class Const
def get_const
CONST

end
CONST = OUTER_CONST + 1

end

Const.new.get_const → 100
Const::CONST → 100
::OUTER_CONST → 99
Const::NEW_CONST = 123

Global variables are available throughout a program. Every reference to a particu-
lar global name returns the same object. Referencing an uninitialized global variable
returns nil.

Class variables are available throughout a class or module body. Class variables must
be initialized before use. A class variable is shared among all instances of a class and
is available within the class itself.

class Song
@@count = 0

def initialize
@@count += 1

end
def Song.get_count
@@count

end
end

Class variables belong to the innermost enclosing class or module. Class variables used
at the top level are defined in Object and behave like global variables. Class variables
defined within singleton methods belong to the top level (although this usage is dep-
recated and generates a warning). In Ruby 1.9, class variables will be private to the
defining class.1.8

class Holder
@@var = 99
def Holder.var=(val)
@@var = val

end
def var
@@var

end
end

@@var = "top level variable"

a = Holder.new

a.var → 99

Holder.var = 123
a.var → 123

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 317

This references the top-level object
def a.get_var
@@var

end
a.get_var → "top level variable"

Class variables are shared by children of the class in which they are first defined.

class Top
@@A = 1
def dump
puts values

end
def values
"#{self.class.name}: A = #@@A"

end
end
class MiddleOne < Top
@@B = 2
def values
super + ", B = #@@B"

end
end
class MiddleTwo < Top
@@B = 3
def values
super + ", B = #@@B"

end
end
class BottomOne < MiddleOne; end
class BottomTwo < MiddleTwo; end

Top.new.dump
MiddleOne.new.dump
MiddleTwo.new.dump
BottomOne.new.dump
BottomTwo.new.dump

produces:

Top: A = 1
MiddleOne: A = 1, B = 2
MiddleTwo: A = 1, B = 3
BottomOne: A = 1, B = 2
BottomTwo: A = 1, B = 3

Instance variables are available within instance methods throughout a class body. Ref-
erencing an uninitialized instance variable returns nil. Each instance of a class has a
unique set of instance variables. Instance variables are not available to class methods
(although classes themselves also may have instance variables—see page 371).

Local variables are unique in that their scopes are statically determined but their exis-
tence is established dynamically.

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 318

A local variable is created dynamically when it is first assigned a value during program
execution. However, the scope of a local variable is statically determined to be the
immediately enclosing block, method definition, class definition, module definition, or
top-level program. Referencing a local variable that is in scope but that has not yet
been created generates a NameError exception. Local variables with the same name
are different variables if they appear in disjoint scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked.

a = [1, 2, 3]
a.each {|i| puts i } # i local to block
a.each {|$i| puts $i } # assigns to global $i
a.each {|@i| puts @i } # assigns to instance variable @i
a.each {|I| puts I } # generates warning assigning to constant
a.each {|b.meth| } # invokes meth= in object b
sum = 0
var = nil
a.each {|var| sum += var } # uses sum and var from enclosing scope

If a local variable (including a block parameter) is first assigned in a block, it is local to
the block. If instead a variable of the same name is already established at the time the
block executes, the block will inherit that variable.

A block takes on the set of local variables in existence at the time that it is created.
This forms part of its binding. Note that although the binding of the variables is fixed
at this point, the block will have access to the current values of these variables when it
executes. The binding preserves these variables even if the original enclosing scope is
destroyed.

The bodies of while, until, and for loops are part of the scope that contains them;
previously existing locals can be used in the loop, and any new locals created will be
available outside the bodies afterward.

Predefined Variables
The following variables are predefined in the Ruby interpreter. In these descriptions,
the notation [r/o] indicates that the variables are read-only; an error will be raised if a
program attempts to modify a read-only variable. After all, you probably don’t want to
change the meaning of true halfway through your program (except perhaps if you’re
a politician). Entries marked [thread] are thread local.

Many global variables look something like Snoopy swearing: $_, $!, $&, and so on.
This is for “historical” reasons, as most of these variable names come from Perl. If
you find memorizing all this punctuation difficult, you may want to have a look at the
library file called English, documented on page 650, which gives the commonly used
global variables more descriptive names.

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 319

In the tables of variables and constants that follow, we show the variable name, the type
of the referenced object, and a description.

Exception Information

$! Exception The exception object passed to raise. [thread]

$@ Array The stack backtrace generated by the last exception. See Kernel#caller
on page 497 for details. [thread]

Pattern Matching Variables

These variables (except $=) are set to nil after an unsuccessful pattern match.

$& String The string matched (following a successful pattern match). This variable is
local to the current scope. [r/o, thread]

$+ String The contents of the highest-numbered group matched following a successful
pattern match. Thus, in "cat" =~/(c|a)(t|z)/, $+ will be set to “t”. This
variable is local to the current scope. [r/o, thread]

$` String The string preceding the match in a successful pattern match. This variable
is local to the current scope. [r/o, thread]

$' String The string following the match in a successful pattern match. This variable
is local to the current scope. [r/o, thread]

$= Object Deprecated.1.8 If set to any value apart from nil or false, all pattern matches
will be case insensitive, string comparisons will ignore case, and string hash
values will be case insensitive.

$1 to $9 String The contents of successive groups matched in a successful pattern match. In
"cat" =~/(c|a)(t|z)/, $1 will be set to “a” and $2 to “t”. This variable
is local to the current scope. [r/o, thread]

$~ MatchData An object that encapsulates the results of a successful pattern match. The
variables $&, $`, $', and $1 to $9 are all derived from $~. Assigning to $~
changes the values of these derived variables. This variable is local to the
current scope. [thread]

Input/Output Variables

$/ String The input record separator (newline by default). This is the value that rou-
tines such as Kernel#gets use to determine record boundaries. If set to
nil, gets will read the entire file.

$-0 String Synonym for $/.

$\ String The string appended to the output of every call to methods such as
Kernel#print and IO#write. The default value is nil.

$, String The separator string output between the parameters to methods such as
Kernel#print and Array#join. Defaults to nil, which adds no text.

$. Fixnum The number of the last line read from the current input file.

$; String The default separator pattern used by String#split. May be set from the
command line using the -F flag.

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 320

$< Object An object that provides access to the concatenation of the contents of all
the files given as command-line arguments or $stdin (in the case where
there are no arguments). $< supports methods similar to a File object:
binmode, close, closed?, each, each_byte, each_line, eof, eof?,
file, filename, fileno, getc, gets, lineno, lineno=, path, pos, pos=,
read, readchar, readline, readlines, rewind, seek, skip, tell, to_a,
to_i, to_io, to_s, along with the methods in Enumerable. The method
file returns a File object for the file currently being read. This may change
as $< reads through the files on the command line. [r/o]

$> IO The destination of output for Kernel#print and Kernel#printf. The
default value is $stdout.

$_ String The last line read by Kernel#gets or Kernel#readline. Many string-
related functions in the Kernel module operate on $_ by default. The vari-
able is local to the current scope. [thread]

$defout IO Synonym for $>. Obsolete: use $stdout.1.8

$deferr IO Synonym for STDERR.1.8 Obsolete: use $stderr.

$-F String Synonym for $;.

$stderr IO The current standard error output.

$stdin IO The current standard input.

$stdout IO The current standard output. Assignment to $stdout1.8 is deprecated: use
$stdout.reopen instead.

Execution Environment Variables

$0 String The name of the top-level Ruby program being executed. Typically this will
be the program’s filename. On some operating systems, assigning to this
variable will change the name of the process reported (for example) by the
ps(1) command.

$* Array An array of strings containing the command-line options from the invoca-
tion of the program. Options used by the Ruby interpreter will have been
removed. [r/o]

$" Array An array containing the filenames of modules loaded by require. [r/o]

$$ Fixnum The process number of the program being executed. [r/o]

$? Process::Status

The exit status of the last child process to terminate. [r/o, thread]

$: Array An array of strings, where each string specifies a directory to be searched for
Ruby scripts and binary extensions used by the load and require methods.
The initial value is the value of the arguments passed via the -I command-
line option, followed by an installation-defined standard library location, fol-
lowed by the current directory (“.”). This variable may be set from within a
program to alter the default search path; typically, programs use $: << dir
to append dir to the path. [r/o]

$-a Object True if the -a option is specified on the command line. [r/o]

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 321

$-d Object Synonym for $DEBUG.

$DEBUG Object Set to true if the -d command-line option is specified.

__FILE__ String The name of the current source file. [r/o]

$F Array The array that receives the split input line if the -a command-line option is
used.

$FILENAME String The name of the current input file. Equivalent to $<.filename. [r/o]

$-i String If in-place edit mode is enabled (perhaps using the -i command-line
option), $-i holds the extension used when creating the backup file. If you
set a value into $-i, enables in-place edit mode. See page 168.

$-I Array Synonym for $:. [r/o]

$-K String Sets the multibyte coding system for strings and regular expressions. Equiv-
alent to the -K command-line option. See page 169.

$-l Object Set to true if the -l option (which enables line-end processing) is present
on the command line. See page 169. [r/o]

__LINE__ String The current line number in the source file. [r/o]

$LOAD_PATH Array A synonym for $:. [r/o]

$-p Object Set to true if the -p option (which puts an implicit while gets . . . end
loop around your program) is present on the command line. See page 169.
[r/o]

$SAFE Fixnum The current safe level (see page 380). This variable’s value may never be
reduced by assignment. [thread]

$VERBOSE Object Set to true if the -v, --version, -W, or -w option is specified on the com-
mand line. Set to false1.8 if no option, or -W1 is given. Set to nil if -W0
was specified. Setting this option to true causes the interpreter and some
library routines to report additional information. Setting to nil suppresses
all warnings (including the output of Kernel.warn).

$-v Object Synonym for $VERBOSE.

$-w Object Synonym for $VERBOSE.

Standard Objects

ARGF Object A synonym for $<.

ARGV Array A synonym for $*.

ENV Object A hash-like object containing the program’s environment variables. An
instance of class Object, ENV implements the full set of Hashmethods. Used
to query and set the value of an environment variable, as in ENV["PATH"]
and ENV["term"]="ansi".

false FalseClass Singleton instance of class FalseClass. [r/o]

nil NilClass The singleton instance of class NilClass. The value of uninitialized
instance and global variables. [r/o]

Prepared exclusively for Margus Pau

VARIABLES AND CONSTANTS 322

self Object The receiver (object) of the current method. [r/o]

true TrueClass Singleton instance of class TrueClass. [r/o]

Global Constants
The following constants are defined by the Ruby interpreter.

DATA IO If the the main program file contains the directive __END__, then
the constant DATA will be initialized so that reading from it will
return lines following __END__ from the source file.

FALSE FalseClass Synonym for false.

NIL NilClass Synonym for nil.

RUBY_PLATFORM String The identifier of the platform running this program. This string
is in the same form as the platform identifier used by the GNU
configure utility (which is not a coincidence).

RUBY_RELEASE_DATE String The date of this release.

RUBY_VERSION String The version number of the interpreter.

STDERR IO The actual standard error stream for the program. The initial
value of $stderr.

STDIN IO The actual standard input stream for the program. The initial
value of $stdin.

STDOUT IO The actual standard output stream for the program. The initial
value of $stdout.

SCRIPT_LINES__ Hash If a constant SCRIPT_LINES__ is defined and references a Hash,
Ruby will store an entry containing the contents of each file it
parses, with the file’s name as the key and an array of strings as
the value. See Kernel.require on page 507 for an example.

TOPLEVEL_BINDING Binding A Binding object representing the binding at Ruby’s top level—
the level where programs are initially executed.

TRUE TrueClass Synonym for true.

The constant __FILE__ and the variable $0 are often used together to run code only if
it appears in the file run directly by the user. For example, library writers often use this
to include tests in their libraries that will be run if the library source is run directly, but
not if the source is required into another program.

library code
...

if __FILE__ == $0
tests...

end

Prepared exclusively for Margus Pau

EXPRESSIONS 323

Expressions
Single terms in an expression may be any of the following.

• Literal. Ruby literals are numbers, strings, arrays, hashes, ranges, symbols, and
regular expressions. There are described starting on page 304.

• Shell command. A shell command is a string enclosed in backquotes or in a
general delimited string (page 303) starting with %x. The value of the string is the
standard output of running the command represented by the string under the host
operating system’s standard shell. The execution also sets the $? variable with the
command’s exit status.

filter = "*.c"
files = `ls #{filter}`
files = %x{ls #{filter}}

• Symbol generator. A Symbol object is created by prefixing an operator, string,1.8
variable, constant, method, class, module name with a colon. The symbol object
will be unique for each different name but does not refer to a particular instance
of the name, so the symbol for (say) :fred will be the same regardless of context.
A symbol is similar to the concept of atoms in other high-level languages.

• Variable reference or constant reference. A variable is referenced by citing its
name. Depending on scope (see page 315), a constant is referenced either by cit-
ing its name or by qualifying the name, using the name of the class or module
containing the constant and the scope operator (::).

barney # variable reference
APP_NAMR # constant reference
Math::PI # qualified constant reference

• Method invocation. The various ways of invoking a method are described starting
on page 333.

Operator Expressions
Expressions may be combined using operators. Table 22.4 on the next page lists the
Ruby operators in precedence order. The operators with a in the Method column are
implemented as methods, and may be overridden.

More on Assignment
The assignment operator assigns one or more rvalues (the r stands for “right,” as rvalues
tend to appear on the right side of assignments) to one or more lvalues (“left” values).
What is meant by assignment depends on each individual lvalue.

Prepared exclusively for Margus Pau

EXPRESSIONS 324

Table 22.4. Ruby operators (high to low precedence)

Method Operator Description

[] []= Element reference, element set

** Exponentiation
! ~ + - Not, complement, unary plus and minus

(method names for the last two are +@ and
-@)

* / % Multiply, divide, and modulo
+ - Plus and minus
>> << Right and left shift
& “And” (bitwise for integers)
^ | Exclusive “or” and regular “or” (bitwise for

integers)
<= < > >= Comparison operators
<=> == === != =~ !~ Equality and pattern match operators (!=

and !~ may not be defined as methods)
&& Logical “and”
|| Logical “or”
.. ... Range (inclusive and exclusive)
? : Ternary if-then-else
= %= ~= /= -= += |= &=
>>= <<= *= &&= ||= **=

Assignment

defined? Check if symbol defined
not Logical negation
or and Logical composition
if unless while until Expression modifiers
begin/end Block expression

If an lvalue is a variable or constant name, that variable or constant receives a reference
to the corresponding rvalue.

a = /regexp/
b, c, d = 1, "cat", [3, 4, 5]

If the lvalue is an object attribute, the corresponding attribute setting method will be
called in the receiver, passing as a parameter the rvalue.

obj = A.new
obj.value = "hello" # equivalent to obj.value=("hello")

If the lvalue is an array element reference, Ruby calls the element assignment oper-
ator ([]=) in the receiver, passing as parameters any indices that appear between the
brackets followed by the rvalue. This is illustrated in the following table.

Prepared exclusively for Margus Pau

EXPRESSIONS 325

Element Reference Actual Method Call

obj[] = "one" obj.[]=("one")

obj[1] = "two" obj.[]=(1, "two")

obj["a", /^cat/] = "three" obj.[]=("a", /^cat/, "three")

The value of an assignment expression is its rvalue.1.8 This is true even if the assignment
is to an attribute method that returns something different.

Parallel Assignment

An assignment expression may have one or more lvalues and one or more rvalues.
This section explains how Ruby handles assignment with different combinations of
arguments.

• If the last rvalue is prefixed with an asterisk and implements to_ary, the rvalue is
replaced with the elements of the array, with each element forming its own rvalue.

• If the assignment contains multiple lvalues and one rvalue, the rvalue is converted
into an Array, and this array is expanded into a set of rvalues as described in (1).

• Successive rvalues are assigned to the lvalues. This assignment effectively hap-
pens in parallel, so that (for example) a,b=b,a swaps the values in a and b.

• If there are more lvalues than rvalues, the excess will have nil assigned to them.

• If there are more rvalues that lvalues, the excess will be ignored.

• These rules are modified slightly if the last lvalue is precededwith an asterisk. This
lvalue will always receive an array during the assignment. The array will consist
of whatever rvalue would normally have been assigned to this lvalue, followed by
the excess rvalues (if any).

• If an lvalue contains a parenthesized list, the list is treated as a nested assignment
statement, and the it is assigned from the corresponding rvalue as described by
these rules.

The tutorial has examples starting on page 85.

Block Expressions
begin

body
end

Expressions may be grouped between begin and end. The value of the block expres-
sion is the value of the last expression executed.

Block expressions also play a role in exception handling, which is discussed starting
on page 345.

Prepared exclusively for Margus Pau

EXPRESSIONS 326

Boolean Expressions
Ruby predefines the globals false and nil. Both of these values are treated as being
false in a boolean context. All other values are treated as being true. The constant true
is available for when you need an explicit “true” value.

And, Or, Not, and Defined?

The and and && operators evaluate their first operand. If false, the expression returns
the value of the first operand; otherwise, the expression returns the value of the second
operand.

expr1 and expr2
expr1 && expr2

The or and || operators evaluate their first operand. If true, the expression returns the
value of their first operand; otherwise, the expression returns the value of the second
operand.

expr1 or expr2
expr1 || expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If
false, the expression returns true. For historical reasons, a string, regexp, or range may
not appear as the single argument to not or !.

The word forms of these operators (and, or, and not) have a lower precedence than the
corresponding symbol forms (&&, ||, and !). See Table 22.4 on page 324 for details.

The defined? operator returns nil if its argument, which can be an arbitrary expres-
sion, is not defined. Otherwise, it returns a description of that argument. For examples,
see page 88 in the tutorial.

Comparison Operators

The Ruby syntax defines the comparison operators ==, ===, <=>, <, <=, >, >=, =~. All of
these operators are implemented as methods. By convention, the language also uses the
standard methods eql? and equal? (see Table 7.1 on page 89). Although the operators
have intuitive meaning, it is up to the classes that implement them to produce mean-
ingful comparison semantics. The library reference starting on page 402 describes the
comparison semantics for the built-in classes. The module Comparable provides sup-
port for implementing the operators ==, <, <=, >, >=, and the method between? in terms
of <=>. The operator === is used in case expressions, described on page 328.

Both == and =~ have negated forms, != and !~. Ruby converts these during syntax anal-
ysis: a != b is mapped to !(a == b), and a !~ b is mapped to !(a =~ b). No methods
correspond to != and !~.

Prepared exclusively for Margus Pau

EXPRESSIONS 327

Figure 22.1. State transitions for boolean range

start unset set

expr1 is true

expr2 is true
expr1 is false expr2 is false

Ranges in Boolean Expressions
if expr1 .. expr2
while expr1 ... expr2

A range used in a boolean expression acts as a flip-flop. It has two states, set and unset,
and is initially unset. On each call, the range executes a transition in the state machine
shown in Figure 22.1. The range expression returns true if the state machine is in the
set state at the end of the call, and false otherwise.

The two-dot form of a range behaves slightly differently than the three-dot form. When
the two-dot form first makes the transition from unset to set, it immediately evaluates
the end condition and makes the transition accordingly. This means that if expr1 and
expr2 both evaluate to true on the same call, the two-dot form will finish the call in
the unset state. However, it still returns true for this call.

The three-dot form does not evaluate the end condition immediately upon entering the
set state.

The difference is illustrated by the following code.

a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}
a → [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}
a → [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions

In versions of Ruby prior to 1.81.8 , a single regular expression in boolean expression
was matched against the current value of the variable $_. This behavior is now only
supported if the condition appears in a command-line -e parameter. In regular code,
the use of implicit operands and $_ is being slowly phased out, so it is better to use an
explicit match against a variable. If a match against $_ is required, use

if ~/re/ ... or if $_ =~ /re/ ...

Prepared exclusively for Margus Pau

EXPRESSIONS 328

if and unless Expressions
if boolean-expression [then | :]

body
[elsif boolean-expression [then | :]

body , ...]
[else

body]
end

unless boolean-expression [then | :]
body

[else
body]

end

The then keyword (or a colon) separates the body from the condition. It is not required
if the body starts on a new line. The value of an if or unless expression is the value
of the last expression evaluated in whichever body is executed.

if and unless Modifiers
expression if boolean-expression
expression unless boolean-expression

evaluates expression only if boolean-expression is true (for if) or false (for unless).

Ternary Operator
boolean-expression ? expr1 : expr2

returns expr1 if boolean expression is true and expr2 otherwise.

case Expressions
Ruby has two forms of case statement. The first allows a series of conditions to be
evaluated, executing code corresponding to the first condition that is true.

case
when condition [, condition]... [then | :]

body
when condition [, condition]... [then | :]

body
...

[else
body]

end

The second form of a case expression takes a target expression following the case key-
word. It searches for a match by starting at the first (top left) comparison, performing
comparison === target.

Prepared exclusively for Margus Pau

EXPRESSIONS 329

case target
when comparison [, comparison]... [then | :]

body
when comparison [, comparison]... [then | :]

body
...

[else
body]

end

A comparison can be an array reference preceded by an asterisk, in which case it is
expanded into that array’s elements before the tests are performed on each. When a
comparison returns true, the search stops, and the body associated with the comparison
is executed (no break is required). case then returns the value of the last expression
executed. If no comparison matches: if an else clause is present, its body will be
executed; otherwise, case silently returns nil.

The then keyword (or a colon) separates the when comparisons from the bodies and is
not needed if the body starts on a new line.

Loops
while boolean-expression [do | :]

body
end

executes body zero or more times as long as boolean-expression is true.

until boolean-expression [do | :]
body

end

executes body zero or more times as long as boolean-expression is false.

In both forms, the do or colon separates boolean-expression from the body and can be
omitted when the body starts on a new line.

for name [, name]... in expression [do | :]
body

end

The for loop is executed as if it were the following each loop, except that local vari-
ables defined in the body of the for loop will be available outside the loop, and those
defined within an iterator block will not.

expression.each do | name [, name]... |
body

end

loop, which iterates its associated block, is not a language construct—it is a method in Library

module Kernel.

Prepared exclusively for Margus Pau

METHOD DEFINITION 330

loop do
print "Input: "
break unless line = gets
process(line)

end

while and until Modifiers
expression while boolean-expression
expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or
more times while boolean-expression is true (for while) or false (for until).

If expression is a begin/end block, the block will always be executed at least one time.

break, redo, next, and retry

break, redo, next, and retry alter the normal flow through a while, until, for, or
iterator controlled loop.

break terminates the immediately enclosing loop—control resumes at the statement
following the block. redo repeats the loop from the start, but without reevaluating
the condition or fetching the next element (in an iterator). The next keyword skips
to the end of the loop, effectively starting the next iteration. retry restarts the loop,
reevaluating the condition.

break and next may optionally take one or more arguments.1.8 If used within a block,
the given argument(s) are returned as the value of the yield. If used within a while,
until, or for loop, the value given to break is returned as the value of the statement,
and the value given to next is silently ignored. If break is never called, or if it is called
with no value, the loop returns nil.

match = while line = gets
next if line =~ /^#/
break line if line =~ /ruby/

end

match = for line in ARGF.readlines
next if line =~ /^#/
break line if line =~ /ruby/

end

Method Definition
def defname [([arg [=val], ...] [, *vararg] [, &blockarg])]

body
end

defname is both the name of the method and optionally the context in which it is valid.

Prepared exclusively for Margus Pau

METHOD DEFINITION 331

defname ← methodname
constant.methodname
(expr).methodname

A methodname is either a redefinable operator (see Table 22.4 on page 324) or a name.
If methodname is a name, it should start with a lowercase letter (or underscore) option-
ally followed by upper- and lowercase letters, underscores, and digits. A methodname
may optionally end with a question mark (?), exclamation point (!), or equals sign (=).
The question mark and exclamation point are simply part of the name. The equals sign
is also part of the name but additionally signals that this method may be used as an
lvalue (described on page 29).

A method definition using an unadorned method name within a class or module defini-
tion creates an instance method. An instance method may be invoked only by sending
its name to a receiver that is an instance of the class that defined it (or one of that class’s
subclasses).

Outside a class or module definition, a definition with an unadorned method name is
added as a private method to class Object, and hence may be called in any context
without an explicit receiver.

A definition using a method name of the form constant.methodname or the more general
(expr).methodname creates a method associated with the object that is the value of
the constant or expression; the method will be callable only by supplying the object
referenced by the expression as a receiver. This style of definition creates per object or
singleton methods.

class MyClass
def MyClass.method # definition
end

end

MyClass.method # call

obj = Object.new
def obj.method # definition
end

obj.method # call

def (1.class).fred # receiver may be an expression
end

Fixnum.fred # call

Method definitions may not contain class or module definitions. They may contain
nested instance or singleton method definitions.1.8 The internal method is defined when
the enclosing method is executed. The internal method does not act as a closure in the
context of the nested method—it is self contained.

Prepared exclusively for Margus Pau

METHOD DEFINITION 332

def toggle
def toggle
"subsequent times"

end
"first time"

end

toggle → "first time"
toggle → "subsequent times"
toggle → "subsequent times"

The body of a method acts as if it were a begin/end block, in that it may contain
exception handling statements (rescue, else, and ensure).

Method Arguments
A method definition may have zero or more regular arguments, an optional array argu-
ment, and an optional block argument. Arguments are separated by commas, and the
argument list may be enclosed in parentheses.

A regular argument is a local variable name, optionally followed by an equals sign and
an expression giving a default value. The expression is evaluated at the time the method
is called. The expressions are evaluated from left to right. An expression may reference
a parameter that precedes it in the argument list.

def options(a=99, b=a+1)
[a, b]

end
options → [99, 100]
options 1 → [1, 2]
options 2, 4 → [2, 4]

The optional array argument must follow any regular arguments and may not have
a default. When the method is invoked, Ruby sets the array argument to reference a
new object of class Array. If the method call specifies any parameters in excess of
the regular argument count, all these extra parameters will be collected into this newly
created array.

def varargs(a, *b)
[a, b]

end
varargs 1 → [1, []]
varargs 1, 2 → [1, [2]]
varargs 1, 2, 3 → [1, [2, 3]]

If an array argument follows arguments with default values, parameters will first be
used to override the defaults. The remainder will then be used to populate the array.

Prepared exclusively for Margus Pau

INVOKING A METHOD 333

def mixed(a, b=99, *c)
[a, b, c]

end
mixed 1 → [1, 99, []]
mixed 1, 2 → [1, 2, []]
mixed 1, 2, 3 → [1, 2, [3]]
mixed 1, 2, 3, 4 → [1, 2, [3, 4]]

The optional block argument must be the last in the list. Whenever the method is called,
Ruby checks for an associated block. If a block is present, it is converted to an object
of class Proc and assigned to the block argument. If no block is present, the argument
is set to nil.

def example(&block)
puts block.inspect

end

example
example { "a block" }

produces:

nil
#<Proc:0x001c9940@-:6>

Invoking a Method

[receiver.] name [parameters] [block]
[receiver::] name [parameters] [block]

parameters ← ([param, ...] [, hashlist] [*array] [&a_proc])

block ← { blockbody }
do blockbody end

Initial parameters are assigned to the actual arguments of the method. Following these
parameters may be a list of key => value pairs. These pairs are collected into a single
new Hash object and passed as a single parameter.

Following these parameters may be a single parameter prefixed with an asterisk. If this
parameter is an array, Ruby replaces it with zero or more parameters corresponding to
the elements of the array.

def regular(a, b, *c)
..

end
regular 1, 2, 3, 4
regular(1, 2, 3, 4)
regular(1, *[2, 3, 4])

Prepared exclusively for Margus Pau

INVOKING A METHOD 334

A block may be associated with a method call using either a literal block (which must
start on the same source line as the last line of the method call) or a parameter con-
taining a reference to a Proc or Method object prefixed with an ampersand character.
Regardless of the presence of a block argument, Ruby arranges for the value of the
global function Kernel.block_given? to reflect the availability of a block associated
with the call.

a_proc = lambda { 99 }
an_array = [98, 97, 96]

def block
yield

end
block { }
block do

end
block(&a_proc)

def all(a, b, c, *d, &e)
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
puts "c = #{c.inspect}"
puts "d = #{d.inspect}"
puts "block = #{yield(e).inspect}"

end

all('test', 1 => 'cat', 2 => 'dog', *an_array, &a_proc)

produces:

a = "test"
b = {1=>"cat", 2=>"dog"}
c = 98
d = [97, 96]
block = 99

A method is called by passing its name to a receiver. If no receiver is specified, self
is assumed. The receiver checks for the method definition in its own class and then
sequentially in its ancestor classes. The instance methods of included modules act as
if they were in anonymous superclasses of the class that includes them. If the method
is not found, Ruby invokes the method method_missing in the receiver. The default
behavior defined in Kernel.method_missing is to report an error and terminate the Library

program.

When a receiver is explicitly specified in a method invocation, it may be separated from
the method name using either a period “.” or two colons “::”. The only difference
between these two forms occurs if the method name starts with an uppercase letter.
In this case, Ruby will assume that a receiver::Thing method call is actually an
attempt to access a constant called Thing in the receiver unless the method invocation
has a parameter list between parentheses.

Prepared exclusively for Margus Pau

INVOKING A METHOD 335

Foo.Bar() # method call
Foo.Bar # method call
Foo::Bar() # method call
Foo::Bar # constant access

The return value of a method is the value of the last expression executed.

return [expr, ...]

A return expression immediately exits a method. The value of a return is nil if it is
called with no parameters, the value of its parameter if it is called with one parameter,
or an array containing all of its parameters if it is called with more than one parameter.

super
super [([param, ...] [*array])] [block]

Within the body of a method, a call to super acts just like a call to that original method,
except that the search for a method body starts in the superclass of the object that was
found to contain the original method. If no parameters (and no parentheses) are passed
to super, the original method’s parameters will be passed; otherwise, the parameters
to super will be passed.

Operator Methods
expr1 operator
operator expr1
expr1 operator expr2

If the operator in an operator expression corresponds to a redefinable method (see the
Table 22.4 on page 324), Ruby will execute the operator expression as if it had been
written

(expr1).operator(expr2)

Attribute Assignment
receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue, Ruby invokes a method named
attrname= in the receiver, passing rvalue as a single parameter. The value returned by
this assignment1.8 is always rvalue—the return value of the method attrname= is dis-
carded. If you want to access the return value (in the unlikely event that it isn’t the
rvalue anyway), send an explicit message to the method.

Prepared exclusively for Margus Pau

ALIASING 336

class Demo
attr_reader :attr
def attr=(val)
@attr = val
"return value"

end
end

d = Demo.new

In all these cases, @attr is set to 99
d.attr = 99 → 99
d.attr=(99) → 99
d.send(:attr=, 99) → "return value"
d.attr → 99

Element Reference Operator
receiver[expr [, expr]...]
receiver[expr [, expr]...] = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver,
passing as parameters the expressions between the brackets.

When used as an lvalue, element reference invokes the method []= in the receiver,
passing as parameters the expressions between the brackets, followed by the rvalue

being assigned.

Aliasing
alias new_name old_name

creates a new name that refers to an existing method, operator, global variable, or reg-
ular expression backreference ($&, $`, $', and $+). Local variables, instance variables,
class variables, and constants may not be aliased. The parameters to alias may be
names or symbols.

class Fixnum
alias plus +

end
1.plus(3) → 4

alias $prematch $`
"string" =~ /i/ → 3
$prematch → "str"

alias :cmd :`
cmd "date" → "Tue Oct 26 11:32:20 CDT 2004\n"

Prepared exclusively for Margus Pau

CLASS DEFINITION 337

When a method is aliased, the new name refers to a copy of the original method’s body.
If the method is subsequently redefined, the aliased name will still invoke the original
implementation.

def meth
"original method"

end
alias original meth
def meth
"new and improved"

end
meth → "new and improved"
original → "original method"

Class Definition
class [scope::] classname [< superexpr]

body
end

class << obj
body

end

A Ruby class definition creates or extends an object of class Class by executing the
code in body. In the first form, a named class is created or extended. The resulting
Class object is assigned to a constant named classname (see below for scoping rules).
This name should start with an uppercase letter. In the second form, an anonymous
(singleton) class is associated with the specific object.

If present, superexpr should be an expression that evaluates to a Class object that will
be the superclass of the class being defined. If omitted, it defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. However:

• Method definitions will register the methods in a table in the class object.

• Nested class and module definitions will be stored in constants within the class,
not as global constants. These nested classes and modules can be accessed from
outside the defining class using “::” to qualify their names.

module NameSpace
class Example
CONST = 123

end
end
obj = NameSpace::Example.new
a = NameSpace::Example::CONST

• The Module#include method will add the named modules as anonymous super-
classes of the class being defined.

Prepared exclusively for Margus Pau

CLASS DEFINITION 338

The classname in a class definition may be prefixed by the names of existing classes
or modules using the scope operator (::).1.8 This syntax inserts the new definition into
the namespace of the prefixing module(s) and/or class(es) but does not interpret the
definition in the scope of these outer classes. A classname with a leading scope operator
places that class or module in the top-level scope.

In the following example, class C is inserted into module A’s namespace but is not
interpreted in the context of A. As a result, the reference to CONST resolves to the top-
level constant of that name, not A’s version. We also have to fully qualify the singleton
method name, as C on its own is not a known constant in the context of A::C.

CONST = "outer"

module A
CONST = "inner" # This is A::CONST

end

module A
class B
def B.get_const

CONST
end

end
end

A::B.get_const → "inner"

class A::C
def (A::C).get_const
CONST

end
end

A::C.get_const → "outer"

It is worth emphasizing that a class definition is executable code. Many of the directives
used in class definition (such as attr and include) are actually simply private instance
methods of class Module (documented starting on page 533).

Chapter 24, which begins on page 362, describes in more detail how Class objects
interact with the rest of the environment.

Creating Objects from Classes
obj = classexpr.new [([args, ...])]

Class Class defines the instance method Class#new, which creates an object of the
class of the receiver (classexpr in the syntax example). This is done by calling the
method classexpr.allocate.1.8 You can override this method, but your implementation
must return an object of the correct class. It then invokes initialize in the newly
created object, and passes it any arguments originally passed to new.

Prepared exclusively for Margus Pau

MODULE DEFINITIONS 339

If a class definition overrides the class method new without calling super, no objects
of that class can be created, and calls to new will silently return nil.

Like any other method, initialize should call super if it wants to ensure that parent
classes have been properly initialized. This is not necessary when the parent is Object,
as class Object does no instance-specific initialization.

Class Attribute Declarations
Class attribute declarations are not part of the Ruby syntax: they are simply methods Library

defined in class Module that create accessor methods automatically.

class name
attr attribute [, writable]
attr_reader attribute [, attribute]...
attr_writer attribute [, attribute]...
attr_accessor attribute [, attribute]...

end

Module Definitions
module name

body
end

A module is basically a class that cannot be instantiated. Like a class, its body is
executed during definition and the resulting Module object is stored in a constant. A
module may contain class and instance methods and may define constants and class
variables. As with classes, module methods are invoked using the Module object as a
receiver, and constants are accessed using the “::” scope resolution operator. The name
in a module definition may optionally be preceded by the names of enclosing class(es)
and/or module(s).

CONST = "outer"
module Mod
CONST = 1
def Mod.method1 # module method
CONST + 1

end
end
module Mod::Inner
def (Mod::Inner).method2
CONST + " scope"

end
end

Mod::CONST → 1
Mod.method1 → 2
Mod::Inner::method2 → "outer scope"

Prepared exclusively for Margus Pau

MODULE DEFINITIONS 340

Mixins—Including Modules
class|module name
include expr

end

A module may be included within the definition of another module or class using the
include method. The module or class definition containing the include gains access Library

to the constants, class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class vari-
ables, and instance methods are effectively bundled into an anonymous (and inaccess-
ible) superclass for that class. Objects of the class will respond to messages sent to the
module’s instance methods. Calls to methods not defined in the class will be passed to
the module(s) mixed into the class before being passed to any parent class. A module
may choose to define an initialize method, which will be called upon the creation
of an object of a class that mixes in the module if either: (a) the class does not define
its own initialize method, or (b) the class’s initialize method invokes super.

A module may also be included at the top level, in which case the module’s constants,
class variables, and instance methods become available at the top level.

Module Functions

Although include is useful for providing mixin functionality, it is also a way of bring-
ing the constants, class variables, and instance methods of a module into another name-
space. However, functionality defined in an instance method will not be available as a
module method.

module Math
def sin(x)
#

end
end

Only way to access Math.sin is...
include Math
sin(1)

The method Module#module_function solves this problem by taking one or more Library

module instance methods and copying their definitions into corresponding module
methods.

module Math
def sin(x)
#

end
module_function :sin

end

Math.sin(1)
include Math
sin(1)

Prepared exclusively for Margus Pau

ACCESS CONTROL 341

The instance method and module method are two different methods: the method defi-
nition is copied by module_function, not aliased.

Access Control
Ruby defines three levels of protection for module and class constants and methods:

• Public. Accessible to anyone.

• Protected. Can be invoked only by objects of the defining class and its subclasses.

• Private. Can be called only in functional form (that is, with an implicit self as the
receiver). Private methods therefore can be called only in the defining class and
by direct descendents within the same object. See discussion starting on page 35
for examples.

private [symbol, ...]
protected [symbol, ...]
public [symbol, ...]

Each function can be used in two different ways. Library

1. If used with no arguments, the three functions set the default access control of
subsequently defined methods.

2. With arguments, the functions set the access control of the named methods and
constants.

Access control is enforced when a method is invoked.

Blocks, Closures, and Proc Objects
A code block is a set of Ruby statements and expressions between braces or a do/end
pair. The block may start with an argument list between vertical bars. A code block may
appear only immediately after a method invocation. The start of the block (the brace or
the do) must be on the same logical line as the end of the invocation.

invocation do | a1, a2, ... |
end

invocation { | a1, a2, ... |
}

Braces have a high precedence; do has a low precedence. If the method invocation has
parameters that are not enclosed in parentheses, the brace form of a block will bind to
the last parameter, not to the overall invocation. The do form will bind to the invocation.

Prepared exclusively for Margus Pau

BLOCKS, CLOSURES, AND PROC OBJECTS 342

Within the body of the invoked method, the code block may be called using the yield
keyword. Parameters passed to the yield will be assigned to arguments in the block.1.8
A warning will be generated if yield passes multiple parameters to a block that takes
just one. The return value of the yield is the value of the last expression evaluated in
the block or the value passed to a next1.8 statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it uses that
context whenever it is called. The context includes the value of self, the constants, class
variables, local variables, and any captured block.

class Holder
CONST = 100
def call_block
a = 101
@a = 102
@@a = 103
yield

end
end

class Creator
CONST = 0
def create_block
a = 1
@a = 2
@@a = 3
proc do

puts "a = #{a}"
puts "@a = #@a"
puts "@@a = #@@a"
puts yield

end
end

end

block = Creator.new.create_block { "original" }
Holder.new.call_block(&block)

produces:

a = 1
@a = 2
@@a = 3
original

Proc Objects, break, and next

Ruby’s blocks are chunks of code attached to a method that operate in the context of
the caller. Blocks are not objects, but they can be converted into objects of class Proc.
There are three ways of converting a block into a Proc object.

Prepared exclusively for Margus Pau

BLOCKS, CLOSURES, AND PROC OBJECTS 343

1. By passing a block to a method whose last parameter is prefixed with an amper-
sand. That parameter will receive the block as a Proc object.

def meth1(p1, p2, &block)
puts block.inspect

end
meth1(1,2) { "a block" }
meth1(3,4)

produces:

#<Proc:0x001c9940@-:4>
nil

2. By calling Proc.new, again associating it with a block. Library

block = Proc.new { "a block" }
block → #<Proc:0x001c9ae4@-:1>

3. By calling the method Kernel.lambda (or the equivalent, if mildly deprecated, Library

method Kernel.proc1.8), associating a block with the call.

block = lambda { "a block" }
block → #<Proc:0x001c9b0c@-:1>

The first two styles of Proc object are identical in use. We’ll call these objects raw
procs. The third style, generated by lambda, adds some additional functionality to the
Proc object, as we’ll see in a minute. We’ll call these objects lambdas.

Within either kind of block, executing next causes the block to exit. The value of the
block is the value (or values) passed to next, or it’s nil if no values are passed.

def meth
res = yield
"The block returns #{res}"

end

meth { next 99 } → "The block returns 99"

pr = Proc.new { next 99 }
pr.call → 99

pr = lambda { next 99 }
pr.call → 99

Within a raw proc, a break terminates the method that invoked the block. The return
value of the method is any parameters passed to the break.

Return and Blocks
A return from inside a block that’s still in scope acts as a return from that scope.
A return from a block whose original context is not longer valid raises an exception

Prepared exclusively for Margus Pau

BLOCKS, CLOSURES, AND PROC OBJECTS 344

(LocalJumpError or ThreadError depending on the context). The following example
illustrates the first case.

def meth1
(1..10).each do |val|
return val # returns from method

end
end
meth1 → 1

This example shows a return failing because the context of its block no longer exists.

def meth2(&b)
b

end

res = meth2 { return }
res.call

produces:

prog.rb:5: unexpected return (LocalJumpError)
from prog.rb:5:in `call'
from prog.rb:6

And here’s a return failing because the block is created in one thread and called in
another.

def meth3
yield

end

t = Thread.new do
meth3 { return }

end

t.join

produces:

prog.rb:6: return can't jump across threads (ThreadError)
from prog.rb:9:in `join'
from prog.rb:9

The situation with Proc objects is slightly more complicated. If you use Proc.new to
create a proc from a block, that proc acts like a block, and the previous rules apply.

def meth4
p = Proc.new { return 99 }
p.call
puts "Never get here"

end

meth4 → 99

Prepared exclusively for Margus Pau

EXCEPTIONS 345

If the Proc object is created using Kernel.proc or Kernel.lambda, it behaves more
like a free-standing method body: a return simply returns from the block to the caller
of the block.

def meth5
p = lambda { return 99 }
res = p.call
"The block returned #{res}"

end

meth5 → "The block returned 99"

Because of this, if you use Module#define_method, you’ll probably want to pass it
a proc created using lambda, not Proc.new, as return will work as expected in the
former and will generate a LocalJumpError in the latter.

Exceptions
Ruby exceptions are objects of class Exception and its descendents (a full list of the
built-in exceptions is given in Figure 27.1 on page 441).

Raising Exceptions
The Kernel.raise method raises an exception. Library

raise
raise string
raise thing [, string [stack trace]]

The first form reraises the exception in $! or a new RuntimeError if $! is nil.

The second form creates a new RuntimeError exception, setting its message to the
given string.

The third form creates an exception object by invoking the method exception on its
first argument. It then sets this exception’s message and backtrace to its second and
third arguments.

Class Exception and objects of class Exception contain a factory method called
exception, so an exception class name or instance can be used as the first parame-
ter to raise.

When an exception is raised, Ruby places a reference to the Exception object in the
global variable $!.

Prepared exclusively for Margus Pau

EXCEPTIONS 346

Handling Exceptions
Exceptions may be handled

• within the scope of a begin/end block,

begin
code...
code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else
no exception code...]

[ensure
always executed code...]

end

• within the body of a method,

def method and args
code...
code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else
no exception code...]

[ensure
always executed code...]

end

• and after the execution of a single statement.1.8

statement [rescue statement, ...]

A block or method may have multiple rescue clauses, and each rescue clause may
specify zero or more exception parameters. A rescue clause with no parameter is
treated as if it had a parameter of StandardError. This means that some lower-level
exceptions will not be caught by a parameterless rescue class. If you want to rescue
every exception, use

rescue Exception => e

When an exception is raised, Ruby scans up the call stack until it finds an enclosing
begin/end block, method body, or statement with a rescue modifier. For each rescue
clause in that block, Ruby compares the raised exception against each of the rescue
clause’s parameters in turn; each parameter is tested using parameter===$!.1.8 If the
raised exception matches a rescue parameter, Ruby executes the body of the rescue
and stops looking. If a matching rescue clause ends with => and a variable name, the
variable is set to $!.

Prepared exclusively for Margus Pau

CATCH AND THROW 347

Although the parameters to the rescue clause are typically the names of Exception
classes, they can actually be arbitrary expressions (including method calls) that return
an appropriate class.

If no rescue clause matches the raised exception, Ruby moves up the stack looking for
a higher-level begin/end block that matches. If an exception propagates to the top level
of the main thread without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if no exceptions were raised in code.
Exceptions raised during the execution of the else clause are not captured by rescue
clauses in the same block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even
if an uncaught exception is in the process of being propagated).

Within a rescue clause, raise with no parameters will reraise the exception in $!.

Rescue Statement Modifier

A statement may have an optional rescue modifier followed by another statement
(and by extension another rescue modifier, and so on). The rescue modifier takes no
exception parameter and rescues StandardError and its children.

If an exception is raised to the left of a rescue modifier, the statement on the left is
abandoned, and the value of the overall line is the value of the statement on the right.

values = ["1", "2.3", /pattern/]

result = values.map {|v| Integer(v) rescue Float(v) rescue String(v) }

result → [1, 2.3, "(?-mix:pattern)"]

Retrying a Block

The retry statement can be used within a rescue clause to restart the enclosing
begin/end block from the beginning.

Catch and Throw
The method Kernel.catch executes its associated block. Library

catch (symbol | string) do
block...

end

The method Kernel.throw interrupts the normal processing of statements. Library

throw(symbol | string [, obj])

Prepared exclusively for Margus Pau

CATCH AND THROW 348

When a throw is executed, Ruby searches up the call stack for the first catch block
with a matching symbol or string. If it is found, the search stops, and execution resumes
past the end of the catch’s block. If the throw was passed a second parameter, that
value is returned as the value of the catch. Ruby honors the ensure clauses of any
block expressions it traverses while looking for a corresponding catch.

If no catch block matches the throw, Ruby raises a NameError exception at the loca-
tion of the throw.

Prepared exclusively for Margus Pau

Chapter 23

Duck Typing

You’ll have noticed that in Ruby we don’t declare the types of variables or methods—
everything is just some kind of object.

Now, it seems like folks react to this in two ways. Some like this kind of flexibility
and feel comfortable writing code with dynamically typed variables and methods. If
you’re one of those people, you might want to skip to the section called “Classes Aren’t
Types” on the following page. Some, though, get nervous when they think about all
those objects floating around unconstrained. If you’ve come to Ruby from a language
such as C# or Java, where you’re used to giving all your variables and methods a type,
you may feel that Ruby is just too sloppy to use to write “real” applications.

It isn’t.

We’d like to spend a couple of paragraphs trying to convince you that the lack of static
typing is not a problem when it comes to writing reliable applications. We’re not trying
to criticize other languages here. Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t really
help that much in terms of program security. If Java’s type system were reliable, for
example, it wouldn’t need to implement ClassCastException. The exception is nec-
essary, though, because there is runtime type uncertainty in Java (as there is in C++,
C#, and others). Static typing can be good for optimizing code, and it can help IDEs
do clever things with tooltip help, but we haven’t seen much evidence that it promotes
more reliable code.

On the other hand, once you use Ruby for a while, you realize that dynamically typed
variables actually add to your productivity in many ways. You’ll also be surprised to
discover that your fears about the type chaos were unfounded. Large, long-running,
Ruby programs run significant applications and just don’t throw any type-related errors.
Why is this?

Partly, it’s a question of common sense. If you coded in Java (pre Java 1.5), all your
containers were effectively untyped: everything in a container was just an Object, and

Prepared exclusively for Margus Pau 349

CLASSES AREN’T TYPES 350

you cast it to the required type when you extracted an element. And yet you probably
never saw a ClassCastException when you ran these programs. The structure of the
code just didn’t permit it: you put Person objects in, and you later took Person objects
out. You just don’t write programs that would work in another way.

Well, it’s the same in Ruby. If you use a variable for some purpose, the chances are
very good that you’ll be using it for the same purpose when you access it again three
lines later. The kind of chaos that could happen just doesn’t happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of coding. They
write lots of short methods and tend to test as they go along. The short methods mean
that the scope of most variables is limited: there just isn’t that much time for things to
go wrong with their type. And the testing catches the silly errors when they happen:
typos and the like just don’t get a chance to propagate through the code.

The upshot is that the “safety” in “type safety” is often illusory and that coding in a
more dynamic language such as Ruby is both safe and productive. So, if you’re nervous
about the lack of static typing in Ruby, we suggest you try to put those concerns on the
back burner for a little while, and give Ruby a try. We think you’ll be surprised at how
rarely you see errors because of type issues, and at how much more productive you feel
once you start to exploit the power of dynamic typing.

Classes Aren’t Types
The issue of types is actually somewhat deeper than an ongoing debate between strong
typing advocates and the hippie-freak dynamic typing crowd. The real issue is the ques-
tion, what is a type in the first place?

If you’ve been coding in conventional typed languages, you’ve probably been taught
that the type of an object is its class—all objects are instances of some class, and that
class is the object’s type. The class defines the operations (methods) that the object can
support, along with the state (instance variables) on which those methods operate. Let’s
look at some Java code.

Customer c;
c = database.findCustomer("dave"); /* Java */

This fragment declares the variable c to be of type Customer and sets it to reference the
customer object for Dave that we’ve created from some database record. So the type of
the object in c is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the concept
of interfaces, which are a kind of emasculated abstract base class. A Java class can be
declared as implementing multiple interfaces. Using this facility, you may have defined
your classes as follows.

Prepared exclusively for Margus Pau

CLASSES AREN’T TYPES 351

public interface Customer {
long getID();
Calendar getDateOfLastContact();
// ...

}

public class Person
implements Customer {

public long getID() { ... }
public Calendar getDateOfLastContact() { ... }
// ...

}

So even in Java, the class is not always the type—sometimes the type is a subset of the
class, and sometimes objects implement multiple types.

In Ruby, the class is never (OK, almost never) the type. Instead, the type of an object is
defined more by what that object can do. In Ruby, we call this duck typing. If an object
walks like a duck and talks like a duck, then the interpreter is happy to treat it as if it
were a duck.

Let’s look at an example. Perhaps we’ve written a method to write our customer’s name
to the end of an open file.

class Customer
def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name

end
def append_name_to_file(file)
file << @first_name << " " << @last_name

end
end

Being good programmers, we’ll write a unit test for this. Be warned, though—it’s
messy (and we’ll improve on it shortly).

require 'test/unit'
require 'addcust'

class TestAddCustomer < Test::Unit::TestCase
def test_add
c = Customer.new("Ima", "Customer")
f = File.open("tmpfile", "w") do |f|

c.append_name_to_file(f)
end
f = File.open("tmpfile") do |f|

assert_equal("Ima Customer", f.gets)
end

ensure
File.delete("tmpfile") if File.exist?("tmpfile")

end
end

Prepared exclusively for Margus Pau

CLASSES AREN’T TYPES 352

produces:

Finished in 0.003207 seconds.
1 tests, 1 assertions, 0 failures, 0 errors

We have to do all that work to create a file to write to, then reopen it, and read in the
contents to verify the correct string was written. We also have to delete the file when
we’ve finished (but only if it exists).

Instead, though, we could rely on duck typing. All we need is something that walks
like a file and talks like a file that we can pass in to the method under test. And all that
means in this circumstance is that we need an object that responds to the << method
by appending something. Do we have something that does this? How about a humble
String?

require 'test/unit'
require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add
c = Customer.new("Ima", "Customer")
f = ""
c.append_name_to_file(f)
assert_equal("Ima Customer", f)

end
end

produces:

Finished in 0.001383 seconds.
1 tests, 1 assertions, 0 failures, 0 errors

The method under test thinks it’s writing to a file, but instead it’s just appending to a
string. At the end, we can then just test that the content is correct.

We didn’t have to use a string—for the object we’re testing here, an array would work
just as well.

require 'test/unit'
require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add
c = Customer.new("Ima", "Customer")
f = []
c.append_name_to_file(f)
assert_equal(["Ima", " ", "Customer"], f)

end
end

produces:

Finished in 0.001548 seconds.
1 tests, 1 assertions, 0 failures, 0 errors

Prepared exclusively for Margus Pau

CLASSES AREN’T TYPES 353

Indeed, this form may be more convenient if we wanted to check that the correct indi-
vidual things were inserted.

So duck typing is convenient for testing, but what about in the body of applications
themselves? Well, it turns out that the same thing that made the tests easy in the previ-
ous example also makes it easy to write flexible application code.

If fact, Dave had an interesting experience where duck typing dug him (and a client)
out of a hole. He’d written a large Ruby-based Web application that (among other
things) kept a database table full of details of participants in a competition. The system
provided a comma-separated value (CSV) download capability, allowing administrators
to import this information into their local spreadsheets.

Just before competition time, the phone starts ringing. The download, which had been
working fine up to this point, was now taking so long that requests were timing out.
The pressure was intense, as the administrators had to use this information to build
schedules and send out mailings.

A little experimentation showed that the problem was in the routine that took the results
of the database query and generated the CSV download. The code looked something
like

def csv_from_row(op, row)
res = ""
until row.empty?
entry = row.shift.to_s
if /[,"]/ =~ entry

entry = entry.gsub(/"/, '""')
res << '"' << entry << '"'

else
res << entry

end
res << "," unless row.empty?

end
op << res << CRLF

end

result = ""
query.each_row {|row| csv_from_row(result, row)}

http.write result

When this code ran against moderate-size data sets, it performed fine. But at a cer-
tain input size, it suddenly slowed right down. The culprit? Garbage collection. The
approach was generating thousands of intermediate strings and building one big result
string, one line at a time. As the big string grew, it needed more space, and garbage
collection was invoked, which necessitated scanning and removing all the intermediate
strings.

The answer was simple and surprisingly effective. Rather than build the result string
as it went along, the code was changed to store each CSV row as an element in an

Prepared exclusively for Margus Pau

CODING LIKE A DUCK 354

array. This meant that the intermediate lines were still referenced and hence were no
longer garbage. It also meant that we were no longer building an ever-growing string
that forced garbage collection. Thanks to duck typing, the change was trivial.

def csv_from_row(op, row)
as before

end

result = []
query.each_row {|row| csv_from_row(result, row)}

http.write result.join

All that changed is that we passed an array into the csv_from_row method. Because
it (implicitly) used duck typing, the method itself was not modified: it continued to
append the data it generated to its parameter, not caring what type that parameter was.
After the method returned its result, we joined all those individual lines into one big
string. This one change reduced the time to run from more than 3 minutes to a few
seconds.

Coding like a Duck
If you want to write your programs using the duck typing philosophy, you really only
need to remember one thing: an object’s type is determined by what it can do, not
by its class. (In fact, Ruby 1.8 now deprecates the method Object#type1.8 in favor of
Object#class for just this reason: the method returns the class of the receiver, so the
name type was misleading.)

What does this mean in practice? At one level, it simply means that there’s often little
value testing the class of an object.

For example, you may be writing a routine to add song information to a string. If you
come from a C# or Java background, you may be tempted to write:

def append_song(result, song)
test we're given the right parameters
unless result.kind_of?(String)
fail TypeError.new("String expected")

end
unless song.kind_of?(Song)
fail TypeError.new("Song expected")

end

result << song.title << " (" << song.artist << ")"
end

result = ""
append_song(result, song) → "I Got Rhythm (Gene Kelly)"

Embrace Ruby’s duck typing and you’d write something far simpler.

Prepared exclusively for Margus Pau

STANDARD PROTOCOLS AND COERCIONS 355

def append_song(result, song)
result << song.title << " (" << song.artist << ")"

end

result = ""
append_song(result, song) → "I Got Rhythm (Gene Kelly)"

You don’t need to check the type of the arguments. If they support << (in the case of
result) or title and artist (in the case of song), everything will just work. If they
don’t, your method will throw an exception anyway (just as it would have done if you’d
checked the types). But without the check, your method is suddenly a lot more flexible:
you could pass it an array, a string, a file, or any other object that appends using <<, and
it would just work.

Now sometimes you may want more than this style of laissez-faire programming. You
may have good reasons to check that a parameter can do what you need. Will you get
thrown out of the duck typing club if you check the parameter against a class? No,
you won’t.1 But you may want to consider checking based on the object’s capabilities,
rather than its class.

def append_song(result, song)
test we're given the right parameters
unless result.respond_to?(:<<)
fail TypeError.new("'result' needs `<<' capability")

end
unless song.respond_to?(:artist) && song.respond_to?(:title)
fail TypeError.new("'song' needs 'artist' and 'title'")

end

result << song.title << " (" << song.artist << ")"
end

result = ""
append_song(result, song) → "I Got Rhythm (Gene Kelly)"

However, before going down this path, make sure you’re getting a real benefit—it’s a
lot of extra code to write and to maintain.

Standard Protocols and Coercions
Although not technically part of the language, the interpreter and standard library use
various protocols to handle issues that other languages would deal with using types.

Some objects have more than one natural representation. For example, you may be
writing a class to represent Roman numbers (I, II, III, IV, V, and so on). This class

1. The duck typing club doesn’t check to see if you’re a member anyway. . . .

Prepared exclusively for Margus Pau

STANDARD PROTOCOLS AND COERCIONS 356

is not necessarily a subclass of Integer, because its objects are representations of
numbers, not numbers in their own right. At the same time they do have an integer-like
quality. It would be nice to be able to use objects of our Roman number class wherever
Ruby was expecting to see an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect to have
itself converted to an object of another class. Ruby has three standard ways of doing
this.

We’ve already come across the first. Methods such as to_s and to_i convert their
receiver into strings and integers. These conversion methods are not particularly strict:
if an object has some kind of decent representation as a string, for example, it will
probably have a to_s method. Our Roman class would probably implement to_s in
order to return the string representation of a number (VII, for instance).

The second form of conversion function uses methods with names such as to_str and
to_int. These are strict conversion functions: you implement them only if your object
can naturally be used every place a string or an integer could be used. For example, our
Roman number objects have a clear representation as an integer and so should imple-
ment to_int. When it comes to stringiness, however, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings? Should we
be able to use them wherever we can use a string itself? No, probably not. Logi-
cally, they’re a representation of a number. You can represent them as strings, but they
aren’t plug-compatible with strings. For this reason, a Roman number won’t implement
to_str—it isn’t really a string. Just to drive this home: Roman numerals can be con-
verted to strings using to_s, but they aren’t inherently strings, so they don’t implement
to_str.

To see how this works in practice, let’s look at opening a file. The first parameter
to File.new can be either an existing file descriptor (represented by an integer) or
a file name to open. However, Ruby doesn’t simply look at the first parameter and
check whether its type is Fixnum or String. Instead, it gives the object passed in the
opportunity to represent itself as a number or a string. If it were written in Ruby, it may
look something like

class File
def File.new(file, *args)
if file.respond_to?(:to_int)

IO.new(file.to_int, *args)
else

name = file.to_str
call operating system to open file 'name'

end
end

end

Prepared exclusively for Margus Pau

STANDARD PROTOCOLS AND COERCIONS 357

So let’s see what happens if we want to pass a file descriptor integer stored as a Roman
number into File.new. Because our class implements to_int, the first respond_to?
test will succeed. We’ll pass an integer representation of our number to IO.open, and
the file descriptor will be returned, all wrapped up in a new IO object.

A small number of strict conversion functions are built into the standard library.

to_ary → Array
Used when interpreter needs to convert a object into an array for parameter passing
or multiple assignment.

class OneTwo
def to_ary
[1, 2]

end
end

ot = OneTwo.new
a, b = ot
puts "a = #{a}, b = #{b}"
printf("%d -- %d\n", *ot)

produces:

a = 1, b = 2
1 -- 2

to_hash → Hash
Used when the interpreter expects to see Hash. (The only known use is the second
parameter to Hash#replace.)

to_int → Integer
Used when the interpreter expects to see an integer value (such as a file descriptor
or as a parameter to Kernel.Integer).

to_io → IO
Used when the interpreter is expecting IO objects (for example, as parameters to
IO#reopen or IO.select).

to_proc → Proc
Used to convert an object prefixed with an ampersand in a method call.

class OneTwo
def to_proc
proc { "one-two" }

end
end

def silly
yield

end

ot = OneTwo.new
silly(&ot) → "one-two"

Prepared exclusively for Margus Pau

STANDARD PROTOCOLS AND COERCIONS 358

to_str → String
Used pretty much any place the interpreter is looking for a String value.

class OneTwo
def to_str
"one-two"

end
end

ot = OneTwo.new

puts("count: " + ot)
File.open(ot) rescue puts $!.message

produces:

count: one-two
No such file or directory - one-two

Note, however, that the use of to_str is not universal—some methods that want
string arguments do not call to_str.

File.join("/user", ot) → "/user/#<OneTwo:0x1c974c>"

to_sym → Symbol
Express the receiver as a symbol. Not used by the interpreter for conversions and
probably not useful in user code.

One last point: classes such as Integer and Fixnum implement the to_int method,
and String implements to_str. That way you can call the strict conversion functions
polymorphically:

it doesn't matter if obj is a Fixnum or a
Roman number, the conversion still succeeds
num = obj.to_int

Numeric Coercion
Back on page 356 we said there were three types of conversion performed by the inter-
preter. We covered loose and strict conversion. The third is numeric coercion.

Here’s the problem. When you write “1+2”, Ruby knows to call the + on the object 1
(a Fixnum), passing it the Fixnum 2 as a parameter. However, when you write “1+2.3”,
the same + method now receives a Float parameter. How can it know what to do
(particularly as checking the classes of your parameters is against the spirit of duck
typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The basic
operation of coerce is simple. It takes two numbers (one as its receiver, the other as
a parameter). It returns a two-element array containing representations of these two
numbers (but with the parameter first, followed by the receiver). The coerce method

Prepared exclusively for Margus Pau

STANDARD PROTOCOLS AND COERCIONS 359

guarantees that these two objects will have the same class and therefore that they can
be added (or multiplied, or compared, or whatever).

1.coerce(2) → [2, 1]
1.coerce(2.3) → [2.3, 1.0]
(4.5).coerce(2.3) → [2.3, 4.5]
(4.5).coerce(2) → [2.0, 4.5]

The trick is that the receiver calls the coerce method of its parameter to generate this
array. This technique, called double dispatch, allows a method to change its behavior
based not only on its class but also on the class of its parameter. In this case, we’re
letting the parameter decide exactly what classes of objects should get added (or mul-
tiplied, divided, and so on).

Let’s say that we’re writing a new class that’s intended to take part in arithmetic. To
participate in coercion, we need to implement a coerce method. This takes some other
kind of number as a parameter and returns an array containing two objects of the same
class, whose values are equivalent to its parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number object
holds its real value as a Fixnum in an instance variable, @value. The coerce method
checks to see if the class of its parameter is also an Integer. If so, it returns its param-
eter and its internal value. If not, it first converts both to floating point.

class Roman
def initialize(value)
@value = value

end

def coerce(other)
if Integer === other

[other, @value]
else

[Float(other), Float(@value)]
end

end

.. other Roman stuff
end

iv = Roman.new(4)
xi = Roman.new(11)

3 * iv → 12
1.1 * xi → 12.1

Of course, class Roman as implemented doesn’t know how to do addition itself: you
couldn’t have written “xi + 3” in the previous example, as Roman doesn’t have a “plus”
method. And that’s probably as it should be. But let’s go wild and implement addition
for Roman numbers.

Prepared exclusively for Margus Pau

STANDARD PROTOCOLS AND COERCIONS 360

class Roman
MAX_ROMAN = 4999

attr_reader :value
protected :value

def initialize(value)
if value <= 0 || value > MAX_ROMAN

fail "Roman values must be > 0 and <= #{MAX_ROMAN}"
end
@value = value

end

def coerce(other)
if Integer === other

[other, @value]
else

[Float(other), Float(@value)]
end

end

def +(other)
if Roman === other

other = other.value
end
if Fixnum === other && (other + @value) < MAX_ROMAN

Roman.new(@value + other)
else

x, y = other.coerce(@value)
x + y

end
end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 50], ["xl", 40],
["x", 10], ["ix", 9], ["v", 5], ["iv", 4],
["i", 1]]

def to_s
value = @value
roman = ""
for code, factor in FACTORS

count, value = value.divmod(factor)
roman << (code * count)

end
roman

end
end

iv = Roman.new(4)
xi = Roman.new(11)

iv + 3 → vii
iv + 3 + 4 → xi
iv + 3.14159 → 7.14159
xi + 4900 → mmmmcmxi
xi + 4990 → 5001

Prepared exclusively for Margus Pau

WALK THE WALK, TALK THE TALK 361

Finally, be careful with coerce—try always to coerce into a more general type, or you
may end up generating coercion loops, where A tries to coerce to B, and B tries to
coerce back to A.

Walk the Walk, Talk the Talk
Duck typing can generate controversy. Every now and then a thread flares on the mail-
ing lists, or someone blogs for or against the concept. Many of the contributors to these
discussions have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of programming.
Design your programs to balance paranoia and flexibility. If you feel the need to con-
strain the types of objects that the users of a method pass in, ask yourself why. Try
to determine what could go wrong if you were expecting a String and instead get an
Array. Sometimes, the difference is crucially important. Often, though, it isn’t. Try
erring on the more permissive side for a while, and see if bad things happen. If not,
perhaps duck typing isn’t just for the birds.

Prepared exclusively for Margus Pau

Chapter 24

Classes and Objects

Classes and objects are obviously central to Ruby, but at first sight they can seem a little
confusing. There seem to be a lot of concepts: classes, objects, class objects, instance
methods, class methods, singleton classes, and virtual classes. In reality, however, Ruby
has just a single underlying class and object structure, which we’ll discuss in this chap-
ter. In fact, the basic model is so simple, we can describe it in a single paragraph.

A Ruby object has three components: a set of flags, some instance variables, and an
associated class. A Ruby class is an object of class Class, which contains all the object
things plus a list of methods and a reference to a superclass (which is itself another
class). All method calls in Ruby nominate a receiver (which is by default self, the
current object). Ruby finds the method to invoke by looking at the list of methods in
the receiver’s class. If it doesn’t find the method there, it looks in any included modules,
then in its superclass, modules in the superclass, and then in the superclass’s superclass,
and so on. If the method cannot be found in the receiver’s class or any of its ancestors,
Ruby invokes the method method_missing on the original receiver.

And that’s it—the entire explanation. On to the next chapter.

“But wait,” you cry, “I spent good money on this chapter. What about all this other
stuff—virtual classes, class methods, and so on. How do they work?” Good question.

How Classes and Objects Interact
All class/object interactions are explained using the simple model given above: objects
reference classes, and classes reference zero or more superclasses. However, the imple-
mentation details can get a tad tricky.

We’ve found that the simplest way of visualizing all this is to draw the actual structures
that Ruby implements. So, in the following pages we’ll look at all the possible combi-
nations of classes and objects. Note that these are not class diagrams in the UML sense;
we’re showing structures in memory and pointers between them.

Prepared exclusively for Margus Pau 362

HOW CLASSES AND OBJECTS INTERACT 363

Figure 24.1. A basic object, with its class and superclass

class Guitar
def play()
...

end
...

end

lucille = Guitar.new
lucille

flags: ...
iv_tbl:
klass:

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- play

Class
Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

Your Basic, Everyday Object
Let’s start by looking at an object created from a simple class. Figure 24.1 shows an
object referenced by a variable, lucille; the object’s class, Guitar; and that class’s
superclass, Object. Notice how the object’s class reference, klass, points to the class
object and how the super pointer from that class references the parent class.

If we invoke the method lucille.play(), Ruby goes to the receiver, lucille, and
follows the klass reference to the class object for Guitar. It searches the method table,
finds play, and invokes it.

If instead we call lucille.display(), Ruby starts off the same way but cannot find
display in the method table in class Guitar. It then follows the super reference to
Guitar’s superclass, Object, where it finds and executes the method.

What’s the Meta?
Astute readers (yup, that’s all of you) will have noticed that the klass members of
Class objects point to nothing meaningful in Figure 24.1. We now have all the infor-
mation we need to work out what they should reference.

When you say lucille.play(), Ruby follows lucille’s klass pointer to find a
class object in which to search for methods. So what happens when you invoke a

Prepared exclusively for Margus Pau

HOW CLASSES AND OBJECTS INTERACT 364

Figure 24.2. Adding a metaclass to Guitar

class Guitar
def Guitar.strings()
return 6

end
def play()
...

end
...

end

lucille = Guitar.new

lucille
flags: ...

iv_tbl:
klass:

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- play

Class
Guitar

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

flags: V
super:
iv_tbl:
klass:

methods:
- strings

Class
Guitar′

flags: V
super:
iv_tbl:
klass:

methods:

Class
Object′

class method, such as Guitar.strings(...)? Here the receiver is the class object
itself, Guitar. So, to be consistent, we need to stick the methods in some other class,
referenced from Guitar’s klass pointer. This new class will contain all of Guitar’s
class methods. Although the terminology is slightly dubious, we’ll call this a metaclass
(see the sidebar on the next page). We’ll denote the metaclass of Guitar as Guitar′.
But that’s not the whole story. Because Guitar is a subclass of Object, its metaclass
Guitar′ will be a subclass of Object’s metaclass, Object′. In Figure 24.2, we show
these additional metaclasses.

When Ruby executes Guitar.strings(), it follows the same process as before: it
goes to the receiver, class Guitar; follows the klass reference to class Guitar′; and
finds the method.

Finally, note that a V has crept into the flags in class Guitar′ . The classes that Ruby
creates automatically are marked internally as virtual classes. Virtual classes are treated

Prepared exclusively for Margus Pau

HOW CLASSES AND OBJECTS INTERACT 365

Metaclasses and Singleton Classes

During the review of this book, the use of the term metaclass gener-
ated a fair amount of discussion, as Ruby’s metaclasses are different
from those in languages such as Smalltalk. Eventually, Matz weighed
in with the following

You can call it metaclass but, unlike Smalltalk, it’s not a class of a
class; it’s a singleton class of a class.

• Every object in Ruby has its own attributes (methods, constants,
and so on) that in other languages are held by classes. It’s just
like each object having its own class.

• To handle per-object attributes, Ruby provides a classlike some-
thing for each object that is sometimes called a singleton class.

• In the current implementation, singleton classes are specially
flagged class objects between objects and their class. These can
be “virtual” classes if the language implementer chooses.

• Singleton classes for classes behave just like Smalltalk’s meta-
classes.

slightly differently within Ruby. The most obvious difference from the outside is that
they are effectively invisible: they will never appear in a list of objects returned from
methods such as Module#ancestors or ObjectSpace.each_object, and you cannot
create instances of them using new.

Object-Specific Classes
Ruby allows you to create a class tied to a particular object. In the following example,
we create two String objects. We then associate an anonymous class with one of them,
overriding one of the methods in the object’s base class and adding a new method.

a = "hello"
b = a.dup

class <<a
def to_s
"The value is '#{self}'"

end
def two_times
self + self

end
end

Prepared exclusively for Margus Pau

HOW CLASSES AND OBJECTS INTERACT 366

a.to_s → "The value is 'hello'"
a.two_times → "hellohello"
b.to_s → "hello"

This example uses the class <<obj notation, which basically says “build me a new
class just for object obj.” We could also have written it as

a = "hello"
b = a.dup
def a.to_s
"The value is '#{self}'"

end
def a.two_times
self + self

end

a.to_s → "The value is 'hello'"
a.two_times → "hellohello"
b.to_s → "hello"

The effect is the same in both cases: a class is added to the object a. This gives us a
strong hint about the Ruby implementation: a virtual class is created and inserted as
a’s direct class. a’s original class, String, is made this virtual class’s superclass. The
before and after pictures are shown in Figure 24.3 on the next page.

Remember that in Ruby classes are never closed; you can always open a class and add
new methods to it. The same applies to virtual classes. If an object’s klass reference
already points to a virtual class, a new one will not be created. This means that the first
of the two method definitions in the previous example will create a virtual class, but the
second will simply add a method to it.

The Object#extend method adds the methods in its parameter to its receiver, so it also
creates a virtual class if needed. obj.extend(Mod) is basically equivalent to

class <<obj
include Mod

end

Mixin Modules
When a class includes a module, that module’s instance methods become available as
instance methods of the class. It’s almost as if the module becomes a superclass of
the class that uses it. Not surprisingly, that’s about how it works. When you include
a module, Ruby creates an anonymous proxy class that references that module and
inserts that proxy as the direct superclass of the class that did the including. The proxy
class contains references to the instance variables and methods of the module. This is
important: the same module may be included in many different classes and will appear
in many different inheritance chains. However, thanks to the proxy class, there is still

Prepared exclusively for Margus Pau

HOW CLASSES AND OBJECTS INTERACT 367

Figure 24.3. Adding a virtual class to an object

a = 'hello'

a
flags: ...

iv_tbl:
klass:

String

flags: ...
super:
iv_tbl:
klass:

methods:
- : :
- to_s
- : :

Class
String

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

class <<a
def to_s
"The value is '#{self}'"

end
def two_times
self + self

end
end

a
flags: ...

iv_tbl:
klass:

String

flags: V
super:
iv_tbl:
klass:

methods:
- to_s
- two_times

virtual

flags: ...
super:
iv_tbl:
klass:

methods:
- : :
- to_s
- : :

Class
String

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

Prepared exclusively for Margus Pau

HOW CLASSES AND OBJECTS INTERACT 368

only one underlying module: change a method definition in that module, and it will
change in all classes that include that module, both past and future.

module SillyModule
def hello
"Hello."

end
end

class SillyClass
include SillyModule

end

s = SillyClass.new
s.hello → "Hello."

module SillyModule
def hello
"Hi, there!"

end
end

s.hello → "Hi, there!"

The relationship between classes and the mixin modules they include is shown in Fig-
ure 24.4 on the following page. If multiple modules are included, they are added to the
chain in order.

If a module itself includes other modules, a chain of proxy classes will be added to any
class that includes that module, one proxy for each module that is directly or indirectly
included.

Extending Objects
Just as you can define an anonymous class for an object using class <<obj, you can
mix a module into an object using Object#extend. For example:

module Humor
def tickle
"hee, hee!"

end
end

a = "Grouchy"
a.extend Humor
a.tickle → "hee, hee!"

There is an interesting trick with extend. If you use it within a class definition, the
module’s methods become class methods. This is because calling extend is equivalent
to self.extend, so the methods are added to self, which in a class definition is the
class itself.

Prepared exclusively for Margus Pau

HOW CLASSES AND OBJECTS INTERACT 369

Figure 24.4. An included module and its proxy class

class Guitar
include Enumerable
def play()
...

end
...

end

lucille = Guitar.newlucille
flags: ...

iv_tbl:
klass:

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- play

Class
Guitar

flags: ...
super:
iv_tbl:
klass:

methods:

Proxy

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

flags: ...
super:
iv_tbl:
klass:

methods:
- collect
- detect

Module
Enum...

Here’s an example of adding a module’s methods at the class level.

module Humor
def tickle
"hee, hee!"

end
end
class Grouchy
include Humor
extend Humor

end

Grouchy.tickle → "hee, hee!"
a = Grouchy.new
a.tickle → "hee, hee!"

Prepared exclusively for Margus Pau

CLASS AND MODULE DEFINITIONS 370

Class and Module Definitions
Having exhausted the combinations of classes and objects, we can (thankfully) get back
to programming by looking at the nuts and bolts of class and module definitions.

In languages such as C++ and Java, class definitions are processed at compile time:
the compiler creates symbol tables, works out how much storage to allocate, constructs
dispatch tables, and does all those other obscure things we’d rather not think too hard
about.

Ruby is different. In Ruby, class and module definitions are executable code. Although
parsed at compile time, the classes and modules are created at runtime, when the def-
inition is encountered. (The same is also true of method definitions.) This allows you
to structure your programs far more dynamically than in most conventional languages.
You can make decisions once, when the class is being defined, rather than each time
those objects of the class are used. The class in the following example decides as it is
being defined what version of a decryption routine to create.

module Tracing
...

end

class MediaPlayer
include Tracing if $DEBUG

if ::EXPORT_VERSION
def decrypt(stream)

raise "Decryption not available"
end

else
def decrypt(stream)

...
end

end

end

If class definitions are executable code, this implies that they execute in the context of
some object: self must reference something. Let’s find out what it is.

class Test
puts "Class of self = #{self.class}"
puts "Name of self = #{self.name}"

end

produces:

Class of self = Class
Name of self = Test

This means that a class definition is executed with that class as the current object.
Referring back to the section about metaclasses on page 363, we can see that this means

Prepared exclusively for Margus Pau

CLASS AND MODULE DEFINITIONS 371

that methods in the metaclass and its superclasses will be available during the execution
of the method definition. We can check this out.

class Test
def Test.say_hello
puts "Hello from #{name}"

end

say_hello
end

produces:

Hello from Test

In this example we define a class method, Test.say_hello, and then call it in the body
of the class definition. Within say_hello, we call name, an instance method of class
Module. Because Module is an ancestor of Class, its instance methods can be called
without an explicit receiver within a class definition.

Class Instance Variables
If a class definition is executed in the context of some object, that implies that a class
may have instance variables.

class Test
@cls_var = 123
def Test.inc
@cls_var += 1

end
end

Test.inc → 124
Test.inc → 125

If classes have their own instance variables, can we use attr_reader and friends to
access them? We can, but we have to run these methods in the correct place. For reg-
ular instance variables, the attribute accessors are defined at the class level. For class
instance variables, we have to define the accessors in the metaclass.

class Test
@cls_var = 123
class <<self
attr_reader :cls_var

end
end

Test.cls_var → 123

This leads us to an interesting point. Many of the directives that you use when defin-
ing a class or module, things such as alias_method, attr, and public, are simply
methods in class Module. This creates some intriguing possibilities—you can extend

Prepared exclusively for Margus Pau

CLASS AND MODULE DEFINITIONS 372

the functionality of class and module definitions by writing Ruby code. Let’s look at a
couple of examples.

As a first example, let’s look at adding a basic documentation facility to modules and
classes. This would allow us to associate a string with modules and classes that we
write, a string that is accessible as the program is running.We’ll choose a simple syntax.

class Example
doc "This is a sample documentation string"
.. rest of class

end

We need to make doc available to any module or class, so we need to make it an
instance method of class Module.

class Module
@@docs = {}

Invoked during class definitions
def doc(str)
@@docs[self.name] = self.name + ":\n" + str.gsub(/^\s+/, '')

end

invoked to get documentation
def Module::doc(aClass)
If we're passed a class or module, convert to string
('<=' for classes checks for same class or subtype)
aClass = aClass.name if aClass.class <= Module
@@docs[aClass] || "No documentation for #{aClass}"

end
end

class Example
doc "This is a sample documentation string"
.. rest of class

end

module Another
doc <<-edoc
And this is a documentation string
in a module

edoc
rest of module

end

puts Module::doc(Example)
puts Module::doc("Another")

produces:

Example:
This is a sample documentation string
Another:
And this is a documentation string
in a module

Prepared exclusively for Margus Pau

CLASS AND MODULE DEFINITIONS 373

The second example is a performance enhancement based on Tadayoshi Funaba’s date
module (described beginning on page 644). Say we have a class that represents some
underlying quantity (in this case, a date). The class may have many attributes that
present the same underlying date in different ways: as a Julian day number, as a string,
as a [year, month, day] triple, and so on. Each value represents the same date and may
involve a fairly complex calculation to derive. We therefore would like to calculate each
attribute only once, when it is first accessed.

The manual way would be to add a test to each accessor.

class ExampleDate
def initialize(day_number)
@day_number = day_number

end

def as_day_number
@day_number

end

def as_string
unless @string

complex calculation
@string = result

end
@string

end

def as_YMD
unless @ymd

another calculation
@ymd = [y, m, d]

end
@ymd

end
...

end

This is a clunky technique—let’s see if we can come up with something sexier.

What we’re aiming for is a directive that indicates that the body of a particular method
should be invoked only once. The value returned by that first call should be cached.
Thereafter, calling that same method should return the cached value without reevaluat-
ing the method body again. This is similar to Eiffel’s once modifier for routines. We’d
like to be able to write something such as

class ExampleDate
def as_day_number
@day_number

end

def as_string
complex calculation

end

Prepared exclusively for Margus Pau

CLASS AND MODULE DEFINITIONS 374

def as_YMD
another calculation
[y, m, d]

end

once :as_string, :as_YMD
end

We can use once as a directive by writing it as a class method of ExampleDate, but
what should it look like internally? The trick is to have it rewrite the methods whose
names it is passed. For each method, it creates an alias for the original code, and then
creates a new method with the same name. Here’s Tadayoshi Funaba’s code, slightly
reformatted.

def once(*ids) # :nodoc:
for id in ids
module_eval <<-"end;"

alias_method :__#{id.to_i}__, :#{id.to_s}
private :__#{id.to_i}__
def #{id.to_s}(*args, &block)
(@__#{id.to_i}__ ||= [__#{id.to_i}__(*args, &block)])[0]

end
end;

end
end

This code uses module_eval to execute a block of code in the context of the calling
module (or, in this case, the calling class). The original method is renamed __nnn__,
where the nnn part is the integer representation of the method name’s symbol ID. The
code uses the same name for the caching instance variable. A method with the original
name is then defined. If the caching instance variable has a value, that value is returned;
otherwise the original method is called, and its return value cached and returned.

Understand this code, and you’ll be well on the way to true Ruby mastery.

However, we can take it further. Look in the date module, and you’ll see method once
written slightly differently.

class Date
class << self
def once(*ids)

...
end

end
...

end

The interesting thing here is the inner class definition, class << self. This defines a
class based on the object self, and self happens to be the class object for Date. The
result? Every method within the inner class definition is automatically a class method
of Date.

Prepared exclusively for Margus Pau

CLASS AND MODULE DEFINITIONS 375

The once feature is generally applicable—it should work for any class. If you took
once and made it a private instance method of class Module, it would be available for
use in any Ruby class. (And of course you could do this, as class Module is open, and
you are free to add methods to it.)

Class Names Are Constants
We’ve said that when you invoke a class method, all you’re doing is sending a message
to the Class object itself. When you say something such as String.new("gumby"),
you’re sending the message new to the object that is class String. But how does Ruby
know to do this? After all, the receiver of a message should be an object reference,
which implies that there must be a constant called String somewhere containing a ref-
erence to the String object.1 And in fact, that’s exactly what happens. All the built-in
classes, along with the classes you define, have a corresponding global constant with
the same name as the class. This is both straightforward and subtle. The subtlety comes
from the fact that two things are named (for example) String in the system. There’s a
constant that references class String (an object of class Class), and there’s the (class)
object itself.

The fact that class names are just constants means that you can treat classes just like
any other Ruby object: you can copy them, pass them to methods, and use them in
expressions.

def factory(klass, *args)
klass.new(*args)

end

factory(String, "Hello") → "Hello"
factory(Dir, ".") → #<Dir:0x1c90e4>

flag = true
(flag ? Array : Hash)[1, 2, 3, 4] → [1, 2, 3, 4]
flag = false
(flag ? Array : Hash)[1, 2, 3, 4] → {1=>2, 3=>4}

This has another facet: if a class with no name is assigned to a constant, Ruby gives the
class the name of the constant.

var = Class.new
var.name → ""

Wibble = var
var.name → "Wibble"

1. It will be a constant, not a variable, because String starts with an uppercase letter.

Prepared exclusively for Margus Pau

TOP-LEVEL EXECUTION ENVIRONMENT 376

Top-Level Execution Environment
Many times in this book we’ve claimed that everything in Ruby is an object. However,
we’ve used one thing time and time again that appears to contradict this—the top-level
Ruby execution environment.

puts "Hello, World"

Not an object in sight. We may as well be writing some variant of Fortran or BASIC.
But dig deeper, and you’ll come across objects and classes lurking in even the simplest
code.

We know that the literal "Hello, World" generates a Ruby String, so that’s one
object. We also know that the bare method call to puts is effectively the same as
self.puts. But what is self?

self.class → Object

At the top level, we’re executing code in the context of some predefined object. When
we define methods, we’re actually creating (private) instance methods for class Object.
This is fairly subtle; as they are in class Object, these methods are available every-
where. And because we’re in the context of Object, we can use all of Object’s meth-
ods (including those mixed-in from Kernel) in function form. This explains why we
can call Kernel methods such as puts at the top level (and indeed throughout Ruby):
these methods are part of every object.

Top-level instance variables also belong to this top-level object.

Inheritance and Visibility
The one last wrinkle to class inheritance is fairly obscure.

Within a class definition, you can change the visibility of a method in an ancestor class.
For example, you can do something like

class Base
def aMethod
puts "Got here"

end
private :aMethod

end

class Derived1 < Base
public :aMethod

end

class Derived2 < Base
end

Prepared exclusively for Margus Pau

FREEZING OBJECTS 377

In this example, you would be able to invoke aMethod in instances of class Derived1
but not via instances of Base or Derived2.

So how does Ruby pull off this feat of having one method with two different visibilities?
Simply put, it cheats.

If a subclass changes the visibility of a method in a parent, Ruby effectively inserts a
hidden proxy method in the subclass that invokes the original method using super. It
then sets the visibility of that proxy to whatever you requested. This means that the
code

class Derived1 < Base
public :aMethod

end

is effectively the same as

class Derived1 < Base
def aMethod(*args)
super

end
public :aMethod

end

The call to super can access the parent’s method regardless of its visibility, so the
rewrite allows the subclass to override its parent’s visibility rules. Pretty scary, eh?

Freezing Objects
Sometimes you’veworked hard to make your object exactly right, and you’ll be damned
if you’ll let anyone just change it. Perhaps you need to pass some kind of opaque object
between two of your classes via some third-party object, and you want to make sure it
arrives unmodified. Perhaps you want to use an object as a hash key and need to make
sure that no one modifies it while it’s being used. Perhaps something is corrupting one
of your objects, and you’d like Ruby to raise an exception as soon as the change occurs.

Ruby provides a very simple mechanism to help with this. Any object can be frozen by
invoking Object#freeze. A frozen object may not be modified: you can’t change its
instance variables (directly or indirectly), you can’t associate singleton methods with
it, and, if it is a class or module, you can’t add, delete, or modify its methods. Once
frozen, an object stays frozen: there is no Object#thaw. You can test to see if an object
is frozen using Object#frozen?.

What happens when you copy a frozen object? That depends on the method you use.
If you call an object’s clone method, the entire object state (including whether it is
frozen) is copied to the new object. On the other hand, dup typically copies only the
object’s contents—the new copy will not inherit the frozen status.

Prepared exclusively for Margus Pau

FREEZING OBJECTS 378

str1 = "hello"
str1.freeze → "hello"
str1.frozen? → true
str2 = str1.clone
str2.frozen? → true
str3 = str1.dup
str3.frozen? → false

Although freezing objects may initially seem like a good idea, you may want to hold
off doing it until you come across a real need. Freezing is one of those ideas that looks
essential on paper but isn’t used much in practice.

Prepared exclusively for Margus Pau

Chapter 25

Locking Ruby in the Safe

Walter Webcoder has a great idea for a portal site: the Web Arithmetic Page. Sur-
rounded by all sorts of cool mathematical links and banner ads that will make him rich
is a simple Web form containing a text field and a button. Users type an arithmetic
expression into the field, click the button, and the answer is displayed. All the world’s
calculators become obsolete overnight; Walter cashes in and retires to devote his life to
his collection of car license plate numbers.

Implementing the calculator is easy, thinks Walter. He accesses the contents of the form
field using Ruby’s CGI library and uses the eval method to evaluate the string as an
expression.

require 'cgi'

cgi = CGI.new("html4")

Fetch the value of the form field "expression"
expr = cgi["expression"].to_s

begin
result = eval(expr)

rescue Exception => detail
handle bad expressions

end

display result back to user...

Roughly seven seconds after Walter puts the application online, a twelve-year-old from
Waxahachie with glandular problems and no real life types system("rm *") into the
form and, like his computer’s files, Walter’s dreams come tumbling down.

Walter learned an important lesson: All external data is dangerous. Don’t let it close to
interfaces that can modify your system. In this case, the content of the form field was
the external data, and the call to eval was the security breach.

Fortunately, Ruby provides support for reducing this risk. All information from the
outside world can be marked as tainted. When running in a safe mode, potentially
dangerous methods will raise a SecurityError if passed a tainted object.

Prepared exclusively for Margus Pau 379

SAFE LEVELS 380

Safe Levels
The variable $SAFE determines Ruby’s level of paranoia. Table 25.1 on page 383 gives
more details of the checks performed at each safe level.

$SAFE Constraints

0 No checking of the use of externally supplied (tainted) data is performed.
This is Ruby’s default mode.

≥ 1 Ruby disallows the use of tainted data by potentially dangerous operations.

≥ 2 Ruby prohibits the loading of program files from globally writable locations.

≥ 3 All newly created objects are considered tainted.

≥ 4 Ruby effectively partitions the running program in two. Nontainted objects
may not be modified.

The default value of $SAFE is zero under most circumstances. However, if a Ruby
script is run setuid or setgid,1 or if it run under mod_ruby, its safe level is automatically
set to 1. The safe level may also be set by using the -T command-line option and by
assigning to $SAFE within the program. It is not possible to lower the value of $SAFE
by assignment.

The current value of $SAFE is inherited when new threads are created. However, within
each thread, the value of $SAFE may be changed without affecting the value in other
threads. This facility may be used to implement secure “sandboxes,” areas where exter-
nal code may run safely without risk to the rest of your application or system. Do this
by wrapping code that you load from a file in its own, anonymous module. This will
protect your program’s namespace from any unintended alteration.

f=open(filename,"w")
f.print ... # write untrusted program into file.
f.close
Thread.start do
$SAFE = 4
load(filename, true)

end

With a $SAFE level of 4, you can load only wrapped files. See the description of
Kernel.load on page 503 for details.

This concept is used by Clemens Wyss on Ruby CHannel (http://www.ruby.ch). On
this site, you can run the code from the first edition of this book. You can also type

1. A Unix script may be flagged to be run under a different user or group ID than the person running it.
This allows the script to have privileges that the user does not have; the script can access resources that the
user would otherwise be prohibited from using. These scripts are called setuid or setgid.

Prepared exclusively for Margus Pau

http://www.ruby.ch

TAINTED OBJECTS 381

Ruby code into a window and execute it. And yet he doesn’t lose sleep at night, as his
site runs your code in a sandbox.

You can find a listing of the Ruby source code for this sandbox on the Web at
http://www.approximity.com/cgi-bin/rubybuch_wiki/wpage.rb?nd=214 .

The safe level in effect when a Proc object is created is1.8 stored with that object. A Proc
may not be passed to a method if it is tainted and the current safe level is greater than
that in effect when the block was created.

Tainted Objects
Any Ruby object derived from some external source (for example, a string read from
a file or an environment variable) is automatically marked as being tainted. If your
program uses a tainted object to derive a new object, then that new object will also be
tainted, as shown in the code below. Any object with external data somewhere in its
past will be tainted. This tainting process is performed regardless of the current safe
level. You can see if an object is tainted using Object#tainted?.

internal data
=============

x1 = "a string"
x1.tainted? → false

x2 = x1[2, 4]
x2.tainted? → false

x1 =~ /([a-z])/ → 0
$1.tainted? → false

external data
=============

y1 = ENV["HOME"]
y1.tainted? → true

y2 = y1[2, 4]
y2.tainted? → true

y1 =~ /([a-z])/ → 2
$1.tainted? → true

You can force any object to become tainted by invoking its taint method. If the safe
level is less than 3, you can remove the taint from an object by invoking untaint.2

This is not something to do lightly.

Clearly, Walter should have run his CGI script at a safe level of 1. This would have
raised an exception when the program tried to pass form data to eval. Once this had
happened, Walter would have had a number of choices. He could have chosen to imple-
ment a proper expression parser, bypassing the risks inherent in using eval. However,
being lazy, it’s more likely he’d have performed some simple sanity check on the form
data and untaint it if it looked innocuous.

2. You can also use some devious tricks to do this without using untaint. We’ll leave it up to your darker
side to find them.

Prepared exclusively for Margus Pau

http://www.approximity.com/cgi-bin/rubybuch_wiki/wpage.rb?nd=214

TAINTED OBJECTS 382

require 'cgi';

$SAFE = 1

cgi = CGI.new("html4")

expr = cgi["expression"].to_s

if expr =~ %r{\A[-+*/\d\seE.()]*\z}
expr.untaint
result = eval(expr)
display result back to user...

else
display error message...

end

Personally, we think Walter is still taking undue risks. We’d probably prefer to see a
real parser here, but implementing one here has nothing to teach us about tainting, so
we’ll move onto other topics.

Prepared exclusively for Margus Pau

TAINTED OBJECTS 383

Table 25.1. Definition of the safe levels
$SAFE >= 1

• The environment variables RUBYLIB and RUBYOPT are not processed, and the current directory
is not added to the path.

• The command-line options -e, -i, -I, -r, -s, -S, and -x are not allowed.
• Can’t start processes from $PATH if any directory in it is world-writable.
• Can’t manipulate or chroot to a directory whose name is a tainted string.
• Can’t glob tainted strings.
• Can’t eval tainted strings.
• Can’t load or require a file whose name is a tainted string (unless the load is wrapped1.8).
• Can’t manipulate or query the status of a file or pipe whose name is a tainted string.
• Can’t execute a system command or exec a program from a tainted string.
• Can’t pass trap a tainted string.

