

Professional
Ruby on Rails™

Noel Rappin

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 1/30/08 4:34:41 PM1/30/08 4:34:41 PM

ffirs.indd iiffirs.indd ii 1/30/08 4:34:41 PM1/30/08 4:34:41 PM

Professional
Ruby on Rails™

Chapter 1: Building Resources ... 1

Chapter 2: Rails Source Control with Subversion... 39

Chapter 3: Adding Users .. 59

Chapter 4: Build Tools and Automation ... 103

Chapter 5: Navigation and Social Networking ... 125

Chapter 6: The Care and Feeding of Databases ... 155

Chapter 7: Testing Tools .. 181

Chapter 8: Rails - Driven JavaScript .. 211

Chapter 9: Talking to the Web .. 241

Chapter 10: Internationalizing Your Application ... 261

Chapter 11: The Graphic Arts ... 285

Chapter 12: Deploying Your Application .. 313

Chapter 13: Performance ... 337

Chapter 14: Going Meta .. 367

Chapter 15: Extending Rails with Plugins ... 391

Chapter 16: Replacing Ruby Tools .. 417

Appendix A: Things You Should Download ... 441

Appendix B: Web Frameworks Inspired by Rails .. 445

Index .. 449

ffirs.indd iffirs.indd i 1/30/08 4:34:40 PM1/30/08 4:34:40 PM

ffirs.indd iiffirs.indd ii 1/30/08 4:34:41 PM1/30/08 4:34:41 PM

Professional
Ruby on Rails™

Noel Rappin

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 1/30/08 4:34:41 PM1/30/08 4:34:41 PM

Professional Ruby on Rails™

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-22388-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warran-
ties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Website may provide or recommendations it may make. Further, readers
should be aware that Internet Websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Ruby on Rails is a
trademark of David Heinemeier Hansson. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd ivffirs.indd iv 1/30/08 4:34:41 PM1/30/08 4:34:41 PM

www.wiley.com

 To Erin. Forever. And for everything.

ffirs.indd vffirs.indd v 1/30/08 4:34:41 PM1/30/08 4:34:41 PM

 About the Author
 Noel Rappin is the Director of Rails Practice at Pathfinder Associates (www.pathfinderagile.com),
and has nearly a decade of experience with web application programming. Noel has a Ph.D. from the
Georgia Institute of Technology, where he studied how to teach object - oriented design concepts. He is
the co - author of Jython Essentials and wxPython in Action. You can read more of Noel ’ s writing at both
the Pathfinder Agile Ajax blog (http://blogs.pathf.com/agileajax) and his own blog
(http://10printhello.blogspot.com).

ffirs.indd viffirs.indd vi 1/30/08 4:34:42 PM1/30/08 4:34:42 PM

Acquisitions Editor
Jenny Watson

Development Editor
Maryann Steinhart

Technical Editor
Raymond Budd

Production Editor
Martine Dardignac

Copy Editor
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Sossity Smith

Indexer
Johnna VanHoose Dinse

Credits

ffirs.indd viiffirs.indd vii 1/30/08 4:34:42 PM1/30/08 4:34:42 PM

 Acknowledgments

 Many different people helped make this book possible. Thanks to my agent Neil Salkind for getting this
project off the ground, and to Jenny Watson and Maryann Steinhart at Wiley for helping turn it from a
proposal into a book. Thanks to the technical editor, Raymond Budd, for his attention to detail in
verifying the source code for this book, and the copyeditor, Kathryn Duggan, for her attention to matters
of style and clarity.

 Without the Rails community as a whole, this book would have been a lot less interesting and more
difficult. Thanks to David Heinemeier Hansson for creating Rails in the first place, and the entire core
team for the ongoing implementation. Also thanks to people like Dave Thomas and Chad Fowler for
their part in popularizing Rails. The Rails community is enlivened by a fantastic ongoing conversation of
ideas, tutorials, and arguments online. I ’ ve tried to acknowledge individual developers and bloggers in
each chapter, and there are too many to list here, but thanks to you all.

 At Motorola, a number of managers and co - workers were supportive of my initial attempts to build Rails
projects as well as the beginnings of this book. Special thanks to Greg Bell, Anne - Marie Jolie, MaryAnn
Marks, Jay Marusich, Staszek Salik, Mike Wagner, and Michal Wieja.

 Pathfinder has been amazingly supportive of this book, both in concept and in the amount of time spent.
Thanks to Dietrich Kappe and Bernhard Kappe for the opportunity. Anthony Caliendo, Michael King,
Jason Sendlebach, Alice Toth, and Lydia Tripp are all team members who have been supportive of me
and this book. Thanks to all of you.

 I ’ d like to acknowledge and thank Wally Dodge, who was my AP Computer Science instructor, and is as
responsible as anybody for my choice of career.

 I ’ m lucky to be part of an amazing and loving family, both immediate and extended. At the risk of
angering everybody else, I ’ d like to especially acknowledge my godparents, Nancy and Richard Sher,
and my cousin Dan Sher.

 My parents, Donna and Donnie Rappin, have always enthusiastically supported me, no matter where
I chose to go.

 My wife, Erin, still and always the best part of my life, made it through this project with grace and
humor. Thank you for everything.

 My children, Emma and Elliot, are now old enough to read this for themselves. Hi! You are wonderful
and amazing kids, and I love you both.

ffirs.indd viiiffirs.indd viii 1/30/08 4:34:42 PM1/30/08 4:34:42 PM

Contents

Acknowledgments viii
Introduction xvii

Chapter 1: Building Resources 1

A Good Place to Start 1
A Recipe for Recipes 2
The REST of the Story 4

What Is REST? 4
Why REST? 6

Building Your First Resources 6
Migrations 7
Routes 8
Controllers 11
Views 15
Route Display 16

Building Ingredients 16
Setting Up Your Database 17
Aligning Your Tests to the Nested Resource 17

Building a Recipe Editor 22
Adding Ingredients 22
Asserting HTML 23
Parsing Ingredients 25
Adding a Coat of Paint 29
Asserting Creation 30
Adding a Little Ajax 34

Resources 38
Summary 38

Chapter 2: Rails Source Control with Subversion 39

Subversive Control 39
Creating a Repository 42
Populating the New Repository 43

Checking Out and Adding Files 43
What to Ignore 44
Database Files in the Repository 45

ftoc.indd ixftoc.indd ix 1/30/08 9:43:47 PM1/30/08 9:43:47 PM

Contents

x

Marking Executable Files 46
Commiting Changes 46

The Repository Life Cycle 47
Committing Normal Code Changes 47
Updates and Conflicts 48
File-Level Changes 50

Setting Up a Subversion Server with svnserve 50
Living on the Edge 52

Using a Specific Version of Rails 53
Living on the Edge With Rake 55

What’s Up, RDoc? 56
Resources 58
Summary 58

Chapter 3: Adding Users 59

Creating Users 59
User Creation Form 60
Refactoring Forms Using A FormBuilder 64
Storing Encrypted Passwords 67
Authentication 71

The Routes 71
The Tests 71
The Controller 72
The Views 74
Using Authentication 76
Adding User Roles 78

Bot Protection via Authorization Email 80
Generating the Model and Migration 80
Test First 81
Controller Logic 83
Sending the Email 84

CAPTCHA 86
Creating a Test-Driven CAPTCHA Object 86
CAPTCHA Object Implementation 88
Deploying the CAPTCHA 90

Sessions and Cookies 94
Persistent Login Cookie Strategies 94
Persistent Login Mechanism — Test First 95
Cookie Life Cycle 97
Validating Login Cookies 98

Resources 100
Summary 101

ftoc.indd xftoc.indd x 1/30/08 9:43:48 PM1/30/08 9:43:48 PM

Contents

xi

Chapter 4: Build Tools and Automation 103

What Rake Can Do for You 104
Rake Database Tasks 104
Rake Documentation Tasks 107
Rake Testing Tasks 107
Rake Cleanup Tasks 108
Rake Rails Tasks 109
Other Rake Tasks 110

What You Can Do for Rake 111
A Simple Rake Task 111
Tasks with Dependencies 113
File Tasks 115
Using Rails in Rake 116
Testing Rake Tasks 117

Continuous Integration 119
ZenTest 119
CruiseControl.rb 120

Resources 123
Summary 123

Chapter 5: Navigation and Social Networking 125

Menus and Sidebars 125
Single-Level Menus 125
Object Cache 130

Tagging 132
Installing the Acts As Taggable Plugin 132
Applying Tags to a Model 133
Tags and the User Interface 135

Searching 144
Searching with SQL 144
Searching with Ferret 146

Pagination 152
will_ paginate 152
paginating_find 153

Resources 153
Summary 154

ftoc.indd xiftoc.indd xi 1/30/08 9:43:49 PM1/30/08 9:43:49 PM

Contents

xii

Chapter 6: The Care and Feeding of Databases 155

Plugging In to Your Legacy 156
Naming Unconventionally 158
Testing a Legacy Database with Fixtures 160
Building a Relationship across Multiple Databases 165

Defining the Functionality 165
Creating the Proxy Model 167
Making Connections 167
Alternate Data Access Mechanism 168

Why Be Normal? 170
A Little Bit of Theory 170
A Little Bit of Practice 171
ActiveRecord Callbacks 173
A Common Case 174

Polymorphic Associations 175
Database Refresher 176

Preventing SQL Injection with the Power of Find 176
Using Transactions 177

Preventing Data Hijacking with Associations 178
Resources 179
Summary 179

Chapter 7: Testing Tools 181

Test Driven 181
Covering It All 183

Installing rcov 183
Using rcov and Rails 184

Mock Testing 187
Using FlexMock 187
Specifying Stubs 189
Mock Expectations 191

Behavior-Driven Design 193
Loading RSpec 193
Writing RSpec Specs 194

How to Get RSpec-Like Features 202
Testing Views 202
More Natural Test Syntax 205
Improving Fixtures 206
Testing Helpers 207

References 209
Summary 210

ftoc.indd xiiftoc.indd xii 1/30/08 9:43:49 PM1/30/08 9:43:49 PM

Contents

xiii

Chapter 8: Rails-Driven JavaScript 211

Revisiting the Past 211
Fixing JavaScript DRY Violations 213
Being Graceful 217

Easy JavaScript Integration 222
Tooltips 222
In-Place Editing 226
Autocomplete 228

Writing JavaScript in Ruby 230
An RJS Example 230
Other RJS Methods 233
Using RJS for Lightboxing 234
Testing RJS 235

Cross-Site Scripting Security 237
Resources 238
Summary 238

Chapter 9: Talking to the Web 241

ActiveResource 241
The Client Side of REST 242
Activating Your Resources 243

Producing Web Service Data 246
Producing XML 246
Builder Templates 248
Producing Feeds 249
Producing JSON and YAML 256

Consuming Web Services 257
Resources 259
Summary 259

Chapter 10: Internationalizing Your Application 261

Does Anybody Really Care About Time? 261
Dates and Times 262
Timestamps and Time Zones 263
Inputting Dates 266
Date Arithmetic and Outputting Dates 271

Internationalization with Globalize 273
Using The Globalize Plugin 274
Local Formatting 275

ftoc.indd xiiiftoc.indd xiii 1/30/08 9:43:49 PM1/30/08 9:43:49 PM

Contents

xiv

Translations 276
Tracking Routes 281

References 282
Summary 283

Chapter 11: The Graphic Arts 285

Getting Started 285
Graphics Packages 286
Installing for Windows 286
Installing for Mac OS X 287
Installing for Linux 288

Uploading Files to Rails 288
Setting Up attachment_fu Data 289
Creating an attachment_fu Model 290
Testing attachment_fu 291
Adding an attachment_fu Form 293
Displaying attachment_fu Images 294

Using Your Graphics Library 296
ImageScience 296
RMagick 297
MiniMagick 303

Charts 306
Gruff 306
Sparklines 309

Resources 311
Summary 312

Chapter 12: Deploying Your Application 313

Capistrano 313
Starting with Capistrano 314
Basic Capistrano Tasks 316
Customizing Capistrano 320
Multistage Deployment 325

Mongrel 326
Getting Started 326
Basic Deployment 328
Clustered Deployment 329
Mongrel, Apache, and You 333

References 334
Summary 334

ftoc.indd xivftoc.indd xiv 1/30/08 9:43:49 PM1/30/08 9:43:49 PM

Contents

xv

Chapter 13: Performance 337

Measurement 337
Railsbench 338
Performance Profiling 345
Logs — The Quick Way 345
Profiling Method Timings with ruby-prof 346

Fixing Performance Problems 352
Managing Sessions 353
ActiveRecord and Database Issues 356

Caching 360
Page Caching 361
Action Caching 362
Fragment Caching 362
Cache Expiring 364
Cache Storage 364

References 365
Summary 365

Chapter 14: Going Meta 367

Eval and Bindings 368
Introspection Tools 370
Classes, Metaclasses, and Singletons 373

Classes and Objects 373
Singletons 375

Monkey Patching and Duck Punching 378
Monkey Patching Without Slipping On a Banana Peel 379
Alias 380
Plugging In 382
Acts As Reviewable 383

The Case of the Missing Method 386
Defining Methods Dynamically 387
References 390
Summary 390

Chapter 15: Extending Rails with Plugins 391

Using Plugins 391
Installing Plugins 391
Plugin Repositories 392

ftoc.indd xvftoc.indd xv 1/30/08 9:43:49 PM1/30/08 9:43:49 PM

Contents

xvi

Creating a Plugin 394
Writing a Generator 396

Basic Generator Functionality 396
The Generator Class 398
The Generator Manifest 398
Testing Generators 400
Writing the Generator Test 402
GeneratorTestHelper 404
The Migration that Passes the Tests 406

Writing the Plugin 407
ActiveRecord Test Setup 407
Acts_As_Reviewable Structure 410

Distributing Plugins 414
References 414
Summary 415

Chapter 16: Replacing Ruby Tools 417

ERB Replacements 417
Markaby 418
Haml 422
Liquid 427

JRuby on JRails 431
Getting Started 432
Crossing the Boundary 433
Running JRails 435
Deployment via WAR 437
GlassFish 439

References 439
Summary 440

Appendix A: Things You Should Download 441

Appendix B: Web Frameworks Inspired by Rails 445

Index 449

ftoc.indd xviftoc.indd xvi 1/30/08 9:43:50 PM1/30/08 9:43:50 PM

 Introduction

 First released to the public in 2004 after being developed to support the Basecamp project management
application, Ruby on Rails promised nothing less than a revolution in the way web applications are
constructed. With a strong grounding in the pragmatic ethic of avoiding repetition, the Rails way of
supporting common conventions instead of complex options showed that there was a simpler way to
build for the Web, and “ my code is shorter than your configuration file ” became the boast of the day.

 In the intervening years. Rails has made friends and enemies, has been used to build some of the hottest
web applications going, and has undergone several internal revolutions as the notion of what comprises
Rails best practices continues to evolve. This book attempts to use the current best practices to show how
to build a web application.

 Who Should Read This Book
 This book is intended for intermediate to advanced Rails programmers. It assumes that you already
know Ruby, and have either read one of the many wonderful introductory books on Rails or have
otherwise consumed some form of a Rails tutorial. In either case, you don ’ t need me to tell you how to
create a basic Rails application.

 The focus of this book is on the step that comes after just being able to make Rails work. You ’ ve read the
basic book, and now you ’ ve been asked to implement a real, live, web application. Suddenly you have
all sorts of questions that weren ’ t covered in the introductory material. How do I manage users and
security? Is there an easy way to manage time zones or other internationalization issues? How does Rails
expect me to organize a team of programmers and manage source issues? How do I automate common
build tasks, and how do I deploy to a production server? What do I need to do to secure my site? How
can I extend Rails to take advantage of the many wonderful things being done by the Rails programming
community?

 If you ’ re interested in learning the answer to any of these questions, then this book is for you.

 How This Book Is Structured
 Over the course of this book, you ’ ll build a single web application, and the ordering of the chapters is
based on the growing needs of that application. However, the book has been structured so that
individual chapters are as orthogonal as possible, and unless otherwise noted, you should not need to
read the entire book to understand the concepts in a particular chapter.

 There are two other things about the book ’ s structure worth noting. Wherever possible, the code samples
are presented in a test - first style, with a Rails unit or functional test documenting the expected behavior
of the new code as written. The idea is to try and present the case for test - first development without a
significant time cost, and also to present you with strategies for testing various kinds of Rails features.

flast.indd xviiflast.indd xvii 1/30/08 4:35:59 PM1/30/08 4:35:59 PM

Introduction

xviii

 The Rails online community is an awesome and wonderful thing, full of enthusiastic developers sharing
their knowledge and expertise with the community. Each chapter in this book includes a list of blogs,
plugins, and/or other Rails web sites that are related to the topic at hand.

 The book is organized into the following sixteen chapters and two appendixes:

 Chapter 1, Building Resources — This chapter covers setting up the project and its initial resources
using REST.

 Chapter 2, Rails Source Control with Subversion — After a project is set up, it should be placed under
source control immediately. Subversion is the Rails source control tool of choice and is the topic of this
chapter.

 Chapter 3, Adding Users — This chapter covers placing the concept of a user into the application,
managing secure logins, performing e - mail authorization, and implementing CAPTCHA.

 Chapter 4, Build Tools and Automation — Rake is a very handy tool for automating commonly
performed actions. With those actions defined, it ’ s a small step to create an environment where
automated tests or metrics can be performed continually, as you learn in this chapter.

 Chapter 5, Navigation and Social Networking — This chapter covers the basic elements of web
application navigation, menus, tagging, search, and pagination.

 Chapter 6, The Care and Feeding of Databases — This chapter discusses the use of other database tools
besides the MySQL default, and adding more complex database relationships to the application. It also
explores issues of database security.

 Chapter 7, Testing Tools — This chapter introduces you to several different tools to improve your
testing, including the use of RCov to measure testing, RSpec to specify behavior more directly, and
methods for testing views and helpers.

 Chapter 8, Rails - Driven JavaScript — This chapter describes how you can use Ruby and Rails to add
Ajax and JavaScript to your application, including using RJS to create more complex JavaScript behavior
and testing RJS output.

 Chapter 9, Talking to the Web — This chapter shows you how to turn your application into a web
services data producer, including how to create RSS feeds. It also describes how ActiveRecords turns a
Rails application into a web services data consumer.

 Chapter 10, Internationalizing Your Application — The World Wide Web encompasses many time
zones and languages. This chapter covers managing time in Rails and using the Globalize plugin for
internationalization.

 Chapter 11, The Graphic Arts — This chapter describes how to install RMagick and other tools to enable
graphics, as well as how to use Gruff and Sparklines to create charts.

flast.indd xviiiflast.indd xviii 1/30/08 4:36:00 PM1/30/08 4:36:00 PM

Introduction

xix

 Chapter 12, Deploying Your Application — This chapter discusses the current state - of - the - art in
deploying Ruby applications using Capistrano to automate deployment tasks. It also covers the use of
the Mongrel and other server tools to serve the application.

 Chapter 13, Performance — This chapter shows you how to measure performance to find bottlenecks in
your Rails application, and what to do when you find them.

 Chapter 14, Going Meta — Metaprogramming, or writing code that writes or modifies code, is a nifty
trick that Ruby handles deftly, and which is used to support some of the most dynamic features in Rails.
Adding metaprogramming to an application can reduce duplicated code dramatically, as you learn in
this chapter.

 Chapter 15, Extending Rails with Plugins — This chapter gives you even more information on using
Rails plugins, including how to create, test, and deploy a Rails plugin and use generators.

 Chapter 16, Replacing Ruby Tools — This chapter covers using ERB replacements to define output and
using JRuby to deploy your application in a Java Web Application server.

 Appendix A, Things You Should Download — This appendix explains everything you should download
to work with Ruby on Rails, including Ruby, Gems, Rails, and Subversion.

 Appendix B, Web Frameworks Inspired by Rails — This appendix briefly describes web frameworks
that have been influenced by Rails.

 What You Need to Use This Book
 This book assumes you are using Ruby version 1.8.6 and Rails 2.0.2. The examples in this book run
against a MySQL database, and use the Mongrel web server. Instructions on installing the necessary
software on Linux, Mac OS X, or Windows are contained in Appendix A.

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, a number of conventions are
used throughout the book.

 Boxes like this one hold important, not - to - be forgotten information that is directly
relevant to the surrounding text.

 Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

flast.indd xixflast.indd xix 1/30/08 4:36:00 PM1/30/08 4:36:00 PM

Introduction

xx

 As for styles in the text:

 New terms and important words are highlighted when they ’ re introduced.

 Keyboard combinations are shown like this: Ctrl+A.

 Filenames, URLs, and code within the text looks like this: persistence.properties .

 Code is presented in two ways:

This is how most code in the book appears.

To call your attention to a specific line within code, it is highlighted like this.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com . From this site, you can simply locate the book ’ s title by using
the Search box or by using one of the title lists, and then click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN. This book ’ s ISBN is
978 - 0 - 470 - 22388 - 8.

 After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration and help us provide even higher - quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book ’ s errata, is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

❑

❑

❑

❑

flast.indd xxflast.indd xx 1/30/08 4:36:00 PM1/30/08 4:36:00 PM

Introduction

xxi

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies, as well as to interact
with other readers and technology users. The forums offer a subscription feature to e - mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxiflast.indd xxi 1/30/08 4:36:01 PM1/30/08 4:36:01 PM

flast.indd xxiiflast.indd xxii 1/30/08 4:36:01 PM1/30/08 4:36:01 PM

 Building Resources

 Ruby on Rails is opinionated software. This doesn ’ t mean that it ’ s going to make fun of your
haircut, or tell you what kind of car to drive. It does mean that Rails has definite ideas about how
your web project should be structured, how it should interact with a database, how you should
test, and even what kinds of tools you should use. Tasks that Rails feels that you should do often
are easy, and tasks that Rails thinks should be rare are (usually) possible but more complicated.
This works because the Rails team has done an exceptionally good job of deciding how web
projects should work, and how they should not work.

 Two important principles that Rails favors are especially useful when starting a new Rails project:

 Representational State Transfer (REST) is a relatively new mechanism for structuring a Rails
application by organizing the application around resources, rather than pages.

 Test Driven Development (TDD) is an important part of ensuring the correctness and design
of any software project, but Rails does a particularly good job of providing the developer
with the tools needed for easy and powerful automated testing.

 In this chapter, you will begin the construction of the Rails project that will carry you throughout
the book. This will enable you to review the basic Rails functionality you should already be
familiar with, but with an added emphasis on REST and TDD. At the end of this chapter, your
Rails knowledge should be refreshed, state - of - the - art, and ready to go.

 To run the examples throughout this book, a standard suite of applications is assumed to already
be installed on your computer. The suite includes Ruby, Rails, MySQL, and Subversion.
See Appendix A , “ Things You Should Download, ” for details on how to install these tools.

 A Good Place to Star t
 The sample application that drives this book is called Soups OnLine, your Web 2.0 guide to all
things hot and broth - y. As the site develops, it will have all sorts of modern web goodness,
including an Ajax interface, social networking and content development, RSS syndication, and

❑

❑

c01.indd 1c01.indd 1 1/30/08 4:02:20 PM1/30/08 4:02:20 PM

Chapter 1: Building Resources

2

fancy graphics. For the moment, though, all it has is the standard Rails application structure, which you
should see in your command window after you execute the following command:

rails -d mysql soupsonline

 If you leave off the -d mysql, then your application will be created to use SQLite3, which is the new Rails
default. The database can be changed later in developemnt. In response, Rails will create a standard
application structure:

create
create app/controllers
create app/helpers
create app/models

[... several creations skipped ...]

create log/server.log
create log/production.log
create log/development.log
create log/test.log

 The examples in this book were written and tested against Ruby 1.8.6 and Rails 2.0.2. Ruby 1.9 has not
been released as of this writing, but is expected shortly.

 A Recipe for Recipes
 There are two useful places to start when planning a Rails application:

 You can start from the front - end and move backwards by thinking about what actions or
activities your users will perform in the site.

 You can start from the back - end and move forwards by thinking about what kind of data you
will need to be storing.

 The two directions feed back and forth on each other, of course, and there ’ s no particularly correct way
to go about site design. Rails is extremely good at supporting incremental development, so starting in
one small place and gradually increasing functionality is a perfectly valid design process.

 For the purposes of the book, I ’ d like to start with a brief description of user activities, but work in
earnest with the initial data structure and administrative side, catching up with the user activities in
future chapters. For me, at least, since Rails is so good at quick - and - easy data creation support, it feels
more direct to start with that part, get some quick success under my belt, and then start designing the
front end with some actual data to look at.

 So, here ’ s a quick description of user activities. Soups OnLine is intended to start as a recipe repository,
where users can upload recipes, find recipes that match various categories or criteria, and comment on
recipes. More advanced uses might include the capability to make and receive recommendations,
information about various techniques or ingredients, and the capability to purchase equipment,
ingredients, or even premade soup.

❑

❑

c01.indd 2c01.indd 2 1/30/08 4:02:20 PM1/30/08 4:02:20 PM

Chapter 1: Building Resources

3

 From the data perspective, the place to start is the recipe — that ’ s the main unit of data that the users will
be looking at. What ’ s the data for a recipe? Pulling out my handy - dandy Joy of Cooking (Simon & Schuster),
I see that a recipe consists of a title (“ Cream of Cauliflower Soup ”), a resulting amount (“ About 6 cups ”),
a description (“ This recipe is the blueprint for a multitude of vegetable soups . . . ”), some ingredients
(“ ¼ cup water or stock, 1 tablespoon unsalted butter ”), and some directions (“ Heat in a soup pot over
medium - low heat . . . ”).

 There are some interesting data representation questions right off the bat. To wit:

 Should the directions be a single text blob, or should each step have a separate entry?

 Should each ingredient be a single text string, or should the ingredients be structured with a
quantity and the actual ingredient name?

 Is the ingredient list ordered?

 The Joy of Cooking is unusual in that it actually interpolates ingredients and directions, which is
perhaps easier to read, and also enables lovely recipe visualizations such as the ones at the
website www.cookingforengineers.com . Should you try to allow for that?

 Sometimes an ingredient may itself have a recipe. Many soup recipes start with a standard base
stock, for example. How can you allow for that?

 I find these decisions a lot easier to make with the understanding that they aren ’ t permanent, and that
the code base is quite malleable. Eventually, of course, there ’ ll be the problem of potentially having to
deal with a lot of data to migrate, but until then, here ’ s how I think the site should start:

 Directions are a single text blob. There isn ’ t really any data to them other than the text itself, and
if you have a convention in data entry of using newlines to separate steps, it ’ ll be easy enough to
migrate should you choose to.

 There will be structured and ordered ingredient lists. Usually ingredients are given in a
particular order for a reason. Adding the structure doesn ’ t cost much at this point, and will
enable some nice features later on (such as English - to - metric conversion). I also think that this
one would be harder to migrate to the structured data if you don ’ t start there — you ’ d have to
write a simple parser to manage that.

 Interpolating ingredients and directions could be managed by adding directions to the
ingredient data, but doing so adds some complexity to the user display, and I ’ m not ready to
start with that. The idea of being able to do those shiny table visualizations is tempting, though.
This is a possibility for change later on, although I suspect that it would be nearly impossible to
extrapolate data from preexisting recipes.

 Having ingredients themselves have recipes is a complication you don ’ t need at this point. In case it ’ s
not clear, I should point out that I ’ m doing this planning in real time. As I write the draft of this, I haven ’ t
started the code yet, so I could yet turn out to be dead wrong on one of these assumptions, in which case
you ’ ll really see how suited Rails is for agile development.

 Having done at least a minimum of design work, it ’ s time to instantiate the data into the database.
You ’ re going to do that using the new - style REST resources with Rails.

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 3c01.indd 3 1/30/08 4:02:21 PM1/30/08 4:02:21 PM

Chapter 1: Building Resources

4

 The REST of the Story
 I pledge right now that will be the only REST - related pun in the whole book (unless I think of a really
good one later on).

 REST is another one of those tortured software acronyms — it stands for REpresentational State
Transfer. The basic idea dates back to the doctoral dissertation of Ray Fielding, written in 2000, although
it only started gaining traction in the Rails world in early 2006, when a couple of different plugins
allowed for a RESTful style within Rails. The functionality was rapidly moved to the Rails core and has
just as quickly become a very commonly used practice, especially for standard Create, Read, Update,
Delete (CRUD) style functionality.

 What Is REST?
 There are three different ways of thinking about REST as compared to a traditional Rails application:

 Pages versus resources

 Network protocols

 Rails features

 You ’ ll explore each of these in the following sections.

 Pages versus Resources
 The traditional view of data on the Web is action - oriented. A user performs an action on a page, usually
by just accessing the page, but sometimes by sending data as well. The server responds with data,
usually in HTML, but a pure web service is likely to send XML or JSON.

 A RESTful application, in contrast, is viewed as a set of resources, each of which contains some data and
exposes a set of functions to the Web. The core of these functions is made up of the standard CRUD
actions, and the application programming interface (API) for the standard functions is supposed to be
completely consistent between resources. A resource can also define additional actions for itself.

 If this reminds you of the distinction between procedural programming and object - oriented
programming (OOP), with REST resources playing the part of objects, well then you ’ ve got the gist. One
difference is that using REST in Rails primarily changes the way in which the user accesses your data
because it changes the URL structure of your site, but the data itself will be largely unaffected, whereas
an object - oriented design does affect the way your data itself is structured.

 Network Protocols
 The signature feature of a REST - based web application is the use of HTTP access methods as critical data
when determining what to do in response to a request. HTTP defines four different methods for
requesting data (and eight methods overall). Many of us learned this fact in a beginning HTTP book or
network course and promptly filed the information under “ trivia that might win a bet someday, in a
bizarre set of circumstances. ” Only two of these methods are in general use — nearly every server since
the days of Mosaic has only used GET for getting information out of the server and POST for putting

❑

❑

❑

c01.indd 4c01.indd 4 1/30/08 4:02:21 PM1/30/08 4:02:21 PM

Chapter 1: Building Resources

5

information into the server. In addition, most web applications used separate URLs for their GET and
 POST operations, even where it was technically feasible to share URLs. For example, the Java Servlet
specification allows the same servlet to respond differently to a GET or POST , but all of the servlets I ’ ve
written either defined one of the methods as a clone of the other, or only respond to one method,
ignoring or failing if the other is invoked.

 It turns out, though, that the HTTP protocol also defines PUT and DELETE . It ’ s easy to understand DELETE ,
but it ’ s not immediately clear what the original intention was for the distinction between PUT and POST —
 you ’ ll see in a second the distinction REST and Rails make between them. A RESTful application uses all
of these methods (often called verbs) as a meaningful part of the Web action. In other words, when
confronted with a URL like http://www.soupsonline.com/recipes/1 , a RESTful Rails application
cannot determine what controller action to perform without knowing whether the request was a GET ,
 DELETE , or PUT . A GET request would result in a show action, the DELETE request triggers the delete
action, and the PUT request triggers the update action. In contrast, a traditional Rails application would
have the controller action explicitly specified in the URL, ignoring the HTTP verb. The traditional URL
might look like http://www.soupsonline.com/recipes/show/1 or http://www.soupsonline
.com/recipes/update/1 . (I realize that it ’ s slightly absurd to refer to anything in Rails as traditional,
but there isn ’ t a better retronym for the non - REST applications.)

 By now, you may have realized a contradiction that I ’ ve hand - waved my way past. If all the browsers
handle only GET and POST , then how does a RESTful Rails application use PUT and DELETE ? The Rails
core team, like geniuses since time immemorial, is not going to let a little thing like the imperfection of
the current state of browsers get in the way of a conceptually nifty idea like REST. When you ask Rails to
create a PUT or DELETE link, it actually wraps the request inside a small POST form with a hidden field
that Rails then decodes on the server end. In the happier RESTful future, servers will implement the
complete HTTP specification, and Rails can dispense with the disguise and display its PUT s and
 DELETE s proudly.

 Rails Features
 Within Rails, you do not explicitly define a class called a Resource in the same way that you explicitly
define Controller or Model classes — at least, not for resources controlled by the local Rails application
(see Chapter 9 for how you might access resources from a remote server). A resource emerges from the
interaction of a Controller and a Model , with some magic in the route - mapping gluing them together.
Although Rails provides a REST resource generator that creates a tightly coupled Controller and
 Model , you could easily have two separate resources managing different facets of a model. Each resource
would have a separate controller. For instance, if you had some kind of employee database, you could
manage contact information and say, vacation days as separate resources with separate controllers, even
though they are in the same model. As you ’ ll see in just a few moments, you can also nest resources,
designating one resource as the parent of another.

 RESTful resources also bring along some helpful nuts - and - bolts functionality that makes them quite easy
to deal with. The controller method respond_to was created for REST (although it can be used in any
Rails controller), and makes it extremely easy to deliver your data in multiple formats. Continuing the
description in the previous section, using respond_to , your application can return different data for
the URL http://www.soupsonline.com/recipes/1.xml as compared to http://www.soupsonline
.com/recipes/1.rss or even http://www.soupsonline.com/recipes/1.png .

c01.indd 5c01.indd 5 1/30/08 4:02:21 PM1/30/08 4:02:21 PM

Chapter 1: Building Resources

6

 A RESTful view can also use some logically named methods to generate the URL that you might use
inside a link_to call in your view. Rather than fussing around with action parameters, or passing the
object or ID you want to control, Rails will automatically respond to methods such as recipe_path or
 edit_recipe_path — assuming, of course, that you ’ ve defined a resource for recipes.

 Why REST?
 REST is elegant, and I think it ’ s a logical progression of where the best - practices design of Rails
applications has been heading since Rails was released. There ’ s been a continual motion towards having
more controllers, having thinner controllers with the real work done in the model, and enforcing
consistency between controllers. REST provides a framework for moving that design style to the next
level: lots of controllers, lots of activity possible with very little controller code, and absolute consistency
for CRUD - style controllers. If you are the kind of web designer who likes to have the URL interface to
your application be extremely crisp and concise — and many of us are — then REST will feel quite nice.

 That said, you ’ re going to see the biggest benefits from REST if your application is either implementing
or consuming web services. The consistency of interfaces to REST resources, coupled with the almost
trivial nature of converting an ActiveRecord object to an XML representation and back turns every
Rails application into a potential web service, but if you aren ’ t thinking of your application in those
terms, it may not feel like that big of a win. Although you might try to think of your application as a
potential service, it may open avenues of functionality that you haven ’ t thought of before.

 Even if you aren ’ t providing a web service, pretty much every Rails application has to do some set of
CRUD actions on its data. REST is a powerful mechanism for making that process even simpler. Again,
though, REST isn ’ t necessarily going to be much assistance in creating the fancy front - end of your
application, but it will make the wiring easier to install, which will leave you more time to make that
front - end even fancier.

 Building Your First Resources
 Earlier, you saw the initial design for Soups OnLine where two resources, recipe and ingredient, were
described. It ’ s time to put them in your application, using the Rails generate script. The action for the
script is scaffold . (In versions of Rails prior to 2.0, it was called scaffold_resource .) The syntax is
simple: the singular name of the resource, followed by pairs of the form attribute:datatype for each
attribute you want initially placed in the resource.

 The data - type portion of each pair can be any type available for use as a data type in a Rails migration:
 binary , boolean , date , datetime , decimal , float , integer , string , text , time , and timestamp .

 There ’ s no expectation that you have to have the attribute list correct up front (it can always be changed),
but it should just be an easy place to start. The commands and responses look like this (for clarity, I ’ ve
removed lines where Rails shows that a directory already exists):

$ ruby script/generate scaffold recipe title:string servings:string
description:string directions:string

create app/views/recipes
create app/views/recipes/index.html.erb

c01.indd 6c01.indd 6 1/30/08 4:02:22 PM1/30/08 4:02:22 PM

Chapter 1: Building Resources

7

create app/views/recipes/show.html.erb
create app/views/recipes/new.html.erb
create app/views/recipes/edit.html.erb
create app/views/layouts/recipes.html.erb
create public/stylesheets/scaffold.css
create app/models/recipe.rb
create test/unit/recipe_test.rb
create test/fixtures/recipes.yml
create db/migrate
create db/migrate/001_create_recipes.rb
create app/controllers/recipes_controller.rb
create test/functional/recipes_controller_test.rb
create app/helpers/recipes_helper.rb
route map.resources :recipes

$ ruby script/generate scaffold ingredient recipe_id:integer order_of:integer
amount:float ingredient:string instruction:string unit:string

create app/views/ingredients
create app/views/ingredients/index.html.erb
create app/views/ingredients/show.html.erb
create app/views/ingredients/new.html.erb
create app/views/ingredients/edit.html.erb
create app/views/layouts/ingredients.html.erb
create app/models/ingredient.rb
create test/unit/ingredient_test.rb
create test/fixtures/ingredients.yml
create db/migrate/002_create_ingredients.rb
create app/controllers/ingredients_controller.rb
create test/functional/ingredients_controller_test.rb
create app/helpers/ingredients_helper.rb
route map.resources :ingredients

 That ’ s a lot of files for each scaffold, many of which will be familiar to you from traditional Rails code
generation. You ’ ve got your controller object, views, the model class, a fixture file, and unit and
functional tests. I ’ d like to focus some attention on items that are new or different.

 Migrations
 The generator script uses the attribute information provided to create Rails migration objects. Here ’ s the
one for Recipe, which you ’ ll find in db/migrate/001_create_recipes.rb :

class CreateRecipes < ActiveRecord::Migration
 def self.up
 create_table :recipes do |t|
 t.string :title
 t.string :servings
 t.string :description
 t.string :directions
 t.timestamps
 end
 end

(continued)

c01.indd 7c01.indd 7 1/30/08 4:02:22 PM1/30/08 4:02:22 PM

Chapter 1: Building Resources

8

 def self.down
 drop_table :recipes
 end
end

 The t.string syntax is a Rails 2.0 method for spelling what would previously have been written
 t.column :string . The timestamps method adds the special Rails columns created_at and
 updated_at . The creation of the ingredient resource generates a similar migration at db/migrate/002_
create_ingredients.rb .

 Routes
 The most important additions are the new routes added to the routes.rb file, which are the source of
all the RESTful magic. As created by your two generators, the routes look like this:

map.resources :ingredients
map.resources :recipes

 Standard Routes
 The purpose of the routes.rb file is to control the conversion from an HTTP request to a Rails method
call. Each of these map.resources lines causes Rails to associate URLs that start with the resource name
to the resource for that controller, in this case /recipes would invoke the recipe controller. So far, it
sounds similar to a traditional Rails route in :controller/:action/:id format. The difference is that
the REST routes infer the action to call in the controller based on the HTTP method invoked. There are
seven standard actions in a REST controller. The following table shows the standard interpretation of
URLs and the HTTP methods that are used to describe the corresponding controller actions. Each
controller action also has a path method, to be called inside views for link_to and form actions, as well
as a URL method, which is called inside the controller when you need to redirect to a different action.

(continued)

URL Called HTTP Method
Controller
Action Path Method URL Method

/recipes/1 GET show recipe_path(1) recipe_url(1)

/recipes/1 PUT update recipe_path(1) recipe_url(1)

/recipes/1 DELETE destroy recipe_path(1) recipe_url(1)

/recipes GET index recipes_path recipes_url

/recipes POST create recipes_path recipes_path

/recipes/new GET new new_recipe_path new_recipe_url

/recipes/1/edit GET edit edit_recipe_
path(1)

edit_recipe_
url(1)

c01.indd 8c01.indd 8 1/30/08 4:02:22 PM1/30/08 4:02:22 PM

Chapter 1: Building Resources

9

 When you call one of these path or URL methods with a PUT or DELETE HTTP method, you must make
sure that the link_to or redirect call also contains the option :method = > :delete or :method = >
:put to ensure that the URL is properly sent by Rails (link_to assumes GET ; the form methods and
 link_to_remote assume POST). If you are using the standard HTTP method, there ’ s a shortcut, where
you just specify the object that is the target of the link:

link_to @recipe

 You ’ ll see examples of those calls when you examine the standard views that the generator has created.

 Also, the methods that take an argument can take either an integer argument, in which case it ’ s assumed
to be the ID of the resource you are interested in, or they can take the resource object itself, in which case,
the ID is extracted for use in the URL or path. They can also take the usual key/value pairs, which are
converted to a query string for the request.

 Nested Routes
 You need to do a slight tweak of the routes to allow for the relationship between a recipe and its
ingredients. As the design currently stands, there ’ s a strict one - to - many relationship between recipes
and ingredients, with an ingredient only being meaningful inside its specific recipe. To make your Rails
routes reflect that relationship more accurately, the routes can be nested in routes.rb . Change your
 routes.rb file so that the resource lines are as follows:

map.resources :recipes do |recipes|
 recipes.resources :ingredients
end

 With this nesting in place, Rails will generate similar routes for ingredients, but only with a recipe
attached at the beginning of the URL. For example, the URL to call the index method for the ingredients
in a recipe will be as follows:

/recipe/1/ingredients

 And the URL for showing, updating, and deleting would look like this:

/recipe/1/ingredient/1

 The named methods for a nested resource are similar to the parent - level methods listed previously, but
they contain the parent resource name in the method, such as the following:

recipe_ingredient_url(@recipe, @ingredient)

edit_recipe_ingredient_url(@recipe, @ingredient)

 The path - based methods are similar. Again, the methods can take either integer IDs or the actual resource
objects. This naming convention is pretty clear when the nesting isn ’ t very deep or when the variables

c01.indd 9c01.indd 9 1/30/08 4:02:23 PM1/30/08 4:02:23 PM

Chapter 1: Building Resources

10

are well named. But if you get into things like user_address_street_house_room_url(x, y, z,
a, b) , it could get a little hairy. There are a couple of ways to clean those long method names up:

 The arguments to the URL or path method can be entered as key/value pairs:

recipe_ingredient_url(:recipe_id = > @recipe, :id = > @ingredient)

 For URLs, the url_for method can be used (remember to specify the HTTP method if needed):

url_for(@recipe, @ingredient)

Either choice should help tame unclear route method calls.

 Customizing Resource Routes
 The resources call in the routes.rb file can also be customized to adjust the behavior of the routes.
The most common reason for doing this is to add your own actions to the resource. Each resource call
provides three options for specifying custom actions. The :member option is for actions that apply to a
specific resource, the :collection option is for actions on the entire list (like index), and the :new
option applies to resources that have not yet been saved to the database. In each case, the value for
each option is itself a hash. The keys of that hash are the method names, and the values are the HTTP
verbs to be used when calling that method. So, if you wanted to add a print action to your recipes, it
would look like this:

map.resources :recipes, :method = > {:print = > :get } do |recipes|
 recipes.resources :ingredients
end

 The addition here of :method = > {:print = > :get } creates the new print action, and tells Rails
that this action will be defined on a specific resource called via GET . The URL of this new action will be /
recipes/1/print . (This is a change from older versions of Rails, where this used to be spelled /
recipes/1;print — nobody really liked the semicolon syntax, and it tended to interfere with caching,
so it was changed for Rails 2.0.)

 The URL for a collection - based action would look like /recipes/ < action > , and the URL for a new -
 based action would be /recipes/new/ < action > .

 What ’ s more, you also get a URL and path method for the new action. In this case, they would be
 print_recipe_path(@recipe) and print_recipe_url(@recipe) .

 The tricky thing about these custom routes is remembering to specify them. Unlike nearly everything
else in Rails, a custom resource route needs to be specified twice: once in the controller itself, and then
again in routes.rb . This is arguably a violation of one of Rails core design principles, namely Don ’ t
Repeat Yourself (DRY), and it ’ s entirely possible that somebody clever will come along and clean this up
at sometime in the future.

 Like most of Rails, the standard names can be overridden if you like. In the case of a resource routing
call, there are a few options to change standard naming. You can specify an arbitrary controller class to
be the target of the resource with the :controller option. You can change the name of the controller
within the URL (the recipe in /recipe/1) using the :singular option, and you can require a prefix to
the URL with the :path_prefix option. The prefix passed to that option works just the same way as a

❑

❑

c01.indd 10c01.indd 10 1/30/08 4:02:23 PM1/30/08 4:02:23 PM

Chapter 1: Building Resources

11

traditional rails route — parts of the prefix specified as a Ruby symbol are converted to variables when
the path is dereferenced. For example, if you wanted all recipes to be attached to a chef, you could add the
option :path_prefix = > “ /chef/:chef_name ” , and the show recipe URL, for example, would change
to /chef/juliachild/recipe/1 . Within the controller, the variable params[:chef_name] would be
set to juliachild .

 Controllers
 The controller for each new resource contains seven actions, shown earlier in the table of standard
routes. Each action is helpfully commented with the URLs that cause that action to be invoked. Each
action is also set up by default to respond to both HTML and XML requests. Following are sections about
the default controllers for the recipe resource with some comments.

 Index
 First up, the index method, which displays a list of all the recipes:

 # GET /recipes
 # GET /recipes.xml
 def index
 @recipes = Recipe.find(:all)
 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml = > @recipes }
 end
 end

 If you ’ re familiar with traditional Rails, than the only new part here is the respond_to method, which is
the REST mechanism that allows the same controller action to return different data based on the
requested format.

 Functionally what happens here is similar to a case expression — each potential format that the action
might respond to is listed in the body of the respond_to block, and exactly one of them is performed
based on the MIME type of the user request. In this case, if the URL request is /recipes or /recipes.
html , then the format.html line is chosen. If the URL is /recipes.xml , then the format.xml line is
chosen. Each type can have a block associated with it, which is executed when that type matches the user
request. If there is no block associated with the type, then the Rails default action for dealing with that
type is triggered. In the case of the html action, that would be the rendering of the matching html.erb
view, index.html.erb . It has become customary to explicitly note that the format is being handled in a
default manner with a comment naming the view file to be rendered.

 Since this is one of those Ruby metaprogramming magic things, where it ’ s not immediately clear what ’ s
happening behind the scenes, it ’ s worth breaking the method down a little bit. The respond_to method
comes in two forms. The one shown previously takes a block. Alternately, you could just pass a list of
symbols corresponding to types (:html, :js) . You would use the list version if every type on the list
was handled via the default action for that type.

 In the more typical case, the block is defined with a single argument. The argument is of a Responder
class. Each line of the block calls a method on the responder object — in the previous code, those
methods are format.html and format.xml . Each of these format methods takes an optional argument,
which is also a block.

c01.indd 11c01.indd 11 1/30/08 4:02:24 PM1/30/08 4:02:24 PM

Chapter 1: Building Resources

12

 When the respond_to method is called, the outer block is invoked. Each format method is called, and
does nothing unless the format method name matches the type of the request. (Metaprogramming fans
should note that this is elegantly implemented using method_missing .) If the types match, then
behavior associated with that type is invoked — either the block if one is explicitly passed or the default
behavior if not.

 The convention is to have nothing in your respond_to block except for the format calls, and nothing in
the format calling blocks except the actual rendering call being made. This goes along with the general
idea in Rails design that the controller should be as thin as possible, and that complex data processing
should be handled in the model object.

 The respond_to method adds a lot of flexibility to your Rails controller — adding XML data serialization
or RSS feeds is nearly trivial. The syntax, I think, may still have some tweaking ahead of it — I ’ m not sure
there ’ s a lot of love for the way default behaviors are specified, and if the rendering is complex, the nested
blocks can become hard to read.

 Rails defines eight formats for you: atom , html , ics , js , rss , text , xml , and yaml . Just to be clear on
this, html is used for ordinary browser output, atom and rss should be used for feeds, xml and yaml
are used for object syndication, ics is the standard iCalendar format for calendar data, text is often
used for simple serialization, and js is used either to serialize data via the JSON format or as the target
of an Ajax call that would trigger JavaScript.

 Adding your own formats is simple, assuming that the format has a MIME type. Suppose you wanted to
allow a URL like /recipes.png to return some kind of graphical display of your recipe list. All you
need to do is go into the config/environment.rb file and add the following line:

Mime::Type.register “image.png”, :png

 Now any respond_to block in your application will enable you to use format.png as a method.

 Show
 The default show method is nearly identical to the index method, except that it only takes a single recipe
from the database, and renders the show.html.erb file.

 # GET /recipes/1
 # GET /recipes/1.xml
 def show
 @recipe = Recipe.find(params[:id])
 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml = > @recipe }
 end
 end

 The render :xml = > @recipe method call creates an XML representation of the data object by making
all of the attributes of the data object into subordinate tags of the XML (see Chapter 9 for more details).

c01.indd 12c01.indd 12 1/30/08 4:02:24 PM1/30/08 4:02:24 PM

Chapter 1: Building Resources

13

 New
 The default new method is similar to show , except a new recipe object is created:

 # GET /recipes/new
 # GET /recipes/new.xml
 def new
 @recipe = Recipe.new
 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml = > @recipe }
 end
 end

 Edit
 The default edit method is extremely simple because it does not have an XML representation defined,
so the traditional Rails default behavior happens automatically, and a respond_to method is not
needed. Here ’ s an example:

 # GET /recipes/1/edit
 def edit
 @recipe = Recipe.find(params[:id])
 end

 Create
 The create method is more complicated because it needs to output different information depending on
whether the creation is successful. The new recipe object is created based on the incoming parameters,
and then it is saved to the database. For example:

 # POST /recipes
 # POST /recipes.xml
 def create
 @recipe = Recipe.new(params[:recipe])
 respond_to do |format|
 if @recipe.save
 flash[:notice] = ‘Recipe was successfully created.’
 format.html { redirect_to(@recipe) }
 format.xml { render :xml = > @recipe,
 :status = > :created,
 :location = > @recipe }
 else
 format.html { render :action = > “new” }
 format.xml { render :xml = > @recipe.errors,
 :status = > :unprocessable_entity }
 end
 end
 end

c01.indd 13c01.indd 13 1/30/08 4:02:24 PM1/30/08 4:02:24 PM

Chapter 1: Building Resources

14

 I mentioned earlier that you could have code other than the format methods inside the respond_to
block, and this example shows one reason why you might want to do that. The actual saving of the
recipe takes place inside that block. If the save is successful, then the HTML response simply redirects to
the show method. Rails infers that you want to show the object because the only argument to redirect_
to is the object itself, and it uses REST routing to determine the unique URL for that object. The XML
response returns the object as XML with a couple of extra headers containing additional information.

 If the save is not successful, the HTML response is to show the new form again, and the XML response
is to send the errors and status via XML.

 In case you are wondering why the create method needs to support an XML format, the answer is to
allow new objects to be created remotely via a separate web services client that might be dealing with
your recipe server via XML.

 Update
 The update method is nearly identical to the create method, except that instead of creating a new
recipe, it finds the existing recipe with the expected ID, and instead of calling save , it calls update_
attributes . Oh, and the XML output is slightly different. The update method is as follows:

 # PUT /recipes/1
 # PUT /recipes/1.xml
 def update
 @recipe = Recipe.find(params[:id])
 respond_to do |format|
 if @recipe.update_attributes(params[:recipe])
 flash[:notice] = ‘Recipe was successfully updated.’
 format.html { redirect_to(@recipe) }
 format.xml { head :ok }
 else
 format.html { render :action = > “edit” }
 format.xml { render :xml = > @recipe.errors,
 :status = > :unprocessable_entity }
 end
 end
 end

 Delete
 Finally, delete . The default method doesn ’ t check for success or failure of delete ; for an HTML
request, it redirects to the index page via the recipes_url helper. An XML request gets a header
signaling success. Here ’ s an example of the delete method:

 # DELETE /recipes/1
 # DELETE /recipes/1.xml
 def destroy
 @recipe = Recipe.find(params[:id])
 @recipe.destroy

c01.indd 14c01.indd 14 1/30/08 4:02:25 PM1/30/08 4:02:25 PM

Chapter 1: Building Resources

15

 respond_to do |format|
 format.html { redirect_to(recipes_url) }
 format.xml { head :ok }
 end
 end

 Views
 The views that are created by the generated script are largely similar to their non - REST counterparts, but
I would like show the differences that come from using the RESTful URL features. In the edit.html.erb
file, the form accesses its URL as follows

 < % form_for(@recipe) do |f| % >

 The form_for method merely takes the argument and automatically converts that to a PUT call to /
recipes/1 (or whatever the id of the recipe is), which translates in the HTML source to this:

 < form action=”/recipes/1”
class=”edit_recipe”
id=”edit_recipe_1”
method=”post” >
 < div style=”margin:0;padding:0” >
 < input name=”_method” type=”hidden” value=”put” / >

 Although this is implemented as a POST from the server point of view, Rails inserts the hidden field for
 _method with the value put to tell the Rails application to treat it as a PUT request and redirect to the
update action.

 At the bottom of the edit page, the link_to method for show uses the GET version of the default URL
for the object, while the back link uses the named method for getting to the index action, as follows:

 < %= link_to ‘Show’, @recipe % > |
 < %= link_to ‘Back’, recipes_path % >

 Similarly, from index.html.erb , it does this:

 < %= link_to ‘New recipe’, new_recipe_path % >

 And from show.html.erb , it does this:

 < %= link_to ‘Edit’, edit_recipe_path(@recipe) % > |
 < %= link_to ‘Back’, recipes_path % >

 To clear up one quick issue, the .html.erb file - ending is a Rails 2.0 change. It was felt that .rhtml was
not accurate because the file is actually an erb file, and the .html is there to denote what kind of file the
 erb file will be after it is processed.

c01.indd 15c01.indd 15 1/30/08 4:02:25 PM1/30/08 4:02:25 PM

Chapter 1: Building Resources

16

 Route Display
 If you find yourself becoming confused by all the RESTful routing magic, as of Version 2.0, Rails
provides a rake command, routes , that gives you a complete list of the routes that have been defined in
your application (output has been truncated). For example:

$ rake routes

 recipes GET /recipes
 {:controller= > ”recipes”, :action= > ”index”}

 formatted_recipes GET /recipes.:format
 {:controller= > ”recipes”, :action= > ”index”}

 POST /recipes
 {:controller= > ”recipes”, :action= > ”create”}

 POST /recipes.:format
 {:controller= > ”recipes”, :action= > ”create”}

 new_recipe GET /recipes/new
 {:controller= > ”recipes”, :action= > ”new”}

 formatted_new_recipe GET /recipes/new.:format
 {:controller= > ”recipes”, :action= > ”new”}

 edit_recipe GET /recipes/:id/edit
 {:controller= > ”recipes”, :action= > ”edit”}

 formatted_edit_recipe GET /recipes/:id/edit.:format
 {:controller= > ”recipes”, :action= > ”edit”}

 It ’ s a little tricky to see — you need some pretty long lines to lay this out, but the output is in four
columns: the named method stem that is used to access the route (for example, edit_recipe , which can
be the stem to edit_recipe_path or edit_recipe_url), the HTTP verb that triggers this call, the
actual URL with symbols inserted, and then the controller and action called by the route.

 Building Ingredients
 Having now gotten a thorough tour of the new mechanisms that RESTful Rails provides by default, it ’ s
time for you to start writing some code and making this site come to life. The first task is to enable
simple entry of a recipe, and allow the most recently entered recipes to be displayed on the user - centered
front page, blog - style.

 The following problems stand between you and that goal:

 The database schema and sample code as generated do not associate recipes and ingredients, so
the forms that were created by the scaffold do not have a place to enter ingredient information.

❑

c01.indd 16c01.indd 16 1/30/08 4:02:25 PM1/30/08 4:02:25 PM

Chapter 1: Building Resources

17

 You changed the default routing after the scaffolds were generated, and therefore the ingredient
forms, as generated, use invalid methods to create URLs.

 The basic index listing of recipes is useful from an administrative point of view, but it is not
what you want to present to a user. In addition to the functional changes, you ’ ll need it to be
much nicer looking.

 That list will take you through the end of this chapter. Time to build a webapp!

 Setting Up Your Database
 Most of the work of setting up the initial database was already done when you created the resources and
generated migrations, but you still need to actually create the database instances. You ’ ll need to go to the
 database.yml file first and adjust the database information for all three database environments —
 development, test, and production. If you are using MySQL (version 5.x, please) and the database is on
your local development box, then you probably only need to put your root password into the file. (More
complicated database setups are discussed in Chapter 6 , “ The Care and Feeding of Databases. ”)

 A late change in Rails 2.0.2 has made SQLite3 the default database for new Rails projects. The examples
in this book use MySQL for the database connections.

 Once that is done, you can use Rake to do all the database creation work, without touching your MySQL
administration application. The first rake command (new in Rails 2.0) is this:

rake db:create:all

 This command goes through your database.yml file and creates a database schema for each database
listed for your local host.

 Similarly, the rake db:create command creates only the development environment. The command
creates empty database schemas. To populate the development environment with the tables and columns
defined in the migration, enter the following command:

rake db:migrate

 And to take that development environment and copy it to the test database, enter the following
command:

rake db:test:prepare

 This gives you all the database setup you need to get started.

 Aligning Your Tests to the Nested Resource
 I ’ m a firm believer in automated testing — unit, functional, and integration — so I love the fact that Rails
includes such a complete test suite. It ’ s very important to keep that suite current and running clean. I
know that some of the tests will fail based on the routing changes that were made, but the first thing to

❑

❑

c01.indd 17c01.indd 17 1/30/08 4:02:25 PM1/30/08 4:02:25 PM

Chapter 1: Building Resources

18

do is get a sense of the damage with the following (this output has been modified slightly for
readability):

$ rake
(in /Users/noel/Documents/Programming/ruby/soupsonline)

/usr/local/bin/ruby -Ilib:test
 “/usr/local/lib/ruby/gems/1.8/gems/rake-
 0.7.3/lib/rake/rake_test_loader.rb”
 “test/unit/ingredient_test.rb”
 “test/unit/recipe_test.rb”
Started
..
Finished in 0.327569 seconds.

2 tests, 2 assertions, 0 failures, 0 errors
/usr/local/bin/ruby -Ilib:test
 “/usr/local/lib/ruby/gems/1.8/gems/rake-
 0.7.3/lib/rake/rake_test_loader.rb”
 “test/functional/ingredients_controller_test.rb”
 “test/functional/recipes_controller_test.rb”
Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-
 0.7.3/lib/rake/rake_test_loader
Started
EEEEEEE.......
Finished in 1.732989 seconds.
14 tests, 13 assertions, 0 failures, 7 errors

 Looking at the errors, it seems that all the functional tests of the ingredients controller failed, as expected.
The following section describes what you need to do to clean them up.

 The Test Object
 Rails sets up some test data in the fixtures directory, which can be loaded into your test directories to
enable database - backed objects to work. By default, each controller test loads the fixtures for the data
type the controller manages. However, now that the ingredients resource is subordinate to the recipe
resource, the ingredients controller test also needs to load the recipe fixtures. This enables the controller
to access recipe data during testing. Add the following line to test/functional/ingredients_
controller_test.rb , right below where the ingredient fixture is loaded:

fixtures :recipes

 Now, in the tests, there are two things that need to be fixed consistently throughout the test. Each
individual test calls the get , post , or put helper method to simulate the HTTP call. Each and every one
of those calls needs to add a parameter for the recipe_id . You can do this by adding the argument to
each of the calls (remember to place a comma between hash arguments — for some reason I always
forget that comma):

 :recipe_id = > 1

c01.indd 18c01.indd 18 1/30/08 4:02:26 PM1/30/08 4:02:26 PM

Chapter 1: Building Resources

19

 A couple of the tests also confirm that Rails redirects to the ingredient index listing, with a line like this:

assert_redirected_to ingredient_path(assigns(:ingredient))

 This line no longer works because, now that ingredients are a nested resource, the pathnames are all
defined in terms of a parent recipe. Change that line every time it appears to this:

assert_redirected_to
 recipe_ingredient_path(assigns(:recipe),
 assigns(:ingredient))

 This changes the name of the helper method, and adds the recipe object to the arguments. The assigns
method gives access to any instance attributes set in the controller action.

 The Controller Object
 Because you are going to be testing for it, you need to make sure that every controller method actually
does assign a @recipe attribute. The best way to do that is with a before filter. The before_filter
method allows you to specify a block or method that is performed before every controller action gets
started. Add the following line to the beginning of the IngredientController class in app/
controllers/ingredient_controller.rb :

before_filter :find_recipe

 This specifies that the find_recipe method needs to be run before each controller action. To define that
action, add the method to the end of the class as follows:

private

def find_recipe
 @recipe = Recipe.find(params[:recipe_id])
end

 It ’ s important that the method go after a private declaration; otherwise, a user could hit
 /ingredients/find_recipe from their browser, and invoke the find_recipe method, which
would be undesirable. This mechanism ensures that every controller action will have a recipe defined,
and you no longer need to worry about consistency. Readability can be an issue with filters, though,
because it can sometimes be hard to track back into the filter method to see where attributes are defined.
It helps to make smaller controllers where the filters are simple and clear. You ’ ll see another common use
of filters in Chapter 3 , “ Adding Users. ”

 Next, you need to clean up the redirections. Two actions in this controller redirect to the show action
using redirect_to(@ingredient) . Change those as follows:

redirect_to([@recipe, @ingredient])

c01.indd 19c01.indd 19 1/30/08 4:02:26 PM1/30/08 4:02:26 PM

Chapter 1: Building Resources

20

 The redirection method automatically handles the list of nested resource objects. The destroy action
redirects to the list action, so you need to change that redirection as follows:

redirect_to(recipe_ingredients_url)

 In this case, the controller automatically infers that it should use the @recipe attribute to generate the
correct index path.

 The Views
 All you need to do to the view objects at this point is change the URLs for the forms and links. The form
declaration in the edit and new views (in app/views/ingredients/edit.html.erb and app/views/
ingredients/new.html.erb) should now read as follows:

 < % form_for([@recipe, @ingredient]) do |f| % >

Again, this implicitly creates the correct URL from the two objects.

 You also need to change the URL in the edit page (app/views/ingredients/edit.html.erb) as
follows:

 < %= link_to ‘Show’, [@recipe, @ingredient] % >

 You make the same change to the URL on the index page (app/views/ingredients/index.html.
erb), except in this case, ingredient is a loop variable, not an instance variable, so you don ’ t include
the @ sign.

 Similarly, you need to change all the named routes by adding the prefix recipe_ to the method name
and including the @recipe variable in the argument list. The link to the index page, accessed via the
back link on several pages in app/views/ingredients should be changed to this:

 < %= link_to ‘Back’, recipe_ingredients_path(@recipe) % >

 You also need to make changes to the other named links. Here are some examples:

 < %= link_to ‘Edit’, edit_recipe_ingredient_path(@recipe, @ingredient) % >
 < %= link_to ‘Destroy’, [@recipe, ingredient],
 :confirm = > ‘Are you sure?’, :method = > :delete % >
 < %= link_to ‘New ingredient’, new_recipe_ingredient_path(@recipe) % >

 At this point, all your tests should run cleanly. If not, an error message will likely be displayed, showing
you exactly which method name change you missed. When you make the analogous change in the edit
view, note that the edit link in the index.html.erb page does not include the @ sign for the ingredient,
as it is a loop variable, not an instance variable.

c01.indd 20c01.indd 20 1/30/08 4:02:26 PM1/30/08 4:02:26 PM

Chapter 1: Building Resources

21

Rails Testing Tip
The default test runner text is fine as far as it goes, but sometimes it’s not very easy to
tell which methods have failed. If you include diagnostic print statements in your tests
while debugging, it can be difficult to tell which output goes with which tests.

There are a few options for more useful test output. Most IDEs include some kind of
graphical text runner, and over the past year or so, several Java IDEs have added Rails
support — Aptana for Eclipse, NetBeans, and IntelliJ all have graphical Rails test run-
ners. There are also a couple of available stand-alone GUI test runners, depending on
the operating system you are running.

I’ve come to like a little gem called turn, which you can install and then place the line
require ’turn’ in your test_helper.rb file. It produces somewhat more useful
and verbose test-runner output. The error message for each test is associated with that
test, as is any diagnostic output. And if your command shell supports it, tests that pass
are in green and tests that fail are in red. Here is some sample output:

IngredientsControllerTest
 test_should_create_ingredient PASS
 test_should_destroy_ingredient PASS
 test_should_get_edit PASS
 test_should_get_index PASS
 test_should_get_new PASS
 test_should_show_ingredient PASS
 test_should_update_ingredient PASS
RecipesControllerTest
 test_should_create_recipe PASS
 test_should_destroy_recipe PASS
 test_should_get_edit PASS
 test_should_get_index PASS
 test_should_get_new PASS
 test_should_show_recipe PASS
 test_should_update_recipe PASS

==

 pass: 14, fail: 0, error: 0

 total: 14 tests with 25 assertions in 1.768561 seconds
==

Because turn changes the format of your text output, other plugins or tools that
depend on the test output — most notably Autotest (see Chapter 7) — might have
problems.

c01.indd 21c01.indd 21 1/30/08 4:02:27 PM1/30/08 4:02:27 PM

Chapter 1: Building Resources

22

 Building a Recipe Editor
 If you fire up the Rails server and look at the recipe input form, you ’ ll see that at this point, it looks
something like what is shown in Figure 1 - 1 .

Figure 1-1

 While maintaining the proper amount of reverence to the tool that provided this form for free, it ’ s easy to
see that it won ’ t do. Ingredients aren ’ t listed, all the boxes are the wrong size, and basically the thing
looks totally generic. Your punch list looks like this:

 Make the items that need longer data entry into text areas.

 Clean up the organization to look more like a finished recipe.

 Add ingredients to the recipe.

 Naturally, you ’ ll start by writing some tests.

 Adding Ingredients
 Test - Driven Development (TDD, sometimes also called Test - First Development) is a practice that first
gained widespread attention as one of the core practices of Extreme Programming (or XP). Even if your
programming is less extreme, writing automated tests is perhaps the best single way to ensure the
quality and stability of your application over time. This is particularly true in Rails, because all kinds of
testing goodness have been built into the framework, making powerful tests easy to write.

❑

❑

❑

c01.indd 22c01.indd 22 1/30/08 4:02:27 PM1/30/08 4:02:27 PM

Chapter 1: Building Resources

23

 In this book, I ’ m going to try where possible to present working tests for the code samples as they are
presented. The idea is to give you a sense of strategies for testing various parts of a Rails application, and
to reinforce the idea that writing tests for all your Rails code is an achievable and desirable goal.

 I ’ d like to start by reinforcing the previously created tests for the Recipe new form and the create
method. For new , I ’ d like to confirm that the expected elements in the form actually exist, and for
 create , I ’ d like to confirm that when those elements are passed to the server, the expected recipe object
is created. For both, I ’ d like to test the ingredient functionality.

 Asserting HTML
 To test the form, you ’ ll use an extremely powerful feature of the Rails test environment called assert_
select , which allows you to test the structure of the HTML sent to the browser. Your first usage of
 assert_select just scratches the surface of what it can do. The following test is in tests/
functional/recipe_controller_test.rb :

 def test_should_get_new
 get :new
 assert_response :success
 assert_select(“form[action=?]”, recipes_path) do
 assert_select “input[name *= title]”
 assert_select “input[name *= servings]”
 assert_select “textarea[name *= ingredient_string]”
 assert_select “textarea[name *= description]”
 assert_select “textarea[name *= directions]”
 end
 end

 The strategy in testing these forms is to verify the structure of the form. Writing tests for the visual
aspects of the form is likely to be very brittle, especially this early in development, and would add a lot
of cost in maintaining the test. However, no matter how it ’ s displayed, the recipe form is likely to have
some method for entering a title. You could test based on the CSS class of each form, if your design
process was such that those names are likely to be stable. Then you could experiment with the visual
display via the CSS file.

 Each assert_select test contains a selector, and the job of the test is to validate whether the HTML
output of the test has some text that matches the selector. This is roughly equivalent to a regular
expression; however, the selectors are specifically structured for validating HTML output. Each selector
can contain one or more wildcards denoted with a question mark, and the next argument to the method
is a list of the values that would fill in those wildcard spots — similar to the way the find method works
with SQL statements. The wildcard entries can either be strings or, if you are determined to make it
work, regular expressions.

 The first part of a selector element is the type of HTML tag that you are searching for. In the case of your
first test, that ’ s a form tag. Without any further adornment, that selector will match against all form tags
in your returned HTML. You can then pass a second argument if it ’ s a number or a range, and then the
selector tests to see if the number of tags matches. The following tests would pass:

assert_select “form”, 1
assert_select “form”, 0..5

c01.indd 23c01.indd 23 1/30/08 4:02:27 PM1/30/08 4:02:27 PM

Chapter 1: Building Resources

24

 If the second argument is a string or regular expression, then the selector tests to see if there is a tag of
that type whose contents either equal the string or match the regular expression.

 The type tag can be augmented in several different ways. Putting a dot after it, as in “ form.title ” ,
checks to see if there ’ s a form tag that is of the CSS class title . Putting a hash mark after the type
 “ form#form_1 ” performs a similar test on the DOM ID of the tag. If you ’ re familiar with CSS, you ’ ll note
this syntax is swiped directly from CSS selector syntax. If you add brackets to the type, then you are
checking for an attribute that equals or nearly equals the value specified. The selector “ form[action=?] ”
tests for the existence of a form tag whose action attribute matches the URL specified in the second
argument. The equality test could also use the *= symbols, indicating that the attribute value contains the
value being tested as a substring, so your test “ input[name *= title] ” would pass if there was an
input tag whose name attribute contains the substring “ title ” . You can similarly use ̂ = to test that the
value begins with the string or $= to test if the value ends with the string.

 You can do some further specifying with a number of defined pseudo - classes. Many of these allow you
to choose a specific element from the list, such as form:first - child , form:last - child , form:nth -
 child(n) , and form:nth - last - child(n) , each of which matches only elements of that type that have
the specified relationship with it s parent element.

 Finally, you can specify a relationship between two tags. Just putting one tag after the other, as in “ form
input ” , matches input tags that are some kind of arbitrarily distant descendent of the form tag.
Specifying those relationships can get a bit unwieldy, so you can nest the interior specification inside a
block, as is done in the previous test method. Because of the nested block structure, the test only matches
 input tags that are inside a form tag. The specification can also be written “ form > input ” , in which case
the input needs to be a direct child of the form . Alternately “ form + input ” indicates that the input
tag is merely after the form tag in the document, and “ form ~ input ” would match the reverse case.

 Add it all up, and your test is verifying the existence of a form tag that points to the create action. Inside
that tag, you are testing for inputs with names that include “ title ” and “ servings, ” and text areas that
include the names “ description ” and “ directions. ”

 With the view as it is, these tests won ’ t pass, because the view doesn ’ t use textarea fields for data yet.
Update the app/views/recipes/new.html.erb code as follows:

 < % @title = “Enter a Recipe” % >
 < %= error_messages_for :recipe % >
 < % form_for(@recipe) do |f| % >
 < p >
 < b > Recipe Name: < /b > < br / >
 < %= f.text_field :title, :class = > “title”, :size = > 48 % >
 < /p >
 < p >
 < b > Serving Size: < /b >
 < %= f.text_field :servings, :class = > “input”, :size = > 10 % >
 < /p >
 < p >
 < b > Description (optional): < /b > < br / >

c01.indd 24c01.indd 24 1/30/08 4:02:28 PM1/30/08 4:02:28 PM

Chapter 1: Building Resources

25

 < %= f.text_area :description, :rows = > 5, :cols = > 55, :class = > “input” % >
 < /p >
 < p >
 < b > Ingredients: < /b > < br / >
 < %= f.text_area :ingredient_string, :rows = > 5, :cols = > 55, :class = > “input” % >
 < /p >
 < p >
 < b > Directions: < /b > < br / >
 < %= f.text_area :directions, :rows = > 15, :cols = > 55, :class = > “input” % >
 < /p >
 < p >
 < %= f.submit “Create”, :class = > “title” % >
 < /p >
 < % end % >
 < %= link_to ‘Back’, recipes_path % >

 There are a couple of changes. The fields that need more text now have text areas, things have been
moved around a very little bit, and I ’ ve added CSS classes to the input fields that increase the size of the
text being input (it bothers me when sites use very small text for user input).

 The :ingredient_string accessor used in the preceding form is described in the next section.

 Parsing Ingredients
 The previous code listing included a bare text area for the user to enter ingredients. However, I ’ d still
like to have the data enter the database with some structure that could enable some useful functionality
later on, such as converting from English to metric units. Even so, I felt it was a little cruel to give the
user a four - element form to fill out for each ingredient. So I wrote a small parser to convert strings like
 “ 2 cups carrots, diced ” into ingredient objects. The basic test structure follows — put this code into the
ingredient unit test class (test/unit/ingredients.rb):

 def assert_parse(str, display_str, hash)
 expected = Ingredient.new(hash)
 actual = Ingredient.parse(str, recipes(:one), 1)
 assert_equal_ingredient(expected, actual)
 display_str ||= str
 assert_equal(display_str, actual.display_string)
 end

 The inputs are a string, a second string normalized for expected output, and a hash of expected values.
One ingredient object is created from the hash, another is created from the string, and you test for
equality. Then you test the display output string — if the input is nil , you assume the incoming string is
the same as the outgoing string.

c01.indd 25c01.indd 25 1/30/08 4:02:28 PM1/30/08 4:02:28 PM

Chapter 1: Building Resources

26

 The test cases I started with are described in the following table.

Case Description

2 cups carrots, diced The basic input structure

2 cups carrots Basic input, minus the instructions

1 carrots, diced Basic input, minus the unit

1 cup carrots Singular unit

2.5 carrots, diced A test to see whether decimal numbers are correctly handled

1/2 carrots, diced A test to see that fractions are handled

1 1/2 carrots, diced A test to see whether improper fractions are handled

 Here ’ s what the first two test cases look like in code (again, in test/unit/ingredient_test.rb):

def test_should_parse_basically
 assert_parse(“2 cups carrots, diced”, nil, :recipe_id = > 1, :order_of = > 1,
 :amount = > 2, :unit = > “cups”, :ingredient = > “carrots”,
 :instruction = > “diced”)
 end

 def test_should_parse_without_instructions
 assert_parse(“2 cups carrots”, nil, :recipe_id = > 1, :order_of = > 1,
 :amount = > 2, :unit = > “cups”, :ingredient = > “carrots”,
 :instruction = > “”)
 end

 These test cases use the assert_parse method defined earlier to associate the test string with the
expected features of the resulting ingredient. You should be able to define the remaining tests similarly.

 There are, of course, other useful test cases that would make this more robust. Tests for proper error
handling in deliberately odd conditions would also be nice. For right now, though, the previous test
cases provide a sufficient level of complexity to serve as examples of how to do moderately complex
processing on user data.

 The way this worked in practice was that I wrote one test, made it work, and then refactored and
simplified the code. I wrote the second test, which failed, and then fixed the code with another round of
refactoring and code cleanup. By the time I finished the last test, the code was in pretty good shape.
Here ’ s a description of the code after that test.

 I created a separate class for this called IngredientParser , and placed the code in a new file, /app/
models/ingredient_parser.rb . The class starts like this:

class IngredientParser

 UNITS = %w{cups pounds ounces tablespoons teaspoons cans cloves}

c01.indd 26c01.indd 26 1/30/08 4:02:28 PM1/30/08 4:02:28 PM

Chapter 1: Building Resources

27

 attr_accessor :result, :tokens, :state, :ingredient_words,
 :instruction_words

 def initialize(str, ingredient)
 @result = ingredient
 @tokens = str.split()
 @state = :amount
 @ingredient_words = []
 @instruction_words = []
 end

 def parse
 tokens.each do |token|
 consumed = self.send(state, token)
 redo unless consumed
 end
 result.ingredient = ingredient_words.join(“ “)
 result.instruction = instruction_words.join(“ “)
 result
 end
end

 The parse method is of the most interest. After splitting the input string into individual words, the class
loops through each word, calling a method named by the current state. The states are intended to mimic
the piece of data being read, so they start with :amount , because the expectation is that the numerical
amount of the ingredient will start the line. Each state method returns true or false . If false is
returned, then the loop is rerun with the same token (presumably a method that returns false will have
changed the state of the system so that a different method can attempt to consume the token). After the
parser runs out of tokens, it builds up the ingredient and instruction strings out of the lists that the
parser has gathered.

 The parser contains one method for each piece of data, starting with the amount of ingredient to be used,
as follows:

 def amount(token)
 if token.index(“/”)
 numerator, denominator = token.split(“/”)
 fraction = Rational(numerator.to_i, denominator.to_i)
 amount = fraction.to_f
 elsif token.to_f > 0
 amount = token.to_f
 end
 result.amount += amount
 self.state = :unit
 true
 end

 If the input token contains a slash, then the assumption is that the user has entered a fraction, and the
string is split into two pieces and a Ruby rational object is created and then converted to a float (because
the database stores the data as a float). Otherwise, if it ’ s an integer or rational value, the number is taken
as is. The number is added to the amount already in the result (because an improper fraction would
come through this method in two separate pieces). The state is changed to :unit , and the method
returns true to signify that the token has been consumed.

c01.indd 27c01.indd 27 1/30/08 4:02:29 PM1/30/08 4:02:29 PM

Chapter 1: Building Resources

28

 The unit method actually has provisions not to consume the token. If the token is numerical, the parser
assumes it ’ s a continuation of the amount, resets the state, and returns false so that the amount method
will take a crack at the same token. For example:

 def unit(token)
 if token.to_i > 0
 self.state = :amount
 return false
 end
 if UNITS.index(token) or UNITS.index(token.pluralize)
 result.unit = token.pluralize
 self.state = :ingredient
 return true
 else
 self.state = :ingredient
 return false
 end
 end

 If the token is not numerical, then it ’ s checked against the list of known units maintained by the parser. If
there ’ s a match, then the token is consumed as the unit. If not, the token is not consumed. In either case,
the parser moves on to the ingredient itself. Here ’ s an example of how this works:

 def ingredient(token)
 ingredient_words < < token
 if token.ends_with?(“,”)
 ingredient_words[-1].chop!
 self.state = :instruction
 end
 true
 end

 The ingredient name is assumed to continue until the parser runs out of tokens, or until a token ends in a
comma, as in “ carrots, diced ” . Although none of the test cases expose it at this point, that ’ s easily
broken in the case where the ingredient is a list containing a comma. However, this error is handled
gracefully by the parser, and is also rather straightforward for the enterer to correct, so I chose not to beef
up the parser at this time.

 Once you get past the comma, everything else is assumed to be part of the final instruction, as follows:

 def instruction(token)
 instruction_words < < token
 true
 end

 To use this, a class method in Ingredient sets the defaults and invokes the parser like this:

 def self.parse(str, recipe = nil, order = nil)
 result = Ingredient.new(:recipe_id = > recipe.id,
 :order_of = > order, :ingredient = > “”,

c01.indd 28c01.indd 28 1/30/08 4:02:29 PM1/30/08 4:02:29 PM

Chapter 1: Building Resources

29

 :instruction = > “”, :unit = > “”, :amount = > 0)
 parser = IngredientParser.new(str, result)
 parser.parse
 end

 Finally, the display _ string method of Ingredient makes sure everything is in a standard format
as follows:

def display_string
 str = [amount_as_fraction, unit_inflected,
 ingredient_inflected].compact.join(“ “)
 str += “, #{instruction}” unless instruction.blank?
 str
 end

 The compact.join(“ “) construct gets rid of the unit if the unit is not set, and does so without putting
an extra space in the output. The amount_as_fraction method converts the decimal amount to a
fraction, matching the typical usage of cookbooks. (Although this may later be subject to localization,
because metric cookbooks generally don ’ t use fractions.) The inflected methods just ensure that the units
and ingredients are the proper singular or plural case to match the amount — because “ 1 cups carrots ”
will just make the site look stupid.

 Adding a Coat of Paint
 At this point, I went to www.freewebtemplates.com and chose the canvass template, also available at
 www.freecsstemplates.org/preview/canvass . I wanted to spruce up the look of the site with
something clean that didn ’ t look like Generic Boring Business Site. The free templates on this site are
generally licensed via Creative Commons (although if you use one, check the download to make sure).
It ’ s a good place to get ideas and to see how various CSS effects can be managed. Naturally, if you were
doing a real commercial site, you ’ d probably want something more unique and original.

 Integrating the template was straightforward. The template download has an HTML file, a CSS file, and
a bunch of image files. I copied the image files into the application ’ s public/images directory, and then
took the CSS file and copied the entries into the preexisting public/scaffold.css file. Alternately,
I could have just copied the entire file and added a link to it in the layout. Then I copied the body
elements from the provided HTML file into the app/layouts/recipes.html.erb file so that the main
content in the provided file was replaced by the < %= yield = > call that will tell Rails to include the
content for the action. I also tweaked the text somewhat to make it work for Soups OnLine. Finally, I had
to go back into the CSS file and change the relative references to image files (images/img01.gif) to
absolute references (/images/img01.gif), so that they would be correctly found. The finished result is
shown in Figure 1 - 2 . The final layout and CSS files are a bit long and off - point to be included in the text
here, but are available as part of the downloadable source code for this book.

c01.indd 29c01.indd 29 1/30/08 4:02:29 PM1/30/08 4:02:29 PM

Chapter 1: Building Resources

30

Figure 1-2

 Asserting Creation
 Let ’ s tighten up the remaining recipe controller tests while adding ingredient functionality. The test for
creating a recipe asserts that the number of recipes changes, but it doesn ’ t assert anything about the
entered data. So, I added the following:

 def test_should_create_recipe
 recipe_hash = { :title = > “Grandma’s Chicken Soup”,
 :servings = > “5 to 7”,
 :description = > “Good for what ails you”,
 :ingredient_string = >

c01.indd 30c01.indd 30 1/30/08 4:02:30 PM1/30/08 4:02:30 PM

Chapter 1: Building Resources

31

 “2 cups carrots, diced\n\n1/2 tablespoon salt\n\n1 1/3 cups stock”,
 :directions = > “Ask Grandma”}
 assert_difference(‘Recipe.count’) do
 post :create, :recipe = > recipe_hash
 end
 expected_recipe = Recipe.new(recipe_hash)
 new_recipe = Recipe.find(:all, :order = > “id DESC”, :limit = > 1)[0]
 assert_equal(expected_recipe, new_recipe)
 assert_equal(3, new_recipe.ingredients.size)
 assert_redirected_to recipe_path(assigns(:recipe))
 end

 In the new test, a hash with potential recipe data is defined, and sent to Rails via the post method. Then
two recipes are compared, one created directly from the hash, and the other retrieved from the database
where Rails put it (finding the recipe with the highest ID). The code then asserts that the two recipes
are equal, and somewhat redundantly asserts that the new recipe has created three ingredients from the
ingredients sent.

 For that test to work, you also need to define equality for a recipe based on the values and not on the
object ID. I created the following (rather ugly) unit test for for the recipe_test.rb file, and then
the actual code for recipe.rb :

 def test_should_be_equal
 hash = {:title = > “recipe title”,
 :description = > “recipe description”, :servings = > 1,
 :directions = > “do it”, }
 recipe_expected = Recipe.new(hash)
 recipe_should_be_equal = Recipe.new(hash)
 assert_equal(recipe_expected, recipe_should_be_equal)
 recipe_different_title = Recipe.new(hash)
 recipe_different_title.title = “different title”
 assert_not_equal(recipe_expected, recipe_different_title)
 recipe_different_dirs = Recipe.new(hash)
 recipe_different_dirs.directions = “different directions”
 assert_not_equal(recipe_expected, recipe_different_dirs)
 recipe_different_description = Recipe.new(hash)
 recipe_different_description.description = “different description”
 assert_not_equal(recipe_expected, recipe_different_description)
 recipe_different_servings = Recipe.new(hash)
 recipe_different_servings.servings = “more than one”
 assert_not_equal(recipe_expected, recipe_different_servings)
 end

 def ==(other)
 self.title == other.title & &
 self.servings == other.servings & &
 self.description == other.description & &
 self.directions == other.directions
 end

c01.indd 31c01.indd 31 1/30/08 4:02:30 PM1/30/08 4:02:30 PM

Chapter 1: Building Resources

32

 This might seem like overkill, to have a unit test for equality, but it took very little time to put together,
and it makes me less concerned about the bane of the unit tester — the test that really is failing but
incorrectly reports that it passed.

 The data for the new ingredients comes in as a raw string via the ingredient text area. It ’ s the
responsibility of the recipe object to convert that string into the actual ingredient objects. Therefore, I
created unit tests in recipe_test.rb to cover the ingredient - adding functionality. The first test merely
asserts that ingredients in the recipe are always in the order denoted by their order_of attribute. To
make this test meaningful, the ingredient fixtures are defined in the YAML file out of order, so the test
really does check that the recipe object orders them, as you can see here:

 def test_ingredients_should_be_in_order
 subject = Recipe.find(1)
 assert_equal([1, 2, 3],
 subject.ingredients.collect { |i| i.order_of })
 end

 Making the ingredients display in order is extremely easy. You just add this at the beginning of the
 Recipe class recipe.rb file:

has_many :ingredients, :order = > “order_of ASC”,
 :dependent = > :destroy

 The ingredient.rb file needs a corresponding belongs_to :recipe statement. The :order
argument here is passed directly to the SQL database to order the ingredients when the database is
queried for the related objects.

 The test for the ingredient string takes an ingredient string and three expected ingredients, and compares
the resulting ingredient list of the recipe with the expected ingredients. It goes in recipe_test.rb like this:

 def test_ingredient_string_should_set_ingredients
 subject = Recipe.find(2)
 subject.ingredient_string =
 “2 cups carrots, diced\n\n1/2 tablespoon salt\n\n1 1/3 cups stock”
 assert_equal(3, subject.ingredients.count)
 expected_1 = Ingredient.new(:recipe_id = > 2, :order_of = > 1,
 :amount = > 2, :unit = > “cups”, :ingredient = > “carrots”,
 :instruction = > “diced”)
 expected_2 = Ingredient.new(:recipe_id = > 2, :order_of = > 2,
 :amount = > 0.5, :unit = > “tablespoons”, :ingredient = > “salt”,
 :instruction = > “”)
 expected_3 = Ingredient.new(:recipe_id = > 2, :order_of = > 3,
 :amount = > 1.333, :unit = > “cups”, :ingredient = > “stock”,
 :instruction = > “”)
 assert_equal_ingredient(expected_1, subject.ingredients[0])
 assert_equal_ingredient(expected_2, subject.ingredients[1])
 assert_equal_ingredient(expected_3, subject.ingredients[2])
 end

c01.indd 32c01.indd 32 1/30/08 4:02:30 PM1/30/08 4:02:30 PM

Chapter 1: Building Resources

33

 To make this work, the Recipe class is augmented with a getter and setter method for the attribute
 ingredient_string — this is the slightly unusual case where you want a getter and setter to do
something genuinely different. The setter takes the string and converts it to ingredient objects, and the
getter returns the recreated string:

 def ingredient_string=(str)
 ingredient_strings = str.split(“\n”)
 order_of = 1
 ingredient_strings.each do |istr|
 next if istr.blank?
 ingredient = Ingredient.parse(istr, self, order_of)
 self.ingredients < < ingredient
 order_of += 1
 end
 save
 end

 def ingredient_string
 ingredients.collect { |i| i.display_string}.join(“\n”)
 end

 At this point, the earlier test of the entire form should also pass.

 The setter splits the strings on newline characters, and then parses each line, skipping blanks and
managing the order count. When all the ingredients have been added, the recipe is saved to the database
with the new ingredients. The getter gathers the display strings of all the ingredients into a single string.

 Finishing up the testing of the basic controller features in test/functional/recipe_controller_
test.rb , the edit and update tests are augmented as follows:

 def test_should_get_edit
 get :edit, :id = > 1
 assert_response :success
 assert_select(“form[action=?]”, recipe_path(1)) do
 assert_select “input[name *= title]”
 assert_select “input[name *= servings]”
 assert_select “textarea[name *= ingredient_string]”
 assert_select “textarea[name *= description]”
 assert_select “textarea[name *= directions]”
 end
 end

 def test_should_update_recipe
 put :update, :id = > 1,
 :recipe = > {:title = > “Grandma’s Chicken Soup”}
 assert_redirected_to recipe_path(assigns(:recipe))
 actual = Recipe.find(1)
 assert_equal(“Grandma’s Chicken Soup”, actual.title)
 assert_equal(“1”, actual.servings)
 end

c01.indd 33c01.indd 33 1/30/08 4:02:30 PM1/30/08 4:02:30 PM

Chapter 1: Building Resources

34

 The edit test is changed to be almost identical to the new test, the only difference being the form action
itself. The easiest way to make this test pass is to take the form block from the new.html.erb file and
put it in a partial file called _form.html.erb , and change the new and edit views to refer to it. The
updated edit view would be as follows (the new view is similar):

 < h1 > Editing recipe < /h1 >
 < %= error_messages_for :recipe % >
 < %= render :partial = > “form” % >
 < %= link_to ‘Show’, @recipe % > |
 < %= link_to ‘Back’, recipes_path % >

 Short and sweet. If you are familiar with the traditional Rails model scaffolding, you know that the _
form partial was automatically created by that scaffold to be used in the edit and new forms. There is
one slight difference. The older version had the actual beginning and ending of the form in the parent
view, and only the insides in partial view. In the RESTful version, @recipe serves as a marker for the
action in both cases, Rails automatically determines the URL action from the context. As a result, the
form block can more easily be entirely contained in the partial view.

 Adding a Little Ajax
 At this point, the basic CRUD functionality works for recipes with ingredients. I ’ d like to add one little
piece of in - place Ajax editing, allowing the user to do an in - place edit of the ingredients from the recipe
show page. This will allow the user to switch from what is shown in Figure 1 - 3 to what is shown in
Figure 1 - 4 .

Figure 1-3

c01.indd 34c01.indd 34 1/30/08 4:02:31 PM1/30/08 4:02:31 PM

Chapter 1: Building Resources

35

Figure 1-4

 To allow Ajax to work in your Rails application, you must load the relevant JavaScript files by includ-
ing the following line in the app/views.layouts/recipes.html.erb file. Place the line in the
HTML header.

 < %= javascript_include_tag :defaults % >

 I find the best way to build in - place action like this is to build the action as a standalone first, and then
incorporate it into the view where needed. I ’ ve made the design decision to leave the existing edit and
update actions alone, and instead add new actions called remote_edit and remote_update . Here are
the unit tests for them, in ingredient_controller_test.rb :

def test_should_get_remote_edit
 get :remote_edit, :id = > 1, :recipe_id = > 1
 assert_select(“form[action=?]”,
 remote_update_recipe_ingredient_path(1, 1)) do
 assert_select “input[name *= amount]”
 assert_select “input[name *= unit]”
 assert_select “input[name *= ingredient]”
 assert_select “input[name *= instruction]”
 end
 end

 def test_should_remote_update_ingredient
 put :remote_update, :id = > 1, :ingredient = > { :amount = > 2 },
 :recipe_id = > 1
 assert_equal “2 cups First Ingredient, Chopped”, @response.body
 end

c01.indd 35c01.indd 35 1/30/08 4:02:31 PM1/30/08 4:02:31 PM

Chapter 1: Building Resources

36

 The tests are very similar to what you ’ d use for the normal edit and update, just with different URLs. The
response for the update method is the ingredient display string, not a redirect to the show ingredient
page, which enables the updated ingredient to be inserted back into place on the recipe page. In the
interest of full disclosure among friends, I should reveal that I didn ’ t actually develop this part strictly
test - first — I played around with the layout within the recipe page a little bit before going back and
writing the test.

 Because this is a new action for a RESTful controller, new routes have to be added in the routes.rb file.
Modify it as follows:

 map.resources :recipes do |recipes|
 recipes.resources :ingredients,
 :member = > {:remote_edit = > :get, :remote_update = > :put}
 end

 This creates a new remote_edit route that responds to GET , and a remote_update route that
responds to PUT . Each of these routes gets a named method to refer to it: remote_edit_recipe_
ingredient_path and remote_update_recipe_ingredient_path . Run the rake routes command
for full details.

 Both of these methods need controller methods and views. The controller methods are quite simple, and
go in app/controller/ingredient_controller.rb as follows:

 def remote_edit
 edit
 end

 You can ’ t get much simpler than that. The remote_edit method uses the same method of getting its
ingredient as edit does, so in the interest of avoiding cut and paste, I just call the other method directly.
The next step would be another before_filter , which would make both methods empty.

