
Prepared exclusively for Alison Tyler

What Readers Are Saying About

Programming Cocoa with Ruby

This isn’t just a book on RubyCocoa; it is probably the best book I’ve

seen that explains Cocoa technology. It actually explains how some of

the core technologies, especially bindings, work instead of just show-

ing an example of how to use them.

Allison Newman

Cocoa application developer

Learning a new API is hard enough, but learning a new API and a new

programming language at the same time can be overwhelming. Pro-

gramming Cocoa with Ruby is written for those of us used to a lan-

guage like Ruby or Python who want to learn about all the great stuff

Cocoa has to offer.

Jeremy McAnally

Developer, entp

The influence of Smalltalk on Ruby and Objective-C is considerable.

It shouldn’t be a surprise then that Cocoa, whose native tongue is

Objective-C, can be effectively learned and programmed from Ruby

in a way that captures the succinctness and expressiveness of this

newly popular scripting language. Brian’s book is a great introduc-

tion to the agile development of Cocoa apps, it serves as a primer on

Cocoa, and it demonstrates sound and thoughtful development prac-

tices and hygiene throughout.

Jerry Kuch

Principal engineer, EMC Corporation

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Programming Cocoa with Ruby
Create Compelling Mac Apps Using RubyCocoa

Brian Marick

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Brian Marick.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-19-0

ISBN-13: 978-1-934356-19-7

Printed on acid-free paper.

P1.0 printing, July 2009

Version: 2009-8-6

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.pragprog.com

Contents
1 Introduction 11

1.1 What Is Cocoa? . 12

1.2 What Is RubyCocoa? . 12

1.3 What’s It Like to Learn Cocoa Using Ruby? 12

1.4 RubyCocoa? That’s So Last Year! 13

1.5 Prerequisites . 13

1.6 Versions . 15

1.7 Our Example App . 16

1.8 Centuries of the Bookmaker’s Art: Scorned 18

1.9 Some Terminology . 19

1.10 Service After the Sale . 19

1.11 Solving Problems . 19

1.12 Acknowledgments . 20

2 How Do We Get This Thing Started? 22

2.1 A Program That Prints 23

2.2 Putting an Item in the Status Bar 26

2.3 Menus . 27

2.4 An Application Bundle 31

2.5 What Now? . 35

I A First Realistic App 36

3 Working with Interface Builder and Xcode 37

3.1 The Basics . 38

3.2 Creating and Editing Classes in Xcode 48

3.3 Debugging . 55

3.4 Synchronizing Interface Builder and Xcode 57

3.5 Attributes . 58

3.6 Overriding Window Behavior with a Delegate 60

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CONTENTS 6

3.7 Try This Yourself . 61

3.8 What Now? . 61

4 One Good App Observes Another 62

4.1 Notifications Within an App 62

4.2 Notifications Between Apps 67

4.3 The App to Fenestrate 70

4.4 Putting Notification Handling Behind the GUI 71

4.5 Reopening Objective-C Classes 73

4.6 What Now? . 73

II Reshaping Fenestra 75

5 A Better GUI 76

5.1 Toggle Buttons . 77

5.2 The Default Button . 78

5.3 Combo Box Items . 79

5.4 The Initial First Responder 80

5.5 Try This Yourself . 80

5.6 What Now? . 81

6 Decoupled Controllers 82

6.1 Ignorant Objects . 83

6.2 Extracting Subclasses 85

6.3 Reacting to Button State 90

6.4 Using Nibs to Avoid Dependencies 90

6.5 Initializing Combo Boxes 92

6.6 What Now? . 93

7 Notifications Connect Decoupled Objects 94

7.1 Controllers . 94

7.2 Translators and the Rising Tide of Ugliness 96

7.3 What Now? . 99

8 More Expressive Code 100

8.1 A DSL for Notifications 101

8.2 RubyCocoa Has Two Ways of Referring to Superclasses 103

8.3 Shorthand for Posting Notifications 103

8.4 Try This Yourself . 105

8.5 What Now? . 107

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=6

CONTENTS 7

III Project Mechanics 108

9 Bundling Gems and Libraries with Your App 109

9.1 Manual Control . 110

9.2 Standaloneify . 114

9.3 What Now? . 116

10 Project Organization, Builds, and Your Favorite Editor 117

10.1 Groups . 118

10.2 Using Xcode with Hierarchical Project Folders 119

10.3 Running in Place . 121

10.4 Building Without Xcode 121

10.5 Using Interface Builder with Hierarchical Project Folders123

10.6 Starting a New Project 124

10.7 What Now? . 125

IV Declarative Data Handling 126

11 Persistent User Preferences 127

11.1 The User Preferences System 128

11.2 Storing Custom Objects as Preferences 131

11.3 Using Archived Objects 139

11.4 Views Can Pull Data . 143

11.5 Try This Yourself: A Sticky Window 145

11.6 What Now? . 149

12 Creating a Preference Panel in a New Nib 150

12.1 Creating a Nib . 151

12.2 Drawing the Panel . 153

12.3 Hooking the Panel to the App 155

12.4 The Nib File’s Owner . 158

12.5 IB’s First Responder Pseudo-Object 159

12.6 Memory Leaks . 160

12.7 What Now? . 161

13 Implementing a Preference Panel with Cocoa Bindings 162

13.1 Binding a Simple Value 162

13.2 Binding an Array of Hashes 166

13.3 Formatters . 172

13.4 Value Transformers . 177

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=7

CONTENTS 8

13.5 Adding and Deleting Table Rows 182

13.6 What Now? . 184

14 Setting Up Bindings with Code 185

14.1 Oh No! Terminology! . 185

14.2 Using Rooted Keypaths in Code 189

14.3 Subclassing NSArrayController 189

14.4 bind_toObject_withKeyPath_options 192

14.5 What Now? . 196

V Fun with Tables 197

15 Prologue: Folders and Tests 198

15.1 Disk Layout . 198

16 Selections and Editing 202

16.1 An Example of Creating Tests: The Add Method 202

16.2 Working with an Uncooperative Control 212

16.3 Try This Yourself . 220

16.4 Building Setup Methods 227

16.5 What Now? . 229

17 Buttons in Tables 230

17.1 Cells . 230

17.2 Making the Change . 231

17.3 What Now? . 233

18 A Formatter with Two Wrinkles 234

18.1 The Formatter Code . 235

18.2 Calling Methods That Take Reference Arguments . . . 237

18.3 Breaking Encapsulation in Tests 240

18.4 What Now? . 242

19 Picking Files with Open Panels 243

19.1 NSOpenPanel . 243

19.2 A Design for Using NSOpenPanel in Fenestra 246

19.3 Try This Yourself: PreferencesController Tests 248

19.4 Try This Yourself: The NSOpenPanel Controller 256

19.5 What Now? . 258

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=8

CONTENTS 9

20 Drag and Drop 261

20.1 How Drag and Drop Works 261

20.2 Designing the GUI . 263

20.3 A Template for the Solution 264

20.4 Utility Classes and Modules 265

20.5 Try This Yourself: Lively Dragging Info 268

20.6 Try This Yourself: Drag and Drop 275

20.7 Does It Work? . 280

20.8 What Now? . 281

21 Epilogue: A Wonderful World of Tests 282

21.1 Test-Driven Design . 282

21.2 To Learn More . 285

VI Wrapping Up 286

22 Fit and Finish 287

22.1 Saving the Window Position Until the Next Launch . . 287

22.2 Tab Behavior . 288

22.3 Using NSMatrix to Organize Buttons 289

22.4 Sizing . 293

22.5 Cleaning Up the Menu Bar 297

22.6 The About Window . 297

22.7 Changing the Application’s Name 299

23 Adding Help 301

23.1 Help Book Basics . 301

23.2 Creating a Help Book . 302

23.3 Editing Pages . 303

23.4 Hooking a Help Book into an App 309

23.5 A Workflow for Creating Help Book Pages 311

23.6 Tooltips . 311

24 Document-Based Applications 313

24.1 The Major Players . 314

24.2 The Responder Chain . 316

24.3 Creating a New Document 319

24.4 Opening and Saving Documents 328

24.5 Editing . 330

24.6 Learning More . 333

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=9

CONTENTS 10

25 MacRuby 334

25.1 Getting MacRuby . 337

25.2 MacRuby Basics . 337

25.3 A MacRuby Checklist . 339

25.4 What Now? . 343

VII Reference 344

26 The Objective-C Bridge and Bridge Metadata 345

26.1 An Unexpected Return Value 345

26.2 What Information Can Be Found at Runtime? 346

26.3 Supplementing Runtime Information 347

26.4 Our Own Private Metadata 348

26.5 Finding Out More . 349

27 The Underpinnings of Cocoa Bindings 350

27.1 Requirements . 350

27.2 Our Goal . 351

27.3 Declaring Observed Properties 352

27.4 Observing Changes . 353

27.5 Implementing bind_toObject_withKeyPath_options . . 355

27.6 Changing the Value of an Observed Key 356

27.7 In Summary... 357

27.8 Postscript: Observing Changes to Collections 359

A Glossary 361

B Bibliography 372

Index 376

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=10

Chapter 1

Introduction
It’s simple, really: if you like Ruby and you like Macs and you want

to put the two together, this book is for you. After you read through

it. . . wait, scratch that—after you work through it, you’ll be able to build

nice, Mac-like apps. You’ll have the memory of doing, at least once,

many of the tasks that make up building a Mac app. Your life will have

much less of the “What do I do now?” frustration that sinks so many

first attempts to use a big and complicated framework.

I endured that frustration for you. When I started writing the book, I

knew practically nothing about coding Mac GUI apps (in Ruby or any

other language). I learned how in my usual way: by diving into coding

something too ambitious. As always happens, I spent much of my time

blundering down blind alleys, staring at app crashes and weird behav-

iors, figuring out what pieces of the conceptual puzzle I was missing,

searching for them in vast masses of documentation, and revisiting old

code in the light of new understanding. The only difference was that

after I figured something out, I wrote a new chapter about what I’d

done and what I’d learned—except that I removed most of the frustra-

tion from the story line. When I had to backtrack because I didn’t know

something, I wrote that something into the story just when I would have

needed it. The result is what Imre Lakatos, the philosopher of science,

called a rational reconstruction of history: follow the book, and I think

you’ll get pretty much the experience I should have had.

That turns out to be a fantastically time-consuming way of writing a

book. The payoff is that, when I wrote, the experience of learning was

fresh in my mind. Experts often have a problem remembering what it

was like to learn and how much they used to not know. I solved that

problem by being barely not ignorant as I wrote.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

WHAT IS COCOA? 12

1.1 What Is Cocoa?

Most modern Mac applications are written using the Cocoa framework.

Cocoa is an object-oriented framework that structures your app and

handles a lot of drudgery for you. It mostly makes developing a user

interface easier, but it also has classes and libraries for handling the

file system, interprocess communication, persistent data, and so on.

1.2 What Is RubyCocoa?

The Cocoa framework was originally designed to be used via Objective-

C programs. Objective-C is an object-oriented dialect of C. Early in the

history of OS X, Apple also provided Java interfaces to some of the

framework, but that didn’t work out well. The problem was that Java

wants to know things at compile time that Objective-C defers to run-

time. For example, Objective-C is not nearly so picky about declaring

types as Java is. Because Cocoa framework writers took advantage of

such features, the mapping between Java and Cocoa was clumsy.

It’s much easier to build a bridge between Cocoa and Ruby because

Ruby and Objective-C stem from similar philosophies of language de-

sign. RubyCocoa is that bridge. With it, you can write Ruby code that

calls Objective-C code, and vice versa. So, it’s quite possible to write a

Mac app in Ruby.

1.3 What’s It Like to Learn Cocoa Using Ruby?

It doesn’t take much time to learn the basics of RubyCocoa. Once you’ve

done that, you’ll spend most of your time learning Cocoa. Your Cocoa

learning will occasionally be interrupted by some surprising RubyCocoa

fact, which you will then absorb and move on.

This book follows that sequence. It begins with an introductory chapter

that teaches RubyCocoa basics without many of the distractions of a

real user interface. Then it follows a typical development pattern: begin

with a small version of your app, get it working, find the next thing you

wish it did, make it do that, and repeat until you’re done. Cocoa and

RubyCocoa topics will be covered as they come up in a realistic course

of development.

With any complex framework, there’s a moment when you realize you

finally have a feel for it—when faced with a new problem, you’re able to

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=12

RUBYCOCOA? THAT’S So LAST YEAR! 13

guess whether the framework addresses it, roughly how it will address

it, and where to look to find the details. The aim of this book is to give

you that feel for Cocoa and RubyCocoa. It’s not a reference to the Cocoa

framework because that information is already on your hard drive or,

at most, an HTTP address away.

Still, because no single development history can naturally encounter

every topic and because exploring some topics in enough detail would

be too much of a digression from the story line, the last part of the book

consists of essays on important topics. They can be read in any order,

at any time.

1.4 RubyCocoa? That’s So Last Year!

During the writing of this book, various people suggested that it be

switched from RubyCocoa to MacRuby, Apple’s next generation of sup-

port for Ruby. As I write, though, MacRuby is still in beta. Both my lim-

ited experience with it and my subscription to the developer mailing list

make me think it’s not quite ready to replace RubyCocoa. As I noted in

the previous section, most of your time spent learning RubyCocoa will

be spent learning the Cocoa part. That’s the same in RubyCocoa and

MacRuby, so you might as well learn it in the more stable environment.

At some point, you’ll switch to MacRuby. If you like to be on the cut-

ting edge, you’ll do it soon. If not, it will be later. In either case, it

helps to know what’s coming. For that reason, I’ve written Chapter 25,

MacRuby, on page 334 for you.

1.5 Prerequisites

• You should have used a Mac enough that you’re familiar with the

conventions Mac apps follow. There’s no need to have ever built an

app with a graphical user interface, whether for the Mac or for any

other platform. You don’t need to understand Objective-C (or C).

• You should know Ruby reasonably well. A good measure of that is

whether you’re comfortable reading parts of someone else’s Ruby

code. If some gems’ behavior surprises you, do you follow a stack

trace into it to see what’s really going on?

I’ll use some tricky Ruby code behind the scenes, but the code

you’ll need to understand will be fairly straightforward. However, I

won’t stop to explain common idioms like this sort of initialization:

@var ||= 5

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=13

PREREQUISITES 14

If you don’t think you know Ruby well enough, I recommend the

Pickaxe book, Programming Ruby [TFH08], possibly supplemented

with The Ruby Way [Ful06]. My own Everyday Scripting with Ruby

[Mar06] teaches Ruby in the same style as this book teaches Ruby-

Cocoa—by having you implement projects alongside the book—

but it may be too slow-paced for an experienced programmer, and

you’ll still want the Pickaxe book for reference.

• Make sure you’re running Apple’s version of Ruby. You can con-

firm that like this:

$ /usr/bin/which ruby

/System/Library/Frameworks/Ruby.framework/Versions/1.8/usr/bin/ruby

If you see other output (like /usr/local/bin/ruby or /opt/local/bin/ruby),

adjust your load path so that /usr/bin/ruby is used instead.

• You should be running Mac OS X 10.5 (Leopard) or later, with the

Developer Tools installed.1 Earlier versions of the Developer Tools

do not include RubyCocoa.

To see what version of RubyCocoa you’re running, type this to irb:

irb(main):001:0> require 'osx/cocoa'

=> true

irb(main):002:0> OSX::RUBYCOCOA_VERSION

=> "0.13.1"

I also have most of the examples write RubyCocoa’s version to the

console (visible via the Console app). If you manually installed a

version of RubyCocoa before you installed Leopard, that old ver-

sion may be loaded instead of Leopard’s (by an application, but

not by irb). If samples behave oddly, you check the console, and the

version is old, then delete /Library/Frameworks/RubyCocoa.framework.

RubyCocoa is available for earlier versions of OS X, but I’ve made

no attempt to avoid Leopard features. Moreover, the two main

Apple tools we’ll use (Xcode and Interface Builder) changed con-

siderably between 10.4 and 10.5. So if you install RubyCocoa on

a pre-Leopard version, prepare to spend time figuring out how a

picture in the text maps into an old tool.

• You have to be prepared to build the app yourself. If you just read

the book, the knowledge probably won’t stick. You’ll then find that

1. You had to choose to install the Developer Tools when you installed Leopard. If you

didn’t, you can fetch them off the install disc or from http://developer.apple.com.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developer.apple.com
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=14

VERSIONS 15

building your first app is a flood of tasks you vaguely know you

should perform but forget how. It’s better to build up your “muscle

memory” by building the book’s app before you build your own.

• You need to download bmrc-code.zip from http://pragprog.com/titles/

bmrc/source_code. It contains some files and tools you’ll need as

you work through the chapters. When you unzip bmrc-code.zip, it

will place all its contents in a code subdirectory. Since you’ll likely

want to rename that, I’ll leave off the code prefix when referring to

files. So, for example, when I direct you to the very first file you’ll

work on, I’ll refer to it as statusbar/most-basic-app.rb.

The download also contains snapshots of the app taken just before

and after each important step. As you work along, you can copy

snippets from the snapshots or use one of them as a starting point.

The download means that, at any given moment, there may be

thirty-four versions of the app on your disk: thirty-three interme-

diate versions that I supply and one that you’re working on. That

presents a problem. For example, on page 96, I write “look in Win-

dowController to see how it handles the AppChosen notification.”

The problem is that your version might not use the same names

as mine, so it might not handle anything called AppChosen. In that

case, you’ll need to look at my most recent version, not yours. But

which is most recent? You can find that out by looking backward

to the most recent code snippet that identifies its source file. The

following snippet, for example, would tell you we’re working on the

reshaped-with-dsl version of the app:

Download fenestra/reshaped-with-dsl/WindowController.rb

on_local_notification AppChosen do | notification |

@logWindow.title = notification[:app_name]

end

1.6 Versions

The book uses these tools:

• Ruby 1.8.6

• RubyCocoa 0.13.1

• Xcode 3.0

• Interface Builder 3.0

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/bmrc/source_code
http://pragprog.com/titles/bmrc/source_code
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/WindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=15

OUR EXAMPLE APP 16

Figure 1.1: Visible workings

These were the most recent versions delivered by Apple at the time of

writing.

When the book also uses libraries or gems, they’re included in the

book’s bmrc-code.zip file.

1.7 Our Example App

If you’re going to go to the trouble of working through an entire book of

code, you ought to end up with something more than knowledge at the

end of it. You ought to get code you can use, either as a complete app

or as snippets and templates to incorporate into your own apps. I’m not

creative enough to imagine an app with wide appeal, but I do know of

a template you might very well need.

You see, too many programmers are like the proverbial shoemaker’s

children who go unshod. You build sophisticated graphical interfaces

that let bond traders or camera buffs or physicists easily see and

manipulate the stuff of their work, but you don’t do the same for your-

self. A person who one moment is adding Ajax wizardry to streamline a

web app’s workflow will, the next moment, be trying to diagnose a bug

by groveling through textual log files, manually trying to reproduce the

steps to the failure, viewing the HTML source of page after page, and

poring over database tables that hold a distorted version of the app’s

objects. That doesn’t seem right.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=16

OUR EXAMPLE APP 17

web app
our RubyCocoa app

Figure 1.2: An alternate GUI

It’s not right, and it’s our fault. We allow our apps to be childish. Every

parent knows how bad children are at answering the two vital ques-

tions: “All right, who did it?” and “What on Earth were you thinking to

make that seem like a good idea?” Trying to figure out a bug with noth-

ing more than a user’s report and the app’s regular GUI is like being

faced with the child who answers every question with “I dunno.” But

going after a bug with general-purpose tools like the language’s debug-

ger is like talking to the child who tries to get out of trouble by throwing

up a smoke screen of detail, irrelevancies, and finger-pointing. What we

need is to build every app with a special window into its inner workings

that programmers and testers can use (Figure 1.1, on the preceding

page).

The main example in this book will be a free-standing app that peeks

and pokes at another app through such a window. I’ll target a web app

in the book because that happens to be what I need right now, but

the same principle and much of the code would apply to any app. A

sketch of it in use is shown in Figure 1.2. It will contain a running log

of actions the web app has taken that is expandable to the desired level

of detail. A click of a button will tell the web app to undo or redo an

action. Our app, helped by the web app, will know when links refer to

domain objects (like user accounts), so the right gesture will pop up an

understandable, tweakable, and draggable representation of the object.

There’s much more that such an app could do, but since this is a book

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=17

CENTURIES OF THE BOOKMAKER’S ART: SCORNED 18

about programming OS X, I’ll limit myself to features that teach Cocoa.

I think of such apps as windows you can both look and reach into, but

the word window is already taken, so I’ll use the Latinate equivalent:

fenestra. It’s a particularly apt choice because that’s also the word for

a hole surgically carved into a body part to let bad stuff leak out. In our

case, the “bad stuff” is information about bugs.

The act of creating such a hole is called fenestration. I’ll use that word

when I need to describe what the program is doing, and I’ll use fenestra

to describe the result.

1.8 Centuries of the Bookmaker’s Art: Scorned

I hate it when words refer to a figure that you have to flip the page to

see. It’s bad enough with drawings, but it really hurts my comprehen-

sion when the figure contains code. I’ve made a real effort to keep the

code and the references to that code on the same or facing pages. The

result is. . .

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=18

SOME TERMINOLOGY 19

. . . big blank spaces at the bottom of some pages. Text and figures are

traditionally laid out to avoid that ugliness. I embrace it. You deserve

an unattractive book.

1.9 Some Terminology

While writing the book, I sometimes had a choice between consistent-

but-awkward usage and flowing-but-inconsistent usage. For example,

consider the following bit of Ruby:

"foo".upcase

I’d normally say that Ruby “sends the message :upcase to the string

"foo".” Sometimes, though, the words sends and message won’t work

in a sentence, so I use “calling the method” instead. There’s nothing

but stylistic significance to the choice—I don’t mean a different thing.

Similarly, when writing of a variable, I might say that it “refers to,”

“names,” or “points at” an object. I might also say it “is” an object—

even though that’s strictly incorrect—because “i names 5” sounds silly.

1.10 Service After the Sale

My mail address is marick@exampler.com.

You can find errata at http://pragprog.com/titles/bmrc/errata.

1.11 Solving Problems

The Apple documentation (cited throughout the book) will be your main

source of Cocoa information, but don’t be surprised when you run into

problems that it doesn’t help you solve. Cocoa is big.

When I’ve been stumped, I’ve had the best luck just using Google to

search for the right keywords. A thoroughly gratifying percentage of the

time someone has written a blog entry or email message solving my

exact problem. The solutions are almost always in Objective-C, but I

expect that won’t be a problem for you after you finish the book.

There is a low-volume mailing list, https://lists.sourceforge.net/lists/listinfo/

rubycocoa-talk, where you can ask questions about RubyCocoa. The

main Cocoa developer mailing list, http://lists.apple.com/mailman/listinfo/

cocoa-dev, has much higher volume. If you can phrase your question

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/bmrc/errata
https://lists.sourceforge.net/lists/listinfo/rubycocoa-talk
https://lists.sourceforge.net/lists/listinfo/rubycocoa-talk
http://lists.apple.com/mailman/listinfo/cocoa-dev
http://lists.apple.com/mailman/listinfo/cocoa-dev
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=19

ACKNOWLEDGMENTS 20

in terms that make sense to an Objective-C programmer, you can get

help there. It’s not unusual for Google to point me to its archive.

In /Developer/Examples, Apple provides examples of Cocoa features in

the form of small—but complete—apps. They’re written in Objective-C.

I am ever so gradually translating them into Ruby at http://github.com/

marick/cocoa-examples-translated. (I welcome help.)

When it comes to RubyCocoa itself, I’ve used both its source and tests

to answer my questions. I encourage you to download RubyCocoa from

http://rubycocoa.sourceforge.net.

1.12 Acknowledgments

Dawn, light of my life.

The creators of RubyCocoa: Eloy Duran, Fujimoto Hisa, Chris Mcgrath,

Satoshi Nakagawa, Jonathan Paisley, Laurent Sansonetti, Chris

Thomas, Kimura Wataru, and others.

Corey Haines, for spending two days of his Pair Programming Tour2 in

my living room, helping me figure out the mysteries of drag and drop.

My editor, Daniel Steinberg.

Technical reviewers Chris Adamson, Julio Barros, Craig Castelaz,

Michael Ivey, Jerry Kuch, Mathias Meyer, Allison Newman, and Scott

Schram.

Readers of the beta drafts: Steven Arnold, Jason M. Batchelor, Rune

Botten, Tom Bradford, Stephyn G. W. Butcher, Leroy Campbell, Gregory

Clarke, Eloy Duran, Frantz Gauthier, Joseph Grace, Aleksey Gureiev,

Christopher M. Hanson, Cornelius Jaeger, Masahide Kikkawa, Fred-

erick C. Lee, Jay Levitt, Tim Littlemore, Nick Ludlam, Stuart Malin,

Ule Mette, James Mitchum, Steve Ross, Peter Schröder, Jakub Suder,

Tommy Sundström, Matthew Todd, Daniel J. Wellman, Markus Werner,

“Dr. Nic” Williams, and perhaps others whose names I didn’t write

down. (Sorry.)

Although this is a book about RubyCocoa, I’ve snuck in bits and pieces

of a philosophy and pragmatics of application design. It’s a style I

have learned from people such as Kent Beck, Ward Cunningham, Carl

Erickson, Michael Feathers, Martin Fowler, Steve Freeman, Richard P.

2. http://programmingtour.blogspot.com

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://github.com/marick/cocoa-examples-translated
http://github.com/marick/cocoa-examples-translated
http://rubycocoa.sourceforge.net
http://programmingtour.blogspot.com
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=20

ACKNOWLEDGMENTS 21

Gabriel, Andy Hunt, Ron Jeffries, Ralph Johnson, Joshua Kerievsky,

Yukihiro Matsumoto, Nat Pryce, Richard Stallman, Guy Steele, Prag-

matic Dave Thomas, and others. Without them, this book would have

been less interesting to write and—I hope—read.

Sophie Marick for the picture on page 16.

Giles Bowkett for the musical accompaniment to the embedded video

in the sample app’s help pages.

The baristas at Bar Guiliani, Aroma Cafe, and Espresso Royale, espe-

cially Alex Kunzelman for not calling the nice people from the mental

health center around the fourth draft of Chapter 7.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=21

Chapter 2

How Do We Get
This Thing Started?

We’re going to start fast, small, and with the fundamentals. To that end,

here’s the smallest RubyCocoa app:

Download statusbar/most-basic-app.rb

#!/usr/bin/env ruby

Ê require 'osx/cocoa'

Ë OSX::NSApplication.sharedApplication
Ì OSX::NSApp.run

If you run it, you’ll see that it does nothing but exist: no windows, no

output, no exit:

$ ruby most-basic-app.rb

(You’ll have to kill the script with Control - C .)

What causes this nonbehavior? Line Ê creates the ability for Ruby and

Objective-C methods to call each other. You’ll see more about how that

works throughout the book.

Line Ë’s NSApplication is the class corresponding to the entire applica-

tion itself. The call to class method sharedApplication creates the sin-

gle instance of that class, names it with the constant NSApp (used on

the next line), connects it to the window server, and does other useful

initialization.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/most-basic-app.rb

A PROGRAM THAT PRINTS 23

The NS prefix is used by all the Cocoa classes you’re ever likely to see.

So, using the module prefix OSX:: isn’t really helping to avoid name

clashes. I’ll usually just include the OSX module and forget about it.

Notice that sharedApplication isn’t an idiomatic Ruby name. In Ruby,

you would be much more likely to see shared_application. It is idiomatic

Objective-C, though. You should expect to see such method names—

and even stranger ones—in RubyCocoa programs.

At Ì, NSApp is told to run. It does, waiting forever for someone to send

it work to do.

2.1 A Program That Prints

In this section, I’m going to make the app do one tiny additional thing:

print a message to standard output. That raises two questions right

away:

• When should the message be printed? Since the Cocoa runtime

tells NSApp when it (NSApp) has finished launching, that seems

like a good moment.

• Where do we add the code? In some systems, you’d add the code

in a subclass of NSApplication. That style is rare for Cocoa apps.

Instead, Cocoa programmers have NSApp delegate some of the

work to another object (called, unsurprisingly, a delegate).

The application structure we’ll use looks like Figure 2.1, on the next

page. Here’s the code:

Download statusbar/no-ui.rb

#!/usr/bin/env ruby

require 'osx/cocoa'

include OSX

Ê class AppDelegate < NSObject
Ë def applicationDidFinishLaunching(aNotification)

puts "#{aNotification.name} makes me say: Hello, world"

end

end

Ì our_object = AppDelegate.alloc.init

NSApplication.sharedApplication # Creates global NSApp
Í NSApp.setDelegate(our_object)

NSApp.run

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/no-ui.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=23

A PROGRAM THAT PRINTS 24

 its
delegate

The Cocoa Runtime

NSApp

Weʼve finished launching

Youʼve finished launching

Figure 2.1: Delegating work

The delegate is defined at Ê. It volunteers to handle the “application has

launched” event by defining the applicationDidFinishLaunching method (at

Ë). There are other events; because the class doesn’t contain a corre-

sponding method, it won’t have to handle them.

Notice what’s happening here: Objective-C, like Ruby, encourages duck

typing. The term comes from the saying “If it quacks like a duck, it’s a

duck.” If an AppDelegate object responds to the right messages, it’s a

suitable application delegate no matter what its declared superclass. It

does have to be an Objective-C object, so it’s declared as a subclass of

NSObject. That class is the root of the Objective-C class hierarchy, just

as Object is the root of the Ruby hierarchy.

The app creates the delegate at Ì. Whereas in Ruby you’d expect App-

Delegate.new, object creation in Objective-C is done in two parts. alloc

creates the object in memory and attaches all its methods to it. init is

what we in Ruby call initialize. Objective-C separates the two because

many Objective-C classes have variant init methods to support different

ways of initializing the instance.1

1. Ruby actually works like Objective-C under the covers: new first uses the class

method allocate and then sends initialize to the resulting instance.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=24

A PROGRAM THAT PRINTS 25

NSApp is told of its delegate at Í. Then NSApp starts running. Once the

application setup work is finished, NSApp calls its delegate’s application-

DidFinishLaunching method.

There’s not much more to the app: applicationDidFinishLaunching prints.

For fun, I had it print the name of its single argument, an NSNotification

object. Notice that sending a message to an Objective-C object is no

different from sending one to a Ruby object. (You can check that aNoti-

fication names an Objective-C object by printing its class: does it start

with NS?)

If you run the new script, you’ll see this:

$ ruby no-ui.rb

NSApplicationDidFinishLaunchingNotification makes me say: Hello, world

Try This Yourself

1. applicationDidFinishLaunching is not the only message that can be

sent to a delegate. It’s too early for you to handle most of them,

but try changing no-ui.rb to handle applicationWillFinishLaunching.2

2. Notifications have more than names. They can also point to an

object of interest. In the case of these two notifications, that object

is NSApp. Write some code to make sure that’s true. Use the object

message to get the object of interest.

3. Run your solution to the previous exercise again, but this time

misspell the word object. Learn to recognize the output—you’ll be

seeing it a lot in your RubyCocoa career. That’s what happens

when RubyCocoa tries to send any Objective-C message that the

object doesn’t respond to. It’s the equivalent of this Ruby error

message:

irb(main):005:0> notification.objct

NoMethodError: undefined method `objct' for #<Notification:0x10a4050>

from (irb):5

2. What’s the point of knowing an application hasn’t finished launching yet? Certain

things happen between the two events you know about. For example, it’s between them

that an application is told it was started by double-clicking a file. If you want to do any

setup before then, applicationWillFinishLaunching is the time to do it.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=25

PUTTING AN ITEM IN THE STATUS BAR 26

2.2 Putting an Item in the Status Bar

Without using Interface Builder (described in Chapter 3, Working with

Interface Builder and Xcode, on page 37), making a user interface is

tedious work, so we will create only a single, incredibly simple user-

interface element in this section: an icon in the status bar (the symbols

and text on the strip across the top of the screen on the right).

Here’s the code:

Download statusbar/statusbar-item.rb

#!/usr/bin/env ruby

require 'osx/cocoa'

include OSX

class App < NSObject

def applicationDidFinishLaunching(aNotification)
Ê statusbar = NSStatusBar.systemStatusBar
Ë status_item = statusbar.statusItemWithLength(NSVariableStatusItemLength)

Ì image = NSImage.alloc.initWithContentsOfFile("stretch.tiff")
Í raise "Icon file 'stretch.tiff' is missing." unless image

Î status_item.setImage(image)

end

end

NSApplication.sharedApplication

NSApp.setDelegate(App.alloc.init)

NSApp.run

Line Ê fetches a reference to the global status bar. Then line Ë allocates

screen space (on the left of all the other items) for the item you are

about to create. The parameter NSVariableStatusItemLength says that the

amount of space needed is unknown yet.

Line Ì uses a handy class that represents an in-memory image. The

next line, Í, quits the program if there was no image file to load. Its

unless check works because NSImage’s init follows the Cocoa conven-

tion of returning nil—rather than the allocated object—when something

goes wrong during initialization. There’s a suitable image file in status-

bar/stretch.tiff.

Finally, at Î, the image is placed in the previously allocated space.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/statusbar-item.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=26

MENUS 27

Try This Yourself

You can add text to the status bar with setTitle. Try that in statusbar-

item.rb, both with and without an accompanying image.3

2.3 Menus

Our status bar item doesn’t do anything, so let’s give it a menu. For

fun, I’ll use it to make the app speak to us. That’s not hard: I’ll use a

Cocoa object, NSSpeechSynthesizer, to turn text into speech.

Before starting that, let’s separate concerns. App will concern itself only

with application-wide events such as being launched and being termi-

nated. A new class, SpeechController, will do everything else.

Here’s the new version of App:

Download statusbar/speaking-statusbar.rb

class App < NSObject

def applicationDidFinishLaunching(aNotification)

statusbar = NSStatusBar.systemStatusBar

status_item = statusbar.statusItemWithLength(NSVariableStatusItemLength)

image = NSImage.alloc.initWithContentsOfFile("stretch.tiff")

status_item.setImage(image)
Ê SpeechController.alloc.init.add_menu_to(status_item)

end

end

Only one thing has changed, at line Ê. We just create a SpeechController,

ask it to add its menu to the status bar item, and then forget about

it. Notice that a SpeechController is an Objective-C object—you can tell

because it’s created with alloc and init.

And here’s the SpeechController class:

Download statusbar/speaking-statusbar.rb

class SpeechController < NSObject

def init
Ê super_init

@synthesizer = NSSpeechSynthesizer.alloc.init
Ë self

end

Like App, SpeechController descends from NSObject. A SpeechController

needs to define its own init, though, because we want it to create an

3. If you’re not working in the statusbar directory, get a copy of statusbar/stretch.tiff from

there before running the script.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=27

MENUS 28

NSSpeechSynthesizer and hold onto it in an instance variable. Such an init

method differs from Ruby’s familiar initialize in two ways:

Ê In an ordinary Ruby class, the initialize method uses super to call its

superclass’s initialize method. In an NSObject subclass, init calls the

superclass’s init method with super_init. (In general, any overriding

method method calls its superclass version with super_method.)

As you saw on page 26, init methods can sometimes return nil. For

that reason, a pedantically safe use of the superclass would look

like this:

return nil unless super_init

In this case, though, I know that NSObject’s init always returns self.

(In fact, it does nothing but return self, so I could omit the line

entirely.)

Ë In an ordinary Ruby class, initialize’s return value is irrelevant. In

contrast, an NSObject subclass must return self (or, in the case of

error, nil). If I’d forgotten line Ë, code like this:

s = SpeechController.alloc.init

s.add_menu_to(status_item)

. . . would make s an NSSpeechSynthesizer and then blow up on the

next line with a “no such message” failure. Even after seeing a

lot of those failures, it still sometimes takes me much too long to

think of blaming init.

Now for the menu. In Cocoa, a menu is represented by an NSMenu that

contains NSMenuItem objects. It’s those objects that receive “you’ve been

clicked” events from the window manager. If an NSMenuItem handles the

event, it forwards the work by calling an action method attached to a

target object. (See Figure 2.2, on the following page.)

The NSMenu itself does only a little work. It asks each item for its name

and key equivalent (the keystroke that selects that item via the key-

board instead of the mouse). Then it paints all the items on the screen.

SpeechController’s add_menu_to, shown in Figure 2.3, on the next page,

wires all this together.

It begins (Ê) by allocating an NSMenu object and attaching it to what-

ever container was given. This is another example of duck typing (and

a benefit of separation of concerns): this particular class doesn’t care

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=28

MENUS 29

a target object
(with an action method)

an NSMenu an NSMenuItem

...

...

The Cocoa Runtime

Youʼve been clicked

Run that action method

Figure 2.2: Clicking a menu

Download statusbar/speaking-statusbar.rb

def add_menu_to(container)
Ê menu = NSMenu.alloc.init

container.setMenu(menu)

Ë menu_item = menu.addItemWithTitle_action_keyEquivalent(

"Speak", "speak:", '')
Ì menu_item.setTarget(self)

menu_item = menu.addItemWithTitle_action_keyEquivalent(
Í "Quit", "terminate:", 'q')
Î menu_item.setKeyEquivalentModifierMask(NSCommandKeyMask)
Ï menu_item.setTarget(NSApp)

end

Ð def speak(sender)

@synthesizer.startSpeakingString("I have nothing to say.")

end

end

statusbar/speaking-statusbar.rb

Figure 2.3: Building a menu

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=29

MENUS 30

what it’s attached to, so long as that object responds to setMenu. Today,

it’s a status bar item. Tomorrow, it could be something else.

Next, an NSMenuItem is created and assigned to the menu by addItem-

WithTitle_action_keyEquivalent (line Ë). What’s up with that name? Objec-

tive-C has an interesting and nearly unique way of naming methods.

Here’s (almost) what Objective-C code that added a menu item would

look like:4

[menu addItemWithTitle: "Speak" action: "speak:" keyEquivalent: ""]

The method being called here is named addItemWithTitle:action:keyEqui-

valent:. It takes exactly three arguments that have to come in exactly

the defined order.

RubyCocoa has to provide you with a way of naming that Objective-C

method. It can’t use the same name, because method names in Ruby

can’t contain colons. So, the colons are replaced with underscores. To

avoid excessive ugliness, you can leave off the last underscore, as I did

at line Ë.5

The first and third arguments to the method provide the name and key

equivalent. (This particular item has no key equivalent.) The second

argument is the name of the message to send when the menu item

is selected. Although the speak method is defined in Ruby, I’ve used

Objective-C’s notion of its name: "speak:". The name ends in a colon

because (as you’ll see shortly), speak takes a single argument.

Which object receives the speak: message is set on the next line (Ì). In

this case, the SpeechController handles the message itself.

Lines Í and Î show how you create a keyboard equivalent. Those

are almost never plain characters like q . They’re usually characters

with modifiers, like Command - Q . For whatever reason, the character and

modifier keystrokes are set in separate methods.

The menu item will send a terminate: message, but not to SpeechCon-

troller. Since it’s a message about the whole app, it’s targeted at NSApp

(line Ï), an Objective-C class that implements terminate:.

4. I’ve removed a little type casting because it’s not important to this explanation. To be

pedantic, the title and key equivalent shouldn’t be strings. They should be NSString objects,

which are written as @"string". Similarly, the action argument should be a “selector,” not

a string. You’ll see more—and more correct—examples of Objective-C later in the book.
5. That’s not always safe: consider an Objective-C class that has two methods, action

and action:.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=30

AN APPLICATION BUNDLE 31

The speak (Ð) action is simple. Notice that it takes a sender argument,

which will be the NSMenuItem that was clicked. Action methods can use

the sender to query or change the user interface.

If you run the app, you’ll probably notice that the synthesizer takes a

second or two to start talking after you click the menu item. Presumably

it’s doing some first-time initialization. It’s more prompt the second

time.

Try This Yourself

1. Put this at the end of speak:

puts sender.objc_methods.grep(/title/i)

Use one or more of those methods to change the menu after some-

thing is said.

2. While terminating, NSApp will send its delegate two messages:

applicationShouldTerminate and applicationWillTerminate. The first lets

the delegate decide to cancel shutdown, and the second gives it a

chance to do any of its own cleanup.

Use applicationWillTerminate to print out “Goodbye, cruel world!”

3. Make applicationShouldTerminate return false unless the app has

spoken at least twice, true otherwise. See what happens when you

return values like nil, "fred", and the integer 0.

A small quirk: unlike the delegate messages you’ve seen so far,

applicationShouldTerminate takes an NSApplication as its argument,

so sender or app would be a better name than aNotification.

(If you need help, there’s a solution in statusbar/speaking-statusbar-

solution.rb.)

2.4 An Application Bundle

Fine though our script may be, it doesn’t behave like a Mac applica-

tion. If you double-click it, it doesn’t launch. (Most likely, it opens in

an editor.) It doesn’t get an icon in the Dock, you can’t see it if you

Command - Tab through open applications, and so on. In this section, I’ll

explain what’s special about apps. You’ll create your first one in Chap-

ter 3, Working with Interface Builder and Xcode, on page 37.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=31

AN APPLICATION BUNDLE 32

Statusbar.app/

Contents/

Info.plist MacOS/ Resources/

Statusbar.icns rb_main.rb stretch.tiff

Figure 2.4: A bundle

On the Mac, executable code is delivered inside bundles. A bundle is

just a directory hierarchy with a certain predefined structure. Applica-

tions are one kind of bundle. If you look inside statusbar/Statusbar.app,

you’ll see a structure like that of Figure 2.4.6

Reading roughly top to bottom and left to right, we have these files:

Contents/

This identifies the bundle as a “modern” bundle.

Info.plist

This contains various configuration options. For example, if you

launch the application, you’ll notice that it doesn’t have a main

menu and doesn’t appear in the Dock. I made that happen by

setting LSBackgroundOnly. Apple’s Runtime Configuration Guidelines

[App08x] has the gory details about all the options you can tweak.

MacOS/

There is a small compiled Objective-C executable named Statusbar

in this directory. It loads and starts the Ruby code. (You don’t

have to write the Objective-C yourself; Apple’s Xcode, explained in

Chapter 3, Working with Interface Builder and Xcode, on page 37,

creates it for you.)

6. If you’re browsing from the command line, Statusbar.app looks like what it is: a direc-

tory. If you’re browsing with the Finder, it appears to be a single file. That’s because it’s a

package, a special kind of directory that the Finder pretends is a file. All application bun-

dles are packages. You can tell Finder to let you look inside it by selecting Show Package

Contents from Statusbar.app’s context menu.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=32

AN APPLICATION BUNDLE 33

Resources/

This directory contains unchanging information the application

might use. The good thing about resources is that their loca-

tion is relative to the bundle itself, so code doesn’t need to use

absolute pathnames or know where it has been installed. Apple’s

Resource Programming Guide [App08v] teaches how to load and

use resources.

Because this is a small program, it has few resources:

Statusbar.icns

.icns files contain the icons shown in the Finder, Dock, and so

on. I create icon files with a drawing program and Icon Com-

poser, which you can find in /Developer/Applications/Utilities.

rb_main.rb

All your Ruby source files are stored as resources.

stretch.tiff

Pictures, sound files, movies: all these are stored in Resources.

For more information about bundles, see Apple’s Bundle Programming

Guide [App08d].

Ruby Code Within a Bundle

Our existing script barely needs to change when moved into a bundle.

Its name changed to rb_main.rb. (That’s not required, but it’s easiest to

follow the convention.) The following old line of code won’t work:

Download statusbar/speaking-statusbar.rb

image = NSImage.alloc.initWithContentsOfFile("stretch.tiff")

That line assumes the script is running in the same directory as the

image file. That’s not true for an application, which should fetch the

image from Resources. That’s done like this:

Download statusbar/Statusbar.app/Contents/Resources/rb_main.rb

image_name = NSBundle.mainBundle.pathForResource_ofType('stretch', 'tiff')

image = NSImage.alloc.initWithContentsOfFile(image_name)

Simple enough.

Try This Yourself

1. What’s a running application’s working directory? You can print it

to the system log with this line:

NSLog(Dir.pwd)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/speaking-statusbar.rb
http://media.pragprog.com/titles/bmrc/code/statusbar/Statusbar.app/Contents/Resources/rb_main.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=33

AN APPLICATION BUNDLE 34

Add a menu item to Statusbar.app/Contents/Resources/rb_main.rb to

do that. You can view the system log with the Console app (in

/Application/Utilities). It will appear in the system.log log file.

Log the directory both when double-clicking the app and when

opening it from the shell like this:

$ open Statusbar.app

2. What does the process environment look like when the app is

launched by double-clicking (NSLog(ENV.inspect))?

You should see that it’s pretty sparse, containing nothing you set

in your .bashrc file. Therefore, the common gem-loading trick of

setting the environment variable RUBYOPT to rubygems won’t work

for a RubyCocoa app. Here are three solutions:

a) Just use require ’rubygems’ in your Ruby code. This is probably

the best solution. In Leopard, RubyGems is guaranteed to be

installed.

b) Create a file named ~/.MacOSX/environment.plist. (Note that the

directory starts with a period so that the Finder ignores it.) In

it, place this XML:

Download statusbar/environment.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>RUBYOPT</key>

<string>rubygems</string>

</dict>

</plist>

You will have to log out and log back in for the change to take

effect. Once you do, the environment variable will be set for

all applications.

c) Add the following lines to Info.plist:

<key>LSEnvironment</key>

<dict>

<key>RUBYOPT</key>

<string>rubygems</string>

</dict>

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/statusbar/environment.plist
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=34

WHAT NOW? 35

Beware, though: Info.plist is used only if your app is launched

through Launch Services. The Finder and the shell’s open

command use Launch Services, but your IDE or program-

mer’s editor may not.7 In particular, Apple’s Xcode does not.

2.5 What Now?

Given what you’ve seen, I hope you believe that writing a Mac app in

Ruby is potentially as pleasant as any other Ruby programming. But

only potentially. Three obstacles still have to be removed:

• Setting up even simple user interface elements like menus seems

like fiddly, detail-heavy work. Imagine what windows with panels

and sidebars and tooltips must be like! Apple’s free developer tools

remove that obstacle. They’re explained in Chapter 3, Working with

Interface Builder and Xcode, on page 37.

• The code has already used a number of mystery classes such as

NSMenu, NSBundle, and NSImage. How do you find, understand, and

use their documentation? That’s explained in Section 3.2, The API

Browser, on page 49.

• Information about classes and methods is all well and good, but

classes and methods exist in a context. You need to know how

Mac applications are put together and what kinds of things they

can do. That’s the topic of most of the rest of the book.

7. See Apple’s Launch Services Programming Guide [App08o] for more.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=35

Part I

A First Realistic App

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Chapter 3

Working with
Interface Builder and Xcode

In this chapter, we’ll build a simple GUI that lets us fenestrate an app

(open a window, or fenestra, into its internals). It’s the acorn that will

grow into the mighty oak tree of Section 1.7, Our Example App, on

page 16. It looks like Figure 3.1. We’ll imagine we’ll type the name

of the application we want to fenestrate in the smaller text field, and

information from that app will ooze into the larger text view.

Pick an app:

Figure 3.1: An app with input and output

Prepared exclusively for Alison Tyler

Download at Boykma.Com

THE BASICS 38

3.1 The Basics

The two main tools for building Mac apps are Xcode and Interface

Builder. (The latter is often abbreviated IB.) Xcode manages the col-

lection of files used to build an app and provides a programmer’s edi-

tor. It’s akin to Eclipse or IntelliJ IDEA for Java, but it’s tailored to

Objective-C programs. Interface Builder is a tool for drawing executable

user interfaces.

Begin by creating a project. Start Xcode (in /Developer/Applications). If

you see a Welcome page, dismiss it (although you may want to look at

it later). Create a project by selecting File > New Project. You’ll see a

screen like this:

Choose, as I did in the figure, a Cocoa-Ruby application, and hit Next.

You’ll be asked to name the project. Since you’re also naming the app,

it’s conventional to pick a capitalized name. I picked “Fenestra.”

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=38

THE BASICS 39

After you hit Finish, you’ll see something like the following:

This view has nothing to do with the file system structure of the project.

It’s more like a collection of smart folders in the Finder or iTunes. I

won’t give a detailed description of what you see, but notice some files

we edited in Section 2.4, An Application Bundle, on page 31: Info.plist

and rb_main.rb. Those are the source versions of the files that are put in

the application bundle when it’s built.

Click Build and Go on the toolbar now. After a bit of a pause, you

should see this window:

Although you’ve written no code, your app already does some of what

a real app does. You can hide and show it, minimize and zoom it, and

quit it by either using the menu or pressing Command - Q . Quit it now.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=39

THE BASICS 40

Our next job is to make that window have the label, text field, and text

view shown in Figure 3.1, on page 37.

Interface Builder

In the project view, there’s an entry in the right panel called Main-

Menu.nib. You can also see it under the Resources or NIB Files groups

in the left panel. (If you see MainMenu.xib instead, don’t worry; it’s the

same data, just formatted differently.)

You can think of a nib file1 as describing a user interface, but the

reality is more clever: it’s actually a “frozen” (“marshaled” or “serial-

ized” or “pickled”) user interface. For more about that cleverness, see

Section 11.2, Archiving, on page 134 and Section 14.4, bind_toObject_

withKeyPath_options, on page 192. For now, edit the nib file by double-

clicking its name.

You should see the following five windows, although sized and placed

differently. (If you don’t see all the windows, try selecting Window >

Bring All to Front.)①② ⑤④③
• The main menu is what appears in the menu bar on top of the

screen. You’ll be tinkering with that in Chapter 22, Fit and Finish,

on page 287.

1. The name stands for “name’s irrelevant, basically,” although some claim it stands for

“NeXT Interface Builder.”

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=40

THE BASICS 41

• The main window is what the window will look like in the running

app.

• The doc window (or document window) represents the contents of

the nib file in the same way that a window in Pages or Word repre-

sents the contents of a file. The doc window is a Finder-like view

of the objects most important to the user interface. We won’t be

using all of them, and I’ll describe only those we do. A good place

to look for descriptions is in Apple’s Human Interface Guidelines

[App08b].

The doc window starts out using icons, but hereafter I’ll show it

in list view because that lets me save some space in figures. I use

list view in my ordinary programming, too—as the UI gets more

complicated with objects within objects within objects, list view

makes working with them easier.

• The library contains a large set of predefined user interface ele-

ments. Shortly, you’ll be dragging three of them onto the main

window. Dragging is how you build a Cocoa user interface with

Interface Builder.

• The inspector is a tabbed editor for the bazillion-and-two things

you can change about each UI element.

To begin, use the search box at the bottom of the library’s window to

search for text. One of the results will be an element named Label, as

shown in the following images. Drag it into the top-left corner of the

main window. Note that as you get close, guide lines will appear to help

you put it an Apple-approved distance from the edges of the window.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=41

THE BASICS 42

After you drop the label, double-click it to edit its text. Change it to

“Pick an app:” or whatever you like.

The library will also contain text fields and text views. Drag them into

the window. Note that, when selected, they have drag handles that let

you resize them. Make a window that looks something like the following:

Big views have little views...

...in front of them to hide ’em. And little views have lesser views, and so

ad infinitum.2

Everything you’ve done has involved two main classes of object. First,

there’s an NSWindow that represents a rectangular area on the screen.

Within it are different subclasses of NSView, each responsible for its own

piece of the window. Views are typically nested, with smaller views “on

top of” larger ones (which means that they are responsible for the space

they obscure).

2. With apologies to Augustus De Morgan and Jonathan Swift.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=42

THE BASICS 43

Once you’ve put IB’s doc window in list mode, you can see the view

structure of your window by expanding the NSWindow:

• The content view covers the entire space of the window. It contains

all the other views.

• The label and text field cover part of the content view. Notice

that they are both NSTextField objects—their different appearance

is entirely because of how they’re initialized. (See Section 3.5,

Attributes, on page 58, for more.)

• What seems like a simple text view is actually its own hierarchy of

objects. An NSScrollView contains the actual NSTextView and also two

scrollers. One of them (the vertical scroller) takes up some space

even when there’s no need for a scrollbar, but the other is invisible

until it’s needed.

• If there were other visible objects in the window, even ones as

insignificant as a vertical line used as a separator, they’d be NSView

objects too. (A line is an NSBox, just a very, very thin one.)

You’ll eventually need to know more about views to answer questions

like “What object handles a mouse click?” and “What object handles

keypresses?” This book will answer those questions only in the con-

text of Fenestra. For complete details, see Apple’s Cocoa Event-Handling

Guide [App08h].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=43

THE BASICS 44

Connecting the Interface to Code

In the working application, typing into the text field will make a connec-

tion to a web app that will spew data for Fenestra to catch and display

in various pleasing ways. For this first example, though, let’s just have

the text view echo whatever is typed into the text field.

If you squint, that looks a lot like the earlier status bar example (Sec-

tion 2.3, Menus, on page 27). In it, some input (a mouse click in a menu)

went to an action, a method inside the target class (SpeechController).

That action did almost no processing; it just sent text to some Cocoa

object attached to an instance variable. Like this:

class SpeechController < NSObject

 ...

 def speak(sender)

 @synthesizer.startSpeakingString(...)

 end

 ...

end

Speak

Quit

In that code, @synthesizer is a particular kind of instance variable: one

that points to some Cocoa object used for output. In the jargon, that’s

an outlet.

The connections shown earlier were made with code we wrote, code like

this:

menu_item = menu.addItemWithTitle_action_keyEquivalent(

"Speak", "speak:", '')

menu_item.setTarget(self)

. . . and this:

@synthesizer = NSSpeechSynthesizer.alloc.init

That kind of code is boring to write. Interface Builder can usually elim-

inate the need for it. All you need to do is create objects and draw lines

between them. The objects and wiring instructions are stored in the nib

file and decoded when the app starts up.

1. We already have almost all the objects that need to be wired to-

gether: you can see them in the main window and the doc window.

Those are all UI objects, though, and we need one more to serve

as the target of actions, the so-called controller.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=44

THE BASICS 45

The way you make an object in Interface Builder is by dragging

some representation of it from the library. Since our class doesn’t

exist yet, it’s not in the library. But no matter what the details,

any object made in Interface Builder has to be an NSObject—all

Cocoa objects are. So, we can use that as a placeholder. Search

for NSObject in the library. When you find it, drag it into the doc

window, as shown here:

2. Now we can add detail. With the new object selected, pick the

Identity (sixth) tab in the inspector. The result should look like the

following:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=45

THE BASICS 46

The Class Identity (topmost) field is where we tell IB about the

class of our object. Controller class names conventionally end in

Controller. Since we’ll have only one for now, let’s just call it Con-

troller. Type that in the field. Notice that the name changes in the

doc window after you hit Return .

3. In the Class Actions field, add a new action (using the + but-

ton). Name it chooseApp:. You have to end with the colon, since

IB thinks the action is an Objective-C method that takes a single

sender argument.

The Type field is the type of the sender argument. A type of id

means “figure it out at runtime,” which both Ruby and Objective-

C are perfectly happy to do. So, leave it as is.

4. In the Class Outlets field, add an outlet named log. As with the

chooseApp: action, there’s no need to change the type from id.

The inspector should now look like this:

Interface Builder now knows that Controller exists (or will exist) and

needs two connections.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=46

THE BASICS 47

1. First, open the Controller’s Connections (fifth) tab in the inspector.

That looks like this:

2. Our outlet and action show up there. Their lines have little circles

at the end. If you click the one for the log outlet, you can drag a

line to the text view in the main window, as shown in the follow-

ing figures. Make sure to drop the end of the line in the “Lorem

ipsum” text; if you drop it below there, you’ll actually be making

a connection to the scroll view that contains the text view. Check

the tooltip to make sure.

In IB 3.0, the inspector loses track of what it’s inspecting when you

drop the far end of the connection. Worse, clicking the Controller in

the doc window doesn’t get it back. What I do is click some other

object (like the text view) and then click the Controller again. (Later

versions of IB don’t have this problem.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=47

CREATING AND EDITING CLASSES IN XCODE 48

Once you’ve made the connection correctly, the log entry in the

Connections tab will now describe the other end as “Text View,”

as shown here:

If you made a mistake, you can destroy the connection by clicking

the little x. Double-clicking the now-filled-in circle will take you to

the other end of the connection.

3. Next, drag the chooseApp: received action to its source in the text

field.

IB now knows how Controller should be hooked into the UI. There’s no

code for that class yet, though. We’ll write it in Xcode. Save the nib file

with Command - S before switching from IB to Xcode.

3.2 Creating and Editing Classes in Xcode

In Xcode, select the File > New File menu item. You’ll see this dialog

box:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=48

CREATING AND EDITING CLASSES IN XCODE 49

Select the Ruby NSObject subclass. Name the new file Controller.rb. Al-

though that’s unidiomatic Ruby, it seems to make Xcode happier.

When that’s finished, you’ll see something like this:

(The comment at the head of the file will look different. If you want to

peek ahead and see how to make it include your name and company

name, see Section 22.6, The About Window, on page 297.)

The API Browser

I’m about to walk you through the implementation, telling you which

methods to call on which classes as we go. Because of that, you don’t

need to know how to use the Cocoa API browser to find classes and

methods yet, but you may want to anyway.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=49

CREATING AND EDITING CLASSES IN XCODE 50

The browser is available by selecting Help > Documentation. It looks

like this: ①②③④⑤
The arrows point out the parts of the browser I find most helpful:

1. I use the search field to find documentation for classes and meth-

ods whose name I know. To go from “I need to do X” to ”I need

to use class Y,” I use Google. I find it does a better job of finding

relevant hits in Apple non-API documentation than does Xcode’s

search or the one at Apple’s Developer Connection website.3

2. If you have a similar experience (which you might not), you can

restrict search results to the API with the button on the far left

of this bar. Toward the middle, there’s an All Languages button,

which means in practice “include the Java API.” That’s not useful,

so I turn it off.

3. In the middle of this bar, there’s a drop-down list that contains

the class name. If you open it, you’ll get quick access to instance

and class methods.

At the right, marked with a “C,” you can get quick access to super-

class and subclass documentation.

3. http://developer.apple.com/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developer.apple.com/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=50

CREATING AND EDITING CLASSES IN XCODE 51

But I Already Have an Editor!

If you’re a typical reader, you already have a favorite editor
that you use for Ruby, and you’re not wild about changing
to Xcode. Chapter 10, Project Organization, Builds, and Your
Favorite Editor , on page 117, will tell you how to do your edit-
ing and building without Xcode. You’ll likely want to keep using
Xcode for infrequent actions such as adding new nib files to
a project. To build up enough familiarity with Xcode, I recom-
mend that you continue using it for everything—just for now.

4. Each class begins with an overview. I’ve found them quite good,

and I make a habit of reading them.

5. There are often companion guides that put the class in context. I

usually at least skim them.

Implementation

Implement your new class as shown in Figure 3.2, on the following

page:

Ê In Interface Builder, we declared that Controller had a log outlet.

From inside the class, the outlet is just the instance variable @log.

It’s the responsibility of code outside this class, code we don’t

write, to initialize @log. For that reason, we have to declare an

attr_writer method for that code to call.