$SAFE >= 2
• Can’t change, make, or remove directories, or use chroot.
• Can’t load a file from a world-writable directory.
• Can’t load a file from a tainted filename starting with ~.
• Can’t use File#chmod, File#chown, File#lstat, File.stat, File#truncate,
File.umask, File#flock, IO#ioctl, IO#stat, Kernel#fork, Kernel#syscall,
Kernel#trap. Process.setpgid, Process.setsid, Process.setpriority, or
Process.egid=.

• Can’t handle signals using trap.

$SAFE >= 3
• All objects are tainted when they are created.
• Can’t untaint objects.

$SAFE >= 4
• Can’t modify a nontainted array, hash, or string.
• Can’t modify a global variable.
• Can’t access instance variables of nontainted objects.
• Can’t change an environment variable.
• Can’t close or reopen nontainted files.
• Can’t freeze nontainted objects.
• Can’t change visibility of methods (private/public/protected).
• Can’t make an alias in a nontainted class or module.
• Can’t get meta-information (such as method or variable lists).
• Can’t define, redefine, remove, or undef a method in a nontainted class or module.
• Can’t modify Object.
• Can’t remove instance variables or constants from nontainted objects.
• Can’t manipulate threads, terminate a thread other than the current thread, or set
abort_on_exception.

• Can’t have thread local variables.
• Can’t raise an exception in a thread with a lower $SAFE value.
• Can’t move threads between ThreadGroups.
• Can’t invoke exit, exit!, or abort.
• Can load only wrapped files, and can’t include modules in untainted classes and modules.
• Can’t convert symbol identifiers to object references.
• Can’t write to files or pipes.
• Can’t use autoload.
• Can’t taint objects.

Prepared exclusively for Margus Pau

Chapter 26

Reflection,
ObjectSpace, and
Distributed Ruby

One of the many advantages of dynamic languages such as Ruby is the ability to
introspect—to examine aspects of the program from within the program itself. Java,
for one, calls this feature reflection but Ruby’s capabilities go beyond Java’s.

The word reflection conjures up an image of looking at oneself in the mirror—perhaps
investigating the relentless spread of that bald spot on the top of one’s head. That’s
a pretty apt analogy: we use reflection to examine parts of our programs that aren’t
normally visible from where we stand.

In this deeply introspective mood, while we are contemplating our navels and burning
incense (being careful not to swap the two tasks), what can we learn about our program?
We might discover

• what objects it contains,
• the class hierarchy,
• the attributes and methods of objects, and
• information on methods.

Armed with this information,we can look at particular objects and decide which of their
methods to call at runtime—even if the class of the object didn’t exist when we first
wrote the code. We can also start doing clever things, perhaps modifying the program
as it’s running.

Sound scary? It needn’t be. In fact, these reflection capabilities let us do some very
useful things. Later in this chapter we’ll look at distributed Ruby and marshaling, two
reflection-based technologies that let us send objects around the world and through
time.

Prepared exclusively for Margus Pau 384

LOOKING AT OBJECTS 385

Looking at Objects
Have you ever craved the ability to traverse all the living objects in your program? We
have! Ruby lets you perform this trick with ObjectSpace.each_object. We can use
it to do all sorts of neat tricks.

For example, to iterate over all objects of type Numeric, you’d write the following.

a = 102.7
b = 95.1
ObjectSpace.each_object(Numeric) {|x| p x }

produces:

95.1
102.7
2.71828182845905
3.14159265358979
2.22044604925031e-16
1.79769313486232e+308
2.2250738585072e-308

Hey, where did all those extra numbers come from? We didn’t define them in our
program. If you look on pages 466 and 519, you’ll see that the Float class defines
constants for the maximum and minimum float, as well as epsilon, the smallest distin-
guishable difference between two floats. The Math module defines constants for e and
π. Since we are examining all living objects in the system, these turn up as well.

Let’s try the same example with different numbers.

a = 102
b = 95
ObjectSpace.each_object(Numeric) {|x| p x }

produces:

2.71828182845905
3.14159265358979
2.22044604925031e-16
1.79769313486232e+308
2.2250738585072e-308

Neither of the Fixnum objects we created showed up. That’s because ObjectSpace
doesn’t know about objects with immediate values: Fixnum, Symbol, true, false,
and nil.

Looking Inside Objects
Once you’ve found an interesting object, you may be tempted to find out just what it
can do. Unlike static languages, where a variable’s type determines its class, and hence
the methods it supports, Ruby supports liberated objects. You really cannot tell exactly

Prepared exclusively for Margus Pau

LOOKING AT CLASSES 386

what an object can do until you look under its hood.1 We talk about this in the Duck
Typing chapter starting on page 349.

For instance, we can get a list of all the methods to which an object will respond.

r = 1..10 # Create a Range object
list = r.methods
list.length → 68
list[0..3] → ["collect", "to_a", "instance_eval", "all?"]

Or, we can check to see if an object supports a particular method.

r.respond_to?("frozen?") → true
r.respond_to?(:has_key?) → false
"me".respond_to?("==") → true

We can determine our object’s class and its unique object ID and test its relationship to
other classes.

num = 1
num.id → 3
num.class → Fixnum
num.kind_of? Fixnum → true
num.kind_of? Numeric → true
num.instance_of? Fixnum → true
num.instance_of? Numeric → false

Looking at Classes
Knowing about objects is one part of reflection, but to get the whole picture, you also
need to be able to look at classes—the methods and constants that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular class
using Class#superclass. For classes and modules, Module#ancestors lists both
superclasses and mixed-in modules.

klass = Fixnum
begin
print klass
klass = klass.superclass
print " < " if klass

end while klass
puts
p Fixnum.ancestors

produces:

Fixnum < Integer < Numeric < Object
[Fixnum, Integer, Precision, Numeric, Comparable, Object, Kernel]

1. Or under its bonnet, for objects created to the east of the Atlantic.

Prepared exclusively for Margus Pau

LOOKING AT CLASSES 387

If you want to build a complete class hierarchy, just run that code for every class in the
system. We can use ObjectSpace to iterate over all Class objects.

ObjectSpace.each_object(Class) do |klass|
...

end

Looking Inside Classes
We can find out a bit more about the methods and constants in a particular object.
Instead of just checking to see whether the object responds to a given message, we can
ask for methods by access level, and we can ask for just singleton methods. We can
also have a look at the object’s constants, local, and instance variables.1.8

class Demo
@@var = 99
CONST = 1.23

private
def private_method
end

protected
def protected_method
end

public
def public_method

@inst = 1
i = 1
j = 2
local_variables

end

def Demo.class_method
end

end

Demo.private_instance_methods(false) → ["private_method"]
Demo.protected_instance_methods(false) → ["protected_method"]
Demo.public_instance_methods(false) → ["public_method"]
Demo.singleton_methods(false) → ["class_method"]
Demo.class_variables → ["@@var"]
Demo.constants - Demo.superclass.constants → ["CONST"]

demo = Demo.new
demo.instance_variables → []
Get 'public_method' to return its local variables
and set an instance variable
demo.public_method → ["i", "j"]
demo.instance_variables → ["@inst"]

Prepared exclusively for Margus Pau

CALLING METHODS DYNAMICALLY 388

Module.constants returns all the constants available via a module, including con-
stants from the module’s superclasses. We’re not interested in those just at the moment,
so we’ll subtract them from our list.

You may be wondering what all the false parameters were in the previous code. As of
Ruby 1.81.8 , these reflection methods will by default recurse into parent classes, and their
parents, and so on up the ancestor chain. Passing in false stops this kind of prying.

Given a list of method names, we may now be tempted to try calling them. Fortunately,
that’s easy with Ruby.

Calling Methods Dynamically
C and Java programmers often find themselves writing some kind of dispatch table:
functions that are invoked based on a command. Think of a typical C idiom where you
have to translate a string to a function pointer.

typedef struct {
char *name;
void (*fptr)();

} Tuple;

Tuple list[]= {
{ "play", fptr_play },
{ "stop", fptr_stop },
{ "record", fptr_record },
{ 0, 0 },

};

...

void dispatch(char *cmd) {
int i = 0;
for (; list[i].name; i++) {
if (strncmp(list[i].name,cmd,strlen(cmd)) == 0) {

list[i].fptr();
return;

}
}
/* not found */

}

In Ruby, you can do all this in one line. Stick all your command functions into a class,
create an instance of that class (we called it commands), and ask that object to execute
a method called the same name as the command string.

commands.send(command_string)

Oh, and by the way, it does much more than the C version—it’s dynamic. The Ruby
version will find new methods added at runtime just as easily.

Prepared exclusively for Margus Pau

CALLING METHODS DYNAMICALLY 389

You don’t have to write special command classes for send: it works on any object.

"John Coltrane".send(:length) → 13
"Miles Davis".send("sub", /iles/, '.') → "M. Davis"

Another way of invoking methods dynamically uses Method objects. A Method object
is like a Proc object: it represents a chunk of code and a context in which it executes. In
this case, the code is the body of the method, and the context is the object that created
the method. Once we have our Method object, we can execute it sometime later by
sending it the message call.

trane = "John Coltrane".method(:length)
miles = "Miles Davis".method("sub")

trane.call → 13
miles.call(/iles/, '.') → "M. Davis"

You can pass the Method object around as you would any other object, and when you
invoke Method#call, the method is run just as if you had invoked it on the original
object. It’s like having a C-style function pointer but in a fully object-oriented style.

You can also use Method objects with iterators.

def double(a)
2*a

end

mObj = method(:double)

[1, 3, 5, 7].collect(&mObj) → [2, 6, 10, 14]

Method objects are bound to one particular object. You can create unbound methods (of
class UnboundMethod)1.8 and then subsequently bind them to one or more objects. The
binding creates a new Method object. As with aliases, unbound methods are references
to the definition of the method at the time they are created.

unbound_length = String.instance_method(:length)
class String
def length
99

end
end
str = "cat"
str.length → 99
bound_length = unbound_length.bind(str)
bound_length.call → 3

As good things come in threes, here’s yet another way to invoke methods dynami-
cally. The eval method (and its variations such as class_eval, module_eval, and
instance_eval) will parse and execute an arbitrary string of legal Ruby source code.

Prepared exclusively for Margus Pau

CALLING METHODS DYNAMICALLY 390

trane = %q{"John Coltrane".length}
miles = %q{"Miles Davis".sub(/iles/, '.')}

eval trane → 13
eval miles → "M. Davis"

When using eval, it can be helpful to state explicitly the context in which the expres-
sion should be evaluated, rather than using the current context. You can obtain a context
by calling Kernel#binding at the desired point.

def get_a_binding
val = 123
binding

end

val = "cat"

the_binding = get_a_binding
eval("val", the_binding) → 123
eval("val") → "cat"

The first eval evaluates val in the context of the binding as it was as the method
get_a_binding was executing. In this binding, the variable val had a value of 123.
The second eval evaluates val in the toplevel binding, where it has the value "cat".

Performance Considerations
As we’ve seen in this section, Ruby gives us several ways to invoke an arbitrary method
of some object: Object#send, Method#call, and the various flavors of eval.

You may prefer to use any one of these techniques depending on your needs, but be
aware that eval is significantly slower than the others (or, for optimistic readers, send
and call are significantly faster than eval).

require 'benchmark'
include Benchmark

test = "Stormy Weather"
m = test.method(:length)
n = 100000

bm(12) {|x|
x.report("call") { n.times { m.call } }
x.report("send") { n.times { test.send(:length) } }
x.report("eval") { n.times { eval "test.length" } }

}

produces:

user system total real
call 0.250000 0.000000 0.250000 (0.340967)
send 0.210000 0.000000 0.210000 (0.254237)
eval 1.410000 0.000000 1.410000 (1.656809)

Prepared exclusively for Margus Pau

SYSTEM HOOKS 391

System Hooks
A hook is a technique that lets you trap some Ruby event, such as object creation. The
simplest hook technique in Ruby is to intercept calls to methods in system classes.
Perhaps you want to log all the operating system commands your program executes.
Simply rename the method Kernel.system and substitute it with one of your own that
both logs the command and calls the original Kernel method.

module Kernel
alias_method :old_system, :system
def system(*args)
result = old_system(*args)
puts "system(#{args.join(', ')}) returned #{result}"
result

end
end

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Thu Aug 26 22:37:22 CDT 2004
system(date) returned true
system(kangaroo, -hop 10, skippy) returned false

A more powerful hook is catching objects as they are created. If you can be present
when every object is born, you can do all sorts of interesting things: you can wrap
them, add methods to them, remove methods from them, add them to containers to
implement persistence, you name it. We’ll show a simple example here: we’ll add a
time stamp to every object as it’s created. First, we’ll add a timestamp attribute to
every object in the system. We can do this by hacking class Object itself.

class Object
attr_accessor :timestamp

end

Then we need to hook object creation to add this time stamp. One way to do this is to do
our method renaming trick on Class#new, the method that’s called to allocate space for
a new object. The technique isn’t perfect—some built-in objects, such as literal strings,
are constructed without calling new—but it’ll work just fine for objects we write.

class Class
alias_method :old_new, :new
def new(*args)
result = old_new(*args)
result.timestamp = Time.now
result

end
end

Prepared exclusively for Margus Pau

SYSTEM HOOKS 392

Finally, we can run a test. We’ll create a couple of objects a few milliseconds apart and
check their time stamps.

class Test
end

obj1 = Test.new
sleep(0.002)
obj2 = Test.new

obj1.timestamp.to_f → 1093577843.1312
obj2.timestamp.to_f → 1093577843.14144

All this method renaming is fine, and it really does work, but be aware that it can cause
problems. If a subclass does the same thing, and renames the methods using the same
names, you’ll end up with an infinite loop. You can avoid this by aliasing your methods
to a unique symbol name or by using a consistent naming convention.

There are other, more refined ways to get inside a running program. Ruby provides
several callback methods that let you trap certain events in a controlled way.

Runtime Callbacks
You can be notified whenever one of the following events occurs.

Event Callback Method

Adding an instance method Module#method_added
1.8 Removing an instance method Module#method_removed
1.8 Undefining an instance method Module#method_undefined

Adding a singleton method Kernel.singleton_method_added
1.8 Removing a singleton method Kernel.singleton_method_removed
1.8 Undefining a singleton method Kernel.singleton_method_undefineded

Subclassing a class Class#inherited
Mixing in a module Module#extend_object

By default, these methods do nothing. If you define the callback method in your class,
it’ll be invoked automatically. The actual call sequences are illustrated in the library
descriptions for each callback method.

Keeping track of method creation and class and module usage lets you build an accurate
picture of the dynamic state of your program. This can be important. For example, you
may have written code that wraps all the methods in a class, perhaps to add transactional
support or to implement some form of delegation. This is only half the job: the dynamic
nature of Ruby means that users of this class could add new methods to it at any time.
Using these callbacks, you can write code that wraps these new methods as they are
created.

Prepared exclusively for Margus Pau

TRACING YOUR PROGRAM’S EXECUTION 393

Tracing Your Program’s Execution
While we’re having fun reflecting on all the objects and classes in our programs, let’s
not forget about the humble statements that make our code actually do things. It turns
out that Ruby lets us look at these statements, too.

First, you can watch the interpreter as it executes code. set_trace_func executes a
Proc with all sorts of juicy debugging information whenever a new source line is exe-
cuted, methods are called, objects are created, and so on. You’ll find a full description
on page 508, but here’s a taste.

class Test
def test
a = 1
b = 2

end
end

set_trace_func proc {|event, file, line, id, binding, classname|
printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname

}
t = Test.new
t.test

produces:

line prog.rb:11 false
c-call prog.rb:11 new Class
c-call prog.rb:11 initialize Object

c-return prog.rb:11 initialize Object
c-return prog.rb:11 new Class

line prog.rb:12 false
call prog.rb:2 test Test
line prog.rb:3 test Test
line prog.rb:4 test Test

return prog.rb:4 test Test

The method trace_var (described on page 511) lets you add a hook to a global vari-
able; whenever an assignment is made to the global, your Proc object is invoked.

How Did We Get Here?
A fair question, and one we ask ourselves regularly. Mental lapses aside, in Ruby at
least you can find out exactly “how you got there” by using the method caller, which
returns an Array of String objects representing the current call stack.

def cat_a
puts caller.join("\n")

end
def cat_b
cat_a

end

Prepared exclusively for Margus Pau

TRACING YOUR PROGRAM’S EXECUTION 394

def cat_c
cat_b

end
cat_c

produces:

prog.rb:5:in `cat_b'
prog.rb:8:in `cat_c'
prog.rb:10

Once you’ve figured out how you got there, where you go next is up to you.

Source Code
Ruby executes programs from plain old files. You can look these files to examine the
source code that makes up your program using one of a number of techniques.

The special variable __FILE__ contains the name of the current source file. This leads
to a fairly short (if cheating) Quine—a program that outputs its own source code.

print File.read(__FILE__)

The method Kernel.caller returns the call stack—the list of stack frames in existence
at the time the method was called. Each entry in this list starts off with a filename, a
colon, and a line number in that file. You can parse this information to display source.
In the following example, we have a main program, main.rb, that calls a method in a
separate file, sub.rb. That method in turns invokes a block, where we traverse the call
stack and write out the source lines involved. Notice the use of a hash of file contents,
indexed by the filename.

Here’s the code that dumps out the call stack, including source information.

def dump_call_stack
file_contents = {}
puts "File Line Source Line"
puts "-------------------------+----+------------"
caller.each do |position|
next unless position =~ /\A(.*?):(\d+)/
file = $1
line = Integer($2)
file_contents[file] ||= File.readlines(file)
printf("%-25s:%3d - %s", file, line,

file_contents[file][line-1].lstrip)
end

end

The (trivial) file sub.rb contains a single method.

def sub_method(v1, v2)
main_method(v1*3, v2*6)

end

Prepared exclusively for Margus Pau

MARSHALING AND DISTRIBUTED RUBY 395

And here’s the main program, which invokes the stack dumper after being called back
by the submethod.

require 'sub'
require 'stack_dumper'

def main_method(arg1, arg2)
dump_call_stack

end

sub_method(123, "cat")

produces:

File Line Source Line
-------------------------+----+------------
code/caller/main.rb : 5 - dump_call_stack
./code/caller/sub.rb : 2 - main_method(v1*3, v2*6)
code/caller/main.rb : 8 - sub_method(123, "cat")

The SCRIPT_LINES__ constant is closely related to this technique. If a program initial-
izes a constant called SCRIPT_LINES__ with a hash, that hash will receive the source
code of every file subsequently loaded into the interpreter using require or load. See
Kernel.require on page 507 for an example.

Marshaling and Distributed Ruby
Java features the ability to serialize objects, letting you store them somewhere and
reconstitute them when needed. You can use this facility, for instance, to save a tree of
objects that represent some portion of application state—a document, a CAD drawing,
a piece of music, and so on.

Ruby calls this kind of serialization marshaling (think of railroad marshaling yards
where individual cars are assembled in sequence into a complete train, which is then
dispatched somewhere). Saving an object and some or all of its components is done
using the method Marshal.dump. Typically, you will dump an entire object tree starting
with some given object. Later, you can reconstitute the object using Marshal.load.

Here’s a short example. We have a class Chord that holds a collection of musical notes.
We’d like to save away a particularly wonderful chord so we can e-mail it to a couple
of hundred of our closest friends. They can then load it into their copy of Ruby and
savor it too. Let’s start with the classes for Note and Chord.

Note = Struct.new(:value)
class Note
def to_s
value.to_s

end
end

Prepared exclusively for Margus Pau

MARSHALING AND DISTRIBUTED RUBY 396

class Chord
def initialize(arr)
@arr = arr

end

def play
@arr.join('-')

end
end

Now we’ll create our masterpiece and use Marshal.dump to save a serialized version
of it to disk.

c = Chord.new([Note.new("G"),
Note.new("Bb"),
Note.new("Db"),
Note.new("E")])

File.open("posterity", "w+") do |f|
Marshal.dump(c, f)

end

Finally, our grandchildren read it in and are transported by our creation’s beauty.

File.open("posterity") do |f|
chord = Marshal.load(f)

end

chord.play → "G-Bb-Db-E"

Custom Serialization Strategy
Not all objects can be dumped: bindings, procedure objects, instances of class IO, and
singleton objects cannot be saved outside the running Ruby environment (a TypeError
will be raised if you try). Even if your object doesn’t contain one of these problematic
objects, you may want to take control of object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom serialization,
simply implement two instance methods: one called marshal_dump1.8 , which writes the
object out to a string, and one called marshal_load, which reads a string that you’d
previously created and uses it to initialize a newly allocated object. (In earlier Ruby
versions you’d use methods called _dump and _load, but the new versions play better
with Ruby 1.8’s new allocation scheme.) The instance method marshal_dump should
return an object representing the state to be dumped. When the object is subsequently
reconstituted using Marshal.load, the method marshal_load will be called with this
object and will use it to set the state of its receiver—it will be run in the context of an
allocated but not initialized object of the class being loaded.

For instance, here is a sample class that defines its own serialization. For whatever
reasons, Special doesn’t want to save one of its internal data members, @volatile.
The author has decided to serialize the two other instance variables in an array.

Prepared exclusively for Margus Pau

MARSHALING AND DISTRIBUTED RUBY 397

class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def marshal_dump
[@valuable, @precious]

end

def marshal_load(variables)
@valuable = variables[0]
@precious = variables[1]
@volatile = "unknown"

end

def to_s
"#@valuable #@volatile #@precious"

end
end

obj = Special.new("Hello", "there", "World")
puts "Before: obj = #{obj}"
data = Marshal.dump(obj)

obj = Marshal.load(data)
puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World
After: obj = Hello unknown World

For more details, see the reference section on Marshal beginning on page 514.

YAML for Marshaling1.8

The Marshal module is built into the interpreter and uses a binary format to store
objects externally. While fast, this binary format has one major disadvantage: if the
interpreter changes significantly, the marshal binary format may also change, and old
dumped files may no longer be loadable.

An alternative is to use a less fussy external format, preferably one using text rather
than binary files. One option, supplied as a standard library as of Ruby 1.8, is YAML.2

We can adapt our previous marshal example to use YAML. Rather than implement spe-
cific loading and dumping methods to control the marshal process, we simply define the
method to_yaml_properties, which returns a list of instance variables to be saved.

2. http://www.yaml.org. YAML stands for YAML Ain’t Markup Language, but that hardly seems
important.

Prepared exclusively for Margus Pau

http://www.yaml.org

MARSHALING AND DISTRIBUTED RUBY 398

require 'yaml'

class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def to_yaml_properties
%w{ @precious @valuable }

end

def to_s
"#@valuable #@volatile #@precious"

end
end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"
data = YAML.dump(obj)
obj = YAML.load(data)
puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World
After: obj = Hello World

We can have a look at what YAML creates as the serialized form of the object—it’s
pretty simple.

obj = Special.new("Hello", "there", "World")
puts YAML.dump(obj)

produces:

--- !ruby/object:Special
precious: World
valuable: Hello

Distributed Ruby
Since we can serialize an object or a set of objects into a form suitable for out-of-
process storage, we can use this capability for the transmission of objects from one
process to another. Couple this capability with the power of networking, and voilà: you
have a distributed object system. To save you the trouble of having to write the code, we
suggest using Masatoshi Seki’s Distributed Ruby library (drb), which is now1.8 available
as a standard Ruby library.

Using drb, a Ruby process may act as a server, as a client, or as both. A drb server acts
as a source of objects, while a client is a user of those objects. To the client, it appears
that the objects are local, but in reality the code is still being executed remotely.

Prepared exclusively for Margus Pau

MARSHALING AND DISTRIBUTED RUBY 399

A server starts a service by associating an object with a given port. Threads are created
internally to handle incoming requests on that port, so remember to join the drb thread
before exiting your program.

require 'drb'

class TestServer
def add(*args)
args.inject {|n,v| n + v}

end
end

server = TestServer.new
DRb.start_service('druby://localhost:9000', server)
DRb.thread.join # Don't exit just yet!

A simple drb client simply creates a local drb object and associates it with the object
on the remote server; the local object is a proxy.

require 'drb'
DRb.start_service()
obj = DRbObject.new(nil, 'druby://localhost:9000')
Now use obj
puts "Sum is: #{obj.add(1, 2, 3)}"

The client connects to the server and calls the method add, which uses the magic of
inject to sum its arguments. It returns the result, which the client prints out.

Sum is: 6

The initial nil argument to DRbObject indicates that we want to attach to a new dis-
tributed object. We could also use an existing object.

Ho hum, you say. This sounds like Java’s RMI, or CORBA, or whatever. Yes, it is a
functional distributed object mechanism—but it is written in just a few hundred lines
of Ruby code. No C, nothing fancy, just plain old Ruby code. Of course, it has no
naming service or trader service, or anything like you’d see in CORBA, but it is simple
and reasonably fast. On 1GHz Powerbook system, this sample code runs at about 500
remote message calls per second.

And, if you like the look of Sun’s JavaSpaces, the basis of the JINI architecture, you’ll
be interested to know that drb is distributed with a short module that does the same kind
of thing. JavaSpaces is based on a technology called Linda. To prove that its Japanese
author has a sense of humor, Ruby’s version of Linda is known as Rinda.

If you like your remote messaging fat, dumb, and interoperable, you could also look
into the SOAP libraries distributed with Ruby.1.8 3

3. This is a comment on SOAP, which long-ago abandoned the Simple part of its acronym. The Ruby
implementation of SOAP is a wonderful piece of work.

Prepared exclusively for Margus Pau

COMPILE TIME? RUNTIME? ANYTIME! 400

Compile Time? Runtime? Anytime!
The important thing to remember about Ruby is that there isn’t a big difference between
“compile time” and “runtime.” It’s all the same. You can add code to a running process.
You can redefine methods on the fly, change their scope from public to private, and
so on. You can even alter basic types, such as Class and Object.

Once you get used to this flexibility, it is hard to go back to a static language such as
C++ or even to a half-static language such as Java.

But then, why would you want to do that?

Prepared exclusively for Margus Pau

Part IV

Ruby Library Reference

Prepared exclusively for Margus Pau 401

Chapter 27

Built-in Classes and Modules

This chapter documents the classes and modules built into the standard Ruby language.
They are available to every Ruby program automatically; no require is required. This
section does not contain the various predefined variables and constants; these are listed
starting on page 318.

In the descriptions starting on page 406, we show sample invocations for each method.

new String.new(some_string) → new_string

This description shows a class method that is called as String.new. The italic parame-
ter indicates that a single string is passed in, and the arrow indicates that another string
is returned from the method. Because this return value has a different name than that of
the parameter, it represents a different object.

When we illustrate instance methods, we show a sample call with a dummy object
name in italics as the receiver.

each str.each(sep=$/) {| record | block } → str

The parameter to String#each is shown to have a default value; call each with no
parameter, and the value of $/ will be used. This method is an iterator, so the call is
followed by a block. String#each returns its receiver, so the receiver’s name (str in
this case) appears again after the arrow.

Some methods have optional parameters. We show these parameters between angle
brackets, 〈 xxx 〉. (Additionally, we use the notation 〈 xxx 〉∗ to indicate zero or more
occurrences of xxx and use 〈 xxx 〉+ to indicate one or more occurrences of xxx.)

index self.index(str 〈 , offset 〉) → pos or nil

Finally, for methods that can be called in several different forms, we list each form on
a separate line.

Prepared exclusively for Margus Pau 402

ALPHABETICAL LISTING 403

Alphabetical Listing
Standard classes are listed alphabetically, followed by the standard modules. Within
each, we list the class (or module) methods, followed by its instance methods.

Summary of Built-in Classes

Array (page 406): Class: [], new. Instance: &, *, +, –, <<, <=>, ==, [], []=, |, assoc, at, clear,
collect!, compact, compact!, concat, delete, delete_at, delete_if, each, each_index, empty?, eql?,
fetch, fill, first, flatten, flatten!, include?, index, indexes, indices, insert, join, last, length, map!,
nitems, pack, pop, push, rassoc, reject!, replace, reverse, reverse!, reverse_each, rindex, shift,
size, slice, slice!, sort, sort!, to_a, to_ary, to_s, transpose, uniq, uniq!, unshift, values_at.

Bignum (page 420): Instance: Arithmetic operations, Bit operations, <=>, ==, [], abs, div,
divmod, eql?, modulo, quo, remainder, size, to_f, to_s.

Binding (page 423)

Class (page 424): Class: inherited, new. Instance: allocate, new, superclass.

Continuation (page 427): Instance: call.

Dir (page 428): Class: [], chdir, chroot, delete, entries, foreach, getwd, glob, mkdir, new, open,
pwd, rmdir, unlink. Instance: close, each, path, pos, pos=, read, rewind, seek, tell.

Exception (page 440): Class: exception, new. Instance: backtrace, exception, message,
set_backtrace, status, success?, to_s, to_str.

FalseClass (page 443): Instance: &, ^, |.

File (page 444): Class: atime, basename, blockdev?, chardev?, chmod, chown, ctime, delete,
directory?, dirname, executable?, executable_real?, exist?, exists?, expand_path, extname, file?,
fnmatch, fnmatch?, ftype, grpowned?, join, lchmod, lchown, link, lstat, mtime, new, open, owned?,
pipe?, readable?, readable_real?, readlink, rename, setgid?, setuid?, size, size?, socket?, split,
stat, sticky?, symlink, symlink?, truncate, umask, unlink, utime, writable?, writable_real?, zero?.
Instance: atime, chmod, chown, ctime, flock, lchmod, lchown, lstat, mtime, path, truncate.

File::Stat (page 456): Instance: <=>, atime, blksize, blockdev?, blocks, chardev?, ctime, dev,
dev_major, dev_minor, directory?, executable?, executable_real?, file?, ftype, gid, grpowned?, ino,
mode, mtime, nlink, owned?, pipe?, rdev, rdev_major, rdev_minor, readable?, readable_real?,
setgid?, setuid?, size, size?, socket?, sticky?, symlink?, uid, writable?, writable_real?, zero?.

Fixnum (page 463): Class: . Instance: Arithmetic operations, Bit operations, <=>, [], abs, div,
divmod, id2name, modulo, quo, size, to_f, to_s, to_sym, zero?.

Float (page 466): Instance: Arithmetic operations, <=>, ==, abs, ceil, divmod, eql?, finite?, floor,
infinite?, modulo, nan?, round, to_f, to_i, to_int, to_s, truncate, zero?.

Hash (page 471): Class: [], new. Instance: ==, [], []=, clear, default, default=, default_proc,
delete, delete_if, each, each_key, each_pair, each_value, empty?, fetch, has_key?, has_value?,
include?, index, indexes, indices, invert, key?, keys, length, member?, merge, merge!, rehash,
reject, reject!, replace, select, shift, size, sort, store, to_a, to_hash, to_s, update, value?, values,
values_at.

Integer (page 480): Instance: ceil, chr, downto, floor, integer?, next, round, succ, times, to_i,
to_int, truncate, upto.

Prepared exclusively for Margus Pau

ALPHABETICAL LISTING 404

IO (page 482): Class: for_fd, foreach, new, open, pipe, popen, read, readlines, select, sysopen.
Instance: <<, binmode, clone, close, close_read, close_write, closed?, each, each_byte,
each_line, eof, eof?, fcntl, fileno, flush, fsync, getc, gets, ioctl, isatty, lineno, lineno=, pid, pos,
pos=, print, printf, putc, puts, read, readchar, readline, readlines, reopen, rewind, seek, stat, sync,
sync=, sysread, sysseek, syswrite, tell, to_i, to_io, tty?, ungetc, write.

MatchData (page 516): Instance: [], begin, captures, end, length, offset, post_match,
pre_match, select, size, string, to_a, to_s, values_at.

Method (page 522): Instance: [], ==, arity, call, eql?, to_proc, unbind.

Module (page 524): Class: constants, nesting, new. Instance: <, <=, >, >=, <=>, ===,
ancestors, autoload, autoload?, class_eval, class_variables, clone, const_defined?, const_get,
const_missing, const_set, constants, include?, included_modules, instance_method,
instance_methods, method_defined?, module_eval, name, private_class_method,
private_instance_methods, private_method_defined?, protected_instance_methods,
protected_method_defined?, public_class_method, public_instance_methods,
public_method_defined?. Private: alias_method, append_features, attr, attr_accessor, attr_reader,
attr_writer, define_method, extend_object, extended, include, included, method_added,
method_removed, method_undefined, module_function, private, protected, public,
remove_class_variable, remove_const, remove_method, undef_method.

NilClass (page 540): Instance: &, ^, |, nil?, to_a, to_f, to_i, to_s.

Numeric (page 541): Instance: +@, -@, <=>, abs, ceil, coerce, div, divmod, eql?, floor,
integer?, modulo, nonzero?, quo, remainder, round, step, to_int, truncate, zero?.

Object (page 546): Instance: ==, ===, =~, _ _id_ _, _ _send_ _, class, clone, display, dup, eql?,
equal?, extend, freeze, frozen?, hash, id, initialize_copy, inspect, instance_eval, instance_of?,
instance_variable_get, instance_variable_set, instance_variables, is_a?, kind_of?, method,
method_missing, methods, nil?, object_id, private_methods, protected_methods, public_methods,
respond_to?, send, singleton_methods, taint, tainted?, to_a, to_s, type, untaint. Private: initialize,
remove_instance_variable, singleton_method_added, singleton_method_removed,
singleton_method_undefined.

Proc (page 559): Class: new. Instance: [], ==, arity, binding, call, to_proc, to_s.

Process::Status (page 570): Instance: ==, &, >>, coredump?, exited?, exitstatus, pid,
signaled?, stopped?, success?, stopsig, termsig, to_i, to_int, to_s.

Range (page 576): Class: new. Instance: ==, ===, begin, each, end, eql?, exclude_end?, first,
include?, last, member?, step.

Regexp (page 579): Class: compile, escape, last_match, new, quote. Instance: ==, ===, =~, ~,
casefold?, inspect, kcode, match, options, source, to_s.

String (page 585): Class: new. Instance: %, *, +, <<, <=>, ==, ===, =~, [], []=, ~, capitalize,
capitalize!, casecmp, center, chomp, chomp!, chop, chop!, concat, count, crypt, delete, delete!,
downcase, downcase!, dump, each_byte, each_line, empty?, gsub, gsub!, hex, include?, index,
insert, intern, length, ljust, lstrip, lstrip!, match, next, next!, oct, replace, reverse, reverse!, rindex,
rjust, rstrip, rstrip!, scan, size, slice, slice!, split, squeeze, squeeze!, strip, strip!, sub, sub!, succ,
succ!, sum, swapcase, swapcase!, to_f, to_i, to_s, to_str, to_sym, tr, tr!, tr_s, tr_s!, unpack,
upcase, upcase!, upto.

Struct (page 605): Class: new, new, [], members. Instance: ==, [], []=, each, each_pair, length,
members, size, to_a, values, values_at.

Struct::Tms (page 609)

Prepared exclusively for Margus Pau

ALPHABETICAL LISTING 405

Symbol (page 610): Class: all_symbols. Instance: id2name, inspect, to_i, to_int, to_s, to_sym.

Thread (page 612): Class: abort_on_exception, abort_on_exception=, critical, critical=, current,
exit, fork, kill, list, main, new, pass, start, stop. Instance: [], []=, abort_on_exception,
abort_on_exception=, alive?, exit, group, join, keys, key?, kill, priority, priority=, raise, run,
safe_level, status, stop?, terminate, value, wakeup.

ThreadGroup (page 619): Class: new. Instance: add, enclose, enclosed?, freeze, list.

Time (page 621): Class: at, gm, local, mktime, new, now, times, utc. Instance: +, –, <=>,
asctime, ctime, day, dst?, getgm, getlocal, getutc, gmt?, gmtime, gmt_offset, gmtoff, hour, isdst,
localtime, mday, min, mon, month, sec, strftime, to_a, to_f, to_i, to_s, tv_sec, tv_usec, usec, utc,
utc?, utc_offset, wday, yday, year, zone.

TrueClass (page 629): Instance: &, ^, |.

UnboundMethod (page 630): Instance: arity, bind.

Summary of Built-in Modules

Comparable (page 426): Instance: Comparisons, between?.

Enumerable (page 433): Instance: all?, any?, collect, detect, each_with_index, entries, find,
find_all, grep, include?, inject, map, max, member?, min, partition, reject, select, sort, sort_by,
to_a, zip.

Errno (page 439)

FileTest (page 462)

GC (page 470): Class: disable, enable, start. Instance: garbage_collect.

Kernel (page 495): Class: Array, Float, Integer, String, ` (backquote), abort, at_exit, autoload,
autoload?, binding, block_given?, callcc, caller, catch, chomp, chomp!, chop, chop!, eval, exec,
exit, exit!, fail, fork, format, gets, global_variables, gsub, gsub!, iterator?, lambda, load,
local_variables, loop, open, p, print, printf, proc, putc, puts, raise, rand, readline, readlines, require,
scan, select, set_trace_func, sleep, split, sprintf, srand, sub, sub!, syscall, system, test, throw,
trace_var, trap, untrace_var, warn.

Marshal (page 514): Class: dump, load, restore.

Math (page 519): Class: acos, acosh, asin, asinh, atan, atanh, atan2, cos, cosh, erf, erfc, exp,
frexp, hypot, ldexp, log, log10, sin, sinh, sqrt, tan, tanh.

ObjectSpace (page 557): Class: _id2ref, define_finalizer, each_object, garbage_collect,
undefine_finalizer.

Process (page 562): Class: abort, detach, egid, egid=, euid, euid=, exit, exit!, fork, getpgid,
getpgrp, getpriority, gid, gid=, groups, groups=, initgroups, kill, maxgroups, maxgroups=, pid, ppid,
setpgid, setpgrp, setpriority, setsid, times, uid, uid=, wait, waitall, wait2, waitpid, waitpid2.

Process::GID (page 568): Class: change_privilege, eid, eid=, grant_privilege, re_exchange,
re_exchangeable?, rid, sid_available?, switch.

Process::Sys (page 573): Class: getegid, geteuid, getgid, getuid, issetugid, setegid, seteuid,
setgid, setregid, setresgid, setresuid, setreuid, setrgid, setruid, setuid.

Process::UID (page 575): Class: change_privilege, eid, eid=, grant_privilege, re_exchange,
re_exchangeable?, rid, sid_available?, switch.

Signal (page 583): Class: list, trap.

Prepared exclusively for Margus Pau

ARRAY 406

A
rr

ayClass Array < Object

Arrays are ordered, integer-indexed collections of any object. Array indexing starts at
0, as in C or Java. A negative index is assumed to be relative to the end of the array; that
is, an index of −1 indicates the last element of the array, −2 is the next to last element
in the array, and so on.

Mixes in

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods
[] Array[〈 obj 〉∗] → an_array

Returns a new array populated with the given objects. Equivalent to the operator form
Array.[](. . .).

Array.[](1, 'a', /^A/) → [1, "a", /^A/]
Array[1, 'a', /^A/] → [1, "a", /^A/]
[1, 'a', /^A/] → [1, "a", /^A/]

new Array.new → an_array
Array.new (size=0, obj=nil) → an_array

Array.new(array) → an_array
Array.new(size) {| i | block } → an_array

Returns a new array. In the first form, the new array is empty. In the second it is created
with size copies of obj (that is, size references to the same obj). The third form1.8 creates
a copy of the array passed as a parameter (the array is generated by calling to_ary on
the parameter). In the last form,1.8 an array of the given size is created. Each element in
this array is calculated by passing the element’s index to the given block and storing
the return value.

Array.new → []
Array.new(2) → [nil, nil]
Array.new(5, "A") → ["A", "A", "A", "A", "A"]

only one instance of the default object is created
a = Array.new(2, Hash.new)
a[0]['cat'] = 'feline'
a → [{"cat"=>"feline"}, {"cat"=>"feline"}]
a[1]['cat'] = 'Felix'
a → [{"cat"=>"Felix"}, {"cat"=>"Felix"}]

Prepared exclusively for Margus Pau

ARRAY 407

A
rr

aya = Array.new(2) { Hash.new } # Multiple instances
a[0]['cat'] = 'feline'
a → [{"cat"=>"feline"}, {}]

squares = Array.new(5) {|i| i*i}
squares → [0, 1, 4, 9, 16]

copy = Array.new(squares) # initialized by copying
squares[5] = 25
squares → [0, 1, 4, 9, 16, 25]
copy → [0, 1, 4, 9, 16]

Instance methods
& arr & other_array → an_array

Set Intersection—Returns a new array containing elements common to the two arrays,
with no duplicates. The rules for comparing elements are the same as for hash keys. If
you need setlike behavior, see the library class Set on page 710.

[1, 1, 3, 5] & [1, 2, 3] → [1, 3]

* arr * int → an_array
arr * str → a_string

Repetition—With an argument that responds to to_str, equivalent to arr.join(str).
Otherwise, returns a new array built by concatenating int copies of arr.

[1, 2, 3] * 3 → [1, 2, 3, 1, 2, 3, 1, 2, 3]
[1, 2, 3] * "--" → "1--2--3"

+ arr + other_array → an_array

Concatenation—Returns a new array built by concatenating the two arrays together to
produce a third array.

[1, 2, 3] + [4, 5] → [1, 2, 3, 4, 5]

– arr - other_array → an_array

Array Difference—Returns a new array that is a copy of the original array, removing
any items that also appear in other_array. If you need setlike behavior, see the library
class Set on page 710.

[1, 1, 2, 2, 3, 3, 4, 5] - [1, 2, 4] → [3, 3, 5]

<< arr << obj → arr

Append—Pushes the given object on to the end of this array. This expression returns
the array itself, so several appends may be chained together. See also Array#push.

[1, 2] << "c" << "d" << [3, 4] → [1, 2, "c", "d", [3, 4]]

Prepared exclusively for Margus Pau

ARRAY 408

A
rr

ay<=> arr <=> other_array → −1, 0, +1

Comparison—Returns an integer −1, 0, or +1 if this array is less than, equal to, or
greater than other_array. Each object in each array is compared (using <=>). If any
value isn’t equal, then that inequality is the return value. If all the values found are
equal, then the return is based on a comparison of the array lengths. Thus, two arrays
are “equal” according to Array#<=> if and only if they have the same length and the
value of each element is equal to the value of the corresponding element in the other
array.

["a", "a", "c"] <=> ["a", "b", "c"] → -1
[1, 2, 3, 4, 5, 6] <=> [1, 2] → 1

== arr == obj → true or false

Equality—Two arrays are equal if they contain the same number of elements and if each
element is equal to (according to Object#==) the corresponding element in the other
array. If obj is not an array, attempt to convert it using to_ary and return obj==arr.

["a", "c"] == ["a", "c", 7] → false
["a", "c", 7] == ["a", "c", 7] → true
["a", "c", 7] == ["a", "d", "f"] → false

[] arr[int] → obj or nil
arr[start, length] → an_array or nil

arr[range] → an_array or nil

Element Reference—Returns the element at index int, returns a subarray starting at
index start and continuing for length elements, or returns a subarray specified by range.
Negative indices count backward from the end of the array (−1 is the last element).
Returns nil if the index of the first element selected1.8 is greater than the array size. If
the start index equals the array size and a length or range parameter is given, an empty
array is returned. Equivalent to Array#slice.

a = ["a", "b", "c", "d", "e"]
a[2] + a[0] + a[1] → "cab"
a[6] → nil
a[1, 2] → ["b", "c"]
a[1..3] → ["b", "c", "d"]
a[4..7] → ["e"]
a[6..10] → nil
a[-3, 3] → ["c", "d", "e"]

special cases
a[5] → nil
a[5, 1] → []
a[5..10] → []

Prepared exclusively for Margus Pau

ARRAY 409

A
rr

ay[]= arr[int] = obj → obj
arr[start, length] = obj → obj

arr[range] = obj → obj

Element Assignment—Sets the element at index int, replaces a subarray starting at
index start and continuing for length elements, or replaces a subarray specified by
range. If int is greater than the current capacity of the array, the array grows automati-
cally. A negative int will count backward from the end of the array. Inserts elements if
length is zero. If obj is nil, deletes elements from arr. If obj is an array, the form with
the single index will insert that array into arr, and the forms with a length or with a
range will replace the given elements in arr with the array contents. An IndexError is
raised if a negative index points past the beginning of the array. See also Array#push
and Array#unshift.

a = Array.new → []
a[4] = "4"; a → [nil, nil, nil, nil, "4"]
a[0] = [1, 2, 3]; a → [[1, 2, 3], nil, nil, nil, "4"]
a[0, 3] = ['a', 'b', 'c']; a → ["a", "b", "c", nil, "4"]
a[1..2] = [1, 2]; a → ["a", 1, 2, nil, "4"]
a[0, 2] = "?"; a → ["?", 2, nil, "4"]
a[0..2] = "A"; a → ["A", "4"]
a[-1] = "Z"; a → ["A", "Z"]
a[1..-1] = nil; a → ["A"]

| arr | other_array → an_array

Set Union—Returns a new array by joining this array with other_array, removing
duplicates. The rules for comparing elements are the same as for hash keys. If you
need setlike behavior, see the library class Set on page 710.

["a", "b", "c"] | ["c", "d", "a"] → ["a", "b", "c", "d"]

assoc arr.assoc(obj) → an_array or nil

Searches through an array whose elements are also arrays comparing obj with the
first element of each contained array using obj.== . Returns the first contained array
that matches (that is, the first associated array) or nil if no match is found. See also
Array#rassoc.

s1 = ["colors", "red", "blue", "green"]
s2 = ["letters", "a", "b", "c"]
s3 = "foo"
a = [s1, s2, s3]
a.assoc("letters") → ["letters", "a", "b", "c"]
a.assoc("foo") → nil

at arr.at(int) → obj or nil

Returns the element at index int. A negative index counts from the end of arr. Returns

Prepared exclusively for Margus Pau

ARRAY 410

A
rr

aynil if the index is out of range. See also Array#[]. (Array#at is slightly faster than
Array#[], as it does not accept ranges, and so on.)

a = ["a", "b", "c", "d", "e"]
a.at(0) → "a"
a.at(-1) → "e"

clear arr.clear → arr

Removes all elements from arr.

a = ["a", "b", "c", "d", "e"]
a.clear → []

collect! arr.collect! {| obj | block } → arr

Invokes block once for each element of arr, replacing the element with the value
returned by block. See also Enumerable#collect.

a = ["a", "b", "c", "d"]
a.collect! {|x| x + "!" } → ["a!", "b!", "c!", "d!"]
a → ["a!", "b!", "c!", "d!"]

compact arr.compact → an_array

Returns a copy of arr with all nil elements removed.

["a", nil, "b", nil, "c", nil].compact → ["a", "b", "c"]

compact! arr.compact! → arr or nil

Removes nil elements from arr. Returns nil if no changes were made.

["a", nil, "b", nil, "c"].compact! → ["a", "b", "c"]
["a", "b", "c"].compact! → nil

concat arr.concat(other_array) → arr

Appends the elements in other_array to arr.

["a", "b"].concat(["c", "d"]) → ["a", "b", "c", "d"]

delete arr.delete(obj) → obj or nil
arr.delete(obj) { block } → obj or nil

Deletes items from arr that are equal to obj. If the item is not found, returns nil. If the
optional code block is given, returns the result of block if the item is not found.

a = ["a", "b", "b", "b", "c"]
a.delete("b") → "b"
a → ["a", "c"]
a.delete("z") → nil
a.delete("z") { "not found" } → "not found"

Prepared exclusively for Margus Pau

ARRAY 411

A
rr

aydelete_at arr.delete_at(index) → obj or nil

Deletes the element at the specified index, returning that element, or nil if the index is
out of range. See also Array#slice!.

a = %w(ant bat cat dog)
a.delete_at(2) → "cat"
a → ["ant", "bat", "dog"]
a.delete_at(99) → nil

delete_if arr.delete_if {| item | block } → arr

Deletes every element of arr for which block evaluates to true.

a = ["a", "b", "c"]
a.delete_if {|x| x >= "b" } → ["a"]

each arr.each {| item | block } → arr

Calls block once for each element in arr, passing that element as a parameter.

a = ["a", "b", "c"]
a.each {|x| print x, " -- " }

produces:

a -- b -- c --

each_index arr.each_index {| index | block } → arr

Same as Array#each but passes the index of the element instead of the element itself.

a = ["a", "b", "c"]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

empty? arr.empty? → true or false

Returns true if arr array contains no elements.

[].empty? → true
[1, 2, 3].empty? → false

eql? arr.eql?(other) → true or false

Returns true if arr and other are the same object or if other is an object of class Array
with the same length and content as arr. Elements in the arrays are compared using
Object#eql?. See also Array#<=>.

["a", "b", "c"].eql?(["a", "b", "c"]) → true
["a", "b", "c"].eql?(["a", "b"]) → false
["a", "b", "c"].eql?(["b", "c", "d"]) → false

Prepared exclusively for Margus Pau

ARRAY 412

A
rr

ayfetch arr.fetch(index) → obj
arr.fetch(index, default) → obj

arr.fetch(index) {| i | block } → obj

1.8 Tries to return the element at position index. If the index lies outside the array, the first
form throws an IndexError exception, the second form returns default, and the third
form returns the value of invoking the block, passing in the index. Negative values of
index count from the end of the array.

a = [11, 22, 33, 44]
a.fetch(1) → 22
a.fetch(-1) → 44
a.fetch(-1, 'cat') → 44
a.fetch(4, 'cat') → "cat"
a.fetch(4) {|i| i*i } → 16

fill arr.fill(obj) → arr
arr.fill(obj, start 〈 , length 〉) → arr

arr.fill(obj, range) → arr
arr.fill {| i | block } → arr

arr.fill(start 〈 , length 〉) {| i | block } → arr
arr.fill(range) {| i | block } → arr

The first three forms set the selected elements of arr (which may be the entire array) to
obj. A start of nil is equivalent to zero. A length of nil is equivalent to arr.length.
The last three forms1.8 fill the array with the value of the block. The block is passed the
absolute index of each element to be filled.

a = ["a", "b", "c", "d"]
a.fill("x") → ["x", "x", "x", "x"]
a.fill("z", 2, 2) → ["x", "x", "z", "z"]
a.fill("y", 0..1) → ["y", "y", "z", "z"]
a.fill {|i| i*i} → [0, 1, 4, 9]
a.fill(-3) {|i| i+100} → [0, 101, 102, 103]

first arr.first → obj or nil
arr.first(count) → an_array

1.8 Returns the first element, or the first count elements, of arr. If the array is empty, the
first form returns nil, and the second returns an empty array.

a = ["q", "r", "s", "t"]
a.first → "q"
a.first(1) → ["q"]
a.first(3) → ["q", "r", "s"]

flatten arr.flatten → an_array

Returns a new array that is a one-dimensional flattening of this array (recursively). That
is, for every element that is an array, extract its elements into the new array.

Prepared exclusively for Margus Pau

ARRAY 413

A
rr

ays = [1, 2, 3] → [1, 2, 3]
t = [4, 5, 6, [7, 8]] → [4, 5, 6, [7, 8]]
a = [s, t, 9, 10] → [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

flatten! arr.flatten! → arr or nil

Same as Array#flatten but modifies the receiver in place. Returns nil if no modifi-
cations were made (i.e., arr contains no subarrays).

a = [1, 2, [3, [4, 5]]]
a.flatten! → [1, 2, 3, 4, 5]
a.flatten! → nil
a → [1, 2, 3, 4, 5]

include? arr.include?(obj) → true or false

Returns true if the given object is present in arr (that is, if any object == obj), false
otherwise.

a = ["a", "b", "c"]
a.include?("b") → true
a.include?("z") → false

index arr.index(obj) → int or nil

Returns the index of the first object in arr that is == to obj. Returns nil if no match is
found.

a = ["a", "b", "c"]
a.index("b") → 1
a.index("z") → nil

indexes arr.indexes(i1, i2, ... iN) → an_array

Deprecated; use Array#values_at.1.8

indices arr.indices(i1, i2, ... iN) → an_array

Deprecated; use Array#values_at.1.8

insert arr.insert(index, 〈 obj 〉+) → arr

1.8 If index is not negative, inserts the given values before the element with the given index.
If index is −1, appends the values to arr. Otherwise inserts the values after the element
with the given index.

a = %w{ a b c d }
a.insert(2, 99) → ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3) → ["a", "b", 99, "c", 1, 2, 3, "d"]
a.insert(-1, "e") → ["a", "b", 99, "c", 1, 2, 3, "d", "e"]

Prepared exclusively for Margus Pau

ARRAY 414

A
rr

ay

Table 27.1. Template characters for Array#pack

Directive Meaning

@ Moves to absolute position
A ASCII string (space padded, count is width)
a ASCII string (null padded, count is width)
B Bit string (descending bit order)
b Bit string (ascending bit order)
C Unsigned char
c Char

D, d Double-precision float, native format
E Double-precision float, little-endian byte order
e Single-precision float, little-endian byte order

F, f Single-precision float, native format
G Double-precision float, network (big-endian) byte order
g Single-precision float, network (big-endian) byte order
H Hex string (high nibble first)
h Hex string (low nibble first)
I Unsigned integer
i Integer
L Unsigned long
l Long
M Quoted printable, MIME encoding (see RFC2045)
m Base64 encoded string
N Long, network (big-endian) byte order
n Short, network (big-endian) byte order
P Pointer to a structure (fixed-length string)
p Pointer to a null-terminated string

Q, q 64-bit number1.8
S Unsigned short
s Short
U UTF-8
u UU-encoded string
V Long, little-endian byte order
v Short, little-endian byte order
w BER-compressed integer1.8 1

X Back up a byte
x Null byte
Z Same as A

1 The octets of a BER-compressed integer represent an unsigned integer in base 128, most significant digit
first, with as few digits as possible. Bit eight (the high bit) is set on each byte except the last (Self-Describing
Binary Data Representation, MacLeod)

Prepared exclusively for Margus Pau

ARRAY 415

A
rr

ayjoin arr.join(separator=$,) → str

Returns a string created by concatenating each element of the array to a string, separat-
ing each by separator.

["a", "b", "c"].join → "abc"
["a", "b", "c"].join("-") → "a-b-c"

last arr.last → obj or nil
arr.last(count) → an_array

1.8 Returns the last element, or last count elements, of arr. If the array is empty, the first
form returns nil, the second an empty array.

["w", "x", "y", "z"].last → "z"
["w", "x", "y", "z"].last(1) → ["z"]
["w", "x", "y", "z"].last(3) → ["x", "y", "z"]

length arr.length → int

Returns the number of elements in arr. See also Array#nitems.

[1, nil, 3, nil, 5].length → 5

map! arr.map! {| obj | block } → arr

Synonym for Array#collect!.

nitems arr.nitems → int

Returns the number of non-nil elements in arr. See also Array#length.

[1, nil, 3, nil, 5].nitems → 3

pack arr.pack (template) → binary_string

1.8 Packs the contents of arr into a binary sequence according to the directives in template
(see Table 27.1 on the page before). Directives A, a, and Z may be followed by a count,
which gives the width of the resulting field. The remaining directives also may take a
count, indicating the number of array elements to convert. If the count is an asterisk
(*), all remaining array elements will be converted. Any of the directives “sSiIlL”
may be followed by an underscore (_) to use the underlying platform’s native size for
the specified type; otherwise, they use a platform-independent size. Spaces are ignored
in the template string. Comments1.8 starting with # to the next newline or end of string
are also ignored. See also String#unpack on page 602.

a = ["a", "b", "c"]
n = [65, 66, 67]
a.pack("A3A3A3") → "a b c "
a.pack("a3a3a3") → "a\000\000b\000\000c\000\000"
n.pack("ccc") → "ABC"

Prepared exclusively for Margus Pau

ARRAY 416

A
rr

aypop arr.pop → obj or nil

Removes the last element from arr and returns it or returns nil if the array is empty.

a = ["a", "m", "z"]
a.pop → "z"
a → ["a", "m"]

push arr.push(〈 obj 〉∗) → arr

Appends the given argument(s) to arr.

a = ["a", "b", "c"]
a.push("d", "e", "f") → ["a", "b", "c", "d", "e", "f"]

rassoc arr.rassoc(key) → an_array or nil

Searches through the array whose elements are also arrays. Compares key with the
second element of each contained array using ==. Returns the first contained array that
matches. See also Array#assoc.

a = [[1, "one"], [2, "two"], [3, "three"], ["ii", "two"]]
a.rassoc("two") → [2, "two"]
a.rassoc("four") → nil

reject! arr.reject! { block } item → arr or nil

Equivalent to Array#delete_if, but returns nil if no changes were made. Also see
Enumerable#reject.

replace arr.replace(other_array) → arr

Replaces the contents of arr with the contents of other_array, truncating or expanding
if necessary.

a = ["a", "b", "c", "d", "e"]
a.replace(["x", "y", "z"]) → ["x", "y", "z"]
a → ["x", "y", "z"]

reverse arr.reverse → an_array

Returns a new array using arr’s elements in reverse order.

["a", "b", "c"].reverse → ["c", "b", "a"]
[1].reverse → [1]

reverse! arr.reverse! → arr
1.8 Reverses arr in place.

a = ["a", "b", "c"]
a.reverse! → ["c", "b", "a"]
a → ["c", "b", "a"]
[1].reverse! → [1]

Prepared exclusively for Margus Pau

ARRAY 417

A
rr

ayreverse_each arr.reverse_each {| item | block } → arr

Same as Array#each, but traverses arr in reverse order.

a = ["a", "b", "c"]
a.reverse_each {|x| print x, " " }

produces:

c b a

rindex arr.rindex(obj) → int or nil

Returns the index of the last object in arr such that the object == obj. Returns nil if no
match is found.

a = ["a", "b", "b", "b", "c"]
a.rindex("b") → 3
a.rindex("z") → nil

shift arr.shift → obj or nil

Returns the first element of arr and removes it (shifting all other elements down by
one). Returns nil if the array is empty.

args = ["-m", "-q", "filename"]
args.shift → "-m"
args → ["-q", "filename"]

size arr.size → int

Synonym for Array#length.

slice arr.slice(int) → obj
arr.slice(start, length) → an_array

arr.slice(range) → an_array

Synonym for Array#[].

a = ["a", "b", "c", "d", "e"]
a.slice(2) + a.slice(0) + a.slice(1) → "cab"
a.slice(6) → nil
a.slice(1, 2) → ["b", "c"]
a.slice(1..3) → ["b", "c", "d"]
a.slice(4..7) → ["e"]
a.slice(6..10) → nil
a.slice(-3, 3) → ["c", "d", "e"]
special cases
a.slice(5) → nil
a.slice(5, 1) → []
a.slice(5..10) → []

Prepared exclusively for Margus Pau

ARRAY 418

A
rr

ayslice! arr.slice!(int) → obj or nil
arr.slice!(start, length) → an_array or nil

arr.slice!(range) → an_array or nil

Deletes the element(s) given by an index (optionally with a length) or by a range.
Returns the deleted object, subarray, or nil if the index is out of range. Equivalent to

def slice!(*args)
result = self[*args]
self[*args] = nil
result

end

a = ["a", "b", "c"]
a.slice!(1) → "b"
a → ["a", "c"]
a.slice!(-1) → "c"
a → ["a"]
a.slice!(100) → nil
a → ["a"]

sort arr.sort → an_array
arr.sort {| a,b | block } → an_array

Returns a new array created by sorting arr. Comparisons for the sort will be done using
the <=> operator or using an optional code block. The block implements a comparison
between a and b, returning −1, 0, or +1. See also Enumerable#sort_by.

a = ["d", "a", "e", "c", "b"]
a.sort → ["a", "b", "c", "d", "e"]
a.sort {|x,y| y <=> x } → ["e", "d", "c", "b", "a"]

sort! arr.sort! → arr
arr.sort! {| a,b | block } → arr

Sorts arr in place (see Array#sort). arr is effectively frozen while a sort is in progress.

a = ["d", "a", "e", "c", "b"]
a.sort! → ["a", "b", "c", "d", "e"]
a → ["a", "b", "c", "d", "e"]

to_a arr.to_a → arr
array_subclass.to_a → array

If arr is an array, returns arr. If arr is a subclass of Array, invokes to_ary, and uses
the result to create a new array object.

to_ary arr.to_ary → arr

Returns arr.

Prepared exclusively for Margus Pau

ARRAY 419

A
rr

ayto_s arr.to_s → str

Returns arr.join.

["a", "e", "i", "o"].to_s → "aeio"

transpose arr.transpose → an_array

1.8 Assumes that arr is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose → [[1, 3, 5], [2, 4, 6]]

uniq arr.uniq → an_array

Returns a new array by removing duplicate values in arr, where duplicates are detected
by comparing using eql?.

a = ["a", "a", "b", "b", "c"]
a.uniq → ["a", "b", "c"]

uniq! arr.uniq! → arr or nil

Same as Array#uniq, but modifies the receiver in place. Returns nil if no changes are
made (that is, no duplicates are found).

a = ["a", "a", "b", "b", "c"]
a.uniq! → ["a", "b", "c"]
b = ["a", "b", "c"]
b.uniq! → nil

unshift arr.unshift(〈 obj 〉+) → arr

Prepends object(s) to arr.

a = ["b", "c", "d"]
a.unshift("a") → ["a", "b", "c", "d"]
a.unshift(1, 2) → [1, 2, "a", "b", "c", "d"]

values_at arr.values_at(〈 selector 〉∗) → an_array

1.8 Returns an array containing the elements in arr corresponding to the given selector(s).
The selectors may be either integer indices or ranges.

a = %w{ a b c d e f }
a.values_at(1, 3, 5) → ["b", "d", "f"]
a.values_at(1, 3, 5, 7) → ["b", "d", "f", nil]
a.values_at(-1, -3, -5, -7) → ["f", "d", "b", nil]
a.values_at(1..3, 2...5) → ["b", "c", "d", "c", "d", "e"]

Prepared exclusively for Margus Pau

BIGNUM 420

B
ig

nu
m

Class Bignum < Integer

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created
automatically when integer calculations would otherwise overflow a Fixnum. When a
calculation involving Bignum objects returns a result that will fit in a Fixnum, the result
is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an
infinite-length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and param-
eter passing work with references to objects, not the objects themselves.

Instance methods
Arithmetic operations

Performs various arithmetic operations on big.

big + number Addition
big – number Subtraction
big * number Multiplication
big / number Division
big % number Modulo
big ** number Exponentiation
big -@ Unary minus

Bit operations

Performs various operations on the binary representations of the Bignum.

~ big Invert bits
big | number Bitwise OR

big & number Bitwise AND

big ^ number Bitwise EXCLUSIVE OR

big << number Left-shift number bits
big >> number Right-shift number bits (with sign extension)

<=> big <=> number → −1, 0, +1

Comparison—Returns−1, 0, or +1 depending on whether big is less than, equal to, or
greater than number. This is the basis for the tests in Comparable.

== big == obj → true or false

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?,
which requires obj to be a Bignum.

68719476736 == 68719476736.0 → true

Prepared exclusively for Margus Pau

BIGNUM 421

B
ig

nu
m[] big[n] → 0, 1

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where
big[0] is the least significant bit.

a = 9**15

50.downto(0) do |n|
print a[n]

end

produces:

000101110110100000111000011110010100111100010111001

abs big.abs → bignum

Returns the absolute value of big.

1234567890987654321.abs → 1234567890987654321
-1234567890987654321.abs → 1234567890987654321

div big.div(number) → other_number

1.8 Synonym for Bignum#/.

-1234567890987654321.div(13731) → -89910996357706
-1234567890987654321.div(13731.0) → -89910996357705.5
-1234567890987654321.div(-987654321) → 1249999989

divmod big.divmod(number) → array

See Numeric#divmod on page 544.

eql? big.eql?(obj) → true or false

Returns true only if obj is a Bignum with the same value as big. Contrast this with
Bignum#==, which performs type conversions.

68719476736.eql? 68719476736 → true
68719476736 == 68719476736 → true
68719476736.eql? 68719476736.0 → false
68719476736 == 68719476736.0 → true

modulo big.modulo(number) → number

1.8 Synonym for Bignum#%.

quo big.quo(number) → float

1.8 Returns the floating-point result of dividing big by number.

-1234567890987654321.quo(13731) → -89910996357705.5
-1234567890987654321.quo(13731.0) → -89910996357705.5
-1234567890987654321.div(-987654321) → 1249999989

Prepared exclusively for Margus Pau

BIGNUM 422

B
ig

nu
mremainder big.remainder(number) → other_number

1.8 Returns the remainder after dividing big by number.

-1234567890987654321.remainder(13731) → -6966
-1234567890987654321.remainder(13731.24) → -9906.22531493148

size big.size → integer

Returns the number of bytes in the machine representation of big.

(256**10 - 1).size → 12
(256**20 - 1).size → 20
(256**40 - 1).size → 40

to_f big.to_f → float

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

to_s big.to_s(base=10) → str

1.8 Returns a string containing the representation of big radix base (2 to 36).

12345654321.to_s → "12345654321"
12345654321.to_s(2) → "1011011111110110111011110000110001"
12345654321.to_s(8) → "133766736061"
12345654321.to_s(16) → "2dfdbbc31"
12345654321.to_s(26) → "1dp1pc6d"
78546939656932.to_s(36) → "rubyrules"

Prepared exclusively for Margus Pau

BINDING 423

B
in

di
ng

Class Binding < Object

Objects of class Binding encapsulate the execution context at some particular place in
the code and retain this context for future use. The variables, methods, value of self,
and possibly an iterator block that can be accessed in this context are all retained.
Binding objects can be created using Kernel#binding and are made available to the
callback of Kernel#set_trace_func.

These binding objects can be passed as the second argument of the Kernel#eval
method, establishing an environment for the evaluation.

class Demo
def initialize(n)
@secret = n

end
def get_binding
return binding()

end
end

k1 = Demo.new(99)
b1 = k1.get_binding
k2 = Demo.new(-3)
b2 = k2.get_binding

eval("@secret", b1) → 99
eval("@secret", b2) → -3
eval("@secret") → nil

Binding objects have no class-specific methods.

Prepared exclusively for Margus Pau

CLASS 424

C
la

ss

Class Class < Module

Classes in Ruby are first-class objects—each is an instance of class Class.

When a new class is defined (typically using class Name ... end), an object of type
Class is created and assigned to a constant (Name, in this case). When Name.new is
called to create a new object, the new instance method in Class is run by default, which
in turn invokes allocate1.8 to allocate memory for the object, before finally calling the
new object’s initialize method.

Class methods
inherited cls.inherited(sub_class)

Invoked by Ruby when a subclass of cls is created. The new subclass is passed as a
parameter.

class Top
def Top.inherited(sub)
puts "New subclass: #{sub}"

end
end

class Middle < Top
end

class Bottom < Middle
end

produces:

New subclass: Middle
New subclass: Bottom

new Class.new(super_class=Object) 〈 { block } 〉 → cls

1.8 Creates a new anonymous (unnamed) class with the given superclass (or Object if no
parameter is given). If passed a block, that block is used as the body of the class.

p = lambda do
def hello
"Hello, Dave"

end
end

FriendlyClass = Class.new(&p)
f = FriendlyClass.new
f.hello → "Hello, Dave"

Prepared exclusively for Margus Pau

CLASS 425

C
la

ss

Instance methods
allocate cls.allocate → obj

1.8 Allocates space for a new object of cls’s class. The returned object must be an instance
of cls. Calling new is basically the same as calling the class method allocate to create
an object, followed by calling initialize on that new object. You cannot override
allocate in normal programs; Ruby invokes it without going through conventional
method dispatch.

class MyClass
def MyClass.another_new(*args)
o = allocate
o.send(:initialize, *args)
o

end
def initialize(a, b, c)
@a, @b, @c = a, b, c

end
end

mc = MyClass.another_new(4, 5, 6)
mc.inspect → "#<MyClass:0x1c9378 @c=6, @b=5, @a=4>"

new cls.new(〈 args 〉∗) → obj

Calls allocate to create a new object of cls’s class and then invokes the newly created
object’s initialize method, passing it args.

superclass cls.superclass → super_class or nil

Returns the superclass of cls or returns nil.

Class.superclass → Module
Object.superclass → nil

Prepared exclusively for Margus Pau

COMPARABLE 426

C
om

pa
ra

bl
eModule Comparable

Relies on: <=>

The Comparable mixin is used by classes whose objects may be ordered. The class
must define the <=> operator, which compares the receiver against another object,
returning −1, 0, or +1 depending on whether the receiver is less than, equal to, or
greater than the other object. Comparable uses <=> to implement the conventional
comparison operators (<, <=, ==, >=, and >) and the method between?.

class CompareOnSize
include Comparable
attr :str
def <=>(other)
str.length <=> other.str.length

end
def initialize(str)
@str = str

end
end

s1 = CompareOnSize.new("Z")
s2 = CompareOnSize.new([1,2])
s3 = CompareOnSize.new("XXX")

s1 < s2 → true
s2.between?(s1, s3) → true
s3.between?(s1, s2) → false
[s3, s2, s1].sort → ["Z", [1, 2], "XXX"]

Instance methods
Comparisons obj < other_object → true or false

obj <= other_object → true or false
obj == other_object → true or false
obj >= other_object → true or false
obj > other_object → true or false

Compares two objects based on the receiver’s <=> method.

between? obj.between?(min, max) → true or false

Returns false if obj <=> min is less than zero or if obj <=> max is greater than zero,
true otherwise.

3.between?(1, 5) → true
6.between?(1, 5) → false
'cat'.between?('ant', 'dog') → true
'gnu'.between?('ant', 'dog') → false

Prepared exclusively for Margus Pau

CONTINUATION 427

C
on

tin
ua

tio
nClass Continuation < Object

Continuation objects are generated by Kernel#callcc. They hold a return address
and execution context, allowing a nonlocal return to the end of the callcc block from
anywhere within a program. Continuations are somewhat analogous to a structured ver-
sion of C’s setjmp/longjmp (although they contain more state, so you may consider
them closer to threads).

This (somewhat contrived) example allows the inner loop to abandon processing early.

callcc do |cont|
for i in 0..4
print "\n#{i}: "
for j in i*5...(i+1)*5

cont.call() if j == 7
printf "%3d", j

end
end

end
print "\n"

produces:

0: 0 1 2 3 4
1: 5 6

This example shows that the call stack for methods is preserved in continuations.

def strange
callcc {|continuation| return continuation}
print "Back in method, "

end
print "Before method. "
continuation = strange()
print "After method. "
continuation.call if continuation

produces:

Before method. After method. Back in method, After method.

Instance methods
call cont.call(〈 args 〉∗)

Invokes the continuation. The program continues from the end of the callcc block.
If no arguments are given, the original callcc returns nil. If one argument is given,
callcc returns it. Otherwise, an array containing args is returned.

callcc {|cont| cont.call } → nil
callcc {|cont| cont.call 1 } → 1
callcc {|cont| cont.call 1, 2, 3 } → [1, 2, 3]

Prepared exclusively for Margus Pau

DIR 428

D
ir

Class Dir < Object

Objects of class Dir are directory streams representing directories in the underlying
filesystem. They provide a variety of ways to list directories and their contents. See
also File, page 444.

The directory used in these examples contains the two regular files (config.h and
main.rb), the parent directory (..), and the directory itself (.).

Mixes in

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods
[] Dir[glob_pattern] → array

1.8 Equivalent to calling Dir.glob(glob_pattern, 0).

chdir Dir.chdir(〈 dir 〉) → 0
Dir.chdir(〈 dir 〉) {| path | block } → obj

Changes the current working directory of the process to the given string. When called
without an argument, changes the directory to the value of the environment variable
HOME or LOGDIR. Raises a SystemCallError (probably Errno::ENOENT) if the target
directory does not exist.

If a block is given, it is passed the1.8 name of the new current directory, and the block is
executed with that as the current directory. The original working directory is restored
when the block exits. The return value of chdir is the value of the block. chdir blocks
can be nested, but in a multithreaded program an error will be raised if a thread attempts
to open a chdir block while another thread has one open. This is because the underly-
ing operating system only understands the concept of a single current working directory
at any one time.

Dir.chdir("/var/log")
puts Dir.pwd

Dir.chdir("/tmp") do
puts Dir.pwd

Dir.chdir("/usr") do
puts Dir.pwd

end

puts Dir.pwd
end

puts Dir.pwd

Prepared exclusively for Margus Pau

DIR 429

D
ir

produces:

/var/log
/tmp
/usr
/tmp
/var/log

chroot Dir.chroot(dirname) → 0

Changes this process’s idea of the file system root. Only a privileged process may make
this call. Not available on all platforms. On Unix systems, see chroot(2) for more
information.

Dir.chdir("/production/secure/root")

Dir.chroot("/production/secure/root") → 0

Dir.pwd → "/"

delete Dir.delete(dirname) → 0

Deletes the named directory. Raises a subclass of SystemCallError if the directory
isn’t empty.

entries Dir.entries(dirname) → array

Returns an array containing all of the filenames in the given directory. Will raise a
SystemCallError if the named directory doesn’t exist.

Dir.entries("testdir") → [".", "..", "config.h", "main.rb"]

foreach Dir.foreach(dirname) {| filename | block } → nil

Calls the block once for each entry in the named directory, passing the filename of each
entry as a parameter to the block.

Dir.foreach("testdir") {|x| puts "Got #{x}" }

produces:

Got .
Got ..
Got config.h
Got main.rb

getwd Dir.getwd → dirname

Returns a string containing the canonical path to the current working directory of this
process. Note that on some operating systems this name may not be the name you gave
to Dir.chdir. On OS X, for example, /tmp is a symlink.

Dir.chdir("/tmp") → 0
Dir.getwd → "/private/tmp"

Prepared exclusively for Margus Pau

DIR 430

D
ir

glob Dir.glob(glob_pattern, 〈 flags 〉) → array
Dir.glob(glob_pattern, 〈 flags 〉) {| filename | block } → false

1.8 Returns the filenames found by expanding the pattern given in glob_pattern, either as
elements in array or as parameters to the block. Note that this pattern is not a regexp
(it’s closer to a shell glob). See File.fnmatch on page 447 for the meaning of the
flags parameter. Case sensitivity depends on your system (so File::FNM_CASEFOLD is
ignored). Metacharacters in the pattern are

* Any sequence of characters in a filename: “*” will match all files, “c*”
will match all files beginning with “c”, “*c” will match all files ending
with “c”, and “*c*” will match all files that have “c” in their name.

** Matches zero of more directories (so “**/fred”) matches a file named
“fred” in or below the current directory).

? Matches any one character in a filename.
[chars] Matches any one of chars. If the first character in chars is ^, matches

any character not in the remaining set.
{patt,...} Matches one of the patterns specified between braces. These patterns

may contain other metacharacters.
\ Removes any special significance in the next character.

Dir.chdir("testdir") → 0
Dir["config.?"] → ["config.h"]
Dir.glob("config.?") → ["config.h"]
Dir.glob("*.[a-z][a-z]") → ["main.rb"]
Dir.glob("*.[^r]*") → ["config.h"]
Dir.glob("*.{rb,h}") → ["main.rb", "config.h"]
Dir.glob("*") → ["config.h", "main.rb"]
Dir.glob("*", File::FNM_DOTMATCH) → [".", "..", "config.h",

"main.rb"]

Dir.chdir("..") → 0
Dir.glob("code/**/fib*.rb") → ["code/fib_up_to.rb",

"code/rdoc/fib_example.rb"]
Dir.glob("**/rdoc/fib*.rb") → ["code/rdoc/fib_example.rb"]

mkdir Dir.mkdir(dirname 〈 , permissions 〉) → 0

Makes a new directory named dirname, with permissions specified by the optional
parameter permissions. The permissions may be modified by the value of File.umask
and are ignored on Windows. Raises a SystemCallError if the directory cannot be
created. See also the discussion of permissions on page 444.

new Dir.new(dirname) → dir

Returns a new directory object for the named directory.

Prepared exclusively for Margus Pau

DIR 431

D
ir

open Dir.open(dirname) → dir
Dir.open(dirname) {| dir | block } → obj

With no block, open is a synonym for Dir.new. If a block is present, it is passed dir as
a parameter. The directory is closed at the end of the block, and Dir.open returns the
value of the block.1.8

pwd Dir.pwd → dirname

Synonym for Dir.getwd.

rmdir Dir.rmdir(dirname) → 0

Synonym for Dir.delete.

unlink Dir.unlink(dirname) → 0

Synonym for Dir.delete.

Instance methods
close dir.close → nil

Closes the directory stream. Any further attempts to access dir will raise an IOError.

d = Dir.new("testdir")
d.close → nil

each dir.each {| filename | block } → dir

Calls the block once for each entry in this directory, passing the filename of each entry
as a parameter to the block.

d = Dir.new("testdir")
d.each {|name| puts "Got #{name}" }

produces:

Got .
Got ..
Got config.h
Got main.rb

path dir.path → dirname

1.8 Returns the path parameter passed to dir’s constructor.

d = Dir.new("..")
d.path → ".."

pos dir.pos → int

1.8 Synonym for Dir#tell.

Prepared exclusively for Margus Pau

DIR 432

D
ir

pos= dir.pos(int) → int

1.8 Synonym for Dir#seek, but returns the position parameter.

d = Dir.new("testdir") → #<Dir:0x1c9378>
d.read → "."
i = d.pos → 1
d.read → ".."
d.pos = i → 1
d.read → ".."

read dir.read → filename or nil

Reads the next entry from dir and returns it as a string. Returns nil at the end of the
stream.

d = Dir.new("testdir")
d.read → "."
d.read → ".."
d.read → "config.h"

rewind dir.rewind → dir

Repositions dir to the first entry.

d = Dir.new("testdir")
d.read → "."
d.rewind → #<Dir:0x1c96e8>
d.read → "."

seek dir.seek(int) → dir

Seeks to a particular location in dir. int must be a value returned by Dir#tell (it is not
necessarily a simple index into the entries).

d = Dir.new("testdir") → #<Dir:0x1c9378>
d.read → "."
i = d.tell → 1
d.read → ".."
d.seek(i) → #<Dir:0x1c9378>
d.read → ".."

tell dir.tell → int

Returns the current position in dir. See also Dir#seek.

d = Dir.new("testdir")
d.tell → 1
d.read → "."
d.tell → 2

Prepared exclusively for Margus Pau

ENUMERABLE 433

E
nu

m
er

ab
le

Module Enumerable
Relies on: each, <=>

The Enumerable mixin provides collection classes with several traversal and searching
methods and with the ability to sort. The class must provide a method each, which
yields successive members of the collection. If Enumerable#max, #min, #sort, or
#sort_by is used, the objects in the collection must also implement a meaningful <=>
operator, as these methods rely on an ordering between members of the collection.

Instance methods
all? enum.all? 〈 {| obj | block } 〉 → true or false

1.8 Passes each element of the collection to the given block. The method returns true if
the block never returns false or nil. If the block is not given, Ruby adds an implicit
block of {|obj| obj} (that is all? will return true only if none of the collection
members is false or nil.)

%w{ ant bear cat}.all? {|word| word.length >= 3} → true
%w{ ant bear cat}.all? {|word| word.length >= 4} → false
[nil, true, 99].all? → false

any? enum.any? 〈 {| obj | block } 〉 → true or false

1.8 Passes each element of the collection to the given block. The method returns true if
the block ever returns a value other than false or nil. If the block is not given, Ruby
adds an implicit block of {|obj| obj} (that is, any? will return true if at least one of
the collection members is not false or nil).

%w{ ant bear cat}.any? {|word| word.length >= 3} → true
%w{ ant bear cat}.any? {|word| word.length >= 4} → true
[nil, true, 99].any? → true

collect enum.collect {| obj | block } → array

Returns a new array containing the results of running block once for every element in
enum.

(1..4).collect {|i| i*i } → [1, 4, 9, 16]
(1..4).collect { "cat" } → ["cat", "cat", "cat", "cat"]

detect enum.detect(ifnone = nil) {| obj | block } → obj or nil

Passes each entry in enum to block. Returns the first for which block is not false. Returns
nil if no object matches unless the proc ifnone1.8 is given, in which case it is called and
its result returned.

Prepared exclusively for Margus Pau

ENUMERABLE 434

E
nu

m
er

ab
le

(1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } → nil
(1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } → 35
sorry = lambda { "not found" }
(1..10).detect(sorry) {|i| i > 50} → "not found"

each_with_index enum.each_with_index {| obj, i | block } → enum

Calls block with two arguments, the item and its index, for each item in enum.

hash = Hash.new
%w(cat dog wombat).each_with_index do |item, index|
hash[item] = index

end
hash → {"cat"=>0, "wombat"=>2, "dog"=>1}

entries enum.entries → array

Synonym for Enumerable#to_a.

find enum.find(ifnone = nil) {| obj | block } → obj or nil

Synonym for Enumerable#detect.

find_all enum.find_all {| obj | block } → array

Returns an array containing all elements of enum for which block is not false (see also
Enumerable#reject).

(1..10).find_all {|i| i % 3 == 0 } → [3, 6, 9]

grep enum.grep(pattern) → array
enum.grep(pattern) {| obj | block } → array

Returns an array of every element in enum for which pattern === element. If the
optional block is supplied, each matching element is passed to it, and the block’s result
is stored in the output array.

(1..100).grep 38..44 → [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/) → ["SEEK_CUR", "SEEK_SET", "SEEK_END"]
res = c.grep(/SEEK/) {|v| IO.const_get(v) }
res → [1, 0, 2]

include? enum.include?(obj) → true or false

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? "SEEK_SET" → true
IO.constants.include? "SEEK_NO_FURTHER" → false

Prepared exclusively for Margus Pau

ENUMERABLE 435

E
nu

m
er

ab
le

inject enum.inject(initial) {|memo, obj | block } → obj
enum.inject {|memo, obj | block } → obj

1.8 Combines the elements of enum by applying the block to an accumulator value (memo)
and each element in turn. At each step, memo is set to the value returned by the block.
The first form lets you supply an initial value for memo. The second form uses the first
element of the collection as the initial value (and skips that element while iterating).

Sum some numbers
(5..10).inject {|sum, n| sum + n } → 45
Multiply some numbers
(5..10).inject(1) {|product, n| product * n } → 151200

find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|

memo.length > word.length ? memo : word
end
longest → "sheep"

find the length of the longest word
longest = %w{ cat sheep bear }.inject(0) do |memo, word|

memo >= word.length ? memo : word.length
end
longest → 5

map enum.map {| obj | block } → array

Synonym for Enumerable#collect.

max enum.max → obj
enum.max {| a,b | block } → obj

Returns the object in enum with the maximum value. The first form assumes all objects
implement <=>; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.max → "horse"
a.max {|a,b| a.length <=> b.length } → "albatross"

member? enum.member?(obj) → true or false

Synonym for Enumerable#include?.

min enum.min → obj
enum.min {| a,b | block } → obj

Returns the object in enum with the minimum value. The first form assumes all objects
implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.min → "albatross"
a.min {|a,b| a.length <=> b.length } → "dog"

Prepared exclusively for Margus Pau

ENUMERABLE 436

E
nu

m
er

ab
le

partition enum.partition {| obj | block } → [true_array, false_array]

1.8 Returns two arrays, the first containing the elements of enum for which the block eval-
uates to true, the second containing the rest.

(1..6).partition {|i| (i&1).zero?} → [[2, 4, 6], [1, 3, 5]]

reject enum.reject {| obj | block } → array

Returns an array containing the elements of enum for which block is false (see also
Enumerable#find_all).

(1..10).reject {|i| i % 3 == 0 } → [1, 2, 4, 5, 7, 8, 10]

select enum.select {| obj | block } → array

Synonym for Enumerable#find_all.

sort enum.sort → array
enum.sort {| a, b | block } → array

Returns an array containing the items in enum sorted, either according to their own
<=> method or by using the results of the supplied block. The block should return −1,
0, or +1 depending on the comparison between a and b. As of Ruby 1.8, the method
Enumerable#sort_by implements a built-in Schwartzian Transform, useful when key
computation or comparison is expensive.

%w(rhea kea flea).sort → ["flea", "kea", "rhea"]

(1..10).sort {|a,b| b <=> a} → [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

sort_by enum.sort_by {| obj | block } → array

1.8 Sorts enum using keys generated by mapping the values in enum through the given
block, using the result of that block for element comparison.

sorted = %w{ apple pear fig }.sort_by {|word| word.length}

sorted → ["fig", "pear", "apple"]

Internally, sort_by generates an array of tuples containing the original collection ele-
ment and the mapped value. This makes sort_by fairly expensive when the keysets are
simple.

require 'benchmark'
include Benchmark

a = (1..100000).map {rand(100000)}

bm(10) do |b|
b.report("Sort") { a.sort }
b.report("Sort by") { a.sort_by {|a| a} }

end

Prepared exclusively for Margus Pau

ENUMERABLE 437

E
nu

m
er

ab
le

produces:

user system total real
Sort 0.070000 0.010000 0.080000 (0.085860)
Sort by 1.580000 0.010000 1.590000 (1.811626)

However, consider the case where comparing the keys is a nontrivial operation. The
following code sorts some files on modification time using the basic sort method.

files = Dir["*"]

sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime}

sorted → ["mon", "tues", "wed", "thurs"]

This sort is inefficient: it generates two new File objects during every comparison. A
slightly better technique is to use the Kernel#test method to generate the modification
times directly.

files = Dir["*"]

sorted = files.sort do |a,b|
test(?M, a) <=> test(?M, b)

end

sorted → ["mon", "tues", "wed", "thurs"]

This still generates many unnecessary Time objects. A more efficient technique is to
cache the sort keys (modification times in this case) before the sort. Perl users often call
this approach a Schwartzian Transform, named after Randal Schwartz. We construct a
temporary array, where each element is an array containing our sort key along with the
filename. We sort this array and then extract the filename from the result.

sorted = Dir["*"].collect {|f|
[test(?M, f), f]

}.sort.collect {|f| f[1] }

sorted → ["mon", "tues", "wed", "thurs"]

This is exactly what sort_by does internally.

sorted = Dir["*"].sort_by {|f| test(?M, f)}

sorted → ["mon", "tues", "wed", "thurs"]

sort_by can also be useful for multilevel sorts. One trick, which relies on the fact that
arrays are compared element by element, is to have the block return an array of each of
the comparison keys. For example, to sort a list of words first on their length and then
alphabetically, you could write.

words = %w{ puma cat bass ant aardvark gnu fish }
sorted = words.sort_by {|w| [w.length, w] }
sorted → ["ant", "cat", "gnu", "bass", "fish", "puma", "aardvark"]

Prepared exclusively for Margus Pau

ENUMERABLE 438

E
nu

m
er

ab
le

to_a enum.to_a → array

Returns an array containing the items in enum.

(1..7).to_a → [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a → [["a", 1], ["b", 2], ["c", 3]]

zip enum.zip(〈 arg 〉+) → array
enum.zip(〈 arg 〉+) {| arr | block } → nil

1.8 Converts any arguments to arrays and then merges elements of enum with correspond-
ing elements from each argument. The result is an array containing the same number
of elements as enum. Each element is a n-element array, where n is one more than the
count of arguments. If the size of any argument is less than the number of elements
in enum, nil values are supplied. If a block given, it is invoked for each output array,
otherwise an array of arrays is returned.

a = [4, 5, 6]
b = [7, 8, 9]

(1..3).zip(a, b) → [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
"cat\ndog".zip([1]) → [["cat\n", 1], ["dog", nil]]
(1..3).zip → [[1], [2], [3]]

Prepared exclusively for Margus Pau

ERRNO 439

E
rr

no

Module Errno
Ruby exception objects are subclasses of Exception. However, operating systems typ-
ically report errors using plain integers. Module Errno is created dynamically to map
these operating system errors to Ruby classes, with each error number generating its
own subclass of SystemCallError. As the subclass is created in module Errno, its
name will start Errno::.

Exception
StandardError

SystemCallError
Errno::xxx

The names of the Errno:: classes depend on the environment in which Ruby runs.
On a typical Unix or Windows platform, you’ll find Ruby has Errno classes such as
Errno::EACCES, Errno::EAGAIN, Errno::EINTR, and so on.

The integer operating system error number corresponding to a particular error is avail-
able as the class constant Errno::error::Errno.

Errno::EACCES::Errno → 13
Errno::EAGAIN::Errno → 35
Errno::EINTR::Errno → 4

The full list of operating system errors on your particular platform is available as the
constants of Errno. Any user-defined exceptions in this module (including subclasses
of existing exceptions) must also define an Errno constant.

Errno.constants → E2BIG, EACCES, EADDRINUSE, EADDRNOTAVAIL,
EAFNOSUPPORT, EAGAIN, EALREADY, ...

As of Ruby 1.81.8 , exceptions are matched in rescue clauses using Module#===. The
=== method is overridden for class SystemCallError to compare based on the Errno
value. Thus if two distinct Errno classes have the same underlying Errno value, they
will be treated as the same exception by a rescue clause.

Prepared exclusively for Margus Pau

EXCEPTION 440

E
xc

ep
tio

n

Class Exception < Object

Descendents of class Exception are used to communicate between raise methods and
rescue statements in begin/end blocks. Exception objects carry information about
the exception—its type (the exception’s class name), an optional descriptive string, and
optional traceback information.

The standard library defines the exceptions shown in Figure 27.1 on the following page.
See also the description of Errno on the page before.

Class methods
exception Exception.exception(〈 message 〉) → exc

Creates and returns a new exception object, optionally setting the message to message.

new Exception.new(〈 message 〉) → exc

Creates and returns a new exception object, optionally setting the message to message.

Instance methods
backtrace exc.backtrace → array

Returns any backtrace associated with the exception. The backtrace is an array of
strings, each containing either filename:line: in ‘method’ or filename:line.

def a
raise "boom"

end

def b
a()

end

begin
b()

rescue => detail
print detail.backtrace.join("\n")

end

produces:

prog.rb:2:in `a'
prog.rb:6:in `b'
prog.rb:10

exception exc.exception(〈 message 〉) → exc or exception

With no argument, returns the receiver. Otherwise, creates a new exception object of
the same class as the receiver but with a different message.

Prepared exclusively for Margus Pau

EXCEPTION 441

E
xc

ep
tio

n

Figure 27.1. Standard exception hierarchy

Exception
fatal (used internally by Ruby)
NoMemoryError
ScriptError

LoadError
NotImplementedError
SyntaxError

SignalException
Interrupt

StandardError
ArgumentError
IOError

EOFError
IndexError
LocalJumpError
NameError

NoMethodError
RangeError

FloatDomainError
RegexpError
RuntimeError
SecurityError
SystemCallError

system-dependent exceptions (Errno::xxx)
ThreadError
TypeError
ZeroDivisionError

SystemExit
SystemStackError

message exc.message → msg

Returns the message associated with this exception.

set_backtrace exc.set_backtrace(array) → array

Sets the backtrace information associated with exc. The argument must be an array of
String objects in the format described in Exception#backtrace.

status exc.status → status

(SystemExit only)1.8 Returns the exit status associated with this SystemExit exception.
Normally this status is set using the Kernel#exit.

Prepared exclusively for Margus Pau

EXCEPTION 442

E
xc

ep
tio

n

begin
exit(99)

rescue SystemExit => e
puts "Exit status is: #{e.status}"

end

produces:

Exit status is: 99

success? exc.success? → true or false

(SystemExit only)1.8 Returns true is the exit status if nil or zero.

begin
exit(99)

rescue SystemExit => e
print "This program "
if e.success?
print "did"

else
print "did not"

end
puts " succeed"

end

produces:

This program did not succeed

to_s exc.to_s → msg

Returns the message associated with this exception (or the name of the exception if no
message is set).

begin
raise "The message"

rescue Exception => e
puts e.to_s

end

produces:

The message

to_str exc.to_str → msg

Returns the message associated with this exception (or the name of the exception if no
message is set). Implementing to_str gives exceptions a stringlike behavior.

Prepared exclusively for Margus Pau

FALSECLASS 443

F
al

se
C

la
ss

Class FalseClass < Object

The global value false is the only instance of class FalseClass and represents a log-
ically false value in boolean expressions. The class provides operators allowing false
to participate correctly in logical expressions.

Instance methods
& false & obj → false

And—Returns false. obj is always evaluated as it is the argument to a method call—
no short-circuit evaluation is performed in this case. In other words, the following code,
which uses &&, will not invoke the lookup method.

def lookup(val)
puts "Looking up #{val}"
return true

end
false && lookup("cat")

However, this code, using &, will:

false & lookup("cat")

produces:

Looking up cat

^ false ^ obj → true or false

Exclusive Or—If obj is nil or false, returns false; otherwise, returns true.

| false | obj → true or false

Or—Returns false if obj is nil or false; true otherwise.

Prepared exclusively for Margus Pau

FILE 444

F
ile

Class File < IO

A File is an abstraction of any file object accessible by the program and is closely
associated with class IO, page 482. File includes the methods of module FileTest as
class methods, allowing you to write (for example) File.exist?("foo").

In this section, permission bits are a platform-specific set of bits that indicate permis-
sions of a file. On Unix-based systems, permissions are viewed as a set of three octets,
for the owner, the group, and the rest of the world. For each of these entities, permis-
sions may be set to read, write, or execute the file.