 There ’ s also the following view for remote_edit , keeping things on as few lines as possible:

 < % remote_form_for(@ingredient,
 :url = > remote_update_recipe_ingredient_path(@recipe, @ingredient),
 :update = > “ingredient_#{@ingredient.id}”) do |f| % >
 < table >
 < tr >
 < th class=”subtle” > Amount < /th >
 < th class=”subtle” > Unit < /th >
 < th class=”subtle” > Ingredient < /th >
 < th class=”subtle” > Directions < /th >
 < /tr >
 < tr >
 < td > < %= f.text_field :amount, :size = > “5” % > < /td >
 < td > < %= f.text_field :unit, :size = > “10” % > < /td >
 < td > < %= f.text_field :ingredient, :size = > “25” % > < /td >
 < td > < %= f.text_field :instruction, :size = > “15” % > < /td >
 < td > < %= f.submit “Update” % > < /td >
 < /tr >
 < /table >
 < % end % >

c01.indd 36c01.indd 36 1/30/08 4:02:31 PM1/30/08 4:02:31 PM

Chapter 1: Building Resources

37

 Notice the pathname in the result. This is app/views/ingredients/remote_edit.html.erb .

 The following remote_update method in the ingredient controller is a simplification of update (for one
thing, I ’ m not concerned here with responding in formats other than HTML):

 def remote_update
 @ingredient = Ingredient.find(params[:id])
 if @ingredient.update_attributes(params[:ingredient])
 render(:layout = > false)
 else
 render :text = > “Error updating ingredient”
 end
 end

 The view for this method is simply this:

 < %= h @ingredient.display_string % >

 The only rendered output of this method is the display string of the newly constructed ingredient or an
error message. The only reason it ’ s in an erb file at all is to allow access to the h method to escape out
HTML tags and prevent an injection attack.

 Finally, the call to create this form has to be placed in the recipe show.html.erb file. Here ’ s the
relevant chunk:

 < div class=”ingredients” >
 < h2 > Ingredients < /h2 >
 < % for ingredient in @recipe.ingredients % >
 < div class=”ingredient” >
 < span id=”ingredient_ < %= ingredient.id % > ” >
 < %= h ingredient.display_string % >
 < /span >
 < span class=”subtle” id=”edit_ < %= ingredient.id % > ” >
 < %= link_to_remote “Edit”,
 :url = >
 remote_edit_recipe_ingredient_path(@recipe, ingredient),
 :method = > :get,
 :update = > “ingredient_#{ingredient.id}”% >
 < /span >
 < /div >
 < % end % >
 < /div >

 Watch out for the :method parameter of the link_to_remote call. By default, link_to_remote sends
its request as a POST , and I already specified that remote_edit was a GET . Other than that, the link_
to_remote call is typical. The URL to call is specified using the new name generated by the new route,
and the DOM element to update is the preceding span containing the ingredient display string.

c01.indd 37c01.indd 37 1/30/08 4:02:32 PM1/30/08 4:02:32 PM

Chapter 1: Building Resources

38

 Resources
 The primary source for the REST details in this chapter was the RESTful Rails tutorial, written by Ralf
Wirdemann and Thomas Baustert and translated from the original German by Florian G ö rsdorf and
Adam Groves. It ’ s available at www.b-simple.de/documents . It ’ s an excellent reference for the details
of the Rails version of REST.

 For more details on recipes in general, I reference The Joy of Cooking by Imra S. Rombauer, Marion
Rombauer Becker, and Ethan Becker. The well - worn copy in my house was published by Scribner in
1997. I also recommend www.cookingforengineers.com , run by Michael Chu.

 A full listing of all the assert_select codes can be found at http://labnotes.org/svn/public/
ruby/rails_plugins/assert_select/cheat/assert_select.html , which is maintained by Assaf
Arkin.

 The CSS and text layout come from www.freewebtemplates.com .

 Summary
 In this chapter, you start with nothing and finish with the beginnings of a recipe - sharing website. The
initial data design sets the pattern for the remainder of the development.

 REST is a structure for organizing web pages by resource, with a common set of commands for accessing
the basic Create, Read, Update, Delete (CRUD) functionality for each resource. REST also allows for URL
patterns to be common from resource to resource, and depends on the specific HTTP method of the
request to determine what action the server should take in response to a URL.

 Rails supports REST by easily scaffolding the creation of a REST model and its associated controller. A
single element in the routes.rb file specifies an entire suite of RESTful routes for the resource. These
routes can be seen using the rake routes command. Resources can be nested, in which case the child
resource URLs always contain an instance of the parent resource.

 The basic application is augmented in this chapter with some server - side intelligence to make entering
data easier for the user. An in - place editor is added using basic Ajax techniques, and unit and functional
tests are written for all new code.

c01.indd 38c01.indd 38 1/30/08 4:02:32 PM1/30/08 4:02:32 PM

 Rails Source Control with
Subversion

 Every software project needs to manage its source code. Developers on the project need to be able
to find code within the project. Multiple people need to be able to work together on the project and
see each other ’ s work without accidentally overwriting it. And you need to make sure that nothing
is ever, ever lost.

 Rails provides a standard project layout, which helps with the first issue. For the second and third
issues, you need to turn to a source control system. That system will allow each developer to
retrieve code from a common repository and then return their changes to the repository. As soon as
a developer has placed their changes back in the repository, other developers on the project can
update their local copies of the code to see the changes. If two developers are working on the same
file at the same time, the source control system manages the combination of the two pieces of work
so that neither is lost. Using a source control system, you can recreate any past state of your
application at any time.

 Core Rails development (and most Rails plugin development) is performed using a version control
system called Subversion , which has become the standard tool for many open - source projects.
Because so much existing Rails development uses Subversion, you can get some benefits from
using it in your own development. In this chapter, you ’ ll learn how to set up your Rails project
using Subversion, and how to use it to stay on the cutting edge of Rails development.

 Subversive Control
 Source control is the generic term for an application that manages a repository of source code being
used by one or more developers. Such systems typically have three main purposes:

 Maintain a record of any and all changes made to the code base during its history, allowing
the development team to precisely recreate the state of the code base at any point in time.

❑

c02.indd 39c02.indd 39 1/30/08 4:02:44 PM1/30/08 4:02:44 PM

Chapter 2: Rails Source Control with Subversion

40

 Mediate changes between different developers such that changes made by one do not overwrite
changes made by another, even if the two developers are working on the same file.

 Allow for easy distribution of the current state of the source code to your development team, or
if you ’ re managing an open - source project, to the entire world.

 Most of the commonly used source control systems follow a client - server model. The server manages the
central code repository, consisting of every revision of every file in the project. This data is maintained in
some combination of a database and a regular file system. The server application is responsible for
keeping track of all revisions to the code and mediating access to the files in the code base. Individual
developers on the project interact with the code files via a client program that contacts the server for the
up - to - date version of the code base, and sends changes back to the server to be integrated with the
repository.

 Source control systems differ from one another in the way they manage developer interaction. The
paranoid style of source control attempts to prevent developer conflicts by allowing only one developer
to have write access to a particular file at a time. You must explicitly check out and acquire a lock on the
file before you can make changes. The person in the next cube over who also needs to make a change to
that file must wait patiently (or more likely, impatiently) for you to finish up already and release the lock.
To be fair, even the most paranoid of locking source control systems have provisions for allowing
developers to work side by side. Most often this involves allowing each developer to use a custom
branch of the repository to work in freely, forcing them to lock the common master branch only when the
developer is ready to present the changes to the entire group.

 Although restricting access to source files sounds sensible at first glance, like a lot of attempts to impose
centralized structure on team development, the protection is often more trouble than it ’ s worth. First and
foremost, it places a barrier between the developer and the code. Having to take the step of explicitly
gaining a lock on a file before you can edit it may seem minor, but it gets in the way surprisingly often,
especially if you ’ re making changes that affect multiple files. As a Rails developer, a significant change
you make to your system could easily touch four or five files (model, view, controller, unit test, and
functional test) without even getting complicated. By the time you need to update, say, 800 sample
report files for your acceptance tests, you are ready to chuck the whole system out the window. (The
author speaks from personal experience.) In addition, a locking system may require the developer to
have network access to gain the lock.

 And that assumes that everything goes smoothly. Sometimes you get Mike down the hall forgetting to
check his files in before he flies off to the darkest Amazon for four weeks of R & R. Now nobody can get
to those files, and you need to bring in one of your IT administrators to fix the locking permission. The
IT administrators are rarely happy to do this. Issues like this make locking systems especially ill - suited
to widely distributed open - source projects.

 The hassle might be worth it if the locking actually prevented conflicts, but the sad fact is that it really
doesn ’ t. Any system that allows developers to have their own separate branches still allows
simultaneous editing to the same file. Worse, by making it more time - consuming to merge back to the
main branch, a locking system encourages developers to stay in their own sandbox as long as possible,
increasing the possibility that there will be a conflict (and increasing the possibility that one developer or
the other won ’ t remember the details when the time comes to merge).

❑

❑

c02.indd 40c02.indd 40 1/30/08 4:02:45 PM1/30/08 4:02:45 PM

Chapter 2: Rails Source Control with Subversion

41

 Resolving developer conflicts is a very risky thing. It ’ s all too easy to inadvertently take the old version
of both code and automated tests. Then you have old code that passes all the tests, and a change that was
made and overwritten that might not be found for ages. The solution is to encourage developers to
merge back to the common repository as frequently as possible, and the way to do that is to make
dealing with the repository as simple and hassle - free as possible.

 Which brings us to Subversion and its non - locking model of source control. In a Subversion system, each
developer gets a working copy of the current state of the central repository. The developer is free to do
whatever he or she wants with the files in the working copy. At some point, the developer commits the
changes back to the repository. Then Subversion checks to see if any of the files have changed. If not,
everything goes back to the mother ship, and other developers can see it when they next update. If there
is a conflict that Subversion can ’ t resolve, you must stop and resolve all the conflicts by hand before any
of your changes are sent back to the repository. This prevents your changes from going into the system
halfway — it ’ s all or nothing. Notice that most of your work can be done offline, including adding new
files to the repository. Subversion only needs to contact the server when you explicitly try to commit or
update your system.

 Although allowing free editing sounds like a recipe for chaos, in practice it works quite well. Because the
system is easy to use, developers tend to commit changes frequently, minimizing the frequency and
severity of code changes. Subversion is especially well - suited to distributed, open - source development.
As a result, Subversion has become the clear standard for open - source projects. Because it ’ s become so
popular, there ’ s a great deal of tool support, and many commonly used Rails editors and IDEs, such as
TextMate and Eclipse/Aptana, support Subversion inside the tools themselves.

 The Rails core team uses Subversion to manage the Rails code, and most Rails plugins are available via a
Subversion server. Like many things in Rails, if you follow the convention of using Subversion on your
own projects, you ’ ll get some benefit in the quality of your interaction with Rails core code and plugins.

 Even without the benefit of integration, it ’ s still a good idea for any software project to be under source
control, even one with just a single developer. The ability to remember and roll back to any arbitrary
state in your code base is very useful, as are the frequent backups you ’ ll get when you use a source
control tool consistently. In addition, your source control system allows you to create branches from
specific points in your system history. That enables you to continue making bug fixes on a 1.0 release, for
example, without affecting the 2.0 release that you are working on simultaneously.

 Instructions for installing Subversion are available in Appendix A , and I ’ m going to assume you ’ ve
either already followed those directions or have Subversion previously installed on your system. In this
chapter, you start by putting the Soups OnLine project under Subversion control. It ’ s a very Rails - specific
look at Subversion ’ s features and how to apply them. The “ Resources ” section at the end of the chapter
suggests general Subversion materials.

 Normally, you ’ d perform the steps in this next section before you did any of the coding in Chapter 1 .
However, having the additional files and changes in your code isn ’ t going to materially affect the steps
you need to do to get your project under Subversion, and if there ’ s one thing that ’ s true about getting
onto source control, it ’ s better late than never.

c02.indd 41c02.indd 41 1/30/08 4:02:45 PM1/30/08 4:02:45 PM

Chapter 2: Rails Source Control with Subversion

42

 Creating a Repository
 Subversion keeps its information about your code in a database called a repository . To create one of those,
find a nice, out - of the way spot on a hard drive somewhere. Ideally, this spot is on a remote server
accessible over the network. The next - best case would be to store the repository on a remote hard drive.
If neither option is available, then you can set up the repository on the same drive as your Rails project.
In a team project, it ’ s important that all team members have access to the repository.

 Wherever you put the repository, the first step is to tell Subversion to create the repository with the
 svnadmin create command. Let ’ s say that you ’ ve decided to put the Subversion repository on your
local system at /usr/local/subversion . In that case, you can create your repository by entering the
following commands:

$ cd /usr/local/subversion
$ svnadmin create ./soupsonline

 Just to clarify, the command - line examples in this book should work under most flavors of Linux and
under Mac OS X. Windows users will need to either use a Unix shell emulator like Cygwin or just flip
the slashes around in the pathnames.

 There won ’ t be any text response in the command shell, but Subversion will have created the necessary
files to manage an empty code repository in the directory /usr/local/subversion/soupsonline .

 By convention, you need to set up three top - level subdirectories — trunk , tags , and branches — for
each Subversion project. The trunk directory is for the current code base as it is being worked on live — the
code for the project in this book will go in your trunk directory. A branch is an offshoot of your main code
that is still receiving changes. A common branch scenario is to create a branch after a release of your
software, and apply bug fixes to the branch without affecting the development of your trunk code. A tag
is simply a snapshot of the code base at a particular point in time, with a friendly name and no expectation
of further development. As far as Subversion is concerned, though, there is no difference between a tag
and a branch — the distinction is solely in how they are treated administratively. Because of this, you ’ ll
sometimes see suggestions that the three - directory setup is a historical artifact, and that a different
organization may be more manageable. However, for the moment, the three directories are the
recommended standard, so this project will stick to that structure.

 The svn mkdir command will create the directories inside the new repository. You can run this
command as follows from anywhere on your file system (replace the < DIR > marker with the absolute
path to the top level of your Subversion folder):

$ svn mkdir --message=”standard project start” “file:/// < DIR > /soupsonline/trunk”
 “file:/// < DIR > /soupsonline/tags” “file:/// < DIR > /soupsonline/branches”

Committed revision 1.

 The new directories are being referred to as local file URLs rather than as remote pathnames (although
Subversion will accept pathnames here as well). If you created your repository on a remote system, you
would of course use an http:// or svn:// URL to the new directory depending on how the remote
server was configured.

c02.indd 42c02.indd 42 1/30/08 4:02:45 PM1/30/08 4:02:45 PM

Chapter 2: Rails Source Control with Subversion

43

 The Committed revision 1. response back from the Subversion server tells you that the change has
been accepted, and now Subversion is tracking three directories.

 At this point, you have an empty Subversion repository and a Rails application skeleton that don ’ t know
about each other ’ s existence. It ’ s time to introduce them.

 Populating the New Repository
 At the end of this section, the Rails application directory will be registered with Subversion as a working
copy of the code stored in the Subversion repository. Subversion has an import command that is often
used to place existing code trees into a Subversion repository. However, adding code to a Subversion
repository via import does not associate the existing code tree with the Subversion repository. You ’ d still
need to create a working copy of your code someplace else on your hard drive.

 Checking Out and Adding Files
 To allow your existing code tree to become your Subversion working copy, you need to start by checking
out a copy of the (currently blank) repository directory. Open a command prompt at the top level of your
new Rails application — the soupsonline directory — and type the following command:

$ svn checkout “file:/// < dir > /soupsonline/trunk” .
Checked out revision 1.

 This command does the following:

 1. svn invokes the Subversion command line client.

 2. checkout tells Subversion which command to actually run. In Subversion, all a checkout does is
make a working copy from a location in a Subversion repository and place it in a location on the
local hard drive.

 3. The URL specifies the location of the repository.

 4. The . specifies the destination location — in this case, the current directory.

 In this case, the repository is still empty, so nothing is actually copied. However, Subversion has now
noted that the remote and local file systems have been associated with one another. If you look at your
Rails directory from the command line, you ’ ll notice that a hidden .svn directory has been added —
 that ’ s where Subversion stores its information.

 If you are used to a stricter source - control system like Perforce or ClearCase, the use of the word
 “ checkout ” in this context may be confusing. In those systems, a checkout is an operation performed on
an individual file to grant a developer exclusive, locked access to that file until the developer is done
making changes. In Subversion, you do not need to lock a file before starting to make changes to it, and a
checkout is a command performed on an entire area of the repository to give the developer a copy of
those files to begin development.

c02.indd 43c02.indd 43 1/30/08 4:02:46 PM1/30/08 4:02:46 PM

Chapter 2: Rails Source Control with Subversion

44

 With the repository checked out, you can now add your Rails files to it as follows:

$ svn add --force .
A app
A app/controllers
A app/controllers/application.rb

[... A bunch of lines ...]

A tmp/sockets
A vendor
A vendor/plugins

 The add command, as you might expect, adds files to the Subversion repository, and the - - force option
causes Subversion to recursively descend through the file tree and add all subfolders and files, even
those that might already be under source control.

 What to Ignore
 At this point, you are in good shape and could begin coding in earnest. However, there are a couple of
details to take care of that will make your Subversion experience more pleasant. The basic rule of thumb
for what files should be stored in a source control repository is that only files that are directly created by
developers should be added. In general, you want to avoid adding files that are generated by the system —
 they take up unneeded room in the repository and add complexity to all your commits.

 Within the Rails structure, this includes the log folder, the doc folder, and the tmp folder. At the
moment, the only one of those folders that is populated is the log folder. Remove the existing files from
the repository as follows:

$ svn revert log/*
Reverted ‘log/development.log’
Reverted ‘log/production.log’
Reverted ‘log/server.log’
Reverted ‘log/test.log’

 The revert command takes the affected files out of the Subversion repository but leaves them in place
locally. However, as it currently stands, Subversion will still know about the files in the log directory,
and you might inadvertently add them at a later date. So you actually want to tell Subversion to pretend
that the files in question don ’ t even exist. You do this by setting a Subversion property on those files as
follows:

$ svn propset svn:ignore “*.log” log
property ‘svn:ignore’ set on ‘log’

 This is the first of about three Subversion properties you ’ ll encounter in this chapter. Subversion allows
you to set any kind of property you want on files, but there are some pre - defined properties that have
specific implications for Subversion ’ s behavior. In this case, you ’ re telling Subversion to ignore any file
in the log subdirectory that ends in .log . Conveniently enough, that will keep Subversion from caring

c02.indd 44c02.indd 44 1/30/08 4:02:46 PM1/30/08 4:02:46 PM

Chapter 2: Rails Source Control with Subversion

45

about anything that Rails logs. Even though you ’ re executing this command locally, the property is set
on the repository itself. Other developers who check out the repository will also have their log files
ignored.

 Similarly, you want Subversion to ignore the doc directory, because any documentation you place in
there will be generated by rdoc . You also want it to ignore the tmp directory, because there ’ s no point in
putting temporary files in source control. Enter the following:

$ svn propset svn:ignore “*” doc
property ‘svn:ignore’ set on ‘doc’
$ svn propset svn:ignore “*” tmp
property ‘svn:ignore’ set on ‘tmp’

 Later in the book, you ’ ll find some other derived directories that you will want to have Subversion
ignore.

 Database Files in the Repository
 There are a couple of other derived files that are worth addressing: the database setup file database.
yml and the working schema file schema.rb . Although schema.rb is a generated file created by Rails
during the database - migration process, no less a personage than David Heinemeier Hansson himself
said that the file should be placed in source control anyway to allow somebody checking out the code for
the first time to set the database up in one shot without walking through all the database migrations.
Who am I to argue? You can leave schema.rb alone.

 The issue with database.yml is a little bit different. Under normal circumstances, each developer will
need to set up his or her own development environment pointing to his or her own local database with
his or her own username and password. You certainly don ’ t want every individual developer to be
continually merging his or her database username and password up to source control and screwing up
everybody else with the next update.

 Now, for the purposes of this book, you could ignore the following — there ’ s only one developer, and so
the issue is less salient. However, there is a standard mechanism for managing this situation. You place a
template version of the file in source control under a separate name, and remove and ignore the original
file, as follows. Each developer is then expected to maintain their own local copy of the template.

$ cp config/database.yml config/database.yml.template
$ svn add config/database.yml.template
A config/database.yml.template
$ svn revert config/database.yml
Reverted ‘config/database.yml’
$ svn propset svn:ignore “database.yml” config
property ‘svn:ignore’ set on ‘config’

 Now, there ’ s a database.yml.template in the Subversion repository, and everyone is free to copy that
into database.yml and change it around to his or her heart ’ s content because Subversion no longer
cares about that file. One implication of this solution is that every checkout of the code will need to
create a database.yml file before it can run. You ’ ll need to pay particular attention to this when
deploying your code to its runtime server.

c02.indd 45c02.indd 45 1/30/08 4:02:46 PM1/30/08 4:02:46 PM

Chapter 2: Rails Source Control with Subversion

46

 Marking Executable Files
 If your development team includes Windows developers as well as Linux or Mac OS X developers, you
need to ensure that scripts intended to be executable have their file mode properly set on the UNIX -
 based operating systems. You do this by setting another Subversion property.

 Within Rails, that ’ s all the files inside the /script directory and its subdirectories, plus the dispatch files
in the /public directory. The dispatch files are easy because they all have a common file name. You just
do this:

$ svn propset svn:executable “*” public/dispatch.*
property ‘svn:executable’ set on ‘public/dispatch.cgi’
property ‘svn:executable’ set on ‘public/dispatch.fcgi’
property ‘svn:executable’ set on ‘public/dispatch.rb’

 Getting all the server files requires either some tedium to enter each of them separately, or some shell
skills to get them all in one shot. Here ’ s the whizzy UNIX way:

$ svn propset svn:executable “*” `find script -type f | grep -v ‘.svn’`
property ‘svn:executable’ set on ‘script/about’
property ‘svn:executable’ set on ‘script/breakpointer’
property ‘svn:executable’ set on ‘script/console’
property ‘svn:executable’ set on ‘script/destroy’
property ‘svn:executable’ set on ‘script/generate’
property ‘svn:executable’ set on ‘script/performance/benchmarker’
property ‘svn:executable’ set on ‘script/performance/profiler’
property ‘svn:executable’ set on ‘script/plugin’
property ‘svn:executable’ set on ‘script/process/inspector’
property ‘svn:executable’ set on ‘script/process/reaper’
property ‘svn:executable’ set on ‘script/process/spawner’
property ‘svn:executable’ set on ‘script/runner’
property ‘svn:executable’ set on ‘script/server’

 For those of you who are not twelfth - level UNIX gurus (I ’ m not, by the way), here ’ s a quick explanation
of what ’ s going on here. find script - type f | grep - v ‘ .svn ’ gives you a list of all files in the /
script subdirectory and its subdirectories, which are actually files, not directories, and which are not
hidden Subversion files. (If you try to do the more obvious svn propset svn:executable “ * ”
script/* , Subversion will complain when it reaches the first subdirectory.) Those who are on Windows
machines can either set the property on each of those individual files (boring), or write a short Ruby
script to set the properties automatically.

 Commiting Changes
 Although you ’ ve made a number of changes to the local copy of the repository, none of them has
actually been passed back to the mother ship yet. To get those changes back to the Subversion server,
you need to commit them as follows:

$ svn commit -m “further project setup”
Adding README
Adding Rakefile

c02.indd 46c02.indd 46 1/30/08 4:02:47 PM1/30/08 4:02:47 PM

Chapter 2: Rails Source Control with Subversion

47

Adding app

[... A lot of lines ...]

Adding tmp/sockets
Adding vendor
Adding vendor/plugins
Transmitting file data
Committed revision 2.

 The changes have now been sent back to the server, and other developers who check out or update their
repositories will now see them.

 Notice that Subversion tells you the status of all the files that are being changed before it actually
transmits the file data at the end. Subversion uses an all - or - nothing model when your commit affects
more than one file. The system validates that all the files you want to change are without conflict with
other developer ’ s changes. Only if all of your files are clear does Subversion send your changes to the
client. This prevents the central repository from being placed in an inconsistent state caused by taking
only part of a developer ’ s change set.

 The secret to successfully using Subversion in Agile Rails development is to commit often. Really often.
Constantly. Nearly every time you create a new unit test and pass it, that ’ s how often. In a tight,
 test - driven loop, that could easily mean committing changes every 15 minutes to half - hour. If you are
used to a heavier - weight source control system, that may seem hideously unworkable, but in
Subversion, a commit is a quick operation, especially if you perform it so often that you ’ re sending only
a few files back to the server at a time.

 There are many benefits to continuous commits. Most obviously, it ’ s almost impossible to lose significant
amounts of work.

 The Repository Life Cycle
 Now that you have your repository, you need to keep it up to date. Any changes you make to your local
copy of the code need to be registered back to the Subversion server before other developers can see it
and the change can be assigned a revision tag.

 Committing Normal Code Changes
 Most of the time, the changes that you make to your code will simply involve changing text within an
existing file. As you ’ ve seen, the svn commit command causes all of the changes in your local copy to
be sent to the server. Subversion requires you to add a short message to the commit, describing the
change by using the - m flag, as in svn commit - m “ I fixed that really hairy bug. Hooray
for me ” . If you don ’ t include a descriptive message, Subversion will try to launch your system ’ s default
editor for you to type one in.

c02.indd 47c02.indd 47 1/30/08 4:02:47 PM1/30/08 4:02:47 PM

Chapter 2: Rails Source Control with Subversion

48

 If you ’ ve lost track of the revisions you ’ ve made since your last commit, you can get a handy list by
using the svn status command as follows:

$ svn status
? edge_update.sh
? soupsonline.tmproj
M test/unit/ingredient_test.rb
M test/functional/ingredients_controller_test.rb
M test/functional/recipes_controller_test.rb
M app/controllers/ingredients_controller.rb
M app/views/recipes/show.html.erb
? app/views/ingredients/remote_update.html.erb
M app/views/ingredients/remote_edit.html.erb
? db/schema.rb
X vendor/rails
? public/images/spacer.gif
? public/images/img10.gif
? public/images/img01.gif
? public/images/img11.gif
? public/images/img02.gif
? public/images/img12.gif
? public/images/img04.gif
? public/images/img05.gif
? public/images/img06.gif
? public/images/img07.gif
? public/images/img08.gif
? public/images/img09.gif
? public/images/img03.jpg
M public/stylesheets/scaffold.css

 Each file is prefixed by a character that describes that file ’ s status. In this case, you have M , meaning the
file has been modified; X , meaning the directory is part of an external definition; and ? , meaning the file
is not under version control. You might also see A , D , or C , which mean the item is scheduled to be added,
scheduled to be deleted, or currently in a conflict state, respectively.

 The great thing about the svn status command is that all the data needed to run it is local to your copy
— you don ’ t have to be connected to the network to run the default version of the command. However,
when you are connected to the network, you can get extra information by using the - - show - updates
option. When selected, Subversion connects to the server and puts an asterisk next to any file that has a
more recent change on the server. Remember, if there is a more recent change, Subversion will not allow
you to commit unless you update and resolve any conflicts.

 Updates and Conflicts
 You retrieve recent changes using the svn update command, which brings your working copy
up - to - date with respect to the central repository. The output of the command is a list of all the files
changed, each prefixed by a character that indicates what kind of change has been made.

 The most common change character is U , meaning that there has been an update to a file that has not
changed on the local copy. Other change types that do not affect local code are A and D , indicating that a
file has been added or deleted.

c02.indd 48c02.indd 48 1/30/08 4:02:47 PM1/30/08 4:02:47 PM

Chapter 2: Rails Source Control with Subversion

49

 If a file that you have changed locally has also changed on the repository, then you have one of two
change types. If the two changes are in different parts of the file and do not affect each other, then the
code is G for “ merged. ” This means that Subversion has managed to integrate the two sets of changes on
its own and the file should be in a valid state. But it ’ s usually a good idea to run your test suite, just to be
on the safe side.

 If both you and somebody else on your project have made incompatible changes to the same part of a
file, then the code is C , for “ conflict. ” When Subversion detects a conflict, you will be prevented from
committing your code back to the repository until you resolve the conflict.

 To help resolve the conflict, Subversion does a couple of things that allow you to see the problem clearly.
Subversion changes the file under conflict to mark where the conflict occurs. In addition, Subversion
creates three complete alternate versions of the file, each with a new extension. They are as follows:

 .r < BASE REV # > is the file as it was before you started messing with it. The < BASE REV # > is
set to the number of the Subversion revision that you started with. For example, if you were
conflicted over the recipe_controller.rb file and your previous update was from revision
100, then this version would be recipe_controller.rb.r100 .

 .r < HEAD REV # > is the file as it currently stands in the repository. The < HEAD REV # > is the
most recent revision number, and will be the higher of the two numbers. Continuing the
example from the previous bullet, this file might be recipe_controller.rb.r103 .

 .mine is the file as you lovingly edited it (before Subversion gunked it up with markers to show
the conflict).

 These files give you three quick - and - easy ways to resolve the conflict. If you ’ re convinced that your version
contains the wisdom of the angels, and your coworker is deluded, take the .mine file, and copy it over the
original file. If you think that your coworker is smarter than you, take the .rHEAD version and copy that
one over the original. If you want to chuck the whole thing and start over, take the rBASE version.

 If none of these options really fits, then there ’ s no getting around it — you ’ ll have to look at the original
file with its markers. The file will look something like this:

def create
 @recipe = Recipe.new(params[:recipe])
 respond_to do |format|
 if @recipe.save
 < < < < < < < .mine
 flash[:notice] = ‘Recipe was spectacularly created.’
=======
 flash[:notice] = ‘Recipe was wonderfully created.’
 > > > > > > > .r103
 format.html { redirect_to(@recipe) }
 format.xml { render :xml = > @recipe,
 :status = > :created, :location = > @recipe }
 else
 format.html { render :action = > “new” }
 format.xml { render :xml = > @recipe.errors,
 :status = > :unprocessable_entity }
 end
 end
 end

❑

❑

❑

c02.indd 49c02.indd 49 1/30/08 4:02:48 PM1/30/08 4:02:48 PM

Chapter 2: Rails Source Control with Subversion

50

 In this case, you and your codeveloper are fighting over the adjective used to describe a successful recipe
creation. (Well, I ’ ve seen bigger arguments over smaller things.)

 Subversion alerts you to the location of the change by the three - part delimiter. The > > signs at the start
indicate the beginning of the conflicted section, and the .mine at the end of that line tells you which
revision is responsible for all the code between that line and the === line. All the code between the ===
line and the > > > line comes from the .r103 version of the file.

 Now that you can see the two versions of the file side - by - side (or at least top - to - bottom), edit the file as
needed to get it to the actual state you want. Be sure to remove the delimiters — the Ruby interpreter
isn ’ t going to like it if those stay in.

 When the file is the way you want it (run your automated tests to confirm it), you tell Subversion that
the conflict has been resolved with the command svn resolved < filename > , where the filename
is the path to the file you just finished messing with. Subversion will note the resolution and delete the
temporary files for you (be careful — you can ’ t get them back once they are gone). When all conflicts are
resolved, your commit will be allowed to proceed.

 File - Level Changes
 Subversion is not content only knowing about the changes you make within existing files. Subversion
also wants to know about changes you make to the file structure itself.

 When you add a new file to your Rails project, you must remember to register the change with
Subversion using svn add < PATH > . The path can be a filename or a directory — if it ’ s a directory, you
get the contents of that directory and all its subdirectories added. The path can contain wildcard
characters, which are interpreted normally. By itself, the add command updates only your local copy.
The change is not passed to the central repository until your next commit.

 Many of the files you add to Rails will be via the generate script. No matter what kind of thing you are
generating, the script can always take the - - svn option, which causes any file created by the generator
to be automatically added to Subversion control. Again, a commit is needed for the change to be
visible to the central repository.

 To create an entire directory, use svn mkdir < PATH > . To remove a file, you use the command svn
delete < PATH > . You can also copy and move files using svn copy < FROM > < TO > and svn move
 < FROM > < TO > . A move is identical to performing a copy followed by a deletion. At the risk of repeating
myself, none of these takes full effect until the next commit.

 Setting Up a Subversion Server
with svnserve

 Subversion works best in a team environment, and for the entire team to be able to see the repository,
you need to be running it on a server. There are two reasonable options for setting up this server:

 The Subversion distribution comes with a program called svnserve , which provides for
 quick - and - easy setup of a repository server.

❑

c02.indd 50c02.indd 50 1/30/08 4:02:48 PM1/30/08 4:02:48 PM

Chapter 2: Rails Source Control with Subversion

51

 You can use an Apache 2.x web server augmented with the mod_dav and mod_dav_svn
modules. This setup is more complex, but it ’ s also more feature - rich.

 There ’ s a third option, which is to run svnserve but allow access only via a Secure Shell (SSH)
tunnel. This option is only recommended for networks that are already making heavy use of SSH, and
will not be covered here.

 The Subversion team recommends you avoid trying to run the repository over your file - sharing system
as “ local ” to all developers. Doing so has significant security and stability risks.

 The svnserve system is easy to set up and maintain, and is recommended as the simplest way to get
your source control system up and running. It has two significant limitations — both security - related —
 that may prevent it from being used by your group. All network traffic to and from svnserve is in clear
text — svnserve has no provision for encryption of code traffic. To use svnserve for sensitive data, the
server should reside on a system that is accessible only inside a VPN or other mechanism for
authenticating and encrypting traffic. Similarly, svnserve uses its own authentication system, and the
passwords are stored in clear text on the server (although the password transfer is encrypted). As a more
minor issue, svnserve does no logging. On the plus side, it usually outperforms the Apache solution.

 The Apache solution fixes the issues with svnserve . You can use any authentication system that Apache
supports, and you can use Apache to encrypt network traffic. In addition to logging, the Apache module
also provides for Web - based repository browsing, which is useful. The Apache configuration is far
more complex, and is well outside the scope of a book on Rails. (See the Subversion resources for more
details.)

 You can get svnserve running with the following command (it ’ s recommended that you run this
command under a user account that has access to the Subversion directories, and only the Subversion
directories):

$svnserve -d -r /usr/local/subversion

 Strictly speaking, both of the option flags are optional, but they are commonly used. The - d tag sets
 svnserve running as a background daemon. Under normal circumstances, you still need to keep the
console window running for the server to stay up. The - r switch sets the root directory for client
Subversion commands. In other words, all client URLs are resolved relative to this directory. Because this
command sets up /usr/local/subversion as the Subversion root directory, users would access the
Soups OnLine repository as:

svn://soupsonline

 rather than

svn://usr/local/subversion/soupsonline

 You can change the default host and port by using the options - - listen - host and - - listen - port .
The default port is 3690. The - t and - i options prepare svnserve to be used over either an SSH tunnel
(- t) or as a Unix inetd daemon (- i). These flags do not cause svnserve to be run those ways, but
rather, they prepare svnserve to use stdin and stdout and to accept traffic as it comes in. See the
Subversion documentation for more information about using inetd and SSH tunneling, or, for Windows
users, running as a Windows service.

❑

c02.indd 51c02.indd 51 1/30/08 4:02:48 PM1/30/08 4:02:48 PM

Chapter 2: Rails Source Control with Subversion

52

 You can set up simple authentication for the svnserve server by modifying the conf/svnserv.conf
file created in the repository (in other words, in /usr/local/subversion/soupsonline). Within
that file are two commented - out options that are of interest: password - db and realm . The password -
 db option is the name of a file that contains the user information for this repository — typically that file
is also placed in the conf directory. The realm option is an arbitrary label for the repository — it doesn ’ t
matter what it is, but it should be unique unless you have two repositories sharing a user file.

 Two other options specify what different types of uses can do. The anon - access option specifies what
an anonymous user can do. Valid values are read , write , and none (write access is assumed to include
read access). The auth - access option specifies access for authorized users. The default is read for
anonymous users, and write for authorized users. See the Subversion documentation if your access
control needs are more complex than this.

 The specified password file has the following simple format:

[users]
nrappin = bananamuffin
rlithgow = concrete
zpaleozogt = zot

It ’ s just the user names and their clear text passwords.

 That should be enough to get you started running Subversion for a team of developers. Now let ’ s look at
how Subversion manages the Rails ecosystem.

 Living on the Edge
 One of my favorite decisions that the core Rails team made when designing the Rails architecture was to
allow each individual Rails project to easily maintain its own copy of Rails, thus making it trivial to have
multiple projects require different versions of Rails. In particular, it ’ s no trouble at all to have a new
project use the cutting - edge version of Rails right off the trunk of the main Subversion repository, while
every other project on your machine continues to use version 1.2.

Five Other Great Rails Architectural Decisions: A Subjective List
❑ The base idea that default behavior could govern 95 percent of relationships

between database tables and objects, or between a URL, a method in the
controller, and the view file that renders that method. If you’ve ever worked in
a framework that made you spell all that out explicitly, time and time again,
this feels like heaven.

❑ Having a separate database for tests, automatically populated by fixtures. This
makes unit testing of complex data interactions not just possible, but easy
and fun.

c02.indd 52c02.indd 52 1/30/08 4:02:49 PM1/30/08 4:02:49 PM

Chapter 2: Rails Source Control with Subversion

53

❑ Allowing access to raw SQL for powerful queries. I’ve tried the web-
framework game in the past, and the temptation to wall off SQL is pretty
strong. But SQL already exists, has tons of power and flexibility, and people
already know it. No need to reinvent query languages.

❑ The ease of having a known public directory for images, JavaScript, CSS, and
static text files. If you’ve ever played the game of “guess which directory the
server thinks is the working directory,” you’ll appreciate this.

❑ The plugin architecture for allowing changes in the behavior of any Rails class,
which allows incredible flexibility and allows new features to be tested as
plugins before moving to the core.

 Using a Specific Version of Rails
 The current version of Rails under development and pre - release is usually called Edge Rails , in contrast
to the official release versions, often called Gem Rails. There are a couple of different ways to ensure that
your new project runs against a specific version of Rails, whether that version is Edge or a specific Gem
version.

 Using Subversion to Live on the Edge
 Because the Soups OnLine project is being managed via Subversion, you ’ ll use a Subversion - specific
mechanism. Subversion enables you to specify that part of your project should be loaded from an
external Subversion server — in this case, the Rails Subversion server. From your Soups OnLine top -
 level directory, run the following command:

$ svn propset svn:externals “rails http://dev.rubyonrails.org/svn/rails/
trunk/” vendor
property ‘svn:externals’ set on ‘vendor’

 This command tells Subversion that the rails directory of the specified Subversion server should be
associated with the vendor directory of your Rails project. However, this command by itself does not
give you the Edge Rails files. To do that, you need to update the directory as follows:

$ svn update vendor

Fetching external item into ‘vendor/rails’
A vendor/rails/cleanlogs.sh
A vendor/rails/release.rb
A vendor/rails/activeresource

[... An Oodle of files ...]

U vendor/rails
Updated external to revision 7127.

Updated to revision 2.

c02.indd 53c02.indd 53 1/30/08 4:02:49 PM1/30/08 4:02:49 PM

Chapter 2: Rails Source Control with Subversion

54

 At this point, not only will your project run using Edge Rails, but whenever you update your project,
Subversion will automatically seek out the dev.rubyonrails.org server and update Rails for you.

 However, there ’ s now a slight discrepancy in your project. When you used the rails command to create
the project, Edge Rails didn ’ t exist on the system, so if there have been any changes to the Rails -
 generated project files since the Gem Rails version you used, you need to update your project to ensure
you have the latest and greatest. Here ’ s how:

$ rails .
 exists
 exists app/controllers
 exists app/helpers

[... Stuff ...]

 identical log/development.log
 identical log/test.log
$ svn commit -m “updating Rails”
Sending vendor

Committed revision 3.

 If any files need to be changed, Rails will prompt you before changing them. However, if you ’ ve made
custom changes to Rails system files, your modifications may be lost.

 After you get started on your project, it ’ s less feasible to update the Rails - created files every time there is
a Rails update. Luckily, you probably won ’ t need to do this often. Most of the Rails - created files are
structural and don ’ t change frequently. However, you should keep an eye on the Edge Rails changes and
be prepared to update files if necessary. You might want to particularly keep an eye on changes to
 vendor/rails/railties — especially the JavaScript files in vendor/rails/railties/html/
javascripts that are directly used as the JavaScript engines for your Rails application.

 You can also use the handy rake task rails:update to keep your Rails project current with your Rails
code base. The update task has the following three subtasks that can be called separately if you wish to
update only part of your Rails project:

 rails:update:configs updates the config/boot.rb file.

 rails:update:javascripts updates all the JavaScript files.

 rails:update:scripts updates all the files in your scripts directory that perform Rails
administrative tasks. Remember to specify any new files here as executable in Subversion if
you ’ re going back and forth between Windows and a Unix - based operating system.

 Running rails:update is equivalent to running all three of these subtasks.

 Specifying a Particular Version
 By using Edge Rails, the Soups OnLine program will have access to the most up - to - the - moment ideas
and brainstorms of Rails core programmers the world over. They have only to commit, and the code will
show up in the project on the next update.

❑

❑

❑

c02.indd 54c02.indd 54 1/30/08 4:02:49 PM1/30/08 4:02:49 PM

Chapter 2: Rails Source Control with Subversion

55

 However, this is not always the best idea. Sometimes, a change to Edge Rails might affect an API call that
you depend on in your application. Every now and then, a bug might sneak in to Edge Rails and make
itself at home before it is noticed and fixed. Although you might be able to live with this instability for
awhile during development, at some point you need to draw a line in the sand and define the Rails
version that works for your project.

 Staying within Subversion, you can respecify the property for your vendor/rails directory and use the
 - r option to specify a particular revision of Rails in the trunk. The revision number is specified in the
output generated by Subversion when you update. The update shown in the previous section was to
revision 7127. If you, for some reason, decided this was the most perfect version of Rails there ever could
be and wanted this to be your application ’ s Rails version forevermore, you would specify it by
overwriting the svn:externals property with a new property as shown here:

$ svn propset svn:externals “rails -r 7127 http://dev.rubyonrails.org/
svn/rails/trunk/” vendor
property ‘svn:externals’ set on ‘vendor’

 Further updates to your project will no longer update the vendor/rails directory — you will have
locked your local version of Rails to that particular revision.

 Although it ’ s nice to be able to specify an arbitrary Rails revision for your project, you are more likely to
lock your version to one of the official Rails releases. This is a slightly different command because the
Rails releases have been copied from the Rails trunk to their own branch. As of this writing, there are
two releases available as stable branches: 1 - 1 - stable and 1 - 2 - stable. Accessing them is a simple matter of
changing the externals command to point to the proper directory as follows:

$ svn propset svn:externals “rails http://dev.rubyonrails.org/
svn/rails/branches/1-1-stable/” vendor

or

$ svn propset svn:externals “rails http://dev.rubyonrails.org/
svn/rails/branches/1-2-stable/” vendor

Because these are branches, further updates are not expected, so you ’ ll have the stability you need.

 If you want a little more granularity, the /tags directory can reproduce any Rails release from 0.9.1 all
the way through 2.0.2 and counting. The name of each follows the form /tags/rel_2 - 0 - 2 .

 Living on the Edge With Rake
 If you ’ re not using Subversion, or you just don ’ t need the automatic updating feature, you can also
specify your Rails version via the following simple rake task:

$ rake rails:freeze:edge

c02.indd 55c02.indd 55 1/30/08 4:02:50 PM1/30/08 4:02:50 PM

Chapter 2: Rails Source Control with Subversion

56

 This will perform the same checkout of the current Edge Rails that setting the Subversion property and
updating did in the last section. As previously mentioned, though, you ’ ll no longer get automatic
updates when you update your project. Running the command again will perform another checkout,
overwriting your vendor/rails/ directory with the newer version.

 This mechanism also offers you the opportunity to specify a particular Rails revision to work against. To
freeze your project to the same revision 7127 you loved from Subversion, issue the following command:

$ rake rails:freeze:edge REVISION=7127

 There ’ s no automatic mechanism in the freeze mechanism to manage branches. However, in the
interest of preventing you from having to look it up, the following table lists the revision numbers for
branches and tags that might be of interest.

Release Revision

Release 1.1.6 Tag 4751

1.1 Stable Branch 6042

1.2 Stable Branch 7087

Release 1.2.6 Tag 8197

Release 2.0.2 Tag 8441

 An advantage of using rake to manage your Edge Rails is that it ’ s particularly easy to undo. The
following command will empty your vendor/rails directory, effectively reverting you to whatever
Rails version you have installed via RubyGems:

$ rake rails:unfreeze

 Alternatively, you can copy the RubyGems version to your local project directory with the following
command:

$ rake rails:freeze:gems

This is helpful if you want to freeze an existing Rails project before you update your system - wide
RubyGems.

 What ’ s Up, RDoc?
 One problem with developing against Edge Rails is that the online documentation repositories are no
longer accurate. Luckily all the Rails documentation is generated automatically, and it ’ s a snap to
regenerate it locally for your purposes. You can do this with the following Rake command:

$rake doc:rails

c02.indd 56c02.indd 56 1/30/08 4:02:50 PM1/30/08 4:02:50 PM

Chapter 2: Rails Source Control with Subversion

57

 However, if you ’ d like more control over the process, all you need to do is invoke the RDoc generator with
some appropriate options. From the top - level directory of your Rails project, run the following command:

$ rdoc --op doc/apidocs/ -x test/ -x /railties/lib/rails_generator/
generators/components/controller/templates/controller.rb --all --
tab-width 2 --title ‘Rails Edge API documentation’

 This one will crank for as much as 5 to 10 minutes, depending on how powerful your computer is. The
following table describes what you ’ ve done.

Command Option Description

--op doc/apidocs Creates an output directory. If an output directory already exists that RDoc
doesn’t recognize as an rdoc directory, it will halt.

-x test Excludes the vendor/test directory. You can have more than one -x flag
in the command if there are several things you don’t want documented.
The second flag, /railties/lib/rails_generator/generators/
components/controller/templates/controller.rb, removes a file
that is seriously weird syntactically and will hang RDoc.

--all Include private methods in the output.

--tab-width 2 Set the tab width for the displayed source to 2. The default is 8.

--title Sets the title of the web page.

 When this command is complete, you ’ ll have all your Rails API documentation in the doc/apidocs
directory. There are a couple of potential advantages to running the rdoc command directly:
customization and time. The rdoc command will regenerate Rails pages only when the source has
changed; the rake command will redo the entire directory each time.

 The rdoc output can be customized significantly. The following table describes some other useful options.

Command Option Description

--exclude Alias for -x.

--extension a=b Handle document files ending in .a as if they ended in .b. This is useful if
you have Ruby files with nonstandard extensions, the most common of
which is probably .cgi.

--inline-source Place the embedded source for documented methods in the documentation
file itself. If not specified, the embedded source is placed in a pop-up window.

--line-numbers Include line numbers in source code.

--quiet Don’t show the progress output.

--style url Specify a CSS page for styles.

--template Specify a directory containing rdoc template files.

c02.indd 57c02.indd 57 1/30/08 4:02:50 PM1/30/08 4:02:50 PM

Chapter 2: Rails Source Control with Subversion

58

 When you find a set of options you like, it ’ s probably a good idea to store the command in a shell script
so that you can easily run it again whenever you update. RDoc will only update documentation for files
that have changed, so subsequent documentation updates should go much more quickly.

 Resources
 The most important Subversion resource is the book Version Control with Subversion , originally published
by O ’ Reilly, and available online at http://svnbook.read-bean.com . The print book was published
in 2004, and the online version is more current (a second edition of the print book should be out shortly).

 Fran ç ois Beausoleil ’ s blog post at http://blog.teksol.info/2006/03/09/subversion-
primer-for-rails-projects was an important resource for me when I was learning about
Subversion and Rails. It ’ s in the comments to this post that David Heinemeier Hansson recommends
versioning schema.rb .

 There are a number of resources for managing Edge Rails. The official Rails wiki page on the subject is at
 http://wiki.rubyonrails.org/rails/pages/EdgeRails . The page is a little flaky though — it
includes a link to an older version of itself, among other things. Another blog post on the subject is by
Tim Lucas at www.sitepoint.com/blogs/2006/07/11/installing-and-managing-edge-rails .

 Summary
 Source control is critical to the functioning of a successful software team, and the overwhelming majority
of public Rails projects use a tool called Subversion to manage their code repository. Subversion enables
multiple developers to freely work on the same files, manages conflicts, and ensures that any save point
in the life of the system can be recreated.

 After a Subversion repository is created, your Rails project can be added to the repository, although
certain files, such as log files, should be set to be explicitly ignored. It ’ s easy to save your changes back to
the repository frequently. If one of the files you changed has been updated by another developer, you ’ ll
be required to issue an svn update command to see the changes. Subversion tries to merge the two
changes, but if both of you were working on the same part of the file, there may be conflicts that need to
be manually resolved. After you have committed your code, other developers can see it by performing
their own updates.

 Subversion includes a program called svnserve that enables you to easily set up a server that is
available to your entire team.

 Subversion is the easiest (but not the only) way to keep your project aligned with the latest Rails code,
known as Edge Rails.

c02.indd 58c02.indd 58 1/30/08 4:02:51 PM1/30/08 4:02:51 PM

 Adding Users

 You can ’ t have a community website without users. Users set the tone for your site, commenting in
forums, adding information, noticing mistakes, giving reviews, rating, and tagging. At the same
time, allowing user accounts opens your site to spam, data risks, session capturing risks, and so
on. Proper management of your user data can make your site resistant to common user permission
and security issues.

 In this chapter, you add users to Soups OnLine. First, you create user accounts and see how to
prevent automated accounts from gunking up your database. Then, you add user authentication
and session management to your Rails controllers. And finally, you examine user roles and how to
implement them.

 Creating Users
 Before a user is anything else, from the Rails perspective, it ’ s just another resource with a model, a
controller, and several views. The user can be created as a RESTful resource:

$ ruby script/generate scaffold --svn user username:string first_name:string
last_name:string email:string encrypted_password:string salt:string

 As before, a number of files are created, including a migration and a new route in the routes.rb
file. If you are doing these examples in order, Rails may prompt you to override the scaffold
.css file. Don ’ t do that — you ’ ve already made changes to that file that you don ’ t want to lose.
A way to avoid this issue would be to move the additions to a separate CSS file and include that
file in the layout header.

 The use of the - - svn option will add all the newly created files to the Subversion repository.
Obviously, you can leave that option off if you aren ’ t using Subversion. If you are using
Subversion but forget to use - - svn , the quickest way to add all the files is to use the command
 svn add * - - force . However, that command will add to the repository every file within your
local working copy that isn ’ t already known to Subversion, so use it with caution.

c03.indd 59c03.indd 59 1/30/08 4:01:49 PM1/30/08 4:01:49 PM

Chapter 3: Adding Users

60

 This is a minimal definition of a user: just a username, a full name, an email address, a password that
will be stored in an encrypted state, and some salt (a random string encrypted with the password to
make it harder to guess). I decided that the initial conception of a user in this application will allow for
creating, editing, and commenting on recipes. Other user information that you might need for, say,
selling things, can be added later.

 Before you actually run the migration that will update the database with the new user table, you should
make one addition. To associate each recipe with a user, the recipe table needs a user_id column. So,
add the following lines to the newly created migration, which should be at db/migrations/003_
create_users.rb . The completed migration should look like this (highlighted lines need to be added
by you):

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.string :username
 t.string :first_name
 t.string :last_name
 t.string :email
 t.string :encrypted_password
 t.string :salt
 t.timestamps
 end

 add_column :recipes, :user_id, :integer

 end

 def self.down
 drop_table :users

 remove_column :recipes, :user_id

 end
end

 Run the migration with the rake db:migrate command. Also, head into the recipe model at
app/models/recipe.rb , and add the line belongs_to :user . Then go to the new user model app/
models/user.rb and add the line has_many :recipes .

 With everything set up, it ’ s time to manage the first line of security in your application — the user
password.

 User Creation Form
 First off, you ’ ll edit the Rails - provided resource code to display the users as needed. To get the new user
views to display in the same layout that you put together in Chapter 1 , you need to add the following
line to the top of the UserController in app/controllers/user_controller.rb :

layout “recipes”

c03.indd 60c03.indd 60 1/30/08 4:01:50 PM1/30/08 4:01:50 PM

Chapter 3: Adding Users

61

 This will ensure that the UserController looks to the recipes.html.erb layout file when generating
HTML output for its actions, and keeps you from having to maintain multiple layout files.

 There are a couple of somewhat quibbly things you should do. For instance, the listing from the index
page contains all data for each user, including the encrypted password and salt. The security team
probably won ’ t be too happy about that, so go into the view file and remove those lines from the table
header and the display loop, so that only the username, first and last names, and email are being
displayed. The changed /app/views/users/index.html.erb file should look like this:

 < % @title = “Users” % >

 < table >
 < tr >
 < th > Username < /th >
 < th > Firstname < /th >
 < th > Lastname < /th >
 < th > Email < /th >
 < /tr >

 < % for user in @users % >
 < tr >
 < td > < %=h user.username % > < /td >
 < td > < %=h user.first_name % > < /td >
 < td > < %=h user.last_name % > < /td >
 < td > < %=h user.email % > < /td >
 < td > < %= link_to ‘Show’, user % > < /td >
 < td > < %= link_to ‘Edit’, edit_user_path(user) % > < /td >
 < td > < %= link_to ‘Destroy’, user, :confirm = > ‘Are you sure?’, :method = > :delete
% > < /td >
 < /tr >
 < % end % >
 < /table >

 < br / >

 < %= link_to ‘New user’, new_user_path % >

 While you ’ re at it, the display is probably much more useful if it ’ s alphabetized, so change the first line
of the index method in the user controller. The method, in app/controllers/users_controller.rb ,
should look like this:

 def index

 @users = User.find(:all, :order = > “username ASC”)

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml = > @users }
 end
 end

 Before you make some changes to the user entry form, it ’ s best to combine the common new and edit
forms into a _form partial view template, the way you did for recipes back in Chapter 1 . The form also
contains entries for encrypted password and salt, when you actually just want a masked entry for

c03.indd 61c03.indd 61 1/30/08 4:01:50 PM1/30/08 4:01:50 PM

Chapter 3: Adding Users

62

passwords. Plus, you ’ ll want the user to confirm the password and email address. Eventually, the view
code should look like this:

 < % form_for(@user) do |f| % >
 < table >
 < tr >
 < td class=”tdheader” > First Name: < /td >
 < td class=”tdheader” > Last Name: < /td >

 < /tr >
 < tr >

 < td > < %= f.text_field :last_name, :size = > 20 % > < /td >
 < td > < %= f.text_field :first_name, :size = > 15 % > < /td >
 < /tr >
 < table >
 < tr >
 < td class=”tdheader” > User Name: < /td >
 < td > < %= f.text_field :username, :size = > 15 % > < /td >
 < /tr >
 < tr >
 < td class=”tdheader” > Email Address: < /td >
 < td > < %= f.text_field :email % > < /td >
 < /tr >
 < tr >
 < td class=”tdheader” > Confirm Email: < /td >
 < td > < %= f.text_field :email_confirmation % > < /td >
 < /tr >
 < tr >
 < td class=”tdheader” > Password: < /td >
 < td > < %= f.password_field :password, :size = > 10 % > < /td >
 < /tr >
 < tr >
 < td class=”tdheader” > Confirm: < /td >
 < td > < %= f.password_field :password_confirmation,
 :size = > 10 % > < /td >
 < /tr >
 < /table >

 < p >
 < %= f.submit “Create” % >
 < /p >
 < % end % >

 For that form to work, you need to add some attributes to the user object for the items in the form that
are not in the database — the clear - text password, and the confirmation fields for the password and email
address. In about a page or so, you ’ ll need to actually create explicit getter and setter methods for the
password. But for now, just add the validations that you ’ ll need for user objects to app/models/user.rb ,
like this:

class User < ActiveRecord::Base
 has_many :recipes
 attr_accessor :email_confirmation, :password_confirmation, :password
 validates_presence_of :username, :email

c03.indd 62c03.indd 62 1/30/08 4:01:51 PM1/30/08 4:01:51 PM

Chapter 3: Adding Users

63

 validates_uniqueness_of :username
 validates_confirmation_of :email, :password
 validates_length_of :password, :minimum = > 6
end

 You could add a validation on the format of the user - entered email messages, but I don ’ t think that ’ s
worth the effort at the moment. The validates_confirmation_of method assumes the convention of
having two fields named something and something_confirmation , and tests for their equality before
saving the model object.

 How much you test these validations is something of a judgment call — because they are part of Rails
Core, the validations probably don ’ t need to be pounded extra hard. It is, however, indisputable that the
new validations are breaking some of the default tests because the blank forms that are being sent to
the new and update tests do not pass these validations. You need to add sample data that will pass the
validations in test/unit/user_test.rb , as follows:

 def user_form
 {:username = > “kermit”, :firstname = > “Kermit”,
 :lastname = > “the Frog”, :email = > “kermit@frogs.net”,
 :email_confirmation = > “kermit@frogs.net”,
 :password = > “iheartpigs”, :password_confirmation = > “iheartpigs”}
 end

 def test_should_create_user
 assert_difference(‘User.count’) do
 post :create, :user = > user_form
 end
 assert_redirected_to user_path(assigns(:user))
 end

 Change the test_should_update_user test to also pass the user_form result to its method call, and
the tests will pass. The resulting form, shown in Figure 3 - 1 , has a slightly different layout than the default.

Figure 3-1

c03.indd 63c03.indd 63 1/30/08 4:01:51 PM1/30/08 4:01:51 PM

Chapter 3: Adding Users

64

 Not that you asked, but I much prefer the tabular layout for form data than the default layout with the
caption above the text field. It ’ s more compact and easier to scan.

 Refactoring Forms Using A FormBuilder
 Take another look at the code in that form view in the previous section. One thing you should notice is
that the pattern of having a table row where the first cell is a caption and the second cell is a form
element is repeated over and over. Not only does that make for a lot of unnecessary and error - prone
repetition, but all the extra elements make for a lot of clutter and hard - to - read code.

 I have to say, I ’ m familiar with a number of web frameworks that depend on some kind of code or
HTML template, and the problem with nearly all of them is that complex code in the view or template
becomes difficult to lay out, read, and maintain. Part of this is due to the fact that the code and the
HTML have two distinct, intertwined structures, each with its own indentation and layout needs, and
these two structures work together only barely. Other frameworks depend on building all the HTML
tags programmatically, which can also be difficult to manage in complex cases.

 One of the strengths of Ruby on Rails, especially when compared to systems which came before, is an
awareness of this problem of structuring views. Rails provides a number of ways to move complex,
repetitive code to places where it can be easily consolidated and managed. Throughout the book, you ’ ll
take a look at some of these features as they become useful to the project. Right now, it ’ s time to look at
custom form builders.

 The Rails FormBuilder class is passed to a form_for block within a view (in the previous code, it ’ s the
class of the object named f). The FormBuilder class defines the instance methods used for the helpers
such as text_field and password_field . Because FormBuilder is just an ordinary Ruby class,
there ’ s nothing stopping you from creating a custom subclass of FormBuilder that does whatever you
want it to do with each helper method. All you need to do is tell the form_for method to use your
builder instead of the default, which you do by passing a :builder = > CustomClassName argument
to the form_for call.

 To build the custom form builder, you need a way to inject HTML into the output of the template from
the builder code. You do this by using the @template instance variable, created by Rails, and referring
to the code template currently being evaluated. The @template object has an instance method, content_
tag , which takes the name of an HTML tag, a hash of the tag ’ s attributes, and a block that resolves to the
content inside the tag. The result of the content_tag call can then be placed in the template output.

 Now, in planning out what this custom form builder is going to do, it ’ s hard not to notice the pattern:
calling text_field should result in a table row with a caption and the text field, and calling password_
field should result in a table row with a caption and the password field. On the other hand, a select
call should result in a table row with a caption and the select field. You could write each of those
methods individually, but even if they all called a common general method, there ’ s still a certain amount
of repetition. Instead, I recommend writing all the similar methods at once using Ruby ’ s
metaprogramming capabilities, particularly the define_method method.

c03.indd 64c03.indd 64 1/30/08 4:01:51 PM1/30/08 4:01:51 PM

Chapter 3: Adding Users

65

 I ’ m going to present the first part of the code for the custom builder, and explain it. (A complete
description of Ruby metaprogramming in general and define_method in particular is included in
Chapter 14 .) To begin, place the following class in models/tabular_form_builder.rb :

class TabularFormBuilder < ActionView::Helpers::FormBuilder

 def self.build_tabular_field(method_name)
 define_method(method_name) do | attribute, *args |
 options = args[0] || {}
 caption = options[:caption] || attribute.to_s.humanize
 caption_class = options[:caption_class] || “tdheader”
 options.delete(:caption)
 options.delete(:caption_class)
 @template.content_tag(“tr”) do
 @template.content_tag(“td”, :class = > caption_class) do
 “#{caption}”
 end +
 @template.content_tag(“td”) do
 super(attribute, options)
 end
 end
 end
 end

 field_helpers.each do | method_name |
 build_tabular_field(method_name)
 end
end

 Like a lot of Ruby metaprogramming code, this looks a little strange at first. The basic structure is to
define a class method called build_tabular_field . This method is called with a single argument, and
the effect of calling that method is to create an instance method whose name is that single argument. So
calling build_tabular_field(:text_area) creates the instance method TabularFormBuilder
.text_area .

 The magic happens in the define_method call, which takes as an argument the name that will be used
to call the new method and then a block. The arguments to the block will be the argument list for the
new method, and the body of the block is the body of the new method. You may be familiar with
metaprogramming by awkwardly building up a string that would be evaluated to create a dynamic
program. Due to the nature of Ruby blocks, you don ’ t have to do that — you can just write ordinary
Ruby code in the block part of define_method , and the block automatically becomes the body of the
newly created dynamic method. What does that block do inside define_method ? First, it pulls an
 options hash out of the args list — given the way that the field helpers are called, the options hash
will always be the second argument if it exists. However, you can ’ t define a default value in a block
argument list the way you can in a method argument list, so the *args notation is a somewhat
awkward compromise between the normal call list of a field helper and the allowed semantics of a
Ruby block.

 From the options, the text and CSS class of the caption cell are retrieved. If they are not there, the text
defaults to a humanized conversion of the attribute name, and the CSS class defaults to tdheader .
The two new fields need to get removed from the options hash; otherwise, Rails will put them in the
attribute lists of the table cells you ’ re going to build, which would be a little annoying.

c03.indd 65c03.indd 65 1/30/08 4:01:52 PM1/30/08 4:01:52 PM

Chapter 3: Adding Users

66

 After that, a tr cell is created with a block that contains two td cells — notice the critically important
plus sign between the two td cell blocks. Each content_tag call returns a string, and you have to be
sure that the tr cell contents are the two td cells concatenated together. (If you leave off the plus sign,
only the second cell will be included in the row, because it would be the last value of the block
expression.) The first td cell contains only a string with the previously determined caption. The second
cell actually calls super , which is the default FormBuilder rendering of a text field, password field, or
whatever. The result is just placed in the second table cell.

 The loop that comes after the build_tabular_field method is raw code — it ’ s part of the class but not
inside any method. That code is evaluated when the class is loaded, and it calls build_tabular_field
once for each known field helper in the field_helper list. This should cleanly create all the methods
needed for the new field helper to be a drop - in replacement for an existing field helper.

 However, it turns out that submit is not in the field_helper list. Plus, it ’ s probably useful to have a
general method to put an arbitrary row into the field table. Add the following two methods to the
 TabularFormBuilder class:

 def submit(caption, args={})
 row(super(caption, args))
 end

 def row(content)
 @template.content_tag(“tr”) do
 @template.content_tag(“td”, :colspan = > 2) do
 “#{content}”
 end
 end
 end

 This completes a simple form builder, but as you may have noticed, it creates all the tr and td tags but
not the surrounding table. This can be done with some ordinary helper methods placed in
 application_helper.rb . Creating the helper method has the secondary advantage of encapsulating
the form_for method with the builder argument, so you won ’ t have to repeat that typing either. Add
the following to application_helper.rb :

 def convert_args(builder_class, args)
 options = args.last.is_a?(Hash) ? args.pop : {}
 options = options.merge(:builder = > builder_class)
 args = (args < < options)
 end

 def table_form_for(name, *args, & proc)
 concat(“ < table > ”, proc.binding)
 form_for(name, *convert_args(TabularFormBuilder, args), & proc)
 concat(“ < /table > ”, proc.binding)
 end

 The table_form_for method should look straightforward — it uses concat (a standard way to inject
code into the template from a handler method with a block) to surround the form_for call with table
tags. The convert_args method, on the other hand, probably looks a little weird to you. The problem
here is that form_for can be called with its options hash as the second argument, after the object being
displayed in the form, or as the third argument, after the model class and the object. The convert_args

c03.indd 66c03.indd 66 1/30/08 4:01:52 PM1/30/08 4:01:52 PM

Chapter 3: Adding Users

67

method just makes sure that you add the builder argument to the actual hash, taking advantage of the
fact that you know it ’ s always the last argument.

 One oddity about this code snippet is that it places the form tag inside the table tag. Technically, this is
legal HTML, but it sure looks weird to my eyes.

 With the helper in place, it ’ s time for my favorite part — the actual new form under the custom form
builder. The following code is an exact, drop - in replacement for the previous view code with all the tr
and td tags:

 < % table_form_for @user do |f| % >
 < %= f.text_field :first_name, :size = > 15, :class = > “input” % >
 < %= f.text_field :last_name, :size = > 20, :class = > “input” % >
 < %= f.text_field :username, :size = > 15, :class = > “input” % >
 < %= f.text_field :email, :class = > “input” % >
 < %= f.text_field :email_confirmation, :class = > “input” % >
 < %= f.password_field :password, :size = > 10, :class = > “input” % >
 < %= f.password_field :password_confirmation, :size = > 10,
 :class = > “input” % >
 < %= f.submit “Create” % >
 < % end % >

 Now that ’ s more like it. With the extraneous table tags moved to the table builder, it ’ s much easier to see
exactly what the form defines. This code will be much easier to maintain going forward.

 This form will get the user data into the system. The next step is to scramble the passwords before you
save them.

 Storing Encrypted Passwords
 Storing user passwords in the database as clear text is a security risk, because anybody who had access
to your database would instantly be able to steal any user ’ s login. And although that ’ s not necessarily a
big deal on this little recipe site, in general allowing people ’ s passwords to leak is A Bad Thing. Among
the many advantages of encrypting passwords in the database is that not even you can get to the
password data, which is a nice thing to be able to say to your users.

 If you aren ’ t familiar with encryption and passwords, then the inclusion of a user data attribute called
 salt probably raised an eyebrow. I know that this is a recipe site but actually including salt in the user
database seems a bit . . . literal.

 You are going to use one of Rails built - in cryptographic modules to create a hash from the user
password. Although the hash uniquely matches one specific password, it ’ s computationally impossible
(or at least computationally infeasible) to recreate the original password. By saving the hash instead of
the password, you can still use the hash to validate against the original password, but a malicious
miscreant who got a hold of the hash would not be able to recreate the password to perform a fake login.

 Salt is a cryptographic term for a random or semi - random sequence that is input to a cryptographic
algorithm along with the message to be encrypted. In this case, each user will have his or her own
unique salt sequence, and you will append the salt to the password before sending it to the hash
algorithm.

c03.indd 67c03.indd 67 1/30/08 4:01:52 PM1/30/08 4:01:52 PM

Chapter 3: Adding Users

68

 Using a salt sequence as part of the encryption method has a few benefits. Because the salt effectively
increases the length of the password, it makes cracking the code that much harder, especially if the salt
contains characters that are not valid in the password itself. The salt is unique for each user, so even if
somebody was able to crack one password with some kind of brute - force lookup, that single crack
would give no leverage in an attempt to crack the next password — even two users with the same
password would have different salt, and therefore different hashed passwords.

 The exact method you use to generate the salt is arbitrary. You want something that is guaranteed
unique, but has a random component. The length probably doesn ’ t matter a whole bunch, but it should
probably be at least the length of the password. I ’ m going to go with the following, placed in the user
object at app/models/user.rb :

 def mine_the_salt
 self.salt = “#{id}_#{Standards.random_string(10)}”
 end

 To support that method, I also created some external utilities. In a app/models/extensions.rb file,
I placed this:

class Array
 def pick_at_random
 self.rand
 end
end

class Standards

 def self.random_string(len)
 (1..len).collect {Standards.alphanumeric_characters.pick_at_random}.join
 end

 def self.alphanumeric_characters
 (“A”..”Z”).to_a + (“a”..”z”).to_a + (“0”..”9”).to_a
 end

end

 The method self.alphanumeric_characters creates an array with all the alphanumeric
characters. The method self.random_string creates an array of 10 characters, each chosen at random
from the alphanumeric array. (The range object at the beginning of that line serves as a counter.) The
method in the user class concatenates the user ’ s ID with the randomly generated characters.

 Then you need to place the line require ‘ extensions ’ at the very top of the models/user.rb file,
before the class statement, or at the bottom of the config/extensions.rb file to make these new
methods available.

 The pick_at_random method uses a feature which enables existing classes to be reopened so you can
add new methods. I also created a Standards class. Right now, it just has two methods, which define
the array of alphanumeric characters and the random string, but I wouldn ’ t be surprised if this grew
some other standard elements.

c03.indd 68c03.indd 68 1/30/08 4:01:53 PM1/30/08 4:01:53 PM

Chapter 3: Adding Users

69

 Although it ’ s difficult to test the salt completely because of its random component, the following test
ensures that the non - random pieces of the salt are properly generated:

 def test_salt_mining
 salt = users(:one).mine_the_salt
 assert_equal 12, salt.length
 assert_equal “1_”, salt[0..1]
 end

 To test the random component, you could change the pick_at_random during the test to spit out known
sequences of pretend random numbers for testing. This process is called “mocking” and is described
more fully in Chapter 7. That ’ s not a lot of work, and if you were doing a game or something where
various actions were being triggered by chance, it would be worth it. But here, because all you really care
about is that the sequence is random, it ’ s not an effort that ’ s necessary.

 With the salt in place, you can now create an encrypted password. Add the following private method to
the user model:

 def encrypt_a_password(plaintext, salt)
 salted_password = Digest::SHA256.hexdigest(plaintext + salt)
 end

 And then, still within app/models/user.rb , remove password from the attribute accessor list and add
the explicit getter and setter methods. This turns password into an implicit property — it ’ s effectively a
front - end for the encrypted password and salt methods that will actually go into the database. Here ’ s
what you need to add:

 def password
 @password
 end

 def password=(new_password)
 @password = new_password
 mine_the_salt
 self.encrypted_password = encrypt_a_password(new_password, salt)
 end

 The setter method will generally be called by Rails when it processes a new or updated user via the entry
form, so you know the password is at least five characters long. The setter sets the non - database
password property, and then sets the salt and encrypted password attributes using the methods already
described. When the user object is saved to the database, the salt and encrypted password are saved, and
that ’ s what is retrieved when the time comes to authenticate a user.

 The unit test for this validates the password setter, the salt, and the password:

 def test_passwords
 user = users(:one)
 user.password = “banana”
 user.save
 assert_not_equal user.encrypted_password, “banana”

(continued)

c03.indd 69c03.indd 69 1/30/08 4:01:53 PM1/30/08 4:01:53 PM

Chapter 3: Adding Users

70

 assert_equal 12, user.salt.length
 assert_equal “1_”, user.salt[0..1]
 assert user.validate_password(“banana”)
 assert !user.validate_password(“apple”)
 pass = User.find_by_username_and_password(“ktf”, “banana”)
 assert_not_nil(pass)
 nope = User.find_by_username_and_password(“ktf”, “apple”)
 assert_nil(nope)
 end

 Validation comes in two flavors, the first is an instance method that takes the clear - text password,
performs the same encryption with the user ’ s salt, and tests it against the encrypted password already in
the database:

 def validate_password(clear_password)
 encrypt_a_password(clear_password, salt) == encrypted_password
 end

 I also wrote a class method that takes a username and password, and returns the user object if there is a
user that validates that password, returning nil otherwise. The method name is a derivation of the other
special find methods:

 def self.find_by_username_and_password(username, password)
 user_to_validate = self.find_by_username(username)
 return unless (user_to_validate and
 user_to_validate.validate_password(password))
 user_to_validate
 end

 At this point, all tests pass, and you have a working user resource with encrypted passwords. Commit
your changes to Subversion.

What about OpenID?
OpenID is an attempt to provide Web users with a single user ID and password
that can be accepted by multiple sites. The basic idea is that any website can choose
to authenticate its user logins against the OpenID provider using a standard API.
There is a Ruby gem and associated Rails plugin to connect to an OpenID provider;
the plugin is available at http://agilewebdevelopment.com/plugins/
openidauthentication.

(continued)

c03.indd 70c03.indd 70 1/30/08 4:01:53 PM1/30/08 4:01:53 PM

Chapter 3: Adding Users

71

 Authentication
 Now that you ’ re creating new users and storing their passwords securely, the next step is to allow the
user to log in. This involves setting up two new actions in the user controller — login and logout — and
setting up partial views to display the login form and logout link.

 The Routes
 Because you are adding new actions to the RESTful user controller, the place to start is in the routes.rb
file. Change the entry for users to this:

map.resources :users, :new = > {:login = > :post},
 :member = > {:logout = > :get}

 This line adds a new action for login , which operates on a new or unsaved user object, and another
action for logout , which operates on a single existing user object. The login action is a POST , because
data is being sent to the server, and logout is a GET , which I suppose is arguable but seemed the best
choice because no additional data besides the user ID is being sent to the server.

 The most commonly used RESTful plugin for authentication, called restful_authentication, does this a bit
differently. It creates a Sessions controller where the login method is Sessions#create and logout is
 Sessions#delete . There ’ s certainly value in maintaining REST consistency, but there ’ s not a whole
lot of practical difference between the two designs, unless you have other uses for a Sessions controller.

 The Tests
 The user tests for password management have already been written. Here are the controller tests for
successful login, unsuccessful login, and logout, which are defined in test/functional/users_
controller_test.rb :

 def test_should_login_succesfully
 post :login, :user = > {:username = > “ktf”, :password = > “qwerty”}
 assert_response :success
 assert_equal 1, session[:user_id]
 assert_template “users/_already_logged_in”
 end

 def test_should_not_login_on_bad_credentials
 post :login, :user = > {:username = > “ktf”, :password = > “banana”}
 assert_response :success
 assert_nil session[:user_id]
 assert_template “users/_login”
 end

 def test_should_logout
 post :login, :user = > {:username = > “ktf”, :password = > “qwerty”}
 assert_equal 1, session[:user_id]
 get :logout, :id = > 1
 assert_response :success
 assert_template “users/_login”
 assert_nil session[:user_id]
 end

c03.indd 71c03.indd 71 1/30/08 4:01:54 PM1/30/08 4:01:54 PM

Chapter 3: Adding Users

72

 There ’ s sort of a chicken - and - egg problem with testing a login. You need to have a valid user object in
your test/fixtures/users.yml fixture file, but that valid user object needs to have an encrypted
password as it ’ s stored in the database. In other words, it needs to look like this:

one:
 id: 1
 username: ktf
 first_name: Kermit
 last_name: The Frog
 email: kermit@frogs.net
 encrypted_password: 242e401c23ec2612fce9bf19ce3816c77c283d75126c0d5ee0e06897a89a300e
 salt: “_aq0TcTITNE”
 created_at: 2007-07-15 10:54:32
 updated_at: 2007-07-15 10:54:32
 is_active: false

 Just using the password field, and expecting Rails to use the user object to create the encrypted field as
though it was entered via a form will not work — Rails loads the fixtures to the database directly, without
mediation by the ActiveRecord object. What I did was create a user using the actual interface developed
in the previous section, and copied that user ’ s salt and encrypted password to the fixture file. This works,
but it ’ s less than elegant. You could also use the console to create a user object and generate a valid salt
and encrypted password.

 A successful login will store the current user ID in the session object at session[:user_id] . Because
the session object is usually stored on the server and the user can never manipulate it directly, the session
is a reasonably secure place to store user data, although it ’ s a good idea to clear out old sessions to
prevent them from living forever. This means that users will have to log in again if they leave the site
and come back. Later in the chapter, you ’ ll see a mechanism for securely allowing persistent logins.

 In the logout test, you prime the session object by simulating a successful login first, asserting that the
login was successful, and then logging out to observe the change. You can also see that there will be two
partial templates defined: one displayed with the login form, and the other displayed if the user is
already logged in.

 The Controller
 The login code goes in the user controller, app/controllers/users_controller.rb , and starts by
calling the User.find_by_username_and_password method defined earlier. Here ’ s the code:

 def login
 @user = User.find_by_username_and_password(params[:user][:username],
 params[:user][:password])
 if @user
 session[:user_id] = @user.id
 render :partial = > “already_logged_in”
 else
 flash[:login_message] = “Login failed”
 @user = User.new
 render :partial = > “login”
 end
 end

c03.indd 72c03.indd 72 1/30/08 4:01:54 PM1/30/08 4:01:54 PM

Chapter 3: Adding Users

73

 The user find method either returns the successfully matched user object, or it returns nil . If there ’ s an
actual user created, the ID is placed in the session, and the partial for a user who is logged in is rendered.
If the method returns nil , a message is put in the flash text for eventual display, and the @user attribute
is set to a new, empty user object.

 There are a couple of design decisions to be made here. The rendering of just partial templates, and the
insistence that the @user variable have a non - nil value, will make more sense when you see how the
login form is integrated into the site.

Return a Vague Error Message
When you’re returning an error message from a failed login, it’s tempting to differ-
entiate between “unknown username” and “invalid password.” This is generally
 considered a bad idea, because a malicious user can use this message to verify that a
 username is actually in the system database, making the job of cracking a username/
password pair that much easier.

Despite this, you’ll still see systems, even successful web applications, that will make
that distinction on a failed login. And I have to say, as a benevolent web user who has
dozens of logins on dozens of sites, I appreciate the consideration because it makes my
guessing what I was thinking of six months ago when I created that site account that
much easier.

But I still would send the vague error message to a user on any site I developed.

 The logout action is even simpler. It depends on the following load_user method, which you need to
place in app/controllers/application.rb , because other controllers will want it:

 def load_user
 @user = User.find_by_id(session[:user_id]) || User.new
 end

 Right now, the method either creates a user object from the ID stored in the session, or it creates a blank
user object and assigns that to the @user variable. Next, you define the logout method like this:

 def logout
 load_user
 flash[:login_message] = “Logged out”
 if @user.id == session[:user_id]
 session[:user_id] = nil
 @user = User.new
 render :partial = > “login”
 else
 render :partial = > “already_logged_in”
 end
 end

c03.indd 73c03.indd 73 1/30/08 4:01:54 PM1/30/08 4:01:54 PM

Chapter 3: Adding Users

74

 All this does is reset the session and the @user object to default values, and then renders the login
partial. One security issue to note here is that because logout is a RESTful action, it is called with a user
ID. Because you have the ID used to make the call, you might as well ensure that the user ID from the
call actually matches the user ID in the session before performing the logout. It ’ s a good habit to get
into — validating that the attributes passed via a URL are what you expect before performing an action —
 although in this case, it ’ s admittedly hard to see what serious security breach could actually occur.

 The Views
 The form for logging in and logging out is going to be part of the common layout. In keeping with Rails
best practice, it ’ s implemented as a helper method that redirects to the proper partial template based on
the user status, although as you saw previously, explicitly calling login or logout bypasses that helper
and displays the correct partial template directly from the controller.

 Within the layout file app/views/layouts/recipes.html.erb , add the following highlighted code:

 < div id=”sidebar” >
 < ul >

 < li id=”login” >
 < h2 class=”bg2” > Login < /h2 >
 < %= render_login_div % >
 < /li >

 < li id=”menu” class=”bg6” >

 This creates an element in the sidebar, and calls a helper method named render_login_div . Place that
method in app/helpers/application_helpers.rb as follows:

 def is_logged_in?
 return false unless @user & & session[:user_id]
 not @user.username.blank?
 end

 def render_login_div(& proc)
 content_tag(“div”, :id = > “login_form”) do
 if flash[:login_message]
 content_tag(“div”, “#{flash[:login_message]}”, :id = > “notice”)
 end
 if is_logged_in?
 render :partial = > “/users/already_logged_in”
 else
 render :partial = > “/users/login”
 end
 end
 end

 What you want is for a div element with the id login_form to be created, and to display either the
login form or the “ already logged in ” message depending on whether the user is already logged in. This
code assumes that the @user object will already exist. To ensure that, add a before_filter to the
recipe controller, calling the load_user method you just saw, like this:

before_filter :load_user

c03.indd 74c03.indd 74 1/30/08 4:01:55 PM1/30/08 4:01:55 PM

Chapter 3: Adding Users

75

 To actually generate the HTML text, you ’ ll use your old friend content_tag , last seen supporting
metaprogramming in the form builder. The div is created, the flash message is added if needed, and
then the if logic redirects the rendering code.

 Because the common elements and the display logic have been placed in the helper, both of the view files
are quite simple. That ’ s the point. Pure Ruby code in the helper method is much better situated to
manage complexity than the mixed HTML and Ruby code of the .erb file.

 The login form uses the table form builder, and is rather simple. This is app/views/user/login.html
.erb :

 < % remote_table_form_for(@user, :url = > login_new_user_url,
 :update = > “login_form”) do |f| % >
 < table >
 < %= f.text_field :username, :size = > 10,
 :caption_class = > “subtle” % >
 < %= f.password_field :password, :size = > 10,
 :caption_class = > “subtle” % >
 < %= f.submit “Log In”, :class = > “subtle” % >
 < %= f.row link_to(“New User?”, new_user_url, :class = > “subtle”) % >
 < /table >
 < % end % >

 It ’ s an Ajax remote form, meaning that it will update a specific element within the page — in this case the
 login_form element that the helper method created to enclose the form. You define the remote_table_
form_for helper method in app/helpers/application_helper.rb (it ’ s analogous to the one you
defined earlier for non - Ajax form creation):

 def remote_table_form_for(name, *args, & proc)
 remote_form_for(name, *convert_args(TabularFormBuilder, args),
 & proc)
 end

 There is one difference between the regular and Ajax versions, though. Remember when I said that the
regular version put the form tag inside the table tag? It turns out that this has no functional affect on
a regular form, but at least one browser can ’ t handle it in an Ajax form — for some reason it refuses to
match the attributes to the form. So, in the best tradition of web programming, you can work around
unexpected browser behavior by putting the table tags inside the actual form_for block, which
organizes things more in line with browser expectations.

 Other than that, the form is simple, using the features of the custom form builder to remove the clutter.
The generic row mechanism is used to add a non - form element link to create a new user.

 After a successful login, display the active user ’ s name and the logout option. This is the _already_
logged_in.html.rb partial:

 < div >
 You are logged in as < %= @user.full_name % > .
 < /div >
 < div >

(continued)

c03.indd 75c03.indd 75 1/30/08 4:01:55 PM1/30/08 4:01:55 PM

Chapter 3: Adding Users

76

 < %= link_to_remote “Log Out”, {:url = > logout_user_url(@user),
 :method = > :get,
 :update = > “login_form”},
 :class = > “subtle” % >
 < /div >

 The result is two displays in the sidebar. Figure 3 - 2 shows the first display, for the login form.

Figure 3-3

(continued)

Figure 3-2

 Then, once the user has logged in, he ’ ll see the second display, shown in Figure 3 - 3 .

 Using Authentication
 Now that the user has to authenticate, there are some features that should be limited. For example, only
a user who has logged in should be able to enter a recipe, and only the user who initially entered the
recipe should be able to edit it. After writing the code so far, adding these features is almost staggeringly
simple.

 Put the following methods in application_helper.rb :

 def if_is_current_user(user_id)
 yield if is_logged_in? and user_id == @user.id
 end

 def if_is_logged_in
 yield if is_logged_in?
 end

c03.indd 76c03.indd 76 1/30/08 4:01:55 PM1/30/08 4:01:55 PM

Chapter 3: Adding Users

77

 Both of these methods are block helpers — helper methods that expect to be called with a block of the ERB
template as an argument. In these cases, you are using the helper to remove the conditional logic from
the view template. There are a couple of advantages to doing this, the simplest of which is basic Don ’ t
Repeat Yourself (DRY) — if the logic changes or gets more complex, then the code needs to be touched
only in one place. Also, the named helper method will generally be better at revealing intent than the
 if statement.

 Each of the helper methods executes the block only if the conditional is true. This means that the HTML
or ERB code inside the block is only printed to the response if the condition is true.

 The first place you ’ ll want to use these helpers is in the recipe listing. The new recipe link should be
available only if the user has logged in, and the actions should be available only if the user is actually
responsible for that recipe. Here ’ s what the new code in app/views/recipes/index.html.erb looks
like, with a couple of other cosmetic changes:

 < % @title = “Recipes” % >
 < table width=”75%” >
 < tr > < th > Title < /th > < /tr >
 < % for recipe in @recipes % >
 < tr >
 < td > < %= link_to(h(recipe.title), recipe) % > < /td >
 < % if_is_current_user recipe.user_id do % >
 < td > < %= link_to ‘Edit’, edit_recipe_path(recipe) % > < /td >
 < td >
 < %= link_to ‘Destroy’, recipe, :confirm = > ‘Are you sure?’,
 :method = > :delete % >
 < /td >
 < % end % >
 < /tr >
 < % end % >
 < /table >
 < br / >
 < % if_is_logged_in do % >
 < %= link_to ‘New recipe’, new_recipe_path % >
 < % end % >

 Each block helper is used in this view, and these helpers are used just the same as any other method that
takes a block, except that in this case, the blocks are composed of arbitrary ERB text placed between the
 do and end statements. Like an if or for statement, the helper blocks take the < % execute marker and
not the < %= execute and print marker.

 The other place where a user can edit is in the recipe show page, where you allowed the inline change to
an ingredient. That also needs a guard clause around it. Here ’ s the relevant part of that view:

 < div class=”ingredients” >
 < h2 > Ingredients < /h2 >
 < % for ingredient in @recipe.ingredients % >
 < div class=”ingredient” >
 < span id=”ingredient_ < %= ingredient.id % > ” >
 < %= h ingredient.display_string % >
 < /span >

(continued)

c03.indd 77c03.indd 77 1/30/08 4:01:56 PM1/30/08 4:01:56 PM

Chapter 3: Adding Users

78

 < % if_is_current_user @recipe.user_id do % >

 < span class=”subtle” id=”edit_ < %= ingredient.id % > ” >
 < %= link_to_remote “Edit”,
 :url = > remote_edit_recipe_ingredient_path(
 @recipe, ingredient),
 :method = > :get,
 :update = > “ingredient_#{ingredient.id}”% >
 < /span >

 < % end % >

 < /div >
 < % end % >
 < /div >

 Again, the block helper ensures that the edit field will display only if the current user is actually the
owner of the recipe.

 Adding User Roles
 I realize that this security model is a little simplified. At the very least, you ’ d want an administrator level
that could edit any recipe, and you might also want some kind of friend or group access. One
mechanism for adding role - based access to your Rails application is by using the plugin simple_access_
control, which works with the custom authentication system built in to Soups OnLine. The plugin is
available via the following:

$ script/plugin install -x
http://mabs29.googlecode.com/svn/trunk/plugins/simple_access_control

 For the plugin to be of use, there are basically three requirements:

 1. The user class must respond to a roles method. The mechanism recommended by the plugin is
to create a roles database table with a single column, using the following in a migration:

 create_table “roles”, :force = > true do |t|
 t.column “title”, :string
 end

 2. Have a many - to - many relationship between the User model and the Role model, which
involves creating a standard join table for roles_models . That ’ s overkill for Soups OnLine,
where there are probably only two or three levels of access and a user would exclusively belong
to one of them. This being Rails, you could achieve roughly the same effect by adding a role
attribute to the users table and doing something like this:

def roles
 [Role.new(role)]
end

 3. And then, elsewhere, define the following:

Class Role
 attr_accessor :title
 def intialize(role)

(continued)

c03.indd 78c03.indd 78 1/30/08 4:01:56 PM1/30/08 4:01:56 PM

Chapter 3: Adding Users

79

 @title = role
 end
end

 There are also two methods that need to be accessible in your controllers, generally by being in the
 application.rb file. The method current_user needs to return the user object that is current in the
session, and the method logged_in? needs to return true or false based on whether a user is currently
logged in (if you are using the restful_authentication plugin, those methods are defined for you by that
plugin). That functionality exists in the system, but under different names. The following changes should
go into application.rb :

 def current_user
 load_user
 end

 def logged_in?
 user = load_user
 return false unless user & & session[:user_id]
 not user.username.blank?
 end

 With that accomplished, the plugin allows you to set access rules at either the controller level or around
specific blocks of view code. At the controller level, there is a new method, access_rule , that looks like
this:

access_rule “user”, :only = > [:index, :show]

 The first argument is the role being measured up for the rule. You can allow the same rule to apply to
multiple roles by using a pseudo - Boolean syntax, “ user || admin ” . The :only parameter is a list of
all controller actions that should be accessible to a user who has that role. If a user has multiple roles,
that user has access to any controller action accessible to any of those roles. If there are no rules defined
for a specific role, it is assumed to have access to all actions.

 If the user attempts to access an action he or she does not have access to, the plugin redirects the call to a
 permission_denied method, which you need to define either in each controller or in application
.rb . The typical behavior of this method is to put an alert message in the flash, and redirect the user
someplace harmless. You should also end the user ’ s session as a security measure. There ’ s also a
 permission_granted callback method should you have some specific action to take when the user is
allowed to do something (for example, logging).

 Within a view, you have access to the following restrict_to helper method, which takes an access rule
and a block:

 < % restrict_to ‘admin’ do % >
 < %= link_to “Edit”, edit_recipe_url(@recipe) % >
 < % end % >

 The block is executed only if the current user has one of the roles listed in the rule. A related method,
 has_permission? , takes a rule as an argument and returns a Boolean suitable for use in if statements
or clauses.

c03.indd 79c03.indd 79 1/30/08 4:01:56 PM1/30/08 4:01:56 PM

Chapter 3: Adding Users

80

 Bot Protection via Authorization Email
 One of the most serious security issues facing any kind of social content site is the issue of bots and
spam. This involves fake user accounts being set up for no other reason than to post spam messages to
your unsuspecting little site. There are a few methods available to help protect your site. This section
and the next discuss two popular mechanisms for ensuring that there is a real person behind every new
account created for Soups OnLine. Neither of these mechanisms is perfect, and either could be defeated
by a determined spammer. But they are both enough of a hurdle to make attacking your site less
inviting, when there are so many other easy sites to exploit.

 The first mechanism is the authorization email, and is very popular for mailing lists and other kinds of
forums. When users create a new account, they are sent an email with a special URL. They need to
retrieve the email and open the URL in their browser to validate the account. Although, in theory, this
is defeatable by anybody willing to automatically read and parse the email, in practice this seems to be
rarely done.

 The main piece of data you need to implement this is some kind of token. Exactly what doesn ’ t matter
much as long as it ’ s random enough not to be guessable. You need to associate the token with a newly
created user account so that when the token comes back to the server, you know which user account to
unlock.