Ë The text view’s default content will be the strange “Lorem ipsum”

text that Interface Builder showed you. I want to replace that with

an empty string. That means sending a message via @log—but

only after the attr_writer method has been used to initialize it. The

Cocoa runtime calls awakeFromNib after all outlets are guaranteed

to be connected, so that’s the method that should initialize the text

view. However, as is so often the case in object-oriented programs,

awakeFromNib doesn’t do anything itself; it just passes work along

to someone else.

Ì chooseApp implements the action we declared in Interface Builder.

Unlike @log, we don’t need to provide any special access to the

outside world—it’s just a public method like any other.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=51

CREATING AND EDITING CLASSES IN XCODE 52

Download fenestra/text-field-to-view/Controller.rb

require 'osx/cocoa'

class Controller < OSX::NSObject

include OSX

Ê attr_writer :log

Ë def awakeFromNib

record('')

end

Ì def chooseApp(sender)

record(sender.stringValue)

end

def record(string)
Í everything = NSRange.new(0, @log.textStorage.length)
Î @log.replaceCharactersInRange_withString(everything, string)

end

end

fenestra/text-field-to-view/Controller.rb

Figure 3.2: The first controller

chooseApp shows how you retrieve values from simple views like

text fields: you just ask for their stringValue. As with awakeFromNib,

the real work will be done by record.

Í A text view is part of Cocoa’s text subsystem, which is both pow-

erful and complex. Among its complexities are various ways to get

at the text inside a view. This code shows one way.

This way of working with a text view uses an NSRange. You can

think of NSRange classes like selections you make with a mouse;

indeed, if you ask a text view for its selection, you’ll get back an

NSRange. Like a selection, an NSRange can describe a run of one

or more characters. In that case, inserting new text will replace

the old text. Alternately, an NSRange can describe zero characters.

(Think of a cursor blinking between two characters.) In that case,

inserting new text doesn’t change old text.

In this case, we want to replace all the text in the text view. We

can do that by creating an NSRange that starts at character zero

and extends for the length of the text. You can’t ask an NSTextView

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/text-field-to-view/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=52

CREATING AND EDITING CLASSES IN XCODE 53

object for its text length; instead, you have to reach into the view,

pull out the associated textStorage, and ask that object.

If you’re wondering why an NSRange is created with new instead of

alloc. . . hold that thought for a moment.

Î replaceCharactersInRange_withString does what its name says.

The absence of explicit type declarations in Ruby hides something

about record. When it’s called from awakeFromNib, it’s given a plain

Ruby string (class String). When it’s called from chooseApp, it’s

given the stringValue of a text field, which is a Cocoa NSString. So,

replaceCharactersInRange_withString is sometimes given a String and

sometimes an NSString. Is that safe?

If the Objective-C method replaceCharactersInRange_withString actu-

ally received a Ruby String, the result would be ugly—very ugly.

RubyCocoa saves us from disaster by converting any String passed

to an Objective-C method into an NSString before it reaches the

method. You’ll see more about conversions throughout the book.

If you’re impatient, I’ve provided a command, conversions/round-trip,

that lets you convert Ruby objects and examine their Objective-C

equivalents. Here’s an example:

$ cd conversions

$./round-trip 1

If 'In' is the Fixnum '1' (1),

then 'Out' will be the OSX::NSCFNumber '1' (#<NSCFNumber 1>) with

classes [OSX::NSCFNumber, OSX::NSNumber, OSX::NSValue, OSX::NSObject]

Will Out==In? Yes.

Out.to_ruby will be the Fixnum '1' (1).

Use round-trip -h to find out more.

Return values from Cocoa methods are not converted. (If they

were, the Ruby code couldn’t modify the original Cocoa object.)

However, in the case of classes that have close Ruby equivalents,

such as NSString, most of the corresponding Ruby class’s methods

will work. For example, you can add two NSString classes together

or add an NSString to a Ruby string. If a method doesn’t work, you

can convert the object into its Ruby equivalent, either with nor-

mal Ruby methods like to_s or to_hash or with the special method

to_ruby. To convert a Ruby object to its Cocoa equivalent, use to_ns.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=53

CREATING AND EDITING CLASSES IN XCODE 54

Í (again)

The odd thing about NSRange is that its name suggests that it’s a

descendent of NSObject, but the use of new to create one (rather

than alloc.init) suggests that it’s not—that it’s a pure Ruby class.

Which is it?

It’s a pure Ruby class. Like a String, an NSRange is converted on its

way into an Objective-C method. The difference is that an NSRange

isn’t converted into an Objective-C object; it’s converted into an

Objective-C struct. If you’re familiar with the C language or its

derivatives, you know what a struct is. If you’re not, just think of

it as an object that contains no interesting methods, only data.

I expect there’ll be only one time you’ll ever care about the differ-

ence between a struct and a class. You’ll be coding away when you

discover you need to use replaceCharactersInRange_withString. You’ll

look at its documentation, find that it takes an NSRange argument,

wonder how you create one of those, click the link that goes to

NSRange’s documentation, and discover this:

That looks different from a class’s documentation, but it tells you

the facts you need to know:

• You create one of them with new, giving location and length

arguments (in that order).

• If you need to extract the location or length from an NSRange,

you’ll use the method location or length.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=54

DEBUGGING 55

Running the App

Before running the app for the first time, open the debugger console

window by selecting Run > Console. That’s where Ruby’s error output

goes, and you’ll appreciate having it when you make a typo in your

code. Because the console window has an annoying way of shuffling

itself behind other Xcode windows, its hotkey was the first I memo-

rized: Command - Shift - R . You can also ask Xcode to pop up the console

whenever it launches the app. Set On Start to Show Console in the

Debugging preference panel (Xcode > Preferences).

Run the app from the toolbar (Build and Go). Be careful always to use

Build and Go when you change a Ruby file. If you don’t, the changed

file won’t be copied into the app bundle build/Release/Fenestra.app, which

is what Go runs.4 Type something into the text field, hit Return , and

observe with wonder that the characters are echoed into the text view.

If that’s not what happens, see Section 3.3, Debugging.

3.3 Debugging

There’s a good chance your first app has already failed. If not, you’re

sure to make a mistake soon, so now is a good time to introduce

debugging a RubyCocoa app. For simplicity’s sake, add a typo to the

app in fenestra/text-field-to-view. You can edit that project in Xcode by

double-clicking Fenestra.xcodeproj in the Finder (or typing open Fenes-

tra.xcodeproj to the shell).

Here’s the typo: change stringValue to stingValue. Build and run again,

type something in Fenestra’s text field, hit Return , and then look at the

console log. I expect you to see the following, except that I’ve truncated

the immensely long pathnames:

2008-04-07 16:02:26.985 Fenestra[24870:10b] Controller#chooseApp: OSX←֓

::OCMessageSendException: Can't get Objective-C method signature for ←֓

selector 'stingValue' of receiver #<OSX::NSTextField:0x242a52 class='←֓

NSTextField' id=0x3e05b0>

.../oc_wrapper.rb:50:in `ocm_send'

...

from .../Controller.rb:15:in `chooseApp'

from .../rb_main.rb:22:in `NSApplicationMain'

from .../rb_main.rb:22

4. Another gotcha is that if you rename a Ruby file, the old version won’t be deleted from

the build directory. Since rb_main.rb loads all the Ruby files, you’ll get two versions of the

code. Use Build > Clean before building.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=55

DEBUGGING 56

All but the first line is the Ruby call stack that you’ve seen time after

time, typo after typo, mistake after mistake.5 The first line is the same

Objective-C “no such method” error you saw on page 25.

Now let’s make a more subtle error. Simple elements like buttons and

text fields can provide more than strings. They can also return integers

and floating-point numbers. Change stingValue to intValue. Build and

run, and then type some valid number into the text field.

I expect you to see the following:

2008-04-08 15:24:41.159 Fenestra[27739:10b] *** -[NSCFNumber length]: ←֓

unrecognized selector sent to instance 0x2324a0

2008-04-08 15:24:41.161 Fenestra[27739:10b] Controller#chooseApp: OSX ←֓
Ê ::OCException: NSInvalidArgumentException - ***-[NSCFNumber length]: ←֓

unrecognized selector sent to instance 0x2324a0
Ë .../oc_wrapper.rb:50:in `ocm_send'

.../oc_wrapper.rb:50:in `method_missing'

.../oc_attachments.rb:61:in `objc_method_missing'

.../oc_attachments.rb:61:in `method_missing'
Ì .../Controller.rb:7:in `record'

.../Controller.rb:15:in `chooseApp'

.../rb_main.rb:22:in `NSApplicationMain'

.../rb_main.rb:22

Here’s how you might use the stack trace. We’re inside the Ruby method

record (Ì). We drop into the Objective-C universe at Ë. We can’t see what

work was done after that—we could have been twenty nested methods

deep when some sender sent some receiver the length message. The

error message (Ê) does tell us that the intended receiver of the message

is an NSCFNumber.6 So. . . we’re asking a number of some sort for its

length, and apparently numbers don’t have lengths. record claims it

takes a string argument, but it must have been passed a number from

chooseApp. And indeed it was: bug found.

Return to the stringValue version for the rest of this chapter.

The Time-Honored Tradition

Ruby’s standard output also goes to the console. If you’re used to

debugging by sprinkling puts calls throughout your code, you can still

do that. NSLog is an alternative to puts. It will go to both the Xcode con-

sole and the system console. It also includes a timestamp and the name

5. If you’ve never seen one before, you’re inhumanly good. Put this book down. You have

a world to run.
6. What Ruby calls messages or method names, Objective-C calls selectors.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=56

SYNCHRONIZING INTERFACE BUILDER AND XCODE 57

of the source app. For Xcode debugging, I find that just clutters up the

log, so I usually use puts.

Try This Yourself

1. Change the spelling of chooseApp in the Ruby code, but leave it as

is in the nib file. Build and run. What happens?

2. Change the spelling of log in the Ruby code, but leave it as is in

the nib file. Build and run. What happens?

3. Someday, you’ll make a mistake and use alloc.init on a Ruby class

that corresponds to a struct. Try that now with NSRange. What

happens?

3.4 Synchronizing Interface Builder and Xcode

It’s a little awkward to have to type each outlet and action name to

both Interface Builder and Xcode. For your greater comfort, IB can find

names in source code if you declare them specially. Change the begin-

ning of Controller to add the special declarations and to add a new outlet:

Download fenestra/text-field-to-view-and-title/Controller.rb

class Controller < OSX::NSObject

include OSX

ib_outlet :log, :logWindow

ib_action :chooseApp

These declarations don’t change the app’s behavior at all. ib_action does

nothing, and ib_outlet is the same as attr_writer. It’s true that we’ve added

a setter for a new instance variable, @logWindow, but we don’t use it yet.

To see where the declarations do have an effect, open Interface Builder.

(Double-click MainMenu.nib.) Then select Controller in the Finder-like doc

window. In the inspector, navigate to the Connections (fifth) tab.

You should now see this:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/text-field-to-view-and-title/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=57

ATTRIBUTES 58

If you don’t, make sure you’ve saved your Xcode changes and use IB’s

File > Synchronize With Xcode menu item.7

Now connect the logWindow outlet to the entire window. You can either

drag from the logWindow’s circle in the inspector to the title bar of the

main window or drag to the Window entry in the Finder-like doc window.

To see the new outlet in action, change chooseApp to echo the target

app’s name into the window’s title bar:

Download fenestra/text-field-to-view-and-title/Controller.rb

def chooseApp(sender)

entered = sender.stringValue

record(entered)
Ê @logWindow.title = entered

end

Notice the assignment operator at Ê. I could have set the window’s title

with an explicit method call like this:

@logWindow.setTitle(entered)

. . . but RubyCocoa is kind enough to convert assignment into that for

me.

Give the new app a try. With luck, typing in the text field will cause text

to appear in two places.8 There’s still something ugly, though: when the

app launches, the window’s title is “Window.” We’ll fix that next.

3.5 Attributes

Right now, our app does nothing useful, but it will eventually open a

fenestra to another app. So, a useful starting window title might be “- No

App -.” That title could be set in awakeFromNib, but it’s more convenient

to do it in Interface Builder. In IB, select the main window, and then go

to the inspector’s Attributes (first) tab.

7. This command has been removed from Xcode 3.1. IB synchronizes whenever you

switch to it.
8. If you instead got “undefined method ‘title=’ for nil:NilClass,” it’s most likely you forgot

to connect the logWindow outlet in Interface Builder.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/text-field-to-view-and-title/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=58

ATTRIBUTES 59

You should see something much like this:

Change the Title attribute to say “- No App -” (or whatever title you

prefer). Save; then build and run.

Cocoa UI objects have an incredible variety of attributes. Some of them,

like Title, you’ll find easy to understand. Others you’ll learn as you work

through this book. For the remainder, try looking at tooltips. If that

doesn’t work, dive into the sources of documentation listed in Sec-

tion 1.11, Solving Problems, on page 19.

Try This Yourself

1. Change the text view to make it uneditable. You might change the

background color, too, as a signal that it can’t be edited.

2. Change the label’s attributes to make it look like a text field. What

happens if you type in it and then press Return ?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=59

OVERRIDING WINDOW BEHAVIOR WITH A DELEGATE 60

3.6 Overriding Window Behavior with a Delegate

Here’s what the Apple Human Interface Guidelines [App08b] say about

applications like ours:

In most cases, applications that are not document-based

should quit when the main window is closed. For example,

System Preferences quits if the user closes the window. If

an application continues to perform some function when the

main window is closed, however, it may be appropriate to

leave it running when the main window is closed. For exam-

ple, iTunes continues to play when the user closes the main

window.

Right now, Fenestra manages no documents, has a single window, does

no processing after that window closes, and has no way to reopen the

window if the user does close it. So, let’s make it exit by having the

window tell the controller (via delegation) when it closes. The controller

can then send the terminate message to NSApp.

You could set the window’s delegate in awakeFromNib, like this:

Download fenestra/autoclose/Controller.rb

def awakeFromNib

@logWindow.delegate = self

record('')

end

However, it’s more idiomatic to set up unchanging relationships in IB.

IB considers an object’s delegate to be one of its outlets, and you set

the delegate in the Connections inspector:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/autoclose/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=60

TRY THIS YOURSELF 61

In either case, the Controller should volunteer to handle a “window is

about to close” event by defining this method:

Download fenestra/autoclose/Controller.rb

def windowWillClose(notification)

NSApp.terminate(self)

end

3.7 Try This Yourself

1. Instead of making the app quit when its window closes, prevent

the window from closing. (Hint: look at the window’s attributes.)

What now happens when you try Command - W ?

2. Change the code to append new text onto the end of the text view

instead of replacing its contents. The NSRange corresponding to no

selection with the cursor at the end of the text is one whose length

is zero and whose starting position is @log.textStorage.length.

3.8 What Now?

It’s now time to turn the application into something minimally useful

by having it receive and display interprocess NSNotifications from a web

app. After that, we’ll have an app that works but has some glaring flaws.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/autoclose/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=61

Chapter 4

One Good App Observes Another
Now that Fenestra has a (barely) tolerable interface, it’s time to work

on the code behind it. We’ll use Cocoa’s notification system for commu-

nication between Fenestra and some other app. Because notifications

are widely used in Cocoa apps, I’ll describe them in more detail than is

needed for just this one app.

4.1 Notifications Within an App

The version of our app in Section 3.6, Overriding Window Behavior with

a Delegate, on page 60, works because some object1 follows the main

window’s delegate link to a Controller, notices that it defines windowWill-

Close, and calls that method, giving it a chance to make the app exit.

Controller can learn about the window closing in another way. It can

subscribe to notifications from the NSWindow:

Download fenestra/autoclose-with-notifications/Controller.rb

def awakeFromNib

center = NSNotificationCenter.defaultCenter

center.addObserver_selector_name_object(self, :windowWillClose,

'NSWindowWillCloseNotification',

@logWindow)

record('')

end

In words, our Controller is saying, “Hey! Default notification center! At

some point, the object I know as @logWindow might announce that it’s

going to close. If so, send the windowWillClose message to a particular

1. It’s not actually the main window’s NSWindow itself, but it might as well be.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/autoclose-with-notifications/Controller.rb

NOTIFICATIONS WITHIN AN APP 63

object (namely, me).” The windowWillClose method is unchanged from

the one in the previous version (found on page 61):

Download fenestra/autoclose-with-notifications/Controller.rb

def windowWillClose(notification)

NSApp.terminate(self)

end

I could have named the method something else (which you can’t with a

delegate), but when it comes to windows, closing delegation and observ-

ing are just different ways of getting the same information to our Con-

troller, so using the same name seems appropriate. (Even windowWill-

Close’s argument is the same. It’s an NSNotification object, described in

Section 4.1, The Finer Points of Notifications, on the following page.)

You can see the new version working by first using IB to turn off the

window’s delegate outlet (click the little x if the outlet shows a connec-

tion) and then building and running.

Delegation vs. Notification

You have now seen two different code designs for window closing. You

might ask, which is better? Since they both do the same thing, I em-

brace my inner slacker and ask two questions:

• Which is less work today?

• Which will be less work in the future?

I personally place more weight on the first question because I get its

answer right more often.

Setting a delegate requires drawing a line in Interface Builder. Adding

a notification means typing code in awakeFromNib. For me, delegation

wins.

Looking to the future, I can imagine myself adding another window to

the app. After that, Fenestra should behave like other multiwindow Mac

apps: closing a window just closes the window. If you want to exit, do

that explicitly.

I know my imaginary future self all too well: he doubtless will have

forgotten both how and where I implemented the current behavior. If I

used delegation, all my future self will have to do is look for the win-

dow’s delegate in IB, hop to that class, and find method windowWillClose.

If I used notifications, finding the code would be more work. First, I’d

have the wasted work of checking for the delegate; on top of that, I’d

have to grovel around in the code to find a method that wouldn’t nec-

essarily even be called windowWillClose.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/autoclose-with-notifications/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=63

NOTIFICATIONS WITHIN AN APP 64

Try This Yourself

Have windowWillClose print "I'm here!" to the console. Either puts or NSLog

work fine. Then:

1. Build and run the app. Close the window (Command - W).

2. Run the app again. Quit the program (Command - Q).

3. Reestablish the delegate link between the main window and the

Controller, but continue to make the Controller an observer of the

@logWindow. Build and run. Exit by closing a window.

What do you think is happening?

I think that NSApplication’s terminate method closes all open windows.

In our case, terminate is called because an open window is closing. So,

terminate blithely closes that window again. windowWillClose again calls

terminate. Fortunately, terminate is smart enough not to go any further

down the rat hole.

It also seems that delegation to windowWillClose is independent of noti-

fication delivery. So, in the third case, terminate is called three times:

once because of delegation, once because of notification, and once be-

cause terminate closes all windows.

The Finer Points of Notifications

“Don’t care” values

In the previous example, the code asked to hear about notifica-

tions named NSWindowWillCloseNotification. A nil argument asks to

hear about notifications with any name. Try that, printing the

notifications with puts notification; then try various window oper-

ations (such as minimizing and hiding) to see what notifications

get sent. To see a complete list, use the NSWindow class reference.

If you use nil for the object to observe, you’ll observe all objects that

send a particular named notification. In our case, that’s not inter-

esting, since only windows send NSWindowWillCloseNotifications, and

we have only one window. You can, however, give nil as both the

name and object arguments. Then you see all notifications from all

objects. Try that to see how many notifications are sent in even the

simplest Cocoa applications. (If you use windowWillClose to print

out the notifications, comment out the line that calls terminate.)

userInfo arguments

If you tried the change in the previous paragraph, you probably

saw output with extra information. Here is the notification, for

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=64

NOTIFICATIONS WITHIN AN APP 65

example, that comes from hitting Tab or Return to finish editing

in a text field:

NSConcreteNotification 0x3c9330 {name = NSControlTextDidEndEditin←֓

gNotification; object = <NSTextField: 0x3e15c0>; userInfo = {

NSFieldEditor = <NSTextView: 0x2307490>

Frame = {{2.00, 3.00}, {271.00, 17.00}}, Bounds = {{0.00, 0.0←֓

0}, {271.00, 17.00}}

Horizontally resizable: YES, Vertically resizable: YES

MinSize = {271.00, 17.00}, MaxSize = {40000.00, 40000.00}

;

NSTextMovement = 16;

}}

Each notification can pass along an NSDictionary. NSDictionary is

Cocoa’s equivalent of Ruby’s Hash: a collection of key/value pairs.

When printed, an NSDictionary looks something like a hash, but not

exactly. Keys and values are separated by =,, not =>, and strings

aren’t enclosed in quotes.

If you were writing code in Objective-C, you’d retrieve NSDictionary

values like this:

[dictionary objectForKey: key]

You can do the same in Ruby if you want:

dictionary.objectForKey(key)

But ordinary hash notation also works:

dictionary[key]

Beware, though: not all Hash methods will work on an NSDictionary.

The name and sender

A notification contains its name and a pointer to the object that

sent it. They’re retrieved like this:

notification.name

notification.object

Sending notifications

You send a notification like this:

Download notifications/examples/within-process-userinfo.rb

Center.postNotificationName_object_userInfo("notification name",

self,

{'string' => 'world',

'int' => 5,

'array' => ARGV})

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/notifications/examples/within-process-userinfo.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=65

NOTIFICATIONS WITHIN AN APP 66

(To save horizontal space, I’ve defined constant Center to be the

same NSNotificationCenter.defaultCenter we’ve already seen.)

If you have no userInfo to add, use a slightly different method:

Download notifications/examples/within-process.rb

Center.postNotificationName_object("notification name", self)

In cases where receivers aren’t expected to care which object sent

the notification, programmers sometimes use the object argument

to send data that more properly should go into userInfo. That is,

rather than writing this:

Center.postNotificationName_object_userInfo("got argv",

self,

{ "argv" => ARGV })

. . . they’ll write the following:

Center.postNotificationName_object("got argv", ARGV)

Conversions

When you create a notification, you’ll likely use Ruby objects such

as strings, integers, arrays, and nested hashes to fill its userInfo.

When it’s received, though, the Ruby objects have all been con-

verted to their Objective-C equivalents: NSStrings, NSNumbers, NSAr-

rays, and nested NSDictionary objects:

% ruby within-process-userinfo.rb with args

=== Looks innocent enough when you 'to_s' it:

NSConcreteNotification 0x57ae90 {name = notification name; objec←֓

t = <Sender: 0x2a9ce0>; userInfo = {

array = (

with,

args

);

int = 5;

string = world;

}}

=== ... but those are not simple Ruby objects:

#<NSCFDictionary {#<NSCFString "int">=>#<NSCFNumber 5>, #<NSCFSt←֓

ring "array">=>#<NSCFArray [#<NSCFString "with">, #<NSCFString "←֓

args">]>, #<NSCFString "string">=>#<NSCFString "world">}>

For even more about notifications, see Apple’s Introduction to Notifica-

tion Programming Topics [App08q].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/notifications/examples/within-process.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=66

NOTIFICATIONS BETWEEN APPS 67

4.2 Notifications Between Apps

To show you notifications between apps, I’ve written two scripts for

you. They’re in the notifications/examples directory. To use them, open

two terminal windows, and cd each to that directory. In one, type this:

$ ruby sender.rb

It sends one notification per second to whichever apps care. The noti-

fications contain only a number, incremented each time. In the other

shell, type this:

$ ruby receiver.rb

com.exampler.sender sez next number 7

com.exampler.sender sez next number 8

com.exampler.sender sez next number 9

receiver.rb prints the numbers. Notice that it doesn’t start at 1 unless

you’re an amazingly fast typist. During the time it took for you to start

the receiver, no app cared about the sender’s notifications, so they were

discarded.

Sending Distributed Notifications

Sending notifications between applications is pleasantly similar to

sending them within applications. Our sender is shown in Figure 4.1,

on the next page.

Ê Like ordinary notifications, distributed notifications are handled

by a notification center. The only difference is the class: it’s NSDis-

tributedNotificationCenter instead of NSNotificationCenter.

Ë The method to send the notification has the same name. There are

restrictions on the arguments, though.

1. The “object” that sends the message has to be a string that

somehow names the sending app. To avoid conflicts, the re-

verse hostname convention is often used. (So, since I own

exampler.com, I name apps “com.exampler.appname.”)

2. The userInfo hash should use only simple objects such as num-

bers, strings, arrays, and nested hashes. For more details, see

Apple’s Property List Programming Guide [App08u] or Chap-

ter 11, Persistent User Preferences, on page 127.

Ì Any object descended from NSObject can send distributed notifica-

tions. No special setup is required.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=67

NOTIFICATIONS BETWEEN APPS 68

Download notifications/examples/sender.rb

#!/usr/bin/env ruby

require 'osx/cocoa'

include OSX

class Controller < NSObject

def init

super_init

count = 100

1.upto(count) do | i |

puts "#{count - i} more notifications to post." if i % 25 == 0

announce(i)

sleep 1

end

puts "Sender will now stop posting notifications."

exit

end

def announce(number)
Ê center = NSDistributedNotificationCenter.defaultCenter

name = "next number"

app = "com.exampler.sender"
Ë center.postNotificationName_object_userInfo(name, app,

'value' => number)

end

end

if $0 == __FILE__
Ì Controller.alloc.init

end

notifications/examples/sender.rb

Figure 4.1: Sending a notification

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/notifications/examples/sender.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=68

NOTIFICATIONS BETWEEN APPS 69

Download notifications/examples/receiver.rb

#!/usr/bin/env ruby

require 'osx/cocoa'

include OSX

class Controller < NSObject

def init

super_init
Ê center = NSDistributedNotificationCenter.defaultCenter

center.addObserver_selector_name_object(self, :next_number,

"next number",

"com.exampler.sender")

self

end

def next_number(notification)

name = notification.name

app = notification.object

info = notification.userInfo

number = info['value']

puts "#{app} sez #{name} #{number}"

end

end

if $0 == __FILE__

Controller.alloc.init

NSApplication.sharedApplication
Ë NSApp.run

end

notifications/examples/receiver.rb

Figure 4.2: Receiving a notification

Receiving Distributed Notifications

If sending a distributed notification is like sending an ordinary one,

receiving one is even less different. See Figure 4.2.

Ê You have to use NSDistributedNotificationCenter.

Ë Unlike ordinary notifications, distributed notifications can be re-

ceived only inside an app’s run loop. If the app isn’t running, no

notifications will be received (just as no mouse or keyboard events

will be received).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/notifications/examples/receiver.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=69

THE APP TO FENESTRATE 70

Try This Yourself

As with ordinary notifications, you can use nil to tell the NSDistributedNo-

tificationCenter that you’re willing to receive notifications with any name

or from any app. Or both: change receiver.rb to receive every notification

posted by any process on your Mac. You’ll also want to change printing

of notifications to something like this:

def next_number(notification)

puts notification

end

You’ll probably find that not too many distributed notifications are

posted. You can provoke one by changing your desktop picture. If you

look at the notification carefully, you’ll see that it switches the senses of

the name and object arguments. Other apps set the object to nil (which

doesn’t print), leaving you to hope that it’s the only one that uses that

name.

4.3 The App to Fenestrate

I’ve used the Ramaze web framework2 to build a small and stupid web

app for Fenestra to fenestrate. Here’s how to use it:

1. To start the app, use this:

$ cd counting-webapp

$ ruby start.rb

2. To reach the app, type http://localhost:7000/ into your favorite

browser’s address bar.

3. The first thing you can do is create a “user” by typing a name in

the text field. After the page refreshes, the new user will appear as

a hyperlink.

4. If you follow the hyperlink, you’ll see how often that user has been

“viewed” (how often that user’s page has been displayed) and how

often it has been “created” (how often that particular name was

typed in the text field).

5. To stop the app, just press Control - C at the command line.

2. http://ramaze.net/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://localhost:7000/
http://ramaze.net/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=70

PUTTING NOTIFICATION HANDLING BEHIND THE GUI 71

4.4 Putting Notification Handling Behind the GUI

We’re now ready to bolt code that receives notifications onto the back

of Fenestra’s GUI.

Try This Yourself

Change your version of Fenestra to receive distributed notifications

from “object” "com.exampler.counting". Have it receive notifications with

any name and append them to the @log. It’s fine to use to_s to render

the NSNotification into a string.

You’ll be launching Fenestra many times in the rest of the book, and

it’d be boring to have to type “com.exampler.counting” into the text field

each time. Make that string the text field’s starting value. (You can do

that in Interface Builder by using the inspector’s Attribute tab to edit

the Title field. You can do it in code by creating an outlet to the text

field and setting its title attribute.)

Your same app can be used to view notifications from other sources.

Use object BackgroundChanged to get notifications when the back-

ground picture changes. If you use Growl,3 you can track GrowlTick-

etChanged.

My Solution

My solution is shown in Figure 4.3, on the following page.

• I’ve chosen to initialize the text field in awakeFromNib rather than in

Interface Builder. That means I needed an outlet to the text field,

and I’ve named it @choice. @choice is declared at Ê and used at

Ë. I used ib_outlets4 to declare it so that Interface Builder would

recognize the new outlet.

• At Ì, I set name to observe to nil so that I receive all notifications

from app_name.

• I’ve hidden the work of setting ranges in two private methods:

clear_log (at Î) and record (at Ï). These two methods are closely

related—for example, they both work with NSRanges and an NSText-

View. They also hide those intricacies from the rest of the class.

That’s a clue that they really belong in a class of their own. We’ll

follow that clue in the next section.

3. http://growl.info/

4. Notice that you can use both ib_outlets and ib_outlet. They’re aliases.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://growl.info/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=71

PUTTING NOTIFICATION HANDLING BEHIND THE GUI 72

Download fenestra/simple-solution/Controller.rb

require 'osx/cocoa'

class Controller < OSX::NSObject

include OSX

Ê ib_outlets :log, :logWindow, :choice

ib_action :chooseApp

def awakeFromNib

clear_log
Ë @choice.stringValue = "com.exampler.counting"

end

def chooseApp(sender)

app_name = sender.stringValue

center = NSDistributedNotificationCenter.defaultCenter

center.addObserver_selector_name_object(self, :displayNotification,
Ì nil, app_name)

Í record("Observing #{app_name}...")

@logWindow.title = app_name

end

def displayNotification(notification)

record(notification.to_s)

end

def windowWillClose(notification)

NSApp.terminate(self)

end

private

Î def clear_log

everything = NSRange.new(0, @log.textStorage.length)

@log.replaceCharactersInRange_withString(everything, '')

end

Ï def record(string)

string += "\n"

at_end = NSRange.new(@log.textStorage.length, 0)

@log.replaceCharactersInRange_withString(at_end, string)

end

end

fenestra/simple-solution/Controller.rb

Figure 4.3: Displaying notifications in a text view

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/simple-solution/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=72

REOPENING OBJECTIVE-C CLASSES 73

4.5 Reopening Objective-C Classes

As of the previous section, we have two methods, clear_log and record,

that are in Controller even though they’re really all about NSTextView. In

Java, I might create a facade class to sit between the controller and the

view. It would convert those two methods into calls into an NSTextView

stored in an instance variable. That would look like this:

Controller Facade

NSTextView

clear

replaceCharactersInRange_withString

In Ruby and Objective-C, an alternative is to reopen NSTextView and add

behavior. As shown in Figure 4.4, on the next page, it’s done the same

way for an Objective-C class as for any old Ruby class: just open the

class and define methods. I have changed the names: clear_log implies

that an NSTextView is always a log, which is not true, and record is less

descriptive than addLine.

Once the methods have been defined, some Controller code looks nicer.

See Ê in the following:

Download fenestra/reopen/Controller.rb

def awakeFromNib
Ê @log.clear
Ë @choice.stringValue = "com.exampler.counting"

end

4.6 What Now?

If you’ve been working along with the text, you’ve gotten a first experi-

ence with Interface Builder and the mechanics of coding and building

a RubyCocoa app. Having put you through all that, I’m going to make

you do it again. I’m not doing it (just) because I’m a sadist. I’m doing

it because one of the problems a lot of people have working with a new

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reopen/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=73

WHAT NOW? 74

Download fenestra/reopen/NSPatches.rb

require 'osx/cocoa'

module OSX

class NSTextView

def clear

everything = NSRange.new(0, textStorage.length)

replaceCharactersInRange_withString(everything, '')

end

def addLine(string)

string += "\n"

at_end = NSRange.new(textStorage.length, 0)

replaceCharactersInRange_withString(at_end, string)

end

end

end

fenestra/reopen/NSPatches.rb

Figure 4.4: Reopening an Objective-C class

framework and its tools is missing “muscle memory”: everything you

do, you have to think about and fumble through. That distracts and

detracts from the business of learning the next feature. So, by making

you reshape the application, I hope I’ll get you further along the path of

learning.

If you’re grumbling at the thought of tool practice, rest assured there’s

something for you: you’ll use new GUI controls—buttons and combo

boxes—and so learn their programmatic interfaces.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reopen/NSPatches.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=74

Part II

Reshaping Fenestra

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Chapter 5

A Better GUI
The Fenestra interface is lousy. It’s OK when all you care about is

com.exampler.counting—all you have to do is strike Return . But if you

wanted to work with a second app, you’d have to laboriously type in its

name. This interface would be better: ②③①
• A combo box would let the user choose from a predefined list of

known applications—but still type in whatever name she likes.

Each predefined application could have its own translator that

prints notifications in a pleasing, app-specific way. (You can see

some specialized translation in the text view.)

Prepared exclusively for Alison Tyler

Download at Boykma.Com

TOGGLE BUTTONS 77

• Pressing Return should be the same as clicking the button—so no

need to fumble for a mouse. In Cocoa, that happens if a button is

the default button. You know a button is the default button if it’s

colored solid blue.

• The combo box should be selected by default. Then, quick presses

of the arrow keys would select another app. Alternately, you could

type the app name to replace the default, with no effort needed to

erase the existing text (since it’s all highlighted). In either case, a

simple Return would click the default button.

Starting with your existing version or the one in fenestra/reopen, change

MainMenu.nib so the UI matches the earlier picture. Don’t worry yet

about setting the attributes of the new controls.

Here are some hints:

• Delete controls by dragging them out of the window.

• It’s likely you’ll need to widen your window to accommodate the

combo box, which will have long strings in it.

• In the library, you can find combo boxes by searching for combo

or NSComboBox. Don’t use NSComboBoxCell.1

• There are a bewildering variety of buttons. They’re all NSButtons,

but they have different appearances. The version you see most

often is the push button.

You can browse my solution in fenestra/reshaped-but-gutted. (It also con-

tains UI changes from the rest of this chapter and code changes from

the next chapter.)

5.1 Toggle Buttons

The first time the button is clicked, Fenestra should fenestrate (open

a connection to the chosen app). The second time, let’s have Fenestra

“heal” the opening. That suggests the button should be a toggle button

whose title is Fenestrate when it’s toggled off and Heal when it’s toggled

on. You do that by setting (respectively) its Title and Alt. Title attributes,

as shown on the next page.

1. Cells are attached to controls and handle some of their work. Most often, though, you

can forget they’re there. For more about them, see Section 17.1, Cells, on page 230.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=77

THE DEFAULT BUTTON 78

By default, buttons are just push buttons. They call an action method

when clicked, but they have no notion of being on or off. You set a

button to be a toggle button by changing its Mode attribute, as shown

at the bottom of the previous image.

5.2 The Default Button

Recall from Section 2.3, Menus, on page 27 that a key equivalent is the

generic name for keypresses that act as clicks, with Command - Q being

the most familiar. In that section, you saw how to set them up program-

matically, but it’s easier to do it through Interface Builder. There, you

set one by selecting the Key Equiv. field in the Attributes inspector and

typing the key you want.

Making a button the default is layered onto this way of setting key

equivalents. If you set a button’s key equivalent to Return , it becomes

the default button. That’s what I’ve done in the following snapshot:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=78

COMBO BOX ITEMS 79

5.3 Combo Box Items

In the next chapter, we’ll set the combo box items programmatically. For

now, let’s set them through IB. This is all done through the Attributes

tab in the inspector.

A combo box combines a pop-up list with a text field. The contents of

the list are set in the Items subsection of the Combo Box section, as

shown here:

The value of the combo-box-as-text-field is set using the Title field in

the Text Field section, as shown at the bottom of the earlier figure.

Since I want com.exampler.counting to be the default (so I can fenestrate

it by just hitting Return), I have to retype it even though it’s in the

list. That’s annoying, which is why I want to quickly put the combo box

under programmatic control.

I’ve also selected the Autocompletes checkbox. Typing in the text field

will autocomplete any matching combo-box list items. (You can see this

behavior in Safari’s address bar when you start typing a URL you’ve

visited recently.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=79

THE INITIAL FIRST RESPONDER 80

5.4 The Initial First Responder

Since the point of this new interface is quick fenestration and key-

board control, there’s still a glitch to fix. To see it, launch the simu-

lator and start typing. If you’ve been working along with the chapter

(rather than using the already-completed reshaped-but-gutted version),

the characters you type will appear in the text view. A user interface

designer might say the text view has focus. A Cocoa programmer might

instead say that it is the first responder. That’s the view that gets the

first chance to handle characters from the keyboard. It can refuse, in

which case the Cocoa runtime looks for another view in the responder

chain. In our case, the text view doesn’t refuse, so we won’t worry about

the responder chain. See Apple’s Cocoa Event-Handling Guide [App08h]

for all the details.

We want the app to start out with the combo box as the first respon-

der. That is, it should be the containing window’s initial first responder.

That’s done by dragging from the window’s initialFirstResponder outlet to

the combo box, as shown here:

5.5 Try This Yourself

1. Hook up the controls as described in this chapter.

2. Simulate the interface.

3. Start typing. Do the characters replace the combo box text?

4. Hit Return . Does the button change to say Heal?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=80

WHAT NOW? 81

5.6 What Now?

We could hook up these new controls to the existing Controller. Instead,

we’ll create more than one controller to show how that’s done.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=81

Chapter 6

Decoupled Controllers
As this app grows, I can imagine the Controller class getting disgustingly

unwieldy. My response would be to split it up into smaller controllers,

each responsible for a conceptually independent part of the user inter-

face. Come to think of it, I can already see three distinct responsibilities,

so let’s do the splitting now:

• The WindowController will manage the sole window, including put-

ting the app’s name in the title bar.

• The LogController will control the view used for logging events from

the app. It’s a simple text view, though it would probably become

tree-structured in a production-ready Fenestra.

• The AppChoiceController will manage the controls that allow the

user to choose an app to fenestrate and, later, heal.

The relationships between these controllers and their views are shown

in the top half of Figure 6.1, on the following page. The lower objects

in the picture will have a different job: translating from NSNotification

objects into human-readable strings. One of them, ToString, will not be

allowed to assume anything about the app that sent the notification. It

will have to do the sort of raw dump we did in Chapter 4, One Good App

Observes Another, on page 62. The other, CountingApp, will know specif-

ically about each notification from com.exampler.counting. You won’t see

its code until Chapter 9, Bundling Gems and Libraries with Your App,

on page 109.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

IGNORANT OBJECTS 83

a WindowController a LogController an AppChoiceController

a TranslatorEnlister

a ToString
Translator

a CountingApp
Translator

Figure 6.1: The most important objects in this version

TranslatorEnlister keeps track of translators for the rest of the application.

Any class can hand it a description of an app and tell it to start up

an appropriate translator. Later, TranslatorEnlister will be responsible for

finding and loading user-supplied translators.

The lines in the figure represent knowledge. For example, the Transla-

torEnlister has to know about its translators, but no other object does.

6.1 Ignorant Objects

There’s a lot of ignorance in Figure 6.1. Although a translator produces

strings that the LogController puts in the log, both the translator and Log-

Controller are ignorant of each other. By that, my exact meaning is that

neither can follow a chain of instance variables (or accessor methods)

to arrive at the other. Instead of the translator calling on the LogCon-

troller to log a string, it will just send out an NSNotification saying “Here’s

a string someone might want to log.” The LogController will observe such

notifications and log the strings they contain.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=83

IGNORANT OBJECTS 84

-originator- Stop observingStart observing

-originator-

Log
change

User
disconnects from

app

Put "- No App -"
in the title

A translated
notification is
available

–

Log it

–-originator-

Log that app
is being
watched

Put the name in
the title

User chooses
new app to
observe

Object

E
v
e
n
t

Some
Translator

App Choice
Controller &
Translator
Enlister

Log
Controller

Window
Controller

Figure 6.2: An event/object table

I learned this style of extreme decoupling from Carl Erickson and David

Crosby of Atomic Object.1 It simplifies adding new behavior. If I want

some other object to do something with log messages, I don’t have to

change any existing code. I just have to make the new object listen for

the notification.

Another reason for this style is that I’m easily overwhelmed, so I need

an app structure that helps me think about everything I need to do

when someone says, “Hey, I have this great new idea!” By reducing so

much into objects and events that poke at them, I can use a table, like

the one shown in Figure 6.2, to keep myself straight. That table isn’t

wildly compelling—even I can keep track of that little—but I hope you

can imagine using it systematically. You add a new event and then step

down the list, asking the question, “Could this object care about that

event?”

1. http://www.atomicobject.com

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.atomicobject.com
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=84

EXTRACTING SUBCLASSES 85

6.2 Extracting Subclasses

Try this yourself:

1. Your current version of the app has a single Controller class. Ex-

tract the three separate classes—WindowController, LogController,

and AppChoiceController—from that class, making each a subclass

of Controller.

By “extract,” I mean that you should first make the new files

with File > New File. Next, search through the current version of

Controller to find declarations or code specific to, say, the applica-

tion’s window. Move that code down to the appropriate subclass

(WindowController, in this case).

You can use this template for the subclasses:

Download fenestra/reshaped-but-gutted/controller-template

require 'Controller'

class SomeController < Controller

declare ib_outlets and ib_actions

def awakeFromNib

NSLog("Some controller awakes from Nib.")

end

Actions, methods that respond to notifications, etc.

end

As you move things, delete ones no longer relevant. For example,

since the text field has been replaced by a combo box, you don’t

need the :choice outlet. And the chooseApp method is specialized

for text fields, so don’t bother moving it to the AppChoiceController.

2. Add new ib_outlets for the new controls in this version of Fenestra.

(Don’t add any action methods yet.)

3. If you started this part of the book with your own code (rather than

the one in fenestra/reopen), make sure you’ve included NSPatches.rb

in your source directory. My sample solution uses it. (NSPatches.rb

was described in Section 4.5, Reopening Objective-C Classes, on

page 73.)

Adding an existing file isn’t as easy as copying it into the source

folder. You must tell Xcode about it with the Project > Add to

Project command. If you have trouble with that, see Section 9.1,

Manual Control, on page 110.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/controller-template
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=85

EXTRACTING SUBCLASSES 86

4. You can see my solution in Figure 6.3, on the next page.

Not much gets left behind in Controller, only an include that keeps

me from having to type OSX:: in front of the NSLog calls.

I deleted displayNotification because it was used only in the (now

deleted) chooseApp. I may add it back later.

I deleted awakeFromNib from Controller because it ended up empty.

5. Run the application. I expect you’ll see something like this:

That seems wrong. LogController is supposed to clear the log, but

it hasn’t. In fact, the debugger console is missing all the NSLog

output, plus it has an error message:

Why have none of the controllers been loaded? They were never

declared in the nib file. Why the error message? The Controller was

declared in the nib file, and it was never deleted, so the Cocoa

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=86

EXTRACTING SUBCLASSES 87

Download fenestra/reshaping-in-progress/Controller.rb

class Controller < OSX::NSObject

include OSX

end

Download fenestra/reshaping-in-progress/WindowController.rb

require 'Controller'

class WindowController < Controller

ib_outlet :logWindow

def awakeFromNib

NSLog("Window Choice Controller awakes from Nib.")

end

def windowWillClose(notification)

NSApp.terminate(self)

end

end

Download fenestra/reshaping-in-progress/LogController.rb

require 'Controller'

class LogController < Controller

ib_outlets :log

def awakeFromNib

NSLog("Log Controller awakes from Nib.")

@log.clear

end

end

Download fenestra/reshaping-in-progress/AppChoiceController.rb

require 'Controller'

class AppChoiceController < Controller

ib_outlets :comboBox, :button

def awakeFromNib

NSLog("App Choice Controller awakes from Nib.")

end

end

fenestra/reshaping-in-progress/Controller.rb

Figure 6.3: One class split into four

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaping-in-progress/Controller.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaping-in-progress/WindowController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaping-in-progress/LogController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaping-in-progress/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=87

EXTRACTING SUBCLASSES 88

runtime is still trying to establish its connections. You can see

that by looking at the Controller’s connections in the IB inspector:

The light gray text and stylized exclamation points tell you the

other end of the connection is missing from the nib.

6. Get rid of the Controller in the doc window, and make it look like

this:

(You create controllers in the doc window by dragging in NSObjects

and changing their class on the inspector’s Identity tab.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=88

EXTRACTING SUBCLASSES 89

7. Was IB clever enough to notice the class outlets? (Use the inspec-

tor’s Connections tab to check.) If not, use File > Synchronize With

Xcode to fix it. Then drag the outlets into place. Here’s an example

of the result:

Don’t forget to do all three controllers.

8. If you save and then build and run, you should now see a cleared

log window, and each controller should make a note in the debug-

ger console:

You may see the log messages in a different order. There’s no guar-

anteed order of object initialization.

9. Try closing Fenestra’s window with Command - W . Unless you were

more thoughtful than I was, Fenestra won’t exit. Oops. Recall

from Section 3.6, Overriding Window Behavior with a Delegate,

on page 60 that the previous version of Fenestra called windowWill-

Close because Controller was the window’s delegate. When you de-

leted the Controller from the doc window, the delegate connection

went away. The solution is simple: make the WindowController the

window’s delegate.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=89

REACTING TO BUTTON STATE 90

6.3 Reacting to Button State

When a button is clicked, it invokes an action method. That action

method can query the button for its state and act appropriately. Here’s

such code:

Download fenestra/reshaped-but-gutted/AppChoiceController.rb

ib_action :chooseOrHeal

def chooseOrHeal(sender)

NSLog("AppChoiceController button pushed.")

if @button.state == NSOnState

NSLog("Fenestrate '#{@comboBox.stringValue}'.")

else

NSLog("Heal.")

end

end

Before you can see that working, you’ll need to connect the button

to the chooseOrHeal method, using Interface Builder. (Either you can

drag to the button from the AppChoiceController’s chooseOrHeal received

action or you can drag from the button’s selector sent action to the App-

ChoiceController.)

For the complete description of buttons, see the NSButton class reference

and Button Programming Topics for Cocoa [App08e].

6.4 Using Nibs to Avoid Dependencies

The AppChoiceController connected to a TranslatorEnlister is shown in Fig-

ure 6.1, on page 83. It would be easy enough for it to create that Trans-

latorEnlister inside its awakeFromNib:

@translatorEnlister = TranslatorEnlister.alloc.init

However, I have a learned aversion to making one class’s code explicitly

name another class. That tends to make the code harder to change, and

it definitely makes it harder to test. Instead, I can make the connection

to the TranslatorEnlister be an outlet, no different in principle from the

outlets to the button and combo box. That’s done at Ê, as shown here:

Download fenestra/reshaped-but-gutted/AppChoiceController.rb

class AppChoiceController < Controller

Upward to the view

ib_outlets :comboBox, :button

Downward into guts
Ê ib_outlet :translatorEnlister

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/AppChoiceController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=90

USING NIBS TO AVOID DEPENDENCIES 91

Once we tell it about TranslatorEnlister, nib loading can do the connecting

for us. Having the outlet set from outside the class is a convenient form

of dependency injection.2

First, we need a TranslatorEnlister to load. In this version of the application,

we’re just building scaffolding, so there’ll be no actual translators. The

TranslatorEnlister will just programmatically supply the same two bits of

information we already specified in IB: what should go in the combo-

box-as-a-list and what should be the initial value of the combo-box-as-

a-text-field. Here’s a way to do that:

Download fenestra/reshaped-but-gutted/TranslatorEnlister.rb

class TranslatorEnlister < OSX::NSObject

include OSX

attr_reader :choices, :favorite

def init

@favorite = "sample webapp com.exampler.counting"

@choices = [

@favorite,

"for other apps: use.dot.format.name"

]

super_init

end

def awakeFromNib

NSLog("TranslatorEnlister awakes from Nib.")

end

end

To Interface Builder, it doesn’t matter in the slightest that TranslatorEn-

lister has nothing to do with, well, the interface. You create and connect

it the same way you would any other object.

2. My favorite article on dependency injection is J. B. Rainsberger’s “Injecting testability

into your designs” [Rai05].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/TranslatorEnlister.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=91

INITIALIZING COMBO BOXES 92

6.5 Initializing Combo Boxes

Here’s how the AppChoiceController can put the information provided by

the TranslatorEnlister into the combo box:

Download fenestra/reshaped-but-gutted/AppChoiceController.rb

def awakeFromNib

NSLog("App Choice Controller awakes from Nib.")
Ê @comboBox.removeAllItems

@translatorEnlister.choices.each do | t |
Ë @comboBox.addItemWithObjectValue(t)

end
Ì @comboBox.stringValue = @translatorEnlister.favorite

end

Ê We’ve already initialized the list to have two items in Interface

Builder. We could remove them there, but it’s prudent to clear

the list anyway. Remove this line to see a list with duplicates.

Ë This is where items are added to the list. The method name, add-

ItemWithObjectValue, hints that the argument can be something

other than a string. Indeed, it can be any object. Try changing

the choices array to be an array of integers. You’ll see that they

display reasonably, and they’re correctly logged in chooseOrHeal

when the button is clicked.

Ì This line sets the value of the text field. It does nothing to the

combo box’s list. An alternate way to get the same effect would be

to use selectItemAtIndex with the argument 0.

See Apple’s Combo Box Programming Topics [App08i] for more on combo

boxes.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-but-gutted/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=92

WHAT NOW? 93

6.6 What Now?

We now have four objects (three controllers and a TranslatorEnlister) that,

for the most part, have no references to each other—but they have

to exchange information. I’m going to use the notification system (as

described in Section 4.1, Notifications Within an App, on page 62) to do

that. That’s reasonably straightforward: every arrow in Figure 6.2, on

page 84, turns into the posting of a notification. I’ll briefly show what

that code looks like in the next chapter. My ulterior motive for doing

that is to motivate the chapter after that, which uses Ruby to make

such code more pleasant.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=93

Chapter 7

Notifications Connect
Decoupled Objects

Fenestra is now nicely decoupled, but it’s time for it to do something. In

this chapter, the different objects will communicate via notifications. I

don’t think you’d learn enough by typing in the required code, so I rec-

ommend you just read until Section 7.2, Try This Yourself , on page 96.

7.1 Controllers

fenestra/reshaped-with-notifications is a version of Fenestra that uses noti-

fications. I’ll illustrate the control flow by showing what happens be-

tween the moment a user clicks the Fenestrate button and the moment

this text appears in the log window:

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CONTROLLERS 95

The first method called is in AppChoiceController:

Download fenestra/reshaped-with-notifications/AppChoiceController.rb

def chooseOrHeal(sender)

if @button.state == NSOnState
Ê @last_choice = @comboBox.stringValue
Ë Center.postNotificationName_object_userInfo(AppChosen,

self,

:app_name => @last_choice)

else
Ì Center.postNotificationName_object_userInfo(TimeToForgetApp,

self,

:app_name => @last_choice)

end

end

Ê The user’s choice is fetched from the combo box. It’s stored in

an instance variable so that it can also be displayed in a “Log-

ging stopped” message (sent at Ì). I can’t just ask the combo box

again because there’s no guarantee the user hasn’t messed with

the combo box before clicking Heal.

Ë Here, a notification is posted to the default NSNotificationCenter. (I

aliased that to Center in the Controller superclass.) I used the con-

stant AppChosen instead of a literal string because typos in con-

stant names fail more obviously. I’ve defined it and related con-

stants in a new file, Constants.rb.

Back when the LogController awoke from its nib, it told the default notifi-

cation center it was interested in the AppChosen notification (no matter

what object posted it). That’s shown at Ê here:

Download fenestra/reshaped-with-notifications/LogController.rb

def awakeFromNib

@log.clear

Ê Center.addObserver_selector_name_object(self, :note_choice,

AppChosen, nil)

Center.addObserver_selector_name_object(self, :forget_app,

TimeToForgetApp, nil)

Center.addObserver_selector_name_object(self, :log_app_fact,

AppFactAvailable, nil)

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-notifications/AppChoiceController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-notifications/LogController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=95

TRANSLATORS AND THE RISING TIDE OF UGLINESS 96

Therefore, when the AppChoiceController posts the AppChosen notifi-

cation, the NSNotificationCenter calls LogController’s note_choice method,

which logs the message we want:

Download fenestra/reshaped-with-notifications/LogController.rb

def note_choice(notification)

@log.addLine("Logging started for '#{notification.userInfo[:app_name]}'...")

end

You can check that the other behaviors, as shown in Figure 6.2, on

page 84, are implemented. For example, look in WindowController to see

how it handles the AppChosen notification.

7.2 Translators and the Rising Tide of Ugliness

Meanwhile, the TranslatorEnlister is listening to see whether anyone has

chosen an app to fenestrate. When it receives an AppChosen notifica-

tion, it looks up a translator and starts it working. For the moment,

it knows of only one translator, Translators::ToString, which produces the

same log messages that the previous version of Fenestra gave.

ToString

ToString, shown in Figure 7.1, on the following page, is fairly simple.

Ê The initialization method just remembers what app this ToString

instance is listening for.

Ë The ToString instance listens for distributed notifications from the

chosen app.

Ì When it receives a distributed notification, it translates it into a

string and then posts that string for whatever objects might be

interested in it (in this case, the LogController).

Try This Yourself

If you start Fenestra and the counting web app,1 then have Fenestra

fenestrate the counting web app, then heal the fenestra, and then do

something with the web app (such as refresh a page), you will notice

that ToString is still happily receiving distributed notifications from com.

exampler.counting and still happily posting translations, which LogWin-

dow happily prints.

1. You can find instructions about starting the web app in Section 4.3, The App to Fen-

estrate, on page 70.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-notifications/LogController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=96

TRANSLATORS AND THE RISING TIDE OF UGLINESS 97

Download fenestra/reshaped-with-notifications/ToString.rb

module Translators

class ToString < OSX::NSObject

include OSX

include Announcements

Ê def initForApp(app)

@app = app

init

end

Ë def listen

center = NSDistributedNotificationCenter.defaultCenter

center.addObserver_selector_name_object(self, :translate,

nil, @app)

end

Ì def translate(notification)

center = NSNotificationCenter.defaultCenter

center.postNotificationName_object_userInfo(

AppFactAvailable, self,

:message => notification.to_s)

end

end

end

fenestra/reshaped-with-notifications/ToString.rb

Figure 7.1: ToString

So, healing doesn’t actually work. Make it work by making ToString

remove itself as an observer from the NSDistributedNotificationCenter when

it receives a local notification named by the constant TimeToForgetApp.

My solution is shown in Figure 7.2, on the following page.

Ê Since more than one method will use each of the notification cen-

ters, I name them with instance variables.

Ë Here, ToString observes TimeToForgetApp notifications.

Ì Here, both notification centers are told to forget about the ToString.

In my first version, I didn’t have the local notification center for-

get the ToString. What would have been the consequences? Each

click of the Heal button would have created a “zombie” ToString that

wouldn’t listen to remote apps (and so wouldn’t clutter the log) but

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-notifications/ToString.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=97

TRANSLATORS AND THE RISING TIDE OF UGLINESS 98

Download fenestra/reshaped-with-notifications/ToString.resign.rb

def initForApp(app)

@app = app
Ê @remote_center = NSDistributedNotificationCenter.defaultCenter

@center = NSNotificationCenter.defaultCenter

init

end

def listen

@remote_center.addObserver_selector_name_object(self, :translate,

nil, @app)

Ë @center.addObserver_selector_name_object(self, :forget_app,

TimeToForgetApp, nil)

end

Ì def forget_app(notification)

@center.removeObserver(self)

@remote_center.removeObserver(self)

end

fenestra/reshaped-with-notifications/ToString.resign.rb

Figure 7.2: A ToString that forgets

would listen for TimeToForget notifications, so it would pointlessly

ask the @remote_center to remove it. Since there’s no effect from

removing an observer that’s already been removed, all that is only

trivially wasteful. It would take a lot of fenestrations to have any

noticeable effect, but at the last minute I thought of what Al Gore

would say and decided to completely clean up after myself.

Because removeObserver is documented for NSNotificationCenter and

not for its subclass NSDistributedNotificationCenter, you might have

used removeObserver_name_object instead. They have the same ef-

fect if you give nil values for the name and object arguments. I’d

say the Cocoa documentation for subclasses is better than average

at clearly directing your attention to superclass methods, but it’s

still prudent to look up the inheritance chain for the method that’s

perfect for what you want to do.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-notifications/ToString.resign.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=98

WHAT NOW? 99

7.3 What Now?

The previous section was titled “Translators and the Rising Tide of

Ugliness.” The rising tide refers to all the calls to addObserver_selector_

name_object and postNotificationName_object_userInfo. Part of the prob-

lem is the awkwardness of Cocoa method names when translated into

Ruby. I am a fan of Objective-C-style keyword arguments, but their vir-

tues are revealed only when the keywords and arguments interleave as

intended. Another problem is that these two methods are more gen-

eral than we need, so we have to keep providing information that’s not

important for our purposes.

As is so often the case, the solution to ugliness is to look for dupli-

cation and remove it. In the next chapter, we’re going to change this

chapter’s code to use an aggressively Ruby-like interface to notifica-

tions. Although that has nothing to do with RubyCocoa per se, I believe

happy RubyCocoa programming—and happy programming in general—

happens when you program to the interface you wish you had and then

adapt your interface to the one the system provides.2

2. I learned this from Steve Freeman.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=99

Chapter 8

More Expressive Code
Lisp programmers are notorious for solving problems by first invent-

ing a “little language” that makes the solution easy to express and

then writing the solution in that language. Many Ruby programmers

have the same habit, but the term we use is more often domain-specific

language (DSL). DSLs are built by defining clever methods. Here’s an

example that’s built right into Ruby:

attr_accessor :var

This DSL method solves the “I’m tired of writing getters and setters”

problem by giving us a way to declare what we want and having attr_

accessor write the right methods for us.

The line marked Ê shows a use of a different DSL method, one built

into RubyCocoa:

Download fenestra/reshaped-with-dsl/AppChoiceController.rb

Ê ib_action :chooseOrHeal do | sender |

if @button.state == NSOnState

@last_choice = @comboBox.stringValue

post(AppChosen, :app_name => @last_choice)

else

post(TimeToForgetApp, :app_name => @last_choice)

end

end

That line means the same thing as these two lines from the previous

version of Fenestra:

Download fenestra/reshaped-with-notifications/AppChoiceController.rb

ib_action :chooseOrHeal

def chooseOrHeal(sender)

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/AppChoiceController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-notifications/AppChoiceController.rb

A DSL FOR NOTIFICATIONS 101

This previously undescribed form of ib_action can simultaneously de-

clare an action to Interface Builder and define a method named for that

action. That’s not a huge win, but it eliminates a redundant use of a

name—and that’s almost always a good thing.