Owner Group Other
r w x r w x r w x
4 2 1 4 2 1 4 2 1

The permission bits 0644 (in octal) would thus be interpreted as read/write for owner
and read-only for group and other. Higher-order bits may also be used to indicate the
type of file (plain, directory, pipe, socket, and so on) and various other special features.
If the permissions are for a directory, the meaning of the execute bit changes; when set,
the directory can be searched.

Each file has three associated times. The atime is the time the file was last accessed.
The ctime is the time that the file status (not necessarily the file contents) were last
changed. Finally, the mtime is the time the file’s data was last modified. In Ruby, all
these times are returned as Time objects.

On non-POSIX operating systems, there may be only the ability to make a file read-
only or read/write. In this case, the remaining permission bits will be synthesized to
resemble typical values. For instance, on Windows the default permission bits are 0644,
which means read/write for owner, read-only for all others. The only change that can
be made is to make the file read-only, which is reported as 0444.

See also Pathname on page 693.

Class methods
atime File.atime(filename) → time

Returns a Time object containing the last access time for the named file, or returns
epoch if the file has not been accessed.

File.atime("testfile") → Thu Aug 26 22:36:07 CDT 2004

basename File.basename(filename 〈 , suffix 〉) → string

Returns the last component of the filename given in filename. If suffix is given and
present at the end of filename, it is removed. Any extension can be removed by giving
an extension of ".*".1.8

Prepared exclusively for Margus Pau

FILE 445

F
ile

File.basename("/home/gumby/work/ruby.rb") → "ruby.rb"
File.basename("/home/gumby/work/ruby.rb", ".rb") → "ruby"
File.basename("/home/gumby/work/ruby.rb", ".*") → "ruby"

blockdev? File.blockdev?(filename) → true or false

Returns true if the named file is a block device, and returns false if it isn’t or if the
operating system doesn’t support this feature.

File.blockdev?("testfile") → false

chardev? File.chardev?(filename) → true or false

Returns true if the named file is a character device, and returns false if it isn’t or if
the operating system doesn’t support this feature.

File.chardev?("/dev/tty") → true

chmod File.chmod(permission 〈 , filename 〉+) → int

Changes permission bits on the named file(s) to the bit pattern represented by permis-
sion. Actual effects are operating system dependent (see the beginning of this section).
On Unix systems, see chmod(2) for details. Returns the number of files processed.

File.chmod(0644, "testfile", "out") → 2

chown File.chown(owner, group 〈 , filename 〉+) → int

Changes the owner and/or group of the named file(s) to the given numeric owner and
group IDs. Only a process with superuser privileges may change the owner of a file.
The current owner of a file may change the file’s group to any group to which the
owner belongs. A nil or −1 owner or group ID is ignored. Returns the number of files
processed.

File.chown(nil, 100, "testfile")

ctime File.ctime(filename) → time

Returns a Time object containing the time that the file status associated with the named
file was changed.

File.ctime("testfile") → Thu Aug 26 22:37:31 CDT 2004

delete File.delete(〈 filename 〉+) → int

Deletes the named file(s). Returns the number of files processed. See also Dir.rmdir.

File.open("testrm", "w+") {}
File.delete("testrm") → 1

Prepared exclusively for Margus Pau

FILE 446

F
ile

directory? File.directory?(path) → true or false

Returns true if the named file is a directory, false otherwise.

File.directory?(".") → true

dirname File.dirname(filename) → filename

Returns all components of the filename given in filename except the last one.

File.dirname("/home/gumby/work/ruby.rb") → "/home/gumby/work"
File.dirname("ruby.rb") → "."

executable? File.executable?(filename) → true or false

Returns true if the named file is executable. The tests are made using the effective
owner of the process.

File.executable?("testfile") → false

executable_real? File.executable_real?(filename) → true or false

Same as File#executable?, but tests using the real owner of the process.

exist? File.exist?(filename) → true or false

Returns true if the named file or directory exists.

File.exist?("testfile") → true

exists? File.exists? (filename) → true or false

Synonym for File.exist?.

expand_path File.expand_path(filename 〈 , dirstring 〉) → filename

Converts a pathname to an absolute pathname. Relative paths are referenced from the
current working directory of the process unless dirstring is given, in which case it will
be used as the starting point. The given pathname may start with a ~, which expands
to the process owner’s home directory (the environment variable HOME must be set
correctly). ~user expands to the named user’s home directory.

File.expand_path("~testuser/bin") → "/Users/testuser/bin"
File.expand_path("../../bin", "/tmp/x") → "/bin"

extname File.extname(path) → string

1.8 Returns the extension (the portion of filename in path after the period).

File.extname("test.rb") → ".rb"
File.extname("a/b/d/test.rb") → ".rb"
File.extname("test") → ""

Prepared exclusively for Margus Pau

FILE 447

F
ile

Table 27.2. Match-mode constants

FNM_NOESCAPE Backslash does not escape special characters in globs, and a back-
slash in the pattern must match a backslash in the filename.

FNM_PATHNAME Forward slashes in the filename are treated as separating parts of a
path and so must be explicitly matched in the pattern.

FNM_DOTMATCH If this option is not specified, filenames containing leading periods
must be matched by an explicit period in the pattern. A leading
period is one at the start of the filename or (if FNM_PATHNAME is spec-
ified) following a slash.

FNM_CASEFOLD Filename matches are case insensitive

file? File.file?(filename) → true or false

Returns true if the named file is a regular file (not a device file, directory, pipe, socket,
and so on).

File.file?("testfile") → true
File.file?(".") → false

fnmatch File.fnmatch(glob_pattern, path, 〈 flags 〉) → true or false

1.8 Returns true if path matches against glob_pattern. The pattern is not a regular expres-
sion; instead it follows rules similar to shell filename globbing. Because fnmatch in
implemented by the underlying operating system, it may have different semantics to
Dir.glob. A glob_pattern may contain the following metacharacters.

** Matches subdirectories recursively.

* Matches zero or more characters.
? Matches any single character.
[charset] Matches any character from the given set of characters. A range of

characters is written as from-to. The set may be negated with an initial
caret (^).

\ Escapes any special meaning of the next character.

flags is a bitwise OR of the FNM_xxx parameters listed on the current page. See also
Dir.glob on page 430.

File.fnmatch('cat', 'cat') → true
File.fnmatch('cat', 'category') → false
File.fnmatch('c{at,ub}s', 'cats') → false
File.fnmatch('c{at,ub}s', 'cubs') → false
File.fnmatch('c{at,ub}s', 'cat') → false
File.fnmatch('c?t', 'cat') → true
File.fnmatch('c\?t', 'cat') → false

Prepared exclusively for Margus Pau

FILE 448

F
ile

File.fnmatch('c??t', 'cat') → false
File.fnmatch('c*', 'cats') → true
File.fnmatch('c/**/t', 'c/a/b/c/t') → true
File.fnmatch('c*t', 'cat') → true
File.fnmatch('c\at', 'cat') → true
File.fnmatch('c\at', 'cat', File::FNM_NOESCAPE) → false
File.fnmatch('a?b', 'a/b') → true
File.fnmatch('a?b', 'a/b', File::FNM_PATHNAME) → false

File.fnmatch('*', '.profile') → false
File.fnmatch('*', '.profile', File::FNM_DOTMATCH) → true
File.fnmatch('*', 'dave/.profile') → true
File.fnmatch('*', 'dave/.profile', File::FNM_DOTMATCH) → true
File.fnmatch('*', 'dave/.profile', File::FNM_PATHNAME) → false
File.fnmatch('*/*', 'dave/.profile', File::FNM_PATHNAME) → false
STRICT = File::FNM_PATHNAME | File::FNM_DOTMATCH
File.fnmatch('*/*', 'dave/.profile', STRICT) → true

fnmatch? File.fnmatch?(glob_pattern, path, 〈 flags 〉) → (true or false)

1.8 Synonym for File#fnmatch.

ftype File.ftype(filename) → filetype

Identifies the type of the named file. The return string is one of file, directory,
characterSpecial, blockSpecial, fifo, link, socket, or unknown.

File.ftype("testfile") → "file"
File.ftype("/dev/tty") → "characterSpecial"
system("mkfifo wibble") → true
File.ftype("wibble") → "fifo"

grpowned? File.grpowned?(filename) → true or false

Returns true if the effective group ID of the process is the same as the group ID of the
named file. On Windows, returns false.

File.grpowned?("/etc/passwd") → false

join File.join(〈 string 〉+) → filename

Returns a new string formed by joining the strings using File::SEPARATOR. The vari-
ous separators are listed in Table 27.3 on the next page.

File.join("usr", "mail", "gumby") → "usr/mail/gumby"

lchmod File.lchmod(permission, 〈 filename 〉+) → 0

1.8 Equivalent to File.chmod, but does not follow symbolic links (so it will change the
permissions associated with the link, not the file referenced by the link). Often not
available.

Prepared exclusively for Margus Pau

FILE 449

F
ile

Table 27.3. Path separator constants (platform specific)

ALT_SEPARATOR Alternate path separator.
PATH_SEPARATOR Separator for filenames in a search path (such as : or ;).
SEPARATOR Separator for directory components in a filename (such as \ or /).
Separator Alias for SEPARATOR.

lchown File.lchown(owner, group, 〈 filename 〉+) → 0

1.8 Equivalent to File.chown, but does not follow symbolic links (so it will change the
owner associated with the link, not the file referenced by the link). Often not available.

link File.link(oldname, newname) → 0

Creates a new name for an existing file using a hard link. Will not overwrite newname
if it already exists (in which case link raises a subclass of SystemCallError). Not
available on all platforms.

File.link("testfile", "testfile.lnk") → 0
f = File.open("testfile.lnk")
f.gets → "This is line one\n"
File.delete("testfile.lnk")

lstat File.lstat(filename) → stat

Returns status information for file as an object of type File::Stat. Same as IO#stat
(see page 492), but does not follow the last symbolic link. Instead, reports on the link
itself.

File.symlink("testfile", "link2test") → 0
File.stat("testfile").size → 66
File.lstat("link2test").size → 8
File.stat("link2test").size → 66

mtime File.mtime(filename) → time

Returns a Time object containing the modification time for the named file.

File.mtime("testfile") → Thu Aug 26 12:33:23 CDT 2004
File.mtime("/tmp") → Thu Aug 26 22:36:41 CDT 2004

new File.new(filename, modestring="r") → file
File.new(filename 〈 , modenum 〈 , permission 〉 〉) → file

File.new(fd 〈 , modenum 〈 , permission 〉 〉) → file

Opens the file named by filename (or associates the already-open file given by fd)
according to modestring (the default is r) and returns a new File object. The mode-
string is described in Table 27.6 on page 483. The file mode may optionally be specified
as a Fixnum by or-ing together the flags described in Table 27.4 on page 451. Optional

Prepared exclusively for Margus Pau

FILE 450

F
ile

permission bits may be given in permission. These mode and permission bits are plat-
form dependent; on Unix systems, see open(2) for details.

f = File.new("testfile", "r")
f = File.new("newfile", "w+")
f = File.new("newfile", File::CREAT|File::TRUNC|File::RDWR, 0644)

open File.open(filename, modestring="r") → file
File.open(filename 〈 , modenum 〈 , permission 〉 〉) → file

File.open(fd 〈 , modenum 〈 , permission 〉 〉) → file
File.open(filename, modestring="r") {|file | block } → obj

File.open(filename 〈 , modenum 〈 , permission 〉 〉) {|file | block } → obj
File.open(fd 〈 , modenum 〈 , permission 〉 〉) {|file | block } → obj

With no associated block, open is a synonym for File.new. If the optional code block
is given, it will be passed file as an argument, and the file will automatically be closed
when the block terminates. In this instance, File.open returns the value of the block.

owned? File.owned?(filename) → true or false

Returns true if the effective user ID of the process is the same as the owner of the
named file.

File.owned?("/etc/passwd") → false

pipe? File.pipe?(filename) → true or false

Returns true if the operating system supports pipes and the named file is a pipe, false
otherwise.

File.pipe?("testfile") → false

readable? File.readable?(filename) → true or false

Returns true if the named file is readable by the effective user ID of this process.

File.readable?("testfile") → true

readable_real? File.readable_real?(filename) → true or false

Returns true if the named file is readable by the real user ID of this process.

File.readable_real?("testfile") → true

readlink File.readlink(filename) → filename

Returns the given symbolic link as a string. Not available on all platforms.

File.symlink("testfile", "link2test") → 0
File.readlink("link2test") → "testfile"

Prepared exclusively for Margus Pau

FILE 451

F
ile

Table 27.4. Open-mode constants

APPEND Open the file in append mode; all writes will occur at end of file.
CREAT Create the file on open if it does not exist.
EXCL When used with CREAT, open will fail if the file exists.
NOCTTY When opening a terminal device (see IO#isatty on page 489), do not

allow it to become the controlling terminal.
NONBLOCK Open the file in nonblocking mode.
RDONLY Open for reading only.
RDWR Open for reading and writing.
TRUNC Open the file and truncate it to zero length if the file exists.
WRONLY Open for writing only.

rename File.rename(oldname, newname) → 0

Renames the given file or directory to the new name. Raises a SystemCallError if the
file cannot be renamed.

File.rename("afile", "afile.bak") → 0

setgid? File.setgid?(filename) → true or false

Returns true if the named file’s set-group-id permission bit is set, and returns false
if it isn’t or if the operating system doesn’t support this feature.

File.setgid?("/usr/sbin/lpc") → false

setuid? File.setuid?(filename) → true or false

Returns true if the named file’s set-user-id permission bit is set, and returns false if
it isn’t or if the operating system doesn’t support this feature.

File.setuid?("/bin/su") → false

size File.size(filename) → int

Returns the size of the file in bytes.

File.size("testfile") → 66

size? File.size?(filename) → int or nil

Returns nil if the named file is of zero length; otherwise, returns the size. Usable as a
condition in tests.

File.size?("testfile") → 66
File.size?("/dev/zero") → nil

Prepared exclusively for Margus Pau

FILE 452

F
ile

socket? File.socket?(filename) → true or false

Returns true if the named file is a socket, and returns false if it isn’t or if the operating
system doesn’t support this feature.

split File.split(filename) → array

Splits the given string into a directory and a file component and returns them in a two-
element array. See also File.dirname and File.basename.

File.split("/home/gumby/.profile") → ["/home/gumby", ".profile"]
File.split("ruby.rb") → [".", "ruby.rb"]

stat File.stat(filename) → stat

Returns a File::Stat object for the named file (see File::Stat, page 456).

stat = File.stat("testfile")
stat.mtime → Thu Aug 26 12:33:23 CDT 2004
stat.blockdev? → false
stat.ftype → "file"

sticky? File.sticky?(filename) → true or false

Returns true if the named file has its sticky bit set, and returns false if it doesn’t or if
the operating system doesn’t support this feature.

symlink File.symlink(oldname, newname) → 0 or nil

Creates a symbolic link called newname for the file oldname. Returns nil on all plat-
forms that do not support symbolic links.

File.symlink("testfile", "link2test") → 0

symlink? File.symlink?(filename) → true or false

Returns true if the named file is a symbolic link, and returns false if it isn’t or if the
operating system doesn’t support this feature.

File.symlink("testfile", "link2test") → 0
File.symlink?("link2test") → true

truncate File.truncate(filename, int) → 0

Truncates the file filename to be at most int bytes long. Not available on all platforms.

f = File.new("out", "w")
f.write("1234567890") → 10
f.close → nil
File.truncate("out", 5) → 0
File.size("out") → 5

Prepared exclusively for Margus Pau

FILE 453

F
ile

umask File.umask(〈 int 〉) → int

Returns the current umask value for this process. If the optional argument is given, set
the umask to that value and return the previous value. Umask values are excluded from
the default permissions; so a umask of 0222 would make a file read-only for everyone.
See also the discussion of permissions on page 444.

File.umask(0006) → 18
File.umask → 6

unlink File.unlink(〈 filename 〉+) → int

Synonym for File.delete. See also Dir.rmdir.

File.open("testrm", "w+") {} → nil
File.unlink("testrm") → 1

utime File.utime(accesstime, modtime 〈 , filename 〉+) → int

Changes the access and modification times on a number of files. The times must be
instances of class Time or integers representing the number of seconds since epoch.
Returns the number of files processed. Not available on all platforms.

File.utime(0, 0, "testfile") → 1
File.mtime("testfile") → Wed Dec 31 18:00:00 CST 1969
File.utime(0, Time.now, "testfile") → 1
File.mtime("testfile") → Thu Aug 26 22:37:33 CDT 2004

writable? File.writable?(filename) → true or false

Returns true if the named file is writable by the effective user ID of this process.

File.writable?("/etc/passwd") → false
File.writable?("testfile") → true

writable_real? File.writable_real?(filename) → true or false

Returns true if the named file is writable by the real user ID of this process.

zero? File.zero?(filename) → true or false

Returns true if the named file is of zero length, and returns false otherwise.

File.zero?("testfile") → false
File.open("zerosize", "w") {}
File.zero?("zerosize") → true

Prepared exclusively for Margus Pau

FILE 454

F
ile

Instance methods
atime file.atime → time

Returns a Time object containing the last access time for file, or returns epoch if the file
has not been accessed.

File.new("testfile").atime → Wed Dec 31 18:00:00 CST 1969

chmod file.chmod(permission) → 0

Changes permission bits on file to the bit pattern represented by permission. Actual
effects are platform dependent; on Unix systems, see chmod(2) for details. Follows
symbolic links. See the discussion of permissions on page 444. Also see File#lchmod.

f = File.new("out", "w");
f.chmod(0644) → 0

chown file.chown(owner, group) → 0

Changes the owner and group of file to the given numeric owner and group IDs. Only
a process with superuser privileges may change the owner of a file. The current owner
of a file may change the file’s group to any group to which the owner belongs. A nil
or −1 owner or group id is ignored. Follows symbolic links. See also File#lchown.

File.new("testfile").chown(502, 1000)

ctime file.ctime → time

Returns a Time object containing the time that the file status associated with file was
changed.

File.new("testfile").ctime → Thu Aug 26 22:37:33 CDT 2004

flock file.flock (locking_constant) → 0 or false

Locks or unlocks a file according to locking_constant (a logical or of the values in
Table 27.5 on the next page). Returns false if File::LOCK_NB is specified and the
operation would otherwise have blocked. Not available on all platforms.

File.new("testfile").flock(File::LOCK_UN) → 0

lchmod file.lchmod(permission) → 0

1.8 Equivalent to File#chmod, but does not follow symbolic links (so it will change the
permissions associated with the link, not the file referenced by the link). Often not
available.

lchown file.lchown(owner, group) → 0

1.8 Equivalent to File#chown, but does not follow symbolic links (so it will change the
owner associated with the link, not the file referenced by the link). Often not available.

Prepared exclusively for Margus Pau

FILE 455

F
ile

Table 27.5. Lock-mode constants

LOCK_EX Exclusive lock. Only one process may hold an exclusive lock for a given
file at a time.

LOCK_NB Don’t block when locking. May be combined with other lock options using
logical or.

LOCK_SH Shared lock. Multiple processes may each hold a shared lock for a given
file at the same time.

LOCK_UN Unlock.

lstat file.lstat → stat

Same as IO#stat, but does not follow the last symbolic link. Instead, reports on the
link itself.

File.symlink("testfile", "link2test") → 0
File.stat("testfile").size → 66
f = File.new("link2test")
f.lstat.size → 8
f.stat.size → 66

mtime file.mtime → time

Returns a Time object containing the modification time for file.

File.new("testfile").mtime → Thu Aug 26 22:37:33 CDT 2004

path file.path → filename

Returns the pathname used to create file as a string. Does not normalize the name.

File.new("testfile").path → "testfile"
File.new("/tmp/../tmp/xxx", "w").path → "/tmp/../tmp/xxx"

truncate file.truncate(int) → 0

Truncates file to at most int bytes. The file must be opened for writing. Not available
on all platforms.

f = File.new("out", "w")
f.syswrite("1234567890") → 10
f.truncate(5) → 0
f.close() → nil
File.size("out") → 5

Prepared exclusively for Margus Pau

FILE::STAT 456

F
ile

::S
ta

t

Class File::Stat < Object

Objects of class File::Stat encapsulate common status information for File objects.
The information is recorded at the moment the File::Stat object is created; changes
made to the file after that point will not be reflected. File::Stat objects are returned
by IO#stat, File.stat, File#lstat, and File.lstat. Many of these methods may
return platform-specific values, and not all values are meaningful on all systems. See
also Kernel#test on page 510.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Instance methods
<=> statfile <=> other_stat →−1, 0, 1

Compares File::Stat objects by comparing their respective modification times.

f1 = File.new("f1", "w")
sleep 1
f2 = File.new("f2", "w")
f1.stat <=> f2.stat → -1
Methods in Comparable are also available
f1.stat > f2.stat → false
f1.stat < f2.stat → true

atime statfile.atime → time

Returns a Time object containing the last access time for statfile, or returns epoch if the
file has not been accessed.

File.stat("testfile").atime → Wed Dec 31 18:00:00 CST 1969
File.stat("testfile").atime.to_i → 0

blksize statfile.blksize → int

Returns the native file system’s block size. Will return nil on platforms that don’t
support this information.

File.stat("testfile").blksize → 4096

blockdev? statfile.blockdev?→ true or false

Returns true if the file is a block device, and returns false if it isn’t or if the operating
system doesn’t support this feature.

File.stat("testfile").blockdev? → false
File.stat("/dev/disk0").blockdev? → true

Prepared exclusively for Margus Pau

FILE::STAT 457

F
ile

::S
ta

t

blocks statfile.blocks → int

Returns the number of native file system blocks allocated for this file, or returns nil if
the operating system doesn’t support this feature.

File.stat("testfile").blocks → 8

chardev? statfile.chardev?→ true or false

Returns true if the file is a character device, and returns false if it isn’t or if the
operating system doesn’t support this feature.

File.stat("/dev/tty").chardev? → true
File.stat("testfile").chardev? → false

ctime statfile.ctime → time

Returns a Time object containing the time that the file status associated with statfile
was changed.

File.stat("testfile").ctime → Thu Aug 26 22:37:33 CDT 2004

dev statfile.dev → int

Returns an integer representing the device on which statfile resides. The bits in the
device integer will often encode major and minor device information.

File.stat("testfile").dev → 234881033
"%x" % File.stat("testfile").dev → "e000009"

dev_major statfile.dev_major → int

Returns1.8 the major part of File::Stat#dev or nil if the operating system doesn’t
support this feature.

File.stat("testfile").dev_major → 14

dev_minor statfile.dev_minor → int

Returns1.8 the minor part of File::Stat#dev or nil if the operating system doesn’t
support this feature.

File.stat("testfile").dev_minor → 9

directory? statfile.directory? → true or false

Returns true if statfile is a directory, and returns false otherwise.

File.stat("testfile").directory? → false
File.stat(".").directory? → true

Prepared exclusively for Margus Pau

FILE::STAT 458

F
ile

::S
ta

t

executable? statfile.executable?→ true or false

Returns true if statfile is executable or if the operating system doesn’t distinguish
executable files from nonexecutable files. The tests are made using the effective owner
of the process.

File.stat("testfile").executable? → false

executable_real? statfile.executable_real?→ true or false

Same as executable?, but tests using the real owner of the process.

file? statfile.file? → true or false

Returns true if statfile is a regular file (not a device file, pipe, socket, and so on).

File.stat("testfile").file? → true

ftype statfile.ftype → type_string

Identifies the type of statfile. The return string is one of: file, directory, char-
acterSpecial, blockSpecial, fifo, link, socket, or unknown.

File.stat("/dev/tty").ftype → "characterSpecial"

gid statfile.gid → int

Returns the numeric group ID of the owner of statfile.

File.stat("testfile").gid → 502

grpowned? statfile.grpowned?→ true or false

Returns true if the effective group ID of the process is the same as the group ID of
statfile. On Windows, returns false.

File.stat("testfile").grpowned? → true
File.stat("/etc/passwd").grpowned? → false

ino statfile.ino → int

Returns the inode number for statfile.

File.stat("testfile").ino → 422829

mode statfile.mode → int

Returns an integer representing the permission bits of statfile. The meaning of the bits
is platform dependent; on Unix systems, see stat(2).

File.chmod(0644, "testfile") → 1
File.stat("testfile").mode.to_s(8) → "100644"

Prepared exclusively for Margus Pau

FILE::STAT 459

F
ile

::S
ta

t

mtime statfile.mtime → time

Returns a Time object containing the modification time for statfile.

File.stat("testfile").mtime → Thu Aug 26 22:37:33 CDT 2004

nlink statfile.nlink → int

Returns the number of hard links to statfile.

File.stat("testfile").nlink → 1
File.link("testfile", "testfile.bak") → 0
File.stat("testfile").nlink → 2

owned? statfile.owned? → true or false

Returns true if the effective user ID of the process is the same as the owner of statfile.

File.stat("testfile").owned? → true
File.stat("/etc/passwd").owned? → false

pipe? statfile.pipe? → true or false

Returns true if the operating system supports pipes and statfile is a pipe.

rdev statfile.rdev → int

Returns an integer representing the device type on which statfile (which should be a
special file) resides. Returns nil if the operating system doesn’t support this feature.

File.stat("/dev/disk0s1").rdev → 234881025
File.stat("/dev/tty").rdev → 33554432

rdev_major statfile.rdev_major → int

Returns1.8 the major part of File::Stat#rdev or nil if the operating system doesn’t
support this feature.

File.stat("/dev/disk0s1").rdev_major → 14
File.stat("/dev/tty").rdev_major → 2

rdev_minor statfile.rdev_minor → int

Returns1.8 the minor part of File::Stat#rdev or nil if the operating system doesn’t
support this feature.

File.stat("/dev/disk0s1").rdev_minor → 1
File.stat("/dev/tty").rdev_minor → 0

readable? statfile.readable? → true or false

Returns true if statfile is readable by the effective user ID of this process.

File.stat("testfile").readable? → true

Prepared exclusively for Margus Pau

FILE::STAT 460

F
ile

::S
ta

t

readable_real? statfile.readable_real?→ true or false

Returns true if statfile is readable by the real user ID of this process.

File.stat("testfile").readable_real? → true
File.stat("/etc/passwd").readable_real? → true

setgid? statfile.setgid? → true or false

Returns true if statfile has the set-group-id permission bit set, and returns false if it
doesn’t or if the operating system doesn’t support this feature.

File.stat("testfile").setgid? → false
File.stat("/usr/sbin/postdrop").setgid? → true

setuid? statfile.setuid? → true or false

Returns true if statfile has the set-user-id permission bit set, and returns false if it
doesn’t or if the operating system doesn’t support this feature.

File.stat("testfile").setuid? → false
File.stat("/usr/bin/su").setuid? → true

size statfile.size → int

Returns the size of statfile in bytes.

File.stat("/dev/zero").size → 0
File.stat("testfile").size → 66

size? statfile.size? → int or nil

Returns nil if statfile is a zero-length file; otherwise, returns the file size. Usable as a
condition in tests.

File.stat("/dev/zero").size? → nil
File.stat("testfile").size? → 66

socket? statfile.socket? → true or false

Returns true if statfile is a socket, and returns false if it isn’t or if the operating
system doesn’t support this feature.

File.stat("testfile").socket? → false

sticky? statfile.sticky? → true or false

Returns true if statfile has its sticky bit set, and returns false if it doesn’t or if the
operating system doesn’t support this feature.

File.stat("testfile").sticky? → false

Prepared exclusively for Margus Pau

FILE::STAT 461

F
ile

::S
ta

t

symlink? statfile.symlink? → true or false

Returns true if statfile is a symbolic link, false if it isn’t or if the operating sys-
tem doesn’t support this feature. As File.stat automatically follows symbolic links,
symlink? will always be false for an object returned by File.stat.

File.symlink("testfile", "alink") → 0
File.stat("alink").symlink? → false
File.lstat("alink").symlink? → true

uid statfile.uid → int

Returns the numeric user ID of the owner of statfile.

File.stat("testfile").uid → 502

writable? statfile.writable? → true or false

Returns true if statfile is writable by the effective user ID of this process.

File.stat("testfile").writable? → true

writable_real? statfile.writable_real? → true or false

Returns true if statfile is writable by the real user ID of this process.

File.stat("testfile").writable_real? → true

zero? statfile.zero? → true or false

Returns true if statfile is a zero-length file; false otherwise.

File.stat("testfile").zero? → false

Prepared exclusively for Margus Pau

FILETEST 462

F
ile

Te
st

Module FileTest
FileTest implements file test operations similar to those used in File::Stat. The
methods in FileTest are duplicated in class File. Rather than repeat the documen-
tation here, we list the names of the methods and refer you to the documentation for
File starting on page 444. FileTest appears to a somewhat vestigial module.

The FileTest methods are

blockdev?, chardev?, directory?, executable?, executable_real?, exist?,
exists?, file?, grpowned?, owned?, pipe?, readable?, readable_real?,
setgid?, setuid?, size, size?, socket?, sticky?, symlink?, world_readable?1.8 ,
world_writable?, writable?, writable_real?, and zero?

Prepared exclusively for Margus Pau

FIXNUM 463

F
ix

nu
m

Class Fixnum < Integer

A Fixnum holds Integer values that can be represented in a native machine word
(minus 1 bit). If any operation on a Fixnum exceeds this range, the value is automati-
cally converted to a Bignum.

Fixnum objects have immediate value. This means that when they are assigned or
passed as parameters, the actual object is passed, rather than a reference to that object.
Assignment does not alias Fixnum objects. As there is effectively only one Fixnum
object instance for any given integer value, you cannot, for example, add a singleton
method to a Fixnum.

Instance methods
Arithmetic operations

Performs various arithmetic operations on fix.

fix + numeric Addition
fix – numeric Subtraction
fix * numeric Multiplication
fix / numeric Division
fix % numeric Modulo
fix ** numeric Exponentiation
fix -@ Unary minus

Bit operations

Performs various operations on the binary representations of the Fixnum.

~ fix Invert bits
fix | numeric Bitwise OR

fix & numeric Bitwise AND

fix ^ numeric Bitwise EXCLUSIVE OR

fix << numeric Left-shift numeric bits
fix >> numeric Right-shift numeric bits (with sign extension)

<=> fix <=> numeric → −1, 0, +1

Comparison—Returns −1, 0, or +1 depending on whether fix is less than, equal to, or
greater than numeric. This is the basis for the tests in Comparable.

42 <=> 13 → 1
13 <=> 42 → -1
-1 <=> -1 → 0

Prepared exclusively for Margus Pau

FIXNUM 464

F
ix

nu
m

[] fix[n] → 0, 1

Bit Reference—Returns the nth bit in the binary representation of fix, where fix[0] is
the least significant bit.

a = 0b11001100101010
30.downto(0) {|n| print a[n] }

produces:

0000000000000000011001100101010

abs fix.abs → int

Returns the absolute value of fix.

-12345.abs → 12345
12345.abs → 12345

div fix.div(numeric) → integer

1.8 Synonym for Fixnum#/. Integer division always yields an integral result.

654321.div(13731) → 47
654321.div(13731.34) → 47

divmod fix.divmod(numeric) → array

See Numeric#divmod on on page 544.

id2name fix.id2name → string or nil

Returns the name of the object whose symbol ID is fix. If there is no symbol in the sym-
bol table with this value, returns nil. id2name has nothing to do with the Object.id
method. See also Fixnum#to_sym, String#intern on page 594, and class Symbol on
page 610.

symbol = :@inst_var → :@inst_var
id = symbol.to_i → 9866
id.id2name → "@inst_var"

modulo fix.modulo(numeric) → numeric

1.8 Synonym for Fixnum#%.

654321.modulo(13731) → 8964
654321.modulo(13731.24) → 8952.72000000001

quo fix.quo(numeric) → float

1.8 Returns the floating-point result of dividing fix by numeric.

654321.quo(13731) → 47.6528293642124
654321.quo(13731.24) → 47.6519964693647

Prepared exclusively for Margus Pau

FIXNUM 465

F
ix

nu
m

size fix.size → int

Returns the number of bytes in the machine representation of a Fixnum.

1.size → 4
-1.size → 4
2147483647.size → 4

to_f fix.to_f → float

Converts fix to a Float.

to_s fix.to_s(base=10) → string

Returns a string containing the representation of fix radix base (2 to 36).1.8

12345.to_s → "12345"
12345.to_s(2) → "11000000111001"
12345.to_s(8) → "30071"
12345.to_s(10) → "12345"
12345.to_s(16) → "3039"
12345.to_s(36) → "9ix"
84823723233035811745497171.to_s(36) → "anotherrubyhacker"

to_sym fix.to_sym → symbol

1.8 Returns the symbol whose integer value is fix. See also Fixnum#id2name.

fred = :fred.to_i
fred.id2name → "fred"
fred.to_sym → :fred

zero? fix.zero? → true or false

Returns true if fix is zero.

42.zero? → false
0.zero? → true

Prepared exclusively for Margus Pau

FLOAT 466

F
lo

at

Class Float < Numeric

Float objects represent real numbers using the native architecture’s double-precision
floating-point representation.

Class constants

DIG Precision of Float (in decimal digits)
EPSILON The smallest Float such that 1.0+ EPSILON �= 1.0
MANT_DIG The number of mantissa digits (base RADIX)
MAX The largest Float
MAX_10_EXP The maximum integer x such that 10x is a finite Float
MAX_EXP The maximum integer x such that FLT_RADIX(x−1) is a finite

Float
MIN The smallest Float
MIN_10_EXP The minimum integer x such that 10x is a finite Float
MIN_EXP The minimum integer x such that FLT_RADIX(x−1) is a finite

Float
RADIX The radix of floating-point representations
ROUNDS The rounding mode for floating-point operations. Possible values

include
−1 if the mode is indeterminate

0 if rounding is toward zero
1 if rounding is to nearest representable value
2 if rounding is toward +∞
3 if rounding is toward −∞

Instance methods
Arithmetic operations

Performs various arithmetic operations on flt.

flt + numeric Addition
flt – numeric Subtraction
flt * numeric Multiplication
flt / numeric Division
flt % numeric Modulo
flt ** numeric Exponentiation
flt -@ Unary minus

<=> flt <=> numeric → −1, 0, +1

Returns −1, 0, or +1 depending on whether flt is less than, equal to, or greater than
numeric. This is the basis for the tests in Comparable.

Prepared exclusively for Margus Pau

FLOAT 467

F
lo

at

== flt == obj → true or false

Returns true only if obj has the same value as flt. Contrast this with Float#eql?,
which requires obj to be a Float.

1.0 == 1.0 → true
(1.0).eql?(1.0) → true
1.0 == 1 → true
(1.0).eql?(1) → false

abs flt.abs → numeric

Returns the absolute value of flt.

(-34.56).abs → 34.56
-34.56.abs → 34.56

ceil flt.ceil → int

Returns the smallest Integer greater than or equal to flt.

1.2.ceil → 2
2.0.ceil → 2
(-1.2).ceil → -1
(-2.0).ceil → -2

divmod flt.divmod(numeric) → array

See Numeric#divmod on page 544.

eql? flt.eql?(obj) → true or false

Returns true only if obj is a Float with the same value as flt. Contrast this with
Float#==, which performs type conversions.

1.0.eql?(1) → false
1.0 == 1 → true

finite? flt.finite? → true or false

Returns true if flt is a valid IEEE floating-point number (it is not infinite, and nan? is
false).

(42.0).finite? → true
(1.0/0.0).finite? → false

floor flt.floor → int

Returns the largest integer less than or equal to flt.

1.2.floor → 1
2.0.floor → 2
(-1.2).floor → -2
(-2.0).floor → -2

Prepared exclusively for Margus Pau

FLOAT 468

F
lo

at

infinite? flt.infinite? → nil, −1, +1

Returns nil, −1, or +1 depending on whether flt is finite, −∞, or +∞.

(0.0).infinite? → nil
(-1.0/0.0).infinite? → -1
(+1.0/0.0).infinite? → 1

modulo flt.modulo(numeric) → numeric

1.8 Synonym for Float#%.

6543.21.modulo(137) → 104.21
6543.21.modulo(137.24) → 92.9299999999996

nan? flt.nan? → true or false

Returns true if flt is an invalid IEEE floating-point number.

(-1.0).nan? → false
(0.0/0.0).nan? → true

round flt.round → int

Rounds flt to the nearest integer. Equivalent to

def round
case
when self > 0.0 then (self+0.5).floor
when self < 0.0 then return (self-0.5).ceil
else 0
end

end

1.5.round → 2
(-1.5).round → -2

to_f flt.to_f → flt

Returns flt.

to_i flt.to_i → int

Returns flt truncated to an Integer.

1.5.to_i → 1
(-1.5).to_i → -1

to_int flt.to_int → int

Synonym for Float#to_i.

Prepared exclusively for Margus Pau

FLOAT 469

F
lo

at

to_s flt.to_s → string

Returns a string containing a representation of self. As well as a fixed or exponential
form of the number, the call may return NaN, Infinity, and -Infinity.

truncate flt.truncate → int

1.8 Synonym for Float#to_i.

zero? flt.zero? → true or false

Returns true if flt is 0.0.

Prepared exclusively for Margus Pau

GC 470

G
C

Module GC
The GC module provides an interface to Ruby’s mark and sweep garbage collection
mechanism. Some of the underlying methods are also available via the ObjectSpace
module, described beginning on page 557.

Module methods
disable GC.disable → true or false

Disables garbage collection, returning true if garbage collection was already disabled.

GC.disable → false
GC.disable → true

enable GC.enable → true or false

Enables garbage collection, returning true if garbage collection was disabled.

GC.disable → false
GC.enable → true
GC.enable → false

start GC.start → nil

Initiates garbage collection, unless manually disabled.

GC.start → nil

Instance methods
garbage_collect garbage_collect→ nil

Equivalent to GC.start.

include GC
garbage_collect → nil

Prepared exclusively for Margus Pau

HASH 471

H
as

h

Class Hash < Object

A Hash is a collection of key/value pairs. It is similar to an Array, except that indexing
is done via arbitrary keys of any object type, not an integer index. The order in which
keys and/or values are returned by the various iterators over hash contents may seem
arbitrary and will generally not be in insertion order.

Hashes have a default value. This value is returned when an attempt is made to access
keys that do not exist in the hash. By default, this value is nil.

Mixes in

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods
[] Hash[〈 key => value 〉∗] → hsh

Creates a new hash populated with the given objects. Equivalent to creating a hash
using the literal { key=>value, ... }. Keys and values occur in pairs, so there must
be an even number of arguments.

Hash["a", 100, "b", 200] → {"a"=>100, "b"=>200}
Hash["a" => 100, "b" => 200] → {"a"=>100, "b"=>200}
{ "a" => 100, "b" => 200 } → {"a"=>100, "b"=>200}

new Hash.new → hsh
Hash.new(obj) → hsh

Hash.new {| hash, key | block } → hsh

1.8 Returns a new, empty hash. If this hash is subsequently accessed by a key that doesn’t
correspond to a hash entry, the value returned depends on the style of new used to create
the hash. In the first form, the access returns nil. If obj is specified, this single object
will be used for all default values. If a block is specified, it will be called with the hash
object and the key, and it should return the default value. It is the block’s responsibility
to store the value in the hash if required.

h = Hash.new("Go Fish")
h["a"] = 100
h["b"] = 200
h["a"] → 100
h["c"] → "Go Fish"
The following alters the single default object
h["c"].upcase! → "GO FISH"
h["d"] → "GO FISH"
h.keys → ["a", "b"]

Prepared exclusively for Margus Pau

HASH 472

H
as

h

While this creates a new default object each time
h = Hash.new {|hash, key| hash[key] = "Go Fish: #{key}" }
h["c"] → "Go Fish: c"
h["c"].upcase! → "GO FISH: C"
h["d"] → "Go Fish: d"
h.keys → ["c", "d"]

Instance methods
== hsh == obj → true or false

Equality—Two hashes are equal if they have the same default value, they contain the
same number of keys, and the value corresponding to each key in the first hash is equal
(using ==) to the value for the same key in the second. If obj is not a hash, attempt to
convert it using to_hash and return obj == hsh.

h1 = { "a" => 1, "c" => 2 }
h2 = { 7 => 35, "c" => 2, "a" => 1 }
h3 = { "a" => 1, "c" => 2, 7 => 35 }
h4 = { "a" => 1, "d" => 2, "f" => 35 }
h1 == h2 → false
h2 == h3 → true
h3 == h4 → false

[] hsh[key] → value

Element Reference—Retrieves the value stored for key. If not found, returns the default
value (see Hash.new for details).

h = { "a" => 100, "b" => 200 }
h["a"] → 100
h["c"] → nil

[]= hsh[key] = value → value

Element Assignment—Associates the value given by value with the key given by key.
key should not have its value changed while it is in use as a key (a String passed as a
key will be duplicated and frozen).

h = { "a" => 100, "b" => 200 }
h["a"] = 9
h["c"] = 4
h → {"a"=>9, "b"=>200, "c"=>4}

clear hsh.clear → hsh

Removes all key/value pairs from hsh.

h = { "a" => 100, "b" => 200 } → {"a"=>100, "b"=>200}
h.clear → {}

Prepared exclusively for Margus Pau

HASH 473

H
as

h

default hsh.default(key=nil) → obj

1.8 Returns the default value, the value that would be returned by hsh[key] if key did not
exist in hsh. See also Hash.new and Hash#default=.

h = Hash.new → {}
h.default → nil
h.default(2) → nil

h = Hash.new("cat") → {}
h.default → "cat"
h.default(2) → "cat"

h = Hash.new {|h,k| h[k] = k.to_i*10} → {}
h.default → 0
h.default(2) → 20

default= hsh.default = obj → hsh

Sets the default value, the value returned for a key that does not exist in the hash. It is
not possible to set the a default to a Proc that will be executed on each key lookup.

h = { "a" => 100, "b" => 200 }
h.default = "Go fish"
h["a"] → 100
h["z"] → "Go fish"
This doesn't do what you might hope...
h.default = proc do |hash, key|
hash[key] = key + key

end
h[2] → #<Proc:0x001c94e0@-:6>
h["cat"] → #<Proc:0x001c94e0@-:6>

default_proc hsh.default_proc→ obj or nil

1.8 If Hash.new was invoked with a block, return that block; otherwise return nil.

h = Hash.new {|h,k| h[k] = k*k } → {}
p = h.default_proc → #<Proc:0x001c997c@-:1>
a = [] → []
p.call(a, 2)
a → [nil, nil, 4]

delete hsh.delete(key) → value
hsh.delete(key) {| key | block } → value

Deletes from hsh the entry whose key is to key, returning the corresponding value. If
the key is not found, returns nil.1.8 If the optional code block is given and the key is not
found, pass it the key and return the result of block.

Prepared exclusively for Margus Pau

HASH 474

H
as

h

h = { "a" => 100, "b" => 200 }
h.delete("a") → 100
h.delete("z") → nil
h.delete("z") {|el| "#{el} not found" } → "z not found"

delete_if hsh.delete_if {| key, value | block } → hsh

Deletes every key/value pair from hsh for which block is true.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.delete_if {|key, value| key >= "b" } → {"a"=>100}

each hsh.each {| key, value | block } → hsh

Calls block once for each key in hsh, passing the key and value as parameters.

h = { "a" => 100, "b" => 200 }
h.each {|key, value| puts "#{key} is #{value}" }

produces:

a is 100
b is 200

each_key hsh.each_key {| key | block } → hsh

Calls block once for each key in hsh, passing the key as a parameter.

h = { "a" => 100, "b" => 200 }
h.each_key {|key| puts key }

produces:

a
b

each_pair hsh.each_pair {| key, value | block } → hsh

Synonym for Hash#each.

each_value hsh.each_value {| value | block } → hsh

Calls block once for each key in hsh, passing the value as a parameter.

h = { "a" => 100, "b" => 200 }
h.each_value {|value| puts value }

produces:

100
200

empty? hsh.empty? → true or false

Returns true if hsh contains no key/value pairs.

{}.empty? → true

Prepared exclusively for Margus Pau

HASH 475

H
as

h

fetch hsh.fetch(key 〈 , default 〉) → obj
hsh.fetch(key) {| key | block } → obj

Returns a value from the hash for the given key. If the key can’t be found, several
options exist: With no other arguments, it will raise an IndexError exception; if
default is given, then that will be returned; if the optional code block is specified, then
that will be run and its result returned. fetch does not evaluate any default values
supplied when the hash was created—it only looks for keys in the hash.

h = { "a" => 100, "b" => 200 }
h.fetch("a") → 100
h.fetch("z", "go fish") → "go fish"
h.fetch("z") {|el| "go fish, #{el}"} → "go fish, z"

The following example shows that an exception is raised if the key is not found and a
default value is not supplied.

h = { "a" => 100, "b" => 200 }
h.fetch("z")

produces:

prog.rb:2:in `fetch': key not found (IndexError)
from prog.rb:2

has_key? hsh.has_key?(key) → true or false

Returns true if the given key is present in hsh.

h = { "a" => 100, "b" => 200 }
h.has_key?("a") → true
h.has_key?("z") → false

has_value? hsh.has_value?(value) → true or false

Returns true if the given value is present for some key in hsh.

h = { "a" => 100, "b" => 200 }
h.has_value?(100) → true
h.has_value?(999) → false

include? hsh.include?(key) → true or false

Synonym for Hash#has_key?.

index hsh.index(value) → key

Searches the hash for an entry whose value == value, returning the corresponding key.
If multiple entries has this value, the key returned will be that on one of the entries. If
not found, returns nil.

h = { "a" => 100, "b" => 200 }
h.index(200) → "b"
h.index(999) → nil

Prepared exclusively for Margus Pau

HASH 476

H
as

h

indexes hsh.indexes(〈 key 〉+) → array

1.8 Deprecated in favor of Hash#values_at.

indices hsh.indices(〈 key 〉+) → array

1.8 Deprecated in favor of Hash#values_at.

invert hsh.invert → other_hash

Returns a new hash created by using hsh’s values as keys, and the keys as values. If hsh
has duplicate values, the result will contain only one of them as a key—which one is
not predictable.

h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 }
h.invert → {0=>"a", 100=>"n", 200=>"d", 300=>"y"}

key? hsh.key?(key) → true or false

Synonym for Hash#has_key?.

keys hsh.keys → array

Returns a new array populated with the keys from this hash. See also Hash#values.

h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 }
h.keys → ["a", "b", "c", "d"]

length hsh.length → fixnum

Returns the number of key/value pairs in the hash.

h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 }
h.length → 4
h.delete("a") → 200
h.length → 3

member? hsh.member?(key) → true or false

Synonym for Hash#has_key?.

merge hsh.merge(other_hash) → result_hash
hsh.merge(other_hash) {| key, old_val, new_val | block } → result_hash

1.8 Returns a new hash containing the contents of other_hash and the contents of hsh.
With no block parameter, overwrites entries in hsh with duplicate keys with those from
other_hash. If a block is specified, it is called with each duplicate key and the values
from the two hashes. The value returned by the block is stored in the new hash.

Prepared exclusively for Margus Pau

HASH 477

H
as

h

h1 = { "a" => 100, "b" => 200 }
h2 = { "b" => 254, "c" => 300 }
h1.merge(h2) → {"a"=>100, "b"=>254, "c"=>300}
h1.merge(h2) {|k,o,n| o} → {"a"=>100, "b"=>200, "c"=>300}
h1 → {"a"=>100, "b"=>200}

merge! hsh.merge!(other_hash) → hsh
hsh.merge!(other_hash) {| key, old_val, new_val | block } → hsh

1.8 Adds the contents of other_hash to hsh, overwriting entries with duplicate keys with
those from other_hash.

h1 = { "a" => 100, "b" => 200 }
h2 = { "b" => 254, "c" => 300 }
h1.merge!(h2) → {"a"=>100, "b"=>254, "c"=>300}
h1 = { "a" => 100, "b" => 200 }
h1.merge!(h2) {|k,o,n| o} → {"a"=>100, "b"=>200, "c"=>300}
h1 → {"a"=>100, "b"=>200, "c"=>300}

rehash hsh.rehash → hsh

Rebuilds the hash based on the current hash values for each key. If values of key objects
have changed since they were inserted, this method will reindex hsh. If Hash#rehash
is called while an iterator is traversing the hash, an IndexError will be raised in the
iterator.

a = ["a", "b"]
c = ["c", "d"]
h = { a => 100, c => 300 }
h[a] → 100
a[0] = "z"
h[a] → nil
h.rehash → {["z", "b"]=>100, ["c", "d"]=>300}
h[a] → 100

reject hsh.reject {| key, value | block } → hash

Same as Hash#delete_if, but works on (and returns) a copy of hsh. Equivalent to
hsh.dup.delete_if.

reject! hsh.reject! {| key, value | block } → hsh or nil

Equivalent to Hash#delete_if, but returns nil if no changes were made.

replace hsh.replace(other_hash) → hsh

Replaces the contents of hsh with the contents of other_hash.

h = { "a" => 100, "b" => 200 }
h.replace({ "c" => 300, "d" => 400 }) → {"c"=>300, "d"=>400}

Prepared exclusively for Margus Pau

HASH 478

H
as

h

select hsh.select {| key, value | block } → array

Returns a new array consisting of [key, value] pairs for which the block returns true.
Also see Hash#values_at.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.select {|k,v| k > "a"} → [["b", 200], ["c", 300]]
h.select {|k,v| v < 200} → [["a", 100]]

shift hsh.shift → array or nil

Removes a key/value pair from hsh and returns it as the two-item array [key, value].1.8
If the hash is empty, returns the default value, calls the default proc (with a key value
of nil), or returns nil.

h = { 1 => "a", 2 => "b", 3 => "c" }
h.shift → [1, "a"]
h → {2=>"b", 3=>"c"}

size hsh.size → fixnum

Synonym for Hash#length.

sort hsh.sort → array
hsh.sort {| a, b | block } → array

Converts hsh to a nested array of [key, value] arrays and sorts it, using Array#sort.

h = { "a" => 20, "b" => 30, "c" => 10 }
h.sort → [["a", 20], ["b", 30], ["c", 10]]
h.sort {|a,b| a[1]<=>b[1]} → [["c", 10], ["a", 20], ["b", 30]]

store hsh.store(key, value) → value

Synonym for Element Assignment (Hash#[]=).

to_a hsh.to_a → array

Converts hsh to a nested array of [key, value] arrays.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
h.to_a → [["a", 100], ["c", 300], ["d", 400]]

to_hash hsh.to_hash → hsh

See page 356.

to_s hsh.to_s → string

Converts hsh to a string by converting the hash to an array of [key, value] pairs and
then converting that array to a string using Array#join with the default separator.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
h.to_s → "a100c300d400"

Prepared exclusively for Margus Pau

HASH 479

H
as

h

update hsh.update(other_hash) → hsh
hsh.update(other_hash) {| key, old_val, new_val | block } → hsh

1.8 Synonym for Hash#merge!.

value? hsh.value?(value) → true or false

Synonym for Hash#has_value?.

values hsh.values → array

Returns an array populated with the values from hsh. See also Hash#keys.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.values → [100, 200, 300]

values_at hsh.values_at(〈 key 〉+) → array

1.8 Returns an array consisting of values for the given key(s). Will insert the default value
for keys that are not found.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.values_at("a", "c") → [100, 300]
h.values_at("a", "c", "z") → [100, 300, nil]
h.default = "cat"
h.values_at("a", "c", "z") → [100, 300, "cat"]

Prepared exclusively for Margus Pau

INTEGER 480

I
nt

eg
er

Class Integer < Numeric

Subclasses: Bignum, Fixnum

Integer is the basis for the two concrete classes that hold whole numbers, Bignum and
Fixnum. (If you’ve come here looking for the iterator step, it’s on page 545.)

Instance methods
ceil int.ceil → integer

Synonym for Integer#to_i.

chr int.chr → string

Returns a string containing the ASCII character represented by the receiver’s value.

65.chr → "A"
?a.chr → "a"
230.chr → "\346"

downto int.downto(integer) {| i | block } → int

Iterates block, passing decreasing values from int down to and including integer.

5.downto(1) {|n| print n, ".. " }
print " Liftoff!\n"

produces:

5.. 4.. 3.. 2.. 1.. Liftoff!

floor int.floor → integer

Returns the largest integer less than or equal to int. Equivalent to Integer#to_i.

1.floor → 1
(-1).floor → -1

integer? int.integer? → true

Always returns true.

next int.next → integer

Returns the Integer equal to int + 1.

1.next → 2
(-1).next → 0

round int.round → integer

Synonym for Integer#to_i.

Prepared exclusively for Margus Pau

INTEGER 481

I
nt

eg
er

succ int.succ → integer

Synonym for Integer#next.

times int.times {| i | block } → int

Iterates block int times, passing in values from zero to int −1.

5.times do |i|
print i, " "

end

produces:

0 1 2 3 4

to_i int.to_i → int

Returns int.

to_int int.to_int → integer

Synonym for Integer#to_i.

truncate int.truncate → integer

Synonym for Integer#to_i.

upto int.upto(integer) {| i | block } → int

Iterates block, passing in integer values from int up to and including integer.

5.upto(10) {|i| print i, " " }

produces:

5 6 7 8 9 10

Prepared exclusively for Margus Pau

IO 482

I
O

Class IO < Object

Subclasses: File

Class IO is the basis for all input and output in Ruby. An I/O stream may be duplexed
(that is, bidirectional) and so may use more than one native operating system stream.

Many of the examples in this section use class File, the only standard subclass of IO.
The two classes are closely associated.

As used in this section, portname may take any of the following forms.

• A plain string represents a filename suitable for the underlying operating system.

• A string starting with | indicates a subprocess. The remainder of the string follow-
ing the | is invoked as a process with appropriate input/output channels connected
to it.

• A string equal to |- will create another Ruby instance as a subprocess.

The IO class uses the Unix abstraction of file descriptors, small integers that represent
open files. Conventionally, standard input has an fd of 0, standard output an fd of 1, and
standard error an fd of 2.

Ruby will convert pathnames between different operating system conventions if possi-
ble. For instance, on a Windows system the filename /gumby/ruby/test.rb will be
opened as \gumby\ruby\test.rb. When specifying a Windows-style filename in a
double-quoted Ruby string, remember to escape the backslashes.

"c:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::SEPARATOR can be
used to get the platform-specific separator character.

I/O ports may be opened in any one of several different modes, which are shown in this
section as modestring. This mode string must be one of the values listed in Table 27.6 on
the following page.

Mixes in

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Prepared exclusively for Margus Pau

IO 483

I
O

Table 27.6. Mode strings

Mode Meaning

r Read-only, starts at beginning of file (default mode).
r+ Read/write, starts at beginning of file.
w Write-only, truncates an existing file to zero length or creates a new file for

writing.
w+ Read/write, truncates existing file to zero length or creates a new file for read-

ing and writing.
a Write-only, starts at end of file if file exists; otherwise creates a new file for

writing.
a+ Read/write, starts at end of file if file exists; otherwise creates a new file for

reading and writing.
b (DOS/Windows only) Binary file mode (may appear with any of the key letters

listed above).

Class methods
for_fd IO.for_fd(int, modestring) → io

1.8 Synonym for IO.new.

foreach IO.foreach(portname, separator=$/) {| line | block } → nil

Executes the block for every line in the named I/O port, where lines are separated by
separator.

IO.foreach("testfile") {|x| puts "GOT: #{x}" }

produces:

GOT: This is line one
GOT: This is line two
GOT: This is line three
GOT: And so on...

new IO.new(int, modestring) → io

Returns a new IO object (a stream) for the given integer file descriptor and mode string.
See also IO#fileno and IO.for_fd.

a = IO.new(2, "w") # '2' is standard error
STDERR.puts "Hello"
a.puts "World"

produces:

Hello
World

Prepared exclusively for Margus Pau

IO 484

I
O

open IO.open(int, modestring) → io
IO.open(int, modestring) {| io | block } → obj

With no associated block, open is a synonym for IO.new. If the optional code block
is given, it will be passed io as an argument, and the IO object will automatically be
closed when the block terminates. In this instance, IO.open returns the value of the
block.

IO.open(1, "w") do |io|
io.puts "Writing to stdout"

end

produces:

Writing to stdout

pipe IO.pipe → array

Creates a pair of pipe endpoints (connected to each other) and returns them as a two-
element array of IO objects: [read_file, write_file]. write_file is automatically placed
into sync mode. Not available on all platforms.

In the example below, the two processes close the ends of the pipe that they are not
using. This is not just a cosmetic nicety. The read end of a pipe will not generate an
end-of-file condition if any writers have the pipe still open. In the case of the parent
process, the rd.read will never return if it does not first issue a wr.close.

rd, wr = IO.pipe

if fork
wr.close
puts "Parent got: <#{rd.read}>"
rd.close
Process.wait

else
rd.close
puts "Sending message to parent"
wr.write "Hi Dad"
wr.close

end

produces:

Sending message to parent
Parent got: <Hi Dad>

popen IO.popen(cmd, modestring="r") → io
IO.popen(cmd, modestring="r") {| io | block } → obj

Runs the specified command string as a subprocess; the subprocess’s standard input
and output will be connected to the returned IO object. The parameter cmd may be a
string or an array of strings. In the latter case, the array is used as the argv parameter
for the new process, and no special shell processing is performed on the strings. If cmd

Prepared exclusively for Margus Pau

IO 485

I
O

is a string, it will be subject to shell expansion. If the cmd string starts with a minus
sign (-), and the operating system supports fork(2), then the current Ruby process is
forked. The default mode for the new file object is r, but modestring may be set to any
of the modes in Table 27.6 on page 483.

If a block is given, Ruby will run the command as a child connected to Ruby with a
pipe. Ruby’s end of the pipe will be passed as a parameter to the block. In this case
IO.popen returns the value of the block.

If a block is given with a cmd_string of "-", the block will be run in two separate
processes: once in the parent and once in a child. The parent process will be passed the
pipe object as a parameter to the block, the child version of the block will be passed
nil, and the child’s standard in and standard out will be connected to the parent through
the pipe. Not available on all platforms. Also see the Open3 library on page 687 and
Kernel#exec on page 500.

pipe = IO.popen("uname")
p(pipe.readlines)
puts "Parent is #{Process.pid}"
IO.popen("date") {|pipe| puts pipe.gets }
IO.popen("-") {|pipe| STDERR.puts "#{Process.pid} is here, pipe=#{pipe}" }

produces:

["Darwin\n"]
Parent is 26841
Thu Aug 26 22:37:42 CDT 2004
26844 is here, pipe=
26841 is here, pipe=#<IO:0x1c9418>

read IO.read(portname, 〈 length=$/ 〈 , offset 〉 〉) → string

1.8 Opens the file, optionally seeks to the given offset, and then returns length bytes
(defaulting to the rest of the file). read ensures the file is closed before returning.

IO.read("testfile") → "This is line one\nThis is line
two\nThis is line three\nAnd so
on...\n"

IO.read("testfile", 20) → "This is line one\nThi"
IO.read("testfile", 20, 10) → "ne one\nThis is line "

readlines IO.readlines(portname, separator=$/) → array

Reads the entire file specified by portname as individual lines, and returns those lines
in an array. Lines are separated by separator.

a = IO.readlines("testfile")
a[0] → "This is line one\n"

Prepared exclusively for Margus Pau

IO 486

I
O

select IO.select(read_array 〈 , write_array 〈 , error_array 〈 , timeout 〉 〉 〉) → array
or nil

See Kernel#select on page 507.

sysopen IO.sysopen(path, 〈 mode 〈 , perm 〉 〉) → int

1.8 Opens the given path, returning the underlying file descriptor as a Fixnum.

IO.sysopen("testfile") → 3

Instance methods
<< io << obj → io

String Output—Writes obj to io. obj will be converted to a string using to_s.

STDOUT << "Hello " << "world!\n"

produces:

Hello world!

binmode io.binmode → io

Puts io into binary mode. This is useful only in MS-DOS/Windows environments. Once
a stream is in binary mode, it cannot be reset to nonbinary mode.

clone io.clone → io

Creates a new I/O stream, copying all the attributes of io. The file position is shared
as well, so reading from the clone will alter the file position of the original, and vice
versa.

close io.close → nil

Closes io and flushes any pending writes to the operating system. The stream is unavail-
able for any further data operations; an IOError is raised if such an attempt is made.
I/O streams are automatically closed when they are claimed by the garbage collector.

close_read io.close_read → nil

Closes the read end of a duplex I/O stream (i.e., one that contains both a read and a
write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")
f.close_read
f.readlines

produces:

prog.rb:3:in `readlines': not opened for reading (IOError)
from prog.rb:3

Prepared exclusively for Margus Pau

IO 487

I
O

close_write io.close_write → nil

Closes the write end of a duplex I/O stream (i.e., one that contains both a read and a
write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")
f.close_write
f.print "nowhere"

produces:

prog.rb:3:in `write': not opened for writing (IOError)
from prog.rb:3:in `print'
from prog.rb:3

closed? io.closed? → true or false

Returns true if io is completely closed (for duplex streams, both reader and writer),
and returns false otherwise.

f = File.new("testfile")
f.close → nil
f.closed? → true
f = IO.popen("/bin/sh","r+")
f.close_write → nil
f.closed? → false
f.close_read → nil
f.closed? → true

each io.each(separator=$/) {| line | block } → io

Executes the block for every line in io, where lines are separated by separator. io must
be opened for reading or an IOerror will be raised.

f = File.new("testfile")
f.each {|line| puts "#{f.lineno}: #{line}" }

produces:

1: This is line one
2: This is line two
3: This is line three
4: And so on...

each_byte io.each_byte {| byte | block } → nil

Calls the given block once for each byte (a Fixnum in the range 0 to 255) in io, passing
the byte as an argument. The stream must be opened for reading or an IOerror will be
raised.

f = File.new("testfile")
checksum = 0
f.each_byte {|x| checksum ^= x } → #<File:testfile>
checksum → 12

Prepared exclusively for Margus Pau

IO 488

I
O

each_line io.each_line(separator=$/) {| line | block } → io

Synonym for IO#each.

eof io.eof → true or false

Returns true if io is at end of file. The stream must be opened for reading or an
IOError will be raised.

f = File.new("testfile")
dummy = f.readlines
f.eof → true

eof? io.eof? → true or false

Synonym for IO#eof.

fcntl io.fcntl(cmd, arg) → int

Provides a mechanism for issuing low-level commands to control or query file-oriented
I/O streams. Commands (which are integers), arguments, and the result are platform
dependent. If arg is a number, its value is passed directly. If it is a string, it is inter-
preted as a binary sequence of bytes. On Unix platforms, see fcntl(2) for details.
The Fcntl module provides symbolic names for the first argument (see page 656). Not
implemented on all platforms.

fileno io.fileno → int

Returns an integer representing the numeric file descriptor for io.

STDIN.fileno → 0
STDOUT.fileno → 1

flush io.flush → io

Flushes any buffered data within io to the underlying operating system (note that this
is Ruby internal buffering only; the OS may buffer the data as well).

STDOUT.print "no newline"
STDOUT.flush

produces:

no newline

fsync io.fsync → 0 or nil

1.8 Immediately writes all buffered data in io to disk. Returns nil if the underlying oper-
ating system does not support fsync(2). Note that fsync differs from using IO#sync=.
The latter ensures that data is flushed from Ruby’s buffers but does not guarantee that
the underlying operating system actually writes it to disk.

Prepared exclusively for Margus Pau

IO 489

I
O

getc io.getc → int or nil

Gets the next 8-bit byte (0..255) from io. Returns nil if called at end of file.

f = File.new("testfile")
f.getc → 84
f.getc → 104

gets io.gets(separator=$/) → string or nil

Reads the next “line” from the I/O stream; lines are separated by separator. A separator
of nil reads the entire contents, and a zero-length separator reads the input a paragraph
at a time (two successive newlines in the input separate paragraphs). The stream must
be opened for reading or an IOerror will be raised. The line read in will be returned
and also assigned to $_. Returns nil if called at end of file.

File.new("testfile").gets → "This is line one\n"
$_ → "This is line one\n"

ioctl io.ioctl(cmd, arg) → int

Provides a mechanism for issuing low-level commands to control or query I/O devices.
The command (which is an integer), arguments, and results are platform dependent. If
arg is a number, its value is passed directly. If it is a string, it is interpreted as a binary
sequence of bytes. On Unix platforms, see ioctl(2) for details. Not implemented on
all platforms.

isatty io.isatty → true or false

Returns true if io is associated with a terminal device (tty), and returns false other-
wise.

File.new("testfile").isatty → false
File.new("/dev/tty").isatty → true

lineno io.lineno → int

Returns the current line number in io. The stream must be opened for reading. lineno
counts the number of times gets is called, rather than the number of newlines encoun-
tered. The two values will differ if gets is called with a separator other than newline.
See also the $. variable.

f = File.new("testfile")
f.lineno → 0
f.gets → "This is line one\n"
f.lineno → 1
f.gets → "This is line two\n"
f.lineno → 2

Prepared exclusively for Margus Pau

IO 490

I
O

lineno= io.lineno = int → int

Manually sets the current line number to the given value. $. is updated only on the next
read.

f = File.new("testfile")
f.gets → "This is line one\n"
$. → 1
f.lineno = 1000
f.lineno → 1000
$. # lineno of last read → 1
f.gets → "This is line two\n"
$. # lineno of last read → 1001

pid io.pid → int

Returns the process ID of a child process associated with io. This will be set by
IO.popen.

pipe = IO.popen("-")
if pipe
STDERR.puts "In parent, child pid is #{pipe.pid}"

else
STDERR.puts "In child, pid is #{$$}"

end

produces:

In child, pid is 26884
In parent, child pid is 26884

pos io.pos → int

Returns the current offset (in bytes) of io.

f = File.new("testfile")
f.pos → 0
f.gets → "This is line one\n"
f.pos → 17

pos= io.pos = int → 0

Seeks to the given position (in bytes) in io.

f = File.new("testfile")
f.pos = 17
f.gets → "This is line two\n"

print io.print(〈 obj=$_ 〉∗) → nil

Writes the given object(s) to io. The stream must be opened for writing. If the output
record separator ($\) is not nil, it will be appended to the output. If no arguments
are given, prints $_. Objects that aren’t strings will be converted by calling their to_s
method. Returns nil.

Prepared exclusively for Margus Pau

IO 491

I
O

STDOUT.print("This is ", 100, " percent.\n")

produces:

This is 100 percent.

printf io.printf(format 〈 , obj 〉∗) → nil

Formats and writes to io, converting parameters under control of the format string. See
Kernel#sprintf on page 508 for details.

putc io.putc(obj) → obj

Writes the given character (taken from a String or a Fixnum) on io.

STDOUT.putc "A"
STDOUT.putc 65

produces:

AA

puts io.puts(〈 obj 〉∗) → nil

Writes the given objects to io as with IO#print. Writes a newline after any that do
not already end with a newline sequence. If called with an array argument, writes each
element on a new line. If called without arguments, outputs a single newline.

STDOUT.puts("this", "is", "a", "test")

produces:

this
is
a
test

read io.read(〈 int 〈 , buffer 〉 〉) → string or nil

Reads at most int bytes from the I/O stream or to the end of file if int is omitted. Returns
nil if called at end of file. If buffer1.8 (a String) is provided, it is resized accordingly and
input is read directly in to it.

f = File.new("testfile")
f.read(16) → "This is line one"
str = "cat"
f.read(10, str) → "\nThis is l"
str → "\nThis is l"

readchar io.readchar → int

Reads a character as with IO#getc, but raises an EOFError on end of file.

readline io.readline(separator=$/) → string

Reads a line as with IO#gets, but raises an EOFError on end of file.

Prepared exclusively for Margus Pau

IO 492

I
O

readlines io.readlines(separator=$/) → array

Reads all of the lines in io, and returns them in array. Lines are separated by the
optional separator. The stream must be opened for reading or an IOerror will be
raised.

f = File.new("testfile")
f.readlines → ["This is line one\n", "This is line two\n", "This

is line three\n", "And so on...\n"]

reopen io.reopen(other_io) → io
io.reopen(path, modestring) → io

Reassociates io with the I/O stream given in other_io or to a new stream opened on
path. This may dynamically change the actual class of this stream.

f1 = File.new("testfile")
f2 = File.new("testfile")
f2.readlines[0] → "This is line one\n"
f2.reopen(f1) → #<File:testfile>
f2.readlines[0] → "This is line one\n"

rewind io.rewind → 0

Positions io to the beginning of input, resetting lineno to zero.

f = File.new("testfile")
f.readline → "This is line one\n"
f.rewind → 0
f.lineno → 0
f.readline → "This is line one\n"

seek io.seek(int, whence=SEEK_SET) → 0

Seeks to a given offset int in the stream according to the value of whence.

IO::SEEK_CUR Seeks to int plus current position.
IO::SEEK_END Seeks to int plus end of stream (you probably want a negative value

for int).
IO::SEEK_SET Seeks to the absolute location given by int.

f = File.new("testfile")
f.seek(-13, IO::SEEK_END) → 0
f.readline → "And so on...\n"

stat io.stat → stat

Returns status information for io as an object of type File::Stat.

Prepared exclusively for Margus Pau

IO 493

I
O

f = File.new("testfile")
s = f.stat
"%o" % s.mode → "100644"
s.blksize → 4096
s.atime → Thu Aug 26 22:37:41 CDT 2004

sync io.sync → true or false

Returns the current “sync mode” of io. When sync mode is true, all output is immedi-
ately flushed to the underlying operating system and is not buffered by Ruby internally.
See also IO#fsync.

f = File.new("testfile")
f.sync → false

sync= io.sync = bool → true or false

Sets the “sync mode” to true or false. When sync mode is true, all output is immedi-
ately flushed to the underlying operating system and is not buffered internally. Returns
the new state. See also IO#fsync.

f = File.new("testfile")
f.sync = true

sysread io.sysread(int 〈 , buffer 〉) → string

1.8 Reads int bytes from io using a low-level read and returns them as a string. If buffer (a
String) is provided, input is read directly in to it. Do not mix with other methods that
read from io, or you may get unpredictable results. Raises SystemCallError on error
and EOFError at end of file.

f = File.new("testfile")
f.sysread(16) → "This is line one"
str = "cat"
f.sysread(10, str) → "\nThis is l"
str → "\nThis is l"

sysseek io.sysseek(offset, whence=SEEK_SET) → int

1.8 Seeks to a given offset in the stream according to the value of whence (see IO#seek for
values of whence). Returns the new offset into the file.

f = File.new("testfile")
f.sysseek(-13, IO::SEEK_END) → 53
f.sysread(10) → "And so on."

syswrite io.syswrite(string) → int

Writes the given string to io using a low-level write. Returns the number of bytes writ-
ten. Do not mix with other methods that write to io, or you may get unpredictable
results. Raises SystemCallError on error.

Prepared exclusively for Margus Pau

IO 494

I
O

f = File.new("out", "w")
f.syswrite("ABCDEF") → 6

tell io.tell → int

Synonym for IO#pos.

to_i io.to_i → int

Synonym for IO#fileno.

to_io io.to_io → io

Returns io.

tty? io.tty? → true or false

Synonym for IO#isatty.

ungetc io.ungetc(int) → nil

Pushes back one character onto io, such that a subsequent buffered read will return it.
Only one character may be pushed back before a subsequent read operation (that is,
you will be able to read only the last of several characters that have been pushed back).
Has no effect with unbuffered reads (such as IO#sysread).

f = File.new("testfile") → #<File:testfile>
c = f.getc → 84
f.ungetc(c) → nil
f.getc → 84

write io.write(string) → int

Writes the given string to io. The stream must be opened for writing. If the argument
is not a string, it will be converted to a string using to_s. Returns the number of bytes
written.

count = STDOUT.write("This is a test\n")
puts "That was #{count} bytes of data"

produces:

This is a test
That was 15 bytes of data

Prepared exclusively for Margus Pau

KERNEL 495

K
er

ne
l

Module Kernel
The Kernel module is included by class Object, so its methods are available in every
Ruby object. The Kernel instance methods are documented in class Object beginning
on page 546. This section documents the module methods. These methods are called
without a receiver and thus can be called in functional form.

Module methods
Array Array(arg) → array

Returns arg as an Array. First tries to call arg.to_ary, then arg.to_a. If both fail,
creates a single element array containing arg (unless arg is nil).

Array(1..5) → [1, 2, 3, 4, 5]

Float Float(arg) → float

Returns arg converted to a float. Numeric types are converted directly, the rest are
converted using arg.to_f. As of Ruby 1.8,1.8 converting nil generates a TypeError.

Float(1) → 1.0
Float("123.456") → 123.456

Integer Integer(arg) → int

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (floating-
point numbers are truncated). If arg is a String, leading radix indicators (0, 0b, and 0x)
are honored. Others are converted using to_int and to_i. This behavior is different
from that of String#to_i.

Integer(123.999) → 123
Integer("0x1a") → 26
Integer(Time.new) → 1093577888
Integer(nil) → 0

String String(arg) → string

Converts arg to a String by calling its to_s method.

String(self) → "main"
String(self.class) → "Object"
String(123456) → "123456"

` (backquote) `cmd ` returnsstring

Returns the standard output of running cmd in a subshell. The built-in syntax %x{...}
described on page 83 uses this method. Sets $? to the process status.

Prepared exclusively for Margus Pau

KERNEL 496

K
er

ne
l

`date` → "Thu Aug 26 22:38:08 CDT 2004\n"
`ls testdir`.split[1] → "main.rb"
`echo oops && exit 99` → "oops\n"
$?.exitstatus → 99

abort abort
abort(msg)

1.8 Terminates execution immediately with an exit code of 1. The optional String param-
eter is written to standard error before the program terminates.

at_exit at_exit { block } → proc

Converts block to a Proc object (and therefore binds it at the point of call), and registers
it for execution when the program exits. If multiple handlers are registered, they are
executed in reverse order of registration.

def do_at_exit(str1)
at_exit { print str1 }

end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit

produces:

goodbye cruel world

autoload autoload(name, file_name) → nil

Registers file_name to be loaded (using Kernel.require) the first time that the module
name (which may be a String or a symbol) is accessed.

autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")

Prior to Ruby 1.8, the name parameter was assumed to be in the top-level namespace.1.8
In Ruby 1.8, the new method Module.autoload lets you define namespace-specific
autoload hooks. In the following code, Ruby 1.6 will load xxx.rb on references to
::XXX whereas Ruby 1.8 will autoload on references to X::XXX.

module X
autoload :XXX, "xxx.rb"
end

Note that xxx.rb should define a class in the correct namespace. That is, in this exam-
ple xxx.rb should contain

class X::XXX
...

end

Prepared exclusively for Margus Pau

KERNEL 497

K
er

ne
l

autoload? autoload?(name) → file_name or nil

1.8 Returns the name of the file that will be autoloaded when the string or symbol name is
referenced in the top-level context, or returns nil if there is no associated autoload.

autoload(:Fred, "module_fred") → nil
autoload?(:Fred) → "module_fred"
autoload?(:Wilma) → nil

binding binding → a_binding

Returns a Binding object, describing the variable and method bindings at the point of
call. This object can be used when calling eval to execute the evaluated command in
this environment. Also see the description of class Binding beginning on page 423.

def get_binding(param)
return binding

end
b = get_binding("hello")
eval("param", b) → "hello"

block_given? block_given?→ true or false

Returns true if yield would execute a block in the current context.

def try
if block_given?
yield

else
"no block"

end
end
try → "no block"
try { "hello" } → "hello"
try do "hello" end → "hello"

callcc callcc {| cont | block } → obj

Generates a Continuation object, which it passes to the associated block. Performing
a cont.call will cause the callcc to return (as will falling through the end of the
block). The value returned by the callcc is the value of the block or the value passed to
cont.call. See Continuation on page 427 for more details. Also see Kernel.throw
for an alternative mechanism for unwinding a call stack.

caller caller(〈 int 〉) → array

Returns the current execution stack—an array containing strings in the form file:line or
file:line: in ‘method’. The optional int parameter determines the number of initial stack
entries to omit from the result.

Prepared exclusively for Margus Pau

KERNEL 498

K
er

ne
l

def a(skip)
caller(skip)

end
def b(skip)
a(skip)

end
def c(skip)
b(skip)

end
c(0) → ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'",

"prog:10"]
c(1) → ["prog:5:in `b'", "prog:8:in `c'", "prog:11"]
c(2) → ["prog:8:in `c'", "prog:12"]
c(3) → ["prog:13"]

catch catch(symbol) { block } → obj

catch executes its block. If a throw is encountered, Ruby searches up its stack for
a catch block with a tag corresponding to the throw’s symbol. If found, that block
is terminated, and catch returns the value given to throw. If throw is not called, the
block terminates normally, and the value of catch is the value of the last expression
evaluated. catch expressions may be nested, and the throw call need not be in lexical
scope.

def routine(n)
puts n
throw :done if n <= 0
routine(n-1)

end
catch(:done) { routine(4) }

produces:

4
3
2
1
0

chomp chomp(〈 rs 〉) → $_ or string

Equivalent to $_ = $_.chomp(rs), except no assignment is made if chomp doesn’t
change $_. See String#chomp on page 589.

$_ = "now\n"
chomp → "now"
chomp "ow" → "n"
chomp "xxx" → "n"
$_ → "n"

chomp! chomp!(〈 rs 〉) → $_ or nil

Equivalent to $_.chomp!(rs). See String#chomp!

Prepared exclusively for Margus Pau

KERNEL 499

K
er

ne
l

$_ = "now\n"
chomp! → "now"
$_ → "now"
chomp! "x" → nil
$_ → "now"

chop chop → string

(Almost) equivalent to ($_.dup).chop!, except that if chop would perform no action,
$_ is unchanged and nil is not returned. See String#chop! on page 589.

$_ = a = "now\r\n"
chop → "now"
$_ → "now"
chop → "no"
chop → "n"
chop → ""
a → "now\r\n"

chop! chop! → $_ or nil

Equivalent to $_.chop!.

$_ = a = "now\r\n"
chop! → "now"
chop! → "no"
chop! → "n"
chop! → ""
chop! → nil
$_ → ""
a → ""

eval eval(string 〈 , binding 〈 , file 〈 , line 〉 〉 〉) → obj

Evaluates the Ruby expression(s) in string. If binding is given, the evaluation is per-
formed in its context. The binding may be a Binding object or a Proc object. If the
optional file and line parameters are present, they will be used when reporting syntax
errors.

def get_binding(str)
return binding

end
str = "hello"
eval "str + ' Fred'" → "hello Fred"
eval "str + ' Fred'", get_binding("bye") → "bye Fred"

As of Ruby 1.8,1.8 local variables assigned within an eval are available after the eval
only if they were defined at the outer scope before the eval executed. In this way eval
has the same scoping rules as blocks.

a = 1
eval "a = 98; b = 99"
puts a
puts b

Prepared exclusively for Margus Pau

KERNEL 500

K
er

ne
l

produces:

98
prog.rb:4: undefined local variable or method `b' for
main:Object (NameError)

exec exec(command 〈 , args 〉)
Replaces the current process by running the given external command. If exec is given
a single argument, that argument is taken as a line that is subject to shell expan-
sion before being executed. If command contains a newline or any of the characters

*?{}[]<>()~\&|\$;'`", or under Windows if command looks like a shell-internal com-
mand (for example dir), command is run under a shell. On Unix system, Ruby does this
by prepending sh -c. Under Windows, it uses the name of a shell in either RUBYSHELL
or COMSPEC.

If multiple arguments are given, the second and subsequent arguments are passed as
parameters to command with no shell expansion. If the first argument is a two-element
array, the first element is the command to be executed, and the second argument is
used as the argv[0] value, which may show up in process listings. In MSDOS envi-
ronments, the command is executed in a subshell; otherwise, one of the exec(2) sys-
tem calls is used, so the running command may inherit some of the environment of
the original program (including open file descriptors). Raises SystemCallError if the
command couldn’t execute (typically Errno::ENOENT).

exec "echo *" # echoes list of files in current directory
never get here

exec "echo", "*" # echoes an asterisk
never get here

exit exit(true | false | status=1)
1.8 Initiates the termination of the Ruby script. If called in the scope of an exception han-

dler, raises a SystemExit exception. This exception may be caught. Otherwise exits
the process using exit(2). The optional parameter is used to return a status code to
the invoking environment. With an argument of true, exits with a status of zero. With
an argument that is false (or no argument), exits with a status of 1, otherwise exits with
the given status. Note1.8 that the default exit value has changed from –1 to +1 in Ruby
1.8.

fork { exit 99 }
Process.wait
puts "Child exits with status: #{$?.exitstatus}"
begin
exit
puts "never get here"

rescue SystemExit
puts "rescued a SystemExit exception"

end
puts "after begin block"

Prepared exclusively for Margus Pau

KERNEL 501

K
er

ne
l

produces:

Child exits with status: 99
rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exit functions and runs any object
finalizers (see ObjectSpace beginning on page 557).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string", lambda { puts "in finalizer" })
exit

produces:

at_exit function
in finalizer

exit! exit!(true | false | status=1)
1.8 Similar to Kernel.exit, but exception handling, at_exit functions, and finalizers are

bypassed.

fail fail
fail(message)

fail(exception 〈 , message 〈 , array 〉 〉)

Synonym for Kernel.raise.

fork fork 〈 { block } 〉 → int or nil

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the
subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once
in the parent, returning the process ID of the child, and once in the child, returning nil.
The child process can exit using Kernel.exit! to avoid running any at_exit func-
tions. The parent process should use Process.wait to collect the termination statuses
of its children or use Process.detach to register disinterest in their status; otherwise,
the operating system may accumulate zombie processes.

fork do
3.times {|i| puts "Child: #{i}" }

end
3.times {|i| puts "Parent: #{i}" }
Process.wait

produces:

Child: 0
Parent: 0
Child: 1
Parent: 1
Child: 2
Parent: 2

Prepared exclusively for Margus Pau

KERNEL 502

K
er

ne
l

format format(format_string 〈 , arg 〉∗) → string

Synonym for Kernel.sprintf.

gets gets(separator=$/) → string or nil

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*) or from
standard input if no files are present on the command line. Returns nil at end of file.
The optional argument specifies the record separator. The separator is included with the
contents of each record. A separator of nil reads the entire contents, and a zero-length
separator reads the input one paragraph at a time, where paragraphs are divided by two
consecutive newlines. If multiple filenames are present in ARGV, gets(nil) will read
the contents one file at a time.

ARGV << "testfile"
print while gets

produces:

This is line one
This is line two
This is line three
And so on...

The style of programming using $_ as an implicit parameter is gradually losing favor
in the Ruby community.

global_variables global_variables→ array

Returns an array of the names of global variables.

global_variables.grep /std/ → ["$stdout", "$stdin", "$stderr"]

gsub gsub(pattern, replacement) → string
gsub(pattern) { block } → string

Equivalent to $_.gsub(...), except that $_ will be updated if substitution occurs.

$_ = "quick brown fox"
gsub /[aeiou]/, '*' → "q**ck br*wn f*x"
$_ → "q**ck br*wn f*x"

gsub! gsub!(pattern, replacement) → string or nil
gsub!(pattern) { block } → string or nil

Equivalent to $_.gsub!(...).

$_ = "quick brown fox"
gsub! /cat/, '*' → nil
$_ → "quick brown fox"

Prepared exclusively for Margus Pau

KERNEL 503

K
er

ne
l

iterator? iterator? → true or false

Deprecated synonym for Kernel.block_given?.

lambda lambda { block } → proc

Creates a new procedure object from the given block. See page 342 for an explanation
of the difference between procedure objects created using lambda and those created
using Proc.new. Note that lambda is now preferred over proc.1.8

prc = lambda { "hello" }
prc.call → "hello"

load load(file_name, wrap=false) → true

Loads and executes the Ruby program in the file file_name. If the filename does not
resolve to an absolute path, the file is searched for in the library directories listed in
$:. If the optional wrap parameter is true, the loaded script will be executed under an
anonymous module, protecting the calling program’s global namespace. In no circum-
stance will any local variables in the loaded file be propagated to the loading environ-
ment.

local_variables local_variables → array

Returns the names of the current local variables.

fred = 1
for i in 1..10

...
end
local_variables → ["fred", "i"]

Note that local variables are associated with bindings.

def fred
a = 1
b = 2
binding

end
freds_binding = fred
eval("local_variables", freds_binding) → ["a", "b"]

loop loop { block }

Repeatedly executes the block.

loop do
print "Input: "
break if (line = gets).nil? or (line =~ /^[qQ]/)
...

end

Prepared exclusively for Margus Pau

KERNEL 504

K
er

ne
l

open open(name 〈 , modestring 〈 , permission 〉 〉) → io or nil
open(name 〈 , modestring 〈 , permission 〉 〉) {| io | block } → obj

Creates an IO object connected to the given stream, file, or subprocess.

If name does not start with a pipe character (|), treat it as the name of a file to open
using the specified mode defaulting to "r" (see the table of valid modes on page 483). If
a file is being created, its initial permissions may be set using the integer third parame-
ter. If1.8 this third parameter is present, the file will be opened using the low-level open(2)
rather than fopen(3) call.

If a block is specified, it will be invoked with the IO object as a parameter, which will
be automatically closed when the block terminates. The call1.8 returns the value of the
block in this case.

If name starts with a pipe character, a subprocess is created, connected to the caller
by a pair of pipes. The returned IO object may be used to write to the standard input
and read from the standard output of this subprocess. If the command following the |
is a single minus sign, Ruby forks, and this subprocess is connected to the parent. In
the subprocess, the open call returns nil. If the command is not "-", the subprocess
runs the command. If a block is associated with an open("|-") call, that block will
be run twice—once in the parent and once in the child. The block parameter will be an
IO object in the parent and nil in the child. The parent’s IO object will be connected
to the child’s STDIN and STDOUT. The subprocess will be terminated at the end of the
block.

open("testfile") do |f|
print f.gets

end

produces:

This is line one

Open a subprocess and read its output.

cmd = open("|date")
print cmd.gets
cmd.close

produces:

Thu Aug 26 22:38:10 CDT 2004

Open a subprocess running the same Ruby program.

f = open("|-", "w+")
if f.nil?
puts "in Child"
exit

else
puts "Got: #{f.gets}"

end

Prepared exclusively for Margus Pau

KERNEL 505

K
er

ne
l

produces:

Got: in Child

Open a subprocess using a block to receive the I/O object.

open("|-") do |f|
if f.nil?
puts "in Child"

else
puts "Got: #{f.gets}"

end
end

produces:

Got: in Child

p p(〈 obj 〉+) → nil

For each object, writes obj.inspect followed by the current output record separator to
the program’s standard output. Also see the PrettyPrint library on page 695.

S = Struct.new(:name, :state)
s = S['dave', 'TX']
p s

produces:

#<struct S name="dave", state="TX">

print print(〈 obj 〉∗) → nil

Prints each object in turn to STDOUT.1.8 If the output field separator ($,) is not nil, its
contents will appear between each field. If the output record separator ($\) is not nil,
it will be appended to the output. If no arguments are given, prints $_. Objects that
aren’t strings will be converted by calling their to_s method.

print "cat", [1,2,3], 99, "\n"
$, = ", "
$\ = "\n"
print "cat", [1,2,3], 99

produces:

cat12399
cat, 1, 2, 3, 99

printf printf(io, format 〈 , obj 〉∗) → nil
printf(format 〈 , obj 〉∗) → nil

Equivalent to

io.write sprintf(format, obj ...)

or

STDOUT.write sprintf(format, obj ...)

Prepared exclusively for Margus Pau

KERNEL 506

K
er

ne
l

proc proc { block } → a_proc

Creates a new procedure object from the given block. Mildly deprecated in favor of
Kernel#lambda.1.8

prc = proc {|name| "Goodbye, #{name}" }
prc.call('Dave') → "Goodbye, Dave"

putc putc(int) → int

Equivalent to STDOUT.putc(int).

puts puts(〈 arg 〉∗) → nil

Equivalent to STDOUT.puts(arg...).

raise raise
raise(message)

raise(exception 〈 , message 〈 , array 〉 〉)

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil.
With a single String argument, raises a RuntimeError with the string as a message.
Otherwise, the first parameter should be the name of an Exception class (or an object
that returns an Exception when sent exception). The optional second parameter sets
the message associated with the exception, and the third parameter is an array of call-
back information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller

rand rand(max=0) → number

Converts max to an integer using max1 = max.to_i.abs. If the result is zero, returns
a pseudorandom floating-point number greater than or equal to 0.0 and less than 1.0.
Otherwise, returns a pseudorandom integer greater than or equal to zero and less than
max1. Kernel.srand may be used to ensure repeatable sequences of random num-
bers between different runs of the program. Ruby currently uses a modified Mersenne
Twister with a period of 219937 − 1.

srand 1234 → 0
[rand, rand] → [0.191519450163469, 0.49766366626136]
[rand(10), rand(1000)] → [6, 817]
srand 1234 → 1234
[rand, rand] → [0.191519450163469, 0.49766366626136]

readline readline(〈 separator=$/ 〉) → string

Equivalent to Kernel.gets, except readline raises EOFError at end of file.

Prepared exclusively for Margus Pau

KERNEL 507

K
er

ne
l

readlines readlines(〈 separator=$/ 〉) → array

Returns an array containing the lines returned by calling Kernel.gets(separator)
until the end of file.

require require(library_name) → true or false

Ruby tries to load library_name, returning true if successful. If the filename does not
resolve to an absolute path, it will be searched for in the directories listed in $:. If
the file has the extension .rb, it is loaded as a source file; if the extension is .so, .o,
or .dll,1 Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries
adding .rb, .so, and so on to the name. The name of the loaded feature is added to the
array in $". A feature will not be loaded if its name already appears in $".2 require
returns true if the feature was successfully loaded.

require 'my-library.rb'
require 'db-driver'

The SCRIPT_LINES__ constant can be used to capture1.8 the source of code read using
require.

SCRIPT_LINES__ = {}
require 'code/scriptlines'
puts "Files: #{SCRIPT_LINES__.keys.join(', ')}"
SCRIPT_LINES__['./code/scriptlines.rb'].each do |line|
puts "Source: #{line}"

end

produces:

3/8
Files: ./code/scriptlines.rb, /Users/dave/ruby1.8/lib/ruby/1.8/rational.rb
Source: require 'rational'
Source:
Source: puts Rational(1,2)*Rational(3,4)

scan scan(pattern) → array
scan(pattern) { block } → $_

Equivalent to calling $_.scan. See String#scan on page 596.

select select(read_array 〈 , write_array 〈 , error_array 〈 , timeout 〉 〉 〉) → array or nil

Performs a low-level select call, which waits for data to become available from
input/output devices. The first three parameters are arrays of IO objects or nil. The
last is a timeout in seconds, which should be an Integer or a Float. The call waits

1. Or whatever the default shared library extension is on the current platform.

2. Although this name is not converted to an absolute path, so that require 'a';require './a' will
load a.rb twice. This is arguably a bug.

Prepared exclusively for Margus Pau

KERNEL 508

K
er

ne
l

for data to become available for any of the IO objects in read_array, for buffers to
have cleared sufficiently to enable writing to any of the devices in write_array, or for
an error to occur on the devices in error_array. If one or more of these conditions are
met, the call returns a three-element array containing arrays of the IO objects that were
ready. Otherwise, if there is no change in status for timeout seconds, the call returns
nil. If all parameters are nil, the current thread sleeps forever.

select([STDIN], nil, nil, 1.5) → [[#<IO:0x1cfaac>], [], []]

set_trace_func set_trace_func(proc) → proc
set_trace_func(nil) → nil

Establishes proc as the handler for tracing, or disables tracing if the parameter is nil.
proc takes up to six parameters: an event name, a filename, a line number, an object
ID, a binding, and the name of a class. proc is invoked whenever an event occurs.
Events are c-call (call a C-language routine), c-return (return from a C-language
routine), call (call a Ruby method), class (start a class or module definition), end
(finish a class or module definition), line (execute code on a new line), raise (raise
an exception), and return (return from a Ruby method). Tracing is disabled within the
context of proc.

See the example starting on page 393 for more information.

sleep sleep(numeric=0) → fixnum

Suspends the current thread for numeric seconds (which may be a Float with fractional
seconds). Returns the actual number of seconds slept (rounded), which may be less
than that asked for if the thread was interrupted by a SIGALRM or if another thread calls
Thread#run. An argument of zero causes sleep to sleep forever.

Time.now → Thu Aug 26 22:38:10 CDT 2004
sleep 1.9 → 2
Time.now → Thu Aug 26 22:38:12 CDT 2004

split split(〈 pattern 〈 , limit 〉 〉) → array

Equivalent to $_.split(pattern, limit). See String#split on page 598.

sprintf sprintf(format_string 〈 , arguments 〉∗) → string

Returns the string resulting from applying format_string to any additional arguments.
Within the format string, any characters other than format sequences are copied to the
result.

A format sequence consists of a percent sign, followed by optional flags, width, and
precision indicators, and then terminated with a field type character. The field type
controls how the corresponding sprintf argument is to be interpreted, and the flags

Prepared exclusively for Margus Pau

KERNEL 509

K
er

ne
l

modify that interpretation. The flag characters are shown in Table 27.7 on the following
page, and the field type characters are listed in Table 27.8.