 Generating the Model and Migration
 The token will be implemented as a simple Rails model. It doesn ’ t need to be a full - fledged resource
because you don ’ t need the entire suite of CRUD methods in a web - based interface. The other alternative
would be to make the token a column in the user table, but I think the token concept will be useful in
enough contexts that it warrants its own table. Here ’ s the simple token model:

$ ruby script/generate model token

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/token.rb
 create test/unit/token_test.rb
 create test/fixtures/tokens.yml
 exists db/migrate
 create db/migrate/004_create_tokens.rb

 The token class needs a string for the actual token, and you ’ ll give it an integer link to a user ID. You ’ ll
also define an optional string for a value, which won ’ t be used here, but which will be used later on. The
token should also have a time at which it ceases to be valid. For this to work, the user class also needs a
flag to specify whether the account is actually active. Place the follwing text in db/migrate/
004_create_tokens.rb :

class CreateTokens < ActiveRecord::Migration
 def self.up
 create_table :tokens do |t|
 t.string :token
 t.integer :user_id

c03.indd 80c03.indd 80 1/30/08 4:01:57 PM1/30/08 4:01:57 PM

Chapter 3: Adding Users

81

 t.string :value
 t.datetime :expires_at
 t.timestamps
 end

 add_column :users, :is_active, :boolean
 end

 def self.down
 drop_table :tokens
 remove_column :users, :is_active
 end
end

 This will need a new action in the user controller called activate . Again, this needs a new RESTful
route, so you define the action as follows:

map.resources :users, :new = > {:login = > :post},
 :member = > {:logout = > :get, :activate = > :get}

 Test First
 The flow of control here is that a new user will have the is_active column set to false , but that a
token will be placed in the tokens table with an expiration date two days in the future. The controller test
covering that functionality looks like this, in test/functional/users_controller_test.rb :

 def test_should_create_user
 assert_difference(‘User.count’) do
 post :create, :user = > user_form
 end
 assert !assigns(:user).is_active
 tokens = Token.find_all_by_user_id(assigns(:user).id)
 assert_equal 1, tokens.size
 assert_equal 2, (tokens[0].expires_at - Date.today)
 assert_redirected_to user_path(assigns(:user))
 end

 To pass this test, you need to change the create action of the user controller as follows (the new lines
are highlighted):

 def create
 @user = User.new(params[:user])

 @user.is_active = false

 respond_to do |format|
 if @user.save
 flash[:notice] = ‘User was successfully created.’

 Token.create_email_token(@user)

 format.html { redirect_to(@user) }
 format.xml { render :xml = > @user, :status = > :created,
 :location = > @user }
 else

(continued)

c03.indd 81c03.indd 81 1/30/08 4:01:57 PM1/30/08 4:01:57 PM

Chapter 3: Adding Users

82

 format.html { render :action = > “new” }
 format.xml { render :xml = > @user.errors,
 :status = > :unprocessable_entity }
 end
 end
 end

 The actual token is created in the token class method in app/model/token.rb , like this:

 def self.create_email_token(user)
 Token.create(:user_id = > user.id,
 :token = > Standards.random_string(25),
 :expires_at = > DateTime.now + 2)
 end

 Notice that I ’ ve also factored the functionality of creating a random string, used earlier in creating the
salt for the user to a common method. The new token has the user ID, a random string for a value,
and an expiration date two days in the future.

 The activate method will activate the user if the user_id and the token match the entry in the
database, and if the token has not expired. That ’ s one test for success, and failure tests for an incorrect
user ID, incorrect token, and expired token. All four of the tests have the same basic skeleton, so you
should factor that out to a common method. Place the following in test/functional/users_
controller_test.rb :

 def assert_token_test(user_id, token, should_be_valid,
 should_be_deleted, date_offset=2)
 Token.create(:user_id = > 1, :token = > “qwerty”,
 :expires_at = > Date.today + date_offset)
 get :activate, :id = > user_id, :token = > token
 assert_equal should_be_valid, assigns(:is_valid)
 user = User.find(1)
 assert_equal should_be_valid, user.is_active
 tokens = Token.find_all_by_user_id(1)
 assert_equal should_be_deleted, tokens.empty?
 end

 This test pre - creates a token, and then simulates a GET request to attempt an activation from the given
user ID and token. The test then checks to see if the user valid state has been changed appropriately and
that the token is consumed if expected. The four individual tests then become simple one - liners that
call that assert function, like this:

 def test_should_activate_successfully
 assert_token_test(1, “qwerty”, true, true)
 end

 def test_should_not_activate_wrong_user
 assert_token_test(2, “qwerty”, false, false)
 end

 def test_should_not_activate_wrong_token
 assert_token_test(1, “banana”, false, false)

(continued)

c03.indd 82c03.indd 82 1/30/08 4:01:57 PM1/30/08 4:01:57 PM

Chapter 3: Adding Users

83

 end

 def test_should_not_activate_timed_out
 assert_token_test(1, “qwerty”, false, true, -90)
 end

 The successful test passes the correct user ID and token, and asserts that the user should be valid and the
token should be consumed. The next two tests send an incorrect token challenge — the user should still
be invalid, and the token should remain. The final test shows the result of testing against an expired
token — it is invalid, and the token is also consumed.

 Controller Logic
 The activate controller method in app/controllers/users_controller./rb turns out to be
simple — as usual, the heavy lifting is placed in a model:

 def activate
 find_user
 @is_valid = Token.is_valid_for_user(@user, params[:token])
 @user.update_attributes(:is_active = > @is_valid)
 end

 private

 def find_user
 @user = User.find(params[:id])
 end

 The controller simply asks the token class if the request is valid, and updates the user object
appropriately, the change made via update_attributes is immediately saved to the database.

 The main logic is placed in the token class, app/models/token.rb , as you can see here:

 def self.is_valid_for_user(user, incoming_token)
 actual_token = Token.find_by_user_id(user.id)
 return false unless actual_token
 time_valid = actual_token.expires_at > Time.now
 token_valid = actual_token.token == incoming_token
 is_valid = time_valid & & token_valid
 actual_token.destroy if token_valid
 is_valid
 end

 A quick note — this wasn ’ t quite as clean when I first wrote it, I had all the logic in the controller and it
was a bit convoluted. Moving the logic to the model class cleaned up both the logic and the controller
response.

 The validation method checks to see if there is a token for the requested user — if not, the method is done
immediately. Then the method confirms that the token codes match and the token has not expired. If the
token codes match, the token is removed from the database, and the result of the validity test is returned.

 At this point, all the tests should pass. Wait a moment while I commit my changes to Subversion.

c03.indd 83c03.indd 83 1/30/08 4:01:58 PM1/30/08 4:01:58 PM

Chapter 3: Adding Users

84

 Sending the Email
 With the logic in place, now you need to handle the actual sending of the email. For this to work, you
need to set the mail settings as appropriate for your system. For most cases, the development default
of SMTP will work just fine, but you may need to set the config.action_mailer.server_settings
object in the environment.rb file as follows:

ActionMailler::Base.server_settings = {
 :address = > “ < SMTP HOSTNAME -- default is localhost > ”,
 :domain = > “ < DOMAIN OF SMTP HOST > ”,
 :port = > [{[SPACE]}] < SMTP PORT -- default is 25 >
}

 In addition, if your SMTP host requires authentication, you need to set :user_name and :password
options, as well as an :authentication option that is :cram_md5 , :login , or :plain .

 The email will be managed via a Rails ActionMailer object, which you first need to generate, like this:

$ ruby script/generate mailer AuthorizationMailer authorize

 This generates a new mailer with a single command that it recognizes, authorize . The ActionMailer
object is something like a hybrid between a model and a controller. It ’ s stored with the other models, but
the mailer gets its own subdirectory under /app/views along with the other controllers, where the
templates used to actually define the email are stored. The mailer is invoked from a controller object, and
data passed to the mailer is merged with the template to create the body of the email. Headers for the
email are handled by the instance method of the mailer called with the invocation.

 The test for the mailer will be part of the creation test in the users_controller_test.rb file. Add the
following lines to the setup method to allow other tests to track emails:

 def setup
 @controller = UsersController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new

 @emails = ActionMailer::Base.deliveries
 @emails.clear

 end

 The new test looks like this:

 def test_should_create_user
 assert_difference(‘User.count’) do
 post :create, :user = > user_form
 end
 assert !assigns(:user).is_active
 tokens = Token.find_all_by_user_id(assigns(:user).id)
 assert_equal 1, tokens.size
 assert_equal 2, (tokens[0].expires_at.to_date - Date.today)
 assert_redirected_to user_path(assigns(:user))
 assert_equal 1, @emails.size

c03.indd 84c03.indd 84 1/30/08 4:01:58 PM1/30/08 4:01:58 PM

Chapter 3: Adding Users

85

 sent_email = @emails[0]
 assert_not_nil sent_email.body.index(
 “users/#{assigns(:user).id}/activate?token=#{tokens[0].token}”)
 end

 The last three lines test that an email was actually generated and that its body contains the URL fragment
that will direct the user to the activation page.

 Rails also generated a unit test for the mailer itself, but you don ’ t want it. It compares the generated
email against a text file. It ’ s a nice scaffolding for a golden output test, but it will also be very fragile,
breaking every time the text of the email template changes. So go into /test/unit/authorizaition_
mailer_test.rb and disable it by commenting out the assert_equal line in the sample test method.

 The generate script created a default set of values in the action mailer object itself, but those values aren ’ t
going to be suitable for your purposes. So, rewrite the authorize method as follows:

 def authorize(user, token)
 @subject = ‘Welcome to Soups OnLine’
 @body = {:user = > user, :token = > token}
 @recipients = user.email
 @from = ‘admin@soupsonline.com’
 @sent_on = Time.now
 @headers = {}
 end

 Most of these instance variables should be more or less self - explanatory. The @body variable contains a
hash of values that become instance variables in the actual mail template. The @recipient value can be
either a single value string or multiple values as a list.

 Rails also created a blank template in /app/views/authorization_mailer/authorize.erb .
The exact text doesn ’ t quite matter, but the gist should go like this:

Dear < %= @user.first_name % > ,

Thank you for signing on to Soups OnLine. In order to activate your account, please
follow the URL below by clicking on it or by pasting the URL into your browser.

 < %= url_for(:controller = > ‘users’, :action = > ‘activate’,
 :id = > @user.id, :token = > @token.token) % >
See you soon,

Soups OnLine

 With that done, actually generating the email involves adding a single line to the if - successful clause of
the UserController#create method. The new line is highlighted here:

 flash[:notice] = ‘User was successfully created.’
 session[:user_id] = @user.id
 token = Token.create_email_token(@user)

 AuthorizationMailer.deliver_authorize(@user, token)

 format.html { redirect_to(@user) }
 format.xml { render :xml = > @user, :status = > :created,
 :location = > @user }

c03.indd 85c03.indd 85 1/30/08 4:01:58 PM1/30/08 4:01:58 PM

Chapter 3: Adding Users

86

 The deliver_authorize call tells Rails to invoke the AuthorizationMailer using the authorize
method, and then deliver the email right away. In contrast, you could choose create_authorize ,
which would return the email as a Rails object, allowing it to be delivered later. The user and token
objects are passed to the authorization mail object, and then to the template to be included in the
email body.

 That should pass the tests you ’ ve created. The only remaining piece is to add something to the
 /app/views/users/activate.html.erb file to display a success or failure message to the user
after the activation attempt. For example:

 < div >
 Congratulations on successfully activating your account! Enjoy
 < /div >

 CAPTCHA
 The other commonly used mechanism for preventing spambots from taking over your system is those
blurry, transmogrified letters and numbers. The generic name for those things is CAPTCHA, which
stands for Completely Automated Public Turing test to tell Computers and Humans Apart (which is not only
one of the most tortured acronyms you ’ ll ever see, but is, according to Wikipedia, a registered trademark
of Carnegie Mellon University).

 Now, I am of two minds about the familiar CAPTCHA images. On the one hand, it ’ s true that a good
implementation is difficult, if not impossible, for bots to crack. On the other hand, CAPTCHA images are
not at all accessible to visually impaired users, which under certain circumstances might have legal
consequences for your site. Even for users with normal sight, these images can still be awkward and are
somewhat mistake - prone. In addition, users hate them.

 What I ’ m going to do is present a simple CAPTCHA system that presents a text - based addition problem
for the user to solve, such as “ What is three plus the number of days in a week plus the number of
fingers on a hand? ” I ’ ll leave it up to you to decide whether that is more or less irritating to a user than a
fuzzy image. I ’ m pretty sure, though, that it will be more usable for a visually impaired user. It will use
the existing token mechanism to store and validate user input. It ’ s not a full - protection CAPTCHA — in
fact, according to the somewhat sneering tone of the Wikipedia article, it ’ s not a true CAPTCHA at
all — but it should keep the riff - raff out, and it ’ s a mechanism for discussing the issues involved. Later,
I ’ ll point out a few existing Rails plugins that can do more traditional CAPTCHA, if you expect to
have determined spammers targeting your site.

 Creating a Test - Driven CAPTCHA Object
 The implementation of the simple CAPTCHA will be a Ruby class, MathCaptcha , that you can place in
 app/models/math_captcha.rb . You will also add a test/unit/math_captcha_test.rb file to the
unit test directory. The functionality of the CAPTCHA object is pretty basic — it needs to generate a
random sequence of operands, determine their sum, and convert them to a string for output.

 Some Rails developers think that applications and models should be strictly limited to ActiveRecord
subclasses, in which case, the MathCaptcha object could be placed either in the lib directory or in a

c03.indd 86c03.indd 86 1/30/08 4:01:59 PM1/30/08 4:01:59 PM

Chapter 3: Adding Users

87

new application subdirectory such as app/utilities . Alternately, the MathCaptcha could be
 developed as a plugin. (See Chapter 15 for more details.)

 You ’ ll need to place three unit tests in the math_capcha_test.rb file. The first test generates a list of
operands:

require File.dirname(__FILE__) + ‘/../test_helper’

class MathCaptchaTest < Test::Unit::TestCase

 def setup
 @captcha = MathCaptcha.new
 end

 def test_should_generate_list
 @captcha.generate_operands(3)
 assert_equal 3, @captcha.operands.size
 @captcha.random_stream = [1, 3, 5]
 @captcha.generate_operands(3)
 assert_equal [1, 3, 5], @captcha.operands
 assert_equal 9, @captcha.sum
 end

 The only unusual thing about this test is that I chose to give the actual CAPTCHA object a random_
stream attribute that allows me to inject fake - random numbers to the object to test the result of a
particular sequence of random numbers on the object. I find this mechanism to be much more
manageable than using srand to specify the random number seed. Another option would be to split the
functionality into two methods: one method that generates a random number and then calls the other
method with that argument, and then in the unit tests, you call the second method with a prepared
argument. In any case, I recommend that you have some way to specify random inputs for testing.

 Test two verifies that the CAPTCHA can generate multiple string representations of the same operation,
as follows:

def test_string_representation
 assert_equal ([“7”, “seven”, “the number of days in a week”],
 MathCaptcha::OPTIONS[7])
 @captcha.random_stream = [1, 3, 5, 0, 0, 0]
 @captcha.generate_operands(3)
 assert_equal “What is 1 plus 3 plus 5?”, @captcha.display_string
 @captcha.random_stream = [1, 3, 5, 1, 1, 1]
 @captcha.generate_operands(3)
 assert_equal “What is one plus three plus five?”,
 @captcha.display_string
 end

 Test three verifies that the CAPTCHA generates a token object and places it in the database, like this:

 def test_token
 @captcha.random_stream = [1, 3, 5, 1, 1, 1]
 @captcha.generate_operands(3)
 assert_difference(‘Token.count’) do

(continued)

c03.indd 87c03.indd 87 1/30/08 4:01:59 PM1/30/08 4:01:59 PM

Chapter 3: Adding Users

88

 @captcha.generate_token
 assert_equal 9, @captcha.token.value
 end
 end

end

 CAPTCHA Object Implementation
 The MathCaptcha class will have three attributes: operands , which will represent the actual list of
numbers to be added; random_stream , which will house the random numbers and be used for testing;
and token , which will hold the token object associated with this CAPTCHA. The skeleton of the class
looks like this:

require ‘extensions’
class MathCaptcha
 attr_accessor :operands, :random_stream, :token
end

 I suppose it should go without saying, but the remaining methods in this section will go inside that class
definition. I just think that it will be easier to explain the code piece by piece rather than in a larger
code dump.

 The first unit test involves generating a random list of attributes and knowing their correct sum:

 def initialize
 self.random_stream = []
 end

 def generate_operands(size)
 self.operands = (1..size).collect { get_random }
 end

 def get_random(max=21)
 result = random_stream.shift
 if result then result else rand(max) end
 end

 To generate the operands, I used the same range and collection trick previously used for the randomized
token strings — this method allows for an arbitrary length of math sentence, although I suppose using
less than two operands is kind of pointless. The get_random method is the hook for preset random
streams. If a preset array exists, then the first value in that array is taken and used; otherwise, the system
random function is used. The operands are random values between 0 and 20.

 The sum of the operands is a simple one - line call to the already generated array:

 def sum
 operands.sum
 end

(continued)

c03.indd 88c03.indd 88 1/30/08 4:01:59 PM1/30/08 4:01:59 PM

Chapter 3: Adding Users

89

 The second test involves turning the math sentence into a string. The data structure here is a class
constant called OPTIONS , a section of which looks like this:

OPTIONS = [
 [“0”, “zero”, “nothing”, “the number of legs on a fish”],
 [“1”, “one”, “the number of thumbs in a hand”],
 [“2”, “two”, “the number of feet a person has”],
 [“3”, “three”, “the number of sides in a triangle”],

 I trust you get the idea. To create the display string, the object chooses one of the synonyms for each
number at random, and pieces them together into a sentence, like this:

 def display_string
 operand_string = operands.collect { |o|
 string_for_operand(o) }.join(“ plus “)
 “What is #{operand_string}?”
 end

 def string_for_operand(operand)
 opts = OPTIONS[operand]
 opts[get_random(opts.size)]
 end

 As is so often the case when you ’ re manipulating lists, the collect - and - join combination is your friend. It
enables the array to be converted to the data string in a single line of code that can then be slotted in the
sentence skeleton. Also notice that the string_for_operand method uses the same get_random hook,
which allows the unit test to validate specific combinations of the number options.

 Finally, the CAPTCHA object needs to create a unique token. You want to do this because one of the
ways in which CAPTCHA systems are subverted is by breaking the code on either the filename used for
the image or a hidden field used within the form to identify the CAPTCHA being used. Because this
CAPTCHA will use the token mechanism to create a one - off random string unrelated to the value of
the CAPTCHA, that line of attack should be defended against. The token is defined as follows:

 def generate_token
 self.token = Token.create(:value = > sum,
 :token = > Standards.random_string(25),
 :expires_at = > DateTime.now + 2)
 end

 Of course, this is not really an industrial - strength CAPTCHA, and it ’ s not out of the question that a
determined spammer could parse the string. The most likely weakness of this system, however, is
probably the fact that there are relatively few possible answers — because you ’ ll use this with three
operands, there are only 61 possibilities. A mechanism could easily cycle through them on the same
CAPTCHA, or could just guess and accept the 1.6 - percent success rate. That would require a spammer
to be deliberately targeting your site, of course. Some of these vulnerabilities can be mitigated during
deployment by restricting repeated access from the same site.

c03.indd 89c03.indd 89 1/30/08 4:02:00 PM1/30/08 4:02:00 PM

Chapter 3: Adding Users

90

 It ’ s not part of the test, but you will need a constructor for this object to use during deployment. It
should create the operands and generate the token, as follows:

 def self.create(operand_count, random_stream = [])
 result = MathCaptcha.new
 result.random_stream = random_stream
 result.generate_operands(operand_count)
 result.generate_token
 result
 end

 I named the method create rather than new , to conform to the Rails convention that create is used to
denote class methods that save something to the database — in this case, the token. At the moment,
there ’ s no need for a specific method that would just generate the operands and tokens and would not
save the tokens to the database.

 Deploying the CAPTCHA
 The CAPTCHA needs to be deployed as part of the new user form and validated on user creation. It ’ s
probably also a good idea to put it in the recipe form and validate new recipe creation, lest spammers get
one legitimate login and pummel the site with recipes for “ Get Rich Quick with Penny Stocks Soup. ” The
testing and implementation of the two are nearly parallel, so I ’ ll only show the recipe side here.

 I placed the following two common testing methods in test_helper.rb :

 def create_mock_captcha_token(token, value)
 Token.create(:token = > token, :value = > value,
 :expires_at = > Date.today + 2)
 end

 def assert_captcha
 created_token = assigns(:captcha).token
 saved_token = Token.find_by_value(assigns(:captcha).sum)
 assert_equal created_token.token, saved_token.token
 end

 The first method creates a fake token for a mythical CAPTCHA so that user input can be validated
against it. The second method asserts that a token has been created by a CAPTCHA object, and that it
has the expected value.

 Now the actual tests need to be created. The test for new needs to validate that the CAPTCHA is created
and that the form elements are placed in the form. This needs to be placed in recipes_controller_
test.rb , with the new lines highlighted here:

 def test_should_get_new
 get :new
 assert_response :success

 assert_captcha

 assert_select(“form[action=?]”, recipes_path) do

c03.indd 90c03.indd 90 1/30/08 4:02:00 PM1/30/08 4:02:00 PM

Chapter 3: Adding Users

91

 assert_select “input[name *= title]”
 assert_select “input[name *= servings]”
 assert_select “textarea[name *= ingredient_string]”
 assert_select “textarea[name *= description]”
 assert_select “textarea[name *= directions]”

 assert_select “input[name *= captcha_value]”
 assert_select “input[name *= token]”

 end
 end

 The test for create needs to add the valid CAPTCHA data, and a new test needs to be added to test
correct behavior when invalid CAPTCHA data is presented. The existing create test has new lines that
are highlighted in the following code:

 def test_should_create_recipe

 create_mock_captcha_token(“fred”, “3”)

 recipe_hash = { :title = > “Grandma’s Chicken Soup”,
 :servings = > “5 to 7”,
 :description = > “Good for what ails you”,
 :ingredient_string = >
 “2 cups carrots, diced\n\n1/2 tablespoon salt\n\n
 1 1/3 cups stock”,
 :directions = > “Ask Grandma”}
 assert_difference(‘Recipe.count’) do

 post :create, :recipe = > recipe_hash, :token = > “fred”,
 :captcha_value = > “3”

 end
 expected_recipe = Recipe.new(recipe_hash)
 new_recipe = Recipe.find(:all, :order = > “id DESC”, :limit = > 1)[0]
 assert_equal(expected_recipe, new_recipe)
 assert_equal(3, new_recipe.ingredients.size)
 assert_redirected_to recipe_path(assigns(:recipe))
 end

 And the new test looks like this:

 def test_should_not_create_recipe_without_captcha
 create_mock_captcha_token(“fred”, “3”)
 old_size = Recipe.count
 recipe_hash = { :title = > “Grandma’s Chicken Soup”,
 :servings = > “5 to 7”,
 :description = > “Good for what ails you”,
 :ingredient_string = > “2 cups carrots, diced”,
 :directions = > “Ask Grandma”}
 post :create, :recipe = > recipe_hash, :token = > “fred”,
 :captcha_value = > “5”
 new_size = Recipe.count
 assert_equal old_size, new_size
 end

c03.indd 91c03.indd 91 1/30/08 4:02:00 PM1/30/08 4:02:00 PM

Chapter 3: Adding Users

92

 Passing these tests involves slight changes to the new and create methods of the recipes controller to
use the CAPTCHA data that you have already created. The change to new is as simple adding the
highlighted line in the following code):

 def new
 @recipe = Recipe.new

 @captcha = MathCaptcha.create(3)

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml = > @recipe }
 end
 end

 The create change is a little more involved (but only a little). You check to see if the CAPTCHA is valid
before allowing the new recipe to be in the database. Otherwise, the code redirects back to the form — but
because @recipe has the user - entered data in it, the user will not have to reenter all the recipe data. Note
the following highlighted code:

def create
 @recipe = Recipe.new(params[:recipe])

 if Token.is_valid_captcha(params[:token], params[:captcha_value])
 saved = @recipe.save
 else
 @recipe.destroy
 flash[:notice] = ‘Sorry, you answered the robot question
 incorrectly, please try again.’
 saved = false
 end

 respond_to do |format|

 if saved

 flash[:notice] = ‘Recipe was successfully created.’
 format.html { redirect_to(@recipe) }
 format.xml { render :xml = > @recipe, :status = > :created, :location = >
@recipe }
 else
 format.html { render :action = > “new” }
 format.xml { render :xml = > @recipe.errors, :status = > :unprocessable_
entity }
 end
 end
 end

 This code depends on the following method of the Token class in app/models/token.rb to determine
if the token and the incoming CAPTCHA value really do match:

 def self.is_valid_captcha(token, incoming_value)
 actual_token = Token.find_by_token(token)
 return false unless actual_token
 actual_token.destroy
 actual_token.is_valid?(token, incoming_value)
 end

c03.indd 92c03.indd 92 1/30/08 4:02:00 PM1/30/08 4:02:00 PM

Chapter 3: Adding Users

93

 This method finds the token by its random token value and asserts that the incoming value matches the
calculated value stored with the token. No matter what happens, the token is removed from the
database, so the same token cannot be exploited twice.

 The user ’ s controller has extremely similar changes.

 I also created a view to display the CAPTCHA inside a form block. I placed it in app/views/math_
captcha/_math_captcha.html.erb . It puts the token in a hidden field, and gives the user a space to
enter his answer, as follows:

 < tr >
 < td colspan=”2” >
 We regret the inconvenience, but we need you to answer the
 following question to prove that you are not a robot.
 < /td >
 < /tr >
 < input type=”hidden” name=”token” value=” < %= @captcha.token.token % > ” >
 < tr >
 < td colspan=”2” >
 < %= @captcha.display_string % >
 < /td >
 < /tr >
 < tr >
 < td class=”tdheader” > Answer (as digits): < /td >
 < td >
 < input class=”input” type=”text” name=”captcha_value” size=”5” >
 < /td >
 < /tr >

 The fields are inside table elements to allow them to coexist with the tabular form builder used in the
user form. To insert this partial template in the new recipes form, it just needs to have the following table
around it:

 < % if @captcha % >
 < table >
 < %= render :partial = > “math_captcha/math_captcha” % >
 < /table >
 < % end % >

 The end product puts the new form elements at the bottom of each form, as shown in Figure 3 - 4 .

Figure 3-4

c03.indd 93c03.indd 93 1/30/08 4:02:01 PM1/30/08 4:02:01 PM

Chapter 3: Adding Users

94

 That ’ s not quite the end of the story. There are some more elaborate features on the server side that can
help security. You can keep track of how long it takes the user to fill out the form, and only accept forms
that are completed within a certain length of time, such as 30 seconds. You can block a given requester IP
from performing more than a few CAPTCHA checks in a certain amount of time.

 If you want the next level of protection, there are some image - based CAPTCHA plugins for Rails (which
you can find at the websites listed in the “ Resources ” section later in this chapter).

 Sessions and Cookies
 Allowing the user to log in once and stay logged on between sessions is a convenience offered by many
websites. Typically the persistent login is managed via a cookie stored in the user ’ s browser. This
introduces a significant security risk. The cookie is just a text file coming from an untrusted source and
could easily have been copied, tampered with, or otherwise spoofed. Because the cookie is being used in
lieu of a normal username and password challenge, this opens a huge potential hole in your system,
should somebody get a hold of a valid login cookie.

 Your strategy for dealing with persistent logins and cookies needs to isolate the data sent over the
cookie from other data in the system, and to mitigate the potential damage from a misused login cookie.
As with most security features, the exact cost - benefit tradeoff depends on the specifics of your site, how
valuable the data on the site is, and how much inconvenience your users will stand in the name of
security.

 Persistent Login Cookie Strategies
 Here are some specific features that a persistent login system using cookies should have:

 Never send real data. You should never send a user ’ s actual username, let alone his actual
password. I ’ d even avoid sending the hashed password. The value sent to the cookie should
have no relationship to any other piece of user information in the system. Having that value
should give a malicious user no leverage toward calculating other user data.

 Just like cookies in the supermarket, login cookies should come with an expiration date. Exactly
how far in advance that date should be is something you need to decide for your site. GMail
uses a two - week expiration period, for example. Whatever period you choose, the important
thing is that the expiration date is managed on the server, not the client. The client date is too
easy to forge.

 Login cookies should be consumed and regenerated after being used successfully. This
minimizes the amount of time a cookie can be used maliciously — as soon as the real user logs
in, the old cookie is no longer accepted.

 Depending on the structure of your site, it may make sense to restrict user privileges if the user
has come into the site via a cookie. For example, a user may be allowed to see their personal
data from a cookie, but then might be challenged for a password before being allowed to edit it.
This has the potential to be irritating to a user — on the other hand, it proivdes stronger
protection against the misuse of cookies.

❑

❑

❑

❑

c03.indd 94c03.indd 94 1/30/08 4:02:01 PM1/30/08 4:02:01 PM

Chapter 3: Adding Users

95

 Persistent Login Mechanism — Test First
 I ’ m going to show an example of a persistent login structure using the token mechanism already created,
which fulfils the first three of the aforementioned features.

 The life cycle of a cookie starts on a successful username/password login or new user creation, when a
new cookie is created for that user. Later, when a page on the site is hit and there is no user session in
place, the system will look for the cookie to validate a login. After an attempted validation, the cookie
will be consumed and replaced by a new cookie with a different token. When a user logs out, the token
should also be consumed.

 To test the creation and destruction of the cookie, I added some assertions to the existing user controller
test methods in test/functional/user_controller.rb . The login that is successfully tested gets an
assertion that a cookie has been created:

assert_not_nil cookies[“token”]

 An unsuccessful login method gets an assertion that a cookie has not been created:

assert cookies[“token”] = []

 I should mention that, unlike almost every other hash - like object in Rails, the cookies object for
functional testing does not automatically convert between symbols and strings.

 The logout test adds both of those assertions — the assertion that a cookie has been created after the
mock login, and the assertion that it has been destroyed after the logout. The destroy test gets a similar
change, as you can see in the new lines highlighted in the following code:

 def test_should_destroy_user

 post :login, :user = > {:username = > “ktf”, :password = > “qwerty”}
 assert_not_nil cookies[“token”]

 assert_difference(‘User.count’, -1) do
 delete :destroy, :id = > 1
 end
 assert_redirected_to users_path

 assert cookies[“token”] = []
 assert_nil session[:user_id]

 end

 Finally, the assert_token_test method used to manage the activation process should also generate a
cookie if the user validates successfully. This is shown in the highlighted lines in the following code:

 def assert_token_test(user_id, token, should_be_valid,
 should_be_deleted, date_offset=2)

 Token.create(:user_id = > 1, :token = > “qwerty”, :value = > “email”,

 :expires_at = > Date.today + date_offset)
 get :activate, :id = > user_id, :token = > token
 assert_equal should_be_valid, assigns(:is_valid)
 user = User.find(1)
 assert_equal should_be_valid, user.is_active

(continued)

c03.indd 95c03.indd 95 1/30/08 4:02:01 PM1/30/08 4:02:01 PM

Chapter 3: Adding Users

96

 tokens = Token.find_all_by_user_id_and_value(1, “email”)

 assert_equal should_be_deleted, tokens.empty?

 if should_be_valid
 assert_not_nil cookies[“token”]
 else
 assert cookies[“token”] = []
 end

 end

 I also changed the generated activation codes in app/models/token.rb slightly so they can be
distinguished from the cookie - generated tokens, as you can see here:

 def self.create_email_token(user)
 Token.create(:user_id = > user.id, :token = > Standards.random_string(25),
 :value = > “email”, :expires_at = > DateTime.now + 2)
 end

 def self.create_cookie_token(user)
 Token.create(:user_id = > user.id, :token = > Standards.random_string(50),
 :expires_at = > 14.days.from_now, :value = > “cookie”)
 end

 Finally, you need a test to ensure that a cookie coming from the user browser can actually be validated as
a login. In the following test/functional/users_controller_test.rb code, there ’ s one common
method, then the use of the method for a successful login, and another method for an unsuccessful login:

 def assert_cookie_login(expected_correct, token=nil)
 post :login, :user = > {:username = > “ktf”, :password = > “qwerty”}
 token1 = cookies[“token”]
 assert_not_nil cookies[“token”]
 assert_equal 1, session[:user_id]
 session[:user_id] = nil
 @request.cookies[“token”] = (token || cookies[“token”])
 get :index
 assert_equal expected_correct, session[:user_id]
 token1
 end

 def test_should_login_with_cookie
 token = assert_cookie_login(1)
 assert_not_equal(token, cookies[“token”])
 end

 def test_should_not_login_with_bad_cookie
 assert_cookie_login(nil, “bananamuffin”)
 assert_equal([], cookies[“token”])
 end

 The common test starts with a successful login, which generates a cookie, and then sets the session user
id to nil , simulating the end of a browser session. Then you add a cookie to the request — either with a

(continued)

c03.indd 96c03.indd 96 1/30/08 4:02:02 PM1/30/08 4:02:02 PM

Chapter 3: Adding Users

97

specified incorrect token, or with the token that was created from the original login. At this point, any
request to the system should read the cookie and put the user ID in the session object. The test arbitrarily
chooses the index page, and then validates that the session ID is the expected value — the user ID if the
test is successful, or nil if it is not. The test also checks to see if the cookie is correctly consumed, and
replaced by a new token if the login was successful.

 Cookie Life Cycle
 To pass these tests and add the persistent login, you should start by adding the following two methods
to the application.rb file for functionality that will be used in more than one action of the controller:

 def set_user_cookie
 cookies[:token] = Token.create_cookie_token(@user).token
 end

 def remove_user
 session[:user_id] = nil
 cookies.delete :token
 end

 The first method creates a token based on the current user ID, saves it to the database, and writes the
cookie. The second method zaps the user from the session object and from the client cookie.

 The set_user_cookie method is called in two places. First, it is called in app/controllers/
user_controller.rb as follows when the user successfully activates a cookie via email:

 def activate
 find_user
 @is_valid = Token.is_valid_for_user(@user, params[:token])
 @user.update_attributes(:is_active = > @is_valid)

 set_user_cookie if @is_valid

 end

 The method is also called on any successful login, as follows:

 def login
 @user = User.find_by_username_and_password(params[:user][:username],
 params[:user][:password])
 if @user
 session[:user_id] = @user.id

 set_user_cookie

 render :partial = > “already_logged_in”
 else
 flash[:login_message] = “Login failed”
 @user = User.new
 render :partial = > “login”
 end
 end

c03.indd 97c03.indd 97 1/30/08 4:02:02 PM1/30/08 4:02:02 PM

Chapter 3: Adding Users

98

 The cookie is deleted when the user logs out, like this:

 def logout
 load_user
 flash[:login_message] = “Logged out”
 if @user.id == session[:user_id]
 @user = User.new

 remove_user

 render :partial = > “login”
 else
 render :partial = > “already_logged_in”
 end
 end

 The cookie is also deleted if the active user is destroyed somehow, as follows:

 def destroy
 find_user
 @user.destroy

 remove_user if session[:user_id] == @user.id

 respond_to do |format|
 format.html { redirect_to(users_url) }
 format.xml { head :ok }
 end
 end

 Validating Login Cookies
 The actual check for a valid cookie for login is done in the same load_user method used earlier to put the
user ID into the session object. Now, the code adds a test to look for a cookie. Because this method gets
called from all controllers, it ’ s placed in application.rb as follows:

 def load_user
 @user = User.find_by_id(session[:user_id])
 return if @user
 @user = Token.validate_login_from_token(cookies[:token])
 if @user
 session[:user_id] = @user.id
 set_user_cookie
 else
 cookies.delete :token
 @user = User.new
 end
 @user
 end

 The code extends the options for where to find the current user. The first option is to try to find the user
in the session object. If there ’ s no user there, then the code asks the Token class to validate the cookie
from the browser as a login. If it can do that, then the new user ID is added to the session and a new
cookie is generated. If that doesn ’ t work, the same default behavior of creating a blank dummy user is
called, and the cookie is removed from the user ’ s stash.

c03.indd 98c03.indd 98 1/30/08 4:02:02 PM1/30/08 4:02:02 PM

Chapter 3: Adding Users

99

 The Token class now needs to validate the cookie. This method is similar to the two previous Token
class methods already created:

def self.validate_login_from_token(token)
 return false unless token
 actual_token = Token.find_by_token(token)
 return false unless actual_token
 valid = actual_token.expires_at > Time.now
 user = if valid then User.find(actual_token.user_id) else nil end
 actual_token.destroy
 user
 end

 The incoming token is the value of the user cookie. If there is no user cookie, the method returns false
immediately. Otherwise, the method tries to find a matching token from the database, again returning
false if one is not found. If the token has not expired, then the user matching that token ’ s user ID is
found. The token is removed from the database as a security precaution, and the user object is returned.

 This gives three separate Token class methods with a very similar structure, which is a strong hint that
some refactoring is in order. The mechanism I tried first was to move some of the common logic to token
instance methods to simplify the logic in the class methods. This gives the following redefinition of the
 Token class, which I think is a little easier to read:

require ‘extensions’
class Token < ActiveRecord::Base

 belongs_to :user

 def self.create_email_token(user)
 Token.create(:user_id = > user.id, :token = >
 Standards.random_string(25),
 :value = > “email”, :expires_at = > DateTime.now + 2)
 end

 def self.create_cookie_token(user)
 Token.create(:user_id = > user.id, :token = >
 Standards.random_string(50),
 :expires_at = > 14.days.from_now, :value = > “cookie”)
 end

 def self.is_valid_for_user(user, incoming_token)
 actual_token = Token.find_by_user_id(user.id)
 return false unless actual_token
 actual_token.destroy if actual_token.token_is?(incoming_token)
 actual_token.is_valid?(incoming_token, “email”)
 end

 def self.is_valid_captcha(token, incoming_value)
 actual_token = Token.find_by_token(token)
 return false unless actual_token
 actual_token.destroy

(continued)

c03.indd 99c03.indd 99 1/30/08 4:02:03 PM1/30/08 4:02:03 PM

Chapter 3: Adding Users

100

 actual_token.is_valid?(token, incoming_value)
 end

 def self.validate_login_from_token(incoming_token)
 return false unless incoming_token
 token = Token.find_by_token(incoming_token)
 return false unless token
 user = if !token.is_expired? then token.user else nil end
 token.destroy
 user
 end

 def is_expired?
 expires_at < Time.now
 end

 def token_is?(expected_token)
 token == expected_token
 end

 def value_is?(expected_value)
 value == expected_value
 end

 def is_valid?(expected_token, expected_value)
 !is_expired? & & token_is?(expected_token) & &
 value_is?(expected_value)
 end

end

 Resources
 The new standard plugin for user authentication is Restful Authentication, by Rick Olson, which you can
install from http://svn.techno-weenie.net/projects/plugins/restful_authentication . It
provides a slightly different design for the same basic login, password management, and cookie
functionality as discussed in this chapter. It ’ s quite easy to incorporate the plugin into your application.

 Bernie Thompson has a guide to getting started with OpenID at http://leancode.com/
openid-for-rails .

 For general insight on Rails security issues, check out www.rorsecurity.info , a blog by Heiko Webers.
Be sure to look at the security checklist at www.rorsecurity.info/ruby-on-rails-security-
cheatsheet or the similar one at www.quarkruby.com/2007/9/20/ruby-on-rails-security-
guide for extensive details on locking down your Rails application.

 There are several different plugins that manage CAPTCHA tests. The implementation shown in this
chapter was inspired by a description of the BrainBuster plugin by Rob Sanheim, available at
 http://code.google.com/p/robsanheim/wiki/BrainBuster . There ’ s also a Ruby gem called

(continued)

c03.indd 100c03.indd 100 1/30/08 4:02:03 PM1/30/08 4:02:03 PM

Chapter 3: Adding Users

101

Turing (http://turing.rubyforge.org) and a plugin called CAPTCHA (http://sargon
.interinter.net/validates_captcha) that do image - based CAPTCHA and depend on
ImageMagick (see Chapter 11). And there ’ s also Simple Captcha (http://agilewebdevelopment
.com/plugins/simple_captcha).

 Summary
 Managing user authentication is a critical security task for many web applications. In Rails, a user is
basically managed like its other resources. The user ’ s password should be stored in the database in an
encrypted state, and the encryption should be augmented with a random salt. Rails validations can be
used to verify the confirmation of the password in the form.

 Form builders can be used to automate the repetitive aspects of maintaining a common form layout
across your application. The login and logout actions can be managed as part of a separate RESTful
controller or as part of the user ’ s controller.

 After the user authentication is built in, some simple helper methods enable you to specify blocks of
code as accessible only by users who have logged in. You can also use the simple_access_control plugin
to define more specialized access control. A token system can be used to support authorization via email.

 CAPTCHA is a test designed to prevent automated responses from messing up the system. A traditional
image can be used, or you can create a system based on any kind of logic problem that might be difficult
for a computer system to parse. The same token system can help support the CAPTCHA security.

 Cookies are used to provide authentication that persists beyond a single user session. However,
you must be careful not to introduce security issues with this method of access .

c03.indd 101c03.indd 101 1/30/08 4:02:03 PM1/30/08 4:02:03 PM

c03.indd 102c03.indd 102 1/30/08 4:02:03 PM1/30/08 4:02:03 PM

 Build Tools and
Automation

 Automation is critically important to the success of an ongoing project. As the project continues,
you will accumulate task after task — things that need to be done over and over again to keep the
project running smoothly. These include cleanup tasks to remove unneeded files or database
entries. Depending on the project, you may have to build tasks for compiling or interpreting files
in advance. You ’ ll have deployment tasks, to move your program from the development
environments to your production servers.

 These tasks need to be done repeatedly and they need to be done accurately, which makes them
prime targets for automation. And so, for decades, programmers have defined repetitive tasks in
various kinds of make files, named, of course, after the original Unix make program — the
granddaddy of all programs used to define build tasks.

 The key element of a make - like system is the capability to define tasks as being dependent on
other tasks. For example, a testing task might depend on a database setup task running first. Or a
deployment task might depend on a clean rebuild of the entire project completed successfully
before deployment can begin. The complexity of a make system comes not just from defining the
tasks themselves, but also from defining the dependency relationships between tasks.

 The classic make application is often considered to have a difficult - to - read syntax, and is still most
widely used within Unix and C development worlds. Other programming communities have
developed other tools. Many Java projects use Ant, which has an XML - based syntax for defining
tasks and dependencies. However, Ant files also have a tendency to become unwieldy as they get
more complex over time. (As software guru Martin Fowler said, “ Until we tried it, I thought XML
would be a good syntax for build files. ”)

 Most Ruby projects now use Rake (Ruby Make), which uses Ruby ’ s flexible syntax to combine a
readable dependency syntax with the full power of Ruby in defining tasks. When you use Rake in
your Rails project, you also have full use of your Rails environment, including your ActiveRecord
models, which is nice. Rails comes with a large number of predefined tasks (some of which you ’ ve

c04.indd 103c04.indd 103 1/30/08 4:06:13 PM1/30/08 4:06:13 PM

Chapter 4: Build Tools and Automation

104

seen already) that perform a number of useful tasks. You can, of course, write your own tasks specific to
your own project.

 When you can run your build tasks automatically, you can run them all the time. This is especially useful
for compilation and test tasks. Continuous integration has proven to be so useful, that a number of tools
have been developed specifically to enable your Rake - based project to run its tests automatically on a
regular basis.

 Another tool called Capistrano has emerged to support the complex job of deploying a Rails application
to multiple production servers. Capistrano extends Rake to support transferring files and ensuring
consistency among deployment servers. Capistrano will be more fully discussed in Chapter 12.

 What Rake Can Do for You
 Before talking about how you can write custom Rake tasks to support your project, you should take a
look at the variety of Rake tasks that have already been created. These cover a wide variety of tasks,
including database support, documentation support, annotation support, and test support. Use the
following command line to see a list of defined Rake tasks :

rake -T

 The output of this command is a list of the defined Rake tasks with their descriptions as entered in the
rakefile.

 The following sections describe the tasks in the standard Rails rakefile. There ’ s a good chance that there ’ s
a task in here that you didn ’ t know about that will save you time on your projects. Each group of tasks
has a table, and any further comments about these tasks are included after the table.

 Rake Database Tasks
 Most of the Rake tasks defined by Rails concern the database, in part to provide a common command
line shortcut for database features that would otherwise take a significant amount of scripting, and
which might differ depending on the exact database being used.

 The first set of tasks, described in the following table, deals with creating a database or setting it to the
current schema. A couple of methods of dumping the schema to a text file are also supported. The colon
is the namespace delimiter in Rake, and all the database tasks start with db: .

c04.indd 104c04.indd 104 1/30/08 4:06:14 PM1/30/08 4:06:14 PM

Chapter 4: Build Tools and Automation

105

 Task Description

 db:abort_if_pending_migrations Used as a dependent task, stops Rake if there is an unper-
formed database migration. Specifically used to prevent
tests from running.

 db:create Creates one database, the one defined in the database
.yml file for the default environment defined in
 environment.rb .

 db:create:all Creates all the databases defined in database.yml .

 db:drop Removes one database according to the same rule as db:
create .

 db:fixtures:identify Takes one argument and finds a fixture with that label.

 db:fixtures:load Takes the fixtures defined in /test/fixtures and loads
them into the current database. This is useful for seeding
the development database with test data. It also takes the
optional argument FIXTURES=fix1,fix2 , which limits
the load to specific tables.

 db:migrate Runs the necessary migrations to bring the current data-
base to the current schema version. It takes an optional
argument VERSION=version if you want to bring the cur-
rent database to a version other than the current schema.

 db:migrate:redo A shortcut for rolling back the database one version and
re - performing the most recent migration.

 db:migrate:reset Similar to db:migrate but completely drops the current
database and runs through all migrations, rather than just
performing the incremental changes. The
 VERSION=version argument will cause the process to
stop at a specific version that is not current.

 db:reset Drops and recreates the current database

 db:rollback Rolls back the current migration. Use the argument
STEP=x to indicate the number of steps backward.

 db:schema:dump Creates the schema.rb file for defining the current
schema. This file can be loaded into a different database
via Ruby and ActiveRecord without going through the list
of migrations.

 db:schema:load Loads the schema.rb file created by db:schema:dump .

 db:structure:dump Outputs the current database structure to /db/
development_structure.sql , as an SQL script.
(The filename will change based on the current Rails
 environment type.)

c04.indd 105c04.indd 105 1/30/08 4:06:15 PM1/30/08 4:06:15 PM

Chapter 4: Build Tools and Automation

106

 The second batch of database items handles sessions. These items, which are described in the next table,
are useful only if you are storing your session data in the database via the ActiveRecord session object
(discussed in Chapter 13).

 Task Description

 db:sessions:clear Empties out the session table.

 db:sessions:create Creates a session table, enabling the storage of session data as an
ActiveRecord object.

 Another set of database tasks manage the test database, enabling you to easily recreate the development
schema in the test database. As you can see in the following table, these tasks use different methods to
divine the structure of the development database, although in practice there should be little difference
between them.

 Task Description

 db:test:clone Creates a test database from the result of a db:schema:dump on
the current database.

 db:test:clone_structure Creates a test database from the result of a db:structure:dump
on the current database.

 db:test:prepare Creates a test database based on whichever format schema file
has already been created.

 db:test:purge Recreates the test database with no data.

 Finally, there are a few database tasks that just output potentially useful information about the current
database. The following table describes these tasks.

 Task Description

 db:charset Returns the character set being used by the current database
(utf8 , for example).

 db:collation Collation is the sorting algorithm used for ordering strings in the
database — colloquially, you ’ d call it alphabetical order, but
Unicode doesn ’ t necessarily have an alphabet.

 db:version Returns the current version number of your schema, as used by
migrations.

c04.indd 106c04.indd 106 1/30/08 4:06:15 PM1/30/08 4:06:15 PM

Chapter 4: Build Tools and Automation

107

 Rake Documentation Tasks
 Rake has a series of predefined tasks that simplify the process of running RDoc on various portions of
your project, as described in the following table. The normal behavior of RDoc is to regenerate HTML
files only for source files that have changed since the last time RDoc was run. To regenerate the entire
part of the project in question, use the doc:clobber tasks to remove the documentation.

 Task Description

 doc:app Runs RDoc on the files in your application, specifically the contents of
the /app and /lib directories. Documentation is placed in /doc/app .

 doc:clobber_app Removes all files in /doc/app .

 doc:clobber_rails Removes all files in /doc/api .

 doc:clobber_plugins Removes all files in /doc/plugins .

 doc:plugins Runs RDoc on all plugins in /vendor/plugins . Documentation is
placed in /doc/plugins .

 doc:rails Runs RDoc on a Rails installation in /vendor/rails , if one exists.
Documentation is placed in /doc/api .

 doc:reapp Equivalent to doc:clobber_app followed by doc:app .

 doc:rerails Equivalent to doc:clobber_rails followed by doc:rails .

 Rails also automatically generates tasks of the form doc:plugins: < plugin name > for each plugin in
the /vendor/plugins directory. This task generates the RDoc documentation for just that single plugin.

 Rake Testing Tasks
 If you ’ re developing your Rails project using Test Driven Development (TDD), then you ’ re going to use
the Rake tasks described in the following table most often.

c04.indd 107c04.indd 107 1/30/08 4:06:16 PM1/30/08 4:06:16 PM

Chapter 4: Build Tools and Automation

108

 Task Description

 test Runs all the automated tests defined in your project. This is equivalent
to running test:functionals , test:integration , and test:
units . It is also the default task run if you call Rake with no task
declared.

 test:functionals Runs all the test classes defined in test/ functional . The specific
 pattern being matched is test/functional/**/*_test.rb .

 test:integration Runs all the test classes defined in test/ integration . The specific
pattern being matched is test/integration/**/*_test.rb .

 test:plugins Runs all the tests for all plugins in /vendor/plugins . The specific
 pattern being matched is vendor/plugins/*/**/test/**/*_test.
rb . An optional PLUGIN=plugin argument runs tests on just the specific
plugin, meaning the pattern changes to vendor/plugins/ < plugin > /
test/**/*_test.rb . These tests are not run as part of the default test
task.

 test:recent Runs tests for any file modified in the last 10 minutes. This means any
file in the /test directory, plus the unit test for any modified /app/
model and the functional test for any modified /app/controller .
Integration tests are not run from this task. Dependencies on other test
files are not detected.

 test:uncommitted Runs tests for any file modified since the last Subversion checkin. This
task works only if you are using Subversion. Unit tests are run for any
changed model files, and functional tests are run for any changed
 controller files. As I ’ m reading the current source, it looks like changed
test files are not run unless the associated model or controller has also
changed.

 test:units Runs all the tests defined in test/unit , matching the pattern test/
unit/**/*_test.rb .

 Rake Cleanup Tasks
 Rake defines a few tasks to clean up temporary files, as described in the following table. These are
guaranteed to be a little bit easier than the Unix command line, or wandering through Windows
Explorer dragging files to the Recycle Bin.

c04.indd 108c04.indd 108 1/30/08 4:06:16 PM1/30/08 4:06:16 PM

Chapter 4: Build Tools and Automation

109

 Task Description

 log:clear Resets all files in /log/log* to empty.

 tmp:cache:clear Empties the cache files in the /tmp/cache directory.

 tmp:clear Equivalent to tmp:cache:clear , tmp:session:clear , and temp:
sockets:clear . As I write this, tmp:pids:clear is not included in
this task.

 tmp:create Recreates the three directories /tmp/cache , /tmp/ sessions/ , and /
tmp/sockets .

 tmp:pids:clear Empties the /tmp/pids directory.

 tmp:sessions:clear Empties the session files in /tmp/sessions .

 tmp:sockets:clear Empties the /tmp/sockets directory.

 Rake Rails Tasks
 Some of this was touched on in Chapter 2 , but Rake defines a few tasks (described in the following table)
to allow you to manage the specific version of Rails being used by your project, especially in cases where
you expect Rails to change (if you are using Edge) or to differ from one project to the next. The update
tasks are useful if you are on Edge and Rails has made a change to the underlying common scripts that
were copied to your project space, such as the boot file or the JavaScript libraries.

 Task Description

 rails:freeze:edge Freezes your project to a specific version of Rails, by loading it via
Subversion to the /vendor/rails directory. By default, this task uses
the current head of the Rails source tree. The optional REVISION=#
argument chooses a specific revision number, and the optional TAG=tag
 argument freezes to a specific tag. The svn Subversion client must be
available for this command to work, although the rest of your project
need not be managed with Subversion. This command overrides any
external declaration being used to keep /vendor/rails up to date
with Edge Rails, as described in Chapter 2 .

 rails:freeze:gems Freezes your project to a specific version of Rails by unpacking the Rails
gems installed with Ruby and placing them in the /vendor/rails
directory. This does not affect any non - Rails gems you may have
installed.

 rails:unfreeze Undoes a freeze command through the simple mechanism of clearing
the /vendor/rails directory.

Table continued on following page

c04.indd 109c04.indd 109 1/30/08 4:06:16 PM1/30/08 4:06:16 PM

Chapter 4: Build Tools and Automation

110

 Task Description

 rails:update Equivalent to rails:update:configs , rails:update:javascripts ,
and rails:update:scripts .

 rails:update:configs Updates the /config/boot.rb file to the version currently defined by
the version of Rails used by the project.

 rails:update:javas-
cript

 Updates the public JavaScript (such as the effects and prototype files) to
the version defined by the current Rails.

 rails:update:scripts Updates the contents of the project /scripts directory based on the
currently defined version of Rails.

 Other Rake Tasks
 The following table describes the Rake tasks that don ’ t fit in the previous categories.

 Task Description

 notes Equivalent to notes:fixme , notes:optimize , and notes:todo .

 notes:fixme Outputs a list of all comments that start with the notation FIXME.

 notes:optimize Outputs a list of all comments that start with the notation OPTIMIZE.

 notes:todo Outputs a list of all comments that start with the notation TODO.

 routes Outputs a list of all defined URL routes. (See Chapter 1 for sample
 output.)

 stats Outputs a list of statistics about the code in the project.

 The output of the notes commands is a series of entries like this:

app/controllers/recipes_controller.rb:
 * [6] [TODO] Something cool

 That ’ s the filename, followed by one line for each note. The line consists of the line number, the tag for
the comment, and the rest of the comment.

c04.indd 110c04.indd 110 1/30/08 4:06:17 PM1/30/08 4:06:17 PM

Chapter 4: Build Tools and Automation

111

 The stats command outputs basic metrics information. At this point, the stats for Soups OnLine look
like this:

+----------------------+-------+-------+---------+---------+-----+-------+
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+-------+-------+---------+---------+-----+-------+
Controllers	366	278	4	31	7	6
Helpers	89	75	1	10	10	5
Models	346	283	9	41	4	4
Libraries	0	0	0	0	0	0
Components	0	0	0	0	0	0
Integration tests	0	0	0	0	0	0
Functional tests	347	295	6	43	7	4
Unit tests	220	184	6	22	3	6
+----------------------+-------+-------+---------+---------+-----+-------+						
Total	1368	1115	26	147	5	5
+----------------------+-------+-------+---------+---------+-----+-------+
 Code LOC: 636 Test LOC: 479 Code to Test Ratio: 1:0.8

 What You Can Do for Rake
 No matter how complete the predefined Rake tasks are, there are always going to be tasks specific to
your project that you are going to want to automate. Because Rake is just Ruby, it ’ s not hard to write new
tasks. And as you might expect, Rails provides a couple of features to make it easy to integrate your
custom Rake tasks with your entire Rails project.

 The first is autoloading. Any file placed in the /lib/tasks directory and ending with the extension
 .rake will automatically be loaded when Rake is invoked. This means that you will be able to access
your tasks from the same command line invocation of rake as the preexisting tasks, and also that your
tasks will be included in the common listing for rake - T . Not only does this allow you to integrate your
custom tasks, but it also facilitates keeping the rakefiles under control, because you can group related
tasks into their own files.

 The second feature is complete access to the Rails environment, including being able to use your
ActiveRecord models in your Rake tasks and getting all the nice database connections for free.

 A Simple Rake Task
 To show you what a typical Rake task looks like, I chose a pretty basic one from the Rails distribution —
 the log:clear task, which resets all the log files. You can look at the source for all the Rails tasks in
 vendor/rails/railties/lib/tasks . Here ’ s what log:clear looks like - - the task is named :clear
inside a namepsace called :log :

c04.indd 111c04.indd 111 1/30/08 4:06:17 PM1/30/08 4:06:17 PM

Chapter 4: Build Tools and Automation

112

namespace :log do
 desc “Truncates all *.log files in log/ to zero bytes”
 task :clear do
 FileList[“log/*.log”].each do |log_file|
 f = File.open(log_file, “w”)
 f.close
 end
 end
end

 Although it might be difficult to believe at first, this is 100 - percent valid Ruby — or at least, 100 - percent
valid Ruby plus the added extra methods namespace , desc , and task , all of which are defined by Rake.
Rake takes advantage of Ruby ’ s flexible syntax to make ordinary method calls look like system
keywords. This is often called a Domain - specific language or DSL , generically defined as a small language
specifically designed for a single task. However, if you want to argue that Rake isn ’ t really a language
unto itself, and is more like a fancy API, I ’ m not going to press the point. No matter what you call it, the
end result is a readable, logically structured piece of code to define tasks.

 The most important of the methods defined by Rake is task . In the simple form shown here, task takes
two arguments, the first of which is a symbol and is the name of the task, and the second of which is a
block defining the task. The block is really just more Ruby code, although you ’ ll frequently want to use
some Rake - defined helper features. In this task, the block uses one of those features: the file list.

 A FileList is just a Ruby class that overrides the array lookup [] operator as a class method, resulting
in the somewhat unusual syntax shown in the previous code listing. The FileList creation line could
also be written as FileList.new(“ log/*.log “). In either case, the argument to the file list is one or
more glob patterns and the result is an array - like object that contains a list of existing filenames that
match the pattern. The file list object is lazy, and doesn ’ t actually evaluate the pattern until it ’ s asked to.
In this case, the object is asked to evaluate immediately, when it encounters the each call, which declares
another block to be called with each matching filename as an argument. The inner block just opens each
file for writing and immediately closes it, neatly erasing all the existing content in the file, while leaving
the file intact. In case it ’ s not clear, the base directory of the Rake task is the top - level Rails directory of
your project, no matter where the rakefile is actually defined.

 The other two special methods manage some logistics. The desc method takes a single string argument
and attaches that argument as a documentation string to the next defined task — the string argument is
displayed when rake - T is called. The namespace method takes a symbol argument that names the
space and a block argument that contains some subset of a rakefile. This provides you with a namespace
that serves as a common prefix used to access the tasks defined inside the namespace and that
differentiates them from tasks in other namespaces. As a result, the task defined in this code block would
be accessed as log:clear , using the namespace around the task as a prefix, rather than just as clear .

 Another use of file lists is to specify the set of files to be managed by the default Rake tasks clean and
 clobber . The clean task is supposed to remove temporary files that might have been explicitly created
during builds, and clobber is supposed to remove all gunk that isn ’ t part of the project, no matter how
it got there. You can use a file list to define which files should be removed when rake clean or rake
clobber is invoked. Each task depends on a constant file list defined in your rakefile with an uppercase
name. Here ’ s how to define the file list for clean :

CLEAN = FileList[‘.tmp’]

 The file list for clobber is defined similarly.

c04.indd 112c04.indd 112 1/30/08 4:06:18 PM1/30/08 4:06:18 PM

Chapter 4: Build Tools and Automation

113

 Tasks with Dependencies
 Although it ’ s undeniably nifty to be able to define tasks with a special syntax and have them converted
into a convenient command line utility, so far you haven ’ t seen Rake do anything that you couldn ’ t do
almost as easily with plain vanilla Ruby scripts.

 The true genius of Rake, and the primary functionality of build files in general, is the ability to enforce
task dependencies. This means that you can define a task as being dependent on any number of other
arbitrary tasks. Then, any time you run the dependent task, all of the tasks on which it depends are also
automatically invoked. Of course, those tasks may themselves be dependent on still other tasks, and the
entire task dependency tree is planned out by Rake before any tasks are started.

 Build tasks have these kinds of dependencies all over the place — run is dependent on compile, which is
dependent on cleanup. Deploy is dependent on test, which is dependent on compile, which is dependent
on setup. Having to manage all these relationships manually in your code is a pain, which is why even
somewhat awkward build systems like make and Ant can give you huge time savings. An elegant build
file system like Rake is even more useful.

 Here is a simple example based on the short task described earlier. Suppose you want to institute some
kind of logging archive system instead of just clearing logs. To keep this on the simple side, the archive
system will consist of copying the log files to an external location, and putting a timestamp in the file
names. This implies two tasks, one of which does the copying, and one of which resets the existing files
to zero - length. Translated to Rake, it looks like the following code — put this in lib/cleanup.rake :

namespace :cleanup do

 desc “Timestamp and copy all log files”
 task :archive do
 timestamp = Time.now.strftime(‘%y_%m_%d_%H_%M_%S’)
 FileList[“log/*.log”].each do |log_file|
 FileUtils.copy_file(log_file, “#{log_file}.#{timestamp}”)
 end
 end

 desc “Truncates all *.log files in log/ to zero bytes”
 task :clear = > :archive do
 FileList[“log/*.log”].each do |log_file|
 f = File.open(log_file, “w”)
 f.close
 end
 end

end

 The :archive task is similar to the log task shown previously, but I did want to point out the Ruby
 FileUtils module, which provides the basic file manipulation functionality that you ’ d expect from,
say, a Unix command line.

 The :clear task is identical to the previous version of the log task, except for moving it into a different
name space, and changing the declaration to task :clear = > :archive . This declaration defines the

c04.indd 113c04.indd 113 1/30/08 4:06:18 PM1/30/08 4:06:18 PM

Chapter 4: Build Tools and Automation

114

 :clear task as being dependent on :archive to run. If you want to define a task with multiple
dependencies, then you declare them as an array, like this:

Task :clear = > [:archive, :email_notification] do

 If it becomes important, the dependent tasks are evaluated in order. The first task in the list is evaluated
(which may include that task ’ s dependencies), then the second task, and so on. Only after all the
dependencies have been evaluated is the actual task itself executed. Rake prevents a task from being
executed twice, even if it ’ s in the dependency tree multiple times.

 Now, with these tasks defined, the rake - T command will display them as follows:

rake cleanup:archive # Timestamp and copy all log files
rake cleanup:clear # Truncates all *.log files in log/ to zero bytes

 Running rake cleanup:clear will invoke the archive behavior, and then the clear behavior.

 Another useful feature of Rake is that it is extraordinarily flexible about where you declare the
dependencies for the task. Task dependencies can be declared separately from the task body.
Dependencies can even be declared for the same task in multiple places throughout the rakefile — all the
dependencies are merged into a master list when the rakefile is interpreted, and all the dependencies are
tracked. So, the clear task in the previous code could have been written like this:

 desc “Truncates all *.log files in log/ to zero bytes”
 task :clear do
 FileList[“log/*.log”].each do |log_file|
 f = File.open(log_file, “w”)
 f.close
 end
 end

 task :clear = > :archive

 In fact, copying the entire log:clear task into the custom namespace was not the best way to keep the
code maintainable. You can just add the dependency to the existing task from within the custom file —
 you do need to get around the namespace issue, though. Here ’ s how:

namespace :cleanup do

 desc “Timestamp and copy all log files”
 task :archive do
 timestamp = Time.now.strftime(‘%y_%m_%d_%H_%M_%S’)
 FileList[“log/*.log”].each do |log_file|
 FileUtils.copy_file(log_file, “#{log_file}.#{timestamp}”)
 end
 end
end

task “log:clear” = > “cleanup:archive”

c04.indd 114c04.indd 114 1/30/08 4:06:18 PM1/30/08 4:06:18 PM

Chapter 4: Build Tools and Automation

115

 The extra dependency had to be done outside the namespace to allow the two different namespace
prefixes to be properly resolved. At this point, running the existing log:clear task will trigger the
custom cleanup:archive task.

 You can, and often will, have rake tasks that have no body of their own, but simply consist of a list of
dependency tasks that you want to group together. Here ’ s an example from one of the standard Rails
rakefiles, tmp:clear :

 desc “Clear session, cache, and socket files from tmp/”
 task :clear = > [“tmp:sessions:clear”, “tmp:cache:clear”, “tmp:sockets:clear”]

 The tmp:clear task doesn ’ t do anything on its own. It just ensures that the three component clear tasks
are called.

 Like all of Ruby ’ s freedoms, the capability to specify dependencies willy - nilly should be used
judiciously, so that you don ’ t lose all ability to predict what will happen when you call a task in your
rakefile. Rake itself can help you out, though — calling rake - P gives you a list of all tasks with their
immediate dependencies. At this very moment, that output basically reads as follows:

rake log:clear
 cleanup:archive

 File Tasks
 There is another mechanism for defining tasks in Rake, based explicitly on transforming files, and called,
conveniently enough, a file task (programmers and their silly names). The file task model is extremely
similar to the classic makefile syntax for compilation. Because compilation is not part of the standard
Rails workflow, you may not use file task syntax very often, but it ’ s a very powerful way to manage a
certain type of file - transformation task.

 Continuing with the theme of dealing with log files, suppose that you wanted to convert your log files
into HTML for display in some kind of web - based administration tool. The initial core of that tool might
be a Rake task like this:

file “log/development.html” = > “log/development.log” do |task|
 LogConverter.convert(:input = > task.prerequisites[0], :output = > task.name)
end

 LogConverter , by the way, is a fictional log file to a HTML generator that is driving this example — it
doesn ’ t really exist, so this example won ’ t work as written. You can see from this example that the syntax
of a file task is relatively similar to the syntax of a regular task. The task name is the file that is going to
be created, and the dependency list contains the files that are going to be used as the input. Within the
task body, the attribute name of the task object contains the string name of the task, which is to say, the
output file, and the attribute prerequisites contains an array of the input files.

 The input files may themselves have Rake tasks defined for them, in which case those tasks are resolved
first just as any other dependant task would be managed. This would be the case, for example, in a
typical C compilation structure, where the actual application might consist of linking several libraries
together, and each library might need to be compiled from several different source files.

c04.indd 115c04.indd 115 1/30/08 4:06:19 PM1/30/08 4:06:19 PM

Chapter 4: Build Tools and Automation

116

 The task listed in the previous code listing would be invoked as rake log/development.html , which is
something of a mouthful, so it ’ s not uncommon to define a regular task as a wrapper around the file task
like this:

task :convert_log = > “log/development.html”

 Then rake convert_log will invoke the file task.

 “ Ah, ” you say, “ that ’ s nice if there ’ s only one log file, but there might be several, and I certainly don ’ t
want to track them all individually. ” Luckily, you don ’ t have to — you can use a FileList and the fact
that Rake allows dependencies to be created flexibly.

 The exact mechanism depends slightly on whether you want all the input files to be grouped into one
output file or not. If so, you can build up the dependencies in the loop, and then define the actual task
after the loop. For example:

FileList[“log/*.log”].each do |log_file|
 file “log/development.html” = > log_file
end

file “log/development.html” do |t|
 LogConverter.convert(:input = > t.prerequisites, :output = > t.name)
end

task :convert_logs = > “log/develpment.html”

 Inside the each loop, the output file task gains a new dependency for each element of the list. The body
of the task is defined only after the loop is complete, but all the prerequisites remain defined. Again,
there ’ s a wrapper task to make the calling easier.

 If each log file is going to a different output file, then each output file needs a separate task created from
the list, and the dependencies are managed by the wrapper task. You can create each file task
dynamically as follows:

FileList[“log/*.log”] each do |log_file|
 outfile = log_file.split(“.”)[0] + “.html”
 file outfile = > log_file do |t|
 LogConverter.convert(:input = > t.prerequisites, :output = > t.name)
 end
 task :convert_logs = > outfile
end

 Using Rails in Rake
 Giving your Rake task access to your ActiveRecord objects or other classes defined in your Rails project
is absurdly simple — just create a dependency to the task :environment . That was easy, right?

 Here ’ s a modest example. In Chapter 3 , you made a lot of use of the Token class, which expires after a
set period of time. Although tokens are often deleted on usage, it is possible from the definition of the
class as written that a token would be created, never used, and would just hang around clogging up the
database forever. It sure would be nice to have some kind of automated task that would check the

c04.indd 116c04.indd 116 1/30/08 4:06:19 PM1/30/08 4:06:19 PM

Chapter 4: Build Tools and Automation

117

database to see if there were any expired tokens and remove them. Luckily, it ’ s not very much work. Put
this in any lib/*.rake file:

 desc “Remove old tokens from the database”
 task :tokens = > :environment do
 old_tokens = Token.find(:all, :conditions = > [“expires_at < ?”, Time.now])
 old_tokens.each { |token| token.destroy }
 end

 The code here should be straightforward Ruby and ActiveRecord. The only Rails - specific feature is the
addition of the :environment task to ensure that Rails is loaded.

 The find call could have been written differently:

old_tokens = Token.find(:all).select { |token| token.is_expired? }

 Now that ’ s a hair more readable and already uses written model functionality. However, the second
version is likely to be significantly slower because it will cause the database to return all Token records
before filtering, whereas the first version does the filtering in the database itself.

 Testing Rake Tasks
 I ’ ve broken somewhat with precedent in this section, because I have not presented test - first automated
tests for the Rake tasks I ’ ve defined. The unfortunate fact is most developers don ’ t write tests for their
build scripts, even in projects that are otherwise well tested. (Yes, I speak from experience.) Many of the
tasks you ’ re going to put in your Rake script are going to be important, though, and it would be useful
to at least leave open the option of testing them. Here are a couple of strategies that will help you test
your Rake files.

 Direct Testing
 One strategy is to actually dynamically load your rakefile and call Rake from inside the unit test. There ’ s
a trick or two to doing this successfully. The code to test the Token clean up task that you just wrote
looks like this (you can put this file in test/unit/rake_test.rb):

require File.dirname(__FILE__) + ‘/../test_helper’
require ‘rake’

class RakeTest < Test::Unit::TestCase
 fixtures :tokens

 def setup
 @rake = Rake::Application.new
 Rake.application = @rake
 @rake.load File.dirname(__FILE__) + ‘/../../lib/tasks/cleanup.rake’
 @rake.load File.dirname(__FILE__) +
 ‘/../../vendor/rails/railties/lib/tasks/misc.rake’
 end

 def teardown
 Rake.application = nil
 end

(continued)

c04.indd 117c04.indd 117 1/30/08 4:06:19 PM1/30/08 4:06:19 PM

Chapter 4: Build Tools and Automation

118

 def test_token_cleanup
 assert_difference(‘Token.count’, -2) do
 @rake[“cleanup:tokens”].invoke
 end
 end
end

 Thanks to Nick Sieger and his blog at http://blog.nicksieger.com for hints on successfully
testing the Rake task.

 Let ’ s look at this code one step at a time. After requiring the Rails test_helper file, you also need to
require Rake itself. Then you use the setup and teardown features of the RubyUnit test framework. In
the setup, you create a new instance of a Rake Application class. The Rake application object is an
attribute of the main Rake class, which is a Singleton - like object that manages all the Rake functionality,
so you need to register the application to the Rake class.

 The application object can then load the cleanup.rake file from its location in your project ’ s /lib/
tasks directory. In addition, you also need to load all the Rake files from all the tasks you ’ ll need in the
dependency tree. In this case, the only task needed is the environment task, which is defined in the
Rails lib/tasks directory. This is where the testing gets somewhat brittle. For one thing, you need to
know which Rails rakefiles contain the tasks you need. The task also becomes dependent on using Rails
in the /vendor/rails directory. Both of these potential issues can be mitigated. You can use the
RAILS_ROOT constant to determine where Rails is located. From there, you could load all the .rake files,
which would decrease maintenance time and potentially increase the run time. Then you undo it all in
the teardown method by setting the application attribute back to nil .

 The application object can be treated as a hash - like object where the keys are the names of the loaded
tasks and the values are the tasks themselves, which can then be invoked using the conveniently named
 invoke method. The test uses the assert_difference block method to determine that two of the
fixtures loaded are removed by the Rake task called inside the block.

 When the test passes, add the file to Subversion and commit it.

 Indirect Testing
 Testing the Rake task directly is a useful mechanism, and the best way to test the interaction between a
Rake task and the tasks it depends on. However, it involves the overhead of loading the Rake
environment (and in this case, loading Rails within Rake), which could make for slower or harder - to -
 maintain tests. Also, many Rake tests interact with portions of the system with a complexity that may be
hard to recreate in a test environment.

 When dealing with a structure in your project that is hard to test directly, a common strategy is to put as
much code as possible in a regular object or structure and make the hard - to - test layer as thin as possible.
For example, Rails views are difficult to test precisely without making the tests fragile, which is one
reason why the push is always to move the code logic to a helper or to the model.

 In the case of Rake, this would also involve writing the bulk of the code for your tasks in a helper
method or class, and then just calling that class from within Rake. Now, the two line token cleanup

(continued)

c04.indd 118c04.indd 118 1/30/08 4:06:20 PM1/30/08 4:06:20 PM

Chapter 4: Build Tools and Automation

119

might not be the best way to show off this mechanism, but the cleanup functionality could easily be
placed in the Token model class like this:

 def self.cleanup_expired
 old_tokens = Token.find(:all, :conditions = > [“expires_at < ?”, Time.now])
 old_tokens.each { |token| token.destroy }
 end

 This method could be tested with a simple method in the test/unit/token_test.rb unit test suite,
without going through the rigmarole of loading in Rake. For example:

 def test_token_cleanup
 assert_difference(‘Token.count’, -2) do
 Token.cleanup_expired
 end
 end

 And the Rake task would just be this:

 desc “Remove old tokens from the database”
 task :tokens = > :environment do
 Token.cleanup_expired
 end

 This tests every part of the functionality except the last mile of whether it works within the Rake
environment. For a task with complex logic that doesn ’ t depend on Rake very much, this could well be a
good tradeoff.

 Continuous Integration
 So far, I ’ ve been talking about automating build tasks in the sense of allowing complex tasks to be
repeated at will with a single command. Although this is very cool and useful, it would be even more
useful if complex tasks could be repeated automatically without any manual intervention. The two tools
in this section allow you to do just that.

 Fully automatic build tasks are most notably used for running tests and for deployment. For now, the
focus is on testing. (Deployment will be covered in a future chapter.) A fully automated test tool
continually runs your project ’ s test suite whenever it detects a change. Several continuous test tools
aimed at Ruby or Rails have been created, and it ’ s not clear as of this writing that any one of them has
established itself as the best and brightest. One tool, ZenTest, runs best locally on the developer ’ s
machine, while another, CruiseControl.rb, is designed to be placed either on a local machine or a
common build server.

 ZenTest
 ZenTest is a Ruby testing utility that has a number of interesting features, including the capability to
automatically create stub tests for methods in your project, and some utilities for improving the output
and structure of your Rails tests. The feature under discussion here is called Autotest, and it ’ s a nice way
to continuously run automated tests on your development box.

c04.indd 119c04.indd 119 1/30/08 4:06:20 PM1/30/08 4:06:20 PM

Chapter 4: Build Tools and Automation

120

 ZenTest is distributed as a Ruby gem. To get it, try the following:

gem install ZenTest

 Depending on your operating system, you may have to run this as sudo . Also, you may be prompted to
download a couple of dependencies. After ZenTest is installed, move to your project ’ s root directory, and
type the following command:

$ autotest

 All the tests in your suite will run, but when the run is over, the program will not exit — instead, it will
sit and wait. While Autotest is running, anytime you save a file within your Rails project, Autotest will
re - trigger all or part of your test suite.

 When you have failing tests, Autotest will try to run the failing test files first, and then move to running
the entire test suite only after those tests pass. This is very convenient, allowing you to focus on only the
small number of failing tests. When your tests are passing, Autotest will try to run the the associated
tests when you save a file - - saving a test file will rerun that test class, saving a model or controller will
run the associated test file. Also, because Autotest does not have to reload the Ruby interpreter every
time it reruns the tests, it runs the tests more quickly. At any time, you can type Control+C in the
Autotest console to rerun the entire test suite. Press Control+C twice to exit out of Autotest.

 Autotest does not use the Rake test tasks to identify what tests are available. Instead, it uses its own
mechanism to determine what tests need to be run (this is noticeable because unlike the default Rake
task, Autotest runs all tests in alphabetical order, regardless of whether they are unit or functional tests).
However, Autotest does know the structure of Rails programs, and as long as you aren ’ t modifying the
predefined Rake test tasks, you should be okay. However, Autotest ’ s management of fixtures appears to
be slightly different than the default Rake tasks, and as a result, you might have some issues if your
various tests load different sets of fixtures — you can have tests pass in Autotest and fail in Rake, and
vice versa. Most of the issues seem to be resolvable if you load all the fixtures in your test/test_
helper.rb file, ensuring that every test has the same set of fixtures.

 If you do get into trouble, Autotest allows you to modify its default behavior through the use of an
 .autotest configuration file in your home directory. Using this file, you can specify arbitrary blocks of
Ruby code to run at different points in the Autotest cycle.

 The basic structure of the blocks that you might place in your .autotest file is as follows:

 Autotest.add_hook :run do |at|
 ## your code here
 end

 :run is the name of the type of hook — in this case indicating behavior to be performed before a test run.
Possible hooks are :all_good , :green , :initialize , :interrupt , :ran_command , :reset , :run , :
red , :run_command , and :quit .

 CruiseControl.rb
 CruiseControl.rb is the Ruby and Rails version of the highly popular Java - based CruiseControl tool by
ThoughtWorks. CruiseControl.rb is much simpler to set up than its Java brother, but it also more strongly

c04.indd 120c04.indd 120 1/30/08 4:06:20 PM1/30/08 4:06:20 PM

Chapter 4: Build Tools and Automation

121

encourages a specific project structure. Specifically, CruiseControl.rb requires you to use Subversion, and
it ’ s easier to set up if you happen to have a project where the default Rake task runs your complete test
suite. And since you just happen to have one of those, it ’ s time to give it a whirl.

 Setting up CruiseControl.rb is pretty simple. Head to http://cruisecontrolrb.thoughtworks.com ,
download using the provided link, and unpack the archive file someplace useful. To associate your
project with CruiseControl.rb, you need to open a command line on the top directory of the unpacked
archive, and run the following command:

$./cruise add soupsonline --url svn:// < hostname > /soupsonline/trunk

 Generically, of course, the argument after the - - url is the URL you use to specify the location of your
Subversion repository. Remember to include /trunk ; otherwise, nothing will work right. If you are
using CruseControl locally, rather than on a remote server, the URL can be a file URL such as this:

$./cruise add soupsonline -- url file:///usr/local/subversion/soupsonline/trunk

 At this point, CruiseControl will checkout the project from the server, and then attempt to run the
default Rake task of the project once.

 In your case, this will initially fail, because of the way I told you to set up your project in Subversion.
Specifically, you did not include a database.yml file because of the possibility that different developers
would need different database setups. However, without a database.yml file, Rails will not run. To fix
this, head for the < cruise_home > /projects/soupsonline/work directory, which is the top directory
of the project checkout. Then head to the config directory, and copy the database.yml.template file,
renaming it database.yml .

 Then you can start the CruiseControl server back from your command line with the following:

$./cruise start

 From a web browser, enter the URL http://localhost:3333 , and you ’ ll see something like what ’ s
shown in Figure 4 - 1 .

 Figure 4 - 1

c04.indd 121c04.indd 121 1/30/08 4:06:21 PM1/30/08 4:06:21 PM

Chapter 4: Build Tools and Automation

122

 Click the Build Now button to trigger another build. This one should be successful. (As you can see, the
screen shot was actually taken after I triggered the successful build, which took six seconds. The failed
build after the initial checkout is numbered 32, matching the subversion revision number. I saved the
database file without a subversion checkin, which triggered a passing build numbered 32.1.)

 When the CruiseControl server is running, it will query the Subversion repository every 30 seconds — a
default that you can change. If it detects a commit, it will perform a new checkout, run the test task and
report the results in the web application. (You can also configure email and RSS reporting.)
CruiseControl will see only the files that have already been committed, so it ’ s a good way to ensure that
you haven ’ t forgotten to add files to your repository. Note the difference between Autotest, which runs
on every save, and CruiseControl, which runs on every commit. Autotest is more of an individual tool,
whereas CruiseControl is designed to support teams of developers.

 As of this writing, CruseControl is incompatable with Ruby 1.8.6 due to a known bug in Ruby that
causes CruiseControl to never report failure from a failed unit test. This issue should be patched by the
time you read this. CruiseControl does work with Ruby 1.8.4 and 1.8.5.

 From this main display, you can trigger another build, or use an RSS feed that will contain build
information. Clicking on either the successful or unsuccessful build note reveals more information about
the test, as shown in Figure 4 - 2 .

 Figure 4 - 2

 The project settings enable you to change the default Rake task run to start a build, or to avoid Rake
altogether and designate a shell command to run instead. The build log has the messages that would go
to the Rails testing log for that build.

c04.indd 122c04.indd 122 1/30/08 4:06:21 PM1/30/08 4:06:21 PM

Chapter 4: Build Tools and Automation

123

 Typically, you wouldn ’ t put CruiseControl on a development machine. You ’ d be more likely to put it on
a central server (possibly the same machine that has the repository), and it would be used to provide
quick feedback on how various developer ’ s changes interact. Even if you are on your own, however, the
continual build functionality is useful to provide a record of your development history.

 Resources
 Rake documentation is online at http://rake.rubyforge.org . This link shows you the RDoc, and
additional tutorials are linked from there. A very good tutorial and description of why Rake is so nice
compared to other build languages (such as Ant) are available at http://martinfowler.com/
articles/rake.html .

 Autotest is part of the ZenTest suite. What documentation there is can be found at www.zenspider
.com/ZSS/Products/ZenTest . This site also includes some other test tools that are mentioned in
Chapter 7 .

 Mac users who use the Growl notification utility should know that Autotest can send Growl messages —
 just include require autotest/growl in your .autotest file. More information on customizing that
window is available at http://blog.codefront.net/2007/04/01/get-your-testing-results-
via-growl-notifications by Chu Yeow and http://blog.internautdesign.com/2006/11/12/
autotest-growl-goodness by David Lowenfels.

 Full documentation on CruiseControl.rb is available at http://cruisecontrolrb.thoughtworks
.com/documentation/docs .

 Summary
 Automated build tasks are very important to the success of a project. The Ruby tool for defining and
running these tasks is Rake. Rake creates a structure for defining tasks that are dependent on other tasks.
Rails augments Rake by defining several tasks for managing tests, the database, documentation, and
Rails versioning.

 You can also define your own Rake tasks and have them be visible at the command line with the
predefined Rails tasks. Rake syntax is Ruby with a few special methods that create a domain - specific
language for task definition. With a little bit of additional structure, you can also add unit tests to cover
your Rake tasks.

 Continuous integration tools run your tests on every save or commit. The Autotest utility runs the test
suite locally, and CruiseControl.rb is designed to run the test suite on a remote server.

c04.indd 123c04.indd 123 1/30/08 4:06:21 PM1/30/08 4:06:21 PM

c04.indd 124c04.indd 124 1/30/08 4:06:22 PM1/30/08 4:06:22 PM

 Navigation and Social
Networking

 When you last looked at the Soups OnLine application, you had just added user logins. However,
you haven ’ t actually given the users very much to do besides create an account and add and edit
their own recipes. Right now, the users have no way to browse the site or find recipes based on
ingredients or keywords. It also would be nice if users could provide feedback on recipes and see
the feedback that other users have left.

 Menus and Sidebars
 The simple tab - like menu or sidebar is the most common user interface element on the Web. In this
section, you ’ ll see how to create a simple menu using some HTML and Rails - supported logic.

 Single - Level Menus
 Rails, unsurprisingly, has some built - in - support for the logic needed to manage a menu list. The
logic involved is to simply display a link to another page unless that page is the active page, in
which case do something else — usually display the text without the actual link. The Rails method
is link_to_unless_current , and you use it in a menu something like this:

 < li >
 < %= link_to_unless_current “Home”,
 {:controller = > “recipes”, :action = > “home”} % >
 < /li >
 < li >
 < %= link_to_unless_current “Recipes”,
 {:controller = > “recipes”, :action = > “index”} % >
 < /li >

(continued)

c05.indd 125c05.indd 125 1/30/08 4:07:07 PM1/30/08 4:07:07 PM

126

Chapter 5: Navigation and Social Networking

 < li >
 < %= link_to_unless_current “Categories”,
 {:controller = > “recipes”, :action = > “categories”} % >
 < /li >
 < li >
 < %= link_to_unless_current “Authors”,
 {:controller = > “recipes”, :action = > “authors”} % >
 < /li >
 < li >
 < %= link_to_unless_current “Community”,
 {:controller = > “recipes”, :action = > “community”} % >
 < /li >
 < li >
 < %= link_to_unless_current “Gear”,
 {:controller = > “gear”, :action = > “index”} % >
 < /li >

 This is a drop - in replacement for the Navigate sidebar in the recipes.html.erb layout file. Because
you ’ re going to want this to become rather generic, put this code in a partial — I call mine app/views/
shared/_navigation_sidebar.html.erb . Then you can drop in the call from the layout file like this:

 < li id=”menu” class=”bg6” >
 < h2 class=”bg1” > Navigate < /h2 >
 < ul >
 < %= render :partial = > “/shared/navigation_sidebar” % >
 < /ul >
 < /li >

 Functionally, this is identical to the list that was there before, except that the active page will no longer be
displayed as a link. (I would show you this in a screenshot, but given the current color and display
scheme, the distinction wouldn ’ t really play in black and white.)

 This code works, but it ’ s pretty ugly and repetitive. What you really want is to make this data - driven,
storing the link data somewhere, and then looping over it to create the menu. The obvious first question
is how to define the data structure. This being Rails, the obvious first answer would be to save the links
as ActiveRecord models and store them in the database. I ’ m going to look past that first answer in this
case, though. The data model for the links isn ’ t very complex, and more to the point, it isn ’ t going to
change very often. At this point, I think ActiveRecord would be overkill. If I had a much more complex
data structure, I might consider it — especially if I felt that I was going to need online link - editing
functionality (which I don ’ t in this case).

 You do need to put the data somewhere in some kind of structure, though. The data that needs to be
saved includes the order in which the captions appear in the menu and the set of URL options associated
with each caption. You could store the data as a list of lists, or a hash and a list, but at some point it ’ s just
easier to encapsulate it into a couple of objects.

You will need one object to represent the items. I put this in app/models/menu_sidebar.rb as follows
(although lib/menu_sidebar.rb is also a reasonable location):

(continued)

c05.indd 126c05.indd 126 1/30/08 4:07:08 PM1/30/08 4:07:08 PM

127

Chapter 5: Navigation and Social Networking

class MenuSidebarItem

 attr_accessor :caption, :option_hash

 def initialize(caption, option_hash = {})
 @caption = caption
 @option_hash = option_hash
 end

end

 Then I put another object for the sidebar as a whole in the same file, like this:

class MenuSidebar

 attr_accessor :items

 def self.load_from_list(list_items)
 sidebar = MenuSidebar.new
 list_items.each do | caption, options |
 sidebar.append_link(caption, options)
 end
 sidebar
 end

 def initialize
 @items = []
 end

 def append_link(caption, url_option_hash = {})
 items < < MenuSidebarItem.new(caption, url_option_hash)
 end

end

 I ’ ve got no tests on this yet, on the somewhat dubious grounds that the objects aren ’ t doing anything interest-
ing yet beyond holding data. (Well, the collection object is loading objects, but more on that in a moment.)

 This transforms the clunky menu sidebar view into the somewhat more elegant loop shown here:

 < % menu_sidebar.items.each do |item| % >
 < li > < %= link_to_unless_current item.caption, item.option_hash % > < /li >
 < % end % >

 That ’ s a lot better, but it does beg the question of where to store the data. A first pass might be to put the
data in a helper method that creates the sidebar, in app/helpers/application_helper.rb :

 def menu_sidebar
 MenuSidebar.load_from_list([
 [“Home”, {:controller = > “recipes”, :action = > “home”}],
 [“Recipes”, {:controller = > “recipes”, :action = > “index”}],
 [“Categories”, {:controller = > “recipes”, :action = > “categories”}],
 [“Authors”, {:controller = > “recipes”, :action = > “authors”}],
 [“Community”, {:controller = > “recipes”, :action = > “community”}],
 [“Gear”, {:controller = > “gear”, :action = > “index”}]
])
 end

c05.indd 127c05.indd 127 1/30/08 4:07:08 PM1/30/08 4:07:08 PM

128

Chapter 5: Navigation and Social Networking

 There are basically two problems with this — first is that it ’ s kind of ugly to put data inside the helper,
and second and more importantly is that it ’ s a performance issue because the sidebar item is being
recreated on every page hit. You ’ re going to want to cache the item somewhere.

 One way to address the data inside the helper is to move the data to an external file. Fortunately, there is
an external file format already blessed as part of the Rails family. Here ’ s the menu data as a YAML file,
which I placed in config/menu.yml :

-
 - Home
 - controller: recipes
 action: home

-
 - Recipes
 - controller: recipes
 action: index

-
 - Categories
 - controller: recipies
 action: categories

-
 - Authors
 - controller: recipes
 action: authors

-
 - Community
 - controller: recipes
 action: community

-
 - Gear
 - controller: gear
 action: index

 This YAML file resolves to the exact same data structure as the list shown previously, and at least in my
opinion, it ’ s going to be a little easier to maintain long - term. For those of you who are not fully versed in
the wonders of YAML, the dashes indicate lists, a colon indicates a key/value pair, and the indentation
indicates structure. In this case, it ’ s a nested list, where each menu item has an inner list consisting of a
caption and then the key/value pairs of the URL option hash. Again, look at the Ruby list in the previous
example to get a sense of the YAML - to - Ruby translation.

 This is not the only way to specify a YAML file for this data. Specifically, it ’ s not what you would get if
you dumped the MenuSidebar object directly to YAML — doing that would add a fair amount of YAML
structure to the file to fully describe the MenuSidebar Ruby object, which would make it a little bit
harder to maintain. However, the format I used does require the YAML file to be parsed to create the
Rails data structure. Luckily, that ’ s not very difficult — in app/models/menu_sidebar.rb , add
the following class method to the MenuSidebar class:

c05.indd 128c05.indd 128 1/30/08 4:07:09 PM1/30/08 4:07:09 PM

129

Chapter 5: Navigation and Social Networking

 def self.load_from_yaml(filename)
 result = MenuSidebar.new
 File.open(filename) do |f|
 YAML.load(f).each do |item_data|
 result.append_link(*item_data)
 end
 end
 result
 end

 The helper method in app/helpers/application_helper.rb must now be changed to this:

 def menu_sidebar
 MenuSidebar.load_from_yaml(File.join(RAILS_ROOT, ‘config’, ‘menu.yml’))
 end

 With this code in place, the menu item corresponding to the currently active page will show up as plain
text, and all the others will show up as a list. That ’ s fine, but you probably also want to actively call
attention to the current page, or make its display distinctive somehow. Rails allows you to override the
default behavior of link_to_unless_current by passing in a block to be executed when the page is
current. A simple change would be to place the text in a custom CSS class. The app/views/shared/_
navigation_sidebar partial would look like this:

 < % menu_sidebar.items.each do |item| % >
 < li >
 < %= link_to_unless_current item.caption, item.option_hash do |name|
 content_tag :span, name, :class = > “current_item”
 end % >
 < /li >
 < % end % >

 The punctuation on that block call may seem a little counterintuitive. It ’ s somewhat atypical in that the
entire function being called with the block argument is actually inside a single ERB output tag containing
the entire block. It ’ s more common to have the block start and end lines inside ERB evaluate tags and
have the body of the block be outside those tags — in the typical case, the contents of the block are meant
to be evaluated by ERB. Because the entire goal of the link_to_unless_current method is to return a
string as part of the response output, and the block just defines the alternate string to be displayed,
enclosing the entire call in the output tags is the cleanest way to get everything to work right. Personally,
I ’ m never quite sure of the best way to lay this out — should the end command line up with the
beginning of the output tag of the line that starts the block (as shown here), or should it line up with the
actual start of the method call, as it would in a regular Ruby layout? If the contents of the block were to
get at all complicated, I would move the whole thing to a helper file, and just call the helper here.