Here’s a similar method of my own:

Download fenestra/reshaped-with-dsl/WindowController.rb

delegate_method :windowWillClose do | notification |

NSApp.terminate(self)

end

If I were talking to you about this class and mentioned windowWillClose,

I’d probably say, “The delegate method windowWillClose” rather than

just “The method windowWillClose.” If that kind of reminder is useful

in speech, it’s probably also useful in code.

8.1 A DSL for Notifications

I’ve extended RubyCocoa with my own small DSL for notifications. In

Figure 8.1, on the next page, we can see how notifications were handled

in the previous version of WindowController vs. how we’ll handle them

from now on:

• The major change here is that registering a method with the de-

fault NSNotificationCenter can be folded into the declaration of that

method.

• A secondary change is that I got tired of typing notification.userInfo[],

so I defined the [] method on NSNotification.

How does the NSNotificationCenter class find out what observer methods

to call? As it defines each method, on_local_notification stashes its name

somewhere. Then connect_all_notification_observers uses the stash to tell

the NSNotificationCenter about all the observers at once. In our case,

connect_all_notification_observers is called in the abstract Controller class’s

awakeFromNib method:

Download fenestra/reshaped-with-dsl/Controller.rb

def awakeFromNib

connect_all_notification_observers

...

end

Individual controllers don’t have to worry about wiring objects together.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/WindowController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=101

A DSL FOR NOTIFICATIONS 102①② ①fenestra/reshaped-with-notifications/WindowController.rb

def awakeFromNib

Center.addObserver_selector_name_object(self, :note_choice,

AppChosen, nil)

Center.addObserver_selector_name_object(self, :forget_app,

TimeToForgetApp, nil)

end

def note_choice(notification)

@logWindow.title = notification.userInfo[:app_name]

end

def forget_app(notification)

@logWindow.title = "- No App -"

end

fenestra/reshaped-with-dsl/WindowController.rb

on_local_notification AppChosen do | notification |

@logWindow.title = notification[:app_name]

end

on_local_notification TimeToForgetApp do | notification |

@logWindow.title = "- No App -"

end

Figure 8.1: Receiving notifications the new way

Download fenestra/reshaped-with-dsl/WindowController.rb

class WindowController < Controller

ib_outlet :logWindow

on_local_notification AppChosen do | notification |

@logWindow.title = notification[:app_name]

end

on_local_notification TimeToForgetApp do | notification |

@logWindow.title = "- No App -"

end

delegate_method :windowWillClose do | notification |

NSApp.terminate(self)

end

end

fenestra/reshaped-with-dsl/WindowController.rb

Figure 8.2: DSLification!

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/WindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=102

RUBYCOCOA HAS TWO WAYS OF REFERRING TO SUPERCLASSES 103

I like method-defining methods such as ib_action, delegate_method, and

on_local_notification because they’re a quick visual hint about what role

a method plays in the interconnected web of objects and methods that

makes up an app. Refer to the class in Figure 8.2, on the preceding

page, for instance; it seems more expressive than it used to be.

8.2 RubyCocoa Has Two Ways of Referring to Superclasses

If a Controller subclass needs to do anything special upon awakening

from the nib, it should remember to call the superclass. Here’s the

awakeFromNib from LogController:

Download fenestra/reshaped-with-dsl/LogController.rb

def awakeFromNib

@log.clear

super

end

The first time I typed that method, I used super_awakeFromNib instead

of super. It was reflexive: LogController is some kind of NSObject, and

you call overridden Cocoa methods by prepending super_ to their name.

Right?

Well, not exactly. The phrase “Cocoa methods” is sloppily vague, and I

paid the usual price for sloppiness. A method super_foo calls the method

foo in the first Objective-C ancestor class. The pseudomethod super calls

the first Ruby ancestor. You can see the difference by running the exam-

ple in Figure 8.3, on the next page. You’ll see this output:

$ ruby super-and-super.rb

super_description says: <RubyFromRuby: 0x374a50>

but super says: Some kind of RubyFromObjC

Since the awakeFromNib I wanted is in the Ruby class Controller, I needed

to call super.

8.3 Shorthand for Posting Notifications

I got pretty tired of using self as the object argument to postNotification-

Name_object_userInfo, so I decided on a way to avoid that. It starts with

a class wrapped around NSNotificationCenter.defaultCenter:

Download fenestra/reshaped-with-dsl/Controller.rb

def awakeFromNib

...

@outbox = NotificationOutBox.new(:local, :object => self)

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/LogController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/Controller.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=103

SHORTHAND FOR POSTING NOTIFICATIONS 104

Download rubycocoa-oddities/super-and-super.rb

require 'osx/cocoa'

This file shows that the RubyCocoa super_x way of calling a

superclass method ONLY looks in an Objective-C object, not a

superclass that's defined in Ruby.

class RubyFromObjC < OSX::NSObject

def description

"Some kind of RubyFromObjC"

end

end

class RubyFromRuby < RubyFromObjC

def description

"super_description says: " + super_description +

"\nbut super says: " + super +

"\nThe super_description comes from NSObject#description."

end

end

if $0 == __FILE__

puts RubyFromRuby.alloc.init.description

end

rubycocoa-oddities/super-and-super.rb

Figure 8.3: Two kinds of superclass

A NotificationOutBox (and its partner, NotificationInBox) remembers partic-

ular values for you and uses them unless you tell it differently. Here’s

how you post a notification using it:

@outbox.post(AppChosen, :app_name => @last_choice)

The hash argument is used to fill in the userInfo.

I hope you find that method call more appealing than this one:

NSNotificationCenter.defaultCenter.postNotificationName_object_userIn←֓

fo(AppChosen, self, :app_name => @last_choice)

But even that’s too much typing, so I’ve also defined post in Controller so

that controller code needn’t bother with @outbox. You can see the result

in Figure 8.4, on the following page.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/rubycocoa-oddities/super-and-super.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=104

TRY THIS YOURSELF 105

fenestra/reshaped-with-notifications/AppChoiceController.rb

def chooseOrHeal(sender)

if @button.state == NSOnState

@last_choice = @comboBox.stringValue

Center.postNotificationName_object_userInfo(AppChosen,

self,

:app_name => @last_choice)

else

Center.postNotificationName_object_userInfo(TimeToForgetApp,

self,

:app_name => @last_choice)

end

end

fenestra/reshaped-with-dsl/AppChoiceController.rb

ib_action :chooseOrHeal do | sender |

if @button.state == NSOnState

@last_choice = @comboBox.stringValue

post(AppChosen, :app_name => @last_choice)

else

post(TimeToForgetApp, :app_name => @last_choice)

end

end

Figure 8.4: Posting notifications the new way

8.4 Try This Yourself

Update TranslatorEnlister to use the new DSL. You’ll use the instance

methods defined in module Notifiable, which is contained in Notifiable.rb.

My solution is in Figure 8.5, on the next page. The changes are marked

in the margins. I hope they don’t need explanation.

DSLs in Context

DSLs are, at least to some extent, a matter of taste. In your day-to-day

programming, you might not go as wild with them as I do, but you’ll

have to put up with mine for the rest of the book.

I should note that I didn’t try to make this NSNotificationCenter-hiding

DSL broadly useful. It does what I need for Fenestra. If you want to

reuse it, great! But you should expect to tailor it, starting with the tests

in notifications/test.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=105

TRY THIS YOURSELF 106

Download fenestra/reshaped-with-dsl/TranslatorEnlister.dsl.rb

require 'Notifiable'

class TranslatorEnlister < OSX::NSObject

include OSX

include Announcements
Ê include Notifiable

attr_reader :favorite

def init

@favorite = "sample webapp com.exampler.counting"

k = Struct.new(:display_name, :app_name, :template)

@translators = [

k.new(@favorite, "com.exampler.counting", Translators::ToString),

]

Ë connect_all_notification_observers

super_init

end

def choices

@translators.collect { | t | t.display_name } +

["for other apps: use.dot.format.name"]

end

Ì on_local_notification AppChosen do | notification |
Í display_choice = notification[:app_name].to_ruby

translator = @translators.find { | t | t.display_name == display_choice }

if translator

translator.template.alloc.initForApp(translator.app_name).listen

else

Translators::ToString.alloc.initForApp(display_choice).listen

end

end

end

fenestra/reshaped-with-dsl/TranslatorEnlister.dsl.rb

Figure 8.5: Using the DSL with TranslatorEnlister

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/reshaped-with-dsl/TranslatorEnlister.dsl.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=106

WHAT NOW? 107

That lack of ambition was not (only) laziness. I have enough well-earned

humility to know that if I try to anticipate your needs, I’ll fail and pro-

duce a bad DSL. I’m also a fan of Michael Feather’s notion of intention-

ally “stunting a framework”—that is, of helping someone understand a

framework by forcing her to change it.1

8.5 What Now?

The ToString translator needs to be updated to use the DSL to receive

both within-app and between-app notifications. Although I could cover

that now, it wouldn’t teach you much about RubyCocoa or Cocoa.

I’d rather defer it until Chapter 11, Persistent User Preferences, on

page 127, when you’ll be using Cocoa bindings, defaults, and prefer-

ences to describe and load custom translators.

Instead, I want to shift to hard-core pragmatics: how to set up your

RubyCocoa apps so that you can edit, build, and distribute them with

ease.

1. See http://www.artima.com/weblogs/viewpost.jsp?thread=8826.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.artima.com/weblogs/viewpost.jsp?thread=8826
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=107

Part III

Project Mechanics

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Chapter 9

Bundling Gems
and Libraries with Your App

In any decent-sized software project, a certain amount of bookkeep-

ing and organization work is required before the real work can run

smoothly. This chapter and the next help you with that organization.

To give us something to organize, I’ve written a translator tailored to

com.exampler.counting. It produces output like this:

For this chapter, what matters are the lines containing numbers. I got

fancy and turned numbers into words—“one” instead of “1”—and cor-

rectly pluralized the nouns the numbers modify. That is, you see “one

time” instead of “one times,” as is so depressingly common.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

MANUAL CONTROL 110

That’s actually a bad UI for logging output, since it makes the log harder

to skim, but it gives me an excuse to use the Linguistics gem. That gem

works like this:

irb(main):001:0> require 'Linguistics'

=> true

irb(main):002:0> Linguistics.use(:en)

=> [String, Numeric, Array]

irb(main):003:0> [1.en.numwords, 2.en.numwords]

=> ["one", "two"]

irb(main):004:0> ['time'.en.plural(1), 'box'.en.plural(2)]

=> ["time", "boxes"]

If I want other people to use Fenestra, I should not assume they have

the Linguistics gem installed in /usr/lib/ruby/user-gems or that Fenestra

is so wonderful they’ll happily take the time to install a gem or that

they’d be happy with an app that requires running an installer (instead

of the usual “drag this into Applications” installation method). After this

chapter, you’ll have an app that

• Has its own private folder for gems.

• Also has a private folder for libraries whose authors haven’t both-

ered to make them into gems.

• Will fail if you forget to put a non-Apple gem or library in its private

folder. That avoids the embarrassment of having your app fail only

when you copy it to someone else’s machine and say, “Watch this!”

Then you double-click the app.1

9.1 Manual Control

As soon as I decide to use a gem or library, I put it into the app bundle.

To make sure that I don’t forget, I always run the app with a load path

that excludes site-specific libraries and gems. This section is about how

that’s done. There’s a more automated alternative that’s unfortunately

riskier; see Section 9.2, Standaloneify, on page 114.

1. You’ll have to put the gem into the private folder even if you never plan to use the app

on any other machine.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=110

MANUAL CONTROL 111

Preparing a Directory

Follow these steps to prepare a directory:

1. Use the Finder or Terminal to create a third-party folder inside your

app’s top-level directory:

$ cd fenestra/bundling

$ mkdir third-party

2. Back in Xcode, decide where you want the third-party directory to

appear in the project window. In the following example, I’m putting

it in Resources:

Where you put it is unimportant for running the app—all Ruby

files end up in the application bundle’s Contents/Resources folder.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=111

MANUAL CONTROL 112

3. Use Project > Add to Project to add third-party. After you pick the

directory, you’ll be shown this dialog box:

Because you’ll be creating and managing a hierarchy of third-

party gems and libraries, choose Create Folder References. (It’s

probably not selected by default.) If you choose Recursively Cre-

ate Groups, the on-disk folder structure will be flattened in the

application bundle.

4. The folder project-files (part of this book’s code download) contains

the skeleton of an app that follows the suggestions in this chap-

ter. From it, copy path-setting.rb into your source folder. Add it to

the project by selecting Project > Add to Project. Read on for an

explanation of what path-setting.rb does.

Updating rb_main.rb

path-setting.rb updates gem and library search paths so that the follow-

ing items are true:

• A gem placed within third-party/gems can be found by the app. The

same should be true of a nongem library in third-party/lib.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=112

MANUAL CONTROL 113

Download fenestra/bundling/rb_main.rb

require 'osx/cocoa'
Ê require 'path-setting'

def rb_main_init

path = OSX::NSBundle.mainBundle.resourcePath.fileSystemRepresentation

rbfiles = Dir.entries(path).select {|x| /\.rb\z/ =~ x}

rbfiles -= [File.basename(__FILE__)]

rbfiles.each do |path|

require(File.basename(path))

end

end

if $0 == __FILE__ then

OSX::NSLog "RubyCocoa version is #{OSX::RUBYCOCOA_VERSION}."
Ë RubyCocoaLocations.restrict_load_path_to_OSX_defaults
Ì RubyCocoaLocations.make_chosen_libs_and_gems_available

rb_main_init

OSX.NSApplicationMain(0, nil)

end

fenestra/bundling/rb_main.rb

Figure 9.1: Code to isolate an app at all times

• A gem in /usr/lib/ruby/user-gems will not be found.

• A gem in /usr/lib/ruby/gems can still be found. These are the gems

delivered with Leopard, so it’s safe to assume they exist on your

users’ machines.

• A nongem library in /usr/lib/ruby/site_ruby or a directory named in

your RUBYLIB environment variable will not be found.

To use path-setting.rb, add to rb_main.rb the highlighted lines in Fig-

ure 9.1.

Installing a Gem

Install a gem in the third-party folder using a command like this:

$ gem install Linguistics --no-rdoc --no-ri --remote --install-dir ←֓

third-party/gems

Here’s an important fact: Xcode treats the third-party folder as a unit. It

knows to update the copy in the build/Release folder only if the times-

tamp of the third-party folder itself changes. That doesn’t happen when

you add a gem to the third-party/gems subfolder. So to get the new gem

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/bundling/rb_main.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=113

STANDALONEIFY 114

Renaming Ruby Files

Third-party code isn’t the only time you’ll need to manually
clean the build. Try this yourself: use Xcode to rename Trans-

latorEnlister.rb to TranslatorFinder.rb. Build a new version. Now look
inside the build directory. As of Xcode 3.0, this is what you’ll see:

$ ls build/Release/Fenestra.app/Contents/Resources/Transl*
build/Release/Fenestra.app/Contents/Resources/TranslatorEnlister.rb
build/Release/Fenestra.app/Contents/Resources/TranslatorFinder.rb

The new file was copied in, but the old file is still there. Since
rb_main.rb loads all the files in Resources when it starts, that could
lead to some nasty surprises. When in doubt, select Build >
Clean.

into the build, clean the build with Build > Clean before using Build >

Build and Go.

Installing a Library

When a library isn’t bundled into a gem, put it into lib. By way of

example, suppose the notifications DSL was an old-fashioned library.

It would be installed like this:

$ cd notifications

$ ruby setup.rb config --siterubyver=../fenestra/bundling/third-party/lib

---> lib

<--- lib

$ ruby setup.rb install

rm -f InstalledFiles

---> lib

mkdir -p /Users/marick/.../fenestra/bundling/third-party/lib

install Notifiable.rb /Users/marick/.../fenestra/bundling/third-party/lib/

install NotificationBox.rb /Users/marick/.../bundling/third-party/lib/

<--- lib

$

Again, you’d have to clean the build (Clean > Build in Xcode) before the

new files will make it into the built app.

9.2 Standaloneify

standaloneify is a tool that comes with RubyCocoa. It runs your app,

tracks what it requires, and writes a new app that copies the required

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=114

STANDALONEIFY 115

libraries and gems into the app’s bundle and sets up the app’s load

path so that it can find them there.

To use standaloneify, you need to put it in your shell’s load path:

PATH=$PATH:/System/Library/Frameworks/RubyCocoa.framework/Versions/Cu ←֓

rrent/Tools

You run it like this:

$ cd build/Release

$ ruby -S standaloneify.rb -d /tmp/Fenestra.app Fenestra.app

I’ve tried that with two versions of Fenestra. For the one in fenestra/text-

field-to-view, all went well: the stand-alone application launched and

appeared to work. The one in fenestra/reshaped-dsl did not fare so well.

It didn’t launch at all. For some reason, standaloneify copied the Ruby-

Cocoa framework itself into the app bundle but didn’t adjust the load

path to include the stand-alone copy. The result is this message on the

console:

Jul 2 12:48:37 frex [0x0-0x3ce3ce].com.apple.rubycocoa.FenestraApp[←֓

19800]: /Users/marick/tmp/Fenestra.app/Contents/Resources/rb_main.rb ←֓

:25:in `require': no such file to load -- osx/cocoa (LoadError)

I haven’t figured out why. I think it’s a bug. Once the madness of book

writing is over, I’ll investigate further and file a bug report if needed.

Whatever the reason for that failure, there’s an important and different

reason standaloneify can fail. Suppose your app—or any code it requires—

only conditionally requires a library. Consider this code:

ib_action :chooseFancyOutput do | sender |

require 'Linguistics'

...

end

Since the app doesn’t load Linguistics without user intervention, stan-

daloneify doesn’t see that require executes, so Linguistics won’t end up

in the app bundle.

That’s a much worse problem than the one I saw with the DSLified ver-

sion of Fenestra. At least that one failed right away. In this hypothetical

case, you might think the app works until some user decided on fancy

output.

Because of that risk, standaloneify is for the bold (including people who

want to distribute apps for pre-Leopard versions of OS X,

which the technique in Section 9.1, Manual Control, on page 110, does

not support).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=115

WHAT NOW? 116

9.3 What Now?

Now that you have one folder full of code, you might start wanting to

make others. I myself am itching to have util and translators folders. The

next chapter shows you how to organize RubyCocoa projects hierarchi-

cally. It’s not as obvious as you might think, and the way you go about

it depends on whether you want to edit Ruby code with Xcode or some

other editor.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=116

Chapter 10

Project Organization, Builds,
and Your Favorite Editor

I remember the thrill, back around 1980, when I first worked on an

operating system that let me have directories within directories. I got

rather attached to the idea. Unfortunately, for the obsessively hierar-

chical, Xcode would prefer that all your Ruby files live directly in the

Resources folder of the app bundle, without any of them in any subfold-

ers. This chapter is for people who object to that. It’s also for people

who want to use rakefiles for building the app (probably because they

have a favorite Ruby editor that’s not Xcode).

Prepared exclusively for Alison Tyler

Download at Boykma.Com

GROUPS 118

10.1 Groups

The most recent version of Fenestra has the utility file NSPatches.rb

in the same folder as the translator ToString.rb and the controller App-

ChoiceController.rb. Xcode’s internal display can (mostly) hide that truth

from you. I’ve arranged for Xcode to show me the Fenestra files like

this:

Despite being in the same folder on disk, Xcode shows the utility files

in a different group than the translators. You could create a subgroup

of util by selecting it and choosing Project > New Group.

Groups have most of the advantages of folders, but you can’t have files

with the same name in two different groups.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=118

USING XCODE WITH HIERARCHICAL PROJECT FOLDERS 119

10.2 Using Xcode with Hierarchical Project Folders

Since Xcode groups are invisible outside Xcode, you might want to

have Xcode work with a folder hierarchy on disk. Folders look just like

groups, but they’re blue instead of yellow. If you’re reading the PDF

version of the book, you can see that here:

In version 3.0, Xcode doesn’t really understand folders. By that, I mean

this:

• You can’t create folders from within Xcode. You have to create

them with the Finder or command line and then add them to the

project.

• Although you can expand folders to view them hierarchically, you

can’t rename or move files.

• You can edit files, but Xcode won’t consistently save them before

building, even if you’ve told it to do so.1 I’ve written an AppleScript

that should consistently save and then build and run; you can find

it in save-and-build.scpt.2 Note: the script seems to work for me, but

I rarely use Xcode to edit my source, so I wouldn’t be surprised if

it has problems. If you notice one, let me know. If you fix one, I’ll

update the version in the code distribution.

1. You can find the preference to Always Save Unsaved Files in the Building preferences.
2. You add scripts to Xcode with the Edit User Scripts item in the scripts menu. (That

menu is the little scroll shape in the menu bar.) Once you’ve added a script, you can bind

it to a keypress by double-clicking in the second column of the scripts table, pressing the

key, and clicking somewhere else.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=119

USING XCODE WITH HIERARCHICAL PROJECT FOLDERS 120

• If you change—and save—a file within a folder hierarchy but don’t

change the modification time of the root folder, Xcode won’t copy

the changed file into the build folder.

Normally, that last problem would be a deal breaker for me. Even if I

changed my AppleScript to touch the roots of all folders, I don’t want to

wait around for Xcode to copy the complete contents of all the folders

into the build directory each time. Fortunately, there’s a better way to

work around the problem. And since my guess is that most of you

readers prefer a hierarchical organization for larger projects, I’ll use

one from now on and show you the workaround.

To use Xcode for the rest of the book, do the following:

1. Set up your rb_main.rb file as described in Section 10.3, Running in

Place, on the following page.

2. In your moment-to-moment development, use the Debug configu-

ration. (That will activate the code you set up in the previous step.)

You are likely using the Release configuration now, so you’ll need

to change it with Project > Set Active Build Configuration.

3. When you’re ready to run the app outside your development folder,

make a release by changing the build configuration to Release,

cleaning the build (ensuring that everything will be copied into the

build folder), and then building the app.

4. Add folders following the procedure given for third-party in Sec-

tion 9.1, Preparing a Directory, on page 111.

5. You can add a file inside a folder in two ways. One is to use File

> New File. Don’t try it. It will drive you insane.3 Instead, use the

command line to touch the file into existence:

$ touch app/Touched.rb

After a short time, Xcode will notice and display an icon for the

file in its hierarchical view, and you can start editing it. If you’re

viewing the containing folder in Xcode, you may have to unexpand

and reexpand the disclosure triangle before Xcode notices the new

file.

3. Think it won’t happen to you? OK. But when you get the new file dialog box, make

sure you do not add it to the project. If you do, the file will be copied into the app twice:

once at the top level and once into the folder.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=120

RUNNING IN PLACE 121

10.3 Running in Place

Suppose your source folder has the subfolders app and third-party.

When you make a clean build, those folders will be copied—with the

structure unchanged—into the app bundle’s Contents/Resources folder.

In following builds, Xcode might not notice changes, so it might not

update the Contents/Resources folder. However, with a little judicious

massaging of load paths by rb_main.rb, the app can be launched from

the app bundle while loading from the source folder—and so it won’t

matter that the build folder is out-of-date.4

That would be a terrible idea for a Release configuration of the app, one

that’s intended to be moved around and so must be self-contained. But

it’s fine for the Debug configuration. If you change the rb_main.rb file

as follows, it will detect how it’s being run and adjust the load paths

appropriately:

Download fenestra/editor-agnostic/rb_main.rb

require 'osx/cocoa'

require 'path-setting'

if $0 == __FILE__ then

OSX::NSLog "RubyCocoa version is #{OSX::RUBYCOCOA_VERSION}."

OSX::NSLog "Using Ruby files in #{RubyCocoaLocations::app_root}."

RubyCocoaLocations.set_hierarchical_app_load_paths

RubyCocoaLocations.load_ruby_files

OSX.NSApplicationMain(0, nil)

end

10.4 Building Without Xcode

You may have noticed that Xcode installed a rakefile (named Rakefile)

when it created the Fenestra project. The one you will find in fenestra/

editor-agnostic is a combination of that one, the version that comes with

Rucola,5 and code I wrote to scratch my own itches. It assumes you’ve

changed your rb_main.rb file as described in Section 10.3, Running in

Place.

4. I got this clever trick from the Rucola project, http://rucola.rubyforge.org.
5. Rucola helps you organize your project in a way that will be familiar if you’ve used

Rails. Since I didn’t want to assume you had, I chose a simpler organization. If you like

Rails, you might want to use Rucola’s organization instead of mine. Rucola also has

its own set of DSL wrappers around Cocoa features like notifications. (I wrote my own

because I needed features Rucola’s didn’t provide.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/editor-agnostic/rb_main.rb
http://rucola.rubyforge.org
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=121

BUILDING WITHOUT XCODE 122

During your normal moment-to-moment work, build and run the latest

debug version like this:

$ rake

(in /Users/marick/.../fenestra/editor-agnostic)

=== BUILDING NATIVE TARGET Fenestra WITH CONFIGURATION Debug ===

Checking Dependencies...

** BUILD SUCCEEDED **
2008-07-12 15:50:42.945 Fenestra[53274:10b] RubyCocoa version is ←֓

0.13.1.

2008-07-12 15:50:42.947 Fenestra[53274:10b] Using Ruby files in ←֓

/Users/marick/.../fenestra/editor-agnostic/app.

Notice that the app is started up in such a way that debug output flows

to the terminal window. Unfortunately, only standard error output goes

there. That means you must use either NSLog or $stderr.puts for debug-

ging statements.

When you’re ready to distribute a nondebug build, do this:

$ rake package

...

=== CLEANING NATIVE TARGET Fenestra WITH CONFIGURATION Release ===

...

=== BUILDING NATIVE TARGET Fenestra WITH CONFIGURATION Release ===

...

hdiutil create -volname 'Fenestra.2008-07-12' -srcfolder build/R ←֓

elease/Fenestra.app pkg/'Fenestra.2008-07-12'.dmg

Notice that this puts a timestamped disk image of the releasable appli-

cation into the pkg folder. If you don’t like that, search for :package in

Rakefile, and change it. That should be easy to do even if you’ve never

edited a rakefile before.

I tend to use Xcode to do my builds because it usually finishes faster

than Rake does. To avoid the annoyance of switching from editor to

Xcode, I have my editor6 set up so that a single keypress pops me into

Xcode. From there, it’s one more keypress to build.7

6. Aquamacs Emacs, http://aquamacs.org/

7. To get back to your editor from Xcode, use Command - Tab . Double-clicking a Ruby

file edits in Xcode, even if another editor has claimed it.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://aquamacs.org/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=122

USING INTERFACE BUILDER WITH HIERARCHICAL PROJECT FOLDERS 123

10.5 Using Interface Builder with Hierarchical Project Folders

Interface Builder doesn’t see Ruby files within subfolders. That means

that it doesn’t process ib_outlet and ib_target declarations within them.

(I think they’re still useful as documentation.) You’ll have to manually

tell IB about outlets and actions via the inspector’s Class Identity tab,

just as we did with the first GUI way back in on page 45 (and will do

again on the following page).

In the past, we’ve launched Interface Builder by double-clicking a nib

file in Xcode. You can also launch it by double-clicking the file in the

Finder or by opening it from the command line:

$ open English.lproj/MainMenu.nib/

As that example shows, the nib file isn’t stored at the top level of the

project; instead, it’s in a localization (.lproj) folder.

In this chapter, I’ve moved files around well after Interface Builder had

already filled the nib file with information gotten out of them. What

happens now that it can’t find the Ruby files? That depends on how

you start IB:

1. If you start it from outside Xcode, it doesn’t try to find the Ruby

files. The inspector’s Connections tab is unchanged:

That’s fine, because the locations of files doesn’t matter to nib

loading and object connection. All that matters are the names of

classes, methods, and instance variables.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=123

STARTING A NEW PROJECT 124

2. If you open Interface Builder from Xcode, it tries to synchronize

with Xcode changes, discovers files have (as far as it can tell) been

deleted, and displays class connections as suspect:

This does no harm—everything continues to work fine if you build

and run. Nevertheless, it makes me a little queasy to see these

warnings, so I usually fix them. That’s done in the Class Identity

tab, which has become empty and needs to be filled:

Once that’s done, the warnings go away. I’ve made this fix for you

in the editor-agnostic and all later versions of Fenestra.

10.6 Starting a New Project

To get a new RubyCocoa project ready, I do this:

1. Make the project using Xcode as described in Chapter 3, Working

with Interface Builder and Xcode, on page 37.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=124

WHAT NOW? 125

2. From the command line, delete Rakefile and rb_main.rb.

3. Use Project > Add to Project to add all the files from the project-files

folder. When you add them, be sure you select “Copy files into des-

tination group’s folder” and “Create Folder References,” as shown

here:

4. Change APPNAME in the rakefile to be the name of the project.

The file can now be built with either the rakefile or Xcode. Put Ruby

files inside folder app.

10.7 What Now?

Although important, understanding load paths, folder layouts, and

build procedures is neither neat, cool, groovy, spiffy, copasetic, nor

the cat’s pajamas. So, after the drudgery of the last two chapters, you

deserve something that’s all those things. The next part of the book will

cover Cocoa bindings and other ways of painlessly synchronizing the

user interface to data.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=125

Part IV

Declarative Data Handling

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Chapter 11

Persistent User Preferences
Right now, Fenestra has only a short-term memory. The first time you

run it, the combo box looks like this:

You might use it to fenestrate a different app by typing something like

this:

It will remember that favorite app, but only until you quit. The next

time you start Fenestra, the combo box looks like this again:

I think the text field should start out containing my.favorite.app. In this

chapter, I’ll show you how to save such default values on disk. You

could use Ruby’s File and IO classes to do that, but Cocoa gives you an

NSUserDefaults class that does more of the work for you.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

THE USER PREFERENCES SYSTEM 128

Later in the chapter, we’ll change Fenestra so that the user interface

pulls data as it needs it. That saves us from having to write controller

code that pushes changes into the UI.

11.1 The User Preferences System

Cocoa’s user preferences or user defaults system makes it painless to

synchronize in-memory and on-disk versions of user preferences. It’s

shown in Figure 11.1, on the following page.

Ê An NSUserDefaults object manages preferences. As with NSNotifica-

tionCenters, you can have more than one, but you will probably

always use the default.

Ë A program uses registerDefaults to tell the app what value to use for

a particular keyword if the user has no preference. The argument

is an NSDictionary, but it’s easier to use Ruby’s approximation to

keyword arguments (which creates a hash).

Ì A value is fetched from the defaults system with objectForKey. The

first time you run Fenestra, it’ll use the default preference.

Í Setting a preference is a simple matter of calling setObject_forKey.

The next time objectForKey is called, it will get the new value, even

if an app exit and restart happens before then.

Start the version of Fenestra in fenestra/preferred-favorite. Fenestrate

some random name of your choosing. (Don’t forget to press Return or

click the button.) Exit the app and restart—is the name you just typed

selected in the combo box?

Preferences like these are stored in the Library/Preferences subfolder in

your Home folder. Fenestra’s are stored in com.apple.rubycocoa.

FenestraApp.plist.1 It’s in a binary format, but double-clicking it will open

it in the Property List Editor.

1. You’ll see how to change the name in Section 22.7, Changing the Application’s Name,

on page 299.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=128

THE USER PREFERENCES SYSTEM 129

Download fenestra/preferred-favorite/app/TranslatorEnlister.rb

class TranslatorEnlister < OSX::NSObject

DEFAULT_FAVORITE = "sample webapp com.exampler.counting"

def init
Ê @defaults = NSUserDefaults.standardUserDefaults
Ë @defaults.registerDefaults(:favorite => DEFAULT_FAVORITE)

k = Struct.new(:display_name, :app_name, :template)

@translators = [

k.new(DEFAULT_FAVORITE, "com.exampler.counting", Translators::CountingApp),

]

connect_all_notification_observers

super_init

end

Ì def favorite; @defaults.objectForKey(:favorite); end

on_local_notification AppChosen do | notification |

display_choice = notification[:app_name].to_ruby
Í @defaults.setObject_forKey(display_choice, :favorite)

translator = @translators.find { | t | t.display_name == display_choice }

if translator

translator.template.alloc.initForApp(translator.app_name).listen

else

Translators::ToString.alloc.initForApp(display_choice).listen

end

end

end

fenestra/preferred-favorite/app/TranslatorEnlister.rb

Figure 11.1: Saving the favorite

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-favorite/app/TranslatorEnlister.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=129

THE USER PREFERENCES SYSTEM 130

There, after a little bit of tree expansion, you’ll see this:

Try This Yourself

1. Run the app, change its favorite, and force-quit it. Are changed

preferences written out immediately or on app exit? Perhaps pref-

erences are written out at periodic intervals: what happens if you

let the app run for five or more minutes and then force-quit it?

2. You can use the user defaults system from irb, but you must

explicitly update the on-disk version with the synchronize method:

$ irb

irb(main):001:0> d = OSX::NSUserDefaults.standardUserDefaults

=> #<OSX::NSUserDefaults:0x2c1e1a class='NSUserDefaults' id=0x279e00>

irb(main):002:0> d.setObject_forKey('dawn', :favorite)

=> nil

irb(main):003:0> d.synchronize

=> true

irb(main):004:0> exit

$ irb

irb(main):001:0> d = OSX::NSUserDefaults.standardUserDefaults

=> #<OSX::NSUserDefaults:0x2c1e1a class='NSUserDefaults' id=0x279e00>

irb(main):002:0> d.objectForKey(:favorite)

=> #<NSCFString "dawn">

Use irb to convince yourself that preferences do not have to be

strings; they can also be integers, floating-point numbers, Time

objects, true, false,2 hashes and arrays (as long as the latter two

contain only objects in this list), and raw data (encapsulated in

NSData objects).

What happens if you try to store something not in the list, like a

Range? Or an NSNotification?

2. But see Section 11.2, Booleans Again, on page 136.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=130

STORING CUSTOM OBJECTS AS PREFERENCES 131

3. NSUserDefaults objects respond to type-specific methods like string-

ForKey and integerForKey. Unlike objectForKey, these do type con-

versions if needed. To see that in action, store a string "33" and

retrieve it with integerForKey. Also do the reverse: store the integer

33 and retrieve it with stringForKey.

4. You may not know that preferences can be manipulated from the

command line with the defaults command. Try reading and then

changing the favorite like this:

$ defaults read com.apple.rubycocoa.FenestraApp

{

favorite = my.new.favorite;

}

$ defaults write com.apple.rubycocoa.FenestraApp favorite commander

$

Is the change reflected in Fenestra when you restart it?

11.2 Storing Custom Objects as Preferences

Run Fenestra, and add a new preferred app. Click the combo box’s

down arrow to see the list of known apps. Notice that it hasn’t been

updated with the new preference:

It’s not surprising. None of the code changes (from Figure 11.1, on

page 129) touched the combo box. We’ll fix that next.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=131

STORING CUSTOM OBJECTS AS PREFERENCES 132

Data Structure

Before starting, I want to fiddle with what I have. In the pre-preferences

version of Fenestra, a TranslatorEnlister had two instance variables that

looked like this:

display_name

app_name

template

@translators

@favorite "sample webapp com.exampler.counting"

The display name of the favorite is retrieved via two routes: via variable

@favorite for the text field aspect of the combo box and via @translators for

the list aspect. That’s been making me a touch queasy for a while. The

current version makes me feel worse. The string fetched by objectForKey

is a different string than the one in the @translators list, even though

they have the same value:

display_name

app_name

template

@translators

@defaults.objectForKey(:favorite) "sample webapp com.exampler.counting"

"sample webapp com.exampler.counting"

Seeing the same information in two places makes creepy “something

bad is going to jump out at you” music start playing in my head. We

could store the array index of the favorite as the :favorite default, but

I’m going to use a different solution. This part of the book is building

toward a Fenestra preference pane that I imagine looking something

like this, where the favorite is chosen with a radio button:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=132

STORING CUSTOM OBJECTS AS PREFERENCES 133

Favorite Description App Name Template Class

+ -

Sample app com... com.example... Translators::Counting...

com.app.fav com.app.fav Translators::Tostring

So, it seems natural to echo that tabular structure in the code.3 Here’s

the structure I propose:

display_name

app_name

template

favorite

@defaults.objectForKey(:translators)

"sample webapp com.exampler.counting"

display_name

app_name

template

favorite

"com.app.fav"

✓

3. As I wrote that sentence, my copy of Eric Evans’s Domain-Driven Design jumped off

the bookshelf and stalked angrily out the door. If books could talk, it would have said that

an app’s internal structure shouldn’t be based on the accidents of user interface design

or on-disk/database storage layout. To see why, consider that the new data structure

makes it possible for a user to have more than one favorite. Whereas before changing the

favorite was a simple assignment that automatically erased the old favorite, now the code

will have to specifically erase it. More code...more chance of error. (To which I might have

replied—if I talked back to books—that my daughter seems to have no problem having

five best friends. Maybe I’ve stumbled on a useful concept in the domain. . . .)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=133

STORING CUSTOM OBJECTS AS PREFERENCES 134

And here’s the class definition we’ll be working with:

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

class TranslatorPreference < OSX::NSObject

Properties = [:display_name, :app_name, :class_name, :favorite, :source]

attr_accessor *Properties

end

I’ve declared the attributes in a rather odd way because I want my later

methods to look like this:

Properties.each do | prop |

do_something_with(prop)

end

Not only will that save me typing, but I won’t have to remember to tweak

each of the methods whenever I add a new attribute.

The attributes are almost the ones you’ve seen before, except for two

changes:

class_name

This replaces template. In addition to being a dumb name, template

pointed at a Class object (like Translators::ToString). Later in the book,

when Fenestra lets the user type a new class name into a text

field, it just became massively more convenient to keep around

the name of the class instead of the class itself. So, I reversed

time, came back to this moment, and created class_name to hold a

string.

source

This holds the location of a user-defined translator. As with class_

name, it’s more convenient to add it now than later.

I chose the name Properties because that’s what Cocoa documentation

calls what we Rubyists call attributes.

Archiving

Now we just have to find a way to stuff TranslatorPreference objects into

the user preferences system. The problem is that NSUserDefaults works

with only a small set of classes, and TranslatorPreference isn’t one of

them. In the Cocoa world, a conventional workaround is to convert the

objects into NSData before storing them as preferences. That’s what we

will do.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=134

STORING CUSTOM OBJECTS AS PREFERENCES 135

What other class libraries call marshaling, pickling, or serializing, Cocoa

calls archiving or coding.4 Like most such schemes, archiving requires

cooperation from the classes being archived. In particular, they must

implement encodeWithCoder. Here’s TranslatorPreference’s implementa-

tion:

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

def encodeWithCoder(coder)

Properties.each do | prop |
Ê value = self.send(prop)
Ë coder.encodeObject_forKey(value, prop)

end

end

The tricky bit is at Ê. By sending the name of the property to the object

itself, I’m calling the reader. That is, for the first Property, the marked

line is equivalent to this:

value = self.display_name

At Ë, I just encode each field with a built-in NSCoder method. It knows

how to encode certain objects—strings and numbers and booleans, for

example—and recursively calls encodeWithCoder on any it doesn’t know

about.

Unarchiving is done by first creating an instance with alloc and then

calling initWithCoder instead of the usual init method. Here’s Translator-

Preference’s implementation:

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

def initWithCoder(coder)

hash = {}

Properties.each do | prop |

hash[prop] = coder.decodeObjectForKey(prop)

end

initWithHash(hash)

end

4. Why two terms? There are several classes that implement the idea. The one pre-

ferred by Apple’s Archives and Serializations Programming Guide for Cocoa [App08c] is

NSKeyedArchiver. It’s a subclass of NSCoder. Archiver is probably the better name, but

coder is the older one. So—as you’ll see in a moment—it has been immoralized in various

method names.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=135

STORING CUSTOM OBJECTS AS PREFERENCES 136

It collects up a hash, something like this:

{

:display_name => "sample webapp com.exampler.counting",

:app_name => 'com.exampler.counting',

...

}

That hash is used in initWithHash:

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

def initWithHash(hash)

Properties.each do | prop |

writer = prop.to_s + '='

self.send(writer, hash[prop])

end

self

end

For the first Property, the body of the each is equivalent to this:

self.display_name = "sample webapp com.exampler.counting"

Booleans Again

As it turns out, I had to override the default writer for favorite:

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

def favorite=(value)

@favorite = value

@favorite = false if @favorite == 0

end

Why is that needed? The idea of “falsity” is represented in Objective-C

by a raw machine word containing zero, not by an object. When the

Ruby object false moves into the Objective-C universe, it’s converted

into an NSCFBoolean object. You can see that like this:

irb(main):001:0> v = false.to_ns

=> #<NSCFBoolean false>

Although this behaves as a boolean, it’s actually a number:

irb(main):002:0> v.class.superclass

=> OSX::NSNumber

irb(main):003:0> v.intValue

=> 0

An NSCFBoolean is a legitimate object, not a machine integer, but it’s

converted into a machine integer when that’s needed. Evidently it’s

needed somewhere during the process of being archived, put into user

preferences, recovered from user preferences, and unarchived, because

the “booleanness” of favorite gets lost. It’s turned into one of the Ruby

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=136

STORING CUSTOM OBJECTS AS PREFERENCES 137

integers 0 or 1. Since 0 is “true” to Ruby, I have to manually change it

to false. The lesson: in your RubyCocoa career, expect to be puzzled by

odd behavior only to discover it’s because of a round-trip conversion of

false to 0.

Manual Transformations

Back in the day when class_name was template, I used it as an exam-

ple of saving an object that isn’t built-in, as strings and numbers are,

but that didn’t implement the methods archivers require. It’s simple

enough: you just have to convert the object into some archivable form

and archive that. For example, the following method handles a template

by storing its name (not including the Translators:: at the beginning):

def encodeWithCoder(coder)

...

name = @template.name.split('::').last

coder.encodeObject_forKey(@template.name, :template)

...

end

It can be unarchived by looking up the name in the Translators module:

def initWithCoder(coder)

...

name = coder.decodeObjectForKey(:template)

@template = Translators.const_get(name)

end

You’ll get to practice with a different type of unarchivable object in Sec-

tion 11.5, Try This Yourself: A Sticky Window, on page 145.

Printing NSObjects

On occasion, the Cocoa runtime will print information about an object

(such as when there’s an error). Unlike the Ruby runtime, it doesn’t get

a string to print by calling to_s. Instead, it calls description. By default,

an NSObject’s to_s method calls description, so description is the method

to define if you want your objects printed prettily. Here’s the definition

of description for TranslatorPreference:

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

def description

"<#{self.class}: #{display_name}/#{app_name}/#{class_name}" +

" favorite: #{favorite} from '#{source}'."

end

alias inspect to_s

You can see the complete definition of TranslatorPreference in Figure 11.2,

on the next page.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=137

STORING CUSTOM OBJECTS AS PREFERENCES 138

Download fenestra/preferred-list/app/preferences/TranslatorPreference.rb

class TranslatorPreference < OSX::NSObject

Properties = [:display_name, :app_name, :class_name, :favorite, :source]

attr_accessor *Properties

Override writers that need special handling

def favorite=(value)

@favorite = value

@favorite = false if @favorite == 0

end

def initWithHash(hash)

Properties.each do | prop |

writer = prop.to_s + '='

self.send(writer, hash[prop])

end

self

end

def encodeWithCoder(coder)

Properties.each do | prop |

value = self.send(prop)

coder.encodeObject_forKey(value, prop)

end

end

def initWithCoder(coder)

hash = {}

Properties.each do | prop |

hash[prop] = coder.decodeObjectForKey(prop)

end

initWithHash(hash)

end

def description

"<#{self.class}: #{display_name}/#{app_name}/#{class_name}" +

" favorite: #{favorite} from '#{source}'."

end

alias inspect to_s

end

fenestra/preferred-list/app/preferences/TranslatorPreference.rb

Figure 11.2: A class that can be stored as a preference

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/TranslatorPreference.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=138

USING ARCHIVED OBJECTS 139

11.3 Using Archived Objects

There’s something that has been bothering me about TranslatorEnlister for

a while. Although it sits below the “presentation layer,” it knows facts

about presentation, specifically, strings to display in the UI. Earlier in

this chapter, it grew a little knowledge about user preferences. If I follow

my current path and have it pull in and decode TranslatorPreferences, it’s

going to drift even further from the “do one thing and do it well” ideal

for classes.

So, what I’ll do is create a new class, Preferences. Its job is to answer

questions other classes have about user preferences. Here are some

questions AppChoiceController will have for it:

• What’s the name of the favorite translator? I need to display it in

the text box.

• What’s the list of names I should put in the drop-down list part of

the combo box?

• Can you point me at whichever name is the favorite? I need to

highlight that list entry.

Moving Responsibilities Around

I’ll start designing Preferences by changing AppChoiceController to use it

and seeing what method names fall out. Here’s my first cut:

Download fenestra/preferred-list/app/controllers/AppChoiceController.rb

class AppChoiceController < Controller

...
Ê ib_outlet :preferences

def awakeFromNib
Ë @comboBox.stringValue = @preferences.display_name_of_favorite_translator

fill_combo_box

super

end

def fill_combo_box

@comboBox.removeAllItems
Ì @preferences.translator_display_names.each do | t |

@comboBox.addItemWithObjectValue(t)

end

end

...

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/controllers/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=139

USING ARCHIVED OBJECTS 140

Ê As was the case with the TranslatorEnlister, the Preferences object is

connected as an outlet. That means it has to be added to Interface

Builder’s doc window (as described in Section 3.1, Connecting the

Interface to Code, on page 44).

Ë The AppChoiceController asks Preferences for the text to put in the

text field. (It used to ask the TranslatorEnlister.) I changed the name

from favorite to display_name_of_favorite_translator because, first, the

original name was ambiguous5 and, second, because the Prefer-

ences may eventually answer many questions from many classes

about what the user prefers, so it’s best to make method names

painfully explicit.

Ì Similarly, I ask the Preferences for a list of all the display names.

You and I know that those names are plucked from TranslatorPref-

erences, but there’s no reason for the AppChoiceController to know

anything about that class.

I’ve put this code in its own method because it’s not just called

from awakeFromNib. The combo box needs to be filled again after a

new favorite is chosen.

If you browse TranslatorEnlister now, you’ll see that all that’s left for it to

do is this:

Download fenestra/preferred-favorite/app/TranslatorEnlister.rb

on_local_notification AppChosen do | notification |

display_choice = notification[:app_name].to_ruby

@defaults.setObject_forKey(display_choice, :favorite)

translator = @translators.find { | t | t.display_name == display_choice }

if translator

translator.template.alloc.initForApp(translator.app_name).listen

else

Translators::ToString.alloc.initForApp(display_choice).listen

end

end

It fiddles with the favorite display name (which is no longer its busi-

ness), it finds the appropriate translator (which probably should not be

its business, since that involves the user’s preferences), and it launches

the translator and forgets about it. If we move the preferences code into

the Preferences class, that leaves practically nothing.

5. Did I want the whole TranslatorPreference? Its app_name? Its display_name? What?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-favorite/app/TranslatorEnlister.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=140

USING ARCHIVED OBJECTS 141

Let’s just destroy TranslatorEnlister—I never really liked it anyway—and

move translator launching into AppChoiceController:

Download fenestra/preferred-list/app/controllers/AppChoiceController.rb

ib_action :chooseOrHeal do | sender |

if @button.state == NSOnState

@last_choice = @comboBox.stringValue.to_ruby
Ê translator = @preferences.translator_for_display_name(@last_choice)
Ë translator.listen
Ì fill_combo_box

post(AppChosen, :app_name => @last_choice)

else

post(TimeToForgetApp, :app_name => @last_choice)

end

end

AppChoiceController obeys user preferences at Ê and Ë. I still don’t want

it to know anything about the details of preferences, so I made the query

method return an already-initialized Translator that just has to be told

what to do.

Notice that I’ve pushed the knowledge of what makes a Translator the

current favorite into Preferences. Since that class is the authority over

what the user prefers, it should also be the authority over what makes

that preference change.

After changing the favorite, I call fill_combo_box at Ì to update the

combo box with a (potentially) new list of translators. . . but wait! I just

isolated knowledge about how that list changes by putting it inside Pref-

erences. But, moments later, I’ve written code that AppChoiceController

executes because the list might change. It’s acting on knowledge it’s not

supposed to have.

This design works, but it’s sloppy in a way that makes bugs more likely

as Fenestra changes. We’ll fix that in Section 11.4, Views Can Pull Data,

on page 143, but first we’ll finish implementing the design we have.

Implementing the Adapter

In jargon,6 Preferences is an adapter, a class that improves on an inter-

face that it hides. Our adapter’s first job is to register the default pref-

erences. In what method should that be done?

6. See Design Patterns in Ruby [Ols07].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/controllers/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=141

USING ARCHIVED OBJECTS 142

In my first implementation, I foolishly put it in awakeFromNib. The prob-

lem is that objects may be awakened in any order. At the moment

any object’s awakeFromNib runs, its outlets are connected to the appro-

priate objects, but there’s no guarantee those other objects have run

their awakeFromNib methods. So, this sequence of events was possible:

1. The Preferences and AppChoiceController are created. (The order

doesn’t matter.)

2. AppChoiceController’s awakeFromNib is called. It uses its @prefer-

ences outlet to ask how to set up its combo box.

3. But Preferences hasn’t run its awakeFromNib, so it hasn’t registered

the default preferences.

4. AppChoiceController gets back nil values.

I was lucky: events happened in that order when I first ran the changed

Fenestra. If the two class’s awakeFromNib methods had been run in the

other order, I might not have found out about the bug until a reader

like you found it.7

After that discovery, I put the code in an init method:

Download fenestra/preferred-list/app/preferences/Preferences.rb

def init

only = TranslatorPreference.alloc.initWithHash(

:display_name => "sample webapp com.exampler.counting",

:app_name => "com.exampler.counting",

:class_name => 'CountingApp',

:favorite => true,

:source => nil)

@defaults = NSUserDefaults.standardUserDefaults

@defaults.registerDefaults(:translators => collect_archived([only]))

super_init

end

This uses collect_archived to produce an array of archived objects. It

happens to have only one, our old friend com.exampler.counting.8

collect_archived uses a new Cocoa class we haven’t seen before, NSKeyed-

Archiver, to archive each TranslatorPreference (using that class’s encode-

WithCoder method).

7. I’ve made this same mistake more times than I want to admit. I hope the danger of

awakeFromNib soaks into your brain better than it has into mine.
8. In previous versions of Fenestra, the last element of the drop-down list was “for other

apps: use.dot.format.name.” I’ve gotten tired of that, so I’m dropping it.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/Preferences.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=142

VIEWS CAN PULL DATA 143

Download fenestra/preferred-list/app/preferences/Preferences.rb

def collect_archived(objects)

objects.collect do | o |

NSKeyedArchiver.archivedDataWithRootObject(o)

end

end

After the object is initialized, each of Preferences externally visible meth-

ods starts by reading preferences with this code:

Download fenestra/preferred-list/app/preferences/Preferences.rb

archived = @defaults.objectForKey(:translators)

@translator_preferences = archived.collect do | nsdatum |

NSKeyedUnarchiver.unarchiveObjectWithData(nsdatum)

end

If the method could have changed the preferences, it finishes with this

code:

Download fenestra/preferred-list/app/preferences/Preferences.rb

@defaults.setObject_forKey(collect_archived(translator_preferences),

:translators)

The methods that contain that code are mildly tricky, but they will

teach you nothing new about Cocoa or RubyCocoa. If you care to read

them, I added some comments explaining the cute parts.

Try This Yourself

1. Run the new version of Fenestra. Type a new name in the dialog

box, and click the Fenestrate button. Look at the combo box’s

drop-down list. Does it contain the new name?

Now quit Fenestra, and restart it. What’s the value in the text

field? Is your new app name in the drop-down list?

2. Use the Property List Editor to see what NSData looks like inside a

preferences file. Not so useful for debugging, eh?

11.4 Views Can Pull Data

Some Cocoa views can be told to pull the data they display from a data

source whenever they paint themselves on the screen. That way, their

controllers don’t have to make sure to update them at all the right

moments. In our case, it means that AppChoiceController doesn’t have

to know when user preferences might change.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/Preferences.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/Preferences.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-list/app/preferences/Preferences.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=143

VIEWS CAN PULL DATA 144

Lines Ê and Ë show how AppChoiceController can tell its combo box to

use the data it (self) will provide:

Download fenestra/preferred-pull/app/controllers/AppChoiceController.rb

def awakeFromNib
Ê @comboBox.usesDataSource = true
Ë @comboBox.dataSource = self
Ì @comboBox.stringValue = @preferences.display_name_of_favorite_translator

super

end

Notice also that the combo box’s value-as-a-text-field still needs to be

set. Were the line at Ì removed, the text box would be initialized with

the drop-down list’s first entry, not with the favorite.

Being a Data Source

A combo box uses a data source by iterating over its contents. To do

that, it has to know how big the list could be:

Download fenestra/preferred-pull/app/controllers/AppChoiceController.rb

def numberOfItemsInComboBox(ignored)

@preferences.translator_display_names.size

end

And it must be able to ask for each item by its index:

Download fenestra/preferred-pull/app/controllers/AppChoiceController.rb

def comboBox_objectValueForItemAtIndex(ignored, index)

@preferences.translator_display_names[index]

end

These two methods are enough to fill a combo box:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-pull/app/controllers/AppChoiceController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-pull/app/controllers/AppChoiceController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-pull/app/controllers/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=144

TRY THIS YOURSELF: A STICKY WINDOW 145

The favorite app appears in both the text field and the drop-down list,

but it’s not highlighted in the latter. An optional method adds that bit

of polish:

Download fenestra/preferred-pull/app/controllers/AppChoiceController.rb

def comboBox_indexOfItemWithStringValue(ignored, string)

@preferences.translator_display_names.index(string) || NSNotFound

end

When the drop-down list is displayed, the combo box asks this method

which entry should be highlighted. If none matches, the method returns

NSNotFound.9

List-element highlighting now works:

If you try it, you’ll see it works well with autocompletion, too. The combo

box asks for the list index after each character typed.

11.5 Try This Yourself: A Sticky Window

Here’s a coding task that involves user preferences but also gives you a

chance to refresh your memory of previous topics.

You’ve probably noticed that most Mac apps have “sticky” windows. If

you move them around, they’ll appear in their new positions the next

9. Ruby methods that return indices normally return nil to mean “not found.” NSNotFound

is not equal to nil, so be careful.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-pull/app/controllers/AppChoiceController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=145

TRY THIS YOURSELF: A STICKY WINDOW 146

time you start the app. That works when apps store the window’s frame

(a rectangle that surrounds it) in user preferences.

Fenestra’s single window doesn’t stick. There’s an easy fix for that;

you’ll learn it in Chapter 22, Fit and Finish, on page 287. For now,

though, do it by manually saving and loading the data in the user

preferences.

Hints

• The window’s frame is retrieved by sending it the frame message.

It returns an NSRect, which is not one of the data types that can

be stored as a preference. It also can’t be archived into NSData in

the way that TranslatorPreference was. That’s because it’s not a real

object. Instead, it’s a struct, like NSRange.10 You’ll need to convert

the frame into some format that can be stored, such as an array

of floats.11

• When restoring the frame, use setFrame:display:. The first argument

is an NSRect, and the second is a boolean that determines whether

the window should redraw all its subviews. (Try it both ways and

see whether it makes a difference.)

• You can choose to store a changed window frame either before

exiting or at the moment it changes. A class can track such

changes by observing NSWindowDidMoveNotification notifications.

My Solution

I decided to use Preferences to store the frame and WindowController to

initialize the window. That meant I needed to make a new outlet from

WindowController to Preferences:

Download fenestra/preferred-frame/app/controllers/WindowController.rb

class WindowController < Controller

ib_outlet :logWindow, :preferences

Because I’ve been using a hierarchical project folder, Interface Builder

can’t notice the outlet declaration, so I had to tell it manually.

10. Structs were described on page 54.
11. You can convert an NSRect into an array of floats with to_a. If you don’t want to mess

with conversions, you’ll find that you can ask for the frame as a string. You use stringWith-

SavedFrame. You can restore the frame with the same string using setFrameFromString:.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-frame/app/controllers/WindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=146

TRY THIS YOURSELF: A STICKY WINDOW 147

Then it was a simple matter of connecting the two classes.

I made one change to WindowController. It sets its logWindow’s frame

when it awakens:

Download fenestra/preferred-frame/app/controllers/WindowController.rb

def awakeFromNib

@logWindow.setFrame_display(@preferences.sole_window_frame, true)

end

As far as I can tell, the second argument is irrelevant to this case.

The window position default preference is set in the Preferences object’s

init method so that it’s available when AppChoiceController wants it. The

work is done at lines Ê and Ë:

Download fenestra/preferred-frame/app/preferences/Preferences.rb

def init

only = TranslatorPreference.alloc.initWithHash(

:display_name => "sample webapp com.exampler.counting",

:app_name => "com.exampler.counting",

:class_name => 'CountingApp',

:favorite => true,

:source => nil)
Ê window_frame = [196.0, 237.0, 520.0, 295.0]

@defaults = NSUserDefaults.standardUserDefaults

@defaults.registerDefaults(:translators => collect_archived([only]),
Ë :frame => window_frame

)

...

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-frame/app/controllers/WindowController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-frame/app/preferences/Preferences.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=147

TRY THIS YOURSELF: A STICKY WINDOW 148

There’s a problem with this code: any window’s starting position is

stored in the nib file. (That’s where I got the values for Ê—they’re from

the Size [third] tab in the inspector.) That duplication means that some-

one wanting to change the default starting position will almost certainly

change it in IB and then be confused when nothing happens. But hard-

coding these values is less work than writing code to deal with the nil

value returned when an NSUserDefaults has no matching key, and we’re

going to discard this solution anyway in Chapter 22, Fit and Finish, on

page 287.

Because I decided earlier that Preferences should be the sole authority

about when a user’s translator preferences change, I also made it the

authority over what happens when she moves a window. The Preferences

object listens for window movement notifications, converts them to an

array of floats, and stores them:

Download fenestra/preferred-frame/app/preferences/Preferences.rb

on_local_notification NSWindowDidMoveNotification do | notification |

frame = notification.object.frame

array = [frame.origin.x, frame.origin.y,

frame.size.width, frame.size.height]

@defaults.setObject_forKey(array, :frame)

end

Since I’m using my little DSL for notifications, I have to do work in init:

Download fenestra/preferred-frame/app/preferences/Preferences.rb

def init

...

connect_all_notification_observers

super_init

end

Finally, in sole_window_frame, I reassemble the array into an NSRect:

Download fenestra/preferred-frame/app/preferences/Preferences.rb

def sole_window_frame

x, y, width, height = @defaults.objectForKey(:frame)

NSRect.new(NSPoint.new(x, y), NSSize.new(width, height))

end

Notice that this solution will break if I ever add another window. Since

we’ll be discarding it soon enough, I won’t worry about that.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-frame/app/preferences/Preferences.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-frame/app/preferences/Preferences.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/preferred-frame/app/preferences/Preferences.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=148

WHAT NOW? 149

11.6 What Now?

In this chapter we have one-way synchronization: a UI control that

automagically pulls data from a data source. The next chapter sets

the stage for two-way synchronization: making it so that a change to

either side of the relationship propagates to the other. In many cases,

that can be done without writing any code at all.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=149

Chapter 12

Creating a Preference Panel
in a New Nib

In this chapter, we’ll implement a first version of this preference panel:

Favorite Description App Name Template Class

+ -

Sample app com... com.example... Translators::Counting...

com.app.fav com.app.fav Translators::Tostring

In the next chapter, you’ll use it to learn about Cocoa’s support for

synchronizing UI controls and program data. This chapter is only about

creating it.