The field width is an optional integer, followed optionally by a period and a precision.
The width specifies the minimum number of characters that will be written to the result
for this field. For numeric fields, the precision controls the number of decimal places
displayed. For string fields, the precision determines the maximum number of char-
acters to be copied from the string. (Thus, the format sequence %10.10s will always
contribute exactly ten characters to the result.)

sprintf("%d %04x", 123, 123) → "123 007b"
sprintf("%08b '%4s'", 123, 123) → "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8) → " hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8) → "hello -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) → "+1.23: 1.23:1.23"

srand srand(〈 number 〉) → old_seed

Seeds the pseudorandom number generator to the value of number.to_i.abs. If num-
ber is omitted or zero, seeds the generator using a combination of the time, the process
ID, and a sequence number. (This is also the behavior if Kernel.rand is called with-
out previously calling srand, but without the sequence.) By setting the seed to a known
value, scripts that use rand can be made deterministic during testing. The previous seed
value is returned. Also see Kernel.rand on page 506.

sub sub(pattern, replacement) → $_
sub(pattern) { block } → $_

Equivalent to $_.sub(args), except that $_ will be updated if substitution occurs.

sub! sub!(pattern, replacement) → $_ or nil
sub!(pattern) { block } → $_ or nil

Equivalent to $_.sub!(args).

syscall syscall(fixnum 〈 , args 〉∗) → int

Calls the operating system function identified by fixnum. The arguments must be either
String objects or Integer objects that fit within a native long. Up to nine parameters
may be passed. The function identified by fixnum is system dependent. On some Unix
systems, the numbers may be obtained from a header file called syscall.h.

syscall 4, 1, "hello\n", 6 # '4' is write(2) on our system

produces:

hello

system system(command 〈 , args 〉∗) → true or false

Executes command in a subshell, returning true if the command was found and ran

Prepared exclusively for Margus Pau

KERNEL 510

K
er

ne
l

Table 27.7. sprintf flag characters

Flag Applies to Meaning

(space) bdEefGgiouXx Leave a space at the start of positive numbers.
digit$ all Specify the absolute argument number for this field.

Absolute and relative argument numbers cannot both be
used in a sprintf string.

beEfgGoxX Use an alternative format. For the conversions b, o, X,
and x, prefix the result with b, 0, 0X, 0x, respectively. For
E, e, f, G, and g, force a decimal point to be added, even
if no digits follow. For G and g, do not remove trailing
zeros.

+ bdEefGgiouXx Add a leading plus sign to positive numbers.
- all Left-justify the result of this conversion.
0 (zero) bdEefGgiouXx Pad with zeros, not spaces.

* all Use the next argument as the field width. If negative,
left-justify the result. If the asterisk is followed by a
number and a dollar sign, use the indicated argument as
the width.

successfully, false otherwise. An error status is available in $?. The arguments are
processed in the same way as for Kernel.exec on page 500. Raises SystemCallError
if the command couldn’t execute (typically Errno::ENOENT).

system("echo *")
system("echo", "*")

produces:

config.h main.rb

*

test test(cmd, file1 〈 , file2 〉) → obj

Uses the integer cmd to perform various tests on file1 (Table 27.9 on page 512) or on
file1 and file2 (Table 27.10).

throw throw(symbol 〈 , obj 〉)

Transfers control to the end of the active catch block waiting for symbol. Raises
NameError if there is no catch block for the symbol. The optional second parame-
ter supplies a return value for the catch block, which otherwise defaults to nil. For
examples, see Kernel.catch on page 498.

Prepared exclusively for Margus Pau

KERNEL 511

K
er

ne
l

Table 27.8. sprintf field types

Field Conversion

b Convert argument as a binary number.
c Argument is the numeric code for a single character.
d Convert argument as a decimal number.
E Equivalent to e, but uses an uppercase E to indicate the exponent.
e Convertfloating point-argument into exponential notation with one digit before

the decimal point. The precision determines the number of fractional digits
(defaulting to six).

f Convert floating-point argument as [-]ddd.ddd, where the precision deter-
mines the number of digits after the decimal point.

G Equivalent to g, but use an uppercase E in exponent form.
g Convert a floating-point number using exponential form if the exponent is less

than −4 or greater than or equal to the precision, or in d.dddd form otherwise.
i Identical to d.
o Convert argument as an octal number.
p The value of argument.inspect.1.8
s Argument is a string to be substituted. If the format sequence contains a preci-

sion, at most that many characters will be copied.
u Treat argument as an unsigned decimal number.
X Convert argument as a hexadecimal number using uppercase letters. Negative

numbers will be displayed with two leading periods (representing an infinite
string of leading FFs).

x Convert argument as a hexadecimal number. Negative numbers will be dis-
played with two leading periods (representing an infinite string of leading FFs.)

trace_var trace_var(symbol, cmd) → nil
trace_var(symbol) {| val | block } → nil

Controls tracing of assignments to global variables. The parameter symbol identifies the
variable (as either a string name or a symbol identifier). cmd (which may be a string or
a Proc object) or the block is executed whenever the variable is assigned, and receives
the variable’s new value as a parameter. Only explicit assignments are traced. Also see
Kernel.untrace_var.

trace_var :$_, lambda {|v| puts "$_ is now '#{v}'" }
$_ = "hello"
sub(/ello/, "i")
$_ += " Dave"

produces:

$_ is now 'hello'
$_ is now 'hi Dave'

Prepared exclusively for Margus Pau

KERNEL 512

K
er

ne
l

Table 27.9. File tests with a single argument

Flag Description Returns

?A Last access time for file1 Time
?b True if file1 is a block device true or false
?c True if file1 is a character device true or false
?C Last change time for file1 Time
?d True if file1 exists and is a directory true or false
?e True if file1 exists true or false
?f True if file1 exists and is a regular file true or false
?g True if file1 has the setgid bit set (false under NT) true or false
?G True if file1 exists and has a group ownership equal to the

caller’s group
true or false

?k True if file1 exists and has the sticky bit set true or false
?l True if file1 exists and is a symbolic link true or false
?M Last modification time for file1 Time
?o True if file1 exists and is owned by the caller’s effective UID true or false
?O True if file1 exists and is owned by the caller’s real UID true or false
?p True if file1 exists and is a fifo true or false
?r True if file1 is readable by the effective UID/GID of the caller true or false
?R True if file1 is readable by the real UID/GID of the caller true or false
?s If file1 has nonzero size, return the size, otherwise return nil Integer or nil
?S True if file1 exists and is a socket true or false
?u True if file1 has the setuid bit set true or false
?w True if file1 exists and is writable by the effective UID/ GID true or false
?W True if file1 exists and is writable by the real UID/GID true or false
?x True if file1 exists and is executable by the effective UID/GID true or false
?X True if file1 exists and is executable by the real UID/GID true or false
?z True if file1 exists and has a zero length true or false

Table 27.10. File tests with two arguments

Flag Description

?- True if file1 is a hard link to file2
?= True if the modification times of file1 and file2 are equal
?< True if the modification time of file1 is prior to that of file2
?> True if the modification time of file1 is after that of file2

Prepared exclusively for Margus Pau

KERNEL 513

K
er

ne
l

trap trap(signal, proc) → obj
trap(signal) { block } → obj

See the Signal module on page 583.

untrace_var untrace_var(symbol 〈 , cmd 〉) → array or nil

Removes tracing for the specified command on the given global variable and returns
nil. If no command is specified, removes all tracing for that variable and returns an
array containing the commands actually removed.

warn warn msg

1.8 Writes the given message to STDERR (unless $VERBOSE is nil, perhaps because the -W0
command-line option was given).

warn "Danger, Will Robinson!"

produces:

Danger, Will Robinson!

Prepared exclusively for Margus Pau

MARSHAL 514

M
ar

sh
al

Module Marshal
The marshaling library converts collections of Ruby objects into a byte stream, allow-
ing them to be stored outside the currently active script. This data may subsequently
be read and the original objects reconstituted. Marshaling is described starting on
page 395. Also see the YAML library on page 737.

Marshaled data has major and minor version numbers stored along with the object
information. In normal use, marshaling can load only data written with the same major
version number and an equal or lower minor version number. If Ruby’s “verbose” flag
is set (normally using -d, -v, -w, or --verbose), the major and minor numbers must
match exactly. Marshal versioning is independent of Ruby’s version numbers. You can
extract the version by reading the first two bytes of marshaled data.

str = Marshal.dump("thing")
RUBY_VERSION → "1.8.2"
str[0] → 4
str[1] → 8

Some objects cannot be dumped: if the objects to be dumped include bindings, proce-
dure or method objects, instances of class IO, or singleton objects, or if you try to dump
anonymous classes or modules,1.8 a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in
some specific format), or if it contains objects that would otherwise not be serializable,
you can implement your own serialization strategy. Prior to Ruby 1.8, you defined the
methods _dump and _load.

Ruby 1.81.8 includes a more flexible interface to custom serialization using the instance
methods marshal_dump and marshal_load: If an object to be marshaled responds to
marshal_dump, that method is called instead of _dump. marshal_dump can return an
object of any class (not just a String). A class that implements marshal_dump must also
implement marshal_load, which is called as an instance method of a newly allocated
object and passed the object originally created by marshal_load.

The following code uses this new framework to store a Time object in the serialized ver-
sion of an object. When loaded, this object is passed to marshal_load, which converts
this time to a printable form, storing the result in an instance variable.

class TimedDump
attr_reader :when_dumped

def marshal_dump
Time.now

end
def marshal_load(when_dumped)
@when_dumped = when_dumped.strftime("%I:%M%p")

end
end

Prepared exclusively for Margus Pau

MARSHAL 515

M
ar

sh
al

t = TimedDump.new
t.when_dumped → nil

str = Marshal.dump(t)

newt = Marshal.load(str)
newt.when_dumped → "10:38PM"

Module constants

MAJOR_VERSION Major part of marshal format version number.
MINOR_VERSION Minor part of marshal format version number.

Module methods
dump dump(obj 〈 , io 〉 , limit=–1) → io

Serializes obj and all descendent objects. If io is specified, the serialized data will be
written to it; otherwise the data will be returned as a String. If limit is specified, the
traversal of subobjects will be limited to that depth. If limit is negative, no checking of
depth will be performed.

class Klass
def initialize(str)
@str = str

end
def say_hello
@str

end
end

o = Klass.new("hello\n")
data = Marshal.dump(o)
obj = Marshal.load(data)
obj.say_hello → "hello\n"

load load(from 〈 , proc 〉) → obj

Returns the result of converting the serialized data in from into a Ruby object (possi-
bly with associated subordinate objects). from may be either an instance of IO or an
object that responds to to_str. If proc is specified, it will be passed each object as it is
deserialized.

restore restore(from 〈 , proc 〉) → obj

A synonym for Marshal.load.

Prepared exclusively for Margus Pau

MATCHDATA 516

M
at

ch
D

at
a

Class MatchData < Object

All pattern matches set the special variable $~ to a MatchData containing information
about the match. The methods Regexp#match and Regexp#last_match also return a
MatchData object. The object encapsulates all the results of a pattern match, results
normally accessed through the special variables $&, $', $`, $1, $2, and so on. Class
Matchdata is also known as MatchingData.

Instance methods
[] match[i] → obj

match[start, length] → array
match[range] → array

Match Reference—MatchData acts as an array, and may be accessed using the nor-
mal array indexing techniques. match[0] is equivalent to the special variable $& and
returns the entire matched string. match[1], match[2], and so on, return the values of
the matched back references (portions of the pattern between parentheses). See also
MatchData#select and MatchData#values_at.1.8

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m[0] → "HX1138"
m[1, 2] → ["H", "X"]
m[1..3] → ["H", "X", "113"]
m[-3, 2] → ["X", "113"]

begin match.begin(n) → int

Returns the offset of the start of the nth element of the match array in the string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.begin(0) → 1
m.begin(2) → 2

captures match.captures→ array

1.8 Returns the array of all the matching groups. Compare to MatchData#to_a, which
returns both the complete matched string and all the matching groups.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.captures → ["H", "X", "113", "8"]

captures is useful when extracting parts of a match in an assignment.

f1, f2, f3 = /(.)(.)(\d+)(\d)/.match("THX1138.").captures
f1 → "H"
f2 → "X"
f3 → "113"

Prepared exclusively for Margus Pau

MATCHDATA 517

M
at

ch
D

at
a

end match.end(n) → int

Returns the offset of the character immediately following the end of the nth element of
the match array in the string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.end(0) → 7
m.end(2) → 3

length match.length → int

Returns the number of elements in the match array.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.length → 5
m.size → 5

offset match.offset(n) → array

Returns a two-element array containing the beginning and ending offsets of the nth
match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.offset(0) → [1, 7]
m.offset(4) → [6, 7]

post_match match.post_match → string

Returns the portion of the original string after the current match. Equivalent to the
special variable $'.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")
m.post_match → ": The Movie"

pre_match match.pre_match → string

Returns the portion of the original string before the current match. Equivalent to the
special variable $`.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.pre_match → "T"

select match.select {| val | block } → array

1.8 Returns an array containing all elements of match for which block is true.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")
m.to_a → ["HX1138", "H", "X", "113", "8"]
m.select {|v| v =~ /\d\d/ } → ["HX1138", "113"]

size match.size → int

A synonym for MatchData#length.

Prepared exclusively for Margus Pau

MATCHDATA 518

M
at

ch
D

at
a

string match.string → string

Returns a frozen copy of the string passed in to match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.string → "THX1138."

to_a match.to_a → array

Returns the array of matches. Unlike MatchData#captures, returns the full string
matched.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.to_a → ["HX1138", "H", "X", "113", "8"]

to_s match.to_s → string

Returns the entire matched string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.to_s → "HX1138"

values_at match.values_at(〈 index 〉∗) → array

1.8 Uses each index to access the matching values, returning an array of the corresponding
matches.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")
m.to_a → ["HX1138", "H", "X", "113", "8"]
m.values_at(0, 2, -2) → ["HX1138", "X", "113"]

Prepared exclusively for Margus Pau

MATH 519

M
at

h

Module Math
The Math module contains module methods for basic trigonometric and transcenden-
tal functions. See class Float on page 466 for a list of constants that define Ruby’s
floating-point accuracy.

Module constants

E Value of e (base of natural logarithms)
PI Value of π

Module methods
acos Math.acos(x) → float

1.8 Computes the arc cosine of x. Returns 0..π.

acosh Math.acosh(x) → float

1.8 Computes the inverse hyperbolic cosine of x.

asin Math.asin(x) → float

1.8 Computes the arc sine of x. Returns 0..π.

asinh Math.asinh(x) → float

1.8 Computes the inverse hyperbolic sine of x.

atan Math.atan(x) → float

1.8 Computes the arc tangent of x. Returns −π
2 ..π

2 .

atanh Math.atanh(x) → float

1.8 Computes the inverse hyperbolic tangent of x.

atan2 Math.atan2(y, x) → float

Computes the arc tangent given y and x. Returns −π..π.

cos Math.cos(x) → float

Computes the cosine of x (expressed in radians). Returns −1..1.

cosh Math.cosh(x) → float

1.8 Computes the hyperbolic cosine of x (expressed in radians).

Prepared exclusively for Margus Pau

MATH 520

M
at

h

erf Math.erf(x) → float

Returns the error function of x.1.8

erf (x) =
2√
π

∫ x

0

e−t2dt

erfc Math.erfc(x) → float

1.8 Returns the complementary error function of x.

erfc(x) = 1 − 2√
π

∫ x

0

e−t2dt

exp Math.exp(x) → float

Returns ex.

frexp Math.frexp(numeric) → [fraction, exponent]

Returns a two-element array containing the normalized fraction (a Float) and exponent
(a Fixnum) of numeric.

fraction, exponent = Math.frexp(1234) → [0.6025390625, 11]
fraction * 2**exponent → 1234.0

hypot Math.hypot(x, y) → float

1.8 Returns
√

x2 + y2, the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4) → 5.0

ldexp Math.ldexp(float, integer) → float

Returns the value of float× 2integer.

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent) → 1234.0

log Math.log(numeric) → float

Returns the natural logarithm of numeric.

log10 Math.log10(numeric) → float

Returns the base 10 logarithm of numeric.

sin Math.sin(numeric) → float

Computes the sine of numeric (expressed in radians). Returns −1..1.

Prepared exclusively for Margus Pau

MATH 521

M
at

h

sinh Math.sinh(numeric) → float

1.8 Computes the hyperbolic sine of numeric (expressed in radians).

sqrt Math.sqrt(numeric) → float

Returns the non-negative square root of numeric. Raises ArgError if numeric is less
than zero.

tan Math.tan(numeric) → float

Returns the tangent of numeric (expressed in radians).

tanh Math.tanh(numeric) → float

1.8 Computes the hyperbolic tangent of numeric (expressed in radians).

Prepared exclusively for Margus Pau

METHOD 522

M
et

ho
d

Class Method < Object

Method objects are created by Object#method. They are associated with a particular
object (not just with a class). They may be used to invoke the method within the object
and as a block associated with an iterator. They may also be unbound from one object
(creating an UnboundMethod) and bound to another.

def square(n)
n*n

end
meth = self.method(:square)

meth.call(9) → 81
[1, 2, 3].collect(&meth) → [1, 4, 9]

Instance methods
[] meth[〈 args 〉∗] → object

Synonym for Method.call.

== meth== other → true or false
1.8 Returns true if meth is the same method as other.

def fred()
puts "Hello"

end

alias bert fred → nil

m1 = method(:fred)
m2 = method(:bert)
m1 == m2 → true

arity meth.arity → fixnum

Returns an indication of the number of arguments accepted by a method. See Fig-
ure 27.2 on the next page.

call meth.call(〈 args 〉∗) → object

Invokes the meth with the specified arguments, returning the method’s return value.

m = 12.method("+")
m.call(3) → 15
m.call(20) → 32

eql? meth.eql?(other) → true or false

1.8 Returns true if meth is the same method as other.

Prepared exclusively for Margus Pau

METHOD 523

M
et

ho
d

Figure 27.2. Method#arity in action

Method#arity returns a non-negative integer for methods that take a fixed num-
ber of arguments. For Ruby methods that take a variable number of arguments,
returns −n− 1, where n is the number of required arguments. For methods writ-
ten in C, returns −1 if the call takes a variable number of arguments.

class C
def one; end
def two(a); end
def three(*a); end
def four(a, b); end
def five(a, b, *c); end
def six(a, b, *c, &d); end

end
c = C.new
c.method(:one).arity → 0
c.method(:two).arity → 1
c.method(:three).arity → -1
c.method(:four).arity → 2
c.method(:five).arity → -3
c.method(:six).arity → -3

"cat".method(:size).arity → 0
"cat".method(:replace).arity → 1
"cat".method(:squeeze).arity → -1
"cat".method(:count).arity → -1

def fred()
puts "Hello"

end

alias bert fred → nil

m1 = method(:fred)
m2 = method(:bert)
m1.eql?(m2) → false

to_proc meth.to_proc → prc

1.8 Returns a Proc object corresponding to this method. Because to_proc is called by the
interpreter when passing block arguments, method objects may be used following an
ampersand to pass a block to another method call. See the Thing example at the start
of this section.

unbind meth.unbind → unbound_method
1.8 Dissociates meth from its current receiver. The resulting UnboundMethod can subse-

quently be bound to a new object of the same class (see UnboundMethod on page 630).

Prepared exclusively for Margus Pau

MODULE 524

M
od

ul
e

Class Module < Object

Subclasses: Class

A Module is a collection of methods and constants. The methods in a module may be
instance methods or module methods. Instance methods appear as methods in a class
when the module is included; module methods do not. Conversely, module methods
may be called without creating an encapsulating object, and instance methods may not.
See also Module#module_function on page 537.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either
a quoted string or a Symbol (such as :name).

module Mod
include Math
CONST = 1
def meth
...

end
end
Mod.class → Module
Mod.constants → ["E", "CONST", "PI"]
Mod.instance_methods → ["meth"]

Class methods
constants Module.constants→ array

Returns an array of the names of all constants defined in the system. This list includes
the names of all modules and classes.

p Module.constants.sort[1..5]

produces:

["ARGV", "ArgumentError", "Array", "Bignum", "Binding"]

nesting Module.nesting → array

Returns the list of Modules nested at the point of call.

module M1
module M2
$a = Module.nesting

end
end
$a → [M1::M2, M1]
$a[0].name → "M1::M2"

Prepared exclusively for Margus Pau

MODULE 525

M
od

ul
e

new Module.new → mod
Module.new {| mod | block } → mod

1.8 Creates a new anonymous module. If a block is given, it is passed the module object,
and the block is evaluated in the context of this module using module_eval.

Fred = Module.new do
def meth1
"hello"

end
def meth2
"bye"

end
end
a = "my string"
a.extend(Fred) → "my string"
a.meth1 → "hello"
a.meth2 → "bye"

Instance methods
<, <=, >, >= mod relop module → true or false

Hierarchy Query—One module is considered greater than another if it is included in
(or is a parent class of) the other module. The other operators are defined accordingly.
If there is no relationship between the modules, all operators return false.

module Mixin
end

module Parent
include Mixin

end

module Unrelated
end

Parent > Mixin → false
Parent < Mixin → true
Parent <= Parent → true
Parent < Unrelated → nil
Parent > Unrelated → nil

<=> mod <=> other_mod → −1, 0, +1

Comparison—Returns −1 if mod includes other_mod, 0 if mod is the same module as
other_mod, and +1 if mod is included by other_mod or if mod has no relationship with
other_mod.

=== mod === obj → true or false

Case Equality—Returns true if obj is an instance of mod or one of mod’s descendents.
Of limited use for modules, but can be used in case statements to test objects by class.

Prepared exclusively for Margus Pau

MODULE 526

M
od

ul
e

ancestors mod.ancestors → array

Returns a list of modules included in mod (including mod itself).

module Mod
include Math
include Comparable

end

Mod.ancestors → [Mod, Comparable, Math]
Math.ancestors → [Math]

autoload mod.autoload(name, file_name) → nil

1.8 Registers file_name to be loaded (using Kernel.require) the first time that module
name (which may be a String or a Symbol) is accessed in the namespace of mod.
Note that the autoloaded file is evaluated in the top-level context. In this example,
module_b.rb contains

module A::B # in module_b.rb
def doit
puts "In Module A::B"

end
module_function :doit

end

Other code can then include this module automatically.

module A
autoload(:B, "module_b")

end

A::B.doit # autoloads "module_b"

produces:

In Module A::B

autoload? mod.autoload?(name) → file_name or nil

1.8 Returns the name of the file that will be autoloaded when the string or symbol name is
referenced in the context of mod, or returns nil if there is no associated autoload.

module A
autoload(:B, "module_b")

end
A.autoload?(:B) → "module_b"
A.autoload?(:C) → nil

class_eval mod.class_eval(string 〈 , file_name 〈 , line_number 〉 〉) → obj
mod.class_eval { block } → obj

Synonym for Module.module_eval.

Prepared exclusively for Margus Pau

MODULE 527

M
od

ul
e

class_variables mod.class_variables → array

Returns an array of the names of class variables in mod and the ancestors of mod.

class One
@@var1 = 1

end
class Two < One
@@var2 = 2

end
One.class_variables → ["@@var1"]
Two.class_variables → ["@@var2", "@@var1"]

clone mod.clone → other_mod

Creates a new copy of a module.

m = Math.clone → #<Module:0x1c9760>
m.constants → ["E", "PI"]
m == Math → false

const_defined? mod.const_defined?(symbol) → true or false

Returns true if a constant with the given name is defined by mod.

Math.const_defined? "PI" → true

const_get mod.const_get(symbol) → obj

Returns the value of the named constant in mod.

Math.const_get :PI → 3.14159265358979

const_missing const_missing(symbol) → obj

1.8 Invokedwhen a reference is made to an undefined constant in mod. It is passed a symbol
for the undefined constant and returns a value to be used for that constant. The following
code is very poor style. If a reference is made to an undefined constant, it attempts to
load a file whose name is the lowercase version of the constant (thus, class Fred is
assumed to be in file fred.rb). If found, it returns the value of the loaded class. It
therefore implements a perverse kind of autoload facility.

def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"

end

Prepared exclusively for Margus Pau

MODULE 528

M
od

ul
e

const_set mod.const_set(symbol, obj) → obj

Sets the named constant to the given object, returning that object. Creates a new con-
stant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) → 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI → 0.00126448926734968

constants mod.constants → array

Returns an array of the names of the constants accessible in mod. This includes the
names of constants in any included modules (example at start of section).

include? mod.include?(other_mod) → true or false
1.8 Returns true if other_mod is included in mod or one of mod’s ancestors.

module A
end

class B
include A

end

class C < B
end

B.include?(A) → true
C.include?(A) → true
A.include?(A) → false

included_modules mod.included_modules→ array

Returns the list of modules included in mod.

module Mixin
end

module Outer
include Mixin

end

Mixin.included_modules → []
Outer.included_modules → [Mixin]

instance_method mod.instance_method(symbol) → unbound_method

1.8 Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end

Prepared exclusively for Margus Pau

MODULE 529

M
od

ul
e

Dispatcher = {
?a => instance_method(:do_a),
?d => instance_method(:do_d),
?e => instance_method(:do_e),
?v => instance_method(:do_v)

}

def interpret(string)
string.each_byte {|b| Dispatcher[b].bind(self).call }

end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!

instance_methods mod.instance_methods(inc_super=true) → array

1.8 Returns an array containing the names of public instance methods in the receiver. For a
module, these are the public methods; for a class, they are the instance (not singleton)
methods. With no argument, or with an argument that is true, the methods in mod
and mod’s superclasses are returned. When called with a module as a receiver or with
a parameter that is false, the instance methods in mod are returned. (The parameter
defaults to false in versions of Ruby prior to January 2004.)

module A
def method1()
end

end

class B
def method2()
end

end

class C < B
def method3()
end

end

A.instance_methods
B.instance_methods(false)
C.instance_methods(false)
C.instance_methods(true).length

method_defined? mod.method_defined?(symbol) → true or false

Returns true if the named method is defined by mod (or its included modules and, if
mod is a class, its ancestors). Public and protected methods are matched.

Prepared exclusively for Margus Pau

MODULE 530

M
od

ul
e

module A
def method1() end

end
class B
def method2() end

end
class C < B
include A
def method3() end

end

A.method_defined? :method1 → true
C.method_defined? "method1" → true
C.method_defined? "method2" → true
C.method_defined? "method3" → true
C.method_defined? "method4" → false

module_eval mod.class_eval(string 〈 , file_name 〈 , line_number 〉 〉) → obj
mod.module_eval { block } → obj

Evaluates the string or block in the context of mod. This can be used to add methods
to a class. module_eval returns the result of evaluating its argument. The optional1.8
file_name and line_number parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable

or method `code' for Thing:Class

name mod.name → string

Returns the name of the module mod.

private_class_method mod.private_class_method(〈 symbol 〉+) → nil

Makes existing class methods private. Often used to hide the default constructor new.

class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me

end
end

Prepared exclusively for Margus Pau

MODULE 531

M
od

ul
e

private_instance_methods
mod.private_instance_methods(inc_super=true) → array

1.8 Returns a list of the private instance methods defined in mod. If the optional parameter
is true, the methods of any ancestors are included. (The parameter defaults to false in
versions of Ruby prior to January 2004.)

module Mod
def method1() end
private :method1
def method2() end

end
Mod.instance_methods → ["method2"]
Mod.private_instance_methods → ["method1"]

private_method_defined? mod.private_method_defined?(symbol) → true or false

1.8 Returns true if the named private method is defined by mod (or its included modules
and, if mod is a class, its ancestors).

module A
def method1() end

end
class B
private
def method2() end

end
class C < B
include A
def method3() end

end

A.method_defined? :method1 → true
C.private_method_defined? "method1" → false
C.private_method_defined? "method2" → true
C.method_defined? "method2" → false

protected_instance_methods
mod.protected_instance_methods(inc_super=true) → array

1.8 Returns a list of the protected instance methods defined in mod. If the optional parame-
ter is true, the methods of any ancestors are included. (The parameter defaults to false
in versions of Ruby prior to January 2004.)

protected_method_defined? mod.protected_method_defined?(symbol) → true or false

1.8 Returns true if the named protected method is defined by mod (or its included modules
and, if mod is a class, its ancestors).

Prepared exclusively for Margus Pau

MODULE 532

M
od

ul
e

module A
def method1() end

end
class B
protected
def method2() end

end
class C < B
include A
def method3() end

end

A.method_defined? :method1 → true
C.protected_method_defined? "method1" → false
C.protected_method_defined? "method2" → true
C.method_defined? "method2" → true

public_class_method mod.public_class_method(〈 symbol 〉+) → nil

Makes a list of existing class methods public.

public_instance_methods
mod.public_instance_methods(inc_super=true) → array

1.8 Returns a list of the public instance methods defined in mod. If the optional parameter
is true, the methods of any ancestors are included. (The parameter defaults to false in
versions of Ruby prior to January 2004.)

public_method_defined? mod.public_method_defined?(symbol) → true or false

1.8 Returns true if the named public method is defined by mod (or its included modules
and, if mod is a class, its ancestors).

module A
def method1() end

end
class B
protected
def method2() end

end
class C < B
include A
def method3() end

end

A.method_defined? :method1 → true
C.public_method_defined? "method1" → true
C.public_method_defined? "method2" → false
C.method_defined? "method2" → true

Prepared exclusively for Margus Pau

MODULE 533

M
od

ul
e

Private instance methods
alias_method alias_method(new_id, old_id) → mod

Makes new_id a new copy of the method old_id. This can be used to retain access to
methods that are overridden.

module Mod
alias_method :orig_exit, :exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)

end
end
include Mod
exit(99)

produces:

Exiting with code 99

append_features append_features(other_mod) → mod

When this module is included in another, Ruby calls append_features in this module,
passing it the receiving module in other_mod. Ruby’s default implementation is to
add the constants, methods, and module variables of this module to other_mod if this
module has not already been added to other_mod or one of its ancestors. Prior to Ruby
1.8, user code often redefined append_features, added its own functionality, and then
invoked super to handle the real include. In Ruby 1.8, you should instead implement
the method Module#included.1.8 See also Module#include on page 535.

attr attr(symbol, writable=false) → nil

Defines a named attribute for this module, where the name is symbol.id2name, cre-
ating an instance variable (@name) and a corresponding access method to read it. If
the optional writable argument is true, also creates a method called name= to set the
attribute.

module Mod
attr :size, true

end

is equivalent to:

module Mod
def size
@size

end
def size=(val)
@size = val

end
end

Prepared exclusively for Margus Pau

MODULE 534

M
od

ul
e

attr_accessor attr_accessor(〈 symbol 〉+) → nil

Equivalent to calling “attr symbol, true” on each symbol in turn.

module Mod
attr_accessor(:one, :two)

end
Mod.instance_methods.sort → ["one", "one=", "two", "two="]

attr_reader attr_reader(〈 symbol 〉+) → nil

Creates instance variables and corresponding methods that return the value of each
instance variable. Equivalent to calling attr :name on each name in turn.

attr_writer attr_writer(〈 symbol 〉+) → nil

Creates an accessor method to allow assignment to the attribute symbol.id2name.

define_method define_method(symbol, method) → method
define_method(symbol) { block } → proc

1.8 Defines an instance method in the receiver. The method parameter can be a Proc or
Method object. If a block is specified, it is used as the method body. This block is eval-
uated using instance_eval. This is tricky to demonstrate because define_method is
private. (This is why we resort to the send hack in this example.)

class A
def fred
puts "In Fred"

end
def create_method(name, &block)
self.class.send(:define_method, name, &block)

end
define_method(:wilma) { puts "Charge it!" }

end
class B < A
define_method(:barney, instance_method(:fred))

end
b = B.new
b.barney
b.wilma
b.create_method(:betty) { p self }
b.betty

produces:

In Fred
Charge it!
#<B:0x1c9134>

Prepared exclusively for Margus Pau

MODULE 535

M
od

ul
e

extend_object extend_object(obj) → obj

Extends the specified object by adding this module’s constants and methods (which are
added as singleton methods). This is the callback method used by Object#extend.

module Picky
def Picky.extend_object(o)
if String === o

puts "Can't add Picky to a String"
else

puts "Picky added to #{o.class}"
super

end
end

end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String

extended extended(other_mod)
1.8 Callback invoked whenever the receiver is used to extend an object. The object is passed

as a parameter. This should be used in preference to Module#extend_object if your
code wants to perform some action when a module is used to extend an object.

module A
def A.extended(obj)
puts "#{self} extending '#{obj}'"

end
end
"cat".extend(A)

produces:

A extending 'cat'

include include(〈 other_mod 〉+) → mod

Invokes Module.append_features (documented on page 533) on each parameter (in
reverse order). Equivalent to the following code.

def include(*modules)
modules.reverse_each do |mod|
mod.append_features(self)
mod.included(self)

end
end

included included(other_mod)
1.8 Callback invoked whenever the receiver is included in another module or class. This

Prepared exclusively for Margus Pau

MODULE 536

M
od

ul
e

should be used in preference to Module#append_features if your code wants to per-
form some action when a module is included in another.

module A
def A.included(mod)
puts "#{self} included in #{mod}"

end
end
module Enumerable
include A

end

produces:

A included in Enumerable

method_added method_added(symbol)

Invoked as a callback whenever a method is added to the receiver.

module Chatty
def Chatty.method_added(id)
puts "Adding #{id.id2name}"

end
def one() end

end
module Chatty
def two() end

end

produces:

Adding one
Adding two

method_removed method_removed(symbol)

1.8 Invoked as a callback whenever a method is removed from the receiver.

module Chatty
def Chatty.method_removed(id)
puts "Removing #{id.id2name}"

end
def one() end

end
module Chatty
remove_method(:one)

end

produces:

Removing one

method_undefined method_undefined(symbol)

1.8 Invoked as a callback whenever a method is undefined in the receiver.

Prepared exclusively for Margus Pau

MODULE 537

M
od

ul
e

module Chatty
def Chatty.method_undefined(id)
puts "Undefining #{id.id2name}"

end
def one() end

end
module Chatty
undef_method(:one)

end

produces:

Undefining one

module_function module_function(〈 symbol 〉∗) → mod

Creates module functions for the named methods. These functions may be called with
the module as a receiver and are available as instance methods to classes that mix in
the module. Module functions are copies of the original and so may be changed inde-
pendently. The instance-method versions are made private. If used with no arguments,
subsequently defined methods become module functions.

module Mod
def one
"This is one"

end
module_function :one

end
class Cls
include Mod
def call_one
one

end
end
Mod.one → "This is one"
c = Cls.new
c.call_one → "This is one"
module Mod
def one
"This is the new one"

end
end
Mod.one → "This is one"
c.call_one → "This is the new one"

private private(〈 symbol 〉∗) → mod

With no arguments, sets the default visibility for subsequently defined methods to pri-
vate. With arguments, sets the named methods to have private visibility. See “Access
Control” starting on page 341.

Prepared exclusively for Margus Pau

MODULE 538

M
od

ul
e

module Mod
def a() end
def b() end
private
def c() end
private :a

end
Mod.private_instance_methods → ["c", "a"]

protected protected(〈 symbol 〉∗) → mod

With no arguments, sets the default visibility for subsequently defined methods to
protected. With arguments, sets the named methods to have protected visibility. See
“Access Control” starting on page 341.

public public(〈 symbol 〉∗) → mod

With no arguments, sets the default visibility for subsequently defined methods to pub-
lic. With arguments, sets the named methods to have public visibility. See “Access
Control” starting on page 341.

remove_class_variable remove_class_variable(symbol) → obj

1.8 Removes the definition of the symbol, returning that constant’s value.

class Dummy
@@var = 99
puts @@var
remove_class_variable(:@@var)
puts(defined? @@var)

end

produces:

99
nil

remove_const remove_const(symbol) → obj

Removes the definition of the given constant, returning that constant’s value. Predefined
classes and singleton objects (such as true) cannot be removed.

remove_method remove_method(symbol) → mod

Removes the method identified by symbol from the current class. For an example, see
Module.undef_method.

undef_method undef_method(〈 symbol 〉+) → mod

Prevents the current class from responding to calls to the named method(s). Contrast
this with remove_method, which deletes the method from the particular class; Ruby
will still search superclasses and mixed-in modules for a possible receiver.

Prepared exclusively for Margus Pau

MODULE 539

M
od

ul
e

class Parent
def hello
puts "In parent"

end
end
class Child < Parent
def hello
puts "In child"

end
end

c = Child.new
c.hello

class Child
remove_method :hello # remove from child, still in parent

end
c.hello

class Child
undef_method :hello # prevent any calls to 'hello'

end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x1c92ec> (NoMethodError)

Prepared exclusively for Margus Pau

NILCLASS 540

N
ilC

la
ss

Class NilClass < Object

The class of the singleton object nil.

Instance methods
& nil & obj → false

And—Returns false. As obj is an argument to a method call, it is always evaluated;
there is no short-circuit evaluation in this case.

nil && puts("logical and")
nil & puts("and")

produces:

and

^ nil ^ obj → true or false

Exclusive Or—Returns false if obj is nil or false, and returns true otherwise.

| nil | obj → true or false

Or—Returns false if obj is nil or false, and returns true otherwise.

nil | false → false
nil | 99 → true

nil? nil.nil? → true

Always returns true.

to_a nil.to_a → []

Always returns an empty array.

nil.to_a → []

to_f nil.to_f → 0.0
1.8 Always returns zero.

nil.to_f → 0.0

to_i nil.to_i → 0

Always returns zero.

nil.to_i → 0

to_s nil.to_s → ""

Always returns the empty string.

nil.to_s → ""

Prepared exclusively for Margus Pau

NUMERIC 541

N
um

er
ic

Class Numeric < Object

Subclasses: Float, Integer

Numeric is the fundamental base type for the abstract class Integer and the concrete
number classes Float, Fixnum, and Bignum. Many methods in Numeric are overrid-
den in child classes, and Numeric takes some liberties by calling methods in these
child classes. A complete list of the methods defined in all five classes is shown in
Table 27.11 on page 543.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Instance methods
+@ +num → num

Unary Plus—Returns the receiver’s value.

-@ –num → numeric

Unary Minus—Returns the receiver’s value, negated.

<=> num <=> other → 0 or nil

Returns zero if num equals other, and returns nil otherwise.

abs num.abs → numeric

Returns the absolute value of num.

12.abs → 12
(-34.56).abs → 34.56
-34.56.abs → 34.56

ceil num.ceil → int

Returns the smallest Integer greater than or equal to num. Class Numeric achieves
this by converting itself to a Float and then invoking Float#ceil.

1.ceil → 1
1.2.ceil → 2
(-1.2).ceil → -1
(-1.0).ceil → -1

coerce num.coerce(numeric) → array

coerce is both an instance method of Numeric and part of a type conversion protocol.
When a number is asked to perform an operation and it is passed a parameter of a class
different to its own, it must first coerce both itself and that parameter into a common

Prepared exclusively for Margus Pau

NUMERIC 542

N
um

er
ic

class so that the operation makes sense. For example, in the expression 1 + 2.5, the
Fixnum 1 must be converted to a Float to make it compatible with 2.5. This con-
version is performed by coerce. For all numeric objects, coerce is straightforward: if
numeric is the same type as num, returns an array containing numeric and num. Other-
wise, returns an array with both numeric and num represented as Float objects.

1.coerce(2.5) → [2.5, 1.0]
1.2.coerce(3) → [3.0, 1.2]
1.coerce(2) → [2, 1]

If a numeric object is asked to operate on a non-numeric, it tries to invoke coerce on
that other object. For example, if you write

1 + "2"

Ruby will effectively execute the code as

n1, n2 = "2".coerce(1)
n2 + n1

In the more general case, this won’t work, as most non-numerics don’t define a coerce
method. However, you can use this (if you feel so inclined) to implement part of Perl’s
automatic conversion of strings to numbers in expressions.

class String
def coerce(other)
case other
when Integer

begin
return other, Integer(self)

rescue
return Float(other), Float(self)

end
when Float

return other, Float(self)
else super
end

end
end

1 + "2" → 3
1 - "2.3" → -1.3
1.2 + "2.3" → 3.5
1.5 - "2" → -0.5

coerce is discussed further on page 358.

div num.div(numeric) → int

1.8 Uses / to perform division, and then converts the result to an integer. Numeric does not
define the / operator; this is left to subclasses.

Prepared exclusively for Margus Pau

NUMERIC 543

N
um

er
ic

Table 27.11: Methods
defined in class Numeric
and its subclasses. A
means that the method is
defined in the
corresponding class.

Numeric Integer Fixnum Bignum Float

% – –
& – – –
∗ – –

∗∗ – –
+ – –

+@ – – – –
- – –

-@ –
/ – –
< – – –

<< – – –
<= – – –

<=> –
== – –
> – – –

>= – – –
>> – – –
[] – – –
^ – – –

abs –

ceil – –
chr – – – –

coerce – –
div – –

divmod –

downto – – – –
eql? – –

finite? – – – –
floor – –
hash – – –

id2name – – – –
infinite? – – – –
integer? – – –
modulo –

nan? – – – –

next – – – –
nonzero? – – – –

quo – –
remainder – – –

round – –

size – – –
step – – – –
succ – – – –

times – – – –
to_f – –

to_i – – –
to_int – –

to_s – –
to_sym – – – –
truncate – –

upto – – – –
zero? – –

| – – –
~ – – –

Prepared exclusively for Margus Pau

NUMERIC 544

N
um

er
ic

Table 27.12. Difference between modulo and remainder. The modulo operator (“%”)
always has the sign of the divisor whereas remainder has the sign of the dividend.

a b a.divmod(b) a / b a.modulo(b) a.remainder(b)

13 4 3, 1 3 1 1
13 −4 −4, −3 −4 −3 1

−13 4 −4, 3 −4 3 −1
−13 −4 3, −1 3 −1 −1

11.5 4 2.0, 3.5 2.875 3.5 3.5
11.5 −4 −3.0, −0.5 −2.875 −0.5 3.5

−11.5 4 −3.0, 0.5 −2.875 0.5 −3.5
−11.5 −4 2.0, −3.5 2.875 −3.5 −3.5

divmod num.divmod(numeric) → array

Returns an array containing the quotient and modulus obtained by dividing num by
numeric. If q,r = x.divmod(y), q = floor(float(x)/float(y)) and x = q × y + r.
The quotient is rounded toward −∞. See Table 27.12 for examples.

eql? num.eql?(numeric) → true or false

Returns true if num and numeric are the same type and have equal values.

1 == 1.0 → true
1.eql?(1.0) → false
(1.0).eql?(1.0) → true

floor num.floor → int

Returns the largest integer less than or equal to num. Numeric implements this by
converting int to a Float and invoking Float#floor.

1.floor → 1
(-1).floor → -1

integer? num.integer? → true or false

Returns true if num is an Integer (including Fixnum and Bignum).

modulo num.modulo(numeric) → numeric

Equivalent to num.divmod(numeric)[1].

nonzero? num.nonzero?→ num or nil

Returns num if num is not zero, and returns nil otherwise. This behavior is useful when
chaining comparisons.

Prepared exclusively for Margus Pau

NUMERIC 545

N
um

er
ic

a = %w(z Bb bB bb BB a aA Aa AA A)
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b → ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

quo num.quo(numeric) → numeric

1.8 Equivalent to Numeric#/, but overridden in subclasses. The intent of quo is to return
the most accurate result of division (in context). Thus 1.quo(2) will equal 0.5, and
1/2 equals 0.

remainder num.remainder(numeric) → numeric

If num and numeric have different signs, returns mod−numeric; otherwise, returns
mod. In both cases mod is the value num.modulo(numeric). The differences between
remainder and modulo (%) are shown in Table 27.12 on the preceding page.

round num.round → int

Rounds num to the nearest integer. Numeric implements this by converting int to a
Float and invoking Float#round.

step num.step(end_num, step) {| i | block } → num

1.8 Invokes block with the sequence of numbers starting at num, incremented by step
on each call. The loop finishes when the value to be passed to the block is greater
than end_num (if step is positive) or less than end_num (if step is negative). If all the
arguments are integers, the loop operates using an integer counter. If any of the argu-
ments are floating-point numbers, all are converted to floats, and the loop is executed

n + n ∗ ε�+ 1 times, where n = (end_num− num)/step. Otherwise, the loop starts
at num, uses either the < or > operator to compare the counter against end_num, and
increments itself using the + operator.

1.step(10, 2) {|i| print i, " " }
Math::E.step(Math::PI, 0.2) {|f| print f, " " }

produces:

1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905

to_int num.to_int → int

Invokes the child class’s to_i method to convert num to an integer.

truncate num.truncate → int

Returns num truncated to an integer. Numeric implements this by converting its value
to a float and invoking Float#truncate.

zero? num.zero? → true or false

Returns true if num has a zero value.

Prepared exclusively for Margus Pau

OBJECT 546

O
bj

ec
t

Class Object
Subclasses: Array, Binding, Continuation, Data (used internally by the interpreter),
Dir, Exception, FalseClass, File::Stat, Hash, IO, MatchData, Method, Module, Nil-
Class, Numeric, Proc, Process::Status, Range, Regexp, String, Struct, Symbol, Thread,
ThreadGroup, Time, TrueClass, UnboundMethod

Object is the parent class of all classes in Ruby. Its methods are therefore available to
all objects unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally
accessible. Although the instance methods of Object are defined by the Kernel mod-
ule, we have chosen to document them here for clarity.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either
a quoted string or a Symbol (such as :name).

Instance methods
== obj == other_obj → true or false

Equality—At the Object level, == returns true only if obj and other_obj are the same
object. Typically, this method is overridden in descendent classes to provide class-
specific meaning.

=== obj === other_obj → true or false

Case Equality—A synonym for Object#==, but typically overridden by descendents to
provide meaningful semantics in case statements.

=~ obj =~ other_obj → false

Pattern Match—Overridden by descendents (notably Regexp and String) to provide
meaningful pattern-match semantics.

_ _id_ _ obj._ _id_ _ → fixnum

Synonym for Object#object_id.

_ _send_ _ obj._ _send_ _(symbol 〈 , args 〉+ 〈 , &block 〉) → other_obj

Synonym for Object#send.

class obj.class → klass

Returns the class of obj, now preferred over Object#type, as an object’s type in Ruby
is only loosely tied to that object’s class. This method must always be called with an
explicit receiver, as class is also a reserved word in Ruby.

1.class → Fixnum
self.class → Object

Prepared exclusively for Margus Pau

OBJECT 547

O
bj

ec
t

clone obj.clone → other_obj

Produces a shallow copy of obj—the instance variables of obj are copied, but not the
objects they reference. Copies the frozen and tainted state of obj. See also the discussion
under Object#dup.

class Klass
attr_accessor :str

end
s1 = Klass.new → #<Klass:0x1c9170>
s1.str = "Hello" → "Hello"
s2 = s1.clone → #<Klass:0x1c90d0 @str="Hello">
s2.str[1,4] = "i" → "i"
s1.inspect → "#<Klass:0x1c9170 @str=\"Hi\">"
s2.inspect → "#<Klass:0x1c90d0 @str=\"Hi\">"

display obj.display(port=$>) → nil

Prints obj on the given port (default $>). Equivalent to

def display(port=$>)
port.write self

end

For example:

1.display
"cat".display
[4, 5, 6].display
puts

produces:

1cat456

dup obj.dup → other_obj

Produces a shallow copy of obj—the instance variables of obj are copied, but not the
objects they reference. dup copies the tainted state of obj. See also the discussion under
Object#clone. In general, clone and dup may have different semantics in descendent
classes. While clone is used to duplicate an object, including its internal state, dup
typically uses the class of the descendent object to create the new instance.

eql? obj.eql?(other_obj) → true or false

Returns true if obj and other_obj have the same value. Used by Hash to test members
for equality. For objects of class Object, eql? is synonymous with ==. Subclasses
normally continue this tradition, but there are exceptions. Numeric types, for example,
perform type conversion across ==, but not across eql?, so

1 == 1.0 → true
1.eql? 1.0 → false

Prepared exclusively for Margus Pau

OBJECT 548

O
bj

ec
t

equal? obj.equal?(other_obj) → true or false

Returns true if obj and other_obj have the same object ID. This method should not be
overridden by subclasses.

a = ['cat', 'dog']
b = ['cat', 'dog']
a == b → true
a.id == b.id → false
a.eql?(b) → true
a.equal?(b) → false

extend obj.extend(〈 mod 〉+) → obj

Adds to obj the instance methods from each module given as a parameter. See also
Module#extend_object.

module Mod
def hello
"Hello from Mod.\n"

end
end

class Klass
def hello
"Hello from Klass.\n"

end
end

k = Klass.new
k.hello → "Hello from Klass.\n"
k.extend(Mod) → #<Klass:0x1c9300>
k.hello → "Hello from Mod.\n"

Writing obj.extend(Mod) is basically the same as the following.

class <<obj
include Mod

end

freeze obj.freeze → obj

Prevents further modifications to obj. A TypeError will be raised if modification is
attempted. You cannot unfreeze a frozen object. See also Object#frozen?.

a = ["a", "b", "c"]
a.freeze
a << "z"

produces:

prog.rb:3:in `<<': can't modify frozen array (TypeError)
from prog.rb:3

Prepared exclusively for Margus Pau

OBJECT 549

O
bj

ec
t

frozen? obj.frozen? → true or false

Returns the freeze status of obj.

a = ["a", "b", "c"]
a.freeze → ["a", "b", "c"]
a.frozen? → true

hash obj.hash → fixnum

Generates a Fixnum hash value for this object. This function must have the property
that a.eql?(b) implies a.hash == b.hash. The hash value is used by class Hash.
Any hash value that exceeds the capacity of a Fixnum will be truncated before being
used.

id obj.id → fixnum

1.8 Soon-to-be-deprecated version of Object#object_id.

initialize_copy obj.initialize_copy(other)→ other_obj or obj

1.8 Part of the protocol used by Object#dup and Object#clone, initialize_copy is
invoked as a callback which should copy across any state information that dup and
clone cannot copy themselves. Typically this is useful only when writing C extensions.
Think of initialize_copy as a kind of copy constructor.

inspect obj.inspect → string

Returns a string containing a human-readable representation of obj. If not overridden,
uses the to_s method to generate the string.

[1, 2, 3..4, 'five'].inspect → "[1, 2, 3..4, \"five\"]"
Time.new.inspect → "Thu Aug 26 22:37:49 CDT 2004"

instance_eval obj.instance_eval(string 〈 , file 〈 , line 〉 〉) → other_obj
obj.instance_eval { block } → other_obj

Evaluates a string containing Ruby source code, or the given block, within the con-
text of the receiver (obj). To set the context, the variable self is set to obj while the
code is executing, giving the code access to obj’s instance variables. In the version of
instance_eval that takes a String, the optional second and third parameters supply
a filename and starting line number that are used when reporting compilation errors.

class Klass
def initialize
@secret = 99

end
end
k = Klass.new
k.instance_eval { @secret } → 99

Prepared exclusively for Margus Pau

OBJECT 550

O
bj

ec
t

instance_of? obj.instance_of?(klass) → true or false

Returns true if obj is an instance of the given class. See also Object#kind_of?.

instance_variable_get obj.instance_variable_get(symbol) → other_obj

1.8 Returns the value of the given instance variable (or throws a NameError exception).
The @ part of the variable name should be included for regular instance variables.

class Fred
def initialize(p1, p2)
@a, @b = p1, p2

end
end
fred = Fred.new('cat', 99)
fred.instance_variable_get(:@a) → "cat"
fred.instance_variable_get("@b") → 99

instance_variable_set obj.instance_variable_get(symbol, other_obj) → other_obj

1.8 Sets the instance variable names by symbol to other_obj, thereby frustrating the efforts
of the class’s author to attempt to provide proper encapsulation.

class Fred
def initialize(p1, p2)
@a, @b = p1, p2

end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog') → "dog"
fred.inspect → "#<Fred:0x1c94e0 @b=99,

@a=\"dog\">"

instance_variables obj.instance_variables→ array

Returns an array of instance variable names for the receiver. Note that simply defining
an accessor does not create the corresponding instance variable.

class Fred
attr_accessor :a1
def initialize
@iv = 3

end
end
Fred.new.instance_variables → ["@iv"]

is_a? obj.is_a?(klass) → true or false

Synonym for Object#kind_of?.

Prepared exclusively for Margus Pau

OBJECT 551

O
bj

ec
t

kind_of? obj.kind_of?(klass) → true or false

Returns true if klass is the class of obj, or if klass is one of the superclasses of obj or
modules included in obj.

module M; end
class A
include M

end
class B < A; end
class C < B; end
b = B.new
b.instance_of? A → false
b.instance_of? B → true
b.instance_of? C → false
b.instance_of? M → false
b.kind_of? A → true
b.kind_of? B → true
b.kind_of? C → false
b.kind_of? M → true

method obj.method(symbol) → meth

Looks up the named method in obj, returning a Method object (or raising NameError).
The Method object acts as a closure in obj’s object instance, so instance variables and
the value of self remain available.

class Demo
def initialize(n)
@iv = n

end
def hello()
"Hello, @iv = #{@iv}"

end
end

k = Demo.new(99)
m = k.method(:hello)
m.call → "Hello, @iv = 99"

l = Demo.new('Fred')
m = l.method("hello")
m.call → "Hello, @iv = Fred"

method_missing obj.method_missing(symbol 〈 , *args 〉) → other_obj

Invoked by Ruby when obj is sent a message it cannot handle. symbol is the symbol
for the method called, and args are any arguments that were passed to it. The example
below creates a class Roman, which responds to methods with names consisting of
roman numerals, returning the corresponding integer values. A more typical use of
method_missing is to implement proxies, delegators, and forwarders.

Prepared exclusively for Margus Pau

OBJECT 552

O
bj

ec
t

class Roman
def roman_to_int(str)
...

end
def method_missing(method_id)
str = method_id.id2name
roman_to_int(str)

end
end

r = Roman.new
r.iv → 4
r.xxiii → 23
r.mm → 2000

methods obj.methods(regular=true) → array

1.8 If regular is true, returns a list of the names of methods publicly accessible in obj and
obj’s ancestors. Otherwise return a list of obj’s singleton methods.

class Klass
def my_method()
end

end
k = Klass.new
def k.single
end
k.methods[0..9] → ["dup", "hash", "single", "private_methods",

"nil?", "tainted?", "class", "my_method",
"singleton_methods", "=~"]

k.methods.length → 42
k.methods(false) → ["single"]

nil? obj.nil? → true or false

All objects except nil return false.

object_id obj.object_id → fixnum

1.8 Returns an integer identifier for obj. The same number will be returned on all
calls to object_id for a given object, and no two active objects will share an ID.
Object#object_id is a different concept from the :name notation, which returns the
symbol ID of name. Replaces the deprecated Object#id.

private_methods obj.private_methods→ array

Returns a list of private methods accessible within obj. This will include the private
methods in obj’s ancestors, along with any mixed-in module functions.

protected_methods obj.protected_methods→ array

Returns the list of protected methods accessible to obj.

Prepared exclusively for Margus Pau

OBJECT 553

O
bj

ec
t

public_methods obj.public_methods→ array

Synonym for Object#methods.

respond_to? obj.respond_to?(symbol, include_priv=false) → true or false

Returns true if obj responds to the given method. Private methods are included in the
search only if the optional second parameter evaluates to true.

send obj.send(symbol 〈 , args 〉∗ 〈 , &block 〉) → other_obj

Invokes the method identified by symbol, passing it any arguments and block. You can
use __send__ if the name send clashes with an existing method in obj.

class Klass
def hello(*args)
"Hello " + args.join(' ')

end
end
k = Klass.new
k.send :hello, "gentle", "readers" → "Hello gentle readers"

singleton_methods obj.singleton_methods(all=true) → array

Returns an array of the names of singleton methods for obj. If the optional all parameter
is true, the list will include methods in modules included in obj. (The parameter defaults
to false in versions of Ruby prior to January 2004.)1.8

module Other
def three() end

end

class Single
def Single.four() end

end

a = Single.new

def a.one() end

class << a
include Other
def two() end

end

Single.singleton_methods → ["four"]
a.singleton_methods(false) → ["two", "one"]
a.singleton_methods(true) → ["two", "one", "three"]
a.singleton_methods → ["two", "one", "three"]

Prepared exclusively for Margus Pau

OBJECT 554

O
bj

ec
t

taint obj.taint → obj

Marks obj as tainted. If the $SAFE level is greater than zero, some objects will be tainted
on creation. See Chapter 25, which begins on page 379.

tainted? obj.tainted? → true or false

Returns true if the object is tainted.

a = "cat"
a.tainted? → false
a.taint → "cat"
a.tainted? → true
a.untaint → "cat"
a.tainted? → false

to_a obj.to_a → array

Returns an array representation of obj. For objects of class Object and others that
don’t explicitly override the method, the return value is an array containing self. As
of Ruby 1.91.8 to_a will no longer be implemented by class Object—it is up to individual
subclasses to provide their own implementations.

self.to_a → -:1: warning: default `to_a' will be
obsolete\n[main]

"hello".to_a → ["hello"]
Time.new.to_a → [50, 37, 22, 26, 8, 2004, 4, 239, true, "CDT"]

to_s obj.to_s → string

Returns a string representing obj. The default to_s prints the object’s class and an
encoding of the object ID. As a special case, the top-level object that is the initial
execution context of Ruby programs returns “main.”

type obj.type → klass

1.8 Deprecated synonym for Object#class.

untaint obj.untaint → obj

Removes the taint from obj.

Private instance methods
initialize initialize(〈 arg 〉+)

Called as the third and final step in object construction, initialize is responsible for
setting up the initial state of the new object. You use the initialize method the same way
you’d use constructors in other languages. If you subclass classes other than Object,
you will probably want to call super to invoke the parent’s initializer.

Prepared exclusively for Margus Pau

OBJECT 555

O
bj

ec
t

class A
def initialize(p1)

puts "Initializing A: p1 = #{p1}"
@var1 = p1

end
end
class B < A
attr_reader :var1, :var2
def initialize(p1, p2)
super(p1)
puts "Initializing B: p2 = #{p2}"
@var2 = p2

end
end

b = B.new("cat", "dog")
puts b.inspect

produces:

Initializing A: p1 = cat
Initializing B: p2 = dog
#<B:0x1c9224 @var2="dog", @var1="cat">

remove_instance_variable remove_instance_variable(symbol) → other_obj

1.8 Removes the named instance variable from obj, returning that variable’s value.

class Dummy
attr_reader :var
def initialize
@var = 99

end
def remove
remove_instance_variable(:@var)

end
end
d = Dummy.new
d.var → 99
d.remove → 99
d.var → nil

singleton_method_added singleton_method_added(symbol)

1.8 Invoked as a callback whenever a singleton method is added to the receiver.

module Chatty
def Chatty.singleton_method_added(id)
puts "Adding #{id.id2name} to #{self.name}"

end
def self.one() end
def two() end

end
def Chatty.three() end

Prepared exclusively for Margus Pau

OBJECT 556

O
bj

ec
t

obj = "cat"
def obj.singleton_method_added(id)
puts "Adding #{id.id2name} to #{self}"

end

def obj.speak
puts "meow"

end

produces:

Adding singleton_method_added to Chatty
Adding one to Chatty
Adding three to Chatty
Adding singleton_method_added to cat
Adding speak to cat

singleton_method_removed singleton_method_removed(symbol)

1.8 Invoked as a callback whenever a singleton method is removed from the receiver.

module Chatty
def Chatty.singleton_method_removed(id)
puts "Removing #{id.id2name}"

end
def self.one() end
def two() end
def Chatty.three() end
class <<self
remove_method :three
remove_method :one

end
end

produces:

Removing three
Removing one

singleton_method_undefined singleton_method_undefined(symbol)

1.8 Invoked as a callback whenever a singleton method is undefined in the receiver.

module Chatty
def Chatty.singleton_method_undefined(id)
puts "Undefining #{id.id2name}"

end
def Chatty.one() end
class << self

undef_method(:one)
end

end

produces:

Undefining one

Prepared exclusively for Margus Pau

OBJECTSPACE 557

O
bj

ec
tS

pa
ce

Module ObjectSpace
The ObjectSpace module contains a number of routines that interact with the garbage
collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers. These are procs that will be
called when a specific object is about to be destroyed by garbage collection.

include ObjectSpace

a, b, c = "A", "B", "C"
puts "a's id is #{a.object_id}"
puts "b's id is #{b.object_id}"
puts "c's id is #{c.object_id}"

define_finalizer(a, lambda {|id| puts "Finalizer one on #{id}" })
define_finalizer(b, lambda {|id| puts "Finalizer two on #{id}" })
define_finalizer(c, lambda {|id| puts "Finalizer three on #{id}" })

produces:

a's id is 936150
b's id is 936140
c's id is 936130
Finalizer three on 936130
Finalizer two on 936140
Finalizer one on 936150

Module methods
_id2ref ObjectSpace._id2ref(object_id) → obj

Converts an object ID to a reference to the object. May not be called on an object ID
passed as a parameter to a finalizer.

s = "I am a string" → "I am a string"
oid = s.object_id → 936550
r = ObjectSpace._id2ref(oid) → "I am a string"
r → "I am a string"
r.equal?(s) → true

define_finalizer ObjectSpace.define_finalizer(obj, a_proc=proc())

Adds a_proc as a finalizer, called when obj is about to be destroyed.

each_object ObjectSpace.each_object(〈 class_or_mod 〉) {| obj | block } → fixnum

Calls the block once for each living, nonimmediate object in this Ruby process. If
class_or_mod is specified, calls the block for only those classes or modules that match
(or are a subclass of) class_or_mod. Returns the number of objects found. Immediate
objects (Fixnums, Symbols true, false, and nil) are never returned. In the example
below, each_object returns both the numbers we defined and several constants defined
in the Math module.

Prepared exclusively for Margus Pau

OBJECTSPACE 558

O
bj

ec
tS

pa
ce

a = 102.7
b = 95 # Fixnum: won't be returned
c = 12345678987654321
count = ObjectSpace.each_object(Numeric) {|x| p x }
puts "Total count: #{count}"

produces:

12345678987654321
102.7
2.71828182845905
3.14159265358979
2.22044604925031e-16
1.79769313486232e+308
2.2250738585072e-308
Total count: 7

garbage_collect ObjectSpace.garbage_collect→ nil

Initiates garbage collection (see module GC on page 470).

undefine_finalizer ObjectSpace.undefine_finalizer(obj)

Removes all finalizers for obj.

Prepared exclusively for Margus Pau

PROC 559

P
ro

c

Class Proc < Object

Proc objects are blocks of code that have been bound to a set of local variables. Once
bound, the code may be called in different contexts and still access those variables.

def gen_times(factor)
return Proc.new {|n| n*factor }

end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12) → 36
times5.call(5) → 25
times3.call(times5.call(4)) → 60

Class methods
new Proc.new { block } → a_proc

Proc.new → a_proc

Creates a new Proc object, bound to the current context. Proc.new may be called
without a block only within a method with an attached block, in which case that block
is converted to the Proc object.

def proc_from
Proc.new

end
proc = proc_from { "hello" }
proc.call → "hello"

Instance methods
[] prc[〈 params 〉∗] → obj

Synonym for Proc.call.

== prc== other → true or false

1.8 Returns true if prc is the same as other.

arity prc.arity → integer

1.8 Returns the number of arguments required by the block. If the block is declared to take
no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If
the block has optional arguments, return−(n+1), where n is the number of mandatory
arguments. A proc with no argument declarations also returns−1, as it can accept (and
ignore) an arbitrary number of parameters.

Prepared exclusively for Margus Pau

PROC 560

P
ro

c

Proc.new {}.arity → -1
Proc.new {||}.arity → 0
Proc.new {|a|}.arity → 1
Proc.new {|a,b|}.arity → 2
Proc.new {|a,b,c|}.arity → 3
Proc.new {|*a|}.arity → -1
Proc.new {|a,*b|}.arity → -2

In Ruby 1.9,1.8 arity is defined as the number of parameters that would not be ignored.
In 1.8, Proc.new{ }.arity returns -1, and in 1.9 it returns 0.

binding prc.binding → binding

1.8 Returns the binding associated with prc. Note that Kernel#eval accepts either a Proc
or a Binding object as its second parameter.

def fred(param)
lambda {}

end

b = fred(99)
eval("param", b.binding) → 99
eval("param", b) → 99

call prc.call(〈 params 〉∗) → obj

Invokes the block, setting the block’s parameters to the values in params using some-
thing close to method-calling semantics. Returns the value of the last expression eval-
uated in the block.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
a_proc.call(9, 1, 2, 3) → [9, 18, 27]
a_proc[9, 1, 2, 3] → [9, 18, 27]

If the block being called explicitly accepts a single parameter, call issues a warning
unless it has been given exactly one parameter.1.8 Otherwise it happily accepts what it is
given, ignoring surplus passed parameters and setting unset block parameters to nil.

a_proc = Proc.new {|a| a}
a_proc.call(1,2,3)

produces:

prog.rb:1: warning: multiple values for a block parameter (3 for 1)
from prog.rb:2

If you want a block to receive an arbitrary number of arguments, define it to accept

*args.

a_proc = Proc.new {|*a| a}
a_proc.call(1,2,3) → [1, 2, 3]

Blocks created using Kernel.lambda check that they are called with exactly the right
number of parameters.

Prepared exclusively for Margus Pau

PROC 561

P
ro

c

p_proc = Proc.new {|a,b| puts "Sum is: #{a + b}" }
p_proc.call(1,2,3)
p_proc = lambda {|a,b| puts "Sum is: #{a + b}" }
p_proc.call(1,2,3)

produces:

Sum is: 3
prog.rb:3: wrong number of arguments (3 for 2) (ArgumentError)
from prog.rb:3:in `call'
from prog.rb:4

to_proc prc.to_proc → prc

1.8 Part of the protocol for converting objects to Proc objects. Instances of class Proc
simply return themselves.

to_s prc.to_s → string

Returns a description of prc, including information on where it was defined.

def create_proc
Proc.new

end

my_proc = create_proc { "hello" }
my_proc.to_s → "#<Proc:0x001c7abc@prog.rb:5>"

Prepared exclusively for Margus Pau

PROCESS 562

P
ro

ce
ss

Module Process
The Process module is a collection of methods used to manipulate processes. Pro-
grams that want to manipulate real and effective user and group IDs should also look
at the Process::GID, and Process::UID modules. Much of the functionality here is
duplicated in the Process::Sys module.

Module constants

PRIO_PGRP Process group priority.
PRIO_PROCESS Process priority.
PRIO_USER User priority.
WNOHANG Do not block if no child has exited. Not available on all platforms.
WUNTRACED Return stopped children as well. Not available on all platforms.

Module methods
abort abort

abort(msg)

1.8 Synonym for Kernel.abort.

detach Process.detach(pid) → thread

1.8 Some operating systems retain the status of terminated child processes until the parent
collects that status (normally using some variant of wait()). If the parent never collects
this status, the child stays around as a zombie process. Process.detach prevents this
by setting up a separate Ruby thread whose sole job is to reap the status of the process
pid when it terminates. Use detach only when you do not intend to explicitly wait for
the child to terminate. detach checks the status only periodically (currently once each
second).

In this first example, we don’t reap the first child process, so it appears as a zombie in
the process status display.

pid = fork { sleep 0.1 }
sleep 1
system("ps -o pid,state -p #{pid}")

produces:

PID STAT
27836 ZN+

In the next example, Process.detach is used to reap the child automatically—no child
processes are left running.

pid = fork { sleep 0.1 }
Process.detach(pid)
sleep 1

Prepared exclusively for Margus Pau

PROCESS 563

P
ro

ce
ss

system("ps -o pid,state -p #{pid}")

produces:

PID STAT

egid Process.egid → int

Returns the effective group ID for this process.

Process.egid → 502

egid= Process.egid= int → int

Sets the effective group ID for this process.

euid Process.euid → int

Returns the effective user ID for this process.

Process.euid → 502

euid= Process.euid= int

Sets the effective user ID for this process. Not available on all platforms.

exit Process.exit(int=0)
1.8 Synonym for Kernel.exit.

exit! Process.exit!(true | false | status=1)
1.8 Synonym for Kernel.exit!. No exit handlers are run. 0, 1, or status is returned to the

underlying system as the exit status.

Process.exit!(0)

fork Process.fork 〈 { block } 〉 → int or nil

See Kernel.fork on page 501.

getpgid Process.getpgid(int) → int

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid()) → 25122

getpgrp Process.getpgrp → int

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0) → 25122
Process.getpgrp → 25122

Prepared exclusively for Margus Pau

PROCESS 564

P
ro

ce
ss

getpriority Process.getpriority(kind, int) → int

Gets the scheduling priority for specified process, process group, or user. kind indicates
the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or
Process::PRIO_PROCESS. int is an ID indicating the particular process, process group,
or user (an ID of 0 means current). Lower priorities are more favorable for scheduling.
Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0) → 19
Process.getpriority(Process::PRIO_PROCESS, 0) → 19

gid Process.gid → int

Returns the group ID for this process.

Process.gid → 502

gid= Process.gid= int → int

Sets the group ID for this process.

groups Process.groups → groups

1.8 Returns an array of integer supplementary group IDs. Not available on all platforms.
See also Process.maxgroups.

Process.groups → [502, 79, 80, 81]

groups= Process.groups = array → groups

1.8 Sets the supplementary group IDs from the given array, which may contain either num-
bers of group names (as strings). Not available on all platforms. Only available to super-
users. See also Process.maxgroups.

initgroups Process.initgroups(user, base_group) → groups

1.8 Initializes the group access list using the operating system’s initgroups call. Not
available on all platforms. May require superuser privilege.

Process.initgroups("dave", 500)

kill Process.kill(signal, 〈 pid 〉+) → int

Sends the given signal to the specified process ID(s) or to the current process if pid is
zero. signal may be an integer signal number or a POSIX signal name (either with or
without a SIG prefix). If signal is negative (or starts with a - sign), kills process groups
instead of processes. Not all signals are available on all platforms.

pid = fork do
Signal.trap("USR1") { puts "Ouch!"; exit }
... do some work ...

end

Prepared exclusively for Margus Pau

PROCESS 565

P
ro

ce
ss

...
Process.kill("USR1", pid)
Process.wait

produces:

-:2: SIGUSR1 (SignalException)
from -:1:in `fork'
from -:1

maxgroups Process.maxgroups→ count

1.8 The Process module has a limit on the number of supplementary groups it supports
in the calls Process.groups and Process.groups=. The maxgroups call returns that
limit (by default 32), and the maxgroups= call sets it.

Process.maxgroups → 32
Process.maxgroups = 64
Process.maxgroups → 64

maxgroups= Process.maxgroups= limit → count

1.8 Sets the maximum number of supplementary group IDs that can be processed by the
groups and groups= methods. If a number larger that 4096 is given, 4096 will be
used.

pid Process.pid → int

Returns the process ID of this process. Not available on all platforms.

Process.pid → 27864

ppid Process.ppid → int

Returns the process ID of the parent of this process. Always returns 0 on Windows. Not
available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 27866
Dad is 27866

setpgid Process.setpgid(pid, int) → 0

Sets the process group ID of pid (0 indicates this process) to int. Not available on all
platforms.

setpgrp Process.setpgrp → 0

Equivalent to setpgid(0,0). Not available on all platforms.

Prepared exclusively for Margus Pau

PROCESS 566

P
ro

ce
ss

setpriority Process.setpriority(kind, int, int_priority) → 0

See Process#getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19) → 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) → 0
Process.getpriority(Process::PRIO_USER, 0) → 19
Process.getpriority(Process::PRIO_PROCESS, 0) → 19

setsid Process.setsid → int

Establishes this process as a new session and process group leader, with no controlling
tty. Returns the session ID. Not available on all platforms.

Process.setsid → 27871

times Process.times → struct_tms
1.8 Returns a Tms structure (see Struct::Tms on page 609) that contains user and system

CPU times for this process.

t = Process.times
[t.utime, t.stime] → [0.01, 0.01]

uid Process.uid → int

Returns the user ID of this process.

Process.uid → 502

uid= Process.uid= int → numeric

Sets the (integer) user ID for this process. Not available on all platforms.

wait Process.wait → int

Waits for any child process to exit and returns the process ID of that child. Also sets
$? to the Process::Status object containing information on that process. Raises a
SystemError if there are no child processes. Not available on all platforms.

Process.fork { exit 99 } → 27878
Process.wait → 27878
$?.exitstatus → 99

waitall Process.waitall → [[pid1,status], . . .]

1.8 Waits for all children, returning an array of pid/status pairs (where status is an object
of class Process::Status).

Prepared exclusively for Margus Pau

PROCESS 567

P
ro

ce
ss

fork { sleep 0.2; exit 2 } → 27881
fork { sleep 0.1; exit 1 } → 27882
fork { exit 0 } → 27883
Process.waitall → [[27883, #<Process::Status:

pid=27883,exited(0)>], [27882,
#<Process::Status:
pid=27882,exited(1)>], [27881,
#<Process::Status:
pid=27881,exited(2)>]]

wait2 Process.wait2 → [pid, status]

1.8 Waits for any child process to exit and returns an array containing the process ID and
the exit status (a Process::Status object) of that child. Raises a SystemError if no
child processes exist.

Process.fork { exit 99 } → 27886
pid, status = Process.wait2
pid → 27886
status.exitstatus → 99

waitpid Process.waitpid(pid, int=0) → pid

Waits for a child process to exit depending on the value of pid:

< −1 Any child whose progress group ID equals the absolute value of pid.
−1 Any child (equivalent to wait).

0 Any child whose process group ID equals that of the current process.
> 0 The child with the given PID.

int may be a logical or of the flag values Process::WNOHANG (do not block if no
child available) or Process::WUNTRACED (return stopped children that haven’t been
reported). Not all flags are available on all platforms, but a flag value of zero will work
on all platforms.

include Process
pid = fork { sleep 3 } → 27889
Time.now → Thu Aug 26 22:38:17 CDT 2004
waitpid(pid, Process::WNOHANG) → nil
Time.now → Thu Aug 26 22:38:17 CDT 2004
waitpid(pid, 0) → 27889
Time.now → Thu Aug 26 22:38:20 CDT 2004

waitpid2 Process.waitpid2(pid, int=0) → [pid, status]

Waits for the given child process to exit, returning that child’s process ID and exit status
(a Process::Status object). int may be a logical or of the values Process::WNOHANG
(do not block if no child available) or Process::WUNTRACED (return stopped children
that haven’t been reported). Not all flags are available on all platforms, but a flag value
of zero will work on all platforms.

Prepared exclusively for Margus Pau

PROCESS::GID 568

P
ro

ce
ss

::G
ID

Module Process::GID1.8

Provides a higher-level (and more portable) interface to the underlying operating sys-
tem’s concepts of real, effective, and saved group IDs. Discussing of the semantics
of these IDs is well beyond the scope of this book: readers who want to know more
should consult POSIX documentation or read the intro(2) man pages on a recent
Unix platform. All these methods throw NotImplementedError if the host operating
does not support a sufficient set of calls. The descriptions that follow are based on notes
in ruby-talk:76218 by Hidetoshi Nagai.

Module methods
change_privilege Process::GID.change_privilege(gid) → gid

1.8 Sets the real, effective, and saved group IDs to gid, raising an exception on failure (in
which case the state of the IDs is not known).

This method is not compatible with Process.gid=.

eid Process::GID.eid → egid

1.8 Returns the effective group ID for this process. Synonym for Process.egid.

eid= Process::GID.eid = egid

1.8 Synonym for Process::GID.grant_privilege.

grant_privilege Process::GID.grant_privilege(egid) → egid

1.8 Sets the effective group ID to egid, raising an exception on failure. One some environ-
ments this may also change the saved group ID (see re_exchangeable?).

re_exchange Process::GID.re_exchange→ egid

1.8 Exchange the real and effective group IDs, setting the saved group ID to the new effec-
tive group ID. Returns the new effective group ID.

re_exchangeable? Process::GID.re_exchangeable→ true or false

1.8 Returns true if real and effective group IDs can be exchanged on the host operating
system, and returns false otherwise.

rid Process::GID.rid → gid

1.8 Returns the real group ID for this process. Synonym for Process.gid.

sid_available? Process::GID.sid_available? → true or false
1.8 Returns true if the underlying platform supports saved group IDs, and returns false

Prepared exclusively for Margus Pau

PROCESS::GID 569

P
ro

ce
ss

::G
ID

otherwise. Currently, Ruby assumes support if the operating system has setresgid(2)
or setegid(2) calls or if the configuration includes the POSIX_SAVED_IDS flag.

switch Process::GID.switch → egid
Process::GID.switch { block } → obj

1.8 Handles the toggling of group privilege. In the block form, automatically toggles the
IDs back when the block terminates (but only if the block doesn’t use other calls into
Process::GID calls which would interfere). Without a block, returns the original effec-
tive group ID.

Prepared exclusively for Margus Pau

PROCESS::STATUS 570

P
ro

ce
ss

::S
ta

tu
s

Class Process::Status < Object1.8

Process::Status encapsulates the information on the status of a running or termi-
nated system process. The built-in variable $? is either nil or a Process::Status
object.

fork { exit 99 } → 27186
Process.wait → 27186
$?.class → Process::Status
$?.to_i → 25344
$? >> 8 → 99
$?.stopped? → false
$?.exited? → true
$?.exitstatus → 99

POSIX systems record information on processes using a 16-bit integer. The lower bits
recorded the process status (stopped, exited, signaled), and the upper bits possibly con-
tain additional information (for example, the program’s return code in the case of exited
processes). Before Ruby 1.8, these bits were exposed directly to the Ruby program.
Ruby now encapsulates these in a Process::Status object. To maximize compatibil-
ity, however, these objects retain a bit-oriented interface. In the descriptions that follow,
when we talk about the integer value of stat, we’re referring to this 16-bit value.

Instance methods
== stat == other → true or false

Returns true if the integer value of stat equals other.

& stat & num → fixnum

Logical AND of the bits in stat with num.

fork { exit 0x37 }
Process.wait
sprintf('%04x', $?.to_i) → "3700"
sprintf('%04x', $? & 0x1e00) → "1600"

>> stat >> num → fixnum

Shift the bits in stat right num places.

fork { exit 99 } → 27192
Process.wait → 27192
$?.to_i → 25344
$? >> 8 → 99

coredump? stat.coredump → true or false

Returns true if stat generated a coredump when it terminated. Not available on all
platforms.

Prepared exclusively for Margus Pau

PROCESS::STATUS 571

P
ro

ce
ss

::S
ta

tu
s

exited? stat.exited? → true or false

Returns true if stat exited normally (for example using an exit call or finishing the
program).

exitstatus stat.exitstatus → fixnum or nil

Returns the least significant 8 bits of the return code of stat. Only available if exited?
is true.

fork { } → 27195
Process.wait → 27195
$?.exited? → true
$?.exitstatus → 0

fork { exit 99 } → 27196
Process.wait → 27196
$?.exited? → true
$?.exitstatus → 99

pid stat.pid → fixnum

Returns the ID of the process associated with this status object.

fork { exit } → 27199
Process.wait → 27199
$?.pid → 27199

signaled? stat.signaled? → true or false

Returns true if stat terminated because of an uncaught signal.

pid = fork { sleep 100 }
Process.kill(9, pid) → 1
Process.wait → 27202
$?.signaled? → true

stopped? stat.stopped? → true or false

Returns true if this process is stopped. This is returned only if the corresponding wait
call had the WUNTRACED flag set.

success? stat.success? → nil, or true or false

Returns true if stat refers to a process that exited successfully, returns false if it
exited with a failure, and returns nil if stat does not refer to a process that has exited.

stopsig stat.stopsig → fixnum or nil

Returns the number of the signal that caused stat to stop (or nil if self is not stopped).

Prepared exclusively for Margus Pau

PROCESS::STATUS 572

P
ro

ce
ss

::S
ta

tu
s

termsig stat.termsig → fixnum or nil

Returns the number of the signal that caused stat to terminate (or nil if self was not
terminated by an uncaught signal).

to_i stat.to_i → fixnum

Returns the bits in stat as a Fixnum. Poking around in these bits is platform dependent.

fork { exit 0xab } → 27205
Process.wait → 27205
sprintf('%04x', $?.to_i) → "ab00"

to_int stat.to_int → fixnum

Synonym for Process::Status#to_i.

to_s stat.to_s → string

Equivalent to stat.to_i.to_s.

Prepared exclusively for Margus Pau

PROCESS::SYS 573

P
ro

ce
ss

::S
ys

Module Process::Sys1.8

Process::Sys provides system call–level access to the process user and group envi-
ronment. Many of the calls are aliases of those in the Process module and are packaged
here for completeness. See also Process::GID and Process::UID for a higher-level
(and more portable) interface.

Module methods
getegid Process::Sys.getegid → gid

1.8 Returns the effective group ID for this process. Synonym for Process.egid.

geteuid Process::Sys.getugid → uid

1.8 Returns the effective user ID for this process. Synonym for Process.euid.

getgid Process::Sys.getgid → gid

1.8 Returns the group ID for this process. Synonym for Process.gid.

getuid Process::Sys.getuid → uid

1.8 Returns the user ID for this process. Synonym for Process.uid.

issetugid Process::Sys.issetugid → true or false

1.8 Returns true if this process was made setuid or setgid as a result of the last execve()
system call, and returns false if not. On systems that don’t support issetugid(2),
throws NotImplementedError.

setegid Process::Sys.setegid(gid)

1.8 Set the effective group ID to gid, failing if the underlying system call fails. On systems
that don’t support setegid(2), throws NotImplementedError.

seteuid Process::Sys.seteuid(uid)

1.8 Set the effective user ID to uid, failing if the underlying system call fails. On systems
that don’t support seteuid(2), throws NotImplementedError.

setgid Process::Sys.setgid(gid)

1.8 Set the group ID to gid, failing if the underlying system call fails. On systems that don’t
support setgid(2), throws NotImplementedError.

setregid Process::Sys.setregid(rgid, egid)

1.8 Set the real and effective group IDs to rgid and egid, failing if the underlying system call
fails. On systems that don’t support setregid(2), throws NotImplementedError.

Prepared exclusively for Margus Pau

PROCESS::SYS 574

P
ro

ce
ss

::S
ys

setresgid Process::Sys.setresgid(rgid, egid, sgid)

1.8 Set the real, effective, and saved group IDs to rgid, egid, and sgid, failing if the under-
lying system call fails. On systems that don’t support setresgid(2), throws NotIm-
plementedError.

setresuid Process::Sys.setresuid(ruid, euid, suid)

1.8 Set the real, effective, and saved user IDs to ruid, euid, and suid, failing if the under-
lying system call fails. On systems that don’t support setresuid(2), throws NotIm-
plementedError.

setreuid Process::Sys.setreuid(ruid, euid)

1.8 Set the real and effective user IDs to ruid and euid, failing if the underlying system call
fails. On systems that don’t support setreuid(2), throws NotImplementedError.

setrgid Process::Sys.setrgid(rgid)

1.8 Set the real group ID to rgid, failing if the underlying system call fails. On systems that
don’t support setrgid(2), throws NotImplementedError.

setruid Process::Sys.setruid(ruid)

1.8 Set the real user ID to ruid, failing if the underlying system call fails. On systems that
don’t support setruid(2), throws NotImplementedError.

setuid Process::Sys.setuid(uid)

1.8 Set the user ID to uid, failing if the underlying system call fails. On systems that don’t
support setuid(2), throws NotImplementedError.

Prepared exclusively for Margus Pau

PROCESS::UID 575

P
ro

ce
ss

::U
ID

Module Process::UID1.8

Provides a higher-level (and more portable) interface to the underlying operating sys-
tem’s concepts of real, effective, and saved user IDs. For more information, see the
introduction to Process::GID on page 568.

Module methods
change_privilege Process::UID.change_privilege(uid) → uid

1.8 Sets the real, effective, and saved user IDs to uid, raising an exception on failure (in
which case the state of the IDs is not known). Not compatible with Process.uid=.

eid Process::UID.eid → euid
1.8 Returns the effective user ID for this process. Synonym for Process.euid.

eid= Process::UID.eid = euid
1.8 Synonym for Process::UID.grant_privilege.

grant_privilege Process::UID.grant_privilege(euid) → euid

Sets1.8 the effective user ID to euid, raising an exception on failure. One some environ-
ments this may also change the saved user ID.

re_exchange Process::UID.re_exchange→ euid

1.8 Exchange the real and effective user IDs, setting the saved user ID to the new effective
user ID. Returns the new effective user ID.

re_exchangeable? Process::UID.re_exchangeable→ true or false

1.8 Returns true if real and effective user IDs can be exchanged on the host operating
system, and returns false otherwise.

rid Process::UID.rid → uid
1.8 Returns the real user ID for this process. Synonym for Process.uid.

sid_available? Process::UID.sid_available? → true or false
1.8 Returns true if the underlying platform supports saved user IDs, and returns false

otherwise. Currently, Ruby assumes support if the operating system has setresuid(2)
or seteuid(2) calls, or if the configuration includes the POSIX_SAVED_IDS flag.

switch Process::UID.switch → euid
Process::UID.switch { block } → obj

1.8 Handles the toggling of user privilege. In the block form, automatically toggles the IDs
back when the block terminates (as long as the block doesn’t use other Process::UID
calls to interfere). Without a block, returns the original effective user ID.

Prepared exclusively for Margus Pau

RANGE 576

R
an

ge

Class Range < Object

A Range represents an interval—a set of values with a start and an end. Ranges may be
constructed using the s..e and s...e literals or using Range.new. Ranges constructed
using .. run from the start to the end inclusively. Those created using ... exclude the
end value. When used as an iterator, ranges return each value in the sequence.

(-1..-5).to_a → []
(-5..-1).to_a → [-5, -4, -3, -2, -1]
('a'..'e').to_a → ["a", "b", "c", "d", "e"]
('a'...'e').to_a → ["a", "b", "c", "d"]

Ranges can be constructed using objects of any type, as long as the objects can be
compared using their <=> operator and they support the succ method to return the next
object in sequence.

class Xs # represent a string of 'x's
include Comparable
attr :length
def initialize(n)
@length = n

end
def succ
Xs.new(@length + 1)

end
def <=>(other)
@length <=> other.length

end
def to_s
sprintf "%2d #{inspect}", @length

end
def inspect
'x' * @length

end
end

r = Xs.new(3)..Xs.new(6) → xxx..xxxxxx
r.to_a → [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5)) → true

In the previous code example, class Xs includes the Comparable module. This is
because Enumerable#member? checks for equality using ==. Including Comparable
ensures that the == method is defined in terms of the <=> method implemented in Xs.

Mixes in

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Prepared exclusively for Margus Pau

RANGE 577

R
an

ge

Class methods
new Range.new(start, end, exclusive=false) → rng

Constructs a range using the given start and end. If the third parameter is omitted or is
false, the range will include the end object; otherwise, it will be excluded.

Instance methods
== rng == obj → true or false

Returns true if obj is a range whose beginning and end are the same as those in rng
(compared using ==) and whose exclusive flag is the same as rng.

=== rng === val → true or false

If rng excludes its end, returns rng.start ≤ val < rng.end. If rng is inclusive returns
rng.start ≤ val ≤ rng.end. Note that this implies1.8 that val need not be a member
of the range itself (for example a float could fall between the start and end values of a
range of integers). Conveniently, the === operator is used by case statements.

case 74.95
when 1...50 then puts "low"
when 50...75 then puts "medium"
when 75...100 then puts "high"
end

produces:

medium

begin rng.begin → obj

Returns the first object of rng.

each rng.each {| i | block } → rng

Iterates over the elements rng, passing each in turn to the block. Successive elements
are generated using the succ method.

(10..15).each do |n|
print n, ' '

end

produces:

10 11 12 13 14 15

end rng.end → obj

Returns the object that defines the end of rng.

(1..10).end → 10
(1...10).end → 10

Prepared exclusively for Margus Pau

RANGE 578

R
an

ge

eql? rng.eql?(obj) → true or false

Returns true if obj is a range whose beginning and end are the same as those in rng
(compared using eql?) and whose exclusive flag is the same as rng.

exclude_end? rng.exclude_end?→ true or false

Returns true if rng excludes its end value.

first rng.first → obj

Synonym for Range#begin.

include? rng.include?(val) → true or false

Synonym for Range#===.

last rng.last → obj

Synonym for Range#end.

member? rng.member?(val) → true or false

Return true if val is one of the values in rng (that is if Range#each would return val
at some point).

r = 1..10
r.include?(5) → true
r.member?(5) → true
r.include?(5.5) → true
r.member?(5.5) → false

step rng.step(n=1) {| obj | block } → rng

1.8 Iterates over rng, passing each nth element to the block. If the range contains numbers,
addition by one is used to generate successive elements. Otherwise step invokes succ
to iterate through range elements. The following code uses class Xs defined at the start
of this section.

range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| puts x}
range.step(3) {|x| puts x}

produces:

1 x
3 xxx
5 xxxxx
7 xxxxxxx
9 xxxxxxxxx
1 x
4 xxxx
7 xxxxxxx
10 xxxxxxxxxx

Prepared exclusively for Margus Pau

REGEXP 579

R
eg

ex
p

Class Regexp < Object

A Regexp holds a regular expression, used to match a pattern against strings. Regexps
are created using the /.../ and %r... literals and using the Regexp.new constructor.
This section documents Ruby 1.8 regular expressions. Later versions of Ruby use a
different regular expression engine.

Class constants

EXTENDED Ignore spaces and newlines in regexp.
IGNORECASE Matches are case insensitive.
MULTILINE Newlines treated as any other character.

Class methods
compile Regexp.compile(pattern 〈 , options 〈 , lang 〉 〉) → rxp

Synonym for Regexp.new.

escape Regexp.escape(string) → escaped_string

Escapes any characters that would have special meaning in a regular expression. For
any string, Regexp.escape(str)=~str will be true.

Regexp.escape('\\[]*?{}.') → \\\[\]*\?\{\}\.

last_match Regexp.last_match → match
Regexp.last_match(int) → string

1.8 The first form returns the MatchData object generated by the last successful pattern
match. This is equivalent to reading the global variable $~. MatchData is described on
page 516. The second form returns the nth field in this MatchData object.

/c(.)t/ =~ 'cat' → 0
Regexp.last_match → #<MatchData:0x1c9468>
Regexp.last_match(0) → "cat"
Regexp.last_match(1) → "a"
Regexp.last_match(2) → nil

new Regexp.new(string 〈 , options 〈 , lang 〉 〉) → rxp
Regexp.new(regexp) → new_regexp

1.8 Constructs a new regular expression from pattern, which can be either a String or a
Regexp. In the latter case that regexp’s options are propagated, and new options may
not be specified (a change as of Ruby 1.8). If options is a Fixnum, it should be one or
more of Regexp::EXTENDED, Regexp::IGNORECASE, and Regexp::POSIXLINE, or-ed
together. Otherwise, if options is not nil, the regexp will be case insensitive. The lang

Prepared exclusively for Margus Pau

REGEXP 580

R
eg

ex
p

parameter enables multibyte support for the regexp: n, N, or nil = none, e, E = EUC,
s, S = SJIS, u, U = UTF-8.

r1 = Regexp.new('^[a-z]+:\\s+\w+') → /^[a-z]+:\s+\w+/
r2 = Regexp.new('cat', true) → /cat/i
r3 = Regexp.new('dog', Regexp::EXTENDED) → /dog/x
r4 = Regexp.new(r2) → /cat/i

quote Regexp.quote(string) → escaped_string

Synonym for Regexp.escape.

Instance methods
== rxp == other_regexp → true or false

Equality—Two regexps are equal if their patterns are identical, they have the same
character set code, and their casefold? values are the same.

/abc/ == /abc/x → false
/abc/ == /abc/i → false
/abc/u == /abc/n → false

=== rxp === string → true or false

Case Equality—Synonym for Regexp#=~ used in case statements.

a = "HELLO"
case a
when /^[a-z]*$/; print "Lower case\n"
when /^[A-Z]*$/; print "Upper case\n"
else print "Mixed case\n"
end

produces:

Upper case

=~ rxp =~ string → int or nil

Match—Matches rxp against string, returning the offset of the start of the match or nil
if the match failed. Sets $~ to the corresponding MatchData or nil.

/SIT/ =~ "insensitive" → nil
/SIT/i =~ "insensitive" → 5

~ ~ rxp → int or nil

Match—Matches rxp against the contents of $_. Equivalent to rxp =~ $_.

$_ = "input data"
~ /at/ → 7

Prepared exclusively for Margus Pau

REGEXP 581

R
eg

ex
p

casefold? rxp.casefold? → true or false

Returns the value of the case-insensitive flag.

inspect rxp.inspect → string

Returns a readable version of rxp.

/cat/mi.inspect → "/cat/mi"
/cat/mi.to_s → "(?mi-x:cat)"

kcode rxp.kcode → string

Returns the character set code for the regexp.

/cat/.kcode → nil
/cat/s.kcode → "sjis"

match rxp.match(string) → match or nil

Returns a MatchData object (see page 516) describing the match, returns or nil if
there was no match. This is equivalent to retrieving the value of the special variable $~
following a normal match.