 The block argument for link_to_unless_current is shown here taking a single argument, name ,
which is the name being displayed (and is the first argument to the outside call). There ’ s a second form
of the block that takes the same argument list as the outside call, which you can use if you want to do
something more complex with the data — the method will correctly interpret the arguments based on
whether you pass one argument to the block or more than one.

c05.indd 129c05.indd 129 1/30/08 4:07:09 PM1/30/08 4:07:09 PM

130

Chapter 5: Navigation and Social Networking

 For this example to actually change the presentation of the display, you also need to define a CSS class
for current_item in your scaffold.css file. What to do there is up to you. I opted for the following
simple color change to red for the link:

.current_item {
 color: #f00;
}

 Figure 5 - 1 shows the ultimate result, albeit in black - and - white. Remember that not all of these links have
been defined yet, so they don ’ t all go to actual parts of the site.

Figure 5-1

 Object Cache
 There ’ s one performance problem with the code as presented. The YAML file is being reloaded and
reparsed on every page load. Because the exact same MenuSidebar object is being created each time, this
seems to be redundant. One way to avoid this problem is to cache the MenuSidebar object after it is
created. The unit test that needs to be created in test/unit/menu_sidebar_test.rb for this
functionality is as follows:

require File.dirname(__FILE__) + ‘/../test_helper’
require ‘menu_sidebar’

class MenuSidebarTest < Test::Unit::TestCase

 def test_load_from_yaml
 file = File.dirname(__FILE__) + ‘/../fixtures/menu.yml’
 assert_equal(0, MenuSidebar.cache.size)
 menu = MenuSidebar.load_from_yaml(file)
 assert_equal(6, menu.items.size)
 assert_equal(1, MenuSidebar.cache.size)
 assert_equal(file, MenuSidebar.cache.keys[0])
 assert_equal(6, MenuSidebar.cache.values[0].items.size)

c05.indd 130c05.indd 130 1/30/08 4:07:09 PM1/30/08 4:07:09 PM

131

Chapter 5: Navigation and Social Networking

 menu = MenuSidebar.load_from_yaml(file)
 assert_equal(1, MenuSidebar.cache.size)
 end

end

 You will need to copy the menu.yml file to the test/fixtures directory so that you can run tests
against it and the tests won ’ t break when you change the actual application menu.

 In this test, don ’ t actually try to load the menu.yml file using the standard test fixtures helper. That
won ’ t work because Rails will assume that there is a menus table in the database and try to load the
 fixture to the database — but there isn ’ t a menus table. Just load the file in the actual test.

 The test first asserts that the cache is empty, and then that the menu YAML file loads. After the load, the
test verifies that the cache now has one element, whose key is the filename the menu was loaded from,
and whose value is the MenuSidebar object. Finally, the test loads the file again and verifies that the
cache has not grown.

 To implement this cache, you can use a nice feature of Ruby where a Hash can be declared with a block
argument. The block argument takes two arguments: the hash itself and a key. The block is then invoked
any time there is an attempt to get the value of a hash key that does not exist. The typical behavior
within this block is to return a default value and optionally populate the hash with that default value. In
this case, the key will be the filename, and the block will read in the YAML file and place it in the hash. A
second call to the hash will just return the menu object without reloading the file. Here ’ s the relevant
section of menu_sidebar.rb :

 @@cache = Hash.new do |hash, filename|
 hash[filename] = MenuSidebar.read_from_yaml(filename)
 end

 def self.cache
 @@cache
 end

 def self.read_from_yaml(filename)
 result = MenuSidebar.new
 File.open(filename) do |f|
 YAML.load(f).each do |item_data|
 result.append_link(*item_data)
 end
 end
 result
 end

 def self.load_from_yaml(filename)
 @@cache[filename]
 end

 The code now separates the read_from_yaml behavior away from the load_from_yaml method. The
preexisting load_from_yaml method now just does a lookup in the new @@cache class variable. The
call to actually read the YAML file is now in the block declared when the @@cache is defined. With this
caching in place, performance of the menu system will improve.

c05.indd 131c05.indd 131 1/30/08 4:07:10 PM1/30/08 4:07:10 PM

132

Chapter 5: Navigation and Social Networking

 Tagging
 One of the key elements of Web 2.0 is the concept of tagging , giving each item in your database an
arbitrary number of keyword tags and using those tags to structure the user ’ s interface to the data.
Allowing users to tag items allows for a richer categorization of the data, and doesn ’ t restrict items to
just a single category. From the perspective of a user browsing the data, tags allow for a quick way to
find related items quickly.

 Installing the Acts As Taggable Plugin
 From Rails, tagging is managed with a plugin named Acts As Taggable On Steroids, or AATOS. (Why the
name? Because it ’ s a replacement for a previously created Acts As Taggable plugin — apparently you
need to inject illegal substances to improve your tag plugins these days.) Anyway, the AATOS plugin
provides support for adding tags to an arbitrary ActiveRecord model in your project.

 To start using AATOS, you need to first install the plugin. Most Rails plugins are distributed via a
Subversion server, which you can load into your project, or if you are also using Subversion to manage
your project, you can add the plugin site as an external site (in the same way that Edge Rails is added as
an external site). The standard Rails mechanism for installing a plugin is the provided plugin install
script. Installing AATOS via this command looks like this:

$ ruby script/plugin install
-x http://svn.viney.net.nz/things/rails/plugins/acts_as_taggable_on_steroids

 The URL is the address of the Subversion server for the plugin. The - x option adds the plugin to your
local Subversion repository as an external site — if you don ’ t need that feature, just remove the - x .
Running this command will add a bunch of files to the vendor/plugins/acts_as_taggable_on_
steroids directory.

 To start using the plugin, you first need to make some changes to your database schema. The plugin will
automatically generate a migration file if you ask it nicely with the following command:

$ ruby script/generate acts_as_taggable_migration

 The migration sets up one table for the tags themselves and another table to manage the association
between the tags and another ActiveRecord object, like this:

class ActsAsTaggableMigration < ActiveRecord::Migration
 def self.up
 create_table :tags do |t|
 t.column :name, :string
 end

 create_table :taggings do |t|
 t.column :tag_id, :integer
 t.column :taggable_id, :integer
 t.column :taggable_type, :string
 t.column :created_at, :datetime
 end

 add_index :taggings, :tag_id

c05.indd 132c05.indd 132 1/30/08 4:07:10 PM1/30/08 4:07:10 PM

133

Chapter 5: Navigation and Social Networking

 add_index :taggings, [:taggable_id, :taggable_type]
 end

 def self.down
 drop_table :taggings
 drop_table :tags
 end
end

 A tag is simply a string. The association uniquely identifies an external object via the combination of
 taggable_type , representing the class name of the object, and taggable_id , representing its ID
number, this is a standard Rails mechanism that will be discussed in Chapter 6. Run the migration using
 rake db:migrate to apply the changes to your development database.

 Applying Tags to a Model
 After the migration has been applied, adding tags to any model is quite easy. To declare the
ActiveRecord model as taggable, call the method acts_as_taggable at the top of the class, right along
the place where you declare database relationships:

class Recipe < ActiveRecord::Base

 acts_as_taggable
 has_many :ingredients, :order = > “order_of ASC”, :dependent = > :destroy
 belongs_to :user

 #
 # rest of class definition
 #
end

 Basic Tag API
 Declaring the model as taggable gives you a simple API to set, change, and search for tags. The following
unit test, added to recipe_test.rb , shows the expected behavior:

 def test_is_taggable
 recipe = Recipe.find(1)
 assert recipe.tag_list.blank?
 recipe.tag_list = “yummy, vegetarian”
 recipe.save
 assert !recipe.tag_list.blank?
 recipe.tag_list.remove “yummy”
 assert_equal(“vegetarian”, recipe.tag_list.to_s)
 recipe.tag_list.add(“french”)
 assert_equal(“vegetarian, french”, recipe.tag_list.to_s)
 recipe.save
 should_be_recipe = Recipe.find_tagged_with(“vegetarian”)
 assert_equal(1, should_be_recipe[0].id)
 should_also_be_recipe = Recipe.find_tagged_with(“vegetarian, French”,
 :match_all = > true)
 assert_equal(1, should_also_be_recipe[0].id)
 end

c05.indd 133c05.indd 133 1/30/08 4:07:10 PM1/30/08 4:07:10 PM

134

Chapter 5: Navigation and Social Networking

 The basic attribute for handling tags is tag_list , generated by the plugin declaration, which is an
instance of the plugin class TagList . You will rarely deal with tag_list directly — all of your
interaction with this attribute is via string objects, which are parsed or generated by the TagList object
for communication with the outside world.

 For example, in the test, the tag list is created by setting tag_list to “ yummy, vegetarian ” . Internally,
the taggable plugin parses the list and converts it to two tags. The default delimiter is a comma, but you
can change that by setting the class attribute Tag.delimiter . So the following line of code in config/
environment.rb would set the tag delimiter to a space:

Tag.delimiter = “ “

 When the ActiveRecord is saved to the database, the taggable plugin manages the tags. It saves two tags
to the database, and associates them with the recipe instance. The tag_list has relatively few methods
of its own, but you can query to see if the list is blank, and you can add and remove tags from the list as
shown — the test removes yummy and replaces it with French .

 Retrieving recipes based on their tags is achieved via the find_tagged_with method defined by the
plugin. The argument to the record is a string of all the tags you are trying to match, separated by the
current tag delimiter. So Recipe.find_tagged_with(“ vegetarian “) returns a list with a single
recipe object. If you include more than one tag in the argument list, then the default behavior is to return
any object that contains any of the tags — a logical OR search. If you want the search to match only
recipes that contain all the tags in the argument list, then you must also pass the :match_all = > true
argument, as the next - to - last line of the previous test does.

 Caching Tags
 The AATOS program does a nice job of seamlessly integrating tagging across your ActiveRecord models.
One potential problem in a production environment is the performance of a tag search, because the
search has to go through several joins to make everything work. You can improve performance by
caching the tag lists for each object. The plugin makes this relatively simple. To get the ball rolling, you
create the following migration:

$ ruby script/generate migration cache_tags

 This creates an empty migration file, which Rails will name db/migrate/006_cache_tags.rb . Within
that file, add a column to any ActiveRecord model that contains tags you want to cache. For example:

class CacheTags < ActiveRecord::Migration
 def self.up
 add_column :recipes, :cached_tag_list, :string
 end

 def self.down
 remove_column :recipes, :cached_tag_list
 end
end

 After the migration is written, you need to run rake db:migrate to apply the change to the database.

c05.indd 134c05.indd 134 1/30/08 4:07:11 PM1/30/08 4:07:11 PM

135

Chapter 5: Navigation and Social Networking

 The default name for the list of cached tags is, oddly enough, cached_tag_list . If, for some reason,
that name offends you or conflicts with an existing name in your project, you may use any arbitrary
name you ’ d like. If you do choose to get creative with the naming, you need to add the following line in
your ActiveRecord class telling the plugin what column name you ’ ve chosen:

set_cached_tag_list_column_name “YOUR NAME HERE”

 No matter which name you choose, the plugin will use a cached list if one is available. The cache will
automatically be updated whenever the tag_list attribute is modified or the TagList add and remove
methods are called. If you have some need to get fancy and manipulate the tag list manually you can
update the cached version by calling the instance method save_cached_tag_list .

 Tags and the User Interface
 To complete the addition of tags to the Soups OnLine user experience, you need a way for the tags to get
into the data in the first place, as well as a way for the prospective user to see and browse tags.

 Entering Tag Data
 At this point, it ’ s actually very little additional work to get the tags into the database. Because the
taggable plugin manages the tag_list attribute for setting and saving, all the rest of the code needs to
do is get the tag list value to the appropriate place for ActiveRecord to be able to manage it.

 Simply add the following command to the /view/recipes/form.html.erb file (I put mine right
before the CAPTCHA clause):

 < p >
 < b > Tags: < /b > (separate tags with a comma) < br / >
 < %= f.text_field :tag_list, :class = > “input”, :size = > 55 % >
 < /p >

 And amazingly, that does it. You do not need to change the controller at all — just adding the element to
the form will automatically cause it to be saved correctly. To prove this with a functional test, modify the
 test_should_create_recipe test in test/funcitonals/recipes_controller_test.rb to pass a
tag list into the controller, and test that the tag list is preserved in the created recipe:

 def test_should_create_recipe
 create_mock_captcha_token(“fred”, “3”)
 recipe_hash = { :title = > “Grandma’s Chicken Soup”,
 :user_id = > 1,
 :servings = > “5 to 7”,
 :description = > “Good for what ails you”,
 :ingredient_string = >
 “2 cups carrots, diced\n\n1/2 tablespoon salt\n\n1 1/3 cups stock”,
 :directions = > “Ask Grandma”,
 :tag_list = > “yummy, chickeny”}
 ### ... already existing tests that we don’t need to duplicate ...
 assert_equal(“yummy, chickeny”, new_recipe.tag_list.to_s)
 end

c05.indd 135c05.indd 135 1/30/08 4:07:11 PM1/30/08 4:07:11 PM

136

Chapter 5: Navigation and Social Networking

 Showing Tag Detail Data
 After the tag list is entered, you probably also want to display it in the detail listing for each recipe. For a
nice Web 2.0 social kind of site, you ’ ll also want to give users the chance to edit tags for any recipe, even
ones they didn ’ t actually upload.

 To enable editing tags from the detail page, start by adding the following code to the show.html.erb
file for recipes. Putting this chunk right below the title display is as good a place as any:

 < p >
 Tags:
 < %= render :partial = > “show_tags” % >
 < /p >

 The rendering of the tag listing goes in a partial because it has a little bit of logic, and it ’ s going to be
called again on the other side of this process. The partial goes in app/views/recipes/_show_tags
.html.erb , and looks like this:

 < span id=”tags” >
 < %= h @recipe.tag_list.to_s % >
 < % if_is_logged_in do % >
 < %= link_to_remote “Edit”, :url = > remote_tag_edit_recipe_path(@recipe),
 :method = > :get, :update = > “tags” % >
 < % end % >
 < /span >

 This code is similar to the code you wrote back in Chapter 1 to support in - place editing of ingredients.
You ’ ll notice that this partial has some minimal security to prevent tags from being changed willy - nilly:
the user has to be logged in to edit tags. The Ajax remote link calls a path that hasn ’ t been defined yet.
This requires the addition of the following two routes in the routes.rb file, in place of the existing
block of routes for map.resources :recipes :

map.resources :recipes,
 :member = > {:remote_tag_edit = > :get, :remote_tag_update = > :put } do |recipes|
 recipes.resources :ingredients,
 :member = > {:remote_edit = > :get, :remote_update = > :put}
end

 Again, notice that similar to the ingredient change, both edit and update routes are needed. The
controller code for both of them is simple — just add the following to app/controller/recipes_
controller.rb :

 def remote_tag_edit
 edit
 render(:layout = > false)
 end

 def remote_tag_update
 @recipe = Recipe.find(params[:id])
 if @recipe.update_attributes(params[:recipe])
 render(:partial = > “show_tags”)
 else
 render :text = > “Error updating tags”
 end
 end

c05.indd 136c05.indd 136 1/30/08 4:07:11 PM1/30/08 4:07:11 PM

137

Chapter 5: Navigation and Social Networking

 The remote tag edit controller just grabs the @recipe from the incoming id parameter, and renders its
view without a layout. The remote tag update controller updates the attributes based on the incoming
parameters and renders the show_tags partial defined previously or an error message.

 The edit form just defines a one - element form, with just the tag list. This goes in a new partial named
 app/views/recipes/_remote_tag_edit.erb :

 < % remote_form_for(@recipe,
 :url = > remote_tag_update_recipe_path(@recipe),
 :update = > “tags”) do |f| % >
 < %= f.text_field :tag_list, :size = > “50” % >
 < % end % >

 ActiveRecord and the taggable plugin collaborate again to ensure that the tag_list is correctly
dropped into the database.

 One limitation of the data structure created by this plugin is that the tag list is common to all users —
 there ’ s no way for a user to create a private set of tags. To do that within the plugin structure, you ’ d need
to have a join table associating users with recipes on a many - to - many basis, and allowing each of those
join elements to have a tag list.

 Viewing Tags
 Now that the tag data is in the database, one example of using that information would be allowing the
user to see recipes based on the tag. This section shows you how to make a simple list display based on
the tag; the next section shows you one way to allow the user to browse tag data; and later in the chapter,
you ’ ll see how to integrate this with the site ’ s search capabilities.

 When talking about RESTful resources and controllers in Chapter 1 , I mentioned that a RESTful resource
does not necessarily have to correspond to an actual model in the system. The category resource will be
the first example in the Soups OnLine application of such a resource. Rather than stuff the controller
actions for displaying categories into the recipe controller, it ’ s considered better practice to create a
separate controller that just manages category information. In this case, the index method would be
used to display the tag cloud of all categories, and the show method would be used to display the details
for a specific category. All you need to do to create the resource is add the following line to config/
routes.rb :

map.resources :categor ies

 Let ’ s start with functional tests. Create the file test/functionals/categories_controller_test
.rb and start it off like so:

require File.dirname(__FILE__) + ‘/../test_helper’
require ‘categories_controller’

Re-raise errors caught by the controller.
class CategoriesController; def rescue_action(e) raise e end; end

class CategoriesControllerTest < Test::Unit::TestCase

(continued)

c05.indd 137c05.indd 137 1/30/08 4:07:11 PM1/30/08 4:07:11 PM

138

Chapter 5: Navigation and Social Networking

 fixtures :recipes

 def setup
 @controller = CategoriesController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_should_show_categories
 recipe_1 = Recipe.find(1)
 recipe_1.tag_list = “yummy, vegetarian”
 recipe_1.save
 get :show, :id = > “yummy”
 assert_equal(1, assigns(:recipes).size)
 assert_equal(“Soup One”, assigns(:recipes)[0].title)
 end

 The test sets the tags for the recipe with an ID of 1, as specified in the fixture data, and saves it. Then it
calls the new controller method and asserts that one recipe is in the list, and it matches that recipe with
the tag under consideration.

 I chose to update the tag list in the test itself, rather than in the fixture, for no particular reason except
that I felt the intent of the test would be clearer if the tag list was set close to the assertion that ’ s testing it.
Also, I ’ m not explicitly testing the view output, largely because it is quite straightforward. You should,
however, add a test to make sure nothing crashes if no category is specified in the request, so, in the
same file, add this:

 def test_should_show_categories_empty_call
 recipe_1 = Recipe.find(1)
 recipe_1.tag_list = “yummy, vegetarian”
 recipe_1.save
 get :category
 assert_equal(0, assigns(:recipes).size)
 end

 The implementation of this method is actually much shorter than the test. Most of the work is done by
the find_tagged_with method discussed previously in this chapter. Create a file called app/
controllers/categories_controller.rb , and start it off with the following show method:

 class CategoryController < ApplicationController
 layout “recipes”
 before_filter :load_user

 def show
 @category = params[:id] ||= “”
 @recipes = Recipe.find_tagged_with(@category)
 respond_to do |format|

(continued)

c05.indd 138c05.indd 138 1/30/08 4:07:12 PM1/30/08 4:07:12 PM

139

Chapter 5: Navigation and Social Networking

 format.html #default
 format.xml { render :xml = > @recipes}
 end
 end
end

 A request for all recipes in a specific category strikes me as a very reasonable potential remote call, so the
controller method allows an XML request. A view page is also needed. Place the following at app/
views/categories/show.html.erb :

 < % @title = “Recipes in category #{@category}” % >

 < div >
 There
 < %= pluralize @recipes.size, “is, “are” % >
 < %= @recipes.size % >
 < %= pluralize @recipes.size, “result” % > .
 < /div >

 < ul >
 < % for recipe in @recipes % >
 < li > < %= link_to(h(recipe.title), recipe) % > < /li >
 < % end % >
 < /ul >

 The only thing to say about this is that the string block at the top uses a built - in helper method called
 pluralize , which pluralizes a word if the passed quantity is not equal to 1 (using the Rails built - in
inflectors). So the singular message is “ There is 1 result, ” but the plural message would be “ There are 12
results .”

 Tag Cloud Calculation
 Tag data for an entire site is often displayed in a tag cloud, an alphabetical list of tags, with more
frequently used tags displayed larger, bolder, or in brighter colors. Usually, the tags in the list are also
links to a listing of all the elements in the data set that contain that tag. With the acts_as_taggable_
on_steroids plugin, all the data needed to create your very own recipe tag cloud is available, although
you will have to do a bit of data massaging.

 There are three steps to creating the tag cloud:

 1. Gather a list of tags and their frequency.

 2. Convert the frequency counts to some kind of Cascading Style Sheets (CSS) style based on their
relative magnitudes.

 3. Create a view to display the tags in their styles.

 The tag cloud calculations are generic, rather than something specific about recipes, so I ’ m going to
create a class in app/models called TagCloud to house the calculations . The unit test for step 1 goes in

c05.indd 139c05.indd 139 1/30/08 4:07:12 PM1/30/08 4:07:12 PM

140

Chapter 5: Navigation and Social Networking

 test/unit/tag_cloud_test.rb . It sets up the existing recipe fixtures with some tag data, and then
validates the hash structure as follows:

require File.dirname(__FILE__) + ‘/../test_helper’

class TagCloudTest < Test::Unit::TestCase
 fixtures :recipes
 fixtures :ingredients

 def calculator
 TagCloud.new(Recipe, 7)
 end

 def test_should_get_tag_counts
 recipe_one = Recipe.find(1)
 recipe_one.tag_list = “yummy, chicken”
 recipe_one.save
 recipe_two = Recipe.find(2)
 recipe_two.tag_list = “yummy, beef”
 recipe_two.save
 counts = calculator.tag_count_hash
 assert_equal(3, counts.size)
 assert_equal(2, counts[“yummy”])
 assert_equal(1, counts[“chicken”])
 assert_equal(1, counts[“beef”])
 end
end

 The TagCloud calculator, as declared in the calculator method, takes the taggable class itself as an
argument, along with the number of buckets.

 Getting the correct information into the hash uses two features of the taggable plugin. The tag_counts
method, which is added to each class declared to act as taggable, returns the set of tags defined by all the
elements in that class. Despite the name, the tag_counts method in this plugin doesn ’ t actually return
the counts; instead, each tag that is returned has a counts attribute to retrieve that information. So the
method to return the hash with all tags and their counts is a class method in tag_cloud.rb . It simply
walks the list of tags and retrieves their counts.

 Here ’ s the beginning of the TagCloud class to implement the tag_count_hash function — notice that
the taggable class is coming in as an instance variable, and that variable is being used to call class
methods of that class:

class TagCloud

 attr_reader :taggable_class, :num_of_buckets

 def initialize(taggable_class, num_of_buckets)
 @taggable_class = taggable_class
 @num_of_buckets = num_of_buckets
 end

 def tag_count_hash
 result = Hash.new

c05.indd 140c05.indd 140 1/30/08 4:07:12 PM1/30/08 4:07:12 PM

141

Chapter 5: Navigation and Social Networking

 taggable_class.tag_counts.each do |tag|
 result[tag.name] = tag.count
 end
 result
 end

 The tag_counts method of the taggable class actually takes several options that can filter the list of tags
that is returned in the list. The most interesting option for our purposes is :limit , which takes an
integer, and is the maximum number of tags to place in the cloud. You ’ d probably also want to use that
in conjuction with :order = > “ tags.count DESC ” to ensure that the tags with the highest frequency
are included in the cloud. You can also use the :at_least and :at_most options to filter based on the
raw frequency count, and the :start_at and :end_at options can limit the number of tags returned
based on the time each tag was created, which you ’ d most likely use to create a cloud of recent additions.
A more elaborate implementation of the tag cloud would allow those options to be specified when the
calculator is created.

 The next step is to take those raw counts and split them into buckets that can each have a different CSS style
when rendered. There are several design - level decisions that could be made about the cloud display at this
point. Should the tags go into discrete buckets, or should the size differences between the tags be
continuous? If elements go into discrete buckets, how many should there be? How much size difference
should there be between buckets, and should boldface or color also be used to distinguish between the tags.

 In the interest of relative simplicity, I ’ ve implemented this cloud with seven buckets differentiated by
size alone, and created seven CSS styles to manage the buckets. I placed them in public/stylesheets/
scaffold.css like this:

.tag_cloud_bucket_1 { font-size: 75%; }

.tag_cloud_bucket_2 { font-size: 100%; }

.tag_cloud_bucket_3 { font-size: 125%; }

.tag_cloud_bucket_4 { font-size: 150%; }

.tag_cloud_bucket_5 { font-size: 175%; }

.tag_cloud_bucket_6 { font-size: 200%; }

.tag_cloud_bucket_7 { font-size: 225%; }

 I really wanted the median bucket number to have the normal font size of 100%. But as a practical
matter, if the default text size is about 12 points, it ’ s hard to go much below 75% of that, which would be
9 points, and still have it be at all legible. The linear increase between buckets should be pretty noticeable
to the user.

 The tag cloud class will add a method to convert the tag count hash you just created to a hash where the
key is the tag and the value is the bucket number. The following unit test for this class is careful to test
the boundary conditions around the end of buckets, because off - by - one errors are common in this kind
of numerical algorithm:

 def test_should_bucketize_tags
 raw_counts = {“a” = > 1, “b” = > 5, “c” = > 10, “d” = > 11, “e” = > 59, “f” = > 70}
 expected = {“a” = > 1, “b” = > 1, “c” = > 1, “d” = > 2, “e” = > 6, “f” = > 7}
 actual = calculator.assign_tag_cloud_buckets(raw_counts)
 expected.each do |key, value|
 assert_equal(value, actual[key],
 “key #{key}, expected [#{value}], got [#{actual[key]}]”)
 end
 end

c05.indd 141c05.indd 141 1/30/08 4:07:13 PM1/30/08 4:07:13 PM

142

Chapter 5: Navigation and Social Networking

 Because the algorithm uses the minimum and maximum values of the counts to determine the buckets,
the boundaries of the entire data set are always tested, no matter what range was picked. However, there
does need to be some special handling when all the tags have the same count value. The most reasonable
thing to do in that case would be to put all the tags in the middle bucket, as in the following unit test:

 def test_should_bucketize_tags_no_dif
 actual = calculator.assign_tag_cloud_buckets({“a” = > 1, “b” = > 1})
 expected = {“a” = > 4, “b” = > 4}
 expected.each do |key, value|
 assert_equal(value, actual[key],
 “key #{key}, expected [#{value}], got [#{actual[key]}]”)
 end
 end

 Now you need a method to determine the minimum and maximum values of the range, and another
method to calculate the actual bucket for each tag. Put the following bucket - assignment code in the
 TagCloud class:

 def assign_tag_cloud_buckets(tag_counts)
 result = Hash.new
 min = tag_counts.values.min
 max = tag_counts.values.max
 tag_counts.each do |tag, count|
 result[tag] = bucket_from_range(count, min, max)
 end
 result
 end

 The bucket calculation should return a median value within the number of buckets if the minimum and
maximum values of the range are identical. Otherwise, it should pass the calculation off to the actual
linear interpolation calculation. Here ’ s how to make that happen:

 def bucket_from_range(count, min, max)
 return (num_of_buckets / 2).floor + 1 if min == max
 linear_bucket(count, min, max)
 end

 def linear_bucket(count, min, max)
 return 1 if count == min
 spread = max - min
 ((count - min) * 1.0 / spread * num_of_buckets).ceil
 end

 If the count in question is the minimum value, then you get the first bucket. Otherwise, the count is
compared to the spread of values and the number of buckets to return the bucket count.

 Finally, you need to put it all together with a method that unifies both parts of the calculation. Add the
following to the TagCloud class:

 def self.calculate(taggable_class, num_of_buckets=7)
 calculator = TagCloud.new(taggable_class, num_of_buckets)
 calculator.assign_tag_cloud_buckets(calculator.tag_count_hash)
 end

c05.indd 142c05.indd 142 1/30/08 4:07:13 PM1/30/08 4:07:13 PM

143

Chapter 5: Navigation and Social Networking

 Tag Count Display
 Now it ’ s time to add the index method to the categories controller. The functional test for this is simple,
and is mostly there to catch syntax errors, as most of the complex calculation is already under unit test:

 def test_should_show_tag_cloud
 recipe_1 = Recipe.find(1)
 recipe_1.tag_list = “yummy, vegetarian”
 recipe_1.save
 get :tag_cloud
 assert_response :success
 end

 Next, you define the controller method to call the TagCloud object, and create a sorted list of the tags
themselves. Add this method to app/controllers/categories_controller.rb :

 def index
 @tag_cloud = TagCloud.calculate(Recipe)
 @tag_counts = TagCloud.tag_counts(Recipe)
 @tags = @tag_cloud.keys.sort
 end

 Again, the idea is to have a thin controller object, with the calculation offloaded into models and helper
classes wherever possible.

 The ERB view for the tag cloud takes the list and the bucket hash to create the actual cloud (by this time,
that view is also pretty thin). Add this to app/views/categories/index.html.erb :

 < % @title = “Recipe Tag Cloud” % >

 < div class=”tag_cloud_whole” >
 < % @tags.each do |tag| % >
 < %= link_to tag, category_recipes_path(:category = > tag),
 :class = > “tag_cloud_bucket_#{@tag_cloud[tag]}”% >
 < % end % >
 < /div >

 The link_to call makes every tag link to the category display for that tag. The CSS class is built from the
 tag_cloud_bucket constant used in the CSS file, and the number of the bucket as calculated by the tag
cloud calculator.

 Figure 5 - 2 shows the end result, at least with the current state of my production database.

Figure 5-2

c05.indd 143c05.indd 143 1/30/08 4:07:13 PM1/30/08 4:07:13 PM

144

Chapter 5: Navigation and Social Networking

 Searching
 If the success of Google proves anything about how to structure information, it ’ s that it doesn ’ t matter
how you structure information if your search algorithm is good enough. The difficulty is to create a
search system that will catch all the results relevant to the search request without overwhelming the user
with irrelevant matches. You also need to present the results to users in such a way that they can tell
which results are relevant and which are spurious.

 Within Rails, the goal is to search the ActiveRecord objects based on text input that might match one or
more fields of the record. For the main text box, you want an unstructured match against multiple fields.
You can then provide an advanced search form to specify particular fields to use for the match. This
section describes two useful methods for handling a search. One method uses SQL queries. It ’ s simple,
and requires nothing beyond the existing ActiveRecord find mechanism. However, it doesn ’ t easily
distinguish the importance of the match, and it ’ s hard to add support for Boolean logic in the search.

 The second, more complex method uses the Ferret text - indexing tool to support a full - text search. Ferret
scores each match based on importance, plus it allows a rich language for logic within the query.
However, it requires a Ruby gem, a Rails plugin, and some additional files to support the indexes.

 Both methods may have performance issues in high - traffic production sites.

 Searching with SQL
 The simple mechanism for text search using SQL is to include the LIKE operator in the condition of your
SQL query. The operator needs to be augmented slightly to allow for partial matches and case - insensitive
matching. You also want the match to work whether the word is in the title, the description, the
directions, or the ingredient list (although you may want to allow the user to create a more advanced
search that only looks at a subset of the fields).

 The LIKE operator normally is of the form title LIKE < pattern > . The pattern is typically a string
that includes one or more wildcards. The clause is true if the entire text of the column string matches the
pattern, so if there are no wildcards, then the behavior is identical to using the equals operator.

 There are two separate wildcards that are defined, one of which is used more often. The one you ’ ll use
less often is a simple underscore (_), which matches any single character, so title like ‘ ba_ ’ would
match bar and bat, but not ball or balloon. You will more commonly use the percent sign (%), which
matches zero or more characters. So title like ‘ ba% ’ would match all those words. Using a
string with percent signs on both sides is the common SQL idiom to test for an included substring; so
 title like ‘ %ba% ’ would match all of the preceding words plus things like lumbar and debacle.

 The test suite to validate this search method consists of a common test, a set of test strings, and then a
test for the non - match conditions. To make the testing a little more straightforward, all the tests are
expected to match against the same fixture in the recipe fixtures.

 The actual test calls the method under test, validates that only one response is found, and that the
response is the expected recipe. Place these tests in test/unit/recipe_test.rb :

 def assert_expected_match(string)
 results = Recipe.find_text_like(string)

c05.indd 144c05.indd 144 1/30/08 4:07:14 PM1/30/08 4:07:14 PM

145

Chapter 5: Navigation and Social Networking

 assert_equal(1, results.size, “Error testing #{string}”)
 assert_equal(Recipe.find(1).title, results[0].title)
 end

 The list of test cases consists of words from the title, description, directions, ingredients, and tag list, plus
a test for case - insensitivity and one for partial word matching:

 def test_expected_matches
 tests = %w{Soup ou sOUP Scrumptious drink First}
 tests.each do |test|
 assert_expected_match(test)
 end
 end

 The handle error suite consists of a word that has no matches, an empty string, and nil :

 def test_text_search_no_match
 tests = [“gazorgenplatz”, “”, nil]
 tests.each do |test|
 assert Recipe.find_text_like(test).empty?
 end
 end

 Making these tests pass involves adding the find_text_like method to the Recipe class in app/
models/recipe.rb , and a similar method to the Ingredient class in app/models/ingredient.rb .
Here ’ s the Recipe method:

 def self.find_text_like(search)
 return [] if search.blank?
 fields = [“title”, “description”, “directions”, “cached_tag_list”]
 conditions = [fields.collect { |field| “#{field} LIKE ?”}.join(“ or “)]
 fields.each { conditions < < “%#{search}%” }
 recipes = Recipe.find(:all, :conditions = > conditions, :order = > “title ASC”)
 recipes += Ingredient.find_recipes_with_text_like(search)
 recipes.uniq.sort_by { |recipe| recipe.title }
 end

 The structure here is designed to make it easy to add new fields without duplicated code effort — it ’ s
actually only a refactoring or so away from being completely generic and applicable to any arbitrary
class. The first line gets you out of the code immediately if the search is blank, avoiding any sort of null
testing on the search parameter later in the code.

 The next three lines build up the conditions list. Normally, you ’ d pass the find method a parameter
something like this:

:conditions = > [“title LIKE ? or description LIKE ? “, “%{search}%”, “%{search}%”]

 But building up that list manually in the code is kind of ugly, and involves duplication of effort. So the
method builds the list programmatically. First, all the LIKE clauses are created in a list and joined by an or
operator. Then for each column mentioned in the list, the search term is appended to the list. After the list
is built, it ’ s included in the find call. Because of the way Rails magically handles strings and quotation
marks in an ActiveRecord find call, the percent signs are included in the string part of the condition list,
and not in the actual condition clause. If you try to do something like [“ title like ‘ %?% ’ ” ,
 “ banana ”] , the quotation marks will not be added properly, and you ’ ll get an SQL syntax error.

c05.indd 145c05.indd 145 1/30/08 4:07:14 PM1/30/08 4:07:14 PM

146

Chapter 5: Navigation and Social Networking

 That find call will take care of matches within the recipe fields, but not ones within the ingredients. You
could handle this by messing around with SQL joins, but I usually find that to be a frustrating activity,
especially because you are sort of going against the grain by explicitly specifying joins within Rails.
Instead, I set up a simplified text find to search the ingredient field in the ingredients table — making an
executive decision that the code does not need to do a text search against the directions that say whether
the carrots are chopped or diced. This code goes in the Ingredient class:

 def self.find_recipes_with_text_like(search)
 ingredients = Ingredient.find(:all,
 :conditions = > [“ingredient LIKE ?”, “%#{search}%”],
 :select = > “distinct recipe_id”)
 ingredients.collect { |i| i.recipe }
 end

 This method returns a list of recipe objects. The only oddity here is the use of the :select option to limit
the return values to just the recipe_id values and to use SELECT DISTINCT to return each individual
recipe only once.

 After the ingredient code is called, the method needs to combine, de - duplicate, and sort the data before
everything is returned.

 Using SQL as your text search engine has a couple of advantages. It ’ s fairly simple. Because it does not
depend on any external plugins or features, it ’ s rather portable to production servers you might not
control. The code is not necessarily portable between database engines, though — the code here is
written for MySQL, which performs a LIKE operation on a case - insensitive basis. Other databases do
 LIKE operations with case - sensitivity, so porting this code to one of those databases would require
converting both the search string and the database text to a common case. The performance might be a
bit spotty — especially if you have to normalize the case (caching the normalized versions in the
database itself would be a big performance win here). Other disadvantages include missing features,
such as support for more complex logic in the search strings. (Some databases, including MySQL,
support complex logic strings in the search calls, but there ’ s no SQL standard for the feature.) The SQL
results are not given any kind of relevance, and you are merely sorting them by title.

 Searching with Ferret
 If you ’ re doing any kind of complex text search in your application, then you want an engine that
actually supports complex text search. You want a Ferret. Ferret, in this context is a Ruby port of the
popular Java search engine Lucene, and with the help of a snazzy Rails plugin, supporting Ferret - based
searches in your Rails application is pretty straightforward.

 Installing Ferret
 To integrate Ferret with your Rails application, you need two things. The first is Ferret itself, available as
a Ruby gem. Type the following command:

gem install ferret

 You ’ ll get prompted for a version based on your platform. (Windows has a separate binary download.)
This is a gem that may need to compile some C code, so the C compiler for your environment needs to
be available (see Appendix A for more details).

c05.indd 146c05.indd 146 1/30/08 4:07:14 PM1/30/08 4:07:14 PM

147

Chapter 5: Navigation and Social Networking

 The second installation is a Rails plugin called Acts as Ferret. Although you can install acts_as_ferret
as a gem (gem install acts_as_ferret), that ’ s probably not the best course of action (for one thing,
you need to explicitly require ‘ acts_as_ferret ’ in your Rails project. You are probably better off
grabbing the plugin as a Rails plugin, like this:

$ ruby script/plugin install -x
svn://projects.jkraemer.net/acts_as_ferret/tags/stable/acts_as_ferret

 If you don ’ t want to maintain the plugin as a Subversion external repository, then leave off the - x option.

 Turning Your Model into a Ferret
 Ferret ’ s functionality, at least as far as this project is concerned at the moment, is similar enough to the
SQL experiment that the unit tests are almost identical — they just call a different search method. The
only difference is the partial match test: ou in the previous test suite. Ferret indexes on full words or
short phrases only, and does not do generic matching of parts of words. All the other tests will work,
including the case - insensitivity test.

 Each ActiveRecord class that you want to be indexable by Ferret needs to be registered using the acts_
as_ferret method call. The arguments to this call define the parameters of the indexing. For the
 Recipe class, you can use the following:

acts_as_ferret :fields = > [:title, :description, :directions,
 :tag_list, :ingredient_string], :remote = > false

 The :fields argument specifies the list of fields that Ferret will index for this class. An immediate
difference from the SQL search is that the list of fields here is not limited to actual database fields. Both
 tag_list and ingredient_string are derived attributes — tag_list is from the taggable plugin,
and ingredient_string is the list of ingredients created for the detail display. As long as the attribute
returns a string, Ferret will happily include it in the index. This is great for your applications, because it
means that two of the more hack - like elements of the SQL solution — using the cached version of the tag
list, and having to separately search the ingredient table — completely vanish. (Although, I did get some
strange behavior when there were recipes with blank tag lists in the test database.) The :remote
argument specfies that the index files will be managed by the local Rails server. If the argument is true
(the default), then the index will be managed by an external Distributed Ruby (DRb) server. Using DRb
is preferred for production servers.

 Ferret will now create an index for the objects in this class. By default, the index is stored under the main
directory for your project in index/ < environment > / < class > , so the test index for the Recipe class
will go to index/test/recipe . This default can be changed when you call acts_as_ferret by
passing the :index_dir key argument with the directory name of your choice.

 Once the class is declared to be Ferret - acting, all the actual search work is done by Ferret. The new search
method just calls Ferret via the find_by_contents method, although you do need to filter out nil
search strings, as follows:

 def self.find_text(search, options = {})
 return [] if search.blank?
 Recipe.find_by_contents(search, options = {})
 end

c05.indd 147c05.indd 147 1/30/08 4:07:15 PM1/30/08 4:07:15 PM

148

Chapter 5: Navigation and Social Networking

 A couple of things about this method may be unexpected. The return value for this method is technically
not an array, but an Acts as Ferret SearchResult class. The only difference as far as you are concerned is
that the search result object also has a total_hits accessor. All other array methods are treated
normally, but if you ’ re doing something weird with explicit typing somewhere, it might not work (so cut
that out).

 Why, you might ask, does the result array need a total_hits attribute when it presumably has a
perfectly good size method to contain the same information? Glad you asked, because that brings us to
the second unexpected thing about this method call, at least compared to ActiveRecord find methods.
By default, find_by_contents limits the results to the first 10 results. To change this behavior, find_
by_contents offers some options that affect pagination, similar to the SQL commands. The :limit
option governs the number of results returned, and the :offset option governs where in the list the
first option returned will be — as opposed to the previous method, which just passes the options along
to the actual find_by_contents method. Use :limit = > :all to guarantee that you get all the
matching results in the index. As you ’ ll see in a second, this functionality can be used to paginate the
Ferret results when displayed.

 Ferret allows you several more advanced search operators. A particularly useful one is OR as in this OR
 that (the keywords must be capitalized), which allows for matches with objects that contain any of the
search terms. You can also use the NOT keyword to exclude objects with a particular term, as in chicken
NOT grandma (if you ’ d like to go outside the family for some soup). If you want to limit the search to a
particular field, then the syntax is fieldname:search term, as in title:chicken . Elements can be
prefixed with a + (for include) or a - (for exclude) as another way of performing Boolean searches. Ferret
will also use the * and ? characters as wildcards with the traditional meanings that the * matches zero or
more characters and ? matches exactly one character. The only limitation is that you cannot start a search
term with a wildcard character. Finally, you can test for what ’ s called a fuzzy search (translated as
 “ something kind of like this ”) by putting a tilde at the end of the term — for example, grandma~ might
help you catch some of the alternate folksier spellings.

 More Data on Ferret Fields
 You might have a follow - up question: what exactly are the items sorted by? The sort is based on a ferret
score , which is a number between 1 and 0 that is supposed to measure which found item is most valuable
based on how many times the search string exists, the length of the string, where the match is, and such.
To a certain extent, you can adjust this metric if you know that some fields are more important than
others. To do this, specify each field with a boost attribute when it ’ s declared, as follows:

 acts_as_ferret :fields = > {
 :title = > { :boost = > 10 },
 :description = > { :boost = > 4 },
 :directions = > { :boost = > 2 },
 :tag_list = > { :boost = > 8 },
 :ingredient_string = > { :boost = > 5 }
 }, :remote = > false

 The :fields argument is now a hash instead of an array. The actual fields to be indexed are the keys, and
each field now has its own hash of options where a boost value is specified. There ’ s no particular meaning
to the magnitude of the boost values, except in their relationship to the values on the other fields —
 meaning that if you specify a boost value for one field, you probably should specify it for all the fields to
make sure you have the relationships you think you have. The boost values adjust the ferret - score

c05.indd 148c05.indd 148 1/30/08 4:07:15 PM1/30/08 4:07:15 PM

149

Chapter 5: Navigation and Social Networking

calculations but do not totally rewire them — it ’ s still possible for a match only in the directions field to
beat out a match in the title field if the directions match is deemed to be really, really relevant.

 By default, the Ferret index contains only the index itself, and not the actual data for each object — Ferret
queries the database for the objects after it determines the needed IDs from the index. However, Ferret
does provide a couple of ways to avoid hitting the database for all the data on each matching object.

 One option is to replace the call to find_by_contents with find_id_by_contents . You might expect
this method to return a list of just the IDs of each matching instance. You ’ d be wrong. You actually get a
list of hashes, with each hash containing three keys: :id , which holds the ID of the instance in question;
 :model , which contains the class name of the model (Recipe , in this case); and :score , which is the
Ferret score for the match.

 You are then free to do anything you want with those results. Most likely you ’ ll want to iterate over
them, which find_id_by_contents supports by taking an optional block argument that is evaluated
for each result returned. If, for some reason, you wanted a slower version of find_by_contents , you
could mimic it like this:

 matches = []
 Recipe.find_id_by_contents(“banana”) do |match|
 matches < < Recipe.find(match[:id])
 end

 If you ’ ve got the hard drive space for it, there ’ s another way. You can tell Ferret to store the instance data
in the index itself. This can be done on a field - by - field basis by giving each field a :store = > :yes
attribute like this:

acts_as_ferret :fields = > {
 :title = > { :boost = > 10, :store = > :yes },
 :description = > { :boost = > 4, :store = > :yes },
 :directions = > { :boost = > 2, :store = > :yes },
 :tag_list = > { :boost = > 8, :store = > :yes },
 :ingredient_string = > { :boost = > 5, :store = > :yes }
 }, :remote = > false

 Then, when you call find_by_contents , you can specify fields that should be managed lazily, meaning
from the index, rather than from the database. Here ’ s how:

 def self.find_text(search, options = {})
 return [] if search.blank?
 options[:lazy] = [:title, :description, :directions, :tag_list,
 :ingredient_string]
 Recipe.find_by_contents(search, options)
 end

 Assuming you have the space to store the data, specifying all your fields as stored and lazy will result in
a text query that doesn ’ t hit the database at all, which could have significant performance implications.
Storing something locally is necessary to use the Ferret highlighting feature, so you might store locally
even if you don ’ t want to use the lazy search option.

c05.indd 149c05.indd 149 1/30/08 4:07:16 PM1/30/08 4:07:16 PM

150

Chapter 5: Navigation and Social Networking

 Viewing the Search Results
 Setting up a view for the search results lets you see the highlighting features of the Acts as Ferret plugin.
Here are some tests for the Recipe controller. I put the following method in test/test_helper.rb to
set up tags for recipes in the fixture list:

 def setup_recipe_tags
 recipe = Recipe.find(1)
 assert recipe.tag_list.blank?
 recipe.tag_list = “yummy, vegetarian”
 recipe.save
 recipe = Recipe.find(2)
 recipe.tag_list = “yuckky, beef”
 recipe.save
 end

 The following functional tests, which need to be added to test/functional/recipes_controller_
test.rb , ensure successful execution, and that a search with a blank string is redirected to the index list:

 def test_should_search
 setup_recipe_tags
 post :search, :search = > “scrumptious”
 assert_response :success
 assert_equal(1, assigns(:recipes).total_hits)
 assert_equal(“scrumptious”, assigns(:search))
 end

 def test_should_search_blank
 setup_recipe_tags
 post :search, :search = > “”
 assert_redirected_to recipes_path
end

 The code in the actual recipe controller (app/controllers/recipes_controller.rb) is not
complicated and mostly redirects to the Recipe search you just wrote:

 def search
 @search = params[:search]
 if @search.blank?
 redirect_to recipes_url
 else
 @recipes = Recipe.find_text(@search, :limit = > :all)
 respond_to do |format|
 format.html #default
 format.xml { render :xml, @recipes }
 end
 end
 end

 It would also be a reasonable design decision to place the search in its own RESTful controller, in which
case this method would be SearchesController#show .

c05.indd 150c05.indd 150 1/30/08 4:07:16 PM1/30/08 4:07:16 PM

151

Chapter 5: Navigation and Social Networking

 This takes you to the view, which is basically a loop around the @recipes variable, but it shows off the
beginning of the highlight functionality. This code goes in app/views/recipes/search.html.erb :

 < % @title = “Search Results: #{h @search}” % >

 < p >
 Your search matched < %= @recipes.total_hits % >
 < %= pluralize @recipes.total_hits, “recipe” % >
 < /p >

 < % @recipes.each do |recipe| % >
 < div id=”search_ < %= recipe.id % > ” >
 < % text = recipe.highlight @search, :field = > :title,
 :pre_tag = > “ < strong > ”, :post_tag = > “ < /strong > ” % >
 < %= link_to text, recipe % >
 < /div >
 < div >
 < %= recipe.highlight @search, :field = > :description,
 :pre_tag = > “ < strong > ”, :post_tag = > “ < /strong > ”% >
 < /div >
 < br/ >
 < % end % >

 The Acts as Ferret plugin adds a highlight instance method to its classes. The highlight method
performs the task of emphasizing the search term within the display. The first argument to the method is
the search term to be highlighted. Then come several optional arguments. The :field argument
specifies which field to return. If it is not specified, then all fields in the instance will be shown. This is
rarely what you want. By default, the highlight method surrounds the matches with an < em > tag,
which italicizes the text in most browsers. If you want something else instead, use the :pre_tag and
:post_tag to specify the surrounding tag.

 More advanced use of the highlight method allows you to show just snippets of longer text (such as a
news article or a web page). There are three options that govern this behavior. The :num_exerpts
option, which defaults to 2 , allows you to set how many excerpts would be chosen from a longer text.
The :excerpt_length option, which defaults to 150 , controls the length of the excerpt in characters,
with the actual matched text displayed in the middle. If you use the default behaviors for both of these
options, text fields shorter than 150 characters will be displayed in their entirety. Finally, the :ellipsis
behavior allows you to swap out the ASCII ellipsis character used by default with something more
Unicode - friendly. Overall, this highlight behavior is much more powerful and flexible than the helper
provided within Rails proper, which doesn ’ t handle the multiple snippets.

 At this point, the search can be invoked via the URL recipes/search?search=param . You can insert
this into the app/views/layouts/recipes.html.erb layout file with the following simple form:

 < li id=”search” >
 < h2 class=”bg2” > Search < /h2 >
 < % form_tag :action = > “search” do % >
 < %= text_field_tag :search, “”, :size = > 10 % >
 < %= submit_tag “Go” % >
 < % end % >
 < /li >

 When the form is submitted, the search method of the recipes controller will be invoked.

c05.indd 151c05.indd 151 1/30/08 4:07:16 PM1/30/08 4:07:16 PM

152

Chapter 5: Navigation and Social Networking

 Pagination
 If you ’ ve used Google, you ’ ve seen pagination in action. The first 25 or so search hits are displayed,
followed by some navigation to allow you to move between pages. On the back end, the server knows
what page you are looking for and serves up the correct set of results for that page.

 In the Rails 1. x days, pagination was a helper method and part of the Rails core. But it turned out that a
lot of people didn ’ t much care for the implementation, and the pagination helper was removed from
Rails 2.0 as part of the general shedding of non - core functionality. There ’ s no clear market leader in its
place, but there are a couple of plugin contenders worth looking at. Keep an eye out for new
developments in this space.

 will_ paginate
 The first contender is the will_paginate plugin available from the folks at Err Free consulting. You can
get the plugin from here:

$ ruby script/plugin install svn://errtheblog.com/svn/plugins/will_paginate

 This plugin allows you to use the paginate method in any place where you would use the method
 find(:all) . Here is an example of the simplest use of this method:

@recipes = Recipe.paginate(:page = > params[:page])

 The page option tells the plugin which page of data to retrieve, and must be specified on each call to
 paginate . The default is to put 30 items on the page. If your class responds to a per_page class method,
the results of that method are used, so you can specify that as follows:

def self.per_page
 10
end

 Any options you send to paginate are preserved and passed the underlying find method, so you can
also use any find options, such as condition or the like. You can even emulate the dynamic find
versions like this:

@recipes = Recipe.paginate_by_title(“Chicken Soup”, :page = > 1)

 On the view side, you can get the paginate navigation, which allows the user to select a different page.
You do this by simply including the helper method will_paginate with the object returned from the
 paginate call, like this:

 < %= will_paginate @recipes % >

 The helper method uses metadata placed inside the array - like paginate result to determine what page
is being displayed and what URL to use to get different pages. It assumes that future pages will come
from the same controller action, using the :page parameter, and it reloads the page entire screen when a
different page is requested. All the elements of the pagination output have CSS classes, so the final look
can be customized to your needs.

c05.indd 152c05.indd 152 1/30/08 4:07:17 PM1/30/08 4:07:17 PM

153

Chapter 5: Navigation and Social Networking

 paginating_find
 The other contender is the paginating_find plugin, by Alex Wolfe. This plugin is available at

$ ruby script/plugin install http://svn.cardboardrocket.com/paginating_find

 With this plugin installed, all your find commands behave exactly as normal, unless you pass them a
special :page parameter. The :page parameter is itself a hash that takes options for page size and
current page. For example:

@recipes = find(:all, :page = > {:size = > 25, :current = > 2})

 The :size parameter defaults to 10 , and the :current parameter defaults to the first page. If you know
the exact number of records that will be found, you can pass that in the :page hash as :count . If this is
specified, the plugin doesn ’ t have to go to the database to calculate the number of total records, which
is a potential performance boost.

 Because this is just piggybacking on the regular find behavior, anything that you can do in a regular
 find method can be done in a method that includes pagination.

 This plugin also includes enough metadata in the returned object that the view pagination can be
managed with a single helper, as in this example:

 < %= paginating_links @recipes % >

 Again, this can be customized with CSS.

 I ’ ve used both plugins with fairly similar results. Neither manages Ajax out of the box, but adapting the
helpers to use Ajax calls is not tremendously complex. Because both plugins use the base find method
as their core, they can have difficulty interacting with other plugins that use their own search
mechanisms — such as the find_with_tags or find_by_contents method described previously in
this chapter. The worst - case workaround for that is to have the other method return a list of IDs and
filter that list during pagination, but that has negative performance implications.

 Resources
 For another way to create navigation links, as well as some nice - looking tabbed navigations, take a look
at the Widgets plugin from SeeSaw at www.seesaw.it/en/toolbox/widgets . A mechanism for using
pure CSS to create menus was created by Eric Meyer and can be found at http://meyerweb.com/
eric/css/edge/menus/demo.html .

 The home of Acts As Taggable On Steroids (AATOS) is http://agilewebdevelopment.com/plugins/
acts_as_taggable_on_steroids . The implementation of the tag cloud in this chapter was partially
inspired by Juixe TechKnow ’ s version at www.juixe.com/techknow/index.php/2006/07/15/
acts-as-taggable-tag-cloud .

 Gregg Pollack and Jason Seifer of Rails Envy have a great tutorial on the Acts as Ferret plugin at www
.railsenvy.com/2007/2/19/acts-as-ferret-tutorial . (Also check out their parodies of the “ I ’ m A

c05.indd 153c05.indd 153 1/30/08 4:07:17 PM1/30/08 4:07:17 PM

154

Chapter 5: Navigation and Social Networking

Mac ” ads.) The MySQL full - text searching referenced in this chapter is explained in more detail in the
MySQL documentation at http://dev.mysql.com/doc/refman/5.1/en/fulltext-search.html .

 The will_paginate plugin lives at http://errtheblog.com/post/4791 , and you can find paginating_
find at http://cardboardrocket.com/pages/paginating_find . A quick helper method to integrate
will_paginate and acts_as_ferret can be found at
 http://opensoul.org/2007/8/17/acts_as_ferret-will_paginate .

 Summary
 Rails has a number of facilities, both built - in and via plugin, for supporting navigation and information
architecture of your application. It ’ s straightforward to build a sidebar using some basic Ruby data
structures and the Rails helper method link_to_unless_current .

 Tagging is a very popular way to allow flexible and user - centric organization. In Rails, the recommended
way of managing tagging is via the Acts As Taggable On Steroids (AATOS) plugin, which creates an
ActiveRecord structure for associating tags with any ActiveRecord object. The plugin manages the basic
data association, and you can easily add more complex calculations to display tag clouds or other fancy
representations of your tags.

 Search can be handled on your site via pure SQL, which is simple but does not allow for easy inclusion
of Boolean logic or weighted queries. MySQL has such a facility, but it ’ s not portable between databases.
The Ferret gem and the Rails plugin Acts As Ferret can be used to add full - text indexing and searching to
your site.

 Pagination was removed from the Rails 2.0 core, but two simple plugins offer similar functionality to
add pagination to your application: will_paginate and paginating_find.

c05.indd 154c05.indd 154 1/30/08 4:07:17 PM1/30/08 4:07:17 PM

 The Care and Feeding
of Databases

 One of the best features of Rails is that it protects you from many of the most irritating details of
working with relational databases. For most purposes, you don ’ t need to remember the command
line syntax, unusual GUI viewer, departures from the SQL standard, or other maintenance quirks
because you sit comfortably behind the shield of Rails protective abstractions.

 Databases, however, are subtle and powerful, and you cannot escape their awesome might for
long. There are a few situations in which a Rails developer might have to display an unusual
knowledge of the details of the underlying database. One of those situations is when you are
forced to use a preexisting legacy database.

 Opinionated framework that it is, Rails has certain expectations about the naming and structure
of database tables. It assumes, for example, that each table has a single primary key and that the
name of that primary key is id . Similarly, Rails assumes that a foreign key for a relationship has a
predictable name based on the table being linked to. Those conventions enable a Rails developer
to consistently understand the structure of the model objects based on the database schema and
vice versa.

 All of which works great if you are in a position to create and maintain your own database
schema. But that is often not the case. Sometimes you ’ re brought into a project and the data
already exists, and other existing projects depend on the schema, so you can ’ t change it to bring it
in line with Rails standards.

 If you are in a situation where you have an existing database schema to work with, you need to
decide how to manage it. Depending on the exact nature of your project, you might be able to try
one or more different options. You ’ ll need to decide whether to split your application into two
databases — one that is created by Rails and uses Rails conventions, and the other for the existing
legacy system — or leave the entire system in the legacy schema and extend it as needed.
Migrating all the data from the existing schema to a Rails database might also be an option.

c06.indd 155c06.indd 155 1/30/08 4:07:49 PM1/30/08 4:07:49 PM

Chapter 6: The Care and Feeding of Databases

156

 All these solutions have pros and cons. Migrating all data to a Rails database is the smoothest for Rails
development, but requires the development and maintenance of a separate migration application. Also,
if the migration is applied frequently and affects a lot of data, this could have implications for caching
and other tasks that require stable object relationships. Leaving the legacy database alone is probably
best where the legacy database has a consistent naming convention of a kind that Rails can be readily
adapted to follow. If not, then every table is going to need special - case treatment, which can be error
prone. Splitting the database is a good choice if the legacy database is legitimately a subset of the entire
application (such as a preexisting user mailing list database), or if you have hopes of seeing the Rails
code assimilate the existing data, Borg - like, one table at a time. On the down side, much of ActiveRecord
is written assuming a single source of data — the second source of data is excluded from some of Rail s’
best tricks. Personally, unless the existing database has a very good naming convention, I tend to favor
creating a second database with Rails defaults for models that may arise during a project ’ s lifecycle.
I think it ’ s less painful to deal with two database systems then to have no Rails convention in the project
at all. Your mileage may, of course, vary.

 Don ’ t panic. Rails has tools that will allow it to manage the data in the legacy system with almost the
same ease that you ’ ve come to expect. There are four issues to manage: connecting to the database in
the first place, managing whatever weird naming conventions Fred in IT came up with, allowing for
ActiveRecord relationships, and managing testing against the new schema.

 Plugging In to Your Legacy
 For the purposes of having something concrete to wrap your head around, let ’ s assume that Soups
OnLine has secured a strategic coup: the ability to deliver information from Ingredientopedia, the
world ’ s leading online source of information about the kind of ingredients that one might use in, say, a
soup. Sadly, due to the sort of contrivance that involves armies of fictional lawyers, Soups OnLine has to
use the existing database as - is, and is not free to migrate the schema to something useful. So you ’ re stuck
with a database schema that looks, in part, like this (a naming convention only a database admin could
love):

CREATE TABLE `ingredientopedia`.`the_ingredient_table` (
 `ingredient_id` INTEGER AUTO_INCREMENT,
 `ingredient_name` VARCHAR(255),
 `ingredient_description` VARCHAR(4000),
 `ingredient_nutritional_info` VARCHAR(4000),
 `ingredient_category_id` INTEGER,
 PRIMARY KEY (`ingredient_id`)
)
CHARACTER SET utf8;

 To get Rails to open this database, you need to adjust the database.yml file to add three more database
environments: one for each Rails environment. You can use the YAML merge feature to make the
declaration more compact, like this:

ingredient: & ingredient
 adapter: mysql
 username: root
 password:
 socket: /tmp/mysql.sock

c06.indd 156c06.indd 156 1/30/08 4:07:50 PM1/30/08 4:07:50 PM

Chapter 6: The Care and Feeding of Databases

157

ingredient_development:
 database: ingredientopedia_development
 < < : *ingredient

ingredient_production:
 database: ingredientopedia_production
 < < : *ingredient

ingredient_test:
 database: ingredientopedia_test
 < < : *ingredient

 The basic unit of a YAML file is a key/value pair of the form key: value . Several key/value pairs can be
indented under a common parent like this:

parent:
 key: value
 other_key: other_value

 Now all of the key/value pairs are bundled into a hash named parent .

 The & ingredient marker is YAML syntax that takes a symbolic name internal to the YAML file and
assigns it to the entire data structure — in this case, the ingredient line and all its indented children.
The symbolic name does not need to be the same as the attribute name for the hash. After the symbolic
name is assigned, the hash can be referred to using that name. The < < : *ingredient syntax tells the
YAML parser to take any key/value pairs that are defined in the hash using the symbolic name and
merge them into the hash currently being defined. So, in this example, the common values for all the
legacy databases are defined only once, and then merged into each environment database in turn.

 Windows users will have to change the socket line to the valid Windows path or alternatively replace
the socket line with hostname: localhost .

 The declaration sticks to the development , production , test naming structure, which will enable
Rails to ensure that any ActiveRecord object you point at the legacy database maintains the standard
separation between the three environments.

 What you ’ d like is to be able to manage the data in the legacy database using ActiveRecord just as
though the database has been created using Rails conventions. Add a test/unit/ingredient_data_
test.rb file, and start with the following test:

require File.dirname(__FILE__) + ‘/../test_helper’

class IngredientDataTest < Test::Unit::TestCase

 def teardown
 super
 IngredientData.delete_all
 end

 def test_should_load_and_save
 subject = IngredientData.new
 subject.id = 2

(continued)

c06.indd 157c06.indd 157 1/30/08 4:07:50 PM1/30/08 4:07:50 PM

Chapter 6: The Care and Feeding of Databases

158

 subject.name = “Carrot”
 subject.description = “Orange and crunchy.”
 subject.save
 saved_subject = IngredientData.find(2)
 assert_equal(2, saved_subject.id)
 assert_equal(“Carrot”, saved_subject.name)
 assert_equal(“Orange and crunchy.”, saved_subject.description)
 end

end

 This test simply creates an instance of the new legacy ActiveRecord object, sets some of its values, saves
it, and verifies that the values persist. For a database table that was created by Rails, this test would
barely need to be run, because this is core ActiveRecord functionality.

 However, in this case, the ActiveRecord class does not have a name based on the table name (you
wouldn ’ t want a class named TheIngredientTable , and Ingredient is already taken). Additionally,
the test strips the common ingredient_ prefix off of each column in the table. Also notice that the test
needs to explicitly delete the item from the database — Rails test loading won ’ t do it by default because
the legacy test database is not the known test database to be scrubbed.

 Creating the connection is best managed through an abstract parent class for all tables that would
connect to the same the legacy database (even though you ’ ve only seen one so far, there might be others
in the future). To manage this connection, you need to explicitly perform the ActiveRecord
 establish_connection method call that would otherwise be handled explicitly.

 Create a file in app/models called ingredient_base.rb and fill it with the following snippet:

class IngredientBase < ActiveRecord::Base
 self.abstract_class = true
 establish_connection “ingredient_#{RAILS_ENV}”
end

 The first line of this snippet just tells Rails that IngredientBase is abstract, which in this context means
that it doesn ’ t have a database table of its own, so Rails shouldn ’ t go looking for one. The second
line tells Rails that IngredientBase and all its subclasses don ’ t connect to the expected database, but
instead connect to one of the new ingredient databases previously specified. The database it connects to
depends on what environment the code is in, which is how you can preserve the standard three - headed
development, production, and test database structure.

 Naming Unconventionally
 ActiveRecord has a few useful class - level attributes that enable you to change the default relationship
between table names and class names, and the default primary key names. You can ’ t use them in this
case, because they are class - level, and would apply to all ActiveRecord classes in the project, even the
ones that have already been created against the traditional Rails database. However, it ’ s worth listing
them here (which I ’ ve done in the following table) because under somewhat different project parameters,
they are very useful. Typically, you ’ d put these changes in your environent.rb file.

(continued)

c06.indd 158c06.indd 158 1/30/08 4:07:50 PM1/30/08 4:07:50 PM

Chapter 6: The Care and Feeding of Databases

159

 Because you can ’ t use these defaults, the new IngredientData class needs to specify the table name and
primary key name explicitly. Create an app/models/ingredient_data.rb file, and start with this:

class IngredientData < IngredientBase

 set_table_name “the_ingredient_table”
 set_primary_key “ingredient_id”
end

 It would be nice if columns analogous to table_name_prefix had a name prefix and suffix that could
be used to automatically strip that annoying ingredient_ from each column. One doesn ’ t exist, so you
should write one. Put the following code in IngredientBase :

 def self.column_prefix(prefix)
 self.column_names.each do |each|
 next unless each.starts_with? prefix
 method_name = each[prefix.size..-1]
 define_method :”#{method_name}” do
 read_attribute(:”#{each}”)
 end

 define_method :”#{method_name}=” do |new_val|
 write_attribute(:”#{each}”, new_val)
 end
 end
 end

 This uses a number of ActiveRecord and Ruby features to dynamically create new accessor methods
for each column in the database. First, it uses the ActiveRecord column_names function to get a list of

Attribute Description

pluralize_tablenames Defaults to true. If your database schema uses the singular
form of the table name instead of the plural, set this value to
false.

primary_key_prefix_type Specifies common behavior for primary key names where the
table name is used as part of the key. If the key names are of the
form recipeid, this field should have the value :table_name.
If the key names are of the form recipe_id, this field should
have the value :table_name_with_underscore. The default
is nil.

table_name_prefix A common string at the beginning of each table name. For
example, you could use the_.

table_name_suffix A common string at the end of each table name. For example,
you could use _table.

c06.indd 159c06.indd 159 1/30/08 4:07:51 PM1/30/08 4:07:51 PM

Chapter 6: The Care and Feeding of Databases

160

column names. Looping over them, any column name that does not begin with the prefix is ignored. For
those column names that are of interest, the code calculates the prefix - less name and goes through two
calls to Ruby ’ s define_method metaprogramming method. The first one uses the method name
and calls the ActiveRecord read_attribute for the real column name, and the second uses the method
name and an equals sign (the standard setter syntax) and calls ActiveRecord write_attribute .

 Call this method by including a third line to the IngredientData class:

class IngredientData < IngredientBase

 set_table_name “the_ingredient_table”
 set_primary_key “ingredient_id”
 column_prefix “ingredient_”

end

 The net effect is to create a parallel set of accessors, both getters like id , name , description , and setters
like id= , name= , description= . The existing set of accessors does not go away, so if you are determined
to use ingredient_description , it is still available.

 At this point, the test will pass, and you ’ ve created an ActiveRecord connection to a legacy database.

 Testing a Legacy Database with Fixtures
 As previously mentioned, when you go against Rails defaults by adding a legacy database, you lose
some of Rails automatic generation magic. One thing that becomes a little bit harder is using fixtures in
your unit and automated tests. The standard fixtures method call (which technically is a class method
added by Rails to the TestUnit class) assumes that it will be working with the database defined for the
 test environment. Your secondary database, defined as ingredient_test , is somewhat out of luck.
Fortunately, there is a workaround that allows you to have all the functionality of Rails fixtures, and
most, if not all, of the convenience that you have when working in a Rails database.

 Among the conveniences you give up are the nice little Rake tasks that automatically prepare your test
database based on the schema of the development database. You ’ ll need to go in manually to create the
test database. You might want to invest the time to create a shell script and/or a Rake task to create your
legacy database automatically. Usually that ’ s going to be something like this:

mysql legacy_database < schema.sql

 If you do declare this as a Rake task, you can add it as a dependency to the existing test:prepare style
tasks like this:

namespace :db do
 namespace :test do
 task :legacy_prepare do
 sh my_load_test_script
 end

 task :prepare = > :legacy_prepare
 end
end

c06.indd 160c06.indd 160 1/30/08 4:07:51 PM1/30/08 4:07:51 PM

Chapter 6: The Care and Feeding of Databases

161

 Put something like that in your lib/tasks directory, and the Rake db:test:prepare task should
now include preparing the legacy test database.

 With that done, here ’ s the test that you want to have pass — The fixture needs to be put in a YAML file
in test/fixtures/the_ingredient_table.yml :

one:
 ingredient_id: 1
 ingredient_name: bananas
 ingredient_description: yellow and squishy
 ingredient_nutritional_info: high in potassium
 ingredient_category_id: 1

 To ensure that this gets loaded into the database by the Rails test functionality, define the following:

 def test_should_read_fixture
 from_db = IngredientData.find(1)
 assert_equal “bananas”, from_db.name
 end

 Most of the functionality that you are going to add to support this fixture is pretty general, so I
recommend putting it in test_helper.rb , so that future legacy classes in this database can take
advantage of the code.

 The first step is to associate the YAML file with the actual ActiveRecord class. Rails seems to be happier
if the YAML file is named to match the actual table name in the database; however, that table name is not
what you used for the model class. That ’ s easy enough to manage, though, because Rails provides a
hook to override the default naming convention. Put this in test/test_helper.rb :

 def self.set_fixture_classes
 set_fixture_class :the_ingredient_table = > IngredientData
 end

 The set_fixture_class method takes in a hash, which you can build through the usual Ruby syntax
of passing a series of key/value pairs. In this case, the key is a symbol matching the table name and,
therefore, the name of the YAML file; and the value is the name of the ActiveRecord model you created
to hold that data. As you add more classes from the legacy database, add the association to this method,
and call the set_fixture_classes method at the top of any test that needs the legacy fixtures. This
will be much easier to manage than trying to set only the fixture data being used in each particular class
(especially because the error message if you forget to set the class is a little on the cryptic side).

 Because you can no longer use the fixtures class method to load fixtures, you now need to explicitly
load the fixtures in the setup method of your test class. In the ingredient_data_class , the setup
and teardown should look like the following, with the set_fixture_classes call included:

 set_fixture_classes

 def setup
 load_external_fixtures :the_ingredient_table
 end
 (continued)

c06.indd 161c06.indd 161 1/30/08 4:07:51 PM1/30/08 4:07:51 PM

Chapter 6: The Care and Feeding of Databases

162

 def teardown
 super
 cleanup IngredientData
 end

 Okay, that ’ s not very much help so far, because these methods are just calling the general methods from
 test_helper.rb . So now, you ’ ll define those methods. First up, the load method:

 def fixture_dir
 File.join(RAILS_ROOT, ‘test’, ‘fixtures’)
 end

 def load_external_fixtures(*table_names)
 Fixtures.create_fixtures(fixture_dir, table_names) do
 IngredientBase.connection
 end
 end

 What this code is doing is explicitly forcing the fixture loading process. The input is a list of the
table names, which can be strings or symbols (the Rails method will convert). The block argument
should return the actual connection to be used to store the database data loaded from the fixtures —
it should match the connection that the ActiveRecord model class is expecting.

 The main gotcha here has to do with foreign key constraints, when you are loading fixture data from
multiple tables and the legacy database has foreign keys declared. If that ’ s the case, then the fixtures
need to be placed in order, with the dependent table that contains the foreign key constraint going last.
In this case, I placed a column in the ingredient data for category_id . If I was also loading a category
table, and there was a foreign key constraint on the_ingredient_table , then the category fixture
would need to be loaded first. If you don ’ t do this in the right order, then you ’ ll get constraint violation
errors when you try to load the fixtures. (See the “ Foreign Keys: Threat or Menace? ” sidebar for some
more chatter about Rails and foreign key constraints.)

 In a legacy database, you don ’ t get the data automatically pre - loaded, and you don ’ t get it automatically
cleaned up, either. So you need to define the following method:

 def cleanup(*classes)
 classes.each do |klass|
 klass.delete_all
 end
 end

 In this case, the argument is a series of actual ActiveRecord classes, and the method cheerfully
demolishes all the data. The ordering of the classes is also important in this method — you need to
delete the data in the opposite order in which they were created. Again, doing the deletion in the wrong
order will cause a constraint violation error.

 At this point, the unit test will pass. Rails correctly puts the data from the fixtures into the test database
for retrieval. You might have noticed, though, that I did not include a test featuring one of the nice
helper methods that Rails normally creates for accessing fixture data without hitting the database, like

(continued)

c06.indd 162c06.indd 162 1/30/08 4:07:52 PM1/30/08 4:07:52 PM

Chapter 6: The Care and Feeding of Databases

163

 recipes(:one) . Sadly, as far as I can tell, doing fixtures explicitly this way bypasses the normal process
of creating those methods. So to get at the data in the fixtures, you need to do a database find as shown
in the original test.

 If you really want to see the actual fixture data, Rails does store it in the Fixtures class. It ’ s a
bit of a pain to get it out though — it ’ s nearly 10 whole lines of Ruby code, which you can place in
 test/test_helper.rb :

 def external_fixture(table, id)
 table = table.to_s
 id = id.to_s
 Fixtures.all_loaded_fixtures.each do |tablename, fixtures|
 next unless tablename == table
 fixtures.each do |fix_id, fixture|
 return fixture.to_hash if fix_id == id
 end
 end
 nil
 end

 The Fixtures class stores the fixtures in a series of nested lists. The top level is an array, each member of
which is a two - element array: the first element is the table name, and the second element is the data. The
data is stored similarly: each fixture is stored as a two - element list, the first element being the identifier
for the fixture in the YAML file, and the second element being the fixture object. The data looks like
this for the sample case:

[“the_ingredient_table”, [[“one”, # < Fixture:0x25df348 @fixture={“ingredient_id”= > 1,
“ingredient_category_id”= > 1, “ingredient_nutritional_info”= > ”high in potassium”,
“ingredient_description”= > ”yellow and squishy”, “ingredient_name”= > ”bananas”},
@class_name=”TheIngredientTable” >]]]

 All the helper method does is walk through the data until it gets a match for the tablename and
 fixture identifier, and then it returns that fixture as a hash. You can also convert the hash into an
ActiveRecord class, but the hash itself should be good enough for most purposes.

 There ’ s one more issue that you might need to be aware of. There are some reported cases where Rails
mistranslates data back and forth between the legacy database. If you are having this problem, you
might need to explicitly set the ActiveRecord connection in your setup, and then revert it in your
teardown method, like this:

def setup
 ActiveRecord::Base.connection = IngredientBase.connection
 load_external_fixtures :the_ingredient_table
 end

 def teardown
 super
 ActiveRecord::Base.establish_connection(“#{RAILS_ENV}”)
 cleanup IngredientData
 end

c06.indd 163c06.indd 163 1/30/08 4:07:52 PM1/30/08 4:07:52 PM

Chapter 6: The Care and Feeding of Databases

164

Foreign Keys: Threat or Menace?
One of the points of contention between Rails and its critics is the relative lack of
 support in Rails for the strong foreign key constraints used in most databases to ensure
referential integrity between tables. Among other issues, there’s no nifty syntax for
 defining foreign keys in a Rails migration (although there’s a plugin if you need the
 feature). Also, the ordering of fixture loads as shown in the legacy database section is
not supported natively by the Rails fixture method.

Rails impresario David Heinemeier Hansson is on record as saying that foreign keys
are unnecessary in a Rails database, because Rails handles the referential integrity
needs through its own relationship definitions and does so in a richer, database-
 independent way. Longtime database developers are, let’s say, skeptical.

Just to get a sense of the issues, here are some of the pros and cons of using foreign keys
in your system.

In Favor of Foreign Keys

❑ Using foreign keys, you ensure that your data will always be in a valid state.

❑ Foreign keys do not require you to use Rails to get referential integrity. This is
important if other scripts or applications will write to the database.

❑ If the database administrators at your company find out that you’re doing a
production database without constraints, they may come after you in your
sleep. Longtime database admins see this as a train wreck waiting to happen.

In Favor of The Rails Way

❑ Foreign key syntax and behavior differs among databases. Rails is
database-independent.

❑ Often, strict foreign key constraints prevent you from doing things to the data
that you actually want or need to do. (You may, for instance, legitimately need
to keep an orphaned record around for a while.)

❑ During testing, a full set of foreign key constraints can force you to load a
number of extra fixtures not needed for a unit test to satisfy the constraints.

❑ Rails taxonomy of relationships is richer and closer to the programmer’s intent
than the database foreign key.

My tendency so far has been to trust Rails where possible and add constraints when a
problem develops—which is rarely, at least for me.

c06.indd 164c06.indd 164 1/30/08 4:07:52 PM1/30/08 4:07:52 PM

Chapter 6: The Care and Feeding of Databases

165

 Building a Relationship across
Multiple Databases

 At this point, you ’ ve successfully integrated the data from the external Ingredientopedia database into
Soups OnLine. The next thing you ’ re probably going to want to do with the data is allow the preexisting
ingredient objects to have a Rails - mediated relationship with the external IngredientData table. Trying
to create this relationship exposes another way in which you leave the reservation when trying to
support a legacy database alongside the Rails database.

 Normally, Rails manages a many - to - many relationship through a series of SQL JOIN calls to the database
that retrieve the related data. The problem, of course, is that SQL does not have the magical powers
needed to join two tables from two separate databases. However, with a little bit of extra plumbing
behind the scenes, it is possible to make the relationship across the database - divide almost as transparent
as a typical Rails relationship.

 This section applies only to Rails relationships that rely on SQL JOIN , which is to say :has_and_
belongs_to_many and :has_many :through . One - to - one relationships like : belongs_to and :
has_one do not use JOIN calls and can be managed seamlessly by Rails across multiple databases.

 The key to making the join relationships work across multiple databases is to place a proxy table in the
Rails database that maps to items in the legacy database. Items in the Rails database can participate in
many - to - many relationships with the proxy object, which then acts like the actual legacy object.

 Defining the Functionality
 Let ’ s assume that the ingredient definitions in the Ingredientopedia don ’ t quite map directly to the
ingredients that you might put in soup. Perhaps there are some general - level ingredients like
 “ vegetables ” or “ legumes ” that might require you to map multiple data pieces to one Soups OnLine
ingredient, and vice versa. In this case, you ’ ll create an IngredientDataProxy class that will join with
the existing IngredientData and Ingredient tables.

 As usual, unit tests help define exactly what the functionality should be. These are all in the
 ingredient_data_test.rb file:

 ## at the top of the file
 fixtures :ingredients
 fixtures :ingredient_data_join
 fixtures :ingredient_data_proxies

 ## at the end of the file
 def test_proxy_should_be_there
 proxy = IngredientDataProxy.find(1)
 assert_equal(“bananas”, proxy.ingredient_data.name)
 end

 def test_ingredient_should_relate_to_data
 ingredient = Ingredient.find(1)
 assert_equal(2, ingredient.ingredient_data.size)
 data = ingredient.ingredient_data[0]

(continued)

c06.indd 165c06.indd 165 1/30/08 4:07:53 PM1/30/08 4:07:53 PM

Chapter 6: The Care and Feeding of Databases

166

 assert_equal(“plantains”, data.name)
 data.name = “pita chips”
 data.save
 saved = IngredientData.find(data.id)
 assert_equal(“pita chips”, saved.name)
end

def test_data_should_relate_to_ingredient
 data = IngredientData.find(1)
 assert_equal(1, data.ingredient_data_proxy.id)
 assert_equal(1, data.ingredients.size)
 assert_equal(“First Ingredient”, data.ingredients[0].ingredient)
end

 For the test to work, you need to load in data from traditional Rails fixtures. Because these fixtures are
from the existing Rails database, they can be loaded the standard way. (I realize that you haven ’ t seen all
of those database tables yet.) The ingredient fixture file already exists. Create an ingredient_data_
proxies.yml file with the following proxy objects:

one:
 id: 1
 ingredient_data_id: 1
 created_at: 2007-08-22 09:38:18
 updated_at: 2007-08-22 09:38:18

two:
 id: 2
 ingredient_data_id: 2
 created_at: 2007-08-22 09:38:18
 updated_at: 2007-08-22 09:38:18

 Also create the ingredient_data_join.yml file, which manages the join table between ingredients
and the proxy data as follows:

one:
 ingredient_id: 1
 ingredient_data_proxy_id: 1

two:
 ingredient_id: 1
 ingredient_data_proxy_id: 2

 The first test merely asserts that the proxy objects are created and associate with their legacy
 IngredientData objects as expected. The second test verifies that an ingredient can find its
associated IngredientData object, and can manipulate that object using the expected Rails attributes,
including the ability to change and save the data object. The third test checks the relationship the other
way around — that is, it verifies that the IngredientData object can reach its associated Ingredients .
(You don ’ t have to test for write and save features in this direction because the IngredientData object
is getting an actual Ingredient object, whereas the Ingredient object may just be getting a proxy to
the IngredientData .)

(continued)

c06.indd 166c06.indd 166 1/30/08 4:07:53 PM1/30/08 4:07:53 PM

Chapter 6: The Care and Feeding of Databases

167

 Creating the Proxy Model
 To get this to work, you need to create the proxy object. This object will live in the Rails database and
point to objects in the legacy database. To begin, type the following:

$ ruby script/generate model --svn ingredient_data_proxy

 This generation creates a new migration to define the proxy data table, which is quite simple. The
migration also needs to create the join table that will be used for the relationship between ingredients
and data. Here ’ s the migration:

class CreateIngredientDataProxies < ActiveRecord::Migration
 def self.up
 create_table :ingredient_data_proxies do |t|
 t.integer :ingredient_data_id
 t.timestamps
 end

 create_table :ingredient_data_join, :id = > false do |t|
 t.integer :ingredient_id
 t.integer :ingredient_data_proxy_id
 end
 end

 def self.down
 drop_table :ingredient_data_proxies
 drop_table :ingredient_data_join
 end
end

 The only elements in the proxy table are the local ID of the proxy object and the remote ID of the object
in the legacy table — you can think of this as basically managing a join across the two databases. The
migration also creates the actual join table (you can tell it ’ s a join table because of the :id = > false
argument). Somewhat reluctantly, I departed from the Rails default naming convention for the join table
— it ’ s easy enough to work around, and I felt that ingredient_data_proxies_ingredients might be
a touch awkward.

 Invoke rake db:migrate to load the changes to the existing database.

 Making Connections
 Now, the relationship information has to be added to all three involved classes. First, in Ingredient , the
connection looks like this:

has_and_belongs_to_many :ingredient_data_proxy,
 :join_table = > :ingredient_data_join

 This declaration defines the relationship with the non - standard proxy class as the target, and the
non - standard join table name.

c06.indd 167c06.indd 167 1/30/08 4:07:53 PM1/30/08 4:07:53 PM

Chapter 6: The Care and Feeding of Databases

168

 From the IngredientDataProxy side, the declaration looks like this:

has_and_belongs_to_many :ingredients, :join_table = > :ingredient_data_join

 It ’ s basically the same declaration, the class name for ingredients is standard and doesn ’ t need to be
specified.

 The other half of the connection is between IngredientDataProxy and the actual IngredientData
class. From the proxy side, there ’ s nothing at all unusual about it — remember, belongs_to
relationships aren ’ t affected by the database separation. It ’ s just this::

belongs_to :ingredient_data

 The relationship declaration in IngredientData is also standard:

has_one :ingredient_data_proxy

 At this point, both Ingredient and IngredientData have accessors populated with a bunch of
 IngredientDataProxy objects. However, you don ’ t want to deal with proxy objects — you want to the
real deal. In both cases, you need to write accessors with the expected names to go through the proxy
object and get the other half of the connections.

 From the IngredientData object, you call your single proxy to get its list of ingredients like this:

 def ingredients
 ingredient_data_proxy.ingredients
 end

 On the flip side, from the ingredient object, you call your multiple proxies and ask each of them for its
remote data object, like this:

 def ingredient_data
 ingredient_data_proxy.collect {|data| data.ingredient_data}
 end

 With all the connections in place, the tests will pass, and the legacy ingredient information is now
accessible to your application.

 Alternate Data Access Mechanism
 One thing that might bother you about the previous solution is that, when gathering the data objects, the
 Ingredient object walks through the entire list and creates a new list. If there are lots of data objects,
this might cause unnecessary performance problems. Given the parameters of the Soups OnLine
application as I defined them, it ’ s unlikely to be a serious problem. However, there are circumstances
where it would be beneficial to continue to deal with the legacy object through the proxy, so I want to
show you how that might be done.

 The basic goal here is to use Ruby metaprogramming to create accessors in the proxy object that
shadow the ones in the remote object. Then, the proxy object can be manipulated as if it was the legacy

c06.indd 168c06.indd 168 1/30/08 4:07:54 PM1/30/08 4:07:54 PM

Chapter 6: The Care and Feeding of Databases

169

object itself. Here ’ s the code for an abstract Proxy object that does this metaprogramming (it goes in
 app/models/remote_data_proxy.rb):

class RemoteDataProxy < ActiveRecord::Base
 self.abstract_class = true

 class_inheritable_accessor :proxy_object
 class_inheritable_accessor :read_only

 def self.set_proxy_object(obj)
 self.proxy_object = obj
 end

 def self.create_proxy_accessors(class_to_proxy, options = {})
 prefix = options[:prefix] ||= ‘’
 class_to_proxy.column_names.each do |each|
 next unless each.starts_with? prefix
 method_name = each[“ingredient_”.size..-1]
 define_method :”#{method_name}” do
 send(:”#{proxy_object}”).send(:”#{each}”)
 end

 next if read_only
 define_method :”#{method_name}=” do |new_val|
 send(:”#{proxy_object}”).send(:”#{each}=”, new_val)
 end
 end
 end

 def save
 super
 send(:”#{proxy_object}”).save unless read_only
 end

end

 You start by declaring this an abstract class so that Rails doesn ’ t go looking for a remote_data_proxies
table in your database. The class_inheritable_accessor method is a Rails add - on to the Ruby core.
It provides a get and set method for a class attribute, which allows each subclass to maintain its own
value for the attribute. The code also aliases one of the setter methods for a slightly cleaner look when
called from a subclass.

 The attributes themselves define what accessor is used at the instance level to access the object being
proxied, and whether the connection to the remote object is read - only.

 The meat of the code is the create_proxy_accessors method, which is similar to the method you put
in IngredientBase earlier in this chapter. It takes the class being proxied and an optional prefix,
and creates new accessors for all attributes in that class. If the proxy is supposed to be read - only, it skips
creating setter methods. Finally, save is overridden to save the remote object if the proxy allows
write changes.

c06.indd 169c06.indd 169 1/30/08 4:07:54 PM1/30/08 4:07:54 PM

Chapter 6: The Care and Feeding of Databases

170

 To use this class, some changes need to be made to IngredientDataProxy and Ingredient . First,
you need to make IngredientDataProxy a subclass of RemoteProxy , and then make the appropriate
data calls:

class IngredientDataProxy < RemoteDataProxy

 belongs_to :ingredient_data
 has_and_belongs_to_many :ingredients, :join_table = > :ingredient_data_join

 set_proxy_object :ingredient_data
 create_proxy_accessors(IngredientData, :prefix = > “ingredient_”)

end

 Then change the definition of the relationship in Ingredient as follows:

has_and_belongs_to_many :ingredient_data,
 :class_name = > “IngredientDataProxy”,
 :join_table = > :ingredient_data_join

 With these changes in place, the proxy objects themselves are placed in the ingredient_data accessor
(the class name of the connection has to be changed to accommodate this). At this point, the tests will
work again — calling ingredient.ingredient_data will return proxy objects, which will pass the
accessor write and reads back to the remote data object.

 Why Be Normal?
 The database software that most Rails programs use — MySQL, PostgreSQL, and Oracle — all belong
to a database structure known as a relational database , in contrast to a flat database, (such as a CSV text
file), a hierarchical database (such as an XML structure), or an object - oriented database (such as . . . well,
nothing you ’ ve probably ever heard of, but like the Loch Ness Monster, you do hear about sightings of
OO databases from time to time).

 A Little Bit of Theory
 Although databases may seem like one of the most pragmatic of all software, in fact, there ’ s a huge
amount of theory behind the structure and design of relational databases — although, to be fair, a true
database purist would argue that none of the popular databases that call themselves relational actually
adhere to the strict relational model. Be that as it may, much of the theory of relational database design
is concerned with various kinds of normalization . A full discussion of all the various flavors of
normalization (Wikipedia lists a solid nine named forms) is beyond the scope of this book (and frankly,
I think it may be beyond my humble ability to comprehend).

 However, the basic idea behind normalization is simple enough: use the structure of the database to
ensure database integrity. In general, this involves keeping unrelated data in separate tables such that
data is not duplicated. In your classic Order/Customer database, for example, an un - normalized
database might include customer information such as name or address inside the order table, where it
might potentially be duplicated if one customer is repeated in multiple orders. A normalized database
would put the customer information in its own table, where it would be referenced via a foreign key in

c06.indd 170c06.indd 170 1/30/08 4:07:54 PM1/30/08 4:07:54 PM

Chapter 6: The Care and Feeding of Databases

171

the order table. An even more normalized database might separate various parts of the customer
information, such as phone number or address, into their own separate tables.

 A normalized database has a number of beneficial features. Because duplicated data is frowned on, the
database size is smaller (often a lot smaller) than an un - normalized version. Most relational databases
offer mechanisms, such as foreign key constraints, that are used with normalized database structures to
ensure database integrity.

 However, there are some costs to using a fully normalized database. The most important one for our
purposes is that the more complex the normalized structure is, the more expensive it is to read from a
database (although, depending on the structure, a write operation can actually be cheaper because data
in other tables would not need to be rewritten). If you ’ ve ever tried to run a database query that tries to
join more than two tables at a time, you know that it can become painful quite quickly. Even though
Rails tries to be smart about managing lookups to joined tables, there ’ s no getting around some kind of
speed hit when you try to do a join.

 Relational databases arose among a series of constraints. Data storage was much more expensive, for
example. And in many back - end systems, the savings from not having to write a customer address
multiple times, for example, made up for the increased cost of reading an order.

 These conditions do not apply to most modern web applications. Database storage is pretty cheap,
megabyte for megabyte, and bandwidth and server CPU time is much more likely to be a bottleneck for
your application. In addition, for many web applications, data is read far more often than it is written.
Think of a blog database, for example — or Flickr, or Twitter.

 In this context, normalization might be too much of a good thing. If you are having database - speed
problems with your normalized relational database, one thing to consider is a little denormalization. For
our purpose, denormalizing a database amounts to caching foreign data within a column of a table that
is using it. You ’ ve already seen one example in this book — the way the acts_as_taggable plugin
allows you to cache the tag string within the table being tagged. Now, you ’ ll implement it on your
own data.

 A Little Bit of Practice
 Before starting, it ’ s important to emphasize that this kind of performance optimization should only be
undertaken towards the end of a product cycle, when you actually have data suggesting that there ’ s a
slowdown in accessing the data. (In Chapter 13 you ’ ll learn more about how you might gather that data.)
Any kind of caching tends to make development more complicated, which in turn makes testing and
debugging that much more difficult.

 That said, the Soups OnLine database schema includes an association that would certainly be the kind of
thing you ’ d expect denormalizing to speed up. I speak, of course, of the association between recipes and
ingredients, where the recipe displays the ingredients not just through a join relationship, but also
through some further processing on the ingredient data to convert it to a string. If the ingredients change
rarely, as you might expect, then denormalizing the ingredient string back to the recipe table could
potentially have a large savings.

 The first design decision is exactly when to create the cached version of the string. I decided to create it
lazily as part of the process of requesting the ingredient string for the first time. The advantage of a lazy

c06.indd 171c06.indd 171 1/30/08 4:07:55 PM1/30/08 4:07:55 PM

Chapter 6: The Care and Feeding of Databases

172

construction here is that it sidesteps the complication of exactly when during the creation of the recipe
to create the cache. A poorer design choice would be to put the cache command in the controller for
creation or editing of a recipe. That ’ s a poorer choice because there ’ s no reason why the controller should
know or care whether the recipe is caching ingredients or not.