We’re going to put the panel in a new nib file. If we put it in the main

nib, all the objects that make up the preference panel would be loaded

up and connected each time Fenestra ran, possibly noticeably slowing

down app startup. After that, they’d hang around—invisibly—waiting

for the user to want to edit preferences. Since that’s something users

rarely do, the slowdown would be a waste.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CREATING A NIB 151

12.1 Creating a Nib

Start from fenestra/preferred-pull or your own equivalent. Create the nib

file with Xcode’s File > New File. Navigate through the tree control until

you’re creating a Window XIB. (You’ll have to do a little tree expansion.)

That looks like this:

A xib file is just like a nib file, except it is purely text, so it plays better

with version-control systems like Subversion or Git.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=151

CREATING A NIB 152

Name the new file Preferences.xib, and put it in the project’s English.lproj

directory:

When you create the xib file, Xcode will show it somewhere in the

main browser window, probably not where you want it. Drag it under

Resources:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=152

DRAWING THE PANEL 153

It may also appear under the NIB Files smart group (near the bottom

of the window) alongside MainMenu.nib. If it doesn’t and you want it to,

Control-click the smart group, pick menu item Get Info, and change

the smart group’s pattern from *.nib to *.*ib.

12.2 Drawing the Panel

In IB, change the window to look like this:

That will involve the following:

1. Changing the window’s class to NSPanel (in the inspector’s Window

Identity tab). An NSPanel adds a little behavior to an NSWindow,

none of which we’ll actually use.

2. Dragging an NSTable from the object library.

3. Dragging two NSButton templates from the library. The template

you want is labeled Square Button. Leave the buttons blank for

the moment.

4. Dragging in an NSTextField.

5. Giving the table five columns (with its Attributes inspector). The

current version of TranslatorPreferences has only four attributes. The

extra column will be used for a fifth, which will hold the location

of the Ruby source for a custom translator.

6. Naming each column. The easy way to do that is to double-click

the header cell to type in the name. You can also select the whole

column by clicking slowly two or more times below the “Text Cell”

text. That will highlight the whole column and open the inspector

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=153

DRAWING THE PANEL 154

on it. Then you can use the Attributes tab to set the title. (Take

care when selecting a column this way—it’s easy to get a cell or the

whole table instead. Then hilarity ensues when the attribute you

expect is missing or—worse—you set an attribute on the wrong UI

element.)

7. Using the panel’s Size inspector to move it somewhere not com-

pletely on top of the main window. (Leave a little overlap, though,

because that will help you see which window is on top.)

Images in Buttons

When buttons affect a view (by, for example, adding or removing table

rows), the Apple Human Interface Guidelines recommend gradient but-

tons instead of square buttons. I had you drag out a square button

because the gradient button template is harder to work with. You can

change the buttons to gradient buttons by selecting both of them and

then making the change in the Attributes inspector:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=154

HOOKING THE PANEL TO THE APP 155

Gradient buttons are intended to contain images rather than text. A

large number of images are predefined, including the ubiquitous + and

- signs. You select these images from the Attribute inspector’s Images

drop-down. The + image is named NSAddTemplate:

If the image in the button is off-center in any direction, check the Posi-

tion row in the Attributes inspector:

It controls the relative position of text (represented by the line) and

image (represented by the square). The second, image-only entry should

be selected.

The - image is named NSRemoveTemplate.

12.3 Hooking the Panel to the App

The panel needs to be connected into the main program. Specifically,

the Fenestra > Preferences menu item has to point at an action method

that loads and launches the new nib.

Where should that method live? A typical place is in the application

delegate. We used one of those in the status bar app, way back in Sec-

tion 2.1, A Program That Prints, on page 23, but we haven’t needed one

in Fenestra. You’ll have to create it (in MainMenu.nib, not Preferences.xib,

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=155

HOOKING THE PANEL TO THE APP 156

since the former contains Fenestra’s menu bar). The application dele-

gate will hook into the rest of the nib like this:

Create it by doing the following:

1. Drag an NSObject into the doc window.

2. Reclassify it as an AppDelegate object in the Identity inspector.

3. Give it a changePreferences action (also in the Identity inspector).

4. Connect the New Application1 > Preferences menu item to change-

Preferences. As with a real menu bar, you can look at submenus of

IB’s picture of it by clicking. Once at the Preferences menu item,

the easy way to connect it to the action is by Control-clicking it

and then dragging to the AppDelegate entry in the doc window.

When you release the mouse, you’ll be prompted for which action

to connect to.

5. Make the delegate outlet of the application point to the new

AppDelegate.

1. We’ll rename “New Application” to “Fenestra” in Chapter 22, Fit and Finish, on

page 287.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=156

HOOKING THE PANEL TO THE APP 157

Here was my first implementation of AppDelegate:

Download fenestra/binding-text-field/app/AppDelegate.rb

class AppDelegate < OSX::NSObject

include OSX

def changePreferences(sender)

puts "Will launch preference panel"

end

end

Amazingly enough, everything worked when I launched Fenestra and

pressed Command - , to activate the Preferences menu item. (I usually

mess up at least one step.)

Now we’ll create the contents of the method. It has to load the nib

file. One easy way to do that is to use NSWindowController, which has a

method just for that:

Download fenestra/binding-text-field/app/AppDelegate.rb

def changePreferences(sender)

wc = NSWindowController.alloc.initWithWindowNibName("Preferences")

wc.showWindow(self)

end

When I run that, it appears to work, but look closely:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-text-field/app/AppDelegate.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/binding-text-field/app/AppDelegate.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=157

THE NIB FILE’S OWNER 158

Although the preference panel is nicely on top of the main window, the

main window’s combo box’s text field is highlighted, and the Fenestrate

button is solidly blue, indicating that Return will press it. Apparently

the main window is still the key window (the one keypresses go to).

All windows have a method, makeKeyWindow, that does what we want,

and NSWindowControllers have an accessor, window, that lets us send

that message to our panel. So, this should work:

Download fenestra/binding-text-field/app/AppDelegate.rb

def changePreferences(sender)

wc = NSWindowController.alloc.initWithWindowNibName("Preferences")

wc.showWindow(self)

wc.window.makeKeyWindow

end

But it doesn’t:

2008-09-06 09:58:44.163 Fenestra[22153:10b] AppDelegate#changePreferen←֓

ces: NoMethodError: undefined method `makeKeyWindow' for nil:NilClass

... /binding-text-field/app/AppDelegate.rb:17:in `changePreferences'

What’s up?

12.4 The Nib File’s Owner

The reason is something I’ve carefully avoided explaining until now.

What’s the meaning of “File’s Owner” in the following?

The File’s Owner is the object that’s responsible for all the objects in

a nib file, usually the object that loaded it. It’s one of two gateways

nib objects have to the larger application. (The other is the singleton

NSApplication object.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-text-field/app/AppDelegate.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=158

IB’S FIRST RESPONDER PSEUDO-OBJECT 159

In this case, the File’s Owner is our NSWindowController. As it turns out,

although it loads the nib file and creates the NSPanel, it doesn’t connect

its window outlet to that window. (I suppose that’s because a nib file

could have many windows in it.) We have to make the connection in the

nib. That takes two steps:

1. All IB knows about the File’s Owner is that it’s some sort of NSOb-

ject. We have to tell IB it’s specifically an NSWindowController (using

the Identity inspector).

2. Now IB knows what kind of outlets the File’s Owner has, so you

can connect its window to the NSPanel.

That looks like this:

And Fenestra now works. (I won’t show it, because black-and-white

print obscures the change.)

12.5 IB’s First Responder Pseudo-Object

If you look carefully, you’ll notice that the table in the preference panel

has a thin blue ring around it, indicating that it’s the first responder—

the control that gets keyboard and mouse events. Change that to be

the text field, as you did for an earlier window in Section 5.4, The Initial

First Responder, on page 80.

That change gives me an excuse to explain the last unexplained entry

in the doc window: the one named “First Responder.”

As a user works with a window—for example, by tabbing through it—

the first responder will change. If an object wants to send a message to

the current first responder, it uses an outlet to the “pseudo-object” First

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=159

MEMORY LEAKS 160

Responder. You can see the list of messages a first responder should

reply to in the First Responder’s Connections tab. They include ones

like paste, selectAll, saveDocument, and record. You can add ones of your

own in the Identity tab.

12.6 Memory Leaks

Here, again, is changePreferences:

Download fenestra/binding-text-field/app/AppDelegate.rb

def changePreferences(sender)

puts "Will launch preference panel"

wc = NSWindowController.alloc.initWithWindowNibName("Preferences")

wc.showWindow(self)

wc.window.makeKeyWindow

end

end

It still has two problems, one silly and one serious:

• What happens if the user asks for the preference panel when it’s

already open? The code as is will create another NSWindowController

with another window in it. It seems likelier that the user would

rather the existing preference panel were raised to the top and

made the key window.

• The nib objects are almost completely self-contained. The only

“outside” object they can point at is the File’s Owner, the NSWin-

dowController. After our method returns, nothing points at the NS-

WindowController, so it and the nib objects are completely cut off

from all the rest of the objects in the app. When the Ruby garbage

collector runs, it will think they’re garbage and reclaim their space.

The resulting symptom is that the preference panel will suddenly

vanish.

This version of changePreferences solves both problems:

Download fenestra/binding-hash/app/AppDelegate.rb

def changePreferences(sender)

unless @wc

@wc = NSWindowController.alloc.initWithWindowNibName("Preferences")

end

@wc.showWindow(self)

@wc.window.makeKeyWindow

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-text-field/app/AppDelegate.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/binding-hash/app/AppDelegate.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=160

WHAT NOW? 161

Using an instance variable instead of a local means that AppDelegate

protects the NSWindowController and thus everything else in the nib file

from the garbage collector. (The NSWindowController isn’t garbage until

the AppDelegate becomes garbage, and the AppDelegate never does.)

The unless makes changePreferences reuse the NSWindowController if it

has already been created.

12.7 What Now?

Next we’ll populate UI controls with data using the absolute minimum

amount of code and the magic of Cocoa bindings. After that, we’ll do

the same but with the absolute maximum amount of code. That’ll move

you closer to understanding how bindings work.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=161

Chapter 13

Implementing a Preference Panel
with Cocoa Bindings

In this chapter, we’ll bring the preference panel to life. We’ll do almost

all of the work inside IB, though we’ll have to write a little code.

13.1 Binding a Simple Value

Consider this example:

value

an NSTextField

region

a Controller

capital

a Region

name = "Concord"

a City

Suppose you want any change to the City’s name to be reflected into the

NSTextField’s value, thereby changing the characters on the screen. That’s

a flow of data in one direction—from the app’s interior to its surface.

Suppose you also want more: if the user types something in the text

field and completes that edit with Return or Tab (thus changing the

value), you want the City’s name to change.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

BINDING A SIMPLE VALUE 163

In Cocoa, you’d say you want the NSTextField’s value property to be bound

to the City’s name. Let’s draw that by adding a double line that suggests

a pipeline through which values flow back and forth:

value

an NSTextField

region

a Controller

capital

a Region

name = "Concord"

a City

But that’s likely not enough for you. What if the City’s name stayed the

same, but the Controller is changed so that it points to a new region (and

thus a different City with a different name)? The result of such a change

looks like this:

value

an NSTextField

region

a Controller

capital

a Region

name = "Concord"

a City

capital

a Region

name = "Juneau"

a City

You’d still want the text field to change, in this case becoming “Juneau.”

That can be done by binding the NSTextField’s value to the Controller’s

“region.capital.name” keypath.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=163

BINDING A SIMPLE VALUE 164

How to draw that? A simple pipeline between objects will not work

because it doesn’t take account of objects along the keypath. Moreover,

a keypath isn’t a list of objects; it’s a description of how to get from one

object to another, which is a description that applies even if individual

objects are swapped out for others. So, I’ll draw a binding like this:

region.capital.name

value

an NSTextField

region

a Controller

capital

a Region

name = "Concord"

a City

capital

a Region

name = "Juneau"

a City

The two-headed arrow makes a connection between the bound property

and the object starting the keypath. Thereafter, what matters is the

keypath. Bindings work as if Cocoa traces along the keypath at each

“tick” of the app’s event loop.1 It starts at the pointed-at object (usually

a controller), follows the keypath from there, and records the identity of

each object along the way, building a trace record that might look like

this:

#<Region: id=0x1abf0b0>

#<City: id=0x1ac33c0>

#<NSCFString "Spfl": id=0x2ad834>

It then compares that trace to the one it made last time. If any of

the object identities have changed, the bound object (in this case, the

NSTextField) is informed. I’m going to defer explaining what happens then

until Chapter 27, The Underpinnings of Cocoa Bindings, on page 350.

Apple supplies ready-made objects that we can use in Fenestra. Once

you’ve used such objects, it’ll be easier to understand how to write

them.

1. The actual mechanism is much more clever, but understanding it requires knowing

a lot about how Objective-C is implemented.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=164

BINDING A SIMPLE VALUE 165

The NSUserDefaultsController

An easy way to start using bindings in Fenestra is to bind the preference

panel’s text field to a new key—call it name—in the user defaults. It

would seem that we could establish this binding:

value

an NSTextField ����NSUserDefaults����
But that doesn’t work because NSUserDefaults doesn’t implement the

methods that bindings require. (See Chapter 27, The Underpinnings of

Cocoa Bindings, on page 350.) To bind user defaults, you need to put

an adapter between the view and the NSUserDefaults:

value

 an NSTextField

name

NSUserDefaults

values

an NSUserDefaultsController

values.name

The view binds to the NSUserDefaultsController using the keypath “val-

ues.name.”

Let’s make the binding in IB. Continue working with your latest version

of Fenestra or, if you don’t have one, the one in fenestra/binding-text-

field. (If you use the latter, though, you’ll lose the fix explained in Sec-

tion 12.6, Memory Leaks, on page 160 unless you manually apply it.)

Select the text field at the bottom of the panel, and navigate to the

Bindings inspector (the fourth inspector tab).2 You’ll see the following

(plus more that I’ll ignore for now) after you expand the value disclosure

triangle:

2. You can select a control via its image in the preference panel or by expanding the

NSPanel’s entry in the doc window. On my machine, selecting a control via the doc window

leads to an incredibly annoying IB bug where the inspector forgets what object you’re

inspecting as soon as you change something about bindings.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=165

BINDING AN ARRAY OF HASHES 166

Notice that IB thinks the most likely object you want to bind to is an

NSUserDefaultsController. That’s perceptive of it. Click the Bind to check-

box. Notice that IB immediately creates an NSUserDefaultsController in the

doc window.

Because Apple assumes you will always want some sort of controller

object between the view and the data you want to bind, IB divides the

keypath into two parts: one for the controller’s property and the other

for the rest of the keypath. Once again, it makes a good guess for the

controller’s component of the keypath: values is what you want. Make

the Model Key Path “name.” IB supplies the period between “values”

and “name.”

Save the nib file, run Fenestra, and bring up the preference panel. You

should see an empty text field:

An NSUserDefaults object returns nil for a nonexistent key. It’s nice of the

text field not to choke on that.

Now enter some text in the text field, and press Return . Quit and

restart Fenestra. When you bring up the preference panel, you should

see this:

Presto! The value has changed. This example doesn’t show that the

binding is bidirectional; we’ll see that in Section 13.4, Transforming for

Real, on page 180.

Since the text field was just to demonstrate how easy a simple case is,

we’re done with it now. Delete it from the nib file.

13.2 Binding an Array of Hashes

Now we’ll start filling table columns.

I’ll avoid swamping you with too many facts at once by binding the

table to hashes instead of TranslatorPreference objects. The hashes will be

initialized in the already-existing init method, as shown in the marked

lines Ê and Ë on the next page.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=166

BINDING AN ARRAY OF HASHES 167

Download fenestra/binding-hash/app/preferences/Preferences.rb

def init

only = TranslatorPreference.alloc.initWithHash(

:display_name => "sample webapp com.exampler.counting",

:app_name => "com.exampler.counting",

:class_name => 'CountingApp',

:favorite => true,

:source => nil)
Ê hashprefs = [{ :display_name => only.display_name,

:app_name => only.app_name,

:favorite => false},

{ :display_name => "wevouchfor members",

:app_name => "org.wevouchfor.mem",

:favorite => true }

]

@defaults = NSUserDefaults.standardUserDefaults

@defaults.registerDefaults(:translators => collect_archived([only]),
Ë :hashprefs => hashprefs)

super_init

end

I’ve put only three columns’ worth of data in the hash. Before we worry

about the other columns, we’ll have switched to using TranslatorPrefer-

ence objects.

We can visualize the value of the key :hash_prefs as an array of key-value

objects. (See the first part of Figure 13.1, on the following page. In it,

array elements are stacked vertically.)

We’ll have to adapt that to fit NSTable’s way of organizing tables: by

column. It’s best not to think of a table as a two-dimensional array.

Since you can drag columns around, column indices aren’t guaranteed

to stay the same. Instead, each column has a name and an array of

values.3

So, our job is to transform the first part of Figure 13.1, on the next

page, into the second, creating (in essence) a hash of arrays out of an

array of hashes by taking a vertical slice out of the first structure and

dropping the resulting array into the second. That would be easy to do

in Ruby:

table[:display_name] = hashes.collect { | h | h[:display_name] }

3. Strictly, a column has two “names”: its title (which you already set) and an identifier

(which you can set if you like).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-hash/app/preferences/Preferences.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=167

BINDING AN ARRAY OF HASHES 168

display name

"Counting webapp"

app name

"com.exampler.counting"

favorite

false

display name

"wevouchfor members"

app name

"org.wevouchfor.mem"

favorite

true

"com.exampler.counting"

"org.wevouchfor.mem"

"Counting webapp"

"wevouchfor members"

display name app name

false

true

favorite

Figure 13.1: The transformation we need

Cocoa comes with a prepackaged controller that can do the same kind

of thing: NSArrayController. It can be plugged in between a control and

some data source that should be treated as one or more arrays. Here’s

the flow of data:

value

 an NSTableColumn

hash_prefs

NSUserDefaults

values

an NSUserDefaultsController

arrangedObjects
contentArray

an NSArrayController

!"

#

$

arrangedObjects.display_name

values.hash_prefs

%

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=168

BINDING AN ARRAY OF HASHES 169

1. If asked for its hash_prefs key, the NSUserDefaults object returns an

NSArray of NSDictionary objects (which RubyCocoa lets us treat like

an array of hashes).

2. The NSUserDefaultsController adapts NSUserDefaults to make the hash_

prefs value available via the NSUserDefaultsController’s “values.

hash_prefs” keypath.

3. NSArrayController’s contentArray can be bound to that keypath.

4. An NSArrayController doesn’t directly expose its content array. In-

stead, it exposes derivatives that are tuned for user interface oper-

ations. In our case, we’ll use arrangedObjects. That’s an array of the

same objects, but if the user has chosen to sort one of the table

columns (by clicking the column header), they’re in sort order.

Here’s a way to picture these two arrays:

arrangedObjects contentArray

{ :display_name => "...",

 ... }

{ :display_name => "...",

 ... }

{ :display_name => "...",

 ... }

The arrays refer to the same objects, just in a different order.

Because of contentArray’s binding, these objects are identical to

the contents of the preference file.

5. Now an NSTableColumn’s value property can be bound to the key-

path “arrangedObjects.display_name.” Because arrangedObjects is

an array, the remainder of the keypath is handled as if with collect.

That is, the result is equivalent to this:
arrangedObjects.collect { | hash | hash[:display_name] }

In effect, what we’ve done is create a pile of different aliases for the

same display_name:

• aTableColumn[0] will always be the same as. . .

• . . . anArrayController.arrangedObjects[0][:display_name], which will

always be the same as. . .

• . . . anArrayController.contentArray[2][:display_name], which will always

be the same as. . .

• . . . anNSUserDefaultsController.values[:hash_prefs][2][:display_name],

which will always be the same as. . .

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=169

BINDING AN ARRAY OF HASHES 170

• . . . anNSUserDefaults.objectForKey(:hash_prefs)[2][:display_name], which

will always be the same as. . .

• . . . what’s stored in the preference file.

Easier to Do Than to Describe

To create these bindings, do this in IB:

1. Drag an NSArrayController from the library into the doc window.

2. Make its Bindings tab in the inspector look like this:

In particular:

a) Select the “Bind to” checkbox.

b) Make sure it’s bound to the Shared User Defaults Controller.

c) Check that the controller key is values.

d) Set the model keypath to hashprefs.

e) Make sure Handles Content as Compound Value is selected,

or else the NSArrayController will not follow the path into the

hash. (I’ll explain in more detail in the sidebar on page 195.)

Check your work! I keep having to solve mysteries because I’m

careless. The downside of not having to write code is you have no

place to put debug statements (at least for now; see Section 13.4,

Snooper, on page 178).

3. Make the Display Name column’s binding look like this:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=170

BINDING AN ARRAY OF HASHES 171

The column should be bound to the NSArrayController with the full

keypath “arrangedObjects.display_name.”

4. Do the same for the App Name and Favorite columns.

Now save, build, and run. You should see this preference panel:

Notice that the Favorite column displays integers. That’s because it’s

bound to an array of Cocoa booleans—that is, to integers. We’ll deal

with that in the next section.

Make a change to one of the fields (except for Favorite), exit Fenestra,

restart it, go to the preference panel, and see whether the change was

saved. (Note: the change won’t appear in the main window’s combo

box because that uses :translators, not :hash_prefs. The two windows will

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=171

FORMATTERS 172

start using the same name in Section 13.4, Value Transformers, on

page 177.)

13.3 Formatters

Let’s use Cocoa formatters to clean up the Favorite column. A formatter

is used to convert an object into text for a cell, and vice versa. In our

case, we need to convert the Cocoa boolean values #<NSCFBoolean true>

and #<NSCFBoolean false> (that is, 1 and 0) into the strings "yes" and

"no". And we need to convert those strings back into booleans should

the user change them.

Converting a boolean into a string is straightforward:

Download fenestra/binding-formatter/app/preferences/formatters.rb

class BooleanCellFormatter < OSX::NSFormatter

def stringForObjectValue(o)

o == true.to_ns ? "yes" : "no"

end

end

Going in the other direction is a little more difficult. Before I show you

how, I have to make a little speech about memory.

Pointers to Pointers

As far as the chip inside your computer knows, there are no objects;

there’s just a huge array of memory divided into slots numbered from

zero to whatever:

0 9

Objects are just a consensual hallucination we have, one that the Ruby

and Objective-C runtimes support. Those runtimes translate our lan-

guage about “variables” and the “objects” they “name” (or “contain” or

“point to”) into this:

...object...var (8)

"an object starts there"

0 9

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-formatter/app/preferences/formatters.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=172

FORMATTERS 173

When we say “variable,” the Ruby runtime knows we really mean one

memory slot that contains the address (index) of another one. For exam-

ple, the variable at slot 5 contains the number 8, to be interpreted as an

address (rather than, say, a number to add). Because the actual values

(5, 8, and so on) are really irrelevant and people are good at following

arrows, we usually talk of pointers rather than addresses or indices.

Ruby further knows that the memory slots starting at the pointed-to

address follow a stylized layout that fits what humans mean when they

say the word object. For example, it knows which of the memory slots

in the object points to its class (yet another object).

In Ruby, that’s all there is: memory slots that point to objects. Because

of that, we can almost always ignore the difference between the address

of an object and the slots that comprise it. We can say “the object

returned by the find method” when we really mean that find returns

the address of an object.4

Objective-C, though, can take things further. A variable can point to

another variable:

...object...var (8)var (5)

"an object starts there""the address of an object is there"

0 9

Objective-C programmers use these when they want a method to return

multiple values. The method for converting a cell text into an object

needs to return three values: a boolean, a string, and some just-created

object. Because Objective-C doesn’t allow multiple return values, the

calling method has to pass two pointer-to-pointer arguments. Here’s

the setup for the last argument at the moment the method is called:

objptr

put address of new object there

0 9

4. The time you can’t ignore the difference is when several variables point to a single

object. If you say “The result is the string "foo",” you have to remember that the contents

of the string can still be changed via some other variable.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=173

FORMATTERS 174

The called method makes an object, which means asking the runtime

for a pointer to some previously unused space, and then stuffs that

pointer into the slot the pointer-to-pointer argument points at:

objectnewsomeobjptr

0 9

Now the calling method can follow the pointer-to-pointer to retrieve the

(pointer to the) object.

Ruby has no notion of pointers to pointers. So, RubyCocoa converts

such an argument into an ObjcPtr. To “return” an object through it,

you set one of its instance variables to the object. Then, as the method

returns into the Objective-C universe, RubyCocoa converts the ObjcPtr

back into a pointer-to-pointer.

What does that look like in code? Like this:

Download fenestra/binding-formatter/app/preferences/formatters.rb

def getObjectValue_forString_errorDescription(objptr, s, errdesc)

case s.to_ruby.downcase

when 'yes': objptr.assign(true)

when 'no': objptr.assign(false)

else return false

end

true

end

(The errdesc argument, unused here, can be used to pass back error

descriptions to callers who want them. Table cells don’t, so they pass

in nil. If they did, errdesc would be an ObjcPtr.)

How do you know when you need an ObjcPtrc? Cocoa’s API declaration

for our method shows the two indicators:

(BOOL) getObjectValue: (id *) anObject

forString: (NSString *) string

errorDescription: (NSString **) error

To explain them, let me start with (NSString *), which is used for the

string (second) argument. That’s the Objective-C declaration of what,

in Ruby, we’d call an NSString argument. Read the asterisk as “pointer

to”—Objective-C reveals the pointerness at the heart of the object world,

whereas Ruby hides it.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-formatter/app/preferences/formatters.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=174

FORMATTERS 175

If one asterisk means a pointer, then two asterisks mean a pointer to

a pointer. So, the (NSString **) declaration for error tells you to expect an

ObjcPtr that you’ll assign an NSString.

As far as a RubyCocoa programmer is concerned, the word id is short-

hand for NSObject *, so (id *) also means you need an ObjcPtr.

Underneath its declaration, the method’s description is likely to say a

variable “returns by reference” or “returns by indirection.”

Connecting the Formatter

IB comes with two predefined formatters, one for numbers and one for

dates. Connecting them to a text cell is easy: drag one of them in from

IB’s Library, and then connect the text field’s formatter outlet to it.

But IB doesn’t know about our formatter, which causes an annoyance.

When we create one in IB, we do it in the now-familiar way: drag an

NSObject from the Library and use the Identity inspector to change its

class. That’s fine, but IB then refuses to make a connection between a

text cell’s formatter and our object. Probably it’s being too smart for our

good: since it doesn’t know that the object is an NSFormatter, we must

be making a mistake.

Fortunately, we can work around IB’s smug assertion of superior

knowledge with our powers of hackishness. First, give BooleanCellFor-

matter a cell outlet, and connect that to the text cell, making an outlet

that flows backward.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=175

FORMATTERS 176

Like this:

Then have the formatter’s awakeFromNib use the initialized outlet to set

the text cell’s formatter:

Download fenestra/binding-formatter/app/preferences/formatters.rb

class BooleanCellFormatter < OSX::NSFormatter

ib_outlet :cell

def awakeFromNib

@cell.formatter = self

end

#...

end

That done, Fenestra will print Favorite values nicely. Try it and see.

Try This Yourself

If you try to set Favorite to some value other than “yes” or “no,” you’ll

get a pop-up forbidding it. It would be better if Fenestra prevented you

from typing anything but the two valid values. If you type a wrong

character, it should simply not echo. Use NSFormatter’s isPartialString-

Valid:newEditingString:errorDescription method to accomplish that. (Hint:

you don’t need to do anything with the last two arguments.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-formatter/app/preferences/formatters.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=176

VALUE TRANSFORMERS 177

You can find my solution, commented out, in fenestra/binding-formatter/

app/preferences/formatters.rb. Connecting them to a text cell is easy: drag

one of them in from IB’s Library, and then connect the text field’s for-

matter outlet to it:

13.4 Value Transformers

Now let’s use TransformerPreference objects instead of hashes. The prob-

lem here is that TransformerPreference objects are stored as NSData inside

the preferences file. Our earlier Preferences class handled archiving and

unarchiving them. Somehow, we have to make the binding controllers

do the same.

Fortunately, we can attach a value transformer to each binding. If we

attach a value transformer to our NSArrayController’s binding to NSUserDe-

faultsController, it will intervene in the flow of data between the two:

value

 an NSTableColumn

hash_prefs

NSUserDefaults

values

an NSUserDefaultsController

arrangedObjects
contentArray

an NSArrayController

arrangedObjects.display_name

values.hash_prefs

an NS alueTransformer

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=177

VALUE TRANSFORMERS 178

Snooper

To see transformation in action, let’s begin with a value transformer

that does nothing but print the values it receives. Do the following:

1. Disconnect the table columns from the array controller:

If you don’t, you’ll get confusing error messages when the table

tries to use keys that we haven’t set up yet.

2. Enter Snooper into the Value Transformer field of the array con-

troller’s binding. Also change the Model Key Path setting to trans-

lators instead of hashprefs:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=178

VALUE TRANSFORMERS 179

3. Implement Snooper. Because it’s a handy class for debugging, I put

it in app/util:

Download fenestra/binding-transformer/app/util/value-transformers.rb

class Snooper < OSX::NSValueTransformer

include OSX

Ê def transformedValue(value)

NSLog "Transforming: #{value.inspect}"

value

end

Ë def reverseTransformedValue(value)

NSLog "Reverse transforming: #{value.inspect}"

value

end

Ì def self.allowsReverseTransformation; true; end

end

Ê The transformedValue method normally converts values that

come from inside the program into something more palat-

able to classes closer to the user interface. Snooper just prints

them out and passes them along without conversion.

Ì If the user changes a value in the user interface, the reverse-

TransformedValue converts it into a format preferred by interior

classes.

Ì If there’s no way for the user to change a user interface value,

there’s no need for reverseTransformedValue. By default, a value

transformer is one-way. Defining this method to return true

signals that it’s two-way.

If you run Fenestra, you should now see output like this when you

bring up the preference panel:

Transforming: #<NSCFArray [#<OSX::NSCFData:0x20673c class='NSCFData' ←֓

id=0x8b8000>]>

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-transformer/app/util/value-transformers.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=179

VALUE TRANSFORMERS 180

Transforming for Real

We now have to transform that array of NSData into an array of Trans-

formerPreference objects. Since we already do that in Preferences, it’s easy

enough to do again:5

Download fenestra/binding-transformer/app/preferences/value-transformers.rb

class DataArrayTransformer < OSX::NSFormatter

...

def transformedValue(nsdata_array)

nsdata_array.collect do | datum |

NSKeyedUnarchiver.unarchiveObjectWithData(datum)

end

end

def reverseTransformedValue(pref_array)

pref_array.collect do | pref |

NSKeyedArchiver.archivedDataWithRootObject(pref)

end

end

end

After creating this code, make it the value transformer for the array

controller. This time, connect all the columns.

Run the code, and you should see something like the following (depend-

ing on what you have in the preferences file):

5. We’ll clean up the duplication later.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-transformer/app/preferences/value-transformers.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=180

VALUE TRANSFORMERS 181

Change the favorite, exit the program, and restart it. Did the change

stick? (Note that we don’t have any code yet that restricts you to one

favorite.)

Change the display name of an entry. Without exiting the preference

panel, drop down the main window’s combo box list: does your new

name appear?

Make sure you can see the preference panel and then fenestrate a new

app by typing text into the combo box and clicking the Fenestrate but-

ton. What happens? Is that not cool?

Try This Yourself

Edit BooleanCellFormatter to log the value that’s formatted:

Download fenestra/binding-transformer/app/preferences/formatters.rb

def stringForObjectValue(o)

NSLog "Favorite is #{o.inspect}."

o == true.to_ns ? "yes" : "no"

end

Bring up the preference panel. Notice anything odd?

I noticed that the first value logged doesn’t seem to come from the pref-

erences file but rather from the nib. . . or something:

Favorite is #<NSCFString "Text Cell">.

Favorite is #<NSCFBoolean false>.

I can’t account for that. I changed stringForObject to return the NSCFString

value when it’s given (instead of "yes" or "no"). It never appears in the

table.

So, all along this particular formatter has been spuriously but harm-

lessly returning "yes" the first time it’s called. A different formatter might

choke if given a string when it expects something else. You have been

warned.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-transformer/app/preferences/formatters.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=181

ADDING AND DELETING TABLE ROWS 182

13.5 Adding and Deleting Table Rows

Array controllers are built already knowing how to add and delete table

rows, so it’s easy to make the buttons work. First, bind the – button to

the array controller’s remove action:

Do the same with the add action.

By default, add creates the new datum like this:

NSDictionary.alloc.init

You need to tell it to do this:

TranslatorPreference.alloc.init

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=182

ADDING AND DELETING TABLE ROWS 183

You do that by changing the class name of the controlled object in the

Attributes inspector:

We also need to give TranslatorPreference an init method. Otherwise, the

newly created TranslatorPreference’s instance variables will all be nil. The

combo box will blow up when it tries to use a nil display_name as an

entry in its pop-up list. Here’s such an init method:

Download fenestra/binding-transformer/app/preferences/TranslatorPreference.rb

def init

initWithHash(:display_name => 'Display name',

:app_name => 'App Name',

:class_name => 'ToString',

:favorite => 'false',

:source => nil)

end

The result of clicking the add button still isn’t ideal, though:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-transformer/app/preferences/TranslatorPreference.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=183

WHAT NOW? 184

The new line should be highlighted, the cursor should be in the first

columm of the new row, and that cell should be selected for editing.

We’ll fix those things in Chapter 16, Selections and Editing, on page 202.

13.6 What Now?

I’m one of those creaky old-timers who’s suspicious of graphical tools

that aim to replace code. I’m suspicious for two reasons: cases where I

couldn’t get the tool to do what I wanted and cases where I suffered

because I didn’t understand what was really happening behind the

scenes.

In writing this book, I found both things were true—in a mild way—

of Interface Builder. I had to write a lot of test code to figure out how

bindings really work. That turned out not to be too much of a problem—

with one exception, you don’t need to know more than you know now to

finish Fenestra—so I’ve pushed the gory details into the reference chap-

ters (at Chapter 27, The Underpinnings of Cocoa Bindings, on page 350).

Read them at your leisure.

But not being able to do something I needed proved to be a bigger prob-

lem. For selfish reasons that I’ll explain later, I wanted to replace bind-

ings programmatically. That means making them programmatically—

and that means explaining how to do that to you. That’s what the next

chapter does.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=184

Chapter 14

Setting Up Bindings with Code
In the previous chapter, you declared what bindings you wanted by

editing the nib file. The nib-loading process did the work of binding

objects together. In this chapter, you’ll learn how to make bindings with

Ruby code.

Fenestra’s current organization is shown in Figure 14.1, on the next

page. We’ll replace the numbered NSArrayController with our own object.

That’ll be a subclass of NSArrayController that both creates and binds to

the NSDefaultsController below it. But first...

14.1 Oh No! Terminology!

If you browse around the Web, you’ll see that a lot of people find Cocoa

bindings hard to understand. I certainly did. The question is, why? I’ve

decided the root cause is statements like the following, from Apple’s

Cocoa Bindings Programming Topics [App08f]:

A binding is an attribute of one object that may be bound

to a property in another such that a change in either one is

reflected in the other.1

This statement, although technically true, misleads. It makes it easy to

assume the following:

• That the binding mechanism is bidirectional. It’s not. Each of the

controls we bound in the previous chapter was specially coded to

make its bindings appear bidirectional, but in fact the two objects

1. Property is the Objective-C word for what Ruby usually calls an attribute—think

attr_reader. As you’ll see later, when the Cocoa documentation refers to attribute, it doesn’t

necessarily mean a property that’s accessible via getters and setters.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

OH NO! TERMINOLOGY! 186

value

a ableColumn

values

an NSUserDefaultsController

defaults

a Preferences

arrangedObjects.favorite

values.translators

target

an NSButton

arrangedObjects
contentArray

an NSArrayController

translators

an NSUserDefaults

preferences

an AppChoiceController

!

Figure 14.1: The starting structure and the first change

in a binding are not symmetrical. (For example, although you can

bind a button’s value to a translator’s display name, you can’t do

the reverse.)

• That the “attribute” mentioned in the quote is the same kind of

thing as the “property”—basically, some sort of instance variable

whose value gets changed. It’s not. It’s better to think of it as an

arbitrary name used by binding-support code.

What I have decided is that explaining bindings requires two things.

It requires an example that gradually moves from surface behavior

down into the supporting technology. And it requires terminology that

emphasizes how the two sides of a binding are different, not how they’re

similar.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=186

OH NO! TERMINOLOGY! 187

The rest of this section gives the terminology I’ll use. I wish I wasn’t

diverging from Apple’s terminology, but I am.

In IB, you create a binding within a particular object’s Bindings inspec-

tor. That object is the bound object. The specific “thing” that’s bound is

the bound name (or sometimes, if it hasn’t been bound yet, the binding

name). In the following picture, the bound object is an NSTextField, and

the bound name is “value.”

capital

a Region

region

a Controller

region.capital.name

value

an NSTextField

A bound object and a bound name

name = "Juneau"

a City

The bound object’s bound name is bound to a rooted keypath. That’s

the combination of the object on the other end of the binding and the

keypath Cocoa follows looking for changes to a property. If I need to

talk about the object itself, I’ll call it the root, and the keypath alone

will just be keypath. In the next picture, the root is the Controller, and

the keypath is “region.capital.name.”

capital

a Region

regionvalue

an NSTextField

region.capital.name

A rooted keypath

The root

The keypath

name = "Juneau"

a City

Each element of the keypath corresponds to an observed property key.

I’ll sometimes shorten the phrase to observed key or use observable

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=187

OH NO! TERMINOLOGY! 188

property key if the binding hasn’t been made yet.2 The word key should

remind you of a hash or NSDictionary. That’s good, since the technologies

of binding try to make NSDictionary objects and objects with instance

variables look alike from the outside. To reinforce the similarity, I’ll say

that each observed key is associated with an observed property value,

or just observed value. In the following picture, the observed keys are

“region,” “capital,” and “name,” and the observed values are a Region, a

City, and the string "Juneau".

region

 a Controller

value

an NSTextField

region.capital.name

Observable

keys

and

values
capital

a Region

name = "Juneau"

a City

The end of the rooted keypath is special. The value there is the one

that’s used to update the bound object. In the previous picture, the

NSTextField will be updated if the City changes its name. It will also be

updated if any observed key anywhere earlier in the keypath is given a

new value. That is, if the Region changes its capital, its capital’s name

is used to update the text field—even though that name didn’t itself

change.

2. The reason to use “observed” instead of “bound” is, first, to help avoid confusion

between the two ends of a binding and, second, because the underlying technology is

called key-value observing. See Section 27.3, Declaring Observed Properties, on page 352,

and Section 27.4, Observing Changes, on page 353.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=188

USING ROOTED KEYPATHS IN CODE 189

14.2 Using Rooted Keypaths in Code

In regular Ruby code, you traverse structures like the ones in the pre-

vious section using boxcar notation:3

controller.region.capital.name

Objects that can be part of a rooted keypath can be traversed with a

different notation:

controller.valueForKeyPath('region.capital.name')

As you might guess, valueForKeyPath is part of the implementation of

bindings; that connection is explained in Chapter 27, The Underpin-

nings of Cocoa Bindings, on page 350. I mention it here because I’ll be

using it throughout the next part of the book, Fun with Tables.

One nice feature of this notation is the way arrays are handled. Suppose

we had an object country whose regions property was an array of Region

objects. We could then get an array of all the capital names like this:

country.valueForKeyPath('regions.capital.name')

In effect, using an array in a keypath implicitly does a Ruby collect. This

mechanism is the reason a table column can be bound to a keypath like

“arrangedObjects.display_name” and can use the result to fill its cells.

14.3 Subclassing NSArrayController

We will begin by replacing the NSArrayController shown in Figure 14.1,

on page 186, with a subclass, PreferencesController, that does exactly

the same thing. That seems trivially easy, but I’ve found that changing

bindings is like brain surgery: one little slip can lead to extremely odd

behavior. So, we’ll break the task down into even smaller steps, and I’ll

point out binding pitfalls along the way.

Replacing the NSArrayController

First, we replace NSArrayController but leave everything else unchanged.

To do that, follow these steps. (You can examine my results in fenestra/

binding-by-hand-1.)

3. So called because the property names are connected with periods the way boxcars in

a train are connected with couplers.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=189

SUBCLASSING NSARRAYCONTROLLER 190

1. Create this class:4

Download fenestra/binding-by-hand-1/app/preferences/PreferencesController.rb

class PreferencesController < OSX::NSArrayController

end

2. In Interface Builder, create a PreferencesController in Preferences.xib

by dragging an NSArrayController from the library and changing its

class in the Identity inspector to PreferencesController. Do not drag

in an NSObject (as we’ve always done before), because the Bindings

inspector won’t believe the new object has any of NSArrayController’s

binding names.

3. Still using IB, make the PreferencesController’s Content Array bind-

ing look like NSArrayController’s. That is:

a) Bind it to the “values.translators” keypath in NSSharedUserDe-

faultsController. When doing so, I’ve sometimes gotten assertion

failures from IB. They invited me to crash the app or ignore

the failure. I’ve always ignored them, without harm.

b) Make the data transformer DataArrayTransformer.

c) Be sure to select Handles Content as Compound Value. If you

don’t, the table columns will display correctly, but changes

you make to them won’t be saved. That’s an easy problem to

miss until long after you’ve forgotten about creating the Pref-

erencesController, making it unduly hard to track down. (See

the sidebar on page 195 for the details.)

4. Change the Value bindings in all the table columns to use the

PreferencesController as the root object (instead of the NSArrayCon-

troller). I emphasize “all” because when I first made these changes,

I changed only the first column, Display Name. (Why change the

rest until I saw whether that one worked?)

4. I put the new class in the preferences folder even though it would make just as much

sense to put it in controllers. That suggests I’ve organized my files wrongly. Story of my life.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-by-hand-1/app/preferences/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=190

SUBCLASSING NSARRAYCONTROLLER 191

This was the result:

What’s with the bogus parentheses in the first column? When I

used the arrow keys on my keyboard to move around in one of

those cells, I discovered Cocoa’s printed representation of an NSAr-

ray. For some reason, each cell in the column gets the data for the

whole column, not just the array element appropriate to its row

number.

Binding all the columns to refer to the same controller fixes that.

It took me rather a long time to figure that out, and it was not a

happy time.

5. Run Fenestra to see whether it works. Try changing a display

name in the preference panel and see whether it’s reflected in the

main window’s combo box list. See whether fenestrating a new

app reflects into the preference panel. See whether changes are

retained after you quit Fenestra.

Hooking Up Preference Panel Buttons

The two buttons on the preference panel still point at the NSArrayCon-

troller. So:

1. Add remove and add actions to the Identity tab of the Preferences-

Controller.

2. Use the Attributes inspector to change the PreferencesController’s

Class Name attribute from NSMutableDictionary to TranslatorPrefer-

ence. (The Class Name field can be found under the Object Con-

troller disclosure triangle.) If you leave the class as is, some of

your translators will end up as NSDictionary objects, which will blow

up the DataArrayTransformer the next time you start Fenestra.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=191

BIND_TOOBJECT_WITHKEYPATH_OPTIONS 192

3. Connect each button to the appropriate action. It’ll probably be

easiest to Control -click the button and drag the connection to

the action.

4. Delete the NSArrayController from Preferences.xib.

5. Run Fenestra to check your work.

14.4 bind_toObject_withKeyPath_options

We’ll begin to make our subclass diverge from NSArrayController by hav-

ing it programmatically create and bind to the NSUserDefaultsController,

rather than having that work done in the nib file. The app’s structure

when running will still look like Figure 14.1, on page 186.

Here’s that code:

Download fenestra/binding-by-hand-2/app/preferences/PreferencesController.rb

class PreferencesController < OSX::NSArrayController

include OSX

Ê def initWithCoder(decoder)

super_initWithCoder(decoder)
Ë self.objectClass = TranslatorPreference
Ì @defaults_controller = NSUserDefaultsController.sharedUserDefaultsController
Í @transformer = DataArrayTransformer.alloc.init

Î self.objc_send(:bind, 'contentArray',

:toObject, @defaults_controller,

:withKeyPath, 'values.translators',
Ï :options, {

NSHandlesContentAsCompoundValueBindingOption => true,

NSValueTransformerBindingOption => @transformer

})

self

end

Ð def init

NSLog "I should never be called."

raise "Init should not be called in an NSArrayController subclass."

end

end

Ê In Preferences, there’s code that needs to run before the awake-

FromNib method is called. I created an init method for it. (See Sec-

tion 11.3, Implementing the Adapter, on page 141.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-by-hand-2/app/preferences/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=192

BIND_TOOBJECT_WITHKEYPATH_OPTIONS 193

Here, I’m defining initWithCoder instead. That’s the same method

used to unarchive TranslatorPreferences from the preference file. (See

Section 11.2, Archiving, on page 134.) Why use it?

Consider an NSComboBox in IB’s library. Although we (and Apple’s

documentation) refer to it as an object, it’s actually a template for

an object—once you create the object by dragging the template out

of the library, you can customize it by setting any of a whole pile of

attributes. Now, in object-oriented programming languages, that’s

part of the role of classes: they act as templates for their instances.

And, indeed, IB library “objects” are really classes. Dragging one

actually creates an object (with alloc and init). Selecting inspector

checkboxes, typing into inspector text fields, and so on—all those

acts call setter methods on the inspected object.5 When a nib file

is saved, all the objects with attributes are archived. When the nib

file is loaded, they are unarchived by calling initWithCoder.

Since an NSArrayController is an object with attributes, it’s archived

and unarchived. The same must be true of our PreferencesCon-

troller, since it has all the same attributes as its superclass.

In fact, our earlier use of init was the exception, not the rule.

Because Preferences directly inherits from NSObject, it has no at-

tributes to set with IB, so it doesn’t need to be archived; therefore,

it can be created without unarchiving, so init is called instead of

initWithCoder.

To reassure you that all of this is true, I’ve created an init (at Ð)

that will blow up if it’s called.

Ë Setting an NSArrayController’s objectClass overrides what IB calls

the Class Name attribute. To confirm that, use IB’s Attributes

inspector to change the PreferencesController’s Class Name back to

NSMutableDictionary. If setting objectClass didn’t override the IB set-

ting, Fenestra would blow up as described in the second step in

Section 14.3, Hooking Up Preference Panel Buttons, on page 191.

5. Outlet and action connections are the exception: they’re described separately from

the objects they apply to—which makes sense, since they’re properties of pairs of objects,

not of individual objects.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=193

BIND_TOOBJECT_WITHKEYPATH_OPTIONS 194

Ì and Í

We need both an NSUserDefaultsController and a data transformer.

Creating them is simple. Notice that there’s usually only one NS-

UserDefaultsController per app. Even though you may use one in

every nib file, they’re all the same object.

Î Here, at last, is the method that binds. To make it easier to refer

to, I’ll repeat it here:

Download fenestra/binding-by-hand-2/app/preferences/PreferencesController.rb

self.objc_send(:bind, 'contentArray',

:toObject, @defaults_controller,

:withKeyPath, 'values.translators',

:options, {

NSHandlesContentAsCompoundValueBindingOption => true,

NSValueTransformerBindingOption => @transformer

})

This method call uses an alternative RubyCocoa calling conven-

tion. The objc_send method combines its odd-numbered argu-

ments into an Objective-C method name. It then invokes that

method, handing it the even-numbered arguments. I think this

convention makes calls to methods with many arguments easier

to understand.

The method call itself is unexciting. I hope that it’s easy for you to

see how each argument corresponds to something in the Bindings

inspector for an object. In our terminology, the bound object is

the PreferencesController itself, the bound name is “contentArray,”

the rooted keypath is rooted at the NSUserDefaultsController object

and extends along the “values.translators” keypath.

Don’t look in the API documentation for a class to find its bind-

ing names. For example, the documentation for NSArrayController

nowhere mentions “contentArray.” The best place to find the infor-

mation is the Cocoa Bindings Reference [App08g]. That describes

what a binding to a particular name does and which options apply

to it. If you just want to know what binding names an object has,

you can look at its Bindings inspector in IB and do a mechanical

name conversion. (What the inspector calls “Content Array” is, in

the code, "contentArray".)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/binding-by-hand-2/app/preferences/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=194

BIND_TOOBJECT_WITHKEYPATH_OPTIONS 195

Handling Content as a Compound Value

What does setting a binding’s NSHandlesContentAsCom-

poundValueBindingOption actually do? Here’s a situation
like that in Fenestra, but it’s a bit simpler to explain:

• There are three objects in question: a text field, a
TranslatorPreference, and a Controller between them.

• We want the text field to update whenever the
TranslatorPreference’s display_name property changes.
That’s accomplished by binding the text field to the
controller with the keypath “value.display_name,”
where value is the name of the controller’s property
and display_name is one of the properties on Transla-

torPreference.

• There’s a wrinkle, though: the TranslatorPreference

spends most of its time as an NSData. When code
changes its display_name, what actually happens is
(1) the NSData is unarchived, (2) the display_name is
changed, (3) the TranslatorPreference is rearchived,
and (4) the new NSData is set as the Controller’s value.

• This is a situation somewhat like that on page 187 in
that an intermediate key (“value”) is given a new
object as its value (the new NSData), but we want
that signaled as a change to the entire keypath.

• In order to do that, the Controller has to do some
work. It has to (1) itself observe the change to value,
(2) unarchive the NSData (using the NSValueTransformer

given when the binding was made), and then (3)
forward on the change notice to any observers of
a keypath it roots—just as if no value transformation
were involved.

Confusing? A pragmatic way to think about it is this: if
you’re binding a controller to something and you give
a value transformer as a binding option, you have to
set NSHandlesContentAsCompoundValueBindingOption too. If
you don’t, the value transformer will be ignored.

continued

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=195

WHAT NOW? 196

Handling Content as a Compound Value (continued)

However. . . a view will use its value transformer no matter
what—NSHandlesContentAsCompoundValueBindingOption is
meaningless for views. The lesson? Binding consists of a
general-purpose mechanism that’s had a lot of assump-
tions about its use layered onto it. Those assumptions
are mainly expressed in predefined options that Apple’s
NSView and NSController classes understand. For the gory
details, see Apple’s Cocoa Bindings Programming Topics
[App08f].

Alternately, you can ask irb:

irb(main):001:0> puts NSButton.alloc.init.exposedBindings.to_ruby

target

argument

toolTip

image

...

Ï Everything else that you can change in IB’s bindings inspector is

passed in an options hash. Here, we do the equivalent of selecting

the Handles Content as Compound Value checkbox and typing

a class name into the inspector’s “Value Transformer” text field

(except that we provide an already-created instance instead of a

class name).

Now you should have a working PreferencesController. Delete the NSUser-

DefaultsController from the nib file, and test Fenestra.

14.5 What Now?

Most of the preference panel works, but the way it works annoys me.

The next part of the book improves the visual behavior of adding and

removing rows. Since the final column refers to a Ruby source file, it

should be filled using a file chooser dialog box rather than by typing.

And since drag and drop has been a feature of the Mac since the very

beginning, we’ll make it so you can drag and drop a file from the Finder.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=196

Part V

Fun with Tables

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Chapter 15

Prologue: Folders and Tests
I discovered an interesting problem when writing the following chap-

ters. Some of them call for more involved changes to Fenestra than

you’ve made so far. But describing those changes unambiguously was

really hard. I’d write up a checklist for you, set it aside for long enough

to forget the details, and then walk through it again—only to find myself

making all kinds of frustrating mistakes. I needed a better way to

explain to you what was needed.

Enter tests. After explaining some background and giving the rough

shape of a solution, I can point to a set of tests, say “Make those tests

pass,” and be fairly sure you can move smoothly toward working code.

You needn’t write the tests, just the code that passes them. The code

files contain versions with tests that don’t yet pass.

The tests will require you to learn about some tools, particularly Shoulda

and my own idiosyncratic glue code on top of FlexMock. I’ll explain what

you need to know as we go.

15.1 Disk Layout

Before we start writing tests, you need to be able to find your way

around. As a rule, I put my tests in a folder structure that mirrors

that of the source’s folder structure. Fenestra’s layout is shown in Fig-

ure 15.1, on the following page.

The first thing to notice is that I have once again (!) rearranged the app’s

folder structure. (Annoyed by that? See the sidebar on page 200.) As I

was writing tests for the existing code, the old structure kept grating on

me. (Tests often increase the annoyance factor of bad decisions. That’s

one of their virtues.) So, I changed my folder layout to put controllers

Prepared exclusively for Alison Tyler

Download at Boykma.Com

DISK LAYOUT 199

prefs-
window

preferences

main-
window

translators

util

app

prefs-
window

preferences

main-
window

translators

util

test

testutil

Figure 15.1: A test layout

and other classes specific to one window in a folder named after that

window (main-window and prefs-window). Classes or files that live fur-

ther away from the GUI go elsewhere. If they clump together (all share

some responsibility), they go in folders named after that responsibility

(preferences and translators). Files that have no better home go into util.

They may stay there or, if clumps begin to show up, migrate into other

folders.

Moving around files like this would be intolerable if I had to fix up require

statements each time. However, the top-level rb_main.rb and app/load-

subdirs.rb load all the files, so there’s no fiddling with requires.

Many people would separate the controller classes from window-specific

classes further from the GUI. The former might go in a controller folder

and the latter in a folder often called model. I won’t bother with that (at

least, not yet).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=199

DISK LAYOUT 200

Fiddling with Structure

When my editor saw that I was once again changing my file
system structure, he—being considerate of you, the reader—
wrote, “If you are reorging the folder layout, should you back-
port this structure into previous chapters?” I won’t lie to you.
My initial reaction was “Rearrange multiple versions of Fenes-
tra? Without tests? Work. . . risk. . . must procrastinate.”

While procrastinating, I found myself tinkering with the tests in
Chapter 19, Picking Files with Open Panels, on page 243. I was
renaming, consolidating, making new modules, splitting source
into files. . . and I had a crisis of confidence: shouldn’t I be finish-
ing the book? So, I appealed to my tweeps.∗ I wrote: “I’d like to
watch really expert programmers and see how much time they
spend ‘fiddling,’ moving things around, perfecting structure.”

Three better programmers than I wrote back. Corey Haines
(coreyhaines) immediately replied, “I would wager that it is
a tremendous amount of time,” which made me feel better.
Brian Button (brianbuttonxp) wrote, “The amount of time spent
futzing with the organization or structure of the software is
directly proportional to the experience level of that devel-
oper,” which made me feel positively good. Michael Feathers
(mfeathers) wrote, “It might be as eye-opening as [the movie]
The Mystery of Picasso. Stunning how often he would paint over
and radically change,” and then Michael quoted a reviewer of
the movie as saying “A viewer would be forgiven if, more than
once, he felt like screaming at such nonchalant carnage,”
which convinced me that I wasn’t being lazy at all—that
I’m leaving changes in to impart to you a useful software
development lesson.

I urge you to believe that.

∗. People who use Twitter, http://www.twitter.com. My Twitter name is marick.

Notice also that the test folder has both util and testutil folders.util contains

tests for the app’s utilities in app/util. testutil contains utilities used by

tests, not tests for any app code.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.twitter.com
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=200

DISK LAYOUT 201

Running Tests

In the top-level test folder, Rake runs all the tests:

$ cd test

$ rake

(in .../fenestra/tdd-4/test)

Started

..

Finished in 2.433668 seconds.

Each dot corresponds to a passing test.

In subfolders, Rake runs only the tests in the current folder:

$ cd main-window

$ rake

(in .../tdd-4/test/main-window)

Started

...........................

Finished in 2.346468 seconds.

While working on a particular test in a subfolder, I’ll usually use Rake,

since running all the tests takes barely any time longer than running

one. But I’ll sometimes run just one file:

$ ruby app-choice-controller-tests.rb

Loaded suite app-choice-controller-tests

Started

.........

Finished in 0.20482 seconds.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=201

Chapter 16

Selections and Editing
In this section, I’ll improve the way Fenestra changes the selection in

the table as you add and delete rows. (You normally select a row by

clicking anywhere inside it.) I’ll also add code that makes editing new

entries more convenient.

16.1 An Example of Creating Tests: The Add Method

When you create a new row in the table, it looks like this:

That’s lame. The instant after I add a new row, I want to be editing it.

That is, I want to see this:

Prepared exclusively for Alison Tyler

Download at Boykma.Com

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 203

I can describe the same behavior in words, not pictures:

$ shoulddoc prefs-add-tests.rb

context "adding a row"

should "grow the table"

should "put the new row in the last position"

should "add a translator preference with default values"

should "NOT mark the new preference as the favorite"
Ê should "edit initial cell of the new row"

...
Ë should "edit first cell in row even if columns have been rearranged"

...

The advantage of words is that they can easily be attached to exe-

cutable code—tests—that check whether the app actually implements

the desired behavior. Each of the previous should statements is a single

test.1

The tests before Ê describe normal NSArrayController behavior. Fenes-

tra shouldn’t need any special code to make them pass. I still like to

write such tests, both because they help me check whether I really

understand the normal behavior and because they prod me into writing

the test-support code they require. That way, writing test support code

won’t get in the way when I’m trying to implement product changes.

The test behind Ê checks the selection-and-editing behavior described

in the two pictures that started the chapter. While I was writing that

test, I noticed an ambiguity in my thinking. Did I want the first cell

in the row selected for editing? Or the Display Name cell? Since Cocoa

tables allow the user to rearrange columns, there could be a difference.

I decided that I wanted the first cell selected. The reason? When you

edit a cell and hit Tab , you begin editing the next cell. Starting in the

first cell lets me effortlessly tab through the whole row. The test at Ë

checks whether that decision has been implemented.

One of the benefits of tests is that they help flush out ambiguities that

are easy to overlook while coding.

The Structure of a Test File

We’ll be working with tests in the file fenestra/table-two-buttons-start/test/

prefs-window/prefs-add-tests.rb. When you work along with this chapter,

1. shoulddoc is a command I wrote that picks out a test’s internal documentation. It’s in

sandbox/bin. You can also spell it shouldoc.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=203

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 204

Download fenestra/table-two-buttons-start/test/prefs-window/sample-tests.rb

Ê class StructureSampleTest < Test::Unit::TestCase

Ë def setup

...

end

def teardown

...

end

Ì context "adding a row" do
Í setup do

...

end

Î teardown do

...

end

Ï should "grow the table" do

...

end

should "put the new row in the last position" do

...

end

end

context "removing a row" do

...

end

end

fenestra/table-two-buttons-start/test/prefs-window/sample-tests.rb

Figure 16.1: The structure of a test file

start from the source in fenestra/table-two-buttons-start. You don’t need to

write the tests themselves, just the code that passes them.

This test file has a typical structure, shown in Figure 16.1.