/(.)(.)(.)/.match("abc")[2] → "b"

options rxp.options → int

1.8 Returns the set of bits corresponding to the options used when creating this Regexp (see
Regexp.new for details). Note that additional bits may be set in the returned options:
these are used internally by the regular expression code. These extra bits are ignored if
the options are passed to Regexp.new.

Let's see what the values are...
Regexp::IGNORECASE → 1
Regexp::EXTENDED → 2
Regexp::MULTILINE → 4

/cat/.options → 0
/cat/ix.options → 3
Regexp.new('cat', true).options → 1
Regexp.new('cat', 0, 's').options → 48

r = /cat/ix
Regexp.new(r.source, r.options) → /cat/ix

source rxp.source → string

Returns the original string of the pattern.

/ab+c/ix.source → "ab+c"

Prepared exclusively for Margus Pau

REGEXP 582

R
eg

ex
p

to_s rxp.to_s → string

Returns a string containing the regular expression and its options (using the (?xx:yyy)
notation). This string can be fed back in to Regexp.new to a regular expression with
the same semantics as the original. (However, Regexp#== may not return true when
comparing the two, as the source of the regular expression itself may differ, as the
example shows.) Regexp#inspect produces a generally more readable version of rxp.

r1 = /ab+c/ix → /ab+c/ix
s1 = r1.to_s → "(?ix-m:ab+c)"
r2 = Regexp.new(s1) → /(?ix-m:ab+c)/
r1 == r2 → false
r1.source → "ab+c"
r2.source → "(?ix-m:ab+c)"

Prepared exclusively for Margus Pau

SIGNAL 583

S
ig

na
l

Module Signal1.8

Many operating systems allow signals to be sent to running processes. Some signals
have a defined effect on the process, and others may be trapped at the code level and
acted upon. For example, your process may trap the USR1 signal and use it to toggle
debugging, and it may use TERM to initiate a controlled shutdown.

pid = fork do
Signal.trap("USR1") do
$debug = !$debug
puts "Debug now: #$debug"

end
Signal.trap("TERM") do
puts "Terminating..."
shutdown()

end
. . . do some work . . .

end

Process.detach(pid)

Controlling program:
Process.kill("USR1", pid)
...
Process.kill("USR1", pid)
...
Process.kill("TERM", pid)

produces:

Debug now: true
Debug now: false
Terminating...

The list of available signal names and their interpretation is system dependent. Signal
delivery semantics may also vary between systems; in particular signal delivery may
not always be reliable.

Module methods
list Signal.list → hash

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list → {"ABRT"=>6, "ALRM"=>14, "BUS"=>10, "CHLD"=>20,
"CLD"=>20, "CONT"=>19, "EMT"=>7, "FPE"=>8, "HUP"=>1,
"ILL"=>4, "INFO"=>29, "INT"=>2, "IO"=>23, "IOT"=>6,
"KILL"=>9, "PIPE"=>13, "PROF"=>27, "QUIT"=>3,
"SEGV"=>11, "STOP"=>17, "SYS"=>12, "TERM"=>15,
"TRAP"=>5, "TSTP"=>18, "TTIN"=>21, "TTOU"=>22,
"URG"=>16, "USR1"=>30, "USR2"=>31, "VTALRM"=>26,
"WINCH"=>28, "XCPU"=>24, "XFSZ"=>25}

Prepared exclusively for Margus Pau

SIGNAL 584

S
ig

na
l

trap Signal.trap(signal, proc) → obj
Signal.trap(signal) { block } → obj

Specifies the handling of signals. The first parameter is a signal name (a string such as
SIGALRM, SIGUSR1, and so on) or a signal number. The characters SIG may be omitted
from the signal name. The command or block specifies code to be run when the signal
is raised. If the command is the string IGNORE or SIG_IGN, the signal will be ignored.
If the command is DEFAULT or SIG_DFL, the operating system’s default handler will be
invoked. If the command is EXIT, the script will be terminated by the signal. Otherwise,
the given command or block will be run.

The special signal name EXIT or signal number zero will be invoked just prior to pro-
gram termination.

trap returns the previous handler for the given signal.

Signal.trap(0, lambda { puts "Terminating: #{$$}" })
Signal.trap("CLD") { puts "Child died" }
fork && Process.wait

produces:

Terminating: 27913
Child died
Terminating: 27912

Prepared exclusively for Margus Pau

STRING 585

S
tr

in
g

Class String < Object

A String object holds and manipulates a sequence of bytes, typically representing
characters. String objects may be created using String.new or as literals (see page
305).

Because of aliasing issues, users of strings should be aware of the methods that modify
the contents of a String object. Typically, methods with names ending in ! modify
their receiver, while those without a ! return a new String. However, exceptions exist,
such as String#[]=.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods
new String.new(val="") → str

Returns a new string object containing a copy of val (which should1.8 be a String or
implement to_str).

str1 = "wibble"
str2 = String.new(str1)
str1.object_id → 936550
str2.object_id → 936540
str1[1] = "o"
str1 → "wobble"
str2 → "wibble"

Instance methods
% str % arg → string

Format—Uses str as a format specification, and returns the result of applying it to arg.
If the format specification contains more than one substitution, then arg must be an
Array containing the values to be substituted. See Kernel.sprintf on page 508 for
details of the format string.

"%05d" % 123 → "00123"
"%-5s: %08x" % ["ID", self.id] → "ID : 000ec4dc"

Prepared exclusively for Margus Pau

STRING 586

S
tr

in
g

* str * int → string

Copies—Returns a new String containing int copies of the receiver.

"Ho! " * 3 → "Ho! Ho! Ho! "

+ str + string → string

Concatenation—Returns a new String containing string concatenated to str.

"Hello from " + self.to_s → "Hello from main"

<< str << fixnum → str
str << obj → str

Append—Concatenates the given object to str. If the object is a Fixnum between 0 and
255, it is converted to a character before concatenation.

a = "hello "
a << "world" → "hello world"
a << 33 → "hello world!"

<=> str <=> other_string → −1, 0, +1

Comparison—Returns −1 if str is less than, 0 if str is equal to, and +1 if str is greater
than other_string. If the strings are of different lengths, and the strings are equal when
compared up to the shortest length, then the longer string is considered greater than
the shorter one. If the variable $= is false, the comparison is based on comparing
the binary values of each character in the string. In older versions of Ruby,1.8 setting
$= allowed case-insensitive comparisons; this is now deprecated in favor of using
String#casecmp.

<=> is the basis for the methods <, <=, >, >=, and between?, included from module
Comparable. The method String#== does not use Comparable#==.

"abcdef" <=> "abcde" → 1
"abcdef" <=> "abcdef" → 0
"abcdef" <=> "abcdefg" → -1
"abcdef" <=> "ABCDEF" → 1

== str == obj → true or false

Equality—If obj is a String, returns true if str <=> obj equals zero; returns false
otherwise. If obj is not a String but responds to to_str,1.8 return obj == str; otherwise
returns false.

"abcdef" == "abcde" → false
"abcdef" == "abcdef" → true

=== str === obj → true or false

Case Equality—Synonym for String#==.

Prepared exclusively for Margus Pau

STRING 587

S
tr

in
g

=~ str =~ regexp → int or nil

Match—Equivalent to regexp =~ str.1.8 Prior versions of Ruby permitted an arbitrary
operand to =~; this is now deprecated. Returns the position the match starts, or returns
nil if there is no match.

"cat o' 9 tails" =~ /\d/ → 7

[] str[int] → int or nil
str[int, int] → string or nil
str[range] → string or nil
str[regexp] → string or nil

str[regexp, int] → string or nil
str[string] → string or nil

Element Reference—If passed a single int, returns the code of the character at that
position. If passed two ints, returns a substring starting at the offset given by the first,
and a length given by the second. If given a range, a substring containing characters
at offsets given by the range is returned. In all three cases, if an offset is negative, it is
counted from the end of str. Returns nil if the initial offset falls outside the string and
the length is not given, the length is negative, or the beginning of the range is greater
than the end.

If regexp is supplied, the matching portion of str is returned. If a numeric parameter
follows the regular expression, that component of the MatchData is returned instead.1.8 If
a String is given, that string is returned if it occurs in str. In both cases, nil is returned
if there is no match.

a = "hello there"
a[1] → 101
a[1,3] → "ell"
a[1..3] → "ell"
a[1...3] → "el"
a[-3,2] → "er"
a[-4..-2] → "her"
a[-2..-4] → ""
a[/[aeiou](.)\1/] → "ell"
a[/[aeiou](.)\1/, 0] → "ell"
a[/[aeiou](.)\1/, 1] → "l"
a[/[aeiou](.)\1/, 2] → nil
a[/(..)e/] → "the"
a[/(..)e/, 1] → "th"
a["lo"] → "lo"
a["bye"] → nil

Prepared exclusively for Margus Pau

STRING 588

S
tr

in
g

[]= str[int] = int
str[int] = string

str[int, int] = string
str[range] = string
str[regexp] = string

str[regexp, int] = string
str[string] = string

Element Assignment—Replaces some or all of the content of str. The portion of the
string affected is determined using the same criteria as String#[]. If the replacement
string is not the same length as the text it is replacing, the string will be adjusted accord-
ingly. If the regular expression or string is used as the index doesn’t match a position
in the string, IndexError is raised. If the regular expression form is used,1.8 the optional
second int allows you to specify which portion of the match to replace (effectively using
the MatchData indexing rules). The forms that take a Fixnum will raise an IndexError
if the value is out of range; the Range form will raise a RangeError, and the Regexp
and String forms will silently ignore the assignment.

a = "hello"
a[2] = 96 (a → "he`lo")
a[2, 4] = "xyz" (a → "hexyz")
a[-4, 2] = "xyz" (a → "hxyzlo")
a[2..4] = "xyz" (a → "hexyz")
a[-4..-2] = "xyz" (a → "hxyzo")
a[/[aeiou](.)\1(.)/] = "xyz" (a → "hxyz")
a[/[aeiou](.)\1(.)/, 1] = "xyz" (a → "hexyzlo")
a[/[aeiou](.)\1(.)/, 2] = "xyz" (a → "hellxyz")
a["l"] = "xyz" (a → "hexyzlo")
a["ll"] = "xyz" (a → "hexyzo")
a[2, 0] = "xyz" (a → "hexyzllo")

~ ~ str→ int or nil

Equivalent to $_ =~ str.

capitalize str.capitalize → string

Returns a copy of str with the first character converted to uppercase and the remainder
to lowercase.

"hello".capitalize → "Hello"
"HELLO".capitalize → "Hello"
"123ABC".capitalize → "123abc"

capitalize! str.capitalize! → str or nil

Modifies str by converting the first character to uppercase and the remainder to lower-
case. Returns nil if no changes are made.

Prepared exclusively for Margus Pau

STRING 589

S
tr

in
g

a = "hello"
a.capitalize! → "Hello"
a → "Hello"
a.capitalize! → nil

casecmp str.casecmp(string) → −1, 0, +1
1.8 Case-insensitive version of String#<=>.

"abcdef".casecmp("abcde") → 1
"abcdef".casecmp("abcdef") → 0
"aBcDeF".casecmp("abcdef") → 0
"abcdef".casecmp("abcdefg") → -1
"abcdef".casecmp("ABCDEF") → 0

center str.center(int, pad=" ") → string

If int is greater than the length of str, returns a new String of length int with str
centered between the given padding (defaults to spaces); otherwise, returns str.

"hello".center(4) → "hello"
"hello".center(20) → " hello "
"hello".center(4, "_-^-") → "hello"
"hello".center(20, "_-^-") → "_-^-_-^hello_-^-_-^-"
"hello".center(20, "-") → "-------hello--------"

chomp str.chomp(rs=$/) → string

Returns a new String with the given record separator removed from the end of str
(if present). If $/ has not been changed from the default Ruby record separator, then
chomp also removes carriage return characters (that is it will remove \n, \r, and \r\n).1.8

"hello".chomp → "hello"
"hello\n".chomp → "hello"
"hello\r\n".chomp → "hello"
"hello\n\r".chomp → "hello\n"
"hello\r".chomp → "hello"
"hello \n there".chomp → "hello \n there"
"hello".chomp("llo") → "he"

chomp! str.chomp!(rs=$/) → str or nil

Modifies str in place as described for String#chomp, returning str, or returning nil if
no modifications were made.

chop str.chop → string

Returns a new String with the last character removed. If the string ends with \r\n,
both characters are removed. Applying chop to an empty string returns an empty string.
String#chomp is often a safer alternative, as it leaves the string unchanged if it doesn’t
end in a record separator.

Prepared exclusively for Margus Pau

STRING 590

S
tr

in
g

"string\r\n".chop → "string"
"string\n\r".chop → "string\n"
"string\n".chop → "string"
"string".chop → "strin"
"x".chop.chop → ""

chop! str.chop! → str or nil

Processes str as for String#chop, returning str, or returning nil if str is the empty
string. See also String#chomp!.

concat str.concat(int) → str
str.concat(obj) → str

Synonym for String#< <.

count str.count(〈 string 〉+) → int

Each string parameter defines a set of characters to count. The intersection of these
sets defines the characters to count in str. Any parameter that starts with a caret (^) is
negated. The sequence c1–c2 means all characters between c1 and c2.

a = "hello world"
a.count "lo" → 5
a.count "lo", "o" → 2
a.count "hello", "^l" → 4
a.count "ej-m" → 4

crypt str.crypt(settings) → string

Applies a one-way cryptographic hash to str by invoking the standard library function
crypt. The argument is to some extend system dependent. On traditional Unix boxes,
it is often a two-character salt string. On more modern boxes, it may also control things
such as DES encryption parameters. See the man page for crypt(3) for details.

standard salt
"secret".crypt("sh") → "shRK3aVg8FsI2"
On OSX: DES, 2 interactions, 24-bit salt
"secret".crypt("_...0abcd") → "_...0abcdROn65JNDj12"

delete str.delete(〈 string 〉+) → new_string

Returns a copy of str with all characters in the intersection of its arguments deleted.
Uses the same rules for building the set of characters as String#count.

"hello".delete("l","lo") → "heo"
"hello".delete("lo") → "he"
"hello".delete("aeiou", "^e") → "hell"
"hello".delete("ej-m") → "ho"

Prepared exclusively for Margus Pau

STRING 591

S
tr

in
g

delete! str.delete!(〈 string 〉+) → str or nil

Performs a delete operation in place, returning str, or returning nil if str was not
modified.

a = "hello"
a.delete!("l","lo") → "heo"
a → "heo"
a.delete!("l") → nil

downcase str.downcase → string

Returns a copy of str with all uppercase letters replaced with their lowercase counter-
parts. The operation is locale insensitive—only characters A to Z are affected. Multibyte
characters are skipped.

"hEllO".downcase → "hello"

downcase! str.downcase! → str or nil

Replace uppercase letters in str with their lowercase counterparts, returning nil if no
changes were made.

dump str.dump → string

Produces a version of str with all nonprinting characters replaced by \nnn notation and
all special characters escaped.

each str.each(sep=$/) {| substr | block } → str

Splits str using the supplied parameter as the record separator ($/ by default), pass-
ing each substring in turn to the supplied block. If a zero-length record separator is
supplied, the string is split into paragraphs, each terminated by multiple \n characters.

print "Example one\n"
"hello\nworld".each {|s| p s}
print "Example two\n"
"hello\nworld".each('l') {|s| p s}
print "Example three\n"
"hello\n\n\nworld".each('') {|s| p s}

produces:

Example one
"hello\n"
"world"
Example two
"hel"
"l"
"o\nworl"
"d"
Example three
"hello\n\n\n"
"world"

Prepared exclusively for Margus Pau

STRING 592

S
tr

in
g

each_byte str.each_byte {| int | block } → str

Passes each byte in str to the given block.

"hello".each_byte {|c| print c, ' ' }

produces:

104 101 108 108 111

each_line str.each_line(sep=$/) {| substr | block } → str

Synonym for String#each.

empty? str.empty? → true or false

Returns true if str has a length of zero.

"hello".empty? → false
"".empty? → true

eql? str.eql?(obj) → true or false

Returns true if obj is a String with identical contents to str.

"cat".eql?("cat") → true

gsub str.gsub(pattern, replacement) → string
str.gsub(pattern) {| match | block } → string

Returns a copy of str with all occurrences of pattern replaced with either replacement
or the value of the block. The pattern will typically be a Regexp; if it is a String
then no regular expression metacharacters will be interpreted (that is /\d/ will match
a digit, but '\d' will match a backslash followed by a d).

If a string is used as the replacement, special variables from the match (such as $&
and $1) cannot be substituted into it, as substitution into the string occurs before the
pattern match starts. However, the sequences \1, \2, and so on may be used to interpo-
late successive groups in the match. These sequences are shown in Table 27.13 on the
following page.

In the block form, the current match is passed in as a parameter, and variables such as
$1, $2, $`, $&, and $' will be set appropriately. The value returned by the block will be
substituted for the match on each call.

The result inherits any tainting in the original string or any supplied replacement string.

"hello".gsub(/[aeiou]/, '*') → "h*ll*"
"hello".gsub(/([aeiou])/, '<\1>') → "h<e>ll<o>"
"hello".gsub(/./) {|s| s[0].to_s + ' '} → "104 101 108 108 111 "

Prepared exclusively for Margus Pau

STRING 593

S
tr

in
g

Table 27.13. Backslash sequences in substitution strings

Sequence Text That Is Substituted

\1, \2, ... \9 The value matched by the nth grouped subexpression
\& The last match
\` The part of the string before the match
\' The part of the string after the match
\+ The highest-numbered group matched

gsub! str.gsub!(pattern, replacement) → str or nil
str.gsub!(pattern) {| match | block } → str or nil

Performs the substitutions of String#gsub in place, returning str, or returning nil if
no substitutions were performed.

hex str.hex → int

Treats leading characters from str as a string of hexadecimal digits (with an optional
sign and an optional 0x), and returns the corresponding number. Zero is returned on
error.

"0x0a".hex → 10
"-1234".hex → -4660
"0".hex → 0
"wombat".hex → 0

include? str.include?(string) → true or false
str.include?(int) → true or false

Returns true if str contains the given string or character.

"hello".include? "lo" → true
"hello".include? "ol" → false
"hello".include? ?h → true

index str.index(string 〈 , offset 〉) → int or nil
str.index(int 〈 , offset 〉) → int or nil

str.index(regexp 〈 , offset 〉) → int or nil

Returns the index of the first occurrence of the given substring, character, or pattern in
str. Returns nil if not found. If the second parameter is present, it specifies the position
in the string to begin the search.

"hello".index('e') → 1
"hello".index('lo') → 3
"hello".index('a') → nil
"hello".index(101) → 1
"hello".index(/[aeiou]/, -3) → 4

Prepared exclusively for Margus Pau

STRING 594

S
tr

in
g

insert str.insert(index, string) → str

1.8 Inserts string before the character at the given index, modifying str. Negative indices
count from the end of the string and insert after the given character. After the insertion,
str will contain string starting at index.

"abcd".insert(0, 'X') → "Xabcd"
"abcd".insert(3, 'X') → "abcXd"
"abcd".insert(4, 'X') → "abcdX"
"abcd".insert(-3, 'X') → "abXcd"
"abcd".insert(-1, 'X') → "abcdX"

intern str.intern → symbol

Returns the Symbol corresponding to str, creating the symbol if it did not previously
exist. Can intern any string, not just identifiers.1.8 See Symbol#id2name on page 610.

"Koala".intern → :Koala
sym = "$1.50 for a soda!?!?".intern
sym.to_s → "$1.50 for a soda!?!?"

length str.length → int

Returns the length of str.

ljust str.ljust(width, padding=" ") → string

1.8 If width is greater than the length of str, returns a new String of length width with str
left justified and padded with copies of padding; otherwise, returns a copy of str.

"hello".ljust(4) → "hello"
"hello".ljust(20) → "hello "
"hello".ljust(20, "*") → "hello***************"
"hello".ljust(20, " dolly") → "hello dolly dolly do"

lstrip str.lstrip → string

1.8 Returns a copy of str with leading whitespace characters removed. Also see the meth-
ods String#rstrip and String#strip.

" hello ".lstrip → "hello "
"\000 hello ".lstrip → "\000 hello "
"hello".lstrip → "hello"

lstrip! str.lstrip! →
self or nil

1.8 Removes leading whitespace characters from str, returning nil if no change was made.
See also String#rstrip! and String#strip!.

" hello ".lstrip! → "hello "
"hello".lstrip! → nil

Prepared exclusively for Margus Pau

STRING 595

S
tr

in
g

match str.match(pattern) → match_data or nil

1.8 Converts pattern to a Regexp (if it isn’t already one), and then invokes its match method
on str.

'hello'.match('(.)\1') → #<MatchData:0x1c9468>
'hello'.match('(.)\1')[0] → "ll"
'hello'.match(/(.)\1/)[0] → "ll"
'hello'.match('xx') → nil

next str.next → string

Synonym for String#succ.

next! str.next! → str

Synonym for String#succ!.

oct str.oct → int

Treats leading characters of str as a string of octal digits (with an optional sign), and
returns the corresponding number. Returns 0 if the conversion fails.

"123".oct → 83
"-377".oct → -255
"bad".oct → 0
"0377bad".oct → 255

replace str.replace(string) → str

Replaces the contents and taintedness of str with the corresponding values in string.

s = "hello" → "hello"
s.replace "world" → "world"

reverse str.reverse → string

Returns a new string with the characters from str in reverse order.

Every problem contains its own solution...
"stressed".reverse → "desserts"

reverse! str.reverse! → str

Reverses str in place.

rindex str.rindex(string 〈 , int 〉) → int or nil
str.rindex(int 〈 , int 〉) → int or nil

str.rindex(regexp 〈 , int 〉) → int or nil

Returns the index of the last occurrence of the given substring, character, or pattern in
str. Returns nil if not found. If the second parameter is present, it specifies the position
in the string to end the search—characters beyond this point will not be considered.

Prepared exclusively for Margus Pau

STRING 596

S
tr

in
g

"hello".rindex('e') → 1
"hello".rindex('l') → 3
"hello".rindex('a') → nil
"hello".rindex(101) → 1
"hello".rindex(/[aeiou]/, -2) → 1

rjust str.rjust(width, padding=" ") → string

1.8 If width is greater than the length of str, returns a new String of length width with str
right justified and padded with copies of padding; otherwise, returns a copy of str.

"hello".rjust(4) → "hello"
"hello".rjust(20) → " hello"
"hello".rjust(20, "-") → "---------------hello"
"hello".rjust(20, "padding") → "paddingpaddingphello"

rstrip str.rstrip → string

1.8 Returns a copy of str, stripping first trailing NUL characters and then stripping trailing
whitespace characters. See also String#lstrip and String#strip.

" hello ".rstrip → " hello"
" hello \000 ".rstrip → " hello \000"
" hello \000".rstrip → " hello"
"hello".rstrip → "hello"

rstrip! str.rstrip! →
self or nil

1.8 Removes trailing NUL characters and then removes trailing whitespace characters from
str. Returns nil if no change was made. See also String#lstrip! and #strip!.

" hello ".rstrip! → " hello"
"hello".rstrip! → nil

scan str.scan(pattern) → array
str.scan(pattern) {| match, . . . | block } → str

Both forms iterate through str, matching the pattern (which may be a Regexp or a
String). For each match, a result is generated and either added to the result array or
passed to the block. If the pattern contains no groups, each individual result consists of
the matched string, $&. If the pattern contains groups, each individual result is itself an
array containing one entry per group. If the pattern is a String, it is interpreted literally
(i.e., it is not taken to be a regular expression pattern).

a = "cruel world"
a.scan(/\w+/) → ["cruel", "world"]
a.scan(/.../) → ["cru", "el ", "wor"]
a.scan(/(...)/) → [["cru"], ["el "], ["wor"]]
a.scan(/(..)(..)/) → [["cr", "ue"], ["l ", "wo"]]

And the block form

Prepared exclusively for Margus Pau

STRING 597

S
tr

in
g

a.scan(/\w+/) {|w| print "<<#{w}>> " }
puts
a.scan(/(.)(.)/) {|a,b| print b, a }
puts

produces:

<<cruel>> <<world>>
rceu lowlr

size str.size → int

Synonym for String#length.

slice str.slice(int) → int or nil
str.slice(int, int) → string or nil
str.slice(range) → string or nil
str.slice(regexp) → string or nil

str.slice(match_string) → string or nil

Synonym for String#[].

a = "hello there"
a.slice(1) → 101
a.slice(1,3) → "ell"
a.slice(1..3) → "ell"
a.slice(-3,2) → "er"
a.slice(-4..-2) → "her"

a.slice(-2..-4) → ""
a.slice(/th[aeiou]/) → "the"
a.slice("lo") → "lo"
a.slice("bye") → nil

slice! str.slice!(int) → int or nil
str.slice!(int, int) → string or nil
str.slice!(range) → string or nil
str.slice!(regexp) → string or nil

str.slice!(match_string) → string or nil

Deletes the specified portion from str, and returns the portion deleted. The forms that
take a Fixnum will raise an IndexError if the value is out of range; the Range form
will raise a RangeError, and the Regexp and String forms will silently not change
the string.

string = "this is a string"
string.slice!(2) → 105
string.slice!(3..6) → " is "
string.slice!(/s.*t/) → "sa st"
string.slice!("r") → "r"
string → "thing"

Prepared exclusively for Margus Pau

STRING 598

S
tr

in
g

split str.split(pattern=$;, 〈 limit 〉) → array

Divides str into substrings based on a delimiter, returning an array of these substrings.

If pattern is a String, then its contents are used as the delimiter when splitting str. If
pattern is a single space, str is split on whitespace, with leading whitespace and runs
of contiguous whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern matches. Whenever the pattern
matches a zero-length string, str is split into individual characters. If pattern includes
groups, these groups will be included in the returned values.

If pattern is omitted, the value of $; is used. If $; is nil (which is the default), str is
split on whitespace as if “ ” were specified.

If the limit parameter is omitted, trailing empty fields are suppressed. If limit is a posi-
tive number, at most that number of fields will be returned (if limit is 1, the entire string
is returned as the only entry in an array). If negative, there is no limit to the number of
fields returned, and trailing null fields are not suppressed.

" now's the time".split → ["now's", "the", "time"]
" now's the time".split(' ') → ["now's", "the", "time"]
" now's the time".split(/ /) → ["", "now's", "", "", "the",

"time"]
"a@1bb@2ccc".split(/@\d/) → ["a", "bb", "ccc"]
"a@1bb@2ccc".split(/@(\d)/) → ["a", "1", "bb", "2", "ccc"]
"1, 2.34,56, 7".split(/,\s*/) → ["1", "2.34", "56", "7"]
"hello".split(//) → ["h", "e", "l", "l", "o"]
"hello".split(//, 3) → ["h", "e", "llo"]
"hi mom".split(/\s*/) → ["h", "i", "m", "o", "m"]

"".split → []

"mellow yellow".split("ello") → ["m", "w y", "w"]
"1,2,,3,4,,".split(',') → ["1", "2", "", "3", "4"]
"1,2,,3,4,,".split(',', 4) → ["1", "2", "", "3,4,,"]
"1,2,,3,4,,".split(',', -4) → ["1", "2", "", "3", "4", "", ""]

squeeze str.squeeze(〈 string 〉∗) → squeezed_tring

Builds a set of characters from the string parameter(s) using the procedure described
for String#count on page 590. Returns a new string where runs of the same character
that occur in this set are replaced by a single character. If no arguments are given, all
runs of identical characters are replaced by a single character.

"yellow moon".squeeze → "yelow mon"
" now is the".squeeze(" ") → " now is the"
"putters putt balls".squeeze("m-z") → "puters put balls"

Prepared exclusively for Margus Pau

STRING 599

S
tr

in
g

squeeze! str.squeeze!(〈 string 〉∗) → str or nil

Squeezes str in place, returning str. Returns nil if no changes were made.

strip str.strip → string

1.8 Returns a copy of str with leading whitespace and trailing NUL and whitespace charac-
ters removed.

" hello ".strip → "hello"
"\tgoodbye\r\n".strip → "goodbye"
"goodbye \000".strip → "goodbye"
"goodbye \000 ".strip → "goodbye \000"

strip! str.strip! → str or nil

1.8 Removes leading whitespace and trailing NUL and whitespace characters removed from
str. Returns nil if str was not altered.

sub str.sub(pattern, replacement) → string
str.sub(pattern) {| match | block } → string

Returns a copy of str with the first occurrence of pattern replaced with either replace-
ment or the value of the block. The pattern will typically be a Regexp; if it is a String
then no regular expression metacharacters will be interpreted (that is /\d/ will match
a digit, but ’\d’ will match a backslash followed by a d).

If the method call specifies replacement, special variables such as $& will not be use-
ful, as substitution into the string occurs before the pattern match starts. However, the
sequences \1, \2, listed in Table 27.13 on page 593 may be used.

In the block form, the current match is passed in as a parameter, and variables such as
$1, $2, $`, $&, and $' will be set appropriately. The value returned by the block will be
substituted for the match on each call.

"hello".sub(/[aeiou]/, '*') → "h*llo"
"hello".sub(/([aeiou])/, '<\1>') → "h<e>llo"
"hello".sub(/./) {|s| s[0].to_s + ' ' } → "104 ello"

sub! str.sub!(pattern, replacement) → str or nil
str.sub!(pattern) {| match | block } → str or nil

Performs the substitutions of String#sub in place, returning str. Returns nil if no
substitutions were performed.

succ str.succ → string

Returns the successor to str. The successor is calculated by incrementing characters
starting from the rightmost alphanumeric (or the rightmost character if there are no
alphanumerics) in the string. Incrementing a digit always results in another digit, and

Prepared exclusively for Margus Pau

STRING 600

S
tr

in
g

incrementing a letter results in another letter of the same case. Incrementing nonalpha-
numerics uses the underlying character set’s collating sequence.

If the increment generates a “carry,” the character to the left of it is incremented. This
process repeats until there is no carry, adding an additional character if necessary.

"abcd".succ → "abce"
"THX1138".succ → "THX1139"
"<<koala>>".succ → "<<koalb>>"
"1999zzz".succ → "2000aaa"
"ZZZ9999".succ → "AAAA0000"
"***".succ → "**+"

succ! str.succ! → str

Equivalent to String#succ, but modifies the receiver in place.

sum str.sum(n=16) → int

Returns a basic n-bit checksum of the characters in str, where n is the optional parame-
ter, defaulting to 16. The result is simply the sum of the binary value of each character
in str modulo 2n−1. This is not a particularly good checksum—see the digest libraries1.8
on page 647 for better alternatives.

"now is the time".sum → 1408
"now is the time".sum(8) → 128

swapcase str.swapcase → string

Returns a copy of str with uppercase alphabetic characters converted to lowercase and
lowercase characters converted to uppercase.

"Hello".swapcase → "hELLO"
"cYbEr_PuNk11".swapcase → "CyBeR_pUnK11"

swapcase! str.swapcase! → str or nil

Equivalent to String#swapcase, but modifies str in place, returning str. Returns nil
if no changes were made.

to_f str.to_f → float

Returns the result of interpreting leading characters in str as a floating-point number.
Extraneous characters past the end of a valid number are ignored. If there is not a valid
number at the start of str, 0.0 is returned. The method never raises an exception (use
Kernel.Float to validate numbers).

"123.45e1".to_f → 1234.5
"45.67 degrees".to_f → 45.67
"thx1138".to_f → 0.0

Prepared exclusively for Margus Pau

STRING 601

S
tr

in
g

to_i str.to_i(base=10) → int

1.8 Returns the result of interpreting leading characters in str as an integer base base (2 to
36). Given a base of zero, to_i looks for leading 0, 0b, 0o, 0d, or 0x and sets the base
accordingly. Leading spaces are ignored, and leading plus or minus signs are honored.
Extraneous characters past the end of a valid number are ignored. If there is not a valid
number at the start of str, 0 is returned. The method never raises an exception.

"12345".to_i → 12345
"99 red balloons".to_i → 99
"0a".to_i → 0
"0a".to_i(16) → 10
"0x10".to_i → 0
"0x10".to_i(0) → 16
"-0x10".to_i(0) → -16
"hello".to_i → 0
"hello".to_i(30) → 14167554
"1100101".to_i(2) → 101
"1100101".to_i(8) → 294977
"1100101".to_i(10) → 1100101
"1100101".to_i(16) → 17826049
"1100101".to_i(24) → 199066177

to_s str.to_s → str

Returns the receiver.

to_str str.to_str → str

Synonym for String#to_s. to_str is used by methods such as String#concat to
convert their arguments to a string. Unlike to_s, which is supported by almost all
classes, to_str is normally implemented only by those classes that act like strings. Of
the built-in classes, only Exception and String implement to_str.

to_sym str.to_s → symbol

Returns the symbol for str. This can create symbols that cannot be represented using
the :xxx notation.

s = 'cat'.to_sym → :cat
s == :cat → true
s = '@cat'.to_sym → :@cat
s == :@cat → true
'cat and dog'.to_sym → :"cat and dog"
s == :'cat and dog' → false

tr str.tr(from_string, to_string) → string

Returns a copy of str with the characters in from_string replaced by the corresponding
characters in to_string. If to_string is shorter than from_string, it is padded with its last
character. Both strings may use the c1–c2 notation to denote ranges of characters, and
from_string may start with a ^, which denotes all characters except those listed.

Prepared exclusively for Margus Pau

STRING 602

S
tr

in
g

"hello".tr('aeiou', '*') → "h*ll*"
"hello".tr('^aeiou', '*') → "*e**o"
"hello".tr('el', 'ip') → "hippo"
"hello".tr('a-y', 'b-z') → "ifmmp"

tr! str.tr!(from_string, to_string) → str or nil

Translates str in place, using the same rules as String#tr. Returns str, or returns nil
if no changes were made.

tr_s str.tr_s(from_string, to_string) → string

Processes a copy of str as described under String#tr, and then removes duplicate
characters in regions that were affected by the translation.

"hello".tr_s('l', 'r') → "hero"
"hello".tr_s('el', '*') → "h*o"
"hello".tr_s('el', 'hx') → "hhxo"

tr_s! str.tr_s!(from_string, to_string) → str or nil

Performs String#tr_s processing on str in place, returning str. Returns nil if no
changes were made.

unpack str.unpack(format) → array

Decodes str (which may contain binary data) according to the format string, returning
an array of the extracted values. The format string consists of a sequence of single-
character directives, summarized in Table 27.14 on the next page. Each directive may
be followed by a number, indicating the number of times to repeat this directive. An
asterisk (*) will use up all remaining elements. The directives sSiIlL may each be
followed by an underscore (_) to use the underlying platform’s native size for the
specified type; otherwise, it uses a platform-independent consistent size. Spaces are
ignored in the format string. Comments1.8 starting with # to the next newline or end of
string are also ignored. See also Array#pack on page 415.

"abc \0\0abc \0\0".unpack('A6Z6') → ["abc", "abc "]
"abc \0\0".unpack('a3a3') → ["abc", " \000\000"]
"aa".unpack('b8B8') → ["10000110", "01100001"]
"aaa".unpack('h2H2c') → ["16", "61", 97]
"\xfe\xff\xfe\xff".unpack('sS') → [-257, 65279]
"now=20is".unpack('M*') → ["now is"]
"whole".unpack('xax2aX2aX1aX2a') → ["h", "e", "l", "l", "o"]

upcase str.upcase → string

Returns a copy of str with all lowercase letters replaced with their uppercase counter-
parts. The operation is locale insensitive—only characters a to z are affected.

"hEllO".upcase → "HELLO"

Prepared exclusively for Margus Pau

STRING 603

S
tr

in
g

Table 27.14. Directives for String#unpack

Format Function Returns

A String with trailing NULs and spaces removed. String
a String. String
B Extract bits from each character (MSB first). String
b Extract bits from each character (LSB first). String
C Extract a character as an unsigned integer. Fixnum
c Extract a character as an integer. Fixnum

d,D Treat sizeof(double) characters as a native double. Float
E Treat sizeof(double) characters as a double in little-endian byte order. Float
e Treat sizeof(float) characters as a float in little-endian byte order. Float

f,F Treat sizeof(float) characters as a native float. Float
G Treat sizeof(double) characters as a double in network byte order. Float
g Treat sizeof(float) characters as a float in network byte order. Float
H Extract hex nibbles from each character (most significant first). String
h Extract hex nibbles from each character (least significant first). String
I Treat sizeof(int)1 successive characters as an unsigned native integer. Integer
i Treat sizeof(int)1 successive characters as a signed native integer. Integer
L Treat four1 successive characters as an unsigned native long integer. Integer
l Treat four1 successive characters as a signed native long integer. Integer
M Extract a quoted-printable string. String
m Extract a Base64 encoded string. String
N Treat four characters as an unsigned long in network byte order. Fixnum
n Treat two characters as an unsigned short in network byte order. Fixnum
P Treat sizeof(char *) characters as a pointer, and return len characters from

the referenced location.
String

p Treat sizeof(char *) characters as a pointer to a null-terminated string. String
Q Treat eight characters as an unsigned quad word (64 bits). Integer
q Treat eight characters as a signed quad word (64 bits). Integer
S Treat two1 successive characters as an unsigned short in native byte order. Fixnum
s Treat two1 successive characters as a signed short in native byte order. Fixnum
U Extract UTF-8 characters as unsigned integers. Integer
u Extract a UU-encoded string. String
V Treat four characters as an unsigned long in little-endian byte order. Fixnum
v Treat two characters as an unsigned short in little-endian byte order. Fixnum
w BER-compressed integer (see Array#pack for more information). Integer
X Skip backward one character. —
x Skip forward one character. —
Z String with trailing NULs removed. String
@ Skip to the offset given by the length argument. —

1 May be modified by appending “_” to the directive.

Prepared exclusively for Margus Pau

STRING 604

S
tr

in
g

upcase! str.upcase! → str or nil

Upcases the contents of str, returning nil if no changes were made.

upto str.upto(string) {| s | block } → str

Iterates through successive values, starting at str and ending at string inclusive, passing
each value in turn to the block. The String#succ method is used to generate each
value.

"a8".upto("b6") {|s| print s, ' ' }
for s in "a8".."b6"
print s, ' '

end

produces:

a8 a9 b0 b1 b2 b3 b4 b5 b6
a8 a9 b0 b1 b2 b3 b4 b5 b6

Prepared exclusively for Margus Pau

STRUCT 605

S
tr

uc
t

Class Struct < Object

Subclasses: Struct::Tms

A Struct is a convenient way to bundle a number of attributes together, using accessor
methods, without having to write an explicit class.

The Struct class is a generator of specific classes, each one of which is defined to hold
a set of variables and their accessors. In these examples, we’ll call the generated class
Customer, and we’ll show an example instance of that class as joe.

Also see OpenStruct on page 689.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either
a quoted string or a Symbol (such as :name).

Mixes in

Enumerable:
all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods
new Struct.new(〈 string 〉 〈 , symbol 〉+) → Customer

[1.9] Struct.new(〈 string 〉 〈 , symbol 〉+) { block } → Customer

Creates a new class, named by string, containing accessor methods for the given sym-
bols. If the name string is omitted, an anonymous structure class will be created. Oth-
erwise, the name of this struct will appear as a constant in class Struct, so it must be
unique for all Structs in the system and should start with a capital letter. Assigning a
structure class to a constant effectively gives the class the name of the constant.

Struct.new returns a new Class object, which can then be used to create specific
instances of the new structure. The remaining methods listed below (class and instance)
are defined for this generated class. See the description that follows for an example.

Ruby 1.9 and later allow you to pass a block to a Struct’s constructor. This block is
evaluated in the context of the new struct’s class and hence allows you conveniently to
add instance methods to the new struct.

Create a structure with a name in Struct
Struct.new("Customer", :name, :address) → Struct::Customer
Struct::Customer.new("Dave", "123 Main") → #<struct

Struct::Customer
name="Dave",
address="123 Main">

Prepared exclusively for Margus Pau

STRUCT 606

S
tr

uc
t

Create a structure named by its constant
Customer = Struct.new(:name, :address) → Customer
Customer.new("Dave", "123 Main") → #<struct Customer

name="Dave", address="123
Main">

new Customer.new(〈 obj 〉+) → joe

Creates a new instance of a structure (the class created by Struct.new). The number
of actual parameters must be less than or equal to the number of attributes defined for
this class; unset parameters default to nil. Passing too many parameters will raise an
ArgumentError.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.name → "Joe Smith"
joe.zip → 12345

[] Customer[〈 obj 〉+] → joe

Synonym for new (for the generated structure).

Customer = Struct.new(:name, :address, :zip)

joe = Customer["Joe Smith", "123 Maple, Anytown NC", 12345]
joe.name → "Joe Smith"
joe.zip → 12345

members Customer.members → array

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new("Customer", :name, :address, :zip)
Customer.members → ["name", "address", "zip"]

Instance methods
== joe == other_struct → true or false

Equality—Returns true if other_struct is equal to this one: they must be of the same
class as generated by Struct.new, and the values of all instance variables must be
equal (according to Object#==).

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joejr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
jane = Customer.new("Jane Doe", "456 Elm, Anytown NC", 12345)

joe == joejr → true
joe == jane → false

Prepared exclusively for Margus Pau

STRUCT 607

S
tr

uc
t

[] joe[symbol] → obj
joe[integer] → obj

Attribute Reference—Returns the value of the instance variable named by symbol or
indexed (0..length− 1) by int. Raises NameError if the named variable does not exist,
or raises IndexError if the index is out of range.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe["name"] → "Joe Smith"
joe[:name] → "Joe Smith"
joe[0] → "Joe Smith"

[]= joe[symbol] = obj → obj
joe[int] = obj → obj

Attribute Assignment—Assigns to the instance variable named by symbol or int the
value obj and returns it. Raises a NameError if the named variable does not exist, or
raises an IndexError if the index is out of range.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe["name"] = "Luke"
joe[:zip] = "90210"
joe.name → "Luke"
joe.zip → "90210"

each joe.each {| obj | block } → joe

Calls block once for each instance variable, passing the value as a parameter.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.each {|x| puts(x) }

produces:

Joe Smith
123 Maple, Anytown NC
12345

each_pair joe.each_pair {| symbol, obj | block } → joe

1.8 Calls block once for each instance variable, passing the name (as a symbol) and the
value as parameters.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.each_pair {|name, value| puts("#{name} => #{value}") }

produces:

name => Joe Smith
address => 123 Maple, Anytown NC
zip => 12345

Prepared exclusively for Margus Pau

STRUCT 608

S
tr

uc
t

length joe.length → int

Returns the number of instance variables.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.length → 3

members joe.members → array

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.members → ["name", "address", "zip"]

size joe.size → int

Synonym for Struct#length.

to_a joe.to_a → array

Returns the values for this instance as an array.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.to_a[1] → "123 Maple, Anytown NC"

values joe.values → array

Synonym for to_a.

values_at joe.values_at(〈 selector 〉∗) → array

1.8 Returns an array containing the elements in joe corresponding to the given indices. The
selectors may be integer indices or ranges.

Lots = Struct.new(:a, :b, :c, :d, :e, :f)
l = Lots.new(11, 22, 33, 44, 55, 66)
l.values_at(1, 3, 5) → [22, 44, 66]
l.values_at(0, 2, 4) → [11, 33, 55]
l.values_at(-1, -3, -5) → [66, 44, 22]

Prepared exclusively for Margus Pau

STRUCT::TMS 609

S
tr

uc
t::

T
m

s

Class Struct::Tms < Struct

This structure is returned by Process.times. It holds information on process times on
those platforms that support it. Not all values are valid on all platforms. This structure
contains the following instance variables and the corresponding accessors:

utime Amount of user CPU time, in seconds
stime Amount of system CPU time, in seconds
cutime Total of completed child processes’ user CPU time, in seconds (always 0 on

Windows)
cstime Total of completed child processes’ system CPU time, in seconds (always 0

on Windows)

See also Struct on page 605 and Process.times on page 566.

def eat_cpu
100_000.times { Math.sin(0.321) }

end
3.times { fork { eat_cpu } }
eat_cpu
Process.waitall
t = Process::times
[t.utime, t.stime] → [0.28, 0.03]
[t.cutime, t.cstime] → [0.74, 0.01]

Prepared exclusively for Margus Pau

SYMBOL 610

S
ym

bo
l

Class Symbol < Object

Symbol objects represent names inside the Ruby interpreter. They are generated using
the :name literal syntax and by using the various to_sym methods. The same Symbol
object will be created for a given name string for the duration of a program’s execution,
regardless of the context or meaning of that name. Thus, if Fred is a constant in one
context, a method in another, and a class in a third, the Symbol :Fred will be the same
object in all three contexts.

module One
class Fred
end
$f1 = :Fred

end
module Two
Fred = 1
$f2 = :Fred

end
def Fred()
end
$f3 = :Fred
$f1.id → 2526478
$f2.id → 2526478
$f3.id → 2526478

Class methods
all_symbols Symbol.all_symbols→ array

1.8 Returns an array of all the symbols currently in Ruby’s symbol table.

Symbol.all_symbols.size → 913
Symbol.all_symbols[1,20] → [:floor, :ARGV, :Binding, :symlink,

:chown, :EOFError, :$;, :String,
:LOCK_SH, :"setuid?", :$<,
:default_proc, :compact, :extend, :Tms,
:getwd, :$=, :ThreadGroup, :"success?",
:wait2]

Instance methods
id2name sym.id2name → string

Returns the string representation of sym.1.8 Prior to Ruby 1.8, symbols typically repre-
sented names; now they can be arbitrary strings.

:fred.id2name → "fred"
:"99 red balloons!".id2name → "99 red balloons!"

Prepared exclusively for Margus Pau

SYMBOL 611

S
ym

bo
l

inspect sym.inspect → string

Returns the representation of sym as a symbol literal.

:fred.inspect → :fred
:"99 red balloons!".inspect → :"99 red balloons!"

to_i sym.to_i → fixnum

Returns an integer that is unique for each symbol within a particular execution of a
program.

:fred.to_i → 9857
"fred".to_sym.to_i → 9857

to_int sym.to_int → fixnum

Synonym for Symbol#to_i. Allows symbols to have integer-like behavior.

to_s sym.to_s → string

Synonym for Symbol#id2name.

to_sym sym.to_sym → sym

Symbols are symbol-like!

Prepared exclusively for Margus Pau

THREAD 612

T
hr

ea
d

Class Thread < Object

Thread encapsulates the behavior of a thread of execution, including the main thread
of the Ruby script. See the tutorial in Chapter 11, beginning on page 127.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either
a quoted string or a Symbol (such as :name).

Class methods
abort_on_exception Thread.abort_on_exception→ true or false

Returns the status of the global “abort on exception” condition. The default is false.
When set to true, or if the global $DEBUG flag is true (perhaps because the command
line option -d was specified) all threads will abort (the process will exit(0)) if an
exception is raised in any thread. See also Thread.abort_on_exception=.

abort_on_exception= Thread.abort_on_exception= bool→ true or false

When set to true, all threads will abort if an exception is raised. Returns the new state.

Thread.abort_on_exception = true
t1 = Thread.new do
puts "In new thread"
raise "Exception from thread"

end
sleep(1)
puts "not reached"

produces:

In new thread
prog.rb:4: Exception from thread (RuntimeError)
from prog.rb:2:in `initialize'
from prog.rb:2:in `new'
from prog.rb:2

critical Thread.critical → true or false

Returns the status of the global “thread critical” condition.

critical= Thread.critical= bool → true or false

Sets the status of the global “thread critical” condition and returns it. When set to true,
prohibits scheduling of any existing thread. Does not block new threads from being
created and run. Certain thread operations (such as stopping or killing a thread, sleeping
in the current thread, and raising an exception) may cause a thread to be scheduled
even when in a critical section. Thread.critical is not intended for daily use: it is
primarily there to support folks writing threading libraries.

Prepared exclusively for Margus Pau

THREAD 613

T
hr

ea
d

current Thread.current→ thread

Returns the currently executing thread.

Thread.current → #<Thread:0x1d5790 run>

exit Thread.exit

Terminates the currently running thread and schedules another thread to be run. If this
thread is already marked to be killed, exit returns the Thread. If this is the main thread,
or the last thread, exit the process.

fork Thread.fork { block } → thread

Synonym for Thread.start.

kill Thread.kill(thread)

Causes the given thread to exit (see Thread.exit).

count = 0
a = Thread.new { loop { count += 1 } }
sleep(0.1) → 0
Thread.kill(a) → #<Thread:0x1c947c dead>
count → 39410
a.alive? → false

list Thread.list → array

Returns an array of Thread objects for all threads that are either runnable or stopped.

Thread.new { sleep(200) }
Thread.new { 1000000.times {|i| i*i } }
Thread.new { Thread.stop }
Thread.list.each {|thr| p thr }

produces:

#<Thread:0x1c960c sleep>
#<Thread:0x1c9698 run>
#<Thread:0x1c96fc sleep>
#<Thread:0x1d5790 run>

main Thread.main → thread

Returns the main thread for the process.

Thread.main → #<Thread:0x1d5790 run>

new Thread.new(〈 arg 〉∗) {| args | block } → thread

Creates and runs a new thread to execute the instructions given in block. Any arguments
passed to Thread.new are passed into the block.

Prepared exclusively for Margus Pau

THREAD 614

T
hr

ea
d

x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }
a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }
x.join; a.join # wait for threads to finish

produces:

abxyzc

pass Thread.pass

Invokes the thread scheduler to pass execution to another thread.

a = Thread.new { print "a"; Thread.pass; print "b" }
b = Thread.new { print "x"; Thread.pass; print "y" }
a.join; b.join

produces:

axby

start Thread.start(〈 args 〉∗) {| args | block } → thread

Basically the same as Thread.new. However, if class Thread is subclassed, then calling
start in that subclass will not invoke the subclass’s initialize method.

stop Thread.stop

Stops execution of the current thread, putting it into a “sleep” state, and schedules
execution of another thread. Resets the “critical” condition to false.

a = Thread.new { print "a"; Thread.stop; print "c" }
Thread.pass
print "b"
a.run
a.join

produces:

abc

Instance methods
[] thr[symbol] → obj or nil

Attribute Reference—Returns the value of a thread-local variable, using either a symbol
or a string name. If the specified variable does not exist, returns nil.

a = Thread.new { Thread.current["name"] = "A"; Thread.stop }
b = Thread.new { Thread.current[:name] = "B"; Thread.stop }
c = Thread.new { Thread.current["name"] = "C"; Thread.stop }
Thread.list.each {|x| puts "#{x.inspect}: #{x[:name]}" }

produces:

#<Thread:0x1c92b0 sleep>: C
#<Thread:0x1c9328 sleep>: B
#<Thread:0x1c93b4 sleep>: A
#<Thread:0x1d5790 run>:

Prepared exclusively for Margus Pau

THREAD 615

T
hr

ea
d

[]= thr[symbol] = obj→ obj

Attribute Assignment—Sets or creates the value of a thread-local variable, using either
a symbol or a string. See also Thread#[].

abort_on_exception thr.abort_on_exception→ true or false

Returns the status of the thread-local “abort on exception” condition for thr. The default
is false. See also Thread.abort_on_exception=.

abort_on_exception= thr.abort_on_exception= true or false→ true or false

When set to true, causes all threads (including the main program) to abort if an excep-
tion is raised in thr. The process will effectively exit(0).

alive? thr.alive? → true or false

Returns true if thr is running or sleeping.

thr = Thread.new { }
thr.join → #<Thread:0x1c96fc dead>
Thread.current.alive? → true
thr.alive? → false

exit thr.exit → thr or nil

Terminates thr and schedules another thread to be run. If this thread is already marked
to be killed, exit returns the Thread. If this is the main thread, or the last thread, exits
the process.

group thr.group → thread_group

1.8 Returns the ThreadGroup owning thr, or nil.

thread = Thread.new { sleep 99 }
Thread.current.group.list → [#<Thread:0x1c9418 sleep>,

#<Thread:0x1d5790 run>]
new_group = ThreadGroup.new
thread.group.list → [#<Thread:0x1c9418 sleep>,

#<Thread:0x1d5790 run>]
new_group.add(thread)
thread.group.list → [#<Thread:0x1c9418 sleep>]
Thread.current.group.list → [#<Thread:0x1d5790 run>]

join thr.join → thr
thr.join(limit) → thr

1.8 The calling thread will suspend execution and run thr. Does not return until thr exits or
until limit seconds have passed. If the time limit expires, nilwill be returned; otherwise
thr is returned.

Prepared exclusively for Margus Pau

THREAD 616

T
hr

ea
d

Any threads not joined will be killed when the main program exits. If thr had previously
raised an exception and the abort_on_exception and $DEBUG flags are not set (so the
exception has not yet been processed), it will be processed at this time.

a = Thread.new { print "a"; sleep(10); print "b"; print "c" }
x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }
x.join # Let x thread finish, a will be killed on exit.

produces:

axyz

The following example illustrates the limit parameter.

y = Thread.new { 4.times { sleep 0.1; print "tick...\n" }}
print "Waiting\n" until y.join(0.15)

produces:

tick...
Waiting
tick...
Waiting
tick...
tick...

keys thr.keys → array

1.8 Returns an array of the names of the thread-local variables (as symbols).

thr = Thread.new do
Thread.current[:cat] = 'meow'
Thread.current["dog"] = 'woof'

end
thr.join → #<Thread:0x1c965c dead>
thr.keys → [:dog, :cat]

key? thr.key?(symbol) → true or false

Returns true if the given string (or symbol) exists as a thread-local variable.

me = Thread.current
me[:oliver] = "a"
me.key?(:oliver) → true
me.key?(:stanley) → false

kill thr.kill

Synonym for Thread#exit.

priority thr.priority → int

Returns the priority of thr. Default is zero; higher-priority threads will run before lower-
priority threads.

Thread.current.priority → 0

Prepared exclusively for Margus Pau

THREAD 617

T
hr

ea
d

priority= thr.priority= int → thr

Sets the priority of thr to integer. Higher-priority threads will run before lower-priority
threads.

count1 = count2 = 0
a = Thread.new do

loop { count1 += 1 }
end

a.priority = -1

b = Thread.new do
loop { count2 += 1 }

end
b.priority = -2
sleep 1
Thread.critical = 1
count1 → 451372
count2 → 4514

raise thr.raise
thr.raise(message)

thr.raise(exception 〈 , message 〈 , array 〉 〉)

Raises1.8 an exception (see Kernel.raise on page 506 for details) from thr. The caller
does not have to be thr.

Thread.abort_on_exception = true
a = Thread.new { sleep(200) }
a.raise("Gotcha")

produces:

prog.rb:3: Gotcha (RuntimeError)
from prog.rb:2:in `initialize'
from prog.rb:2:in `new'
from prog.rb:2

run thr.run → thr

Wakes up thr, making it eligible for scheduling. If not in a critical section, then invokes
the scheduler.

a = Thread.new { puts "a"; Thread.stop; puts "c" }
Thread.pass
puts "Got here"
a.run
a.join

produces:

a
Got here
c

Prepared exclusively for Margus Pau

THREAD 618

T
hr

ea
d

safe_level thr.safe_level → int

Returns the safe level in effect for thr. Setting thread-local safe levels can help when
implementing sandboxes that run insecure code.

thr = Thread.new { $SAFE = 3; sleep }
Thread.current.safe_level → 0
thr.safe_level → 3

status thr.status → string, false or nil

Returns the status of thr: sleep if thr is sleeping or waiting on I/O, run if thr is exe-
cuting, aborting if thr is aborting, false if thr terminated normally, and nil if thr
terminated with an exception.

a = Thread.new { raise("die now") }
b = Thread.new { Thread.stop }
c = Thread.new { Thread.exit }
d = Thread.new { sleep }
Thread.critical = true
d.kill → #<Thread:0x1c8e00 aborting>
a.status → nil
b.status → "sleep"
c.status → false
d.status → "aborting"
Thread.current.status → "run"

stop? thr.stop? → true or false

Returns true if thr is dead or sleeping.

a = Thread.new { Thread.stop }
b = Thread.current
a.stop? → true
b.stop? → false

terminate thr.terminate

Synonym for Thread#exit.

value thr.value → obj

Waits for thr to complete (via Thread#join) and returns its value.

a = Thread.new { 2 + 2 }
a.value → 4

wakeup thr.wakeup → thr

Marks thr as eligible for scheduling (it may still remain blocked on I/O, however). Does
not invoke the scheduler (see Thread#run).

Prepared exclusively for Margus Pau

THREADGROUP 619

T
hr

ea
dG

ro
up

Class ThreadGroup < Object

A ThreadGroup keeps track of a number of threads. A Thread can belong to only one
ThreadGroup at a time; adding a thread to a group will remove it from the its current
group. Newly created threads belong to the group of the thread that created them.

ThreadGroup constants

Default Default thread group.

Class methods
new ThreadGroup.new→ thgrp

Returns a newly created ThreadGroup. The group is initially empty.

Instance methods
add thgrp.add(thread) → thgrp

Adds the given thread to this group, removing it from any other group to which it may
have previously belonged.

puts "Default group is #{ThreadGroup::Default.list}"
tg = ThreadGroup.new
t1 = Thread.new { sleep }
t2 = Thread.new { sleep }
puts "t1 is #{t1}, t2 is #{t2}"
tg.add(t1)
puts "Default group now #{ThreadGroup::Default.list}"
puts "tg group now #{tg.list}"

produces:

Default group is #<Thread:0x1d5790>
t1 is #<Thread:0x1c942c>, t2 is #<Thread:0x1c93c8>
Default group now #<Thread:0x1c93c8>#<Thread:0x1d5790>
tg group now #<Thread:0x1c942c>

enclose thgrp.enclose → thgrp

1.8 Prevents threads being removed from thgrp.

thread = Thread.new { sleep 99 }
group = ThreadGroup.new
group.add(thread)
group.enclose
ThreadGroup::Default.add(thread)

produces:

prog.rb:5:in `add': can't move from the enclosed thread group (ThreadError)
from prog.rb:5

Prepared exclusively for Margus Pau

THREADGROUP 620

T
hr

ea
dG

ro
up

enclosed? thgrp.enclose → true or false

1.8 Returns true if this thread group has been enclosed.

freeze thgrp.freeze

Stops new threads being added to or removed from thgrp.

list thgrp.list → array

Returns an array of all existing Thread objects that belong to this group.

ThreadGroup::Default.list → [#<Thread:0x1d5790 run>]

Prepared exclusively for Margus Pau

TIME 621

T
im

e

Class Time < Object

Time is an abstraction of dates and times. Time is stored internally as the number of
seconds and microseconds since the epoch, January 1, 1970 00:00 UTC. On some oper-
ating systems, this offset is allowed to be negative. Also see the library modules Date
and ParseDate, described on pages 644 and 692, respectively.

The Time class treats GMT (Greenwich Mean Time) and UTC (Coordinated Universal
Time)3 as equivalent. GMT is the older way of referring to these baseline times but
persists in the names of calls on POSIX systems.

All times are stored with some number of microseconds. Be aware of this fact when
comparing times with each other—times that are apparently equal when displayed may
be different when compared.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Class methods
at Time.at(time) → time

Time.at(seconds 〈 , microseconds 〉) → time

Creates a new time object with the value given by time, or the given number of seconds
(and optional microseconds) from epoch. A nonportable1.8 feature allows the offset to be
negative on some systems.

Time.at(0) → Wed Dec 31 18:00:00 CST 1969
Time.at(946702800) → Fri Dec 31 23:00:00 CST 1999
Time.at(-284061600) → Sat Dec 31 00:00:00 CST 1960

gm Time.gm(year 〈 , month, day, hour, min, sec, usec 〉) → time
Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time

Creates a time based on given values, interpreted as UTC (GMT). The year must
be specified. Other values default to the minimum value for that field (and may be
nil or omitted). Months may be specified by numbers from 1 to 12 or by the three-
letter English month names. Hours are specified on a 24-hour clock (0..23). Raises an
ArgumentError if any values are out of range. Will also accept ten arguments in the
order output by Time#to_a.

Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

3. Yes, UTC really does stand for Coordinated Universal Time. There was a committee involved.

Prepared exclusively for Margus Pau

TIME 622

T
im

e

local Time.local(year 〈 , month, day, hour, min, sec, usec 〉) → time
Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time

Same as Time.gm, but interprets the values in the local time zone. The first form can
be used to construct a Time object given the result of a call to ParseDate#parsedate
(described on page 692).

require 'parsedate'
Time.local(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 CST 2000

res = ParseDate.parsedate("2000-01-01 20:15:01")
Time.local(*res) → Sat Jan 01 20:15:01 CST 2000

mktime Time.mktime(year, month, day, hour, min, sec, usec) → time

Synonym for Time.local.

new Time.new → time

Returns a Time object initialized to the current system time. Note: The object created
will be created using the resolution available on your system clock and so may include
fractional seconds.

a = Time.new → Thu Aug 26 22:38:02 CDT 2004
b = Time.new → Thu Aug 26 22:38:02 CDT 2004
a == b → false
"%.6f" % a.to_f → "1093577882.292375"
"%.6f" % b.to_f → "1093577882.293183"

now Time.now → time

Synonym for Time.new.

times Time.times → struct_tms

Deprecated in favor of Process.times, documented1.8 on page 566.

utc Time.utc(year 〈 , month, day, hour, min, sec, usec 〉) → time
Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time

Synonym for Time.gm.

Time.utc(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

Prepared exclusively for Margus Pau

TIME 623

T
im

e

Instance methods
+ time + numeric → time

Addition—Adds some number of seconds (possibly fractional) to time and returns that
value as a new time.

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t + (60 * 60 * 24) → Fri Aug 27 22:38:02 CDT 2004

– time - time → float
time - numeric → time

Difference—Returns a new time that represents the difference between two times, or
subtracts the given number of seconds in numeric from time.

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t2 = t + 2592000 → Sat Sep 25 22:38:02 CDT 2004
t2 - t → 2592000.0
t2 - 2592000 → Thu Aug 26 22:38:02 CDT 2004

<=> time <=> other_time → −1, 0, +1
time <=> numeric → −1, 0, +1

Comparison—Compares time with other_time or with numeric, which is the number
of seconds (possibly fractional) since epoch.

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t2 = t + 2592000 → Sat Sep 25 22:38:02 CDT 2004
t <=> t2 → -1
t2 <=> t → 1
t <=> t → 0

asctime time.asctime → string

Returns a canonical string representation of time.

Time.now.asctime → "Thu Aug 26 22:38:02 2004"

ctime time.ctime → string

Synonym for Time#asctime.

day time.day → int

Returns the day of the month (1..n) for time.

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t.day → 26

dst? time.dst? → true or false
1.8 Synonym for Time#isdst.

Prepared exclusively for Margus Pau

TIME 624

T
im

e

Time.local(2000, 7, 1).dst? → true
Time.local(2000, 1, 1).dst? → false

getgm time.getgm → time

1.8 Returns a new Time object representing time in UTC.

t = Time.local(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 CST 2000
t.gmt? → false
y = t.getgm → Sun Jan 02 02:15:01 UTC 2000
y.gmt? → true
t == y → true

getlocal time.getlocal → time

1.8 Returns a new Time object representing time in local time (using the local time zone in
effect for this process).

t = Time.gm(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000
t.gmt? → true
l = t.getlocal → Sat Jan 01 14:15:01 CST 2000
l.gmt? → false
t == l → true

getutc time.getutc → time

1.8 Synonym for Time#getgm.

gmt? time.gmt? → true or false

Returns true if time represents a time in UTC (GMT).

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t.gmt? → false
t = Time.gm(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000
t.gmt? → true

gmtime time.gmtime → time

Converts time to UTC (GMT), modifying the receiver.

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t.gmt? → false
t.gmtime → Fri Aug 27 03:38:02 UTC 2004
t.gmt? → true

gmt_offset time.gmt_offset → int

1.8 Returns the offset in seconds between the timezone of time and UTC.

t = Time.gm(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000
t.gmt_offset → 0
l = t.getlocal → Sat Jan 01 14:15:01 CST 2000
l.gmt_offset → -21600

Prepared exclusively for Margus Pau

TIME 625

T
im

e

gmtoff time.gmtoff → int

1.8 Synonym for Time#gmt_offset.

hour time.hour → int

Returns the hour of the day (0..23) for time.

t = Time.now → Thu Aug 26 22:38:02 CDT 2004
t.hour → 22

isdst time.isdst → true or false

Returns true if time occurs during Daylight Saving Time in its time zone.

Time.local(2000, 7, 1).isdst → true
Time.local(2000, 1, 1).isdst → false

localtime time.localtime → time

Converts time to local time (using the local time zone in effect for this process) modi-
fying the receiver.

t = Time.gm(2000, "jan", 1, 20, 15, 1)
t.gmt? → true
t.localtime → Sat Jan 01 14:15:01 CST 2000
t.gmt? → false

mday time.mday → int

Synonym for Time#day.

min time.min → int

Returns the minute of the hour (0..59) for time.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.min → 38

mon time.mon → int

Returns the month of the year (1..12) for time.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.mon → 8

month time.month → int

Synonym for Time#mon.

Prepared exclusively for Margus Pau

TIME 626

T
im

e

sec time.sec → int

Returns the second of the minute (0..60)4 for time.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.sec → 3

strftime time.strftime(format) → string

Formats time according to the directives in the given format string. See Table 27.15 on
the following page for the available values. Any text not listed as a directive will be
passed through to the output string.

t = Time.now
t.strftime("Printed on %m/%d/%Y") → "Printed on 08/26/2004"
t.strftime("at %I:%M%p") → "at 10:38PM"

to_a time.to_a → array

Returns a ten-element array of values for time: [sec, min, hour, day, month, year,

wday, yday, isdst, zone]. See the individual methods for an explanation of the valid
ranges of each value. The ten elements can be passed directly to the methods Time.utc
or Time.local to create a new Time.

now = Time.now → Thu Aug 26 22:38:03 CDT 2004
t = now.to_a → [3, 38, 22, 26, 8, 2004, 4, 239, true, "CDT"]

to_f time.to_f → float

Returns the value of time as a floating-point number of seconds since epoch.

t = Time.now
"%10.5f" % t.to_f → "1093577883.33171"
t.to_i → 1093577883

to_i time.to_i → int

Returns the value of time as an integer number of seconds since epoch.

t = Time.now
"%10.5f" % t.to_f → "1093577883.37052"
t.to_i → 1093577883

to_s time.to_s → string

Returns a string representing time. Equivalent to calling Time#strftime with a format
string of %a %b %d %H:%M:%S %Z %Y.

Time.now.to_s → "Thu Aug 26 22:38:03 CDT 2004"

4. Yes, seconds really can range from zero to 60. This allows the system to inject leap seconds every now
and then to correct for the fact that years are not really a convenient number of hours long.

Prepared exclusively for Margus Pau

TIME 627

T
im

e

Table 27.15. Time#strftime directives

Format Meaning

%a The abbreviated weekday name (“Sun”)
%A The full weekday name (“Sunday”)
%b The abbreviated month name (“Jan”)
%B The full month name (“January”)
%c The preferred local date and time representation
%d Day of the month (01..31)
%H Hour of the day, 24-hour clock (00..23)
%I Hour of the day, 12-hour clock (01..12)
%j Day of the year (001..366)
%m Month of the year (01..12)
%M Minute of the hour (00..59)
%p Meridian indicator (“AM” or “PM”)
%S Second of the minute (00..60)
%U Week number of the current year, starting with the first Sunday as the first

day of the first week (00..53)
%W Week number of the current year, starting with the first Monday as the first

day of the first week (00..53)
%w Day of the week (Sunday is 0, 0..6)
%x Preferred representation for the date alone, no time
%X Preferred representation for the time alone, no date
%y Year without a century (00..99)
%Y Year with century
%Z Time zone name
%% Literal % character

tv_sec time.tv_sec → int

Synonym for Time#to_i.

tv_usec time.tv_usec → int

Synonym for Time#usec.

usec time.usec → int

Returns just the number of microseconds for time.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
"%10.6f" % t.to_f → "1093577883.448204"
t.usec → 448204

Prepared exclusively for Margus Pau

TIME 628

T
im

e

utc time.utc → time

Synonym for Time#gmtime.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.utc? → false
t.utc → Fri Aug 27 03:38:03 UTC 2004
t.utc? → true

utc? time.utc? → true or false

Returns true if time represents a time in UTC (GMT).

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.utc? → false
t = Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000
t.utc? → true

utc_offset time.utc_offset → int
1.8 Synonym for Time#gmt_offset.

wday time.wday → int

Returns an integer representing the day of the week, 0..6, with Sunday == 0.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.wday → 4

yday time.yday → int

Returns an integer representing the day of the year, 1..366.

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.yday → 239

year time.year → int

Returns the year for time (including the century).

t = Time.now → Thu Aug 26 22:38:03 CDT 2004
t.year → 2004

zone time.zone → string

Returns the name of the time zone used for time. As of Ruby 1.8,1.8 returns “UTC” rather
than “GMT” for UTC times.

t = Time.gm(2000, "jan", 1, 20, 15, 1)
t.zone → "UTC"
t = Time.local(2000, "jan", 1, 20, 15, 1)
t.zone → "CST"

Prepared exclusively for Margus Pau

TRUECLASS 629

T
ru

eC
la

ss

Class TrueClass < Object

The global value true is the only instance of class TrueClass and represents a logi-
cally true value in boolean expressions. The class provides operators allowing true to
be used in logical expressions.

Instance methods
& true & obj → true or false

And—Returns false if obj is nil or false, and returns true otherwise.

^ true ^ obj → true or false

Exclusive Or—Returns true if obj is nil and returns false otherwise.

| true | obj → true

Or—Returns true. As obj is an argument to a method call, it is always evaluated;
short-circuit evaluation is not performed in this case.

true | puts("or")
true || puts("logical or")

produces:

or

Prepared exclusively for Margus Pau

UNBOUNDMETHOD 630

U
nb

ou
nd

M
et

ho
d

Class UnboundMethod < Object1.8

Ruby supports two forms of objectified methods.1.8 Class Method is used to represent
methods that are associated with a particular object: these method objects are bound to
that object. Bound method objects for an object can be created using Object#method.

Ruby also supports unbound methods, which are methods objects that are not associ-
ated with a particular object. These can be created either by calling unbind on a bound
method object or by calling Module#instance_method.

Unbound methods can be called only after they are bound to an object. That object
must be a kind_of? the method’s original class.

class Square
def area
@side * @side

end
def initialize(side)
@side = side

end
end

area_unbound = Square.instance_method(:area)

s = Square.new(12)
area = area_unbound.bind(s)
area.call → 144

Unbound methods are a reference to the method at the time it was objectified: subse-
quent changes to the underlying class will not affect the unbound method.

class Test
def test
:original

end
end
um = Test.instance_method(:test)
class Test
def test
:modified

end
end
t = Test.new
t.test → :modified
um.bind(t).call → :original

Prepared exclusively for Margus Pau

UNBOUNDMETHOD 631

U
nb

ou
nd

M
et

ho
d

Instance methods
arity umeth.arity → fixnum

See Method#arity on page 522.

bind umeth.bind(obj) → method

1.8 Bind umeth to obj. If Klass was the class from which umeth was originally obtained,
obj.kind_of?(Klass) must be true.

class A
def test
puts "In test, class = #{self.class}"

end
end
class B < A
end
class C < B
end

um = B.instance_method(:test)
bm = um.bind(C.new)
bm.call
bm = um.bind(B.new)
bm.call
bm = um.bind(A.new)
bm.call

produces:

In test, class = C
In test, class = B
prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
from prog.rb:16

Prepared exclusively for Margus Pau

Chapter 28

Standard Library

The Ruby interpreter comes with a large number of classes, modules, and methods built
in—they are available as part of the running program. When you need a facility that
isn’t part of the built-in repertoire, you’ll often find it in a library that you can require
into your program.

A large number of Ruby libraries are available on the Internet. Sites such as the Ruby
Application Archive1 and RubyForge2 have great indices and a lot of code.

However, Ruby also ships as standard with a large number of libraries. Some of these
are written in pure Ruby and will be available on all Ruby platforms. Others are Ruby
extensions, and some of these will be present only if your system supports the resources
that they need. All can be included into your Ruby program using require. And, unlike
libraries you may find on the Internet, you can pretty much guarantee that all Ruby users
will have these libraries already installed on their machines.

In this chapter, we present the standard libraries in a new smorgasbord format. Rather
than go into depth on a few libraries, this chapter presents the entire contents of the
standard library, one entry per page. For each library we give some introductory notes
and typically give an example or two of use. You won’t find detailed method descrip-
tions here: for that consult the library’s own documentation.

It’s all very well suggesting that you “consult the library’s own documentation,” but
where can you find it? The answer is “it depends.” Some libraries have already been
documented using RDoc (see Chapter 16). That means you can use the ri command to
get their documentation. For example, from a command line, you may be able to see
the following documentation on the decode64 method in the Base64 standard library
member.

1. http://raa.ruby-lang.org

2. http://rubyforge.org

Prepared exclusively for Margus Pau 632

http://raa.ruby-lang.org
http://rubyforge.org

633

% ri Base64.decode64
-- Base64#decode64

decode64(str)
--

Returns the Base64-decoded version of str.

require 'base64'
str = 'VGhpcyBpcyBsaW5lIG9uZQpUaGlzIG' +

'lzIGxpbmUgdHdvClRoaXMgaXMgbGlu' +
'ZSB0aHJlZQpBbmQgc28gb24uLi4K'

puts Base64.decode64(str)

Generates:

This is line one
This is line two
This is line three
And so on...

If there’s no RDoc documentation available, the next place to look is the library itself. If
you have a source distribution of Ruby, these are in the ext/ and lib/ subdirectories.
If instead you have a binary-only installation, you can still find the source of pure-
Ruby library modules (normally in the lib/ruby/1.8/ directory under your Ruby
installation). Often, library source directories contain documentation that the author
has not yet converted to RDoc format.

If you still can’t find documentation, turn to Google. Many of the Ruby standard
libraries are also hosted as external projects. The authors develop them stand-alone
and then periodically integrate the code into the standard Ruby distribution. For exam-
ple, if you want detailed information on the API for the YAML library, Googling “yaml
ruby” may lead you to http://yaml4r.sourceforge.net . After admiring why the
lucky stiff ’s artwork, a click will take you to his 40+ page reference manual.

The next port of call is the ruby-talk mailing list. Ask a (polite) question there, and
chances are that you’ll get a knowledgeable respond within hours. See page 759 for
pointers on how to subscribe.

And if you still can’t find documentation, you can always follow Obi Wan’s advice and
do what we did when documenting Ruby—use the source. You’d be surprised at how
easy it is to read the actual source of Ruby libraries and work out the details of usage.

Prepared exclusively for Margus Pau

http://yaml4r.sourceforge.net

ABBREV 634

A
bb

re
v

Library Abbrev Generate Sets of Unique Abbreviations

Given a set of strings, calculate the set of unambiguous abbreviations for those strings,
and return a hash where the keys are all the possible abbreviations and the values are
the full strings. Thus, given input of “car” and “cone,” the keys pointing to “car” would
be “ca” and “car,” and those pointing to “cone” would be “co,” “con,” and “cone.”

An optional pattern or a string may be specified—only those input strings matching the
pattern, or beginning with the string, are considered for inclusion in the output hash.

Including the Abbrev library also adds an abbrev method to class Array.

• Show the abbreviation set of some words.

require 'abbrev'

Abbrev::abbrev(['ruby', 'rules']) → {"rules"=>"rules",
"ruby"=>"ruby",
"rul"=>"rules",
"rub"=>"ruby",
"rule"=>"rules"}

%w{ car cone }.abbrev → {"co"=>"cone",
"con"=>"cone",
"cone"=>"cone",
"ca"=>"car", "car"=>"car"}

%w{ car cone }.abbrev("ca") → {"ca"=>"car",
"car"=>"car"}

• A trivial command loop using abbreviations.

require 'abbrev'

COMMANDS = %w{ sample send start status stop }.abbrev

while line = gets
line = line.chomp

case COMMANDS[line]
when "sample": # ...
when "send": # ...
...
else
STDERR.puts "Unknown command: #{line}"

end
end

Prepared exclusively for Margus Pau

BASE64 635

B
as

e6
4Library Base64 Base64 Conversion Functions

Perform encoding and decoding of binary data using a Base64 representation. This
allows you to represent any binary data in purely printable characters. The encoding is
specified in RFC 2045 (http://www.faqs.org/rfcs/rfc2045.html).

Prior to Ruby 1.8.2,1.8 these methods were added to the global namespace. This is now
deprecated; the methods should instead be accessed as members of the Base64 module.

• Decode an encoded string.

require 'base64'
str = 'VGhpcyBpcyBsaW5lIG9uZQpUaGlzIG' +

'lzIGxpbmUgdHdvClRoaXMgaXMgbGlu' +
'ZSB0aHJlZQpBbmQgc28gb24uLi4K'

puts Base64.decode64(str)

produces:

This is line one
This is line two
This is line three
And so on...

• Convert and return a string.

require 'base64'
puts Base64.encode64("Now is the time\nto learn Ruby")

produces:

Tm93IGlzIHRoZSB0aW1lCnRvIGxlYXJuIFJ1Ynk=

• Convert a string into Base64 and print it to STDOUT.

require 'base64'
Base64.b64encode("Now is the time\nto learn Ruby")

produces:

Tm93IGlzIHRoZSB0aW1lCnRvIGxlYXJuIFJ1Ynk=

Prepared exclusively for Margus Pau

http://www.faqs.org/rfcs/rfc2045.html

BENCHMARK 636

B
en

ch
m

ar
k

Library Benchmark Time Code Execution

Allows code execution to be timed and the results tabulated. The Benchmark module
is easier to use if you include it in your top-level environment.

See also: Profile (page 696)

• Compare the costs of three kinds of method dispatch.

require 'benchmark'
include Benchmark
string = "Stormy Weather"
m = string.method(:length)
bm(6) do |x|
x.report("call") { 10_000.times { m.call } }
x.report("send") { 10_000.times { string.send(:length) } }
x.report("eval") { 10_000.times { eval "string.length" } }

end

produces:

user system total real
call 0.020000 0.000000 0.020000 (0.045998)
send 0.040000 0.000000 0.040000 (0.051318)
eval 0.130000 0.000000 0.130000 (0.177950)

• Which is better: reading all of a dictionary and splitting it, or splitting it line by
line? Use bmbm to run a rehearsal before doing the timing.

require 'benchmark'
include Benchmark
bmbm(6) do |x|
x.report("all") do

str = File.read("/usr/share/dict/words")
words = str.scan(/[-\w']+/)

end
x.report("lines") do
words = []
File.foreach("/usr/share/dict/words") do |line|

words << line.chomp
end

end
end

produces:

Rehearsal ---
all 0.980000 0.070000 1.050000 (1.256552)
lines 2.310000 0.120000 2.430000 (2.720674)
-------------------------------- total: 3.480000sec

user system total real
all 0.870000 0.030000 0.900000 (0.949623)
lines 1.720000 0.030000 1.750000 (1.926910)

Prepared exclusively for Margus Pau

BIGDECIMAL 637

B
ig

D
ec

im
al

Library BigDecimal Large-Precision Decimal Numbers

Ruby’s standard Bignum class supports integers with large numbers of digits. The
BigDecimal class supports decimal numbers with large numbers of decimal places.
The standard library supports all the normal arithmetic operations. BigDecimal also
comes with some extension libraries.

bigdecimal/ludcmp
Performs an LU decomposition of a matrix.

bigdecimal/math
Provides the transcendental functions sqrt, sin, cos, atan, exp, and log, along
with functions for computing PI and E. All functions take an arbitrary precision
argument.

bigdecimal/jacobian
Constructs the Jacobian (a matrix enumerating the partial derivatives) of a given
function. Not dependent on BigDecimal.

bigdecimal/newton
Solves the roots of nonlinear function using Newton’s method. Not dependent on
BigDecimnal.

bigdecimal/nlsolve
Wraps the bigdecimal/newton library for equations of BigDecimals.

You can find English-language documentation in the Ruby source distribution in the
file ext/bigdecimal/bigdecimal_en.html.

require 'bigdecimal'
require 'bigdecimal/math'
include BigMath

pi = BigMath::PI(20) # 20 is the number of decimal digits

radius = BigDecimal("2.14156987652974674392")

area = pi * radius**2

area.to_s → "0.14408354044685604417672003380667956168
8599846410445032583215824758780405545861
780909930190528E2"

The same with regular floats

radius = 2.14156987652974674392

Math::PI * radius**2 → 14.4083540446856

Prepared exclusively for Margus Pau

CGI 638

C
G

I

Library CGI CGI Programming Support

The CGI class provides support for programs used as CGI (Common Gateway Interface)
scripts in a Web server. CGI objects are initialized with data from the environment
and from the HTTP request, and they provide convenient accessors to form data and
cookies. They can also manage sessions using a variety of storage mechanisms. Class
CGI also provides basic facilities for HTML generation and class methods to escape
and unescape requests and HTML.

Note:1.8 The 1.8 implementation of CGI introduces a change in the way form data is
accessed. See the ri documentation of CGI#[] and CGI#params for details.

See also: CGI::Session (page 640)

• Escape and unescape special characters in URLs and HTML. If the $KCODE vari-
able is set to "u" (for UTF8), the library will convert from HTML’s Unicode to
internal UTF8.

require 'cgi'
CGI.escape('c:\My Files') → c%3A%5CMy+Files
CGI.unescape('c%3a%5cMy+Files') → c:\My Files
CGI::escapeHTML('"a"<b & c') → "a"<b & c

$KCODE = "u" # Use UTF8
CGI.unescapeHTML('"a"<=>b') → "a"<=>b
CGI.unescapeHTML('AA') → AA
CGI.unescapeHTML('πr²') → πr2

• Access information from the incoming request.

require 'cgi'
c = CGI.new
c.auth_type → "basic"
c.user_agent → "Mozscape Explorari V5.6"

• Access form fields from an incoming request. Assume the following script is
installed as test.cgi and the user linked to it using http://mydomain.com/
test.cgi?fred=10&barney=cat.

require 'cgi'
c = CGI.new
c['fred'] → "10"
c.keys → ["barney", "fred"]
c.params → {"barney"=>["cat"], "fred"=>["10"]}

• If a form contains multiple fields with the same name, the corresponding values
will be returned to the script as an array. The [] accessor returns just the first of
these—index the result of the params method to get them all. In this example,
assume the form has three fields called “name.”

Prepared exclusively for Margus Pau

CGI 639

C
G

I

require 'cgi'
c = CGI.new
c['name'] → "fred"
c.params['name'] → ["fred", "wilma", "barney"]
c.keys → ["name"]
c.params → {"name"=>["fred", "wilma", "barney"]}

• Send a response to the browser. (Not many folks use this form of HTML genera-
tion. Consider one of the templating libraries—see page 226.)

require 'cgi'
cgi = CGI.new("html4Tr")
cgi.header("type" => "text/html", "expires" => Time.now + 30)
cgi.out do
cgi.html do
cgi.head{ cgi.title{"Hello World!"} } +
cgi.body do

cgi.pre do
CGI::escapeHTML(
"params: " + cgi.params.inspect + "\n" +
"cookies: " + cgi.cookies.inspect + "\n")

end
end

end
end

• Store a cookie in the client browser.

require 'cgi'
cgi = CGI.new("html4")
cookie = CGI::Cookie.new('name' => 'mycookie',

'value' => 'chocolate chip',
'expires' => Time.now + 3600)

cgi.out('cookie' => cookie) do
cgi.head + cgi.body { "Cookie stored" }

end

• Retrieve a previously stored cookie.

require 'cgi'
cgi = CGI.new("html4")
cookie = cgi.cookies['mycookie']

cgi.out('cookie' => cookie) do
cgi.head + cgi.body { "Flavor: " + cookie[0] }

end

Prepared exclusively for Margus Pau

CGI::SESSION 640

C
G

I::
S

es
si

onLibrary CGI::Session CGI Sessions

A CGI::Session maintains a persistent state for Web users in a CGI environment.
Sessions may be memory resident or may be stored on disk. See the discussion on
page 233 for details.

See also: CGI (page 638)

require 'cgi'
require 'cgi/session'

cgi = CGI.new("html3")
sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",
"prefix" => "web-session."
)

if sess['lastaccess']
msg = "You were last here #{sess['lastaccess']}."

else
msg = "Looks like you haven't been here for a while"

end

count = (sess["accesscount"] || 0).to_i
count += 1

msg << "<p>Number of visits: #{count}"

sess["accesscount"] = count
sess["lastaccess"] = Time.now.to_s
sess.close

cgi.out {
cgi.html {
cgi.body {

msg
}

}
}

Prepared exclusively for Margus Pau

COMPLEX 641

C
om

pl
ex

Library Complex Complex Numbers

Class Complex represents complex numbers. As well as the methods here, including
class Complex in your program alters class Numeric (and subclasses) in order to give
the illusion that all numbers are complex (by giving them the methods real, image,
arg, polar, conjugate, and power!).

require 'complex'
include Math

v1 = Complex(2,3) → Complex(2, 3)
v2 = 2.im → Complex(0, 2)
v1 + v2 → Complex(2, 5)
v1 * v2 → Complex(-6, 4)
v2**2 → Complex(-4, 0)
cos(v1) → Complex(-4.18962569096881, -9.10922789375534)
v1 < v2 → false
v2**2 == -4 → true

Euler's theorem
E**(PI*Complex::I) → Complex(-1.0, 1.22464679914735e-16)

Prepared exclusively for Margus Pau

CSV 642

C
S

V

Library CSV Comma-Separated Values

Comma-separated data files are often used to transfer tabular information (and are a
lingua franca for importing and exporting spreadsheet and database information).

Ruby’s CSV library deals with arrays (corresponding to the rows in the CSV file) and
strings (corresponding to the elements in a row). If an element in a row is missing, it
will be represented as a nil in Ruby.

The files used in the following examples are:

csvfile:
12,eggs,2.89,
2,"shirt, blue",21.45,special
1,"""Hello Kitty"" bag",13.99

csvfile_hdr:
Count, Description, Price
12,eggs,2.89,
2,"shirt, blue",21.45,special
1,"""Hello Kitty"" bag",13.99

• Read a file containing CSV data and process line-by-line.

require 'csv'
CSV.open("csvfile", "r") do |row|
qty = row[0].to_i
price = row[2].to_f
printf "%20s: $%5.2f %s\n", row[1], qty*price, row[3] || " ---"

end

produces:

eggs: $34.68 ---
shirt, blue: $42.90 special

"Hello Kitty" bag: $13.99 ---

• Some CSV files have a header line. Read it, and then process the rest of the file.

require 'csv'
reader = CSV.open("csvfile_hdr", "r")
header = reader.shift
reader.each {|row| process(header, row) }

• Write CSV data to an existing open stream (STDOUT in this case). Use | as the
column separator.

require 'csv'
CSV::Writer.generate(STDOUT, '|') do |csv|
csv << [1, "line 1", 27]
csv << [2, nil, 123]
csv << [3, "|bar|", 32.5]

end

produces:

1|line 1|27
2||123
3|"|bar|"|32.5

Prepared exclusively for Margus Pau

CURSES 643

C
ur

se
s

Library Curses CRT Screen Handling

The Curses library is a fairly thin wrapper around the C curses or ncurses libraries,Only if: curses or
ncurses installed in
target environment allowing applications a device-independent way of drawing on consoles and other

terminal-like devices. As a nod toward object-orientation, curses windows and mouse
events are represented as Ruby objects. Otherwise, the standard curses calls and con-
stants are simply defined in the Curses module.

Draw the paddle of a simple game of 'pong'. It moves
in response to the up and down keys

require 'curses'
include Curses

class Paddle
HEIGHT = 4
PADDLE = " \n" + "|\n"*HEIGHT + " "
def initialize
@top = (Curses::lines - HEIGHT)/2
draw

end
def up
@top -= 1 if @top > 1

end
def down
@top += 1 if (@top + HEIGHT + 1) < lines

end
def draw
setpos(@top-1, 0)
addstr(PADDLE)
refresh

end
end

init_screen
begin
crmode
noecho
stdscr.keypad(true)

paddle = Paddle.new

loop do
case getch
when ?Q, ?q : break
when Key::UP : paddle.up
when Key::DOWN : paddle.down
else beep
end
paddle.draw

end
ensure
close_screen

end

Prepared exclusively for Margus Pau

DATE/DATETIME 644

D
at

e/
D

at
eT

im
e

Library Date/DateTime Date and Time Manipulation

The date library implements classes Date and DateTime, which provide a compre-
hensive set of facilities for storing, manipulating, and converting dates with or without
time components. The classes can represent and manipulate civil, ordinal, commercial,
Julian, and standard dates, starting January 1, 4713 BCE. The DateTime class extends
Date with hours, minutes, seconds, and fractional seconds, and it provides some sup-
port for time zones. The classes also provide support for parsing and formatting date
and datetime strings. The classes have a rich interface—consult the ri documentation
for details. The introductory notes in the file lib/date.rb are also well worth reading.

See also: ParseDate (page 692)

• Experiment with various representations

require 'date'

d = Date.new(2000, 3, 31) → #<Date:
4903269/2,0,2299161>

[d.year, d.yday, d.wday] → [2000, 91, 5]
[d.month, d.mday] → [3, 31]
[d.cwyear, d.cweek, d.cwday] → [2000, 13, 5]
[d.jd, d.mjd] → [2451635, 51634]
d1 = Date.commercial(2000, 13, 7) → #<Date:

4903273/2,0,2299161>
d1.to_s → "2000-04-02"
[d1.cwday, d1.wday] → [7, 0]

• Essential information about Christmas.

require 'date'

now = DateTime.now
year = now.year
year += 1 if now.month == 12 && now.day > 25
xmas = DateTime.new(year, 12, 25)

diff = xmas - now

puts "It's #{diff.to_i} days to Christmas"

h,m,s,frac = Date.day_fraction_to_time(diff)
s += frac.to_f

puts "That's #{h} hours, #{m} minutes, #{s} seconds"
puts "Christmas falls on a #{xmas.strftime('%A')}"

produces:

It's 119 days to Christmas
That's 2876 hours, 21 minutes, 28.0000094433912 seconds
Christmas falls on a Saturday

Prepared exclusively for Margus Pau

DBM 645

D
B

M

Library DBM Interface to DBM Databases

DBM files implement simple, hashlike persistent stores. Many DBM implementationsOnly if: a DBM
library is installed

in target
environment

exist—the Ruby library can be configured to use one of the DBM libraries db, dbm
(ndbm), gdbm, and qdbm. The interface to DBM files is similar to class Hash, except
that DBM keys and values will be strings. This can cause confusion, as the conversion
to a string is performed silently when the data is written. The DBM library is a wrapper
around the lower-level access method. For true low-level access, see also the GDBM
and SDBM libraries.

See also: gdbm (page 661), sdbm (page 709)

• Create a simple DBM file, then re-open it read-only and read some data. Note the
conversion of a date object to its string form.

require 'dbm'
require 'date'

DBM.open("data.dbm") do |dbm|
dbm['name'] = "Walter Wombat"
dbm['dob'] = Date.new(1997, 12,25)

end

DBM.open("data.dbm", nil, DBM::READER) do |dbm|
p dbm.keys
p dbm['dob']
p dbm['dob'].class

end

produces:

["name", "dob"]
"1997-12-25"
String

• Read from the system’s aliases file. Note the trailing null bytes on all strings.

require 'dbm'

DBM.open("/etc/aliases", nil) do |dbm|
p dbm.keys
p dbm["postfix\000"]

end

produces:

["postmaster\000", "daemon\000", "ftp-bugs\000",
"operator\000", "abuse\000", "decode\000", "@\000",
"mailer-daemon\000", "bin\000", "named\000", "nobody\
000", "uucp\000", "www\000", "postfix\000", "manager\
000", "dumper\000"]
"root\000"

Prepared exclusively for Margus Pau

DELEGATOR 646

D
el

eg
at

or

Library Delegator Delegate Calls to Other Object

Object delegation is a way of composing objects—extending an object with the capa-
bilities of another—at runtime. The Ruby Delegator class implements a simple but
powerful delegation scheme, where requests are automatically forwarded from a master
class to delegates or their ancestors and where the delegate can be changed at runtime
with a single method call.

See also: Forwardable (page 659)

• For simple cases where the class of the delegate is fixed, make the master class
a subclass of DelegateClass, passing the name of the class to be delegated as a
parameter. In the master class’s initialize method, pass the object to be dele-
gated to the superclass.

require 'delegate'

class Words < DelegateClass(Array)
def initialize(list = "/usr/share/dict/words")
words = File.read(list).split
super(words)

end
end

words = Words.new
words[9999] → "anticritique"
words.size → 234937
words.grep(/matz/) → ["matzo", "matzoon", "matzos", "matzoth"]

• Use SimpleDelegator to delegate to a particular object (which can be changed).

require 'delegate'

words = File.read("/usr/share/dict/words").split
names = File.read("/usr/share/dict/propernames").split

stats = SimpleDelegator.new(words)
stats.size → 234937
stats[226] → "abidingly"
stats.__setobj__(names)
stats.size → 1323
stats[226] → "Dave"

Prepared exclusively for Margus Pau

DIGEST 647

D
ig

es
t

Library Digest MD5, RIPEMD-160 SHA1, and SHA2 Digests

The Digest module is the home for a number of classes that implement secure digest
algorithms: MD2, RIPEMD-160, SHA1, and SHA2 (256, 384, and 512 bit). The inter-
face to all these classes is identical.