 The test looks like this (in recipe_test.rb):

 def test_should_cache_ingredient_string
 subject = Recipe.find(1)
 assert subject.cached_ingredient_string.blank?
 subject.ingredient_string
 assert_equal(subject.ingredient_string, subject.cached_ingredient_string)
 string_1 = “1 1/2 cups First Ingredient, Chopped”
 string_2 = “1 1/2 cups Second Ingredient, Sliced”
 string_3 = “1 1/2 cups Third Ingredient, Diced”
 assert_equal(“#{string_1}\n#{string_2}\n#{string_3}”,
 subject.cached_ingredient_string)
end

 Create a recipe, and then verify that the cached string starts out blank. Then create the ingredient string
and verify that it matches the ingredient string. For good measure, verify that the string actually matches
a known literal (the first test feels a little tautological for me to be completely comfortable with it).

 This test will need a database migration to add the new column. The file name should be
db/migrate/008_add_ingredient_cache.rb and should include the following:

class AddIngredientCache < ActiveRecord::Migration
 def self.up
 add_column :recipes, :cached_ingredient_string, :string
 end

 def self.down
 remove_column :recipes, :cached_ingredient_string
 end
end

 After running the migration and updating the test database, the model code change turns out to be a
slight change to the ingredient_string method in recipe.rb . This change is as follows:

 def cache_ingredient_string
 self.cached_ingredient_string = ingredients.collect do |i|
 i.display_string
 end.join(“\n”)
 end

 def ingredient_string
 cache_ingredient_string if self.cached_ingredient_string.blank?
 self.cached_ingredient_string
 end

 The actual ingredient_string method creates the cache version if needed. When the cached version is
in place, that version will be sent out without bothering to look at the actual ingredients.

c06.indd 172c06.indd 172 1/30/08 4:07:55 PM1/30/08 4:07:55 PM

Chapter 6: The Care and Feeding of Databases

173

 That ’ s all well and good, but it doesn ’ t cover the case where an ingredient is edited after the cached
string is created — the cached string needs to be changed. This is much easier if you assume that the
cache will update only when the ingredient is actually saved. This makes sense because it ’ s unlikely that
unsaved ingredient changes are going to linger in memory, and it ’ s harder to update the cache on the
attribute set, and even harder to guarantee that Rails isn ’ t going to have more than one copy of the recipe
instance floating around.

 Here ’ s the unit test for test/unit/recipe_test.rb :

 def test_should_cache_ingredient_string_if_ingredient_changes
 first_ingredient = Ingredient.find(1)
 subject = first_ingredient.recipe
 first_ingredient.ingredient = “bananas”
 first_ingredient.save
 string_1 = “1 1/2 cups bananas, Chopped”
 string_2 = “1 1/2 cups Second Ingredient, Sliced”
 string_3 = “1 1/2 cups Third Ingredient, Diced”
 assert_equal(“#{string_1}\n#{string_2}\n#{string_3}”,
 subject.cached_ingredient_string)
 first_ingredient.ingredient = “carrots”
 string_1_new = “1 1/2 cups carrots, Chopped”
 assert_equal(“#{string_1}\n#{string_2}\n#{string_3}”,
 subject.cached_ingredient_string)
 end

 This one is a tiny bit more involved. It starts by creating the ingredient and taking not of its recipe.
The test then changes the ingredient, saves it, and tests that the cached string has changed as
expected. The process is then repeated, mostly for good measure. The somewhat odd dodge in the
second line to get the recipe from the ingredient rather than vice versa seems to protect against
ActiveRecord creating a second recipe object (although it ’ s not immediately clear to me whether that ’ s
an artifact of the test environment or not).

 ActiveRecord Callbacks
 To make this test pass, you ’ re going to use the callback feature of ActiveRecord, which allows you to
specify arbitrary code to be run before or after a validation, creation, or save. The following line toward
the top of ingredient.rb will get the ball rolling:

after_save :update_recipe_cache

 The after_save here is the name of the callback that, surprisingly enough, denotes code that is called
after the ActiveRecord is saved. There are actually 14 callbacks. For new objects, the sequence is as
follows:

before_validation_on_create
after_validation_on_create
before_create
after_create

c06.indd 173c06.indd 173 1/30/08 4:07:55 PM1/30/08 4:07:55 PM

Chapter 6: The Care and Feeding of Databases

174

 For existing objects, the possibilities are these:

before_validation_on_update
after_validation_on_update
before_update
after_update

 All objects, new or existing, respond to this:

before_validation
after_validation
before_save
after_save
before_destroy
after_destroy

 In general, any validation that returns false cancels any further activity. This means that having the
 before_save method return false cancels the save operation.

 Although you can actually define a method with one of the callbacks as a name, it ’ s more common to use
a declaration - style version with a semantically meaningful symbol, as shown at the beginning of this
section. You can define more than one symbol for each callback, in which case they are all called in the
order that they are declared.

 The definition of the actual method is simple, and just calls the existing feature of the recipe object.
Here ’ s that method:

 def update_recipe_cache
 recipe.cache_ingredient_string unless recipe.nil?
 end

 The unless clause protects against data integrity problems. The hook after the save is used to ensure
that the ingredient data is actually stored in the database, in case ActiveRecord decides it needs to
look there when creating the recipe string (although that might lead to a very short time period where
the recipe object is out of synch with the database). Another option might just be to clear the cached
string on the recipe object (recipe.cache_ingredient_string = “ ” unless recipe.nil?), and
force the recipe object to recreate it when needed. That minimizes the chance of data being out of synch
at the cost of another database lookup later on.

 This discussion should give you the sense that adding this kind of caching to your application is not
without cost, and issues of maintaining data integrity need to be addressed. The callback mechanism is a
very powerful way to automatically add behavior to your objects that you might otherwise have to
specify manual or by overriding methods of ActiveRecord::Base .

 Unit tests will pass at this point.

 A Common Case
 There is one common case where Rails provides a preexisting hook to cache a value. It ’ s fairly common
to need to get a count of child objects in a one - to - many relationship. It ’ s a little simplistic, but can be

c06.indd 174c06.indd 174 1/30/08 4:07:56 PM1/30/08 4:07:56 PM

Chapter 6: The Care and Feeding of Databases

175

handy. What you need to do is augment the belongs_to side of the relationship with an option. Let ’ s
assume this is working on recipes and ingredients, although I ’ m not actually going to implement it,
because it ’ s not necessary. The belongs_to line in ingredient would change to this:

belongs_to :recipe, :counter_cache = > true

 In addition, a column named ingredient_count needs to be added to the recipes table. If you ’ d rather
give the column a different name, pass that name as a string as the argument to :counter_cache
instead of true .

 Now Rails will automatically track the count of ingredients in the recipe object, so it can be retrieved
without an additional database call. For this to work properly, all changes to the ingredient count need to
go through ActiveRecord. If the database is changed outside Rails, the caching will fall out of sync.

 Polymorphic Associations
 Sometimes you ’ ll have an ActiveRecord class with a relationship that could apply to objects in multiple
classes. Tagging is an example you ’ ve already seen, where the tag class might relate to any ActiveRecord
model in your system. Or, in a business system, an address table might relate to either a supplier or a
customer, each of which has its own separate table. In SoupsOn Line, you might use a rating system
where both recipes and users have ratings. Rails makes setting up this kind of relationship reasonably
straightforward.

 You need to have some kind of common name for whatever feature all the different classes on the
receiving end of the relationship might have in common — something like “ taggable ” or “ addressable ”
or “ rateable. ” This is something vaguely like a Java interface. Unlike Java, Rails doesn ’ t create anything
like a class with that kind of actual existence in the code. The name you choose for this relationship is
completely up to you, but you do have to be consistent. For this example, you ’ ll create a Rating class,
and use ratable for the interface. Enter the following to begin:

$ ruby script/generate model rating --svn

 From the Rating side, you declare the relationship in terms of the arbitrary interface name, as follows:

class Rating < ActiveRecord::Base
 belongs_to :ratable, :polymorphic = > true
end

 Thanks to the :polymorphic option, this will work even though there is no Ratable class. On the other
side of the relationship, the :as option signifies the polymorphic behavior. Add the following to both
 User and Recipe :

has_many :ratings, :as = > :ratable

 And boom — it works. Both User and Recipe will have ratings attributes.

c06.indd 175c06.indd 175 1/30/08 4:07:56 PM1/30/08 4:07:56 PM

Chapter 6: The Care and Feeding of Databases

176

 Well, you do have to do the migration first. Create db/migrate/009_create_ratings.rb and enter
the following, with a rake db:migrate when you ’ re done:

class CreateRatings < ActiveRecord::Migration
 def self.up
 create_table :ratings do |t|
 t.integer :rating
 t.integer :ratable_id
 t.string :ratable_type
 t.timestamps
 end
 end

 def self.down
 drop_table :ratings
 end
end

 The magic is in the ratable_id and ratable_type columns, which will hold the foreign
information. The id column is, of course, just what you ’ d have in a normal relationship. The type
column, as you might expect, will hold enough information about the class of the object on the other
side for Rails to be able to recreate it properly when the association is used.

 If you want to create a polymorphic has_many :through relationship, you need to set the :source
option on the side of the has_many that cannot infer the correct table from the information it has.
This prevents Rails from searching for a table using the interface name.

 Database Refresher
 Let ’ s close out this chapter with a brief look at some important Rails database security and integrity
features. Although these features may already be familiar to you, they are important enough to be
touched on here. Three of the most critical needs of the database system are preventing SQL injection
attacks by preventing arbitrary user - uploaded statements from being executed, preventing partial data
from being saved to the database, and preventing users from getting access to resources that don ’ t
belong to them.

 Preventing SQL Injection with the Power of Find
 A SQL injection attack occurs when user input from, say, a search box is allowed to execute freely on the
server side. A malicious user could place an SQL statement into the search box like:

‘); DROP DATABASE soupsonline_production

 If that statement is actually executed — well, hopefully you have a recent backup handy. Luckily, it ’ s
relatively straightforward to ensure that the user code is not executed, the basic idea is to ensure the user
input is treated as a string (or converted to the non - string data type), and that any single quote marks are
escaped to prevent the user from being able to break out from the string.

c06.indd 176c06.indd 176 1/30/08 4:07:56 PM1/30/08 4:07:56 PM

Chapter 6: The Care and Feeding of Databases

177

 Rails automatically sanitizes data sent to the database when it is the data argument of a find method or
a find_by method, or where the data is part of the ? interpolation of the :conditions argument to a
 find method. In other words, all of the following are safe:

Recipe.find(“banana”) ## string will be converted to ID of 0
Recipe.find_by_name(“NASTY DELETE STATEMENT”) ## string will be escaped
Recipe.find(:all, :conditions = > [“name > ?”, params[:name]]

 Rails does not sanitize data if it ’ s just part of the string in a conditions method, so don ’ t do this:

Recipe.find(:all, :conditions = > “name = #{params[:name}” ### NOOOOOOO!!

 In this case, the string interpolation is handled by Ruby, and Rails never gets the chance to be smart
about it.

 It ’ s also worth pointing out that the bare find method is smart enough to handle an array argument, but
not a range argument. For example:

Recipe.find([1, 2]) ## converts to SELECT * FROM recipes where id in (1, 2)
Recipe.find(1..2) ### error

 Using Transactions
 Transactions are the standard relational database mechanism for maintaining data integrity when several
database operations are related to each other. The basic idea is that you explicitly enter a transaction
block, and then any error that occurs while actions are performed inside the block automatically causes
the database to roll back to its pre - transaction state. The canonical example is a bank transfer, where you
want both the withdrawal and the deposit to occur together, or not at all.

 Rails automatically places both save and destroy calls inside a transaction so that any associated
objects are saved or destroyed within the transaction block. This covers the most common use of
transactions; however, you ’ ll still need to use them manually from time to time. The transaction
method is invoked as a class method of ActiveRecord, like this:

begin
 Recipe.transaction do
 recipe1.save
 recipe2.save
 end
rescue Exception = > e
 return false
end

 You need the begin/rescue/end block if you want to handle any exception thrown in the transaction
block. Rails will propagate the exception.

 The important thing to note here is that any change you make to the ActiveRecord objects in memory
inside the transaction block will still hold even if the transaction rolls back the database. (There used to
be a mechanism to include the ActiveRecord objects in the transaction as well, but it was deprecated in
the Rails 1.2 timeframe.)

c06.indd 177c06.indd 177 1/30/08 4:07:57 PM1/30/08 4:07:57 PM

Chapter 6: The Care and Feeding of Databases

178

 The other notable limitation is that a transaction will not work across database connections. The
transaction block in the previous example is not limited to just recipes — any ActiveRecord object
managed in that database can be included in the transaction. However, items in the legacy database
cannot. The best workaround at the moment is to nest the two transactions as follows:

begin
 Ingredient.transaction do
 IngredientData.transaction do
 #stuff
 end
 #after stuff
 end
rescue Exception = > e
 return false
end

 This solution may work in some cases, but not in all. Specifically, a failure of Ingredient after the
internal transaction has already closed will not trigger a rollback of the closed internal transaction.
A full implementation of this feature is considered outside the scope of ActiveRecord.

 Preventing Data Hijacking with Associations
 Imagine a system that has more secretive data than a recipe site — medical information, for example.
A na ï ve implementation of a method to show records by user might look like this:

def show
 @user = current_user
 @record = Record.find(params[:id])
end

 The problem with this is that there is no mechanism for ensuring that the record being found actually
belongs to the current user. In this case, a malicious user might start manually changing the ID in the
URL to see records of other users. Although you could do some logical checking for the association after
you search for it, it ’ s much easier to just use the features added to associations by Rails.

 Although the result of an association in Rails may seem like a simple record or array, in fact, it ’ s an
association object that can respond to find methods. For example:

def show
 @user = current_user
 @record = @user.records.find(params[:id])
end

 In this case, calling find on the user/records association implicitly limits the scope of the search to
record objects that actually belong to the user.

c06.indd 178c06.indd 178 1/30/08 4:07:57 PM1/30/08 4:07:57 PM

Chapter 6: The Care and Feeding of Databases

179

 This feature has obvious security benefits, and it has some nice code cleanup effects. You can also define
your own methods on the association. For example, in this hypothetical User class, you could write the
following:

has_many :recipes do
 def most_recent
 find(:all, :order = > “date DESC”, :limit = > 10)
 end
end

 Now that method can be called as follows:

@user.recipes.most_recent

 Notice that this is a call on a user instance and not on the User class.

 Resources
 There are not all that many specific external resources to point to in this chapter.

 Much of the discussion of using legacy databases was fueled by two articles in the Rails wiki,
http://wiki.rubyonrails.org/rails/pages/HowtoUseMultipleDatabases and http://wiki
.rubyonrails.org/rails/pages/HowtoUseMultipleDatabasesWithFixtures . In addition, there ’ s
a discussion of using proxy objects for covering legacy databases in Rails Recipes by Chad Fowler
(Pragmatic Bookshelf, 2006) .

 If there ’ s a funny side to SQL injection, it ’ s in the incomparable XKCD strip at http://xkcd.com/327 .

 Summary
 Rails has exceptional support for managing databases, although there are times when you still need to
manage the underlying database directly. One such case is a legacy database that does not conform
to Rails naming conventions. There ’ s a little bit of up - front work, but you can gain nearly all the Rails
benefits when working with a legacy database, including associations, testing, and database fixtures.

 To improve database performance, you can denormalize certain fields of the database, essentially
caching some derived information in your database tables. This mechanism is easy to implement using
ActiveRecord callbacks, which allow you to specify arbitrary code to be automatically executed at
various points of the ActiveRecord lifecycle.

 You can create polymorphic relationships, in which the other end of the relationship could be a member
of multiple classes. This is implemented by using a multiple foreign key to represent the ID and type of
the foreign object.

 Rails provides basic functionality to prevent SQL injection attacks, take advantage of database
transactions, and automatically restrict a find call within an association.

c06.indd 179c06.indd 179 1/30/08 4:07:57 PM1/30/08 4:07:57 PM

c06.indd 180c06.indd 180 1/30/08 4:07:57 PM1/30/08 4:07:57 PM

 Testing Tools

 In this book, I ’ ve put testing front and center for the simple reason that I believe that automated
testing is a critically important method for ensuring both code quality and long - term code
maintainability. So far, I ’ ve focused on Ruby ’ s standard Test::Unit structure as the primary tool
in the testing toolkit. And while Test::Unit is a very important part of automated testing, it ’ s
far from the only tool you should be using to ensure that your Rails application is fully and
completely tested.

 In this chapter, you ’ ll fill out your toolkit a bit and examine why each new tool is vital to your
being a test - driven developer. You ’ ll see how to measure the amount of code that is touched by
your tests, and how you can use mock objects to improve your code and reach otherwise -
 difficult - to - cover parts of the code. Then you ’ ll look at some tools for behavior - driven testing, a
technique that uses mock objects extensively. Finally, you ’ ll see a way to separate controller and
view tests in Rails.

 Test Driven
 Writing automated tests as a standard part of the development process first gained wide
prominence as one of the Extreme Programming core practices. The idea is frequently
mischaracterized or misapplied, however, and partially as a result, the practice formally known
as Test - First Programming is now more frequently called Test - Driven Development (TDD).

 The TDD process comprises the following three steps, which are repeated over and over until your
application is complete:

 1. Write a simple test specifying something that your program does not currently do. If this
step is taking more than a couple of minutes, you are either trying to do too much or your
application structure is too complex. This test should fail because you have not yet added
the new feature to the system. Run the test to ensure that the test fails.

c07.indd 181c07.indd 181 1/30/08 4:08:31 PM1/30/08 4:08:31 PM

Chapter 7: Testing Tools

182

 2. Write simple code that causes the test to pass. The important thing here is to not get caught
up in trying to predict what you will need to do to pass the next test. Focus on passing the
current test.

 3. Refactor. It ’ s likely that the code changes added in either step 1 or step 2 have led to code dupli-
cation or some other kind of ugliness. Clean it up right here and now, and make sure the tests
pass. Then it ’ s time to move on to the next test.

 For the examples in this book, I tend to just show the initial test and final code, and not show the details
of the refactorings done to clean up the code. In some cases, I present a series of tests together — even
though the code was, in fact, generated one test at a time.

 You ’ ll see some mild differences of opinion on exactly how simple to make the code that you add in step
2 of the process. Some coders go so far as to start with just a constant — meaning that if the test has this
assertion:

assert_equal(7, x.foo)

then you should start with this:

def foo
 return 7
end

 If foo is not a constant method, then you ’ re supposed to write another test to trigger a failure, and
eventually it should become easier to write the actual method than to keep juggling constants. In my
opinion, this is usually a bit much (although it rarely takes long to cycle through), and my step two is
along the lines of “ the simplest thing that could actually be an implementation for this function ” or
maybe “ the simplest thing that would work if I didn ’ t know exactly what the test input would be. ”
Generally, you will also want to write explicit test cases for potential error conditions such as nil or blank
arguments.

 It ’ s very important not to skip the refactoring step — that ’ s the design part. Doing refactoring after each
testing step keeps the cleanup small and manageable, and reduces the chance that you will have to do a
large - scale cleanup later on.

 Follow the process and, at least in theory, your application will always have 100 - percent test coverage,
and will always be roughly as simple as possible. These are both worthwhile goals for your
application — an application written using TDD should be much easier to modify and maintain moving
forward.

 TDD is, first and foremost, a software design methodology. The fact that it gives you automated test
coverage can help you feel confident about the quality and functionality of your code. However,
developer - written, automated tests are not in and of themselves a complete testing solution. In
particular, the value of the developer tests is limited by the developers ’ understanding of the problem. In
other words, a developer unit test can only test that the program is doing what the developer expects,
not that the expectation is itself correct. To test the real - world correctness of the program, you need to do
a separate round of automatic or manual acceptance testing.

c07.indd 182c07.indd 182 1/30/08 4:08:32 PM1/30/08 4:08:32 PM

Chapter 7: Testing Tools

183

 Covering It All
 When you ’ re trying to determine the quality of a set of unit tests, the most basic question you need to
ask yourself is whether the tests actually fully exercise the code being tested — a metric known as code
coverage . Code coverage is the simple percentage of the application code that is executed when the test
suite is run. Coverage can be computed based on the number of lines in the code or by the number of
branch paths through the code. Although you could get in a nice programmer - minutia kind of argument
over which is the One True Way of measuring coverage, the fact is that in your Rails applications, the
goal is complete 100 - percent coverage. (Actually, I ’ ve started to shoot for 100 percent two ways:
100 - percent coverage of the models from the unit tests alone, and 100 percent for the application as a
whole from the entire test suite.) The details of the measuring metric are not really that important.

 Obviously, coverage in and of itself does not guarantee test quality — for instance, the tests might cover
everything but never have any assertions, which only verifies that the program runs without crashing
(and in fairness, there are times when that ’ s a perfectly valid test). Lack of coverage pretty much ensures
that the test suite is in some trouble — the parts of your application that are missing tests often contain
problem code. However, if you are confident that your test writers can consistently and competently
create tests that are actually doing something reasonable, then the code - coverage percentage is a decent
ballpark measurement of test quality.

 Installing rcov
 rcov is the standard Rails tool for measuring test coverage. It is not shipped by default with Rails, but
you can install it in one of two ways. If you don ’ t have access to a C compiler on your development
machine, you can install rcov as a RubyGem as follows:

$ gem install rcov

 As with some of the other gems you ’ ve seen, you may be prompted for a separate version between
Windows and non - Windows operating systems.

 If you have some kind of C compiler on your machine (meaning pretty much any serious Linux
distribution, Mac OS X with Xcode installed, or Windows with the Microsoft free command - line
compiler), you should install rcov with its native extension. The rcov project claims that using the native
extension gives you a speedup factor of 100, which certainly seems worth typing an extra command to
install the extension.

 To get the extension, download a tarball from http://eigenclass.org/hiki.rb?rcov . Unpack the
tarball, go to the new directory, and run the following setup command to compile the extension:

$ ruby setup.rb

 If you are on a Windows machine without the compiler, and you ’ re running one of the standard
Windows Ruby distributions, the http://eigenclass.org/hiki.rb?rcov page also has a link for a
precompiled Windows extension and how to install it.

 To specifically integrate rcov with Rails, you need to install the rails_rcov plugin:

$ ruby ./script/plugin install -x http://svn.codahale.com/rails_rcov

c07.indd 183c07.indd 183 1/30/08 4:08:33 PM1/30/08 4:08:33 PM

Chapter 7: Testing Tools

184

 As with other plugins you ’ ve installed, remove the - x if you aren ’ t on Subversion. This particular plugin
merely contains a single Rake file, so there ’ s not much to worry about either way.

 Using rcov and Rails
 The rails_rcov plugin adds several Rake tasks to your repertoire. For each type of Rails test (unit,
functional, and integration), the plugin adds an rcov task, which generates rcov data, and a clobber
task, which clears the data. The new tasks are named as extensions of the exising test types, of the form
 test:units:rcov and test:units:clobber .

 These Rake tasks are useful, but incomplete. Each of them runs the Rails test suite of its type and
produces a coverage report, with highlights sent to standard output. The file output from the tasks goes to
the < rails root > /coverage directory, and you ’ re going to want to tell your Subversion repository
to ignore files in that directory because you probably don ’ t want to have all your coverage data loaded
into your repository. (You ’ ll have to add the directory itself to tell Subversion to ignore its contents.)

 Though it may be interesting to know specifically what coverage your functional tests are getting, you
also want to know about your entire test suite as a group. Unfortunately, there ’ s no task for the rcov
plugin to aggregate the data out of the box. (The plugin documentation erroneously states that there is
such a task, but it lies — or at least it did when I was writing this, though things may have changed since
then.) Fortunately, it ’ s not at all hard to whip up your own Rake task for the occasion. The following
example puts a slight gloss on a version presented on the rcov website. Place this in lib/tasks/
coverage.rake :

require ‘rcov/rcovtask’

namespace :test do
 namespace :coverage do
 desc “Delete aggregate coverage data.”
 task(:clean) do
 rm_rf “data/coverage”
 rm_f “data/coverage.data”
 end
 end

 test_types = %w[unit functional integration]

 desc ‘Aggregate code coverage for unit, functional and integration tests’
 task :coverage = > “test:coverage:clean”

 tests_to_run = test_types.select do |type|
 FileList[“test/#{type}/**/*_test.rb”].size > 0
 end

 tests_to_run.each do |target|
 namespace :coverage do
 Rcov::RcovTask.new(target) do |t|
 t.libs < < “test”
 t.test_files = FileList[“test/#{target}/**/*_test.rb”]
 t.verbose = true
 t.rcov_opts < < ‘--rails --aggregate data/coverage.data’
 if target == tests_to_run[-1]
 t.output_dir = “data/coverage”
 else

c07.indd 184c07.indd 184 1/30/08 4:08:33 PM1/30/08 4:08:33 PM

Chapter 7: Testing Tools

185

 t.rcov_opts < < ‘--no-html’
 end
 end
 end
 task :coverage = > “test:coverage:#{target}”
 end

end

 This file adds two tasks — test:coverage:clean and test:coverage — which build rcov tasks
programmatically and place the final output in coverage/complete . The keys to this are the
 - - aggregate and - - no - html options. Aggregating causes a common data file to be placed in coverage
.data and added to by each separate task (which will cause rcov to go a bit slower, so I hope you managed
to get the native extension installed). Ordinarily, this would cause each task to have the data for that task
combined with all the tasks previously run. Because that doesn ’ t seem particularly useful, I use the
 - - no - html option for all but the final test, which is then saved to the coverage/complete directory.

 Running the test:coverage task causes all three unit test sub - suites to run, with both their normal
output and a text overview of the data. A slew of HTML files are placed in test:coverage . The first one
you ’ ll take a look at in this discussion is the index.html file, which should be similar to what ’ s shown
in Figure 7 - 1 .

 Figure 7 - 1

c07.indd 185c07.indd 185 1/30/08 4:08:33 PM1/30/08 4:08:33 PM

Chapter 7: Testing Tools

186

 The output lists the source files in your Rake project. For each file, it lists total lines and lines of code. The
difference is that the Total lines column includes comments and def and end lines, while the Lines of
code column includes only executable lines. For each metric, there ’ s an estimated percentage of the lines
that have been executed at least once during the test suite. (rcov can generate a total count of how many
times each line has been hit, but that information is less useful for the current purpose.) A source file that
is not touched at all by test code does not show up in the list, so make sure all the files you expect to see
are actually there.

 Each row is one source file and links to more information about coverage within that file. Figure 7 - 2
shows a snippet from ingredients_controller.rb that shows one of the uncovered segments.

 Figure 7 - 2

 I ’ m not sure how well that shows up in black and white, but the else clause of this method is
highlighted in red to indicate that the test suite did not cover that particular branch of the code. rcov
does an impressive amount of analysis on the Rails interpreter ’ s output to gather this data, but it ’ s not
always 100 - percent correct. In this example, the fact that the respond_to inner blocks are all done on
one line is masking the fact that there is not actually a test that renders XML for this method. It ’ s also a
little weird that the end lines for the respond_to block and the method both show as uncovered — I ’ m
not sure that ’ s actually meaningful.

 The goal for your Rails project should be to run at 100 - percent coverage all the time. This is feasible in
Rails partially due to the flexibility of Ruby. When you are at 100 - percent coverage with good tests, you
have a tremendously strong safety net to support you as you add new features, fix bugs, and refactor
your application. Verifying that you haven ’ t introduced new bugs is just a single test - run away at all
times.

 As you can see from the preceding snapshot (which is the current state of the Soups OnLine code as I
write the initial draft of this chapter), the project is already extremely close to 100 - percent code coverage.
And this is just the result of using Rails scaffolding and the TDD practices shown in this book. The one
major coverage hole is the proxy object which was developed as an option in the last chapter. There are
no method creator calls for the proxy base class in the current code base, so that class is not being
exercised by the test cases — which is not really a problem at the moment (and in a real code base,
would be cause to remove the unused code).

c07.indd 186c07.indd 186 1/30/08 4:08:34 PM1/30/08 4:08:34 PM

Chapter 7: Testing Tools

187

M ost of the uncovered cases are the error cases of various create and update methods, as shown in the
previous screnshot. (I also seem to have forgotten to write controller tests for the Ajax tag edit forms.) To
test for a save failure, you need to set up a test scenario where a save would fail. The most obvious way
to do that is to try to save an object that fails either Rails validation or database constraints.

 There ’ s only one problem. As currently set up, Recipe has no database constraints or Rails validations.
Although I could probably come up with one or two plausible objects to add (or do something weird like
try to save a 10,000 - character title and blow up the field), it sure seems like there should be an easier way.

 And so there is.

 Mock Testing
 Mock object testing involves the use of fake objects as stand - ins for your real objects to support automated
testing. Traditionally, this technique allows testing in systems involving databases, network connections,
or some other relationship that would be difficult or impossible to set up for real in the test context. Over
time, the technique has also proven useful in helping to verify program behavior and to focus testing.

 Mock testing is one of those areas where anyone who has put together a toolkit has come up with a
slightly different naming structure than everybody else. I ’ m following Martin Fowler ’ s usage from the
article “ Mocks Aren ’ t Stubs ” (see the “ References ” section at the end of the chapter). Much like a stunt
double, a test double is any object used as a stand - in for the real thing during testing. A stub is a fake
object or method set up during the test to return a preset value without performing the real calculation.
A mock is also set up to return a preset value, but a true mock has the additional capability to track what
calls have been made to the mock object and, more importantly, to automatically validate that the calls
match expectations that are created during test setup.

 Now, the wonderful thing about doing mock object testing in Rails is that the mock tools can leverage
the extensive Rails metaprogramming capabilities to turn ordinary, preexisting objects and classes into
stubs or mocks. This is in contrast to, say, the Java mock object tools, which tend to do fancy things with
Java interfaces or classloaders to create mock object that are proxies to the original object, but which are
different from the original object in ways that can cause difficulties during testing.

 Because Ruby makes creating mocks and stubs so easy, you gain some very nice testing flexibility. An
example that ’ s relevant to the current predicament is that you can create an ActiveRecord model from
your project that behaves exactly like every other ActiveRecord model in the system, except that it
captures attempts to save and returns a value without actually contacting the database.

 Using FlexMock
 There are three or four different Rails packages for doing mock object testing. They all seem to have
similar features, so I ’ m only going to discuss one of them here. The package is called FlexMock, and it
was created by Jim Weirich (who is also the person responsible for Rake). FlexMock is distributed as a
Ruby gem so you install it via a typical gem command, like this:

$ sudo gem install flexmock

c07.indd 187c07.indd 187 1/30/08 4:08:34 PM1/30/08 4:08:34 PM

Chapter 7: Testing Tools

188

 To use FlexMock in your test suite, put the following require line at the top of each test script that will
need mocks (and if it ’ s going to be used frequently, put it in test_helper.rb):

require ‘flexmock/test_unit’

 Now you ’ re ready to mock.

 I ’ m going to show you the specific mock test I used to reach one uncovered part of the code base, and
then walk you through how that test might be extended and how other stubs and mocks might be
created.

 The uncovered code was the else clause in this method from recipes_controller.rb , as highlighted
in the following code:

def update
 @recipe = Recipe.find(params[:id])

 respond_to do |format|
 if @recipe.update_attributes(params[:recipe])
 flash[:notice] = ‘Recipe was successfully updated.’
 format.html { redirect_to(@recipe) }
 format.xml { head :ok }

 else
 format.html { render :action = > “edit” }
 format.xml { render :xml = > @recipe.errors,
 :status = > :unprocessable_entity }
 end

 end
 end

 To reach the uncovered part of the code, a test must fail the update_attributes call. However, as
mentioned previously, setting up an error condition for a recipe is not immediately obvious because the
 Recipe class doesn ’ t do any validation to speak of. Rather than tie your head in knots trying to create a
failure case, it ’ s much easier to just impose a failure case on the system. Place this in test/fixture/
recipes_controller_test.rb :

 def test_should_fail_update
 flexmock(Recipe).new_instances.should_receive(
 :update_attributes). and_return(false)
 put :update, :id = > 1, :recipe = > {:title = > “Grandma’s Chicken Soup”}
 assert_template(‘edit’)
 actual = Recipe.find(1)
 assert_not_equal(“Grandma’s Chicken Soup”, actual.title)
 assert_equal(“1”, actual.servings)
 end

 The key line of code here, obviously, is the first line. Let ’ s break it down, piece by piece:

 flexmock(Recipe) — Creates a new test double (in this case, it ’ s a stub). The flexmock
method takes a number of different options that I ’ ll get to in a moment. In this case, flexmock is
being called with a real, live Ruby object as an argument, namely the Recipe class. The goal in
this case is to build mock behavior around the real object.

❑

c07.indd 188c07.indd 188 1/30/08 4:08:34 PM1/30/08 4:08:34 PM

Chapter 7: Testing Tools

189

 new_instances — This is a method on the mock object proxy. It is only valid in the case where
the object being mocked is actually a class object. When this is called, FlexMock applies any
further specifications to all new instances of the class being mocked — in other words, it
overrides the behavior of calls to new . As a result, any ActiveRecord recipe object created in the
call — including the object that will get created in the controller method to be updated — will be
augmented with the mock behavior. This means that objects already created and stored as
fixtures will not have the new behavior, but the same objects loaded back out of the database
and into ActiveRecord models will. This method call (along with most of the similar methods in
 FlexMock) returns a special object that records all the various expectations to allow the
constraints to be chained as they are in this example.

 should_receive(:update_attributes) — Now the test is actually starting to specify
behavior of the stub objects. This method call alerts FlexMock to the idea that you want to do
something with the update_attributes call, but does not yet specify exactly what that
behavior will be. The should_receive method can take an arbitrary number of symbol
arguments, each of which represents a method that will be stubbed or mocked according to the
same specification.

 and_return(:false) — The line of code ends with the actual behavior specification. FlexMock
will now cause any call to update_attributes to return false instantly without hitting the
database, passing Go, or collecting 200 dollars. This method has a lot of flexibility. You can
pass in several values, in which case FlexMock will return them one by one on each new call to
the mocked method — if there are more classes than values, the last value is used again and
again. You can also pass in a block, which takes in all the arguments to the actual method and
enables you to perform arbitrary manipulation to determine the mock return value.

 This test passes as - is because it was added to increase coverage and targeted at a specific branch of the
code. The flexmock statement leads off the test, and then the normal functional test controller method is
invoked. The difference is that when the controller method goes to call update_attributes , the
 FlexMock system intercepts the call and returns false , as specified. The controller interprets this as a
failure, and walks down the error branch of the method, enabling the test to validate that the controller
behaves as expected under error.

 This is a simple and elegant way to test for failure conditions or other conditions that might be difficult
to specify explicitly in the object model. Add tests similar to this for the other error clauses that weren ’ t
previously covered, and 100 - percent test coverage not far away. (For the record, it took me about an hour
and a half to get to 100 - percent coverage from this test, and that included finding one genuine bug,
taking a stab at reincorporating the proxy object, and some rather silly confusion because I had two tests
with the same name.)

 Specifying Stubs
 FlexMock is nothing if not flexible in the way it allows you to create its proxy objects. The preceding
mock test is written against a class object and applies to all new instances. Another option is to create a
real instance, and then specify stub methods on the object, like this:

soup = Recipe.new
flexmock(soup).should_receive(:ingredients).and_return([])

❑

❑

❑

c07.indd 189c07.indd 189 1/30/08 4:08:35 PM1/30/08 4:08:35 PM

Chapter 7: Testing Tools

190

 Where the method name and return value can be expressed as a simple key/value pair, FlexMock offers
the following shortcut for the second line:

flexmock(soup, :ingredients = > [])

 This is shorter, but it ’ s a bit further from being a readable English sentence. You can, of course, pass in
multiple key/value pairs, and you can also do this in multiple lines. For example:

flexmock(soup)
flexmock(soup).should_receive(:ingredients).and_return([])

 Or you can do this as a block, as in the following example:

flexmock(soup) do |soup|
 soup.should_receive(:ingredients).and_return([])
end

 You can also create a complete fake object that isn ’ t associated with an existing class, just by passing a
string or symbol to flexmock . For example:

flexmock(“banana”)
flexmock(“banana”).should_receive(:do_something)and_return(3)
flexmock(“banana”, :do_something = > 3)
flexmock(:do_something = > 3)

 The second and third lines are identical in effect. The last line is almost identical, but it doesn ’ t give the
stub object an individual name.

 If, for some reason, you want to add stub or mock methods to a string, you need to do something slightly
tricky because the default would be to treat the string as the name of a new mock, as in the first line of the
preceding example. To actually add stub methods to a string or symbol, use the :base option like this:

flexmock(:base, “string_to_mock”)

 You can also make the first argument the symbol :safe . A FlexMock object in normal mode adds a few
methods to the real object ’ s namespace, most notably should_receive , and new_instance . This is a
problem if methods by those names already exist in the object. In safe mode, FlexMock does not add
those methods. Therefore, to add expectations to a safe - mode mock object, you must do so inside a block
such as this:

flexmock(:safe, soup) do |mock|
 mock.should_receive(:ingredients).and_return([])
end

 This works because the proxy object used within the block will have the FlexMock should_receive
method, but when the proxy object is used outside the block, it will not have that method added.

 All of these chains return the internal FlexMock expectation object, not the mock itself (this supports the
chaining of the method). To get the actual mock back, end the chain with the following mock call:

mock = flexmock(Recipe).should_receive(:save).mock

c07.indd 190c07.indd 190 1/30/08 4:08:35 PM1/30/08 4:08:35 PM

Chapter 7: Testing Tools

191

 Finally, the following FlexMock mechanism is specifically designed to play nicely with ActiveRecord:

require ‘flexmock/activerecord’
mock = flexmodel(Recipe) do |mock|
 # arbitrary mock stuff
end

 Using the flexmodel form gives you a stub object with a few predefined ActiveRecord style methods —
 class , id , is_a? , errors , new_record? , and to_params — which return simple stub versions of the
real methods. id returns a unique identifier, isa? and class match the real class, and so on.

 Mock Expectations
 All of the FlexMock functionality you ’ ve seen so far actually creates stubs — objects that can receive
messages and return values, but don ’ t have any provision yet to validate behavior. FlexMock has a series
of methods that can be chained onto an expectation declaration to add validations.

 There are three general types of expectations that can be added to a stubbed method to turn it into a
mock. You can add an expectation about the number of times the method will be called using one of the
following modifiers:

 never

 zero_or_more_times

 once

 twice

 times(n)

 By default, the test for each of these is that the method is called exactly that number of times (except, of
course, for zero_or_more_times). Any of these methods can be prefixed by the method at_least or
 at_most . For example:

should_receive(:update_attributes).at_most.once.and_return(false)

 These modifiers appear after the should_receive call and before the and_return call. They can be
chained, as in at_least.once.at_most.times(3) .

 Updating the initial test with the preceding decoration still results in a test that validates. The at_most
call is needed here because although the ActiveRecord object created in the controller gets an update_
attributes call , the ActiveRecord object created in the fourth line of the test does not. All Recipe
objects get the same specification, and the test will fail with a message that looks like this:

in mock ‘flexmock(Recipe)’: method ‘update_attributes(*args)’ called incorrect
number of times.

 Notice that the error message does not specify which instance of Recipe has the problem. Validation
failures are somewhat easier to diagnose if the mock object is based on a single instance rather than
the class.

❑

❑

❑

❑

❑

c07.indd 191c07.indd 191 1/30/08 4:08:35 PM1/30/08 4:08:35 PM

Chapter 7: Testing Tools

192

 You can also specify what arguments should be passed to the mock call, using the
 with(Argument1 , Argument2 . . .) specifier method. The argument list you put in the expectation is
matched against the argument list when called. Objects are matched using eq , with two exceptions. If
you pass in a class name, any instance of that class is a valid entry, as shown here:

foo.should_receive(:thing).with(String, Integer) #thing(“hi”, 2) is valid

 You can also pass in a regular expression (regex) as an argument, in which case the real arguments are
valid if they match the expression (FlexMock converts the arguments to strings before comparing). If you
actually want to validate against a literal class or regex, you can do that with the form
 with(eq(ClassName)) .

 The third kind of validation you can have a FlexMock object perform pertains to the order in which the
real calls to the method are made. If you use the ordered decorator, FlexMock validates the order of the
actual calls, such that all methods specified as ordered are invoked in the same order as they are
specified. So, the following specification:

flexmock(toast) do |mock|
 mock.should_receive(:toast_bread).ordered
 mock.should_receive(:spread_butter).ordered
end

considers this to be valid:

toast.toast_bread
toast.go_to_fridge
toast.spread_butter

The presence of the non - ordered go_to_fridge method does not affect the validation.

 The ordered method can take a single argument, which is a symbol representing a group. A number of
consecutive methods can be decorated with the same group name. This changes the behavior of the
validation slightly. Methods within the group can be called in any order. However, all methods specified
before the named group must be called first, and all methods specified after the group must be called
later. Here ’ s an example:

flexmock(toast) do |mock|
 mock.should_receive(:toast_bread).ordered
 mock.should_receive(:go_to_fridge).ordered(:passing_time)
 mock.should_receive(:look_at_clock).ordered(:passing_time)
 mock.should_receive(:pace).ordered(:passing_time)
 mock.should_receive(:spread_butter).ordered
end

 Here, go_to_fridge , look_at_clock , and pace can be invoked in any order, as long as toast_bread
is before any of them and spread_butter is after all of them.

 Mock objects are very useful for validating hard - to - reach parts of your application, and are also good for
focusing unit tests on the particular part of the application under test. Following that thought to its
logical conclusion leads you to a slightly different paradigm of unit testing.

c07.indd 192c07.indd 192 1/30/08 4:08:36 PM1/30/08 4:08:36 PM

Chapter 7: Testing Tools

193

 Behavior - Driven Design
 One thing you may have noticed about shifting to mock object validation is that it alters the very nature
of the kinds of testing that you perform in your unit tests. Traditional unit tests, which perform most of
their validation via assertions, are testing the state of the application. A mock object test, which is
validating the calls made during the test against a predefined expectation, is testing the behavior of the
application. The behavioral test is, at least potentially, more readily capable of separating the intended
behavior of the program from the specific implementation being used.

 Advocates of the flavor of automated test development called Behavior - Driven Design (BDD) attempt to
move the test design closer to the problem space than to the implementation space, in part by designing
the BDD tool sets so that tests can be specified in an idiom that is closer to natural language. BDD
toolkits make extensive use of mock objects both as a way to specify the problem domain and as a way
to separate individual unit tests from each other. Using traditional TDD tests, a change in a low - level
method can cause multiple tests to break. A BDD advocate would argue that the fact that a single code
change can trigger multiple test failures means that the tests are not truly unit tests, but in fact are
integration tests, although at a very small scale. Where a TDD style of testing might use mock objects
only in cases where the real object is unavailable or awkward, a BDD style uses mocks more aggressively
to separate the method under test from the rest of the system.

 This section provides an overview of RSpec, the most popular BDD test package for Ruby. RSpec has
very nice integration with Rails, including the capability to separately test controllers, views, and helper
methods.

 Loading RSpec
 RSpec is available as both a Ruby gem (gem install rspec) and as a Rails plugin. For use within
Rails, grab both the RSpec plugin and the RSpec Rails plugin like this:

ruby script/plugin install -x svn://rubyforge.org/var/svn/rspec/tags/CURRENT/rspec
ruby script/plugin install -x
svn://rubyforge.org/var/svn/rspec/tags/CURRENT/rspec_on_rails

 As usual, if you don ’ t want to install RSpec as external to your Subversion server, you can remove the
 - x option.

 Windows users also need to install a gem called win32console for RSpec to work properly.

 After RSpec has been installed, you need to run the following generator to set up RSpec directories
and files:

ruby script/generate rspec

 This command ’ s primary purpose is to create the spec subdirectory under your top - level Rails directory,
which it populates with a spec_helper.rb file, analogous to the standard test_helper.rb file. It also
creates a couple of scripts, and some other files that you don ’ t need to deal with right now. The
command does not, however, set up the RSpec subdirectories that the Rails naming convention will
expect. You ’ ll need to do that manually.

c07.indd 193c07.indd 193 1/30/08 4:08:36 PM1/30/08 4:08:36 PM

Chapter 7: Testing Tools

194

 RSpec uses a Rails naming convention that is similar to the conventions already in place. The following
table shows this convention by providing sample names.

 Test Type Example Name

 Controller test spec/controllers/recipe_controller_spec.rb

 Helper test spec/helpers/recipes_helper_spec.rb

 Model test spec/models/recipe_spec.rb

 View test spec/views/recipe/new_spec.rb

 For the purposes of this section, you ’ ll be manually creating the spec files because the model, view,
controller, and helper files have already been generated. If you are starting from scratch with RSync,
some custom generators have been defined: rspec_controller , rspec_model , and rspec_scaffold .
Their behavior is identical to the preexisting controllers — they all take the same arguments. The only
difference is the creation of RSpec stub test files in the spec directory, rather than Test::Unit files in the
test directory.

 You can run all your RSpec specifications with the command rake spec . If you only want to run one of
the subsuites, use a more specific command such as rake spec:models . Subtasks exist for
 controllers , helpers , models , plugins , and views . If you have rcov installed, then any of these
commands can also have :rcov added onto it, and a coverage report will be generated. However, even
though RSpec has tests for view templates, rcov will not give a coverage report for the ERB template
files. In Rails 2.0, the default rake task will run both unit tests in the test directory and RSpec
specifications in the spec directory.

 Writing RSpec Specs
 An RSpec spec file contains one or more behaviors, each of which contains one or more examples. Notice
that the naming conventions already set up the idea of how RSpec differs from Test::Unit — “ behavior ”
and “ example ” are talking about the tests in terms of functionality and intention, whereas “ test ” and
 “ assertion ” are associated with implementation. An RSpec behavior is roughly equivalent to a Test::Unit
class, although you are much more likely to see multiple behaviors in a single spec file than multiple
classes in a Test::Unit class file.

 The method for declaring a behavior is describe , and the method for declaring an example is it . The
skeleton outline of a spec file looks like this:

describe Foo do
 it “should not crash when I call it” do
 # do something testable here
 end
end

 Notice that the example is described with a natural language string rather than a method name.

c07.indd 194c07.indd 194 1/30/08 4:08:36 PM1/30/08 4:08:36 PM

Chapter 7: Testing Tools

195

 Within a behavior, you can specify initial conditions and cleanup using the before and after methods.
These methods take two modifiers. The default is :each , which signifies that the associated block should
be run before or after each individual example, just like a setup or teardown method in Test::Unit. The
other alternative is :all , which signifies that the block should be run at the very beginning of the
behavior before all the examples, or at the very end after all the examples. You may declare multiple
 before and after blocks with the same modifier, and all of the blocks will be executed at the
appropriate time.

 Any methods you declare inside a behavior using the normal Ruby def syntax can be accessed from any
example within the behavior, so you can still write custom verifiers or common helper methods.

 Also, although examples normally take a block, you can temporarily put an example in with just the
string and no block. For example:

it “should do something that hasn’t been implemented yet”

 RSpec will interpret this test as pending, and will report the number of pending tests separate from the
number of passing or failing tests.

 You can take that one step further and account for those instances in which you know a test is failing and
don ’ t care, but would like to know when the test starts passing. The general form is this:

it “should fix this silly bug” do
 pending(“this is Bob’s problem”) do
 #specify the failing test here
 end
end

 In this case, RSpec will run the code inside the pending block. If it fails, the test will still report as
pending, but if it succeeds you ’ ll get an expectation failure that essentially tells you the test no longer
fails and doesn ’ t need to be pending.

 Writing Model Tests
 Over the next few sections, you ’ ll see some examples of RSpec specifications based on Test::Unit tests
that have already been written. The goal is not to completely redo the tests that have already been
written, but rather to see some examples of how RSpec tests work, and note how they differ from a Test::
Unit test. Let ’ s start with the models.

 For these tests to work, the ingredient and recipe YAML files need to be copied from test/fixtures to
spec/fixtures. The following RSpec is from the file spec/models/recipe_spec.rb :

require File.dirname(__FILE__) + ‘/../spec_helper’

describe Recipe, “basic test suite” do
 fixtures :recipes
 fixtures :ingredients

 it “should have ingredients in order” do
 subject = Recipe.find(1)
 subject.ingredients.collect { |i| i.order_of }.should == [1, 2, 3]
 end
end

c07.indd 195c07.indd 195 1/30/08 4:08:37 PM1/30/08 4:08:37 PM

Chapter 7: Testing Tools

196

 This is an almost direct translation of a unit test from Chapter 1 . The describe block sets up the
behavior (there ’ s no before or after code in this behavior yet). The it block sets up a specific
expectation — in this case, the expectation that ingredient strings will always be ordered.

 The should method (and its sibling should_not) is the key to testing state in RSpec. It ’ s used here
with an == modifier after it, in which case it performs what is essentially a straightforward assertion
test with the right - side value being the expected case, and the left - side value (the object being passed the
 should message) being the actual value.

 You can put other things after a should message. In particular, any message of the form be_ < something >
is automatically translated by RSpec to the predicate < something > ? . Because nil? is defined for all
objects, you can always test should be_nil or should_not be_nil . Within a Rails project, you can
always test should be_blank ; arrays can be tested for should be_empty ; and so on. If you think it
reads better, you can use be_a or be_an as the prefix. Also, RSpec is smart enough to adjust for have/has,
so should have_key for a hash will test against the has_key? predicate. Remember that this trick works
only against methods that are defined with the question mark in the name, even though you don ’ t type
the question mark in RSpec.

 The first test is actually pretty similar to the original unit test, but the next one shows more of the
difference between RSpec and Test::Unit. Way back in Chapter 1 , you wrote a bunch of tests to validate
the code that parsed a string like “ 2 cups of carrots, chopped ” into an Ingredient object. And
then there was also a test to validate that a recipe could take a number of those strings and convert them
into a list of ingredients. The RSpec version of the recipe test looks like this:

it “should split ingredient strings into separate lines” do
 Ingredient.should_receive(:parse).exactly(3).times.and_return do |s, rec, ord|
 Ingredient.new(:recipe_id = > rec.id, :order_of = > ord, :amount = > 2,
 :ingredient = > ord)
 end
 subject = Recipe.find(2)
 subject.ingredient_string =
 “2 cups carrots, diced\n\n1/2 tablespoon salt\n\n1 1/3 cups stock”
 subject.ingredients.count.should == 3
 subject.ingredients.collect { |i| i.order_of }.should == [1, 2, 3]
 subject.ingredients.collect { |i| i.ingredient }.should == %w[1 2 3]
 end

 There are two components to the test. The recipe object is given a string with three ingredients and two
blank lines. The recipe is supposed to ignore the blank lines and cause the other lines to be parsed.

 In the Test::Unit version of the test, the actual ingredient parser is called, and the specific objects in the
recipe are tested against the expected results of the parser. In the RSpec version, you do not call the
ingredient parser because you are not testing it. Instead, the first line of the test sets up the Ingredient
class as a partial mock object, returning dummy ingredient objects, and asserting that it will be called
exactly three times. The dummy ingredient objects don ’ t match what the real parser would emit (they
just have the minimum amount of data not to cause nil exception), but you actually don ’ t care — the
correctness of the parser itself is a job for the tests that you are going to write against the parser. In this
test, your job is to verify that the recipe object doesn ’ t cry if it ’ s given blank lines, so you don ’ t care
whether the parser is correct. The key here is to be very focused on the actual method under test and
build a wall around that method which only mock methods need to get through.

c07.indd 196c07.indd 196 1/30/08 4:08:37 PM1/30/08 4:08:37 PM

Chapter 7: Testing Tools

197

 RSpec uses its own mock object specification, similar to FlexMock. (If you ’ d rather use FlexMock or one
of the other Ruby mock object tools, it ’ s easy to configure RSpec accordingly.) The should_receive
mock specification is very close to the FlexMock specification for mock validations. It can be augmented
with once , twice , times(n) , at_least , and at_most for all of those values. In addition to and_
return , you can use and_raise , which takes an exception class as an argument and validates that an
exception of that class is raised under the error condition being tested, there is also and_yield , which is
similar to and_return , but instead of returning the values, and_yield passes them to a block argument.

 There is one dynamic part of the mock in this test. Because you passed a block argument to and_return ,
the actual ingredient object returned can have its recipe id and order values set from the arguments
that the recipe object sends. Although it ’ s generally better practice to have mock return objects that are
static to avoid interdependencies, in this case there is a dependency that needs to be verified. The order
of the ingredients is not set in the parser itself, but rather is passed as an argument by the recipe object. If
the ingredient order was set statically in the mock object, it would be impossible to verify that the order
was being set accurately. As written, though, the test allows the order to be set dynamically, and tags
each ingredient with the expected order so that the recipe order can be fully validated.

 The preceding test is a good example of how RSpec allows you mix behavior testing with the state
testing. RSpec also encourages playing with method names and the like to get the examples to read as
clearly as possible. So, when I started writing the tests for the ingredient parser, I decided to take full
advantage and put the following in spec/model/ingredient_spec.rb :

require File.dirname(__FILE__) + ‘/../spec_helper’

class String
 def parsing_to?(hash)
 expected = Ingredient.new(hash)
 actual = Ingredient.parse(self, Recipe.find(1), 1)
 actual == expected
 end
end

describe Ingredient, “basic parsing suite” do
 fixtures :ingredients, :recipes

 it “should parse a basic string” do
 “2 cups carrots, diced”.should be_parsing_to(:recipe_id = > 1,
 :order_of = > 1, :amount = > 2, :unit = > “cups”,
 :ingredient = > “carrots”, :instruction = > “diced”)
 end
end

 Clearly the weird thing about this one is the additional method I added to String , which is exactly the
sort of thing that your stricter software engineers warn about in hushed tones when they learn that Ruby
lets you add arbitrary methods to existing classes.

 In any case, because the method will only be around during testing, I think I ’ m probably okay from a
program stability point of view, and there ’ s no denying that with the RSpec magic naming deal, “ 2
cups carrots, diced ” .should be_parsing_to is a rather expressive and clear way of phrasing the
test condition. Actually, I think it begs the question of whether the program itself should have a
 String#parse_to_ingredient method, but I ’ ll restrain myself for the moment.

c07.indd 197c07.indd 197 1/30/08 4:08:37 PM1/30/08 4:08:37 PM

Chapter 7: Testing Tools

198

 Writing Controller Specifications
 RSpec has a clear advantage over the standard Rails test tools in that it allows for controller, view, and
helper tests that are all separated from each other. Controller tests are placed in the directory spec/
controllers . Here is a start toward the specification for the RecipesController — I ’ ve translated the
tests for verifying that the index method works, and that calling HTML GET for the new method returns
a CAPTCHA, as set up in Chapter 3 . The first part is the before(:each) method that sets up a mock
object for recipes. To completely encapsulate the controller test and prevent it from interacting with the
models and database, you should use RSpec stubs to intercept calls to ActiveRecord class methods like
 new or find to return mocked models rather than real ActiveRecord objects. To that end, you would put
the following in spec/controllers/recipes_controller_spec.rb :

require File.dirname(__FILE__) + ‘/../spec_helper’

describe RecipesController do

 before(:each) do
 @recipe = mock(“person”)
 @recipe.stub!(:new_record?).and_return(false)
 Recipe.stub!(:new).and_return(@recipe)
 Recipe.stub!(:find).and_return(@recipe)
 end

 The stub specification for RSpec is slightly different than the FlexMock method. This setup stubs
 Recipe#new and Recipe#find and causes them to return the stubbed recipe instance that was set up in
the first two lines of the method.

 The first specification delineates the following expectations when the user requests the index method:

 it “should get an index when requested” do
 get “index”
 response.should be_success
 assigns[:recipes].should_not be_nil
 end

 This specification exposes some of the special methods RSpec has to test the response from a controller.
The spec should be_success returns true if the response status is 200, and the related response.
should be_redirect spec tests for a redirection status. Note that if you aren ’ t rendering views in these
tests, should be_success will never fail.

 For controllers that render a template normally, the spec should render_template takes the path to
the template and validates that the expected template would be loaded. If the controller returns text
without a template, you can validate that test with should have_text , which takes a string or regular
expression and validates that there is a match in the returned text. If the controller does a redirect to, you
can use should redirect_to , which takes a full URL, a local path to the URL, or a hash of options that
you would send to url_for .

 The last line of the method uses the assigns hash, which is similar to the assigns method for standard
functional tests and represents the instance variables created by the controller. You also have access to
 flash and session hashes, which allow you to assign to those controller variables.

c07.indd 198c07.indd 198 1/30/08 4:08:38 PM1/30/08 4:08:38 PM

Chapter 7: Testing Tools

199

 The second controller test checks the new method like this:

 it “should respond to GET new with a captcha” do
 @token = mock_model(Token)
 captcha = mock(MathCaptcha)
 MathCaptcha.should_receive(:create).with(3).and_return(captcha)
 get “new”
 assigns[:captcha].should == captcha
 end

 If you compare this method to the analogous traditional unit test that was written in Chapter 1 , and
augmented with the CAPTCHA in Chapter 3 , you ’ ll see that this one is a good deal different. In
particular, the original unit test had a lot of assert_select calls to verify the output of the view
associated with that method. In RSpec, that verification is handled in the view test, and what ’ s tested in
the controller is simply that it creates the variables or makes the database calls that you would expect.

 In the original version, this test also validated that the CAPTCHA object created a token. Again, from an
RSpec perspective, that ’ s considered either redundant or mislocated, and should be placed in the test for
the CAPTCHA object itself. From this spec ’ s perspective, it ’ s enough to know that the controller asks the
 MathCaptcha class to create a new instance, and puts that same instance into an instance variable for
later usage. The creation is validated by the mock should_receive in line three of the example, and the
assignment is validated by the last line.

 The following test of an HTTP PUT update shows another example of how RSpec specifications differ
from unit tests:

 it “should respond to a PUT with an update” do
 @recipe.should_receive(:update_attributes).with(
 {“title” = > “Grandma’s Chicken Soup”}).and_return(@recipe)
 put “update”, :id = > 1, :recipe = > {:title = > “Grandma’s Chicken Soup”}
 response.should redirect_to(“http://test.host/recipes/#{@recipe.id}”)
 end

 This example is pretty simple. The first line sets up the expectation that the one - and - only recipe mock
will get an update_attributes call. The second line actually performs a call that should trigger the
update, and the third line validates that the redirection goes to the intended URL (notice the test host
placed in that URL). Again, it ’ s important what this specification isn ’ t testing — it ’ s not testing that the
 Recipe class does the right thing with the attributes when update_attributes is called; it ’ s just
specifying the behavior of the controller.

 Specifying View Behavior
 If there ’ s one point I ’ ve been trying to make about RSpec, it ’ s how an RSpec example tries very hard to
encapsulate the method under test from the rest of the system. So it shouldn ’ t be much of a surprise that
the view tests are intended to be separated from both their associated controller and from the database.
As an example of RSpec view testing, I want to show you the new.html.erb view that renders the form.
In actuality, this view does most of its work inside the partial _form view, so arguably the specifications
should be written against the partial. However, I decided to assume that if I had written the
specifications while coding, I wouldn ’ t yet have refactored to the partial view, so I wrote the specification
against the publicly facing view.

c07.indd 199c07.indd 199 1/30/08 4:08:38 PM1/30/08 4:08:38 PM

Chapter 7: Testing Tools

200

 The form has one piece of logical behavior: if a MathCaptcha object is specified, it displays that object;
otherwise it does not. In either case, a mock recipe and a mock user need to be created for the test to
begin.

 The specification file goes in specs/views/recipes/new_spec.rb , and creates the mocks as follows:

require File.dirname(__FILE__) + ‘/../../spec_helper’

describe ‘recipe/new’ do

 before(:each) do
 @recipe = mock_model(Recipe)
 @recipe.should_receive(:title).and_return(“Grandma’s Soup”)
 @recipe.should_receive(:servings).and_return(“2”)
 @recipe.should_receive(:ingredient_string).and_return(“carrots”)
 @recipe.should_receive(:description).and_return(“description”)
 @recipe.should_receive(:directions).and_return(“directions”)
 @recipe.should_receive(:tag_list).and_return(“yummy”)
 @user = mock_model(User)
 assigns[:recipe] = @recipe
 assigns[:user] = @user
 end

 This should be a familiar pattern to you by now. First, you create a mock instance object and specify its
parameters. Then you place that mock object directly in the assigns hash. Unlike the controller tests,
view tests generally do not need to take the step of mocking the ActiveRecord class to turn it into a mock
factory. In general, the views don ’ t create objects like the controllers do, so it ’ s enough to preset the
objects into the view. The view test has access to the same assigns , flash , and session hashes as a
controller test, plus you can set the params hash.

 The following example specifies the behavior of the form with no CAPTCHA object:

 it “should display an entire form” do
 render “/recipes/new”
 response.should have_tag(“form”) do
 with_tag “input[name *= title]”
 with_tag “input[name *= servings]”
 with_tag “textarea[name *= ingredient_string]”
 with_tag “textarea[name *= description]”
 with_tag “textarea[name *= directions]”
 with_tag “input[name *= tag_list]”
 end
 end

 As you might expect from reading the code, the render method performs the fake rendering of the
specified view for the test. The phrases should have_tag and with_tag are just synonyms for your
old friend assert_select , so the same syntax works to validate the existence of various HTML
structures in the output.

 In addition to the response object that gets the should have_tag , there is a template object, which you
can use to mock or stub calls to helper methods. Because you are supposed to be testing helper methods

c07.indd 200c07.indd 200 1/30/08 4:08:39 PM1/30/08 4:08:39 PM

Chapter 7: Testing Tools

201

separately, this is probably a good idea. The syntax is the normal RSync mocking framework, and goes
like this:

template.stub!(:helper_method).and_return(“flintstone”)
template.should_receive(:helper_method).once.and_return(“rubble”)

 This is particularly helpful for stubbing out login/logout behavior, which in this application is governed
by code in the application helper.

 Of course, any further objects used in other tests should also be mocked. You can validate the behavior
of this view when a CAPTCHA object exists by creating a mock object like this:

 it “should display captcha” do
 @token = mock_model(Token)
 @token.should_receive(:token).and_return(“a_token”)
 captcha = mock(MathCaptcha)
 captcha.should_receive(:display_string).and_return(“display string”)
 captcha.should_receive(:token).and_return(@token)
 assigns[:captcha] = captcha
 render “/recipes/new”
 response.should have_tag(“form”) do
 with_tag “input[name *= captcha_value]”
 with_tag “input[name *= token]”
 end
 end

 This example creates a mock that is quite similar to the test in the controller, except that in this case there
are additional mock validations placed on the CAPTCHA — namely that the view will ask for its display
string and its token. The CAPTCHA is placed in the assigns hash, and then the template can be
rendered. (Important safety tip: assign all the variables before you start with the render — otherwise the
test won ’ t see them.) In this case, I ’ m checking only for the new features in the form, mostly for brevity ’ s
sake. In a real test, you ’ d likely want to verify that the existing features were still there.

 Testing Helpers
 RSpec allows for the testing of helper methods separate from the views that invoke them. Helper test
files are placed in spec/helpers , and both the name of the file and the description object should match
the helper being tested. For example, all the Soups OnLine helper methods as I type this are in
 application_helper.rb . Here ’ s a sample method:

 def inflect(singular, count, plural = nil)
 plural ||= singular.pluralize
 if count == 1 then singular else plural end
 end

 The test, in spec/helpers/application_helper_spec.rb , would start off something like this:

c07.indd 201c07.indd 201 1/30/08 4:08:39 PM1/30/08 4:08:39 PM

Chapter 7: Testing Tools

202

require File.dirname(__FILE__) + ‘/../spec_helper’

describe ApplicationHelper do

 it “should inflect a word” do
 inflect(“banana”, 3).should == “bananas”
 inflect(“banana”, 1).should == “banana”
 inflect(“is”, 2, “are”).should == “are”
 end
end

 Placing the name of the helper class as the argument to describe puts all the methods that are in the
helper into the namespace of the behavior. That means that you can call them without any scoping, just
as inflect is called in this test.

 There isn ’ t a way to get to the template or controller objects from within the helper test, which may cause
problems when you ’ re trying to test a helper method that uses concat to place text directly in the
template binding. I recommend that you separate the text - generating methods from the text - inserting
methods for ease of testing or, alternatively, test those helpers from their calling view test, almost as
though they were partial views.

 Some of the remaining Test::Unit plugins will interact poorly with RSpec, and you may need to remove
your spec directory before continuing.

 How to Get RSpec - Like Features
 RSpec has many very useful features when compared to standard Test::Unit testing. However,
converting to RSpec is not trivial, and using both RSpec and Test::Unit in a program is not recommended
(although the newest version of RSpec does allow you to run Test::Unit tests inside RSpec). It ’ s awkward
to get tools like rcov , rake , and autotest to run both sets of tests (again, this improved in RSpec 1.1).
More importantly, it ’ s very hard for team members to remember when to use RSpec and when to use
Test::Unit in a system that attempts to use both.

 For some RSpec features, though, there are additional plugins or tools that allow the same or similar
functionality to be added to the standard Rails tests. This section briefly discusses a few of those options.

 Testing Views
 There are at least two separate packages that expand Rails automated test features to include separate
tests for controllers and views. The good news is that if you ’ ve been playing along so far, you ’ ve already
downloaded one of them: the ZenTest package that was used in Chapter 4 for its autotest functionality.
ZenTest has another facet called Test::Rails. The primary purpose of Test::Rails is to augment the existing
Rails tests with controller - only and view - only tests. Sounds like it might be a good match.

 Test::Rails
 As I mentioned, you ’ ve already downloaded ZenTest but if you haven ’ t been following along, you can
quickly catch up with a gem install ZenTest .

c07.indd 202c07.indd 202 1/30/08 4:08:39 PM1/30/08 4:08:39 PM

Chapter 7: Testing Tools

203

 You don ’ t need to install anything else to use Test::Rails, but you do need to make a few changes to your
existing files, starting with test_helper.rb . The opening few lines of test_helper.rb need to be
changed to the following:

ENV[“RAILS_ENV”] = “test”
require File.expand_path(File.dirname(__FILE__) + “/../config/environment”)

require ‘test/rails’

require ‘test_help’

class Test::Rails::TestCase

 What you ’ re doing here is adding require ‘ test/rails ’ as a brand new line, and changing the name
of the class from Test::Unit::TestCase to Test::Rails::TestCase . You also need to go into each
and every one of your existing test classes, and change the module of their parent class from Test::
Unit to Test::Rails (the class name itself does not change).

 After that, put the following line at the end of the Rakefile application:

require ‘test/rails/rake_tasks’

 That will customize the rake tasks to run the new kinds of tests created by Test::Rails. These tests are
named rake test:controllers and rake test:views .

 You can now write controller - only tests. You should place them in test/controllers , and normal
naming conventions apply. The RecipesController test class is called RecipesControllerTest and
placed in the file recipes_controller_test.rb . Here ’ s a sample test:

require ‘test/test_helper’

class RecipesControllerTest < Test::Rails::ControllerTestCase

 def test_should_get_an_index
 get :index
 assert_response :success
 assert_not_nil assigns(:recipes)
 end

end

 In general, the only difference between a controller test and a standard functional test is that the
controller test does not try to render a view.

 RSpec view tests are managed a little differently. All view tests for a single controller go in one file. The
file is placed in test/views and the name is based on the controller name. The views for
 RecipesController go in test/views/recipes_view_test.rb like this:

c07.indd 203c07.indd 203 1/30/08 4:08:39 PM1/30/08 4:08:39 PM

Chapter 7: Testing Tools

204

require ‘test/test_helper’

class RecipesViewTest < Test::Rails::ViewTestCase
 fixtures :recipes, :users

 def test_new
 assigns[:recipe] = Recipe.find(1)
 assigns[:user] = User.find(1)
 render
 assert_form(“/recipes/1”) do
 assert_input(:text, “recipe[title]”)
 assert_input(:text, “recipe[servings]”)
 assert_text_area(“recipe[ingredient_string]”)
 #etc...
 end
 end
end

 This looks very similar to the existing standard Rails tests. The render method triggers the running of
the view attempts to infer the view name from the name of the test. (It will even correctly process
something like test_new_with_captcha back to the new template.) Within the view test, Test::Rails
defines a number of different assertions that are essentially specific shortcuts to common uses of
 assert_select — primarily searching for specific form elements, as shown in the preceding example.

 view_test
 Another mechanism for testing views is provided by a plugin called view_test, which can be installed
with the following command:

$ ruby script/plugin install http://continuous.rubyforge.org/svn/tags/view_test-0.10.0

 Keep an eye on the actual tag, though — 0.10 is the current version as of this writing, but I ’ d expect newer
versions to come out rather rapidly. To run view_test, you also need to have two gems installed: mocha,
which is another mock framework; and metaid, which has some metaprogramming shortcuts.

 One nice feature of view_test is that it enables you to gradually convert your functional tests one at a
time. Any functional test can have the method stub_render placed within it before the controller is
invoked, and the view will be prevented from running. Using the method expect_render instead adds
a mock - like expectation — expect_render takes a url_for style hash and validates that the template
requested matches the expectation.

 View tests live in test/views and have a slightly different naming convention, with one test file per
template. So the tests for the recipes controller ’ s new template would go into test/views/recipes/
new.html.erb_test.rb . Within a view test, you can mock helper methods using a method called
 expect_helper , which takes mock - style decorators similar to what you ’ ve already seen. For example:

expect_helper(:my_helper).with(“fred”).returns(100)

 One feature of view_test is that any partial view called from the view must be stubbed or mocked.
Partials cannot be directly accessed from a parent view, but must be tested in their own test class.

c07.indd 204c07.indd 204 1/30/08 4:08:40 PM1/30/08 4:08:40 PM

Chapter 7: Testing Tools

205

 The view_test plugin is still quite new and under active development. If you want to incorporate this
plugin into your system, you can find out what the latest version is at www.continuousthinking.com .

 More Natural Test Syntax
 If like the clever, natural - language – inspired naming conventions used in RSpec, there are two small
RubyGems and one plugin that will give you some improved naming within Test::Unit.

 The first gem is called Behaviors and can be acquired with a quick gem install behaviors . It allows
you to do one thing and one thing only — change a test like this:

test should_do_something
 # run your test
end

to this:

should “do something” do
 #run your test
end

 To use this in your test cases, add the following line above all your test class definitions:

require ‘behaviors’

Then add the following line inside your test classes:

extend Behaviors

 The Behaviors gem also gives you the RSpec pending functionality — if you don ’ t include a block with
your should call, the test will appear as an unimplemented test when run.

 The other gem is called Dust (gem install dust). Dust enables you to write your tests like this:

unit_tests do
 test “should do something” do
 #run your test
 end
end

 You can have multiple tests in a single block, and functional tests would be surrounded by a
 functional_tests block rather than a unit_tests block.

 Other than the naming convention, both Behaviors and Dust leave the functionality of Test::Unit
unchanged.

 There ’ s also an ambitious testing plugin called Shoulda, which you can add with this call:

$ svn export https://svn.thoughtbot.com/plugins/shoulda/tags/rel-3.0.4
vendor/plugins/shoulda

c07.indd 205c07.indd 205 1/30/08 4:08:40 PM1/30/08 4:08:40 PM

Chapter 7: Testing Tools

206

 Shoulda enables you to separate tests into contexts and then into individual tests. A context is analogous
to an RSpec behavior, and allows each test within the context to share a common startup block. The nice
thing about Shoulda is that its tests can exist alongside your existing tests and they all work together. For
example, you could include the following in test/unit/recipe_test.rb :

context “a recipe” do
 setup do
 @recipe = Recipe.find(:first)
 end

 should “have an ingredient string”
 assert_not_nil @recipe.ingredient_string
 end
end

 The actual tests are defined using the should method. In this example, it will show up in the test task
output as test: with a recipe should have an ingredient string . All tests within the same
context have the same setup block called in addition to the normal setup method defined by Test::Unit.

 The Shoulda plugin defines a number of useful shortcuts, including a very elaborate method called
 should_be_restful , which runs as many as 40 separate individual tests validating standard RESTful
behavior. The plugin also defines a number of macro tests for ActiveRecord validations, and a couple of
nice assert addons for testing lists.

 Improving Fixtures
 As you saw previously, RSpec enables you to specify a different mock setup for each behavior and use
the mock syntax to specify the data. However, both of these can be somewhat painful in standard testing
because of limitations in how Rails handles fixtures. The fixture syntax can be awkward to deal with,
and the global nature of fixtures makes it difficult to have separate data populations for different tests.

 One way of working around this problem is by using two plugins: FixtureScenario and
FixtureScenarioBuilder. You can install these plugins as follows:

script/plugin install http://fixture-scenarios.googlecode.com/svn/trunk/fixture_
scenarios
script/plugin install svn://errtheblog.com/svn/plugins/fixture_scenarios_builder

 FixtureScenario lets you set up arbitrary subdirectories under test/fixtures . Each of these
subdirectories can contain one or more YAML files in Rails fixture syntax. Then you can load all the
YAML files in the directory at once in any test class by using the following command:

scenario : < directory_name >

 FixtureScenarioBuilder enables you to bypass the YAML file, and write the fixture data in Ruby using the
actual ActiveRecord models. You need to create a file called test/fixtures/scenarios.rb . Within
that file, you can generate the data for your scenarios, and the plugin will convert them to YAML for
you. For example:

scenario :my_favorite_recipe do
 Recipe.create! :title = > “chicken soup”, :ingredient_string = > “2 cups carrots”
end

c07.indd 206c07.indd 206 1/30/08 4:08:40 PM1/30/08 4:08:40 PM

Chapter 7: Testing Tools

207

 When you run your tests and load a scenario, a scenario directory for my_favorite_recipe will be
created with the appropriate YAML files.

 Testing Helpers
 Helpers tend to be the messy attic of Rails programs, filled with the things that are too awkward or ugly
to be part of the real program. Because there ’ s no direct support for testing them, they tend to fill up
with brittle and hard - to - maintain code.

 Actually, it ’ s not all that hard to test helpers. You just need to set up an environment that includes all the
standard variables and methods that the helper expects. Following is an abstract class that you can place
in test/helper_test_class.rb and use as a parent for your helper tests:

require File.dirname(__FILE__) + ‘/test_helper’

class HelperTestClass < Test::Unit::TestCase

 include ActionView::Helpers::CaptureHelper
 include ActionView::Helpers::DateHelper
 include ActionView::Helpers::FormHelper
 include ActionView::Helpers::NumberHelper
 include ActionView::Helpers::RecordIdentificationHelper
 include ActionView::Helpers::RecordTagHelper
 include ActionView::Helpers::TagHelper
 include ActionView::Helpers::TextHelper
 include ActionView::Helpers::UrlHelper
 include ApplicationHelper

 attr_accesor :text

 This part of the class definition includes all the helper methods that you are likely to need on a regular
basis. It ’ s not a complete set of helper classes, though, so you might need to add more classes if you are
testing a helper that touches another part of the system.

 Continuing within the same HelperTestClass definition, add the following:

 class_inheritable_accessor :controller_class

 def self.set_controller_class(controller_class)
 self.controller_class = controller_class
 end

 This mechanism allows the concrete helper class you will define to set its controller class as a class - level
declaration rather than requiring it to override the setup method or something awkward like that.
Again, within the HelperTestClass , add this:

c07.indd 207c07.indd 207 1/30/08 4:08:41 PM1/30/08 4:08:41 PM

Chapter 7: Testing Tools

208

 def setup
 @text = []
 return unless controller_class
 @controller = controller_class.new
 request = ActionController::TestRequest.new
 @controller.send(:params=, {})
 @controller.send(:request=, request)
 @controller.send(:initialize_current_url)
 end

 def teardown
 @text = []
 end

 The setup method declares a controller object of the previously declared controller class, and then
creates a test request and sends it to the controller. This puts all the elements your helper will need in
scope. The @text variable and related attribute are there to allow testing of helper methods that take
block inputs, or any helper that calls the concat helper method. For that to work, you need to add the
following to the TestHelperClass definition:

 def _erbout
 @text
 end

 def test_text
 assert_equal([], @text)
 end

end

 Normally, block inputs call the hidden attribute _erbout as part of the process of converting the ERB in
the block passed to the helper into HTML. The helper test isn ’ t taking place in any kind of ERB process,
so you fake it by offering a local array to put that text in, which helpfully allows the tests you write to
use that array to validate the ERB output from the method. Note that when you test a block method, you
need to explicitly add text to _erbout in the block because the actual ERB engine is not being invoked.

 Following is an example of using this framework to test the inflect and span_for methods in the
application helper (you ’ ll see another example of testing helpers in the next chapter). This file goes into
 test/units/application_helper_test.rb :

require File.dirname(__FILE__) + ‘/../test_helper’
require File.dirname(__FILE__) + ‘/../helper_test_class’

class ApplicationHelperTest < HelperTestClass
 fixtures :recipes

 set_controller_class RecipesController

 def test_inflect
 assert_equal(“apples”, inflect(“apple”, 2))
 assert_equal(“apple”, inflect(“apple”, 1))
 end

c07.indd 208c07.indd 208 1/30/08 4:08:41 PM1/30/08 4:08:41 PM

Chapter 7: Testing Tools

209

 The setup for the test class has to include the helper_test_class file you just created, and the class
has to inherit from HelperTestClass itself. The setup somewhat arbitrarily declares
 RecipeController to be the controller in question. After that, the test for inflect is just a basic unit
test. In the same file, add the following:

 def test_span_for
 span_for(Recipe.find(1)) do
 text < < “banana”
 end
 assert_equal(“ < span class=\”recipe\” id=\”recipe_1\” > banana < /span > ”, text[-1])
 end

end

 The span_for test shows what you need to do to test concat and block helpers. Any text within the
block that you want to show up in the output needs to be explicitly pushed onto the text array. After the
helper call is over, you can check for the expected output in the test array, which contains both the text
added to the stream in the helper via concat , as well as anything added within the block.

 References
 One of the best early descriptions of automated test development is Kent Beck ’ s description of JUnit
coding, “ Test Infected: Programmers Love Writing Tests, ” available at http://junit.sourceforge
.net/doc/testinfected/testing.htm . Beck ’ s early books on Extreme Programming (XP) also
describe the process well.

 The rcov home page is http://eigenclass.org/hiki.rb?rcov , where you ’ ll find additional options
and documentation. FlexMock lives at http://onestepback.org/software/flexmock . The other
major Rails framework is called Mocha, and its home page is http://mocha.rubyforge.org . (By the
time you read this, Mocha may have been integrated fully into RSpec.)

 The RSpec home page is http://rspec.rubyforge.org , which also contains a lot of great
documentation on how to use BDD. The classic Martin Fowler piece on mock object testing is available
at http://martinfowler.com/articles/mocksArentStubs.html .

 Find out more about Shoulda at http://thoughtbot.com/projects/shoulda . I learned more about
this plugin at the end of the book writing cycle, and came to like it very much.

 There are a couple of other testing tools created by a consulting group that calls itself the Ruby Sadists.
A tool called flog (http://ruby.sadi.st/Flog.html) is a complexity metric that identifies the most
complex methods in your system as prime candidates for cleanup. Another tool, called heckle (http://
ruby.sadi.st/Heckle.html), provides mutation testing for your code, randomly changing part of
your code and ensuring that there is a failed test to match.

 A blog maintained by Jay Fields (http://blog.jayfields.com) often contains interesting tips and
tricks for Rails testing. And Chad Fowler ’ s Rails Recipes was a source for some of the ideas about testing
helper methods in this chapter.

c07.indd 209c07.indd 209 1/30/08 4:08:41 PM1/30/08 4:08:41 PM

Chapter 7: Testing Tools

210

 Summary
 Test - driven development is a critical part of the software building process, and has an amazing amount
of support within Rails. This support can be augmented with a number of other tools. You can use rcov
to measure the amount of your code that is covered by your tests — a necessary but not sufficient
condition for good tests.

 Mock objects are a standard mechanism for simulating object behavior that would otherwise be hard to
specify in a unit test. FlexMock is a Ruby mock object toolkit that enables you to extend the reach of your
tests.

 RSpec has some definite advantages over standard Rails unit and functional testing. Using RSpec to test
controllers, views, and helpers separately greatly enhances your ability to use automatic testing to verify
your program ’ s behavior. The naming conventions and structure of an RSpec test can make the tests
more readable and easier to describe both within and outside a programming team.

 If you like some of the features of RSpec, but don ’ t feel the need to jump all the way into it, other tools
can cover much of RSpec ’ s functionality. Both Test::Rails and view_test allow improved testing of views.
Other plugins, such as Dust and Shoulda, allow you to mimic RSpec ’ s syntax. The FixtureScenario
plugin enables you to specify more - granular sets of fixture data. You can roll your own tests for helper
methods.

c07.indd 210c07.indd 210 1/30/08 4:08:41 PM1/30/08 4:08:41 PM

 Rails - Driven JavaScript

 As it happens, I spent a significant part of the years 1999 and 2000 arguing against putting large
amounts of JavaScript in the client sites I was developing. My arguments were that the tool
support was weak, so a lot of developer effort was involved, it was hard to debug, and almost
anything complex was guaranteed to break on one or the other of the two major browsers.
Furthermore, the range of things people were doing with JavaScript at the time wasn ’ t so
compelling that it seemed to require throwing it into our sites.

 That was a long time ago — the iPod didn ’ t even exist yet — and times have changed. JavaScript
is now a critical part of many of the Web ’ s most popular sites. Much of this has been driven by
a simple functionality enhancement that did not exist in 1999: the capability to call a server
asynchronously from within JavaScript. That simple capability, from the XmlHttpRequest object
that is now a standard part of JavaScript, has enabled a much richer and more interactive Web
experience, ranging from special effects, to Ta - Da Lists, to scrolling Google Maps, to rich online
document editing. Eventually, the new interaction structure was isolated and named Ajax, which
is a pseudo - acronym for Asynchronous JavaScript And XML, and the name has stuck.

 Rails was one of the first toolkits to make dealing with Ajax easy to do without having to know a
great deal of JavaScript. Since the initial release of Rails, the addition of RJS scripts has made it
even easier to add dynamic content to a Rails application without touching JavaScript very much.
In this chapter, I focus on the features within Rails that deal with JavaScript. JavaScript is a very
interesting object - oriented language in its own right, and the Prototype and script.aculo.us
libraries that Rails uses have a lot of functionality to support cool Ajax effects. In this chapter,
I ’ ll be discussing them through the lens of their Rails interactions.

 Revisiting the Past
 In the Soups OnLine application as implemented so far, there are two separate uses of Ajax. It was
used to edit ingredients in Chapter 1 , and then to edit tags in Chapter 4 . I ’ d like to revisit those
implementations to talk about some ways in which they could be improved.

c08.indd 211c08.indd 211 1/30/08 4:11:25 PM1/30/08 4:11:25 PM

Chapter 8: Rails - Driven JavaScript

212

 To refresh your memory, the ingredient editing is located in app/views/recipes/show.html.rb , and
consists of this link:

 < div class=”ingredient” >
 < span id=”ingredient_ < %= ingredient.id % > ” >
 < %= h ingredient.display_string % >
 < /span >
 < % if_is_current_user @recipe.user_id do % >
 < span class=”subtle” id=”edit_ < %= ingredient.id % > ” >
 < %= link_to_remote “Edit”,
 :url = > remote_edit_recipe_ingredient_path(@recipe, ingredient),
 :method = > :get,
 :update = > “ingredient_#{ingredient.id}”% >
 < /span >
 < % end % >
 < /div >

 On the server side, the controller is in app/controllers/ingredient_controller.rb , and just gets
the appropriate ingredient:

 def edit
 @ingredient = Ingredient.find(params[:id])
 end

 def remote_edit
 edit
 end

 This displays a partial with the form to be entered:

 < % remote_form_for(@ingredient,
 :url = > remote_update_recipe_ingredient_path(@recipe, @ingredient),
 :update = > “ingredient_#{@ingredient.id}”) do |f| % >
 < table >
 < tr >
 < th class=”subtle” > Amount < /th >
 < th class=”subtle” > Unit < /th >
 < th class=”subtle” > Ingredient < /th >
 < th class=”subtle” > Directions < /th >
 < /tr >
 < tr >
 < td > < %= f.text_field :amount, :size = > “5” % > < /td >
 < td > < %= f.text_field :unit, :size = > “10” % > < /td >
 < td > < %= f.text_field :ingredient, :size = > “25” % > < /td >
 < td > < %= f.text_field :instruction, :size = > “15” % > < /td >
 < td > < %= f.submit “Update” % > < /td >
 < /tr >
 < /table >
 < % end % >

c08.indd 212c08.indd 212 1/30/08 4:11:26 PM1/30/08 4:11:26 PM

Chapter 8: Rails - Driven JavaScript

213

 That form goes back to the ingredient controller, which updates the ingredient in the database:

 def remote_update
 @ingredient = Ingredient.find(params[:id])
 if @ingredient.update_attributes(params[:ingredient])
 render(:layout = > false)
 else
 render :text = > “Error updating ingredient”
 end
 end

 Finally, the ingredient display string is re - rendered back into the slot:

 < %= h @ingredient.display_string % >
 < %= link_to_remote “Edit”, :url = > remote_tag_edit_recipe_path(@recipe),
 :method = > :get, :update = > “tags” % >

 This is a fairly standard Ajax data flow for an in - place edit with a complex form — at least it is for me.
There ’ s an initial link that makes a server call to retrieve the form, and the form makes an Ajax call to
perform the update and retrieve the actual text to redisplay. Looking at this code with a more critical eye,
I see the following potential problems:

 There ’ s a DRY (Don ’ t Repeat Yourself) violation in the view code — the code in the initial view
is almost identical to the view in the partial that displays the code after the form update.

 There ’ s a probable DRY violation in the controller code — the remote_edit and remote_
update methods are nearly identical to their non - Ajax counterparts. Furthermore, a strict REST
analysis of the code would probably argue that the remote code should be folded into the
standard REST methods if possible.

 There ’ s a usability violation — users who don ’ t have JavaScript enabled get a dead link. The
application needs to degrade gracefully if the user does not have JavaScript enabled.

 Let ’ s fix the DRY violations first, because fixing the no - JavaScript issue will be easier after the code is
cleaned up.

 Fixing JavaScript DRY Violations
 The first thing to do is consolidate the display of the ingredient string from both the normal and remote
forms into a partial (I really should have done this the first time around). The new file is app/views/
ingredients/_display_in_recipe.erb (I ’ ll explain the slightly different extension in a moment):

 < div class=”ingredient” >
 < % span_for ingredient do % >
 < %= h ingredient.display_string % >
 < % end % >
 < % if_is_current_user recipe.user_id do % >
 < span class=”subtle” id=” < %= dom_id ingredient, :edit % > ” >
 < %= link_to_remote “Edit”,
 :url = > edit_recipe_ingredient_path(@recipe, ingredient),
 :method = > :get,

❑

❑

❑

(continued)

c08.indd 213c08.indd 213 1/30/08 4:11:26 PM1/30/08 4:11:26 PM

Chapter 8: Rails - Driven JavaScript

214

 :update = > dom_id(ingredient) % >
 < /span >
 < % end % >
 < /div >

 This code has a couple of features that you haven ’ t seen in the book yet. One is the method span_for ,
which is a helper method I wrote by analogy to the standard Rails div_for :

 def span_for(record, *args, & block)
 content_tag_for(:span, record, *args, & block)
 end

 It places whatever ERB is within the block inside a span tag, and automatically gives that span tag a
useful DOM ID of the form < class > _ < id > . Later in the view, I use the similar Rails helper dom_id ,
which is part of the simply_helpful plugin in Rails 1.2, and is core in Rails 2.0. It creates a DOM ID of
the same form, but takes an optional argument that is used as a prefix, so the inner span will have IDs
that look like edit_ingredient_1 .

 This partial can be used in the recipe show.html.erb view, where the local variables are explicitly set
for the partial as follows:

 < % for ingredient in @recipe.ingredients % >
 < %= render :partial = > “/ingredients/display_in_recipe”,
 :locals = > { :ingredient = > ingredient, :recipe = > @recipe } % >
 < % end % >

 To get the controllers to work most easily, the view that is currently app/view/ingredients/remote_
edit.html.erb needs to be changed to a partial named _remote_edit.erb . The contents of the file
change only slightly — the ingredient path URL changes to this:

:url = > recipe_ingredient_path(@recipe, @ingredient),

 The remote versions of the controller methods are going away and being consolidated into the existing
CRUD actions for edit and update . You can also remove the entries for remote_edit and remote_
update from the routes.rb file , so that the entry for recipes ingredients in the routes.rb file
reverts to this:

 map.resources :recipes do |recipes|
 recipes.resources :ingredients
 end

 The new controller edit method, in app/controllers/ingredients_controller.rb , is pretty
simple:

 def edit
 @ingredient = Ingredient.find(params[:id])
 if request.xhr?
 render :partial = > “remote_edit”, :layout = > false
 end
end

(continued)

c08.indd 214c08.indd 214 1/30/08 4:11:26 PM1/30/08 4:11:26 PM

Chapter 8: Rails - Driven JavaScript

215

 The change is that if request.xhr? is true , meaning that it ’ s an Ajax XmlHttpRequest , then the
 remoteedit form is rendered; otherwise, it shows the default .The Ajax code in the link_to that calls
this method will take care of inserting the HTML in the correct DOM element.

 The update method just grows a new entry in the respond_to blocks:

def update
 @ingredient = Ingredient.find(params[:id])
 respond_to do |format|
 if @ingredient.update_attributes(params[:ingredient])
 flash[:notice] = ‘Ingredient was successfully updated.’
 format.html { redirect_to([@recipe, @ingredient]) }
 format.xml { head :ok }

 format.js { render :layout = > false,
 :partial = > “display_in_recipe”,
 :locals = > { :ingredient = > @ingredient, :recipe = > @recipe }}

 else
 format.html { render :action = > “edit” }
 format.xml { render :xml = > @ingredient.errors,
 :status = > :unprocessable_entity }

 format.js { render :text = > “Error updating ingredient” }

 end
 end
 end

 The successful update redirects to the common display partial you just saw, and the unsuccessful one
returns a text message.

 By now, you ’ re probably wondering two things: why the .erb files are not .html.erb files, and why
the edit method uses xhr? to branch the logic but the update method uses respond_to . Both issues
have the same root cause — namely that respond_to format.js has developed two separate and
distinct meanings. As expected by the respond_to method, it means “ the user has made a request and
expects to get JavaScript (usually an RJS template) in return. ” However, the more colloquial meaning has
been “ the user has made an XmlHttpRequest , ” often signifying that straight HTML is being returned,
because the JavaScript portion already exists client - side via link_to_remote or some similar feature.

 The problem is that when respond_to is in a JavaScript block, it specifies the response as JavaScript in
at least two ways. It looks for .js.erb RJS templates, so it doesn ’ t find a .html.erb template.
This problem is fixed by leaving the format type off of the partial file, so that Rails will find it. The
second problem is that it sets the MIME type of the response to text/javascript . This probably has a
number of implications, but the one I ’ m concerned with right now is that assert_select tests don ’ t
even bother trying to parse the response if the method thinks that the response is JavaScript, so all
 assert_select tests will fail (you can use assert_select_rjs if the response returns JavaScript).
Because I was using one of those to test the Ajax edit form, I switched that method to use the xhr? test,
which does not change the MIME type, and allows the test to pass. The Rails community at large seems
to be of two minds as to the best course of action here. As I write this, I ’ m perusing two bug report
threads on the Rails bug tracker from within the last several months that say directly opposite things
about what the expected behavior actually is — but hopefully it will have been resolved by the time you
read this.

c08.indd 215c08.indd 215 1/30/08 4:11:27 PM1/30/08 4:11:27 PM

Chapter 8: Rails - Driven JavaScript

216

 As implied in the last paragraph, the three tests in ingredients_controller_test that depended on
the remote calls will all fail at the moment. To fix them, two things need to be done:

 1. The paths need to be changed from the old remote_ routes to the standard CRUD ones.

 2. Instead of using get and put as the methods to trigger the controller call, you need to use xhr
to simulate the XmlHttpRequest call.