Ê A test class inherits from Test::Unit::TestCase, which comes bundled

with Ruby. Test classes usually contain many tests. They run

automagically when you run the file containing them.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/sample-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=204

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 205

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "grow the table" do

ARRANGE

old_table_length = row_count(@table)

ACT

@add_button.performClick('ignored sender')

ASSERT

assert { old_table_length + 1 == row_count(@sut) }

assert { old_table_length + 1 == row_count(@table) }

end

fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

Figure 16.2: Arrange, act, assert

Ë The setup method runs before each test, and the teardown method

runs after it. Most often, it creates objects and instance variables

used in all the tests.

Ì “Context” is one of those pleasantly vague words you use when you

can’t think of the right one or when you’re looking for an umbrella

term for a bunch of mostly unrelated ideas. In this case, the con-

text serves to group several tests together. Usually the context is a

noun phrase that can be used in a sentence starting “The context

should. . . .” All the tests are about that noun phrase.

In cold practical terms, what a context does is allow you to intro-

duce setup and teardown code that applies to a subset of your tests,

as shown at Í and Î. Notice that those are nested method calls

(rather than method definitions, as at Ë).

Ï Here, at last, is a test. Its description comes as the argument to

should, and its implementation is in the should’s block.2

The Structure of a Test

My tests usually follow what Bill Wake calls “the three As”: arrange, act,

assert. You can see an example in Figure 16.2.

2. The context and should methods come from Shoulda

(http://thoughtbot.com/projects/shoulda/), which is not part of Ruby’s standard distri-

bution. I’ve preinstalled it and another test tool in sandbox.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://thoughtbot.com/projects/shoulda/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=205

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 206

First the test implementation does test-specific setup, then it makes

the code-under-test do something, and finally it evaluates claims about

what happened. When writing tests, I usually create those steps in the

reverse order:

1. I decide what this test is about: what new behavior do I want the

code to have? I write that behavior down as truth statements—

assertions—that evaluate true when the behavior is correct.

2. Then I decide how a client of the code provokes the new behavior.

Perhaps I decide there should be a new method or that an old

method should respond differently to certain values passed in.

I write down an example of a client acting to provoke the new

behavior.

3. Finally, I write any code that needs to run before the action. Most

often, that code creates objects referred to in the assert or act

code.

The Body of a Test

In this section, I’ll explain what’s inside the should block in Figure 16.2,

on the previous page. I’ll explain it in the order I wrote it (assert, act,

arrange).

Assert

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "grow the table" do

...

assert { old_table_length + 1 == row_count(@sut) }

assert { old_table_length + 1 == row_count(@table) }

end

The PreferencesController is supposed to add a TranslatorPreference in re-

sponse to the clicking of a particular button. In particular, it should do

the following:

• Update its internal storage (arrangedObjects) to have one more row

than before.

• Do something (I don’t particularly care what) that causes the table

to have one more row than before.

There’s more to adding a row than that, but that’s all this test checks.

Such specificity is a bit silly when you’re testing existing behavior.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=206

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 207

$ ruby prefs-add-tests.rb

* DEFERRED: adding a row should edit initial cell of the new row.

* DEFERRED: adding a row should edit first cell in row even if ←֓

columns have been rearranged.

Loaded suite prefs-add-tests

Started

..F.

Finished in 0.501686 seconds.

1) Failure:

test: adding a row should grow the table. (PrefsControllerActionTest)

[.../assert2-0.3.2/lib/assert2.rb:221:in `_flunk_2_0'

.../assert2-0.3.2/lib/assert2.rb:75:in `assert_'

.../assert2-0.3.2/lib/assert2.rb:54:in `assert'

prefs-add-tests.rb:75:in `__bind_1228515269_448656'

.../Shoulda-1.1.1/lib/Shoulda.rb:189:in `call'

.../Shoulda-1.1.1/lib/Shoulda.rb:189:in `test: adding a row should ←֓

grow the table. ']:

assert{ (old_table_length + 2) == row_count(@table) } --> false

old_table_length --> 5

(old_table_length + 2) --> 7

@table --> #<...>

row_count(@table) --> 6.

Figure 16.3: A verbosely failing test

When you’re creating new behavior, though, it’s valuable. By writing

narrow tests, you can make them pass one at a time. That gives you

constant feedback that you’re heading down a reasonable path, and it

makes debugging trivial—if you expected the test to pass and it still

fails, something you just did must be wrong.

To write assertions, I use Phlip’s Assert{2.0}.3 If either of the assert

blocks evaluates false, the test fails.

Let’s look at a failure. Change one of the 1s in the assertion to a 2. You

should see something like Figure 16.3.

Ignore the messages about deferred tests for now. The stack dump con-

tains a number of methods I don’t care about, so I’ve written a com-

mand tst (also in the sandbox) that filters them out.

3. http://assert2.rubyforge.org/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://assert2.rubyforge.org/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=207

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 208

$ tst prefs-add-tests.rb

...

1) Failure:

test: adding a row should grow the table. (PrefsControllerActionTest)

prefs-add-tests.rb:75:in `__bind_1228515595_378452'

assert{ (old_table_length + 2) == row_count(@table) } --> false

old_table_length --> 5

(old_table_length + 2) --> 7

@table --> #<...>

row_count(@table) --> 6.

Notice how kind assert is. Not only does it alert us to the failure, but it

shows how each subexpression evaluated.4 If you’re running the test in

Terminal or iTerm (as opposed to within an editor window), the output is

even color-coded.

The only line of the stack dump gives the line number of the failing

assert. If your editor is kind, it will give you an easy way to jump to the

failing statement.5

Let’s return to the assert part of the test:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "grow the table" do

...

assert { old_table_length + 1 == row_count(@sut) }

assert { old_table_length + 1 == row_count(@table) }

end

Notice there are two instance variables: @table and @sut. My convention

is that a class I’m testing is represented by an instance named @sut.

That’s tester jargon that means “system under test.” I could have named

it something like @preferences_controller, but @sut makes its distinct role

more obvious.

Throughout the test, the @sut is surrounded by other objects: there’s

an NSTableView, two NSButton objects, an NSUserDefaultsController, and so

on. The setup method creates them, connects them together, and gives

them names like @table and @add_button. All the different tests for the

4. It does this by reevaluating each subexpression. If any of them have side effects such

as setting instance variables, those side effects will be run more times than if the test

succeeded. That could be confusing—“Why is @counter equal to 2 instead of 1?”—but it’s

pretty odd to want assertions to have side effects.
5. If you use Emacs, look in sandbox/elisp/ruby-visit-source.el for some Elisp code that adds

that feature.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=208

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 209

PreferencesController use the same names. (You’ll see more about setup

methods in Section 16.4, Building Setup Methods, on page 227.)

Finally, notice the method row_count. A rule of thumb I use for tests is

that they should use roughly the words you’d use if you were describing

some code behavior to a knowledgeable person over the phone. If you’d

skip a detail on the phone, hide it behind a helper method.

Using a helper method also lets you hide inconvenient facts. It happens

that you get one count of rows with code like this:

@sut.arrangedObjects.count

. . . and the other with code like this:

@table.numberOfRows

. . . but I really don’t want every last test rubbing those details in my

face. So, I use this instead:

Download fenestra/table-two-buttons-start/test/prefs-window/testutil/table-support.rb

def row_count(thing)

if thing.is_a? NSArrayController

thing.arrangedObjects.count

else

thing.numberOfRows

end

end

That’s it for the assert step, which is all about desired results. Now let’s

make the @sut produce them.

act

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "grow the table" do

...

@add_button.performClick('ignored sender')

assert { old_table_length + 1 == row_count(@sut) }

assert { old_table_length + 1 == row_count(@table) }

end

We are testing the behavior of PreferencesController’s add method (the

action connected to the @add_button). I could call that method directly:

@sut.add('ignored sender')

Instead, I’ve chosen to call add indirectly, through the NSButton’s per-

formClick method. Many people would point out that I’m testing two

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/testutil/table-support.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=209

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 210

things—whether the button is hooked up correctly and what add does—

and that when the test fails, I won’t know which I got wrong. They’re

absolutely right. However, I’ve noticed that a lot of my RubyCocoa flail-

ing around is because of my misunderstanding of how some Cocoa

control really works. Because of that, I use real controls in my tests

whenever I can, in the hopes of stumbling over misunderstandings as

early as possible.

Arrange

What has my test used that isn’t set up yet? Since the setup creates the

instance variables, there’s only one variable left over: old_table_length.

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "grow the table" do

old_table_length = row_count(@table)

@add_button.performClick('ignored sender')

assert { old_table_length + 1 == row_count(@sut) }

assert { old_table_length + 1 == row_count(@table) }

end

What Do Programmer Tests Test?

Consider this code:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "add a defaulted translator preference" do

@add_button.performClick('ignored sender')

names = @sut.valueForKeyPath('arrangedObjects.display_name')
Ê assert { names.last == DEFAULT_TRANSLATOR_DISPLAY_NAME }

end

The assertion at Ê checks the value of only one TranslatorPreference field.

Why not the others?

As J. B. Rainsberger has said, “You stop testing when fear turns into

boredom.” The purpose of testing is to produce justified confidence that

the code does as you intended. Given what I know, checking one col-

umn suffices.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=210

AN EXAMPLE OF CREATING TESTS: THE ADD METHOD 211

Notice also that the assertion at Ê checks the actual value against a

symbolic constant. That constant is defined within Fenestra, here:

Download fenestra/table-two-buttons-start/app/util/Constants.rb

DEFAULT_TRANSLATOR_DISPLAY_NAME='Display name'

DEFAULT_TRANSLATOR_APP_NAME='App Name'

DEFAULT_TRANSLATOR_CLASS_NAME='ToString'

The test is not checking that the default value is spelled correctly, capi-

talized appropriately, or otherwise sensible. The best way to check that

is to click the Add button and look at a new row. Better yet would be

to have someone else do the looking and then tell me whether what she

sees helps her understand what to do next.

A Downside of Using Controls

This test checks whether the row is put in the right place:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "put the new row in the last position" do
Ê old_names = @sut.valueForKeyPath('arrangedObjects.display_name')

@add_button.performClick('ignored sender')

new_names = @sut.valueForKeyPath('arrangedObjects.display_name')
Ë assert { old_names == new_names[0...-1] }

end

(See Section 14.2, Using Rooted Keypaths in Code, on page 189 if you

don’t understand how line Ê works.)

Notice that the assertion at Ë checks the contents of only the @sut, not

the @table. Why not? After all, the test in Figure 16.2, on page 205,

checked both.

I couldn’t check the table because there’s no NSTableView method that

lets me ask the table about what it thinks it should display. Real con-

trols are often annoying that way because testing used to be some-

thing programmers didn’t do, so they didn’t need to query controls, so

framework builders spent their time on other things, things program-

mers wanted. As more programmers start using tests, that’s starting to

change.

I have confidence, though, that I don’t need the check—after all, I know

from the test in Figure 16.2, on page 205, that the table adds a new

row, and it seems hard to believe that it could be at a different index

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/app/util/Constants.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=211

WORKING WITH AN UNCOOPERATIVE CONTROL 212

than its equivalent in arrangedObjects. Also, I always try a new feature

after I add it, and it’s hard to believe I’d miss such an obvious problem.

You’ll see a case where I made a different decision in Section 16.2,

Working with an Uncooperative Control.

One More Wafer-Thin Fact

assert fails the test if the block’s value isn’t true. deny, shown next, fails

the test unless the value isn’t true.6

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "NOT mark the new preference as the favorite" do

@add_button.performClick('ignored sender')

Ê deny { @sut.arrangedObjects.last.favorite }

end

16.2 Working with an Uncooperative Control

There are two kinds of tests inside prefs-add-tests.rb: ones introduced

with should and ones introduced with should_eventually. At this point,

the ones using should test plain old NSArrayController behavior. Here’s

what happens when you run them:

$ cd fenestra/table-two-buttons-start/test/prefs-window

$ tst prefs-add-tests.rb

* DEFERRED: adding a row should edit initial cell of the new row.

* DEFERRED: adding a row should select all text in edited cell.

* DEFERRED: adding a row should edit first cell in row even if ←֓

columns have been rearranged.

* DEFERRED: adding a row should select the rest of the row so that ←֓

tabbing out of first cell moves to the second.

Loaded suite prefs-add-tests

Started

....

Finished in 0.546346 seconds.

4 tests, 0 assertions, 0 failures, 0 errors

6. In Section 16.1, What Do Programmer Tests Test?, on page 210, I said I need to check

only one field of the new row to get confidence it’d been filled with the default values.

Why, then, have I gone out of my way to check the value of the favorite field in this test?

I had an internal design debate about whether adding a new row should make it the

favorite. I decided against it, and the test documents that decision.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=212

WORKING WITH AN UNCOOPERATIVE CONTROL 213

Yawn. PreferencesController does what we already knew it did. The inter-

esting tests—tests for the behavior it should add to NSArrayController—

don’t run.

So, now it’s time to work on the new behavior. Let’s make the first

deferred test pass. Here, with some hand waving, is how the assert part

of it should look:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should "edit initial cell of the new row" do

...

assert { ... first cell of last row is edited ... }

end

How can we know what table cell, if any, is being edited? As far as I

know, we can’t. NSTable doesn’t let you ask that question. I guess we

have to give up.

Just kidding! If we can’t check that the correct behavior is caused,

we can at least check that the behavior is caused correctly: does the

PreferencesController send the right message or messages to its NSTable?

If you look at the NSTable API documentation, you’ll find that the edit-

Column_row_withEvent_select is the message to send. How can we tell

whether it’s sent correctly? Like this:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should_eventually "edit initial cell of the new row" do

new_row_index = row_count(@table)

during {

@add_button.performClick('ignored sender')

}.behold! {

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(0, new_row_index, any, any)

}

end

You can think of this code as replacing—for the duration of the test—

the @table’s editColumn_row_withEvent_select method with a new version

that records how it’s called.7 If performClick or the methods it uses never

call editColumn_row_withEvent_select—or if it’s called twice—the test will

fail. It will also fail if the column index is anything other than 0 or the

row index is anything other than the location of the newly added row.

7. In reality, the method is replaced on a newly created subclass of NSTableView. Other-

wise, Objective-C would have a temper tantrum. You’ll see how “programmable” objects

like @table are created in Section 20.5, Warm-up: Pathname Methods, on page 269.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=213

WORKING WITH AN UNCOOPERATIVE CONTROL 214

The test, however, doesn’t care about the other two method arguments;

they can be anything.

But that’s not a full description of how editColumn_row_withEvent_select

should be called. The last argument passed to it is a boolean that

determines whether the existing text in the cell is selected. Selecting

it sounds good—that way, a single keypress erases “Display Name.” I

could make our current test care about that by changing the second any

to true. That, however, leaves an important decision somewhat obscure,

so I’ll highlight it in another test:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should_eventually "select all text in edited cell" do

during {

@add_button.performClick('ignored sender')

}.behold! {

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(any, any, any, true)

}

end

About Debugging

Moving back to the first deferred test, I want to make it pass. That

seems easy enough:

Download fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb

def add(sender)

super_add(sender)

@table.objc_send(:editColumn, 0,

:row, arrangedObjects.size-1,

:withEvent, nil,

:select, true)

end

Or maybe not:8

1) Failure:

test: adding a row should edit initial cell of the new row.

.../app/prefs-window/PreferencesController.rb:53:in `add'

prefs-add-tests.rb:134:in `performClick'

prefs-add-tests.rb:134:in `__bind_1228936193_588633'

prefs-add-tests.rb:133:in `__bind_1228936193_588633'

in mock 'table': ←֓

no matching handler found for editColumn_row_withEvent_select(0, 4, nil, 0)

8. If you want to run the test along with me, you’ll have to convert should_eventually to a

should.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=214

WORKING WITH AN UNCOOPERATIVE CONTROL 215

I wrote an expectation that the new row index would be 5 (the index of

the last row in the updated table), but it’s actually 4. The expectation is

not met. How could that be? I added some debugging text:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should_eventually "edit initial cell of the new row" do

new_row_index = row_count(@table)
Ê puts "expected row index = #{new_row_index}"

during {

@add_button.performClick('ignored sender')
Ë puts "table count: #{row_count(@table)}"
Ì puts "sut count: #{row_count(@sut)}"

}.behold! {

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(0, new_row_index, any, any)

}

end

That showed this:

..expected row index = 5

table count: 6

sut count: 6

The row counts have the right values after the controller’s add method

is called but somehow don’t during the call. Can that be true? A simple

puts in add will show us:

Download fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb

def add(sender)

super_add(sender)
Ê puts "after super_add #{arrangedObjects.size}"

@table.objc_send(:editColumn, 0,

:row, arrangedObjects.size-1,

:withEvent, nil,

:select, true)

end

And. . . ?

.expected row index = 5

after super_add 5

table count: 6

sut count: 6

The superclass’s add is doing something funny. It’s time to look in the

documentation!

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=215

WORKING WITH AN UNCOOPERATIVE CONTROL 216

We don’t have a run loop in the test, but there’s apparently something

equivalent going on. A little poking in the API documentation shows a

better method:

Download fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb

def add(sender)
Ê addObject(TranslatorPreference.alloc.init)

@table.objc_send(:editColumn, 0,

:row, arrangedObjects.size-1,

:withEvent, nil,

:select, true)

end

That passes the current test.

My Point, and I Do Have One

Like all debugging, this debugging-via-tests is painful, but doing the

same debugging by starting Fenestra after each change would be more

painful.

More Debugging

When I added editColumn_row_withEvent_select to PreferencesController, I

had to pick some value for the fourth argument even though the test

made no demands on it. True to my wildly proactive nature, I picked

true: exactly what the next test expected.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=216

WORKING WITH AN UNCOOPERATIVE CONTROL 217

So, that test ought to pass easily:

1) Failure:

test: adding a row should select all text in edited cell.

prefs-add-tests.rb:26:in `teardown']:

in mock 'table': method 'editColumn_row_withEvent_select←֓

(ANY, ANY, ANY, true)' called incorrect number of times.

<1> expected but was

<0>.

Hmm. I see two possibilities:

• editColumn_row_withEvent_select is never called at all.

• It’s called, but its fourth argument is wrong. (It can’t be one of the

first three, since any value is OK.)

To decide between the two, I’ll print the fourth argument:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

A version with debugging info printed.

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(any, any, any,
Ê on { | arg |

puts "select text: #{arg.inspect}"

arg == true

})

The on construct takes the value given in its position and passes that

value to its block. If the block’s return value is true (that is, not nil or

false), the argument value matches what was expected. But the block

can do whatever it wants before returning a value—like print debugging

information.

Here’s the result:

% tst prefs-add-tests.rb

...

Started

.....edit column val: 1

Ah. The true variable sent down into the Cocoa universe as the last

argument somehow loses its “booleanness” and comes out as an inte-

ger. So, the test has to be changed to replace this:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(any, any, any, true)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=217

WORKING WITH AN UNCOOPERATIVE CONTROL 218

with this:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(any, any, any, 1)

Trying the Code

Time to try out the app! Start Fenestra, open the preference pane, click

the Add button, and you should see this:

Success! But now change the display name and hit Tab . Oops:

Tabbing goes to a different row, the first one. Why? Here’s a clue:

continuing to tab moves you from column to column in the first row.

Another clue is that the first row is highlighted in the “after” picture,

but the second line isn’t in ”before.“ Perhaps selecting (as with a single-

click) the newly added row would help?

Indeed, it should, because the API documentation for editColumn_row_

withEvent_select says this:

We don’t get the promised exception, but we do get bad behavior. Before

fixing the problem, I’d like to write a test that talks explicitly about

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=218

WORKING WITH AN UNCOOPERATIVE CONTROL 219

what behavior results from a Tab after adding a row. That is, I want

a test that has the word tab in it. Alas, Cocoa gives me no program-

matic access to tabbing (as far as I know), so I instead have to write a

test about selections and assume that a selected row implies the right

tabbing behavior.

Here’s the test:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

should_eventually "select the rest of the row so that tabbing out " +

"of the first cell moves to the second" do

@add_button.performClick('ignored sender')

assert { selection_indexes(@sut) == [row_count(@sut) - 1] }

assert { selection_indexes(@table) == [row_count(@table) - 1] }

end

And here’s the code that passes it:

Download fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb

def add(sender)

addObject(TranslatorPreference.alloc.init)

selection = NSIndexSet.indexSetWithIndex(arrangedObjects.size-1)

@table.objc_send(:selectRowIndexes, selection,

:byExtendingSelection, false)

@table.objc_send(:editColumn, 0,

:row, arrangedObjects.size-1,

:withEvent, nil,

:select, true)

end

Are you going to believe that passing the test means tabbing works? I

hope not. I hope you try it.

My Point, and I Do Have One (Two, Actually)

• Tests make development of a UI change less of a hassle because

you do less running of the app, but they do not replace running

the app. Always check a feature after you think you’ve finished it.

• But do more than merely glance admiringly at your finished work.

If I’d just looked at the result of pressing the Add button, I might

not have noticed or cared that the row wasn’t selected. It was only

by emulating what a real user would do that I stumbled across a

problem a real user would find.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=219

TRY THIS YOURSELF 220

16.3 Try This Yourself

With what you know, you can make two more improvements to the

preference panel.

Make Row Removal More Convenient

Removing a row has always been peculiar. Working with earlier versions

of Fenestra, I noticed that removing a selected row would always leave

the first row selected. That was never the next row I wanted to delete.

In this version, it’s gotten even stranger. In the following picture, I’m

about to delete the selected row:

In the next one, I have this:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=220

TRY THIS YOURSELF 221

What’s with all the selected rows? Seeing them makes me realize two

things:

• It sure would be nice to have some mechanism. . . some script, or

group of scripts, that could run frequently. . . to tell me when app

behavior has changed.

• I need to think through how I want row deletion to behave and

write code that adds that behavior.

Tests are my preferred tool for both goals. And here they are:

context "removing a row"

should "remove the currently selected row from the table"

should "remove the currently selected row from the preferences"

should "do nothing if no row is selected"

should "remove multiple preferences if multiple rows selected"

should_eventually "select the next row, if there is one"

should_eventually "even select the next row if given a selected range"

should_eventually "even select next row if given a disjoint set"

should_eventually "select the last table row, if there is no next row"

should_eventually "even select the last row if given a contiguous range"

should_eventually "even select the last row in a disjoint range"

should_eventually "select nothing if the table is now empty"

The undeferred tests check normal NSArrayController behavior, and they

all pass now. Your job is to make the rest of them pass.

You can find my solution in fenestra/table-two-button-end/app/prefs-

window/PreferencesController.rb.

Hints

• Like add, NSArrayController’s remove method doesn’t change the

arrangedObjects array until the next iteration of the run loop. You

can actually take advantage of that to write inscrutable code that

looks like it shouldn’t work but does. Let your conscience be your

guide.

• NSArrayController has no fewer than seven methods whose names

begin with remove. Learn from my mistake: if the one you’ve picked

isn’t working, don’t beat your head against the wall for too long

before trying another one.

• If you want to see what rows are in arrangedObjects, you may find

this:
puts valueForKeyPath('arrangedObjects.display_name')

. . . less annoyingly verbose than this:
puts arrangedObjects

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=221

TRY THIS YOURSELF 222

• NSIndexSet objects can be converted to Ruby arrays with to_a, so

you can easily use both Array and NSIndexSet methods in your

solution.

• Don’t forget to use Fenestra before considering yourself done.

Interdependent Favorite Values

Here, again, is a preference pane:

Observe with horror the result of changing a favorite:

Making a new favorite should unmark the old favorite. Your task is to

fix the problem by changing PreferencesController to make these tests

pass:

$ shouldoc prefs-consistency-tests.rb

context "choosing a favorite"

should_eventually "cause any old favorite to cease being favorite"

should_eventually "propagate change into the defaults controller"

should_eventually "not be fooled by two identical rows"

context "making the favorite not favorite"

should "cause all preferences to be not-favorite"

context "resetting a non-favorite to non-favorite"

should "leave the favorite alone"

context "a change to any other keypath"

should "do nothing"

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=222

TRY THIS YOURSELF 223

I emphasize changing PreferencesController because that is really the

wrong place to do the work. The rule that there can be only one favorite

is a business rule, a rule about the domain in which we’re working.

It should be enforced further from the user interface—below the con-

trollers in what’s often called either the business logic or the model.

However, doing that wouldn’t teach you as much about Cocoa.

Implementation Background

To date, our PreferencesController code hasn’t had to concern itself with

what happens when a user finishes editing a cell. Somehow, mysteri-

ously, its superclass has been accepting edits, changing the arrange-

dObjects array, and managing to update the NSUserDefaultsController too.

Now we have to—somehow—participate in that process by making an

edit of one cell update another. A bit of the mystery has to be revealed.

When editing is finished, an entry in the arrangedObjects array is up-

dated. In a test, that would look like this:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb

@sut.arrangedObjects[index].favorite = value

But that causes a cascade of events, all of which are handled by code

inside the NSArrayController superclass. First, a change to one of the

arrangedObjects is the same thing as a change to the content array:

CHANGED

arrangedObjects contentArray

{ :display_name => "...",

 ... }

{ :display_name => "...",

 ... }

CHANGED

CHANGED

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=223

TRY THIS YOURSELF 224

But the content array is bound to the user defaults, via an NSUserDe-

faultsController:

translators

NSUserDefaults

values

an NSUserDefaultsController

arrangedObjects
contentArray

an NSArrayController
values.translators

That means it’s the job of the NSArrayController to somehow notice the

changed content array and update the value at the end of the keypath

“values.translators”:

translators

NSUserDefaults

values

an NSUserDefaultsController

arrangedObjects
contentArray

an NSArrayController
values.translators

CHANGED

CHANGED

The “somehow” of “somehow notice” is because of the infrastructure of

bindings, which you can learn about in Chapter 27, The Underpinnings

of Cocoa Bindings, on page 350. The operational definition of “notice” is

that a particular NSArrayController method is called. If you were to call it

in a test, the call would look like this:9

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb

@sut.objc_send(:observeValueForKeyPath, 'favorite',

:ofObject, @sut.arrangedObjects[index],

:change, nil,

:context, nil)

9. In the real app, the final two arguments aren’t nil, but you won’t need them for this

chapter. I’ll leave their explanation to Section 27.4, Observing Changes, on page 353.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=224

TRY THIS YOURSELF 225

That method call is the place where you can intervene to make a fin-

ished edit do more than affect one cell. To improve Fenestra, you’ll

override observeValueForKeyPath_ofObject_change_context to add a little

behavior.

The Tests

A typical test proceeds something like this:

1. Each test begins with four TranslatorPreferences, the first one being

the favorite:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb

prefs = [{ :display_name => 'original bff', :favorite => true },

{ :display_name => 'new bff', :favorite => false },

{ :display_name => 'identical', :favorite => false },

{ :display_name => 'identical', :favorite => false }

]

make_fake_defaults_controller(*prefs)

2. The act part of the test marks one of the TranslatorPreferences as

either the favorite or not favorite, referring to it by index:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb

assert { favorites(@sut) == [true, false, false, false] }

make_this_the_favorite(1) #^

(I use assertions before the action as a bit of documentation of the

starting arrangement. That makes the tests easier to read.)

3. Finally, the test asserts something about the “favoriteness” of each

TranslatorPreference:

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb

assert { favorites(@sut) == [false, true, false, false] }

You can find my solution in fenestra/table-two-button-end/app/prefs-

window/PreferencesController.rb.

Before running Fenestra again, delete your existing user defaults:

% rm ~/Library/Preferences/com.apple.rubycocoa.FenestraApp.plist

You should do that because I’ve changed the format of the TranslatorPref-

erence to include a permanent identity. That’s explained in the following

hints.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-consistency-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=225

TRY THIS YOURSELF 226

Hints

• Do not forget to call the superclass method in your overriding

method.

• Changing one TranslatorPreference’s favorite to true may mean chang-

ing another one’s to false. The following will not, by itself, do what

you want:

arrangedObjects[old_favorite].favorite = false

You’ll find that the NSArrayController doesn’t “notice” this change, so

it doesn’t send it down the rooted keypath to the user defaults. The

changes it will notice are the addition or removal of entire Transla-

torPreferences. See removeObjectAtArrangedObjectIndex and similar

methods.

• Checking whether two arrangedObjects elements are the “same” is

tricky:

– Equality (==) is defined for TranslatorPreferences, but two rows

in the table can easily have the same contents. So if you

search for objects using equality, you might find the wrong

one. There’s a test to protect against that mistake.

– Object identity (object_id) isn’t stable. If you add any object to

the arrangedObjects, all of them are reloaded—which changes

their object_ids. The same happens if you delete any element.

So if you set a variable to a preference, update the array, and

then use that variable in a search, you’ll get bad results. There

is no test to prevent this bug.10

I’ve added a globally unique identifier to TranslatorPreference. You

can tell whether two objects “mean the same thing”—at one point

started out as a single object—like this:

Download fenestra/table-two-buttons-end/app/prefs-window/PreferencesController.rb

next if pref.was_originally_identically?(new_favorite)

• Try your solution out when the tests pass. You will probably notice

that tabbing out of the Favorite column doesn’t work right. I tried

to make it work, but it turns out to be surprisingly difficult. That

10. I couldn’t see a way to write one that didn’t make you pay more attention to the ins

and outs of testing than I expect you want to at this point.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-end/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=226

BUILDING SETUP METHODS 227

made it even clearer that I should be solving the problem in a

different object—in the business logic instead of GUI logic—so giv-

ing up was an easy decision. I suggest you give up too or solve it

outside of PreferencesController.

Extra Credit

Table columns are sortable, but none of the tests or code takes account

of that. As a result, there are at least two bugs associated with adding

and removing. Find and fix them.

16.4 Building Setup Methods

If we’ve both been lucky, the test code was clear enough that you never

had to care what the setup methods did. Nevertheless, you may be

curious about them. (Skip this section if you’re not.)

The way I create setup methods is a straightforward microcosm of a lot

of on-the-fly design:

1. I write some code in the arrange part of a test.

2. Working on a later test, I find I need the same code. I promote it

to the closest enclosing setup method.

3. As the setup code gets more complicated, I break it down into

smaller methods with better names. Those methods migrate into

utility files when they’re used in more than one test file.

4. As I keep reusing the methods, I keep changing their names and

trying to fit them into some sort of mental structure that makes

them easier to remember.

5. Eventually, the “setup framework” stabilizes into something I can

use comfortably.

In the Fenestra tests, the setup framework’s naming is inspired by the

question parents ask of spoiled children: “Do you think the whole uni-

verse revolves around you?” In the case of the system under test, the

answer is yes: the whole universe—of the tests—does revolve around it.

So, the tests for the Add button are set up as shown in Figure 16.4, on

the following page.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=227

BUILDING SETUP METHODS 228

Download fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

def setup

super
Ê prefs = [{ :display_name => 'originally at 0' },

{ :display_name => 'originally at 1'},

{ :display_name => 'originally at 2' },

{ :display_name => 'originally at 3' },

{ :display_name => 'originally at 4' }]

make_fake_defaults_controller(*prefs)

Ë @sut = @preferences_controller = PreferencesController.alloc.init
Ì the_universe_revolves_around(@sut)
Í connect_objects_in_universe
Î awaken_all_objects

end

def teardown
Ï disconnect_objects_in_universe
Ð super

end

fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb

Figure 16.4: An idiom for setup and teardown

Ê Most objects are used the same way in every test, so they’re not

mentioned specially. These particular tests check how the Prefer-

encesController interacts with Cocoa defaults. Since using the real

defaults system is fragile (what if I run two tests simultaneously?),

I make a fake defaults object at Ê.

Ë I always initialize the @sut explicitly, even though it could be done

in a helper method, to reinforce what class these tests are about.

Ì, Í, Î I separate the next three steps so that it’s clearer that setup

mimics loading a nib file. At Ì, all the objects are created. (In a

real nib, that’s done mainly by calls to initWithCoder.) Then, at Í,

outlets are connected. Finally, at Î, each object’s awakeFromNib

method is called. In real life, objects would be ready to receive

method calls from the run loop; in tests, the methods are called

from test code.

My setup code is a bit unusual because instance variables are set

behind the scenes. I rely on naming conventions and habit to know

their names.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/bmrc/code/fenestra/table-two-buttons-start/test/prefs-window/prefs-add-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=228

WHAT NOW? 229

The teardown code cleans up after the test.

Ï Outlet connections don’t require explicit disconnection, but notifi-

cations do. If a set of tests uses notification observers (these do

not), failure to disconnect in teardown means objects from old

tests will receive notifications sent by new ones, which can be

damnably confusing.

Ð It happens that the Test::Unit::TestCase class’s normal teardown

method does nothing, yet it’s nevertheless vitally important you

call it. The reason is that the FlexMock code behind should_receive

methods (like the one you saw in Section 16.2, Working with an

Uncooperative Control, on page 212) installs its own teardown

method in Test::Unit::TestCase. That version of teardown contains the

code that actually checks whether all the messages that should

have been received have been. If you leave off the super call, that

code will never run, and the test will appear to pass. And that

would be bad. It’s a good habit to run a new test and watch it fail

before adding the code to make it pass. Nevertheless, you may be

curious about them.

16.5 What Now?

That was somewhat involved. Let’s cleanse our palate by picking a task

that can be done almost entirely in Interface Builder: adding radio but-

tons to the table.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=229

Chapter 17

Buttons in Tables
Users don’t want to type “yes” or “no” into the Favorite column. It acts

like a group of radio buttons would: everything in one of two states,

and only one at a time in the “on” state. And we had to do extra work

to provide this inconvenience: we had to write code to make sure they

type the right words. Feh. What we want is this:

A tower of radio buttons requires just one substitution in Interface

Builder. But first, I’ll give you a smidge of background.

17.1 Cells

In the book so far, controls (subclasses of NSControl) have taken credit

for displaying values and responding to events. Behind the scenes,

though, something else has been doing the real work. (A disjunction

between work and credit. . . I wonder where I’ve seen that before.) The

worker is a cell, an object that inherits from NSCell. The advantage of

Prepared exclusively for Alison Tyler

Download at Boykma.Com

MAKING THE CHANGE 231

the separation is that it makes it easy for a control (a table column, say)

to be paired with different classes of cell objects depending on whether

you want to display text or colors or images or. . . buttons.

The NSTableColumn for the Favorite field works with a single NSTextField-

Cell to display and edit text that represents boolean values. Let’s use an

NSButtonCell instead.

17.2 Making the Change

You can change the code in the version of Fenestra you finished in the

previous chapter, or you can use the one in fenestra/table-two-buttons-

end. To see how I made the change, look at fenestra/table-radio-buttons.

• Interface Builder’s library contains only one kind of NSButtonCell:

one meant to be used in checkboxes. You’ll fix that shortly; for

now, just drag it onto the table column and drop it:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=231

MAKING THE CHANGE 232

• Use the Attributes inspector to change the cell’s style to Radio:

At this point, my version of Interface Builder tries to help me by

squeezing all the table columns to their minimum widths. I hope

yours is less helpful. If not, drag the edges of the header cells to

make the columns wider.

• In the same inspector, clear the Check value since it doesn’t make

sense for any label to be repeated in each column cell.

• Remove the BooleanCellFormatter from the doc window, since it’s no

longer needed.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=232

WHAT NOW? 233

• Fenestra should work fine now. You might want to tidy up by

removing app/prefs-window/formatters.rb, which has the now-

abandoned BooleanCellFormatter.

That’s all there is to it.

17.3 What Now?

Table columns are a bit unusual in that we needed specific code to

implement the one-button-at-a-time-is-on rule. More commonly, a set

of radio buttons is wrapped inside an NSMatrix that implements the rule.

See Apple’s Button Programming Topics for Cocoa [App08e]. I change

Fenestra to use an NSMatrix in Section 22.3, Using NSMatrix to Organize

Buttons, on page 289.

The Source column should contain names of Ruby files to load. We

want to be able to change a cell value in three ways:

• Double-click it to open the usual file chooser panel.

• Drag a file from, say, the Finder, and drop it on the cell.

• Type in it, just like any other cell. To make that pleasant, though,

we’ll need to add a cell formatter. That’s the topic of the next

chapter.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=233

Chapter 18

A Formatter with Two Wrinkles
The Source column in the preference panel will contain full pathnames

of files. That means long strings will need to fit into a small space. If we

do nothing special, the Source column will end up looking like this:

That’s not so inspiring. It would be better if the cell showed only the

basename of the file, like this:

But if you edit the contents, you’d want to see the whole pathname:

Otherwise, how would you correct a misspelled folder name?

Prepared exclusively for Alison Tyler

THE FORMATTER CODE 235

Notice that the display abbreviates /Users/marick to ~. That seems con-

venient. I can think of two other conveniences to add:

• The cell should reject a pathname that doesn’t end in .rb:

• To further guide against typos, Fenestra should check that the file

actually exists. If not:

Making these changes gives me an excuse to explain how to call Ob-

jective-C methods that demand by-reference arguments.1 I’ll use tests

in my explanation, so along the way I’ll also explain another testing

trick.

18.1 The Formatter Code

The formatter code, shown in Figure 18.1, on the following page, is

similar to the BooleanCellFormatter from Section 13.3, Formatters, on

page 172. At Ê and Ë, it has the stringForObjectValue and getObject-

Value_forString_

errorDescription methods you’ve already seen. Because we want the dis-

play during editing to look different from the normal display, we also

define editingStringForObjectValue (at Ì).

1. You learned how to handle the receipt of by-reference arguments (using ObjcPtr) in

Section 13.3, Pointers to Pointers, on page 172.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=235

THE FORMATTER CODE 236

Download fenestra/table-formatter/app/prefs-window/formatters.rb

class BasenameFormatter < OSX::NSFormatter

include OSX

ib_outlet :cell

def awakeFromNib; @cell.formatter = self; end

Ê def stringForObjectValue(o)

return '' if o.nil?

File.basename(o)

end

TODO: this is bad design - too many places in the code know a

little bit about the Source. That knowledge should be encapsulated,

and puts somewhere other than right next to the GUI.

Ë def getObjectValue_forString_errorDescription(objptr, s, errdesc)

unless s.to_ruby =~ /\.rb$/

return error("The Source must end in '.rb'. \n'#{s}' does not.",

errdesc)

end

unless file_exists?(s)

return error("The Source must exist.\n'#{s}' does not.", errdesc)

end

objptr.assign(s)

return true

end

Ì def editingStringForObjectValue(o)

return '' if o.nil?
Í o.to_ns.stringByAbbreviatingWithTildeInPath

end

Î testable

def file_exists?(name)
Ï name = name.stringByExpandingTildeInPath
Ð NSFileManager.defaultManager.fileExistsAtPath(name)

end

def error(msg, errdesc)

errdesc.assign(msg) if errdesc

false

end

end

fenestra/table-formatter/app/prefs-window/formatters.rb

Figure 18.1: Formatting a pathname

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/app/prefs-window/formatters.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=236

CALLING METHODS THAT TAKE REFERENCE ARGUMENTS 237

I used one of Cocoa’s built-in NSString methods to abbreviate (Í) and

expand (Ï) tildes in strings that represent paths. NSString has a huge

number of methods; if there’s no Ruby String method to do what you

want, try looking at NSString’s documentation.

NSFileManager (Ð) is another handy class. If File or Dir doesn’t have the

method you want, look there.2

Line Î looks peculiar: there’s a testable where you’d expect private, pro-

tected, or public. I’ll explain that in Section 18.3, Breaking Encapsula-

tion in Tests, on page 240.

18.2 Calling Methods That Take Reference Arguments

Two of the methods in BasenameFormatter can be tested using code that

teaches you nothing new. For example:

Download fenestra/table-formatter/test/prefs-window/formatter-tests.rb

should "convert whole pathname to basename" do

assert { @formatter.stringForObjectValue("/path/to/file.rb") ==

"file.rb" }

end

getObjectValue_forString_errorDescription is tougher, though. Here is its

Objective-C declaration:

- (BOOL) getObjectValue:(id *)anObject

forString:(NSString *)string

errorDescription:(NSString **)error

It has two by-reference arguments (pointers to pointers): anObject and

error. In most cases, by-reference arguments are a way to kludge multi-

ple return values into languages that don’t allow them. Ruby does allow

them, so RubyCocoa arranges for us to get all three results from getO-

bjectValue_forString_errorDescription as return values. You can see that at

Ê in the following code. (For the moment, ignore the way the method is

called.)

2. You’re justified in suspecting me of either hypocrisy or carelessness here. In Sec-

tion 6.4, Using Nibs to Avoid Dependencies, on page 90, I claimed an aversion to hard-

coded class names in code and used nib loading to avoid them. I went to some trou-

ble in Chapter 16, Selections and Editing, on page 202, to isolate PreferencesController

from NSUserDefaultsController so that the former could be tested without worrying about the

actual preferences file on disk. Yet file_exists? has a hard-coded use of NSFileManager, a use

that could easily lead to fragile tests that break mysteriously when a file that’s supposed

to be on disk goes missing. In my defense, a better design would require more words of

explanation and would show you nothing new.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/test/prefs-window/formatter-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=237

CALLING METHODS THAT TAKE REFERENCE ARGUMENTS 238

Download fenestra/table-formatter/test/prefs-window/formatter-tests.rb

should "reject a file that doesn't exist" do

name = "/does/not/exist.rb"
Ê accepted, obj, error_message =

@formatter.objc_send('getObjectValue:forString', name,

'errorDescription')

deny { accepted }

assert { obj.nil? }
Ë assert { error_message.to_ruby =~ /'#{name}'/ }
Ì assert { error_message.to_ruby =~ /must exist/ }

end

The other two marked lines are interesting for two reasons:

• The return value they’re working with is an NSString, but I con-

verted it to a Ruby string before doing the regular expression com-

parison. If I hadn’t, I would have gotten this warning:

'NSString#=~' doesn't work correctly. Because it returns byte ←֓

indexes. Please use 'String#=~' instead.

It also works to reverse the order and put the regexp on the left

side of the =~.

• One of the banes of testing is the way tiny changes in output

strings can break tests. A test whose failure tells you only that you

put a period at the end of an output line—something you already

knew—is likely to be more trouble than its worth over the long

run. For that reason, I’ll often use regular expressions to pick out

only the bits of the output that are really important. I’ve used two

separate ones here because I don’t want even the order of the two

snippets to matter.

Creating By-Reference Arguments

When I first thought of how I would call getObjectValue_forString_errorDes-

cription, I imagined it would look like this:

@formatter.objc_send(:getObjectValue, ????,

:forString, name,

:errorDescription, ????)

What do you pass in for the by-reference arguments? My first thought

was “Why, ObjcPtrs, of course,” but that’s incorrect. Instead, you simply

leave out the by-reference arguments.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/test/prefs-window/formatter-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=238

CALLING METHODS THAT TAKE REFERENCE ARGUMENTS 239

Leaving out the final one is easy:

@formatter.objc_send(:getObjectValue, ????,

:forString, name,
Ê :errorDescription)

The earlier mystery argument is trickier. Let’s start by writing the key-

words surrounding it as strings rather than symbols:

@formatter.objc_send("getObjectValue", ????,

"forString", name,

:errorDescription)

Symbols, strings—they’re all the same as far as objc_send is concerned.

Now let’s drop the mystery argument:

@formatter.objc_send("getObjectValue",

"forString", name,

:errorDescription)

But this is ambiguous. Is "forString" a keyword preceded by an omitted

argument? Or is it, itself, the argument to "getObjectValue"? There’s no

way to tell for sure.

To disambiguate, the two keywords are concatenated, with a colon to

mark the end of one and the beginning of the other:

@formatter.objc_send("getObjectValue:forString", name,

:errorDescription)

Nil Values

What if the user of getObjectValue_forString_errorDescription doesn’t want

an error description? In that case, passing a nil instructs the method

not to create one. That looks like this:

Download fenestra/table-formatter/test/prefs-window/formatter-tests.rb

should "not return an error message unless one is asked for" do

name = "invalid"

accepted, obj = @formatter.objc_send('getObjectValue:forString', name,

'errorDescription', nil)

deny { accepted }

assert { obj.nil? }

end

Notice that now there are only two return values.

More Details

The tests in rubycocoa-oddities/test/call-by-reference-tests.rb show more

details about calling methods with by-reference arguments, including

a remaining ambiguity that might trip you up.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/test/prefs-window/formatter-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=239

BREAKING ENCAPSULATION IN TESTS 240

18.3 Breaking Encapsulation in Tests

The BasenameFormatter has this utility method:

Download fenestra/table-formatter/app/prefs-window/formatters.rb

def file_exists?(name)

name = name.stringByExpandingTildeInPath

NSFileManager.defaultManager.fileExistsAtPath(name)

end

That simple little method provokes a tug-of-war between two traditions:

• The object-oriented design tradition says that file_exists? is not part

of BasenameFormatter’s public contract, so it should be made pro-

tected or private.

• The testing tradition says that it should be tested and that, most

often, it’s best if the tests call it directly. But tests can’t do that if

it’s protected or private.

How do we reconcile the contradiction? The easiest thing to do is not to

bother and just choose one of these solutions:

• Encapsulate file_exists?, and test it indirectly by trying to provoke

getObjectValue_forString_errorDescription into calling file_exists? the

way the test wants.

• Throw off the chains of encapsulation, make file_exists? public, and

test it directly.

I confess that I’m fairly casual about encapsulation, so I often choose

the second solution. But there are other choices:

• Make a subclass of BasenameFormatter that exposes private meth-

ods like file_exists?. Use that subclass in tests, but don’t make it

available to production code.

• Obey this common rule of thumb: if it’s hard to test, there’s some-

thing wrong with it.3 So, you say you can’t test validation code

because it’s buried inside BasenameFormatter? Extract a new class

that’s all about validation, make the validation methods public,

test them, and have BasenameFormatter use an instance of the new

class.

I bet that’s the best solution in this case. I’m already skeptical

about a UI-centric class that has “business logic” smeared

3. I think I first heard that from Carl Erickson of Atomic Object.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/app/prefs-window/formatters.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=240

BREAKING ENCAPSULATION IN TESTS 241

throughout it. Tests—as they often do—could give me the push to

make a better design, one with loosely coupled classes that each

do one thing and do it well.

• Use a programming language with the usual public, protected, and

private access types—but also a testable access type.

After all, tests have a special relationship to the class’s code, just

like subclasses do. So, it makes sense for them to have a special

kind of access, just like subclasses have.

Of course, there is no such language.

Although the two-class solution is probably the best, I’m going to resist

virtue in this case. Instead—despite the niggling problem that there’s

no such thing—I’m going to use testable access:

Download fenestra/table-formatter/app/prefs-window/formatters.rb

class BasenameFormatter < OSX::NSFormatter

...

testable

def file_exists?(name)

name = name.stringByExpandingTildeInPath

NSFileManager.defaultManager.fileExistsAtPath(name)

end

...

end

In languages like Java, the tokens public, protected, and private are spe-

cial keywords. In Ruby, they’re just class methods, so it’s easy to add

a new one. testable gives the same access as protected but signals a

special intent for the methods following it.

file_exists? is still behind an encapsulation boundary, but there’s a mech-

anism for tests to subvert that boundary. Such a test is shown here:

Download fenestra/table-formatter/test/prefs-window/formatter-tests.rb

should "expand tildes when checking file existence" do
Ê @formatter.extend(Fenestrable)
Ë assert { @formatter.fenestra.file_exists?("~".to_ns) }

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/app/prefs-window/formatters.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-formatter/test/prefs-window/formatter-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=241

WHAT NOW? 242

Ê A test that needs to can poke a hole through the encapsulation

boundary by extending the object-under-test. That hole is an

attribute named fenestra.

Ë One can then call encapsulated-but-testable methods through the

hole.4

I’m explaining this testability support mainly so that you aren’t puzzled

when you come across it in my tests and code, but I also have a quiet

hope that you’ll love the idea so much that you’ll use it in all your Ruby

code. If so, you can find the source in app/util/testutil.rb in this and any

following version of Fenestra.5

18.4 What Now?

Typing long pathnames into a text field is not the way to spend a lazy

Sunday afternoon. OS X gives you better alternatives. In the next two

chapters, we’ll make Fenestra support them.

4. Actually, you can call any method. It wouldn’t be hard to allow only methods marked

testable to be called, but I haven’t bothered.
5. I consider it a virtue of my solution that you need to add a testable declaration

to the class under test—it constantly nags at you to reconsider a likely sloppy fac-

toring of your classes. If you don’t need or want such nagging, there are alternatives

that don’t change the class under test. The simplest is to call private methods with

send. http://jasonrudolph.com/blog/2007/11/02/evan-phoenix-on-testing-private-methods-in-ruby/

and http://blog.jayfields.com/2007/11/ruby-testing-private-methods.html show different solu-

tions. (Thanks to Jakub Suder for telling me of these links.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://jasonrudolph.com/blog/2007/11/02/evan-phoenix-on-testing-private-methods-in-ruby/
http://blog.jayfields.com/2007/11/ruby-testing-private-methods.html
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=242

Chapter 19

Picking Files with Open Panels
In this chapter, we’ll change Fenestra so that double-clicking a Source

cell opens Cocoa’s standard Open panel. The chosen file will be put into

user preferences.

19.1 NSOpenPanel

NSOpenPanel is the class for panels that let you choose one or more

files. Conveniently enough, we can use irb to learn about it.

You create an NSOpenPanel with the openPanel method:

irb(main):001:0> require 'osx/cocoa'

=> true

irb(main):002:0> include OSX

=> Object

irb(main):003:0> panel = NSOpenPanel.openPanel

=> #<OSX::NSOpenPanel:0x296030 class='NSOpenPanel' id=0x1b3d1f0>

Although its name might suggest it, the openPanel method doesn’t show

the panel on the screen. To do that, you use a different method:

irb(main):004:0> panel.runModalForTypes(["rb"])

That method doesn’t immediately return.

Prepared exclusively for Alison Tyler

NSOPENPANEL 244

Instead, it pops up a panel much like this one:

For lack of a better choice, the Open panel shows the Documents folder.

The folders show normally, but the actual files are grayed out. That’s

because we’ve restricted the selectable files to those ending in .rb. There

happen to be no Ruby files in this folder, but I can find some in this

book’s root folder:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=244

NSOPENPANEL 245

If I choose one and click the Open button, runModalForTypes will return

this:

irb(main):005:0> panel.runModalForTypes(["rb"])

=> 1

That return value names the button that was clicked:

irb(main):006:0> NSOKButton

=> 1

Open panels can, by default, select multiple files. You can retrieve

which ones were selected with the filenames method:

irb(main):007:0> panel.filenames

=> #<NSCFArray [#<NSPathStore2 "/Users/marick/.../Book/package.rb">]>

An NSPathStore2 looks like an exotic class, but it’s just a subclass of

NSString.

Open panels store their most recent folder in the app’s preferences.

You can see that in action by exiting irb, restarting it, creating a new

panel, and running it. Like this:

irb(main):008:0> exit

$ irb

irb(main):001:0> panel = NSOpenPanel.openPanel

=> #<OSX::NSOpenPanel:0x296030 class='NSOpenPanel' id=0x1b3d2c0>

irb(main):002:0> panel.runModalForTypes(["rb"])

Once again, I’m in the Book folder:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=245

A DESIGN FOR USING NSOPENPANEL IN FENESTRA 246

A Note on Preferences

In this version of Fenestra, I changed the default value
of a TranslatorPreference’s source property from nil to "". I
didn’t have any problems with a legacy preferences file,
but it might be prudent to remove ~/Library/Preferences/com.

apple.rubycocoa/FenestraApp.plist.

Try This Yourself

Here’s a list of changes you can make by finding and setting appropriate

NSOpenPanel properties:

• Change the title of the panel to something other than Open.

• Change the Open button to say something else, like Choose.

• Can the panel’s user choose more than one file? If so, restrict her

to one file.

When looking for setters, note that NSOpenPanel is a subclass of NSSave-

Panel. Methods that you might expect to be described in NSOpenPanel’s

API documentation are actually described in the superclass’s

documentation.

19.2 A Design for Using NSOpenPanel in Fenestra

In the rest of this chapter, you’ll change Fenestra so that a double-click

in a Source cell will pop up an NSOpenPanel.

It will let the user choose a single Ruby file. When the user confirms

the choice (rather than canceling), the new source will be stored in user

preferences.

Begin with the version of Fenestra in fenestra/table-chooser-start. It has

the tests but not the code to pass them. You can find code that passes

them in fenestra/table-chooser-end.

When I originally worked on this chapter’s Fenestra, I started by doing

all the work in PreferencesController. Getting the manipulation of the

panel correct in the same code that used its results started to feel con-

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=246

A DESIGN FOR USING NSOPENPANEL IN FENESTRA 247

has a

PreferencesController

I know what to do
with the names of

source files

choose_source
has_choice?

choice

TranslatorSourceChooser

I have exactly the API
PreferencesController

wants

NSOpenPanel

I am general-purpose. I
provide many ways to

get file names.

has an

Figure 19.1: Adapting the general-purpose class

fusing and ugly, so I switched to what Abelson and Sussman1 call “pro-

gramming by wishful thinking.” I coded PreferencesController against a

file-choosing interface perfect for my needs, looked into the Apple API

documentation to see whether that perfect interface already existed,

found it didn’t, sighed, and wrote an adapter class that implemented

my perfect interface in terms of what I had available (NSOpenDialog).

The result looks like Figure 19.1.

As I continued, though, the tests began to get harder to write. After my

usual period of bullheadedly not listening to what they were telling me,

1. In their masterful Structure and Interpretation of Computer Programs [AS96].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=247

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 248

I finally put the work on hold and took a long shower.2 While scrubbing,

I realized that the Open panel was another window on the screen, and

therefore it should be backed by some controller object. That object

should be more independent than the TranslatorSourceChooser in Fig-

ure 19.1, on the preceding page.

Making a controller for the NSOpenPanel made me think of the way the

controllers in the main window communicate via notifications rather

than by an asymmetrical call/return pattern. I decided to do the same

in the preference panel. That idea is shown in Figure 19.2, on the next

page. Is it the right idea? We’ll see. . .

19.3 Try This Yourself: PreferencesController Tests

The PreferencesController will handle double-clicks in the table.

I see four situations to worry about: initializing, handling double-clicks

outside a source cell, sending a notification after a double-click inside

a source cell, and receiving a notification that a new source has been

chosen. I’ll start this section by giving you both tests and the code that

passes them, but I’ll soon let you write the code.

Initialization

Double-clicks use the same target-action idiom as single clicks, so we

need to initialize the NSTableView to send its double-clicks to the con-

troller. Here are the two tests that describe that:

Download fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb

context 'initialization' do

should "make the preferences controller the target of the table" do

assert { @table.target == @sut }

end

should "make :doubleClick the action taken on doubleclick" do

assert { @table.doubleAction == 'doubleClick:' }

end

end

2. The brilliant Guy Steele once said that he gets all his good ideas in the shower. Me

too. But he must take a lot more showers than I do.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=248

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 249

PreferencesController

I sure could use the
pathname of a Ruby

file.

I hear someone asking for
a Ruby pathname! Time to

swing into action!

RubyFileChooserController

Time passes...

If anyone wants one,
hereʼs a Ruby

pathname.

RubyFileChooserController

PreferencesController

Someoneʼs offering a
Ruby pathname. Iʼll

take it.

Figure 19.2: Peers instead of caller and called

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=249

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 250

The work is done in awakeFromNib:

Download fenestra/table-chooser-start/app/prefs-window/PreferencesController.rb

def awakeFromNib

...

@table.target = self

@table.doubleAction = "doubleClick:"

end

Notice that the doubleAction is a string naming a Ruby method in the

Objective-C style. When the doubleAction method is called, it will be

given the @table as its argument.

Double-Clicks Outside a Source Cell

Most people, I think, like to implement the “happy path” first. Their first

tests check that the app does the right thing in simple cases. After that,

they build up to more complex cases, including error cases. Ever the

contrarian, I’ll often do the error cases first. Like a lot of people, I can’t

stop myself from thinking of error handling as less important. It’s code

that prevents value from being lost (by preventing something bad from

happening), and I’d rather write code that produces value. So when I

add error handling to a “finished” feature, I’m eager to get it over with

and move on. That makes me do a worse job of imagining error cases.3

I want to prevent the code from making two types of errors:

• The user double-clicks a Display Name cell and—oops!—the file

chooser panel pops up. Instead, the non-Source cells should keep

their normal behavior: a double-click should start ordinary text-

field editing.4

• The user clicks somewhere in the table header, below the final

row, or somewhere else that’s not in any cell and—oops!—the file

chooser panel pops up.

3. The same “just let me get this over with” psychology applies to adding tests after the

code is done, which is one of the reasons writing the tests first works so much better.
4. The user can still edit the Source text field in-place by first clicking to select its line

and then clicking again on the Source text to begin editing. That—two clicks far enough

apart that they’re not interpreted as a double-click—can also be used for the non-Source

text fields.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=250

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 251

Retaining Behavior for Other Columns

Here’s a test that checks whether my first fear comes true:

Download fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb

context "clicking on non-source column" do

should 'still perform normal editing' do
Ê during_doubleclick_on(@display_name_column_index, 1).behold! {
Ë @table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(@display_name_column_index, 1, any, 1)
Ì watchers_are_notified.never

}
Í assert { @original_sources == self.current_sources }

end

end

Ê during_doubleclick_on simulates a double-click in the first row’s

Display Name cell. It does that by calling the PreferencesController’s

doubleClick method after arranging for NSTableView’s clickedColumn

and clickedRow methods to return the given values.

Ë Because the cell “clicked” is in the Display Name column, the test

expects the table to receive the edit message you saw back in Sec-

tion 16.2, Working with an Uncooperative Control, on page 212.

Ì It’s not enough for the code to do the right thing, it must also

refrain from doing the wrong thing. In this case, the “wrong thing”

would be to send out an “I sure could use the pathname of a Ruby

file” notification. So, I explicitly check that no notification is sent.

(See the sidebar on the next page.)

Í For good measure, the test also checks that both the arrangedOb-

jects and NSUserDefaultsController contents haven’t changed.

Among people who are used to writing tests before code, it’s common to

pass the first test with code that’ll obviously fail on the very next one.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=251

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 252

Initialize and Check the Background

A common programmer mistake is to do more than is right. For
example, back in my days as a C programmer, I used to look
for the following kind of bug:

1. We began with an array of, say, nine elements. Their con-
tents don’t matter: ���������

2. The code was supposed to fill the array with the number 5:���������
3. It did that. . . but it also scribbled past the end of the array:����������
4. Especially in C, these can be horrible bugs to find. So, I

started thinking of the data that was supposed to change
as the “foreground” and the rest as “background.” (Think
of cheaper cartoons where the characters move but the
background stays unchanged.) In the arrange part of my
tests, I would explicitly put known elements in the back-
ground: ���������

0xBADFACE0xBADFACE

Then the assert part would check that the background
hadn’t been overwritten.

This particular bug is less common in this day of iterators, but
the analogy still holds. For this chapter, the background is the
quiet computational void that should not be disturbed by noti-
fications or stray message sends.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=252

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 253

PreferencesController already has a shorthand method for editing cells,

edit_cell_at, so we can just call it:5

Download fenestra/table-chooser-start/app/prefs-window/PreferencesController.rb

def doubleClick(sender)

edit_cell_at(@table.clickedColumn, @table.clickedRow)

end

protected

def edit_cell_at(col, row)

select_row_with_index(row)

@table.objc_send(:editColumn, col,

:row, row,

:withEvent, nil,

:select, true)

end

Someone who’s truly hard-core might even replace the calls to clicked-

Column and clickedRow with 0 (the index of the Display Name column)

and 1. After all, there’s no evidence—in the form of a test—that the code

will ever have to handle any other values. I won’t go to that extreme,

though it can be an interesting one to practice on.