• You can create a binary or hex digest for a given string by calling the class method
digest or hexdigest.

• You can also create an object (optionally passing in an initial string) and determine
the object’s hash by calling the digest or hexdigest instance methods. In this
case you can then append to the string using the update method and then recover
an updated hash value.

• Calculate some MD5 and SHA1 hashes.

require 'digest/md5'
require 'digest/sha1'

for hash_class in [Digest::MD5, Digest::SHA1]

puts "Using #{hash_class.name}"

Calculate directly
puts hash_class.hexdigest("hello world")

Or by accumulating
digest = hash_class.new
digest << "hello"
digest << " "
digest << "world"
puts digest.hexdigest
puts

end

produces:

Using Digest::MD5
5eb63bbbe01eeed093cb22bb8f5acdc3
5eb63bbbe01eeed093cb22bb8f5acdc3

Using Digest::SHA1
2aae6c35c94fcfb415dbe95f408b9ce91ee846ed
2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

Prepared exclusively for Margus Pau

DL 648

D
L

Library DL Access Dynamically Loaded Libraries (.dll and .so)

The DL module interfaces to the underlying operating system’s dynamic loading capa-Only if: Windows,
or system supports

dl library bilities. On Windows boxes, it can be used to interface with functions in DLLs (replac-
ing the Win32API class—see dl/win32 for a compatible wrapper library). Under Unix
it can load shared libraries. Because Ruby does not have typed method parameters or
return values, you must define the types expected by the methods you call by specify-
ing their signatures. This can be done using a C-like syntax (if you use the high-level
methods in dl/import) or using explicit type specifiers in the lower-level DL module.
Good documentation is provided in the source tree’s ext/dl/doc/ directory.

See also: Win32API (page 734)

• Here’s a trivial C program that we’ll build as a shared library.

#include <stdio.h>
int print_msg(text, number) {
return printf("Text: %s (%d)\n", text, number);

}

• Generate a proxy to access the print_msg method in the shared library. The way
this book is built, the shared library ends up in the subdirectory code/dl; this
explains the name in the dlopen call.

require 'dl'

Message = DL.dlopen("code/dl/lib.so")
print_msg = Message["print_msg", "ISI"]
msg_size, args = print_msg.call("Answer", 42)
puts "Just wrote #{msg_size} bytes"

produces:

Text: Answer (42)
Just wrote 18 bytes

• We can also wrap the method in a module. Here we use an environment variable
to set the path to the shared object. This is operating system specific.

ENV['DYLD_LIBRARY_PATH'] = ":code/dl" # Mac OS X
require 'dl/import'

module Message
extend DL::Importable
dlload "lib.so"
extern "int print_msg(char *, int)"

end

msg_size = Message.print_msg("Answer", 42)
puts "Just wrote #{msg_size} bytes"

produces:

Text: Answer (42)
Just wrote 18 bytes

Prepared exclusively for Margus Pau

DRUBY 649

D
R

ub
y

Library dRuby Distributed Ruby Objects (drb)

dRuby allows Ruby objects to be distributed across a network connection. Although
expressed in terms of clients and servers, once the initial connection is established, the
protocol is effectively symmetrical: either side can invoke methods in objects on the
other side. Normally, objects passed and returned by remote calls are passed by value;
including the DRbUndumped module in an object forces it to be passed by reference
(useful when implementing callbacks).

See also: Rinda (page 706), XMLRPC (page 736)

• This server program is observable—it notifies all registered listeners of changes
to a count value.

require 'drb'
require 'drb/observer'

class Counter
include DRb::DRbObservable

def run
5.times do |count|

changed
notify_observers(count)

end
end

end

counter = Counter.new
DRb.start_service('druby://localhost:9001', counter)
DRb.thread.join

• This client program interacts with the server, registering a listener object to receive
callbacks before invoking the server’s run method.

require 'drb'

class Listener
include DRbUndumped

def update(value)
puts value

end
end

DRb.start_service
counter = DRbObject.new(nil, "druby://localhost:9001")

listener = Listener.new
counter.add_observer(listener)
counter.run

Prepared exclusively for Margus Pau

ENGLISH 650

E
ng

lis
h

Library English English Names For Global Symbols

Include the English library file in a Ruby script, and you can reference the global vari-
ables such as $_ using less-cryptic names, listed in the following table.

$* $ARGV $" $LOADED_FEATURES

$? $CHILD_STATUS $& $MATCH
$< $DEFAULT_INPUT $. $NR

$> $DEFAULT_OUTPUT $, $OFS

$! $ERROR_INFO $\ $ORS
$@ $ERROR_POSITION $, $OUTPUT_FIELD_SEPARATOR

$; $FIELD_SEPARATOR $\ $OUTPUT_RECORD_SEPARATOR
$; $FS $$ $PID

$= $IGNORECASE $' $POSTMATCH

$. $INPUT_LINE_NUMBER $` $PREMATCH
$/ $INPUT_RECORD_SEPARATOR $$ $PROCESS_ID

$~ $LAST_MATCH_INFO $0 $PROGRAM_NAME
$+ $LAST_PAREN_MATCH $/ $RS

$_ $LAST_READ_LINE

require 'English'

$OUTPUT_FIELD_SEPARATOR = ' -- '
"waterbuffalo" =~ /buff/
print $LOADED_FEATURES, $POSTMATCH, $PID, "\n"
print $", $', $$, "\n"

produces:

English.rb -- alo -- 28035 --
English.rb -- alo -- 28035 --

Prepared exclusively for Margus Pau

ENUMERATOR 651

E
nu

m
er

at
or

Library Enumerator Define External Iterators

The Ruby convention is that enumerable objects should define a method called each
that returns the contents one item at a time. This each method is used as the basis of the
Enumerable module, as well as the built-in for loop. Even if a class defines multiple
enumeration methods, Enumerable can only use each.

The Enumerator module creates a new iterable object based on an existing object,
mapping the each method in the new object to an arbitrary method in the original. This
allows you to use standard Ruby enumeration techniques on arbitrary methods.

See also: Enumerable (page 433), Generator (page 662)

• Define an external iterator that returns all the keys in a hash.

require 'enumerator'

hash = { "cow" => "bovine", "cat" => "feline", "dog" => "canine" }

key_iter = Enumerable::Enumerator.new(hash, :each_key)
puts "Max key is #{key_iter.max}"
for key in key_iter
puts "Key is #{key}"

end

produces:

Max key is dog
Key is cat
Key is cow
Key is dog

• Methods to_enum and enum_for also create Enumerator objects.

require 'enumerator'
hash = { "cow" => "bovine", "cat" => "feline", "dog" => "canine" }
key_iter = hash.enum_for(:each_key)
key_iter.min → "cat"
key_iter.max → "dog"

• Methods each_slice and each_cons return elements from an enumeration n
elements at a time. each_slice returns disjoint sets, and each_cons returns a
moving window over the collection.

require 'enumerator'
(1..7).each_slice(3) {|slice| print slice.inspect, " " }
puts
(1..7).each_cons(3) {|cons| print cons.inspect, " " }

produces:

[1, 2, 3] [4, 5, 6] [7]
[1, 2, 3] [2, 3, 4] [3, 4, 5] [4, 5, 6] [5, 6, 7]

Prepared exclusively for Margus Pau

ERB 652

E
rb

Library erb Lightweight Templating for HTML

ERB is a lightweight templating system, allowing you to intermix Ruby code and plain
text. This is sometimes a convenient way to create HTML documents but also is usable
in other plain-text situations. For other templating solutions, see 226.

ERB breaks its input text into checks of regular text and program fragments. It then
builds a Ruby program that, when run, outputs the result text and executes the program
fragments. Program fragments are enclosed between <% and %> markers. The exact
interpretation of these fragments depends on the character following the opening <%, as
shown in Table 28.1 on the next page.

require 'erb'
input = %{\
<% high.downto(low) do |n| # set high, low externally %>
<%= n %> green bottles, hanging on the wall
<%= n %> green bottles, hanging on the wall
And if one green bottle should accidentally fall
There'd be <%= n-1 %> green bottles, hanging on the wall

<% end %>
}
high,low = 10, 8
erb = ERB.new(input)
erb.run

produces:

10 green bottles, hanging on the wall
10 green bottles, hanging on the wall
And if one green bottle should accidentally fall
There'd be 9 green bottles, hanging on the wall

. . .

An optional second parameter to ERB.new sets the safe level for evaluating expres-
sions. If nil, expressions are evaluated in the current thread; otherwise a new thread is
created, and its $SAFE level is set to the parameter value.

The optional third parameter to ERB.new allows some control of the interpretation of
the input and of the way whitespace is added to the output. If the third parameter is
a string, and that string contains a percent sign, then ERB treats lines starting with a
percent sign specially. Lines starting with a single percent sign are treated as if they
were enclosed in <%. . .%>. Lines starting with a double percent sign are copied to the
output with a single leading percent sign.

str = %{\
% 2.times do |i|
This is line <%= i %>

%end
%% done}
ERB.new(str, 0, '%').run

⇒
produces:

This is line 0
This is line 1

% done

Prepared exclusively for Margus Pau

ERB 653

E
rb

Table 28.1. Directives for ERB

Sequence Action

<% ruby code %> Insert the given Ruby code at this point in the generated pro-
gram. If it outputs anything, include this output in the result.

<%= ruby expression %> Evaluate expression and insert its value in the output of the
generated program.

<%# . . . %> Comment (ignored).
<%% and %%> Replaced in the output by <% and%> respectively.

If the third parameter contains the string <> then a newline will not be written if an
input line starts with an ERB directive and ends with %>. If the trim parameter contains
>, then a newline will not be written if an input line ends %>.

str1 = %{\

* <%= "cat" %>
<%= "dog" %>
}
ERB.new(str1, 0, ">").run
ERB.new(str1, 0, "<>").run

produces:

* catdog* cat
dog

The erb library also defines the helper module ERB::Util that contains two methods:
html_escape (aliased as h) and url_encode (aliased as u). These are equivalent to the
CGI methods escapeHTML and escape, respectively (except escape encodes spaces as
plus signs, and url_encode uses %20).

include ERB::Util
str1 = %{\
h(a) = <%= h(a) %>
u(a) = <%= u(a) %>
}
a = "< a & b >"
ERB.new(str1).run

produces:

h(a) = < a & b >
u(a) = %3C%20a%20%26%20b%20%3E

You may find the command-line utility erb is supplied with your Ruby distribution.
This allows you to run erb substitutions on an input file; see erb --help for details.

Prepared exclusively for Margus Pau

ETC 654

E
tc

Library Etc Access User and Group Information in /etc/passwd

The Etc module provides a number of methods for querying the passwd and groupOnly if: Unix or
Cygwin

facilities on Unix systems.

• Find out information about the currently logged-in user.

require 'etc'

name = Etc.getlogin
info = Etc.getpwnam(name)
info.name → "dave"
info.uid → 502
info.dir → "/Users/dave"
info.shell → "/bin/bash"

group = Etc.getgrgid(info.gid)
group.name → "dave"

• Return the names of all users and groups on the system used to create this book.

require 'etc'

users = []
Etc.passwd {|passwd| users << passwd.name }
users.join(", ") → "nobody, root, daemon, unknown, smmsp, lp,

postfix, www, eppc, mysql, sshd, qtss,
cyrus, mailman, appserver, dave, testuser"

groups = []
Etc.group {|group| groups << group.name }
groups.join(", ") → "nobody, nogroup, wheel, daemon, kmem,

sys, tty, operator, mail, bin, staff,
smmsp, lp, postfix, postdrop, guest, utmp,
uucp, dialer, network, www, mysql, sshd,
qtss, mailman, appserverusr, admin,
appserveradm, unknown, dave, testuser"

Prepared exclusively for Margus Pau

EXPECT 655

E
xp

ec
t

Library expect Expect Method for IO Objects

The expect library adds the method expect to all IO objects. This allows you to write
code that waits for a particular string or pattern to be available from the I/O stream. The
expect method is particularly useful with pty objects (see page 699) and with network
connections to remote servers, where it can be used to coordinate the use of external
interactive processes.

If the global variable $expect_verbose is true, the expect method writes all char-
acters read from the I/O stream to STDOUT.

See also: pty (page 699)

• Connect to the local FTP server, log in, and print out the name of the user’s direc-
tory. (Note that it would be a lot easier to do this using the library.)

This code might be specific to the particular
ftp daemon.

require 'expect'
require 'socket'

$expect_verbose = true

socket = TCPSocket.new('localhost', 'ftp')

socket.expect("ready")
socket.puts("user testuser")
socket.expect("Password required for testuser")
socket.puts("pass secret")
socket.expect("logged in.\r\n")
socket.puts("pwd")
puts(socket.gets)
socket.puts "quit"

produces:

220 localhost FTP server (lukemftpd 1.1) ready.
331 Password required for testuser.
230-

Welcome to Darwin!
230 User testuser logged in.
257 "/Users/testuser" is the current directory.

Prepared exclusively for Margus Pau

FCNTL 656

F
cn

tl

Library Fcntl Symbolic Names for IO#fcntl Commands

The Fcntl module provides symbolic names for each of the host system’s available
fcntl constants (defined in fcntl.h). That is, if the host system has a constant named
F_GETLK defined in fcntl.h, then the Fcntl module will have a corresponding con-
stant Fcntl::F_GETLK with the same value as the header file’s #define.

• Different operating system will have different Fcntl constants available. The
value associated with a constant of a given name may also differ across platforms.
Here are the values on my Mac OS X system.

require 'fcntl'

Fcntl.constants.sort.each do |name|
printf "%10s: %04x\n", name, Fcntl.const_get(name)

end

produces:

FD_CLOEXEC: 0001
F_DUPFD: 0000
F_GETFD: 0001
F_GETFL: 0003
F_GETLK: 0007
F_RDLCK: 0001
F_SETFD: 0002
F_SETFL: 0004
F_SETLK: 0008
F_SETLKW: 0009
F_UNLCK: 0002
F_WRLCK: 0003

O_ACCMODE: 0003
O_APPEND: 0008
O_CREAT: 0200
O_EXCL: 0800

O_NDELAY: 0004
O_NOCTTY: 0000

O_NONBLOCK: 0004
O_RDONLY: 0000
O_RDWR: 0002
O_TRUNC: 0400
O_WRONLY: 0001

Prepared exclusively for Margus Pau

FILEUTILS 657

F
ile

U
til

s

Library FileUtils File and Directory Manipulation

FileUtils is a collection of methods for manipulating files and directories. Although
generally applicable, the model is particularly useful when writing installation scripts.

Many methods take a src and a dest parameter. If dest is a directory, then src may be a
single filename or an array of filenames. For example, the following copies the files a,
b, and c to /tmp.

cp(%w{ a b c }, "/tmp")

Most functions take a set of options. These may be zero or more of

Option Meaning

:verbose Trace execution of each function (by default to STDERR, although this can
be overridden by setting the class variable @fileutils_output).

:noop Do not perform the action of the function (useful for testing scripts).
:force Override some default conservative behavior of the method (for example

overwriting an existing file).
:preserve Attempt to preserve atime, mtime, and mode information from src in dest.

(Setuid and setgid flags are always cleared.)

For maximum portability, use forward slashes to separate the directory components of
filenames, even on Windows.

FileUtils contains three submodules which duplicate the top-level methods but with
different default options: module FileUtils::Verbose sets the verbose option, mod-
ule FileUtils::NoWrite sets noop, and FileUtils::DryRun1.8 sets verbose and noop.

See also: un (page 730)

require 'fileutils'
include FileUtils::Verbose
cd("/tmp") do
cp("/etc/passwd", "tmp_passwd")
chmod(0666, "tmp_passwd")
cp_r("/usr/include/net/", "headers")
rm("tmp_passwd") # Tidy up
rm_rf("headers")

end

produces:

cd /tmp
cp /etc/passwd tmp_passwd
chmod 666 tmp_passwd
cp -r /usr/include/net/ headers
rm tmp_passwd
rm -rf headers
cd -

Prepared exclusively for Margus Pau

FIND 658

F
in

d

Library Find Traverse Directory Trees

The Find module supports the top-down traversal of a set of file paths, given as argu-
ments to the find method. If an argument is a file, its name is passed to the block. If
it’s a directory, then its name and the name of all its files and subdirectories will be
passed in.

Within the block, the method prune may be called, which skips the current file or
directory, restarting the loop with the next directory. If the current file is a directory,
that directory will not be recursively entered.

require 'find'
Find.find("/etc/passwd", "code/cdjukebox") do |f|
type = case

when File.file?(f): "F"
when File.directory?(f): "D"
else "?"
end

puts "#{type}: #{f}"
Find.prune if f =~ /CVS/

end

produces:

F: /etc/passwd
D: code/cdjukebox
F: code/cdjukebox/Makefile
F: code/cdjukebox/libcdjukebox.a
D: code/cdjukebox/CVS
F: code/cdjukebox/cdjukebox.o
F: code/cdjukebox/cdjukebox.h
F: code/cdjukebox/cdjukebox.c

Prepared exclusively for Margus Pau

FORWARDABLE 659

F
or

w
ar

da
bl

e

Library Forwardable Object Delegation

Forwardable provides a mechanism to allow classes to delegate named method calls
to other objects.

See also: Delegator (page 646)

• This simple symbol table uses a hash, exposing a subset of the hash’s methods.

require 'forwardable'

class SymbolTable
extend Forwardable
def_delegator(:@hash, :[], :lookup)
def_delegator(:@hash, :[]=, :add)
def_delegators(:@hash, :size, :has_key?)
def initialize
@hash = Hash.new

end
end

st = SymbolTable.new
st.add('cat', 'feline animal') → "feline animal"
st.add('dog', 'canine animal') → "canine animal"
st.add('cow', 'bovine animal') → "bovine animal"

st.has_key?('cow') → true
st.lookup('dog') → "canine animal"

• Forwards can also be defined for individual objects by extending them with the
SingleForwardable module. It’s hard to think of a good reason to use this fea-
ture, so here’s a silly one. . . .

require 'forwardable'

TRICKS = ["roll over", "play dead"]

dog = "rover"

dog.extend SingleForwardable
dog.def_delegator(:TRICKS, :each, :can)

dog.can do |trick|
puts trick

end

produces:

roll over
play dead

Prepared exclusively for Margus Pau

FTOOLS 660

F
to

ol
s

Library ftools Extra Tools for Class File

The ftools library adds methods to class File, primarily aimed at programs that move
and copy files, such as installers. The FileUtils library is now recommended over
ftools.

See also: fileutils (page 657)

• Install the file testfile into the /tmp directory. Don’t bother copying the file if
the target already exists and is the same as the original.

require 'ftools'

def install_if_different(source, dest)
if File.exist?(dest) && File.compare(source, dest)
puts "#{dest} is up to date"

else
File.copy(source, dest)
puts "#{source} copied to #{dest}"

end
end

install_if_different('testfile', '/tmp/testfile')
puts "Second time..."
install_if_different('testfile', '/tmp/testfile')
puts "Done"

produces:

testfile copied to /tmp/testfile
Second time...
/tmp/testfile is up to date
Done

• Do the same (with slightly different logging) using FTool’s install method.

require 'ftools'

File.install('testfile', '/tmp', 0644, true)
puts "Second time..."
File.install('testfile', '/tmp', 0644, true)
puts "Done"

produces:

testfile -> /tmp/testfile
chmod 0644 /tmp/testfile
Second time...
Done

Prepared exclusively for Margus Pau

GDBM 661

G
D

B
M

Library GDBM Interface to GDBM Database

Interfaces to the gdbm database library.3 Although the DBM library provides genericOnly if: gdbm
library available

access to gdbm databases, it doesn’t expose some features of the full gdbm inter-
face. The GDBM library gives you access to underlying gdbm features such as the cache
size, synchronization mode, reorganization, and locking. Only one process may have a
GDBM database open for writing (unless locking is disabled).

See also: DBM (page 645), SDBM (page 709)

• Store some values into a database, and then read them back. The second parameter
to the open method specifies the file mode, and the next parameter uses two flags
which (1) create the database if it doesn’t exist, and (2) force all writes to be
synced to disk. Create on open is the default Ruby gdbm behavior.

require 'gdbm'

GDBM.open("data.dbm", 0644, GDBM::WRCREAT | GDBM::SYNC) do |dbm|
dbm['name'] = "Walter Wombat"
dbm['dob'] = "1969-12-25"
dbm['uses'] = "Ruby"

end

GDBM.open("data.dbm") do |dbm|
p dbm.keys
p dbm['dob']
dbm.delete('dob')
p dbm.keys

end

produces:

["uses", "dob", "name"]
"1969-12-25"
["uses", "name"]

• Open a database read-only. Note that the attempt to delete a key fails.

require 'gdbm'

GDBM.open("data.dbm", 0, GDBM::READER) do |dbm|
p dbm.keys
dbm.delete('name')

end

produces:

["uses", "name"]
prog.rb:4:in `delete': Reader can't delete (GDBMError)
from prog.rb:4
from prog.rb:2:in `open'

3. http://www.gnu.org/software/gdbm/gdbm.html

Prepared exclusively for Margus Pau

http://www.gnu.org/software/gdbm/gdbm.html

GENERATOR 662

G
en

er
at

or

Library Generator External Iterators

The generator library implements external iterators (as in Java and C++) based either
on Enumerable objects or on a block that yields values. The Generator class is a sim-
ple iterator. The library also include SyncEnumerator, which creates an Enumerable
object that iterates over several collections at once.

See also: Enumerable (page 433), Enumerator (page 651)

• Iterate over an Enumerable object.

require 'generator'
gen = Generator.new(1..4)
while gen.next?
print gen.next, "--"

end

produces:

1--2--3--4--

• Iterate over a block.

require 'generator'

gen = Generator.new do |result|
result.yield "Start"
3.times {|i| result.yield i}
result.yield "done"

end
while gen.next?
print gen.next, "--"

end

produces:

Start--0--1--2--done--

• Iterate over two collections at once.

require 'generator'
gen = SyncEnumerator.new(1..3, "a".."c")
gen.each {|num, char| print num, "(", char, ") " }

produces:

1(a) 2(b) 3(c)

Prepared exclusively for Margus Pau

GETOPTLONG 663

G
et

op
tL

on
g

Library GetoptLong Parse Command-Line Options

Class GetoptLong supports GNU-style command-line option parsing. Options may be
a minus sign (–) followed by a single character, or two minus signs (- -) followed by a
name (a long option). Long options may be abbreviated to their shortest unambiguous
lengths.

A single internal option may have multiple external representations. For example, the
option to control verbose output could be any of -v, --verbose, or --details. Some
options may also take an associated value.

Each internal option is passed to GetoptLong as an array, containing strings repre-
senting the option’s external forms and a flag. The flag specifies how GetoptLong
is to associate an argument with the option (NO_ARGUMENT, REQUIRED_ARGUMENT, or
OPTIONAL_ARGUMENT).

If the environment variable POSIXLY_CORRECT is set, all options must precede non-
options on the command line. Otherwise, the default behavior of GetoptLong is to reor-
ganize the command line to put the options at the front. This behavior may be changed
by setting GetoptLong#ordering= to one of the constants PERMUTE, REQUIRE_ORDER,
or RETURN_IN_ORDER. POSIXLY_CORRECT may not be overridden.

See also: OptionParser (page 690)

Call using "ruby example.rb --size 10k -v -q a.txt b.doc"

require 'getoptlong'

specify the options we accept and initialize
the option parser

opts = GetoptLong.new(
["--size", "-s", GetoptLong::REQUIRED_ARGUMENT],
["--verbose", "-v", GetoptLong::NO_ARGUMENT],
["--query", "-q", GetoptLong::NO_ARGUMENT],
["--check", "--valid", "-c", GetoptLong::NO_ARGUMENT]

)

process the parsed options

opts.each do |opt, arg|
puts "Option: #{opt}, arg #{arg.inspect}"

end

puts "Remaining args: #{ARGV.join(', ')}"

produces:

Option: --size, arg "10k"
Option: --verbose, arg ""
Option: --query, arg ""
Remaining args: a.txt, b.doc

Prepared exclusively for Margus Pau

GSERVER 664

G
S

er
ve

r

Library GServer Generic TCP Server

Simple framework for writing TCP servers. Subclass the GServer class, set the port
(and potentially other parameters) in the constructor, and then implement a serve
method to handle incoming requests.

GServer manages a thread pool for incoming connections, so your serve method may
be running in multiple threads in parallel.

You can run multiple GServer copies on different ports in the same application.

• When a connection is made on port 2000, respond with the current time as a string.
Terminate after handling three requests.

require 'gserver'

class TimeServer < GServer
def initialize
super(2000)
@count = 3

end
def serve(client)
client.puts Time.now.to_s
@count -= 1
stop if @count.zero?

end
end

server = TimeServer.new

server.audit = true # enable logging
server.start
server.join

• You can test this server by telnetting into localhost on port 2000.

% telnet localhost 2000

produces:

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Thu Aug 26 22:38:41 CDT 2004
Connection closed by foreign host.

Prepared exclusively for Margus Pau

ICONV 665

I
co

nv

Library Iconv Character Encoding Conversion

The Iconv class is an interface to the Open Group’s iconv library, which supports the
translation of strings between character encodings. For a list of the supported encodingsOnly if: libiconv

installed
on your platform, see the iconv_open man pages for your system.

An Iconv object encapsulates a conversion descriptor, which contains the information
needed to convert from one encoding to another. The converter can be used multiple
times, until closed.

The conversion method iconv can be called multiple times to convert input strings. At
the end, it should be called with a nil argument to flush out any remaining output.

• Convert from ISO-8859-1 to UTF-16.

require 'iconv'

conv = Iconv.new("UTF-16", "ISO-8859-1")
result = conv.iconv("hello")
result << conv.iconv(nil)
result → "\376\377\000h\000e\000l\000l\000o"

• Do the same conversion using a class method. Not we use Iconv.conv, which
returns a single string, as opposed to Iconv.iconv, which returns an array of
strings.

require 'iconv'
result = Iconv.conv("UTF-16", "ISO-8859-1", "hello")
result → "\376\377\000h\000e\000l\000l\000o"

• Convert olé from UTF-8 to ISO-8859-1.

require 'iconv'
result = Iconv.conv("ISO-8859-1", "UTF-8", "ol\303\251")
result → "ol\351"

• Convert olé from UTF-8 to ASCII. This throws an exception, as ASCII doesn’t
have an é character.

require 'iconv'
result = Iconv.conv("ASCII", "UTF-8", "ol\303\251")

produces:

prog.rb:2:in `conv': "\303\251" (Iconv::IllegalSequence)
from prog.rb:2

• This time, convert to ASCII with transliteration, which shows approximations of
missing characters.

require 'iconv'
result = Iconv.iconv("ASCII//TRANSLIT", "UTF-8", "ol\303\251")
result → ["ol'e"]

Prepared exclusively for Margus Pau

IO/WAIT 666

I
O

/W
ai

t

Library IO/Wait Check for Pending Data to Be Read

Including the library io/wait adds the methods IO#ready? and IO#wait to the stan-Only if:
FIONREAD feature

in ioctl(2) dard IO class. These allow an IO object opened on a stream (not a file) to be queried to
see if data is available to be read without reading it and to wait for a given number of
bytes to become available.

• Set up a pipe between two processes, and write ten bytes at a time into it. Periodi-
cally see how much data is available.

require 'io/wait'

reader, writer = IO.pipe

if (pid = fork)
writer.close
8.times do
sleep 0.03
len = reader.ready?
puts "Ready? = #{len.inspect}"
puts(reader.sysread(len)) if len

end
Process.waitpid(pid)

else
reader.close
5.times do |n|
sleep 0.04
writer.write n.to_s * 10

end
writer.close

end

produces:

Ready? = 10
0000000000
Ready? = nil
Ready? = 10
1111111111
Ready? = 10
2222222222
Ready? = 10
3333333333
Ready? = nil
Ready? = 10
4444444444
Ready? = nil

Prepared exclusively for Margus Pau

IPADDR 667

I
PA

dd
r

Library IPAddr Represent and Manipulate IP Addresses

Class IPAddr holds and manipulates Internet Protocol (IP) addresses. Each address
contains three parts: an address, a mask, and an address family. The family will typi-
cally be AF_INET for IPv4 and IPv6 addresses. The class contains methods for extract-
ing parts of an address, checking for IPv4 compatible addresses (and IPv4 mapped IPv6
addresses), testing whether an address falls within a subnet and many other functions.
It is also interesting in that it contains as data its own unit tests.

require 'ipaddr'

v4 = IPAddr.new('192.168.23.0/24')
v4 → #<IPAddr: IPv4:192.168.23.0/ 255.255.255.0>
v4.mask(16) → #<IPAddr: IPv4:192.168.0.0/ 255.255.0.0>
v4.reverse → "0.23.168.192.in-addr.arpa"
v6 = IPAddr.new('3ffe:505:2::1')
v6 → #<IPAddr:

IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>

v6.mask(48) → #<IPAddr:
IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/
ffff:ffff:ffff:0000:0000:0000:0000:0000>

the value for 'family' is OS dependent. This
value is for OS X
v6.family → 30

other = IPAddr.new("192.168.23.56")
v4.include?(other) → true

Prepared exclusively for Margus Pau

JCODE 668

J
co

de

Library jcode Encoding Support for Strings

Requiring the jcode library augments the built-in String class with additional support
for EUC and SJIS Japanese encodings and UTF8. This is effective only if $KCODE is one
of EUC, SJIS, or UTF8. The following methods are updated: chop!, chop, delete!,
delete, squeeze!, squeeze, succ!, succ, tr!, tr, tr_s!, and tr_s.

For example, the string "\342\210\202x/\342\210\202y" contains nine 8-bit char-
acters. However, the sequence \343\210\202 could also be interpreted as a single
UTF-8 character (a math delta symbol, making the string δx/δy). If we don’t tell Ruby
about the encoding, it treats each byte in the string as a separate character:

• Without encoding support, the string contains bytes.

$KCODE = "NONE"
require 'jcode'

str = "\342\210\202x/\342\210\202y"
str.length → 9
str.jlength → 9
str.jcount("\210") → 2
str.chop! → "\342\210\202x/\342\210\202"
str.chop! → "\342\210\202x/\342\210"

str.each_char {|ch| print ch.inspect, " "}

produces:

"\342" "\210" "\202" "x" "/" "\342" "\210" "\202" "y"

• However, tell Ruby that it is dealing with UTF8 strings and the result changes.

$KCODE = 'UTF8'
require 'jcode'

str = "\342\210\202x/\342\210\202y"
str.length → 9
str.jlength → 5
str.jcount("\210") → 0
str.chop! → "δx/δ"
str.chop! → "δx/"

str = "\342\210\202x/\342\210\202y"
str.each_char {|ch| print ch.inspect, " "}

produces:

"δ" "x" "/" "δ" "y"

Prepared exclusively for Margus Pau

LOGGER 669

L
og

ge
r

Library Logger Application Logging

Writes log messages to a file or stream. Supports automatic time- or size-based rolling
of log files. Messages can be assigned severities, and only those messages at or above
the logger’s current reporting level will be logged.

• During development, you may want to see all messages.

require 'logger'
log = Logger.new(STDOUT)
log.level = Logger::DEBUG
log.datetime_format = "%H:%H:%S"
log.info("Application starting")
3.times do |i|
log.debug("Executing loop, i = #{i}")
temperature = some_calculation(i) # defined externally
if temperature > 50
log.warn("Possible overheat. i = #{i}")

end
end

log.info("Application terminating")

produces:

I, [22:22:42#28184] INFO -- : Application starting
D, [22:22:42#28184] DEBUG -- : Executing loop, i = 0
D, [22:22:42#28184] DEBUG -- : Executing loop, i = 1
D, [22:22:42#28184] DEBUG -- : Executing loop, i = 2
W, [22:22:42#28184] WARN -- : Possible overheat. i = 2
I, [22:22:42#28184] INFO -- : Application terminating

• In deployment, you can turn off anything below INFO.

require 'logger'
log = Logger.new(STDOUT)
log.level = Logger::INFO
log.datetime_format = "%H:%H:%S"

as above...

produces:

I, [22:22:42#28186] INFO -- : Application starting
W, [22:22:42#28186] WARN -- : Possible overheat. i = 2
I, [22:22:42#28186] INFO -- : Application terminating

• Log to a file, which is rotated when it gets to about 10k bytes. Keep up to five old
files.

require 'logger'
log = Logger.new("application.log", 5, 10*1024)

log.info("Application starting")
...

Prepared exclusively for Margus Pau

MAIL 670

M
ai

l

Library Mail Simple E-mail Parsing

Class Mail provides basic parsing for e-mail messages. It can read an individual mes-
sage from a named file, or it can be called repeatedly to read messages from a stream
on an opened mbox format file. Each Mail object represents a single e-mail message,
which is split into a header and a body. The body is an array of lines, and the header is
a hash indexed by the header name. Mail correctly joins multiline headers.

• Read a single e-mail from a file.

require 'mailread'

MAILBOX = "/Users/dave/Library/Mail/Mailboxes/Ruby/Talk.mbox/mbox"
msg = Mail.new(MAILBOX)
msg.header.keys → ["Status", "List-software", "Message-id",

"Subject", "Received",
"X-spambayes-classification",
"List-unsubscribe", "Posted",
"X-spam-level", "Content-type", "From",
"X-virus-scanned", "List-post",
"X-spam-status",
"Content-transfer-encoding", "X-mlserver",
"To", "In-reply-to", "X-ml-info",
"X-mail-count", "Date", "List-owner",
"X-ml-name", "References", "Reply-to",
"Delivered-to", "List-help", "Lines",
"Mime-version", "X-spam-checker-version",
"List-id", "Precedence"]

msg.body[0] → "On Sat, 14 Aug 2004 03:02:42 +0900, Curt
Hibbs <curt@hibbs.com> wrote:\n"

msg.body[1] → "> We've change the name of the project from
\"Ruby Installer for Windows\" to\n"

msg.body[2] → "> the \"One-Click Ruby Installer\" because
we are branching out more platforms\n"

• Read successive messages from an mbox format file.

require 'mailread'

MAILBOX = "/Users/dave/Library/Mail/Mailboxes/Ruby/Talk.mbox/mbox"
mbox = File.open(MAILBOX)
count = 0
lines = 0
while !mbox.eof?
msg = Mail.new(mbox)
count += 1
lines += msg.header['Lines'].to_i

end

count → 180
lines → 5927

Prepared exclusively for Margus Pau

MATHN 671

M
at

hn

Library mathn Unified Numbers

The mathn library attempts to bring some unity to numbers under Ruby, making classes
Bignum, Complex, Fixnum, Integer, and Rational work and play better together.

• Types will tend to convert between themselves in a more natural way (so, for
example, Complex::I squared will evaluate to −1, rather than Complex[-1,0]).

• Division will tend to produce more accurate results. The conventional division
operator (/) is redefined to use quo, which doesn’t round (quo is documented on
page 545).

• Related to the previous point, rational numbers will be used in preference to floats
when possible. Dividing one by two results in the rational number 1

2 , rather than
0.5 (or 0, the result of normal integer division).

See also: Matrix (page 673), Rational (page 700), Complex (page 641)

• Without mathn

require 'matrix'
require 'complex'

36/16 → 2
Math.sqrt(36/16) → 1.4142135623731

Complex::I * Complex::I → Complex(-1, 0)

m = Matrix[[1,2],[3,4]]
i = m.inv

i*m →
(

1 0
−2 −2

)

(36/16)**-2 → 0.25
(36.0/16.0)**-2 → 0.197530864197531
(-36/16)**-2 → 0.111111111111111

(36/16)**(1/2) → 1
(-36/16)**(1/2) → 1

(36/16)**(-1/2) → 0.5
(-36/16)**(-1/2) → -0.333333333333333

Matrix.diagonal(6,7,8)/3 →
(

2 0 0
0 2 0
0 0 2

)

Prepared exclusively for Margus Pau

MATHN 672

M
at

hn

• With mathn:

require 'mathn'
require 'matrix'
require 'complex'

36/16 → 9/4
Math.sqrt(36/16) → 3/2

Complex::I * Complex::I → -1

m = Matrix[[1,2],[3,4]]
i = m.inv

i*m →
(

1 0
0 1

)

(36/16)**-2 → 16/81
(36.0/16.0)**-2 → 0.197530864197531
(-36/16)**-2 → 16/81

(36/16)**(1/2) → 3/2
(-36/16)**(1/2) → Complex(9.18485099360515e-17, 1.5)

(36/16)**(-1/2) → 2/3
(-36/16)**(-1/2) → Complex(4.08215599715784e-17,

-0.666666666666667)

Matrix.diagonal(6,7,8)/3 →
(

2 0 0
0 7/3 0
0 0 8/3

)

• The mathn library also extends the number classes to include new functionality
and adds a new class Prime.

require 'mathn'
primes = Prime.new

3.times { puts primes.succ }
primes.each {|p| puts p; break if p > 20 }

produces:

2
3
5
7
11
13
17
19
23

Prepared exclusively for Margus Pau

MATRIX 673

M
at

rix

Library Matrix Matrix and Vector Manipulation

The matrix library defines classes Matrix and Vector, representing rectangular matri-
ces and vectors. As well as the normal arithmetic operations, they provide methods for
matrix-specific functions (such as rank, inverse, and determinants) and a number of
constructor methods (for creating special-case matrices—zero, identity, diagonal, sin-
gular, and vector).

Because by default integer arithmetic truncates, the determinant of integer matrices
may be incorrectly calculated unless you also require the mathn library.

See also: mathn (page 671), Rational (page 700)

require 'matrix'
require 'mathn'

m1 = Matrix[[2, 1], [-1, 1]] →
(

2 1
−1 1

)

m1[0,1] → 1

m1.inv →
(

1/3 −1/3
1/3 2/3

)

m1 * m1.inv →
(

1 0
0 1

)

m1.determinant → 3

m1.singular? → false

m2 = Matrix[[1,2,3], [4,5,6], [7,8,9]] →
(

1 2 3
4 5 6
7 8 9

)

m2.minor(1, 2, 1, 2) →
(

5 6
8 9

)

m2.rank → 2

v1 = Vector[3, 4] → Vector[3, 4]

v1.covector →
(

3 4
)

m1 * v1 → Vector[10, 1]

Prepared exclusively for Margus Pau

MONITOR 674

M
on

ito
r

Library Monitor Monitor-Based Synchronization

Monitors are a form of mutual-exclusion mechanism first proposed back in 1974. They
allow separate threads to define shared resources which will be accessed exclusively,
and they provide a mechanism for a thread to wait for resources to become available in
a controlled way.

The monitor library actually defines three separate ways of using monitors: as a parent
class, as a mixin, and as a extension to a particular object. Examples of all three (and
other code showing monitors in action) starts on page 134. In this section we document
the module form of Monitor. The class form is effectively identical. In both the class
form and when including MonitorMixin in an existing class it is essential to invoke
super in the class’s initialize method.

See also: Mutex (page 675), Sync (page 717), Thread (page 612)

require 'monitor'
require 'mathn'

numbers = []
numbers.extend(MonitorMixin)
number_added = numbers.new_cond

Reporter thread
Thread.new do
loop do
numbers.synchronize do

number_added.wait_while { numbers.empty? }
puts numbers.shift

end
end

end

Prime number generator thread
generator = Thread.new do
p = Prime.new
5.times do
numbers.synchronize do

numbers << p.succ
number_added.signal

end
end

end

generator.join

produces:

2
3
5
7
11

Prepared exclusively for Margus Pau

MUTEX 675

M
ut

ex

Library Mutex Thread Synchronization Support

The Mutex class allows threads to gain exclusive access to some shared resource. That
is, only one thread may hold the lock at any given time. Other threads may choose to
wait for the lock to become available or may choose to get an immediate error indi-
cating that the lock is not available. The library also implements condition variables,
allowing a thread to give up control while holding a mutex and regain the lock when
the resource becomes available, and queues, allowing threads to pass messages safely.
We describe threading in Chapter 11 on page 127, and discuss monitors, an alternative
synchronization mechanism, starting on page 134.

See also: Monitor (page 674), Sync (page 717), Queue (page 722), Thread (page 612)

require 'thread'
class Resource
attr_reader :left, :times_had_to_wait
def initialize(count)
@left = count
@times_had_to_wait = 0
@mutex = Mutex.new
@empty = ConditionVariable.new

end
def use
@mutex.synchronize do

while @left <= 0
@times_had_to_wait += 1
@empty.wait(@mutex)

end
@left -= 1

end
end
def release
@mutex.synchronize do

@left += 1
@empty.signal if @left == 1

end
end

end

def do_something_with(resource)
resource.use
sleep 0.001 # to simulate doing something that takes time
resource.release

end

resource = Resource.new(2)
user1 = Thread.new { 100.times { do_something_with(resource) } }
user2 = Thread.new { 100.times { do_something_with(resource) } }
user3 = Thread.new { 100.times { do_something_with(resource) } }
user1.join; user2.join; user3.join

resource.times_had_to_wait → 152

Prepared exclusively for Margus Pau

MUTEX_M 676

M
ut

ex
_m

Library Mutex_m Mutex Mix-In

mutex_m is a variant of class Mutex (contained in the thread library documented on
the preceding page) that allows mutex facilities to be mixed into any object.

The Mutex_m module defines methods that correspond to those in Mutex but with the
prefix mu_ (so that lock is defined as mu_lock and so on). It then aliases these to
the original Mutex names.

See also: Mutex (page 675), Sync (page 717), Thread (page 612)

require 'mutex_m'

class Counter
include Mutex_m
attr_reader :count
def initialize
@count = 0
super

end
def tick
lock
@count += 1
unlock

end
end

c = Counter.new

t1 = Thread.new { 10000.times { c.tick } }
t2 = Thread.new { 10000.times { c.tick } }

t1.join
t2.join

c.count → 20000

Prepared exclusively for Margus Pau

NET::FTP 677

N
et

::F
T

P

Library Net::FTP FTP Client

The net/ftp library implements a File Transfer Protocol (FTP) client. As well as
data transfer commands (getbinaryfile, gettextfile, list, putbinaryfile, and
puttextfile), the library supports the full complement of server commands (acct,
chdir, delete, mdtm, mkdir, nlst, rename, rmdir, pwd, size, status, and system).
Anonymous and password-authenticated sessions are supported. Connections may be
active or passive.

See also: open-uri (page 686)

require 'net/ftp'

ftp = Net::FTP.new('ftp.netlab.co.jp')
ftp.login
ftp.chdir('pub/lang/ruby/contrib')
files = ftp.list('n*')
ftp.getbinaryfile('nif.rb-0.91.gz', 'nif.gz', 1024)
ftp.close

Prepared exclusively for Margus Pau

NET::HTTP 678

N
et

::H
T

T
P

Library Net::HTTP HTTP Client

The net/http library provides a simple client to fetch headers and Web page contents
using the HTTP protocol.

The interface to the get, post, and head methods has changed between Ruby 1.6
and 1.8. Now, a single response object is returned, with the content of the response
accessible through the response’s body method. In addition, these methods no longer
raise exceptions on recoverable errors.

See also: OpenSSL (page 688), open-uri (page 686), URI (page 731)

• Open a connection and fetch a page, displaying the response code and message,
header information, and some of the body.

require 'net/http'

Net::HTTP.start('www.pragmaticprogrammer.com') do |http|
response = http.get('/index.html')
puts "Code = #{response.code}"
puts "Message = #{response.message}"
response.each {|key, val| printf "%-14s = %-40.40s\n", key, val }
p response.body[400, 55]

end

produces:

Code = 200
Message = OK
last-modified = Fri, 27 Aug 2004 02:25:48 GMT
content-type = text/html
etag = "b00d226-35b4-412e9bac"
date = Fri, 27 Aug 2004 03:38:47 GMT
server = Rapidsite/Apa/1.3.31 (Unix) FrontPage/5.
content-length = 13748
accept-ranges = bytes
"-selling book 'The Pragmatic Programmer' and The\n "

• Fetch a single page, displaying the response code and message, header informa-
tion, and some of the body.

require 'net/http'

response = Net::HTTP.get_response('www.pragmaticprogrammer.com',
'/index.html')

puts "Code = #{response.code}"
puts "Message = #{response.message}"
response.each {|key, val| printf "%-14s = %-40.40s\n", key, val }
p response.body[400, 55]

produces:

Code = 200
Message = OK
last-modified = Fri, 27 Aug 2004 02:25:48 GMT

Prepared exclusively for Margus Pau

NET::HTTP 679

N
et

::H
T

T
P

content-type = text/html
etag = "b00d226-35b4-412e9bac"
date = Fri, 27 Aug 2004 03:38:49 GMT
server = Rapidsite/Apa/1.3.31 (Unix) FrontPage/5.
content-length = 13748
accept-ranges = bytes
"-selling book 'The Pragmatic Programmer' and The\n "

• Follow redirections (the open-uri library does this automatically). This code
comes from the RDoc documentation.

require 'net/http'
require 'uri'

def fetch(uri_str, limit=10)
fail 'http redirect too deep' if limit.zero?
puts "Trying: #{uri_str}"
response = Net::HTTP.get_response(URI.parse(uri_str))
case response
when Net::HTTPSuccess
response

when Net::HTTPRedirection
fetch(response['location'], limit-1)

else
response.error!

end
end

response = fetch('http://www.ruby-lang.org')
p response.body[500, 55]

produces:

Trying: http://www.ruby-lang.org
Trying: http://www.ruby-lang.org/en/
"rg\">\n\t<link rel=\"start\" title=\"Top\" href=\"./\">\n\t<meta h"

• Search Dave’s blog by posting form data and reading back the response.

require 'net/http'

Net::HTTP.start('pragprog.com') do |query|
response = query.post("/pragdave", "terms=jolt&handler=searching")
response.body.scan(%r{(.*?)}m) do
|title|
puts title

end
end

produces:

We're Jolt Finalists!
We Got a Jolt Award!

Prepared exclusively for Margus Pau

NET::IMAP 680

N
et

::I
M

A
P

Library Net::IMAP Access an IMAP Mail Server

The Internet Mail Access Protocol (IMAP) is used to allow mail clients to access mail
servers. It supports plain text login and the IMAP login and CRAM-MD5 authentica-
tion mechanisms. Once connected, the library supports threading, so multiple interac-
tions with the server may take place at the same time.

The examples that follow are taken with minor modifications from the RDoc documen-
tation in the library source file.

See also: Net::POP (page 681)

• List senders and subjects of messages to “dave” in the INBOX.

require 'net/imap'

imap = Net::IMAP.new('my.mailserver.com')
imap.authenticate('LOGIN', 'dave', 'secret')
imap.examine('INBOX')
puts "Message count: #{ imap.responses["EXISTS"]}"
imap.search(["TO", "dave"]).each do |message_id|
envelope = imap.fetch(message_id, "ENVELOPE")[0].attr["ENVELOPE"]

puts "#{envelope.from[0].name}: \t#{envelope.subject}"
end

• Move all messages with a date in April 2003 from the folder Mail/sent-mail to
Mail/sent-apr03.

require 'net/imap'
imap = Net::IMAP.new('my.mailserver.com')
imap.authenticate('LOGIN', 'dave', 'secret')
imap.select('Mail/sent-mail')
if not imap.list('Mail/', 'sent-apr03')
imap.create('Mail/sent-apr03')

end
imap.search(["BEFORE", "01-May-2003",

"SINCE", "1-Apr-2003"]).each do |message_id|
imap.copy(message_id, "Mail/sent-apr03")
imap.store(message_id, "+FLAGS", [:Deleted])

end
imap.expunge

Prepared exclusively for Margus Pau

NET::POP 681

N
et

::P
O

P

Library Net::POP Access a POP Mail Server

The net/pop library provides a simple client to fetch and delete mail on a Post Office
Protocol (POP) server.

The class Net::POP3 is used to access a POP server, returning a list of Net::POPMail
objects, one per message stored on the server. These POPMail objects are then used to
fetch and/or delete individual messages.

The library also provides class APOP, an alternative to the POP3 class that performs
authentication.

require 'net/pop'
pop = Net::POP3.new('server.ruby-stuff.com')
pop.start('joe', 'secret') do |server|
msg = server.mails[0]

Print the 'From:' header line
from = msg.header.split("\r\n").grep(/^From: /)[0]
puts from
puts
puts "Full message:"
text = msg.pop
puts text

end

produces:

From: dave@facet.ruby-stuff.com (Dave Thomas)

Full message:
Return-Path: <dave@facet.ruby-stuff.com>
Received: from facet.ruby-stuff.com (facet.ruby-stuff.com [10.96.0.122])

by pragprog.com (8.11.6/8.11.6) with ESMTP id i2PJMW701809
for <joe@carat.ruby-stuff.com>; Thu, 25 Mar 2004 13:22:32 -0600

Received: by facet.ruby-stuff.com (Postfix, from userid 502)
id 4AF228B1BD; Thu, 25 Mar 2004 13:22:36 -0600 (CST)

To: joe@carat.ruby-stuff.com
Subject: Try out the new features!
Message-Id: <20040325192236.4AF228B1BD@facet.ruby-stuff.com>
Date: Thu, 25 Mar 2004 13:22:36 -0600 (CST)
From: dave@facet.ruby-stuff.com (Dave Thomas)
Status: RO

Ruby 1.8 has a boatload of new features, both in
the core language and in the supplied libraries.

Try it out!

Prepared exclusively for Margus Pau

NET::SMTP 682

N
et

::S
M

T
P

Library Net::SMTP Simple SMTP Client

The net/smtp library provides a simple client to send electronic mail using the Sim-
ple Mail Transfer Protocol (SMTP). It does not assist in the creation of the message
payload—it simply delivers messages once an RFC822 message has been constructed.

• Send an e-mail from a string.

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"
Net::SMTP.start('pragprog.com') do |smtp|
smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

• Send an e-mail using an SMTP object and an adapter.

require 'net/smtp'

Net::SMTP::start('pragprog.com', 25, "pragprog.com") do |smtp|
smtp.open_message_stream('dave@pragprog.com', # from

['dave'] # to
) do |stream|

stream.puts "Subject: Test1"
stream.puts
stream.puts "And so is this"

end
end

• Send an e-mail to a server requiring CRAM-MD5 authentication.

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"
Net::SMTP.start('pragprog.com', 25, 'pragprog.com',

'user', 'password', :cram_md5) do |smtp|
smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

Prepared exclusively for Margus Pau

NET::TELNET 683

N
et

::T
el

ne
t

Library Net::Telnet Telnet Client

The net/telnet library provides a complete implementation of a telnet client and
includes features that make it a convenient mechanism for interacting with nontelnet
services.

Class Net::Telnet delegates to class Socket. As a result, the methods of Socket and
its parent, class IO, are available through Net::Telnet objects.

• Connect to a localhost, run the date command, and disconnect.

require 'net/telnet'
tn = Net::Telnet.new({})
tn.login "guest", "secret"
tn.cmd "date" → "date\nThu Aug 26 22:38:56 CDT 2004\n% "
tn.close → nil

• The methods new, cmd, login, and waitfor take an optional block. If present, the
block is passed output from the server as it is received by the routine. This can be
used to provide realtime output, rather than waiting (for example) for a login to
complete before displaying the server’s response.

require 'net/telnet'
tn = Net::Telnet.new({}) {|str| print str }
tn.login("guest", "secret") {|str| print str }
tn.cmd("date") {|str| print str }
tn.close

produces:

Connected to localhost.
Darwin/BSD (wireless_2.local.thomases.com) (ttyp1)
login: guest
Password:Last login: Thu Aug 26 22:38:56 from localhost
Welcome to Darwin!
% date
Thu Aug 26 22:38:57 CDT 2004
%

• Get the time from an NTP server.

require 'net/telnet'
tn = Net::Telnet.new('Host' => 'time.nonexistent.org',

'Port' => 'time',
'Timeout' => 60,
'Telnetmode' => false)

atomic_time = tn.recv(4).unpack('N')[0]
puts "Atomic time: " + Time.at(atomic_time - 2208988800).to_s
puts "Local time: " + Time.now.to_s

produces:

Atomic time: Thu Aug 26 22:38:56 CDT 2004
Local time: Thu Aug 26 22:38:59 CDT 2004

Prepared exclusively for Margus Pau

NKF 684

N
K

F

Library NKF Interface to Network Kanji Filter

The NKF module is a wrapper around Itaru Ichikawa’s Network Kanji Filter (NKF)
library (version 1.7). It provides functions to guess at the encoding of JIS, EUC, and
SJIS streams, and to convert from one encoding to another.

• Unlike the interpreter, which uses strings to represent the encodings, NKF uses
integer constants.

require 'nkf'
NKF::AUTO → 0
NKF::JIS → 1
NKF::EUC → 2
NKF::SJIS → 3

• Guess at the encoding of a string. (Thanks to Nobu Nakada for the examples on
this page.)

require 'nkf'

NKF.guess("Yukihiro Matsumoto") → 0
NKF.guess("\eB^DbHf$-$R$m\e(B") → 1
NKF.guess("\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355") → 2
NKF.guess("\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353") → 3

• The NKF.nfk method takes two parameters. The first is a set of options, passed on
the the NKF library. The second is the string to translate. The following examples
assume that your console is set up to accomdate Japanese characters. The text at
the end of the three ruby commands is Yukihiro Matsumoto.

$ ruby -e ’p *ARGV’

"\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355"

$ ruby -rnkf -e ’p NKF.nkf(*ARGV)’ - -Es

"\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353"

$ ruby -rnkf -e ’p NKF.nkf(*ARGV)’ - -Ej

"\eB^DbHf$-$R$m\e(B"

Prepared exclusively for Margus Pau

OBSERVABLE 685

O
bs

er
va

bl
e

Library Observable The Observer Pattern

The Observer pattern, also known as Publish/Subscribe, provides a simple mechanism
for one object (the source) to inform a set of interested third-party objects when its state
changes (see Design Patterns [GHJV95]). In the Ruby implementation, the notifying
class mixes in the module Observable, which provides the methods for managing
the associated observer objects. The observers must implement the update method to
receive notifications.

require 'observer'

class CheckWaterTemperature # Periodically check the water
include Observable

def run
last_temp = nil
loop do

temp = Temperature.fetch # external class...
puts "Current temperature: #{temp}"
if temp != last_temp
changed # notify observers
notify_observers(Time.now, temp)
last_temp = temp

end
end

end
end

class Warner
def initialize(&limit)
@limit = limit

end
def update(time, temp) # callback for observer
if @limit.call(temp)

puts "--- #{time.to_s}: Temperature outside range: #{temp}"
end

end
end

checker = CheckWaterTemperature.new
checker.add_observer(Warner.new {|t| t < 80})
checker.add_observer(Warner.new {|t| t > 120})
checker.run

produces:

Current temperature: 83
Current temperature: 75
--- Thu Aug 26 22:38:59 CDT 2004: Temperature outside range: 75
Current temperature: 90
Current temperature: 134
--- Thu Aug 26 22:38:59 CDT 2004: Temperature outside range: 134
Current temperature: 134
Current temperature: 112
Current temperature: 79
--- Thu Aug 26 22:38:59 CDT 2004: Temperature outside range: 79

Prepared exclusively for Margus Pau

OPEN-URI 686

O
pe

n-
ur

i

Library open-uri Treat FTP and HTTP Resources as Files

The open-uri library extends Kernel#open, allowing it to accept URIs for FTP and
HTTP as well as local filenames. Once opened, these resources can be treated as if they
were local files, accessed using conventional IO methods. The URI passed to open
is either a string containing an HTTP or FTP URL, or a URI object (described on
page 731). When opening an HTTP resource, the method automatically handles redi-
rection and proxies. When using an FTP resource, the method logs in as an anonymous
user.

The IO object returned by open in these cases is extended to support methods that return
meta-information from the request: content_type, charset, content_encoding,
last_modified, status, base_uri, meta.

See also: URI (page 731)

require 'open-uri'
require 'pp'

open('http://localhost/index.html') do |f|
puts "URI: #{f.base_uri}"
puts "Content-type: #{f.content_type}, charset: #{f.charset}"
puts "Encoding: #{f.content_encoding}"
puts "Last modified: #{f.last_modified}"
puts "Status: #{f.status.inspect}"
pp f.meta
puts "----"
3.times {|i| puts "#{i}: #{f.gets}" }

end

produces:

URI: http://localhost/index.html
Content-type: text/html, charset: iso-8859-1
Encoding:
Last modified: Wed Jul 18 23:44:21 UTC 2001
Status: ["200", "OK"]
{"vary"=>"negotiate,accept-language,accept-charset",
"last-modified"=>"Wed, 18 Jul 2001 23:44:21 GMT",
"content-location"=>"index.html.en",
"date"=>"Fri, 27 Aug 2004 03:38:59 GMT",
"etag"=>"\"6657-5b0-3b561f55;411edab5\"",
"content-type"=>"text/html",
"content-language"=>"en",
"server"=>"Apache/1.3.29 (Darwin)",
"content-length"=>"1456",
"tcn"=>"choice",
"accept-ranges"=>"bytes"}

0: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
1: "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
2: <html xmlns="http://www.w3.org/1999/xhtml">

Prepared exclusively for Margus Pau

OPEN3 687

O
pe

n3

Library Open3 Run Subprocess and Connect to All Streams

Runs a command in a subprocess. Data written to stdin can be read by the subprocess,
and data written to standard output and standard error in the subprocess will be available
on the stdout and stderr streams. The subprocess is actually run as a grandchild, and as
a result Process#waitall cannot be used to wait for its termination (hence the sleep
in the following example).

require 'open3'

Open3.popen3('bc') do | stdin, stdout, stderr |

Thread.new { loop { puts "Err stream: #{stderr.gets}" } }
Thread.new { loop { puts "Output stream: #{stdout.gets}" } }

stdin.puts "3 * 4"
stdin.puts "1 / 0"
stdin.puts "2 ^ 5"
sleep 0.1

end

produces:

Output stream: 12
Err stream: Runtime error (func=(main), adr=3): Divide by zero
Output stream: 32
Err stream:

Prepared exclusively for Margus Pau

OPENSSL 688

O
pe

nS
S

L

Library OpenSSL SSL Library

The Ruby OpenSSL extension wraps the freely available OpenSSL library. It providesOnly if: OpenSSL
library available

Secure Sockets Layer and Transport Layer Security (SSL and TLS) protocols, allowing
for secure communications over networks. The library provides functions for certificate
creation and management,message signing, and encryption/decryption. It also provides
wrappers to simplify access to https servers, along with secure FTP. The interface to
the library is large (roughly 330 methods), but the average Ruby user will probably
only use a small subset of the library’s capabilities.

See also: Net::FTP (page 677), Net::HTTP (page 678), Socket (page 714)

• Access a secure Web site using HTTPS. Note that SSL is used to tunnel to the site,
but the requested page also requires standard HTTP basic authorization.

require 'net/https'

USER = "xxx"
PW = "yyy"

site = Net::HTTP.new("www.securestuff.com", 443)
site.use_ssl = true
response = site.get2("/cgi-bin/cokerecipe.cgi",

'Authorization' => 'Basic ' +
["#{USER}:#{PW}"].pack('m').strip)

• Create a socket that uses SSL. This isn’t a good example of accessing a Web site.
However, it illustrates how a socket can be encrypted.

require 'socket'
require 'openssl'

socket = TCPSocket.new("www.secure-stuff.com", 443)

ssl_context = OpenSSL::SSL::SSLContext.new()

unless ssl_context.verify_mode
warn "warning: peer certificate won't be verified this session."
ssl_context.verify_mode = OpenSSL::SSL::VERIFY_NONE

end
sslsocket = OpenSSL::SSL::SSLSocket.new(socket, ssl_context)
sslsocket.sync_close = true
sslsocket.connect

sslsocket.puts("GET /secret-info.shtml")
while line = sslsocket.gets
p line

end

Prepared exclusively for Margus Pau

OPENSTRUCT 689

O
pe

nS
tr

uc
t

Library OpenStruct Open (dynamic) Structure

An open structure is an object whose attributes are created dynamically when first
assigned. In other words, if obj is an instance of an OpenStruct, then the statement
obj.abc=1 will create the attribute abc in obj, and then assign the value 1 to it.

require 'ostruct'

os = OpenStruct.new("f1" => "one", :f2 => "two")
os.f3 = "cat"
os.f4 = 99
os.f1 → "one"
os.f2 → "two"
os.f3 → "cat"
os.f4 → 99

Prepared exclusively for Margus Pau

OPTIONPARSER 690

O
pt

io
nP

ar
se

r

Library OptionParser Option Parsing

OptionParser is a flexible and extensible way to parse command-line arguments. It
has a particularly rich abstraction of the concept of an option.

• An option can have multiple short names (options preceded by a single hyphen)
and multiple long names (options preceded by two hyphens). Thus, an option that
displays help may be available as -h, -?, --help, and --about. Users may abbre-
viate long option names to the shortest nonambiguous prefix.

• An option may be specified as having no argument, an optional argument, or a
required argument. Arguments can be validated against patterns or lists of valid
values.

• Arguments may be returned as objects of any type (not just strings). The argument
type system is extensible (we add Date handling in the example).

• Arguments can have one or more lines of descriptive text, used when generating
usage information.

Options are specified using the on and def methods. These methods take a variable
number of arguments that cumulatively build a definition of each option. The arguments
accepted by these methods are listed in Table 28.2 on the following page.

See also: GetoptLong (page 663)

require 'optparse'
require 'date'

Add Dates as a new option type
OptionParser.accept(Date, /(\d+)-(\d+)-(\d+)/) do |d, mon, day, year|
Date.new(year.to_i, mon.to_i, day.to_i)

end

opts = OptionParser.new
opts.on("-x") {|val| puts "-x seen" }
opts.on("-s", "--size VAL", Integer) {|val| puts "-s #{val}" }
opts.on("-a", "--at DATE", Date) {|val| puts "-a #{val}" }

my_argv = ["--size", "1234", "-x", "-a", "12-25-2003", "fred", "wilma"]

rest = opts.parse(*my_argv)
puts "Remainder = #{rest.join(', ')}"
puts opts.to_s

produces:

-s 1234
-x seen
-a 2003-12-25
Remainder = fred, wilma
Usage: myprog [options]

-x
-s, --size VAL
-a, --at DATE

Prepared exclusively for Margus Pau

OPTIONPARSER 691

O
pt

io
nP

ar
se

r

Table 28.2. Option definition arguments

"-x" "-xARG" "-x=ARG" "-x[OPT]" "-x[=OPT]" "-x PLACE"
Option has short name x. First form has no argument, next two have manda-
tory argument, next two have optional argument, last specifies argument follows
option. The short names may also be specified as a range (such as "-[a-c]").

"--switch" "--switch=ARG" "--switch=[OPT]" "--switch PLACE"
Option has long name switch. First form has no argument, next has a mandatory
argument, the next has an optional argument, and the last specifies the argument
follows the switch.

"--no-switch"
Defines a option whose default value is false.

"=ARG" "=[OPT]"
Argument for this option is mandatory or optional. For example, the following
code says there’s an option known by the aliases -x, -y, and -z that takes a manda-
tory argument, shown in the usage as N.
opt.on("-x", "-y", "-z", "=N")

"description"
Any string that doesn’t start - or = is used as a description for this option in
the summary. Multiple descriptions may be given; they’ll be shown on additional
lines.

/pattern/
Any argument must match the given pattern.

array
Argument must be one of the values from array.

proc or method
Argument type conversion is performed by the given proc or method (rather than
using the block associated with the on or def method call).

ClassName
Argument must match that defined for ClassName, which may be predefined or
added using OptionParser.accept. Built-in argument classes are
Object: Any string. No conversion. This is the default.
String: Any nonempty string. No conversion.
Integer: Ruby/C-like integer with optional sign (0ddd is octal, 0bddd binary, 0xddd hex-

adecimal). Converts to Integer.
Float: Float number format. Converts to Float.
Numeric: Generic numeric format. Converts to Integer for integers, Float for floats.
Array: Argument must be of list of strings separated by a comma.
OptionParser::DecimalInteger: Decimal integer. Converted to Integer.
OptionParser::OctalInteger: Ruby/C-like octal/hexadecimal/binary integer.
OptionParser::DecimalNumeric: Decimal integer/float number. Integers converted to

Integer, floats to Float.
TrueClass, FalseClass: Boolean switch.

Prepared exclusively for Margus Pau

PARSEDATE 692

P
ar

se
D

at
e

Library ParseDate Parse a Date String

The ParseDate module defines a single method, ParseDate.parsedate, which con-
verts a date and/or time string into an array of Fixnum values representing the date
and/or time’s constituents (year, month, day, hour, minute, second, time zone, and
weekday). nil is returned for fields that cannot be parsed from the string. If the result
contains a year that is less than 100 and the guess parameter is true, parsedate will
return a year value equal to year plus 2000 if year is less than 69, and will return year
plus 1900 otherwise.

See also: Date (page 644)

ParseDate::parsedate(string, guess)
string guess yy mm dd hh min sec zone wd

1999-09-05 23:55:21+0900 F 1999 9 5 23 55 21 +0900 –
1983-12-25 F 1983 12 25 – – – – –
1965-11-10 T13:45 F 1965 11 10 13 45 – – –
10/9/75 1:30pm F 75 10 9 13 30 – – –
10/9/75 1:30pm T 1975 10 9 13 30 – – –
Wed Feb 2 17:15:49 CST 2000 F 2000 2 2 17 15 49 CST 3
Tue, 02-Mar-99 11:20:32 GMT F 99 3 2 11 20 32 GMT 2
Tue, 02-Mar-99 11:20:32 GMT T 1999 3 2 11 20 32 GMT 2
12-January-1990, 04:00 WET F 1990 1 12 4 0 – WET –
4/3/99 F 99 4 3 – – – – –
4/3/99 T 1999 4 3 – – – – –
10th February, 1976 F 1976 2 10 – – – – –
March 1st, 84 T 1984 3 1 – – – – –
Friday F – – – – – – – 5

Prepared exclusively for Margus Pau

PATHNAME 693

P
at

hn
am

e

Library Pathname Representation of File Paths

A Pathname represents the absolute or relative name of a file. It has two distinct uses.
First, it allows manipulation of the parts of a file path (extracting components, building
new paths, and so on). Second (and somewhat confusingly), it acts as a façade for some
methods in classes Dir, File, and module FileTest, forwarding on calls for the file
named by the Pathname object.

See also: File (page 444)

• Path name manipulation:

require 'pathname'

p1 = Pathname.new("/usr/bin") → #<Pathname:/usr/bin>
p2 = Pathname.new("ruby") → #<Pathname:ruby>
p3 = p1 + p2 → #<Pathname:/usr/bin/ruby>
p4 = p2 + p1 → #<Pathname:/usr/bin>
p3.parent → #<Pathname:/usr/bin>
p3.parent.parent → #<Pathname:/usr>
p1.absolute? → true
p2.absolute? → false
p3.split → [#<Pathname:/usr/bin>,

#<Pathname:ruby>]

p5 = Pathname.new("testdir") → #<Pathname:testdir>

p5.realpath → #<Pathname:/Users/dave/Work/rubybook/testdir>
p5.children → [#<Pathname:testdir/config.h>,

#<Pathname:testdir/main.rb>]

• Pathname as proxy for file and directory status requests.

require 'pathname'

p1 = Pathname.new("/usr/bin/ruby")
p1.file? → true
p1.directory? → false
p1.executable? → true
p1.size → 1913444

p2 = Pathname.new("testfile") → #<Pathname:testfile>

p2.read → "This is line one\nThis is
line two\nThis is line
three\nAnd so on...\n"

p2.readlines → ["This is line one\n", "This
is line two\n", "This is line
three\n", "And so on...\n"]

Prepared exclusively for Margus Pau

PP 694

P
P

Library PP Pretty-print Objects

PP uses the PrettyPrint library to format the results of inspecting Ruby objects. As
well as the methods in the class, it defines a global function, pp, which works like the
existing p method but which formats its output.

PP has a default layout for all Ruby objects. However, you can override the way it
handles a class by defining the method pretty_print, which takes a PP object as a
parameter. It should use that PP object’s methods text, breakable, nest, group, and
pp to format its output (see PrettyPrint for details).

See also: PrettyPrint (page 695), YAML (page 737)

• Compare “p” and “pp.”

require 'pp'

Customer = Struct.new(:name, :sex, :dob, :country)

cust = Customer.new("Walter Wall", "Male", "12/25/1960", "Niue")

puts "Regular print"
p cust

puts "\nPretty print"
pp cust

produces:

Regular print
#<struct Customer name="Walter Wall", sex="Male", dob="12/25/1960",
country="Niue">

Pretty print
#<struct Customer
name="Walter Wall",
sex="Male",
dob="12/25/1960",
country="Niue">

• You can tell PP not to display an object if it has already displayed it.

require 'pp'

a = "string"
b = [a]
c = [b, b]
PP.sharing_detection = false
pp c

PP.sharing_detection = true
pp c

produces:

[["string"], ["string"]]
[["string"], [...]]

Prepared exclusively for Margus Pau

PRETTYPRINT 695

P
re

tty
P

rin
t

Library PrettyPrint General Pretty Printer

PrettyPrint implements a pretty printer for structured text. It handles details of wrap-
ping, grouping, and indentation. The PP library uses PrettyPrint to generate more
legible dumps of Ruby objects.

See also: PP (page 694)

• The following program prints a chart of Ruby’s classes, showing subclasses as a
bracketed list following the parent. To save some space, we show just the classes
in the Numeric branch of the tree.

require 'prettyprint'
require 'complex'
require 'rational'
@children = Hash.new { |h,k| h[k] = Array.new }
ObjectSpace.each_object(Class) do |cls|
@children[cls.superclass] << cls if cls <= Numeric

end
def print_children_of(printer, cls)
printer.text(cls.name)
kids = @children[cls].sort_by {|k| k.name}
unless kids.empty?
printer.group(0, " [", "]") do

printer.nest(3) do
printer.breakable
kids.each_with_index do |k, i|
printer.breakable unless i.zero?
print_children_of(printer, k)

end
end
printer.breakable

end
end

end
printer = PrettyPrint.new($stdout, 30)
print_children_of(printer, Object)
printer.flush

produces:

Object [
Numeric [

Complex
Float
Integer [

Bignum
Fixnum

]
Rational

]
]

Prepared exclusively for Margus Pau

PROFILE 696

P
ro

fil
e

Library Profile Profile Execution of a Ruby Program

The profile library is a trivial wrapper around the Profiler module, making it easy
to profile the execution of an entire program. Profiling can be enabled from the com-
mand line using the -rprofile option or from within a source program by requiring
the profile module.

See also: Benchmark (page 636), Profiler__ (page 697)

require 'profile'
def ackerman(m, n)
if m == 0 then n+1
elsif n == 0 and m > 0 then ackerman(m-1, 1)
else ackerman(m-1, ackerman(m, n-1))
end

end
ackerman(3, 3)

produces:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
75.14 2.75 2.75 2432 1.13 46.92 Object#ackerman
13.39 3.24 0.49 3676 0.13 0.13 Fixnum#==
7.65 3.52 0.28 2431 0.12 0.12 Fixnum#-
3.83 3.66 0.14 1188 0.12 0.12 Fixnum#+
0.55 3.68 0.02 1 20.00 20.00 Profiler__.start_profile
0.00 3.68 0.00 1 0.00 0.00 Kernel.puts
0.00 3.68 0.00 1 0.00 0.00 Module#method_added
0.00 3.68 0.00 2 0.00 0.00 IO#write
0.00 3.68 0.00 57 0.00 0.00 Fixnum#>
0.00 3.68 0.00 1 0.00 3660.00 #toplevel

Prepared exclusively for Margus Pau

PROFILER_ _ 697

P
ro

fil
er

_
_

Library Profiler_ _ Control Execution Profiling

The Profiler_ _ module can be used to collect a summary of the number of calls to,
and the time spent in, methods in a Ruby program. The output is sorted by the total
time spent in each method. The profile library is a convenience wrapper than profiles
an entire program.

See also: Benchmark (page 636), profile (page 696)

require 'profiler'
Omit definition of connection and fetching methods

def calc_discount(qty, price)
case qty
when 0..10 then 0.0
when 11..99 then price * 0.05
else price * 0.1
end

end

def calc_sales_totals(rows)
total_qty = total_price = total_disc = 0
rows.each do |row|

total_qty += row.qty
total_price += row.price
total_disc += calc_discount(row.qty, row.price)

end
end

connect_to_database

rows = read_sales_data

Profiler__::start_profile
calc_sales_totals(rows)
Profiler__::stop_profile
Profiler__::print_profile($stdout)

produces:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
31.19 0.34 0.34 1 340.00 1090.00 Array#each
20.18 0.56 0.22 648 0.34 0.80 Range#===
15.60 0.73 0.17 648 0.26 0.39 Fixnum#<=>
10.09 0.84 0.11 324 0.34 2.01 Object#calc_discount
6.42 0.91 0.07 648 0.11 0.11 Float#coerce
5.50 0.97 0.06 1296 0.05 0.05 Float#<=>
3.67 1.01 0.04 969 0.04 0.04 Float#+
2.75 1.04 0.03 648 0.05 0.05 S#price
2.75 1.07 0.03 648 0.05 0.05 S#qty
1.83 1.09 0.02 324 0.06 0.06 Float#*
0.92 1.10 0.01 1 10.00 10.00 Profiler__.start_profile
0.00 1.10 0.00 1 0.00 1090.00 #toplevel
0.00 1.10 0.00 1 0.00 1090.00 Object#calc_sales_totals
0.00 1.10 0.00 3 0.00 0.00 Fixnum#+

Prepared exclusively for Margus Pau

PSTORE 698

P
S

to
re

Library PStore Persistent Object Storage

The PStore class provides transactional, file-based, persistent storage of Ruby objects.
Each PStore can store several object hierarchies. Each hierarchy has a root, identified
by a key (often a string). At the start of a PStore transaction, these hierarchies are read
from a disk file and made available to the Ruby program. At the end of the transaction,
the hierarchies are written back to the file. Any changes made to objects in these hier-
archies are therefore saved on disk, to be read at the start of the next transaction that
uses that file.

In normal use, a PStore object is created and then is used one or more times to control
a transaction. Within the body of the transaction, any object hierarchies that had pre-
viously been saved are made available, and any changes to object hierarchies, and any
new hierarchies, are written back to the file at the end.

• The following example stores two hierarchies in a PStore. The first, identified by
the key "names", is an array of strings. The second, identified by "tree", is a
simple binary tree.

require 'pstore'
require 'pp'
class T
def initialize(val, left=nil, right=nil)
@val, @left, @right = val, left, right

end
def to_a
[@val, @left.to_a, @right.to_a]

end
end

store = PStore.new("/tmp/store")
store.transaction do

store['names'] = ['Douglas', 'Barenberg', 'Meyer']
store['tree'] = T.new('top',

T.new('A', T.new('B')),
T.new('C', T.new('D', nil, T.new('E'))))

end

now read it back in

store.transaction do
puts "Roots: #{store.roots.join(', ')}"
puts store['names'].join(', ')
pp store['tree'].to_a

end

produces:

Roots: names, tree
Douglas, Barenberg, Meyer
["top",
["A", ["B", [], []], []],
["C", ["D", [], ["E", [], []]], []]]

Prepared exclusively for Margus Pau

PTY 699

P
T

Y

Library PTY Pseudo-Terminal Interface: Interact with External Processes

Many Unix platforms support a pseudo-terminal—a device pair where one end emu-Only if: Unix with
pty support

lates a process running on a conventional terminal, and the other end can read and write
that terminal as if it were a user looking at a screen and typing on a keyboard.

The PTY library provides the method spawn, which starts the given command (by
default a shell), connecting it to one end of a pseudo-terminal. It then returns the reader
and writer streams connected to that terminal, allowing your process to interact with
the running process.

Working with pseudo-terminals can be tricky. See IO#expect on page 655 for a con-
venience method that makes life easier. You might also want to track down Ara T.
Howard’s Session module for an even simpler approach to driving subprocesses.4

See also: expect (page 655)

• Run irb in a subshell and ask it to convert the string “cat” to uppercase.

require 'pty'
require 'expect'

$expect_verbose = true

PTY.spawn("ruby /usr/local/bin/irb") do |reader, writer, pid|
reader.expect(/irb.*:0> /)
writer.puts "'cat'.upcase"
reader.expect("=> ")
answer = reader.gets
puts "Answer = #{answer}"

end

produces:

irb(main):001:0> 'cat'.upcase
=> Answer = "CAT"

4. Currently found at http://www.codeforpeople.com/lib/ruby/session/.

Prepared exclusively for Margus Pau

http://www.codeforpeople.com/lib/ruby/session/

RATIONAL 700

R
at

io
na

l

Library Rational Rational Numbers

Rational numbers are expressed as the ratio of two integers. When the denomina-
tor exactly divides the numerator, a rational number is effectively an integer. Ratio-
nals allow exact representation of fractional numbers, but some real values cannot be
expressed exactly and so cannot be represented as rationals.

Class Rational is normally relatively independent of the other numeric classes, in that
the result of dividing two integers will normally be a (truncated) integer. However, if
the mathn library is loaded into a program, integer division may generate a Rational
result.

See also: mathn (page 671), Matrix (page 673), Complex (page 641)

• Rational as a free-standing class.

require 'rational'
r1 = Rational(3, 4) → Rational(3, 4)
r2 = Rational(2, 3) → Rational(2, 3)
r1 * 2 → Rational(3, 2)
r1 * 8 → Rational(6, 1)
r1 / 6 → Rational(1, 8)
r1 * r2 → Rational(1, 2)
r1 + r2 → Rational(17, 12)
r1 ** r2 → 0.825481812223657

• Rational integrated with integers using mathn. Notice how mathn also changes the
string representation of numbers.

require 'rational'
require 'mathn'
r1 = Rational(3, 4) → 3/4
r2 = Rational(2, 3) → 2/3
r1 * 2 → 3/2
r1 * 8 → 6
5/3 → 5/3
5/3 * 6 → 10
5/3 * 6/15 → 2/3
Math::sin(r1) → 0.681638760023334

Prepared exclusively for Margus Pau

READBYTES 701

R
ea

db
yt

es

Library readbytes Fixed-Size Read

Adds the method readbytes to class IO. This method will guarantee to read exactly
the requested number of bytes from a stream, throwing either an EOFError at end of
file or a TruncatedDataError if fewer than the requested number of bytes remain in
the stream.

• Normally, readbytes would be used with a network connection. Here we illus-
trate its use with a regular file.

require 'readbytes'

File.open("testfile") do |f|
begin
loop do

data = f.readbytes(10)
p data

end
rescue EOFError
puts "End of File"

rescue TruncatedDataError => td
puts "Truncated data: read '#{td.data.inspect}'"

end
end

produces:

"This is li"
"ne one\nThi"
"s is line "
"two\nThis i"
"s line thr"
"ee\nAnd so "
Truncated data: read '"on...\n"'

Prepared exclusively for Margus Pau

READLINE 702

R
ea

dl
in

e

Library Readline Interface to GNU Readline Library

The Readline module allows programs to prompt for and receive lines of user input.Only if: GNU
readline present

The module allows lines to be edited during entry, and command history allows pre-
vious commands to be recalled and edited. The history can be searched, allowing the
user to (for example) recall a previous command containing the text ruby. Command
completion allows context-sensitive shortcuts: tokens can be expanded in the command
line under control of the invoking application. In typical GNU fashion, the underlying
readline library supports more options than any user could need and emulates both vi
and emacs key bindings.

• This meaningless program implements a trivial interpreter that can increment and
decrement a value. It uses the Abbrev module (described on page 634) to expand
abbreviated commands when the tab key is pressed.

require 'readline'
include Readline

require 'abbrev'

COMMANDS = %w{ exit inc dec }

ABBREV = COMMANDS.abbrev

Readline.completion_proc = proc do |string|
ABBREV[string]

end

value = 0

loop do

cmd = readline("wibble [#{value}]: ", true)

break if cmd.nil?

case cmd.strip
when "exit"
break

when "inc"
value += 1

when "dec"
value -= 1

else
puts "Invalid command #{cmd}"

end

end

% ruby code/readline.rb
wibble [0]: inc
wibble [1]: <up-arrow> => inc
wibble [2]: d<tab> => dec
wibble [1]: ^r i => inc
wibble [2]: exit
%

Prepared exclusively for Margus Pau

RESOLV 703

R
es

ol
v

Library Resolv DNS Client Library

The resolv library is a pure-Ruby implementation of a DNS client—it can be used to
convert domain names into corresponding IP addresses. It also supports reverse lookups
and the resolution of names in the local hosts file.

The resolv library exists to overcome a problem with the interaction of the standard
operating system DNS lookup and the Ruby threading mechanism. On most operating
system, name resolution is synchronous: you issue the call to look up a name, and
the call returns when an address has been fetched. Because this lookup often involves
network traffic, and because DNS servers can be slow, this call may take a (relatively)
long time. During this time, the thread that issued the call is effectively suspended.
Because Ruby does not use operating system threads, this means that the interpreter is
effectively suspended while a DNS request is being executed from any running Ruby
thread. This is sometimes unacceptable. Enter the resolv library. Because it is written
in Ruby, it automatically participates in Ruby threading, and hence other Ruby threads
can run while a DNS lookup is in progress in one thread.

Loading the additional library resolv-replace insinuates the resolv library into
Ruby’s socket library (see page 714).

• Use the standard socket library to look up a name. A counter running in a separate
thread is suspended while this takes place.

require 'socket'

count = 0
Thread.critical = true
thread = Thread.new { Thread.pass; loop { count += 1; } }
IPSocket.getaddress("www.ruby-lang.org") → "210.251.121.210"
count → 0

• Repeat the experiment, but use the resolv library to allow Ruby’s threading to
work in parallel.

require 'socket'
require 'resolv-replace'

count = 0
Thread.critical = true
thread = Thread.new { Thread.pass; loop { count += 1; } }
IPSocket.getaddress("www.ruby-lang.org") → "210.251.121.210"
count → 39211

Prepared exclusively for Margus Pau

REXML 704

R
E

X
M

L

Library REXML XML Processing Library

REXML is a pure-Ruby XML processing library, including DTD-compliant document
parsing, XPath querying, and document generation. It supports both tree-based and
stream-based document processing. As it is written in Ruby, it is available on all plat-
forms supporting Ruby. REXML has a full and complex interface—this section con-
tains a few small examples.

• Assume the file demo.xml contains

<classes language="ruby">
<class name="Numeric">
Numeric represents all numbers.
<class name="Float">

Floating point numbers have a fraction and a mantissa.
</class>
<class name="Integer">

Integers contain exact integral values.
<class name="Fixnum">

Fixnums are stored as machine ints.
</class>
<class name="Bignum">

Bignums store arbitraty-sized integers.
</class>

</class>
</class>

</classes>

• Read and process the XML.

require 'rexml/document'
xml = REXML::Document.new(File.open("demo.xml"))

puts "Root element: #{xml.root.name}"
puts "\nThe names of all classes"
xml.elements.each("//class") {|c| puts c.attributes["name"] }
puts "\nThe description of Fixnum"
p xml.elements["//class[@name='Fixnum']"].text

produces:

Root element: classes

The names of all classes
Numeric
Float
Integer
Fixnum
Bignum

The description of Fixnum
"\n Fixnums are stored as machine ints.\n "

Prepared exclusively for Margus Pau

REXML 705

R
E

X
M

L

• Read in a document, add and delete elements, and manipulate attributes before
writing it back out.

require 'rexml/document'
include REXML

xml = Document.new(File.open("demo.xml"))

cls = Element.new("class")
cls.attributes["name"] = "Rational"
cls.text = "Represents complex numbers"

Remove Integer's children, and add our new node as
the one after Integer
int = xml.elements["//class[@name='Integer']"]

int.delete_at(1)
int.delete_at(2)

int.next_sibling = cls

Change all the 'name' attributes to class_name
xml.elements.each("//class") do |c|
c.attributes['class_name'] = c.attributes['name']
c.attributes.delete('name')

end

and write it out with a XML declaration at the front
xml << XMLDecl.new
xml.write(STDOUT, 0)

produces:

<?xml version='1.0'?>
<classes language='ruby'>
<class class_name='Numeric'>
Numeric represents all numbers.
<class class_name='Float'>

Floating point numbers have a fraction and a mantissa.
</class>
<class class_name='Integer'>

Integers contain exact integral values.

</class>
<class class_name='Rational'>Represents complex numbers</class>

</class>
</classes>

Prepared exclusively for Margus Pau

RINDA 706

R
in

da

Library Rinda Tuplespace Implementation

Tuplespaces are a distributed blackboard system. Processes may add tuples to the black-
board, and other processes may remove tuples from the blackboard that match a cer-
tain pattern. Originally presented by David Gelernter, tuplespaces offer an interesting
scheme for distributed cooperation among heterogeneous processes.

Rinda, the Ruby implementation of tuplespaces, offers some interesting additions to
the concept. In particular, the Rinda implementation uses the === operator to match
tuples. This means that tuples may be matched using regular expressions, the classes of
their elements, as well as the element values.

See also: DRb (page 649)

• The blackboard is a DRb server that offers a shared tuplespace.

require 'drb/drb'
require 'rinda/tuplespace'

require 'my_uri' # Defines the constant MY_URI

DRb.start_service(MY_URI, Rinda::TupleSpace.new)
DRb.thread.join

• The arithmetic agent accepts messages containing an arithmetic operator and two
numbers. It stores the result back on the blackboard.

require 'drb/drb'
require 'rinda/rinda'
require 'my_uri'

DRb.start_service
ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))
loop do
op, v1, v2 = ts.take([%r{^[-+/*]$}, Numeric, Numeric])
ts.write(["result", v1.send(op, v2)])

end

• The client places a sequence of tuples on the blackboard and reads back the result
of each.

require 'drb/drb'
require 'rinda/rinda'
require 'my_uri'

DRb.start_service
ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

queries = [["+", 1, 2], ["*", 3, 4], ["/", 8, 2]]

queries.each do |q|
ts.write(q)
ans = ts.take(["result", nil])
puts "#{q[1]} #{q[0]} #{q[2]} = #{ans[1]}"

end

Prepared exclusively for Margus Pau

RSS 707

R
S

S

Library RSS RSS Feed Generation and Parsing

Rich (or RDF) Site Summary, Really Simple Syndication, take your pick. RSS is the
protocol of choice for disseminating news on the Internet. The Ruby RSS library sup-
ports creating and parsing streams compliant with the RSS 0.9, RSS 1.0, and RSS 2.0
specifications.

• Read and summarize the latest stories from http://ruby-lang.org.

require 'rss/1.0'
require 'open-uri'

open('http://ruby-lang.org/en/index.rdf') do |http|
response = http.read

result = RSS::Parser.parse(response, false)

puts "Channel: " + result.channel.title
result.items.each_with_index do |item, i|
puts "#{i+1}. #{item.title}" if i < 4

end
end

produces:

Channel: Ruby Home Page
1. Brad Cox to keynote RubyConf 2004
2. Download Ruby
3. RubyConf 2004 registration now open
4. ruby 1.8.2 preview1 released

• Generate some RSS information.

require 'rss/0.9'

rss = RSS::Rss.new("0.9")
chan = RSS::Rss::Channel.new
chan.description = "Dave's Feed"
chan.link = "http://pragprog.com/pragdave"
rss.channel = chan

image = RSS::Rss::Channel::Image.new
image.url = "http://pragprog.com/pragdave.gif"
image.title = "PragDave"
image.link = chan.link
chan.image = image

3.times do |i|
item = RSS::Rss::Channel::Item.new
item.title = "My News Number #{i}"
item.link = "http://pragprog.com/pragdave/story_#{i}"
item.description = "This is a story about number #{i}"
chan.items << item

end

puts rss.to_s

Prepared exclusively for Margus Pau

http://ruby-lang.org

SCANF 708

S
ca

nf

Library Scanf Input Format Conversion

Implements a version of the C library scanf function, which extracts values from a
string under the control of a format specifier.

The Ruby version of the library adds a scanf method to both class IO and class String.
The version in IO applies the format string to the next line read from the receiver. The
version in String applies the format string to the receiver. The library also adds the
global method Kernel.scanf, which uses as its source the next line of standard input.

Scanf has one main advantage over using regular expressions to break apart a string: a
regular expression extracts strings whereas scanf will return objects converted to the
correct type.

• Split a date string into its constituents.

require 'scanf'

date = "2004-12-15"
year, month, day = date.scanf("%4d-%2d-%2d")
year → 2004
month → 12
day → 15
year.class → Fixnum

• The block form of scanf applies the format multiple times to the input string,
returning each set of results to the block.

require 'scanf'

data = "cat:7 dog:9 cow:17 walrus:31"

data.scanf("%[^:]:%d ") do |animal, value|
puts "A #{animal.strip} has #{value*1.4}"

end

produces:

A cat has 9.8
A dog has 12.6
A cow has 23.8
A walrus has 43.4

• Extract hex numbers.

require 'scanf'

data = "decaf bad"
data.scanf("%3x%2x%x") → [3564, 175, 2989]

Prepared exclusively for Margus Pau

SDBM 709

S
D

B
M

Library SDBM Interface to SDBM Database

The SDBM database implements a simple key/value persistence mechanism. Because
the underlying SDBM library itself is provided with Ruby, there are no external depen-
dencies, and SDBM should be available on all platforms supported by Ruby. SDBM
database keys and values must be strings. SDBM databases are effectively hashlike.

See also: DBM (page 645), GDBM (page 661)

• Store a record in a new database, and then fetch it back. Unlike the DBM library,
all values to SDBM must be strings (or implement to_str).

require 'sdbm'
require 'date'

SDBM.open("data.dbm") do |dbm|
dbm['name'] = "Walter Wombat"
dbm['dob'] = Date.new(1997, 12,25).to_s
dbm['uses'] = "Ruby"

end

SDBM.open("data.dbm", nil) do |dbm|
p dbm.keys
p dbm['dob']
p dbm['dob'].class

end

produces:

["name", "dob", "uses"]
"1997-12-25"
String

Prepared exclusively for Margus Pau

SET 710

S
et

Library Set Implement Various Forms of Set

A Set is a collection of unique values (where uniqueness is determined using eql? and
hash). Convenience methods let you build sets from enumerable objects.

• Basic set operations.

require 'set'

set1 = Set.new([:bear, :cat, :deer])

set1.include?(:bat) → false
set1.add(:fox) → #<Set: {:cat, :deer, :fox, :bear}>

partition = set1.classify {|element| element.to_s.length }

partition → {3=>#<Set: {:cat, :fox}>, 4=>#<Set: {:deer,
:bear}>}

set2 = [:cat, :dog, :cow].to_set
set1 | set2 → #<Set: {:cat, :dog, :deer, :cow, :fox, :bear}>
set1 & set2 → #<Set: {:cat}>
set1 - set2 → #<Set: {:deer, :fox, :bear}>
set1 ^ set2 → #<Set: {:dog, :deer, :cow, :fox, :bear}>

• Partition the users in our /etc/passwd file into subsets where members of each
subset have adjacent user IDs.

require 'etc'
require 'set'

users = []
Etc.passwd {|u| users << u }

related_users = users.to_set.divide do |u1, u2|
(u1.uid - u2.uid).abs <= 1

end

related_users.each do |relatives|
relatives.each {|u| print "#{u.uid}/#{u.name} " }
puts

end

produces:

75/sshd 79/appserver 78/mailman 77/cyrus 76/qtss 74/mysql
503/testuser 502/dave
27/postfix 25/smmsp 26/lp
70/www 71/eppc
99/unknown
-2/nobody
1/daemon 0/root

Prepared exclusively for Margus Pau

SHELLWORDS 711

S
he

llw
or

ds

Library Shellwords Split Line into Words Using POSIX Semantics

Given a string representative of a shell command line, split it into word tokens accord-
ing to POSIX semantics.

• Spaces between double or single quotes are treated as part of a word.

• Double quotes may be escaped using a backslash.

• Spaces escaped by a backslash are not used to separate words.

• Otherwise tokens separated by whitespace are treated as words.

require 'shellwords'
include Shellwords

line = %{Code Ruby, Be Happy!}
shellwords(line) → ["Code", "Ruby,", "Be", "Happy!"]

line = %{"Code Ruby", 'Be Happy'!}
shellwords(line) → ["Code Ruby,", "Be Happy!"]

line = %q{Code\ Ruby, \"Be Happy\"!}
shellwords(line) → ["Code Ruby,", "\"Be", "Happy\"!"]

Prepared exclusively for Margus Pau

SINGLETON 712

S
in

gl
et

on

Library Singleton The Singleton Pattern

The Singleton design pattern ensures that only one instance of a particular class may
be created for the lifetime of a program (see Design Patterns [GHJV95]).