 The first argument to xhr is :get , :put , :post , or whatever HTTP verb is being used. The rest of the
arguments are just the same as in the other methods. The updated tests look like this:

def test_should_get_remote_edit

 xhr :get, :edit, :id = > 1, :recipe_id = > 1

 assert_response :success
 assert_select(“form[action *= /recipes/1/ingredients/1]”) do
 assert_select “input[name *= amount]”
 assert_select “input[name *= unit]”
 assert_select “input[name *= ingredient]”
 assert_select “input[name *= instruction]”
 end
 end

 def test_should_remote_update_ingredient

 xhr :put, :update, :id = > 1, :ingredient = > { :amount = > 2 }, :recipe_id = > 1

 assert_match /2 cups First Ingredient, Chopped/, @response.body
 end

 def test_should_fail_remote_update

 xhr :put, :update, :id = > 1,

 :ingredient = > { :amount = > 2, :order_of = > 0 }, :recipe_id = > 1
 assert_match “Error updating ingredient”, @response.body
 end

 The tests will now pass. Similar changes to the recipe controller — consolidating the remote_tag_edit
and remote_tag_update actions with edit and update — will allow those routes to be removed as
well. The recipe controller edit and update methods in app/controllers/recipes_controller.rb
should look like this:

 def edit
 @recipe = Recipe.find(params[:id])
 if request.xhr?
 render :layout = > false, :partial = > “remote_tag_edit”,
 :locals = > {:recipe = > @recipe}
 end
 end

c08.indd 216c08.indd 216 1/30/08 4:11:27 PM1/30/08 4:11:27 PM

Chapter 8: Rails - Driven JavaScript

217

 # PUT /recipes/1
 # PUT /recipes/1.xml
 def update
 @recipe = Recipe.find(params[:id])
 respond_to do |format|
 if @recipe.update_attributes(params[:recipe])
 flash[:notice] = ‘Recipe was successfully updated.’
 format.html { redirect_to(@recipe) }
 format.xml { head :ok }
 format.js { render :partial = > “show_tags” }
 else
 format.html { render :action = > “edit” }
 format.xml { render :xml = > @recipe.errors,
 :status = > :unprocessable_entity }
 format.js { render :text = > “Error updating tags “}
 end
 end
 end

 Being Graceful
 Here ’ s the actual HTML emitted by the link_to_remote call in the show recipe partial view for
editing tags:

 < a href=”*”
 onclick=”new Ajax.Updater(‘tags’, ‘/recipes/1/edit’,
 {asynchronous:true, evalScripts:true, method:’get’});
 return false;” > Edit < /a >

 This is a perfectly normal Ajax call via the Prototype library, but for users without JavaScript enabled,
the target of the link is just # , which doesn ’ t enable them to do much. Luckily, Rails makes it easy for you
to have the link degrade gracefully so that JavaScript - averse users can still use your site.

 So you need to put an actual URL as the target of the link, which leads to the question of exactly what
that link should do. The idea is to allow the non - JavaScript user to get as close as possible to the full
experience. The easiest thing to do would be to just display a page with the tag editing form, but in the
interest of keeping the experience a little closer to what has already been defined, I ’ m going to show the
user the same recipe page, but with the tag form embedded inside it. In other words, exactly the same
page the JavaScript user would have seen, only as the result of a full call back to the server instead of an
Ajax update of the single page section.

 The first step in this process is to put the alternative URL into the link_to_remote call. This is
accomplished by using the optional second hash argument to link_to_remote that contains the html_
options — which means that the remote options already specified need to be bundled into an explicit
hash. This change goes into app/views/recipes/show_tags.erb :

 < %= link_to_remote “Edit”, {:url = > edit_recipe_path(@recipe),
 :method = > :get, :update = > “tags”},
 :href = > url_for(:controller = > “recipes”, :id = > @recipe,
 :action = > “show”, :edit_tags = > true) % >

 This code provides recipes/1?edit_tags=true as an alternative URL if JavaScript is not enabled.

c08.indd 217c08.indd 217 1/30/08 4:11:27 PM1/30/08 4:11:27 PM

Chapter 8: Rails - Driven JavaScript

218

 Now would be a good time to add a controller test or two to specify the expected behavior. The first test
verifies that the tag form is displayed if the edit_tags URL flag exists and the user is logged in. Place
the following in test/functional/recipes_controller_test.rb :

 def test_should_show_with_edit_tags
 setup_recipe_tags
 get :show, :id = > 1
 session[:user_id] = 1
 get :show, :id = > 1, :edit_tags = > true
 assert_response :success
 assert_select(“form[action=?]”, recipe_path(1)) do
 assert_select “input[name *= tag_list]”
 end
 end

 The first line is needed because the Rails test facility exposes a session object only after a request has
been made. Then, by setting the user_id in the session to simulate a login, the test validates the
existence of the form.

 The second test validates that if there is no logged in user, the tag list is shown inside a span . Here ’ s the
code to be added for that test:

 def test_should_not_show_with_edit_tags_if_not_logged_in
 setup_recipe_tags
 get :show, :id = > 1, :edit_tags = > true
 assert_response :success
 assert_select(“span[id=tags]”, “yummy, vegetarian”)
 end

 The first step in making this work is for the controller to add the parameter to the mix:

 def show
 flash[:login_message] = “Logged out”
 @recipe = Recipe.find(params[:id])

 @edit_tags = params[:edit_tags]

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml = > @recipe }
 end
 end

 When the controller passes the parameter to the view, the view needs to decide what partial to display
based on that flag and the status of the user login. Here ’ s the relevant part of the show.html.erb file:

 < p >
 Tags:
 < % if is_logged_in? and @edit_tags % >
 < %= render :partial = > “remote_tag_edit”, :locals = > {:recipe = > @recipe} % >
 < % else % >
 < %= render :partial = > “show_tags” % >
 < % end % >
 < /p >

c08.indd 218c08.indd 218 1/30/08 4:11:28 PM1/30/08 4:11:28 PM

Chapter 8: Rails - Driven JavaScript

219

 This enables any logged - in user to edit the tag list. So if a user is logged in, and the flag has been set, this
call renders the remote_tag_edit partial, exactly as the Ajax call would have. If not, the tag string is
shown normally.

 Amazingly, that ’ s enough to make tag editing work without JavaScript. (You can verify this by turning
off JavaScript in your browser.) When the form comes up, it will do the right thing in this case, even
though it is declared as a remote Ajax form. The behavior of remote forms without JavaScript is already
set by Rails — they attempt to make a normal form call to the same controller action. Because you
already unified the update actions in the last section, the remote form then makes a normal HTML
request to update , which triggers the normal response — redirecting to the show action. As it happens,
the show action is precisely what you want here, so that part is done. If you had not consolidated the
 update and remote_update actions, there would have been more work to do because the old remote_
update action would not have caused the show action to be displayed.

 The ingredient in - line edit is a little bit more complicated in the absence of JavaScript. For one thing, the
 update method happens in the ingredients controller, so it ’ s not going to automatically degrade and
redirect to the recipe show action. Also, the logic is just a tiny bit more complex. Start by changing the
 link_to_remote call in app/views/ingredients/_display_in_recipe.erb to take a backup URL,
as follows:

 < %= link_to_remote “Edit”,
 { :url = > edit_recipe_ingredient_path(recipe, ingredient),
 :method = > :get,
 :update = > dom_id(ingredient) },
 :href = > url_for(:controller = > “recipes”, :id = > recipe,
 :action = > “show”, :ingredient_to_edit = > ingredient.id) % >

 The extra argument in this case will be a flag that represents which ingredient should have the edit form
displayed.

 The controller tests that cover this behavior are similar to the previous tests. The first one says that if the
right user is logged in, and the edit URL has the ingredient flag, then an ingredient form should be
displayed. These tests go in test/functional/ingredients_controller_test.rb :

def test_should_show_with_edit_ingredient
 get :show, :id = > 1
 session[:user_id] = 1
 get :show, :id = > 1, :ingredient_to_edit = > “1”
 assert_response :success
 assert_select(“form”) do
 assert_select “input[name *= amount]”
 assert_select “input[name *= unit]”
 assert_select “input[name *= ingredient]”
 assert_select “input[name *= instruction]”
 end
end

c08.indd 219c08.indd 219 1/30/08 4:11:28 PM1/30/08 4:11:28 PM

Chapter 8: Rails - Driven JavaScript

220

 If the correct user is not logged in, then the user should not get the edit form, even if he or she passes in
the URL flag:

def test_should_not_show_with_edit_ingredient_for_wrong_user
 get :show, :id = > 1
 session[:user_id] = 2
 get :show, :id = > 1, :ingredient_to_edit = > “1”
 assert_response :success
 assert_select “span[id *= ingredient]”, “1 1/2 cups First Ingredient, Chopped”
end

 Instead, the test validates that the user gets the complete display string of the ingredient.

 To make this work, the URL flag has to be handled by the recipes controller as follows:

def show
 flash[:login_message] = “Logged out”
 @recipe = Recipe.find(params[:id])

 @ingredient_to_edit = params[:ingredient_to_edit].to_i ||= 0

 @edit_tags = params[:edit_tags]
 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml = > @recipe }
 end
end

 Using 0 as a default is a convenient way of avoiding nil errors and spurious matches.

 The relevant section of the show.html.erb has to branch on the logic of whether the flag exists:

 < div class=”ingredients” >
 < h2 > Ingredients < /h2 >
 < % for ingredient in @recipe.ingredients % >

 < % if can_edit_ingredient @ingredient_to_edit, ingredient % >

 < %= render :partial = > “/ingredients/remote_edit”,
 :locals = > { :ingredient = > ingredient, :recipe = > @recipe,
 :redirect_to_recipe = > true } % >

 < % else % >
 < %= render :partial = > “/ingredients/display_in_recipe”,
 :locals = > { :ingredient = > ingredient, :recipe = > @recipe } % >
 < % end % >
 < % end % >
 < /div >

 The can_edit_ingredient method is a small helper I wrote and placed in app/helpers/
application_helper.rb to move some complexity out of the view template. It does essentially what
you ’ d expect — the ingredient is editable if the ID of the ingredient matches the requested ID, and the

c08.indd 220c08.indd 220 1/30/08 4:11:28 PM1/30/08 4:11:28 PM

Chapter 8: Rails - Driven JavaScript

221

user of the ID is logged in. Also note that I added an ingredient.user method that just proxies
 ingredient.recipe.user . Here are those methods:

def can_edit_ingredient(requested_ingredient_id, actual_ingredient)
 id_match = requested_ingredient_id == actual_ingredient.id
 user_match = is_current_user?(actual_ingredient.user.id)
 id_match and user_match
end

def is_current_user?(user_id)
 is_logged_in? and user_id == @user.id
end

 The controller switches to one partial or the other based on whether the ingredient is expected to be
editable. If so, it displays the same remote_edit partial that would have been inserted by the Ajax
request.

 That solves the first half of the non - JavaScript – user issue. The next half is to have the form submission
do the right thing. As mentioned earlier, Ajax form remote calls that are made when JavaScript is
disabled degrade to a regular form call to the same URL. From our perspective for this call, that ’ s
functionally okay — it will call the ingredient controller ’ s update method and change the values.
However, it would also replace the recipe display with just the ingredient string, which is not exactly the
desired behavior. The desired behavior is to have the show recipe page displayed with no edit forms and
the new value — exactly what you ’ d see if you submitted the form via Ajax.

 What you want to do is have the ingredient update redirect back to the recipe_show if the form
submission has been triggered from the no - JavaScript version of the page. Here ’ s the functional test to
place in ingredients_controller_test that will isolate the situation:

def test_should_redirect_to_recipe_show_on_update_when_requested
 put :update, :id = > 1, :ingredient = > { }, :recipe_id = > 1,
 :redirect_to_recipe = > true
 assert_redirected_to recipe_path(assigns(:recipe))
end

 The test sets up the update request with an additional redirect_to_recipe parameter, and then
validates that the redirected URL is as expected.

 The first part of making this redirection was actually in the previous show view code, where redirect_
to_recipe is one of the variables placed in the locals hash and sent to the form partial. This is the
updated edit method of the ingredients controller:

def edit
 @ingredient = Ingredient.find(params[:id])
 if request.xhr?
 render :partial = > “remote_edit”, :layout = > false,
 :locals = > {:ingredient = > @ingredient,
 :recipe = > @ingredient.recipe, :redirect_to_recipe = > false }
 end
end

c08.indd 221c08.indd 221 1/30/08 4:11:28 PM1/30/08 4:11:28 PM

Chapter 8: Rails - Driven JavaScript

222

 The form then includes the value as a hidden value passed back to the controller on form submit:

 < % remote_form_for(ingredient,
 :url = > recipe_ingredient_path(recipe, ingredient),
 :update = > “ingredient_#{ingredient.id}”) do |f| % >

 < % if redirect_to_recipe % >
 < input type=”hidden” name=”redirect_to_recipe” value=” < %= true % > ” >
 < % end % >

 # rest of form
 < % end % >

 The controller method then uses that value to determine where to redirect to after a successful update.
Here is just the HTML branch of the respond_to block:

 format.html do
 if (params[:redirect_to_recipe])
 redirect_to(@recipe)
 else
 redirect_to([@recipe, @ingredient])
 end
 end

 In this case, the RESTful routes are used. If the redirect_to_recipe flag is set, the controller redirects
to the display for just @recipe ; otherwise, it redirects to the display for the ingredient whose route is
nested inside the recipe.

 Easy JavaScript Integration
 Inserting JavaScript into your application need not be a major hassle. Many developers have worked
hard to create packages in JavaScript and Rails to allow you to insert significant behavior with very little
fuss. This section describes three easy ways to insert some very helpful JavaScript.

 Tooltips
 Users have come to expect tooltips (or “ those things that float on the screen ” as some users call them).
Although many browsers will automatically overlay the alternate (alt) text from an image or link over
those elements, you may want to include a more elaborate floating - text behavior. Once you have an easy
way to display tooltips, having a layer of content on your application that is invisible except during
mouseover (when the mouse hovers over a screen element) becomes an irresistible way of increasing the
amount of content on your pages.

 What I ’ d like to do, by way of example, is build an extremely thin Ruby layer around a JavaScript
package called Prototip. Prototip is a tooltip library written by Nick Stakenburg on top of the
Prototype JavaScript library. As I write this, Prototip is at version 1.1, and can be picked up at www
.nickstakenburg.com/projects/prototip/ . The zip file will contain a .js file, which you should
put in your public/javascripts folder, and a .css (Cascading Style Sheets) file, which goes in

c08.indd 222c08.indd 222 1/30/08 4:11:29 PM1/30/08 4:11:29 PM

Chapter 8: Rails - Driven JavaScript

223

 public/stylesheets . To make these files available, you need to load them in the layout header. In
 app/views/layouts/recipes.html.erb , edit the header thusly:

 < head >
 < meta http-equiv=”content-type” content=”text/html;charset=UTF-8” / >
 < title > Recipes: < %= controller.action_name % > < /title >
 < meta name=”keywords” content=”” / >
 < meta name=”description” content=”” / >
 < %= stylesheet_link_tag ‘scaffold’ % >

 < %= stylesheet_link_tag ‘prototip’ % >

 < %= javascript_include_tag :defaults % >

 < %= javascript_include_tag ‘prototip’ % >

 < /head >

 The stylesheet s can be in any order, but the JavaScript include for Prototip must come after the
:defaults JavaScript load. (You also need at least version 1.6 of Prototype. If it ’ s been awhile since you
updated everything, you might need to run the rake rails:update:javascripts task.)

 The basic JavaScript syntax of a Prototip declaration is really simple:

new Tip(dom_id, text);

 There ’ s an optional third argument which takes a hash of options which affect the tooltip display. The
 Tip declaration can take place either before or after the dom_id it ’ s attached to, but it cannot be declared
within the tag with that dom_id . The text of the tip can contain some HTML, and the optional arguments
govern things like placement and script.aculo.us special effects. You can also change the visual look of
the tips by modifying the .css file.

 Even with this minimal amount of JavaScript, you ’ re going to get cleaner view code if you wrap it inside
a helper. The best bet is probably a block helper that takes an arbitrary block of ERB and wraps it in a
span tag, and then declares a tip to go along with that tab. A couple of tests written using the helper test
mechanism from Chapter 7 should show this nicely:

require File.dirname(__FILE__) + ‘/../test_helper’
require File.dirname(__FILE__) + ‘/../helper_test_class’

class RecipeLinkHelperTest < HelperTestClass

 include CategoriesHelper

 def test_tooltip_for
 tooltip_for(“dom”, “content”) { _erbout < < “x” }
 assert_equal “ < span id=’dom’ > ”, @text[0]
 assert_equal “x”, @text[1]
 assert_equal “ < /span > ”, @text[2]
 assert_match “ < script”, @text[3]
 assert_equal “new Tip(‘dom’, ‘content’, {})”, @text[4]
 assert_equal “ < /script > ”, @text[5]
 end

c08.indd 223c08.indd 223 1/30/08 4:11:29 PM1/30/08 4:11:29 PM

Chapter 8: Rails - Driven JavaScript

224

 The first test shows the span around the block (using the mocked _erbout function to simulate block
output), and then a script tag containing the Tip declaration:

 def test_tooltip_with_title
 tooltip_for(“dom”, “content”, :title = > “title”) { @text < < “x” }
 assert_equal “new Tip(‘dom’, ‘content’, {title: ‘title’})”, @text[-2]
 end
end

 The second test adds the title syntax. Tip takes more complex options, as you ’ ll see from the
implementation, but those aren ’ t handled yet because my helper implementation is not fully robust. This
is a great piece of functionality to write via unit tests, because the need for the output to be strict JavaScript
means that there are all kinds of ways this code can fail without actually throwing an exception.

 The implementation of this goes in application_helper.rb and uses concat extensively:

 def tooltip_for(dom_id, content, options = {}, & block)
 concat(“ < span id=’#{dom_id}’ > ”, block.binding)
 yield
 concat(“ < /span > ”, block.binding)
 concat(“ < script type=’text/javascript’ language=’javascript’ > ”, block.binding)
 op_strings = options.collect do |key, value|
 “#{key}: ‘#{escape_javascript(value)}’”
 end
 op_string = “{#{op_strings.join(“, “)}}”
 concat(“new Tip(‘#{dom_id}’, ‘#{escape_javascript(content)}’, #{op_string})”,
 block.binding)
 concat(“ < /script > ”, block.binding)
 end

 The method starts by surrounding the incoming block with the span tag, and then puts together the
options in JavaScript format before it constructs the script tag with Tip declaration. The code to
convert the options to JavaScript is perhaps incomplete — it ’ s a little messy and doesn ’ t handle the case
where the value of the option is itself a hash — but it will serve for the moment.

 To see this code in action, you can add a tooltip around each of the categories in the tag cloud display
that shows the name and count of recipes attached to each tip. That makes the index view for the
category controller exactly three lines more complex:

 < % @title = “Recipe Tag Cloud” % >

 < div class=”tag_cloud_whole” >
 < % @tags.each do |tag| % >

 < % tooltip_for “tag_#{tag}”, “#{tooltip_string(tag)}”,
 :title = > “#{tooltip_title(tag, @tag_counts)}” do % >

 < %= link_to tag, category_path(tag),
 :class = > “tag_cloud_bucket_#{@tag_cloud[tag]}”% >

 < % end % >

 < % end % >
 < /div >

c08.indd 224c08.indd 224 1/30/08 4:11:29 PM1/30/08 4:11:29 PM

Chapter 8: Rails - Driven JavaScript

225

 Notice how the tooltip functionality just wraps itself around the code being tipped.

 There are, however, a couple of helpers and controller changes behind that code. Rather than recalculate
the tag counts from the database each time, you can add a class method to TagCloud to return them all
at once from the taggable class. This goes in app/models/tag_cloud.rb :

def self.tag_counts(taggable_class)
 TagCloud.new(taggable_class).tag_count_hash
end

 This also needs to be added to the app/controolers/categories_controller.rb controller,
like this:

def index
 @tag_cloud = TagCloud.calculate(Recipe)

 @tag_counts = TagCloud.tag_counts(Recipe)

 @tags = @tag_cloud.keys.sort
end

 The title and body text of the tooltip are written as helpers in the category_helper.rb file. Just this
once, I ’ ll spare you the unit tests because they are pretty straightforward text manipulation. The title
takes in the category name and the tag counts hash and returns a simple string:

def tooltip_title(category, tag_counts)
 count = tag_counts[category]
 “#{count} #{inflect(‘recipe’, count)}:”
end

 For the tooltip, go back to the database to get all the recipes with the given tag:

def tooltip_string(category)
 recipes = Recipe.find_tagged_with(category, :order = > “title ASC”)
 recipes.collect(& :title).join(“, “)
end

 Because this method is potentially making an expensive database call, it ’ s a prime candidate for some
kind of performance enhancement, such as indexing the tag columns in the database, denormalizing the
list of recipes, or simple object - or page - caching. It ’ s not necessary to mess with it now though — for all
you know, somebody will take the feature out of the code before you even need to think about
performance optimization.

 Figure 8 - 1 shows a finished tooltip. (If you don ’ t like the colors, you can easily change them in the
Prototip .css file.)

c08.indd 225c08.indd 225 1/30/08 4:11:30 PM1/30/08 4:11:30 PM

Chapter 8: Rails - Driven JavaScript

226

 In - Place Editing
 In - place editing is one of my favorite ways to add usability to a site with some quick JavaScript. In fact, it
was the first whizzy Ajax thing I added to my first serious Rails application, and one of the features that
really made Rails pop for me. At the time, the helper method for adding in - place editing for text fields
didn ’ t exist (well, maybe it did, but I just didn ’ t know about it). With this method, adding quick editing
is a snap.

 In - place editing has moved out of Rails core and into a plugin, so first you need to install the plugin:

$ ruby script/plugin install
http://dev.rubyonrails.org/svn/rails/plugins/in_place_editing

 With the plugin installed, the API is unchanged from older versions of Rails. However, now systems that
don ’ t use the in - place editing feature don ’ t need to have it in their deployment.

 Let ’ s add some in - place editing to the recipe display page. In app/views/recipes/show.html.erb ,
change the beginning of the file as follows:

 < h1 > < %= in_place_editor_field :recipe, :title % > < /h1 >

 < %# some stuff I don’t need to show here % >

 < p class=”servings” >

 Servings: < %= in_place_editor_field :recipe, :servings % >

 < /p >

 < p class=”description” >

 < %= in_place_editor_field :recipe, :description, {}, :rows = > 5 % >

 < /p >

 The in_place_editor_field is a Rails helper method that wraps around the s cript.aculo.us
Ajax.InPlaceEditor object. Like a form helper, the first argument is a symbol that matches the
instance variable containing the attribute being edited. This is a limitation on what you can do via this
helper — the object being edited must be declared as an instance variable, not a local variable. The third

 Figure 8 - 1

c08.indd 226c08.indd 226 1/30/08 4:11:30 PM1/30/08 4:11:30 PM

Chapter 8: Rails - Driven JavaScript

227

argument is a standard Rails HTML options hash, with the values placed in the span tag that surrounds
the text. There are several options you can pass to the last argument, in_place_editor_field , to
adjust the display of the field. The most important options are :rows and :cols , which specify the size
of the eventual edit field — if :rows is greater than 1, then a textarea field is used.

 Here ’ s what the generated HTML and JavaScript code looks like for the title field:

 < span class=”in_place_editor_field” id=”recipe_title_1_in_place_editor” >
 Grandma’s Chicken Soup
 < /span >
 < script type=”text/javascript” >
 // < ![CDATA[
 new Ajax.InPlaceEditor(‘recipe_title_1_in_place_editor’,
 ‘/recipes/set_recipe_title/1’)
 //]] >
 < /script >

 In the browser, the text gets a background - highlight effect on mouseover, and clicking in the text
switches to the edit field with an OK button and Cancel link.

 This change, by the way, will break the controller test for showing the recipe page because all the tags are
now span tags. The test needs to change to this:

def test_should_show_recipe
 get :show, :id = > 1
 assert_response :success
 assert_select(“span[id *= title]”, “Soup One”)
 assert_select(“span[id *= servings]”, “1”)
 assert_select(“span[id *= description]”, “A Scrumptious Soup”)
 assert_select(“p.direction”, “Eat, drink, and be merry.”)
 assert_select(“span[id *= ingredient]”)
end

 To get this to work on the server side, you need to add some class - level method calls that will create the
 set_recipe_title action shown in the preceding JavaScript. Each call is of the following form:

in_place_edit_for :recipe, :title

 The first argument is the model type, and the second argument is the attribute. However, listing a whole
bunch of these one after the other is hardly Rails - like, so add the following helper method to
 application.rb :

def self.in_place_edit_for_all(model, *attrs)
 attrs.each do |attr|
 self.in_place_edit_for model, attr
 end
end

 Then you can put the following line in the recipes controller:

in_place_edit_for_all :recipe, :title, :servings, :description

c08.indd 227c08.indd 227 1/30/08 4:11:30 PM1/30/08 4:11:30 PM

Chapter 8: Rails - Driven JavaScript

228

 I want to show you the definition of in_place_edit_for from the Rails core, because it ’ s such a nice
example of how brief and powerful Ruby metaprogramming can be. I think this example is particularly
easy to read:

 def in_place_edit_for(object, attribute, options = {})
 define_method(“set_#{object}_#{attribute}”) do
 @item = object.to_s.camelize.constantize.find(params[:id])
 @item.update_attribute(attribute, params[:value])
 render :text = > @item.send(attribute)
 end
 end

 This implementation of in - place editing has a couple of nice advantages, one of which is how little
coding you need to do to make it work. Another advantage is that the JavaScript editor is actually part of
the view template, which means that the browser does not need to contact the server to display the edit
form. This results in less load on the server and a faster response for the user.

 On the down side, it can be a little awkward to go outside the base functionality to display and edit a
derived field rather than a base field, for example, or to change the style of the display. It ’ s doable, but at
that point, it might be easier to use a regular Ajax call via link_to_remote , the way the tag edit field
was handled.

 As I write this, there is no out - of - the - box solution for a fully client - side, in - place selection list edit,
although a solution that goes through the server can be easily written via link_to_remote . Again,
watch the plugin skies for changes here.

 Autocomplete
 Another easy - to - add JavaScript feature is an autocomplete text field, which produces a pull - down menu
of options that match the text as a user types it into the text field. This is also a set of methods that was
pulled from Rails core into a plugin:

$ ruby script/plugin install
http://dev.rubyonrails.org/svn/rails/plugins/autocomplete

 Adding the autocomplete feature to a field is almost ridiculously easy. In your view, add the following
helper call (which ordinarily would be within a form):

 < %= text_field_with_auto_complete :recipe, :name % >

 The two arguments are the object and attribute name, just as they would be used in an ordinary form tag
helper method. This gives you a text field with some attached JavaScript that automatically makes an
Ajax call back to the server when the user types, and fills a pull - down list with any entries that match
what the user has typed. The eventual SQL call uses LIKE as the operator, so the typed text does not
have to match the beginning of the actual text — a match anywhere in the string will work. (Also, on
MySQL, the search is not case - sensitive.)

c08.indd 228c08.indd 228 1/30/08 4:11:31 PM1/30/08 4:11:31 PM

Chapter 8: Rails - Driven JavaScript

229

 For this to work, you need to catch the request in the controller. Add the following declaration to your
controller:

auto_complete_for :recipe, :name

 And that makes it all work nicely. The auto_complete_for method takes additional key/value
arguments that are passed directly to the find method, which you can use to customize results. For
example, the default behavior is to return no more than 10 results, but you can change that behavior by
adding a value such as :limit = > 20 as a key/value argument. Any find argument can be used.

 Sometimes you ’ ll want to use an autocomplete field outside a regular form, and you ’ ll want it to
automatically trigger a server - side call when the user makes a selection. You can do that with the
following helper method, which you ’ d add to your application_helper.rb file:

def text_field_with_auto_complete_and_submit(obj, attr, controller, action,
 update_id)
 remote = remote_function(
 :url = > {:action = > action, :controller = > controller, :id = > nil},
 :with = > “’name=’ + escape(element.value)”,
 :update = > update_id)
 text_field_with_auto_complete obj, attr, {},
 :after_update_element = > “function(element,value) { #{remote} }”
end

 This helper takes additional arguments for a controller, an action, and a DOM ID to be updated. It
augments the call to text_field_with_auto_complete with a JavaScript function call that invokes
that controller and action specified, and updates the given DOM ID with the result of the call. The
 remote_function method used here is a Rails API method that is effectively the JavaScript equivalent
of link_to_remote , and attaching it to : after_update_element causes the call to be invoked
automatically after the user selects an option in the pull - down menu.

 If you want to do something a little more idiosyncratic with your data, you can write your own
controller method. The naming convention is auto_complete_for_ < object > _ < attribute > . You can
do whatever you want within this method, but your return value needs to be a valid HTML unordered
list (ul tag). Here ’ s an example:

def auto_complete_for_recipe_name
 @items = #### SOME KIND OF FANCY FIND METHOD HERE..
 render :inline = > “ < %= auto_complete_result_symbol @items, :name % > ”
end

 The following helper method takes a list of objects and a method name symbol, and returns the
unordered HTML list:

def auto_complete_result_symbol(entries, method_name)
 return unless entries
 items = entries.map do |entry|
 content_tag(“li”, h(entry.send(method_name)))
 end
 content_tag(“ul”, items.uniq)
end

c08.indd 229c08.indd 229 1/30/08 4:11:31 PM1/30/08 4:11:31 PM

Chapter 8: Rails - Driven JavaScript

230

 Writing JavaScript in Ruby
 The remote tag helper methods are easy to use and well suited to the basic task of updating the HTML
inside a particular element on the page. That ’ s a rather limited subset of what you can do with
JavaScript, however. You ’ ll often want to update more than one spot on the page, or do JavaScript
manipulation on an element based on changing its style rather than its text. Although you could do all of
that using the one of the various callback features to embed JavaScript into various nooks and crannies
of the link_to_remote , that can be awkward. The Rails facility for writing more complex JavaScript
effcts is an RJS template, which allows you to write Ruby code that is converted to JavaScript commands.

 It ’ s important to start the discussion of RJS with the disclaimer that although RJS is a nifty way to get a
lot of JavaScript functionality into your application, it ’ s in no way a substitute for actually writing
JavaScript — especially if you want to try something really new and unique. Also, this book isn ’ t
about JavaScript per se, so let ’ s focus on what you can accomplish with Ruby and Rails.

 RJS code can be injected into your Rails page in one of two ways. The originally intended behavior was
that the code would be placed in a view similar to an html.erb view, with the extension .rjs .
However, over time, because many RJS invocations are pretty short and because they don ’ t really behave
like the HTML templates, it ’ s more and more common to see them in the controller or in a helper method
called from the controller.

 Unlike the html.erb files, which convert to HTML and are designed to be displayed directly in the
browser as a result of the request, RJS templates convert to JavaScript code and are designed to be
executed in the browser. Executing RJS templates causes a display change in the browser. RJS is best
thought of as a kind of domain - specific language shortcut for injecting JavaScript rather than a
template tool.

 An RJS Example
 I have a modest example to show you.

 Perhaps you recall the category tag cloud created back in Chapter 4 (which you modified with rollover
tool tips in this chapter). As you may remember, the tag cloud took up only a small area at the top of
the page. Wouldn ’ t it be nice if clicking a tag in the cloud showed the recipes containing that tag on the
same page? Sure it would. And wouldn ’ t it be even cooler if there was some kind of fade in/fade out
effect as a transition between two tags? Maybe. But this is Rails, and it ’ s only going to take us about 25
lines of code or so to find out.

 The first step is to change the category index.html.erb again to make the links trigger Ajax calls, and
add a couple of empty tags to place the content that will be returned from them:

 < % @title = “Recipe Tag Cloud” % >

 < div id=”tag_cloud_whole” >
 < % @tags.each do |tag| % >
 < % tooltip_for “tag_#{tag}”, “#{tooltip_string(tag)}”,
 :title = > “#{tooltip_title(tag, @tag_counts)}” do % >

 < %= link_to_remote tag, {:url = > category_url(tag), :method = > :get},
 :class = > “tag_cloud_bucket_#{@tag_cloud[tag]}”% >

 < % end % >

c08.indd 230c08.indd 230 1/30/08 4:11:31 PM1/30/08 4:11:31 PM

Chapter 8: Rails - Driven JavaScript

231

 < % end % >
 < /div >

 < br / > < br / >

 < h2 id=”category_being_shown” > < /h2 >
 < div id=”recipes_to_show” > < /div >

 Notice that, unlike the other link_to_remote calls you ’ ve seen so far, this one does not specify a DOM
ID to be updated by the result of the call. Instead, that information will be transmitted in the JavaScript
generated by the RJS template. Also notice that, once again, you need to explicitly specify that the
method call is an HTTP GET to enable the RESTful routes to understand it correctly.

 The two empty tags at the bottom of the view will be retrieved by the RJS template and then used to
insert the content implied by their names.

 The index method in category_controller.rb needs to grow an RJS response block as follows:

 def show
 @category = params[:id] ||= “”
 @recipes = Recipe.find_tagged_with(@category)
 respond_to do |format|
 format.html #default
 format.xml { render :xml = > @recipes}

 format.js #default

 end
 end

 Because there isn ’ t any behavior specified for the block, Rails will invoke the default behavior —
 searching for a show.rjs template and evaluating it. The decision of whether to place the RJS code in a
separate template or in a render :update do |page| #stuff end call is largely a matter of personal
taste. This RJS code got a little longer than I was comfortable with inside a main controller method,
although I could have easily moved it to a private method inside the controller. In the end, even though I
think the RJS templates are structurally a little weird because they aren ’ t really templates at all, that still
seems like the expected location for the code. So, place the following code in app/views/categories/
show.rjs :

page.visual_effect(:fade, ‘recipes_to_show’, :duration = > 0.5)
page.visual_effect(:fade, ‘category_being_shown’, :duration = > 0.5)
page.delay 0.5 do
 page.replace_html(“category_being_shown”,
 “ < span > Recipies For: #{@category.capitalize} < /span > ”)
 page.replace_html(“recipes_to_show”, :partial = > “recipes”)
 page.visual_effect(:appear, ‘recipes_to_show’, :duration = > 0.5)
 page.visual_effect(:appear, ‘category_being_shown’, :duration = > 0.5)
end

 All RJS templates have the special variable page , which is of the type ActionView::Helpers::
PrototypeHelper::JavaScriptGenerator . It responds to about 20 different methods that produce
JavaScript. Three of those methods are used in this template. The visual_effect method is a front - end
to the script.aculo.us library, the first argument is the name of the effect, the second argument is the
DOM ID of the element being affected, and the exact contents of the options hash depends on the effect

c08.indd 231c08.indd 231 1/30/08 4:11:32 PM1/30/08 4:11:32 PM

Chapter 8: Rails - Driven JavaScript

232

being used. The list of effects can change, and the call will always dynamically match the list of effects
offered by the version of script.aculo.us in use by your application.

 The replace_html method mimics what an ordinary link_to_remote :update call would do — it
changes the inside contents of an HTML element (the innerHTML, in JavaScript parlance) without
affecting the external tag. The argument to this method is either a string used as - is or a hash of items
that is then sent to the normal ActionController#render method for processing. In this case, the
[div] tag with the DOM ID [recipes_to_show]. takes the contents of a partial view called recipes .

 The delay method takes a block and executes the contents of this block after sleeping the Javascript
for the amount of time specified in the argument (in seconds).

 This template, therefore, fades out the existing contents of the recipes_to_show and category_
being_shown elements, waits for a half - second for the fade to complete, and then swaps the text in both
of those elements and fades them back in. The result, which I can ’ t quite show in a static screenshot, is
actually a kind of nice fade effect that calls attention to the changing content without being dramatic
about it. (Although I have to admit that a real application wouldn ’ t need to have both this Ajax call and
the tooltip.)

 To tie up the remaining loose end, the recipes partial is just extracted from the categories show view as
follows:

 < ul >
 < % for recipe in @recipes % >
 < li > < %= link_to(h(recipe.title), recipe) % > < /li >
 < % end % >
 < /ul >

 The crossfade feature is easily generalized to the following helper method, which you can use in other
applications:

 def crossfade(page, *dom_ids)
 dom_ids.each do |dom_id|
 page.visual_effect(:fade, dom_id, :duration = > 0.5)
 end
 page.delay 0.5 do
 yield
 dom_ids.each do |dom_id|
 page.visual_effect(:appear, dom_id, :duration = > 0.5)
 end
 end
 end

 The arguments to this method are the RJS page variable and the list of DOM IDs to update. The method
expects a block, which is the action to take between fade down and fade up. To use this method, place it
in applications_helper.rb , and change the RJS view to this:

crossfade(page, ‘recipes_to_show’, ‘category_being_shown’) do
 page.replace_html(“category_being_shown”,
 “ < span > Recipies For: #{@category.capitalize} < /span > ”)
 page.replace_html(“recipes_to_show”, :partial = > “recipes”)
end

c08.indd 232c08.indd 232 1/30/08 4:11:32 PM1/30/08 4:11:32 PM

Chapter 8: Rails - Driven JavaScript

233

 Other RJS Methods
 I mentioned before that an RJS page can take several different methods. The delay , replace_html , and
 visual_effect methods have already been covered, and this section examines some of the other
methods. This is a list of the generator methods that Rails defines. There are further methods that are
essentially converted directly to Prototype functions — check out the Prototype documentation for more
information.

 There are a couple of ways to select a DOM element. The preceding replace_html call took the DOM
ID as the first argument of the method. However, you can also use array syntax to get at the DOM ID,
and then call most of the RJS methods on the result:

page[‘category_to_show’].replace_html “#{category}”

 The object resulting from the array reference works with most (but not all) of the RJS methods (for one
thing, it doesn ’ t work with visual_effect , which takes the name of the effect, not the DOM ID, as the
first argument).

 You can similarly get a collection of DOM elements by using the select method. The argument to the
method is a CSS selector pattern, or essentially the same thing you might pass to an assert_select
test. For example, you can get a list of all the category tags in the tag cloud. You can even use an each
method and a block, which is converted to the following Prototype enumeration:

page.select(span[id*=tag_]) do |element|
 element.insert_html(“gotcha”)
end

 There are a few methods that change the visibility of a set of DOM IDs. The methods show and hide
take a list of DOM IDs and either show all the invisible ones or hide all the visible ones. There ’ s also the
 toggle method, which just swaps the visibility state of all the DOM IDs that are passed to it. If you want
to completely remove the DOM element, the conveniently named remove method will do that for you.

 There are two methods that are related to replace_html (which you ’ ve already seen in action). The
 replace method changes the HTML for the entire element, including the outer tag itself. It takes the
same argument options as replace_html . The insert_html method is similar, but it takes an initial
argument that, specifies where you want the new text placed relative to the existing text: :before or :
after to place it outside the element in question, or :top or :bottom to place the new text inside the
existing text.

 The visual_effect method is a wrapper around a script.aculo.us object. Similarly, the draggable and
 drop_receiving methods are wrappers that make the element ID passed to the method work within
the script.aculo.us drag - and - drop framework, and the sortable method makes the element work as
part of the script.aculo.us sortable list framework.

 There are a few methods that let you drop arbitrary JavaScript into the page with various amounts of
structure. The assign method takes a variable name as a string or symbol and a value, and produces
JavaScript to set a variable with that name to that value. The call method takes a JavaScript function
name that would be in scope for the page in question and the series of arguments to that function, and
inserts a JavaScript call to that function. The < < method is used to inject an arbitrary string into the page
to be evaluated as JavaScript. Finally, the alert method takes a string argument and puts up a
JavaScript alert box with that message.

c08.indd 233c08.indd 233 1/30/08 4:11:32 PM1/30/08 4:11:32 PM

Chapter 8: Rails - Driven JavaScript

234

 Using RJS for Lightboxing
 This section shows you a quick example of using RJS to manage a different external JavaScript library,
specifically the Control.Modal library, which is built on top of Prototype and adds modal windows and
lightboxes. The lightbox effect is becoming common in web applications, especially photo sites. With this
effect, a modal - like window appears in the browser, and the rest of the browser window fades out
behind it. In JavaScript terms, the effect is managed by placing a dark - gray overlay on top of the entire
screen, and then placing the new div tag on top.

 Download the Control.Modal library from http://livepipe.net/projects/control_modal/ , place
it in your public/javascripts directory, and add the following line to the headers of your layout file
(the exact name of the file to include will depend on the version of Control.Modal):

 < %= javascript_include_tag “control.modal.2.2.4.js” % >

 Control.Modal has many options that I won ’ t go into here (see the resources section for more
information), but I do want to pass along a couple of RJS helper methods that you can use to incorporate
the lightbox effect into your application:

def control_modal(div_id, options = {})
 to_open = if options.key?(:open) then options[:open] else true end
 options.delete(:open)
 option_strings = []
 options.each do |key, value|
 value = “’#{escape_javascript value}’” if value.is_a? String
 option_strings < < “#{key}: #{value}”
 end
 options_string = “{#{option_strings.join(‘, ‘)}}”
 result_string = “new Control.Modal(‘#{div_id}’, #{options_string})”;
 result_string = “m = #{result_string}; m.open();” if to_open
end

def close_control_modal
 “Control.Modal.close();”
end

 The first method takes a DOM ID (which is somewhat arbitrary) and a hash of Control.Modal options,
and builds up the JavaScript string for creating the modal window. The most important options are
:contents , which contains the contents of the window being created, :position , which can either be
relative to the location of the link or absolute, and :fade , which, if true , causes a nice fade in and fade
out effect for the lightbox.

 You can control the look of the windows by adding the following entries to your CSS page:

#modal_container {
 padding:5px;
 background-color: #FFFFCC;
 border:1px solid #666;
 overflow:auto;
 font-family:”Lucida Grande”,Verdana;
 font-size:12px;
 color:#333;

c08.indd 234c08.indd 234 1/30/08 4:11:33 PM1/30/08 4:11:33 PM

Chapter 8: Rails - Driven JavaScript

235

 text-align:left;
}

#modal_overlay {
 background-color:#000;
}

 The modal_overlay is the layer between the modal div and the background — what you are setting
here is the color that the background fades to. The modal_container is the actual modal div created by
Control.Modal.

 You can use this by injecting the code into your RJS page variable using < < . You can build the contents
string by rendering a partial, as in this example:

contents = render :partial = > “recipes/form”
page < < control_modal(‘new_recipe_link’, :contents = > contents,
 :position = > “relative”, :offsetLeft = > -350, :fade = > true)
later
page < < close_control_modal

 Testing RJS
 If you are like me, then you are wondering at this point how you go about writing automated tests for
RJS templates. Perhaps you noticed that the last section was not presented with testing code first, and
you thought that there may not be a good way to test RJS. However, there are a couple of useful ways to
do this. First is the Rails core method assert_select_rjs .

 Using assert_select_rjs
 The assert_select_rjs method takes zero, one, or two arguments and a block. The block can take any
arbitrary assertions, specifically including further assert_select_rjs calls and further assert_
select calls. An assert_select call inside the assert_select_rjs block will validate against the
HTML code being sent inside the RJS calls, which is very handy.

 If there are no elements, the method only asserts that there is RJS output and then performs whatever
validations are inside the block. The arguments narrow down the search. A single argument is a DOM
ID, which verifies that there is RJS activity for that DOM ID and then performs validations inside the
block. If there are two arguments, the first is a symbol for an RJS call, and the second is a DOM ID. The
method validates that the specific call was made against the specific DOM ID, and then checks the block.
For example:

def test_should_make_xhr_call_on_category
 setup_recipe_tags
 xhr :get, :show, :id = > “yummy”
 assert_select_rjs replace_html, “category_being_shown” do
 assert_select “span”, “Recipies For: Yummy”
 end
 assert_select_rjs :replace_html, “recipes_to_show” do
 assert_select “li”, /Soup One/
 end
end

c08.indd 235c08.indd 235 1/30/08 4:11:33 PM1/30/08 4:11:33 PM

Chapter 8: Rails - Driven JavaScript

236

 There ’ s also a plugin that helps validate the JavaScript output of an RJS script: ARTS.

 Using the ARTS Plugin
 The ARTS plugin (ARTS stands for Another RJS Testing System) was written by Kevin Clark. The
recommended installation procedure is this:

$ ruby script/plugin discover
$ ruby script/plugin install arts

 To show you how this plugin works, I wrote a functional test against the preceding RJS template. More
or less as a matter of principle, I chose to test for only the actual HTML changes, rather than the visual
effects, on the theory that the visual effects will have to be validated manually and are more likely to
change and break tests. This test is in category_controller_test.rb :

def test_should_make_xhr_call_on_category
 setup_recipe_tags
 xhr :get, :show, :id = > “yummy”
 assert_rjs :replace_html, “category_being_shown”, “Recipies For: Yummy”
 assert_rjs :replace_html, “recipes_to_show”, /Soup One/
end

 The test makes the xhr GET call to the show method. Then the testing is done using the assert_rjs
method, which makes up the bulk of the functionality of ARTS. The assert_rjs method validates that
somewhere in the JavaScript output, there ’ s a line of code that matches the parameters of the assertion —
 it doesn ’ t test that the method calls are in any order. For negative testing, the assert_no_rjs method is
also provided — it passes in any case where assert_rjs would fail.

 The first argument to assert_rjs is a method name that corresponds to one of the methods that the
 page object in an RJS template can accept. Subsequent arguments to assert_rjs are expected to match
exactly the arguments to the RJS method. The only exception is an argument that is expected to match
the HTML output for an insert or replacement call — in that case, the argument can be a string that
matches the JavaScript output exactly, or a regular expression that passes a regular expression match
against the JavaScript output. The regular expression version is shown in the last line, where the actual
output is an HTML anchor tag with an href attribute, and a lot of odd JavaScript escape characters. It ’ s
much cleaner to just match against the regular expression of the content you actually care about.

 ARTS is pretty nifty, but it does have some limitations. If you use the square - bracket syntax to get a
DOM ID, then plain assert_rjs won ’ t work — you need to use the method assert_rjs_page , and
then you can make the DOM ID the first argument to the assertion, just as in the preceding examples.
Also, ARTS doesn ’ t seem to handle the RJS select call, although it would presumably match any
JavaScript calls inside the block.

 One nice feature of ARTS is that failure messages include the entire text of the JavaScript output from the
RJS template, which makes it much easier to see what ’ s going on.

c08.indd 236c08.indd 236 1/30/08 4:11:33 PM1/30/08 4:11:33 PM

Chapter 8: Rails - Driven JavaScript

237

 Cross - Site Scripting Security
 Most of this chapter has been spent discussing how to generate JavaScript from Rails. This section is
about preventing JavaScript from being generated — or more specifically, how to prevent a malicious user
from injecting JavaScript into a client page pointed at your system and carrying out a cross - site scripting
(XSS) attack.

 The basic idea behind an XSS exploit is that unintended JavaScript injected on to a browser page in your
system can cause sensitive information to be retrieved from the server and displayed in the client ’ s
browser. For example, an XSS exploit might occur if JavaScript is inserted into a recipe description or tag
list on the Soups OnLine site, or is inserted in a forum comment of some kind on other sites.

 Although many of these exploits are only fully dangerous when combined with some kind of phishing
scam (where an unsuspecting user is tricked into injecting the malicious code), you should try to avoid
any openings by which cross - site code can be sent to your server.

 The basic mechanism for preventing XSS attacks is to aggressively verify and scrub any data that comes
in from a user and will eventually be displayed on the screen (or sent to the database — user - generated
SQL can also wreak havoc on your system). Information with a known format should be validated
against that format. This is relatively easy for numerical data, and a lot of text data (such as names) can
be scrubbed to include only alphabetical or alphanumeric content. Filenames for uploaded files also
need to be scrubbed.

 The larger problem comes when you allow users to type open text, as in a comment or description field.
In general, these fields need to be stripped of any potentially malicious code. However, it ’ s not just a
simple matter of removing script tags. There are a number of ways in which JavaScript could
potentially be executed — the src attribute of the img tag is just one such vector, as in:

 < IMG SRC=”javascript:alert(‘XSS’);” >

 In Rails 2.0, the sanitize method no longer tests against a black list of forbidden elements; instead, it
does a much more secure check against a white list of allowed elements. It has incorporated the
functionality that used to be provided by a plugin called WhiteList.

 Use sanitize instead of h wherever you are displaying user - generated text, as follows:

 < %= sanitize text_to_clean % >

 By default, sanitize removes all HTML tags, and does its best to get rid of anything with an src
attribute, or which might be carrying JavaScript. You can limit the tags and attributes allowed on a
case - by - case basis by adding attributes to the helper call, like this:

 < %= sanitize @comment.text, :tags = > %w(b em), :attributes = > %w(id class style)

 Only the tags and attributes specifically mentioned in the helper call will be allowed.

c08.indd 237c08.indd 237 1/30/08 4:11:34 PM1/30/08 4:11:34 PM

Chapter 8: Rails - Driven JavaScript

238

 If there are certain tags that you want to allow, such as < em > , you can add tags to the allowed tag list on
a global basis in your config.rb file. Add this within the Initializer.run block:

config.after_initialize do
 ActionView::Base.sanitize_allowed_tags.add “em”
end

 You can similarly use the delete method to remove tags from the allowed list. The sanitized_
allowed_attributes list governs what attributes are allowed.

 For more information on what sanitize checks for and how it checks for it, look at the test suite in
 vendor/rails/actionpack/test/template/sanitize_helper_test.rb , which is one of my
favorite unit test classes of all time. It does a very thorough job of walking sanitize through a set of
known potential XSS exploits.

 Resources
 Prototype and script.aculo.us are JavaScript libraries distributed with Rails. Prototype ’ s home page
(which includes API documentation) is www.prototypejs.org . The home page for script.aculo.us is
(conveniently) http://script.aculo.us . Both of these libraries are sometimes updated on a different
schedule than Rails releases, so it ’ s worth keeping an eye on them.

 You can find documentation and other information about the Prototip library at www.nickstakenburg
.com/projects/prototip . Control.Model lives at http://livepipe.net/projects/control_
modal , with a complete list of options and parameters.

 The ARTS plugin was introduced by its author, Kevin Clark, at http://glu.ttono.us/
articles/2006/05/29/guide-test-driven-rjs-with-arts . There seems to be very little online
discussion of assert_select_rjs , however.

 The Ruby on Rails Security Project has a blog at www.rorsecurity.info , which frequently discusses
JavaScript bases security issues. A good description of various types of XSS attacks is available at
 http://ha.ckers.org/blog/category/webappsec/xss/ .

 Summary
 Web 2.0 is largely powered by JavaScript via the asynchronous server call structure often called Ajax.
Rails provides a number of different features that you can use to enable Ajax in your applications. The
most basic structure is link_to_remote and remote_form_for helpers that enable an ordinary link
or form to trigger an Ajax call and update an arbitrary part of the page. You can test these calls with
the xhr functional test helper. You can also easily augment them to give users who don ’ t have JavaScript
some functionality.

 You can add tooltips to your Rails applications with the Prototip library and a couple of simple helpers.
Two former pieces of the Rails core, in - line editing and autocomplete text fields, are available as plugins

c08.indd 238c08.indd 238 1/30/08 4:11:34 PM1/30/08 4:11:34 PM

Chapter 8: Rails - Driven JavaScript

239

and are still quite easy to use. You can also combine the Control.Modal library with some simple helpers
to give a modal dialog, lightbox effect.

 RJS allows you to write Ruby code that is converted to JavaScript, which enables you to use more
complex effects than what you get with the base behavior of the remote helpers. RJS templates have a
wide array of operators to manipulate the DOM of the client browser, including full access to the script.
aculo.us effects library. You can use the Rails assert_select_rjs helper method or the ARTS plugin to
test the result of an RJS call.

 JavaScript applications can be vulnerable to cross - site scripting attacks. By using the sanitize helper,
you can minimize the risk of such attacks dramatically.

c08.indd 239c08.indd 239 1/30/08 4:11:34 PM1/30/08 4:11:34 PM

c08.indd 240c08.indd 240 1/30/08 4:11:35 PM1/30/08 4:11:35 PM

 Talking to the Web

 Increasingly, the content produced by web applications and distributed over web servers is aimed
not directly at the user, but at other computer programs that use the data in different ways.
Applications can take web data and present it to the user in a different user interface (UI) — such
as the Twitteriffic application, which gives Twitter a Mac OS X front - end. Or a site can aggregate
data from multiple sites — such as Bloglines or Google Reader.

 All it really means to be a web service is to output data from HTTP requests in a machine - readable
format. At the moment, XML is the most common format (especially because the RSS format for
blog syndication is just a specification within XML). In fact, the formal definition of web services
seems to sort of absurdly say that a web service can only be in XML. However, you ’ ll frequently
see JavaScript Object Notation (JSON) used (especially for data specifically earmarked for Ajax
and JavaScript), and most web pages still render HTML, so it ’ s useful to have a tool that can
extract useful data from those pages as well.

 There have been a few attempts to standardize web services. These days, the most prominent
standards are SOAP (which is currently an ex - acronym because the original acronym was officially
declared misleading) and REST (REpresentational State Transfer), which has already cropped up
numerous times in this book. Without getting into the detailed arguments over which standard is
better, the Rails core team has chosen REST as a preferred mechanism for managing web services
from Rails. As a result, this chapter focuses on REST and similar lightweight web communication
systems such as RSS and Atom. It also tackles producing web service data and consuming
web services.

 ActiveResource
 In the beginning there was ActiveWebService, part of the Rails core that allowed Rails to act as a
SOAP or XML - RPC client and server. And it was . . . okay. Then David Heinemeier Hansson
(the creator of Ruby on Rails) announced in his keynote address at the 2006 RailsConf that Rails
was going to be supporting REST as a web services architecture in a big way. ActiveWebService
would be removed from the Rails 2.0 core, although it would still be available as a plugin.

c09.indd 241c09.indd 241 1/30/08 4:12:18 PM1/30/08 4:12:18 PM

Chapter 9: Talking to the Web

242

 In the Rails 2.0 world, Rails applications act as web service servers through the support of REST in the
design of the controllers, and as web service clients through a new Rails library called ActiveResource.
The ActiveResource library is specifically designed to work with external sites that follow the REST
standard.

 Why the change? It seems as though Hansson and the Rails team saw the opportunity to improve the
design of Rails applications in multiple directions at once. By encouraging the limitation of controller
classes to the CRUD (Create, Read, Update, Delete) set of actions, it moves Rails even further in the
 “ convention, not configuration ” direction. Simultaneously, the more that Rails controllers have a
consistent, predictable set of actions, the easier it is to write and maintain client applications that rely on
those servers to acquire their data. At that point, it becomes possible to have a smart web services client
that can infer the structure of their objects in much the same way that ActiveRecord is a smart consumer
of database information that can infer the structure of its objects.

 As I write this, ActiveResource is available only in Rails 2.0. If you are using an older version of Rails,
and go to Edge Rails via a subversion external, you ’ ll pick it up just fine — but if you get there via the
 rake rails:edge:freeze command, you will have to repeat the command a second time for
ActiveResource to get picked up (because ActiveResource is added to the list of directories to download
only after the first run). The ActiveResource API and feature set is very much a work in progress, and
existing documentation or examples of production experience are pretty thin. So this is going to be kind
of a high - level overview. Please check in with the latest Rails documentation to see how things have
changed since this book went to press.

 The Client Side of REST
 In Chapter 1 , you saw how REST works as a structure for designing Rails controllers in terms of a
standard set of actions. Now let ’ s take a look at REST as an architecture for web services.

 REST is a set of principles or a way of structuring the interaction between multiple elements in a
network. Unlike SOAP or XML - RPC, there isn ’ t any formal specification of what a REST system is, and
the REST police aren ’ t going to come after you and say you ’ re not really doing a web service if your
implementation is a little idiosyncratic. That said, the Rails style of RESTfulness does depend on a
certain consistency in the interface.

 A RESTful system is made up of resources, each of which has a unique identifier and a limited set of
operations that can be performed on it. In contrast, a SOAP system is conceptually made up of a set of
commands that are used to access some set of data — the overall functionality is similar, but the
structures are orthogonal. When you access a REST resource via its identifier, you are supposed to get a
straightforward representation of the resource itself — Rails uses XML (the conventional choice for web
services), but again, there ’ s no technical reason why you couldn ’ t use some other data representation.
The response to a REST system should not contain other information about the state of the server.
A REST connection is stateless.

 If that bare - bones description of resources, unique identifiers, simple data structures, and stateless
interactions sounds familiar, that ’ s because it also describes the Web as a whole. That ’ s not a
coincidence — Roy Fielding, who coined the term REST, was one of the people who defined the
Web ’ s HTTP protocol in the first place (among other things, he was a cofounder of the Apache web
server project).

c09.indd 242c09.indd 242 1/30/08 4:12:19 PM1/30/08 4:12:19 PM

Chapter 9: Talking to the Web

243

 In theory, at least, a RESTful client - server interaction can be developed with much less overhead, both on
the part of the client and of the server. In Chapter 1 , you saw that a RESTful resource can be created in
just a few lines of server - side Ruby.

 Now let ’ s look at the client side.

 Activating Your Resources
 An ActiveResource object is essentially a front - end to the REST web server. It obtains and modifies its
data by making HTTP calls back to the server and parsing the XML results back into a Ruby object.
You call basic CRUD actions such as find, save, delete, and create on the ActiveResource object, and
those changes are sent to the server. Assuming that the server has a typical relationship with its
database, those changes are reflected in the database and are seen by the rest of the server - side
application.

 Finding Resources
 The following code snippet shows what a minimal ActiveResource client script looks like. For this to
work, the Soups OnLine application has to be running at the URL in the example. You can put this
example anywhere, but the first line must point to the active_resource file in your Rails distribution.

require ‘ < RAILS_APP_ROOT > /vendor/rails/activeresource/lib/active_resource’
ActiveResource::Base.site = “http://localhost:3000”

class Recipe < ActiveResource::Base
end

recipes = Recipe.find(:all)
p recipes.collect(& :title)

 Here ’ s the line - by - line - breakdown:

 1. The first line loads in the ActiveResource library. Because this client script is normally outside
the Rails application, either in a separate Rails application or in a standalone script or desktop
application, you can ’ t assume that ActiveResource will already be loaded.

 2. The site attribute tells ActiveResource what the base URL of the server containing the resource
is. In this case, all the resources you want in this application are coming from the same site,
so you set that attribute once at the superclass level for all the resources that might be added.

 3. Recipe is declared as a subclass of ActiveResource::Base . By default, the assumption is that
the newly declared class will have the same name as the ActiveRecord model being targeted
on the server. (In the case where there ’ s a REST resource on the server that doesn ’ t have an
explicit model, this resource class has the singular name that you ’ d expect based on the
controller name.) To set the base site for this class to be different from the parent default, use
the method call self.site = “ http://whatever ” . Despite the name similarity, the
ActiveResource Recipe is a completely different class than the server - side ActiveRecord Recipe
(as you ’ ll soon see).

c09.indd 243c09.indd 243 1/30/08 4:12:19 PM1/30/08 4:12:19 PM

Chapter 9: Talking to the Web

244

 4. The next line runs the Recipe.find(:all) command. Watch your server logs when this script
runs, and you ’ ll see an HTTP request be sent to http://localhost:3000/recipes.xml . The
result of this is an XML list that contains, by default, each recipe in the database, and each
database attribute of each recipe (see the next section for a discussion of how to customize the
XML output). The ActiveResource library parses the XML and converts it into an ActiveResource
recipe object for each element in the XML list.

 5. The final line just proves that the actual Recipe data has been gathered by printing out the
names of the recipes that have been gathered.

 This is all extremely cool, but it ’ s worth keeping in mind that the ActiveResource API is currently much
less extensive than the ActiveRecord API.

 The ActiveResource find functionality is extremely limited — in general, you are relying on the server
to do any kind of fancy filtering by exposing different actions or attributes that perform server - side
filtering. Basically, you have four modifiers: find(id) , find(:all) , find(:first) , and find(:one) .
The :first modifier tells ActiveResource to request all the data but only return the first element — I
suggest doing that sparingly. The :one modifier is generally for when you are using a nonstandard
URL — it serves as a message to ActiveResource that you are only expecting one result.

 To use a nonstandard URL, you need to specify it with a :from argument, as in the following example:

recipe = Recipe.find(:one, :from = >
‘localhost:3000/recipes/most_recent_recipe.xml’)

 This assumes that most_recent_recipe has been added as a route to the server - side controller. Any
other option you include in the key/value part of the find call is added to the query string for the URL
sent back to the server, so that mechanism can be used to provide more sophisticated search capability
(again assuming that the functionality exists on the server side).

 The ActiveResource object is not the same class as the server - side ActiveRecord (and I really wish DHH
had come up with two names that sounded less alike). Specifically for this example ’ s purpose, any
derived object or calculated attribute present in the model will not be present on the client. If there
are a number of such things, I highly recommend creating a mixin that can be included into both
the ActiveRecord object and the ActiveResource object, taking advantage of Ruby ’ s duck typing to
use the same names for the methods in both classes.

 The active resource does not, by default, include information about related classes. In the preceding
code, the ingredient data is not included with the returned recipes. There are a couple of ways around
this. On the server side, you can have the related objects included as nested objects in the XML, in which
case ActiveResource converts the subordinate elements to their own classes.

 To access a resource that is defined on the server as being nested, you need to define the collection that
contains the resource on the client side, like this:

require ‘../../vendor/rails/activeresource/lib/active_resource’
ActiveResource::Base.site = “http://localhost:3000”

c09.indd 244c09.indd 244 1/30/08 4:12:19 PM1/30/08 4:12:19 PM

Chapter 9: Talking to the Web

245

class Ingredient < ActiveResource::Base
 self.set_collection_name :recipes
end

class Recipe < ActiveResource::Base
end

ingredients = Ingredient.find(:all, :recipe_id = > 1)
p ingredients

 The set_collection_name call tells ActiveRecord how to construct the URL needed to get
 Ingredient resources from the server side.

 Copying, Updating, and Deleting with ActiveResource
 ActiveResource can also be used for the C, U, and D actions, with essentially the same interface as
ActiveRecord objects.

 Changes to an object can be saved back to the server using save . For example:

r = Recipe.find(:first)
r.title = “Changed Soup”
r.save

#verify the result
recipes = Recipe.find(:all)
p recipes.collect(& :title)

 This can even be managed with newly created objects, as follows:

r = Recipe.new(:title = > “A New Soup”)
r.save

which has the expected shortcut:

r.create(:title = > “A New Soup”)

 ActiveResource cannot, at the moment, be relied on to do validation before sending the data to
the server, although any server - side validation you have set up on the model class will be run on the
server-side when the object is saved.

 For the big D of deletion, you can use the following class method:

Recipe.delete(1)

and an instance method:

Recipe.find(1).destroy

which both have the same outcome.

c09.indd 245c09.indd 245 1/30/08 4:12:20 PM1/30/08 4:12:20 PM

Chapter 9: Talking to the Web

246

 Producing Web Service Data
 If you ’ ve set up your application using RESTful controllers, then you ’ re already halfway toward acting
as a web service. Your application is set up with a standard API that other applications will be able to hit.
The second half involves producing machine - readable code in the expected formats.

 Producing XML
 You ’ ve already seen the first part of the Rails XML response mechanism — it ’ s part of the RESTful
controller scaffold. As a reminder, here it is again:

 def index
 @recipes = Recipe.find(:all)
 respond_to do |format|
 format.html # index.html.erb

 format.xml { render :xml = > @recipes }

 end
 end

 The render :xml method call immediately turns around and calls the to_xml method on the argument.
Rails defines to_xml for most classes, including ActiveRecord::Base , Array , and Hash . For example,
the default XML result for a Recipe object would look something like this:

 < ?xml version=\”1.0\” encoding=\”UTF-8\”? >
 < recipe >
 < cached-ingredient-string > < /cached-ingredient-string >
 < cached-tag-list > grandma, chicken, fred < /cached-tag-list >
 < created-at type=\”datetime\” > 2007-08-05T20:03:33-05:00 < /created-at >
 < description > Yummy! < /description >
 < directions > Things < /directions >
 < id type=\”integer\” > 1 < /id >
 < servings > 3 < /servings >
 < title > Grandma’s Chicken Soup < /title >
 < updated-at type=\”datetime\” > 2007-09-04T23:04:45-05:00 < /updated-at >
 < user-id type=\”integer\” > 2 < /user-id >
 < /recipe >

 The default XML for an array of recipes is similar, but it wraps the whole thing in a < recipes
type= “ array “ > < /recipes > tag pair.

 Although the default is rather useful all by itself, in this case, there are some attributes that you would
not necessarily want passed on to your web service consumer. For instance, you might not want to pass
both the cached ingredient string and the ingredient objects themselves. On the other hand, passing the
cached strings could potentially minimize the amount of data retrieved from the database and sent over
the network, so it ’ s not necessarily a cut - and - dried choice.

 The to_xml method for ActiveRecord takes several options to adjust the output XML. You could include
these options in the render :xml call, and they will be passed along. However, if you are doing
anything at all complex that will affect the model class every time it ’ s used, you probably want to

c09.indd 246c09.indd 246 1/30/08 4:12:20 PM1/30/08 4:12:20 PM

Chapter 9: Talking to the Web

247

actually override to_xml in your model class to call the super method with your custom options. Along
with avoiding duplication by specifying the options once, this also ensures that the options will be
picked up if the object is included in an array or hash XML output.

 The option to remove attributes from the output is :except , which takes either a single symbol
argument or a list of symbol arguments (attributes passed will not be included in the XML output).
For example:

Recipe.find(1).to_xml :except = > [:cached_ingredient_string,
:cached_tag_list]

 The flip side of :except is :only , which allows you to specify a whitelist of only the attributes that
should be included in the output. (By the way, if you specify both elements, :only wins.) These
attributes apply only to the ActiveRecord version of to_xml , not to the ActiveResource version.

 There are a couple of options that allow you to include elements in the XML that are not simple
attributes of the object. The :include option takes a single symbol or a list of symbols. The arguments
must be symbols that represent ActiveRecord associations on the model. So for a Recipe , the argument
could be :ingredients , :user , or :rating . The selected associations are then included as subobjects
on the XML (in an array, if necessary). For example:

Recipe.find(1).to_xml :include = > :ingredients

 You aren ’ t limited to just raw attributes in the XML output — you can also include arbitrary calculated
attributes by using the :methods argument. This is helpful if you have a derived value that is also of
importance to a potential web services client.

 Some options affect the specific details of the XML output. You might have noticed in the XML output
shown earlier that underscores in attribute names such as user_id were converted to dashes, as in
 user - id . That ’ s in keeping with more conventional XML naming patterns, and is governed by the
option :dasherize , which is true by default. The XML output contains an XML processing instruction
as a header. This is important if the output is meant to be a stand - alone document, but is an error if the
object is actually a subordinate element in a larger document. You can turn off the processing instruction
with the option :skip_instruct = > true . The default output also explicitly includes the type as an
XML attribute for all values that are not strings. You can turn that feature off with :skip_types
= > true .

 With all those options, you have a fairly wide range of ways to generate XML from your object. If you
need something fancier, you can bounce up to the Builder::XmlMarkup class, which lets you define
pretty much any XML you want as a series of Ruby method calls.

 For example, say you wanted something odd, like the number of ingredients in the XML output.
You could implement it like this:

c09.indd 247c09.indd 247 1/30/08 4:12:20 PM1/30/08 4:12:20 PM

Chapter 9: Talking to the Web

248

 def to_xml(options = {})
 builder = Builder::XmlMarkup.new
 builder.instruct! unless options[:skip_instruct]
 builder.recipe do |element|
 element.name = title
 element.ingredient_count = ingredients.count
 element.ingredients = ingredient_string
 end
 builder
 end

 Builder::XmlMarkup is an interesting implementation, in that almost everything you throw at it is
processed via the method_missing method so that it becomes an XML tag. The few methods that are
actually defined all have a ! suffix. In this code, that means the recipe becomes a top - level tag, and the
block structure is used here to define the element/subelement structure of the XML file. The tags name ,
 ingredient_count , and ingredients are defined in the output.

 Sample output from that method is shown in the following code snippet from an interaction with the
Rails console (some spacing and indentation was inserted manually):

r = Recipe.find(1)
= > ### the description
 > > r.to_xml
= > < ?xml version=”1.0” encoding=”UTF-8”? >
 < recipe >
 < name= > Grandma’s Chicken Soup < /name= >
 < ingredient_count= > 2 < /ingredient_count= >
 < ingredients= > 2 cups stock 1/2 oz. carrot < /ingredients= >
 < /recipe > < inspect/ >

 Note the weird little < inspect/ > tag at the end. That ’ s actually an artifact of being in the console —
specifically, it ’ s an artifact of the fact that the console calls inspect on the builder to display the output.
The inspect call gets duly processed by method_missing and converted to an XML tag — which is
both cool and a little disconcerting.

 Builder Templates
 Another way to produce XML is by using a builder template . Builder templates are view files with the
extension .builder (or in older Rails versions, .rxml). Rendering the builder template is the default
action for XML requests in exactly the way that RJS templates are for JavaScript requests and .html.erb
files are for HTML requests.

 Within the .builder template, you have access to a local variable named xml , which is an instance of
 Builder::XmlMarkup . Inside the template, you can make arbitrary method calls to build up the XML,
and the output sent to the browser is the final state of the builder object.

 If you wanted the odd to_xml file that ended the last section to be expressed as a builder file, the syntax
would change only slightly. For one thing, you would need to include the variable name of the builder
and recipe. For another, you know for sure this is a full XML page, so you don ’ t need an if clause on the
 instruct! call. Here ’ s the syntax:

c09.indd 248c09.indd 248 1/30/08 4:12:21 PM1/30/08 4:12:21 PM

Chapter 9: Talking to the Web

249

xml.instruct!
xml.recipe do |element|
 element.name = @recipe.title
 element.ingredient_count = @recipe.ingredients.count
 element.ingredients = @recipe.ingredient_string
end

 By inserting this into a file named app/view/index.builder and removing the render :xml call from
the index controller, you can ensure that your custom builder is the source of the XML sent in the
response. The full constructor block looks like this:

def index
 @recipes = Recipe.find(:all)
 respond_to do |format|
 format.html # index.html.erb

 format.xml

 end
 end

 Builder templates aren ’ t limited to just XML. Imagine rewriting that builder like this:

xml.h1 = title
xml.div = ingredients.count
xml.div do |div|
 ingredients.each do |ingredient|
 div.div = ingreient.string
 end
end

 There are developers who find writing output views in this style to be easier and more intuitive than
ERB. As you ’ ll see in Chapter 16 , there are multiple alternatives to ERB that you can install in your Rails
application to allow a more code - like structure for your output.

 Producing Feeds
 Web site syndication via RSS (which once stood for Rich Site Syndication, but now stands for Really
Simple Syndication) has become the standard mechanism used to convert web data into a time - based
stream, primarily for use by feed - reading programs that take RSS feeds from multiple sources and
aggregate them.

 RSS is typically associated with blogs and blog readers, but it ’ s readily adaptable to any website where
you want to push notification of a data change to interested users. It ’ s the mechanism behind podcasting.
It ’ s also used by CruiseControl and other continuous integration tools to push build information.
You can get an RSS feed of the status of your UPS deliveries, and so on.

 As you may be aware, there are actually two competing standards for syndication formats: RSS and
Atom. (RSS claims to be the more commonly used generic term for syndication.) There is also a long and
sometimes contentious debate over the relative merits of the two. I have no particular side in that fight
at all. At the moment, the dynamic of the situation is such that pretty much any serious feed - reading tool

c09.indd 249c09.indd 249 1/30/08 4:12:21 PM1/30/08 4:12:21 PM

Chapter 9: Talking to the Web

250

will handle either format, and Rails lets you output in either format. I focus on Atom here because
there ’ s a Rails plugin that supports it, although supporting RSS itself is extremely similar.

 Both RSS and Atom can be used as the format in a respond_to block. The exact mechanism for
producing RSS and Atom is in a state of flux as I write this (a plugin that supported both was deprecated
because it was “ too restrictive ”). The current state of play is a helper called Atom Feed Helper, which
true to its word, is a helper for creating Atom feeds. This helper is installed as part of Rails 2.0, and
earlier versions can access it as a plugin.

 Generating Atom
 Let ’ s use the Atom Feed helper to create an Atom feed for newly created recipes. The proper place to call
this from is the index method of the recipe controller — from a REST standpoint, generating the recipes
for an index page and generating for an Atom feed is essentially the same action. You need to add the
following new respond_to block (notice that I ’ ve taken the custom XML builder out of the index):

 def index

 @recipes = Recipe.find_for_index(params[:format])

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml = > @recipes }

 format.atom { render :layout = > false }

 end
 end

 There are two changes to the index method. The addition of the new respond_to block sets up Atom as
the response format for the URL /recipes.atom . Rails then looks for app/views/recipes/index
.builder as the location of the file to render from.

 The second change moves the actual find call into the model, so that the Atom feed has a different
number of elements than the index displayed in the main page. Putting any logic at all around the find
method is a strong hint that all the logic should get moved to the model, here ’ s the new method:

 def self.find_for_index(format)
 limit = if format == :atom then 25 else 100 end
 find(:all, :limit = > limit, :order = > “created_at DESC”)
 end

 This also ensures that the recipes are always returned in reverse chronological order.

 The next step is to create the builder. In the builder, you start by calling the atom_feed helper
provided by the Atom Feed Helper plugin. To do this, you replace the code in app/views/recipe/
index.builder with the following (alternately, you could place this in app/views/recipe/index
.atom.builder) :

c09.indd 250c09.indd 250 1/30/08 4:12:21 PM1/30/08 4:12:21 PM

Chapter 9: Talking to the Web

251

atom_feed(:url = > formatted_recipe_url(:atom)) do |feed|
 feed.title(“Soups OnLine Recipe Feed”)
 feed.updated(if @recipes then @recipes[0].created_at else Time.now.utc end)
 @recipes.each do |item|
 feed.entry(item) do |entry|
 entry.title(item.title)
 entry.content(item.content)
 entry.author do |author|
 author.name(item.user.full_name)
 author.email(item.user.email)
 end
 end
 end
end

 The atom_feed helper provides a wrapper around the normal XML builder, which takes care of some of
the paperwork associated with creating an Atom feed. Specifically, it manages the following:

 The XML header, including the language and namespace attributes

 Creating a unique ID for the feed and a link back to the feed URL inside the feed itself

 Creating a custom ID and a link back to the show URL for each entry

 Putting timestamps into the feed

 Providing an interface for adding entries to the feed

 The feature that isn ’ t directly supported is populating the data for each entry. At a minimum, you need
to fill the title field and the content field. In this case, the title is just the title of the recipe, and the
 content was defined within the recipe especially for this builder and is a reasonable aggregation of
the fields that define the recipe:

 def content
 “#{title}\n\n#{description}\n\n#{ingredient_string}\n\n#{directions}”
 end

 Within the builder, the atom_field helper takes the URL for the feed and a block. The argument to the
block is actually an XML Builder object — in this case, it ’ s an alias to the one that would normally be
provided to a builder template, but that ’ s not always so. Within the block, you set the title and update
time for the feed as a whole. After that, you loop over the recipes, giving each one an entry in the feed.
(entry is actually a method that the feed helper intercepts before sending to the XML builder so that the
timestamp and link can be added into the XML element.) Inside each entry are the title and content, as
well as the author ’ s name and e - mail address.

 Exactly what you get when you try to hit this page depends on your browser. Firefox usually tries to add
to your default RSS reader. In Safari, the URL feed://127.0.0.1:3000/recipes.atom loads the feed
in Safari ’ s RSS reader. It will look something like Figure 9 - 1 . (Strangely you get an error in Safari if you
try to do this using localhost because of the way Safari tries to redirect the page; however, using the
numerical URL works, and other browsers don ’ t seem to have this problem.)

❑

❑

❑

❑

❑

c09.indd 251c09.indd 251 1/30/08 4:12:22 PM1/30/08 4:12:22 PM

Chapter 9: Talking to the Web

252

 The code works as - is, but I ’ m not completely satisfied with it — builder knows more about the inner
workings of the Recipe model than I think it should, and the double block to get an entry for each recipe
looks weird to me. To clean this up, you first need to move the recipe code into the Recipe model by
changing the builder template as follows:

atom_feed(:url = > formatted_recipe_url(:atom)) do |feed|
 feed.title(“Soups OnLine Recipe Feed”)
 feed.updated(if @recipes then @recipes[0].created_at else Time.now.utc end)
 @recipes.each do |recipe|

 recipe.to_atom_feed_entry(feed)

 end
end

That changes the recipe method to this:

 def to_atom_feed_entry(feed)
 feed.entry(self) do |entry|
 entry.title = title
 entry.content = content
 entry.author do |author|
 author.name = user.full_name
 author.email = user.email
 end
 end
 feed
 end

 I like this a lot better. For one thing, it simplifies the builder template, which is a worthy goal all by itself.
For another, it keeps the details of the recipe encapsulated inside the Recipe class, so changes to the
recipe data structure do not need to be propagated outside the class.

 You can actually pull the loop out of the builder template, although that requires a little bit of monkey
patching in the Array class:

 Figure 9 - 1

c09.indd 252c09.indd 252 1/30/08 4:12:22 PM1/30/08 4:12:22 PM

Chapter 9: Talking to the Web

253

atom_feed(:url = > formatted_recipe_url(:atom)) do |feed|
 feed.title(“Soups OnLine Recipe Feed”)
 feed.updated(if @recipes then @recipes[0].created_at else Time.now.utc end)
 @recipes.to_atom_feed_entries(feed)
end

 If you ’ ve been following along, you should have an extensions.rb file that already opens up Array to
add a method. Now you need to add another one:

 def to_atom_feed_entries(feedbuilder)
 self.each do |item|
 item.to_atom_feed_entry(feedbuilder)
 end
 end

 Remember, because the extensions.rb file is not a model, you need to restart the server for changes in
that file to be loaded.

 This puts the looping logic in Array , which makes for a pretty clean builder object, but it also makes a
strong assumption about the model class — namely that it implements a to_atom_feed_entry method.
However, as far as you or I know, there ’ s only one class in the entire world that has such a method, so it
might seem a little presumptive to assume such a thing.

 One other thought about generating RSS feeds: you are going to need to cache the results of the feed in a
file somewhere so that most accesses to the feed are served statically. If the RSS bots get hold of your site,
they are capable of producing a large amount of hits, so you want to make sure that ’ s done with a
minimum of effort. See Chapter 13 for more details on caching.

 Generating RSS
 If you want to work with the regular RSS output, you don ’ t (at this writing) have a semi - official core
plugin to help, but you do have a Ruby standard library. The basic idea is pretty similar, though — it ’ s an
object that converts method calls into XML elements. To use this library, all the files involved need to
import it using the following statement:

require ‘rss/2.0’

 The files in question are extensions.rb and recipe.rb . First, you need to add RSS to the respond_to
block in the index method, as follows:

 def index
 @recipes = Recipe.find_for_index(params[:format])
 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml = > @recipes }
 format.atom { render :layout = > false }

 format.rss { render :xml = > @recipes.to_rss_feed(“Soups OnLine”,
 formatted_recipes_url(:rss), “New Recipes from Soups OnLine”)}

 end
 end

c09.indd 253c09.indd 253 1/30/08 4:12:22 PM1/30/08 4:12:22 PM

Chapter 9: Talking to the Web

254

 In this case, the RSS block doesn ’ t go to a builder. (You could use a builder — RSS is just XML — but
since you ’ ve been there and done that, this is showing you a different way.) In this case, render :xml
tells Rails to return the text as MIME - type XML, and the to_rss_feed method returns a string that is
just passed on to the client.

 The arguments being passed represent the title of the RSS feed, its link, and a brief description. I ’ m
using the same trick here of adding a method to Array and doing the specific work in Recipe . The
 Array method is similar to the Atom version — but without the helper method, there ’ s some additional
tag work that needs to be done:

 def to_rss_feed(title, link, description=””)
 rss = RSS::Rss.new(“2.0”)
 channel = RSS::Rss::Channel.new
 rss.channel = channel
 channel.title = title
 channel.link = link
 channel.description = description
 self.each do |item|
 channel.items < < item.to_rss_item
 end
 rss.to_s
 end

 Using the RSS library, an RSS item is created. The outer element of an RSS document is called the channel ,
and title, link, and description are the three required attributes of a channel. The individual elements of
the feed are called items , and I ’ ll delegate that behavior to the model object. I ’ m assuming that the model
object in question will have a to_rss_feed method. Each item is added to the channel. At the end, the
RSS object is converted to a string, which is retuned.

 The Recipe method is also similar to the Atom version, but some of the names have changed:

 def to_rss_item
 returning RSS::Rss::Channel::Item.new do |item|
 item.title = title
 item.link = “http://localhost:3000/recipes/#{id}”
 item.description = content
 item.author = user.email
 item.pubDate = created_at
 item.guid = RSS::Rss::Channel::Item::Guid.new
 end
 end

 Have I mentioned the returning method yet? It ’ s a Rails - defined utility method that takes one
argument. All it does is pass the argument to the block, and return the same argument at the end of the
block. It ’ s a replacement for all the times where you have to have a single variable at the end of the
method to ensure the return value. The normal way of writing that would look like this:

def to_rss_item ### the version without the returning method
 item = RSS::Rss::Channell::Item.new
 item.title = title
 ### and so on
 item
end

c09.indd 254c09.indd 254 1/30/08 4:12:23 PM1/30/08 4:12:23 PM

Chapter 9: Talking to the Web

255

 So returning is a little bit of syntactic sugar if that single variable in the last line has always struck you
as just a little odd - looking.

 In any case, the method rather straightforwardly goes through the relevant item attributes. According to
the RSS specification, the only required element is either the title or the description, but the attribute set
shown here is pretty common for, say, blogs.

 And that is that, for RSS. If you hit http:// < host > /recipes/index.rss in Camino, it will look
something like Figure 9 - 2 .

 Figure 9 - 2

c09.indd 255c09.indd 255 1/30/08 4:12:23 PM1/30/08 4:12:23 PM

Chapter 9: Talking to the Web

256

 Producing JSON and YAML
 After all that, producing standard JSON and YAML is straightforward. Rails has included the following
helpers for the basic case, analogous to the to_xml case:

 def index
 @recipes = Recipe.find_for_index(params[:format])
 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml = > @recipes }
 format.atom { render :layout = > false }
 format.rss { render :xml = > @recipes.to_rss_feed(“Soups OnLine”,
 formatted_recipes_url(:rss), “New Recipes from Soups OnLine”)}

 format.json { render :json = > @recipes.to_json }
 format.yaml { render :text = > @recipes.to_yaml, :layout = > false}

 end
 end

 JSON has its own type in the render method, which sets the output MIME type to text/javascript ,
but YAML doesn ’ t, so you can just set the type to text . Because the render type is text , you also need to
explicitly suppress the layout from the output.

 Here ’ s what the JSON output looks like:

[{attributes_cache: {}, attributes: {cached_tag_list: “carrots, yummy, banana,
grandma”, updated_at: “2007-08-15 13:39:52”, title: “Another Tag”, directions: “Do
something”, id: “3”, description: “Something taggy”, cached_ingredient_string:
null, servings: “2”, user_id: “2”, created_at: “2007-08-13 22:14:38”}},
{attributes_cache: {}, attributes: {cached_tag_list: “yummy, grandma”, updated_at:
“2007-08-15 13:39:42”, title: “Tag Soup”, directions: “heat and eat”, id: “2”,
description: “A soup of tags”, cached_ingredient_string: null, servings: “10”,
user_id: “2”, created_at: “2007-08-13 21:54:39”}}, {attributes_cache: {},
attributes: {cached_tag_list: “grandma, chicken, fred”, updated_at: “2007-09-04
23:04:45”, title: “Grandma’s Chicken Soup”, directions: “Things”, id: “1”,
description: “Yummy!”, cached_ingredient_string: null, servings: “3”, user_id: “2”,
created_at: “2007-08-05 20:03:33”}}]

 The YAML output looks like the following (only part of the output is shown here, and some browsers
may not display it properly):

- !ruby/object:Recipe
 attributes:
 cached_tag_list: carrots, yummy, banana, grandma
 updated_at: 2007-08-15 13:39:52
 title: Another Tag
 directions: Do something

c09.indd 256c09.indd 256 1/30/08 4:12:23 PM1/30/08 4:12:23 PM

Chapter 9: Talking to the Web

257

 id: “3”
 description: Something taggy
 cached_ingredient_string:
 servings: “2”
 user_id: “2”
 created_at: 2007-08-13 22:14:38
 attributes_cache: {}

 Both of these include the cached tag lists and other features that you might not want in the output, but
you can customize them as you see fit.

 Consuming Web Services
 Although ActiveResource is a convenient and useful way of consuming RESTful web services, you still
need a way to use services that are not RESTful. You ’ ll often need to hit something that is stored at a
particular URL and that is delivered via XML. Hitting an RSS or Atom feed is a particular example of
that kind of interaction.

 Although there are modules that allow you to specifically parse RSS and Atom files as things in their
own right, it ’ s significantly easier to just treat them the same as any other XML file and use the Ruby
Standard Library ’ s REXML toolkit. REXML can also be used to generate XML documents, although I ’ m
not going to be focusing on that functionality here.

 Starting with an XML document is straightforward:

require ‘rexml/document’
document = REXML::Document.new(source)

 The source can be one of three things: another REXML::Document instance, a string that is itself a valid
XML document to be parsed, or a file containing a valid XML document (of course, the file is duck typed,
so any object that responds to the same messages as a file will work just fine). For our purposes, the
input is most likely to be a URL, which you can access via the Ruby Net::HTTP library. The Net::HTTP
library doesn ’ t let you treat the remote URL as a file, but it does let you programmatically execute an
HTTP request as follows and receive the result as a string:

Net::HTTP.get(URI.parse(url))

 The arguments to the get method are either a single argument that is a Ruby URI object, which can be
created from the string URL using the parse method as shown, or a three - argument — host , path ,
 port — combination.

 Once you have the document in hand, you can get at the root element by using the root attribute. Every
element has an attribute that is actually called attributes , which is a hash of any value defined in the
XML as an attribute. If you want the free text inside the element, use the attribute text .

c09.indd 257c09.indd 257 1/30/08 4:12:23 PM1/30/08 4:12:23 PM

Chapter 9: Talking to the Web

258

 Given this XML:

 < content content_type=”todo list” >
 < header > Things To Do < /header >
 < item > Finish Chapter < /item >
 < item > Get Milk < /item >
 < /content >

you can do the following:

document.root
document.root.attributes[“content_type”] #### “todo list”

 Each element also has an attribute called elements . The elements object is basically a filter for
extracting child elements from the parent element using XPath. For our purposes, there are two
interesting methods of the Elements class. The [] operator and each both take an XPath expression.
The bracket operator returns the first element that matches that expression, while each takes a block and
iterates over each matching expression:

document.root.elements[“header”].text #### Things To Do
document.root.elements.each “//item” {|x| print x.text} #### Finish Chapter
 #### Get Milk

 The following snippet converts the Atom feed into Atom objects (it assumes that you ’ ve predefined an
 AtomEntry class somewhere). Some of the Atom elements are left off here for readability purposes, but
I hope you ’ ll get the general idea.

result = []
document.elements.each ‘//entry do |xml_entry|
 atom_entry = AtomEntry.new
 [:title, :link, :id, :updated, :summary, :content].each do |symbol|
 element = xml_entry.elements(symbol)
 if element
 atom_entry.send(“#{symbol}=”, element.text)
 end
 end
 result < < atom_entry
end

 For each entry in the XML, the code is searching for a list of expected Atom elements. If the element is
there, a setter message is sent to the newly created Ruby object. After all the elements are checked, the
Ruby object is added to the result list. It ’ s a bit simplified, but the basic idea will work for Atom or RSS
feeds, or any other XML object you have.

 An even simpler Rails - based mechanism is the Rails ActiveSupport method Hash#from_xml , which
takes an XML document as a string and returns a nested Hash based on the structure of the XML
document. For example:

c09.indd 258c09.indd 258 1/30/08 4:12:24 PM1/30/08 4:12:24 PM

Chapter 9: Talking to the Web

259

Hash.from_xml(document)
{“content” = > {“header” = > “Things To Do”, “item” = > [“Finish Chapter”,
“Get Milk”]}}

 There are several nice features of this conversion. Rails does some basic data - type conversion for you.
Also, the resulting Hash (or subhash) is suitable for passing to ActiveRecord#new or #create if the
XML represents one of your ActiveRecord objects. A downside is that anything in an XML attribute is
ignored. Also, the Hash structure may not always preserve the relative order of different elements at the
same level, although it does seem to preserve the order of different instantiations of the same element.

 Resources
 There ’ s still relatively little online documentation about ActiveResource. One of my primary guides was
a presentation by Chad Fowler at one of Pragmatic Studio ’ s Rails Edge conferences; however, that
does not appear to be available online. Try http://ryandaigle.com/articles/2006/06/30/
whats-new-in-edge-rails-activeresource-is-here or http://wiki.rubyonrails.org/
rails/pages/ActiveResource for more information.

 The complete RSS 2.0 specification can be found at http://cyber.law.harvard.edu/rss/rss
.html . The current Atom specification (at the time of this writing) is at www.ietf.org/rfc/rfc4287
.txt . You can learn more about XPath at www.w3.org/TR/xpath .

 The RSS parser example in this chapter was initially based on the snippet presented at http://
snippets.dzone.com/posts/show/68 and www.superwick.com/archives/2007/06/09/
rss-feed-parsing-in-ruby-on-rails . Also see http://simple-rss.rubyforge.org for another
RSS parser object.

 Summary
 ActiveResource is the Rails 2.0 solution to acting as a web service and consuming other web services.
If you have created a RESTful interface to your application, then you have a web service API more or
less for free.

 ActiveResource is the web - client equivalent of ActiveRecord, allowing you to find, update, create, and
delete resources on a remote server, given the base URL and a REST interface. Although it ’ s not as fully
functional as ActiveRecord, ActiveResource remains a useful way to deal with remote objects that you
can access via HTTP.

 Rails provides to_xml methods for most classes, such as ActiveRecord::Base , to enable creation of
web service data. Rails also provides XML builder templates for even more customization of the XML
output from your controllers.

 To produce feed data, you can use the Atom Feed helper to produce Atom feeds, or the Ruby RSS
library to create RSS feeds. Rails also provides mechanisms to output JSON and YAML.

 To parse XML data, Ruby Standard Library ’ s REXML toolkit is recommended. It converts XML files to
Ruby objects, and can be used to parse RSS and Atom feeds.

c09.indd 259c09.indd 259 1/30/08 4:12:24 PM1/30/08 4:12:24 PM

c09.indd 260c09.indd 260 1/30/08 4:12:24 PM1/30/08 4:12:24 PM

 Internationalizing Your
Application

 A funny thing happens when you put your application on the World Wide Web. People start
accessing it from all around the world. Even my tiny little blog (10printhello.blogspot.com),
which gets a whopping 20 hits per day as I write this, has gotten visitors from 60 different
countries or territories during the past month.

 This is a wonderful thing, and I wouldn ’ t change it. But it can make things complicated for you as
the developer of a web application. For one thing, all of these visitors insist on living in different
time zones. Most of them don ’ t speak English, and respond to different cultural cues based on
color or icon elements. They use other currencies, and are subject to different laws, the details of
which might be critically important depending on what kind of site you are operating.

 This chapter discusses various facets of internationalization and localization, starting with how
to manage dates and times, and moving on to how to support running your site in multiple
languages and locales.

 Does Anybody Really Care About Time?
 Working with date and time information is frankly among the most frustrating parts of nearly
every software project I ’ ve done. At some point, it seems like I always need some date or time
arithmetic in my program and I always confront the same problems.

 Data problems : How does the language represent a duration, as opposed to a calendar
date? How is a range of dates represented?

 Ambiguities and complications : What does it really mean to add a month to a date? What
happens to date calculations as you cross time zones? Or, even more fun, when you cross
the daylight savings time boundary? At some point, what seems like a simple date
calculation becomes a mind - bending exercise in juggling time zones.