Clicks in the Wrong Places

Now I’d like you to take over. Change should_eventually to should in the

following tests, and make them pass:

Download fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb

context "clicking outside normal bounds" do

should_eventually 'do nothing (if out of row bounds)' do
Ê during_doubleclick_on(@source_column_index, -1).behold! {
Ë nothing_happens

}

assert { @original_sources == self.current_sources }

end

should_eventually 'do nothing (if out of column bounds)' do
Ì during_doubleclick_on(-1, 1).behold! {
Í nothing_happens

}

assert { @original_sources == self.current_sources }

end

end

end

5. Notice that using the shorthand method reveals a bug in the test. The test failed to

specify that the row has to be selected. I recommend you fix the test.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/app/prefs-window/PreferencesController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=253

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 254

PreferencesController

Posts
NeedsRubySource

row => n

RubyFileChooserController

Posts
HasRubySource

row => n
source => ...

RubyFileChooserController

PreferencesController

Receives NeedsRubySource

Receives HasRubySource

Figure 19.3: Controller notifications

The -1 values at Ê and Ì are key to the tests. -1 is the value NSTable-

View’s clickedColumn, and clickedRow methods return if the click was

outside column or row bounds. nothing_happens (at Ë and Í) asserts

that no notifications are posted and the table cell is not edited.6

You can find my solution for both these tests and the following Prefer-

encesController tests in Figure 19.5, on page 259.

6. nothing_happens will not notice if your code sets the table’s intercellSpacing to some huge

value, just as the test in the sidebar wouldn’t notice if code scribbles somewhere other

than at the boundaries of the array. In error prevention and detection, you have to play

the odds.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=254

TRY THIS YOURSELF: PREFERENCESCONTROLLER TESTS 255

Deciding on Vocabulary

Now we get to the point of it all: communication between this Prefer-

encesController and the RubyFileChooserController (that we haven’t started

yet).

Figure 19.3, on the previous page, is a variant of Figure 19.2, on page 249.

The new version replaces English text with descriptions of NSNotifica-

tions. The first speech bubble says that the PreferencesController will send

a notification named NeedsRubySource whose userInfo will contain a row

number. The RubyFileChooserController will pass that row number back,

along with the pathname of a Ruby file.7

Double-Clicks Within a Source Cell

This test implements the first speech bubble we see in Figure 19.3, on

the previous page:

Download fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb

context "clicking in Source cell of a row" do

should_eventually "post a notification asking for a Ruby file" do

during_doubleclick_on(@source_column_index, 0).behold! {

watchers_are_notified.once.

with(on { | notification |

row = notification.userInfo[:row]

name = notification.name

0 == row && name == NeedsRubySource

})

no_editing_starts

}

end

end

Make it fail (by changing should_eventually), and then make it pass. You

can use the post method described in Section 8.3, Shorthand for Posting

Notifications, on page 103.

Receiving a Notification

Occasionally, the PreferencesController will receive a notification of a new

source.

7. It’s good to worry about a possible bug here: what if the rows are rearranged between

the time NeedsRubySource is sent and HasRubySource is received? I believe that’s impossible.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=255

TRY THIS YOURSELF: THE NSOPENPANEL CONTROLLER 256

This test describes how it should be handled:

Download fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb

context "receiving a source file notification" do

should_eventually "store the new source in preferences" do

new_file = "/tmp/mumble.rb"

some_object_announces(HasRubySource,

{ :row => 0,

:source => new_file })

expected = [new_file] + @original_sources[1..-1]

assert { self.current_sources == expected }

end

end

Make it pass by filling in this skeleton:

Download fenestra/table-chooser-start/app/prefs-window/PreferencesController.rb

on_local_notification HasRubySource do | notification |

end

on_local_notification was described in Section 8.1, A DSL for Notifications,

on page 101.

19.4 Try This Yourself: The NSOpenPanel Controller

Figure 19.4, on the following page, shows the tests that need to pass to

create a working RubyFileChooserController. Make them pass. The code to

start with is in app/prefs-window/RubyFileChooserController.rb. My solution

is in Figure 19.6, on page 260.

Again, What Are We Testing?

It’s important to realize that these tests document my assumptions

about how NSOpenPanel behaves: that it never returns anything except

either NSOKButton or NSCancelButton; that the way to restrict it to only

Ruby files is with the type "rb", not ".rb"; and so on.

How did I come to make those particular assumptions? By doing pretty

much what you did at the beginning of this chapter: I skimmed over

the API documentation, found likely methods, and tried them out in irb.

I prefer that to just relying on the documentation.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/test/prefs-window/prefs-change-source-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=256

TRY THIS YOURSELF: THE NSOPENPANEL CONTROLLER 257

Download fenestra/table-chooser-start/test/prefs-window/file-chooser-tests.rb

should_eventually "respond to NeedsRubySource by starting chooser" do

during {

some_object_announces(NeedsRubySource)

}.behold! {

@chooser_panel.should_receive(:runModalForTypes, 1).once

}

end

should_eventually "restrict chooseable files to ruby files" do

during {

some_object_announces(NeedsRubySource)

}.behold! {

@chooser_panel.should_receive(:runModalForTypes, 1).once.

with(['rb'])

}

end

should_eventually "do nothing if panel cancels" do

during {

some_object_announces(NeedsRubySource)

}.behold! {

@chooser_panel.should_receive(:runModalForTypes, 1).once.

and_return(NSCancelButton)

watchers_are_notified.never

}

end

context "when file is chosen," do

should_eventually "announce HasRubySource with source and row" do

during {

some_object_announces(NeedsRubySource, { :row => 1000 })

}.behold! {

chosen_source = 'path/to/ruby/file.rb'

@chooser_panel.should_receive(:runModalForTypes, 1).once.

and_return(NSOKButton)

@chooser_panel.should_receive(:filename).once.

and_return(chosen_source)

expected = this_notification(HasRubySource,

@sut,

{ :source => chosen_source,

:row => 1000 })

watchers_are_notified.once.with(expected)

}

end

end

fenestra/table-chooser-start/test/prefs-window/file-chooser-tests.rb

Figure 19.4: A description of RubyFileChoserController

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-start/test/prefs-window/file-chooser-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=257

WHAT NOW? 258

There’s many a slip ’twixt the cup and the lip, though, and also between

the mind and the test case. So, it doesn’t hurt to check the assump-

tions again by using the should statements as a checklist to follow when

manually trying the new feature that crucial first time.

But take care not to restrict yourself to the checklist. Explore. For exam-

ple, I discovered by exploring that double-clicking a Favorite cell gives

me a text edit field for a radio button’s label (which we made empty on

page 232). It looks as if double-clicking should be handled specially for

the Favorite column as well.

19.5 What Now?

It’s time to finish up the preference panel by allowing drag and drop.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=258

WHAT NOW? 259

Download fenestra/table-chooser-end/app/prefs-window/PreferencesController.rb

class PreferencesController < OSX::NSArrayController

def doubleClick(sender)

return if @table.clickedRow == -1

return if @table.clickedColumn == -1

unless COLUMN_IDS[@table.clickedColumn] == :source

edit_cell_at(@table.clickedColumn, @table.clickedRow)

return

end

post(NeedsRubySource, :row => @table.clickedRow)

end

on_local_notification HasRubySource do | notification |

row = notification[:row]

update_source_at_clicked_index(row, notification['source'])

end

protected

def update_source_at_clicked_index(index, new_source)

update_changed_object_at_index(index) do | pref |

pref.source = new_source

end

end

def update_changed_object_at_index(index)

obj = arrangedObjects[index]

removeObjectAtArrangedObjectIndex(index)

yield(obj)

insertObject_atArrangedObjectIndex(obj, index)

end

end

fenestra/table-chooser-end/app/prefs-window/PreferencesController.rb

Figure 19.5: PreferencesController code for file choosing

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-end/app/prefs-window/PreferencesController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=259

WHAT NOW? 260

Download fenestra/table-chooser-end/app/prefs-window/RubyFileChooserController.rb

class RubyFileChooserController < Controller

def init

initWithPanel(NSOpenPanel.openPanel)

end

def initWithPanel(panel)

super_init

panel.title = "Choose a Ruby File"

panel.prompt = "Choose"

panel.allowsMultipleSelection = false

@panel = panel

self

end

on_local_notification NeedsRubySource do | notification |

return unless @panel.runModalForTypes(['rb']) == NSOKButton

post(HasRubySource,

:row => notification[:row], :source => @panel.filename)

end

testable

attr_reader :panel

end

fenestra/table-chooser-end/app/prefs-window/RubyFileChooserController.rb

Figure 19.6: RubyFileChooserController

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-chooser-end/app/prefs-window/RubyFileChooserController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=260

Chapter 20

Drag and Drop
Cocoa tables support two kinds of drag and drop. In one, people drag

a whole row’s worth of data onto the table and drop it. That’s probably

most common, but it’s not the one we want. We want to drop pathnames

into a table cell. I think that’s fortunate, because that forces us to use

a generic API that works for all views, rather than one that works only

for NSTableView classes.

In this chapter, you’ll begin with the source in fenestra/table-drag-start

and convert it into code that passes its tests. You can see such code in

fenestra/table-drag-end.

20.1 How Drag and Drop Works

As a dragged item enters, the view is sent a draggingEntered message.

As long as the cursor stays inside it, the view is periodically sent a drag-

gingUpdated method. Each of these methods returns a value telling the

caller what will happen if a drop is attempted. For example, NSDragOp-

erationNone means that the drop will fail.

When the user drops, the view is sent prepareForDragOperation. The view

can signal that it refuses to cooperate by returning false. If it cooperates,

though, it’s then sent performDragOperation. If the method is successful,

it should return true, whereupon the view will be sent concludeDrag-

Operation.

If the user decides not to drop in this view and moves the cursor out of

it, it will receive draggingEnded.1

1. You can learn more about this process in Apple’s Drag and Drop Programming Topics

Prepared exclusively for Alison Tyler

HOW DRAG AND DROP WORKS 262

Pasteboards

Apps use pasteboards to stash data (or promises of data) or to pick

up data that other apps have stashed. One pasteboard is used to store

data copied with Command - C . A different one is used to store data that’s

being dragged.

The same “thing” can be put on the pasteboard in several different

formats. For example, an application providing the name of a file can

provide it as a string, as a single element in an array of strings, and as

an NSURL object. The object removing the file from the pasteboard will

use whichever format it prefers.

You can learn more about this process in Apple’s Pasteboard Program-

ming Topics for Cocoa [App08t].

NSDraggingInfo

The different drag methods—draggingUpdated and friends—are passed

an NSDraggingInfo object that the view can ask questions of.2 The most

important bit of information is the pasteboard associated with the drag.

(Although there’s a pasteboard specifically reserved for dragging, there’s

no guarantee that the source app uses it.) It also includes a list of

operations the source supports (copy, link, move, and so on) and the

location of the cursor.

Coordinate Systems

Although the drag messages are received by a view, the NSDraggingInfo’s

location is in the coordinate system of the view’s window. So if the view

cares about the cursor’s location within itself, it has to transform the

value to its own coordinate system. The relationship between coordi-

nate systems is shown in Figure 20.1, on the next page.

In the window’s coordinate system, the origin is at the bottom left. In

views, the coordinate system can be either at the bottom left or at the

for Cocoa [App08k].
2. Although the name looks like one, NSDraggingInfo isn’t a class. Instead, it’s the name

of a list of methods, what Objective-C calls a protocol. A protocol is akin to an interface

in Java, except that protocols can be “informal,” meaning that the Objective-C compiler

doesn’t complain if you leave some of the methods unimplemented. For our purposes,

a protocol is a name you can type into the search window in Xcode’s documentation

browser to find out about a group of related methods. About the only time you’ll notice a

protocol isn’t a class is when you try to subclass it or alloc it in irb.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=262

DESIGNING THE GUI 263

(0, 0)

(400, 400)(0, 400)

(400, 0)

(0, 600) (400, 600)

(0, 0) (1000, 0)

(0, 1000) (1000, 1000)

(400, 0)(0, 0)

Figure 20.1: Coordinate systems

top left, depending on whether the view is more naturally thought of as

growing up or down. Tables grow down.

In the figure, pretend that the rightmost view is a table view. The point

of the cursor appears to be at about (729, 784) in the window’s coordi-

nate system. In the table’s coordinate system, it’s at (172, 229).

Translating among coordinate systems is an annoyance. Fortunately,

you don’t have to do the calculations yourself—the convertPoint_fromView

and convertPoint_toView methods do that. (See Section 20.4, NSTable-

View Patches, on page 266, for an example.)

20.2 Designing the GUI

In Fenestra, the user should not be able to drop a filename anywhere

other than a Source cell. The user interface should make that

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=263

A TEMPLATE FOR THE SOLUTION 264

restriction visually obvious. My first thought was to have the cursor

change to be the “forbidden” cursor you see in some applications, like

the Finder. Here’s part of a Finder window that shows it:

As far as I can tell, though, that cursor design is not available in Cocoa.

It’s found only in the older framework named Carbon. So, after some

trial and error, I decided to signal that a drop would work by highlight-

ing the current row and changing the cursor to the “copy” cursor. That

looks like this:

Since my UI design skills are laughable, not laudable, feel free to im-

prove on this interface. The tests, however, assume it.

20.3 A Template for the Solution

Since dragging and dropping works by sending particular messages to

a view, it makes sense to subclass NSTableView with our own class that

implements them. See Figure 20.2, on the next page.

I didn’t include skeletons for prepareForDragOperation and concludeDrag-

Operation because there’s nothing to be done in either case.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=264

UTILITY CLASSES AND MODULES 265

Download fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb

class PreferencesTableView < OSX::NSTableView

def awakeFromNib

...

end

def draggingEntered(info)

...

end

def draggingUpdated(info)

...

end

def performDragOperation(info)

...

end

def draggingExited(info)

...

end

end

fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb

Figure 20.2: An NSTableView subclass

For this new class to be used, it needs to be added to the nib by

changing the table’s class from NSTableView to PreferencesTableView. I’ve

already done that for you.

20.4 Utility Classes and Modules

When I originally implemented the UI design, I began by writing tests

for the new PreferencesTableView class. As I did so, I discovered groups

of methods that seemed to belong in their own class or module. By that,

I mean that they seemed to share a common role, a role I could name

with a noun phrase like “NSTableView patches” or “cell-oriented location

information.” In this section, I’ll show them to you so that you can use

them when you make tests pass.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=265

UTILITY CLASSES AND MODULES 266

Download fenestra/table-drag-start/app/util/NSTableViewPatches.rb

module NSTableViewPatches

include OSX

Ê def cell_for_window_point(window_point)

table_point = convertPoint_fromView(window_point, nil)

column_index = columnAtPoint(table_point)

row_index = rowAtPoint(table_point)

return column_index, row_index

end

def row_for_window_point(window_point)

ignored, row_index = cell_for_window_point(window_point)

row_index

end

def select_row(index)

row_set = NSIndexSet.indexSetWithIndex(index)

selectRowIndexes_byExtendingSelection(row_set, false)

end

def identifier_for_column_index(column_index)

tableColumns[column_index].identifier

end

end

fenestra/table-drag-start/app/util/NSTableViewPatches.rb

Figure 20.3: NSTableView patches

NSTableView Patches

NSTableViewPatches is a module that adds some convenience methods to

Cocoa’s NSTableView. See Figure 20.3.

The only method with an interesting implementation is cell_for_window_

point (at Ê). It shows how you convert from window coordinates to table

indexes. convertPoint_fromView converts into self’s coordinate system (in

this case, into an NSTableView’s). The second argument is often a con-

taining view. In our case, we want it to be the containing window—that’s

what nil means.

Once we have a point in view coordinates, columnAtPoint and rowAtPoint

give us indexes.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/app/util/NSTableViewPatches.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=266

UTILITY CLASSES AND MODULES 267

Download fenestra/table-drag-start/app/util/CellOrientedDraggingInfo.rb

class CellOrientedDraggingInfo < OSX::NSObject

include OSX

Ê def column; colrow[0]; end
Ë def row; colrow[1]; end
Ì def column_id; table.identifier_for_column_index(column); end

Í def initWithTable_rawInfo(table, raw_info)

@table = table

@raw_info = raw_info

init

end

private
Î attr_reader :table, :raw_info

def colrow
Ï table.cell_for_window_point(raw_info.draggingLocation)

end

end

fenestra/table-drag-start/app/util/CellOrientedDraggingInfo.rb

Figure 20.4: Cell-oriented location information

Cell-Oriented Drag Info

Because I hate and fear coordinate transformations, I’d like the drag-

and-drop code to pretend they don’t exist. That means that I’d like to

hide the NSDraggingInfo object I get from Cocoa behind an object that

identifies locations with row and column indexes. CellOrientedDragging-

Info, shown in Figure 20.4, is that object.

Ê-Ì These three methods are the point of the class. They let dragging

info be retrieved in the form of a row index, a column index, or a

column identifier.

Í Because the coordinates in an NSDraggingInfo have to be trans-

formed in the context of a particular view (in this case, a Prefer-

encesTableView), this object needs access to both the view and the

NSDraggingInfo.

Î These two accessors are encapsulated because they’re the details

this class was created to hide.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/app/util/CellOrientedDraggingInfo.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=267

TRY THIS YOURSELF: LIVELY DRAGGING INFO 268

Ï This helper method seems ridiculously circular. Although this

class exists to provide a detail-hiding interface to PreferencesTable-

View, it actually delegates the important work to. . . Preferences-

TableView. Why?

Suppose cell_for_window_point were implemented in CellOriented-

DraggingInfo. It would look something like this:

def cell_for_window_point(window_point)

table_point = @table.convertPoint_fromView(window_point, nil)

column_index = @table.columnAtPoint(table_point)

row_index = @table.rowAtPoint(table_point)

return column_index, row_index

end

That perfectly matches Kent Beck and Martin Fowler’s definition

of feature envy: “A method that seems more interested in a class

other than the one it actually is in.”3 The solution to feature envy

is to move the method where it wants to be. I’ve squared this

circle—“Keep it out of the PreferencesTableView!” “No, put it in the

PreferencesTableView!”—by putting it in NSTableViewPatches, which

PreferencesTableView will include. Because of that, a reader of the

PreferencesTableView source can remain blissfully ignorant of the

coordinate-munging going on behind the scenes.

20.5 Try This Yourself: Lively Dragging Info

Let’s exercise our wishful thinking muscles (explained on page 246).

PreferencesTableView is going to receive a packet of information from

Cocoa describing something a user wants to drop. That packet is a

dumb object (more politely described as a data object). It doesn’t do

anything—it just sits there, waiting for us to poke around inside it.

That’s contrary to the whole point of object-oriented programming. Ob-

jects are supposed to be active: lively packets of data and methods that

other objects can delegate work to.

I’ve hidden the NSDraggingInfo inside a CellOrientedDraggingInfo, but the

latter is no smarter than the former. So, let’s make a subclass with

a tiny bit of smarts: the ability to decide by itself whether a drop is

appropriate.

3. In Fowler’s Refactoring [FBB+99], p. 80.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=268

TRY THIS YOURSELF: LIVELY DRAGGING INFO 269

It would be used like this:

Download fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb

def evaluate_location(tailored_info)

if tailored_info.drop_would_work?

...

else

...

end

end

Here’s the skeleton of the new class:

Download fenestra/table-drag-start/app/prefs-window/PrefsTableDraggingInfo.rb

class PrefsTableDraggingInfo < CellOrientedDraggingInfo

def drop_would_work?

...

end

def pathname

...

end

def pathnames

...

end

end

I’ve added pathname and pathnames methods because they’ll be useful

in the implementation of drop_would_work? and also inside Preferences-

TableView.

Warm-up: Pathname Methods

I suggest you start implementing PrefsTableDraggingInfo with the path-

name methods. That’ll teach you about the structure of the pasteboard

info that an NSDraggingInfo contains. Tests to drive your implementation

are shown in Figure 20.5, on the next page.

Ê rubycocoa_flexmock is the method that creates the kind of object

that accepts should_receive. With this single string argument (op-

tional), rubycocoa_flexmock creates an NSObject that responds to

only enough methods to make should_expect work. The string is

used in error messages.

Ë This line shows that rubycocoa_flexmock can also be given a Class

as an argument. (That argument could be followed by a name for

error messages, but I didn’t bother.) In this case, the resulting

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/app/prefs-window/PrefsTableDraggingInfo.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=269

TRY THIS YOURSELF: LIVELY DRAGGING INFO 270

Download fenestra/table-drag-start/test/prefs-window/prefs-table-dragging-info-tests.rb

def setup
Ê @raw_info = rubycocoa_flexmock("raw dragging info")
Ë @sut = rubycocoa_flexmock(PrefsTableDraggingInfo) do | klass |

klass.alloc.objc_send(:initWithTable, :unused,

:rawInfo, @raw_info)

end

end

context "pathnames method" do

should_eventually "provide pathnames found in dragging info" do

during {
Ì @sut.pathnames

}.behold! {

@raw_info.should_receive(:draggingPasteboard, 0).once.

and_return(pasteboard_with_files(*some_paths))

}
Í assert { @result == some_paths }

end

end

context "pathname method" do

should_eventually "provide only pathname found in dragging info" do

text omitted from figure - almost the same as previous test

end

end

fenestra/table-drag-start/test/prefs-window/prefs-table-dragging-info-tests.rb

Figure 20.5: Tests about extracting pathnames from a pasteboard

object will act as if it is a PrefsTableDraggingInfo, except that its

methods can be overridden with should_expect.

By default, rubycocoa_flexmock creates the object with alloc and

initializes it with init. A block argument, as shown following this

line, allows custom creation or initialization.4

It’s unusual to “flexmock” the very class you’re testing. Why am I

doing that? The class we’re testing, PrefsTableDraggingInfo, depends

on another class, CellOrientedDraggingInfo. It depends on it as a

subclass, rather than by having a variable that points to an in-

stance of it, but there’s one principle that applies to both cases:

4. For all the details on rubycocoa_flexmock, see the tests in sandbox/test/mock-talk-tests.rb.

rubycocoa_rlexmock is built on top of the FlexMock gem, and you can find its documenta-

tion at http://flexmock.rubyforge.org.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/test/prefs-window/prefs-table-dragging-info-tests.rb
http://flexmock.rubyforge.org
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=270

TRY THIS YOURSELF: LIVELY DRAGGING INFO 271

don’t go to extreme lengths just to be able to say that you’re testing

with a real object.

Consider that although these particular tests don’t call the super-

class’s row method, later ones do. (You’ll see them on page 274.)

row needs both an NSDraggingInfo and a PreferencesTableView to

work on. For the conversion from window coordinates to row num-

ber to work, that PreferencesTableView has to be contained within

an NSWindow. . . wait. Exactly why am I creating all these objects?

To use—and, incidentally, test—one tiny method. Although I didn’t

show them to you, it already has tests. So, the incidental testing

is going to add little to my confidence that row works.

Because the cost/benefit ratio doesn’t look so good to me, I’ll

fake row in the later tests. That lets me initialize the @sut with

some dummy argument instead of a real PreferencesTableView. That

dummy argument is the symbol :unused in the line after Ë.

Ì Given that the point of the test is to check the return value from

pathnames, it’s a bit peculiar that the return value appears to be

just thrown away. I could have written the following:

during {

assert { some_paths == @sut.pathnames }

}.behold {

...

}

But that looks awkward to me because it breaks the connection

between the linear structure of the test code and the time-order of

the running test: first you do something in the during block, during

which something happens as described in the behold! block, but

then you flip backward to see what happens after the method-

under-test runs.

I’d rather have the assertion after the during-behold! construct, but

there’s no way of getting the value into the assertion that isn’t at

least somewhat awkward. The least ugly way I’ve thought of is to

have during stash the return value of its block in @result and use

that variable later, as shown at Í. If you think that’s an abom-

inable choice, remember: hate the sin, not the sinner.

missing code?

You can drag many other things than pathnames: arbitrary

strings, images, RTF files, colors, and so forth. Why is there no

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=271

TRY THIS YOURSELF: LIVELY DRAGGING INFO 272

method that checks whether the NSPasteboard really contains

pathnames? That’s because the sole client of this class arranges

for it to be used only on NSDraggingInfo that comes from drag-

ging files. (You’ll see how it does that at line Ë in Figure 20.8, on

page 276.) We could have a lively debate about whether PrefsTable-

DraggingInfo should redundantly check what PreferencesTableView

supposedly ensures. In the interest of brevity, I’m coming down

on the “once and only once” side of that debate. Meanwhile, it

rages on everywhere on the Internet.

Make the tests pass. If you haven’t already been doing it, I recommend

changing one should_eventually to should, watching the test fail, making

it pass, and then moving to the next should_eventually.

Hints

The API documentation for NSDraggingInfo and NSPasteboard should give

you the information you need.

Be sure to take a look at the test helper method pasteboard_with_files. It

shows that the pasteboard is expected to contain data of NSFilenamesP-

boardType, so that’s the type of data you’ll need to check that it contains.

My solution is in the bottom part of Figure 20.6, on the following page.

Will a Drop Work?

You now have enough helper methods to make drop_would_work? a terse,

to-the-point method. The tests that’ll drive your solution are shown in

Figure 20.7, on page 274.

Ê The setup block is an example of dragging info that Fenestra

should accept: the cursor is inside one of the table rows and inside

the Source column, plus the item being dragged is a single Ruby

file. The tag by_default that ends each “sentence” means that the

expectation is used in the absence of any nondefault one for the

method named.

Ë, Ì These tests (and others like them) override exactly one of the

defaults to produce a minimal case where drop_would_work? should

be false. For example, Ë overrides the default row value of 0 with

-1, which is the value Cocoa uses for “not on a row.”

In testing, picking minimal error or exception cases is important.

If a test case contained two reasons the drop should be rejected,

code could pass it by checking only one.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=272

TRY THIS YOURSELF: LIVELY DRAGGING INFO 273

Download fenestra/table-drag-end/app/prefs-window/PrefsTableDraggingInfo.rb

class PrefsTableDraggingInfo < CellOrientedDraggingInfo

def drop_would_work?

return false if row == -1

return false unless column_id == 'source'

return false unless pathnames.length == 1

return false unless /\.rb$/ =~ pathname

true

end

def pathnames

pasteboard.propertyListForType(NSFilenamesPboardType)

end

def pathname; pathnames[0]; end

private

def pasteboard; raw_info.draggingPasteboard; end

end

fenestra/table-drag-end/app/prefs-window/PrefsTableDraggingInfo.rb

Figure 20.6: PrefsTableDraggingInfo

Í In the absence of any reason to reject a drop, it should be ac-

cepted. In this test, all the defaults hold.

My Solution

My solution is in Figure 20.6. You may also want to refer to the super-

class in Figure 20.4, on page 267.

While writing this code, I rediscovered a fact I had learned back on

page 238: if you write regexp comparisons with an NSString on the left,

you get a RubyCocoa warning. Unlike before, I fixed it by reversing the

order of arguments.

It’s because of oddities like this that I try to test my Ruby code with

NSString. See, for example, how I use to_ns in the should_receive statement

within test Ì in Figure 20.7, on the next page. If the code has to work

with Cocoa strings, it should be tested with Cocoa strings.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/app/prefs-window/PrefsTableDraggingInfo.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=273

TRY THIS YOURSELF: LIVELY DRAGGING INFO 274

Download fenestra/table-drag-start/test/prefs-window/prefs-table-dragging-info-tests.rb

Ê setup do

@sut.should_receive(:row, 0).and_return(1).by_default

@sut.should_receive(:column_id, 0).

and_return("source".to_ns).

by_default

@sut.should_receive(:pathnames, 0).

and_return(["/path/to/file.rb"].to_ns).

by_default

end

Ë should_eventually "reject when nonexistent row" do

during {

@sut.drop_would_work?

}.behold! {

@sut.should_receive(:row, 0).at_least.once.

and_return(-1)

}

deny { @result }

end

Ì should_eventually "reject when column_id is not source" do

during {

@sut.drop_would_work?

}.behold! {

@sut.should_receive(:column_id, 0).at_least.once.

and_return("display_name".to_ns)

}

deny { @result }

end

...

Í should_eventually "accept otherwise" do

assert { @sut.drop_would_work? }

end

fenestra/table-drag-start/test/prefs-window/prefs-table-dragging-info-tests.rb

Figure 20.7: Deciding on a drop

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/test/prefs-window/prefs-table-dragging-info-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=274

TRY THIS YOURSELF: DRAG AND DROP 275

20.6 Try This Yourself: Drag and Drop

Now it’s time to put it all together and build PreferencesTableView.

The Strategy

Here are some facts about Fenestra that our solution can use:

• In Chapter 19, Picking Files with Open Panels, on page 243, we

arranged for PreferencesController to receive HasRubySource notifica-

tions. In that chapter, they came from RubyFileChooserController, but

there’s nothing in PreferencesController that cares about the source

of the notification. So, there’s no reason I can see not to have our

PreferencesTableView post the same notification.

• We’ve gone to some length to hide NSDraggingInfo’s low-level details.

So, it seems the dragging protocol methods (like draggingUpdated)

should quickly convert the NSDraggingInfo object they receive into a

PrefsTableDraggingInfo and then immediately forget about the origi-

nal object.

• draggingEntered and draggingUpdated evaluate whether what is

being dragged can be dropped at the current location. Since they

do the same thing, they should delegate their work to a common

method.

Putting that all together, I get the skeleton for PreferencesTableView that’s

shown in Figure 20.8, on the next page.

Ê This method prepares the class to post and receive notifications.

All we’ll need it for is the post method, originally described in Sec-

tion 8.3, Shorthand for Posting Notifications, on page 103.

Ë All we care about are pasteboards that contain pathnames, but a

user could drag anything and try to drop it. This is the code that

tells the Cocoa runtime not to bother calling the PreferencesTable-

View’s drag-handling classes unless what’s dragged is one or more

pathnames.

Ì-Í So that we can quickly forget about NSDraggingInfo, each of the

Fenestra dragging methods does nothing but convert its data

(using the tailored method defined at Ñ) and then call one of three

methods (at Î, Ï, and Ð). Those methods do the real work, and

it’s those methods that you’ll now write.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=275

TRY THIS YOURSELF: DRAG AND DROP 276

Download fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb

class PreferencesTableView < OSX::NSTableView

def awakeFromNib

Superclass does not have an awakeFromNib
Ê notifiable_awakeFromNib
Ë registerForDraggedTypes([NSFilenamesPboardType])

end

Ì def draggingEntered(info); evaluate_location(tailored(info)); end

def draggingUpdated(info); evaluate_location(tailored(info)); end

def performDragOperation(info); drop(tailored(info)); end
Í def draggingExited(info); forget_drag(tailored(info)); end

testable

Î def evaluate_location(tailored_info)

if tailored_info.drop_would_work?

...

else

...

end

end

Ï def forget_drag(tailored_info)

...

end

Ð def drop(tailored_info)

...

end

private

Ñ def tailored(raw_info)

PrefsTableDraggingInfo.alloc.initWithTable_rawInfo(self, raw_info)

end

end

fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb

Figure 20.8: A starting version of PreferencesTableView

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/app/prefs-window/PreferencesTableView.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=276

TRY THIS YOURSELF: DRAG AND DROP 277

Download fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb

context "checking a location where a drop is possible" do

setup do
Ê @info = rubycocoa_flexmock("drop info")

@info.should_receive(:drop_would_work?, 0).at_least.once.

and_return(true)

@info.should_receive(:row, 0).at_least.once.

and_return(1)

end

should_eventually "select the current row" do

assert { @sut.numberOfSelectedRows == 0 }

@sut.fenestra.evaluate_location(@info)

assert { @sut.numberOfSelectedRows == 1 }

assert { @sut.selectedRow == 1 }

end

should_eventually "signal that a copy is permitted" do

retval = @sut.fenestra.evaluate_location(@info)

assert { NSDragOperationCopy == retval }

end

end

fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb

Figure 20.9: What happens when a drop is allowed?

Before the Drop

Refer to Figure 20.9; it shows two tests that describe what should hap-

pen when a user has moved the cursor over a Source cell: the cur-

rent row should be highlighted, and NSDragOperationCopy should be

returned.

Note (at Ê) that the @info variable doesn’t refer to a real PrefsTableDrag-

gingInfo. Since I believe that class’s drop_would_work? and row methods

are correct, I don’t feel the need to go to the trouble of creating one

for this test. Instead, I simulate the values the @sut’s evaluate_location

method would need. I’ll speak more of this decision in Section 20.7,

Does It Work?, on page 280.

There’s another context describing how evaluate_location should work

when a drop should not be allowed. There’s nothing new or interesting

about it, so I won’t show it here.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=277

TRY THIS YOURSELF: DRAG AND DROP 278

Your mission, should you decide to accept it: make evaluate_location

pass the tests in both contexts.

My Solution

Download fenestra/table-drag-end/app/prefs-window/PreferencesTableView.rb

def evaluate_location(tailored_info)

if tailored_info.drop_would_work?
Ê select_row(tailored_info.row)

NSDragOperationCopy

else

deselectAll(self)

NSDragOperationNone

end

end

The only thing I think of note is at Ê. select_row is one of my short-

hand methods from NSTableViewPatches. You can see it in Figure 20.3,

on page 266.

Skipping the Drop

Moving the cursor out of the table without ever dropping merits only

one test:

Download fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb

context "exiting dragging" do

should_eventually "leave no rows highlighted" do

@sut.select_row(1)
Ê @sut.fenestra.forget_drag('ignored')

assert { @sut.numberOfSelectedRows == 0 }

end

end

I can think of no reason why our forget_drag should ever need dragging

info, so I deliberately pass it the wrong class of object at Ê: a String

instead of a PrefsTableDraggingInfo. You might argue that forget_drag’s

caller, draggingExited, should simply not hand any argument at all to

forget_drag. (See Í in Figure 20.8, on page 276, for draggingExited’s defi-

nition.) I decided against that, though, thinking making all the dragging

methods consistent would be less error-prone.5

5. When I wrote the original skeleton for PreferencesTableView, my worry about human

error (and my “meta mood” at the moment) was enough to have me write code that

generated draggingExited and friends in much the way that attr_accessor generates getters

and setters. I later decided that was just showing off—and at the cost of clarity—so I

threw the code away and wrote the methods by hand.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/app/prefs-window/PreferencesTableView.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=278

TRY THIS YOURSELF: DRAG AND DROP 279

Now make this test pass.

My Solution

Download fenestra/table-drag-end/app/prefs-window/PreferencesTableView.rb

def forget_drag(ignored_info)

deselectAll(self)

end

Dropping

And now for the anticlimax: dropping. Here are two tests:

Download fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb

should_eventually "announce that a row's source should be updated" do

during {

@sut.drop(@info)

}.behold! {

expected = this_notification(HasRubySource,

@sut,

{ :source => @pathname,

:row => 1 })

watchers_are_notified.once.with(expected)

}

end

should_eventually "return true" do

assert { @sut.drop(@info) }

end

end

Make them pass.

My Solution

Download fenestra/table-drag-end/app/prefs-window/PreferencesTableView.rb

def drop(tailored_info)

post(HasRubySource, :source => tailored_info.pathname,

:row => tailored_info.row)

true

end

Something Else to Try

In writing the code and tests in this section, I assumed that the mouse

didn’t move between the last time draggingUpdated was called and the

time performDragOperation was called. I’ve spent some time with versions

of those two methods that printed out the draggingLocation. I dragged

and dropped, trying to find cases where the locations were different. I

failed, so I’m comfortable with my assumption.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/app/prefs-window/PreferencesTableView.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-start/test/prefs-window/prefs-table-view-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/app/prefs-window/PreferencesTableView.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=279

DOES IT WORK? 280

However, as far as I can tell, Apple doesn’t explicitly guarantee that

behavior. If you’re not as trusting as I am—or if you feel like practicing

working with tests—you could write a test for prepareForDragOperation

that shows it answering false in cases where draggingUpdated would

return NSDragOperationNone. Apple does guarantee that false return

value will prevent performDragOperation from being called, so that’s the

only test you’ll need.6

Omitting Tests

We have two sets of methods: the “official” ones, such as draggingEn-

tered, and the encapsulated ones, such as evaluate_location. There are

no tests that check whether, for example, draggingEntered calls evalu-

ate_location correctly. And there aren’t going to be.

Testing, like every other software development activity, involves balanc-

ing costs against benefits. In the last century, I thought detailed tests

like the ones in this chapter cost way too much to be worthwhile, espe-

cially because you had to change them to match a changing implemen-

tation. It turns out I was wrong. As computers have gotten faster and

people have gained experience, the cost of test writing, running, and

maintenance has dropped. Moreover, tests have come to have value

beyond just finding bugs. (See Chapter 21, Epilogue: A Wonderful World

of Tests, on page 282.) So, I, like many others, write many more tests

than I dreamed I would ten years ago.

But I still don’t see much value in tests to check that draggingEntered

really does call evaluate_location or in the elaborate creation of NSDrag-

gingInfo objects just to check that they’re in fact converted to PrefsTable-

DraggingInfo objects. True, looking at the implementations of methods

like draggingEntered might not give me enough confidence—I have long

experience botching even the simplest methods—but I have another

way of gaining it. Read on.

20.7 Does It Work?

The style of testing I’ve been using in these chapters takes isolation

somewhat to an extreme. Most objects under test communicate with

6. If you want to be super scrupulous, note that I can’t find any guarantee that the

NSDraggingInfo passed to performDragOperation is the same as the one given to prepareFor-

DragOperation, so you could write yet another test for the case where they differ. But that

way lies madness.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=280

WHAT NOW? 281

fake objects, not instances of classes they’ll work with in the real app.

That makes the tests easier to write and—I hope—easier to understand

and code to. But it also produces cracks where bugs can slip in.

For example, we’ve seen cases throughout the book where a Ruby true

enters the Objective-C universe and pops out the other side as an inte-

ger 1. If we’re testing that object at the other end and we “flexmock”

the whole Objective-C universe with an object that provides true, we’ll

have no defense against a nasty surprise when we—or, worse, some

user—exercises the real code path.

And we’ve seen cases where an NSString is importantly different from a

Ruby String. It’s easy to slip up and test a method with a String, forgetting

that it will have to handle an NSString in real life.

One solution is to supplement our automated detailed tests with auto-

mated “end-to-end” tests that exercise the whole app or some major

chunk of it. Such tests tend to be hard to write and expensive to main-

tain, so—these days—I lean heavily on careful, disciplined manual test-

ing of changes.

So, carefully try drag and drop. Use the tests as a guide. For example,

the fact that there’s a test for forget_drag should remind you to drag a

file toward a Source cell but then move the mouse cursor out of the

table view.

Did you find any bugs?

20.8 What Now?

We’re nearly done with this version of Fenestra. I have a few more clos-

ing thoughts on the kind of test-driven development we’ve been doing,

but after that, we move to lighter fare: different sorts of minor tweaking

to make the app look attractive. For example, perhaps it should have

an icon?

And after that, the book is essentially done.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=281

Chapter 21

Epilogue:
A Wonderful World of Tests

During all the fun with tables, I’ve taken some care to present tests

as an implementation convenience—which they are. But they’re also a

design style called test-driven design (TDD). I’ll explain the basic idea

in this chapter.

21.1 Test-Driven Design

Test-driven design, as usually practiced, has four steps:

1. You want to add new behavior to some code. You write a single

failing test that describes a difference between the code behavior

you want and the behavior you have now. The test serves as a

small example of one new fact about the code, written from the

point of view of a client to that code.

2. You run the test. If it doesn’t fail, you fix whatever you did wrong.

This step often seems silly until the first time you run the test,

the code passes it, and you realize your test either tests nothing

or tests the wrong thing.

3. You make the new test pass without breaking any of the tests

that preceded it. You try not to write code beyond what the test

demands. Good style—like not writing duplicate code—isn’t much

of a concern.

4. Now that you have a passing test, you look at what you have. Do

you have duplicate code? Then group the copies together into a

Prepared exclusively for Alison Tyler

TEST -DRIVEN DESIGN 283

single method. Does a method seem to do two things? Then break

it apart into two methods. Do three methods seem to all be about

one topic, something that the rest of the code isn’t about? Then

perhaps they should go in their own class. Can’t remember quite

why you picked that variable or method name? Then change it.

The common term for this activity is refactoring. When you refac-

tor, you don’t change the externally observable behavior of the

code; you just make it better internally. If your tests are weak,

refactoring is dangerous; if they’re strong, it’s safe.

You repeat these steps until your code does everything you want (at

that moment). Then you move on to some other task.

Design

Test-driven design used to be called test-driven development or test-

first programming. It acquired the design label as people noticed that

making the tests easy to write, fast to run, and tolerable to maintain

forced people to design classes and their interactions differently.

For example, you’ll likely find your classes shrink and multiply. Large

classes are hard to work with in TDD because they usually require

many lines of setup code. With some existing systems, it’s practically

impossible to create any important object without creating all of them.

Simple laziness motivates the TDDist to make classes smaller, simpler

to create, focused, and independent.

Ironically, TDD forces us to write the kind of code all the slogans told

us to: “do one thing and do it well,” “classes should be loosely coupled

and highly coherent,” and so on. We rarely did, especially as systems

got larger, because doing so meant real and personal pain today for a

theoretical benefit that might someday be gotten by somebody (else).

TDD brings the cost/benefit equation into the present. Good design

means happiness, joy, and ponies today because testing gets easy.

Test Doubles

I’ve been having you use rubycocoa_flexmock without ever giving you

terminology for the objects it returns. Gerard Meszaros can fill that

gap.1 All of them are, broadly, test doubles. Test doubles are any objects

1. These terms are defined in his XUnit Test Patterns [Mes07].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=283

TEST -DRIVEN DESIGN 284

that replace a real object for testing purposes. Meszaros describes four

categories of test doubles:

Dummies

A dummy is an object that we need to have but never actually use.

In the following code, line Ê uses a symbol as a dummy argument

because a real table would be complicated to build but is never

used in the tests.

Download fenestra/table-drag-end/test/prefs-window/prefs-table-dragging-info-tests.rb

@raw_info = rubycocoa_flexmock("raw dragging info")

@sut = rubycocoa_flexmock(PrefsTableDraggingInfo) do | klass |
Ê klass.alloc.objc_send(:initWithTable, :unused,

:rawInfo, @raw_info)

Stubs

A stub gives the same results as the real object would but can

work only in your test (because it couldn’t handle everything the

real world might throw at it). In the following, I’ve “stubbed out”

the clickedColumn and clickedRow methods:

Download fenestra/table-drag-end/test/prefs-window/prefs-change-source-tests.rb

@table.should_receive(:clickedColumn).and_return(col)

@table.should_receive(:clickedRow).and_return(row)

Mocks

A mock is programmed with expectations about how it should be

called. Here’s one of our examples:

Download fenestra/table-drag-end/test/prefs-window/prefs-change-source-tests.rb

@table.should_receive(:editColumn_row_withEvent_select, 4).once.

with(@display_name_column_index, 1, any, 1)

The method has to be called with a certain set of arguments. More-

over, it has to be called exactly once. If either of those expectations

isn’t satisfied, the test fails.

Mocks can return values, but we haven’t seen an example that

both returns values and checks its arguments.

Fakes

A fake does the same thing as the real object but in a more conve-

nient way. For example, you might replace an instance of Oracle

or MySQL with some in-memory database. I didn’t use any fakes

in this book.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/test/prefs-window/prefs-table-dragging-info-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/test/prefs-window/prefs-change-source-tests.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/table-drag-end/test/prefs-window/prefs-change-source-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=284

TO LEARN MORE 285

21.2 To Learn More

Because I’ve treated test-driven design as nothing more than a con-

venience, I recommend you next read the book that concentrates on

TDD as design: Kent Beck’s Test-Driven Design: By Example [Bec02].

After that, Ron Jeffries’ Extreme Programming Adventures in C# lets you

watch over the shoulder of someone to whom TDD is second nature.

Like this book, it builds up a single larger application rather than show-

ing small examples.

As with TDD as a whole, I used mock objects just as a way to save effort.

There’s a school of practitioners who use mock objects heavily as a

design tool. That leads to a somewhat different workflow and emphasis

than the previous two books show. There is no published book that

covers this style, but there will soon be: Freeman and Pryce’s Growing

Object-Oriented Software, Guided by Tests. As of March 02009,2 you

can find drafts at http://mockobjects.com/book. That site also has useful

papers and essays on design with mock objects.

2. Sic. I like to use the Long Now Foundation’s dating scheme: “The Long Now Founda-

tion uses five-digit dates; the extra zero is to solve the deca-millennnium bug that will

come into effect in about 8,000 years.” The Long Now Foundation “was established in

01996 to creatively foster long-term thinking and responsibility in the framework of the

next 10,000 years.” See http://www.longnow.org.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://mockobjects.com/book
http://www.longnow.org
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=285

Part VI

Wrapping Up

Prepared exclusively for Alison Tyler

Chapter 22

Fit and Finish
In this chapter, we’ll tinker with Fenestra to make it look and behave

more like a respectable Mac app. We’ll add expected behaviors like

responding nicely to Tab , restoring window positions when the app

restarts, and resizing window contents along with the window frame.

And we’ll remove jarring visual touches like the pervasive use of “New

Application” instead of “Fenestra,” an About window that says nothing

about Fenestra, and buttons that slightly overlap.

22.1 Saving the Window Position Until the Next Launch

In Section 11.5, Try This Yourself: A Sticky Window, on page 145, we

wrote code that explicitly saved the window position as a user prefer-

ence. Since practically every app wants to do that, there’s an easier

way: simply set the window’s frame name in its Attributes inspector:

Prepared exclusively for Alison Tyler

TAB BEHAVIOR 288

The named window prompts Cocoa to save the window position and

size in user preferences. (The frame name is used as the key for that

data.)

Make that change to your latest version of Fenestra; then try it.

22.2 Tab Behavior

As you’ll see shortly, Fenestra’s default response to you pressing a

sequence of Tab keys is clumsy. In this section, you’ll improve it. How-

ever, since Fenestra’s user interface doesn’t have many controls, first

set your system preferences so that Tab can take you to all of them. You

do that with the Keyboard & Mouse panel inside System Preferences.

On the Keyboard Shortcuts tab, you’ll see the following:

Change it to “All controls.”

Now launch Fenestra, and open the preferences panel. Start pressing

Tab . I expect that you’ll see each field in the first row of the table

become enabled for editing and then see the add and remove buttons

highlighted with a light blue focus ring. The focus ring means that you

can press the button by pressing the spacebar. Here’s an example—

even in black and white, you should be able to tell that there’s a fuzzy

ring around the remove button:

Let’s pretend that we usually want Tab to cycle between the two but-

tons. It shouldn’t ever take you to a new table cell unless you started

from one (by putting the cursor there with a click). We can do that by

taking control of the key view loop.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=288

USING NSMATRIX TO ORGANIZE BUTTONS 289

We start to define the key view loop at the window. It controls which

of its views first gets focus.1 Open the Connections inspector for the

preferences panel. Drag to create a connection between the initialFirstRe-

sponder outlet and the add button:

Go now to the Connections inspector for the add button. There’s an

outlet named nextKeyView there. Make a connection between it and the

remove button.

To complete the loop, make a connection between the remove button’s

nextKeyView and the add button.

Now see how tabs work, either by using IB’s interface simulator or by

building the real app.

22.3 Using NSMatrix to Organize Buttons

You may have noticed before now that the add and remove buttons

slightly overlap. Giving them focus rings makes that painfully obvious.

Compare these two images:

1. Remember that every control is a view.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=289

USING NSMATRIX TO ORGANIZE BUTTONS 290

What’s happening here is that the remove button is ordered on top of

the add button so that its nonfocus image obscures part of the add

button’s focus ring.2

We need to put the two buttons at the same level. We can do that by

putting them inside a matrix, an instance of the NSMatrix class. Do that

by selecting both of the buttons and choosing the menu item Layout >

Embed Objects In > Matrix, as shown here:

You’ll see little visible change. However, you’ve just changed this view

structure:

2. If you created the buttons in a different order than I did, you may see the add button

on top of the remove button.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=290

USING NSMATRIX TO ORGANIZE BUTTONS 291

. . . into this one:

You’ve discarded two buttons and replaced them with one matrix. The

cells behind the buttons have been retained in the matrix. Recall, from

Section 17.1, Cells, on page 230, that controls like buttons delegate

most of their work to cells. What work they don’t delegate is the same

for buttons and for fixed-size matrixes, so the only change a user could

observe would be a tidier focus ring.

You can consider an NSMatrix very roughly like an NSTableView. An NSMa-

trix object has rows and columns that contain cells. New rows and

columns can be added. (In our case, the new cells would be copies

of the Prototype shown in the previous snapshot.) An NSMatrix object

supports editing, scrolling, and sorting. However, they don’t have the

added structure given by NSTableColumn and NSTableHeaderView.

NSMatrix objects are often used to group cells that interact, such as radio

buttons. In Section 16.3, Interdependent Favorite Values, on page 222,

you wrote code that observed the result of typing “yes” in one Favorite

cell and made the current favorite no longer the favorite. In Chapter 17,

Buttons in Tables, on page 230, the text fields in the Favorite column

were changed to radio buttons. That made your code implement typi-

cal radio button behavior: select one, and another gets deselected. An

NSMatrix containing buttons can do that kind of work for you if you set

its mode to NSRadioModeMatrix.

For more, see the NSMatrix API documentation and Apple’s Matrix Pro-

gramming Guide for Cocoa [App08p].

Tab Order Again

Grouping the buttons destroyed the destination for the window’s ini-

tialFirstResponder. Restore it by making a connection between the win-

dow and the matrix. You don’t need to make a nextKeyView connection

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=291

USING NSMATRIX TO ORGANIZE BUTTONS 292

Noticing Interface Builder Warnings

At any time, you can look at a nib’s Document Info window
(under the Window menu). You’ll see a list of warnings. In the
case of the overlapping buttons (Section 22.3, Using NSMatrix
to Organize Buttons, on page 289), you’d see this:

between the two matrix cells: by default, a matrix makes Tab move

through its cells in order, starting from the upper left.3

Run Fenestra. You should see the add button selected. Press the space-

bar. As before, you’ll get a new table row and be editing the first cell.

Edit the row, tabbing through the rest of the cells. When you tab out

of the last cell, you’ll notice that the entire table will be selected. What

happens if you press the spacebar now?

Is that what you want? Or do you want to be able to keep pressing the

spacebar to add more rows? If so, make the NSTableView’s nextKeyView

the matrix. Is the new behavior more to your liking? What happens

when you click a row to select it and then click the remove button

to remove it? Do you like that behavior? Is there behavior you’d like

better?

3. Indeed, you can’t set the nextKeyView on the cells. nextKeyView is a property of an

NSView. Controls are NSView objects, but cells are not.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=292

SIZING 293

22.4 Sizing

Run Fenestra. Resize the main window (not the preference panel) to

make it smaller. The app behaves badly:

Let’s fix that by giving the window a minimum size. Open MainMenu.nib.

With the window selected, go to the Size inspector. (It’s the third tab.)

Select the Has Minimum Size checkbox, and click the Use Current but-

ton:

Run the IB simulator. You should no longer be able to shrink the win-

dow. What if you grow it, though?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=293

SIZING 294

That’s not so good, either. Let’s first make the text view grow along with

its containing window. Select the text view. The Size inspector will show

you the following:

The key part is the little box diagram, which I’ve reproduced in a larger

size on the right.

Within the diagram, the inner box represents the inspector’s view (in

our case, the text view). The outer box is the containing view (in our

case, the content view that covers the entire window). The outer solid

lines that look reminiscent of I-beams mean that the window system

should try to keep constant the distance between that edge of the text

view and that edge of the containing view. The inner dashed arrows

mean that the text view is not allowed to grow.

When you grow the window, the text view can’t both stay the same size

and stay the same distance from the edges of the content view. Staying

the same size takes precedence.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=294

SIZING 295

In that case, the best the window system can do with the distance

between edges is keep it the same for two pairs.

To make the text view grow to match the window, click the two interior

dashed lines to make them solid. Note the behavior of the inspector’s

useful-yet-annoying animation.

Simulate the interface, grow the window, and behold:

The text view behaves as we desire. The next step is to fix the combo

box, label, and button. One thing we might do is have them “stick” to

the bottom-right corner and move as the user grows the window. Here’s

a snapshot:

That can be done by setting the controls so that they remain the same

distance from the bottom-right edge of the window’s content view. That

is shown here. (Since the settings are identical for all three, you can

select them and edit them as a group.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=295

SIZING 296

label combo box button

However, one reason I might want to grow the window is because a

particular display name is too wide to fit in the combo box. If so, I’d

prefer the combo box to grow with the window. Like this:

That can be accomplished by setting the three controls as follows:

Stick to left border Stick to both borders
S t r e t c h to fit

Stick to right border

label combo box button

The key trick is turning the horizontal dotted line inside the combo

box’s view into a solid line by clicking it. That means the view is allowed

to grow horizontally.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=296

CLEANING UP THE MENU BAR 297

But—never satisfied, am I?—now I don’t like the long distance between

the text in the combo box and the button. It’s an enormous imposition

to have to drag the cursor all that way just to click. I’d rather see the

combo box’s text right-aligned. That’s easy to do with the Attributes

inspector:

22.5 Cleaning Up the Menu Bar

The default menu bar contains menu items irrelevant to this app. You

can delete them by selecting them and pressing Delete .

Deleting an entire menu is a little more complicated. The first time you

click it, it shows the items it contains. If you press Delete , then it won’t

delete the menu. One or two more clicks will make the items vanish,

keep the menu selected, and let you delete it.

I recommend you experiment with the different menu items in order to

see which ones already work. Delete the ones that don’t.

The second menu bar task is to change all the instances of “New Appli-

cation” to the real application name. You can find them in (and under)

the New Application menu. There’s also one under the Help menu.

22.6 The About Window

The application menu has an About item. The window it pops up also

needs changing.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=297

THE ABOUT WINDOW 298

By default, it will look something like this:

You may have already noticed the annoying __MyCompanyName__

when creating source files in Xcode, but it’s doubly annoying here.

To change it, edit English.lproj/InfoPlist.strings.4 Change CFBundleGetInfoS-

tring and NSHumanReadableCopyright.

You probably do not want to make this change for every new project. I

see no way to change the default for all Xcode projects, but you can set

it through the command line:

2116$ defaults write com.apple.Xcode PBXCustomTemplateMacroDefinitions ←֓

'{ORGANIZATIONNAME = "Exampler Consulting";}'

You’ll also want to change the version numbers. They come from two

entries in Info.plist: CFBundleShortVersionString and CFBundleVersion. The

former is the “marketing version” and is typically manually changed

once per public release. The latter is for internal use and is often

changed automatically (such as upon each successful build or each

version control check-in).

You will undoubtedly want a special icon for your app. You can use

/Developer/Applications/Utilities/Icon Composer to create one. Simply cre-

ate a TIFF-format file, and drop it onto the largest of Icon Composer’s

Images panes. Hint: Icon Composer won’t scale images up to fill the

space, but it will scale them down, so it’s easiest to drag in a giant

image.

4. English.lproj contains localizations for the English language. You can create other folders

for other languages. See Internationalization Programming Topics [App08l].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=298

CHANGING THE APPLICATION’S NAME 299

For your convenience, I’ve created Fenestra.icns and put it in the fenestra

directory. Installing the icon is a two-step procedure:

1. You have to tell Xcode about the file. Either drag it onto the project

window’s Resources group or select that group and use Project >

Add to Project.5

After you drag the file or pick it with a file chooser, Xcode will

pop up a dialog box you’ve seen before (for example, on page 112).

Unlike in those earlier cases, Fenestra.icns isn’t already in the

project folder, so make sure you select the “Copy items into desti-

nation group’s folder” option.

2. The CFBundleIconFile entry in Info.plist tells the app which icon file

to use. It starts out looking like this:

<key>CFBundleIconFile</key>

<string></string>

Change it to this:

<key>CFBundleIconFile</key>

<string>Fenestra</string>

Gaze in wide wonder:

22.7 Changing the Application’s Name

In Section 11.1, The User Preferences System, on page 128, you saw

that Fenestra’s preferences are stored in ~/Library/Preferences/com.apple.

rubycocoa.FenestraApp.plist. That’s not the best name, but it’s easy to

change.

5. It doesn’t actually matter where the icon ends up, but Resources is the typical

location.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=299

CHANGING THE APPLICATION’S NAME 300

Edit Info.plist to change this:

<key>CFBundleIdentifier</key>

<string>com.apple.rubycocoa.FenestraApp</string>

. . . to this:

<key>CFBundleIdentifier</key>

<string>com.exampler.Fenestra</string>

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=300

Chapter 23

Adding Help
An application without help can make users sad. Apple’s Help Program-

ming Guide [App08a] will help you provide help. I wrote this chapter

because the guide seems to assume you know things about help that I

didn’t when I started out.

Although most of the chapter is about creating the help books that

users reach through the Help index, I also describe how to add tooltips

to window controls.

If, like me, you’ve never paid attention to the structure of help books, I

recommend you browse through Fenestra’s now. It has a title page, two

content pages, and five index pages. Use the version in fenestra/fit-and-

finish.

23.1 Help Book Basics

Most help books live within an app’s bundle. You can also have the

help viewer fetch pages across the network from your server, but I won’t

cover that in this chapter.

When you ask an app for help, the help book is cached inside ~/Library/

Caches/com.apple.help. Because of that, you can read an app’s help

book even when the app isn’t running.

Prepared exclusively for Alison Tyler

CREATING A HELP BOOK 302

That’s done through this menu in the help viewer:

Help pages can contain hyperlinks. Many of those are not direct links

but rather searches, which can make help seem unresponsive.

23.2 Creating a Help Book

Help books are written in XHTML. With the exception of some special-

purpose <meta> tags and <a> hrefs, it looks like any other CSS-heavy

HTML.

Since Apple’s help books contain files with descriptive names like

10028.html, I infer they’re generated by some tool. As far as I know, you

can’t use it. The Omni Group has a free package, Helpify,1 that converts

OmniOutliner files into help books. I built Fenestra’s help book by hand.

1. http://blog.omnigroup.com/2008/10/02/helpify-the-omni-help-emitter/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://blog.omnigroup.com/2008/10/02/helpify-the-omni-help-emitter/
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=302

EDITING PAGES 303

My help book is in fit-and-finish/English.lproj/FenestraHelp. It contains these

files and folders:

FenestraHelp.html

This is the starting help page. You get it when you pick Fenestra

Help from this menu:

FenestraHelp.helpindex

This file is generated (see Section 23.4, Indexing Page Content,

on page 310). It contains information used in responding to user

searches. It has nothing to do with index pages.

sty and gfx

The sty folder contains Apple’s CSS stylesheets for help pages. The

stylesheets make use of graphics files in gfx.

Important: One of the files in sty describes the results of a search.