The singleton library makes this simple to implement. Mix the Singleton module
into each class that is to be a singleton, and that class’s newmethod will be made private.
In its place, users of the class call the method instance, which returns a singleton
instance of that class.

In this example, the two instances of MyClass are the same object.

require 'singleton'

class MyClass

attr_accessor :data
include Singleton

end

a = MyClass.instance → #<MyClass:0x1c20dc>
b = MyClass.instance → #<MyClass:0x1c20dc>

a.data = 123 → 123
b.data → 123

Prepared exclusively for Margus Pau

SOAP 713

S
O

A
P

Library SOAP Client and Server Implementations of SOAP

The SOAP library implements both the client and server sides of the SOAP protocol,
including support for WSDL, the Web Services Description Language.

A fuller discussion of the SOAP library, including some examples of accessing the
Google search API, starts on page 236.

• Create a simple SOAP service that returns the current local time as a string.

require 'soap/rpc/standaloneServer'

module TimeServant
def TimeServant.now
Time.now.to_s

end
end

class Server < SOAP::RPC::StandaloneServer
def on_init
servant = TimeServant
add_method(servant, 'now')

end
end

if __FILE__ == $0
svr = Server.new('Server',

'http://pragprog.com/TimeServer',
'0.0.0.0',
12321)

trap('INT') { svr.shutdown }
svr.start

end

• Query the server using a simple SOAP client.

require 'soap/rpc/driver'

proxy = SOAP::RPC::Driver.new("http://localhost:12321",
"http://pragprog.com/TimeServer")

proxy.add_method("now")
p proxy.now

produces:

"Thu Aug 26 22:39:14 CDT 2004"

Prepared exclusively for Margus Pau

SOCKET 714

S
oc

ke
t

Library Socket IP, TCP, Unix, and SOCKS Socket Access

IO
BasicSocket

IPSocket
TCPSocket

SOCKSSocket
TCPServer

UDPSocket
Socket
UNIXSocket

UNIXServer

The socket extension defines nine classes
for accessing the socket-level communica-
tions of the underlying system. All of these
classes are (indirect) subclasses of class IO,
meaning that IO’s methods can be used with
socket connections.

The hierarchy of socket classes reflects the
reality of network programming and hence
is somewhat confusing. The BasicSocket
class largely contains methods common to
data transfer for all socket-based connections. It is subclassed to provide protocol-
specific implementations: IPSocket, UNIXSocket (for domain sockets), and (indi-
rectly) TCPSocket, UDPSocket, and SOCKSSocket.

BasicSocket is also subclassed by class Socket, which is a more generic interface to
socket-oriented networking. While classes such as TCPSocket are specific to a proto-
col, Socket objects can, with some work, be used regardless of protocol.

TCPSocket, SOCKSSocket, and UNIXSocket are each connection oriented. Each has a
corresponding xxxxServer class, which implements the server end of a connection.

The socket libraries are something that you may never use directly. However, if you do
use them, you’ll need to know the details. For that reason, we’ve included a reference
section covering the socket library methods in Appendix A on page 740.

The following code shows a trivial UDP server and client. For more examples see
Appendix A.

Simple logger prints messages
received on UDP port 12121
require 'socket'
socket = UDPSocket.new
socket.bind("127.0.0.1", 12121)
loop do
msg, sender = socket.recvfrom(100)
host = sender[3]
puts "#{Time.now}: #{host} '#{msg}'"

end

Exercise the logger
require 'socket'
log = UDPSocket.new
log.connect("127.0.0.1", 12121)
log.print "Up and Running!"
process ... process ..
log.print "Done!"

This produces:

Wed Jun 30 17:30:24 CDT 2004: 127.0.0.1 'Up and Running!'
Wed Jun 30 17:30:24 CDT 2004: 127.0.0.1 'Done!'

Prepared exclusively for Margus Pau

STRINGIO 715

S
tr

in
gI

O

Library StringIO Treat Strings as IO Objects

In some ways the distinction between strings and file contents is artificial: the contents
of a file is basically a string that happens to live on disk, not in memory. The StringIO
library aims to unify the two concepts, making strings act as if they were opened IO
objects. Once a string is wrapped in a StringIO object, it can be read from and written
to as if it were an open file. This can make unit testing a lot easier. It also lets you pass
strings into classes and methods that were originally written to work with files.

• Read and write from a string.

require 'stringio'

sio = StringIO.new("time flies like an arrow")

sio.read(5) → "time "
sio.read(5) → "flies"
sio.pos = 18
sio.read(5) → " arro"
sio.rewind → 0
sio.write("fruit") → 5
sio.pos = 16
sio.write("a banana") → 8
sio.rewind → 0
sio.read → "fruitflies like a banana"

• Use StringIO as a testing aid.

require 'stringio'
require 'csv'
require 'test/unit'

class TestCSV < Test::Unit::TestCase

def test_simple
StringIO.open do |op|

CSV::Writer.generate(op) do |csv|
csv << [1, "line 1", 27]
csv << [2, nil, 123]

end
assert_equal("1,line 1,27\n2,,123\n", op.string)

end
end

end

produces:

Loaded suite -
Started
.
Finished in 0.001857 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Prepared exclusively for Margus Pau

STRINGSCANNER 716

S
tr

in
gS

ca
nn

er

Library StringScanner Basic String Tokenizer

StringScanner objects progress through a string, matching (and optionally returning)
tokens that match a given pattern. Unlike the built-in scan methods, StringScanner
objects maintain a current position pointer in the string being examined, so each call
resumes from the position in the string where the previous call left off. Pattern matches
are anchored to this previous point.

• Implement a simple language.

require 'strscan'

Handle the language:
set <var> = <value>
get <var>

values = {}

loop do
line = gets or break

scanner = StringScanner.new(line.chomp)

scanner.scan(/(get|set)\s+/) or fail "Missing command"
cmd = scanner[1]

var_name = scanner.scan(/\w+/) or fail "Missing variable"

case cmd
when "get"
puts "#{var_name} => #{values[var_name].inspect}"

when "set"
scanner.skip(/\s+=\s+/) or fail "Missing '='"
value = scanner.rest
values[var_name] = value

else
fail cmd

end
end

produces:

% ruby code/strscan.rb
set a = dave
set b = hello
get b
b => "hello"
get a
a => "dave"

Prepared exclusively for Margus Pau

SYNC 717

S
yn

c

Library Sync Thread Synchronization with Shared Regions

The sync library synchronizes the access to shared data across multiple, concurrent
threads. Unlike Monitor, the sync library supports both exclusive access to data and
shared (read-only) access.

See also: Monitor (page 674), Mutex (page 675), Thread (page 612)

• Without synchronization, the following code has a race condition: the inc method
can be interrupted between fetching the count and storing the incremented value
back, resulting in updates being lost.

require 'thwait'

class Counter
attr_reader :total_count
def initialize
@total_count = 0

end
def inc
@total_count += 1

end
end

count = Counter.new
waiter = ThreadsWait.new([])

create 10 threads that each inc() 10,000 times
10.times do
waiter.join_nowait(Thread.new { 10000.times { count.inc } })

end

waiter.all_waits
count.total_count → 62449

• Add exclusive synchronization to ensure the count is correct.

require 'thwait'
require 'sync'

class Counter
attr_reader :total_count
def initialize
@total_count = 0
@sync = Sync.new

end
def inc
@sync.synchronize(:EX) do

@total_count += 1
end

end
end

Prepared exclusively for Margus Pau

SYNC 718

S
yn

c

count = Counter.new
waiter = ThreadsWait.new([])

create 10 threads that each inc() 10,000 times
10.times do
waiter.join_nowait(Thread.new { 10000.times { count.inc } })

end

waiter.all_waits → nil
count.total_count → 100000

• Add shared region to ensure that readers get consistent picture.

require 'thwait'
require 'sync'

class Counter
attr_reader :total_count
def initialize
@total_count = 0
@count_down = 0
@sync = Sync.new

end
def inc
@sync.synchronize(:EX) do

@total_count += 1
@count_down -= 1

end
end
def test_consistent
@sync.synchronize(:SH) do

fail "Bad counts" unless @total_count + @count_down == 0
end

end
end

count = Counter.new
waiter = ThreadsWait.new([])

create 10 threads that each inc() 10,000 times
10.times do
waiter.join_nowait(Thread.new { 10000.times do
count.inc
count.test_consistent

end })
end

waiter.all_waits → nil
count.total_count → 100000

Prepared exclusively for Margus Pau

SYSLOG 719

S
ys

lo
g

Library Syslog Interface to Unix System Logging

The Syslog class is a simple wrapper around the Unix syslog(3) library. It allowsOnly if: Unix
system with syslog

messages to be written at various severity levels to the logging daemon, where they are
disseminated according to the configuration in syslog.conf. The following examples
assume the log file is /var/log/system.log.

• Add to our local system log. We’ll log all the levels configured for the user facility
for our system (which is every level except debug messages).

require 'syslog'
log = Syslog.open("test") # "test" is the app name
log.debug("Warm and fuzzy greetings from your program")
log.info("Program starting")
log.notice("I said 'Hello!'")
log.warning("If you don't respond soon, I'm quitting")
log.err("You haven't responded after %d milliseconds", 7)
log.alert("I'm telling your mother...")
log.emerg("I'm feeling totally crushed")
log.crit("Aarrgh....")

system("tail -7 /var/log/system.log")

produces:
Aug 26 22:39:38 wireless_2 test[28505]: Program starting
Aug 26 22:39:38 wireless_2 test[28505]: I said 'Hello!'
Aug 26 22:39:38 wireless_2 test[28505]: If you don't respond soon, I'm quitting
Aug 26 22:39:38 wireless_2 test[28505]: You haven't responded after 7 milliseconds
Aug 26 22:39:38 wireless_2 test[28505]: I'm telling your mother...
Aug 26 22:39:38 wireless_2 test[28505]: I'm feeling totally crushed
Aug 26 22:39:38 wireless_2 test[28505]: Aarrgh....

• Only log errors and above.

require 'syslog'
log = Syslog.open("test")
log.mask = Syslog::LOG_UPTO(Syslog::LOG_ERR)
log.debug("Warm and fuzzy greetings from your program")
log.info("Program starting")
log.notice("I said 'Hello!'")
log.warning("If you don't respond soon, I'm quitting")
log.err("You haven't responded after %d milliseconds", 7)
log.alert("I'm telling your mother...")
log.emerg("I'm feeling totally crushed")
log.crit("Aarrgh....")

system("tail -7 /var/log/system.log")

produces:
Aug 26 22:39:38 wireless_2 test[28510]: You haven't responded after 7 milliseconds
Aug 26 22:39:38 wireless_2 test[28510]: I'm telling your mother...
Aug 26 22:39:38 wireless_2 test[28510]: I'm feeling totally crushed
Aug 26 22:39:38 wireless_2 test[28510]: Aarrgh....

Prepared exclusively for Margus Pau

TEMPFILE 720

T
em

pfi
le

Library Tempfile Temporary File Support

Class Tempfile creates managed temporary files. Although they behave the same as
any other IO objects, temporary files are automatically deleted when the Ruby pro-
gram terminates. Once a Tempfile object has been created, the underlying file may be
opened and closed a number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to a File object.
From the programmer’s perspective, apart from the unusual new, open, and close
semantics, a Tempfile object behaves as if it were an IO object.

If you don’t specify a directory to hold temporary files when you create them, the
tmpdir library will be used to find a system-dependent location.

See also: tmpdir (page 727)

require 'tempfile'

tf = Tempfile.new("afile")
tf.path → "/tmp/afile28519.0"
tf.puts("Cosi Fan Tutte") → nil
tf.close → nil
tf.open → #<File:/tmp/afile28519.0>
tf.gets → "Cosi Fan Tutte\n"
tf.close(true) → #<File:/tmp/afile28519.0 (closed)>

Prepared exclusively for Margus Pau

TEST::UNIT 721

T
es

t::
U

ni
t

Library Test::Unit Unit Testing Framework

Test::Unit is a unit testing framework based on the original SUnit Smalltalk frame-
work. It provides a structure in which unit tests may be organized, selected, and run.
Tests can be run from the command line or using one of several GUI-based interfaces.

Chapter 12 on page 143 contains a tutorial on Test::Unit.

We could have a simple playlist class, designed to store and retrieve songs.

require 'code/testunit/song.rb'
require 'forwardable'

class Playlist
extend Forwardable
def_delegator(:@list, :<<, :add_song)
def_delegator(:@list, :size)

def initialize
@list = []

end

def find(title)
@list.find {|song| song.title == title}

end
end

We can write unit tests to exercise this class. The Test::Unit framework is smart
enough to run the tests in a test class if no main program is supplied.

require 'test/unit'
require 'code/testunit/playlist.rb'

class TestPlaylist < Test::Unit::TestCase

def test_adding
pl = Playlist.new
assert_equal(0, pl.size)
assert_nil(pl.find("My Way"))
pl.add_song(Song.new("My Way", "Sinatra"))
assert_equal(1, pl.size)
s = pl.find("My Way")
assert_not_nil(s)
assert_equal("Sinatra", s.artist)
assert_nil(pl.find("Chicago"))
.. and so on

end
end

produces:

Loaded suite -
Started
.
Finished in 0.002046 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

Prepared exclusively for Margus Pau

THREAD 722

T
hr

ea
d

Library thread Utility Functionality for Threading

The thread library adds some utility functions and classes for supporting threads.
Much of this has been superseded by the Monitor class, but it contains two classes,
Queue and SizedQueue, that are still useful. Both classes implement a thread-safe
queue that can be used to pass objects between producers and consumers in multi-
ple threads. The Queue object implements a unbounded queue. A SizedQueue is told
its capacity; any producer who tries to add an object when the queue is at that capacity
will block until a consumer has removed an object.

• The following example was provided by Robert Kellner. It has three consumers
taking objects from an unsized queue. Those objects are provided by two produc-
ers, which each add three items.

require 'thread'
queue = Queue.new

consumers = (1..3).map do |i|
Thread.new("consumer #{i}") do |name|
begin

obj = queue.deq
print "#{name}: consumed #{obj.inspect}\n"
sleep(rand(0.05))

end until obj == :END_OF_WORK
end

end

producers = (1..2).map do |i|
Thread.new("producer #{i}") do |name|
3.times do |j|

sleep(0.1)
queue.enq("Item #{j} from #{name}")

end
end

end

producers.each {|th| th.join}
consumers.size.times { queue.enq(:END_OF_WORK) }
consumers.each {|th| th.join}

produces:

consumer 1: consumed "Item 0 from producer 1"
consumer 2: consumed "Item 0 from producer 2"
consumer 3: consumed "Item 1 from producer 1"
consumer 3: consumed "Item 1 from producer 2"
consumer 3: consumed "Item 2 from producer 2"
consumer 2: consumed "Item 2 from producer 1"
consumer 3: consumed :END_OF_WORK
consumer 2: consumed :END_OF_WORK
consumer 1: consumed :END_OF_WORK

Prepared exclusively for Margus Pau

THREADSWAIT 723

T
hr

ea
ds

W
ai

t

Library ThreadsWait Wait for Multiple Threads to Terminate

Class ThreadsWait handles the termination of a group of thread objects. It provides
methods to allow you to check for termination of any managed thread and to wait for
all managed threads to terminate.

The following example kicks off a number of threads that each wait for a slightly
shorter length of time before terminating and returning their thread number. Using
ThreadsWait, we can capture these threads as they terminate, either individually or
as a group.

require 'thwait'

group = ThreadsWait.new

construct 10 threads that wait for 1 second, .9 second, etc.
add each to the group

9.times do |i|
thread = Thread.new(i) {|index| sleep 1.0 - index/10.0; index }
group.join_nowait(thread)

end

any threads finished?
group.finished? → false

wait for one to finish
group.next_wait.value → 8

wait for 5 more to finish
5.times { group.next_wait } → 5

wait for next one to finish
group.next_wait.value → 2

and then wait for all the rest
group.all_waits → nil

Prepared exclusively for Margus Pau

TIME 724

T
im

e

Library Time Extended Functionality for Class Time

The time library adds functionality to the built-in class Time, supporting date and/or
time formats used by RFC 2882 (e-mail), RFC 2616 (HTTP), and ISO 8601 (the subset
used by XML schema).

require ’time’

Time.rfc2822("Thu, 1 Apr 2004 16:32:45 CST")

→ Thu Apr 01 16:32:45 CST 2004

Time.rfc2822("Thu, 1 Apr 2004 16:32:45 -0600")

→ Thu Apr 01 16:32:45 CST 2004

Time.now.rfc2822 → Thu, 26 Aug 2004 22:39:42 -0500

Time.httpdate("Thu, 01 Apr 2004 16:32:45 GMT")

→ Thu Apr 01 16:32:45 UTC 2004

Time.httpdate("Thursday, 01-Apr-04 16:32:45 GMT")
→ Thu Apr 01 16:32:45 UTC 2004

Time.httpdate("Thu Apr 1 16:32:45 2004")

→ Thu Apr 01 16:32:45 UTC 2004

Time.now.httpdate → Fri, 27 Aug 2004 03:39:42 GMT

Time.xmlschema("2004-04-01T16:32:45")

→ Thu Apr 01 16:32:45 CST 2004

Time.xmlschema("2004-04-01T16:32:45.12-06:00")

→ Thu Apr 01 22:32:45 UTC 2004

Time.now.xmlschema → 2004-08-26T22:39:42-05:00

Prepared exclusively for Margus Pau

TIMEOUT 725

T
im

eo
ut

Library Timeout Run a Block with Timeout

The Timeout.timeout method takes a parameter representing a timeout period in sec-
onds, an optional exception parameter, and a block. The block is executed, and a timer
is run concurrently. If the block terminates before the timeout, timeout returns the
value of the block. Otherwise, the exception (default Timeout::Error) is raised.

require 'timeout'

for snooze in 1..2
puts "About to sleep for #{snooze}"
begin
Timeout::timeout(1.5) do |timeout_length|

puts "Timeout period is #{timeout_length}"
sleep(snooze)
puts "That was refreshing"

end
rescue Timeout::Error
puts "Woken up early!!"

end
end

produces:

About to sleep for 1
Timeout period is 1.5
That was refreshing
About to sleep for 2
Timeout period is 1.5
Woken up early!!

Prepared exclusively for Margus Pau

TK 726

T
k

Library Tk Wrapper for Tcl/Tk

Of all the Ruby options for creating GUIs, the Tk library is probably the most widelyOnly if: Tk library
installed

supported, running on Windows, Linux, Mac OS X, and other Unix-like platforms.5

Although it doesn’t produce the prettiest interfaces, Tk is functional and relatively sim-
ple to program. The Tk extension is documented more fully in Chapter 19 on page 241.

require 'tk'
include Math

TkRoot.new do |root|
title "Curves"
geometry "400x400"

TkCanvas.new(root) do |canvas|
width 400
height 400
pack('side'=>'top', 'fill'=>'both', 'expand'=>'yes')

points = []

10.upto(30) do |scale|
(0.0).step(2*PI,0.1) do |i|
new_x = 5*scale*sin(i) + 200 + scale*sin(i*2)
new_y = 5*scale*cos(i) + 200 + scale*cos(i*6)
points << [new_x, new_y]

f = scale/5.0
r = (Math.sin(f)+1)*127.0
g = (Math.cos(2*f)+1)*127.0
b = (Math.sin(3*f)+1)*127.0

col = sprintf("#%02x%02x%02x", r.to_i, g.to_i, b.to_i)

if points.size == 3
TkcLine.new(canvas,

points[0][0], points[0][1],
points[1][0], points[1][1],
points[2][0], points[2][1],
'smooth'=>'on',
'width'=> 7,
'fill' => col,
'capstyle' => 'round')

points.shift
end

end
end

end
end

Tk.mainloop

5. Although all these environments require that the Tcl/Tk libraries are installed before the Ruby Tk
extension can be used.

Prepared exclusively for Margus Pau

TMPDIR 727

T
m

pd
ir

Library tmpdir System-Independent Temporary Directory Location

The tmpdir library adds the tmpdir method to class Dir. This method returns the
path to a temporary directory that should be writable by the current process. (This
will not be true if none of the well-known temporary directories is writable, and if
the current working directory is also not writable.) Candidate directories include those
referenced by the environment variables TMPDIR, TMP, TEMP, and USERPROFILE, the
directory /tmp, and (on Windows boxes) the temp subdirectory of the Windows or
System directory.

require 'tmpdir'

Dir.tmpdir → "/tmp"

ENV['TMPDIR'] = "/wibble" # doesn't exist
ENV['TMP'] = "/sbin" # not writable
ENV['TEMP'] = "/Users/dave/tmp" # just right

Dir.tmpdir → "/Users/dave/tmp"

Prepared exclusively for Margus Pau

TRACER 728

T
ra

ce
r

Library Tracer Trace Program Execution

The tracer library uses Kernel.set_trace_func to trace all or part of a Ruby pro-
gram’s execution. The traced lines show the thread number, file, line number, class,
event, and source line. The events shown are “-” for a change of line, “>” for a call, “<”
for a return, “C” for a class definition, and “E” for the end of a definition.

• You can trace an entire program by including the tracer library from the com-
mand line.

class Account
def initialize(balance)

@balance = balance
end
def debit(amt)

if @balance < amt
fail "Insufficient funds"

else
@balance -= amt

end
end

end
acct = Account.new(100)
acct.debit(40)

% ruby -r tracer account.rb
#0:account.rb:1::-: class Account
#0:account.rb:1:Class:>: class Account
#0:account.rb:1:Class:<: class Account
#0:account.rb:1::C: class Account
#0:account.rb:2::-: def initialize(balance)
#0:account.rb:2:Module:>: def initialize(balance)
#0:account.rb:2:Module:<: def initialize(balance)
#0:account.rb:5::-: def debit(amt)
#0:account.rb:5:Module:>: def debit(amt)
#0:account.rb:5:Module:<: def debit(amt)
#0:account.rb:1::E: class Account
#0:account.rb:13::-: acct = Account.new(100)
#0:account.rb:13:Class:>: acct = Account.new(100)
#0:account.rb:2:Account:>: def initialize(balance)
#0:account.rb:3:Account:-: @balance = balance
#0:account.rb:13:Account:<: acct = Account.new(100)
#0:account.rb:13:Class:<: acct = Account.new(100)
#0:account.rb:14::-: acct.debit(40)
#0:account.rb:5:Account:>: def debit(amt)
#0:account.rb:6:Account:-: if @balance < amt
#0:account.rb:6:Account:-: if @balance < amt
#0:account.rb:6:Fixnum:>: if @balance < amt
#0:account.rb:6:Fixnum:<: if @balance < amt
#0:account.rb:9:Account:-: @balance -= amt
#0:account.rb:9:Fixnum:>: @balance -= amt
#0:account.rb:9:Fixnum:<: @balance -= amt
#0:account.rb:9:Account:<: @balance -= amt

• You can also use tracer objects to trace just a portion of your code and use filters
to select what to trace.

require 'tracer'

class Account
def initialize(balance)

@balance = balance
end
def debit(amt)

if @balance < amt
fail "Insufficient funds"

else
@balance -= amt

end
end

end

#0:account.rb:20::-: acct.debit(40)
#0:account.rb:8:Account:-: if @balance < amt
#0:account.rb:8:Account:-: if @balance < amt
#0:account.rb:11:Account:-: @balance -= amt

tracer = Tracer.new
tracer.add_filter lambda {|event, *rest| event == "line" }
acct = Account.new(100)
tracer.on do
acct.debit(40)

end

Prepared exclusively for Margus Pau

TSORT 729

T
S

or
t

Library TSort Topological Sort

Given a set of dependencies between nodes (where each node depends on zero or more
other nodes, and there are no cycles in the graph of dependencies), a topological sort
will return a list of the nodes ordered such that no node follows a node that depends on
it. One use for this is scheduling tasks, where the order means that you will complete
the dependencies before you start any task that depends on them. The make program
uses a topological sort to order its execution.

In this library’s implementation, you mix in the TSort module and define two methods:
tsort_each_node, which yields each node in turn, and tsort_each_child, which,
given a node, yields each of that nodes dependencies.

• Given the set of dependencies among the steps for making a piña colada, what is
the optimum order for undertaking the steps?

require 'tsort'

class Tasks
include TSort
def initialize

@dependencies = {}
end

def add_dependency(task, *relies_on)
@dependencies[task] = relies_on

end

def tsort_each_node(&block)
@dependencies.each_key(&block)

end

def tsort_each_child(node, &block)
deps = @dependencies[node]
deps.each(&block) if deps

end
end

tasks = Tasks.new
tasks.add_dependency(:add_rum, :open_blender)
tasks.add_dependency(:add_pc_mix, :open_blender)
tasks.add_dependency(:add_ice, :open_blender)
tasks.add_dependency(:close_blender, :add_rum, :add_pc_mix, :add_ice)
tasks.add_dependency(:blend_mix, :close_blender)
tasks.add_dependency(:pour_drink, :blend_mix)
tasks.add_dependency(:pour_drink, :open_blender)
puts tasks.tsort

produces:
open_blender
add_pc_mix
add_ice
add_rum
close_blender
blend_mix
pour_drink

Prepared exclusively for Margus Pau

UN 730

U
n

Library un Command-Line Interface to FileUtils

Why un? Because when you invoke it from the command line with the -r option to
Ruby, it spells -run. This pun gives a hint as to the intent of the library: it lets you run
commands (in this case, a subset of the methods in FileUtils) from the command
line. In theory this gives you an operating system–independent set of file manipulation
commands, possibly useful when writing portable Makefiles.

See also: FileUtils (page 657)

• The available commands are

% ruby -run -e cp -- <options> source dest
% ruby -run -e ln -- <options> target linkname
% ruby -run -e mv -- <options> source dest
% ruby -run -e rm -- <options> file
% ruby -run -e mkdir -- <options> dirs
% ruby -run -e rmdir -- <options> dirs
% ruby -run -e install -- <options> source dest
% ruby -run -e chmod -- <options> octal_mode file
% ruby -run -e touch -- <options> file

Note the use of -- to tell the Ruby interpreter that options to the program follow.

You can get a list of all available commands with

% ruby -run -e help

For help on a particular command, append the command’s name.

% ruby -run -e help mkdir

Prepared exclusively for Margus Pau

URI 731

U
R

I

Library URI RFC 2396 Uniform Resource Identifier (URI) Support

URI encapsulates the concept of a Uniform Resource Identifier (URI), a way of specify-
ing some kind of (potentially networked) resource. URIs are a superset of URLs: URLs
(such as the addresses of Web pages) allow specification of addresses by location, and
URIs also allow specification by name.

URIs consist of a scheme (such as http, mailto, ftp, and so on), followed by struc-
tured data identifying the resource within the scheme.

URI has factory methods that take a URI string and return a subclass of URI spe-
cific to the scheme. The library explicitly supports the ftp, http, https, ldap, and
mailto schemes; others will be treated as generic URIs. The module also has con-
venience methods to escape and unescape URIs. The class Net::HTTP accepts URI
objects where a URL parameter is expected.

See also: open-uri (page 686), Net::HTTP (page 678)

require 'uri'

uri = URI.parse("http://pragprog.com:1234/mypage.cgi?q=ruby")
uri.class → URI::HTTP
uri.scheme → "http"
uri.host → "pragprog.com"
uri.port → 1234
uri.path → "/mypage.cgi"
uri.query → "q=ruby"

uri = URI.parse("mailto:ruby@pragprog.com?Subject=help&body=info")
uri.class → URI::MailTo
uri.scheme → "mailto"
uri.to → "ruby@pragprog.com"
uri.headers → [["Subject", "help"], ["body", "info"]]

uri = URI.parse("ftp://dave@anon.com:/pub/ruby;type=i")
uri.class → URI::FTP
uri.scheme → "ftp"
uri.host → "anon.com"
uri.port → 21
uri.path → "/pub/ruby"
uri.typecode → "i"

Prepared exclusively for Margus Pau

WEAKREF 732

W
ea

kR
ef

Library WeakRef Support for Weak References

In Ruby, objects are not eligible for garbage collection if references still exist to them.
Normally, this is a Good Thing—it would be disconcerting to have an object simply
evaporate while you were using it. However, sometimes you may need more flexibility.
For example, you might want to implement an in-memory cache of commonly used
file contents. As you read more files, the cache grows. At some point, you may run low
on memory. The garbage collector will be invoked, but the objects in the cache are all
referenced by the cache data structures and so will not be deleted.

A weak reference behaves exactly as any normal object reference with one important
exception—the referenced object may be garbage collected, even while references to
it exist. In the cache example, if the cached files were accessed using weak references,
once memory runs low they will be garbage collected, freeing memory for the rest of
the application.

• Weak references introduce a slight complexity. As the object referenced can be
deleted by garbage collection at any time, code that accesses these objects must
take care to ensure that the references are valid. Two techniques can be used. First,
the code can reference the objects normally. Any attempt to reference an object
that has been garbage collected will raise a WeakRef::RefError exception.

require 'weakref'

ref = "fol de rol"
puts "Initial object is #{ref}"
ref = WeakRef.new(ref)
puts "Weak reference is #{ref}"
ObjectSpace.garbage_collect
puts "But then it is #{ref}"

produces:

Initial object is fol de rol
Weak reference is fol de rol
prog.rb:8: Illegal Reference - probably recycled (WeakRef::RefError)

• Alternatively, use the WeakRef#weakref_alive? method to check that a refer-
ence is valid before using it. Garbage collection must be disabled during the test
and subsequent reference to the object. In a single-threaded program, you could
use something like

ref = WeakRef.new(some_object)

.. some time later

gc_was_disabled = GC.disable
if ref.weakref_alive?
do stuff with 'ref'

end
GC.enable unless gc_was_disabled

Prepared exclusively for Margus Pau

WEBRICK 733

W
E

B
ric

k

Library WEBrick Web Server Toolkit

WEBrick is a pure-Ruby framework for implementing HTTP-based servers. The stan-
dard library includes WEBrick services that implement a standard Web server (serving
files and directory listings), and servlets supporting CGI, erb, file download, and the
mounting of Ruby lambdas.

More examples of WEBrick start on page 234.

• The following code mounts two Ruby procs on a Web server. Requests to the URI
http://localhost:2000/hello run one proc, and requests to http://localhost:2000/bye
run the other.

#!/usr/bin/ruby

require 'webrick'
include WEBrick

hello_proc = lambda do |req, resp|
resp['Content-Type'] = "text/html"
resp.body = %{

<html><body>
Hello. You're calling from a #{req['User-Agent']}
<p>
I see parameters: #{req.query.keys.join(', ')}

</body></html>
}

end

bye_proc = lambda do |req, resp|
resp['Content-Type'] = "text/html"
resp.body = %{

<html><body>
<h3>Goodbye!</h3>

</body></html>
}

end

hello = HTTPServlet::ProcHandler.new(hello_proc)
bye = HTTPServlet::ProcHandler.new(bye_proc)

s = HTTPServer.new(:Port => 2000)
s.mount("/hello", hello)
s.mount("/bye", bye)

trap("INT"){ s.shutdown }
s.start

Prepared exclusively for Margus Pau

http://localhost:2000/hello
http://localhost:2000/bye

WIN32API 734

W
in

32
A

P
I

Library Win32API Access Entry Points in Windows DDLs

The Win32API module allows access to any arbitrary Windows 32 function. Many ofOnly if: Windows

these functions take or return a Pointer data type—a region of memory corresponding
to a C string or structure type.

In Ruby, these pointers are represented using class String, which contains a sequence
of 8-bit bytes. It is up to you to pack and unpack the bits in the String. See the refer-
ence section for unpack on page 602 and pack on page 415 for details.

Parameters 3 and 4 of the new call specify the parameter and return types of the method
to be called. The type specifiers are n and l for numbers, i for integers, p for pointers to
data stored in a string, and v for the void type (used for export parameters only). These
strings are case-insensitive. Method parameters are specified as an array of strings, and
the return type is a single string.

The functionality of Win32API is also provided using the dl/win32 library. As the DL
library is newer, this may be a sign that the original Win32API may be phased out over
time.

See also: DL (page 648)

• This example is from the Ruby distribution, in ext/Win32API.

require 'Win32API'

get_cursor_pos = Win32API.new("user32", "GetCursorPos", ['P'], 'V')

lpPoint = " " * 8 # store two LONGs
get_cursor_pos.Call(lpPoint)
x, y = lpPoint.unpack("LL") # get the actual values

print "x: ", x, "\n"
print "y: ", y, "\n"

ods = Win32API.new("kernel32", "OutputDebugString", ['P'], 'V')
ods.Call("Hello, World\n")

GetDesktopWindow = Win32API.new("user32", "GetDesktopWindow", [], 'L')
GetActiveWindow = Win32API.new("user32", "GetActiveWindow", [], 'L')
SendMessage = Win32API.new("user32", "SendMessage", ['L'] * 4, 'L')
SendMessage.Call(GetDesktopWindow.Call, 274, 0xf140, 0)

Prepared exclusively for Margus Pau

WIN32OLE 735

W
IN

32
O

LE

Library WIN32OLE Windows Automation

Interface to Windows automation, allowing Ruby code to interact with Windows appli-Only if: Windows

cations. The Ruby interface to Windows is discussed in more detail in Chapter 20 on
page 253.

See also: Win32API (page 734)

• Open Internet Explorer, and ask it to display our home page.

ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
ie.navigate("http://www.pragmaticprogrammer.com")

• Create a new chart in Microsoft Excel, and then rotate it.

require 'win32ole'

-4100 is the value for the Excel constant xl3DColumn.
ChartTypeVal = -4100;

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel['Visible'] = TRUE

excel.Workbooks.Add()
excel.Range("a1")['Value'] = 3
excel.Range("a2")['Value'] = 2
excel.Range("a3")['Value'] = 1

excel.Range("a1:a3").Select()

excelchart = excel.Charts.Add()
excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|
excelchart.rotation = rot
sleep(0.1)

end

excel.ActiveWorkbook.Close(0)
excel.Quit()

Prepared exclusively for Margus Pau

XMLRPC 736

X
M

LR
P

C

Library XMLRPC Remote Procedure Calls using XML-RPC

XMLRPC allows clients to invoke methods on networked servers using the XML-RPC
protocol. Communications take place over HTTP. The server may run in the context of
a Web server, in which case ports 80 or 443 (for SSL) will typically be used. The server
may also be run stand-alone. The Ruby XML-RPC server implementation supports
operation as a CGI script, as a mod_ruby script, as a WEBrick handler, and as a stand-
alone server. Basic authentification is supported, and clients can communicate with
servers via proxies. Servers may throw FaultException errors—these generate the
corresponding exception on the client (or optionally may be flagged as a status return
to the call).

See also: SOAP (page 236), dRuby (page 649), WEBrick (page 733)

• The following simple server accepts a temperature in Celsius and converts it to
Fahrenheit. It runs within the context of the WEBrick Web server.

require 'webrick'
require 'xmlrpc/server'

xml_servlet = XMLRPC::WEBrickServlet.new
xml_servlet.add_handler("convert_celcius") do |celcius|
celcius*1.8 + 32

end

xml_servlet.add_multicall # Add support for multicall

server = WEBrick::HTTPServer.new(:Port => 2000)
server.mount("/RPC2", xml_servlet)
trap("INT"){ server.shutdown }
server.start

• This client makes calls to the temperature conversion server. Note that in the out-
put we show both the server’s logging and the client program’s output.

require 'xmlrpc/client'

server = XMLRPC::Client.new("localhost", "/RPC2", 2000)
puts server.call("convert_celcius", 0)
puts server.call("convert_celcius", 100)

puts server.multicall(['convert_celcius', -10],
['convert_celcius', 200])

produces:

[2004-04-16 06:57:02] INFO WEBrick 1.3.1
[2004-04-16 06:57:02] INFO WEBrick::HTTPServer#start: pid=11956 port=2000
localhost - - [16/Apr/2004:06:57:13 PDT] "POST /RPC2 HTTP/1.1" 200 124 - -> /RPC2
32.0
localhost - - [16/Apr/2004:06:57:13 PDT] "POST /RPC2 HTTP/1.1" 200 125 - -> /RPC2
212.0
localhost - - [16/Apr/2004:06:57:14 PDT] "POST /RPC2 HTTP/1.1" 200 290 - -> /RPC2
14.0
392.0

Prepared exclusively for Margus Pau

YAML 737

Y
A

M
L

Library YAML Object Serialization/Deserialization

The YAML library (also described in the tutorial starting on page 397) serializes and
deserializes Ruby object trees to and from an external, readable, plain-text format.
YAML can be used as a portable object marshaling scheme, allowing objects to be
passed in plain text between separate Ruby processes. In some cases, objects may also
be exchanged between Ruby programs and programs in other languages that also have
YAML support.

• YAML can be used to store an object tree in a flat file.

require 'yaml'
tree = { :name => 'ruby',

:uses => ['scripting', 'web', 'testing', 'etc']
}

File.open("tree.yaml", "w") {|f| YAML.dump(tree, f)}

• Once stored, it can be read by another program.

require 'yaml'
tree = YAML.load(File.open("tree.yaml"))
tree[:uses][1] → "web"

• The YAML format is also a convenient way to store configuration information for
programs. Because it is readable, it can be maintained by hand using a normal
editor, and then read as objects by programs. For example, a configuration file
may contain

username: dave
prefs:
background: dark
foreground: cyan
timeout: 30

We can use this in a program:

require 'yaml'

config = YAML.load(File.open("code/config.yaml"))
config["username"] → "dave"
config["prefs"]["timeout"] * 10 → 300

Prepared exclusively for Margus Pau

ZLIB 738

Z
lib

Library Zlib Read and Write Compressed Files

The Zlib module is home to a number of classes that can read and write zip- andOnly if: zlib library
available

gzip-format compressed files. They also calculate zip checksums.

• Compress /etc/passwd as a gzip file, and then read the result back.

require 'zlib'

These methods can take a filename
Zlib::GzipWriter.open("passwd.gz") do |gz|
gz.write(File.read("/etc/passwd"))

end

system("ls -l /etc/passwd passwd.gz")

or a stream
File.open("passwd.gz") do |f|
gzip = Zlib::GzipReader.new(f)
data = gzip.read.split(/\n/)
puts data[15,3]

end

produces:

-rw-r--r-- 1 root wheel 1374 12 Sep 2003 /etc/passwd
-rw-r--r-- 1 dave dave 635 26 Aug 22:39 passwd.gz

daemon:*:1:1:System Services:/var/root:/usr/bin/false
smmsp:*:25:25:Sendmail User:/private/etc/mail:/usr/bin/false
lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false

• Compress data sent between two processes.

require 'zlib'

rd, wr = IO.pipe

if fork
rd.close
zipper = Zlib::Deflate.new
zipper << "This is a string "
data = zipper.deflate("to compress", Zlib::FINISH)
wr.write(data)
wr.close
Process.wait

else
wr.close
unzipper = Zlib::Inflate.new
unzipper << rd.read
puts "We got: #{unzipper.inflate(nil)}"

end

produces:

We got: This is a string to compress

Prepared exclusively for Margus Pau

Part V

Appendixes

Prepared exclusively for Margus Pau 739

Appendix A

Socket Library

Because the socket and network libraries are such important parts of integrating Ruby
applications with the ’net, we’ve decided to document them in more detail than the
other standard libraries.

The hierarchy of socket classes is shown in the diagram below.

IO
BasicSocket

IPSocket
TCPSocket

SOCKSSocket
TCPServer

UDPSocket
Socket
UNIXSocket

UNIXServer

Prepared exclusively for Margus Pau 740

BASICSOCKET 741

Class BasicSocket < IO

BasicSocket is an abstract base class for all other socket classes.

This class and its subclasses often manipulate addresses using something called a
struct sockaddr, which is effectively an opaque binary string.1

Class methods
do_not_reverse_lookup BasicSocket.do_not_reverse_lookup→ true or false

Returns the value of the global reverse lookup flag.

do_not_reverse_lookup= BasicSocket.do_not_reverse_lookup = true or false

Sets the global reverse lookup flag. If set to true, queries on remote addresses will
return the numeric address but not the host name.

for_fd BasicSocket.for_fd(fd) → sock

Wraps an already open file descriptor into a socket object.

lookup_order= BasicSocket.lookup_order = int

Sets the global address lookup order.

Instance methods
close_read sock.close_read → nil

Closes the readable connection on this socket.

close_write sock.close_write → nil

Closes the writable connection on this socket.

getpeername sock.getpeername → string

Returns the struct sockaddr structure associated with the other end of this socket
connection.

getsockname sock.getsockname → string

Returns the struct sockaddr structure associated with sock.

getsockopt sock.getsockopt(level, optname) → string

Returns the value of the specified option.

1. In reality, it maps onto the underlying C-language struct sockaddr set of structures, documented in
the man pages and in the books by Stevens.

Prepared exclusively for Margus Pau

BASICSOCKET 742

recv sock.recv(len, 〈 , flags 〉) → string

Receives up to len bytes from sock.

send sock.send(string, flags, 〈 , to 〉) → int

Sends string over sock. If specified, to is a struct sockaddr specifying the recipient
address. flags are the sum of one or more of the MSG_ options (listed on the following
page). Returns the number of characters sent.

setsockopt sock.setsockopt(level, optname, optval) → 0

Sets a socket option. level is one of the socket-level options (listed on the next page).
optname and optval are protocol specific—see your system documentation for details.

shutdown sock.shutdown(how=2) → 0

Shuts down the receive (how == 0), sender (how == 1), or both (how == 2), parts of this
socket.

Prepared exclusively for Margus Pau

SOCKET 743

Class Socket < BasicSocket

Class Socket provides access to the underlying operating system socket implementa-
tion. It can be used to provide more operating system–specific functionality than the
protocol-specific socket classes but at the expense of greater complexity. In particu-
lar, the class handles addresses using struct sockaddr structures packed into Ruby
strings, which can be a joy to manipulate.

Class constants

Class Socket defines constants for use throughout the socket library. Individual con-
stants are available only on architectures that support the related facility.

Types:
SOCK_DGRAM, SOCK_PACKET, SOCK_RAW, SOCK_RDM, SOCK_SEQPACKET, SOCK_STREAM

Protocol families:
PF_APPLETALK, PF_AX25, PF_INET6, PF_INET, PF_IPX, PF_UNIX, PF_UNSPEC

Address families:
AF_APPLETALK, AF_AX25, AF_INET6, AF_INET, AF_IPX, AF_UNIX, AF_UNSPEC

Lookup-order options:
LOOKUP_INET6, LOOKUP_INET, LOOKUP_UNSPEC

Send/receive options:
MSG_DONTROUTE, MSG_OOB, MSG_PEEK

Socket-level options:
SOL_ATALK, SOL_AX25, SOL_IPX, SOL_IP, SOL_SOCKET, SOL_TCP, SOL_UDP

Socket options:
SO_BROADCAST, SO_DEBUG, SO_DONTROUTE, SO_ERROR, SO_KEEPALIVE, SO_LINGER,
SO_NO_CHECK, SO_OOBINLINE, SO_PRIORITY, SO_RCVBUF, SO_REUSEADDR, SO_SNDBUF,
SO_TYPE

QOS options:
SOPRI_BACKGROUND, SOPRI_INTERACTIVE, SOPRI_NORMAL

Multicast options:
IP_ADD_MEMBERSHIP, IP_DEFAULT_MULTICAST_LOOP, IP_DEFAULT_MULTICAST_TTL,
IP_MAX_MEMBERSHIPS, IP_MULTICAST_IF, IP_MULTICAST_LOOP, IP_MULTICAST_TTL

TCP options:
TCP_MAXSEG, TCP_NODELAY

Prepared exclusively for Margus Pau

SOCKET 744

getaddrinfo error codes:
EAI_ADDRFAMILY, EAI_AGAIN, EAI_BADFLAGS, EAI_BADHINTS, EAI_FAIL, EAI_FAMILY,
EAI_MAX, EAI_MEMORY, EAI_NODATA, EAI_NONAME, EAI_PROTOCOL, EAI_SERVICE,
EAI_SOCKTYPE, EAI_SYSTEM

ai_flags values:
AI_ALL, AI_CANONNAME, AI_MASK, AI_NUMERICHOST, AI_PASSIVE, AI_V4MAPPED_CFG

Class methods
getaddrinfo Socket.getaddrinfo(hostname, port,

〈 family 〈 , socktype 〈 , protocol 〈 , flags 〉 〉 〉 〉) → array

Returns an array of arrays describing the given host and port (optionally qualified as
shown). Each subarray contains the address family, port number, host name, host IP
address, protocol family, socket type, and protocol.

for line in Socket.getaddrinfo('www.microsoft.com', 'http')
puts line.join(", ")

end

produces:

AF_INET, 80, 207.46.134.221, 207.46.134.221, 2, 2, 17
AF_INET, 80, 207.46.134.221, 207.46.134.221, 2, 1, 6
AF_INET, 80, origin2.microsoft.com, 207.46.144.188, 2, 2, 17
AF_INET, 80, origin2.microsoft.com, 207.46.144.188, 2, 1, 6
AF_INET, 80, microsoft.com, 207.46.230.219, 2, 1, 6
AF_INET, 80, microsoft.net, 207.46.130.14, 2, 1, 6

gethostbyaddr Socket.gethostbyaddr(addr, type=AF_INET) → array

Returns the host name, address family, and sockaddr component for the given address.

a = Socket.gethostbyname("161.58.146.238")
res = Socket.gethostbyaddr(a[3], a[2])
res.join(', ') → "www.pragmaticprogrammer.com, , 2, \241:\222\356"

gethostbyname Socket.gethostbyname(hostname) → array

Returns a four-element array containing the canonical host name, a subarray of host
aliases, the address family, and the address portion of the sockaddr structure.

a = Socket.gethostbyname("63.68.129.130")
a.join(', ') → "63.68.129.130, , 2, ?D\201\202"

gethostname sock.gethostname → string

Returns the name of the current host.

Socket.gethostname → "wireless_2.local.thomases.com"

Prepared exclusively for Margus Pau

SOCKET 745

getnameinfo Socket.getnameinfo(addr 〈 , flags 〉) → array

Looks up the given address, which may be either a string containing a sockaddr or
a three- or four-element array. If addr is an array, it should contain the string address
family, the port (or nil), and the host name or IP address. If a fourth element is present
and not nil, it will be used as the host name. Returns a canonical host name (or address)
and port number as an array.

Socket.getnameinfo(["AF_INET", '23', 'www.ruby-lang.org'])

getservbyname Socket.getservbyname(service, proto=’tcp’) → int

Returns the port corresponding to the given service and protocol.

Socket.getservbyname("telnet") → 23

new Socket.new(domain, type, protocol) → sock

Creates a socket using the given parameters.

open Socket.open(domain, type, protocol) → sock

Synonym for Socket.new.

pack_sockaddr_in Socket.pack_sockaddr_in(port, host) → str_address

1.8 Given a port and a host, return the (system dependent) sockaddr structure as a string
of bytes.

require 'socket'
addr = Socket.pack_sockaddr_in(80, "pragprog.com")
Pragprog.com is 216.87.136.211
addr.unpack("CCnC4") → [16, 2, 80, 216, 87, 136, 211]

pack_sockaddr_un Socket.pack_sockaddr_in(path)→ str_address

1.8 Given a path to a Unix socket, return the (system dependent) sock_addr_un structure
as a string of bytes. Only available on boxes supporting the Unix address family.

require 'socket'
addr = Socket.pack_sockaddr_un("/tmp/sample")
addr[0,20] → "\000\001/tmp/sample\000\000\000\000\000\000\000"

pair Socket.pair(domain, type, protocol) → array

Returns an array containing a pair of connected, anonymous Socket objects with the
given domain, type, and protocol.

socketpair Socket.socketpair(domain, type, protocol) → array

Synonym for Socket.pair.

Prepared exclusively for Margus Pau

SOCKET 746

unpack_sockaddr_in Socket.pack_sockaddr_in(string_address)→ [port, host]

1.8 Given a string containing a binary addrinfo structure, return the port and host.

require 'socket'
addr = Socket.pack_sockaddr_in(80, "pragprog.com")
Socket.unpack_sockaddr_in(addr) → [80, "216.87.136.211"]

unpack_sockaddr_un Socket.pack_sockaddr_in(string_address)→ [port, host]

1.8 Given a string containing a binary sock_addr_un structure, returns the path to the Unix
socket. Only available on boxes supporting the Unix address family.

require 'socket'
addr = Socket.pack_sockaddr_in(80, "pragprog.com")
Socket.unpack_sockaddr_in(addr) → [80, "216.87.136.211"]

Instance methods
accept sock.accept → [socket, address]

Accepts an incoming connection returning an array containing a new Socket object
and a string holding the struct sockaddr information about the caller.

bind sock.bind(sockaddr) → 0

Binds to the given struct sockaddr, contained in a string.

connect sock.connect(sockaddr) → 0

Connects to the given struct sockaddr, contained in a string.

listen sock.listen(int) → 0

Listens for connections, using the specified int as the backlog.

recvfrom sock.recvfrom(len 〈 , flags 〉) → [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options. The first
element of the result is the data received. The second element contains protocol-specific
information on the sender.

sysaccept sock.sysaccept → [socket_fd, address]

1.8 Accepts an incoming connection. Returns an array containing the (integer) file descrip-
tor of the incoming connection and a string holding the struct sockaddr information
about the caller.

Prepared exclusively for Margus Pau

IPSOCKET 747

Class IPSocket < BasicSocket

Class IPSocket is a base class for sockets using IP as their transport. TCPSocket and
UDPSocket are based on this class.

Class methods
getaddress IPSocket.getaddress(hostname) → string

Returns the dotted-quad IP address of hostname.

a = IPSocket.getaddress('www.ruby-lang.org')
a → "210.251.121.210"

Instance methods
addr sock.addr → array

Returns the domain, port, name, and IP address of sock as a four-element array. The
name will be returned as an address if the do_not_reverse_lookup flag is true.

u = UDPSocket.new
u.bind('localhost', 8765)
u.addr → ["AF_INET", 8765, "localhost", "127.0.0.1"]
BasicSocket.do_not_reverse_lookup = true
u.addr → ["AF_INET", 8765, "127.0.0.1", "127.0.0.1"]

peeraddr sock.peeraddr → array

Returns the domain, port, name, and IP address of the peer.

recvfrom sock.recvfrom(len 〈 , flags 〉) → [data, sender]

Receives up to len bytes on the connection. flags is zero or more of the MSG_ options
(listed on page 743). Returns a two-element array. The first element is the received
data, and the second is an array containing information about the peer. On systems1.8
such as my Mac OS X box where the native recvfrom() method does not return peer
information for TCP connections, the second element of the array is nil.

require 'socket'
t = TCPSocket.new('localhost', 'ftp')
data = t.recvfrom(40)
data → ["220 localhost FTP server (lukemftpd 1.1)", nil]
t.close → nil

Prepared exclusively for Margus Pau

TCPSOCKET 748

Class TCPSocket < IPSocket

t = TCPSocket.new('localhost', 'ftp')
t.gets → "220 localhost FTP server (lukemftpd 1.1) ready.\r\n"
t.close → nil

Class methods
gethostbyname TCPSocket.gethostbyname(hostname) → array

Looks up hostname and returns its canonical name, an array containing any aliases, the
address type (AF_INET), and the dotted-quad IP address.

a = TCPSocket.gethostbyname('ns.pragprog.com')
a → ["pragprog.com", [], 2, "216.87.136.211"]

new TCPSocket.new(hostname, port) → sock

Opens a TCP connection to hostname on the port.

open TCPSocket.open(hostname, port) → sock

Synonym for TCPSocket.new.

Prepared exclusively for Margus Pau

SOCKSSOCKET 749

Class SOCKSSocket < TCPSocket

Class SOCKSSocket supports connections based on the SOCKS protocol.

Class methods
new SOCKSSocket.new(hostname, port) → sock

Opens a SOCKS connection to port on hostname.

open SOCKSSocket.open(hostname, port) → sock

Synonym for SOCKSSocket.new.

Instance methods
close sock.close → nil

Closes this SOCKS connection.

Prepared exclusively for Margus Pau

TCPSERVER 750

Class TCPServer < TCPSocket

A TCPServer accepts incoming TCP connections. Here is a Web server that listens on
a given port and returns the time.

require 'socket'
port = (ARGV[0] || 80).to_i
server = TCPServer.new('localhost', port)
while (session = server.accept)
puts "Request: #{session.gets}"
session.print "HTTP/1.1 200/OK\r\nContent-type: text/html\r\n\r\n"
session.print "<html><body><h1>#{Time.now}</h1></body></html>\r\n"
session.close

end

Class methods
new TCPServer.new(〈 hostname, 〉 port) → sock

Creates a new socket on the given interface (identified by hostname and port). If host-
name is omitted, the server will listen on all interfaces on the current host (equivalent
to an address of 0.0.0.0).

open TCPServer.open(〈 hostname, 〉 port) → sock

Synonym for TCPServer.new.

Instance methods
accept sock.accept → tcp_socket

Waits for a connection on sock, and returns a new tcp_socket connected to the caller.
See the example on the current page.

Prepared exclusively for Margus Pau

UDPSOCKET 751

Class UDPSocket < IPSocket

UDP sockets send and receive datagrams. To receive data, a socket must be bound to a
particular port. You have two choices when sending data: you can connect to a remote
UDP socket and thereafter send datagrams to that port, or you can specify a host and
port for use with every packet you send. This example is a UDP server that prints the
message it receives. It is called by both connectionless and connection-based clients.

require 'socket'

$port = 4321

server_thread = Thread.start do # run server in a thread
server = UDPSocket.open
server.bind(nil, $port)
2.times { p server.recvfrom(64) }

end

Ad-hoc client
UDPSocket.open.send("ad hoc", 0, 'localhost', $port)

Connection based client
sock = UDPSocket.open
sock.connect('localhost', $port)
sock.send("connection-based", 0)
server_thread.join

produces:

["ad hoc", ["AF_INET", 52097, "localhost", "127.0.0.1"]]
["connection-based", ["AF_INET", 52098, "localhost", "127.0.0.1"]]

Class methods
new UDPSocket.new(family = AF_INET) → sock

Creates a UDP endpoint, optionally specifying an address family.

open UDPSocket.open(family = AF_INET) → sock

Synonym for UDPSocket.new.

Instance methods
bind sock.bind(hostname, port) → 0

Associates the local end of the UDP connection with a given hostname and port. Must
be used by servers to establish an accessible endpoint.

connect sock.connect(hostname, port) → 0

Creates a connection to the given hostname and port. Subsequent UDPSocket#send
requests that don’t override the recipient will use this connection. Multiple connect
requests may be issued on sock: the most recent will be used by send.

Prepared exclusively for Margus Pau

UDPSOCKET 752

recvfrom sock.recvfrom(len 〈 , flags 〉) → [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on
page 743). The result is a two-element array containing the received data and informa-
tion on the sender. See the example on the page before.

send sock.send(string, flags) → int
sock.send(string, flags, hostname, port) → int

The two-parameter form sends string on an existing connection. The four-parameter
form sends string to port on hostname.

Prepared exclusively for Margus Pau

UNIXSOCKET 753

Class UNIXSocket < BasicSocket

Class UNIXSocket supports interprocess communications using the Unix domain pro-
tocol. Although the underlying protocol supports both datagram and stream connec-
tions, the Ruby library provides only a stream-based connection.

require 'socket'

SOCKET = "/tmp/sample"

server_thread = Thread.start do # run server in a thread
sock = UNIXServer.open(SOCKET)
s1 = sock.accept
p s1.recvfrom(124)

end

client = UNIXSocket.open(SOCKET)
client.send("hello", 0)
client.close

server_thread.join

produces:

["hello", ["AF_UNIX", "q\240"]]

Class methods
new UNIXSocket.new(path) → sock

Opens a new domain socket on path, which must be a pathname.

open UNIXSocket.open(path) → sock

Synonym for UNIXSocket.new.

Instance methods
addr sock.addr → array

Returns the address family and path of this socket.

path sock.path → string

Returns the path of this domain socket.

peeraddr sock.peeraddr → array

Returns the address family and path of the server end of the connection.

recvfrom sock.recvfrom(len 〈 , flags 〉) → array

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on
page 743). The first element of the returned array is the received data, and the second
contains (minimal) information on the sender.

Prepared exclusively for Margus Pau

UNIXSERVER 754

U
N

IX
S

er
ve

r

Class UNIXServer < UNIXSocket

Class UNIXServer provides a simple Unix domain socket server. See UNIXSocket for
example code.

Class methods
new UNIXServer.new(path) → sock

Creates a server on the given path. The corresponding file must not exist at the time of
the call.

open UNIXServer.open(path) → sock

Synonym for UNIXServer.new.

Instance methods
accept sock.accept → unix_socket

Waits for a connection on the server socket and returns a new socket object for that
connection. See the example for UNIXSocket on the page before.

Prepared exclusively for Margus Pau

Appendix B

MKMF Reference

The mkmf library is used by Ruby extension modules to help create Makefiles. Chapter
21, which starts on page 261, describes how these extensions are created and built. This
appendix describes the details of the mkmf library.

Module mkmf require "mkmf"
When writing an extension, you create a program named extconf.rb, which may be
as simple as

require 'mkmf'
create_makefile("Test")

When run, this script will produce a Makefile suited to the target platform. It also
produces a log file, mkmf.log, which may help in diagnosing build problems.

mkmf contains several methods you can use to find libraries and include files and to set
compiler flags.

mkmf takes configuration information from a variety of sources

• The configuration used when Ruby was built.

• The environment variable CONFIGURE_ARGS, a list of key=value pairs.

• Command line arguments of the form key=value or --key=value.

You can examine the configuration by dumping the variable $configure_args.

% export CONFIGURE_ARGS="ruby=ruby18 --enable-extras"
% ruby -rmkmf -rpp -e 'pp $configure_args' -- --with-cflags=-O3
{"--topsrcdir"=>".",
"--topdir"=>"/Users/dave/Work/rubybook/tmp",
"--enable-extras"=>true,
"--with-cflags"=>"-O3",
"--ruby"=>"ruby18"}

Prepared exclusively for Margus Pau 755

MKMF 756

M
km

f

The following configuration options are recognized.

CFLAGS
Flags passed to the C compiler (overridden by --with-cflags).

CPPFLAGS
Flags passed to the C++ compiler (overridden by --with-cppflags).

curdir
Sets the global $curdir, which may be used inside the extconf.rb script. Oth-
erwise has no effect.

disable-xxx
Disables extension-specific option xxx.

enable-xxx
Enables extension-specific option xxx.

LDFLAGS
Flags passed to the linker (overridden by --with-ldlags).

ruby
Sets the name and/or path of the Ruby interpreter used in the Makefile.

srcdir
Sets the path to the source directory in the Makefile.

with-cflags
Flags passed to the C compiler. Overrides the CFLAGS environment variable.

with-cppflags
Flags passed to the C++ compiler. Overrides the CPPFLAGS environment variable.

with-ldflags
Flags passed to the linker compiler. Overrides the LDFLAGS environment variable.

with-make-prog
Sets the name of the make program. If running on Windows, the choice of make
program affects the syntax of the generated Makefile (nmake vs. Borland make).

with-xxx-{dir|include|lib}
Controls where the dir_config method looks.

Prepared exclusively for Margus Pau

MKMF 757

M
km

f

Instance methods
create_makefile create_makefile(target, srcprefix=nil)

Creates a Makefile for an extension named target. The srcprefix can override the default
source directory. If this method is not called, no Makefile is created.

dir_config dir_config(name)

Looks for directory configuration options for name given as arguments to this program
or to the original build of Ruby. These arguments may be one of

--with-name-dir=directory
--with-name-include=directory
--with-name-lib=directory

The given directories will be added to the appropriate search paths (include or link) in
the Makefile.

enable_config enable_config(name, default=nil) → true or false or default

Tests for the presence of an --enable-name or --disable-name option. Returns
true if the enable option is given, false if the disable option is given, and the default
value otherwise.

find_library find_library(name, function, 〈 path 〉+) → true or false

Same as have_library, but will also search in the given directory paths.

have_func have_func(function) → true or false

If the named function exists in the standard compile environment, adds the directive
-DHAVE_FUNCTION to the compile command in the Makefile and returns true.

have_header have_header(header) → true or false

If the given header file can be found in the standard search path, adds the directive
-DHAVE_HEADER to the compile command in the Makefile and returns true.

have_library have_library(library, function) → true or false

If the given function exists in the named library, which must exist in the standard search
path or in a directory added with dir_config, adds the library to the link command in
the Makefile and returns true.

Prepared exclusively for Margus Pau

Appendix C

Support

One of the major features of open source projects is the technical support. Articles in
the mass media often criticize open source efforts for not having the same tech support
that a commercial product has. And boy is that a good thing! Instead of dialing up
some overworked and understaffed help desk and being treated to Music On Hold for
an hour or so without ever getting the answer you need, we have a better solution: the
Ruby community. The author of Ruby, the authors of this book, and many other Ruby
users are willing and able to lend you a hand, should you need it.

The syntax of Ruby remains fairly stable, but as with all evolving software, new fea-
tures are added every now and again. As a result, both printed books and the online
documentation can fall behind. All software has bugs, and Ruby is no exception. There
aren’t many, but they do crop up.

If you experience a problem with Ruby, feel free to ask in the mailing lists or on the
newsgroup (more on those in just a minute). Generally you’ll get timely answers from
Matz himself, the author of the language, from other gurus, and from those who’ve
solved problems similar to your own.

You may be able to find similar questions in the mailing lists or on the newsgroup, and
it is good “netiquette” to read through recent postings before asking. If you can’t find
the answer you need, ask, and a correct answer will usually show up with remarkable
speed and precision.

Web Sites
Because the Web changes too fast, we’ve kept this list short. Visit one of the sites here,
and you’ll find a wealth of links to other online Ruby resources.

The official Ruby home page is http://www.ruby-lang.org .

Prepared exclusively for Margus Pau 758

http://www.ruby-lang.org

DOWNLOAD SITES 759

You’ll find a number of Ruby libraries and applications on RubyForge on the Web at
http://www.rubyforge.org.

RubyForge hosts open-source projects for Ruby developers. Each project has a CVS
repository, space to store releases, bug and feature request tracking, a WikiWiki web
and mailing lists. Anyone can apply to have a project hosted on this site. RubyForge is
also the repository for downloadable RubyGems.

The Ruby Production Archive (RPA) at http://www.rubyarchive.org hosts a num-
ber of prepackaged Ruby libraries and applications. The site is intended to offer a ser-
vice similar to that provided by Debian or FreeBSD to their respective communities but
for Ruby users. The site had only just become available as this book went to press, and
we have no direct experience using it.

Rubygarden hosts both a portal (http://www.rubygarden.org) and a WikiWiki site
(http://www.rubygarden.org/ruby), both full of useful Ruby information.

http://www.ruby-doc.org is a portal to various sources of Ruby documentation.

While you’re surfing, drop in on http://www.pragmaticprogrammer.com and see
what we’re up to.

Download Sites
You can download the latest version of Ruby from

http://www.ruby-lang.org/en/

A precompiled Windows distribution is available from

http://rubyinstaller.rubyforge.org/

This project is also planning to release a Mac OS X One-Click Installer, but this was
not ready at the time this book went to press.

Usenet Newsgroup
Ruby has its own newsgroup, comp.lang.ruby. Traffic on this group is archived and
mirrored to the ruby-talk mailing list.

Mailing Lists
You’ll find many mailing lists talking about Ruby. The first three below are in English,
and the remainder are mostly Japanese, but with some English language posts.

Prepared exclusively for Margus Pau

http://www.rubyforge.org
http://www.rubyarchive.org
http://www.rubygarden.org
http://www.rubygarden.org/ruby
http://www.ruby-doc.org
http://www.pragmaticprogrammer.com
http://www.ruby-lang.org/en/
http://rubyinstaller.rubyforge.org/

MAILING LISTS 760

ruby-talk@ruby-lang.org English language discussion of Ruby (mirrored to
comp.lang.ruby)

ruby-doc@ruby-lang.org Documentation standards and tools
ruby-cvs@ruby-lang.org Notifications of CVS commits to Ruby source
ruby-core@ruby-lang.org Mixed English/Japanese discussion of core implemen-

tation topics
ruby-list@ruby-lang.org Japanese language discussion of Ruby
ruby-dev@ruby-lang.org List for Ruby developers
ruby-ext@ruby-lang.org List for people writing extensions for or with Ruby
ruby-math@ruby-lang.org Ruby in mathematics

See the “Mailing Lists” topic under http://www.ruby-lang.org/ for details on join-
ing a mailing list.

The mailing lists are archived and can be searched using

http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml,

or using

http://www.ruby-talk.org.

Prepared exclusively for Margus Pau

http://www.ruby-lang.org/
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://www.ruby-talk.org

Appendix D

Bibliography

[FJN02] Robert Feldt, Lyle Johnson, and Micheal Neuman. The Ruby Developer’s
Guide. Syngress Publishing, Inc, Rockland, MA, 2002.

[Fri02] Jeffrey E. F. Friedl. Mastering Regular Expressions: Powerful Techniques
for Perl and Other Tools. O’Reilly & Associates, Inc., Sebastopol, CA,
second edition, 2002.

[Ful01] Hal Fulton. The Ruby Way. Sams Publishing, 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wes-
ley, Reading, MA, 1995.

[Lid98] Stephen Lidie. Perl/Tk Pocket Reference. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1998.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ, second edition, 1997.

[Wal99] Nancy Walsh. Learning Perl/Tk: Graphical User Interfaces with Perl.
O’Reilly & Associates, Inc., Sebastopol, CA, 1999.

Prepared exclusively for Margus Pau 761

Index
Order

!

"

#

$

%

&

’

(

)

*
+
,
-
.
/
:
;

<
=
>

?

@

[

\

]

^
_

`

{

|

}
~

Every built-in and library method described in this book is indexed at least twice, once under the
method’s name and again under the name of the class or module that contains it. These entries
have the method and class/module names in typewriter font and have the word method, class,
or module appended. If you want to know what methods class String contains, you can look up
“String class” in the index. If instead you want to know which classes and modules support a
method called index, look under “index method.” A bold page number for these method listings
shows the reference section entry.

When a class or method name corresponds with a broader concept (such as String), we’ve indexed
the class separately from the concept.

Symbols are sorted using ASCII collation. The table on the right may help those who haven’t yet
memorized the positions of the punctuation characters (shame on you all).

Symbols
! (logical not) 88, 326
!= (not equal) 89
!~ (does not match) 65, 89
(comment) 302
#! (shebang) 6
#{...}

substitute in pattern 66, 311
substitute in string 57, 306

$ (global variable prefix) 313
$ (in pattern) 66, 309
$ variables

$! 102, 319, 345, 347
$" 117, 320
$$ 320
$& 65, 319, 516
$* 320, 502
$+ 319
$, 319, 415, 505
$-0 319
$-F 320
$-I 321

$-K 321
$-a 320
$-d 321
$-i 321
$-l 321
$-p 321
$-v 321
$-w 321
$. 319, 489
$/ 168, 169, 319, 589
$: 117, 152, 168, 173, 290,

320
$; 168, 319
$< 320
$= 309, 319
$> 320
$? 83, 140, 142, 320, 323,

495, 510, 566, 570
$@ 319
$\ 169, 319, 490, 505
$_ 22, 89, 95, 168, 320, 327,

489, 502
$` 65, 319, 517

$~ 65, 73, 319, 516, 579–581
$1 to $9 319
$1...$9 65, 70, 311
$0 170, 320, 322
$configure_args 755
$DEBUG 168, 321, 612, 616
$deferr 320
$defout 320
$expect_verbose 655
$F 168, 321
$FILENAME 321
$KCODE 309, 638, 668
$LOAD_PATH 152, 168, 175,

209–211, 213, 216, 321
$SAFE 169, 299, 321, 380,

554, 652
$stderr 320
$stdin 320
$stdout 320
$' 65, 319, 517
$VERBOSE 168, 169, 321,

513
English names 318, 650

Prepared exclusively for Margus Pau 762

% METHOD 763 [] METHOD

% method
class Bignum 420
class Fixnum 463
class Float 466
class String 585

%W{...} (array of words) 307
%q{...}, %Q{...} (string

literal) 58, 305
%r{...} (regexp) 65, 309
%w{...} (array of words) 14,

307
%x{...} (command expansion)

83, 323, 495
%{...} (string literal) 58, 305
& (block parameter to method)

53, 76, 334
& method

class Array 407
class Bignum 420
class FalseClass 443
class Fixnum 463
class NilClass 540
class Process::Status 570
class TrueClass 629

&& (logical and) 88, 326
(...) (in pattern) 69, 311
(?...) (regexp extensions)

311

* (array argument) 332

* (in pattern) 68, 310

* method
class Array 407
class Bignum 420
class Fixnum 463
class Float 466
class String 586

** method
class Bignum 420
class Fixnum 463
class Float 466

+ (in pattern) 68, 310
+ method

class Array 407
class Bignum 420
class Fixnum 463
class Float 466
class String 586
class Time 623

+@ method
class Numeric 541

- method
class Array 407
class Bignum 420
class Fixnum 463

class Float 466
class Time 623

-@ method
class Bignum 420
class Fixnum 463
class Float 466
class Numeric 541

. (in pattern) 310

.. and ... (range) 62, 327
/ method

class Bignum 420
class Fixnum 463
class Float 466

/.../ (regexp) 65, 309
: (symbol creation) 308, 323
: (then replacement) 91, 93
:: (scope resolution) 315, 323,

337, 339
vs. “.” 334

; (line separator) 302
< (superclass) 337
< method

module Comparable 426
<, <=, >, >= method

class Module 525
<= method

module Comparable 426
<=> (comparison operator) 63,

89, 426, 433
<=> method

class Array 408
class Bignum 420
class File::Stat 456
class Fixnum 463
class Float 466
class Module 525
class Numeric 541
class String 586
class Time 623

<<
here document 58, 306
singleton object 337, 365

<< method
class Array 407
class Bignum 420
class Fixnum 463
class IO 124, 486
class String 586

= (assignment) 84, 323
== (equals) 89
== method

class Array 408
class Bignum 420
class Float 467

class Hash 472
class Method 522
class Object 546
class Process::Status 570
class Proc 559
class Range 577
class Regexp 580
class String 586
class Struct 606
module Comparable 426

=== (case equals) 89, 93, 104,
328

=== method
class Module 525
class Object 546
class Range 577
class Regexp 580
class String 586

=>
hash creation 43, 307
in argument list 80, 333
rescue clause 104, 346

=begin...=end 303
embedded documentation

190
=~ (match) 65, 89
=~ method

class Object 546
class Regexp 580
class String 587

> method
module Comparable 426

>= method
module Comparable 426

>> method
class Bignum 420
class Fixnum 463
class Process::Status 570

? (in pattern) 68, 310
? (ternary operator) 91
@ (instance variable prefix) 313
@@ (class variable prefix) 313
[] method

class Array 41, 406, 408
class Bignum 421
class Dir 428
class Fixnum 464
class Hash 471, 472
class MatchData 516
class Method 522
class Proc 559
class String 587
class Struct 606, 607
class Thread 614

Prepared exclusively for Margus Pau

[]= METHOD 764 Arithmetic operations METHOD

[]= method
class Array 41, 409
class Hash 472
class String 588
class Struct 607
class Thread 615

[...]
array literal 14, 307
bracket expression 310
character class 67

$\ variable 169, 319, 490, 505
\ (line continuation) 302
\& (in substitution) 71
\’ (in substitution) 71
\+ (in substitution) 71
\1...\9

in pattern 70, 311
in substitution 71

\A (in pattern) 309
\B (in pattern) 310
\D (in pattern) 310
\G (in pattern) 310, 311
\S (in pattern) 310
\W (in pattern) 310
\Z (in pattern) 310
\‘ (in substitution) 71
\b (in pattern) 310
\d (in pattern) 310
\n (newline) 12, 306
\s (in pattern) 310
\w (in pattern) 310
\z (in pattern) 310
^ (in pattern) 66, 67, 309
^ method

class Bignum 420
class FalseClass 443
class Fixnum 463
class NilClass 540
class TrueClass 629

__id__ method
class Object 546

__send__ method
class Object 546

_id2ref method
module ObjectSpace 557

$` variable 65, 319, 517
` (backquote) method

module Kernel 83, 140, 495
{...}

hash literal 15, 307
in pattern 68, 310
see also Block

--verbose (Ruby option) 514
|

in file name 141
in pattern 69, 310

| method
class Array 409
class Bignum 420
class FalseClass 443
class Fixnum 463
class NilClass 540
class TrueClass 629

|| (logical or) 88, 326
$~ variable 65, 73, 319, 516,

579–581
~ method

class Bignum 420
class Fixnum 463
class Regexp 580
class String 588

-0[octal] (Ruby option) 168

A
-a (Ruby option) 168, 320, 321
$-a variable 320
Abbrev module 634, 702
Abbreviations, calculating 634
Abort see Exception
abort method

module Kernel 496
module Process 562

abort_on_exception method
class Thread 130, 612, 615

abort_on_exception= method
class Thread 612, 615

abs method
class Bignum 421
class Fixnum 464
class Float 467
class Numeric 541

accept method
class Socket 746
class TCPServer 750
class UNIXServer 754

Access control 35, 341
method 530, 532, 537, 538
overriding in subclass 376
see also File, permission

Accessor method 27, 86
acos method

module Math 519
acosh method

module Math 519
ActiveX see Microsoft

Windows, automation
Ad hoc testing 143

add method
class ThreadGroup 619

add_observer method
module Observable 685

addr method
class IPSocket 747
class UNIXSocket 753

AF_INET class 667
Alias 38, 161, 315
alias 336
alias_method method

class Module 533
module Kernel 391

alive? method
class Thread 615

all? method
module Enumerable 433

all_symbols method
class Symbol 610

ALLOC 279
ALLOC_N 279
ALLOCA_N 280
allocate method

class Class 425
Allocation 273
Amrita

templates 228
Ancestor 25
ancestors method

class Module 365, 386, 526
and (logical and) 88, 326
Anonymous class 365, 424
any? method

module Enumerable 433
Aoki, Minero 106
Aoyama, Wakou 72
Apache Web server 230

mod_ruby 234
API

Microsoft Windows 254, 734
Ruby see Extend Ruby

APOP authentification 681
append_features method

class Module 533
ARGF constant 170
ARGF variable 22, 321
Argument, command-line see

Command line
Argument, method 74, 75
ARGV variable 168–170, 321,

502, 663, 690
Arithmetic 671, 700
Arithmetic operations

method

Prepared exclusively for Margus Pau

arity METHOD 765 basename METHOD

class Bignum 420
class Fixnum 463
class Float 466

arity method
class Method 522
class Proc 559
class UnboundMethod 631

Array
associative see Hash
creating 40
expanding as method

parameter 78, 333
indexing 41
literal 14, 307
method argument 332

Array class 357, 406
& 407

* 407
+ 407
- 407
<=> 408
<< 407
== 408
[] 41, 406, 408
[]= 41, 409
| 409
assoc 409
at 409
clear 410
collect! 410
compact 410
compact! 410
concat 410
delete 410
delete_at 411
delete_if 411
each 411
each_index 411
empty? 411
eql? 411
fetch 412
fill 412
first 412
flatten 412
flatten! 413
include? 413
index 413
indexes 413
indices 413
insert 413
join 415
last 415
length 415
map! 415

new 406
nitems 415
pack 123, 414, 415
pop 416
push 416
rassoc 416
reject! 416
replace 416
reverse 416
reverse! 416
reverse_each 417
rindex 417
scanf 708
shift 417
size 417
slice 417
slice! 418
sort 418
sort! 418
to_a 418
to_ary 418
to_s 419
transpose 419
uniq 419
uniq! 419
unshift 419
values_at 419

Array method
module Kernel 495

ASCII 302
character literal 56, 305
convert integer to 480

asctime method
class Time 623

asin method
module Math 519

asinh method
module Math 519

ASP see eruby
assert_equal method 144
assert_not_nil method 148
Assertions see Test::Unit,

assertions
Assignment 84, 323

attribute 335
parallel 85, 325

assoc method
class Array 409

Associative array see Hash
Asynchronous I/O 666
at method

class Array 409
class Time 621

at_exit method

module Kernel 496
atan method

module Math 519
atan2 method

module Math 519
atanh method

module Math 519
atime method

class File::Stat 456
class File 444, 454

Atom see Symbol
attr method 339

class Module 533
attr_accessor method 339

class Module 534
attr_reader method 28, 339,

371
class Module 534

attr_writer method 339
class Module 534

Attribute 27
assignment 159, 335
virtual 30
writable 29
see also Class attribute

autoload method
class Module 526
module Kernel 496

autoload? method
class Module 526
module Kernel 497

Automation, Windows 255, 735
Autosplit mode 168

B
Backquote character see

`(backquote)
Backreferences (in regular

expressions) 69–71, 311,
336

Backtrace see $@, caller
backtrace method

class Exception 440
Backup files, creating 168
Base

number 422, 465, 601
Base (numeric) see to_s

methods,
Kernel.Integer,
String#to_i

Base64 module 635
base_uri method 686
basename method

Prepared exclusively for Margus Pau

BasicSocket CLASS 766 C LANGUAGE API

class File 444
BasicSocket class 119, 714,

741
close_read 741
close_write 741
do_not_reverse_lookup

741
do_not_reverse_lookup=

741
for_fd 741
getpeername 741
getsockname 741
getsockopt 741
lookup_order= 741
recv 742
send 742
setsockopt 742
shutdown 742

BEGIN {...} 303
begin method

class MatchData 516
class Range 577

=begin...=end 303
begin...end 95, 102, 325, 346
Benchmark module 162, 390,

636
Berger, Daniel 259
between? method

module Comparable 426
BigDecimal class 637
BigMath module 637
Bignum class 55, 420, 463, 637,

671
% 420
& 420

* 420

** 420
+ 420
- 420
-@ 420
/ 420
<=> 420
<< 420
== 420
>> 420
[] 421
^ 420
| 420
~ 420
abs 421
Arithmetic operations

420
Bit operations 420
div 421

divmod 421
eql? 421
literal 55, 304
modulo 421
quo 421
remainder 422
size 422
to_f 422
to_s 422

Binary data 123, 306, 415, 602
Binary notation 55, 304
bind method

class Socket 746
class UDPSocket 751
class UnboundMethod 631

Binding
in block 318
GUI events 246

Binding class 322, 423
binding method

class Proc 560
module Kernel 390, 423,

497
binmode method

class IO 486
Bit operations method

class Bignum 420
class Fixnum 463

blksize method
class File::Stat 456

Block 19, 46, 341
break and next 342
as closure 52
and files 120
for busy cursor 249
fork, popen, and subprocess

142, 485, 504, 687
with method 389
as parameter to method 75,

333, 334
parameters 19, 48
return from 344
as transaction 50
variable scope 99, 128, 318
see also Iterator

block_given? method
module Kernel 51, 334, 497

blockdev? method
class File::Stat 456
class File 445

blocks method
class File::Stat 457

BlueCloth 206
Boolean expressions 326

see also FalseClass,
TrueClass

Bottlenecks 162
break 98, 330, 342
Breakpoint 155
Buffering problems 161
Bug see Testing
Build environment see Config

module
Busy cursor 249

C
-c (Ruby option) 168
-C directory (Ruby option)

168
C language see Extend Ruby
C language API

ALLOC 279
ALLOC_N 279
ALLOCA_N 280
Data_Get_Struct 271
Data_Make_Struct 271
Data_Wrap_Struct 271
OBJ_FREEZE 298
OBJ_FROZEN 299
OBJ_TAINT 298
OBJ_TAINTED 298
rb_apply 295
rb_ary_entry 300
rb_ary_new 299
rb_ary_new2 299
rb_ary_new3 299
rb_ary_new4 299
rb_ary_pop 299
rb_ary_push 299
rb_ary_shift 299
rb_ary_store 299
rb_ary_unshift 300
rb_block_given_p 297
rb_bug 296
rb_call_super 295
rb_catch 297
rb_create_new_instance

295
rb_cv_get 298
rb_cv_set 298
rb_cvar_defined 298
rb_cvar_get 298
rb_cvar_set 298
rb_define_alias 293
rb_define_alloc_func

293
rb_define_attr 295

Prepared exclusively for Margus Pau

call METHOD 767 CHARACTER

rb_define_class 291
rb_define_class_under

291
rb_define_class_

variable
294

rb_define_const 294
rb_define_global_const

294
rb_define_global_

function
293

rb_define_hooked_
variable
294

rb_define_method 293
rb_define_module 291
rb_define_module_

function
293

rb_define_module_under
292

rb_define_readonly_
variable
294

rb_define_singleton_
method
293

rb_define_variable 294
rb_define_virtual_

variable
294

rb_each 297
rb_ensure 296
rb_exit 296
rb_extend_object 292
rb_fatal 296
rb_funcall 295
rb_funcall2 295
rb_funcall3 295
rb_global_variable 295
rb_gv_get 298
rb_gv_set 298
rb_hash_aref 300
rb_hash_aset 300
rb_hash_new 300
rb_id2name 295
rb_include_module 292
rb_intern 295
rb_iter_break 297
rb_iterate 297
rb_iv_get 297
rb_iv_set 298
rb_ivar_get 298

rb_ivar_set 298
rb_load_file 290
rb_notimplement 296
rb_obj_is_instance_of

300
rb_obj_is_kind_of 300
rb_protect 296
rb_raise 296
rb_require 292
rb_rescue 296
rb_respond_to 300
rb_safe_level 299
rb_scan_args 293
rb_secure 299
rb_set_safe_level 299
rb_str_cat 300
rb_str_concat 300
rb_str_dup 300
rb_str_new 300
rb_str_new2 300
rb_str_split 300
rb_struct_aref 292
rb_struct_aset 292
rb_struct_define 292
rb_struct_new 292
rb_sys_fail 296
rb_thread_create 300
rb_throw 297
rb_undef_method 293
rb_warn 297
rb_warning 297
rb_yield 297
REALLOC_N 280
ruby_finalize 290
ruby_init 290
ruby_init_loadpath 290
ruby_options 290
ruby_run 290
ruby_script 290
SafeStringValue 299

call method
class Continuation 427
class Method 389, 522
class Proc 560

:call-seq: (RDoc) 194, 197
Callback

from GUI widget 243
Ruby runtime 392
see also Block, closure

callcc method
module Kernel 427, 497

caller method
module Kernel 107, 393,

394, 497

CamelCase 313
capitalize method

class String 588
capitalize! method

class String 588
captures method

class MatchData 516
case expression 92, 328
Case insensitive

string comparison 589
Case insensitive (regexp) 309
casecmp method

class String 589
casefold? method

class Regexp 581
catch method

module Kernel 99, 108,
347, 498

ceil method
class Float 467
class Integer 480
class Numeric 541

center method
class String 589

CFLAGS (mkmf) 756
CGI class 223, 638

cookies 231
has_key? 225
params 224

CGI programming 222–240
cookies 231
embedding Ruby (eruby)

229
forms 224
generate HTML 225
mod_ruby 234
query parameters 224
quoting 223
session 233
WEBrick 234

see also Network protocols,
Templates

CGI::Session class 640
CGIKit, Web framework 240
change_privilege method

module Process::GID 568
module Process::UID 575

changed method
module Observable 685

changed? method
module Observable 685

Character
convert integer to 480
literal 56, 305

Prepared exclusively for Margus Pau

CHARACTER CLASS 768 CLASSES

Character class 67
chardev? method

class File::Stat 457
class File 445

charset method 686
chdir method

class Dir 172, 428
Checksum 600, 647
Child process see Process
chmod method

class File 445, 454
chomp method

class String 59, 589
module Kernel 498

chomp! method
class String 589
module Kernel 498

chop method
class String 589, 668
module Kernel 499

chop! method
class String 590, 668
module Kernel 499

chown method
class File 445, 454

chr method
class Integer 480

chroot method
class Dir 429

Class
anonymous 365, 424
attribute 27, 339
defining 337, 370
extending 24
generator 605
hierarchy 525
instance 10, 338
listing hierarchy 386
metaclass 363
method 32, 368
mixing in module 340
naming 14, 375
object specific 365
vs type 350
variable 31
virtual 364, 365

Class class 362, 424
allocate 425
inherited 392, 424
new 338, 424, 425
superclass 386, 425

class method
class Object 354, 546

class_eval method

class Module 526
class_variables method

class Module 527
Classes

list of methods 403
AF_INET 667
Array 357, 406
BasicSocket 119, 714, 741
BigDecimal 637
Bignum 55, 420, 463, 637,

671
Binding 322, 423
CGI 223, 638
CGI::Session 640
Class 362, 424
Complex 641, 671
Continuation 427, 497
CSV 642
CSV::Row 642
Date 644
DateTime 644
DBM 645
Delegator 646
Dir 428, 693
DRb 649
ERB 652
Exception 101, 345, 440
FalseClass 443
File 119, 444, 462, 660,

693
File::Stat 456
Fixnum 55, 463, 671
Float 56, 466
GDBM 661
Generator 662
GetoptLong 663
GServer 664
Hash 357, 471
Iconv 665
Integer 357, 480, 671
IO 119, 357, 482, 655, 708,

714, 715
IPAddr 667
IPSocket 714, 747
Logger 669
Mail 670
MatchData 65, 73, 516, 579,

581, 587
MatchingData 516
Matrix 673
Method 389, 522, 534
Module 524
Monitor 134, 136, 717, 722
Mutex 675, 676

Net::FTP 677
Net::HTTP 678, 731
Net::IMAP 680
Net::POP3 681
Net::SMTP 682
Net::Telnet 683
NilClass 540
Numeric 541, 641
Object 27, 376, 546
OpenStruct 605, 689
OptionParser 690
Pathname 693
PP 694
PrettyPrint 505, 694, 695
Proc 53, 76, 342, 344, 357,

523, 534, 559
Process::Status 142, 566,

567, 570
PStore 698
Queue 133, 137, 722
Range 63, 307, 576
Rational 671, 700
Regexp 72, 579
SDBM 709
Set 407, 409, 710
SimpleDelegator 646
SizedQueue 722
Socket 714, 743
SOCKSSocket 714, 749
String 57, 305, 358, 585,

668, 708
StringIO 124, 715
StringScanner 716
Struct 605
Struct::Tms 609
Symbol 29, 323, 358, 594,

610
Sync 717
SyncEnumerator 662
Syslog 719
TCPServer 750
TCPSocket 714, 748
Tempfile 720
Test::Unit 721
Thread 612
ThreadGroup 615, 619
ThreadsWait 723
Time 444, 621, 724
Tk 726
TrueClass 629
UDPSocket 714, 751
UnboundMethod 389, 522,

523, 528, 630
UNIXServer 754

Prepared exclusively for Margus Pau

clear METHOD 769 cosh METHOD

UNIXSocket 714, 753
URI 731
Vector 673
WeakRef 732
Win32API 648, 734
WIN32OLE 735

clear method
class Array 410
class Hash 472

Client/Server 398, 649, 664,
713

clone method
class IO 486
class Module 527
class Object 274, 547

close method
class Dir 431
class IO 486
class SOCKSSocket 749

close_read method
class BasicSocket 741
class IO 486

close_write method
class BasicSocket 741
class IO 487

closed? method
class IO 487

Closure 52, see Block
Code profiler 163
Coding system (ASCII, EUC,

SJIS, UTF-8) 169, 302n,
306n, 665, 668, 684

coerce method 358
class Numeric 358, 541

Coercion 358
Coffee coaster

attractive xxvii
collect method

module Enumerable 49,
410, 433

collect! method
class Array 410

COM see Microsoft Windows,
automation

Comma-separated data 642
Command (type of method) 77n
Command expansion 83

see also ` (backquote)
Command line 121, 167

options 168–170
parsing 663, 690
see also ARGV

Command line, parsing 711

Command, editing with readline
702

Comment 302
for RDoc 187
regular expression 311

Common Gateway Interface
see CGI programming

compact method
class Array 410

compact! method
class Array 410

Comparable module 112, 426
< 426
<= 426
== 426
> 426
>= 426
between? 426
Comparisons 426

Comparison operators 326
see also <=>

Comparisons method
module Comparable 426

compile method
class Regexp 579

Completion, trb 176
Complex class 641, 671
Compression, gzip and zip 738
COMSPEC 172, 500
concat method

class Array 410
class String 590

Condition variable see Thread,
condition variable (and
Thread, synchronization)

Conditional expression 91, 328
see also Range

Config module 173
CONFIGURE_ARGS 755
$configure_args variable

755
connect method

class Socket 746
class UDPSocket 751

const_defined? method
class Module 527

const_get method
class Module 527

const_missing method
class Module 527

const_set method
class Module 528

Constant 315
class name 375

listing in module 387
scope 315

Constants
ARGF 170
DATA 303, 322
Errno 104
FALSE 322
false 87, 321, 326
__FILE__ 322
NIL 322
nil 14, 87, 321, 326
RUBY_PLATFORM 322
RUBY_RELEASE_DATE 322
RUBY_VERSION 322
SCRIPT_LINES__ 322, 395,

507
STDERR 322, 513
STDIN 322, 504
STDOUT 322, 504, 505
TOPLEVEL_BINDING 322
TRUE 322
true 87, 322, 326

constants method
class Module 524, 528

Constructor 10, 23
initialize method 554
private 33

Contact, authors’ e-mail xxii
Containers see Array and Hash
content_encoding method

686
content_type method 686
Continuation class 427, 497

call 427
Control character

\n etc. 56, 305, 306
Conventions, typographic xxiv
Conversion protocols 356
Cookies see CGI programming,

cookies
cookies method

class CGI 231
Cookies, HTTP 231
Coordinated Universal Time

621
--copyright (Ruby option)

168
CORBA see Distributed Ruby
coredump? method

class Process::Status
570

cos method
module Math 519

cosh method

Prepared exclusively for Margus Pau

count METHOD 770 DIRECTORIES

module Math 519
count method

class String 590
count_observers method

module Observable 685
CPPFLAGS (mkmf) 756
CPU times 609
CRAM-MD5 authentication

680
create_makefile method

module mkmf 282, 757
Critical section see Thread,

synchronization
critical method

class Thread 612
critical= method

class Thread 133, 612
crypt method

class String 590
Cryptographic Hashes 647
CSV class 642
CSV::Row class 642
ctime method

class File::Stat 457
class File 445, 454
class Time 623

curdir (mkmf) 756
Current directory 429
current method

class Thread 613
Curses module 643
CVS access to Ruby 5
CVSup 5
cygwin32 253

D
-d (Ruby option) 130, 321, 514
-d, --debug (Ruby option)

168
$-d variable 321
DATA constant 303, 322
Data_Get_Struct 271
Data_Make_Struct 271
Data_Wrap_Struct 271
Database see dbm, gdbm,

qdbm, sdbm
Datagram see Network

protocols, UDP
Date class 644

parsing 692
see also Time class

Date module 621
DateTime class 644

day method
class Time 623

DBM class 645
dbm 645
DCOM see Microsoft

Windows, automation
Deadlock see Thread
Debian installation 3
$DEBUG variable 168, 321, 612,

616
Debug mode 130, 168
Debugger 155

commands 165f
Decimal notation 55, 304
Decoupling 26
Decoux, Guy 275
def (method definition) 74
Default (ThreadGroup

constant) 619
Default parameters 74, 332
default method

class Hash 473
default= method

class Hash 473
default_proc method

class Hash 473
$deferr variable 320
define_finalizer method

module ObjectSpace 557
define_method method

class Module 534
module Module 345

defined? operator 88, 326
$defout variable 320
Delegation 646, 659
Delegator class 646
delete method

class Array 410
class Dir 429
class File 445
class Hash 473
class String 590, 668

delete! method
class String 591, 668

delete_at method
class Array 411

delete_if method
class Array 411
class Hash 474

delete_observer method
module Observable 685

delete_observers method
module Observable 685

Delimited string 303

Dependency, RubyGems 203
Design Pattern see Patterns
detach method

module Process 562
detect method

module Enumerable 433
Determinant, matrix 673
dev method

class File::Stat 457
dev_major method

class File::Stat 457
dev_minor method

class File::Stat 457
Dictionary see Hash
DIG (Float constant) 466
Digest module 647
Dir

match modes 447f
Dir class 428, 693

[] 428
chdir 172, 428
chroot 429
close 431
delete 429
each 431
entries 429
foreach 429
getwd 429
glob 430
mkdir 430
new 430
open 431
path 431
pos 431
pos= 432
pwd 431
read 432
rewind 432
rmdir 431
seek 432
tell 432
tmpdir 233, 727
unlink 431

see also Find module
dir_config method

module mkmf 283, 757
Directories

include and library for
extensions 283

lib/ 282
pathname 693
search path 284
searched 173
temporary 727

Prepared exclusively for Margus Pau

directory? METHOD 771 empty? METHOD

working 168
directory? method

class File::Stat 457
class File 446

dirname method
class File 446

disable method
module GC 470

disable-xxx (mkmf) 756
Dispatch table 388
display method

class Object 547
Distributed Ruby 398, 649, 706,

736
Distribution see RubyGems
div method

class Bignum 421
class Fixnum 464
class Numeric 542

Division, accuracy 671, 700
divmod method

class Bignum 421
class Fixnum 464
class Float 467
class Numeric 544

DL module 648
DL library 259
DLL, accessing API 254, 648,

734
DLN_LIBRARY_PATH 172
DNS 703
do (in loops) 329
do...end see Block
do_not_reverse_lookup

method
class BasicSocket 741

do_not_reverse_lookup=
method

class BasicSocket 741
:doc: (RDoc) 194
Document Type Definition 704
Document-class: (RDoc) 197
Document-method: (RDoc)