❑

❑

c10.indd 261c10.indd 261 1/30/08 4:13:46 PM1/30/08 4:13:46 PM

Chapter 10: Internationalizing Your Application

262

 Toolkit limitations : Nearly every programming language library that deals with dates and
times has some kind of quirk or frustration. (I ’ m looking at you, Java Calendar class . . . but
Ruby is no exception here, so don ’ t think I ’ m letting it off the hook easily.)

 In this section: your guide to the jungle that is international time.

 Dates and Times
 The confusion starts immediately. Ruby has two separate implementations of date and time
functionality, each of which has its own distinct strengths and weaknesses. In one corner is the Time
class, which is a wrapper around the same Unix/C - language time libraries that every other scripting
language has. As you ’ d expect from a library that has its origins in the early days of Unix, the
programmer interface is somewhat on the cryptic side. Worse, it ’ s based on the number of seconds since
the beginning of the Unix epoch (0:00:00 UTC, January 1, 1970). And if you want a sense of how big a
headache exact time can be, I invite you to peruse the Wikipedia article on Unix time (http://
en.wikipedia.org/wiki/Unix_time). For one thing, although Unix time is based on UTC time in
1970, there was no official UTC definition in 1970. Plus, as stated in the Wikipedia article, “ the UTC
second was slightly longer than the SI second ” — which should give you a sense of the level of detail
here. Most systems limit the time value to a 32 - bit integer, so Unix time is only definable for a range that
is bounded somewhere in 1901 and somewhere in 2038. This limitation is passed on to Ruby time as
follows:

 > > x = Time.utc(2037)
= > Thu Jan 01 00:00:00 UTC 2037
 > > x = Time.utc(2038)
= > Fri Jan 01 00:00:00 UTC 2038
 > > x = Time.utc(2039)
ArgumentError: time out of range
 from (irb):10:in `utc’
 from (irb):10

 The second implementation is the DateTime class, which is written in pure Ruby. The basic unit of
 DateTime is what ’ s called the Julian day number (JDN), or days since January 1, 4713 BC. Today, as
I write this, is JDN 2,454,357 (just thought you might want to know). The biggest plus side of the
 DateTime implementation is that it can represent any date you throw at it from the big bang through the
heat death of the universe. It also has what I think is a cleaner API, and if you happen to be doing dates
around the Middle Ages, it handles the switch from Julian to Gregorian calendars. However, DateTime
has two significant flaws. The first is that it ’ s not very good at dealing with time - zone or daylight -
 savings information, and the second is that it ’ s significantly slower than Time .

 The Time class is preferred by Rails for things like database timestamps, and has also gotten somewhat
more attention from Rails programmers adding extensions to the core Ruby functionality. I recommend
that you use Time for nearly everything within its span.

 Rails defines conversion methods for both Time and DateTime , so you can always convert from one to
the other with to_time or to_date . Both methods are defined for both classes, so even if you aren ’ t sure
whether you have a Time or DateTime , the conversion is still safe.

❑

c10.indd 262c10.indd 262 1/30/08 4:13:47 PM1/30/08 4:13:47 PM

Chapter 10: Internationalizing Your Application

263

 Timestamps and Time Zones
 As you probably know, if you include columns in your database called created_at or updated_at (or
 created_on and updated_on), Rails will automatically track timestamps for each record as it is created
or updated. At this point, you should be asking what time zone that timestamp is created in. By default,
the timestamp is the local time zone of the server. Although this is a convenient default for a small - scale
system, if you are planning on displaying any time information to clients in multiple time zones, then
you almost certainly want to store all times in your database as UTC times.

 You can do this by uncommenting the following line from your environment.rb file (any running
servers will need to be restarted for the change to take effect):

config.active_record.default_timezone = :utc

 If possible, you should set your server ’ s native time to UTC as well, but that ’ s not always feasible.

What’s UTC?
UTC (Coordinated Universal Time) is the international standard zero point for time
zones. All other time zones are defined in terms of their offset from UTC. The UTC
standard is a historical evolution from the older user of Greenwich Mean Time (GMT)
based on the Prime Meridian through Greenwich, England, and as such is 5 hours
ahead of U.S. Eastern Standard Time (EST).

The differences between the GMT standard and the UTC standard have to do with
how to coordinate the unchanging value of 1 second with the ever-slightly slowing
down of the Earth’s rotation. Unless you’re doing something involving split-second
coordination of atomic clocks, the main takeaway is that UTC is the default time zone
to use when you are coordinating users from several time zones.

 Transitioning times from the server local time to UTC is quite easy because the Time class defines
instance methods localtime and utc , which do the translation based on the local time of the server.
One thing to watch for when you use these methods is that even though they don ’ t have the ! character
as a suffix, they do destructively change the object that receives the message.

 Converting from UTC to some set of custom user time zones is dramatically more complex. For one
thing, there are dozens upon dozens of different time zones. For example, you normally think of the
mainland United States as having four time zones. However, when calculating local times from your
server, you need to be aware of various local jurisdictions that handle daylight saving time (DST)
differently. Counting all those, the standard tz database (also called the zoneinfo database) of time zones
defines 20 different time zone regions for mainland United States alone.

 Trust me, you do not want to keep up with the maintenance of 20 different time zone regions in the
United States, let alone the 396 regions currently defined in the tz database. You want somebody to
manage a lot of this for you. Luckily somebody already has. There are three different add - ons you need
to install to gain full time zone mastery for your Rails application.

c10.indd 263c10.indd 263 1/30/08 4:13:47 PM1/30/08 4:13:47 PM

Chapter 10: Internationalizing Your Application

264

 The first one is the tzinfo gem, which you can install via the following command:

gem install tzinfo

 This gem defines a Ruby front - end to the tz database. The tz database is the gold standard for time zone
information placed in a context that is usable by computer programs. The database defines a set of
regions where local clocks have all remained identical since 1970 (the beginning of the Unix Epoch).
You ’ ve likely seen the names of the time zone regions in the database if you ’ ve ever set a computer for
the first time — each region is specified as part of a larger area and then a major city within that region.
So the time region I ’ m in as I type this is America/Chicago. The goal is to try to keep the regions
continuous — there are multiple places inside the U.S. Central Time Zone that do not support daylight
savings time, but they are all separate regions in the tz database. The tz database provides a thorough
record of local changes in timekeeping, including the exact dates of daylight savings changes and leap
seconds.

 As it happens, the Rails core defines a TimeZone class. However, the zones defined in that class are just
simple offsets from UTC and do not include daylight savings information. Because of this, the
implementation is too simplistic for a truly globalized application. What you really want is a TimeZone
class that is backed by the tz database. You can get that by installing the tzinfo_Timezone plugin as
follows:

script/plugin install -x
http://dev.rubyonrails.org/svn/rails/plugins/tzinfo_timezone/

 As usual, the - x option makes the plugin a Subversion external.

 The plugin defines the TzinfoTimezone class, which is a drop - in replacement for the core TimeZone
class. For both classes, there is a class [] method to acquire a time zone, and local_to_utc and
utc_to_local conversion methods. Typical usage goes like this:

 > > t = Time.now
= > Sat Sep 15 00:06:07 -0500 2007
 > > zone = TzinfoTimezone[“Central Time (US & Canada)”]
= > # < TzinfoTimezone:0x2820274 @name=”Central Time (US & Canada)”,
@utc_offset=-21600 >
 > > zone.utc_to_local(t)
= > Fri Sep 14 19:06:07 UTC 2007
 > > t
= > Sat Sep 15 00:06:07 -0500 2007
 > > zone.local_to_utc(t)
= > Sat Sep 15 05:06:07 UTC 2007

 There are three things you should take away from this code snippet:

 The TzinfoTimezone class uses the same naming convention for time zones as the Rails core
 Timezone class does. This is not the same as the tz database names I described previously, and
frankly the naming convention used by Rails is a little on the goofy side. There are two
workarounds. You can use the TzInfo::Timezone class directly (as in TZInfo::Timezone
.get(‘America/Chicago’)), which is nice, but it has a slightly different API than the Rails
 TimeZone class (although utc_to_local and local_to_utc both work). Alternately, there is a
version of the tzinfo_Timezone plugin that has been patched to allow tz naming conventions
to be used (see the “ References ” section at the end of this chapter for a link to this plugin).

❑

c10.indd 264c10.indd 264 1/30/08 4:13:48 PM1/30/08 4:13:48 PM

Chapter 10: Internationalizing Your Application

265

 Any time zone information associated with the Time object (generally the local time zone of the
server) is ignored by both utc_to_local and local_to_utc . In utc_to_local , the incoming
time object is assumed to be in UTC; and in local_to_utc , it is assumed to be in the time zone
of the time zone object. You can see this in the example, where even though the time object was
originally defined in the same local time as the time zone, the utc_to_local call still shifts the
time the 5 - hour offset between U.S. Central Time and UTC.

 If you are a heavy user of local_to_utc , you might someday be unlucky enough to try to
transfer a time that actually has no UTC equivalent because it ’ s part of the hour that is leapt
over during the daylight savings transition. In this case, Rails will throw an exception. On the
other side of the calendar, you may try to transfer a time that has two UTC equivalents because
it ’ s part of the hour that was leapt back and repeated. In this case, the TimeZone classes will
default to using the daylight savings version of the time (the earlier one), although this behavior
can be changed by passing false as the second argument to local_to_utc . (The TzInfo
version of this method does not default to either side and will raise an exception if a second
argument is not provided.)

 Part of the problem with all this time zone stuff is that there ’ s no real way to associate a time object with
a time zone and make the association stick. In order to do that, you need a third plugin, called tztime.
You can install this plugin as follows:

$ script/plugin install tztime

 The tztime plugin does two very useful things. First, it creates a class called TzTime , which is a drop - in
replacement for Time , but which associates each object with a time zone. Although that instance will
behave like a Time instance for most purposes, it has a couple of extra features. The most notable of
these is an extension of the to_s method that automatically converts the time to UTC if and only if the
requested mode is :db or :rfc822 .

 You can set the time zone used by the TzTime class globally, which means that the specified zone is used
for all TzTime instances. You can use the following around_filter method to set this up on any
controller you want to automatically adjust to each client request:

around_filter :set_timezone

private

def set_timezone
 TzTime.zone = current_time_zone
 yield
 TzTime.reset!
end

 The exact definition of current_time_zone is application - specific.

 You can also use the tztime plugin to specify time zone – aware attributes of an ActiveRecord model. It ’ s a
class - level method called among the declaration - type things at the top of your class. For example:

tz_time_attributes :time_to_make_the_donuts

❑

❑

c10.indd 265c10.indd 265 1/30/08 4:13:48 PM1/30/08 4:13:48 PM

Chapter 10: Internationalizing Your Application

266

 Any attribute specified in the arguments to this method is automatically converted to UTC before being
saved in the database, and is converted back to a local TzTime when it ’ s retrieved (based on the TzTime.
zone value if specified).

 Inputting Dates
 Rails core comes with a default set of view helpers for entering date and time data. The helpers come in
two different sets. If you are inside a form_for block, then you use date_select or datetime_select ,
with the first argument being the attribute of the model being targeted (as in other form helpers). In a
form that does not have an ActiveRecord model attached, you use the methods select_date and
 select_datetime (this breaks with the naming convention that other non - model form helpers end with
 _tag). In either case, you wind up with a set of select pull - down fields that look something like those
shown in Figure 10 - 1 .

Figure 10-1

 Although most of the options for the two types of date selectors are similar (both versions take a
:default , which is either a Time object or a hash of values), there are a few differences between the two:

 The mechanism for only including some of the fields is different between the two types. In the
 form_for version, you pass :discard_year , :discard_month , or :discard_day . The
appropriate select method and all select methods that are of shorter time durations are not
included (they default to a value of 1). This option does not exist in the non - model version —
 instead, there are separate select_year , select_month , select_day , select_hour , and
 select_minute functions that you can call to build up your desired form.

 Both versions allow you to change the order of the fields by passing a list of symbols to an
:order option (:order = > [:month, :day, :year]). In the ActiveRecord version, any
symbols left off the list are not displayed. In the other version, any symbols not included are
appended at the end of the list in default order.

 The ActiveRecord version stores its values in a format suitable to be read into the ActiveRecord
model when the form is submitted. The standalone version stores its values in a hash at
 params[:date] . The default uses :date , but this can be changed with the :prefix option.

 Inputting Time Zones
 When you need a user to tell you explicitly what time zone he or she is in, you can use the helper
method time_zone_select , which is a non - form - builder helper. The first two arguments are the typical
object and attribute symbols, which are used to give the resulting select tag the correct DOM ID and
name. If you just use the default values, you get a nice little pull - down menu that contains the names of
all the Rails - core defined time zones (see Figure 10 - 2).

❑

❑

❑

Figure 10-2

c10.indd 266c10.indd 266 1/30/08 4:13:48 PM1/30/08 4:13:48 PM

Chapter 10: Internationalizing Your Application

267

 The value for each time zone is just the string name of the time zone — the GMT offset is only in the
display.

 There are a couple of useful options. If you want to have the most likely set of time zones appear first in
the list, you can pass the list of preferred time zones as the third option of the list. The Rails time zone
class provides a TimeZone.us_zones class method (this method is also duplicated by TzTimeZone),
which returns a list of all the U.S. zones suitable for usage as a preferred list. Those of you dealing with
users from the rest of the world will need to roll your own list, but it ’ s not that hard.

 If you ’ d rather use the tz database names directly, the options part of time_zone_select takes a
:model argument that specifies the class to use to acquire the list of time zones. The class you choose
needs to be able to respond to the method all with a list of time zone objects. To use the tz naming
conventions, enter this:

 < %= time_zone_select(:recipe, :zone, :model = > TZInfo::Timezone) % >

 You can get all the American time zones in the preferred list with this:

 < %= time_zone_select(:recipe, :zone,N
 TZInfo::Timezone.all.select {|tz| tz.to_s.starts_with?(“America”)}, :model = >
TZInfo::Timezone) % >

 The preferred list is made up of all the time zones whose string name starts with “ America ” , which is
probably more time zones than you want to present to a U.S. user.

 When you get this information on the server side, it ’ s just a string, and you ’ ll have to convert it to
whichever version of the time zone classes you are using.

 It would obviously be useful to convert the user ’ s address directly into a time zone without requiring the
user to navigate the swamp of a time zone pull - down list. On an international level, you can use the
information in the TZInfo gem to convert a country to a time zone, given that country ’ s two - character
country code. For example:

 > > TZInfo::Country.get(‘NZ’).zone_names
= > [“Pacific/Auckland”, “Pacific/Chatham”]

 > > TZInfo::Country.get(‘RU’).zone_names
= > [“Europe/Kaliningrad”, “Europe/Moscow”, “Europe/Volgograd”, “Europe/Samara”,
“Asia/Yekaterinburg”, “Asia/Omsk”, “Asia/Novosibirsk”, “Asia/Krasnoyarsk”,
“Asia/Irkutsk”, “Asia/Yakutsk”, “Asia/Vladivostok”, “Asia/Sakhalin”,
“Asia/Magadan”, “Asia/Kamchatka”, “Asia/Anadyr”]

 > > TZInfo::Country.get(‘PL’).zone_info
= > [# < TZInfo::CountryTimezone: Europe/Warsaw >]

 The method zone_names returns a list of strings (the the tz identifier names attached to that country),
and zone_info returns actual TZInfo::CountryTimezone objects. You can get a list of countries using
 TZInfo::Country.all , and a list of just the identifiers as follows:

TZInfo::Country.all.collect { |c| c.code }

c10.indd 267c10.indd 267 1/30/08 4:13:49 PM1/30/08 4:13:49 PM

Chapter 10: Internationalizing Your Application

268

 In many cases, knowing the country will limit the time zone options to just one or two choices.
Unfortunately, the United States and Canada are both exceptions to the general rule — each has well
over a dozen tz choices. At the time of this writing, I ’ m having trouble finding a free and stable database
on the Web that matches U.S. ZIP codes to time zones. If you are willing and able to part with a small
amount of money, it looks like there are some demographic databases that break down the United States
by ZIP codes and include time zone information — which could well be worth it for the right kind
of website.

 Text Input
 The list of select methods is serviceable (if a bit dull), but they are potentially unwieldy for a user,
particularly if setting a time requires the user to set five pull - down lists. One other option is to use a text
box that enables users to enter the time directly in a text field, and then parsing it.

 Ruby core has two separate methods for parsing strings into times and dates. If you are comfortable
requiring the user to format the date in a particular format, then you can use the class method
 DateTime.strptime(string, format) , converting to a Time object if needed. The string is the
string to be parsed, and the format is the expected format string using the same set of escapes that you
would use in outputting the date or time via strftime . This method will throw an exception if the
string cannot be matched to the format.

 If you ’ re willing to try a best guess in the absence of requiring a specific format, the method DateTime
.parse or Time.parse will attempt to parse any date/time string you throw at it. The DateTime and
 Time versions are actually slightly different in terms of the arguments they take. The Time version is a
bit more useful. The first argument is the string to be parsed. By default, any missing parts of the date
potion of the string are filled in with the current date information. So if you try this:

Time.parse(“11:17”)

 you ’ ll get a Time object back with the current day, and the time 11:17.

 Similarly, if you just pass in a date, the time values are filled in with the minimal values. If you want to
specify a specific date other than the current one as the default, it goes in the second argument — you
can ’ t change the default time behavior away from the minimums. There ’ s also an optional block that tells
the method how to manage two - digit year numbers. The default is that any value of 70 or more is
considered to be in the 1900s, and any value of 30 or less is considered to be in the 2000s (which matches
the Unix Epoch date). The DateTime version just takes a second argument that is true if you want the
default parsing of two - digit years, and false if you want them to raise an exception.

 This method is very handy, although it ’ s still going to be a problem if part of your user base uses the
American day/month/year convention and the other part uses the European month/day/year one,
although you may be able overcome that with proper localization. It ’ s still a little limited, however, in
that you can ’ t specify things like “ tomorrow at 3:00. ” To specify things like that, you need a RubyGem
called Chronic .

 Enter the following command to install the Chronic gem:

gem install chronic

c10.indd 268c10.indd 268 1/30/08 4:13:49 PM1/30/08 4:13:49 PM

Chapter 10: Internationalizing Your Application

269

 Once that ’ s done, you have an API consisting largely of the following method (based on a current date of
September 15, which is when I ’ m writing this):

 > > require ‘chronic’
= > []
 > > Chronic.parse(“thursday at 3:00”)
= > Thu Sep 20 15:00:00 -0500 2007

 The method, Chronic.parse , takes the string to be parsed as its one argument, and a handful of options.
 Chronic attempts to convert a wide range of date and time strings to Ruby Time objects. In doing so, it
makes a few assumptions. The options allow you to tweak these assumptions.

 For instance, in the previous example, Chronic interpreted 3:00 to mean 3:00 P.M., not 3:00 A.M. That
behavior is governed by an option called :ambiguous_time_range , which defaults to 6 . Ambigous
times are assumed, therefore, to be in the 12 - hour range starting at whatever the argument is, A.M. —
 which in this case is the range 6 A.M. – 6 P.M. If you changed the range to include 3 A.M., you ’ d get a
different response, as shown here:

 > > Chronic.parse(“thursday at 3:00”, :ambiguous_time_range = > 2)
= > Thu Sep 20 03:00:00 -0500 2007

 The time is now 3:00 A.M.

 Chronic has also assumed that I mean the next Thursday, as opposed to the last Thursday. You can
change this as follows:

 > > Chronic.parse(“thursday”, :context = > :past)
= > Thu Sep 13 12:00:00 -0500 2007

 The default behavior shown in the first code snippet is :context = > :future . For some reason,
 Chronic appears to use the past context only if the time is not specified, so you also get this:

 > > Chronic.parse(“thursday 3:00”, :context = > :past)
= > Thu Sep 20 15:00:00 -0500 2007

 I ’ m not sure whether that ’ s a bug or a principled choice.

 In the previous example, when I passed in just “ Thursday ” , Chronic converted that to 12 noon on
Thursday. Chronic guesses the specific time if there is a range of times that match the input string. But
you can get it to give you the entire range, like this:

 > > Chronic.parse(“thursday”, :guess = > false)
= > Thu Sep 20 00:00:00 -0500 2007..Fri Sep 21 00:00:00 -0500 2007

 You can also use the :now option to specify a base date other than the current one, as follows:

 > > Chronic.parse(“thursday”, :now = > 2.months.ago)
= > Thu Jul 19 12:00:00 -0500 2007
 > > Chronic.parse(“thursday 3:00”, :now = > 2.months.ago)
= > Thu Jul 19 15:00:00 -0500 2007

c10.indd 269c10.indd 269 1/30/08 4:13:50 PM1/30/08 4:13:50 PM

Chapter 10: Internationalizing Your Application

270

 JavaScript Calendars
 Chronic manages a wide range of different text formats for dates and times. Sometimes, though, the user
wants to see an actual graphical calendar for their data entering pleasure. There are several Rails plugins
and snippets that provide a wrapper around a JavaScript calendar. I ’ ll be discussing one of them here,
ActiveCalendar, written by Christopher Peterson. ActiveCalendar is a wrapper of Dynarch.com ’ s
DHTML JavaScript calendar. I chose this one because it ’ s pretty simple to install and run. It does have a
slight limitation — it ’ s a complete replacement for the ActiveRecord date helpers, date_select and
 datetime_select . If you install ActiveCalendar, then the row of pull - down lists will no longer display
at all. However, the non - ActiveRecord version of the date helpers is not affected, so you can still build up
a date pull - down list where needed.

 Install the plugin at:

./script/plugin install
http://activecalendar.googlecode.com/svn/trunk/activecalendar

 As usual, include the - x under Subversion. This installs a fair number of JavaScript files.

 At this point, the only thing standing between you and dynamic calendar goodness is the following four
lines of code:

 < %= stylesheet_link_tag “/javascripts/jscalendar-1.0/calendar-win2k-cold-1.css” % >
 < %= javascript_include_tag “jscalendar-1.0/calendar.js” % >
 < %= javascript_include_tag “jscalendar-1.0/lang/calendar-en.js” % >
 < %= javascript_include_tag “jscalendar-1.0/calendar-setup.js” % >

 You need to place this code in the header of the appropriate layout file.

 A server restart later, and all your ActiveRecord forms will look like the one shown in Figure 10 - 3 .
(There ’ s a button hidden by the calendar that is used to display the calendar itself.)

Figure 10-3

c10.indd 270c10.indd 270 1/30/08 4:13:50 PM1/30/08 4:13:50 PM

Chapter 10: Internationalizing Your Application

271

 If you don ’ t like the layout, feel free to go into the CSS file and tweak away — the file is in the vendor/
plugins/activecalendar/public/javascripts/jscalendar - 1.0 directory.

 There is one change here on the server side: the value of the form is now the string in the text field,
which is also user - editable (and there ’ s nothing stopping you from giving the user free entry, and using
 Chronic to parse the dates on the server side — that could give you the best of both worlds). On the
client side, additional key/value pairs passed to the date_select or datetime_select function are
passed directly to the JavaScript calendar, giving you the full flexibility of that code as well.

 Date Arithmetic and Outputting Dates
 On it s own, Ruby does not have a dedicated class for date and time durations (although Rails adds some
support); instead it uses integers to represent the difference between two Time or DateTime objects. For
 Time objects, the integer indicates the number of seconds between two times. For DateTime , the integer
indicates the number of days between two dates.

 Duration Helpers
 Rails provides two helper methods that you can use in view code to convert time differences to words.
The method distance_of_time_in_words takes two Time or DateTime objects as arguments, and
returns a reasonable English phrase describing the amount of time between them, such as “ about 5 days ”
or “ over a year. ” If the optional third argument is true , then seconds are included in the sentence, which
is generally only useful if the distance is under 1 minute.

 The method time_ago_in_words is similar, but it takes only one argument and compares it to the current
time. This is the method you want to use for things like archived lists of blog posts or comments — when
you want each entry to have a description of when it was posted.

 Rails has also added a number of methods to core Ruby classes to convert integers into useful times.
Witness the following console session:

 > > Time.now
= > Sun Sep 16 23:16:28 -0500 2007
 > > 3.seconds
= > 3 seconds
 > > 3.seconds.class
= > Fixnum
 > > 3.days
= > 3 days
 > > 3.days.to_i
= > 259200
 > > 3.days.from_now
= > Wed Sep 19 23:16:59 -0500 2007
 > > 3.days.ago
= > Thu Sep 13 23:17:04 -0500 2007

 All numeric types respond to the methods seconds , minutes , hours , days , weeks , fortnights ,
 months , and years (as well as the singular versions of all of those words), converting the number to a
new number — the amount of seconds in the time period. So, 3 days is 259200 seconds. A month is
considered to be 30 days, and a year is 365.25 days.

c10.indd 271c10.indd 271 1/30/08 4:13:51 PM1/30/08 4:13:51 PM

Chapter 10: Internationalizing Your Application

272

 All numeric types respond to the methods from_now and ago , which adjust the current date and time by
the amount given — from_now moves into the future, and ago moves into the past. This is done using a
Rails extension time - duration object. So even though the preceding raw months resolve to 30 days, when
you use from_now or ago , month arithmetic behaves as expected. For example:

 > > 1.month.from_now
= > Tue Oct 16 23:19:41 -0500 2007
 > > 2.months.from_now
= > Fri Nov 16 23:19:47 -0600 2007
 > > 30.days.from_now
= > Tue Oct 16 23:22:32 -0500 2007
 > > 60.days.from_now
= > Thu Nov 15 23:22:38 -0600 2007

 Although both from_now and ago take arguments to specify a different base time other than the current
moment, they both have aliases that are designed to read better when combined with an argument.
For example:

 > > base = 7.months.ago
= > Fri Feb 16 23:29:36 -0600 2007
 > > 1.month.since(base)
= > Fri Mar 16 23:29:36 -0500 2007
 > > 1.month.until(base)
= > Tue Jan 16 23:29:36 -0600 2007

 These methods represent some of the best of Ruby ’ s DSL - like behavior in allowing extremely clear and
readable code. Use them whenever you can.

 String Formats
 You should never use the strftime method in Rails to convert a time to a string. Instead, use the Rails
extension method for both Time and DateTime to_s(:format) , where format is one of a series of
formats predefined by Rails or that you add manually. Here are the predefined formats:

 > > base.to_s(:db)
= > “2007-02-16 23:29:36”

 > > base.to_s(:long)
= > “February 16, 2007 23:29”

 > > base.to_s(:long_ordinal)
= > “February 16th, 2007 23:29”

 > > base.to_s(:rfc822)
= > “Fri, 16 Feb 2007 23:29:36 -0600”

 > > base.to_s(:short)
= > “16 Feb 23:29”

 > > base.to_s(:time)
= > “23:29”

c10.indd 272c10.indd 272 1/30/08 4:13:51 PM1/30/08 4:13:51 PM

Chapter 10: Internationalizing Your Application

273

 The :db format uses the SQL standard, although some databases may differ. You can specify your own
custom formats by adding to the hash in your environment.rb file, outside the initializer block, like so:

Time::DATE_FORMATS[:usa_short] = “%b %d %H:%M”

 Then you can use it like any other format:

 > > base.to_s(:usa_short)
= > “Feb 16 23:29”

 There ’ s a super - special format method for a range of dates:

 > > (1.week.ago..1.week.from_now).to_s(:db)
= > “BETWEEN ‘2007-09-09 23:39:13 ‘ AND ‘2007-09-23 23:39:13 9‘ ”

 I personally witnessed an entire room full of Ruby developers, myself included, “ ooh and ahh ” audibly
when this feature was demonstrated.

 Internationalization with Globalize
 Time zones are not the only kind of content that needs to change from country to country. There are also
changes in the default style used to display numbers and dates, differences between imperial and metric
units, and currency changes — all of which are dwarfed by the challenge of dealing with multiple
languages. The generic terms for all this are internationalization and localization . Strictly speaking,
internationalization is the creation of a structure by which content can be created in multiple countries,
and localization is the act of actually populating the structure with content for individual locales. In
practice, the terms are used more - or - less interchangeably or in pairs to mean “ we need this site to work
in places where people talk differently. ” You ’ ll also often see the terms i18n and l10n with the numbers
cleverly indicating the number of missing letters in each word.

 Internationalization brings with it many challenges. You need some mechanism to either assign or allow
users to choose the location they are in. Even if you aren ’ t translating language, date and number display
formats and units differ throughout the English - speaking world, as do the spellings and meanings of
multiple words. If you are translating into multiple languages, you ’ ve just multiplied the amount of
content you need to create. And your development team and primary content creators are unlikely to be
fluent in all languages, making double - checking that content even more difficult. The varying lengths of
words in different languages can play havoc with a tightly arraigned website, even before you start
worrying about the languages that go right - to - left or up - and - down. After all that, you still need to worry
about images, color, and cultural cues.

 I can ’ t solve all those problems here, but I can show you how to use Globalize, a Rails plugin that
manages locale - based text displays. It can help you manage translated text, as well as the format of
numbers, dates and currency.

c10.indd 273c10.indd 273 1/30/08 4:13:51 PM1/30/08 4:13:51 PM

Chapter 10: Internationalizing Your Application

274

 Using The Globalize Plugin
 Globalize is a Rails plugin. Install it via the following command:

script/plugin install http://svn.globalize-rails.org/svn/globalize/trunk

 The version in trunk is the Edge Rails version of Globalize. If Rails 2.0 has been released by the time you
read this, then there is likely a /svn/globalize/branches/for - 2.0 directory; if you are using Rails
1.1 or 1.2, then there is a similarly named branch for those Rails versions. Also, unlike many plugins,
Globalize distributes a .tar.gz version for people who might be behind a firewall or have other issues
hitting the Subversion server.

 The Globalize plugin installs a number of different files. In order to fully enable Globalize, you need to
run a setup command. Before you do this, you should ensure that your database is using UTF - 8 as its
character set. If you have been using MySQL and following along in this book, that should have
happened by default — it should be the default encoding for MySQL tables as created by the Rails
commands used here. You can also add an encoding: utf8 key/value pair to the entries in your
 database.yml file, which will work for other databases as well.

 The Globalize setup command is as follows:

rake globalize:setup

 There ’ s no actual output to this command, but behind the scenes, Globalize is adding three tables to your
development database. Unfortunately, it just adds the tables directly, rather than generating a migration,
so you ’ ll need to run this command again whenever you reset your database (or, alternately, create your
own migration that runs this command).

Ruby, Unicode, and You
Unicode is the international standard for encoding strings in multiple languages — an
ambitious attempt to allow all characters in all human languages to be represented in
32 bytes (as opposed to the 8 bytes traditionally used in the English-only character set).
Fully representing each Unicode character in its full 32 bits would require four times
the storage for strings that use just the regular set of English characters, so there are
various encodings of Unicode that are more compressed if only English or Western
European characters are used. The most common of these is UTF-8, which uses the
same amount of space as a regular string for the 128 characters in the basic ASCII set,
and only requires more space for characters outside that set.

Although you can set up the database and web browser to used UTF-8 encoding, Ruby
does not support Unicode or UTF strings internally (this is expected to change in Ruby
1.9 and 2.0). Perhaps surprisingly, this is only a problem when you are actually per-
forming character-based manipulation on a string that contains multibyte characters.
As long as you are just dealing with ASCII characters, or are just passing text between
the database and the browser, you won’t notice a problem.

If you are in the problem zone, Rails 1.2 and higher has a workaround, in the form of a
chars string method, which returns a proxy object that contains UTF-8–aware versions of
all the problem methods. Otherwise, the proxy object behaves exactly like a normal string.

c10.indd 274c10.indd 274 1/30/08 4:13:51 PM1/30/08 4:13:51 PM

Chapter 10: Internationalizing Your Application

275

 Globalize creates three database tables in your development database. The first is globalize_
languages , which contains language data including the English name, native name, various ISO and
RFC codes, the direction the language is written in, and any odd pluralization rules. The globalize_
countries database contains country information including the English name, two - character code, and
numerical, date, and currency formatting. Both of these tables are effectively read - only for the purposes
of your application. The globalize_translations table contains the translated data for all your
multilingual content. Each entry contains the translated text, the type information needed to associate it
with the base language text, and the language of translation. This table is pre - populated with date and
month names in several languages. All the data that Globalize uses, which you might use to populate
your production or test databases, is stored in CSV files in vendor/plugins/globalize/data . Fixtures
suitable for using in your own unit tests are stored in vendor/plugins/globalize/test/fixtures .

 To complete your Globalize setup, head over to the environment.rb file and place the following two
lines at the end of the file:

include Globalize
Locale.set_base_language(‘en-US’) # or whatever your base locale is

 The first line includes the Globalize plugin everywhere in your Rails application. The second line sets
up the base locale for the application. If you ’ ve done internationalization in other programming
languages, you ’ re probably familiar with the concept of a locale as the combination of a language and
a country — which in this case is English as spoken and written in the United States.

 Setting the base language in Globalize has two related effects. It is the default locale used by Globalize to
determine formatting for numbers, dates, and currency if another locale is not specified. The language
portion of the base locale setting tells Globalize which text to look up in the actual model table. The text
for all other languages will be stored in the globalize_translations table.

 You can change the locale for a particular page interaction by calling Locale.set . For example:

Locale.set(“fr-FR”)

 Local Formatting
 Globalize adds the method localize (also aliased to loc) to the classes Integer , Float , Date , and
 Time . You would use these methods instead of to_s , to ensure that the correct formatting is used for the
current place. For numbers, this is primarily a case of using the decimal points and commas properly.
For example:

 > > 123456789.localize
= > “123,456,789”
 > > 1.23.localize
= > “1.23”

 > > Locale.set(“de-DE”)
= > # < Globalize::Locale:0x3703fe8 @currency_decimal_sep=”,”, @currency_format=
”%nâ‚¬“, @code=”de-DE”, @decimal_sep=”,”, @date_format=nil, @thousands_sep=”.”,
@language=German, @number_grouping_scheme=:western, @currency_code=”EUR”,
@country=# < Globalize::Country id: 55, code: “DE”, english_name: “Germany”,

(continued)

c10.indd 275c10.indd 275 1/30/08 4:13:52 PM1/30/08 4:13:52 PM

Chapter 10: Internationalizing Your Application

276

date_format: nil, currency_format: “%nâ‚¬“, currency_code: “EUR”, thousands_sep:
“.”, decimal_sep: “,”, currency_decimal_sep: “,”,
number_grouping_scheme: “western” > >
 > > 123456789.localize
= > “123.456.789”
 > > 1.23.localize
= > “1,23”

 The localize method works a little differently for times and dates. It does not force you to a preferred
ordering of date elements. Instead it acts just like the ordinary strftime method except that day names,
month names, and a.m./p.m. are translated into the language of the current locale. Here ’ s an example
(I ’ d show a more exotic example, but the terminal doesn ’ t like Unicode characters by default):

 > > Time.now.localize(“%A %B %d %Y”)
= > “Tuesday September 18 2007”

 > > Locale.set(“de-DE”)
= > # < Globalize::Locale:0x3703fe8 @currency_decimal_sep=”,”, @currency_format=
”%nâ‚¬“, @code=”de-DE”, @decimal_sep=”,”, @date_format=nil, @thousands_sep=”.”,
@language=German, @number_grouping_scheme=:western, @currency_code=”EUR”,
@country=# < Globalize::Country id: 55, code: “DE”, english_name: “Germany”,
date_format: nil, currency_format: “%nâ‚¬“, currency_code: “EUR”,
thousands_sep: “.”, decimal_sep: “,”, currency_decimal_sep: “,”,
number_grouping_scheme: “western” > >
 > > Time.now.localize(“%A %B %d %Y”)
= > “Dienstag September 18 2007”

 As I write this, about 90 separate languages have their date and time words preset in the Globalize
database. If the language you are trying to translate to is not there, Globalize will default to the base
locale.

 Notice, though, that Globalize happily printed September 18 as the date, when it ’ s extremely likely
that the local preferred form is 18 September . Also, the localize method is not directly compatible
with the handy to_s(:format) method discussed earlier in this section. (Although that seems a simple
enough patch that it might have been taken care of by the time you read this.)

 Translations
 Globalize has a number of different ways to manage translated text. The most direct is simply to
tell Globalize that you have a translation, like this:

 > > spanish = Language.pick(“es-MX”)
= > Spanish
 > > Locale.set_translation(“recipe”, spanish, “receta”)
= > [nil, “receta”]
 > > Locale.set_translation(“soup”, spanish, “sopa”, “sopas”)
= > [nil, “sopa”, “sopas”]
 > > Locale.set_translation(“Soups OnLine”, spanish, “Sopas en Linea”)
= > [nil, “Sopas en Linea”]
 > >

(continued)

c10.indd 276c10.indd 276 1/30/08 4:13:52 PM1/30/08 4:13:52 PM

Chapter 10: Internationalizing Your Application

277

 > > Locale.set_translation(“%d bunches of carrots”, spanish, “%d manojo de
zanahoria”, “%d manojos de zanahorias”)
= > [nil, “%d manojo de zanahoria”, “%d manojos de zanahorias”] > >
Locale.set_translation(“Eat Up, It’s Good For You”, spanish, “El Es Bueno Para
Usted”)
= > [nil, “El Es Bueno Para Usted”]

 This console session starts by setting a variable to the Globalize language object for Spanish. Then it uses
the set_translation method to define a few translations. The method assumes that the first argument
is some text in the base language, and the second argument is the language being translated to.

 The first example is a straightforward translation of the English word “ recipe ” to its Spanish equivalent.
In the next line, “ soup ” is being translated to both its singular Spanish equivalent “ sopa ” and its plural
Spanish equivalent “ sopas ” . (Languages that have more complex pluralization rules generally allow you
to place all the variants in increasing order of the size of the set they represent.) The third example shows
that you can translate an entire phrase, and the last example shows that the phrase can include a
wildcard to be filled in later — the wildcard can either be %d for a number or %s for a string.

 If the second argument to set_translation is not a language, then the assumption is that the current
locale is not the base language and the word or phrase is being translated to the main language. Because
translation is language - based and not locale - based, it seems that Globalize cannot be used to mediate
between dialects of the same language such as American and British English unless you add the various
regional versions to the languages database as separate languages. (A separate plugin called Globalite
has this capability out of the box.)

 Each one of these items sets up multiple rows in the globalize_translations database, with each
row containing the base - language key, the language being translated to, the translated text, and the
pluralization number. (The nil at the front of all the return values indicates that Spanish does not use a
separate form for the case of zero elements.) The relevant portion of the database table is shown in
Figure 10 - 4 .

Figure 10-4

 Once this information has been placed in the database, you can start using it via an entirely different
console session — or, of course, in the live application. This makes it easy for to seed your translation
database via a batch script or separate content management system.

c10.indd 277c10.indd 277 1/30/08 4:13:53 PM1/30/08 4:13:53 PM

Chapter 10: Internationalizing Your Application

278

 To use translated text, call the method t on the base text as follows:

 > > Locale.set(“es-MX”)
= > # < Globalize::Locale:0x377dcbc @currency_decimal_sep=”.”, @currency_format=nil,
@code=”es-MX”, @decimal_sep=”.”, @date_format=nil, @thousands_sep=”,”,
@language=Spanish, @number_grouping_scheme=:western, @currency_code=”MXN”,
@country=# < Globalize::Country id: 150, code: “MX”, english_name: “Mexico”,
date_format: nil, currency_format: nil, currency_code: “MXN”, thousands_sep: “,”,
decimal_sep: “.”, currency_decimal_sep: “.”, number_grouping_scheme: “western” > >
 > > “soup”.t
= > “sopa”
 > > “soup”.t(nil, 2)
= > “sopas”
 > > “%d bunches of carrots”.t(nil, 2)
= > “2 manojos de zanahorias”

 If there is no translated text available, the original text is returned instead. You can override that
behavior by passing a desired default to the first argument of the t method. The second argument is
used as the substitute for the %d or %s in the phrase. If the argument is a number, it is also used to resolve
the plural state of the entire phrase. Therefore, using 2 in the last example triggered the plural form
of the phrase “ bunches of carrots. ”

 If you find the t method too wordy, Globalize also overrides the / operator as an alias for t(nil, arg) .
Again, the argument can either merely indicate plural status or be a wild card in the string being
translated. For example:

 > > “soup” / 2
= > “sopas”
 > > “soup” / 1
= > “sopa”
 > > “%d bunches of carrots” / 1
= > “1 manojo de zanahoria”
 > > “%d bunches of carrots” / 2
= > “2 manojos de zanahorias”

 For my part, although this syntax is perhaps a bit shorter, it ’ s right at the edge of the amount of cryptic
functionality I ’ m willing to accept in operator overloading.

 Displaying Your Translation
 Displaying the translated text is a matter of putting translation operators in your views and setting the
locale on each user hit.

 As an example, you ’ re going to translate the header of the Soups OnLine site, because you ’ ve already
placed the two components in the database. In the app/views/layouts/recipes.html.erb layout
file, change the display of that text to this:

 < div id=”header” >
 < h1 > < a href=”#” > < %= “Soups OnLine”.t % > < /a > < /h1 >
 < p > < a href=”#” > < %= “Eat Up, It’s Good For You”.t % > < /a > < /p >
 < /div >

c10.indd 278c10.indd 278 1/30/08 4:13:53 PM1/30/08 4:13:53 PM

Chapter 10: Internationalizing Your Application

279

 The only difference is that the strings are now passed through a Globalize translation.

 Then, in the controller, you need to set the locale. Right now, you ’ re doing the simplest thing possible:
checking for a locale parameter in the URL that might be es for Spanish. In a page or so, I ’ ll show you
how to manage the locale in a more complex way. But the basic idea of setting the locale via a before
filter is generally going to be part of the program. Put the following before filter in each controller, and
the set_locale method in application.rb :

 before_filter :set_locale

 def set_locale
 if params[:locale] == ‘es’
 Locale.set (‘es-MX’)
 else
 base = if Locale.base_language
 then Locale.base_language.code
 else ‘en-US’
 end
 Locale.set base
 params.merge(‘locale’ = > base)
 end
 end

 With that code in place, pointing the browser at the URL http://localhost:3000/
recipes?locale=es displays the header shown in Figure 10 - 5 .

Figure 10-5

 I ’ m hoping I got the translation correct — my Spanish skills are pretty close to nonexistent. I do know
that I had to cut off part of the tag line “ Eat Up, It ’ s Good For You ” (the text shown translates as “ It ’ s
Good For You ”), because the longer Spanish phrases did not fit together in the browser.

 ActiveRecord Translations
 Whether you are using the t method or the / operator, peppering your Globalized Rails application with
a gazillion of them is bound to get tedious. Globalize offers a couple of ways to specify the need to
translate content at a higher level of abstraction.

c10.indd 279c10.indd 279 1/30/08 4:13:53 PM1/30/08 4:13:53 PM

Chapter 10: Internationalizing Your Application

280

 For content that is being accessed via ActiveRecord, you can specify the text attributes that you want to
have covered by the translations. This is done via a class - level declaration called translates :

class Recipe < ActiveRecord::Base

 translates :title, :description, :directions

 This declaration informs Globalize that the listed attributes will have translated versions in the global_
translations table. When these values are accessed, Globalize will automatically look for the
version that matches the current locale. If that version doesn ’ t exist, Globalize will default back to
the base version in the original ActiveRecord table. This translation happens automatically on attribute
retrieval, and does not require a call to the t method to display the localized content.

 Saving the translated data is relatively straightforward. All you need to do is change the locale, and then
reset the translated attributes in the new language. Saving the ActiveRecord back to the database in the
new Locale will automatically create the global_translations entry.

 Here ’ s an example from the console:

 > > Locale.set(‘es-MX’)
= > ### Globalize stuff here
 > > recipe = Recipe.find(1)
= > ###
 > > recipe.title
= > “Grandma’s Chicken Soup”

 > > recipe.title = (“Sopa de Pollo de me Abuela”)
= > “Sopa de Pollo de me Abuela”

 > > recipe.title
= > “Sopa de Pollo de me Abuela”
 > > recipe.save
= > true

 > > Locale.set(‘en-US’)
= > ####
 > > recipe = Recipe.find(1)
= > ###
 > > recipe.title
= > “Grandma’s Chicken Soup”

 > > Locale.set(‘es-MX’)
= > ###
 > > recipe.title
= > “Sopa de Pollo de mi Abuela”

 If you change the locale after loading the object, you need to call reload on the object in the new locale.
When the record is saved in the Spanish locale, Globalize creates the record in the globalize_
translations table, associating the new data with the original table using something very much
like the polymorphic association feature you saw in Chapter 7 . In addition, Globalize also creates records
for the translatable fields you did not change (description and directions) and populates them with
the existing English versions of the data because no new information was added for those fields.

c10.indd 280c10.indd 280 1/30/08 4:13:54 PM1/30/08 4:13:54 PM

Chapter 10: Internationalizing Your Application

281

 This is a handy mechanism. However, the way in which it interacts with ActiveRecord precludes certain
kinds of ActiveRecord actions — in particular, it precludes using the :include and :select options to
 ActiveRecord#find , and it interacts poorly with has_many :through . It also requires a second data
table to access all the localizations.

 There is another way. Include the following line in your ActiveRecord model:

class Recipe < ActiveRecord::Base

 self.keep_translations_in_model = true

 translates :title, :description, :directions

 The localized data will now be stored in columns in the model table. You need to add the columns via
migration, with the naming convention < attribute > _ < lang > . To support Spanish in the Soups Online
application, the recipe table would have to have title_es , description_es , and directions_es
columns. This can get a bit unwieldy if you are supporting a lot of attributes or a lot of languages, and
you need to know in advance what languages you are supporting. There ’ s a Rails generator called
 script/generate globalize internal that will create migrations to generate the new columns for
all languages passed as arguments, so script/generate globalize internal es would work for
the previous examples.

 Which method you choose depends on the particulars of your application. For an application in which
you are targeting a small number of defined languages, I think the internal method is clearly superior. It
will probably have better performance, and it plays better with the rest of Rails. However, if you need to
support many languages that you might not be able to specify in advance — especially if that ’ s
combined with multiple columns — most databases aren ’ t really optimized to deal with tables that have
hundreds of columns. In that case, the flexibility of the external method would probably be superior.

 Tracking Routes
 As shown in the previous examples, you need to be able to set the locale based on the specifics of the
user request. The place to actually set the locale for the connection is usually in a before filter on
the controller. However, there are a few different mechanisms for managing the locale.

 One option that you see on a lot of international corporate sites requires the user to explicitly select a
region before entering the main site. That information can then be stored in the session or in the database
as part of the user table, depending on which makes sense for your user model. The before filter can
then take the information from the session or database to set the locale. In this case, it ’ s generally
considered good UI practice to both display the current locale somewhere in the page and allow the user
to change locations.

 Another option is to make the locale part of the URL. In the previous example, the locale was specified
as part of the query string. Although that works, it ’ s often considered ugly, and even worse, all the
 link_to and link_to_remote methods in the application need to know to pass the locale around as a
parameter. One possible plus - side of this mechanism is that it allows URLs in the base domain to be
displayed without locale information.

 Some applications (such as Wikipedia) make the locale part of the actual domain name (as in en
.wikipedia.com). That ’ s doable, but within Rails it ’ s somewhat easier to use the route mechanism and
allow Rails to parse the locale out of the URL for you.

c10.indd 281c10.indd 281 1/30/08 4:13:54 PM1/30/08 4:13:54 PM

Chapter 10: Internationalizing Your Application

282

 There are a few different ways to manage locales in routes. The one that seems to work best in a RESTful
routing system is to do something like this:

map.resouces :recipes, :path_prefix = > “:locale”

 This will correctly map URLs of the form:

http://hostname/en/recipes/1
http://hostname/es/recipes/1

 There is only one change that needs to be made to your application in order to support this change.
Because the locale now appears before the object ID in the URL, the following single - argument, named
route call:

recipe_url(@recipe)

will now slot the recipe ID into the locale part of the URL, which is not what you want. For this to work,
you need to either explicitly specify the locale or explicitly specify that the recipe is being used as the ID
parameter of the URL, like this:

recipe_url(locale, @recipe)
recipe_url(:id = > @recipe)

 The locale will automatically get picked up from the previous request parameter unless it ’ s otherwise
specified during the processing of the request.

 References
 There is a nice post on time zones in Rails at http://cho.hapgoods.com/wordpress/?p=140 .
The tztime plugin is introduced by its creator, Rails core developer Jamis Buck, at http://weblog
.jamisbuck.org/2007/2/2/introducing-tztime . ActiveCalendar ’ s home page is at
http://developer.assaydepot.com/?p=5 .

 As this book was in review, a new time zone plugin called Timezone_fu was released. It automates
conversions between UTC and the user ’ s localtime, and can be found at http://hackd.wordpress
.com/2007/11/23/sexy-time-zones-in-ruby-on-rails-with-timezone_fu/

 The Globalize home page at www.globalize-rails.org/globalize has a lot of documentation. I also
used Sven Fuchs Globalize tutorial at www.artweb-design.de/2006/11/10/get-on-rails-with-
globalize-comprehensive-writeup , which is a very detailed explanation of how to use Globalize.

 The Globalite plugin referenced in the chapter is available online at http://code.google.com/p/
globalite . The best source I know of for Unicode and Rails is http://wiki.rubyonrails.com/
rails/pages/HowToUseUnicodeStrings .

c10.indd 282c10.indd 282 1/30/08 4:13:54 PM1/30/08 4:13:54 PM

Chapter 10: Internationalizing Your Application

283

 Summary
 If your application is on the World Wide Web, you may need to acknowledge the “ world wide ” part.
Time and time zones are some of the first obstacles you ’ ll face. Ruby has both Time and a DateTime
classes, each with different strengths and weaknesses. In addition, there are a few Rails plugins that add
more complex support for time zones.

 Inputting time zones can be managed via the time_zone_select helper. The Ruby gem called Chronic,
and the Rails plugin ActiveCalendar can both provide a richer experience for a user who is entering date
information.

 Globalize is the most feature - rich Rails plugin to manage internationalization of an application. It
provides mechanisms to localize date and time references, and to translate content into different
languages and display that content in the correct language given the user ’ s locale. Translation can also
be integrated directly into ActiveRecord, and local information can be embedded into Rails routing.

c10.indd 283c10.indd 283 1/30/08 4:13:55 PM1/30/08 4:13:55 PM

c10.indd 284c10.indd 284 1/30/08 4:13:55 PM1/30/08 4:13:55 PM

 The Graphic Arts

 The biggest innovation in the original NCSA Mosaic web browser — the one that that changed
the Web from just a way to hyperlink physics papers into a multimedia content platform — was the
 img tag, supporting inline image display. Since then, the capability to manipulate graphics has
remained an important part of working on the Web.

 This chapter examines several ways to integrate dynamic graphics into your web system. You ’ ll
see how to acquire images from the user via file upload. You ’ ll explore the various libraries
available for manipulating images from within Ruby, and take a look at some packages for creating
charts from those images.

 Getting Star ted
 I ’ m going to focus on three different Ruby gems that manage basic graphics transformations —
 resizing, basic effects, thumbnails, and that kind of thing. The three Ruby gems are wrappers to
three different native C libraries, but like a logic puzzle gone slightly awry, there isn ’ t an exact one -
 to - one correspondence between the gems and the libraries. Two of the gems — RMagick and
MiniMagick — can wrap around either ImageMagick or GraphicsMagick, which are two forked
versions of the same basic functionality. The third gem, ImageScience, requires a separate graphics
library called FreeImage.

As this book was in production, RMagick 2 was released. RMagick 2 does not support
GraphicsMagick. Other than that, there are few substantial API differences in the new release.
See http://rmagick.rubyforge.org/rmagick2.html for more information.

 Installing these gems is somewhat more complex than the typical Ruby gem because the external
graphics libraries are so large, have a number of external dependencies, and tend to expect their
users to be comfortable with compiling from source (to be fair, it ’ s probably advantageous for
performance reasons to compile from source). Unfortunately, this isn ’ t a case where you can just
type gem install and be done with it. Don ’ t worry, it ’ s not that hard, and in most cases, there ’ s a
helpful installer of one form or another to get you home.

c11.indd 285c11.indd 285 1/30/08 4:14:22 PM1/30/08 4:14:22 PM

Chapter 11: The Graphic Arts

286

 Graphics Packages
 RMagick is the oldest and still most commonly used graphics package for Ruby. It will act as a wrapper
around either the ImageMagick library or the GraphicsMagick library, whichever one it finds.
ImageMagick and GraphicsMagick are command - line tools for image manipulation, both offering a wide
variety of features including image transformation, animation support, special effects, and adding
various kinds of decorations. GraphicsMagick is a fork from ImageMagick version 5.5.2, claiming to be
more concerned with API stability and performance than the addition of new features. RMagick will
wrap either one, and for the examples in this chapter it shouldn ’ t matter what the underlying library is.
RMagick attempts to give Ruby access to all the functionality of the ImageMagick libraries, and calls the
libraries directly from within your Ruby program.

 In contrast, MiniMagick offers a stripped - down library that invokes an external shell process that calls
the underlying library via its command line interface. You perhaps lose some API expressiveness, but
there can be a significant gain in memory and speed performance because the image processing takes
place in a separate process — any memory leaked by ImageMagick is recovered immediately when the
shell command ends.

 ImageScience is a focused Ruby module that does one thing — resize images. It ’ s very efficient at
that task.

 Installing for Windows
 Somewhat unusually, the Windows installation is the most straightforward of the bunch. For RMagick,
head over to the RubyForge RMagick download page at http://rubyforge.org/projects/rmagick
and grab the rmagick - win32 executable. This is a binary installer that installs ImageMagick, all the
needed prerequisites, and the RMagick RubyGem. Nice and neat. You should be aware, though, that the
compilation of RMagick depends on the specific version of ImageMagick bundled in the installer. You
can ’ t change the version of ImageMagick (or swap it out for GraphicsMagick) without updating the
entire installation.

 With ImageMagick installed, you can then install MiniMagick as a regular gem, like this:

gem install mini_magick

 MiniMagick will find the already installed ImageMagick and run against it.

 FreeImage, the library used by ImageScience, also has a Windows installer, which you can grab at
 http://freeimage.sourceforge.net/download.html . After that is installed, ImageScience can be
installed as a regular gem, like this:

gem install image_science

 There are some reports of problems getting FreeImage set up on Windows platforms. Please check out
the mailing lists at http://freeimage.sourceforge.net if you are having difficulties. In a
pinch, the image resize functions of RMagick duplicate all the functionality of ImageScience.

c11.indd 286c11.indd 286 1/30/08 4:14:22 PM1/30/08 4:14:22 PM

Chapter 11: The Graphic Arts

287

 Installing for Mac OS X
 If you are a Mac user, there are a couple of different options for getting image libraries onto your
system. If you are using the Locomotive environment to run Rails, you can get RMagick as a binary
bundle within that system. However, that installation may not work for Rails systems that you do not
run through Locomotive.

 The next level on the complexity scale is to run a Mac OS X installation script provided as part of the
RMagick distribution. From the RubyForge RMagick page (http://rubyforge.org/projects/
rmagick), download rmagick - osx - installer , and unpack it somewhere convenient. This installation
has the following prerequisites:

 You need to have the Max OS X Xcode tools installed (and if you ’ ve already installed Ruby and
Subversion as suggested, you do).

 You need to have the aforementioned Ruby installation from source — the built - in Mac OS X
Ruby won ’ t work in OS 10.4.x (Although the built - in Ruby in OS 10.5 may be a different story).

 You need the X11 SDK and the X11 application. The SDK is on the installation disk as a package
in Xcode tools, and X11 itself is in the optional items installer.

 You need to have the installer package in a valid folder. When I tried it, the package actually
unzipped itself into an invalid folder — the complete path name to the installation script cannot
contain spaces.

 From a command line, type ruby rm_install.rb , and wait. The installation will take some time, and you ’ ll
be periodically prompted for an administrator password. The official installation instructions suggest
backing up your entire /usr/local directory before starting; alternately, you can install with an option
 - - prefix some other directory and install RMagick there. This script will install ImageMagick and
all prerequisites. The main command line may not update for a while, but you can always monitor the
 install.log file to see what ’ s going on.

 The next level of complexity is to attempt to do all the steps of the installation script yourself. Full
instructions for this are provided on the RMagick website.

 After ImageMagick is installed, MiniMagick is just the same gem install on the Mac as it is for Windows.

 The easiest way to install FreeImage is to install MacPorts from www.macports.org . MacPorts is an
ambitious attempt to provide Linux - style package installers for many open source packages so that they
will run on Mac OS X. MacPorts itself uses a standard Mac installer. Once that is in place, the following
terminal command will install FreeImage:

sudo port install freeimage

 From that point, ImageScience is just a gem install, as shown previously.

 You can also install ImageMagick separately as a MacPort (port install ImageMagick) or a binary
download from www.imagemagick.org . You can then attempt to install RMagick as an ordinary gem.

❑

❑

❑

❑

c11.indd 287c11.indd 287 1/30/08 4:14:23 PM1/30/08 4:14:23 PM

Chapter 11: The Graphic Arts

288

 The MacPort installation of ImageMagick will work in Mac OS 10.5.x with a slight tweak. See
 http://nullstyle.com/2007/10/27/how-to-build-imagemagick-and-install-
rmagick-with-macports-on-mac-os-x-leopard for details.

 Installing for Linux
 Your best bet on Linux, as it is on Mac OS X, is to try and find a binary installation package. Your Linux
distribution may contain an RMagick package; however, none of those packages are officially
maintained. Both ImageMagick and GraphicsMagick maintain .rpm packages for several Linux
distributions — check those sites for a current list. Failing that, the manual instructions for compiling
from source are available from the RMagick website. Again, once ImageMagick or GraphicsMagick is in
place, both RMagick and MiniMagick can be installed as gems.

 FreeImage provides a make file, and the following standard commands should work on most Linux
distributions:

make
sudo make install

 After that, ImageScience can be downloaded as a gem.

 Uploading Files to Rails
 To demonstrate some graphics features, I ’ m going to show you how to give a user the ability to upload a
picture of their soup recipe, and then show you how to manipulate those images for some simple effects.
Although you could roll this up yourself, I ’ m going to recommend the use of the attachment_fu plugin,
which offers nice features for managing image metadata, automatic thumbnail generation, and
validation of image parameters.

 The plugin is available via the usual mechanism:

script/plugin install http://svn.techno-weenie.net/projects/plugins/attachment_fu/

 To upload via attachment_fu, you need to align a data model, a controller, and a view. Once the file is
uploaded, you ’ ll need to change other views to display the image within the page. The attachment - fu
plugin has specific expectations for the way the data is saved in your Rails application. In the Soups
OnLine project, you can either include the image data columns within the recipe table or create a
separate model and table to manage the metadata. On the theory that different things should be stored in
different places, I ’ m opting for the separate table, which means you need the following model and
migration:

$ script/generate model soup_image --svn

 For what it ’ s worth, I chose the name soup_image rather than just image on the vague theory that
 image is the sort of generic model name that is highly likely to have a nasty name collision somewhere
down the road. It ’ s unlikely that there ’ s another class named SoupImage running around in the wild.

c11.indd 288c11.indd 288 1/30/08 4:14:23 PM1/30/08 4:14:23 PM

Chapter 11: The Graphic Arts

289

 Setting Up attachment_fu Data
 The attachment_fu plugin allows you to name your image - metadata model arbitrarily, but the columns
within the table need a specific set of names. Unfortunately, there isn ’ t a generator to create the
migration. It needs to look something like this:

class CreateSoupImages < ActiveRecord::Migration
 def self.up
 create_table :soup_images do |t|
 t.string :filename
 t.string :content_type
 t.integer :size
 t.integer :height
 t.integer :width
 t.integer :parent_id
 t.integer :thumbnail
 t.timestamps
 end

 add_column :recipes, :soup_image_id, :integer
 end

 def self.down
 drop_table :soup_images
 remove_column :recipes, :soup_image_id
 end
end

 Not all the columns are required for every usage of attachment_fu. You always need :filename ,
 :content_type , and :size . The columns :height , and :width must be added if you are uploading
images. If you are going to use attachment_fu ’ s automatic thumbnail feature, then you also need the
:parent_id and :thumbnail columns. The add_column command in the migration is specific to the
Soups OnLine application, setting up a one - to - one relationship between recipes and images.

 This migration is suitable for using attachment_fu to store files in the server filesystem. If you want to
store files in the database itself, you need some more elements in the migration. This is not part of the
Soups OnLine application, but the additional migration would look like this:

 def self.up
 create_table :db_files do |t|
 t.data :binary
 end

 add_column :soup_images, :db_file_id, :integer
 end

 The db_files table will store the binary data for your upload — this table name is required by
attachment_fu. The additional column being added to the soup_images metadata table sets up the one -
 to - one relationship between metadata and binary data.

 Run rake db:migrate to make the changes in the database.

c11.indd 289c11.indd 289 1/30/08 4:14:23 PM1/30/08 4:14:23 PM

Chapter 11: The Graphic Arts

290

 Creating an attachment_fu Model
 It ’ s time to create the model. (In case it ’ s not clear, these steps aren ’ t necessarily dependent on each other.
If you ’ re more comfortable doing the view code first, go right ahead.) Connect the SoupImage file to the
attachment_fu plugin using the plugin ’ s has_attachment method:

class SoupImage < ActiveRecord::Base

 has_attachment :content_type = > :image,
 :max_size = > 1.megabyte,
 :thumbnails = > {:tag = > “100x100 > ” },
 :storage = > :file_system

 validates_as_attachment

 has_one :recipe
end

 The has_attachment method defines parameters of the attachment data. It takes about a dozen
optional arguments, which fall into the following categories:

 What to accept — The :content _type argument takes either a string representing a single
MIME type, an array of such strings, or the special symbol :image , which matches all image
types. The : image symbol can be used within an array of options. The :min_size and
:max_size arguments give a range of file sizes that are acceptable for the upload — use this
to prevent files that are too big from clogging up your storage. Note the use of Rails number
helpers to define the size in the example. You can set both values by using the :size option,
which takes a Ruby range (50.kilobytes..500.kilobytes) .

 Where to put it — The :storage option can be :db_file (the default), :file_system , or :s3 .
Using :db_file causes the binary upload to be stored in the database table set up in the second
migration that included the binary database field - - you must have that table set up to use this
option. Using :file_system stores the file in the server file system, and :s3 uses the Amazon
S3 online storage repository. The default storage location is public/ < table_name > for the local
file system and just < table_name > for S3. This can be changed by using the :path_prefix
option, which takes a string representing the location. Using :path_prefix changes the default
storage location for:file_system , but you would still need to explicitly specify the use of S3.

 What to do with it — The :processor option specifies which of the graphics plugins should be
used for resizing, and the value can be ImageScience , MiniMagick , or RMagick (symbol or
string). If you don ’ t specify one of these, attachment_fu will pick from among the installed
graphics packages. The :resize_to option causes attachment_fu to automatically resize the
incoming image, and the argument is either an array [width, height] or an RMagick
geometry string. The :thumbnails option allows you to specify an arbitrary number of
thumbnails to be automatically generated on upload. The hash keys are identifiers for the
generated images, and the values are either [width, height] arrays or geometry strings. The
 :thumbnail_class argument takes a Ruby class as a value, and allows you to specify a
different class model for the thumbnail images if you want them to be subject to different
validation rules or be stored in a different location.

❑

❑

❑

c11.indd 290c11.indd 290 1/30/08 4:14:24 PM1/30/08 4:14:24 PM

Chapter 11: The Graphic Arts

291

RMagick Geometry Strings
Size specifications for resizing or creating thumbnail images can be specified in
RMagick geometry strings, which are generally of the form wxh, as in 100x75. The
basic meaning of this is that your image will be proportionally resized until one of
those boundaries is reached. You can affect the default behavior in a few ways. You can
specify only a width (100), or only a height (x75), in which case the resize will adjust
the specified dimensions to that value and the other dimension proportionally. Using a
percent sign (%) causes the number to be interpreted as a percentage of the existing
height. Appending a greater than sign (>) causes the image to be resized only if one of
its dimensions is outside the specified dimension, and using a less than sign (<)resizes
the image only if both dimensions are inside the specification. Appending an exclama-
tion point (!) to the string forces the image to be resized to both dimensions regardless
of aspect ratio.

 The validates_as_attachment method ensures that the file - type and file - size limitations set up in
 has_attachment are honored. If an uploaded file fails the validation, it is not saved to storage; however,
it will be loaded temporarily into memory while it is checked. Finally, because the image is currently set
up to have a recipe, that relationship must be specified. Don ’ t forget to add the following to the Recipe
class in the app/models/recipe.rb file to catch the other end of the relationship:

belongs_to :soup_image

 Testing attachment_fu
 If you are anything like me, then the first question you ’ re asking as you approach dealing with
attachments is, “ How do you test a file upload? ” As it happens, it ’ s not actually that hard. Add the
following test to the recipes_controller_test.rb file:

def test_should_create_recipe_with_image
 create_mock_captcha_token(“fred”, “3”)
 assert_difference(‘Recipe.count’) do
 post :create, :recipe = > recipe_hash, :token = > “fred”,
 :captcha_value = > “3”,
 :soup_image = > {:uploaded_data = > fixture_file_upload(
 “../data/soup.jpg”, “image/jpeg”)
 }
 end
 newbie = Recipe.find(:all, :order = > “id DESC”, :limit = > 1)[0]
 assert_not_nil(newbie.soup_image)
 assert_equal(“soup.jpg”, newbie.soup_image.filename)
 assert_equal(“image/jpeg”, newbie.soup_image.content_type)
 dir = “/soup_images/0000/000#{newbie.soup_image.id}”
 assert_equal(“#{dir}/soup.jpg”,
 newbie.soup_image.public_filename)
 assert_equal(“#{dir}/soup_tag.jpg”,

(continued)

c11.indd 291c11.indd 291 1/30/08 4:14:24 PM1/30/08 4:14:24 PM

Chapter 11: The Graphic Arts

292

 newbie.soup_image.public_filename(:tag))
 assert(File.exists?(“public/#{dir}/soup.jpg”))
 assert(File.exists?(“public/#{dir}/soup_tag.jpg”))
 newbie.soup_image.destroy
 end

 Structurally, this is very similar to the existing creation test for recipes. The recipe_hash value called in
the post method was created by refactoring out the hash already used in the existing test.

 The data for the actual upload is created by calling the Rails test helper method fixture_file_upload .
This method fakes the data from a multipart form submission. The two arguments are the file location of
the file being mock - uploaded and its MIME type, which in this case are ../data/soup.jpg and image/
jpeg . You need to actually put an image file in the expected location for the test to work. The name of
the form attribute for an attachment - fu upload must be :uploaded_data — attachment - fu expects to
look there for data.

 After the pretend upload, the test validates that the soup image metadata is correctly added to
the database, and then checks that the controller has placed the image and the thumbnail image in the
expected location underneath the public/soup_image directory. The destroy method at the end is
supposed to keep the file system clean. Destroying the soup image item deletes the entire 000#{id}
directory. You might need to be a little careful, though, if your development and test database are
sharing the same file system. Often, you ’ ll see this kind of destroy method placed in the ensure clause
of a rescue exception block so that it will always be cleaned up. In a test, I often choose not to clean the
data up if there ’ s a problem, so that I have more information available for diagnosis.

 Getting the controller working from here is just a single line because attachment_fu does most of the
work. All you need to do is add the following highlighted line to the RecipeController#create
method:

def create
 @recipe = Recipe.new(params[:recipe])

 @recipe.soup_image = SoupImage.new(params[:soup_image])

 ## Rest of method is unchanged

 attachment_fu will take the upload data, looking in the params hash for the :uploaded_data attribute,
and save the file to your chosen storage method, create the metadata object, and do any resizing or
thumbnail creation as specified in the has_attachment call for SoupImage . The metadata object is
saved to the database when the recipe is saved. A validation failure will prevent the metadata object and
the recipe from being saved.

 You also need to change the update method as follows:

 def update
 @recipe = Recipe.find(params[:id])

 @recipe.soup_image = SoupImage.new(params[:soup_image]) if params[:soup_image]

 Note that the existing create test is now also serving as proof that everything works just fine if the image
is not uploaded. To enhance that check, add the following line to the end of the existing create test:

assert_equal(0, SoupImage.count)

(continued)

c11.indd 292c11.indd 292 1/30/08 4:14:24 PM1/30/08 4:14:24 PM

Chapter 11: The Graphic Arts

293

 Also, if you ’ re debugging attachment_fu behavior, you should know that the metadata for an
attachment, such as height or size, is not actually added to the object until it ’ s needed. If you just attempt
to look at the state of the object right after it ’ s created from the params hash, the object will have a lot of
 nil values. These will be filled in when the object is saved or otherwise used.

 Adding an attachment_fu Form
 The controller is only the receiver of the upload. You also need to add the form that will generate the real
upload data for the image. There are two changes that you need to make to the app/views/recipe/
_form.html.erb view page. First, you need to change the declaration of the form to have an encoding
type of multipart/form_data . This tells the browser that there will be an attached file as part of the
form. Here ’ s the new declaration:

 < % form_for(@recipe, :html = > { :multipart = > true }) do |f| % >

 This will include the proper multipart declaration in the form.

 Next, you need to add the actual form uploader widget. Somewhere in the form itself, add the following:

 < % fields_for :soup_image do |img| % >
 < p >
 < b > Image < /b >
 < %= img.file_field :uploaded_data % >
 < /p >
 < % end % >

 There are a couple of helpful Rails features in that snippet. First is the fields_for block, which is used
when you want to have a single form manage data for multiple ActiveRecord objects. In this case, the
upload data will belong to SoupImage , not the recipe. Logistically, this means that the field for the
uploaded data must comply with the naming convention that will tell the controller that the upload field is
not part of the recipe. Specifically, this means that the HTML name of the field has to be soup_
image[uploaded_data] and not recipe[uploaded_data] . Ordinarily the name of the field is generated
from the object specified as the target in the initial form_for block. The fields_for block, however,
allows you to have an interlude nested inside the larger form that is targeted at a different object or class.

 The resulting form has an upload field as shown in Figure 11 - 1 .

Figure 11-1

c11.indd 293c11.indd 293 1/30/08 4:14:25 PM1/30/08 4:14:25 PM

Chapter 11: The Graphic Arts

294

 After you select a file, the display shows the file as shown in Figure 11 - 2 .

Figure 11-2

 With these changes, submitting the form will upload the file, place the file in the correct /public
directory, generate the thumbnail, and save the metadata.

 As I write this, there appears to be an incompatibility between attachment_fu and Rails 2.0. It seems as
though the issue can be worked around by explicitly saving SoupImage before saving the recipe in the
 create and update methods. Please be on the lookout for a new release of attachment_fu to address
Rails 2.0 issues.

 Displaying attachment_fu Images
 Displaying images is straightforward, and you ’ ve already seen most of the pieces. First, it will be a little
cleaner if you give Recipe this little predicate method:

 def has_image?
 not soup_image.nil?
 end

 To show the main image in the recipe detail page, add the following highlighted code just above the
 servings field in the display:

 < % if @recipe.has_image? % >
 < %= image_tag(@recipe.soup_image.public_filename, :align = > :right) % >
 < % else % >
 & nbsp;
 < % end % >

 < p class=”servings” >
 Servings: < %= in_place_editor_field :recipe, :servings % >
 < /p >

c11.indd 294c11.indd 294 1/30/08 4:14:25 PM1/30/08 4:14:25 PM

Chapter 11: The Graphic Arts

295

Figure 11-3

 You can place the thumbnail image in the index display of the recipes with a similar piece of code in the
recipe index.html.erb file:

 < tr >

 < td >
 < % if recipe.has_image? % >
 < %= image_tag(recipe.soup_image.public_filename(:tag)) % >
 < % else % >
 & nbsp;
 < % end % >
 < /td >

 < td > < %= link_to(h(recipe.title), recipe) % > < /td >
 < % if_is_current_user recipe.user_id do % >
 < td > < %= link_to ‘Edit’, edit_recipe_path(recipe) % > < /td >
 < td >
 < %= link_to ‘Destroy’, recipe, :confirm = > ‘Are you sure?’,
 :method = > :delete % >
 < /td >
 < % end % >
 < /tr >

 You are using the Rails image_tag helper to create an img tag whose source is the public filename of the
image for this soup. If there ’ s no image, just display a blank space. Then the image will display as shown
in Figure 11 - 3 .

c11.indd 295c11.indd 295 1/30/08 4:14:25 PM1/30/08 4:14:25 PM

Chapter 11: The Graphic Arts

296

Figure 11-4

 Allowing the user - uploaded image to be placed directly in the public web server path is a potential secu-
rity risk, just as directly displaying text from user input can be. Although attachment_fu does some val-
idating on the type and size of your file, you might want to place image files outside the web server root,
and then mediate access to them either manually or via the server.

 Using Your Graphics Library
 Now that you ’ ve got some images in your system to manipulate, it ’ s time to discuss how to use the
libraries to do fancy graphical stuff (to use the technical term). A lot of these examples are going to be in
the console because you generally don ’ t want to have long - running graphics manipulation running in
your web server process (although MiniMagick spins off a separate command - line process on its own, so
including it is much less of a performance problem).

 ImageScience
 ImageScience has a very simple API, as you might expect from its focus on just resizing images. All the
manipulation is done via the method ImageScience.with_image(filename) . The method takes
the following block, in which you do whatever manipulation you need:

ImageScience.with_image(“data/soup.jpg”) do |image|
 image.thumbnail(150) do |thumbnail|
 thumbnail.save(“data/soup_thumbnail.jpg”)
 end
end

 The with_image method opens the file and converts it to an ImageScience instance. Within the
block, the call to thumbnail takes a single size dimension. The image is scaled proportionally until its
longest side is the given length. The method returns another ImageScience instance, which should be
used inside another block. The save method saves the new file to the given file location. If you change
the extension on the file, then ImageScience will perform the image type conversion for you.

 Figure 11 - 4 shows the result.

c11.indd 296c11.indd 296 1/30/08 4:14:26 PM1/30/08 4:14:26 PM

Chapter 11: The Graphic Arts

297

 The only attribute information you can get out of an ImageScience instance is the width and height
of the image (although I suppose you could infer the image format from the file extension). In addition
to the thumbnail method, you can try cropped_thumbnail , which forces a square thumbnail by cropping
the image to a square and then resizing the image. You can also use resize , which takes a width and a
height as arguments and resizes the image to fit. There ’ s also with_crop , which takes x, y offsets and
a rectangle width and height, and crops the image accordingly. The only other thing you can do with the
image is save it, as shown in the previous code listing.

 All in all, this is a tidy little API for a commonly used task.

 RMagick
 Here ’ s a nifty little method to place in your application.rb file. For this to work, you must have
 require ‘ RMagick’ (note the capitalization) at the top of the file and include Magick in the class
definition. Long term, you probably want the require statement in the environment.rb file, to
prevent RMagick from loading twice (loading twice can cause problems).

 def create_animated_gif(recipes, tag)
 with_image = recipes.select { |r| r.has_image? }
 image_names = with_image.collect do |r|
 “public/#{r.soup_image.public_filename(:tag)}”
 end
 image_list = ImageList.new(*image_names)
 image_list.delay = 100
 filename = “#{tag}.gif”
 image_list.write(filename)
 filename
 end

 This uses basic RMagick read - and - write functionality to create an animated GIF file from the uploaded
images associated with recipes. The first four lines convert the list of recipes to a list of image file names,
for those recipes which have images. The filenames assume that the naming convention from the upload
example earlier in this chapter has been followed.

 The fifth line creates an instance of one of the core RMagick classes, ImageList . An ImageList is
created from a list of filenames, each representing an existing image file on the system (if the file contains
more than one image, then all images are loaded into the list). The images are loaded into memory. The
next step sets the delay for the eventual animation at one second per frame (you can also set the number
of iterations that the animations will run using the iterations= method). In the last lines, a filename is
generated and the image list writes to that file. When you attempt to write an ImageList to a file format
that supports animation, each element in the list is becomes a frame in the animation. The result is a
quick few lines of code to create an animated GIF. (If you attempt to write to a file format that doesn ’ t
support animation, then each element is sent to its own file with the image name given and the further
suffixes .0 , .1 , .2 and so on. Note that this means that the output image name will not end with the file
type extension.) The method returns the filename.

c11.indd 297c11.indd 297 1/30/08 4:14:26 PM1/30/08 4:14:26 PM

Chapter 11: The Graphic Arts

298

 To use this RMagick method, you need to include it in the category controller show method as follows:

 def show
 @category = params[:id] ||= “”
 @recipes = Recipe.find_tagged_with(@category)

 @gif_name = create_animated_gif(@recipes, @category)

 The @gif_name attribute can then be slotted into the output view via an image_tag call, and you ’ ve got
yourself a snazzy — and possibly annoying — animated GIF for each category tag.

 ImageList
 An RMagick ImageList is a subclass of a Ruby array that will only hold RMagick Image objects (more
about this in a moment). Most Array and Enumerable methods will work directly on an ImageList .
 ImageList also defines a number of methods that work on the entire list. You ’ ve already seen a few of
them. A few others combine the images into a single image. The average method averages all the
images together into a single Image , and the montage method tiles all the images. You can also use the
 to_blob and from_blob methods to convert from an ImageList to binary database storage.

 In addition to the normal array features, an ImageList also maintains a current scene , which is basically
a pointer to a specific index in the array. The current scene attribute can be changed with the attribute
accessor scene= . When a new ImageList is created, the current scene is initially set to the last image in
the list.

 The current scene mechanism allows ImageList to respond to nearly all instance methods of plain,
ordinary RMagick Image objects — the method is applied to the image in the current scene. Whether this
is a better mechanism than explicitly referencing the image via its array index is debatable, but the
feature does have the interesting consequence of making Image and ImageList duck - type identical for
many purposes. This means that many of the methods you write using the RMagick API don ’ t have to
test whether they are being applied to an Image or an ImageList .

 Image
 The Image class has the bulk of the fancy processing features. I ’ m going to demonstrate a few of them by
writing them as methods on the SoupImage class already created, and then processing them in the Rails
console. This is by no means a complete list of RMagick ’ s image transformations, but it will serve to give
you the most commonly used features and a general guide toward the rest. Check out the RMagick
documentation for a complete list.

 To start, add the require and include commands listed previously to the environment.rb or soup_
image.rb file. Then add the following two methods:

 def local_filename
 “public/#{public_filename}”
 end

 def to_rmagick_image
 Image.read(local_filename)[0]
 end

c11.indd 298c11.indd 298 1/30/08 4:14:27 PM1/30/08 4:14:27 PM

Chapter 11: The Graphic Arts

299

 These methods will enable the easy transformation of the uploaded data to an RMagick Image . As you
can see, the Image#read method is used to convert a filename to an RMagick Image , and the file type is
inferred from the filename. The read method returns an array of all the images in the file — for example,
an animated GIF would return an array with each image. For some reason, this result is an actual array
and not an ImageList . Other class methods of Image include from_blob , which takes in a database
BLOB object, and new(width, height) , which creates a blank image.

 To start with the functionality that you ’ ve already seen elsewhere, RMagick has no less than four
separate methods for changing the size of an image. The flagship method is resize , which takes either a
width and height or a single scaling factor. In the Soups OnLine world, that could be called as follows:

 def resize_me(width, height)
 File.new(local_filename).copy(“#{local_filename}.old”)
 to_rmagick_image.resize(width, height).write(local_filename)
 end

 This version rewrites the new sized image over the original image, copying the old image first. The
 resize method also takes optional arguments to specify a filter and a blur factor on the changed image.
If the new image is going to be less than 10 percent of the size of the original, then it ’ s faster to use the
 thumbnail method, which also takes either a width and a height or a scale factor (but not a filter or
blur). The scale and sample methods also take the same kind of arguments, although the sample
method is different in that it does not do any color manipulation on the resulting image — the color set
of the new image is a strict subset of the original. All four of these methods return a new Image object,
and all four have a related method ending in an exclamation point (!), which changes the Image
object in place.

 The write method saves the image to the given filename, transferring the format if needed.

 Cropping is managed via the crop method, which takes in the size of the new bounding rectangle you ’ d
expect, as well as an optional x, y offset as the first two arguments, and another optional first argument
called gravity that tells where to place the bounding rectangle relative to the image. The gravity
argument anchors the bounding rectangle to a side or corner of the image. Generally you ’ d use either a
 gravity argument or an x, y offset, but not both. Here ’ s an example, with a helper method being used
to save the image with a new filename based on the old one:

 def adjusted_filename(suffix)
 filename, ext = local_filename.split(“.”)
 “#{filename}_#{suffix}.png”
 end

 def crop_me(width, height)
 r_image = to_rmagick_image.crop(CenterGravity, width, height)
 r_image.write(adjusted_filename(“cropped”))
 end

 And then:

 > > Recipe.find(1).soup_image.crop_me(150, 150)

c11.indd 299c11.indd 299 1/30/08 4:14:27 PM1/30/08 4:14:27 PM

Chapter 11: The Graphic Arts

300

 This results in the 150 - pixel - square center of the image, as shown in Figure 11 - 5 .

Figure 11-5

 Now for some effects. How about this nice old - time sepia tone (assuming that reads on the page at all):

 def sepia
 to_rmagick_image.sepiatone(MaxRGB * 0.8).write(adjusted_filename(“sepia”))
 end

 The argument to sepiatone is a threshold value — the argument passed is the one recommended by the
RMagick documentation. Figure 11 - 6 shows the result of this example code.

Figure 11-6

 Here ’ s one that I think is really cool: the Polaroid effect (see Figure 11 - 7). Under the right circumstances,
I ’ d probably have to be forcibly restrained from having every image on my site look like this.

c11.indd 300c11.indd 300 1/30/08 4:14:27 PM1/30/08 4:14:27 PM

Chapter 11: The Graphic Arts

301

 def polaroid
 img = to_rmagick_image
 img[:caption] = recipe.title
 img.polaroid(-15).write(adjusted_filename(“polaroid”))
 end

Figure 11-7

 The argument to polaroid is the angle to tilt the image in degrees. The line with the caption indicates a
general feature of images, namely that you can use the bracket syntax to set arbitrary properties on them
that some methods might look for. In this case, polaroid looks for a caption property.

 This brief sample should give you a feel for the vast amount of image transformations that RMagick
makes available.

 Draw
 You can also use more typical graphics commands to draw on a blank image or an existing image. Let ’ s
draw a big, fat X on an image:

 def x_me_out
 img = to_rmagick_image
 draw = Draw.new
 draw.stroke(‘red’)
 draw.stroke_width(5)
 draw.line(0, 0, img.columns, img.rows)
 draw.line(img.columns, 0, 0, img.rows)
 draw.draw(img)
 img.write(adjusted_filename(“x”))
 end

c11.indd 301c11.indd 301 1/30/08 4:14:28 PM1/30/08 4:14:28 PM

Chapter 11: The Graphic Arts

302

 This should look broadly familiar if you ’ ve ever done any programming in a graphics library with
drawing primitives. If you know the Scalable Vector Graphics (SVG) specification, you ’ ll find the
RMagick API very similar. The basic idea here is that the Draw class stores the list of primitive drawing
operations that are called on it. The primitive commands are not drawn as they are called (if you look at
the code, you ’ ll see there ’ s no association between the Draw object and the image when the primitives are
called). The result is something like a metafile — a set of instructions for drawing. The draw method
associates the Draw object with the images. and the commands are drawn on the image one by one. The
same Draw object can be used to draw the same pattern on multiple images.

 The coordinate system matches normal graphic conventions, the 0,0 coordinate is in the top left, and
positive rotation is clockwise. So the first line draw goes from top - left to bottom - right and the other one
crosses it from top - right to bottom - left. Figure 11 - 8 shows the result.

Figure 11-8

 There are more than 55 primitives in Draw , so I ’ m not going to cover all of them here. Besides, having all
these subtly different pictures of soup is making me feel a bit like Andy Warhol. I do want to cover one
other feature — placing text on the image like this:

 def with_caption
 img = to_rmagick_image
 draw = Draw.new
 draw.annotate(img, 0, 0, 0, 30, recipe.title) do
 self.fill = ‘blue’
 self.gravity = NorthGravity
 self.font_family = ‘Helvetica’
 self.pointsize = 24
 end
 img.write(adjusted_filename(“caption”))
 end

c11.indd 302c11.indd 302 1/30/08 4:14:28 PM1/30/08 4:14:28 PM

Chapter 11: The Graphic Arts

303

 The key method here is annotate , which takes as arguments the image being written on, the width,
height, x offset, and y offset of the bounding rectangle for the text (a width and height of 0 means resize to
fit); and the text itself. Inside the optional block, you can call any attribute accessor of Draw and have it
applied to the text draw. Notice that because annotate is not a graphics primitive, it ’ s automatically
associated with the image and a separate call to draw is not needed. Figure 11 - 9 shows an annotated image.

Figure 11-9

 MiniMagick
 MiniMagick offers an alternative mechanism for accessing most of the ImageMagick functionality. Where
RMagick has an elaborate Ruby API with several classes and methods that individually wrap much of
the underlying functionality, the bulk of MiniMagick is a single class with fewer than 10 methods. Where
RMagick manipulates images in memory, MiniMagick invokes the ImageMagick command line and
writes to temporary files. The main negative feature of MiniMagick is that it does not allow you to create
new images, nor does it support the image composition features that RMagick supports in the
 ImageList class.

 MiniMagick is basically a four - trick pony. Trick one is acquiring an image. The MiniMagick::Image
class has three ways to create an image. The new and from_file methods take a file location, which
must point to an existing image. The difference between the two is that from_file will create a
temporary file for MiniMagick to write to, and new will continually overwrite the existing file. There is
also a from_blob method, which takes serialized binary data, writing it to a temporary file for use by
other methods.

 Trick two is saving the image, which is accomplished with the write method. This method takes a file
location as an argument. (I trust this needs no further elaboration.)

 Trick three is the use of the Ruby [] method to wrap calls to the ImageMagick identify - format
command by making them look like hash lookups. In general, the symbol inside the brackets when the
 [] is used is passed directly as an argument to the ImageMagick command line; however, :width and
:height are special cases.

c11.indd 303c11.indd 303 1/30/08 4:14:28 PM1/30/08 4:14:28 PM

Chapter 11: The Graphic Arts

304

 To run this example, add require ‘ mini_magick ’ to the top of soup_image.rb , and define the
following methods:

 def to_mini_magick_image
 MiniMagick::Image.from_file(local_filename)
 end

 def mini_size
 mini = to_mini_magick_image
 [mini[:width], mini[:height]]
 end

 The sample usage goes like this:

 > > Recipe.find(1).soup_image.mini_size
= > [296, 300]

 Beyond width and height, there are a number of options that can be arguments to this method. For
example, you can use the following ImageMagick format string (see the references section for a link to a
complete reference):

 def some_mini_info
 mini = to_mini_magick_image
 “Image Depth #{mini[‘%z’]}, File Size #{mini[‘%b’]}”
 end

 > > Recipe.find(1).soup_image.some_mini_info
= > “Image Depth 8, File Size 20520”

 If the image contains Exchangeable image file format (Exif) metadata, then a format string of the style
 EXIF:ImageHeight can be used to extract the data. The special string EXIF:* will print all metadata in
a key=value format.

 MiniMagick ’ s fourth trick is probably the most interesting. It ’ s a method _ missing hack. Any other
method calls that are made to a MiniMagick image are passed as arguments to ImageMagick ’ s mogrify
command - line utility, which can do just about any image transformation defined by ImageMagick.
(Again, see the references for a complete list). So the following:

image.method(args)

is transformed to this command - line call:

mogrify -method args

 By way of example, here ’ s the MiniMagick version of the earlier method that cropped the middle of the
image:

 def mini_crop(width, height)
 mini = to_mini_magick_image
 mini.crop(“#{width}x#{height}+0+0\” -gravity \”Center”)
 mini.write(adjusted_filename(“cropped”))
 end

c11.indd 304c11.indd 304 1/30/08 4:14:29 PM1/30/08 4:14:29 PM

Chapter 11: The Graphic Arts

305

 The first line and the third line should look normal — it ’ s the second line that looks a little weird. It ’ s
getting mapped to the following ImageMagick command - line call (assuming it was called with 150,
150 as arguments):

mogrify -crop “150x150+0+0” -gravity “Center”

 The mogrify call needs to have a flag for both the cropping of the image and the information that the
crop should be centered. Unfortunately, the way MiniMagick handles multiple arguments if you format
them as multiple arguments is to put them all in a single string. This would mess up the quote marks in
the resulting mogrify call (it would eliminate the two marks that are explicitly placed in the second line
of the example), which would cause the call to fail. And doing the gravity call separately from the crop
call doesn ’ t work either. The general rule is that you are best off formatting all options to one call as a
single string when it goes to MiniMagick (this cries out for a helper method or perhaps a slight patch to
MiniMagick).

 To see another way to work around some naming weirdness, here ’ s a sepia toner again:

 def mini_sepia
 mini = to_mini_magick_image.send(“sepia-tone”, MaxRGB * 0.8)
 mini.write(adjusted_filename(“sepia”))
 end

 The actual command - line flag for sepia toning is sepia - tone , and the dash plays havoc with
attempts to create a method named sepia - tone . Therefore, I resorted to the send method to allow me
to create the oddly - named method call.

 The other examples all fall out similarly. The basic functionality is there, but you get to it differently.
Here ’ s the polaroid method:

 def mini_polaroid
 mini = to_mini_magick_image
 mini.polaroid(“15\” -caption \”#{recipe.title}”)
 mini.write(adjusted_filename(“polaroid”))
 end

 It uses the same trick for managing quotation marks. Weirdly, if you have a negative number as the
degree argument to polaroid , MiniMagick wants to treat it as a command - line flag because of the dash
character, making it pretty much impossible to get the formatting right if there ’ s a second argument.

 The “ draw an X ” method shows how composing these command - line strings can get tangled:

 def mini_x
 mini = to_mini_magick_image
 stroke_info = “-stroke \”red\” -strokewidth \”5”
 mini.draw(“line 0,0 #{mini[:width]},#{mini[:height]}\” #{stroke_info}”)
 mini.draw(“line #{mini[:width]},0 0,#{mini[:height]}\” #{stroke_info}”)
 mini.write(adjusted_filename(“x”))
 end

 In this case, the draw command needs the line data and the stroke color and width for each call, so I
factored out the common stroke information into a separate string that is added into each command call.

c11.indd 305c11.indd 305 1/30/08 4:14:29 PM1/30/08 4:14:29 PM

Chapter 11: The Graphic Arts

306

 And, to wrap up the comparison, here ’ s the text annotation method:

 def mini_with_caption
 mini = to_mini_magick_image
 mini.annotate(“+0+30\” \”#{recipe.title}\” -pointsize \”24\” -gravity \”North\”
-fill \”blue”)
 mini.write(adjusted_filename(“caption”))
 end

 The conclusion here is that MiniMagick is probably faster than RMagick on a production system but
with a more awkward API (at least at the time of this writing, although I suspect that a cleaner way of
dealing with image options could be devised).

 Charts
 There are several different charting tools available for Rails — some use Flash, and others use just CSS
and HTML. This section focuses on two graph packages that build on top of RMagick.

 Gruff
 The more traditional chart package is called Gruff, written by Geoffrey Grosenbach. It is Ruby built on
top of RMagick, and it offers the typical variety of bar, line, area, and pie charts. Gruff is available as a
Ruby gem or as a Rails plugin. The plugin option adds a generator to create a controller for your chart.
You can install the Gruff plugin as follows:

$ script/plugin install -x http://topfunky.net/svn/plugins/gruff

 After the plugin is installed, you should create a controller for the chart. RESTful thinking would imply
one controller for each chart (with the controller in the show method); however, that one show method
could take various arguments to serve the data in different forms, or to serve different slices of the data.
You can generate a Gruff chart controller just by giving it a name.