It contains the hard-coded name of a help book. If you reuse

these stylesheets, search for all instances of Fenestra Help in sty/

genlist.html, and change the app name to match your app. If you

don’t, the Home and Index links on your app’s search results page

will try to take the user to Fenestra’s help book.

images, index-pages, movies, pages

You can put content anywhere you like within the root help folder.

Apple uses short, obscure names for all the help book folders. I like

longer names, so I ignored Apple’s choices and gave my content

folders these four names. I kept sty and gfx because there are hard-

coded references to them all over the place.

23.3 Editing Pages

There’s no documentation for Apple’s CSS that I could find. So, you can

learn it in the time-honored way: by copying and tweaking someone

else’s HTML. That’s what I did to learn most of what follows.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=303

EDITING PAGES 304

Figure 23.1: A help book’s title page

A Title Page

The title page of Fenestra’s help book is shown in Figure 23.1. I copied

it from Mail’s help.

Here’s the head of its source:

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/FenestraHelp.html

<head>

<title>Fenestra Help</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
Ê <meta name="AppleTitle" content="Fenestra Help" />
Ë <meta name="AppleIcon" content="FenestraHelp/images/fenestra16x16.png" />
Ì <meta name="robots" content="anchors" />

<link href="sty/access_4box.css" rel="stylesheet"

type="text/css" media="all"/>

</head>

Ê AppleTitle identifies this as the first page of the help book. It’s also

the name that appears in the drop-down list of help books shown

in Section 23.1, Help Book Basics, on page 301.

Ë This small image is displayed alongside the help book’s name in

the drop-down list of help books. It should be a 16x16 PNG image.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/FenestraHelp.html
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=304

EDITING PAGES 305

Ì Normally, all the text on the page is indexed for searching. A page

like this one isn’t of much use as a search result, so this tag tells

the indexer to look only at descriptions of links to other pages.

You can see the “navbox” in Figure 23.1, on the preceding page—it’s

the strip across the top of the window. The navbox contains a link to

the main index. In all pages but this one, it also contains a link back to

this page. Here’s the source for the navbox:

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/FenestraHelp.html

<div id="navbox">
Ê

<div id="navleftbox">

</div>

<div id="navrightbox">

<a class="navlink_right"
Ë href="help:anchor='xall' bookID='Fenestra Help'">

Index

</div>

</div>

Ê This is the name of the page for linking or searching purposes.

Apple seems to always use access for the title page’s name, so I

am too.

Ë We could use a direct link to the index page, but that would make

the help viewer too responsive.2 help:anchor uses the search index

from the help book named by the BookID to find the page named

by the anchor. In this case, that’s the Fenestra page named xall

(which is the name of the main index).

The application’s icon conventionally appears in the header of all pages.

That’s accomplished at Ê within this HTML:

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/FenestraHelp.html

<div id="headerbox">

<div id="iconbox">

<img id="iconimg" src="images/fenestra32x32.tiff"
Ê alt="Fenestra Help Icon" height="32" width="32"/>

</div>

<div id="pagetitlebox">

<h1>Fenestra Help</h1>

</div>

</div>

2. Ha ha! Only serious!

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/FenestraHelp.html
http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/FenestraHelp.html
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=305

EDITING PAGES 306

Figure 23.2: A help book page

The image should be 32x32. An icon of that size can be dragged out of

the application’s .icns file onto disk. So can the 16x16 icon, but it has

to be converted from TIFF format to PNG format.

The rest of the HTML is the usual unholy mess of <div> tags that is

modern web page implementation.

A Content Page

An ordinary help book page is shown in Figure 23.2.

There’s not much new in the HTML. The metadata, shown next, has no

instructions for robots, so all the text on the page will be indexed.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=306

EDITING PAGES 307

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/pages/movie.html

<head>

<title>Fenestra in Action</title>
Ê <meta name="description" content="A movie showing what Fenestra can do"/>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<link href="../sty/access_4box.css" rel="stylesheet"

type="text/css" media="all"/>

</head>

The description <meta> tag (at Ê) gives text that appears in a tooltip

when you hover over a search result that links to this page. Like this:

The navbox section of the HTML also has some differences:

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/pages/movie.html

<div id="navbox">
Ê
Ë
Ì
Í

The page has been given four names. The first will be used in a help:

anchor search. The latter three are used in a help:topic_list search. You

can see how that’s done in Section 23.3, Index Pages, on the following

page.

After the names comes more unexciting HTML, one snippet of which is

this:

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/pages/movie.html

<embed src="../movies/fenestra.mov" width="584" height="314"

autoplay="false"/>

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/pages/movie.html
http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/pages/movie.html
http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/pages/movie.html
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=307

EDITING PAGES 308

Figure 23.3: A help book index page

That embeds a movie. If the <embed> tag didn’t give a width and

height, the movie wouldn’t be scaled to fit. Instead, it would be cropped

(and useless). So, don’t forget those attributes when you embed movies.

The same goes for images.

For movies, the height of the embedding should leave room for a 16-

pixel control strip on the bottom.

Index Pages

A help book index page is shown in Figure 23.3.

This particular page shows all the index entries. Other pages show only

entries beginning with a particular letter. A single line in the output is

generated with this HTML:

Download fenestra/fit-and-finish/English.lproj/FenestraHelp/index-pages/xall.html

<tr>

<td>

<a href="help:topic_list=alwindows

bookID='Fenestra Help'

template=sty/genlist.html

stylesheet=sty/genlist_style.css

Other=Windows">Windows

</td>

<td></td>

</tr>

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/English.lproj/FenestraHelp/index-pages/xall.html
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=308

HOOKING A HELP BOOK INTO AN APP 309

Figure 23.4: A cross-reference page

When clicked, that “link” generates a page containing links to all pages

named with alwindows. Such a page is shown in Figure 23.4.

The Other attribute puzzled me for a while. It’s the title and level-one

header for the generated page. As such, it should almost always be the

same as the text content of the <a> tag (Windows in this case). But you

can change it to, oh, Wombat if you like.

23.4 Hooking a Help Book into an App

Making a help book available requires a little bookkeeping work.

Xcode

You should add the help book to Xcode in the same way we added

the third-party folder in Section 9.1, Preparing a Directory, on page 111.

Otherwise, the help book won’t be copied into the application bundle at

build time.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=309

HOOKING A HELP BOOK INTO AN APP 310

Info.plist

Info.plist needs two entries about the help book, as shown here:

<key>CFBundleHelpBookFolder</key>

<string>FenestraHelp</string>

<key>CFBundleHelpBookName</key>

<string>Fenestra Help</string>

The first tells the app where to find the help book the first time it’s used.

The second gives the name that’s used in searches and the drop-down

list of help books.

Indexing Page Content

Help book searching relies on an index generated by the help indexer

app. You pick a folder, and it indexes it. The interface is somewhat

clumsy. In particular, it pops up this message after indexing:

There’s actually no reason to quit. You can ignore the pop-up and leave

the app running. Each time you want to reindex, you can just press

Command - I to get the starting dialog box. After that, the key sequence

spacebar- Return - Return will reindex your help files.3

The help indexer’s help page describes how to run it from the command

line. That allows you to make reindexing an automatic part of the build.

3. In order to use the spacebar to press a button, you must have set your Keyboard and

Mouse system preferences as described in Section 22.2, Tab Behavior, on page 288.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=310

A WORKFLOW FOR CREATING HELP BOOK PAGES 311

23.5 A Workflow for Creating Help Book Pages

Here are some of the facts that drive my workflow:

• You can view help pages in Safari. Provided the tags for images

and videos contain the length and height attributes, I can’t tell the

difference between its rendering and the help viewer’s.

• When Safari follows a link that uses the help: protocol, it launches

the help viewer.

• If the app doesn’t provide an index, the help viewer will build one

for you. Errors in your HTML are reported less usefully, though,

and warnings aren’t reported at all.

• After you’ve provided the index the first time, you need to keep

reindexing pages after you change them. If you don’t, the help

system won’t notice the changes.

And here’s my workflow:

• While working on a page, I proofread it in Safari. That’s much

faster than starting the help viewer and navigating to the page.

• When it comes time to check a page’s links, I rebuild the help index

and then rebuild and launch the app. I don’t go to help through

the app, though. Instead, I use Safari to click the links.

Early in my exploration of help pages, I managed to get the help viewer’s

notion of my help book completely out of sync with my source. I reverted

to a blank slate with these two commands:

rm -rf ~/Library/Preferences/com.apple.help*
rm -rf ~/Library/Caches/com.apple.help*

23.6 Tooltips

The behavior of Fenestra’s main window is intuitively obvious.4 But

it’s conceivable—barely conceivable—that some user might need help

understanding what to put in the different columns of the preference

pane. To help them, I’ll add a tooltip to each column.5

4. To me.
5. The tooltip appears when you hover over the column heading. I can’t see a way to

make it appear when you hover over a column cell.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=311

TOOLTIPS 312

Tooltips are defined in IB’s Identity inspector:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=312

Chapter 24

Document-Based Applications
Most Mac applications are document-based. You create a new document

with Command - N , edit it, save it with Command - S , reedit it later with

Command - O , and so on. Should Fenestra be document-based? I can’t

see why. The most I’d want is a button to save a log to a file.

Still, I’d be doing you a disservice if I didn’t show you how document-

based applications work, so I’ve produced a version of Fenestra that’s

document-based. It looks like this:

Prepared exclusively for Alison Tyler

THE MAJOR PLAYERS 314

Spike Solutions

The version of Fenestra in this chapter is what some people call
a spike solution. A spike solution, or spike, is a coding exercise
done in response to a problem. You “spike it” for long enough
to know how the problem should be solved; then you throw it
away.

Spikes aren’t suitable for real use, and neither is this version of
Fenestra. Document creating, saving, and reopening all work.
Incoming notifications are translated and added to open doc-
uments. But I haven’t bothered with incidentals that would
make this a useful document-based app. For example, each
notification is added to every open window.

For my spike, I had to manually add the mechanisms behind
document-based applications to Fenestra. That was a useful
exercise since it forced me to discover every piece of the
puzzle. But I could have avoided some of that work when I
created Fenestra, way back on page 38. There, I chose to
make it a Cocoa-Ruby Application. Had I chosen Cocoa-Ruby
Document-based Application, a different set of empty nib and
template files would have been created.

Notice that it has some of the properties you expect from a document-

based application: the title bars are filenames or “Untitled,” Fenestra

documents have their own extension, each new window was created

offset from the next, and I got a warning pop-up when I tried to quit

Fenestra without saving changes.

24.1 The Major Players

Most of the objects involved in a document-based application play

familiar roles, as shown in the following image. There’s a window con-

taining views, a controller that manages it, and a source for the data the

window displays.1 The only new twist is that the window and its views

1. I wanted this to be the only Cocoa book in history not to name this three-object

structure, but that would probably be irresponsible. Without that password, you’d never

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=314

THE MAJOR PLAYERS 315

are most likely loaded from their own nib file, one separate from the

MainMenu.nib that describes the application as a whole. In a document-

based application, MainMenu.nib is mostly about the menu bar.

I contain the NSWindow
and all of its contents

I manage the NSWindow
and usually also create it

by loading a Nib.

an
NSWindowController

I contain data to be
displayed in the window,
under the control of the

controller

an

NSDocument

I manage
screen real estate
and contain views.

an NSWindow

In simpler programs, NSDocument and NSWindowController can be com-

bined into one object, but I’ll keep them separate in Fenestra.

Because a document-based app may have many documents open, there

is another object with the responsibility of handling them, NSDocument-

Controller.

be granted entry into the Cocoa Club. So, OK: this structure is called the model-view-

controller pattern, or MVC.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=315

THE RESPONDER CHAIN 316

The following picture shows how it fits in:

NSDocument knows how
to save me and later read

me back from disk.

one of many
NSDocuments

I hold the in-memory
representation of a

document.

the one and only
NSDocumentController

I create NSDocument
instances, one for each
new or opened file

Note that the NSDocument has the responsibility of saving itself to disk

and of converting the on-disk document format into an in-memory

format.

24.2 The Responder Chain

Find a document-based application (the version of Fenestra located in

document-based-spike will do fine) and open its MainMenu.nib. Open one

of the File menu’s items—New, say. Look at the item’s target in the Con-

nections inspector.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=316

THE RESPONDER CHAIN 317

You’ll see this:

Since it’s the document controller that creates new documents, why is

the menu item’s target the First Responder pseudo-object? Shouldn’t it be

the document controller?

The first responder was briefly explained in Section 12.5, IB’s First

Responder Pseudo-Object, on page 159, but this is a good point at which

to say more. “First Responder” is just a fancy way of saying nil: there

is no target object. Rather than throwing a null-pointer exception, the

Cocoa runtime takes the nilness as a signal to search for some object

that’ll accept the action.

Let’s suppose that we clicked New while a Fenestra window’s combo

box had focus. The runtime has to find an object that accepts newDoc-

ument:. A picture of a search, along the combo box’s responder chain, is

shown in Figure 24.1, on the next page. Here’s its explanation in words:

1. Does the combo box handle newDocument? No.

2. The window has a content view that contains the combo box. It

is the next element in the responder chain. Does the content view

handle newDocument? No.

3. Perhaps the window itself handles it? No.

4. Does the window have a delegate? Perhaps that handles it. No.

5. There’s an NSWindowController that mediates between the NSDocu-

ment and the Fenestra window that’s displaying it. Perhaps that

handles it? No.

6. What about the NSDocument itself? No.

7. What about NSApplication? Does NSApplication handle it? No.

8. The NSApplication’s delegate? No.

9. That leaves only the DocumentController. You don’t suppose...? It

does handle newDocument? Success!

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=317

THE RESPONDER CHAIN 318

NSWindow delegate

NSWindowController

NSDocument

Application Delegate

NSApplication

NSDocumentController

(content view)

(window)①②③ ④ ⑤ ⑥⑦⑧ ⑨
Figure 24.1: The responder chain

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=318

CREATING A NEW DOCUMENT 319

If the action were, instead, saveDocument:, the search would stop at the

NSDocument, the first object in the chain that defines that method.

It’s possible for one window to be handling keypresses while another

handles clicks. In that case, the search is more complicated. See Apple’s

Cocoa Event-Handling Guide [App08h] for all the details. The good news

is that searching usually just works: the right actions get called on the

right objects without you having to worry about it.

24.3 Creating a New Document

At 6:34 p.m. on February 8, 2009, I launched Fenestra and immediately

pressed Command - N . A new Fenestra window appeared. In this section,

I’ll devote hundreds and hundreds of words to what took about a sec-

ond in real life. I’ll also explain the setup work required to make that

second’s work a pleasant confirmation rather than a nasty surprise.

One word of explanation first, though: most document-based applica-

tions create an untitled document when they’re launched. I’ve turned

that off in Fenestra because explaining those steps wouldn’t add any-

thing to the steps required to respond to Command - N . (They’re just a

subset.)

Turning off the default behavior is done by adding this method to the

application delegate:

Download fenestra/document-based-spike/app/main-menu-window/AppDelegate.rb

def applicationShouldOpenUntitledFile(sender)

false

end

That said, you can see what appeared in Fenestra’s debug log at around

6:34:02 p.m. in Figure 24.2, on the following page.

What Defines a Document-Based Application?

Unless the application is document-based, the New menu item (if it

exists) is inactive, and Command - N does nothing. A document-based

application is one that has a CFBundleDocumentTypes key in its Info.plist.

The key’s value is an array describing the different kinds of documents

the app will handle.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/main-menu-window/AppDelegate.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=319

CREATING A NEW DOCUMENT 320

DocumentController awakes from nib.

DocumentController asked to create a document.

Document springs into life!

Document will now create its controller.

LogWindowController springs into life!

LogWindowController will load the nib named 'Log'.

LogWindowController has been given a pointer to Document.

Document has been asked to show its windows.

LogWindowController has been asked to show its window.

(Is the Nib actually loaded yet? false)

LogWindowController is told the Nib is loaded.

LogWindowController now has an outlet to OSX::NSWindow.

LogWindowController stuffs '' into text view.

Figure 24.2: Creating a new document

Fenestra handles one, and the important parts of its description are

these:

Download fenestra/document-based-spike/Info.plist

<key>NSDocumentClass</key>

<string>Document</string>

<key>CFBundleTypeExtensions</key>

<array>

<string>fenestra</string>

</array>

There’s one kind of document, handled by an NSDocument subclass I’ll

name Document. Such a document is stored in files ending in .fenestra.

Creating a Custom Document Controller

There’s always one instance of NSDocumentController, which can be got-

ten with this statement:

NSDocumentController.sharedDocumentController

Normally, you would never see or worry about the NSDocumentController

instance; it’d just quietly do its work in the background. But we don’t

want it to be quiet—we want it to announce what it’s doing (via puts) so

that we can see how it fits in the app’s flow of control. So, I’ve created

a subclass, DocumentController (without the NS), for Fenestra to use.

Using such a subclass requires an odd little dance. The first time an NS-

DocumentController or subclass is created, it is installed as the instance

that NSDocumentController.sharedDocumentController returns. If shared-

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/Info.plist
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=320

CREATING A NEW DOCUMENT 321

DocumentController is called before it has an object to return, it cre-

ates one. That new instance will be a plain NSDocumentController, not

our subclass.

So, we have to create a DocumentController instance before any code

would want to use it. An easy way to do that is to put the instance in

the nib file:

It is at the moment that the nib file is fully loaded and DocumentCon-

troller’s awakeFromNib is called that we get the first line of our trace:

DocumentController awakes from nib.

...

Receiving newDocument

As discussed in Section 24.2, The Responder Chain, on page 316, the

DocumentController receives the newDocument: message that Command -

N generates. Because of the information in Info.plist, the newDocument

method knows to create a Document object.

At this point, Fenestra has accomplished this:

DocumentController awakes from nib.

DocumentController asked to create a document.

...

The initialized Document

The Document is shown and edited in an NSTextView. To match that

view’s capabilities, our Document should contain not just a string of

characters (an NSString), not just a string of characters that can be

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=321

CREATING A NEW DOCUMENT 322

changed (an NSMutableString) but a changeable string of characters

where runs of characters can have text attributes like fonts associated

with them (an NSMutableAttributedString). As the document initializes, it

creates (at Ê in the following code) an empty one of those for itself:

Download fenestra/document-based-spike/app/document/Document.rb

class Document < OSX::NSDocument

def init

$stderr.puts "#{self.class} springs into life!"
Ê @content = NSMutableAttributedString.alloc.init
Ë super_init

end

end

Nothing has yet happened yet on the screen, but the log gets a new

message:

...

DocumentController asked to create a document.

Document springs into life!

...

Creating the LogWindowController

At this point, we’re at line Ë in the preceding code snippet. That is,

we’re inside the Document’s superclass’s init method. Some object needs

to take responsibility for the document’s UI (still not yet created). It

could be the Document itself. It could be Cocoa’s NSWindowController. In

this case, we want it to be an instance of our own NSWindowController

subclass, which I’ll name LogWindowController.

We put an LogWindowController in charge by overriding this method:

Download fenestra/document-based-spike/app/document/Document.rb

class Document < OSX::NSDocument

def makeWindowControllers

$stderr.puts "#{self.class} will now create its controller."

main = LogWindowController.alloc.init

addWindowController(main)

end

end

As the name of the method implies, we could have several windows for

several views into the document. Fenestra creates only one.

We’ve now proceeded this far:

...

Document springs into life!

Document will now create its controller.

...

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/document/Document.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/document/Document.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=322

CREATING A NEW DOCUMENT 323

The Window Controller Starts to Create the Window

It’s the newly created LogWindowController’s job to create the window and

all the views inside it. It starts that process like this:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def init

$stderr.puts "#{self.class} springs into life!"

$stderr.puts "#{self.class} will load the nib named 'Log'."

initWithWindowNibName("Log")

self

end

end

initWithWindowNibName doesn’t actually load the nib file. The method

just tells the controller what nib file to load when it needs it. Neverthe-

less, let’s look inside the nib file now:

Notice that the LogWindowController isn’t one of the names you see in

the left column. That’s because it has already been created. Since it

will at some point load the nib file, though, it’s represented inside the

nib file by the pseudo-object File’s Owner. (On the first line of the nib

file, you can that see the File’s Owner is defined to be a LogWindowCon-

troller.) This representation lets outlets and action targets connect the

LogWindowController and nib objects.

Because Fenestra objects use notifications for cross-controller commu-

nication, objects like the AppChoiceController don’t need to use the File’s

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=323

CREATING A NEW DOCUMENT 324

Owner as a target or have outlets to it. The File’s Owner does, however,

have two outlets to nib objects:

The textView outlet points to the text view that will contain translated

notification text. It’s declared here:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

ib_outlet :textView

...

end

(In older versions of Fenestra, it was called log. While coding away on

the spike, that name confused me once. In retribution, I changed it to

something unambiguous.)

The window outlet is handled by the superclass. That outlet is actually

a lazy getter. If you use it to retrieve the window and the nib file hasn’t

been loaded yet, it will be loaded at that point.

We’re now at this point in the process:

...

Document will now create its controller.

LogWindowController springs into life!

LogWindowController will load the nib named 'Log'.

...

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=324

CREATING A NEW DOCUMENT 325

The Controller Learns About the Document

Now that the controller exists, the Document hands itself over to it by

calling setDocument:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def setDocument(doc)

$stderr.puts "#{self.class} has been given a pointer to #{doc.class}."

super_setDocument(doc)

end

end

After this, each object knows about the other. In particular, the LogWin-

dowDocument can use its document accessor to ask the document for

content to put in the textView. It mustn’t do that yet, because @textView

isn’t connected to anything because the nib file has yet to be loaded.

We’re now at this point in the scenario:

...

LogWindowController springs into life!

LogWindowController will load the nib named 'Log'.

LogWindowController has been given a pointer to Document.

...

Loading the nib file

Now that the Document and LogWindowController have been created, con-

trol returns to the DocumentController that started everything off. It now

instructs the new Document to show all of its windows by calling its

showWindows method. Here’s what that method looks like:

Download fenestra/document-based-spike/app/document/Document.rb

class Document < OSX::NSDocument

def showWindows

$stderr.puts "#{self.class} has been asked to show its windows."

super_showWindows

end

end

As you see, the work is done by the superclass method. It sends the

showWindow message to each controller it knows about. In our case, it

knows about a single LogWindowController. (In Section 24.3, Creating the

LogWindowController, on page 322, it used the method addWindowCon-

troller to stash it away for future use.)

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/document/Document.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=325

CREATING A NEW DOCUMENT 326

Here’s LogWindowController’s implementation of showWindow:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def showWindow(sender)

$stderr.puts "#{self.class} has been asked to show its window."

$stderr.puts " (Is the Nib actually loaded yet? #{isWindowLoaded})"

super_showWindow(sender)

end

end

Again, the superclass method does the real work. You and I will likely

never see the source for that method, but showing the window can be

done only via the window getter, so the nib file starts loading.

At this point, we’re here:

...

LogWindowController has been given a pointer to Document.

Document has been asked to show its windows.

LogWindowController has been asked to show its window.

(Is the Nib actually loaded yet? false)

...

There’s a subtlety here. In the picture of three Fenestra windows that

started this chapter, you saw they were cascaded. That didn’t work at

first. A Google search showed me why. I had one little leftover window

attribute:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=326

CREATING A NEW DOCUMENT 327

Making the window visible when the nib file is loaded means that it

appears before the NSWindowController has a chance to put in a good

word for the virtues of cascading. So, I had to turn that attribute off to

make cascading work.

The Controller and Window Are Connected

Even though a File Owner isn’t defined in a nib file, it still receives the

awakeFromNib message. Here’s a piece of LogWindowController’s imple-

mentation:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def awakeFromNib

$stderr.puts "#{self.class} is told the Nib is loaded."

$stderr.puts "#{self.class} now has an outlet to #{window.class}."

...

end

end

At this point, the controller has access to both the @textView and the

document, so this would be a good time to move data from the latter to

the former. First, though, here’s a reminder of where we are:

...

LogWindowController has been asked to show its window.

(Is the Nib actually loaded yet? false)

LogWindowController is told the Nib is loaded.

LogWindowController now has an outlet to OSX::NSWindow.

...

Initializing the View

Once everything is connected, it’s the job of the LogWindowController to

initialize the text view with the contents of the Document. These lines

do that:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def awakeFromNib

...

@textView.textStorage.attributedString = document.content

$stderr.puts "#{self.class} stuffs " +

"'#{document.content.to_s}' into text view."

...

end

end

I’ll discuss them further in Section 24.5, Editing, on page 330.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=327

OPENING AND SAVING DOCUMENTS 328

We’ve now completed the saga:

...

LogWindowController is told the Nib is loaded.

LogWindowController now has an outlet to OSX::NSWindow.

LogWindowController stuffs '' into text view.

...

Some Differences Between the Old and New Fenestra

In the old version of Fenestra, there was a class called of MainWindow-

Controller. You can see it in Figure 8.2, on page 102. None of the code

there is relevant to our new Fenestra:

• It put “No App” in the title, but a new document should instead

say “Untitled.”

• When Fenestra was fenestrating another app, it put the name of

the other app in the title, but a document window should give the

name of the document.

• It terminated the app when the window was closed, but that’s

incorrect in a multiwindow application.

The LogWindowController has all the correct behavior, just by virtue of

inheriting from NSWindowController.

Since the LogWindowController would therefore be empty of nondebug

code, I decided to put all the code that worked with the text view into

it. That code used to be in a separate controller, LogController, but now

that the text view is really a view into a document, it makes sense for

the NSWindowController that’s created by the document to control it.

You’ll see in Section 24.5, Editing, on page 330, how the LogController

from older versions was changed in this new Fenestra.

24.4 Opening and Saving Documents

Now things start to get simple. Once we tell NSDocument how to turn its

in-memory version to a disk-suitable version, we get all the behavior we

expect from menu items like Open, Close, Save, and Save As. Double-

clicking a file that ends in .fenestra will start Fenestra. You can drag

such a file from the Finder onto Fenestra’s Dock icon, and a document

window will spring into existence. And so on.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=328

OPENING AND SAVING DOCUMENTS 329

An easy way to create disk-ready data is to use the same archive/un-

archive mechanism we’ve been using since Section 11.2, Archiving, on

page 134. However, I want to show you something new. NSAttributed-

Strings have methods that support easy conversion from and to RTF. If

we save the content of the Document as RTF, then other applications

can edit it.

These two methods support conversion:

Download fenestra/document-based-spike/app/document/Document.rb

class Document < OSX::NSDocument

def dataOfType_error(type, error)

content.objc_send(:RTFFromRange, NSRange.new(0, content.length),

:documentAttributes, nil)

end

def readFromData_ofType_error(data, type, error)

string = NSMutableAttributedString.alloc

@content = string.objc_send(:initWithRTF, data,

:documentAttributes, nil)

true

end

end

Both of the methods take error arguments (which would be ObjcPtrs).

Since this is a spike, I haven’t bothered to worry about how the methods

could fail.

The methods also take a type argument. Some apps (TextEdit, for exam-

ple) can operate on different kinds of files with different extensions.

Fenestra operates only on "fenestra" files, so I ignore the argument.

Try This Yourself

I’ve implemented two menu items under Fenestra’s Format menu: Show

Colors and Underline.2 Put some colored, underlined text in the text

view, save the file, and open it with TextEdit. Does it work?

I have a wild imagination, but I still can’t imagine firing up Fenestra

and reopening a previously saved log. I can imagine opening a saved

log in TextEdit or some even more capable editor, annotating it, and

mailing it off as a bug report. So, I’d rather Fenestra files were plain-old

RTF files that open in TextEdit.

2. Show Colors invokes the action orderFrontColorPanel on the File’s Owner target

(NSApplication). Underline invokes underline on the First Responder (NSTextView).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/document/Document.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=329

EDITING 330

That can be done with one change to Info.plist. Change CFBundleType-

Extensions to contain rtf instead of fenestra. Run Fenestra, save a file,

double-click it in the Finder, and see what happens.

24.5 Editing

You might recall that an NSTextView has an accessor named textStorage.

(It was introduced on page 52.) An NSTextStorage is an NSMutableAttribut-

edString that contains a series of NSLayoutManagers. An NSLayoutManager

controls the display of a portion of the NSTextStorage. For our purposes,

we don’t need to care about layout managers; we accept whatever the

default layout is.

Back in Section 24.3, The initialized Document, on page 321, the doc-

ument was initialized with an empty NSAttributedString. The LogWindow-

Controller put that string into the text view after the nib file was loaded.

That code (again) is here:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def awakeFromNib

...
Ê @textView.textStorage.attributedString = document.content

$stderr.puts "#{self.class} stuffs " +

"'#{document.content.to_s}' into text view."

...

end

end

I find that code misleading. It looks as if an NSTextStorage has an @attri-

butedString property that’s getting set. Not so. I meant it when I wrote

earlier that an NSTextStorage is an NSMutableAttributedString. This code

replaces all the characters and attributes of @textView.textStorage with

those of document.content. I mention this now to head off some unclarity

later.

There are two scenarios in which the document changes. I’ll treat them

in turn.

User Edits

In this scenario, the user makes a change: she types, pastes, changes

text color, underlines with the Underline menu item, or whatever.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=330

EDITING 331

A text view informs its delegate whenever it’s changed by the user, so

the first step in making editing work is to make the LogWindowController

the text view’s delegate:

When the text view makes a change, the controller’s textDidChange

method is called. It’s now the controller’s job to pass the change along

to the document. Here’s the code:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

class LogWindowController < OSX::NSWindowController

def textDidChange(unused_notification)

document.content = @textView.textStorage

end

end

On first blush, that confused me. We’re replacing what used to be an NS-

MutableAttributedString with an NSTextStorage. That confusion prompted

me to discover that an NSTextStorage is an NSMutableAttributedString sub-

class.3

3. You might think a slick way to avoid needing this code is to have the text view and

the document share the same NSTextStorage. That way, changes made by the text view

would just appear in the document. That won’t work. The text view keeps getting new

NSTextStorage objects. You can turn on logging that shows the changing object identities—

just remove comments from some lines in Document’s content= method.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=331

EDITING 332

The document’s content= method isn’t just a simple setter, though:

Download fenestra/document-based-spike/app/document/Document.rb

class Document < OSX::NSDocument

def content=(new_content)

updateChangeCount(NSChangeDone)

@content = new_content

end

end

The updateChangeCount informs the framework that the document has

changed. If you try to close it, the framework will provide the usual “Do

you want to save the changes you made in the document?” prompt.

There’s no need for your code to do anything when the document is

saved. The “dirty bit” is automatically turned off.

Programmatic Edits

The text view can be changed programmatically in response to notifica-

tions sent by a Translator (as well as by other objects). In earlier versions

of Fenestra, text from notifications was put into the text view with code

like this:

Download fenestra/fit-and-finish/app/main-window/LogController.rb

on_local_notification AppFactAvailable do | notification |

@log.addLine(notification[:message])

end

Recall that in Section 4.5, Reopening Objective-C Classes, on page 73, I

tweaked NSTextView to define addLine like this:

Download fenestra/document-based-spike/app/util/NSPatches.rb

class NSTextView

def addLine(string)

string += "\n"

at_end = NSRange.new(textStorage.length, 0)

replaceCharactersInRange_withString(at_end, string)

end

end

It turns out that methods like replaceCharactersInRange_withString do not

inform the delegate of the change, so I rewrote the on_notification meth-

ods like this:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

on_local_notification AppFactAvailable do | notification |

addLine(notification[:message])

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/document/Document.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/app/main-window/LogController.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/util/NSPatches.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=332

LEARNING MORE 333

. . . and defined addLine to note the change:

Download fenestra/document-based-spike/app/log-window/LogWindowController.rb

def addLine(line)

@textView.addLine(line)

textDidChange(:irrelevant)

end

And that’s all there is to it.

24.6 Learning More

Document-based applications can be much richer than what I have

shown you in these chapters. To get started learning more, start with

Apple’s Document-Based Applications Overview [App08j]. You can find

the source for TextEdit in /Developer/Examples/AppKit/TextEdit. Many of

the other developer examples are document-based as well. The Ruby-

Cocoa examples in /Developer/Examples/Ruby/RubyCocoa tend have min-

imal use of document-based features.

Cocoa text support is almost outlandishly rich. Need to have text flow-

ing in two different directions within a line? It can be done. The two

documents to start with are Apple’s Text System Overview [App08y]

and Text System User Interface Layer Programming Guide for Cocoa

[App08z].

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/document-based-spike/app/log-window/LogWindowController.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=333

Chapter 25

MacRuby
MacRuby will eventually replace RubyCocoa. At the time I write (July

2009), I doubt it’s ready to do that, but I certainly do encourage you to

try it.

Take a look at Figure 25.1, on the following page. It shows, in cartoon

form, the difference between RubyCocoa and MacRuby. In RubyCocoa,

what I’ve been calling “the Ruby universe” and the “Objective-C uni-

verse” are on the left and right, respectively. Each universe is made up

of two parts. The first is a virtual machine (VM). I like to think of a VM as

a DSL tailored to the implementation of a particular language. Recall

how in Section 8.1, A DSL for Notifications, on page 101, we wrote a

more Rubylike version of notifications. With it, we can write code like

this:

on_local_notification AppChosen do | notification |

...

end

. . . and the DSL takes care of most of the work of adding observers. Sim-

ilarly, a Ruby VM provides a language tailored for implementing Ruby.

It translates from that friendly-to-a-Ruby-implementor’s language into

all the detailed instructions that an Intel chip requires.1

The second part of a universe consists of all the thousands of objects

your Ruby or Objective-C program creates.

1. The phrase “virtual machine” comes from a different slant on the metaphor. Instead

of thinking of the virtual machine as a language translator, we think of it as a software

implementation of a chip made just for running Ruby. In the metaphor, Ruby thinks it’s

running on some bizarre-yet-pleasing raw hardware.

Prepared exclusively for Alison Tyler

CHAPTER 25. MACRUBY 335

Sansonzam!

An Objective-C
Object

Ruby
Partner

Objective-C
Partner

A Ruby
Object

Ruby Virtual Machine Objective-C Virtual Machine

Bridge

Objective-C Virtual Machine

An Object An Object

Figure 25.1: RubyCocoa and MacRuby

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=335

CHAPTER 25. MACRUBY 336

RubyCocoa connects (or “bridges”) the two universes in three ways.

• When a Ruby object that descends from NSObject is created, it

is partnered with a newly created Objective-C object. The latter

object handles messages sent to it from inside the Objective-C uni-

verse. If it can’t handle a message, it passes it on to its Ruby part-

ner. The Ruby partner does the same sort of thing with messages

coming from the Ruby universe.

• When a pure-Ruby object is passed into Objective-C code, it’s con-

verted into some sort of Objective-C object. For example, in the

following, "hi"—a ruby String—is converted into an NSString before

it’s given to hasPrefix:

irb(main):008:0> some_nsstring.hasPrefix("hi")

=> #<NSCFString "hi">

• Objective-C objects being passed into the Ruby universe are part-

nered with a Ruby object that will forward messages to its partner.

MacRuby does away with partnered objects. All objects, those written in

Objective-C and those written in Ruby, use the Objective-C VM. (That

means that the Ruby implementation has been rewritten to use the

Objective-C DSL.) This has two big advantages:

• It avoids the app slowdown caused by RubyCocoa’s object creation

and the forwarding of messages from universe to universe.

• When writing code, you don’t have to wonder whether the string

you’re working with might be a visitor from another universe.

Whether the string was created in the Ruby universe as a String or

the Objective-C universe as an NSMutableString, it will respond to

all the same messages (whatever messages are accepted by either

String or NSMutableString).

MacRuby is one of several Ruby implementations that run on different

virtual machines. JRuby runs on the Java virtual machine, and Iron-

Ruby runs on .NET. Just as MacRuby makes it easy to use Objective-C

objects, JRuby makes it easy to use Java objects, and IronRuby makes

it easy to use C# objects. I expect all of the implementations to remain

compatible with the “official” Ruby in the sense that they’ll be able to

run any program it runs.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=336

GETTING MACRUBY 337

25.1 Getting MacRuby

You download MacRuby from http://www.macruby.org. The download

package is helpful. It adds MacRuby projects to Xcode’s New Project

dialog box, and it puts examples in /Developer/Examples/MacRuby. In

the following examples, I’m using MacRuby 0.3.

25.2 MacRuby Basics

All of the MacRuby command-line apps are their plain-Ruby equiva-

lents with a “mac” prepended. Here, for example, is macirb:

$ macirb

>>

I’ll use macirb to demonstrate MacRuby features. Keep in mind that

some of these might change before the first production release.

Classes, Objects, and Nonobjects

MacRuby unifies common Ruby classes with their Objective-C equiva-

lents. For example, String and NSMutableString are identical:

>> NSMutableString.object_id == String.object_id

=> true

Here are some of the implications:

>> "foo".class

=> NSMutableString # NSMutableString is the default class name.

>> String.new.class

=> NSMutableString # ... even if the object is created from String

>> "foo".is_a? String # Old code using is_a? will still work.

=> true

>> "foo".is_a? NSMutableString

=> true

There are issues that class unification doesn’t resolve. You still need to

be able to create objects, like NSRange, that wrap Objective-C structs.

And it remains a fact that Objective-C thinks the machine integer 0

means “false.”

In its raw form, MacRuby doesn’t help with those issues:

>> NSRange.new(0, 12)

NameError: uninitialized constant NSRange

from (irb):4

from /usr/local/bin/macirb:12:in `<main>'

>> "string".hasPrefix("hurm")

=> 0

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://www.macruby.org
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=337

MACRUBY BASICS 338

To get the behavior you’re used to, you need to load the Cocoa frame-

work:

>> framework 'Cocoa'

=> true

Once you do that, you get the same behavior this book has taught you

to expect from RubyCocoa:

>> NSRange.new(0, 12)

=> #<NSRange location=0 length=12>

>> "string".hasPrefix("hurm")

=> false

You want the Cocoa framework anyway, since it has the tasty classes

that let you make spiffy UIs:

>> NSMutableAttributedString.alloc.init

=> #<NSConcreteMutableAttributedString:0x17fc5a0>

>> NSButton.alloc.init

=> #<NSButton:0x14713c0>

You can use new as an abbreviation for alloc.init:

>> NSMutableAttributedString.new

=> #<NSConcreteMutableAttributedString:0x17e6030>

Calling and Defining Methods

MacRuby has added to Ruby syntax to make calling Objective-C meth-

ods more convenient, as shown at Ê.

>> s = "hello, sailor"

=> "hello, sailor"

>> r = NSRange.new(s.index('sailor'), 6)

=> #<NSRange location=7 length=6>
Ê >> s.replaceCharactersInRange r, withString: "world"

=> nil

>> s

=> "hello, world"

Here’s another example of the method-calling syntax, this time with

parentheses:

>> r = NSRange.new(0, 6)

=> #<NSRange location=0 length=6>
Ê >> s.replaceCharactersInRange(r, withString: "goodbye cruel")

=> nil

>> s

=> "goodbye cruel world"

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=338

A MACRUBY CHECKLIST 339

My favorite thing about this syntax is that you define (Ê) methods the

same way you use (Ë) them:

>> class Definitions
Ê >> def printThis first, andThis: second

>> puts first, second

>> end

>> end

=> nil
Ë >> Definitions.new.printThis 1, andThis: 2

1

2

=> nil

Notice that Definitions didn’t mention NSObject on the class line. That

means it descends from Object, which is identical to NSObject:

>> Object.object_id

=> -1606472512

>> NSObject.object_id

=> -1606472512

>> Definitions.ancestors

=> [Definitions, NSObject, Kernel]

Unlike RubyCocoa, overriding methods call their superclass in the nor-

mal Ruby way. Here’s an example:

Download macruby/subclass.rb

class SubClass < Definitions

def printThis first, andThis: second

sorted = [first, second].sort
Ê super sorted[0], sorted[1]

end

end

Notice that the keyword andThis: isn’t used in the super call.

Here, macirb shows that the subclass method executes and then calls

the superclass:

>> SubClass.new.printThis 3000, andThis: 0

0

3000

=> nil

25.3 A MacRuby Checklist

Here’s a checklist for converting a RubyCocoa program to a MacRuby

program. I do not claim it’s complete.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/macruby/subclass.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=339

A MACRUBY CHECKLIST 340

1. Both calls that use objc_send and the infix-underscore style

(convertPoint_fromView) need to be changed to the new syntax.

2. Instances of to_ns and to_ruby need to be removed.

3. In some places there may be tests for Objective-C booleans (0 and

1) instead of true and false. That code will now be surprised when

it no longer gets integers.

4. The module OSX no longer exists. That means code like this:

Download fenestra/fit-and-finish/app/util/NSPatches.rb

module OSX

class NSTextView

def clear

...

end

end

end

. . . no longer adds on to an existing class. It now creates a new one

in a new module.

5. ib_outlet has been deprecated. You’re supposed to use attr_writer or

attr_accessor instead.2

6. ib_action has been deprecated. In MacRuby, an action is any

method whose single argument is named sender.

7. Notification selectors now must include their trailing colons.

Whereas you could before write this:

center.objc_send(:addObserver, self,

:selector, :handle_notification, # symbol or string

:name, "name",

:object, nil)

. . . you must now write this:

center.addObserver self,

selector: 'handle_notification:' # string ending in colon

name: "name",

object: nil

8. Files that requireosx/cocoa should be changed to this:

Download fenestra/macruby/rb_main.rb

framework 'Cocoa'

2. I miss ib_outlet. I like a convention that calls out which attributes are used by Interface

Builder.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/fit-and-finish/app/util/NSPatches.rb
http://media.pragprog.com/titles/bmrc/code/fenestra/macruby/rb_main.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=340

A MACRUBY CHECKLIST 341

9. The Objective-C code that starts an app should be changed to look

like this:

Download fenestra/macruby/main.m

#import <MacRuby/MacRuby.h>

int main(int argc, char *argv[])

{

return macruby_main("rb_main.rb", argc, argv);

}

Xcode creates this code when you create a MacRuby project.

10. The RubyCocoa framework should be deleted and the MacRuby

framework added. The RubyCocoa framework is listed under the

Linked Frameworks group in Xcode’s project browser, as shown

here:

Add the framework by right-clicking the Linked Frameworks icon

and choosing Add > Existing Frameworks. When you add the

framework, the Open File dialog box is likely to show you

/System/Library/Frameworks. MacRuby is actually under /Library/

Frameworks.

11. The Objective-C part of your app must be told to use garbage col-

lection. To do that, right-click the name of the project in the project

browser, and choose Get Info.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/fenestra/macruby/main.m
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=341

A MACRUBY CHECKLIST 342

A window will pop up. Pick the Build tab, and then scroll down to

GCC 4.0 – Code Generation. Change Objective-C Garbage Collec-

tion to Required, as shown here:

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=342

WHAT NOW? 343

You have to make that change separately for both the Debug and

Release configurations (which you can choose at the top of the

window).

25.4 What Now?

Since I’ll continue to work on the MacRuby version of Fenestra, I don’t

want to describe the other changes I’ve made to it here. Instead, I’ll peri-

odically update the source in fenestra/macruby. Changes will be marked

with a comment beginning #PORT:. The comment will explain and justify

the change.

I encourage you to check up on Fenestra as a way of deciding when

you’ll be ready to switch your development work from RubyCocoa to

MacRuby. You’ll also find the MacRuby-Devel list3 to be a good gauge

of MacRuby status. Until then: bring that RubyCocoa love!

3. http://lists.macosforge.org/mailman/listinfo.cgi/macruby-devel

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://lists.macosforge.org/mailman/listinfo.cgi/macruby-devel
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=343

Part VII

Reference

Prepared exclusively for Alison Tyler

Chapter 26

The Objective-C Bridge
and Bridge Metadata

You saw throughout the book how data was converted as it passed

across the bridge between the Objective-C and Ruby universes. The

conversions happened automatically, without our help. Sometimes,

though, you’ll have to do some explicit setup to help RubyCocoa make

the conversions. That’s done with bridge metadata, the topic of this

chapter.

26.1 An Unexpected Return Value

Here’s a new Objective-C object with a method that checks the length

of a string:

Download rubycocoa-oddities/test/Bridged.m

@implementation Bridged

Ê - (BOOL)hasEvenLength: (NSString *)string

{

int length = [string length];

int remainder = length % 2;

if (remainder == 0)

return YES;

else

return NO;

}

@end

Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/rubycocoa-oddities/test/Bridged.m

WHAT INFORMATION CAN BE FOUND AT RUNTIME? 346

Here it is in use:

irb(main):007:0> require 'Bridged'

=> true

irb(main):008:0> Bridged.alloc.init.hasEvenLength("ab")

=> 0

irb(main):009:0> Bridged.alloc.init.hasEvenLength("ab")

=> 1

Notice that the return value, declared as (BOOL) at Ê, returns the inte-

gers 0 and 1. That behavior isn’t like what we’ve seen in the past. Here,

for example, is an NSFileManager method, also declared to return (BOOL):

- (BOOL)fileExistsAtPath:(NSString *)path

Yet its return value is converted from an integer to a Ruby boolean:

irb(main):002:0> manager = NSFileManager.defaultManager

=> #<OSX::NSFileManager:0x290324 class='NSFileManager' id=0x2adc30>

irb(main):003:0> manager.fileExistsAtPath("/System/Library/Frameworks/")

=> true

Since it’s possible for RubyCocoa to convert integers to Ruby booleans

for some methods, why doesn’t it for hasEvenLength? It’s because Ruby-

Cocoa has only runtime information about it.

26.2 What Information Can Be Found at Runtime?

Like Ruby, Objective-C can discover certain information about methods

at runtime. Let’s see what we can find out about fileExistsAtPath. Here’s

how to fetch information about a method:

irb(main):003:0> m = NSFileManager.instanceMethodSignatureForSelector(←֓

'fileExistsAtPath:')

=> #<OSX::NSMethodSignature:0x29338a class='NSMethodSignature' id=0x1b43fb0>

An NSMethodSignature is roughly (very roughly) equivalent to the result

of Ruby’s Method#arity). So, for example, you can ask for the number of

arguments:

irb(main):007:0> m.numberOfArguments

=> 3

Three? Why three?

All Objective-C methods have two “hidden” arguments. The first is self,

and the second is the selector for the method (roughly, its name).1 So,

1. I don’t know of any way to access the second variable from Ruby code.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=346

SUPPLEMENTING RUNTIME INFORMATION 347

what we see as the only argument to the method is actually the third.

And what do we know about it?

irb(main):009:0> m.getArgumentTypeAtIndex(2)

=> "@"

That character is a special code that means “object.” To Ruby program-

mers, that seems totally redundant: all Ruby arguments are objects

because everything is an object. But that’s not true of Objective-C,

which has types like “machine integer“ as well as “object.”

And what’s the return type?

irb(main):006:0> m.methodReturnType

=> "c"

c tells us the return value is a small machine integer (specifically,

a value from -128 to 127). You know and I know that fileExistsAtPath

returns 0 to mean “the file doesn’t exist” and some nonzero number

to mean “it does so exist,” but Objective-C hasn’t read the Cocoa API

documentation and doesn’t have the common sense to deduce that the

method name is a question. It leaves matters of interpretation entirely

up to the caller. We need a way to explain our desired interpretation to

RubyCocoa.

26.3 Supplementing Runtime Information

We expect Ruby to maintain a distinction between truth values and

numbers. Unfortunately, as we’ve seen, it can’t rely on the Objective-C

runtime. Instead, the good folk at Apple have provided bridge metadata

files that Ruby (and other languages) can use to get more detail than is

available from the runtime. These files have the suffix bridgesupport. The

bridge support file for NSFileManager (and many other Cocoa classes) is

/System/Library/Frameworks/Foundation.framework/Resources/BridgeSupport/

FoundationFull.bridgesupport. Here’s the snippet that describes fileExistsAt-

Path:

<class name='NSFileManager'>

...

<method selector='fileExistsAtPath:'>

<arg name='path' declared_type='NSString*' type='@' index='0'/>

<retval declared_type='BOOL' type='B'/>

</method>

...

</class>

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=347

OUR OWN PRIVATE METADATA 348

The retval clause declares the return value to be a small integer that’s

interpreted as a truth value. Because Foundation is a framework, Ruby-

Cocoa loads up the metadata when it loads the framework.

Some frameworks are loaded automatically with RubyCocoa. You can

load others with require_framework. For example, here’s how to load the

framework that accesses iCal:

741 $ irb

irb(main):001:0> c = CalCalendarStore.defaultCalendarStore

NameError: uninitialized constant CalCalendarStore

from /System/Library/Frameworks/RubyCocoa.framework...

from (irb):1

irb(main):002:0> # Oops...
Ê irb(main):003:0* require_framework 'CalendarStore'

=> true

irb(main):004:0> c = CalCalendarStore.defaultCalendarStore

=> #<OSX::CalCalendarStore:0x293722 class='CalCalendarStore' id=0x1ba05b0>

irb(main):005:0> puts c.calendars.collect { | c | c.title }.to_ruby

Brian Work

Dawn work

Home

Clinics

Dawn travel

=> nil

26.4 Our Own Private Metadata

I have hand-coded a bridge support file, Bridged.bridgesupport, for the

Bridged class. It contains this:

Download rubycocoa-oddities/test/Bridged.bridgesupport

<class name='Bridged'>

<method selector='hasEvenLength:'>

<arg name='string' declared_type='NSString*' type='@' index='0'/>

<retval declared_type='BOOL' type='B'/>

</method>

</class>

The single argument is declared as an object ('@'). The return value is

'B' as it was for fileExistsAtPath.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/rubycocoa-oddities/test/Bridged.bridgesupport
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=348

FINDING OUT MORE 349

Here’s the test to see whether RubyCocoa really truly converts the small

integer values to Ruby booleans:

Download rubycocoa-oddities/test/bridged-tests.rb

require 'Bridged'

OSX.load_bridge_support_file 'Bridged.bridgesupport'

class BridgedTests < Test::Unit::TestCase

should "produce booleans, not integers" do

@sut = Bridged.alloc.init

assert { @sut.hasEvenLength('1') == false }

assert { @sut.hasEvenLength('12') == true }

end

end

If you run that test, you should see it pass.

26.5 Finding Out More

You can find a basic description of the bridge in Ruby and Python Pro-

gramming Topics for Mac OS X [App08w], particularly the section titled

“Generating Framework Metadata.” The full description of the bridge

support file’s XML format can be had by typing this to a shell prompt:

$ man BridgeSupport

(man is a venerable old Unix documentation format. In the jargon, the

previous command provides you with the “BridgeSupport man page.”)

The cryptic type symbols ("^@" and the like) are documented in the

“Type Encodings” section of Objective-C 2.0 Runtime Programming Guide

[App08s].

Most of the content of a bridge support file can be generated automat-

ically using the gen_bridge_metadata command. It has a man page. It’s

usually used to add bridge metadata to entire frameworks.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/rubycocoa-oddities/test/bridged-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=349

Chapter 27

The Underpinnings
of Cocoa Bindings:

Key-Value Coding and Observing
Earlier discussions of Cocoa bindings were incomplete. Chapter 14, Set-

ting Up Bindings with Code, on page 185 showed you how to bind, say,

an NSTextField’s value to a rooted keypath.1 But I haven’t shown you how

to implement either bound objects like NSTextField or the properties they

bind to. This chapter fills that gap by explaining how all the pieces of

the binding mechanism work together.

27.1 Requirements

In Cocoa bindings, a bound object must do three things:

• Implement bind_toObject_withKeyPath_options and, in it, record the

rooted keypath.

• Respond to a message sent it whenever an observed property key

changes its value.

• Change the value of the observed key at the end of the rooted key-

path when appropriate. Most bound objects are views, so “when

appropriate” typically means when a person has done something

through the user interface.

1. For a refresher on terminology, see Section 14.1, Oh No! Terminology!, on page 185.

Prepared exclusively for Alison Tyler

OUR GOAL 351

An object possessing an observed property key needs to do only one

thing:

• Declare or implement the property’s setter in a way that informs

bound objects of changes.

This chapter will show two objects that do all these things.

27.2 Our Goal

We want to write a script that executes these steps:

1. It creates a root object with a property (that is, an observed prop-

erty key “property”). Afterward, the script prints this:

Step 1: Creating an object to be root.

root.property is "initial".

2. It creates a bound object with a bound name of “some bound

name.” I’ve chosen a name that’s not a valid Ruby identifier to

emphasize that bound names are not the same as properties.

After creating the bound object, the script prints this:

Step 2: Creating a bound object to track the root.

bound_object holds nil for 'some binding name'.

3. The two objects are bound together. Immediately, the root’s prop-

erty value migrates into the bound object:

Step 3: Bind the objects.

bound_object holds #<NSCFString "initial"> for 'some bin←֓

ding name'.

Notice that the Ruby string has been converted to an NSString.

That’s because it passes through Objective-C code on its way to

the bound object.

4. Next, the root’s property is updated, and the change propagates to

the bound object:

Step 4: Updating root property to "new".

bound_object holds #<NSCFString "new"> for 'some binding←֓

name'.

5. Finally, we call the bound object’s upcase method. (Pretend it was

called because it’s the action method for a button in the UI and

someone just clicked that button.) upcase converts the data asso-

ciated with “some binding name” to capital letters. Afterward, the

bound object changes property’s value.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=351

DECLARING OBSERVED PROPERTIES 352

Download key-value/howtos/kv-binding-by-hand.rb

class Root < NSObject

attr_reader :property

def property=(value)
Ê willChangeValueForKey(:property)

@property = value
Ë didChangeValueForKey(:property)

@property

end

def initWithValue(value)

@property = value

self

end

end

key-value/howtos/kv-binding-by-hand.rb

Figure 27.1: A root object

Step 5: Pretending to click upcase button.

bound_object holds #<NSCFString "NEW"> for 'some binding ←֓

name'.

root.property is #<NSCFString "NEW">.

27.3 Declaring Observed Properties

I’ll begin with the root object, since it’s simpler. You can see a cum-

bersome way of defining an observed property2 in Figure 27.1. The

willChangeValueForKey method (Ê) records the old value (which the

bound object can ask for), and didChangeValueForKey (Ë) propagates the

new one.

Writing code like this is boring, so there’s a shorthand way of declaring

an observed property:

Download key-value/howtos/kv-binding-by-hand.rb

kvc_accessor :property

2. Apple calls a properly defined observed property KVO-compliant, where KVO stands

for “key-value observing.” You can learn more about this in Section 27.4, Observing

Changes, on the following page.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=352

OBSERVING CHANGES 353

The kvc prefix stands for “key-value coding,” which you’ll learn about

in Section 27.6, Changing the Value of an Observed Key, on page 356.

27.4 Observing Changes

When didChangeValueForKey runs, it will call a particular method in the

bound object. This may remind you of the way notifications are deliv-

ered to objects, but notification observers get to pick which method gets

called. In bound objects, it’s always the same one:

Download key-value/howtos/kv-binding-by-hand.rb

class BoundObject < NSObject

...

def observeValueForKeyPath_ofObject_change_context(keypath, root,

change, context)

...

end

Before describing the code within that method, let me talk about Bound-

Object’s two instance variables:

Download key-value/howtos/kv-binding-by-hand.rb

class BoundObject < NSObject

def init

@data = {}

@tracker = BindingTracker.new

self

end

This script binds only one name. It would be easy enough to associate

that name with an instance variable (maybe @some_binding_name), but

I want to push back against the natural assumption that bindings are

just a variation on instance variable getters and setters. So, I’ll use a

hash, @data, to store a name-to-value correspondence.

As you’ll see later, the bound object needs to translate from a rooted

keypath to its bound name, or vice versa, so I store those correspon-

dences in @tracker, a BindingTracker. That class’s implementation is pain-

fully simple, so I’ll show only one directly relevant bit (later).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=353

OBSERVING CHANGES 354

With that out of the way, here’s a first bit of observation code:

Download key-value/howtos/kv-binding-by-hand.rb

def observeValueForKeyPath_ofObject_change_context(keypath, root,

change, context)

puts "Received update from #{root}://#{keypath}:"

puts change.to_ruby.inspect

end

Here is what’s printed when the binding is made and the bound object

receives the initial value:3

Received update from <Root: 0x571020>://property:

{"new"=>"initial", "kind"=>1}

In this application, the “kind” will always be 1 (symbolically NSKeyVal-

ueChangeSetting), meaning “a value has changed.” If the observed prop-

erty were an array or some other collection, you could also be informed

of insertions, deletions, or element replacement.

After a change to the property, the bound object will receive something

like this:

Received update from <Root: 0x571020>://property:

{"new"=>"new", "kind"=>1, "old"=>"initial"}

In this case, the change description also contains the value stashed

when the root object’s setter called willChangeValueForKey.

Here’s what the method does with the information:

Download key-value/howtos/kv-binding-by-hand.rb

def observeValueForKeyPath_ofObject_change_context(keypath, root,

change, context)

...

bound_name = @tracker.bound_name_for(root, keypath)

@data[bound_name] = change['new']

end

It finds the bound name (stored by bind_toObject_withKeyPath_options, as

you’ll see next) and uses that to save the new value of the observed

property key.

3. You may notice I didn’t print the context argument. You can see the details of its use

in key-value/howtos/key-value-observing-context-arg.rb.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=354

IMPLEMENTING BIND_TOOBJECT_WITHKEYPATH_OPTIONS 355

27.5 Implementing bind_toObject_withKeyPath_options

The bound object needs to implement bind_toObject_withKeyPath_options

to associate the bound object with the rooted keypath it observes. That’s

rather straightforward:

Download key-value/howtos/kv-binding-by-hand.rb

def bind_toObject_withKeyPath_options(bound_name, root, keypath, options)

Ê @tracker.remember(bound_name, root, keypath)

Ë root.objc_send(:addObserver, self,

:forKeyPath, keypath,

:options, NSKeyValueObservingOptionInitial |

NSKeyValueObservingOptionNew |

NSKeyValueObservingOptionOld,

:context, nil)

end

At Ê, it remembers that a change in this particular rooted keypath

affects the bound name. At Ë, it asks the root to inform it (the bound

object) when anything in the keypath changes. It chooses the following

options:

• The bound object wants to be informed immediately of the ob-

served property key’s value. (By default, it’s informed only after a

change.)

• It wants to know the new value after a change.

• It wants to know the old value (even though, in this case, it’s not

used).

There’s another option we didn’t use. NSKeyValueObservingOptionPrior

causes the bound object to be informed twice for each change: once

at the moment of willChangeValueForKey (containing the old value) and

then again at the moment of didChangeValueForKey.

Notice all these options are bitwise-or’d together.

The context is an arbitrary value that, as we’ve seen, is passed to the

observer when there’s a change in the rooted keypath. Before using

it in one of your apps, see key-value/howtos/key-value-observing-context-

arg.rb—using it is not as simple as putting an object in one side and

having it pop out the other.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=355

CHANGING THE VALUE OF AN OBSERVED KEY 356

27.6 Changing the Value of an Observed Key

All that remains is reacting to the fake button press. That’s done with

this code in the bound object:

Download key-value/howtos/kv-binding-by-hand.rb

ib_action :upcase do | sender |

older = @data['some binding name']

newer = older.upcase

@data['some binding name'] = newer
Ê @tracker.propagate('some binding name', newer)

end

It first updates @data. That’s no different than updating in response to

a change delivered to observeValueForKeyPath_ofObject_change_context.