197
Documentation

doc string example 372
embedded 187, 303
modifiers 193
see also RDoc

doGoogleSearch method 238
Domain Name System 703
Dotted quad see Network

protocols
Double dispatch 359

Double-quoted string 57, 305
downcase method

class String 591
downcase! method

class String 591
Download

Ruby 2
source from book 4

Download Ruby
sites 759

downto method
class Integer 96, 480

dpkg installation 3
DRb

see also Distributed Ruby
DRb class 649
DRbUndumped module 649
dst? method

class Time 623
DTD 704
Duck typing 280, 349–361
_dump 396, 514
dump method

class String 591
module Marshal 395, 515

dup method
class Object 274, 547

Dynamic
compilation 499
definitions 370
linking 287, 648
method invocation 388
see also Reflection

E
E (Math constant) 519
-e 'command' (Ruby option)

168
E-mail

date/time formats 724
each method 651

class Array 411
class Dir 431
class Hash 474
class IO 487
class Range 577
class String 591
class Struct 607
module Enumerable 49, 433

each_byte method
class IO 122, 487
class String 592

each_cons method 651

each_index method
class Array 411

each_key method
class Hash 474

each_line method
class IO 122, 488
class String 592

each_object method
module ObjectSpace 365,

385, 387, 557
each_pair method

class Hash 474
class Struct 607

each_slice method 651
each_value method

class Hash 474
each_with_index method

module Enumerable 434
Editor

run Ruby in 157
egid method

module Process 563
egid= method

module Process 563
eid method

module Process::GID 568
module Process::UID 575

eid= method
module Process::GID 568
module Process::UID 575

Eiffel
once modifier 374

Element reference ([]) 336
else (exceptions) 105, 347

see also if, case
elsif 328
Emacs 157

tag file 185
Emacs key binding 702
E-mail

address for feedback xxii
fetching with IMAP 680
fetching with POP 681
parsing 670
sending with SMTP 682

Embed Ruby
in HTML etc. see eruby
interpreter in application 287

Embedded documentation 187,
303

empty? method
class Array 411
class Hash 474
class String 592

Prepared exclusively for Margus Pau

enable METHOD 772 exception METHOD

enable method
module GC 470

enable-xxx (mkmf) 756
enable_config method

module mkmf 757
enclose method

class ThreadGroup 619
enclosed? method

class ThreadGroup 620
Encodings, character 665, 668,

684
Encryption 590
__END__ 303, 322
END {...} 303
End of line 122
end method

class MatchData 517
class Range 577

:enddoc: (RDoc) 195
English library 650
English names for $ variables

318, 650
ensure (exceptions) 105, 347
entries method

class Dir 429
module Enumerable 434

enum_for method 651
Enumerable class

Enumerator 651
Enumerable module 49, 113,

433, 651, 662
all? 433
any? 433
collect 49, 410, 433
convert to Set 710
detect 433
each 49, 433
each_with_index 434
entries 434
find 434
find_all 434
grep 434
include? 434
inject 49, 113, 435
map 435
max 435
member? 435
min 435
partition 436
reject 416, 436
select 436
sort 436
sort_by 436
to_a 438

zip 438
Enumerator module 651
ENV variable 171, 321
Environment variables 171

COMSPEC 172, 500
DLN_LIBRARY_PATH 172
HOME 172, 428, 446
LOGDIR 172, 428
OPENSSL_CONF 172
PATH 169
POSIXLY_CORRECT 663
RI 8, 202
RUBY_TCL_DLL 172
RUBY_TK_DLL 172
RUBYLIB 172, 173, 383
RUBYLIB_PREFIX 172
RUBYOPT 172, 383
RUBYPATH 169, 172
RUBYSHELL 172, 500
SHELL 172

see also ENV variable
eof method

class IO 488
eof? method

class IO 488
Epoch 621
EPSILON (Float constant) 466
eql? method 89

class Array 411
class Bignum 421
class Float 467
class Method 522
class Numeric 544
class Object 547
class Range 578
class String 592

equal? method 89
class Object 548

ERB class 652
erb 229, 652
ERB::Util module 653
erf method

module Math 520
erfc method

module Math 520
Errno constant 104
Errno module 104, 439, 440
Error handling see Exception
Errors in book, reporting xxii
eruby 229–231

in Apache 230
see also CGI programming

escape method
class Regexp 579

Escaping characters see
Quoting

Etc module 654
EUC 302, 309, 665, 668, 684
euid method

module Process 563
euid= method

module Process 563
eval method

module Kernel 389, 423,
499

Event binding see GUI
programming

Example code, download 4
Example printer 186
Exception 101–109, 345

ClassCastException 350
EOFError 701
in extensions 296
FaultException 736
handling 102
hierarchy 103f
IndexError 412, 588
LoadError 210
LocalJumpError 344
NameError 318, 348
raising 106, 506
RuntimeError 107, 345
SecurityError 379
StandardError 102, 104,

346
stored in $! 319
SystemCallError 104, 439,

500, 510
SystemExit 170, 441, 442,

500
testing 147
in thread 130, 612
ThreadError 344
Timeout::Error 725
TruncatedDataError 701
TypeError 38, 266, 396,

495
Exception class 101, 345, 440

backtrace 440
exception 440
message 441
new 440
set_backtrace 441
status 441
success? 442
to_s 442
to_str 442

exception method

Prepared exclusively for Margus Pau

exclude_end? METHOD 773 File CLASS

class Exception 440
exclude_end? method

class Range 578
exec method

module Kernel 141, 485,
500

executable? method
class File::Stat 458
class File 446

executable_real? method
class File::Stat 458
class File 446

Execution
environment 376
profiler 163
tracing 393

exist? method
class File 446

exists? method
class File 446

Exit status see $?
exit method

class Thread 613, 615
module Kernel 170, 441,

500
module Process 563

exit! method
module Kernel 501
module Process 563

exited? method
class Process::Status

571
exitstatus method

class Process::Status
571

exp method
module Math 520

expand_path method
class File 446

expect library 655
expect method

class IO 655, 699
$expect_verbose variable

655
Expression 81–100, 323–330

boolean 87, 326
case 92, 328
if 90, 328
range as boolean 89
substitution in string 306
ternary 91, 328
unless see if

extconf.rb 263, 282
see also mkmf module

Extend Ruby 261–301, 755
allocation 273
building extensions 282

see also mkmf module
call method API 295
clone and dup 274
create object 262, 273
data type conversion API

266
data type wrapping API 271
define classes API 291
define methods API 292
define structures API 292
documentation (RDoc) 195
embedded Ruby API 290
embedding 287
example code 276
exception API 296
garbage collection 271
initialize 262
internal types 264
iterator API 297
linking 287
memory allocation API 279
object status API 298
strings 266
variable API 294, 297
variables 269

extend method
class Object 366, 368, 548

extend_object method
class Module 392, 535

EXTENDED (Regexp constant)
579

Extended mode (regexp) 309
extended method

class Module 535
Extending classes 24
External iterator 50, 662
extname method

class File 446

F
$F variable 168, 321
-F pattern (Ruby option)

168, 319
$-F variable 320
Factory method 34
fail method

module Kernel 106, 501
FALSE constant 322
false constant 87, 321, 326
FalseClass class 443

& 443
^ 443
| 443

Fcntl module 488, 656
fcntl method

class IO 488
FD (file descriptor) 486
Feedback, e-mail address xxii
fetch method

class Array 412
class Hash 475

Fibonacci series (fib_up_to)
47

Field separator see $;
__FILE__ constant 322
File

associations under Windows
254

and blocks 120
descriptor 486
directory operations see Dir

class
directory traversal 658
expanding names 446, 447
FNM_NOESCAPE 447
including source 117, 168,

172
lock modes 455f
match modes 447f
modes 483f
open modes 451f
opening 120
owner 445, 454, 458, 460,

461
pathname 449f, 482, 693
permission 444, 453
reading 121
temporary 720
tests 510
writing 123

File class 119, 444, 462, 660,
693

atime 444, 454
basename 444
blockdev? 445
chardev? 445
chmod 445, 454
chown 445, 454
ctime 445, 454
delete 445
directory? 446
dirname 446
executable? 446
executable_real? 446

Prepared exclusively for Margus Pau

FILE TRANSFER PROTOCOL 774 Float CLASS

exist? 446
exists? 446
expand_path 446
extname 446
file? 447
flock 454
fnmatch 430, 447
fnmatch? 448
ftools extension 660
ftype 448
grpowned? 448
join 448
lchmod 448, 454
lchown 449, 454
link 449
lstat 449, 455
mtime 449, 455
new 120, 449
open 51, 120, 450
owned? 450
path 455
pipe? 450
readable? 450
readable_real? 450
readlink 450
rename 451
setgid? 451
setuid? 451
size 451
size? 451
socket? 452
split 452
stat 452
sticky? 452
symlink 452
symlink? 452
truncate 452, 455
umask 453
unlink 453
utime 453
writable? 453
writable_real? 453
zero? 453

File Transfer Protocol see
Network protocols, FTP

File, reading 701
File::Stat class 456

<=> 456
atime 456
blksize 456
blockdev? 456
blocks 457
chardev? 457
ctime 457

dev 457
dev_major 457
dev_minor 457
directory? 457
executable? 458
executable_real? 458
file? 458
ftype 458
gid 458
grpowned? 458
ino 458
mode 458
mtime 459
nlink 459
owned? 459
pipe? 459
rdev 459
rdev_major 459
rdev_minor 459
readable? 459
readable_real? 460
setgid? 460
setuid? 460
size 460
size? 460
socket? 460
sticky? 460
symlink? 461
uid 461
writable? 461
writable_real? 461
zero? 461

file? method
class File::Stat 458
class File 447

$FILENAME variable 321
fileno method

class IO 488
FileTest module 462, 693
FileUtils module 657, 730
fill method

class Array 412
Find module 658
find method

module Enumerable 434
find_all method

module Enumerable 434
find_library method

module mkmf 285, 757
Finger client 125
finite? method

class Float 467
first method

class Array 412

class Range 578
Fixnum class 55, 463, 671

% 463
& 463

* 463

** 463
+ 463
- 463
-@ 463
/ 463
<=> 463
<< 463
>> 463
[] 464
^ 463
| 463
~ 463
abs 464
Arithmetic operations

463
Bit operations 463
div 464
divmod 464
id2name 464
literal 55, 304
modulo 464
quo 464
range of 55
size 465
to_f 465
to_s 465
to_sym 465
zero? 465

flatten method
class Array 412

flatten! method
class Array 413

Float class 56, 466
% 466

* 466

** 466
+ 466
- 466
-@ 466
/ 466
<=> 466
== 467
abs 467
Arithmetic operations

466
ceil 467
divmod 467
eql? 467
finite? 467

Prepared exclusively for Margus Pau

Float METHOD 775 gmt? METHOD

floor 467
infinite? 468
literal 56, 305
modulo 468
nan? 468
round 468
to_f 468
to_i 468
to_int 468
to_s 469
truncate 469
zero? 469

Float method
module Kernel 495, 600

flock method
class File 454

floor method
class Float 467
class Integer 480
class Numeric 544

flush method
class IO 488

FNM_xxx
filename match constants

447
fnmatch method

class File 430, 447
fnmatch? method

class File 448
for...in loop 97, 329, 651
for_fd method

class BasicSocket 741
class IO 483

foreach method
class Dir 429
class IO 123, 483

Fork see Process
fork method

class Thread 613
module Kernel 141, 142,

501
module Process 563

format method
module Kernel 502

Forms see CGI programming,
forms

Forms (Web) 224
Fortran, documentation 187n
Forwardable module 659
Forwarding 646, 659
Fowler, Chad xxiii, 203
freeze method

class Object 162, 377, 548
class ThreadGroup 620

frexp method
module Math 520

frozen? method
class Object 549

fsync method
class IO 488

ftools library 660
FTP see Network protocols,

FTP
FTP site for Ruby 2
ftype method

class File::Stat 458
class File 448

Funaba, Tadayoshi 373
Function see Method
Function pointer 389

G
Garbage collection 353, 470,

557, 732
internals 271

garbage_collect method
module GC 470
module ObjectSpace 558

GC module 470
disable 470
enable 470
garbage_collect 470
start 470

GDBM class 661
gdbm 645, 661
Gelernter, David 706
Gem see RubyGems
gem_server 208
gemspec 212–214
General delimited string 303
Generator class 662
Generator library 50
Geometry management 246
get method 678
getaddress method

class IPSocket 747
getaddrinfo method

class Socket 744
getc method

class IO 489
getegid method

module Process::Sys 573
geteuid method

module Process::Sys 573
getgid method

module Process::Sys 573
getgm method

class Time 624
gethostbyaddr method

class Socket 744
gethostbyname method

class Socket 744
class TCPSocket 748

gethostname method
class Socket 744

getlocal method
class Time 624

getnameinfo method
class Socket 745

GetoptLong class 663
getpeername method

class BasicSocket 741
getpgid method

module Process 563
getpgrp method

module Process 563
getpriority method

module Process 564
gets method

class IO 489
module Kernel 320, 502

getservbyname method
class Socket 745

getsockname method
class BasicSocket 741

getsockopt method
class BasicSocket 741

Getter method 27
getuid method

module Process::Sys 573
getutc method

class Time 624
getwd method

class Dir 429
gid method

class File::Stat 458
module Process 564

gid= method
module Process 564

GIF 246, 250
Glob see File, expanding names
glob method

class Dir 430
Global variables see Variables
global_variables method

module Kernel 502
gm method

class Time 621
GMT 621
gmt? method

class Time 624

Prepared exclusively for Margus Pau

gmt_offset METHOD 776 -Idirectories (RUBY OPTION)

gmt_offset method
class Time 624

gmtime method
class Time 624

gmtoff method
class Time 625

GNU readline 702
Google

developer key 238
Web API 238
WSDL 239

Granger, Michael 206
grant_privilege method

module Process::GID 568
module Process::UID 575

Graphic User Interface see GUI
programming

Greedy patterns 69
Greenwich Mean Time 621
grep method

module Enumerable 434
group method

class Thread 615
Grouping (regular expression)

69
groups method

module Process 564, 565
groups= method

module Process 564, 565
grpowned? method

class File::Stat 458
class File 448

GServer class 664
gsub method

class String 70, 311, 592
module Kernel 502

gsub! method
class String 311, 593
module Kernel 502

GUI programming 241–252,
726

callback from widget 243
events 246
geometry management 246
scrolling 249
widgets 242–245

GZip compression 738

H
-h, --help (Ruby option) 168
has_key? method

class CGI 225
class Hash 475

has_value? method
class Hash 475

Hash 42
creating 43
default value 16
indexing 43
key requirements 308
literal 15, 307
as method parameter 79, 333

Hash class 357, 471
== 472
[] 471, 472
[]= 472
=> 43
clear 472
default 473
default= 473
default_proc 473
delete 473
delete_if 474
each 474
each_key 474
each_pair 474
each_value 474
empty? 474
fetch 475
has_key? 475
has_value? 475
include? 475
index 475
indexes 476
indices 476
invert 476
key? 476
keys 476
length 476
member? 476
merge 476
merge! 477
new 471
rehash 308, 477
reject 477
reject! 477
replace 357, 477
select 478
shift 478
size 478
sort 478
store 478
to_a 478
to_hash 478
to_s 478
update 479
value? 479

values 479
values_at 479

Hash functions 647
hash method

class Object 549
have_func method

module mkmf 286, 757
have_header method

module mkmf 285, 757
have_library method

module mkmf 285, 757
head method 678
Heading, RDoc 193
Here document 58, 306
Hex notation 55, 304
hex method

class String 593
Hintze, Clemens 314
HOME 172, 428, 446
Hook 391
hour method

class Time 625
Howard, Ara T. 699
HTML see CGI programming
HTML, documentation 187
HTTP see Network protocols,

HTTP
HTTPS protocol 688
Hyperlink in documentation

192
hypot method

module Math 520

I
/i regexp option 309
-i [extension] (Ruby option)

168, 321
-I directories (Ruby option)

168, 320
$-I variable 321
$-i variable 321
Ichikawa, Itaru 684
Iconv class 665
id method

class Object 549
id2name method

class Fixnum 464
class Symbol 610

Identifier
object ID 10, 386
see also Variable

IEEE floating point 466
-Idirectories (Ruby option)

173

Prepared exclusively for Margus Pau

if EXPRESSION 777 IO CLASS

if expression 90, 328
as modifier 91, 328

IGNORECASE (Regexp constant)
579

Igpay atinlay see Pig latin
in (for loop) 329
In-place edit mode 168
:include: (RDoc) 194
include method 112

class Module 340, 535
include? method

class Array 413
class Hash 475
class Module 528
class Range 578
class String 593
module Enumerable 434

included method
class Module 535

included_modules method
class Module 528

Including source files see File,
including source

Incremental development 162
Indentation 12
index method

class Array 413
class Hash 475
class String 311, 593

indexes method
class Array 413
class Hash 476

Indexing
array 41
hash 43

indices method
class Array 413
class Hash 476

infinite? method
class Float 468

Inheritance 25, 337
and access control 376
method lookup 334, 363
single versus multiple 28

see also Delegation;
Module, mixin

inherited method
class Class 392, 424

initgroups method
module Process 564

initialize method 23, 35,
338

class Object 554
initialize_copy method

class Object 275, 549
inject method 49

module Enumerable 49,
113, 435

ino method
class File::Stat 458

Input/Output see I/O
insert method

class Array 413
class String 594

inspect method
class Object 549, 694
class Regexp 581
class Symbol 611

Installation script 657, 730
Installing Ruby 2
Instance

class instance method see
Object

method method see Method
variable see Variable

instance_eval method
class Object 549

instance_method method
class Module 528, 630

instance_methods method
class Module 529

instance_of? method
class Object 550

instance_variable_get
method

class Object 550
instance_variable_set

method
class Object 550

instance_variables method
class Object 550

Integer class 357, 480, 671
ceil 480
chr 480
downto 96, 480
floor 480
integer? 480
next 480
round 480
succ 481
times 96, 481
to_i 481
to_int 481
truncate 481
upto 96, 481

see also Fixnum, Bignum
Integer method

module Kernel 357, 495

integer? method
class Integer 480
class Numeric 544

Interactive Ruby see irb
Intern see Symbol
intern method

class String 594
Internal iterator 50
Internet see Network protocols
Internet Mail Access Protocol

(IMAP) see Network
protocols, IMAP

Interval see Range
Introspection see Reflection
Inverse, matrix 673
invert method

class Hash 476
Invoking see Method, calling
IO class 119, 357, 482, 655,

708, 714, 715
<< 124, 486
binmode 486
clone 486
close 486
close_read 486
close_write 487
closed? 487
each 487
each_byte 122, 487
each_line 122, 488
eof 488
eof? 488
expect 655, 699
fcntl 488
fileno 488
flush 488
for_fd 483
foreach 123, 483
fsync 488
getc 489
gets 489
ioctl 489
isatty 489
lineno 489
lineno= 490
new 483
open 484
pid 490
pipe 141, 484
popen 140, 484
pos 490
pos= 490
print 490
printf 491

Prepared exclusively for Margus Pau

I/O 778 Kernel MODULE

putc 491
puts 491
read 485, 491
readbytes 701
readchar 491
readline 491
readlines 485, 492
ready? 666
reopen 357, 492
rewind 492
seek 492
select 357, 486
stat 492
StringIO 715
sync 493
sync= 493
sysopen 486
sysread 493
sysseek 493
syswrite 493
tell 494
to_i 494
to_io 494
tty? 494
ungetc 494
wait 666
write 494

I/O 119–126
binary data 123
buffering problems 161

see also classes File, IO,
and Network Protocols

io/wait library 666
ioctl method

class IO 489
Iowa, Web framework 226
IP address representation 667
IP, IPv4, IPv6 see Network

protocols
IPAddr class 667
IPSocket class 714, 747

addr 747
getaddress 747
peeraddr 747
recvfrom 747

irb 5, 156, 174–185
commands 183
configuration 179
extending 180
load files into 176
options 175f
prompt 179, 184
adding ri 180
subsession 177

tab completion 176
.irbrc, _irbrc, irb.rc,

$irbrc 179
is_a? method

class Object 550
isatty method

class IO 489
isdst method

class Time 625
ISO 8601 date 692, 724
issetugid method

module Process::Sys 573
Iterator 19, 46, 95

on arbitrary method 651
in extension 297
external, internal 50, 662
for reading files 122
see also Block

iterator? method
module Kernel 503

J
JavaSpaces see Distributed

Ruby
jcode library 668
JINI see Distributed Ruby
JIS 302, 665, 668, 684
join method

class Array 415
class File 448
class Thread 129, 615

JSP see eruby
Jukebox example 23–32, 52–54,

270–279

K
-K kcode (Ruby option) 169,

321
$-K variable 321
Kanji 684
$KCODE variable 309, 638, 668
kcode method

class Regexp 581
Kellner, Robert 722
Kernel module 495

` (backquote) 83, 140,
495

abort 496
alias_method 391
Array 495
at_exit 496
autoload 496
autoload? 497

binding 390, 423, 497
block_given? 51, 334, 497
callcc 427, 497
caller 107, 393, 394, 497
catch 99, 108, 347, 498
chomp 498
chomp! 498
chop 499
chop! 499
eval 389, 423, 499
exec 141, 485, 500
exit 170, 441, 500
exit! 501
fail 106, 501
Float 495, 600
fork 141, 142, 501
format 502
gets 320, 502
global_variables 502
gsub 502
gsub! 502
Integer 357, 495
iterator? 503
lambda 53, 343, 345, 503,

560
load 172, 320, 380, 503
local_variables 503
loop 96, 503
method_missing 334, 362
open 126, 504, 686
p 505
pp 694
print 320, 505
printf 320, 505
proc 343, 345, 506
putc 506
puts 506
raise 106, 345, 506
rand 506
readline 320, 506
readlines 507
require 172, 320, 507, 526
scan 507
scanf 708
select 507
set_trace_func 393, 423,

508, 728
singleton_method_added

392
singleton_method_

removed
392

Prepared exclusively for Margus Pau

key? METHOD 779 LIBRARY

singleton_method_
undefineded
392

sleep 508
split 168, 508
sprintf 508
srand 509
String 495
sub 509
sub! 509
syscall 509
system 140, 509
test 510
throw 108, 347, 510
trace_var 511
trap 142, 513
untrace_var 513
warn 169, 321, 513

see also Object class
key? method

class Hash 476
class Thread 616

keys method
class Hash 476
class Thread 616

Keyword argument 79
Keywords 314
kill method

class Thread 613, 616
module Process 564

kind_of? method
class Object 551

L
-l (Ruby option) 169, 321
$-l variable 321
lambda method

module Kernel 53, 343,
345, 503, 560

last method
class Array 415
class Range 578

last_match method
class Regexp 579

last_modified method 686
Latent types see Duck typing
Layout, source code 302
lchmod method

class File 448, 454
lchown method

class File 449, 454
ldexp method

module Math 520

LDFLAGS (mkmf) 756
Leap seconds 626n
Leap year 92
length method

class Array 415
class Hash 476
class MatchData 517
class String 594
class Struct 608

Library
Abbrev 634
Base64 635
Benchmark 636
BigDecimal 637
BigMath 637
CGI 638
CGI::Session 640
Complex 641
CSV 642
CSV::Row 642
Curses 643
Date 644
DateTime 644
DBM 645
Delegator 646
Digest 647
DL 259, 648
DRb 649
English 650
Enumerator 651
ERB 652
expect 655
Fcntl 656
FileUtils 657
Find 658
Forwardable 659
ftools 660
GDBM 661
Generator 50, 662
GetoptLong 663
GServer 664
Iconv 665
io/wait 666
IPAddr 667
jcode 668
Logger 669
Mail 670
mathn 182, 671, 700
Matrix 673
mkmf 755
Monitor 674
monitor 134
MonitorMixin 674
Mutex 675

Mutex_m 676
net/http 128
Net::FTP 677
Net::HTTP 678
Net::IMAP 680
Net::POP3 681
Net::SMTP 682
Net::Telnet 683
NKF 684
Observable 685
open-uri 126, 686
Open3 687
OpenSSL 688
OpenStruct 689
OptionParser 690
ParseDate 692
Pathname 693
PP 694
PrettyPrint 695
profile 163, 696
Profiler__ 697
PStore 698
PTY 699
Queue 722
Rational 700
readbytes 701
Readline 702
readline 155, 176, 182
resolv 703
resolv-replace 703
REXML 704
Rinda 706
RSS 707
scanf 708
SDBM 709
Set 710
Shellwords 711
SimpleDelegator 646
Singleton 712
SizedQueue 722
SOAP 713
Socket 714
standard 632–738
StringIO 715
StringScanner 716
Sync 717
SyncEnumerator 662
Syslog 719
Tempfile 720
Test::Unit 721
thread 133, 137
ThreadsWait 723
time 724
Timeout 725

Prepared exclusively for Margus Pau

lib/ DIRECTORY 780 Math MODULE

Tk 726
tmpdir 720, 727
tracer 728
TSort 729
un 730
URI 731
Vector 673
WeakRef 732
WEBrick 733
Win32API 254, 734
WIN32OLE 255, 735
XMLRPC 736
YAML 397, 514, 633, 737
Zlib 738
see also RubyGems

lib/ directory 282
Linda see Distributed Ruby,

Rinda
Line continuation 302
Line separator see End of line
lineno method

class IO 489
lineno= method

class IO 490
link method

class File 449
List see Array

RDoc 192
list method

class ThreadGroup 620
class Thread 613
module Signal 583

listen method
class Socket 746

Listener see Observer
Literal

array 307
ASCII 56, 305
Bignum 55, 304
Fixnum 55, 304
Float 56, 305
hash 307
range 62, 307
regular expression 64, 309
String 57, 305
symbol 308

ljust method
class String 594

_load 396, 514
load method 112, 117

module Kernel 172, 320,
380, 503

module Marshal 395, 396,
515

$LOAD_PATH variable 152, 168,
175, 209–211, 213, 216,
321

Local variable see Variable
local method

class Time 622
local_variables method

module Kernel 503
localtime method

class Time 625
Locking see File class, flock
Locking (file) 454
log method

module Math 520
log10 method

module Math 520
LOGDIR 172, 428
Logger

system 719
Logger class 669
lookup_order= method

class BasicSocket 741
Loop 480, 481, 545

see also Iterator
loop method 96, 329

module Kernel 96, 503
lstat method

class File 449, 455
lstrip method

class String 594
lstrip! method

class String 594
Lvalue 84, 323

M
/m regexp option 309
Macdonald, Ian 240
Maeda, Shugo 229
Mail class 670
Mailing lists 759
:main: (RDoc) 195
Main program 376
main method

class Thread 613
MAJOR_VERSION (Marshal

constant) 515
MANIFEST file 287
MANT_DIG (Float constant) 466
map method

module Enumerable 435
map! method

class Array 415

Marshal module 395–397,
514–515

dump 395, 515
limitations 514
load 395, 396, 515
restore 515
see also YAML

marshal_dump method 396,
514

marshal_load method 514
match method

class Regexp 65, 73, 581
class String 595

MatchData class 65, 73, 516,
579, 581, 587

[] 516
begin 516
captures 516
end 517
length 517
offset 517
post_match 517
pre_match 517
select 517
size 517
string 518
to_a 518
to_s 518
values_at 518

see also $~
MatchingData class 516
Math module 519

acos 519
acosh 519
asin 519
asinh 519
atan 519
atan2 519
atanh 519
cos 519
cosh 519
erf 520
erfc 520
exp 520
frexp 520
hypot 520
ldexp 520
log 520
log10 520
sin 520
sinh 521
sqrt 521
tan 521
tanh 521

Prepared exclusively for Margus Pau

MATHN LIBRARY 781 Module CLASS

mathn library 182, 671, 700
Matrix class 673
Matsumoto, Yukihiro xviii, xix,

xxiii, 72
Matz see Matsumoto, Yukihiro
MAX (Float constant) 466
max method

module Enumerable 435
MAX_10_EXP (Float constant)

466
MAX_EXP (Float constant) 466
maxgroups method

module Process 565
maxgroups= method

module Process 565
mbox (e-mail file) 670
MD5 hash 647
mday method

class Time 625
member? method

class Hash 476
class Range 578
module Enumerable 435

members method
class Struct 606, 608

merge method
class Hash 476

merge! method
class Hash 477

Message
receiver 11
sending 10, 26

Message box, Windows 259
message method

class Exception 441
Meta character 56, 305
meta method 686
Metaclass 363, 365
Metaprogramming see

Reflection
Method 80

access control 35, 530, 532,
537, 538

aliasing 336
ambiguity 116
arguments 332
array parameter 78
block as parameter 75
call, in extension 295
calling 76, 333
calling dynamically 388
class 32, 368
defining 74, 75, 330
in extension 292

getter 27
instance 10
with iterator 389
keyword argument 79
module 111
naming 14, 74, 331
nested definition 75
nested method definition 331
object 389, 551
as operator 82
parameters 74, 75
private 76
renaming 391
return value 75, 77, 335
setter 29, 86
vs. variable name 314
variable-length arguments 75

Method class 389, 522, 534
== 522
[] 522
arity 522
call 389, 522
eql? 522
to_proc 523
unbind 523

Method module 630
method method

class Object 522, 551
method_added method

class Module 392, 536
method_defined? method

class Module 529
method_missing method

class Object 551
module Kernel 334, 362

method_removed method
class Module 392, 536

method_undefined method
class Module 392, 536

methods method
class Object 386, 552

Meyer, Bertrand 30
Microsoft Windows 253–260

accessing API 254, 734
automation 255, 735
file associations 254
installing Ruby 3, 759
message box 259
printing under 254
running Ruby 254
scripting see automation

(above)
MIN (Float constant) 466
min method

class Time 625
module Enumerable 435

MIN_10_EXP (Float constant)
466

MIN_EXP (Float constant) 466
MINOR_VERSION (Marshal

constant) 515
Mirroring, using CVSup 5
MixedCase 14, 313
Mixin see Module
mkdir method

class Dir 430
mkmf module 755

building extensions with 282
create_makefile 282, 757
dir_config 283, 757
enable_config 757
find_library 285, 757
have_func 286, 757
have_header 285, 757
have_library 285, 757

mkmf library 755
mktime method

class Time 622
mod_ruby 234

safe level 380
mode method

class File::Stat 458
Module 110–118

constant 111
creating extension see

Extend Ruby
defining 339
function 340
include 112
instance variable 115
load 112
as mixin 111, 340, 366
as namespace 110
naming 14
require 112
wrap 380

Module class 524
<, <=, >, >= 525
<=> 525
=== 525
alias_method 533
ancestors 365, 386, 526
append_features 533
attr 533
attr_accessor 534
attr_reader 534
attr_writer 534
autoload 526

Prepared exclusively for Margus Pau

Module MODULE 782 NAMING CONVENTIONS

autoload? 526
class_eval 526
class_variables 527
clone 527
const_defined? 527
const_get 527
const_missing 527
const_set 528
constants 524, 528
define_method 534
extend_object 392, 535
extended 535
include 340, 535
include? 528
included 535
included_modules 528
instance_method 528, 630
instance_methods 529
method_added 392, 536
method_defined? 529
method_removed 392, 536
method_undefined 392,

536
module_eval 530
module_function 340, 537
name 530
nesting 524
new 525
private 537
private_class_method

33, 530
private_instance_

methods
531

private_method_defined?
531

protected 538
protected_instance_

methods
531

protected_method_
defined?
531

public 538
public_class_method 532
public_instance_methods

532
public_method_defined?

532
remove_class_variable

538
remove_const 538
remove_method 538
undef_method 538

Module module
define_method 345

module_eval method
class Module 530

module_function method
class Module 340, 537

Modules
list of methods 405
Abbrev 634, 702
Base64 635
Benchmark 162, 390, 636
BigMath 637
Comparable 112, 426
Config 173
Curses 643
Date 621
Digest 647
DL 648
DRbUndumped 649
Enumerable 49, 113, 433,

651, 662
Enumerator 651
ERB::Util 653
Errno 104, 439, 440
Etc 654
Fcntl 488, 656
FileTest 462, 693
FileUtils 657, 730
Find 658
Forwardable 659
GC 470
Kernel 495
Marshal 514
Math 519
Method 630
mkmf 755
Monitor 674
MonitorMixin 136, 674
Mutex_m 133, 676
NKF 684
ObjectSpace 557
Observable 685
Open3 485, 687
ParseDate 621, 692
Process 142, 562, 573
Process::GID 568, 573
Process::Sys 573
Process::UID 573, 575
Profiler 696
Profiler__ 697
PTY 699
Readline 702
REXML 704
Rinda 706

RSS 707
Session 699
Shellwords 711
Signal 513, 583
SingleForwardable 659
Singleton 712
SOAP 713
Sync 133
Timeout 725
TSort 729
WEBrick 733
XMLRPC 736
Zlib 738

modulo method
class Bignum 421
class Fixnum 464
class Float 468
class Numeric 544

mon method
class Time 625

Monitor class 134, 136, 717,
722

Monitor module 674
monitor library 134
MonitorMixin module 136,

674
month method

class Time 625
mswin32 253
mtime method

class File::Stat 459
class File 449, 455

MULTILINE (Regexp constant)
579

Multiline mode (regexp) 309
Multiple inheritance 28

see also Module, mixin
Multithreading see Thread
Music on hold 758
Mutex class 675, 676
Mutex_m module 133, 676
Mutual exclusion see Thread,

synchronization
“My Way” 25

N
-n (Ruby option) 169
Nagai, Hidetoshi 568
Nakada, Nobuyoshi 684
name method

class Module 530
Namespace see Module
Naming conventions 14, 313

Prepared exclusively for Margus Pau

nan? METHOD 783 Object CLASS

file pathnames 482
method names 74
Test::Unit 153

nan? method
class Float 468

Native thread see Thread
ncurses see Curses
ndbm 645
Nested assignment 86
nesting method

class Module 524
net/http library 128
Net::FTP class 677
Net::HTTP class 678, 731
Net::IMAP class 680
Net::POP3 class 681
Net::SMTP class 682
Net::Telnet class 683
Network protocols

DNS 703
domain socket 753
finger 125
ftp 677, 686, 731

secure 688
generic server for 664
HTTP 678, 686, 731
HTTPS 688, 731
IMAP 680
IP 747
IP address representation

667
IPv4/IPv6 667
LDAP 731
POP 681
server 750, 754
SMTP 682
socket 125, 714, 741, 743
SOCKS 749
TCP 748
telnet 683
UDP 751

new method
see also Constructor

new method
class Array 406
class Class 338, 424, 425
class Dir 430
class Exception 440
class File 120, 449
class Hash 471
class IO 483
class Module 525
class Proc 503, 559
class Range 577

class Regexp 579
class Socket 745
class SOCKSSocket 749
class String 585
class Struct 605, 606
class TCPServer 750
class TCPSocket 748
class ThreadGroup 619
class Thread 128, 613
class Time 622
class UDPSocket 751
class UNIXServer 754
class UNIXSocket 753

Newline (\n) 12, 306
Newsgroup 759
next 98, 330, 342
next method

class Integer 480
class String 595

next! method
class String 595

nfk method
module NKF 684

NIL constant 322
nil constant 14, 87, 321, 326
nil? method

class NilClass 540
class Object 552

NilClass class 540
& 540
^ 540
| 540
nil? 540
to_a 540
to_f 540
to_i 540
to_s 540

nitems method
class Array 415

NKF module 684
nfk 684

nlink method
class File::Stat 459

No-wait mode I/O 666
:nodoc: (RDoc) 194
nonzero? method

class Numeric 544
not (logical not) 88, 326
Notation xxiv

binary, decimal, hex, octal
55, 304

notify_observers method
module Observable 685

:notnew: (RDoc) 194

now method
class Time 622

NTP (Network Time Protocol)
683

Numbers, unifying 671
Numeric class 541, 641

+@ 541
-@ 541
<=> 541
abs 541
ceil 541
coerce 358, 541
div 542
divmod 544
eql? 544
floor 544
integer? 544
mathn 671
modulo 544
nonzero? 544
quo 545
Rational 700
remainder 545
round 545
step 96, 545
to_int 545
truncate 545
zero? 545

O
/o regexp option 309
OBJ_FREEZE 298
OBJ_FROZEN 299
OBJ_TAINT 298
OBJ_TAINTED 298
Object 10

aliasing 38, 161, 315
allocation 273
creation 23, 338, 391
extending 365, 368
finalizer 557
freezing 377
ID 10, 386
immediate 265, 385, 463
listing active 385
listing methods in 386
object_id 557
persistence 698
tainting 381

Object class 27, 376, 546
== 546
=== 546
=~ 546

Prepared exclusively for Margus Pau

OBJECT-ORIENTED TERMINOLOGY 784 PATTERN

__id__ 546
__send__ 546
class 354, 546
clone 274, 547
display 547
dup 274, 547
eql? 547
equal? 548
extend 366, 368, 548
freeze 162, 377, 548
frozen? 549
hash 549
id 549
initialize 554
initialize_copy 275, 549
inspect 549, 694
instance_eval 549
instance_of? 550
instance_variable_get

550
instance_variable_set

550
instance_variables 550
is_a? 550
kind_of? 551
method 522, 551
method_missing 551
methods 386, 552
nil? 552
object_id 552
private_methods 552
protected_methods 552
public_methods 553
remove_instance_

variable
555

respond_to? 386, 553
send 553
singleton_method_added

555
singleton_method_

removed
556

singleton_method_
undefined
556

singleton_methods 553
taint 554
tainted? 554
to_a 554
to_s 24, 554
to_str 266
type 354, 554
untaint 554

see also Kernel module
Object-oriented terminology 9
object_id method

class Object 552
ObjectSpace module 557

_id2ref 557
define_finalizer 557
each_object 365, 385, 387,

557
garbage_collect 558
undefine_finalizer 558

Observable module 685
add_observer 685
changed 685
changed? 685
count_observers 685
delete_observer 685
delete_observers 685
notify_observers 685

Observer pattern 685
oct method

class String 595
Octal notation 55, 304
offset method

class MatchData 517
OLE see Microsoft Windows,

automation
olegen.rb 258
once example 374
Once option (regexp) 309
One-Click Installer 3, 253, 759
OO see Object-oriented
open method

class Dir 431
class File 51, 120, 450
class IO 484
class Socket 745
class SOCKSSocket 749
class TCPServer 750
class TCPSocket 748
class UDPSocket 751
class UNIXServer 754
class UNIXSocket 753
module Kernel 126, 504,

686
open-uri library 126, 686
Open3 module 485, 687
OpenSSL library 688
OPENSSL_CONF 172
OpenStruct class 605, 689
Operating system errors 439
Operator

as method call 82, 335
precedence 324

Optimizing see Performance
Option, command line see

Command line
OptionParser class 690
options method

class Regexp 581
or (logical or) 88, 326
owned? method

class File::Stat 459
class File 450

Ownership, file see File, owner

P
-p (Ruby option) 169, 321
p method

module Kernel 505
$-p variable 321
pack method

class Array 123, 414, 415
pack_sockaddr_in method

class Socket 745
pack_sockaddr_un method

class Socket 745
Packaging see RubyGems
pair method

class Socket 745
Paragraph mode 168
Parallel assignment 85, 325
Parameter

default 74
to block 19

params method
class CGI 224

Parent-child 25
Parse error 159
ParseDate module 621, 692

parsedate 622
see also Time class and
library

parsedate method
module ParseDate 622

partition method
module Enumerable 436

pass method
class Thread 614

PATH 169
path method

class Dir 431
class File 455
class UNIXSocket 753

Pathname see File, pathname
Pathname class 693
Pattern see Regular expression

Prepared exclusively for Margus Pau

PATTERNS 785 Process MODULE

Patterns
factory 34
observer 685
singleton 33, 712

peeraddr method
class IPSocket 747
class UNIXSocket 753

Performance 162, 353, 636
caching method values 373
CGI 234
dynamic method invocation

390
profiling 163, 696, 697
windows automation 258

Perl/Tk see GUI programming
Perlisms 22, 72, 94
Permission see File, permission
Persistent object storage 698
PHP see eruby
PI (Math constant) 519
pid method

class IO 490
class Process::Status 571
module Process 565

Pig latin 140, 245
Pipe see IO.pipe, IO.popen
pipe method

class IO 141, 484
pipe? method

class File::Stat 459
class File 450

pop method
class Array 416

popen method
class IO 140, 484

pos method
class Dir 431
class IO 490

pos= method
class Dir 432
class IO 490

POSIX
character classes 67
error codes 104

POSIXLY_CORRECT 663
Post Office Protocol (POP) see

Network protocols, POP
post method 678
post_match method

class MatchData 517
PP class 694
pp method

module Kernel 694
ppid method

module Process 565
Pragmatic Programmer

e-mail address xxii
Pre-defined variables see

Variables
pre_match method

class MatchData 517
Precedence

do...end vs {} 160, 341
of operators 324

Pretty printing 694, 695
pretty_print method 694
PrettyPrint class 505, 694,

695
Print

under Windows 254
print method

class IO 490
module Kernel 320, 505

printf method
class IO 491
module Kernel 320, 505

PRIO_PGRP (Process constant)
562

PRIO_PROCESS (Process
constant) 562

PRIO_USER (Process constant)
562

priority method
class Thread 616

priority= method
class Thread 617

Private see Access control
private method 36

class Module 537
private_class_method

method
class Module 33, 530

private_instance_methods
method

class Module 531
private_method_defined?

method
class Module 531

private_methods method
class Object 552

Proc class 53, 76, 342, 344,
357, 523, 534, 559

== 559
[] 559
arity 559
binding 560
call 560
new 503, 559

to_proc 561
to_s 561

proc method
module Kernel 343, 345,

506
return from 345
and safe level 381

Process 139–142
block 142
creating 139, 482, 485, 504,

687
exec 500
ID (see also $$) 490
priority 564, 566
Ruby subprocess 141, 142,

482, 485, 687
setting name 320
termination 142, 170, 496,

501, 563, 566
times 609

Process module 142, 562, 573
abort 562
detach 562
egid 563
egid= 563
euid 563
euid= 563
exit 563
exit! 563
fork 563
getpgid 563
getpgrp 563
getpriority 564
gid 564
gid= 564
groups 564, 565
groups= 564, 565
initgroups 564
kill 564
maxgroups 565
maxgroups= 565
pid 565
ppid 565
setpgid 565
setpgrp 565
setpriority 566
setsid 566
times 566, 609
uid 566
uid= 566
wait 141, 566
wait2 567
waitall 566
waitpid 567

Prepared exclusively for Margus Pau

Process::GID MODULE 786 rb_ary_new3

waitpid2 567
Process::GID module 568,

573
change_privilege 568
eid 568
eid= 568
grant_privilege 568
re_exchange 568
re_exchangeable? 568
rid 568
sid_available? 568
switch 569

Process::Status class 142,
566, 567, 570

& 570
== 570
>> 570
coredump? 570
exited? 571
exitstatus 571
pid 571
signaled? 571
stopped? 571
stopsig 571
success? 571
termsig 572
to_i 572
to_int 572
to_s 572

Process::Sys module 573
getegid 573
geteuid 573
getgid 573
getuid 573
issetugid 573
setegid 573
seteuid 573
setgid 573
setregid 573
setresgid 574
setresuid 574
setreuid 574
setrgid 574
setruid 574
setuid 574

Process::UID module 573,
575

change_privilege 575
eid 575
eid= 575
grant_privilege 575
re_exchange 575
re_exchangeable? 575
rid 575

sid_available? 575
switch 575

profile library 163, 696
Profiler 163
Profiler module 696
Profiler__ module 697
Program see Process
Protected see Access control
protected method 36

class Module 538
protected_instance_

methods
method

class Module 531
protected_method_defined?

method
class Module 531

protected_methods method
class Object 552

Protocols 356
Pseudo terminal 699
PStore class 698
PTY module 699
Public see Access control
public method 36

class Module 538
public_class_method method

class Module 532
public_instance_methods

method
class Module 532

public_method_defined?
method

class Module 532
public_methods method

class Object 553
Publish/subscribe 685
push method

class Array 416
putc method

class IO 491
module Kernel 506

puts method
class IO 491
module Kernel 506

pwd method
class Dir 431

Q
qdbm 645
Queue class 133, 137, 722
quo method

class Bignum 421

class Fixnum 464
class Numeric 545

quote method
class Regexp 580

Quoting
characters in regexp 66, 579
URLs and HTML 223

R
-r (Ruby option) 730
-r library (Ruby option)

169
Race condition 129
RADIX (Float constant) 466
Radix see to_s methods,

Kernel.Integer,
String#to_i

Rails, Web framework 240
raise method

class Thread 617
module Kernel 106, 345,

506
Rake 217
Rake (build tool) 204
rand method

module Kernel 506
Range 62

as condition 64, 89, 94, 327
as interval 64
literal 62, 307
as sequence 62

Range class 63, 307, 576
== 577
=== 577
begin 577
each 577
end 577
eql? 578
exclude_end? 578
first 578
include? 578
last 578
member? 578
new 577
step 578

Rank, matrix 673
rassoc method

class Array 416
Rational class 671, 700
rb_apply 295
rb_ary_entry 300
rb_ary_new 299
rb_ary_new2 299
rb_ary_new3 299

Prepared exclusively for Margus Pau

rb_ary_new4 787 readchar METHOD

rb_ary_new4 299
rb_ary_pop 299
rb_ary_push 299
rb_ary_shift 299
rb_ary_store 299
rb_ary_unshift 300
rb_block_given_p 297
rb_bug 296
rb_call_super 295
rb_catch 297
rb_create_new_instance

295
rb_cv_get 298
rb_cv_set 298
rb_cvar_defined 298
rb_cvar_get 298
rb_cvar_set 298
rb_define_alias 293
rb_define_alloc_func 293
rb_define_attr 295
rb_define_class 291
rb_define_class_under 291
rb_define_class_variable

294
rb_define_const 294
rb_define_global_const

294
rb_define_global_function

293
rb_define_hooked_variable

294
rb_define_method 293
rb_define_module 291
rb_define_module_function

293
rb_define_module_under

292
rb_define_readonly_

variable
294

rb_define_singleton_
method
293

rb_define_variable 294
rb_define_virtual_

variable
294

rb_each 297
rb_ensure 296
rb_exit 296
rb_extend_object 292
rb_fatal 296
rb_funcall 295
rb_funcall2 295

rb_funcall3 295
rb_global_variable 295
rb_gv_get 298
rb_gv_set 298
rb_hash_aref 300
rb_hash_aset 300
rb_hash_new 300
rb_id2name 295
rb_include_module 292
rb_intern 295
rb_iter_break 297
rb_iterate 297
rb_iv_get 297
rb_iv_set 298
rb_ivar_get 298
rb_ivar_set 298
rb_load_file 290
rb_notimplement 296
rb_obj_is_instance_of 300
rb_obj_is_kind_of 300
rb_protect 296
rb_raise 296
rb_require 292
rb_rescue 296
rb_respond_to 300
rb_safe_level 299
rb_scan_args 293
rb_secure 299
rb_set_safe_level 299
rb_str_cat 300
rb_str_concat 300
rb_str_dup 300
rb_str_new 300
rb_str_new2 300
rb_str_split 300
rb_struct_aref 292
rb_struct_aset 292
rb_struct_define 292
rb_struct_new 292
rb_sys_fail 296
rb_thread_create 300
rb_throw 297
rb_undef_method 293
rb_warn 297
rb_warning 297
rb_yield 297
rbconfig.rb 173
rbconfig.rb see Config

module
rdev method

class File::Stat 459
rdev_major method

class File::Stat 459
rdev_minor method

class File::Stat 459
RDoc 7, 187–200

C extensions 195
:call-seq: 194, 197
comment format 187–193
:doc: 194
Document-class: 197
Document-method: 197
documentation modifiers

193
embedding in Ruby 187
:enddoc: 195
heading 193
hyperlink 192
:include: 194
lists 192
:main: 195
:nodoc: 194
:notnew: 194
including README 199
generate ri documentation

200
for RubyGems 207
rules 193
running 199
:startdoc: 195
:stopdoc: 195
templates 227
:title: 195
yield parameters 193
:yields: 194

RDoc::usage method 201
RDoc::usage_no_exit method

201
rdtool 303
re_exchange method

module Process::GID 568
module Process::UID 575

re_exchangeable? method
module Process::GID 568
module Process::UID 575

read method
class Dir 432
class IO 485, 491

readable? method
class File::Stat 459
class File 450

readable_real? method
class File::Stat 460
class File 450

readbytes library 701
readbytes method

class IO 701
readchar method

Prepared exclusively for Margus Pau

Readline MODULE 788 round METHOD

class IO 491
Readline module 702
readline library 155, 176, 182
readline method

class IO 491
module Kernel 320, 506

readlines method
class IO 485, 492
module Kernel 507

readlink method
class File 450

README 199
ready? method

class IO 666
REALLOC_N 280
Really Simple Syndication 707
Receiver 11, 76, 334, 362
Record separator see $/
recv method

class BasicSocket 742
recvfrom method

class IPSocket 747
class Socket 746
class UDPSocket 752
class UNIXSocket 753

redo 98, 330
Reference

to object 37
weak 732

Reflection 384–395
callbacks 392

Regexp class 72, 579
== 580
=== 580
=~ 580
~ 580
casefold? 581
compile 579
escape 579
inspect 581
kcode 581
last_match 579
match 65, 73, 581
new 579
options 581
quote 580
source 581
to_s 582

Regular expression 64–73,
309–313

alternation 69
anchor 66
character class 67
as condition 327

extensions 311
greedy 69
grouping 69
literal 64, 309
nested 312
object-oriented 72
options 309, 312, 579
pattern match variables 319
quoting within 66
repetition 68
substitution 70, 593

rehash method
class Hash 308, 477

reject method
class Hash 477
module Enumerable 416,

436
reject! method

class Array 416
class Hash 477

remainder method
class Bignum 422
class Numeric 545

Remote Procedure Call see
Distributed Ruby, SOAP,
XMLRPC

remove_class_variable
method

class Module 538
remove_const method

class Module 538
remove_instance_variable

method
class Object 555

remove_method method
class Module 538

rename method
class File 451

reopen method
class IO 357, 492

replace method
class Array 416
class Hash 357, 477
class String 595

require method 112, 117
loading extensions 264
module Kernel 172, 320,

507, 526
require_gem 208
rescue 102, 346, 439
Reserved words 314
resolv library 703
resolv-replace library 703
respond_to? method

class Object 386, 553
restore method

module Marshal 515
retry

in exceptions 106, 107, 347
in loops 99, 330

return
from block 344
from lambda/proc 345
from Proc 344

see also Method, return
value

reverse method
class Array 416
class String 595

reverse! method
class Array 416
class String 595

reverse_each method
class Array 417

rewind method
class Dir 432
class IO 492

REXML module 704
RFC 2045 (base 64) 635
RFC 2396 (URI) 731
RFC 2616 (HTTP) 724
RFC 2882 (e-mail) 724
.rhtml (eruby) 230
RI 8, 202
ri 7, 187–200

add to irb 180
directories 200
sample output 191
see also RDoc

Rich Site Summary 707
rid method

module Process::GID 568
module Process::UID 575

Rinda module 706
rinda see Distributed Ruby
rindex method

class Array 417
class String 595

RIPEMD-160 hash 647
rjust method

class String 596
rmdir method

class Dir 431
RMI see Distributed Ruby
Roll, log files 669
Roman numerals 143

example 356
round method

Prepared exclusively for Margus Pau

ROUNDS (FLOAT CONSTANT) 789 setpgid METHOD

class Float 468
class Integer 480
class Numeric 545

ROUNDS (Float constant) 466
RPM installation 2
RSS module 707
RSTRING macro 266
rstrip method

class String 596
rstrip! method

class String 596
rtags 185
Ruby

debugger 155
distributed 398–399
download 759
embed in application 287
installing 2, 284
language reference 302–348
and Perl 22, 72, 94
versions xx
Web sites xxii, 758
ports to Windows 253

ruby (mkmf) 756
Ruby Documentation Project 8,

759
Ruby mode (emacs) 157
Ruby On Rails 240
Ruby Production Archive (RPA)

759
ruby-doc.org 8
ruby-mode.el 157
ruby.exe and rubyw.exe 254
ruby_finalize 290
ruby_init 290
ruby_init_loadpath 290
ruby_options 290
ruby_run 290
ruby_script 290
RUBY_TCL_DLL 172
RUBY_TK_DLL 172
RUBY_PLATFORM constant 322
RUBY_PLATFORM variable 216
RUBY_RELEASE_DATE constant

322
RUBY_VERSION constant 322
RubyForge 217, 759
RubyGarden 759
RubyGems 203–221

creating 211
documentation 207
extensions 215
gem_server 208
gemspec 212–214

installing applications 204
installing library 206
installing RubyGems 204
package layout 211
repository 759
require_gem 208
stub 210
test on install 205
versioning 205, 206f, 209

RUBYLIB 172, 173, 383
RUBYLIB_PREFIX 172
RUBYOPT 172, 383
RUBYPATH 169, 172
RUBYSHELL 172, 500
Rule, RDoc 193
run method

class Thread 617
Runtime Type Information

(RTTI) see Reflection
Rvalue 84, 323

S
-S (Ruby option) 169
-s (Ruby option) 169
$SAFE variable 169, 299, 321,

380, 554, 652
Safe level 379–382

in extensions 298
list of constraints 383f
and proc 381
setting using -T 169
and tainting 381

safe_level method
class Thread 618

SafeStringValue 299
SafeStringValue method 267
Sandbox 380, 381, see Safe

level
chroot 429

scan method
class String 60, 61, 311,

596, 716
module Kernel 507

scanf library 708
scanf method

class Array 708
class String 708
module Kernel 708

Scheduler, thread 132
Schneiker, Conrad 78n
Schwartz, Randal 437
Schwartzian transform 437
Scope of variables 99, 315

Screen output see Curses
SCRIPT_LINES__ constant

322, 395, 507
SDBM class 709
sdbm 709
Search path 173, 284
sec method

class Time 626
seek method

class Dir 432
class IO 492

Seki, Masatoshi 398
select method

class Hash 478
class IO 357, 486
class MatchData 517
module Enumerable 436
module Kernel 507

self variable 76, 115, 322,
334, 362

in class definition 370
Semaphore see Thread,

synchronization
Send message 10, 26
send method

class BasicSocket 742
class Object 553
class UDPSocket 752

Sequence see Range
Serialization see Marshal
Server 664
Session see CGI programming,

session
Session module 699
Session leader 566
Session, HTTP 233
Set class 407, 409, 710
Set operations see Array class
set_backtrace method

class Exception 441
set_trace_func method

module Kernel 393, 423,
508, 728

setegid method
module Process::Sys 573

seteuid method
module Process::Sys 573

setgid, setuid 380
setgid method

module Process::Sys 573
setgid? method

class File::Stat 460
class File 451

setpgid method

Prepared exclusively for Margus Pau

setpgrp METHOD 790 sort! METHOD

module Process 565
setpgrp method

module Process 565
setpriority method

module Process 566
setregid method

module Process::Sys 573
setresgid method

module Process::Sys 574
setresuid method

module Process::Sys 574
setreuid method

module Process::Sys 574
setrgid method

module Process::Sys 574
setruid method

module Process::Sys 574
setsid method

module Process 566
setsockopt method

class BasicSocket 742
Setter method see Method,

setter
setuid method

module Process::Sys 574
setuid? method

class File::Stat 460
class File 451

setup method 150
SHA1/2 hash 647
Shallow copy 547
Shared library, accessing 648
Shebang (#!) 6
SHELL 172
Shell glob see File, expanding

names
Shellwords module 711
shift method

class Array 417
class Hash 478

shutdown method
class BasicSocket 742

sid_available? method
module Process::GID 568
module Process::UID 575

SIGALRM 508
SIGCLD 142
Signal

handling 142
sending 564

see also trap method
Signal module 513, 583

list 583
trap 584

signaled? method
class Process::Status

571
Simple Mail Transfer Protocol

see Network protocols,
SMTP

Simple Object Access protocol
see SOAP

SimpleDelegator class 646
sin method

module Math 520
Sinatra, Frank 25
Single inheritance 28
Single-quoted string 57, 305
SingleForwardable module

659
Singleton module 712
Singleton class 365
Singleton pattern 33, 712
singleton_method_added

method
class Object 555
module Kernel 392

singleton_method_removed
method

class Object 556
module Kernel 392

singleton_method_
undefined
method

class Object 556
singleton_method_

undefineded
method

module Kernel 392
singleton_methods method

class Object 553
sinh method

module Math 521
site_ruby directory 173
size method

class Array 417
class Bignum 422
class File::Stat 460
class File 451
class Fixnum 465
class Hash 478
class MatchData 517
class String 597
class Struct 608

size? method
class File::Stat 460
class File 451

SizedQueue class 722

SJIS 302, 309, 668
sleep method

module Kernel 508
slice method

class Array 417
class String 597

slice! method
class Array 418
class String 597

Smalltalk 10n, 365
SMTP see Network protocols,

SMTP
SOAP 236, 399, 713
SOAP module 713
Socket see Network protocols
Socket class 714, 743

accept 746
bind 746
connect 746
getaddrinfo 744
gethostbyaddr 744
gethostbyname 744
gethostname 744
getnameinfo 745
getservbyname 745
listen 746
new 745
open 745
pack_sockaddr_in 745
pack_sockaddr_un 745
pair 745
recvfrom 746
socketpair 745
sysaccept 746
unpack_sockaddr_in 746
unpack_sockaddr_un 746

socket? method
class File::Stat 460
class File 452

socketpair method
class Socket 745

SOCKS see Network protocols
SOCKSSocket class 714, 749

close 749
new 749
open 749

Sort
topological 729

sort method
class Array 418
class Hash 478
module Enumerable 436
Schwartzian transform 437

sort! method

Prepared exclusively for Margus Pau

sort_by METHOD 791 String CLASS

class Array 418
sort_by method

module Enumerable 436
Source code

layout 302
reflecting on 394

Source code from book 4
source method

class Regexp 581
Spaceship see <=>
Spawn see Process, creating
spawn method 699
split method

class File 452
class String 59, 598
module Kernel 168, 508

sprintf method
field types 511
flag characters 510
module Kernel 508

sqrt method
module Math 521

squeeze method
class String 60, 598, 668

squeeze! method
class String 599, 668

srand method
module Kernel 509

srcdir (mkmf) 756
Stack

execution see caller
method

operations see Array class
unwinding 104, 108, 346

Stack frame 155
Standard Library 632–738
start method

class Thread 614
module GC 470

:startdoc: (RDoc) 195
stat method

class File 452
class IO 492

Statement modifier
if/unless 91, 328
while/until 94, 330

Static linking 287
Static method see Class, method
Static typing see Duck typing
status method 686

class Exception 441
class Thread 618

STDERR constant 322, 513
$stderr variable 320

STDIN constant 322, 504
$stdin variable 320
STDOUT constant 322, 504, 505
$stdout variable 320
step method

class Numeric 96, 545
class Range 578

Stephenson, Neal 167n
sticky? method

class File::Stat 460
class File 452

stiff, why the lucky 633
stop method

class Thread 614
stop? method

class Thread 618
:stopdoc: (RDoc) 195
stopped? method

class Process::Status
571

stopsig method
class Process::Status

571
store method

class Hash 478
strftime method

class Time 626
String 57

#{. . . } 57
%... delimiters 303
control characters \n etc.

306
conversion for output 123,

505
expression interpolation 13
here document 58, 306
literal 12, 57, 305

concatenation 306
String class 57, 305, 358, 585,

668, 708
% 585

* 586
+ 586
<=> 586
<< 586
== 586
=== 586
=~ 587
[] 587
[]= 588
~ 588
capitalize 588
capitalize! 588
casecmp 589

center 589
chomp 59, 589
chomp! 589
chop 589, 668
chop! 590, 668
concat 590
count 590
crypt 590
delete 590, 668
delete! 591, 668
downcase 591
downcase! 591
dump 591
each 591
each_byte 592
each_line 592
empty? 592
eql? 592
gsub 70, 311, 592
gsub! 311, 593
hex 593
include? 593
index 311, 593
insert 594
intern 594
length 594
ljust 594
lstrip 594
lstrip! 594
match 595
new 585
next 595
next! 595
oct 595
replace 595
reverse 595
reverse! 595
rindex 595
rjust 596
rstrip 596
rstrip! 596
scan 60, 61, 311, 596, 716
scanf 708
size 597
slice 597
slice! 597
split 59, 598
squeeze 60, 598, 668
squeeze! 599, 668
strip 599
strip! 599
sub 70, 599
sub! 599
succ 599, 668

Prepared exclusively for Margus Pau

String METHOD 792 Tempfile CLASS

succ! 600, 668
sum 600
swapcase 600
swapcase! 600
to_f 600
to_i 601
to_s 601
to_str 601
to_sym 601
tr 601, 668
tr! 602, 668
tr_s 602, 668
tr_s! 602, 668
unpack 602
upcase 602
upcase! 604
upto 604

String method
module Kernel 495

string method
class MatchData 518

StringIO class 124, 715
StringScanner class 716
StringValue method 266
StringValuePtr method 267
strip method

class String 599
strip! method

class String 599
Struct class 605

== 606
[] 606, 607
[]= 607
each 607
each_pair 607
length 608
members 606, 608
new 605, 606
OpenStruct 689
size 608
to_a 608
values 608
values_at 608

struct sockaddr 741
Struct::Tms class 609
Stub

RubyGems 210
WIN32OLE 258

sub method
class String 70, 599
module Kernel 509

sub! method
class String 599
module Kernel 509

Subclass 25
Subnet, testing address in 667
Subprocess see Process
Subroutine see Method
Substitution see Regular

expression
succ method

class Integer 481
class String 599, 668
for generating sequences 63

succ! method
class String 600, 668

success? method
class Exception 442
class Process::Status 571

Suites, test 152
Suketa, Masaki 255
sum method

class String 600
super 27, 335, 554
Superclass 25, 362, 386

see also Module, mixin
superclass method

class Class 386, 425
swapcase method

class String 600
swapcase! method

class String 600
SWIG 287
switch method

module Process::GID 569
module Process::UID 575

Symbol
literal 308

Symbol class 29, 323, 358, 594,
610

all_symbols 610
id2name 610
inspect 611
to_i 611
to_int 611
to_s 611
to_sym 611

symlink method
class File 452

symlink? method
class File::Stat 461
class File 452

Sync class 717
Sync module 133
sync method

class IO 493
sync= method

class IO 493

SyncEnumerator class 662
Synchronization see Thread,

synchronization
sysaccept method

class Socket 746
syscall.h 509
syscall method

module Kernel 509
Syslog class 719
sysopen method

class IO 486
sysread method

class IO 493
sysseek method

class IO 493
system method

module Kernel 140, 509
syswrite method

class IO 493

T
-T[level] (Ruby option) 169
Tab completion

irb 176
Tag file 185
taint method

class Object 554
Tainted objects 267, 381, 554

see also Safe level
tainted? method

class Object 554
Talbott, Nathaniel 143, 153
tan method

module Math 521
tanh method

module Math 521
Tcl/Tk see GUI programming
TCP see Network protocols
TCPServer class 750

accept 750
new 750
open 750

TCPSocket class 714, 748
gethostbyname 748
new 748
open 748

teardown method 150
Technical support 758
tell method

class Dir 432
class IO 494

Telnet see Network protocols,
telnet

Tempfile class 720

Prepared exclusively for Margus Pau

TEMPLATES 793 to_a METHOD

Templates 226–231
Amrita 228
BlueCloth 206
eruby 229, 652
RDoc 227

Temporary directory 727
Temporary file 720
Terminal

pseudo 699
terminate method

class Thread 618
termsig method

class Process::Status
572

Ternary operator 91, 328
Test case 148
Test suites 152
test method

module Kernel 510
Test::Unit 144–153

exceptions 147
assertions 144, 154f
cases 148
naming conventions 153
setup 150
suites 152
teardown 150
see also Testing

Test::Unit class 721
Testing 143–153

ad hoc 143
assertions 144
exceptions 147
gem 205
Roman numerals 143
using StringIO 715
structuring tests 148
what is a unit test? 144
where to put files 151

$' variable 65, 319, 517
then 328
Thread 127–139

condition variable 137
creating 127
exception 130
group 619
queue 722
race condition 129
scheduling 132
synchronization 133–139,

674–676, 717, 722
variable 129
variable scope 128
waiting for multiple 723

Thread class 612
[] 614
[]= 615
abort_on_exception 130,

612, 615
abort_on_exception= 612,

615
alive? 615
critical 612
critical= 133, 612
current 613
exit 613, 615
fork 613
group 615
join 129, 615
key? 616
keys 616
kill 613, 616
list 613
main 613
new 128, 613
pass 614
priority 616
priority= 617
Queue 722
raise 617
run 617
safe_level 618
SizedQueue 722
start 614
status 618
stop 614
stop? 618
terminate 618
value 129, 618
wakeup 618

thread library 133, 137
ThreadGroup class 615, 619

add 619
enclose 619
enclosed? 620
freeze 620
list 620
new 619

ThreadsWait class 723
throw method

module Kernel 108, 347,
510

Time class 444, 621, 724
+ 623
- 623
<=> 623
asctime 623
at 621

ctime 623
day 623
dst? 623
extensions to 724
getgm 624
getlocal 624
getutc 624
gm 621
gmt? 624
gmt_offset 624
gmtime 624
gmtoff 625
hour 625
isdst 625
local 622
localtime 625
mday 625
min 625
mktime 622
mon 625
month 625
new 622
now 622
sec 626
strftime 626
times 622
to_a 626
to_f 626
to_i 626
to_s 626
tv_sec 627
tv_usec 627
usec 627
utc 622, 628
utc? 628
utc_offset 628
wday 628
yday 628
year 628
zone 628

time library 724
Timeout module 725
times method

class Integer 96, 481
class Time 622
module Process 566, 609

:title: (RDoc) 195
Tk see GUI programming
Tk class 726
tmpdir library 720, 727
tmpdir method

class Dir 233, 727
to_a method

class Array 418

Prepared exclusively for Margus Pau

to_ary METHOD 794 UNIXServer CLASS

class Hash 478
class MatchData 518
class NilClass 540
class Object 554
class Struct 608
class Time 626
module Enumerable 438

to_ary method 325, 357, 408,
418

class Array 418
to_enum method 651
to_f method

class Bignum 422
class Fixnum 465
class Float 468
class NilClass 540
class String 600
class Time 626

to_hash method 357, 472
class Hash 478

to_i method
class Float 468
class Integer 481
class IO 494
class NilClass 540
class Process::Status 572
class String 601
class Symbol 611
class Time 626

to_int method 356, 357
class Float 468
class Integer 481
class Numeric 545
class Process::Status 572
class Symbol 611

to_io method 357
class IO 494

to_proc method 357
class Method 523
class Proc 561

to_s method 356
class Array 419
class Bignum 422
class Exception 442
class Fixnum 465
class Float 469
class Hash 478
class MatchData 518
class NilClass 540
class Object 24, 554
class Process::Status 572
class Proc 561
class Regexp 582
class String 601

class Symbol 611
class Time 626
and print 123, 505

to_str method 356, 358, 585
class Exception 442
class Object 266
class String 601

to_sym method 358
class Fixnum 465
class String 601
class Symbol 611

to_yaml_properties method
397

Top-level environment 376
TOPLEVEL_BINDING constant

322
Topological sort 729
tr method

class String 601, 668
tr! method

class String 602, 668
tr_s method

class String 602, 668
tr_s! method

class String 602, 668
trace_var method

module Kernel 511
tracer library 728
Tracing 393, see Logger
Transactions 50
Transcendental functions 519
Transparent language 50, 55
transpose method

class Array 419
trap method

module Kernel 142, 513
module Signal 584

Trigonometric functions 519
Troubleshooting 159
TRUE constant 322
true constant 87, 322, 326
TrueClass class 629

& 629
^ 629
| 629

truncate method
class File 452, 455
class Float 469
class Integer 481
class Numeric 545

TSort module 729
tsort_each_child method

729
tsort_each_node method 729

tty? method
class IO 494

Tuning see Performance
Tuplespace see Distributed

Ruby, Rinda
tv_sec method

class Time 627
tv_usec method

class Time 627
type method

class Object 354, 554
Types see Duck typing
Typographic conventions xxiv

U
UDP see Network protocols
UDPSocket class 714, 751

bind 751
connect 751
new 751
open 751
recvfrom 752
send 752

uid method
class File::Stat 461
module Process 566

uid= method
module Process 566

umask method
class File 453

un library 730
Unary minus, unary plus 541
unbind method

class Method 523
UnboundMethod class 389,

522, 523, 528, 630
arity 631
bind 631

undef_method method
class Module 538

undefine_finalizer method
module ObjectSpace 558

ungetc method
class IO 494

Unicode 302
Uniform Access Principle 30
uniq method

class Array 419
uniq! method

class Array 419
Unit test see Testing
UNIXServer class 754

accept 754

Prepared exclusively for Margus Pau

UNIXSocket CLASS 795 VERSIONS OF RUBY

new 754
open 754

UNIXSocket class 714, 753
addr 753
new 753
open 753
path 753
peeraddr 753
recvfrom 753

unless see if expression
unlink method

class Dir 431
class File 453

unpack method
class String 602

unpack_sockaddr_in method
class Socket 746

unpack_sockaddr_un method
class Socket 746

unshift method
class Array 419

untaint method
class Object 554

until see while loop
untrace_var method

module Kernel 513
upcase method

class String 602
upcase! method

class String 604
update

Observable callback 685
update method

class Hash 479
upto method

class Integer 96, 481
class String 604

URI class 731
URI, opening as file 686
Usage, message 201
usec method

class Time 627
Usenet 759
UTC 621
utc method

class Time 622, 628
utc? method

class Time 628
utc_offset method

class Time 628
UTF 302
UTF8 309, 668
utime method

class File 453

V
-v (Ruby option) 514
-v, --verbose (Ruby option)

169, 321
$-v variable 321
VALUE (C extension) 264
value method

class Thread 129, 618
value? method

class Hash 479
values method

class Hash 479
class Struct 608

values_at method
class Array 419
class Hash 479
class MatchData 518
class Struct 608

Variable
class 31
in extension 294, 297
instance 10, 24, 115, 387
vs. method name 314
naming 14, 313
predefined 318
as reference 37, 315
scope 99, 117, 128, 315
thread 129
weak reference 732

Variable-length argument list
75

Variables
$! 102, 319, 345, 347
$" 117, 320
$$ 320
$& 65, 319, 516
$* 320, 502
$+ 319
$, 319, 415, 505
$-0 319
$-F 320
$-I 321
$-K 321
$-a 320
$-d 321
$-i 321
$-l 321
$-p 321
$-v 321
$-w 321
$. 319, 489
$/ 168, 169, 319, 589
$0 170, 320, 322

$1 to $9 319
$1...$9 65, 70, 311
$: 117, 152, 168, 173, 290,

320
$; 168, 319
$< 320
$= 309, 319
$> 320
$? 83, 140, 142, 320, 323,

495, 510, 566, 570
$@ 319
$DEBUG 168, 321, 612, 616
$F 168, 321
$FILENAME 321
$KCODE 309, 638, 668
$LOAD_PATH 152, 168, 175,

209–211, 213, 216, 321
$SAFE 169, 299, 321, 380,

554, 652
$VERBOSE 168, 169, 321,

513
$\ 169, 319, 490, 505
$_ 22, 89, 95, 168, 320, 327,

489, 502
$` 65, 319, 517
$configure_args 755
$deferr 320
$defout 320
$expect_verbose 655
$stderr 320
$stdin 320
$stdout 320
$' 65, 319, 517
$~ 65, 73, 319, 516, 579–581
@fileutils_output 657
__FILE__ 394
ARGF 22, 321
ARGV 168–170, 321, 502,

663, 690
ENV 171, 321
environment see

Environment variables
__FILE__ 321
__LINE__ 321
predefined 318

English names 318,
650

RUBY_PLATFORM 216
self 76, 115, 322, 334, 362

Vector class 673
$VERBOSE variable 168, 169,

321, 513
--version (Ruby option) 169
Versions of Ruby xx

Prepared exclusively for Margus Pau

VI AND VIM 796 zone METHOD

vi and vim 157
tag file 185

vi key binding 702
Virtual

class 364
Virtual attribute 30

W
-w (Ruby option) 169, 321, 514
-W level (Ruby option) 169,

513
$-w variable 321
wait method

class IO 666
module Process 141, 566

wait2 method
module Process 567

waitall method
module Process 566

waitpid method
module Process 567

waitpid2 method
module Process 567

wakeup method
class Thread 618

Walk directory tree 658
warn method

module Kernel 169, 321,
513

Warnings 169
ARGV[0] is not $0 170
be careful with tainted data

379
C functions must return

VALUE 263
strings aren’t numbers 56,

161
wday method

class Time 628
Weak reference 732
WeakRef class 732

weakref_alive? 732
weakref_alive? method

class WeakRef 732
Web see CGI programming
Web framework

CGIKit 240
Iowa 226
Rails 240

Web server
trivial 750
WEBrick 234, 733
see also Apache

Web services 236
description language 239
Google 238

Web sites for Ruby xxii, 758
Webcoder, Walter 379
WEBrick 234
WEBrick module 733
Weirich, Jim 204
when (in case) 328
while loop 94, 329

as modifier 94, 330
why the lucky stiff 633
Widget see GUI programming
Wildcard see fnmatch and

glob
Win32API class 648, 734
Win32API library 254
WIN32OLE class 735
WIN32OLE library 255
Windows see Microsoft

Windows, GUI
programming

with-cflags (mkmf) 756
with-cppflags (mkmf) 756
with-ldflags (mkmf) 756
with-make-prog (mkmf) 756
WNOHANG (Process constant)

562
Words

array of 14, 307
Working directory 168, 429
Wrap see Module, wrap
writable? method

class File::Stat 461
class File 453

writable_real? method
class File::Stat 461
class File 453

write method

class IO 494
WSDL 239, 713

Google interface 239
WUNTRACED (Process constant)

562
Wyss, Clemens 380

X
/x regexp option 309
-x [directory] (Ruby option)

170
-X directory (Ruby option)

170
XML 704, 736
XMLRPC module 736
xmp 186

Y
-y, --yydebug (Ruby option)

170
YAML library 397, 514, 633,

737
yday method

class Time 628
year method

class Time 628
yield 47, 342

arguments 19, 48
and RDoc 193

:yields: (RDoc) 194
Yukihiro, Matsumoto 365

Z
zero? method

class File::Stat 461
class File 453
class Fixnum 465
class Float 469
class Numeric 545

Zip compression 738
zip method

module Enumerable 438
Zlib module 738
zone method

class Time 628

Prepared exclusively for Margus Pau

797

Template characters for Array#pack

Directive Meaning

@ Moves to absolute position
A ASCII string (space padded, count is width)
a ASCII string (null padded, count is width)
B Bit string (descending bit order)
b Bit string (ascending bit order)
C Unsigned char
c Char

D, d Double-precision float, native format
E Double-precision float, little-endian byte order
e Single-precision float, little-endian byte order

F, f Single-precision float, native format
G Double-precision float, network (big-endian) byte order
g Single-precision float, network (big-endian) byte order
H Hex string (high nibble first)
h Hex string (low nibble first)
I Unsigned integer
i Integer
L Unsigned long
l Long
M Quoted printable, MIME encoding (see RFC2045)
m Base64 encoded string
N Long, network (big-endian) byte order
n Short, network (big-endian) byte order
P Pointer to a structure (fixed-length string)
p Pointer to a null-terminated string

Q, q 64-bit number1.8
S Unsigned short
s Short
U UTF-8
u UU-encoded string
V Long, little-endian byte order
v Short, little-endian byte order
w BER-compressed integer1.8 1

X Back up a byte
x Null byte
Z Same as A

1 The octets of a BER-compressed integer represent an unsigned integer in base 128, most significant digit
first, with as few digits as possible. Bit eight (the high bit) is set on each byte except the last (Self-Describing
Binary Data Representation, MacLeod)

Prepared exclusively for Margus Pau

798

Template characters for String#unpack

Format Function Returns

A String with trailing NULs and spaces removed. String
a String. String
B Extract bits from each character (MSB first). String
b Extract bits from each character (LSB first). String
C Extract a character as an unsigned integer. Fixnum
c Extract a character as an integer. Fixnum

d,D Treat sizeof(double) characters as a native double. Float
E Treat sizeof(double) characters as a double in little-endian byte order. Float
e Treat sizeof(float) characters as a float in little-endian byte order. Float

f,F Treat sizeof(float) characters as a native float. Float
G Treat sizeof(double) characters as a double in network byte order. Float
g Treat sizeof(float) characters as a float in network byte order. Float
H Extract hex nibbles from each character (most significant first). String
h Extract hex nibbles from each character (least significant first). String
I Treat sizeof(int)1 successive characters as an unsigned native integer. Integer
i Treat sizeof(int)1 successive characters as a signed native integer. Integer
L Treat four1 successive characters as an unsigned native long integer. Integer
l Treat four1 successive characters as a signed native long integer. Integer
M Extract a quoted-printable string. String
m Extract a Base64 encoded string. String
N Treat four characters as an unsigned long in network byte order. Fixnum
n Treat two characters as an unsigned short in network byte order. Fixnum
P Treat sizeof(char *) characters as a pointer, and return len characters from

the referenced location.
String

p Treat sizeof(char *) characters as a pointer to a null-terminated string. String
Q Treat eight characters as an unsigned quad word (64 bits). Integer
q Treat eight characters as a signed quad word (64 bits). Integer
S Treat two1 successive characters as an unsigned short in native byte order. Fixnum
s Treat two1 successive characters as a signed short in native byte order. Fixnum
U Extract UTF-8 characters as unsigned integers. Integer
u Extract a UU-encoded string. String
V Treat four characters as an unsigned long in little-endian byte order. Fixnum
v Treat two characters as an unsigned short in little-endian byte order. Fixnum
w BER-compressed integer (see Array#pack for more information). Integer
X Skip backward one character. —
x Skip forward one character. —
Z String with trailing NULs removed. String
@ Skip to the offset given by the length argument. —

1 May be modified by appending “_” to the directive.

Prepared exclusively for Margus Pau

799

Character class abbreviations

Sequence As [. . .] Meaning

\d [0-9] Digit character
\D [^0-9] Any character except a digit
\s [\s\t\r\n\f] Whitespace character
\S [^\s\t\r\n\f] Any character except whitespace
\w [A-Za-z0-9_] Word character
\W [^A-Za-z0-9_] Any character except a word character

POSIX Character Classes

[:alnum:] Alphanumeric
[:alpha:] Uppercase or lowercase letter
[:blank:] Blank and tab
[:cntrl:] Control characters (at least 0x00–0x1f, 0x7f)
[:digit:] Digit
[:graph:] Printable character excluding space
[:lower:] Lowercase letter
[:print:] Any printable character (including space)
[:punct:] Printable character excluding space and alphanumeric
[:space:] Whitespace (same as \s)
[:upper:] Uppercase letter
[:xdigit:] Hex digit (0–9, a–f, A–F)

Prepared exclusively for Margus Pau

800

sprintf flag characters

Flag Applies to Meaning

(space) bdEefGgiouXx Leave a space at the start of positive numbers.
digit$ all Specify the absolute argument number for this field.

Absolute and relative argument numbers cannot both be
used in a sprintf string.

beEfgGoxX Use an alternative format. For the conversions b, o, X,
and x, prefix the result with b, 0, 0X, 0x, respectively. For
E, e, f, G, and g, force a decimal point to be added, even
if no digits follow. For G and g, do not remove trailing
zeros.

+ bdEefGgiouXx Add a leading plus sign to positive numbers.
- all Left-justify the result of this conversion.
0 (zero) bdEefGgiouXx Pad with zeros, not spaces.

* all Use the next argument as the field width. If negative,
left-justify the result. If the asterisk is followed by a
number and a dollar sign, use the indicated argument as
the width.

Prepared exclusively for Margus Pau

801

sprintf field types

Field Conversion

b Convert argument as a binary number.
c Argument is the numeric code for a single character.
d Convert argument as a decimal number.
E Equivalent to e, but uses an uppercase E to indicate the exponent.
e Convertfloating point-argument into exponential notation with one digit before

the decimal point. The precision determines the number of fractional digits
(defaulting to six).

f Convert floating-point argument as [-]ddd.ddd, where the precision deter-
mines the number of digits after the decimal point.

G Equivalent to g, but use an uppercase E in exponent form.
g Convert a floating-point number using exponential form if the exponent is less

than −4 or greater than or equal to the precision, or in d.dddd form otherwise.
i Identical to d.
o Convert argument as an octal number.
p The value of argument.inspect.1.8
s Argument is a string to be substituted. If the format sequence contains a preci-

sion, at most that many characters will be copied.
u Treat argument as an unsigned decimal number.
X Convert argument as a hexadecimal number using uppercase letters. Negative

numbers will be displayed with two leading periods (representing an infinite
string of leading FFs).

x Convert argument as a hexadecimal number. Negative numbers will be dis-
played with two leading periods (representing an infinite string of leading FFs.)

Prepared exclusively for Margus Pau

802

Time#strftime directives

Format Meaning

%a The abbreviated weekday name (“Sun”)
%A The full weekday name (“Sunday”)
%b The abbreviated month name (“Jan”)
%B The full month name (“January”)
%c The preferred local date and time representation
%d Day of the month (01..31)
%H Hour of the day, 24-hour clock (00..23)
%I Hour of the day, 12-hour clock (01..12)
%j Day of the year (001..366)
%m Month of the year (01..12)
%M Minute of the hour (00..59)
%p Meridian indicator (“AM” or “PM”)
%S Second of the minute (00..60)
%U Week number of the current year, starting with the first Sunday as the first

day of the first week (00..53)
%W Week number of the current year, starting with the first Monday as the first

day of the first week (00..53)
%w Day of the week (Sunday is 0, 0..6)
%x Preferred representation for the date alone, no time
%X Preferred representation for the time alone, no date
%y Year without a century (00..99)
%Y Year with century
%Z Time zone name
%% Literal % character

Prepared exclusively for Margus Pau

803

File tests with a single argument

Flag Description Returns

?A Last access time for file1 Time
?b True if file1 is a block device true or false
?c True if file1 is a character device true or false
?C Last change time for file1 Time
?d True if file1 exists and is a directory true or false
?e True if file1 exists true or false
?f True if file1 exists and is a regular file true or false
?g True if file1 has the setgid bit set (false under NT) true or false
?G True if file1 exists and has a group ownership equal to the

caller’s group
true or false

?k True if file1 exists and has the sticky bit set true or false
?l True if file1 exists and is a symbolic link true or false
?M Last modification time for file1 Time
?o True if file1 exists and is owned by the caller’s effective UID true or false
?O True if file1 exists and is owned by the caller’s real UID true or false
?p True if file1 exists and is a fifo true or false
?r True if file1 is readable by the effective UID/GID of the caller true or false
?R True if file1 is readable by the real UID/GID of the caller true or false
?s If file1 has nonzero size, return the size, otherwise return nil Integer or nil
?S True if file1 exists and is a socket true or false
?u True if file1 has the setuid bit set true or false
?w True if file1 exists and is writable by the effective UID/ GID true or false
?W True if file1 exists and is writable by the real UID/GID true or false
?x True if file1 exists and is executable by the effective UID/GID true or false
?X True if file1 exists and is executable by the real UID/GID true or false
?z True if file1 exists and has a zero length true or false

File tests with two arguments

Flag Description

?- True if file1 is a hard link to file2
?= True if the modification times of file1 and file2 are equal
?< True if the modification time of file1 is prior to that of file2
?> True if the modification time of file1 is after that of file2

Prepared exclusively for Margus Pau

Pragmatic Starter Kit
Version Control. Unit Testing. Project Automation. Three great titles, one objective.
To get you up to speed with the essentials for successful project development. Keep
your source under control, your bugs in check, and your process repeatable with these
three concise, readable books from The Pragmatic Bookshelf.

• Keep your project assets safe—never lose a great idea
• Know how to UNDO bad decisions—no matter when
they were made • Learn how to share code safely, and
work in parallel • See how to avoid costly code freezes
• Manage 3rd party code • Understand how to go back
in time, and work on previous versions.

Pragmatic Version Control
Dave Thomas and Andy Hunt
(176 pages) ISBN: 0-9745140-0-4. $29.95

• Write better code, faster • Discover the hiding places
where bugs breed • Learn how to think of all the things
that could go wrong • Test pieces of code without using
the whole project • Use JUnit to simplify your test code
• Test effectively with the whole team.

Pragmatic Unit Testing
Andy Hunt and Dave Thomas

(176 pages) ISBN: 0-9745140-1-2. $29.95
(Also available for C#, ISBN: 0-9745140-2-0)

• Common, freely available tools which automate build,
test, and release procedures • Effective ways to keep on
top of problems • Automate to create better code, and
save time and money • Create and deploy releases eas-
ily and automatically • Have programs to monitor them-
selves and report problems.

Pragmatic Project Automation
Mike Clark
(176 pages) ISBN: 0-9745140-3-9. $29.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

The Pragmatic Bookshelf
A new line in books written by developers, published by developers, aimed squarely at the needs of devel-
opers. Information rich books, designed to be practical and applicable. Available in printed form and PDF.
Check us out on the web at pragmaticbookshelf.com, and have a look on the previous page for information
on our Pragmatic Starter Kit.

Visit Us Online
Programming Ruby Home Page
pragmaticprogrammer.com/titles/ruby
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates
Be notified when updates and new books become available.

Join the Community
pragmaticprogrammer.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki, and
benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news
Check out the latest pragmatic developments in the news.

Save on the PDF
Save 60% on the PDF version of this book. Owning the paper version of this book entitles you to purchase
the PDF version for only $10.00 (regularly $25.00). The PDF is great for carrying around on your laptop. It’s
hyperlinked, has color, and is fully searchable. Buy it now at pragmaticprogrammer.com/coupon

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog
Customer Service: orders@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com
Author Proposals: proposals@pragmaticprogrammer.com

pragmaticbookshelf.com
pragmaticprogrammer.com/coupon
www.pragmaticprogrammer.com/catalog

	Foreword to the First Edition
	Foreword to the Second Edition
	Preface
	Road Map
	Part I---Facets of Ruby
	Getting Started
	Installing Ruby
	Running Ruby
	Ruby Documentation: RDoc and ri

	Ruby.new
	Ruby Is an Object-Oriented Language
	Some Basic Ruby
	Arrays and Hashes
	Control Structures
	Regular Expressions
	Blocks and Iterators
	Reading and 'Riting
	Onward and Upward

	Classes, Objects, and Variables
	Inheritance and Messages
	Objects and Attributes
	Class Variables and Class Methods
	Access Control
	Variables

	Containers, Blocks, and Iterators
	Containers
	Blocks and Iterators
	Containers Everywhere

	Standard Types
	Numbers
	Strings
	Ranges
	Regular Expressions

	More about Methods
	Defining a Method
	Calling a Method

	Expressions
	Operator Expressions
	Miscellaneous Expressions
	Assignment
	Conditional Execution
	Case Expressions
	Loops
	Variable Scope, Loops, and Blocks

	Exceptions, Catch, and Throw
	The Exception Class
	Handling Exceptions
	Raising Exceptions
	Catch and Throw

	Modules
	Namespaces
	Mixins
	Iterators and the Enumerable Module
	Composing Modules
	Including Other Files

	Basic Input and Output
	What Is an IO Object?
	Opening and Closing Files
	Reading and Writing Files
	Talking to Networks

	Threads and Processes
	Multithreading
	Controlling the Thread Scheduler
	Mutual Exclusion
	Running Multiple Processes

	Unit Testing
	Test::Unit Framework
	Structuring Tests
	Organizing and Running Tests

	When Trouble Strikes
	Ruby Debugger
	Interactive Ruby
	Editor Support
	But It Doesn't Work!
	But It's Too Slow!

	Part II---Ruby in Its Setting
	Ruby and Its World
	Command-Line Arguments
	Program Termination
	Environment Variables
	Where Ruby Finds Its Modules
	Build Environment

	Interactive Ruby Shell
	Command Line
	Configuration
	Commands
	Restrictions
	rtags and xmp

	Documenting Ruby
	Adding RDoc to Ruby Code
	Adding RDoc to C Extensions
	Running RDoc
	Displaying Program Usage

	Package Management with RubyGems
	Installing RubyGems
	Installing Application Gems
	Installing and Using Gem Libraries
	Creating Your Own Gems

	Ruby and the Web
	Writing CGI Scripts
	Cookies
	Improving Performance
	Choice of Web Servers
	SOAP and Web Services
	More Information

	Ruby Tk
	Simple Tk Application
	Widgets
	Binding Events
	Canvas
	Scrolling
	Translating from Perl/Tk Documentation

	Ruby and Microsoft Windows
	Getting Ruby for Windows
	Running Ruby Under Windows
	Win32API
	Windows Automation

	Extending Ruby
	Your First Extension
	Ruby Objects in C
	The Jukebox Extension
	Memory Allocation
	Ruby Type System
	Creating an Extension
	Embedding a Ruby Interpreter
	Bridging Ruby to Other Languages
	Ruby C Language API

	Part III---Ruby Crystallized
	The Ruby Language
	Source Layout
	The Basic Types
	Names
	Variables and Constants
	Expressions
	Method Definition
	Invoking a Method
	Aliasing
	Class Definition
	Module Definitions
	Access Control
	Blocks, Closures, and Proc Objects
	Exceptions
	Catch and Throw

	Duck Typing
	Classes Aren't Types
	Coding like a Duck
	Standard Protocols and Coercions
	Walk the Walk, Talk the Talk

	Classes and Objects
	How Classes and Objects Interact
	Class and Module Definitions
	Top-Level Execution Environment
	Inheritance and Visibility
	Freezing Objects

	Locking Ruby in the Safe
	Safe Levels
	Tainted Objects

	Reflection, ObjectSpace, and Distributed Ruby
	Looking at Objects
	Looking at Classes
	Calling Methods Dynamically
	System Hooks
	Tracing Your Program's Execution
	Marshaling and Distributed Ruby
	Compile Time? Runtime? Anytime!

	Part IV---Ruby Library Reference
	Built-in Classes and Modules
	Alphabetical Listing

	Array
	Bignum
	Binding
	Class
	Comparable
	Continuation
	Dir
	Enumerable
	Errno
	Exception
	FalseClass
	File
	File::Stat
	FileTest
	Fixnum
	Float
	GC
	Hash
	Integer
	IO
	Kernel
	Marshal
	MatchData
	Math
	Method
	Module
	NilClass
	Numeric
	Object
	ObjectSpace
	Proc
	Process
	Process::GID
	Process::Status
	Process::Sys
	Process::UID
	Range
	Regexp
	Signal
	String
	Struct
	Struct::Tms
	Symbol
	Thread
	ThreadGroup
	Time
	TrueClass
	UnboundMethod
	Standard Library
	Abbrev
	Base64
	Benchmark
	BigDecimal
	CGI
	CGI::Session
	Complex
	CSV
	Curses
	Date/DateTime
	DBM
	Delegator
	Digest
	DL
	dRuby
	English
	Enumerator
	erb
	Etc
	expect
	Fcntl
	FileUtils
	Find
	Forwardable
	ftools
	GDBM
	Generator
	GetoptLong
	GServer
	Iconv
	IO/Wait
	IPAddr
	jcode
	Logger
	Mail
	mathn
	Matrix
	Monitor
	Mutex
	Mutex_m
	Net::FTP
	Net::HTTP
	Net::IMAP
	Net::POP
	Net::SMTP
	Net::Telnet
	NKF
	Observable
	open-uri
	Open3
	OpenSSL
	OpenStruct
	OptionParser
	ParseDate
	Pathname
	PP
	PrettyPrint
	Profile
	Profiler__
	PStore
	PTY
	Rational
	readbytes
	Readline
	Resolv
	REXML
	Rinda
	RSS
	Scanf
	SDBM
	Set
	Shellwords
	Singleton
	SOAP
	Socket
	StringIO
	StringScanner
	Sync
	Syslog
	Tempfile
	Test::Unit
	thread
	ThreadsWait
	Time
	Timeout
	Tk
	tmpdir
	Tracer
	TSort
	un
	URI
	WeakRef
	WEBrick
	Win32API
	WIN32OLE
	XMLRPC
	YAML
	Zlib

	Part V---Appendixes
	Socket Library
	BasicSocket
	Socket
	IPSocket
	TCPSocket
	SOCKSSocket
	TCPServer
	UDPSocket
	UNIXSocket
	UNIXServer
	MKMF Reference
	mkmf
	Support
	Web Sites
	Download Sites
	Usenet Newsgroup
	Mailing Lists

	Bibliography