But then, at Ê, it propagates the change to the object at the end of the

rooted keypath. In this case, that object happens to be the root itself,

but the bound object doesn’t know that. Here’s the implementation of

the BindingTracker’s propagate method:

Download key-value/howtos/kv-binding-by-hand.rb

class BindingTracker

...

def propagate(bound_name, value)

target = rooted_keypath_for(bound_name)

target.root.setValue_forKeyPath(value, target.keypath)

end

It first looks up the two components of the rooted keypath (previously

stashed away by bind_toObject_withKeyPath_options). It then uses a new

method, setValue_forKeyPath, to update the property. That method sets

the value of the property key at the end of the keypath. For it to work,

two things must be true:

• All the components of the keypath, except the last, must imple-

ment valueForKey. That’s easy for Ruby subclasses of NSObject,

since NSObject behaves like it contains this method:

def valueForKey(key)

self.send(key)

end

So, all that’s needed is a method named key. It could be created

by attr_reader or kvc_accessor, or it could be written explicitly with

def.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://media.pragprog.com/titles/bmrc/code/key-value/howtos/kv-binding-by-hand.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=356

IN SUMMARY... 357

• The last component of the keypath has to implement setValue_

forKey. That’s also easy, since NSObject behaves like it contains

this method:

def setValue_forKey(value, key)

self.send(key+'=', value)

end

valueForKey and setValue_forKey are the heart of what Cocoa calls key-

value coding (KVC). A class that’s KVC-compliant must respond to val-

ueForKey. If the property has any setters, one of them must be set-

Value_forKey. There are additional requirements if a setter does valida-

tion. I refer you to Key-Value Coding Programming Guide [App08n].

There’s a subtlety here. Setting an observed property notifies any ob-

servers. So, even though our BoundObject was the object that changed

the Root’s property, that change is reflected right back to it, causing

observeValueForKeyPath_ofObject_change_context to be called. Since that

method doesn’t change anything in the rooted keypath, the redundant

update is harmless.4

You can run key-value/howtos/kv-binding-by-hand.rb to see the script in

action:5

$ ruby kv-binding-by-hand.rb

27.7 In Summary...

Cocoa bindings are a three-layered technology.

Key-Value Coding

At the bottom, you have key-value coding, which is a way of making

object properties more dynamic. Without it, the names of properties

are hard-coded:

... root.property ...

4. If more than one rooted keypath could be bound to the same object, you’d want a

change reflected up from one to be reflected down to the others, but that’s not the way

bindings are usually used. For example, there’s no way in Interface Builder to set up

such a configuration.
5. The script comments out lines that print how observeValueForKey-

Path_ofObject_change_context is called. If you uncomment them, you may see that

it’s called more than once when upcase sets property’s value. That’s a bug in RubyCocoa

0.13.1. It has been fixed in later versions.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=357

IN SUMMARY... 358

With it, it’s easy to choose properties at runtime:

key = (be_formal ? 'last_name : 'first_name')

... root.valueForKey(key) ...

Key-value coding also lets you refer to a whole chain of object properties

at once with the related method valueForKeyPath:

code.valueForKeyPath("region.capital.name")

Some classes override key-value coding methods with useful behavior.

For example, an NSArray overrides valueForKey to implement the collect-

like behavior we’ve seen in NSArrayController:

class NSArray

...

def valueForKey(key)

self.collect { | elt | elt.valueForKey(key) }

end

end

The complete description of key-value coding is in Apple’s Key-Value

Coding Programming Guide [App08n].

Key-Value Observing

Key-value observing builds on top of key-value coding to allow objects

to observe changes to other objects’ properties. The properties being

observed must be what Apple calls KVO-compliant. That means the

setter calls willChangeValueForKey before a change and didChangeValue-

ForKey after. Either of those methods will in turn call any observer’s

observeValueForKeyPath_ofObject_change_context method.

The complete description of key-value observing is in Apple’s Key-Value

Observing Programming Guide [App08m].

Cocoa Bindings

Bindings add no methods to Cocoa. They are a convention that Inter-

face Builder encourages, one built on top of key-value observing. The

convention is threefold:

• A binding between a binding object and a rooted keypath is estab-

lished by a call to the binding object’s bind_toObject_withKeyPath_

options method.

• The binding object’s observeValueForKeyPath_ofObject_change_

context method changes state within the object, which is state

that can be conceptualized with a single name (a noun or noun

phrase).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=358

POSTSCRIPT: OBSERVING CHANGES TO COLLECTIONS 359

• If the internal state that corresponds to the conceptual name

changes, the value at the end of the rooted keypath is changed

to match.

bind_toObject_withKeyPath_options takes an options argument. Cocoa pro-

vides a large set of default option names that assume that the bound

object is a user interface control. For example, a number of them govern

the way the object’s selection is handled. These options are sketchily

described in Apple’s NSKeyValueBindingCreation Protocol Reference

[App08r], which is part of the Cocoa API. Your own classes can ignore

any of those options, or you can add options of your own.

You can find a list of the bindable controls, and which options they

obey, in Apple’s Cocoa Bindings Reference [App08g]. Apple’s Cocoa Bind-

ings Programming Topics [App08f] gives a deeper explanation of how

bindings work with user interface controls.

27.8 Postscript: Observing Changes to Collections

Key-value observing can also be used with arrays (as well as a class we

haven’t used, NSSet). Consider this class:

Download key-value/tests/kv-observing-collections-tests.rb

class ArrayHolder < OSX::NSObject
Ê kvc_array_accessor :values

def initWithValues(*initial_values)

@values = NSMutableArray.arrayWithArray(initial_values)

self

end

Ë def values; @values; end

end

kvc_array_accessor (at Ê) notes that the property values is what the Cocoa

documentation calls a to-many relationship. Note (at Ë) that it does not

define the usual getter and setter methods. That’s because the array is

manipulated in different ways, as you can see in this test:

Download key-value/tests/kv-observing-collections-tests.rb

def setup

@watcher = rubycocoa_flexmock
Ê @observed = ArrayHolder.alloc.initWithValues('old_at_0', 'old_at_1')

end

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://media.pragprog.com/titles/bmrc/code/key-value/tests/kv-observing-collections-tests.rb
http://media.pragprog.com/titles/bmrc/code/key-value/tests/kv-observing-collections-tests.rb
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=359

POSTSCRIPT: OBSERVING CHANGES TO COLLECTIONS 360

context "insert methods" do

should "trigger observation" do

NSKeyValueObservingOptionOld is meaningless in case of insertion.

add_observer(:options => NSKeyValueObservingOptionNew)

during {
Ë @observed.insertObject_inValuesAtIndex('new_at_0', 0)

}.behold! {
Ì watcher_should_receive_change { | actual |

actual[:kind] == NSKeyValueChangeInsertion &&

same_indexes(actual[:indexes], [0]) &&

actual[:new] == ['new_at_0']

}

}
Í assert { @observed.values == ['new_at_0', 'old_at_0', 'old_at_1'] }

end

end

To insert a new value, you use a special method (at Ë). You do not use

normal array manipulations. (They would not cause the observer to be

notified.)

The results of the insertion are shown in the difference between Ê and

Í.

You can see the changes reported to the observer at Ì:

• The :kind of the change is a special value that indicates insertion

into a to-many relationship.

• Since there are methods that allow replacement of multiple ele-

ments at once, an NSIndexSet describes the :indexes that changed.

• The change also includes the :new elements, given in the same

order as their indexes.

• Because only the :new elements are passed to the observer, not the

whole array, it makes no sense to ask for the :old elements—there

aren’t any. If the NSKeyValueObservingOptionNew option is given

when the observer is added, it’s ignored.

Deletion and replacement of an element are handled similarly, except

that the methods are, respectively, removeObjectFromValuesAtIndex and

replaceObjectInValuesAtIndex_withObject. Look in key-value/tests/kv-

observing-collections-tests.rb for examples.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=360

Appendix A

Glossary
action, action method

A name for a method that’s called by a user interface element—

for example, in response to a button click. Action methods take a

single argument, the sender. Introduced on page 28.

adapter

A class that improves on an interface that it hides. Introduced on

page 141.

archive (v.)

To save a set of in-memory objects to disk such that the origi-

nal set can be reconstituted later. In Fenestra, this is done with

the NSKeyedArchiver and NSKeyedUnarchiver classes. They have the

same purpose as the pure-Ruby Marshall class. Introduced in Sec-

tion 11.2, Archiving, on page 134.

assertion

In a test, a claim that a boolean expression will evaluate true (or,

sometimes, false). An assertion is different from an expectation.

Introduced on page 206.

attribute

In Ruby, attributes are instance variables made externally acces-

sible with getters or setters. In Objective-C, the word property is

usually used instead.

In Cocoa, attributes are more usually values set using Interface

Builder’s Attributes inspector. They may not be accessible with

getters or setters. Sometimes they are bound names.

Prepared exclusively for Alison Tyler

APPENDIX A. GLOSSARY 362

binding name

See bound name.

bindings, Cocoa bindings

A way of synchronizing values belonging to two different objects.

See bound for a short explanation. First used in Chapter 13, Imple-

menting a Preference Panel with Cocoa Bindings, on page 162.

bound (adj.)

For one object (the bound object) to be bound to a rooted key-

path, it must be able to use key-value observing to see changes to

the property at the end of the keypath. The bound object should

reflect the changes in its bound name. Changes to the bound

object may also cause a change to the observed property. Intro-

duced on page 162.

bound name, binding name

The string name of some piece of a bound object’s internal state.

Introduced on page 187.

bound object

An object, usually some sort of control, whose bound name

changes in synchrony with a property at the end of a rooted key-

path. Introduced on page 187.

bridge metadata

Static information about an Objective-C method. It supplements

the information RubyCocoa can determine at runtime. Introduced

on page 347.

bundle

A bundle is a directory hierarchy with a particular structure that

allows it to be treated as a unit. Applications are one kind of bun-

dle. Introduced on page 32.

business logic

See model.

Carbon

An older API that serves the same purpose as Cocoa. Carbon is

written for the C programming language rather than Objective-C.

Introduced on page 264.

cell

An object attached to a control. The cell handles some of the work a

user thinks is performed by a control. For example, NSCell objects

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=362

APPENDIX A. GLOSSARY 363

display text or images. Introduced on page 77, but see also Sec-

tion 17.1, Cells, on page 230.

combo box (NSComboBox)

A combination of a drop-down list and a text box. Introduced on

page 76.

content view

A view that covers the entire space of a window. It contains all the

other views. Introduced on page 43.

control (NSControl)

A control is an object that can draw a representation on the

screen, respond to user events, and send action messages to con-

trollers. Buttons and text fields are typical controls. All controls

are views. Introduced on page 74.

controller

An object that is the target of user interface actions. A controller

mediates between view objects and model objects. Introduced on

page 44.

data object

An object that contains nothing but getters and setters. Also called

a dumb object. Introduced on page 268.

data source

Some controls do not contain the data they display. Instead, they

fetch it from a data source when they need it. The data source

must obey a protocol that defines the methods the control may

use. Introduced on page 143.

default button

The button that’s “clicked” when the Return key is pressed. In

Cocoa, the default button is colored solid blue. Introduced on

page 77.

defaults (user)

See user preferences.

delegate (n.)

An object to which other objects delegate work. In Cocoa, delega-

tion is often used in place of inheritance. Introduced on page 23.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=363

APPENDIX A. GLOSSARY 364

doc window, document window

In Interface Builder, the Finder-like window that represents the

contents of the nib. Introduced on page 41.

document-based application

An application that lets you view and perhaps edit documents

stored on disk. Often, you can work on multiple documents at

once. Introduced on page 313.

document controller (NSDocumentController)

In a document-based application, an object that creates and man-

ages document objects. Introduced in Section 24.1, The Major Play-

ers, on page 314.

document object (NSDocument)

In a document-based application, the in-memory object that cor-

responds to an on-disk document. Introduced in Section 24.1, The

Major Players, on page 314.

domain-specific language, DSL

A little language that makes a solution easy to express. The solu-

tion is then written in that language. Introduced on page 100.

DSL

See domain-specific language.

duck typing

In duck typing, an object is of an appropriate type if it responds to

a needed set of messages. It doesn’t matter what the class of the

object is. Introduced on page 24.

dumb object

See data object.

dummy, test dummy

An object that must exist but is never actually used in a particular

test. For example: an ignored argument in a method call. A kind

of test double. Introduced on page 284.

expectation

Mock objects are programmed with expectations about how certain

methods of the object will be called during a test. At the end of the

test, any expectations that have not been met will cause a test

failure. Introduced on page 215.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=364

APPENDIX A. GLOSSARY 365

fake

A fake is a test double that has the same behavior as the real

object but in a way that’s more convenient for testing. Introduced

on page 284.

feature envy

A method has feature envy if it seems more interested in the meth-

ods of another class than in its own. (That is, it sends more mes-

sages to an instance variable than to self.) A method with fea-

ture envy should often be moved to the other class. Introduced

on page 268.

fenestra, fenestration

A fenestra or fenestration is a hole. Fenestration is also the act of

creating the hole. Introduced on page 18.

first responder

The object getting the first chance to handle keyboard and mouse

events. See also initial first responder. Introduced on page 80.

focus

The control that responds to keypresses and mouse events. See

responder. Introduced on page 80.

formatter (NSFormatter)

An object that mediates between a control and some model object.

The formatter converts an object into text, and vice versa. It can

also support error-handling and field-specific editing. Introduced

in Section 13.3, Formatters, on page 172.

frame

A rectangle that defines the position and size of a window or view.

Introduced on page 145.

frame name

The name of a window’s frame. If a window has a named frame,

its position and size are stored in user preferences between app

invocations. Introduced on page 287.

getter

A method that returns the value of an instance variable. In Ruby,

these are often defined with attr_reader.

group (Xcode)

In Xcode, a way of putting related files next to each other. Groups

are independent of disk folders. Introduced on page 118.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=365

APPENDIX A. GLOSSARY 366

help book

A collection of pages reached from the Help menu and displayed by

the help viewer. An application usually has exactly one help book.

Introduced on page 301.

initial first responder

The responder that’s made the first responder when a window is

first placed on-screen. Introduced on page 80.

inspector (Interface Builder)

In Interface Builder, the tabbed window you use for changing a nib

object’s attributes, connections, class, and so forth. Introduced on

page 41.

key equivalent

A key that, when pressed, is the equivalent of a mouse click on a

particular control (such as a menu item or button). Introduced on

page 28.

keypath

A period-separated list of NSDictionary keys or class property

names. Introduced on page 163.

key-value coding, KVC, KVC-compliant

A property uses key-value coding if it supports the method val-

ueForKey. If the property is settable, it should also support set-

Value_forKey. Introduced on page 357.

key-value observable, KVO, KVO-compliant

An object’s property is KVO-compliant if it either implicitly or ex-

plicitly uses willChangeValueForKey and didChangeValueForKey to

signal when its value changes. Introduced on page 352 and on

page 358.

key view loop

The sequence of controls that the Tab key takes you through.

Introduced on page 288.

key window

The window that keypresses go to. Introduced on page 157.

lazy getter

A getter for an object’s attribute (or property) that calculates the

value the first time it’s called. Introduced on page 324.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=366

APPENDIX A. GLOSSARY 367

library (Interface Builder)

In Interface Builder, a collection of predefined user interface ele-

ments. You create items in the doc window or main window by

dragging them out of the library and dropping them. Introduced

on page 41.

loading (a nib file)

See nib loading.

main menu

The menu that appears in the menu bar on top of the screen. It is

defined in a nib file that’s usually named MainMenu.nib. Introduced

on page 40.

main window

The primary window created by Interface Builder and stored in a

nib file. Introduced on page 41.

matrix (NSMatrix)

A matrix acts to group controls. In some cases, as with radio but-

tons, it coordinates their behavior. Introduced on page 290.

mock object, mock

A test double programmed with expectations of what sort of mes-

sages it will receive. The test fails if some of the expectations aren’t

met or, sometimes, if the mock gets messages it didn’t expect.

Introduced on page 284.

model, model object

The model is a layer of the app whose job is to represent the

app’s conceptual world. For example, in an accounting package,

the model would contain classes representing Accounts, Payees,

Invoices, and the like. A model object is an instance of one of those

classes. Introduced on page 223.

model-view-controller, MVC

The name for a broad class of solutions to the problem of sep-

arating concerns in a GUI-heavy app. All the variants use three

objects. The view handles the screen and fields user input, the

model is concerned with data and business logic, and the controller

coordinates between the two.

nib, nib file

A file produced by Interface Builder that contains archived objects

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=367

APPENDIX A. GLOSSARY 368

and instructions for connecting targets, outlets, and actions. Nib

files end in .nib or .xib. Introduced on page 40.

nib loading

The process of reconstituting all of the archived objects in a nib

file and connecting their outlets. Discussed throughout the book.

notifications

A mechanism for decoupling classes. Instead of sending a message

to one or more known objects, an object makes an announcement

via an NSNotification object. Objects that register for that kind of

notification receive it. Introduced in Chapter 7, Notifications Con-

nect Decoupled Objects, on page 94.

observed property key, observed key, observable property key

A property name or NSDictionary key that is key-value observable.

Introduced on page 187.

observed property value, observed value

The value associated with an observed property key. Introduced

on page 187.

outlet

An instance variable of a nib object that is set pointing to another

nib object during nib loading. Introduced on page 44.

pasteboard (NSPasteboard)

Pasteboard objects are places to stash data (or promises of data)

that can be accessed by other apps. Cut and Copy use paste-

boards, as does dragging and dropping. Introduced on page 262.

pointer (Objective-C)

A pointer is a memory word containing a memory address (rather

than data). Introduced on page 172.

preferences

See user preferences.

property

The Objective-C name for what Ruby calls an attribute: an in-

stance variable made accessible through getters or setters. Intro-

duced in a footnote on page 185.

protocol (Objective-C)

A named group of related methods. For example, a class that

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=368

APPENDIX A. GLOSSARY 369

needs to be an NSComboBox data source must follow the NSCom-

boBoxDataSource protocol. Introduced on page 262.

refactoring

Changing code without changing its externally visible behavior.

Introduced on page 283.

reopen (a class)

To add new methods to an already defined class. Introduced on

page 73.

responder (NSResponder)

Any object that can handle keyboard and mouse events. Intro-

duced on page 80.

responder chain

The responder chain begins with the first responder. All respon-

ders may either handle or decline to handle an event. If they

decline it, they indicate another responder to try. That sequence

of responders is the responder chain. Introduced on page 80. See

also discussion on page 317.

rooted keypath

A rooted keypath begins at a root object. The keypath is made

up of one or more names of KVC-compliant properties (ones that

can be queried with valueForKey). The first property in the key-

path leads from the root to another object. The next property leads

from that object to yet another object, and so on. Introduced on

page 187.

selection

A marked subset of the contents of a control. Some user gestures

(such as copy) will apply only to the selection. In Fenestra, selec-

tions come into play most strongly because some table operations

require a row to be selected. Introduced on page 202.

selector

The name of an Objective-C method. Introduced in a footnote on

page 56.

setter

A method that changes the value of an instance variable. In Ruby,

these are often defined with attr_writer.

spike, spike solution

A coding exercise, done in response to a problem, that helps you

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=369

APPENDIX A. GLOSSARY 370

understand how to solve the problem. Spikes are usually throw-

away code. Introduced on page 314.

struct

A struct is an Objective-C construct. Like an object, it contains

data, but it has no methods (not even getters or setters). In Ruby-

Cocoa, structs have to be represented by special objects, such as

instances of NSRange, that are converted to structs when passed

into Objective-C. Introduced on page 54.

stub (test)

A test double that gives the same answers as the real object would

but only for those questions a test asks. It can’t handle everything

the real world might throw at it. Introduced on page 284.

target, target object

An object designated as the recipient of an action. Introduced on

page 28.

text attributes

Characteristics of runs of characters inside an NSAttributedString.

One example: a font that applies to characters in the range given

by NSRange.new(3, 34). Introduced on page 321.

text field (NSTextField)

A control that displays a line of text the user can edit or select.

A test field sends its action message to its target when Return is

pressed. In Cocoa, labels are uneditable, unselectable text fields.

Introduced on page 37.

test double

An object that replaces a real object for testing purposes. Test

doubles can be dummies, stubs, mocks, or fakes. Introduced on

page 283.

text view (NSTextView)

Text laid out in a rectangular area. A text view is larger than a

text field and allows more sophisticated editing. Introduced on

page 37.

toggle button

A button that changes state from NSOffState to NSOnState. Typically,

the text of the button changes to match the state. Introduced on

page 77.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=370

APPENDIX A. GLOSSARY 371

to-many relationship

When the value of a property is a collection object (for example,

NSArray or NSSet), the property is said to have a to-many relation-

ship to the elements of the collection. Key-value observers can be

notified of element insertions, deletions, and replacements. Intro-

duced in Section 27.8, Postscript: Observing Changes to Collec-

tions, on page 359.

translator (Fenestra)

In Fenestra, an object that changes between-process notifications

into strings. Introduced on page 76.

user preferences, user defaults

A system that makes it convenient to store key/value pairs on

disk. Most usually, the values are window positions the user pre-

fers, default folders, and the like. Introduced in Section 11.1, The

User Preferences System, on page 128.

value transformer (NSValueTransformer)

An object that mediates between a bound object and a rooted key-

path. It transforms values flowing from one to the other. Intro-

duced on page 177.

view (NSView)

A view is an area within a window or another view that has its own

coordinate system. It can handle events that pertain to its frame,

and it can draw to that frame. All controls are views. Introduced in

Section 3.1, Big views have little views..., on page 42.

virtual machine, VM

A software substrate that aids in the implementation of languages

like Ruby or Objective-C. Introduced on page 334.

window controller (NSWindowController)

In a document-based application, the controller controlling the win-

dow that corresponds to a document object. Introduced in Sec-

tion 24.1, The Major Players, on page 314.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=371

Appendix B

Bibliography

[App08a] Apple, Inc. Apple Help Programming Guide. http://

developer.apple.com/documentation/Carbon/Conceptual/

ProvidingUserAssitAppleHelp, 2008.

[App08b] Apple, Inc. Apple Human Interfaces Guidelines.

http://developer.apple.com/documentation/userexperience/

Conceptual/AppleHIGuidelines, 2008.

[App08c] Apple, Inc. Archives and Serializations Programming

Guide for Cocoa. http://developer.apple.com/DOCUMENTATION/

Cocoa/Conceptual/Archiving, 2008.

[App08d] Apple, Inc. Bundle Programming Guide. http://developer.

apple.com/documentation/CoreFoundation/Conceptual/

CFBundles, 2008.

[App08e] Apple, Inc. Button Programming Topics for Cocoa. http://

developer.apple.com/documentation/Cocoa/Conceptual/

Button, 2008.

[App08f] Apple, Inc. Cocoa Bindings Programming Topics. http://

developer.apple.com/documentation/Cocoa/Conceptual/

CocoaBindings, 2008.

[App08g] Apple, Inc. Cocoa Bindings Reference. http://developer.apple.

com/documentation/Cocoa/Reference/CocoaBindingsRef,

2008.

Prepared exclusively for Alison Tyler

http://developer.apple.com/documentation/Carbon/Conceptual/ProvidingUserAssitAppleHelp
http://developer.apple.com/documentation/Carbon/Conceptual/ProvidingUserAssitAppleHelp
http://developer.apple.com/documentation/Carbon/Conceptual/ProvidingUserAssitAppleHelp
http://developer.apple.com/documentation/userexperience/Conceptual/AppleHIGuidelines
http://developer.apple.com/documentation/userexperience/Conceptual/AppleHIGuidelines
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Archiving
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Archiving
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFBundles
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFBundles
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFBundles
http://developer.apple.com/documentation/Cocoa/Conceptual/Button
http://developer.apple.com/documentation/Cocoa/Conceptual/Button
http://developer.apple.com/documentation/Cocoa/Conceptual/Button
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaBindings
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaBindings
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaBindings
http://developer.apple.com/documentation/Cocoa/Reference/CocoaBindingsRef
http://developer.apple.com/documentation/Cocoa/Reference/CocoaBindingsRef

APPENDIX B. BIBLIOGRAPHY 373

[App08h] Apple, Inc. Cocoa Event-Handling Guide. http://

developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/

EventOverview, 2008.

[App08i] Apple, Inc. Combo Box Programming Topics. http://developer.

apple.com/documentation/Cocoa/Conceptual/ComboBox,

2008.

[App08j] Apple, Inc. Document-Based Applications Overview. http://

developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/

Documents, 2008.

[App08k] Apple, Inc. Drag and Drop Programming Topics for

Cocoa. http://developer.apple.com/documentation/Cocoa/

Conceptual/DragandDrop, 2008.

[App08l] Apple, Inc. Internationalization Programming Topics. http://

developer.apple.com/documentation/MacOSX/Conceptual/

BPInternational, 2008.

[App08m] Apple, Inc. Key-Value Coding Observing Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

KeyValueObserving, 2008.

[App08n] Apple, Inc. Key-Value Coding Programming Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

KeyValueCoding, 2008.

[App08o] Apple, Inc. Launch Services Programming Guide. http://

developer.apple.com/DOCUMENTATION/Carbon/Conceptual/

LaunchServicesConcepts, 2008.

[App08p] Apple, Inc. Matrix Programming Guide for Cocoa. http://

developer.apple.com/documentation/Cocoa/Conceptual/

Matrix, 2008.

[App08q] Apple, Inc. Notification Programming Topics for Cocoa. http://

developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/

Notifications, 2008.

[App08r] Apple, Inc. NSKeyValueBindingCreation Protocol Reference.

http://developer.apple.com/documentation/Cocoa/Reference/

ApplicationKit/Protocols/NSKeyValueBindingCreation_Protocol,

2008.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/EventOverview
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/EventOverview
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/EventOverview
http://developer.apple.com/documentation/Cocoa/Conceptual/ComboBox
http://developer.apple.com/documentation/Cocoa/Conceptual/ComboBox
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Documents
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Documents
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Documents
http://developer.apple.com/documentation/Cocoa/Conceptual/DragandDrop
http://developer.apple.com/documentation/Cocoa/Conceptual/DragandDrop
http://developer.apple.com/documentation/MacOSX/Conceptual/BPInternational
http://developer.apple.com/documentation/MacOSX/Conceptual/BPInternational
http://developer.apple.com/documentation/MacOSX/Conceptual/BPInternational
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueObserving
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueObserving
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueObserving
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/DOCUMENTATION/Carbon/Conceptual/LaunchServicesConcepts
http://developer.apple.com/DOCUMENTATION/Carbon/Conceptual/LaunchServicesConcepts
http://developer.apple.com/DOCUMENTATION/Carbon/Conceptual/LaunchServicesConcepts
http://developer.apple.com/documentation/Cocoa/Conceptual/Matrix
http://developer.apple.com/documentation/Cocoa/Conceptual/Matrix
http://developer.apple.com/documentation/Cocoa/Conceptual/Matrix
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Notifications
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Notifications
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Notifications
http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Protocols/NSKeyValueBindingCreation_Protocol
http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Protocols/NSKeyValueBindingCreation_Protocol
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=373

APPENDIX B. BIBLIOGRAPHY 374

[App08s] Apple, Inc. Objective-C 2.0 Runtime Programming

Guide. http://developer.apple.com/documentation/Cocoa/

Conceptual/ObjCRuntimeGuide, 2008.

[App08t] Apple, Inc. Pasteboard Programming Topics for Cocoa. http://

developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/

CopyandPaste, 2008.

[App08u] Apple, Inc. Property List Programming Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

PropertyLists, 2008.

[App08v] Apple, Inc. Resource Programming Guide. http://

developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/

LoadingResources, 2008.

[App08w] Apple, Inc. Ruby and Python Programming Topics for

Mac OS X. http://developer.apple.com/documentation/Cocoa/

Conceptual/RubyPythonCocoa, 2008.

[App08x] Apple, Inc. Runtime Configuration Guidelines. http://

developer.apple.com/documentation/MacOSX/Conceptual/

BPRuntimeConfig, 2008.

[App08y] Apple, Inc. Text System Overview. http://developer.apple.

com/DOCUMENTATION/Cocoa/Conceptual/TextArchitecture,

2008.

[App08z] Apple, Inc. Text System User Interface Layer Programming

Guide for Cocoa. http://developer.apple.com/documentation/

Cocoa/Conceptual/TextUILayer, 2008.

[AS96] Harold Abelson and Gerald Jay Sussman. Structure and

Interpretation of Computer Programs. The MIT Press, Cam-

bridge, Massachusetts, second edition, 1996.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[Ful06] Hal Fulton. The Ruby Way. Addison-Wesley, Reading, MA,

second edition, 2006.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjCRuntimeGuide
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjCRuntimeGuide
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CopyandPaste
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CopyandPaste
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CopyandPaste
http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists
http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists
http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/LoadingResources
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/LoadingResources
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/LoadingResources
http://developer.apple.com/documentation/Cocoa/Conceptual/RubyPythonCocoa
http://developer.apple.com/documentation/Cocoa/Conceptual/RubyPythonCocoa
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/TextArchitecture
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/TextArchitecture
http://developer.apple.com/documentation/Cocoa/Conceptual/TextUILayer
http://developer.apple.com/documentation/Cocoa/Conceptual/TextUILayer
http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=374

APPENDIX B. BIBLIOGRAPHY 375

[Mar06] Brian Marick. Everyday Scripting with Ruby: For Teams,

Testers, and You. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[Mes07] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.

Addison-Wesley, Reading, MA, 2007.

[Ols07] Russ Olsen. Design Patterns in Ruby. Addison-Wesley,

Reading, MA, 2007.

[Rai05] J. B. Rainsberger. Injecting testability into your designs.

Better Software, 2005.

[TFH08] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-

matic Programmers, LLC, Raleigh, NC, and Dallas, TX, third

edition, 2008.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for Alison Tyler

http://books.pragprog.com/titles/bmrc/errata/add?pdf_page=375

Index
Symbols
: (colons) in Objective-C method names,

30

= (equal sign) as assignment operator,

58

== (equality), 226

A
About window, 297

access modifiers, 240, 241

act phase (writing tests), 209–210

actions

buttons, 90

creating new (in IB), 46

adapter classes, 141

add method, 215

add_menu_to method

(SpeechController), 28

adding table rows, 182

addItemWithTitle:action:keyEquivalent

method, 30

addresses of objects (in memory), 173

allocating screen space, 26

Always Save Unsaved Files option,

119n

anchors, for help indexing, 305

API browser (Cocoa), 49

app folder organization, 198–201

app-choice-controller-tests.rb file, 201

AppleTitle keyword, 304

application bundles, see bundles

applications

building without Xcode, 121

bundling, 109–116

automatically with standaloneify,

114–115

manually, 110–114

subfolders in source folder, 121

decoupled, notifications among,

94–99

document-based, 313–333

creating new documents, 319–328

editing documents, 330–333

important objects, 314–316

opening and saving documents,

328–330

responder chain, 316–319

hooking help books into, 309

icons for, 298

isolating at all times, 112

names for, 300

notifications between, 67

notifications within, 62–66

versions numbers for, 298

archiving (coding), 134–136

NSKeyedArchiver class, 142

using archived objects, 139–143

arrange phase (writing tests), 210

array controllers, 182

subclassing NSArrayController,

189–192

arrays of hashes, binding, 166–172

arrays, key-value observing with, 359

assert phase (writing tests), 206–209

assertion, 361

assertions, to test, 206, 207

assignment (=) operator, 58

attributes, 58–59, 134, 185n

AutoCompletes checkbox (combo box

attributes), 79

awakeFromNib method, 327

B
Beck, Kent, 268

bind_toObject_withKeyPath_options

method, 192–196, 350, 355, 358

binding (bound) names, 187

Prepared exclusively for Alison Tyler

BINDING TO COCOA 377 CONSOLE WINDOW (DEBUGGER)

binding to Cocoa, 350–360

arrays of hashes, 166–172

changing value of observed key,

356–357

declaring observed properties,

352–353

implementing

bind_toObject_withKeyPath_options,

355

observing changes, 353–354

with arrays, 359

setting up with code, 185–196

simple values, 162–166

value transformers, 177–181

BindingTracker class, 353

Boolean values, 136

converting to strings, 172

bound (binding) names, 187

bound objects, 187

boxcar notation, 189

breaking encapsulation in tests, 240

bridge metadata, 345, 347–349

.bridgesupport suffix, 347

building applications without Xcode,

121

bundles, 31

bundling applications, 109–116

automatically with standaloneify,

114–115

manually, 110–114

subfolders in source folder, 121

business rules (business logic), 223

Button, Brian, 200

buttons (user interface)

default button, 77, 78

images in, 154

organizing with NSMatrix, 289–292

state of, reacting to, 90

in tables, 230–233

toggle buttons, 77

by-reference arguments, 172, 235,

237–239

C
cascaded windows, 326

cell_for_window_point method, 266

CellOrientedDraggingInfo protocol, 267

cells, table, 230

CFBundleDocumentTypes key, 319

CFBundleGetInfoString variable, 298

CFBundleIconFile variable, 299

CFBundleIdentifie variable, 300

CFBundleShortVersionString variable, 298

CFBundleVersion variable, 298

changePreferences method, 157

checkboxes (user interface), 231

Class Actions field, 46

Class Identity field, 46

Class Outlets field, 46

classes

adapter classes, 141

creating and editing in Xcode, 48–55

extracting subclasses, 85–89

feature envy, 268

in MacRuby, 337

referring to superclasses, 103

reopening, 73

storing as preferences, 131–137

structs vs., 54

test classes, 204

clickedColumn method, 251

clickedRow method, 251

Cocoa API browser, 49

Cocoa bindings, 350–360

arrays of hashes, 166–172

changing value of observed key,

356–357

declaring observed properties,

352–353

implementing

bind_toObject_withKeyPath_options,

355

observing changes, 353–354

with arrays, 359

setting up with code, 185–196

simple values, 162–166

value transformers, 177–181

Cocoa framework, 12, 338

coding, see archiving (coding)

collections, key-value observing with,

359

colons (:) in Objective-C method names,

30

columns, table, 153, 233

filling with data, 167

combo boxes, 76, 79

initializing, 92

responder chain, 317

concludeDragOperation method, 261

conditionally requiring libraries, 115

Connections tab (for controllers), 47

console window (debugger), 55

Prepared exclusively for Alison Tyler

CONTENT PAGES (HELP BOOK) 378 FAILURE

content pages (help book), 306

content view, 43

Contents/ directory, 32

context, test, 205

Controller class, subclassing, 85–89

controller classes, folder structure for,

199

controllers, 44

decoupled, 82–93

implementing, 51

names for controller classes, 46

notifications with, 94–96

controls, testing, 211

coordinate systems, 262

CountingApp translator, 82

Create Folder References option, 112

Crosby, David, 84

D
data objects, 268

data sources, 143

dataOfType_error method, 329

debugger console, opening, 55

debugging, 214

decoupled applications, notifications

among, 94–99

decoupled controllers, 82–93

default button (in GUI), 77, 78

defaults, user, see persistent user

preferences

delegates and delegating, 23

notification vs., 63

overriding window behavior with, 60

deleting menu bars, 297

deleting table rows, 182

deny method, 212

dependencies, avoiding with nibs, 90

description, tooltip, 307

didChangeValueForKey method, 352, 353

directionality of binding mechanism,

185

directories

for gems and libraries, 111

groups vs., 118

hierarchical project folders

using Interface Builder with,

123–124

using Xcode with, 119

as preferences for file selection, 245

running tests in, 201

structure of, 198–201

within source folder, 121

disk layout, 198–201

distributed notifications

listening for, 96

receiving, 69

sending, 67

doc window, Interface Builder, 41

document-based applications, 313–333

creating new documents, 319–328

editing documents, 330–333

important objects, 314–316

opening and saving documents,

328–330

responder chain, 316–319

domain-specific languages (DSLs), 100,

105

double-clicking in NSTableView, 248

drag and drop, 261–281

how it works, 261–263

user interface for, 263–264

NSTableView class for, 264–265

utility classes and modules for,

265–268

draggingEnded method, 261

draggingEntered method, 261, 275

draggingUpdated method, 261, 275

DSLs (domain-specific languages), 100,

105

duck typing, 24

dumb objects, 268

dummies (dummy objects), 284

E
editing classes in Xcode, 48–55

editing documents, in applications,

330–333

editing help book pages, 303–309

embedding movies in help pages, 308

encapsulation, breaking in tests, 240

encodeWithCoder method, 135

= (equal sign) as assignment operator,

58

equality (==), 226

Erickson, Carl, 84

event/object tables, 84

example (main) in this book, 17

expectations, mock, 284

F
failed tests, 282

failure, test, 207

Prepared exclusively for Alison Tyler

FAKES (FAKE OBJECTS) 379 INTERFACE

fakes (fake objects), 284

falsity, 136

Feathers, Michael, 200

feature envy, 268

fenestration, 18

file selection panel, 243–246

customizing, 246–248

testing, 248–256

File’s Owner, Nib file, 158–159, 323

files

document-based applications,

313–333

creating new documents, 319–328

editing documents, 330–333

important objects, 314–316

opening and saving documents,

328–330

responder chain, 316–319

grouping, 118

renaming Ruby files, 114

test files, structure of, 203–205

first responder (user interface), 80,

159, 317

FlexMock gem, 269, 283

focus (user interface), 80

Tab sequence (focus ring), 288

folders

for gems and libraries, 111

groups vs., 118

hierarchical project folders

using Interface Builder with,

123–124

using Xcode with, 119

as preferences for file selection, 245

running tests in, 201

structure of, 198–201

within source folder, 121

“forbidden” cursor, 264

formatters, 172

connecting, 177

formatting pathnames, 235–239

using by-reference arguments,

237–239

Fowler, Martin, 268

frame names, 287

G
garbage collection, 160

gems

bundling into applications, 109–116

automatically with standaloneify,

114–115

manually, 110–114

creating directory for, 111

installing, 113

global status bar, 26

gradient buttons, 154

graphical user interface, see interface

groups, file, 118

GUI, see interface

H
Haines, Corey, 200

Handles Content as Compound Value

checkbox, 196

hard-coding, 90, 237n

hash notation, with NSDictionary, 65

hashes, binding arrays of, 166–172

HasRubySource notifications, 275

HasRubySource notifications, 255

help documentation, 301–312

creating help books, 302

editing pages, 303–309

hooking help books into apps, 309

indexing, 310

tooltips, 307, 311

workflow for creating, 311

helper methods, in tests, 209

Helpify package, 302

hierarchical project folders

using Interface Builder with,

123–124

using Xcode with, 119

highlighting items in drop-down lists,

145

I
.icns files, 33

icons, for applications, 298

images in NSButtons, 154

index pages (help books), 308

indexing help pages, 310

Info.plist file, 32, 310

init method (SpeechController), 28

initial first responder, 80, 317

initialize method, in Ruby classes, 28

initWithCoder method, 135, 193

inspector, Interface Builder, 41

installing gems, 113

installing libraries, 114

interface, see user interface

Prepared exclusively for Alison Tyler

INTERFACE BUILDER (IB) 380 NIB FILES

Interface Builder (IB), 38, 40–42

binding arrays of hashes, 170

binding simple values, 165

combo box items, setting, 79

first responder pseudo-objects, 159,

317

with hierarchical project folders,

123–124

making objects in, 45

synchronizing Xcode with, 57

version of, 15

warnings, 292

isolating applications at all times, 112

J
justified confidence, 210

K
key equivalents, for menu items, 30, 78

key view loop, 288

key-value coding, 357

overriding, 358

key-value observing, 353–354, 358

keypaths, 163

rooted, 187, 189

KVO-compliant properties, 358

L
labels, 43

lazy getter, 324

Leopard system, 14

lib directory (for libraries), 114

libraries

bundling into applications, 109–116

automatically with standaloneify,

114–115

manually, 110–114

conditionally requiring, 115

creating directory for, 111

installing, 114

library, Interface Builder, 41

Linguistics gem, 110

M
MacOS/ directory, 32

MacRuby framework, 13, 334–343

basics of, 337–339

converting programs from

RubyCocoa, 339

downloading, 337

RubyCocoa versus, 334

main menu, Interface Builder, 40

main window, Interface Builder, 41

makeKeyWindow method (NSWindow), 158

marshaling, see archiving (coding)

matrices, button buttons inside,

289–292

memory

leaks, 160

pointers to pointers, 172, 237

menu bar, 297

menus, 27–31

creating menu items, 30

key equivalents for menu items, 30,

78

Meszaros, Gerard, 283

methods

feature envy, 268

in MacRuby, 338

naming, in Objective-C, 30

reference arguments for, 172,

237–239

runtime information on, 346

minimal cases, testing, 272

minimum size for windows, 293

mocks, 284

model-view-controller (MVC) pattern,

315n

movies, embedding in help pages, 308

MVC (model-view-controller) pattern,

315n

__MyCompanyName__ value, 298

N
name argument, notifications, 65

naming

applications, 300

controller classes, 46

methods, in Objective-C, 30

projects, in Xcode, 38

Ruby files, 114

table columns, 153

windows, 287

New menu, 319

newDocument method, 317, 321

nextKeyView outlet, 289, 292

nib files, 40

avoiding dependencies with, 90

avoiding hard-coding, 90, 237n

creating, 151–153

Prepared exclusively for Alison Tyler

NIL VALUES FOR BY-REFERENCE ARGUMENTS 381 NSTABLE CLASS

creating preference panel in,

150–161

declaring objects in, 86

File’s Owner, 158–159, 323

nil values for by-reference arguments,

239

NotificationInBox class, 104

NotificationOutBox class, 104

notifications, 62–255

among decoupled applications,

94–99

between applications, 67

changing text views in response to,

332

delegation vs., 63

domain-specific language (DSL) for,

101

don’t-care values, 64

handling behind the GUI, 71

name and sender arguments, 65

sending notifications, 65

shorthand for, 103

translating into human-readable

strings, 82

userInfo argument, 64

converting Ruby objects for, 66

for distributed notifications, 67

within applications, 62–66

NS prefix, for Cocoa classes, 23

NSApp class, 60, 64

NSApplication class, 22

responder chain, 317

NSArrayController class, 168, 169

remove methods, 221

subclassing, 189–192

NSAttributedString class, 329

NSButton class, 77

images in buttons, 154

NSButtonCell class, 231

NSCancelButton variable, 256

NSCell class, 230

NSCFBoolean class, 136

NSCoder class, 135

NSComboBox class, 77

NSData class, 134

NSDictionary class, 188

passing with notifications, 65

NSDistributedNotificationCenter class, 67,

97

NSDocument class, 315

opening and saving documents,

328–330

responder chain, 317

showWindows method, 325

NSDocumentController class, 315, 320

NSDraggingInfo protocol, 262, 267, 272

NSFileManager class, 237, 346

NSFormatter class, 175

NSHandlesContentAsCompoundValueBindingOption

class, 195

NSHumanReadableCopyright variable, 298

NSIndexSet class, 222

NSKeyedArchiver class, 142

NSKeyValueObservingOptionNew class, 360

NSKeyValueObservingOptionPrior class, 355

NSLayoutManager class, 330

NSLog class, 56

NSMatrix class, 289–292

NSMenu class, 28

NSMenuItem class, 28, 30

NSMethodSignature class, 346

NSMutableAttributedString class, 322, 330

NSNotification class, 63, 255

translating notifications into

human-readable strings, 82

NSNotificationCenter class, 66, 128

domain-specific language (DSL) for,

101

NSObject class, 45

distributed notifications, sending, 67

printing NSObjects, 137

NSOKButton variable, 256

NSOpenPanel class, 243–246

controller for, 256

customizing, 246–248

making controllers for, 248

testing, 248–256

NSPanel class, 153

makeKeyWindow method, 158

NSPasteboard class, 272

NSPathStore2 class, 245

NSRadioModeMatrix mode, 291

NSRange class, 52, 54

NSRect class, 146

NSSavePanel panel, 246

NSScrollView class, 43

NSSet class, 359

NSSpeechSynthesizer class, 27

NSString class, 237

NSTable class, 153

adding and deleting rows, 182

Prepared exclusively for Alison Tyler

NSTABLECOLUMN CLASS 382 PRINTINGT NSOBJECTS

filling NSTables, 167

NSTableColumn class, 169

NSTableView class

double-clicking in, 248

with drag and drop, 264–265

utility classes and modules for

utility classes and modules for,

265–268

NSTableView class, 213

NSTableViewPatches module, 266

NSTextField class, 43

NSTextStorage class, 330

NSTextView class, 43, 52, 73, 321

NSUserDefaults class, 128, 134, 165

NSUserDefaultsController class, 165, 169,

192, 223

NSView class, 42

NSWindow class, 42

NSWindowController class, 157, 315, 322,

328

responder chain, 317

NSWindowDidMoveNotification class, 146

O
ObjcPtr class, 174

object argument, notifications, 65

object binding, see binding to Cocoa

object identity, 226

object-oriented programming, 240

objectForKey method, 128

Objective-C dialect, 12

bridge metadata, 345, 347–349

converting Ruby objects to, 66

objects

archived, 139–143

bound objects, 187

converting to/from text, 172

of document-based, 314–316

event/object tables, 84

in MacRuby, 337

rooted keypaths, 187, 189

rooted objects, 187, 351

storage of, 172

test doubles, 283

observed (observable) property key,

187, 350

changing value of, 356–357

observed properties, declaring,

352–353

observeValueForKeyPath_ofObject_change_context

method, 356–358

on method, 217

one-way synchronization, see pulling

data into views

opening documents, in applications,

328–330

openPanel method, 243

organizing buttons with NSMatrix,

289–292

origin, coordinate system, 262

Other attribute (help book index), 309

outlets, 44

connecting to TranslatorEnlister as, 90

creating (in IB), 46

lazy getter, 324

owner, Nib file, 158–159, 323

P
parent classes (superclasses), 28

referring to, 103

pasteboard_with_files method, 272

pasteboards, 262, 272

path-setting.rb file, 112

pathnames

formatting, 235–239

looking within NSPasteboard for, 272

performDragOperation method, 261

persistent user preferences, 127–149

creating preference panel, 150–161

with Cocoa bindings, 162–184

drawing panel, 153–155

hooking panel to app, 155–158

custom objects as preferences,

131–137

file selection and, 245

pulling data into views, 143–145

pickling, see archiving (coding)

pkg folder, 122

pointers to pointers, 172, 237

preferences (user), persistent, 127–149

creating preference panel, 150–161

with Cocoa bindings, 162–184

drawing panel, 153–155

hooking panel to app, 155–158

custom objects as preferences,

131–137

file selection and, 245

pulling data into views, 143–145

Preferences folder (Home/Library), 128

prepareForDragOperation method, 261

printing to standard output, 23

printingt NSObjects, 137

Prepared exclusively for Alison Tyler

PRIVATE TOKEN 383 STRUCTS

private token, 241

programmatic edits to documents, 332

project-files folder, 125

projects

adding directories to, 112

creating new, in Xcode, 38

hierarchical folders for

using Interface Builder with,

123–124

using Xcode with, 119

starting new, 124

propagate method, 356

Property List Editor, 128

protected token, 241

protocols, 262n

public token, 241

pulling data into views, 143–145

push buttons (user interface), 78, see

buttons

R
Rainsberger, J. B., 210

Rake, running tests with, 201

rakefiles, 121, 125

rb_main.rb file, 33

deleting with starting projects, 125

readFromData_ofType_error method, 329

receiving distributed notifications, 69

receiving notifications, 255

Recursively Create Groups option, 112

reference arguments for methods, 172,

237–239

referring to superclasses, 103

registerDefaults method, 128

regular expressions in tests, 238

removeObserver method

(NSNotificationCenter), 98

removeObserver_name_object method

(NSNotificationCenter), 98

reopening Objective-C classes, 73

require_framework method, 348

require statements, 22, 199

resizing windows, 293–297

Resources/ directory, 33

responder chain

document-based applications,

316–319

initial first responder, 80, 317

root objects, 187, 351

rooted keypath, 187, 189

rows (table), adding and deleting, 182

Ruby, reading about, 14

Ruby, version of, 14, 15

Ruby files, renaming, 114

Ruby objects, converting to

Objective-C, 66

RubyCocoa framework

additional resources on, 19

learning, 12

MacRuby versus, 334

version of, 14, 15

RubyCocoa programs, converting to

MacRuby, 339

RubyFileChooserController class, 255, 275

Rucola, 121n

runtime information on methods, 346

S
saveDocument method, 319

saving documents, in applications,

328–330

saving window position, 287

screen space, allocating, 26

scrollers, 43

searching help content, index for, 310

sender information, with notifications,

65

sending notifications, 255, see

notifications

serializing, see archiving (coding)

setDocument method, 325

setObject_forKey method, 128

setup method, 205

building, 227–229

setValue_forKeyPath method, 356

showWindows method, 325

sizing windows, 293–297

source folder, subfolders in, 121

speech synthesis, 27

SpeechController class, 27

spike solutions, 314

stack trace, 56

standaloneify tool, 114, 115

standard output, 56

printing to, 23

state, button, 90

status bar icon, creating, 26

Statusbar.icns file, 33

Steele, Guy, 248n

sticky windows, 145–148, 287

strings, converting Booleans into, 172

structs, classes vs., 54

Prepared exclusively for Alison Tyler

STRUCTURE 384 USER PREFERENCES

structure, test files, 203–205

structure, tests, 205–206

stubs, 284

subclasses, 85–89

super pseudomethod, 103

super_ methods, 28, 103

superclasses, 28

referring to, 103

synchronizing Interface Builder and

Xcode, 57

synthesizing speech, 27

system structure, 198–201

T
tab behavior, 288

table cells, 230

table columns, 153

filling with data, 167

tables

adding and deleting rows, 182

buttons in, 230–233

drag and drop in, 261–281

how it works, 261–263

user interface for, 263–265

naming columns of, 153

TDD (test-driven design), 282–285

teardown method, 205, 229

terminate method, 60, 64

test classes, 204

test context, 205

test doubles, 283

test folder (top-level), 201

test-driven design (TDD), 282–285

testable access type, 241

TestCase class, 204

setup method, 205, 227–229

teardown method, 205, 229

testing, 202–212, 272

encapsulation, breaking, 240

file selection panel (NSOpenPanel),

248–256

running in folders and subfolders,

201

structure of test files, 203–205

structure of tests, 205–206

using regular expressions in, 238

when to stop, 210

writing tests, 206–210

testutil folder, 200

text attributes, 322

text fields, 43

textDidChange method, 331

testStorage method, 53

textStorage method, 330

third-party add-ons, directory for, 111,

121

title page (help book), 304

to-many relationships, 359

toggle buttons, 77

tooltips, 307, 311

ToString translator, 82, 96

TranslatorEnlister class, 83

connection to, as outlet, 90

notifications with, 99

typing, 24

U
unless keyword, 26

untitled documents, creating, 319

updateChangeCount method, 332

user edits (documents), 330

user interface,

combo boxes, 76, 79

initializing, 92

responder chain, 317

connecting to code, 44–48

coordinate systems, 262

default button, 77, 78

for drag and drop, 263–264

NSTableView class for, 264–265

utility classes and modules for,

265–268

focus, 80, 288

folder structure for, 199

notification handling, 71

persistent user preferences, 127–149

creating preference panel,

150–161

creating preference panel with

bindings, 162–184

custom objects as preferences,

131–137

file selection and, 245

pulling data into views, 143–145

pulling data into views, 143–145

saving window position, 287

status bar icon, creating, 26

sticky windows, 145–148

tab behavior, 288

user preferences, persistent, 127–149

creating preference panel, 150–161

with Cocoa bindings, 162–184

Prepared exclusively for Alison Tyler

USERINFO ARGUMENT 385 XIB FILES

drawing panel, 153–155

hooking panel to app, 155–158

custom objects as preferences,

131–137

file selection and, 245

pulling data into views, 143–145

userInfo argument, notifications, 64

converting Ruby objects for, 66

for distributed notifications, 67

util folder, 200

V
value transformers, 177–181

valueForKey method, 356

overriding, 358

variables, storage of, 172

version numbers, 298

version, Mac OS X, 14

version, Ruby, 14, 15

version, RubyCocoa, 14, 15

views, 42–43

coordinate systems, 262

pulling data into, 143–145

virtual machine (VM), 334

VM (virtual machine), 334

W
Wake, Bill, 205

willChangeValueForKey method, 352, 354

windows,

About window, 297

cascaded, 326

coordinate systems, 262

frame names of, 287

NSWindowController class, 315, 322,

328

responder chain, 317

overriding behavior of, 60

saving position as user preference,

287

sizing, 293–297

writing tests, 206–210

X
Xcode, 38

building applications without, 121

creating and editing classes, 48–55

creating nib files, 151–153

with hierarchical project folders, 119

hooking help books into apps, 309

not changing to, 51

synchronizing Interface Builder with,

57

version of, 15

xib files, 151

Prepared exclusively for Alison Tyler

More on Cocoa and Ruby

Core Animation for OS X/iPhone
Have you seen Apple’s Front Row application and

Cover Flow effects? Then you’ve seen Core

Animation at work. It’s about making applications

that give strong visual feedback through movement

and morphing, rather than repainting panels. This

comprehensive guide will get you up to speed

quickly and take you into the depths of this new

technology.

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

Bill Dudney

(220 pages) ISBN: 978-1-9343561-0-4. $34.95

http://pragprog.com/titles/bdcora

Everyday Scripting with Ruby
Don’t waste that computer on your desk. Offload

your daily drudgery to where it belongs, and free

yourself to do what you should be doing: thinking.

All you need is a scripting language (free!), this

book (cheap!), and the dedication to work through

the examples and exercises. Learn the basics of the

Ruby scripting language and see how to create

scripts in a steady, controlled way using test-driven

design.

Everyday Scripting with Ruby: For Teams,

Testers, and You

Brian Marick

(320 pages) ISBN: 0-9776166-1-4. $29.95

http://pragprog.com/titles/bmsft

Prepared exclusively for Alison Tyler

http://pragprog.com/titles/bdcora
http://pragprog.com/titles/bmsft

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Cocoa with Ruby’s Home Page

http://pragprog.com/titles/bmrc

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/bmrc.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Alison Tyler

http://pragprog.com/titles/bmrc
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/bmrc
www.pragprog.com/catalog

	Contents
	Introduction
	What Is Cocoa?
	What Is RubyCocoa?
	What's It Like to Learn Cocoa Using Ruby?
	RubyCocoa? That's So Last Year!
	Prerequisites
	Versions
	Our Example App
	Centuries of the Bookmaker's Art: Scorned
	Some Terminology
	Service After the Sale
	Solving Problems
	Acknowledgments

	How Do We Get This Thing Started?
	A Program That Prints
	Putting an Item in the Status Bar
	Menus
	An Application Bundle
	What Now?

	A First Realistic App
	Working with Interface Builder and Xcode
	The Basics
	Creating and Editing Classes in Xcode
	Debugging
	Synchronizing Interface Builder and Xcode
	Attributes
	Overriding Window Behavior with a Delegate
	Try This Yourself
	What Now?

	One Good App Observes Another
	Notifications Within an App
	Notifications Between Apps
	The App to Fenestrate
	Putting Notification Handling Behind the GUI
	Reopening Objective-C Classes
	What Now?

	Reshaping Fenestra
	A Better GUI
	Toggle Buttons
	The Default Button
	Combo Box Items
	The Initial First Responder
	Try This Yourself
	What Now?

	Decoupled Controllers
	Ignorant Objects
	Extracting Subclasses
	Reacting to Button State
	Using Nibs to Avoid Dependencies
	Initializing Combo Boxes
	What Now?

	Notifications Connect Decoupled Objects
	Controllers
	Translators and the Rising Tide of Ugliness
	What Now?

	More Expressive Code
	A DSL for Notifications
	RubyCocoa Has Two Ways of Referring to Superclasses
	Shorthand for Posting Notifications
	Try This Yourself
	What Now?

	Project Mechanics
	Bundling Gems and Libraries with Your App
	Manual Control
	Standaloneify
	What Now?

	Project Organization, Builds, and Your Favorite Editor
	Groups
	Using Xcode with Hierarchical Project Folders
	Running in Place
	Building Without Xcode
	Using Interface Builder with Hierarchical Project Folders
	Starting a New Project
	What Now?

	Declarative Data Handling
	Persistent User Preferences
	The User Preferences System
	Storing Custom Objects as Preferences
	Using Archived Objects
	Views Can Pull Data
	Try This Yourself: A Sticky Window
	What Now?

	Creating a Preference Panel in a New Nib
	Creating a Nib
	Drawing the Panel
	Hooking the Panel to the App
	The Nib File's Owner
	IB's First Responder Pseudo-Object
	Memory Leaks
	What Now?

	Implementing a Preference Panel with Cocoa Bindings
	Binding a Simple Value
	Binding an Array of Hashes
	Formatters
	Value Transformers
	Adding and Deleting Table Rows
	What Now?

	Setting Up Bindings with Code
	Oh No! Terminology!
	Using Rooted Keypaths in Code
	Subclassing NSArrayController
	bind_toObject_withKeyPath_options
	What Now?

	Fun with Tables
	Prologue: Folders and Tests
	Disk Layout

	Selections and Editing
	An Example of Creating Tests: The Add Method
	Working with an Uncooperative Control
	Try This Yourself
	Building Setup Methods
	What Now?

	Buttons in Tables
	Cells
	Making the Change
	What Now?

	A Formatter with Two Wrinkles
	The Formatter Code
	Calling Methods That Take Reference Arguments
	Breaking Encapsulation in Tests
	What Now?

	Picking Files with Open Panels
	NSOpenPanel
	A Design for Using NSOpenPanel in Fenestra
	Try This Yourself: PreferencesController Tests
	Try This Yourself: The NSOpenPanel Controller
	What Now?

	Drag and Drop
	How Drag and Drop Works
	Designing the GUI
	A Template for the Solution
	Utility Classes and Modules
	Try This Yourself: Lively Dragging Info
	Try This Yourself: Drag and Drop
	Does It Work?
	What Now?

	Epilogue: A Wonderful World of Tests
	Test-Driven Design
	To Learn More

	Wrapping Up
	Fit and Finish
	Saving the Window Position Until the Next Launch
	Tab Behavior
	Using NSMatrix to Organize Buttons
	Sizing
	Cleaning Up the Menu Bar
	The About Window
	Changing the Application's Name

	Adding Help
	Help Book Basics
	Creating a Help Book
	Editing Pages
	Hooking a Help Book into an App
	A Workflow for Creating Help Book Pages
	Tooltips

	Document-Based Applications
	The Major Players
	The Responder Chain
	Creating a New Document
	Opening and Saving Documents
	Editing
	Learning More

	MacRuby
	Getting MacRuby
	MacRuby Basics
	A MacRuby Checklist
	What Now?

	Reference
	The Objective-C Bridge and Bridge Metadata
	An Unexpected Return Value
	What Information Can Be Found at Runtime?
	Supplementing Runtime Information
	Our Own Private Metadata
	Finding Out More

	The Underpinnings of Cocoa Bindings
	Requirements
	Our Goal
	Declaring Observed Properties
	Observing Changes
	Implementing bind_toObject_withKeyPath_options
	Changing the Value of an Observed Key
	In Summary...
	Postscript: Observing Changes to Collections

	Glossary
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