 Getting Started
 To get Gruff to work, you ’ re best off creating a separate controller for the graph data. Gruff provides the
following migration to do so:

$ script/generate gruff CategoryGraphs

 In a comment in the generated controller, Gruff recommends adding the following line to the
routes.rb file:

map.graph “graph/:action/image.png”, :controller = > “category_graphs”

 This line will match routes of the form graph/show/image.png . You could also try a RESTful route, but
given the single method and the image file suffix, a traditional route is probably easier. If you do want to
have different graphs based on an ID, change the route to graph/:action/:id/image.png .

c11.indd 306c11.indd 306 1/30/08 4:14:29 PM1/30/08 4:14:29 PM

Chapter 11: The Graphic Arts

307

 As a first - look at the Gruff API, here ’ s what the Gruff controller produces by default, with a couple of
comments excised and some respacing:

class CategoryGraphsController < ApplicationController

 def show
 g = Gruff::Line.new
g.theme = {
:colors = > [‘#663366’, ‘#cccc99’, ‘#cc6633’, ‘#cc9966’, ‘#99cc99’],
:marker_color = > ‘white’,
:background_colors = > [‘black’, ‘#333333’]
}
g.font = File.expand_path(‘artwork/fonts/VeraBd.ttf’, RAILS_ROOT)
 g.title = “Gruff-o-Rama”
 g.data(“Apples”, [1, 2, 3, 4, 4, 3])
 g.data(“Oranges”, [4, 8, 7, 9, 8, 9])
 g.data(“Watermelon”, [2, 3, 1, 5, 6, 8])
 g.data(“Peaches”, [9, 9, 10, 8, 7, 9])
 g.labels = {0 = > ‘2004’, 2 = > ‘2005’, 4 = > ‘2006’}
 send_data(g.to_blob, :disposition = > ‘inline’, :type = > ‘image/png’,
 :filename = > “gruff.png”)
 end
end

 This code produces the graph shown in Figure 11 - 10 .

Figure 11-10

c11.indd 307c11.indd 307 1/30/08 4:14:30 PM1/30/08 4:14:30 PM

Chapter 11: The Graphic Arts

308

 There are four basic steps to generating a Gruff graph (try saying that 10 times fast). First, you choose the
class of graph you are shooting for. All graphs are subclasses of Gruff::Base — in most cases, they differ
only in how they are drawn, so the basic API doesn ’ t change. This graph uses Gruff::Line , but other
options include Gruff::Area , Gruff::Bar , Gruff::SideBar , Gruff::Pie , Gruff::Spider , Gruff::
StackedBar , and Gruff::StackedSideBar . There are also Gruff::Mini versions of the basic set.

 Step two is specifying the theme and font, which are commented out in the preceding code. The theme
takes a hash, which in this case consists of a :colors option that lists the colors used for the data sets,
in the order they are added, a :marker_color option that sets the color of the grid lines, and a
:background_colors option that takes two colors and sets up a top - to - bottom gradient between them.
If you ’ d rather have an image than a gradient, you can set :background_image instead. There are also a
handful of predefined themes that you can call, such as theme_37signals and theme_keynote . If you
want to add a font, the argument is a path to the font file.

 Step three is adding the data and labels. This is generally the same for each graph type. Each data series
is brought in separately. The first argument to the data method is a name for the dataset, the second
argument is the actual data series, and the third argument is an optional color. If the color is not
specified, then the next color is used from whatever theme is in effect. The theme must be specified before
you add data . The specific meaning of the data is dependent on the graph. For a line graph, each series is a
line. In a bar graph, each series is a set of bars, and multiple series are represented as bars next to each
other for each data point (in a stacked graph, they are on top of each other). A pie chart uses only the first
element in each data series. The labels represent the x - axis labels, and are specified as a hash, where the
key is the placement in the data series and the value is the string label.

 Finally, use the Rails send_data method to send the graph as a binary blob. In this case, the send_data
method is telling the browser to render the image inline, allowing it to be used in an HTML image tag
(the alternative is :attachement , which triggers a file download). The filename argument is for the
browser to use when the user attempts to save the image from within the browser.

 A Custom Example
 Now let ’ s do something with our own data. In this example, you ’ re going to build a pie chart of the
counts for each of the tags that can be displayed on the tag page. Change the graph controller to this:

class CategoryGraphsController < ApplicationController

 def show
 graph = Gruff::Pie.new(400)
 graph.theme_37signals
 add_data(graph)
 send_data(graph.to_blob, :disposition = > ‘inline’, :type = > ‘image/png’,
 :filename = > “categories.png”)
 end

 private

 def add_data(graph)
 counts = TagCloud.tag_counts(Recipe)
 counts.keys.sort.each do |key|
 graph.data(key.capitalize, counts[key])
 end
 end

end

c11.indd 308c11.indd 308 1/30/08 4:14:30 PM1/30/08 4:14:30 PM

Chapter 11: The Graphic Arts

309

 This should all seem familiar. The graph type is set to Pie , and the argument is the width of the graph
(the graph maintains a 4::3 ratio unless you pass in a string like 200x200). A predefined theme is set, and
every tag adds a one - element data set. Then the graph can be sent.

 To place that on the category index page, put the following line in the view:

 < %= image_tag ‘/graph/show/image.png’ % >

 And voil à ! Figure 11 - 11 shows the result.

Figure 11-11

 Sparklines
 In his book Beautiful Evidence , famed information - graphics designer Edward Tufte introduced the
concept of sparklines : small, data - rich graphics embedded inline with text or a table. Although sparklines
are perhaps best suited to the higher resolution of print, several implementations of the basic concept
have been done for the Web, including a Ruby on Rails plugin. As it happens, the Ruby sparklines
implementation is by Geoffrey Grosenbach, who is responsible for Gruff.

c11.indd 309c11.indd 309 1/30/08 4:14:30 PM1/30/08 4:14:30 PM

Chapter 11: The Graphic Arts

310

 You can get sparklines by installing the plugin as follows:

$ ruby ./script/plugin install http://topfunky.net/svn/plugins/sparklines

 And you can use the following generator to create a single sparkline controller:

$ ruby ./script/generate sparklines

 With the controller up, sparklines can be created inline via a helper method. Here ’ s an example that
generates some random data and displays it in several different sparkline formats:

 < % data = (1..100).collect { rand (100) } % >

 < %= sparkline_tag data, :type = > :area, :upper = > 50, :has_max = > true % >
 < br/ >
 < %= sparkline_tag data, :type = > :bar % >
 < br/ >
 < %= sparkline_tag data, :type = > :discrete, :upper = > 50 % >
 < br/ >
 < %= sparkline_tag data, :type = > :smooth, :upper = > 50, :has_max = > true,
 :line_color = > ‘blue’ % >
 < br/ >
 < %= sparkline_tag [25], :type = > :pie % >
 < br/ >
 < %= sparkline_tag data.collect {|i| (i / 20) - 2}, :type = > :whisker % >

 Figure 11 - 12 shows the on - screen result.

Figure 11-12

 The top sparkline is an area plot, with values above a baseline in one color, and values below it in
another color. The second sparkline is a bar graph. The third sparkline is a discrete graph, which is
similar to a bar graph but the lines are a constant height. Then there ’ s a simple line graph, and then a
pie chart that only draws a single value. The last sparkline is a whisker plot, which is often used to plot
win - loss data for sports teams.

c11.indd 310c11.indd 310 1/30/08 4:14:31 PM1/30/08 4:14:31 PM

Chapter 11: The Graphic Arts

311

 The sparkline helper tag takes a number of general options, including :height for the height of the
image, with a default of 14 pixels. The CSS class defaults to sparkline , but this can be changed with the
 :class option. You can set the :background_color , : line_color . You can also specify :above_color
and :below_color for graph types that make a distinction, although the actual value to switch on is
covered by the :upper option. And as you can tell from the preceding code, the :type option specifies
which kind of sparkline to draw.

 The line and area graphs can highlight the maximum, minimum, or final value by setting :has_max ,
:has_min , or :has_last to true . You can specify colors with :min_color , :max_color , or :last_
color . For a whisker plot, the data values are - 2 , - 1 , 0 , 1 , and 2 . Negative values indicated a down line,
positive values are up, 0 means no data. 2 and - 2 are considered “ exceptional values. ” Colors can be
modified with the options :whisker_color and :exception_color .

 Resources
 The image of chicken soup used in this chapter was taken by Sanja Gjenero, who apparently lives in
Croatia (have I mentioned that I love the Internet sometimes?). I found it on a stock photo site at
 www.sxc.hu/photo/519735 , and created the examples in this chapter following the usage options
presented on that site.

 ImageMagick lives at www.imagemagick.org . This site contains an extensive list of the ImageMagick
command - line interface, which can be invaluable if you are using MiniMagick. GraphicsMagick is
housed at www.graphicsmagick.org . RMagick ’ s home page is http://rmagick.rubyforge.com .
The site has a detailed look at the RMagick API as well as some installation troubleshooting information.
ImageScience has its home page at http://seattlerb.rubyforge.org/ImageScience.html .
MiniMagick doesn ’ t seem to really have a home page, but it can be downloaded from http://
rubyforge.org/projects/mini-magick . Gruff and sparklines are both hosted on the same server,
Gruff is introduced at http://nubyonrails.com/pages/gruff , and you can get the sparklines plugin
at http://nubyonrails.com/pages/sparklines .

 Here are some other links of note. Mike Clark has an excellent introduction to uploading files at
www.clarkware.com/cgi/blosxom/2007/02/24 . A useful presentation on the differences between
RMagick and MiniMagick is online at http://marsorange.com/files/rmagick_vs_minimagick
.pdf — the author goes by the name Mars. The same author has a cautionary note about using RMagick
with the Rails tempfile naming scheme: http://marsorange.com/archives/of-mogrify-
ruby-tempfile-dynamic-class-definitions .

 I regret not having more of a chance to include Flash - and Flex - based solutions here. There are a number
of Flash - based graph libraries that can use Rails as a data source, but there doesn ’ t seem to be much
Rails - specific tool support, and many of the libraries are commercial. The definitive source for Rails
interaction with Flex is Peter Armstrong ’ s blog (www.flexonrails.net) and the associated book, which
should be out by the time you read this.

c11.indd 311c11.indd 311 1/30/08 4:14:31 PM1/30/08 4:14:31 PM

Chapter 11: The Graphic Arts

312

 Summary
 Graphics have been an important part of the Web since the beginning. There are a number of different
tools for supporting graphic manipulation in Rails. The most important library is RMagick, but
MiniMagick and ImageScience are also useful. Installing any of the three projects can be complex.

 The attachment_fu plugin offers great support for accepting uploaded files such as images from users,
validating them, and storing the metadata in the database. attachment_fu supports storing the file in the
file system, the database, or Amazon ’ s S3 online storage.

 ImageScience is used only for resizing images. RMagick allows for a wide variety of different image -
 manipulation functions, including piecing together animated GIFs, various kinds of color filtering, and
low - level primitive drawing. MiniMagick offers most of the same functionality as RMagick, but it relies
on command - line calls to the underlying graphics library, rather than on an ongoing process.

 Gruff is a simple library for creating charts. You can easily set chart types and data in your code, and
there ’ s a flexible API to tune the output display. Sparklines are small, inline graphs that can be created
using a sparkline plugin.

c11.indd 312c11.indd 312 1/30/08 4:14:31 PM1/30/08 4:14:31 PM

 Deploying Your Application

 It ’ s inevitable. At some point your Rails application has to leave the comforting home of your
development setting and make its own way in the cold, cruel world of production environments.
Deploying Rails applications has been an area of extremely rapid change and development — even
by Rails standards — with the definition of deployment best - practice tools changing completely
every few months. As I write this, though, the field appears to have settled on a consistent set of
tools. This toolset is designed to take you from your development environment to low - traffic,
high - traffic, and very - high – traffic production sites using the same basic technologies.

 Every deployment is different, of course, and the requirements for deploying high - traffic Rails
sites like Basecamp or Twitter are different than you might need for an internal sales tool, or for
a soup - recipe trading site. This chapter focuses on two of the most generally valuable tools in the
Rails deployment kit: Capistrano, which is used to automate deployment activities, and Mongrel,
which has emerged as the Rails application server of choice.

 Deployment can be complex, and one of the best ways to mitigate that complexity is to start
practicing the deployment early and often. Even during the earliest part of development, you
should try to set up a staging server and start deploying to it, to test out all the various connections
between the web server, source control, the database, and so on. That also gives you a platform to
try out various server configurations and do some baseline performance measurements. This
chapter gives you the basic tools to manage your deployment. The next chapter tackles managing
performance and security on a production Rails application.

 Capistrano
 Deployment has always been a uniquely stressful period in the web development cycle. On most
projects, it requires an elaborate protocol of copying files, restarting web servers, shutting down
databases, possibly migrating data, restarting databases, and possibly rebooting machines. (Crossing
your fingers is optional.) Often the process is mediated by a checklist, or by the memory of the
developer who has been with the project the longest. It ’ s time - consuming and error prone at exactly
the time you most want to move quickly and accurately. If you are in a cycle where you are deploying
frequently, then the time and effort quickly becomes a drag on the development process in general.

c12.indd 313c12.indd 313 1/30/08 4:18:16 PM1/30/08 4:18:16 PM

Chapter 12: Deploying Your Application

314

 Capistrano aims to change all that by automating deployment tasks in much the same way that Rake
automates build tasks. Capistrano assumes a particular structure for your development and deployment
environments, but within that structure it ’ s amazingly helpful at managing the copy and restart dance.
It ’ s especially helpful as your deployment moves to multiple servers — Capistrano enables you to make
the same changes on all your servers with a single command.

 Starting with Capistrano
 Capistrano is distributed as a Rubygem, so naturally, you install it as follows:

$ sudo gem install capistrano

 As of this writing, the current version is 2.1.0.

 Capistrano requires you to have done some design and preparation of your deployment environment
before you can use it. In particular, you need to know what your web server or servers are going to be
and what commands need to be run remotely on those servers for them to start, stop, and restart.
Although it ’ s quite easy to extend your Capistrano deployment to multiple servers, it ’ s preferable to
start with just one server, especially while you ’ re making sure the script works. Your database instance
must already be available, although it does not have to have any tables or data in it — Capistrano
performs Rails migrations as needed.

 Capistrano communicates between the development machine and the deployment target using Secure
Shell (SSH) protocol. This means that the target server must be capable of receiving SSH commands
in a POSIX (Portable Operating System Interface) shell. Linux is preferred, although Mac OS X would
probably work, and some people have been able to make Capistrano work with a Windows server and a
Unix command - line emulator such as Cygwin. Capistrano assumes that you ’ ll be able to connect to the
remote machines via a public key rather than a password, although connection via password is posible .

 You must have an active source control system to use Capistrano effectively. To perform a deployment,
Capistrano checks out a clean version of your application from source control. In fact, Capistrano holds
on to recently deployed versions of your application unless explicitly told to clean up. This makes it
extremely easy to roll back a deployment to a previously known state (at least for the code — rolling
back database data is more challenging). This means that you need to be using a source control system
that is known to Capistrano. Not surprisingly, Subversion is the preferred choice here, although the
source code also claims it supports Bazaar, CVS, Darcs, Mercurial, and Perforce. For a default
deployment, the deployment target server must be capable of accessing the source control server.

 With all that in place, you can go to your Rails root and run the following from the command line:

capify .

 That adds two Capistrano files to your application. The first is called Capfile , and just loads the second
file, which is in config/deploy.rb (much the same way that Rake creates a rakefile that just loads
other task files). Capistrano files are often referred to as recipe files, but I ’ ll try to avoid that usage here
because it ’ s a little confusing with the actual details of the Soups OnLine application. The actual
configuration script is basically a place for you to give Capistrano the information it needs to get started.
The important thing about this file is that it ’ s just a plain Ruby file — although, like Rake, some custom
methods are defined to make it read cleanly as a build file.

c12.indd 314c12.indd 314 1/30/08 4:18:17 PM1/30/08 4:18:17 PM

Chapter 12: Deploying Your Application

315

 The first line of the deployment file asks you to specify a name of your application. Change the lines
to the following:

set :application, “soupsonline”
set :repository, “svn://desktop.local./soupsonline/trunk”

 This application name is used as part of the default deployment directory, so it needs to be a valid Unix
directory name. However, it doesn ’ t have to be the same name of the root application directory as given
in the code or the source control. The second variable set here is the URL of your source repository,
from the perspective of the target machine.

 Next up, the default file gives you the following two variables, which are commented out but you might
want to set:

set :deploy_to, “/var/www/#{ application }”
set :scm, :subversion

 The :deploy_to variable is the directory on the target machine where Capistrano is going to set up
shop. As you ’ ll see in a moment, Capistrano sets up a series of directories there so it can manage releases.
The default target directory is /u/apps/#{application} , where the application is whatever you just
set it to on the first line.

 In addition to setting the source control type, there are a couple of variables not shown here that are
helpful if you are using Subversion. By default, Capistrano will try to log into the source control system
using the same username and password that the Capistrano script itself runs under. If you need to
specify a different name you can add the following:

set :svn_user, ‘ < user_name > ’
set :svn_password, ‘ < password > ’

 If you don ’ t want to put the password in clear text in the deployment file, you can work around that as
follows:

set :svn_password, Proc.new do
 Capistrano::CLI.password_prompt(‘Subversion password: ‘)
end

 This causes Capistrano to prompt the user at the command line when it needs Subversion access.

 Capistrano assumes that the account running the script needs to use the Unix sudo command to gain
root access. If that ’ s not true (which generally means that the user can gain the necessary access without
using sudo), set the following variable to keep your scripts running properly:

set :use_sudo false

 If your Subversion is in some unusual location outside the command path, you can specify the exact
command to trigger it. For example:

set :svn_command, ‘/some/weird/path/to/svn’

c12.indd 315c12.indd 315 1/30/08 4:18:17 PM1/30/08 4:18:17 PM

Chapter 12: Deploying Your Application

316

 Finally, you can set the addresses of the server or servers that you will be deploying to. Initially, you ’ ll
need to set only one of these (by convention, set :app), and the others can be commented out or deleted.
For example:

role :app, “your app-server here”
role :web, “your web-server here”
role :db, “your db-server here”, :primary = > true

 One of Capistrano ’ s big selling points is the capability to manage multiple servers from the same
command line. When you want multiple servers in your deployment, just add them in their roles as
additional arguments to each list. For example:

role :app, “server1.serverfarm.com”, “server2.serverfarm.com”

 Capistrano ’ s default behavior is to run all executed tasks on all defined servers. As your deployment
adds servers and servers take on more specific roles, you aren ’ t going to want to do all the tasks on all
the servers (it makes no sense to restart a web server on your database box). That ’ s where roles come
into play. A Capistrano task can be defined to run only on a specific role or roles, in which case
Capistrano will run the task only on the servers that are part of that task.

 If your server setup is such that the servers are accessible only via a gateway server, Capistrano can
handle that with no difficulty. Just add the following line to your deployment file:

set :gateway, “www.thegatewayserver.com”

 Capistrano will then route requests to the machines through the gateway server via an SSH tunnel.

 Basic Capistrano Tasks
 You can run Capistrano tasks from the command line by using the following command:

cap < your capistrano command here >

 Basic Deployment
 To prepare the target server for Capistrano deployment, the first command you need to run is this:

cap deploy:setup

 This command just sets up the Capistrano directory structure for your application:

 < app root >
 |-------releases
 |-------shared
 |-----------system
 |-----------log
 |-----------pids

 Capistrano places each new deployment of your code into a fresh new subdirectory and places a
symbolic link called current in the app root , which is the public face presented to the web server.
The shared directories are used for information common to all releases, such as log files.

c12.indd 316c12.indd 316 1/30/08 4:18:18 PM1/30/08 4:18:18 PM

Chapter 12: Deploying Your Application

317

 You need to run the setup command each time you add a new server to the deployment. Although
there ’ s no particular harm in running the command on a server that has already been set up, you can
limit the command to just the new server with a command like this:

cap deploy:setup HOST=mynewhost.com

 After the server has been set up, you can do the initial, or cold , deployment as follows:

cap deploy:cold

 The initial deployment is different from most of your other deployments in that your web server is not
actually running. A cold deployment will run three subtasks.

 First is the update subtask. This task performs a fresh download from your source control system into
a new release directory. It then does some file manipulation, including redirecting the system, log, and
PIDS (protocol - based intrusion detection system) directories to the shared directory and pointing the
current symbolic link to the new directory.

 The second subtask is a standard Rails migration, to update the production database to the current data
schema. Given the structure of the Subversion repository for Soups Online as created in Chapter 1 , and
the current state of this deployment file, this step will not complete. That ’ s because you did not actually
put a database.yml file under Subversion control, opting instead to create a database.yml.template
file to be managed locally, so the migration task cannot find the production database. This problem is
easily solved by adding custom tasks to the deploy.rb file, which is the topic of the next section.

 The third task is to start the web server. This calls a shell script in your Rails application called script/
spin , which is expected to have the specific commands needed get the server or servers going. If you are
running a Rails application, and using a basic Mongrel or FCGI (FastCGI) server setup, a good place to
start is to just defer to the standard Rails script/process/spawner script, which will set up multiple
server instances (the default is three) on consecutive ports. Otherwise, you ’ ll want to populate the script
with whatever matches your installation. If you do not have a spin script, Capistrano will perform the
update and migration, but will report an error when it attempts to start the server. At that point, you can
start the server manually either by making a separate connection to the server, or by using Capistrano to
send commands.

 When the time comes to perform a second deployment, the command is just this:

cap deploy

 This is a hot deployment. It does an update and a server restart, but it does not perform a data migration.
The update is the same code update performed for a cold deployment — it checks a fresh copy out of
source control, creates a new directory, and performs symbolic link manipulation.

 The restart command is different from the command performed in the cold deployment. All it does is
call the standard Rails script/process/reaper . The reaper script is meant to run under Unix. It
searches for running applications using known process names (basically, anything that can be started by
the spawner script), and restarts all the processes. If your startup process is nonstandard, you ’ ll likely
have to write a custom version of this task as well.

c12.indd 317c12.indd 317 1/30/08 4:18:18 PM1/30/08 4:18:18 PM

Chapter 12: Deploying Your Application

318

 If you need your deployment to perform a data migration, you need to instead run the migrations
task; run the update , migrate , and restart tasks by hand; or write your own custom task.

 Standard Capistrano Tasks
 Capistrano comes with about two dozen predefined public tasks, although there are a few other ones
defined that are just used internally by other Capistrano tasks. This section gives you a quick look
at them all. Many of these tasks expect certain variables to be set, and there ’ s a full discussion of setting
Capistrano variables in the next section.

 The following table describes the tasks that upload or manipulate the server environment in some way.

 Task Description

 deploy Deploys your project to an already running server, and performs the
 update and restore tasks in order.

 deploy:cold Deploys your project to a server that is not currently running, and
performs update , migrate , and start in that order.

 deploy:migrate Runs the Rake migrate task. By default, this task runs the most recent
version of the code in the deployment. If, due to a rollback, the most
recent version is not the currently active one, target this task at the
currently active version by setting :migrate_target to :current .
You can also specify the path to the Rake in use by setting the :rake
variable. Specify any environment variables that need to pass to Rake
in :migrate_env .

 deploy:migrations Similar to deploy , but performs the Rake migrate task before
updating the symbolic link and performing the restart.

 deploy:restart Invoked by deploy to restart the servers, but can be invoked separately.
This task is typically invoked in a sudo shell. If that is not available in
your server environment, set the :use_sudo variable to false .

 deploy:rollback Performs a rollback of the most recent deployment. It deletes the most
recent deployment code, repoints the symbolic link at the next most
current deployment, and calls the restart task.

 deploy:rollback_code Does just the code rollback, without restarting the server.

 deploy:simlink Does just the symbolic link manipulation. Although this is a public -
 facing task, normally it would only be called via update or rollback .

 deploy:update The actual update from the source control system with the symbolic
link update, but without a server restart. This is transactional — if the
update fails, the target system will not be changed.

 deploy:update_code The update from the source control system without the symbolic link
manipulation. The default here is to use checkout for the update
command — if you need to change that for some reason, set the
:deploy_via variable.

c12.indd 318c12.indd 318 1/30/08 4:18:18 PM1/30/08 4:18:18 PM

Chapter 12: Deploying Your Application

319

 The tasks described in the following table enable you to validate or perform maintenance on the
server target.

 Task Description

 deploy:check Checks for a variety of dependencies, including that the directory
structure is in place. You can add your own items to be checked by
using the depend method in your deployment script. The first
argument to depend is either :remote or :local , which specifies
on which side of the deployment the requirement is checked.
The second argument is :gem , :command , or :directory . For a gem, the
third argument is the string name of the gem, and the fourth argument
is a string denoting the minimum version (for example, “ > =1.0 “). For
a command, the third argument is a command name that needs to be
executable in the selected context. For a directory, the third command
is the path to a directory that must exist.

 deploy:cleanup Removes non - current deployment directories from the server. By
default, five old deployments are kept. Set the :keep_releases
variable to a different number to change this behavior. This task also
looks at the value of :use_sudo to determine whether to use sudo in
the cleanup.

 deploy:pending Returns a list of all commits since the current deployment if your
source control system supports this. In other words, this task returns
the code changes that have not been deployed to the production
environment.

 deploy:pending:diff Like pending , but returns the actual diff instead of just the list
of files.

 deploy:setup Creates the Capistrano directory structure on any new servers in the
deployment.

 deploy:start Starts a non - running web server by calling script/spin in the Rails
deployment directory.

 deploy:stop Stops a running web server without restarting it, by calling script/
reaper in the Rails deployment directory.

 deploy:web:disable Places a maintenance .html page on all your web servers. If your web
server is configured to do so, this page will then be displayed on all
requests, allowing for a message such as “ This site under construction,
be back soon ” to be displayed during long shutdowns. Again, for this
to work, your web server must be configured (a sample Apache
configuration is shown after this table). The template for the page is in
 shared/system/maintenance.html , althoughyou can change it if
you want. The default maintenance page looks to environment
variables named REASON and UNTIL to fill slots in the page.

 deploy:web:enable Removes the maintenance.html page.

c12.indd 319c12.indd 319 1/30/08 4:18:19 PM1/30/08 4:18:19 PM

Chapter 12: Deploying Your Application

320

 From the Mongrel website, here are the commands to enable the maintenance task for an Apache server
(these go in your Apache web configuration):

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f
RewriteCond %{SCRIPT_FILENAME} !maintenance.html
RewriteRule ^.*$ /system/maintenance.html [L]

 Finally, there are a few tasks that let you do arbitrary one - off changes to your server (the “ Break Glass In
Case Of Emergency ” commands). These tasks are described in the following table.

 Task Description

 deploy:upload Uploads arbitrary files within your Rails distribution to the server. To specify
the file list, set the FILES environment variable with a comma - delimited list of
files and/or directories. If a directory is specified, all files and directories inside
it are transferred. System hidden files that start with . are not transferred.

 invoke Allows you to run an arbitrary command on specified hosts. The command to
execute is placed in the COMMAND environment variable. If the command needs
to run as root, set the environment variable SUDO to any true value.

 shell Runs an interactive shell that lets you send commands to all your servers.
Essentially, this is like running invoke repeatedly within the same session
without dropping and reconnecting to each server. Current documentation
says this feature is still experimental.

 Customizing Capistrano
 Although Capistrano is quite powerful out of the box (or should that be out of the gem?), to get it
working properly with your installation, you ’ re going to need to customize it. Customization can take
the form of changing Capistrano variables, writing your own tasks, and attaching your tasks as
dependencies to other tasks.

 Setting Variables
 Capistrano looks for two different kinds of variables: environment variables and variables local
to Capistrano. As far as I can tell, there ’ s no principled way to predict whether a value is expected to
be stored in the environment or in Capistrano ’ s own storage, but the two are set differently.

 Within your Capistrano file, you configure environment variables by setting elements of the ENV pseudo -
 hash as follows:

ENV[“REASON”] = “Server upgrade”

 However, to set Capistrano variables, you use the Capistrano set method. For example:

set :svn_user, “kermit_the_frog”

 The first argument is the symbol name of the variable to be set, and the second argument is the new
value. These variables are global to your Capistrano file. Several of the commands listed in the previous
section expect specific variables to be set, but you are free to set any arbitrary symbol name you like.

c12.indd 320c12.indd 320 1/30/08 4:18:19 PM1/30/08 4:18:19 PM

Chapter 12: Deploying Your Application

321

 Instead of a value as the second argument, you can pass a block. This is often done in conjunction with
the Capistrano::CLI module to prompt the user for a value during deployment. Earlier in the chapter,
you saw this used to obtain a password. It ’ s worth pointing out that you can use Capistrano::CLI
.ui.ask to give the user a prompt for a non - password masked response.

 You can set both kinds of variables from the command line using slightly different syntax. You specify
environment variables with a simple name=value syntax, like this:

cap deploy HOST=”server1.soupsonline.com”

 You can apply the HOST environment variable to any Capistrano command to limit the set of servers
which will receive the command. If multiple servers are specified, the names are separated by commas.

 You set Capistrano local variables using either a - s option switch or a - S option switch followed by an
arbitrary number of name=value pairs. The only difference between the two is when the variable value
is applied. The lowercase s switch sets the value after the Capistrano files have been loaded, which
means that any default value set in the script will be overridden by the command - line call — which is
the desired behavior most of the time. The preceding tables describe many cases where the command
expects a Capistrano value that can be reset at the command line, as in this example:

cap deploy -s keep_releases=3 deploy:cleanup

 The capitol S switch sets the variable values before the deployment files are loaded. You would do this
only in the case where the loading itself changes based on the variable value. For example, you might
have a logging variable where the actual method created depends on the preexisting value for the log
level. This feature is used less often than the lowercase s option.

Subversion Extraction Strategies
By default, Capistrano retrieves code from the Subversion server using the checkout
command, just as in a development environment. Although that’s fine in a develop-
ment or staging environment, it does create a whole slew of hidden .svn directories
and the associated files underneath them. This is something of a security risk because
under many web server configurations, the .svn files would be publicly readable. That
could be annoying, or embarrassing, or catastrophic, and in any case should probably
be avoided.

To prevent this on your deployments to production, tell Capistrano to do a Subversion
export instead of a checkout by using the :checkout variable, like this:

set :checkout, :export

This tells Capistrano to do a Subversion export rather than a checkout, giving you the
files without the metadata. One downside to this choice is that you will no longer be
able to manually update your deployment with a Subversion update (which you might
do if you had only updated one or two files). Instead, you’ll need to export the entire
project again. If you want both the update behavior and the protected .svn files, your
best bet is to configure your web server to deny requests to filenames containing .svn.

c12.indd 321c12.indd 321 1/30/08 4:18:20 PM1/30/08 4:18:20 PM

Chapter 12: Deploying Your Application

322

 Writing New Tasks
 Remember when I mentioned that the deployment would fail out of the box because of the database
.yml file? Well, now it ’ s time to write your own Capistrano task to fix the problem. The basic syntax of a
Capistrano task is very similar to a Rake task. The main difference is that Capistrano does not define
dependencies in the task definition. Here ’ s a first pass at the task — in the simplest case, the template
has already been set to the proper values for production, so all you need to do is copy the file to
 config/deploy.rb :

require ‘FileUtils’

desc “Copy the template to the database.yml”
task :create_database_yml, :roles = > :app do
 filename = “#{release_path}/config/database.yml”
 FileUtils.copy “#{filename}.template”, filename
 File.chmod 664, filename
end

 Because I ’ m deploying to a Unix system, and I don ’ t want to spend hours tracking down mysterious
little permission issues, I explicitly set the file mode of the database.yml file to world - readable.

 This should all look really familiar. The desc and task methods are similar to Rake in that they set the
documentation for a task and then define the task. Capistrano also has a namespace method that
behaves just like Rake. For a Capistrano task, you can specify the :roles for which the task applies. The
default available roles are :app , :web , and :db , each of which corresponds to a set of servers dedicated
to that particular task. At this point, there ’ s only one server in development, so specifying the role is kind
of redundant, but it ’ s a useful habit to have.

 As the deployment gets more complex, there may be more than one database.yml file in
production — for example, there may be multiple database servers to point to. In that case, you
may need to generate the file from scratch, like so:

desc “generate a new database.yml”
task :generate_database_yml, :roles = > :app do
 servers = find_servers :roles = > :db
 buffer = {:production = > {
 :adapter = > ‘mysql’,
 :database = > ‘soupsonline_production’,
 :host = > servers.rand, ### DON’T DO THIS IN PRODUCTION
 :username = > ‘user’
 :password = > ‘pass’
 }
 put YAML::dump(buffer), “#{release_path}/config/database.yml”, :mode = > 0664
end

 The YAML module is required for this to work, and on a real system, you ’ d do something more sensible
to map servers to hosts rather than just pick one at random. (In a related note, the special variable
 $HOSTNAME will contain the name of the host being deployed to each time the task is run.)

c12.indd 322c12.indd 322 1/30/08 4:18:20 PM1/30/08 4:18:20 PM

Chapter 12: Deploying Your Application

323

 Another task you ’ re probably going to want to do on your production environment is remove test code.
Here ’ s a sample task:

desc “remove tests”
task :remove_test_code, :roles = > :app do
 run “rm -Rf #{release_path}/test”
 run “rm -Rf #{release_path}/vendor/plugins/arts”
 run “rm -Rf #{release_path}/vendor/plugins/footnotes”
 run “rm -Rf #{release_path}/vendor/plugins/rails_rcov”
 run “rm -Rf #{release_path}/vendor/plugins/rspec”
 run “rm -Rf #{release_path}/vendor/plugins/rspec_on_rails”
end

 This removes all code in the test directory as well as all test - related plugins. As far as I know, the one
that ’ s most necessary to remove is rails_rcov , which reacts badly if rcov is not installed on the server
(this is fine, you wouldn ’ t need rcov on a production server,). If you find that you want the tests back
because something weird is happening and you want to run diagnostics, it ’ s easy enough to check them
back out from Subversion.

 This task also shows the Capistrano run method, which runs a shell command on all participating
servers. A related method is sudo , which runs the shell command inside a sudo shell on all servers.

 Within your task, you can place the following code inside a transaction block:

task :scary_task do
 transaction do
 on_rollback { undo_scary_task}
 scary_subtask
 end
end

task :scary_subtask do
 on_rollback {undo_scary_subtask}
end

 The transaction mechanism is pretty simple. If you are inside a transaction block and the main task
or a subtask fails, Capistrano checks for an on_rollback call in the main task and in any subtask that
has already run (including the one that failed). The on_rollback blocks are invoked. What you do in
the on_rollback block is completely up to you — Capistrano does no checking to ensure that your
rollback hook actually returns you to a stable state. However, if things get messed up, you can always
call the global deploy:rollback task and return to a known stable state.

 Unlike Rake, creating a new task with the same name as an existing task will override the existing task
completely. This is particularly useful for tasks like restart , start , and stop , where the defaults may
be too simplistic for a full - scale production deployment.

 Sadly, though, the Soups OnLine deployment still won ’ t quite work — at least not with the default
commands. To get those to work, you need to set dependencies.

c12.indd 323c12.indd 323 1/30/08 4:18:20 PM1/30/08 4:18:20 PM

Chapter 12: Deploying Your Application

324

 Creating Dependencies
 Capistrano handles dependencies between tasks differently than Rake. In Capistrano, you explicitly
specify that a task needs to be run before or after another specified task using methods that are helpfully
called before and after . In the case of Soups OnLine, there are two tasks: one to remove the tests and
another to create the database.yml file. These tasks should be run after every update. That means they will
be run on both cold and hot deployments. Include the following in your deploy.rb file.

after ‘deploy:update’, ‘create_database_yml’, ‘remove_test_code’

 The first argument to either before or after is the fully qualified task name of the task being
hooked. The name can be a symbol or a string, but remember that a name inside a namespace with a
colon is not a valid symbol. The remaining arguments are one or more fully qualified task names that
will be tied to the first task, running before it if the before method is used and — you guessed it — after
the task if the after method is used. You can have both before and after methods on the same task,
and they can be specified in more than one command (in other words, this command could have been
split into two after calls with no problem).

 Instead of a list of tasks, the methods can also take a block such as the following:

before ‘reload’ do
 # something
end

 In this case, the block is invoked in the same place that a defined task would have been.

 Both before and after are general cases of a method called on . Here ’ s a sample:

on :after, ‘deploy:update’, ‘create_database_yml’, ‘remove_test_code’

 The on method has a couple of hooks that before and after don ’ t. It has four additional event
descriptions beyond before and after . There ’ s a pair for :load and :exit , with :load executing
before any Capistrano files are loaded, and :exit executing after all tasks have completed. There ’ s
another pair for :start and :finish , executing at the beginning and end of a top - level task invoked
via a command line. And there ’ s the :before and :after events mimicking the before and after
methods you ’ ve already seen, which fire at the beginning or end of any Capistrano task.

 So far, you haven ’ t specified any existing events to be the base for the dependency. By default, on
:before and on :after work when any task starts or ends (the other events are not based on
individual tasks). To specify a task or set of tasks, set the last argument of on to either :only = >
{ “ task1 ” , “ task2 “ } or :except = > { “ task1 ” , “ task2 “ } . As with other places in Rails, the :only
argument specifies an exclusive list of fully - qualified tasks to hook the dependency on, whereas the
:except specifies the opposite — a list of tasks not to hook the dependency on, while all other tasks are
connected to the dependency.

 So, the after method you started with translates to this:

on :after ‘create_database_yml’, ‘remove_test_code’, :only = > {‘deploy:update’}

c12.indd 324c12.indd 324 1/30/08 4:18:21 PM1/30/08 4:18:21 PM

Chapter 12: Deploying Your Application

325

 Multistage Deployment
 A common deployment pattern is to have a staging server that mimics the production environment,
although usually on a smaller scale. For a while, this was only possible to manage in Capistrano if you
manually tracked the roles of the staging server. However, with Capistrano 2.0 and the Capistrano - ext
gem, you can manage an arbitrarily multistaged deployment.

 First, download the gem as follows:

$sudo gem install capistrano-ext

 Then make sure that the file capistrano/ext/multistage is visible to your Capistrano
deployment file.

 There is some information that will be specific to each stage. Most likely this is just the identity of the
various servers in that stage, but there may be some custom task definitions and whatnot (although if
there ’ s much difference between staging and production, the staging server is probably not that helpful).

 The idea here is that stage - specific settings are stored in separate files. By default, those files are called
 config/deploy/staging.rb and config/deploy/production.rb . The deployment file can be as
simple as just the server - name section of the original Capistrano file. For example:

role :app, “staging.soupsonline.com”
role :web, “staging.soupsonline.com”
role :db, “staging.soupsonline.com”, :primary = > true

 In a multistaged deployment, the main Capistrano file in deploy.rb doesn ’ t have any of this server
information — all of it is in the stage - specific file.

 When invoking a Capistrano task in a multistaged environment, you need to include the name of the
stage before the name of the task, as in this example:

cap staging deploy:cold

 Capistrano complains if you don ’ t specify a stage name. If that strikes you as too much of a pain, you can
specify a default stage in the main deployment file by setting the :default_stage variable like this:

set :default_sage, production

 If a default stage is set, that will be the stage used if no stage name is included in the command.

 You can also specify your own stage name by setting the :stages variable. For example:

set :stages, %w(soup_staging soup_production soup_testing)

 The custom stage names are used for the names of the files in the config/deploy directory, and as the
stage names when invoking a Capistrano task.

c12.indd 325c12.indd 325 1/30/08 4:18:21 PM1/30/08 4:18:21 PM

Chapter 12: Deploying Your Application

326

 Mongrel
 Mongrel was developed to fill a need. It ’ s a small, Ruby - based web server (with C extensions for speed)
that integrates nicely with Rails and other Ruby web frameworks. It ’ s easy to set up for a small site, and
you can cluster and scale it to manage high - traffic loads as well. In this section, you ’ ll see how to set up
and install a simple Mongrel installation, and how to create a clustered Mongrel setup and integrate it
with Capistrano.

 Please note that as web deployments need to manage more and more traffic, they become somewhat
specialized to the needs of that particular web application. They also increasingly rely on server
components that are external to Rails and this book. See the “ Resources ” section at the end of this
chapter for suggestions on managing high - traffic Rails web applications.

 Getting Started
 Mongrel is distributed as a Ruby gem. Install it as follows:

$ sudo gem install mongrel

 As of this writing, the current version is 1.1.2, and you will be prompted to select a specific version based
on whether you are on Windows or something else.

 If Mongrel is installed, the script/server command you run during development will auto -
detect it and run Mongrel instead of the default WEBrick. However, the preferred way of starting
Mongrel as a Rails server, even during development, is by running the following command from your
Rails root:

mongrel_rails start

 When the mongrel command has no arguments, it will run in the foreground and can be stopped with
a normal Ctrl+C. However, the - d option at the end of the command causes Mongrel to run as a
background application (a daemon, hence the - d argument), in which case, you stop it with the
following (conveniently named) command:

mongrel_rails stop

 The - d option does not work in Windows systems. You need to also install the Windows service gem
 win32 - service (described shortly) to get background behavior on Windows.

 Mongrel takes a few other command - line options, in addition to the standard - h to retrieve a
help message and -- version to get the running version. These options are described in the
following table.

c12.indd 326c12.indd 326 1/30/08 4:18:21 PM1/30/08 4:18:21 PM

Chapter 12: Deploying Your Application

327

 Option Description

 - a - - address The IP address to run under. The default is localhost .

 - B - - debug Runs in debug mode.

 - C - - config Filename of a configuration file containing further options. If this option is
used, Mongrel will load the file and ignore any other command - line options.

 - c - - chdir A directory name to change to before starting.

 - e - - environment Rails environment: debug , test , or production .

 - G - - generate Generates a configuration file based on all the command - line options instead
of starting the server. This file can then be loaded via the - C option.

 - - group The name of the group to run as.

 - l - - log A filename to write log files to. This option does not work in Windows. The
default is log/mongrel.log .

 - m - - mime The name of a YAML file with additional MIME types to serve beyond the
default list. The default set of detected file extensions is .css , .gif , .htm ,
 .html , .jpeg , .jpg , .png , .swf , and .txt , all of which go to the expected
MIME type.

 - n - - num - procs An integer, which is the number of simultaneous requests that can be queued
before users see an access - denied message.

 - P - - pid A file to write PID information to. This option does not work under
Windows. It defaults to log/mongrel.pid .

 - p - - port The port number to bind to. The default is 3000 .

 - - prefix A URL prefix that would need to be stripped before the URL is processed by
Rails.

 - r - - root The path to the public document root. It defaults to public .

 - S - - script The pathname to a Ruby script that sets options.

 - t - - timeout The amount of time to wait before sending a time - out message. The integer
value is in hundredths of a second.

 - - user The name of the user to run as.

 If you are on Windows, you should be aware that a dependent gem called win32 - service might not
have been loaded by your system when you installed Mongrel. Please install it (choose the mswin32
version when prompted). You ’ ll also want to get the mongrel_service gem, which enables you to run
Mongrel as a Windows service.

c12.indd 327c12.indd 327 1/30/08 4:18:22 PM1/30/08 4:18:22 PM

Chapter 12: Deploying Your Application

328

 Creating a Windows service is actually dirt - simple. Run the mongrel_rails command, but instead of
 mongrel_rails start , use mongrel_rails service::install . You ’ ll need the full complement
of command - line options, including the - c option to set the starting directory and the - N option to
set the name of the service:

C:\mongrel_rails service::install -N soups_online_production -c d:\apps\
soupsonline -e production

 To start the service, use this:

C:\mongrel_rails service::start -N soups_online_production

 Newer versions of Mongrel may require the command to look like this:

c:\mongrel_rails service::start -e production

 And stop it with this:

C:\mongrel_rails service::stop -N soups_online_production

 Newer versions might also work with this:

C:\mongrel_rails stop

 Of course, after the service is installed, you can manage it via the Windows Server control panel rather
than the command line. You can have multiple services pointing to the same application, which is useful
if you want to keep both development and production versions of the service available to run.

 The only weird thing that I ’ ve seen in this is that stopping a Mongrel service takes a while and, when
stopped from the control panel, it kicks up a dialog box claiming that Windows couldn ’ t shut down the
service. Windows is incorrect, though, and the service has actually shut down. This may have been fixed
in recent versions of Mongrel.

 Basic Deployment
 Start your deployment with a single Mongrel instance. Then you need to get your Capistrano script
playing nicely with Mongrel. You can do this by rewriting the Capistrano deployment start , stop , and
 restart tasks to invoke Mongrel. The following example assumes that you ’ ve created a Mongrel
configuration file using the - G option described earlier, and placed it in config/deploy/mongrel.yml :

mongrel_file = “#{release_path}/config/deploy/mongrel.yml”

namespace :deploy do
 task :start, :roles = > :app do
 invoke_command “mongrel_rails start -C #{mongrel_file}”,
 :via = > run_method
 end

 task :stop, :roles = > :app do
 invoke_command “mongrel_rails stop -C #{mongrel_file}”,

c12.indd 328c12.indd 328 1/30/08 4:18:22 PM1/30/08 4:18:22 PM

Chapter 12: Deploying Your Application

329

 :via = > run_method
 end

 task :restart, :roles = > :app do
 invoke_command “mongrel_rails restart -C #{mongrel_file}”,
 :via = > run_method
 end
end

 Capistrano ’ s invoke_command method runs a command in either a regular shell or a sudo shell,
depending on the value passed to the :via key. In this example, the :via key is set to run_method ,
which is an internal Capistrano variable that looks for the :use_sudo value you set from the command
line. If :use_sudo is true , run_method is sudo , and the command is run in a sudo shell. Otherwise the
command is run in a regular shell.

 By redefining these tasks, the default Capistrano behavior is overridden, which means that the script
/spin , script/spawner , and script/reaper scripts will not be used (although you ’ ll read about
 spawner and reaper again in a moment). Alternatively, instead of putting a :start command in the
deploy file, you could just put the mongrel_rails start command in script/spin . However, I think
I prefer the preceding solution because it keeps all the commands in a single location for easier
maintenance.

 The problem with a single Mongrel instance is that Mongrel is not multithreaded. This is a deliberate
design choice. Rails is not thread - safe, and rather than mess around with the complexity of trying to
manage multiple Rails threads, Mongrel chooses to remain simple and quick. The obvious downside of
this approach is that a single Mongrel instance can respond to only one request at a time. That would
seem like a big problem, but who said that you ’ re limited to a single Mongrel instance?

 Clustered Deployment
 Currently, best practice for Mongrel deployment is to deploy multiple Mongrel instances, each listening
on a different port, and have a separate piece of software balance the loads between the various instances.
Although you could set this up by creating different Mongrel configuration files for each instance and
starting and stopping them, that is both a pain in the neck and prone to error.

 You ’ ve already seen one mechanism for creating a cluster of Mongrel items — the script/spawner and
 script/reaper standard Rails scripts. Another commonly used mechanism is the Mongrel extension
 mongrel - cluster , which can be downloaded as a Ruby gem like this:

gem install mongrel-cluster

 Basically, mongrel - cluster is significantly more configurable than spawner , which allows you to set
only the port, Rails environment, and number of mongrel instances.

 After mongrel - cluster is installed, you need to set up the cluster. The general idea is that instead of a
single Mongrel instance listening to the web server port, a series of Mongrel instances listen on a set of
different ports, while a server capable of load balancing and reverse - proxying listens at the actual web
server port and directs requests to the clustered Mongrels in a balanced way.

c12.indd 329c12.indd 329 1/30/08 4:18:22 PM1/30/08 4:18:22 PM

Chapter 12: Deploying Your Application

330

 To configure the cluster, you still use the mongrel_rails command, but with a new subcommand
called cluster::configure . There are other subcommands for cluster::start , cluster::stop ,
 cluster::status , and cluster::restart . The configuration options are the same as for a single
instance of Mongrel, with one new option: - N -- num_servers . It provides the number of
Mongrel instances to start.

 The - p option specifies the port number of the first instance, and subsequent instances are given
consecutive port numbers. A typical starting value is 8000 .

 So, to set up five servers in a typical environment, you might do this:

$ mongrel_rails cluster::configure -e production -N 5 -p 8000

 On a Unix system, it ’ s good practice to set up a separate user account just to run the Mongrels. That is
easier in the clustered environment because the Mongrels are no longer on port 80, and therefore no
longer need special access to grab their ports.

 This command places a configuration file in config/mongrel_cluster.yml under your Rails root. You
can then go in and edit the YAML file to make configuration changes.

 With the configuration file set up, you can start and stop the cluster. The mongrel - cluster gem will
find the configuration file in the default location, or you can use the - C option to specify a different
location. While the cluster is running, you can verify it by hitting any of the ports specified in the
configuration — in this case, 8000, 8001, 8002, 8003, and 8004.

 Capistrano and Clusters
 The mongrel_cluster gem comes with its own set of Capistrano tasks to simplify deployment of a
Mongrel cluster. To make them available to your deployment, you need the following line in deploy.rb :

require ‘mongrel_cluster/recipes’

 As I write this, the Mongrel cluster tasks have not yet been updated to Capistrano 2.0. However,
I expect that to be completed by the time you read this, so I ’ m writing this as though the cluster tasks are
compatible.

 After you load this file, the deploy:start , deploy:stop , and deploy:restart default tasks will have
been overridden to call the appropriate Mongrel cluster commands. These tasks redirect to tasks called
 deploy:start_mongrel_cluster , deploy:stop_mongrel_cluster , and deploy:restart_
mongrel_cluster . There is also a deploy:status_mongrel_cluster task that runs the status
command, and a deploy:configure_mongrel_cluster task that creates a mongrel_cluster.yml
file based on a set of Capistrano variables, which are also loaded as part of the cluster recipe.

 The defined variables match the Mongrel command - line options mostly one - for - one, but you can set
them from within your own Capistrano script or from your Capistrano command line. The variables are
listed in the following table, with some comments where it ’ s not completely clear what the variable does.

c12.indd 330c12.indd 330 1/30/08 4:18:23 PM1/30/08 4:18:23 PM

Chapter 12: Deploying Your Application

331

Variable Comment

:mongrel_address The IP address to listen at.

:mongrel_clean If true, Mongrel runs with the --clean option.

:mongrel_conf Location of the cluster YAML file.

:mongrel_config_script Location of the script to set values.

:mongrel_environment

:mongrel_group

:mongrel_log_file

:mongrel_pid_file

:mongrel_port

:mongrel_prefix

:mongrel_rails The command to start Mongrel. The default is mongrel_rails.

:mongrel_servers The number of Mongrel instances to start.

:mongrel_user

 This should enable you to manage a cluster of Mongrel installations flexibly through Capistrano.

 Load Balancing
 At this point, you have a number of Mongrel instances running on nonstandard ports. Unfortunately, it ’ s
not practical to politely request that the Internet as a whole hit your website at a random port between
8000 and 8004. What you need is some kind of tool that sits on port 80 and redirects requests to the
Mongrel instances, balancing traffic between them.

 There are a few different solutions to this problem, which can be divided into two categories. On the one
hand, there are some tools that are simply load - balancing proxies, such as Pen and Pound. These tools
are relatively small and simple to configure. However, they don ’ t bring a whole lot to the table beyond
simply balancing load. On the other hand, you have full - fledged web servers that also happen to be
load - balancing proxies. The leading contenders in the Rails world are Apache (version 2.2 and up) and
Nginx. Nginx has been getting some attention recently as a static server, but there isn ’ t a whole lot of
web-wide production experience to fall back on with that server yet. These tools are much larger
and much more complex to set up (especially Apache), but they are far more powerful and flexible. In
particular, the web server can be configured to serve static content such as images, JavaScript files, and
static HTML. This will further lower the load on the Mongrel servers and speed the overall throughput
of the system.

c12.indd 331c12.indd 331 1/30/08 4:18:23 PM1/30/08 4:18:23 PM

Chapter 12: Deploying Your Application

332

How Many Mongrels?
The obvious question about Mongrel clustering is how many Mongrel instances should
you run? Perhaps unsurprisingly, the short answer is “it depends.” The medium-size
answer is: roughly 8–12 per CPU, depending on available RAM, program usage, the
phase of the moon, and sunspot activity — in other words, it’s a bit more art than sci-
ence at this point.

The “References” section of this chapter has a link to a detailed description of how Zed
Shaw, developer of Mongrel, arrived at the 8–12 range. It’s the web analog of driving
heavier and heavier trucks over a bridge to determine its maximum load. The steps are
as follows:

1. Use the httperf command, or another benchmarking tool to get a baseline
speed for a typical static page in your system under no-load, best-case condi-
tions and also for a typical Rails page under best conditions.

2. Verify the reported response rate, by running httperf at that rate.

3. Add another Mongrel instance.

4. Check the new rate.

Eventually, adding another instance will not improve the response time.

 Which load - balancing tool should you use? I ’ m personally a big fan of keeping it simple where possible,
and I ’ m not so much a fan of messing around with Apache configuration files, so I ’ d be inclined to try
the Pen solution, particularly if I had a good idea what the upper boundary of my traffic was likely to be.
Pen ’ s support for SSL is described as “ experimental, ” so that could be a deal - breaker. (Pound does
handle SSL.)

 Still, there ’ s no denying the power of Apache, and using it to serve static content can be a big
performance boost. If you or somebody on your team is an Apache expert or is willing to pretend to be
one, this is the way to go for large - traffic sites.

 Pen can be downloaded from http://siag.nu/pen , although if you ’ re on Linux, it might be available
through your system ’ s package manager. If you download it from source, it has a pretty typical
 configure – make – make install build sequence.

 After Pen is compiled, you run it with the following command:

pen 3000 localhost:8000 localhost:8001 localhost:8002 localhost:8003 localhost:8004

 That puts your five - instance Mongrel cluster back on port 3000, where it would have been originally. You
can use an - H command option before the initial port to add the X - Forwarded - For header and store the
original client IP there — however, you should not do this if Pen is itself behind an Apache server of
some kind.

c12.indd 332c12.indd 332 1/30/08 4:18:23 PM1/30/08 4:18:23 PM

Chapter 12: Deploying Your Application

333

 Now, hitting the server at port 3000 should work, with Pen passing the request off to a Mongrel. Pen
attempts to have clients that hit the server multiple times in a short period go to the same client again, or
you can set it to use a straight round - robin mechanism with the - r switch.

 To make this work as part of your regular deployment, you ’ ll need to augment your Mongrel - cluster
Capistrano start tasks to also start Pen using the preceding command.

 Mongrel, Apache, and You
 Apache is the 8,000 - pound gorilla of web servers. As of Apache 2.2, it includes a module for load
balancing called mod_proxy_balancer . When you feel like you are at the point where you need
Apache to serve your static content, then you ’ ll also want it to handle the Mongrel load balancing.
Much of this discussion is based on the best practice for Apache information at the Mongrel website
(http://mongrel.rubyforge.org/docs/apache.html) — check there for any recent updates.

 Apache can be downloaded from www.apache.org , and there are installers for all platforms.

 Here are some sample pieces of Apache configuration that manage various features that are desirable in
a Rails configuration. All of these pieces should be placed inside a virtual host configuration in your
 .conf file:

 < VirtualHost *:80 >
 # put stuff here
 < /VirtualHost >

 The following configuration option causes Apache to serve all the content in the /public directory:

 < Directory “/u/apps/soupsonline/current/public” >
 Options FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
 < /Directory >

 Remember, Capistrano always maintains a symbolic link between /current and the most recent
deployment.

 The following lines cause Apache to serve cached files, and redirect other requests to the Mongrel
cluster:

RewriteRule ^/$ /index.html [QSA]
RewriteRule ^([^.]+)$ $1.html [QSA]
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
RewriteRule ^/(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

 Caching is discussed in more detail in the next chapter.

c12.indd 333c12.indd 333 1/30/08 4:18:24 PM1/30/08 4:18:24 PM

Chapter 12: Deploying Your Application

334

 The balancer referenced in the last line of the preceding code needs to be defined in a separate part of the
configuration, outside the virtual host, as follows:

 < Proxy balancer://mongrel_cluster >
 BalancerMember http://localhost:8000
 BalancerMember http://localhost:8001
 BalancerMember http://localhost:8002
 BalancerMember http://localhost:8003
 BalancerMember http://localhost:8004
 < /Proxy >

 Each member is the IP address and port of one of the Mongrel instances that needs to be balanced. If and
when you change the server count or port numbers, you need to update this part of the configuration file
and restart Apache. (The “ References ” section has a link to some sample Capistrano tasks to manage an
Apache server.)

 This only scratches the surface of Apache configuration options. The Mongrel website has some
complete sample configurations under different circumstances that you should probably take a look at.

 References
 Capistrano ’ s home page is www.capify.org . The official documentation is a little light at the moment,
but there ’ s a push on to fix that. A wiki with Capistrano information is available at http://capify
.stikipad.com/wiki . Jamis Buck, main developer of Capistrano, introduces the multistage features at
 http://weblog.jamisbuck.org/2007/7/23/capistrano-multistage .

 A good presentation on Rails deployment and performance issues is “ Scaling a Rails Application from
the Bottom Up, ” by Jason Hoffman, founder of Joyent. Slides are available at http://jxh.bingodisk
.com/bingo/public/presentations/JHoffmanRailsConf-Berlin-Sept2007.pdf .

 If Mongrel and Capistrano 2.0 haven ’ t worked out their issues by the time you read this, try
http://thinedgeofthewedge.blogspot.com/2007/08/mongrel-and-capistrano-20.html for
details on reconciling them. Zed Shaw ’ s post mentioned in the “ How Many Mongrels? ” sidebar in this
chapter is available at http://mongrel.rubyforge.org/docs/how_many_mongrels.html .

 For more information about load balancers, see http://blog.codahale.com/2006/11/07/pound-
vs-pen-because-you-need-a-load-balancing-proxy and http://httpd.apache.org/
docs/2.2/mod/mod_proxy_balancer.html .

 The book Deploying Rails Applications: A Step - By - Step Guide by Ezra Zygmuntowicz and Bruce Tate, from
Pragmatic Books, is not out as I write this, but it promises to be a thorough look at the subject.

 Summary
 Deployment can be the scariest time in the lifecycle of your Rails application. Too often you are forced to
be manual when you most need to be automatic. Capistrano is the predominant Rails tool for supporting
automated and repeatable deployment.

c12.indd 334c12.indd 334 1/30/08 4:18:24 PM1/30/08 4:18:24 PM

Chapter 12: Deploying Your Application

335

 Capistrano assumes certain features of your deployment. It expects to be able to communicate with the
server via SSH, specifically using public keys. To get the most use out of Capistrano, use source control,
preferably Subversion.

 Capistrano enables you to split your servers into different roles and allows different tasks to be applied
to all servers in the specified roles. There are several different tasks predefined by Capistrano to support
the most common deployment and rollback tasks. In most cases, you ’ ll need to customize somewhat to
make sure that the scripts match your web server setup.

 If those tasks are not enough, you can write your own tasks using a Ruby syntax that is very similar to
Rake, although dependencies among tasks are managed differently. Capistrano can also handle the
common case where there is a staging server that mimics the production environment.

 Mongrel is the current best - of - breed Ruby web server for serving Rails applications. It can easily be
integrated with Capistrano. However, Mongrel is single - threaded, so in production environments it is
run in a cluster. Load balancing is handled by a proxy, of which Pen is a simple example and Apache is a
more complex example. Apache can also be configured to serve the static content while passing dynamic
content to the Mongrel cluster.

c12.indd 335c12.indd 335 1/30/08 4:18:24 PM1/30/08 4:18:24 PM

c12.indd 336c12.indd 336 1/30/08 4:18:24 PM1/30/08 4:18:24 PM

 Performance

 If you are lucky, when your web application goes out into the world, it will be used. Users are
lovely people in general, but they tend to have some specific expectations about the
responsiveness of a web application — expectations that have been honed from years of using
Google. Of course, Google has spent millions of dollars on server farms the size of football fields
while you have two Linux boxes on a rack in a back room somewhere.

 This chapter tackles strategies for keeping your web application ’ s performance up to speed. You ’ ll
look at some mechanisms for identifying under - performing code, and then examine common
bottlenecks and performance issues in Rails applications.

 Measurement
 People have been writing software for over a half century now, and the following three facts about
performance have proven true in nearly every circumstance:

 It ’ s almost always possible to buy speed at the expense of storage space.

 People are actually quite bad at predicting which parts of a computer program are the
biggest performance problems.

 Optimizing software too aggressively or too early is usually bad for the quality of your
software.

 Luckily there are ways to work around these issues. The basic approach is to start gathering data
about the performance of your application very early in the process, to gain some background data
for guidance when the time comes to fix the issues. This section discusses some tools for gathering
that data; the next section covers how and when to mitigate some of the problems you discover.

❑

❑

❑

c13.indd 337c13.indd 337 1/30/08 4:18:56 PM1/30/08 4:18:56 PM

Chapter 13: Performance

338

 Railsbench
 In general, there are two steps to identifying bottlenecks in your Rails application:

 1. Determine which page hits are slow.

 2. Determine what part of the calculation of the page is causing the problem.

 Railsbench is a solution to the first problem. I should clarify here that the performance issue I ’ m
referring to at this point is the server - side time spent turning the HTTP request into an HTML response,
not the bandwidth time spent getting the HTML and images down to the browser. This doesn ’ t mean
that the bandwidth issues are unimportant (the user doesn ’ t care where the slowdown is), but they are
somewhat easier to diagnose and fix.

 The Firebug extension for Firefox, which you should be using for many diagnostic purposes, includes a
nice graphical representation of the time it takes to load your page, broken down by component.

 Railsbench ’ s main purpose in life is to generate traffic to your application and time how long it takes to
respond. Although it started its life as a simple Ruby script, Railsbench has gotten more and more
powerful over its lifetime, and it ’ s now distributed as a Ruby gem. Install the railsbench gem as follows:

sudo gem install railsbench

 Using Railsbench, you can set up multiple test sequences that are run multiple times to determine a
meaningful average time for each page in the sequence. The data is stored in a text format, and multiple
data runs can easily be aggregated into a graph. Let ’ s see how it ’ s done.

 Setting Up Railsbench
 Getting Railsbench to work is (or at least can be) somewhat on the nontrivial side, although it ’ s possible
that some of these quirks will get ironed out by the time you read this.

 To start getting Railsbench up and running with your application, run the following command from the
root directory of your Rails application:

railsbench install

 The railsbench command is installed by the gem, and is the front - end to almost all of the
subcommands offered by the Railsbench gem. (It ’ s possible to maneuver things so that you can access
the internal scripts directly, but there ’ s not really much reason to unless you have existing scripts that
reference the other names.)

 The install command does four things. First, it creates a file config/benchmarks.rb . This is a setup
file for the benchmark object. It contains one active line and some commented - out suggestions as shown
in the following code (I took the text comments out of the file for clarity):

RAILS_BENCHMARKER = RailsBenchmark.new

RAILS_BENCHMARKER = RailsBenchmarkWithActiveRecordStore.new

c13.indd 338c13.indd 338 1/30/08 4:18:57 PM1/30/08 4:18:57 PM

Chapter 13: Performance

339

RAILS_BENCHMARKER.relative_url_root = ‘/blog’

require ‘user’
RAILS_BENCHMARKER.session_data = {‘account’ = > User.find_first(“name=’stefan’”)}

 The actual active line here creates a RailsBenchmark object, which is what drives the benchmarking
test. The first commented - out line should be used if you ’ re storing sessions using ActiveRecordStore and
you want those sessions to be automatically deleted from the database at the end of the testing. The
comment in the actual file notes that you really don ’ t want to do this on your actual production data —
 you ’ ll lose all your sessions.

 The second commented line is used if the URLs, as entered by the user, require a prefix that is not part of
your Rails routing (in other words, the Rails application is not the top level of the server). This is actually
optional, but recommended — particularly if your application is page caching. Just adjust the right side
of the variable assignment to match the application root in your system.

 The last commented lines allow you to set arbitrary data in the session for all requests generated by
Railsbench. As you ’ ll see in a moment, you can also set session data specifically for individual server
requests.

 The second file created by the installation is config/benchmarks.yml . This file contains the list of
requests the benchmarking test is supposed to hit. The default is just to target the application ’ s main
index, as shown here:

default:
 uri: /

 The data format here is somewhat similar to that for fixtures. Each target has an abritrary name and a
series of key/value pairs below it, starting with a URI, which is relative to your application root. The
URI attribute is required, and there are also optional attributes, described in the following table.

Attribute Description

method The HTTP method. The default is get, but post is also supported.

new_session The default Railsbench session behavior is to create a single session and continu-
ally pass it to each request for each target. If new_session is true, then that test
session is not passed to any requests in that target, causing a new session to be
created each time.

post_data A string of the form key=value used to store data for a post. The format of this
string is identical to a get query string, but Railsbench looks to this value for
post requests.

query_string The query string section of the request for this target. This information can also be
placed in the URI attribute. It is only applicable for get requests.

session_data Data that should be stored in the session for all requests to this target.

c13.indd 339c13.indd 339 1/30/08 4:18:57 PM1/30/08 4:18:57 PM

Chapter 13: Performance

340

 session_data expects a hash, formatted as a subelement in the YAML file like this:

with_session:
 url: restaurants/new
 session_data:
 user_id: 1
 last_viewed_recipe: 3

 You can also create targets that are aggregations of other targets, like so:

full_test:
 default, with_session, recipe_test, ingredient_test

 Also, when this file is loaded by Railsbench, it ’ s interpreted as an ERB file. Therefore, you can use the
ERB syntax to change values in the file dynamically.

 The third creation of the installer script is to add an entry to the database.yml file (remember to copy it
over to the template file if that file is stored in source control). The new entry is called benchmarking ,
and by default it mimics your development database as follows:

benchmarking:
 encoding: utf8
 socket: /tmp/mysql.sock
 username: root
 adapter: mysql
 password:
 database: soupsonline_development

 In practice, I suspect that pointing at production is just as common, so adjust the file as needed.

 The fourth element created by Railsbench is a new environment, config/environments/
benchmarking.rb . This environment file is run when you set up a benchmarking test. By default,
Railsbench copies your existing production environment file. You ’ ll need to adjust it to suit your needs.

 As I write this, Railsbench does not support the cookie method of storing session data, which is the new
default mechanism in Rails 2.0. You ’ ll need to change the session storage method to something else. See
the “ Managing Sessions ” section later in this chapter for options. If you have been playing along so far,
you probably have cookie storage, and Railsbench will not work until you change the storage method.

 Using Railsbench
 You can add a whole bunch of benchmark targets to your application by running the following
command:

railsbench generate_benchmarks

 This will generate a new target for each method in each controller, as well as an aggregate method for
each controller containing all the methods. Needless to say, this is probably overkill, although it ’ s likely
to be easier to prune the larger file than to add up the smaller files.

c13.indd 340c13.indd 340 1/30/08 4:18:57 PM1/30/08 4:18:57 PM

Chapter 13: Performance

341

 What should you use in your benchmark suite? A good representative sample of the application is fine.
Definitely include the main index page. Include some of the detail pages, possibly under slightly
different data patterns. Include a form submission. Include any controller that you think is doing
particularly tricky things, or any page that feels particularly slow during development. Don ’ t forget to
include Ajax calls if you can. Railsbench doesn ’ t support XHR (XMLHttpRequest) directly, but link_
to_remote and form_for_remote calls that have controller methods that can be mimicked with a GET
request should be included.

 Here ’ s the starting point for Soups OnLine benchmarking:

recipes:
 uri: /recipes

one_recipe:
 uri: /recipes/1

categories:
 uri: /category

one_categeory:
 uri: /category/grandma

search:
 uri: /category/search
 method: post
 post_data: search=chicken

default:
 recipes, one_recipe, categories, one_categeory, search

 That ’ s the index page for recipes, a detail page for a single recipe, the index page for category tags, a
single page category display (which is accessed via link_to_remote in the application), and a sample
search. That ’ s a good cross - section of the system as it currently stands, including some of the graphics as
well as a couple of page hits that do some processing and might strain the database.

 You probably don ’ t want to do this benchmarking on your production server, at least not while it ’ s live,
but you do want to do it on a staging server that ’ s as close to the production hardware setup as you can
get. This isn ’ t a load test, so you don ’ t have to worry about clustering or anything like that for the
benchmark tests — a new request won ’ t be spawned until the old one has completed. You also want the
size and makeup of the benchmarking database to be similar to the production server. If the production
server is already running, then a duplicate of that data would be helpful. Otherwise, you might want to
create enough fake data to strain the database a little bit.

 If you are planning to compare multiple benchmarks over a span of time, you ’ ll get more meaningful
comparisons if the database is constant. Obviously, this isn ’ t going to be completely possible during
development because the database schema is likely to change over time, but the more similar the data
store can stay, the more useful your benchmarks will be.

c13.indd 341c13.indd 341 1/30/08 4:18:58 PM1/30/08 4:18:58 PM

Chapter 13: Performance

342

 The simplest way to run Railsbench is with the perf_run command, as shown in this example:

$ railsbench perf_run 100

 This command will run the default benchmark target in the benchmarks.yml file. It will hit that target
100 times in a run, and it will make three separate runs. If the target in the YAML file is a compound
target, then each individual target will get its own 100 hits per run.

 Results are reported in a couple of ways. The raw data from each run is placed in a file, which by default
is ~/perf_run < benchmark > .txt . That file contains system and user time for each separate benchmark
target. Here ’ s an example of what that file looks like:

ruby /usr/local/lib/ruby/gems/1.8/gems/railsbench-0.9.2/script/perf_bench 100
 user system total real
loading environment 1.580000 0.610000 2.190000 (5.379068)
recipes 0.730000 0.130000 0.860000 (1.018847)
one_recipe 0.740000 0.130000 0.870000 (1.024061)
categories 0.720000 0.130000 0.850000 (1.008967)
one_categeory 0.740000 0.130000 0.870000 (1.014466)
search 0.680000 0.070000 0.750000 (0.888731)
 user system total real
loading environment 1.150000 0.390000 1.540000 (1.650157)
recipes 0.740000 0.140000 0.880000 (1.059861)
one_recipe 0.740000 0.140000 0.880000 (1.068661)
categories 0.720000 0.130000 0.850000 (1.053160)
one_categeory 0.690000 0.130000 0.820000 (0.988471)
search 0.680000 0.060000 0.740000 (0.908554)
 user system total real
loading environment 1.200000 0.410000 1.610000 (1.760356)
recipes 0.730000 0.130000 0.860000 (1.081788)
one_recipe 0.730000 0.140000 0.870000 (1.056404)
categories 0.720000 0.130000 0.850000 (1.028765)
one_categeory 0.730000 0.140000 0.870000 (1.488667)
search 0.690000 0.060000 0.750000 (0.916095)

 The categories here are as follows:

 user : The amount of chip clock time devoted to Rails activity.

 system : The amount of chip clock time taken by operating system activities.

 total : Adds the user and system values. The totals are the sum of all 100 requests.

 real : The actual amount of calendar time spent serving the request, regardless of whether the
server was actually processing the request or doing some other simultaneous task.

 If you find this raw data a little opaque, Railsbench also prints out a slightly processed version of the
data when a run is complete. This information can always be regenerated with the following command:

railsbench perf_times < filename >

❑

❑

❑

❑

c13.indd 342c13.indd 342 1/30/08 4:18:58 PM1/30/08 4:18:58 PM

Chapter 13: Performance

343

 The output aggregates the raw data somewhat, as shown here:

perf data file: /Users/noel/perf_run.default.txt
 requests=100, options=

loading environment 2.92986

page request total stddev% r/s ms/r
recipes 1.05350 3.0327 94.92 10.53
one_recipe 1.04971 2.1950 95.26 10.50
categories 1.03030 2.1485 97.06 10.30
one_categeory 1.16387 24.1938 85.92 11.64
search 0.90446 1.5627 110.56 9.04

all requests 5.20183 6.2717 96.12 10.40

 Each benchmark target gets its own row of data. The total in this report is somewhat misleading — it ’ s
the average from all runs of the column listed in the raw data as real . The stddev% is the standard
deviation of the three runs expressed as a percentage of the average. You ’ ll notice that the categories
target seems to be extremely variable for some reason, which is possibly just a server hiccup. The third
column, r/s , is the number of requests of that target the system would be able to process in one second
based on the raw data. The ms/r column is the inverse — the average number of milliseconds needed to
process a single request.

 Want to do something a little bit different? Railsbench has options aplenty. A few of them are specified as
environment variables, which means you might want to write a little wrapper script that sets them via
the Ruby ENV variable. The variable RAILS_PERF_DATA sets the directory in which to save the
performance files — the default is the user home directory. If you want to have more or less than three
runs per test, change the environment variable RAILS_PERF_RUNS .

 The command line for railsbench perf_runs takes an optional second argument, which is a
string. The string can contain anything you want, but if it contains a substring of the form - bm=target ,
then the specified target is run from the benchmarks.yml file. The entire string is kept as the Ruby
variable ARGV[1] , and you can access it in your benchmark environment file, where you would adjust
the properties of the environment based on the string. For instance, you could turn logging on or off
based on the existence of a - loglevel option. This is especially useful when you ’ re trying to determine
the performance implications of a particular feature or setting (different session stores, perhaps).

 In fact, it ’ s so useful, that Railsbench offers the following shortcut for it:

$railsbench perf_diff 100 “-bm=recipes” “-loglevel=0” “-loglevel=1”

 This will trigger two perf_run calls: one with the option string - bm=recipes - logloglevel=0 ,
and one with the string - bm=recipes - loglevel=1 . The output is sent to files named perf_run1 and
 perf_run2 .

 There seems to be a name crash if you use an option named log in perf_diff — Railsbench
appears to treat that as a special case.

c13.indd 343c13.indd 343 1/30/08 4:18:58 PM1/30/08 4:18:58 PM

Chapter 13: Performance

344

 An optional third argument after the string is a tag that will be appended to the output filename before
the extension. For perf_diff , you can include two tags: the first tag goes with the first run, and the
second tag goes with the second run.

 Railsbench also allows you to create graphs that aggregate the results of a number of raw files. For this to
work, you need to install Gruff as a gem with gem install gruff (in Chapter 11 , you installed Gruff
as a plugin instead). Then run this command:

$ railsbench perf_plot ~/perf_run.default.txt ~/perf_run.default_old.txt

 The results are saved to graph.png . Figure 13 - 1 shows a sample graph produced with the gruff gem.

 Figure 13 - 1

 For this to work best, each file needs to have run against the same benchmark targets. The graph is the
amount of requests per second, with each file getting its own series. The perf_plot script takes a
number of command - line options that let you modify the format. I ’ ll just mention that - bar makes the
graph into a bar graph, which you might consider to be a better representation of the noncontinuous
data. Similar commands called perf_html and perf_table give other reader - friendly interpretations of
the benchmark data.

 Railsbench has several other handy commands, such as perf_run_gc and perf_times_gc , which
produce information about garbage collection. (You need to run a patch against Ruby to enable the data
tracking for these.)

c13.indd 344c13.indd 344 1/30/08 4:18:59 PM1/30/08 4:18:59 PM

Chapter 13: Performance

345

 Performance Profiling
 Railsbench is a great tool for letting you know what pages are slow from top to bottom. However, it
doesn ’ t tell you what part of the page is causing the slowdown. In this section, I ’ ll show you three ways
of getting some of that partial information out of Rails.

 Logs — The Quick Way
 The simplest way to get information on partial performance of your Rails application is simply by
scanning your log files. The default log status for Mongrel under development prints the time spent
processing each request, broken down into rendering and SQL time, and further broken down into the
time and SQL request text for each SQL request. Figure 13 - 2 shows an example from my terminal for
the recipe index page of Soups OnLine.

 Figure 13 - 2

 There ’ s a lot of information here. In order:

 The controller method being used, and the host, date, time, and HTTP verb

 The session ID

 The params hash

 The two database calls that are used to determine the current user ID, and the amount of time
the calls take

 The fact that a cookie was set, and that Ferret is using a local index

❑

❑

❑

❑

❑

c13.indd 345c13.indd 345 1/30/08 4:18:59 PM1/30/08 4:18:59 PM

Chapter 13: Performance

346

 The database request to get the actual recipes to display, and then the individual database
requests to get the image data

 The name of all the views and partial views rendered

 The time it took to serve the request, and the percentage of that time spent rendering output,
and spent in the database

 The final response code with the request URL

 That ’ s a boatload of information. I can ’ t stress enough that you should be checking this log regularly to
get a sense of what Rails is actually doing. On this page, the performance is acceptable at this point, but
it ’ s worth noting that the three SQL requests to soup_images is a potential bottleneck because the three
calls could possibly be made either at one time or as a join when the recipes are loaded. The next section
discusses ways to mitigate the problem when it becomes a performance issue.

 This information is so easily accessible and so useful that you should be monitoring it from day one for
the location of potential issues even if you have no intention of doing anything about performance issues
yet. You should be noting some potential problem areas, though, so you won ’ t forget where to look when
the time comes to start worrying about speed.

 If you want even more information in your logs, try the query_trace plugin by Nathanial Talbot. You can
access this plugin as follows:

$ ruby script/plugin install http://terralien.com/svn/projects/plugins/query_trace/

 This plugin does one thing, and one thing only. It adds a stack trace to your log for every SQL statement,
identifying exactly where in your code the statement was triggered. Depending on the desperation of
your performance testing, this will fall somewhere between quite helpful and indispensable. Although
its initial purpose is to track down long - running SQL queries, it ’ s also quite useful for just about any
SQL - related debugging. (Also see http://pivots.pivotallabs.com/users/alex/blog/
articles/300-rake-query-trace for a handy Rake task to turn query_trace on and off.)

 Profiling Method Timings with ruby - prof
 The log file information is extremely helpful, and very detailed when it comes to tracking down slow
SQL queries. However, even though database issues are frequently the source of Rails performance
issues, a slow query is far from the only way Rails can slow down. A helper method might be taking a
long time to build up an output string, or a model might be doing something weird in verifying or
creating data. The log files, verbose though they may be, are simply not helpful in that particular case.

 The next two methods use a profiler to break down a Rails request or command into its component
method calls, yielding a breakdown of which method in the call tree is using up the lion ’ s share of the
time and resources. Ruby ships with a default profiler module; however, the examples in this section will
use a separate gem called ruby - prof. Install this gem as follows:

$ gem install ruby-prof

 I chose ruby - prof over the standard profiler because it has a slightly larger feature set, has multiple
output formats, places a somewhat smaller performance overhead on the running code than the
standard controller, and has a nice Rails integration plugin.

❑

❑

❑

❑

c13.indd 346c13.indd 346 1/30/08 4:18:59 PM1/30/08 4:18:59 PM

Chapter 13: Performance

347

 Using the Rails Profile Script
 The quickest way to get some Rails code profiled is to run script/profiler . A sample call looks
something like this:

$ script/performance/profiler “Recipe.new().ingredient_string =
‘2 cups carrots, chopped’” 100

 The arguments to the script are a string of code to execute, and the number of times to execute it. Rails
will then run the line of code via ruby - prof (the default profiler will be used if ruby - prof is not
available). Since the output tends to be pretty long, you may want to redirect it to a file. The normal
output goes to STDERR, so if you are on a Unix or Unix - like system, you ’ ll need to do this via the
STDERR redirect symbol 2 > , as follows:

$ script/performance/profiler “code to run” 100 2 > profile_output.txt

 As I write this, Rails 2.0 has not quite caught up to the current version of rails - prof . For this script
to work, the line of code in /vendor/rails/railties/lib/commands/performance/
profiler.rb that reads RubyProf.clock_mode = RubyProf::WALL_TIME needs to be
changed to RubyProf.measure_mode = RubyProf::WALL_TIME . A patch is available for this,
and it will hopefully have been incorporated by the time you read this.

 The output looks like this:

Using the ruby-prof extension.
Thread ID: 202500
Total: 3.835309

 %self total self wait child calls name
 41.46 1.59 1.59 0.00 0.00 200
Ferret::Index::IndexWriter#commit (ruby_runtime:0}
 10.04 0.39 0.38 0.00 0.00 807 Mysql#query (ruby_runtime:0}
 5.13 0.20 0.20 0.00 0.00 100
Ferret::Index::IndexWriter#delete (ruby_runtime:0}
 1.90 0.07 0.07 0.00 0.00 306 < Class::Dir > #[]
(ruby_runtime:0}
 1.64 0.28 0.06 0.00 0.21 3 Kernel#gem_original_require
(ruby_runtime:0}
 1.61 0.51 0.06 0.00 0.45 807 < Module::Benchmark > #realtime
(/usr/local/lib/ruby/1.8/benchmark.rb:306}
 1.49 0.06 0.06 0.00 0.00 100
Ferret::Index::IndexWriter#add_document (ruby_runtime:0}
 1.30 0.05 0.05 0.00 0.00 205 Module#module_eval
(ruby_runtime:0}
 1.01 0.07 0.04 0.00 0.04 4200
ActiveRecord::ConnectionAdapters::Quoting#quote
(/Users/noel/Documents/rails_book/soupsonline/vendor/rails/activerecord/lib/active_
record/connection_adapters/abstract/quoting.rb:6}
 0.93 0.67 0.04 0.00 0.64 800 Kernel#eval (ruby_runtime:0}
 0.88 0.04 0.03 0.00 0.01 45915 Hash#[] (ruby_runtime:0}
 0.69 0.03 0.03 0.00 0.00 1800 Kernel#clone (ruby_runtime:0}
 0.68 0.04 0.03 0.00 0.02 8301

(continued)

c13.indd 347c13.indd 347 1/30/08 4:19:00 PM1/30/08 4:19:00 PM

Chapter 13: Performance

348

ActiveRecord::Base#column_for_attribute
(/Users/noel/Documents/rails_book/soupsonline/vendor/rails/activerecord/lib/active_
record/base.rb:1907}
 0.66 3.21 0.03 0.00 3.18 1426 Array#each (ruby_runtime:0}
 0.63 0.18 0.02 0.00 0.15 843 Hash#each (ruby_runtime:0}
 0.56 0.07 0.02 0.00 0.05 4200
ActiveRecord::AttributeMethods#read_attribute
(/Users/noel/Documents/rails_book/soupsonline/vendor/rails/activerecord/lib/active_
record/attribute_methods.rb:190}
 0.55 0.03 0.02 0.00 0.01 13 Kernel#gem_original_require-4
(ruby_runtime:0}
 0.54 0.02 0.02 0.00 0.00 1612 IO#write (ruby_runtime:0}
 0.52 0.79 0.02 0.00 0.77 1628 Array#each-1 (ruby_runtime:0}
 0.51 0.45 0.02 0.00 0.43 807 < Module::Benchmark > #measure
(/usr/local/lib/ruby/1.8/benchmark.rb:291}

 What the profiler does, in general, is note every single method call made by Ruby, and track how long it
takes. When the call is done, the profiler rolls all that information up into the simple, easy - to - interpret
chart shown here. Okay, that ’ s at least mild sarcasm. One of the problems with using profilers is that,
even with all the timing data, it ’ s still not always clear how best to interpret the data. (There ’ s a great
little story, probably apocryphal, about a software team that noticed that half of the program ’ s time was
in one particular loop, so they put all their efforts into optimizing the heck out of it. But that effort was of
very little practical benefit because it was the program ’ s idle loop, and therefore the user saw no actual
change.)

 The chart you see has six columns of data for each method call. The first column (% self) is the
percentage of time actually spent in that method. I reproduced here all 20 method calls that have over
0.05 percent of the call time. There are something like 1,000 methods in the profile overall. Column two,
 total , is the total amount of clock time spent in that method and all of the methods called by that
method. Column three, self , is the amount of time actually spent in the method. The column marked
 wait is any time spent not doing anything during the method call, and the column marked child is the
time actually spent in child methods. So self , wait , and child should add up to total . The final
numeric column, call , is the number of times that method is called. Remember, the totals are for the
aggregate number of runs, which are 100 in this case. The final column is the method name itself.

 You are looking for outliers in the data, and one presents itself immediately: Ferret. Between the
indexing and deleting, nearly half of the time this code spent running was spent doing Ferret things. I
would not have predicted that in advance, which I suppose is why we actually run these tests. It also
seems like this code spends a lot of time running MySQL queries, and then a full 45 percent of the code
time is spent on other items, none of which seem like they are using enough resources to be good
candidates for optimization at this point (although it does seem like the code spends a lot of time
running through arrays).

 The fact that 10.04 percent of the time is spent on MySQL queries is potentially interesting, although
from this presentation of the data you can ’ t get any sense of what is calling the MySQL queries or what
those queries actually call. For that, you need a call graph. You can see a call - graph representation of the
data to get some kind of handle on where each method fits in the call trace (it also can help if you are

(continued)

c13.indd 348c13.indd 348 1/30/08 4:19:00 PM1/30/08 4:19:00 PM

Chapter 13: Performance

349

overwhelmed by the amount of data in the regular profile). All you need to do is add the following
 graph_html switch to your command (and you really do want to redirect this one to a file):

script/performance/profiler “Recipe.new().ingredient_string =
‘2 cups carrots, chopped’” 100 graph_html 2 > out.html

 Figure 13 - 3 shows the appropriate part of the output, where MySQL#query is located.

Figure 13-3

 There ’ s also a non - HTML version of the graph, which you can get by using plain old graph in place of
 graph_html . Personally, I recommend that version only to people who find performance testing
insufficiently complicated as it is.

 So, what do the numbers mean this time? Each marked section is the call stack surrounding a single
method, which is the method displayed in bold. Methods above that line are all methods that called the
bolded method, and methods below are methods that are called by the bolded method.

 Columns are similar to the original report. The first column is reported only for the bolded method, and
is the total% , or percentage of time spent in the bolded method and any of its children. The second
column, %self , is also reported only for the bolded method and is the percentage of time actually spent
in the method. The next four columns are total , self , wait , and child . For the bolded method, these
columns are the same as in the original report — however, notice that there is a slight discrepancy
between the two reports in that they represent two separate runs and each run is slightly different. For
the other methods in each section, the timing columns represent the share of the bolded methods time
performed on behalf of or via that method. The Mysql#query case is actually not that clear here because
it has only one caller and one callee. Figure 13 - 4 shows a better example.

c13.indd 349c13.indd 349 1/30/08 4:19:00 PM1/30/08 4:19:00 PM

Chapter 13: Performance

350

 The method in focus here is method_missing for AssociationCollection , which is sort of in the
weeds as far as stuff you ’ re actually going to be able to fix, but is a nicely constrained call graph for the
purposes of explaining the chart. This method_missing is called 300 times, for 0.77 seconds spent in this
method or its children, and 0.00 seconds spent in the method itself. That method is called by validate_
associated_records_for_ingredients 100 of the 300 times, and calls from that method represent
0.03 of the 0.77 seconds spent in method_missing . The third line shows that Kernel#eval calls method_
missing 100 times, but those calls represent 0.71 of the 0.77 seconds. (To see how much total time was
spent in Kernel#eval , you would click on it to access its focus section in the file.) In other words, the
four timing columns for all the caller methods should sum up to the totals in the bolded method.

 The children work analogously. The method_missing under focus calls a different method_missing
300 times out of the 600 total times that method is called, and that represents 0.76 of the 0.77 seconds
spent in children of the bolded method. It also calls respond_to? 300 times of the 10,450 times that
method is called, but to an amount of time less than one - hundredth of a second.

 Profiling Rails
 The Rails profiler script works nicely for Rails model scripts, but it is a little awkward for profiling
controller methods. The ruby - prof profiler provides a mechanism for profiling controller calls from a
browser. The mechanism is a touch on the awkward side, but it works.

 Here ’ s the mechanism. The ruby - prof gem distribution contains a Rails plugin that you can find in the
gem directory, as follows (note that the version number of ruby - prof may have changed by the time
you read this):

 < Ruby Root > /gems/1.8/gems/ruby-prof-0.5.2/rails_plugin

 Copy the ruby - prof directory to your vendor/plugins directory — and that ’ s it. While the plugin is
in place, any server request has a profile table appended to the log file for that request. Actually, you get
one for each separate thread, but only one of them is likely to be interesting. Here ’ s a bit for the
controller index page:

%self total self wait child calls name
 25.71 0.22 0.18 0.01 0.03 76 Array#select
 18.57 0.13 0.13 0.00 0.00 12 Magick::Draw#annotate
 8.57 0.06 0.06 0.00 0.00 10 Magick::Draw#get_type_metrics
 5.71 0.04 0.04 0.00 0.00 1 Magick::Image#to_blob
 4.29 0.03 0.03 0.00 0.00 18647 Hash#key?
 2.86 0.02 0.02 0.00 0.00 518 Module#constants

Figure 13-4

c13.indd 350c13.indd 350 1/30/08 4:19:01 PM1/30/08 4:19:01 PM

Chapter 13: Performance

351

 2.86 0.21 0.02 0.00 0.19 17 Kernel#gem_original_require
 2.86 0.02 0.02 0.00 0.00 2
Magick::GradientFill#initialize
 2.86 0.03 0.02 0.00 0.01 396 Array#each-2
 2.86 0.02 0.02 0.00 0.00 1 Magick::Draw#draw

 The format should seem familiar. You will likely want to run the plugin only occasionally since profiling
does have some overhead and can get tedious. However, running the plugin occasionally is awkward
because there ’ s no way to turn the profiling on or off short of removing the plugin from your source tree
and putting it back. However, you can control the task via Rake. Add the following to a Rake file in your
 lib/tasks directory:

namespace :profiler do

 task :start do
 from_dir = “/usr/local/lib/ruby/gems/1.8/gems/ruby-prof-0.5.2/
rails_plugin/ruby-prof”
 to_dir = “vendor/plugins/ruby-prof”
 FileUtils.mkdir(to_dir)
 FileUtils.mkdir(“#{to_dir}/lib”)
 [“init.rb”, “lib/profiling.rb”].each do |each|
 File.copy(“#{from_dir}/#{each}”, “#{to_dir}/#{each}”)
 end
 end

 task :end do
 FileUtils.rm_rf(“vendor/plugins/ruby-prof”)
 end

end

 Just update the from_dir to match your local system. You ’ ll need to restart your local server for this to
take effect. If you want to do this on a staging server via Capistrano, the following variant should work:

namespace :deploy do

 task :start do
 from_dir = “/usr/local/lib/ruby/gems/1.8/gems/ruby-prof-0.5.2/
rails_plugin/ruby-prof”
 to_dir = “vendor/plugins/ruby-prof”
 run “mkdir #{to_dir}”
 run “mkdir #{to_dir}/lib”
 [“init.rb”, “lib/profiling.rb”].each do |each|
 run “cp #{from_dir}/#{each} #{to_dir}/#{each}”
 end
 restart
 end

 task :end do
 run “rm -Rf vendor/plugins/ruby-prof”
 restart
 end

end

c13.indd 351c13.indd 351 1/30/08 4:19:01 PM1/30/08 4:19:01 PM

Chapter 13: Performance

352

 This moves the files and restarts the server for you. I ’ d only do this on a staging server, not a
production server.

 The default output of the plugin is the flat table. However, there is a way for you to get a call graph
HTML table. Within the plugin profiling.rb file, you ’ ll see some commented lines that look like this:

Example for Graph html printer
#printer = RubyProf::GraphHtmlPrinter.new(result)
#path = File.join(LOG_PATH, ‘call_graph.html’)
#File.open(path, ‘w’) do |file|
 #printer.print(file, {:min_percent = > 1,
 #:print_file = > true})
#end

 Uncomment them, and you ’ ll get an HTML file for each call. If you are on Linux, there ’ s another block
there that will give you a graph that can be read by a program called KCachegrind to produce an actual
graphical graph of the call tree.

 Fixing Performance Problems
 Hopefully, I ’ ve established that, as a Rails developer, you have access to lots and lots of data about
performance issues in your application. The question then becomes what to do with that information.
When is it time to try and remedy a potential or an actual performance problem, and what sort of
intervention is feasible? We all know that premature optimization is bad, but who gets to define when
it ’ s premature? The pressure from clients and managers to speed up code, even early in development,
can be hard to resist, and people unfamiliar with Rails or Agile development styles may be unwilling to
trust that speed improvements will come.

 As a somewhat simplified guide for when to optimize, I find that performance enhancements tend to fall
into one of the following three groups:

 Good practice techniques that happen to also have good performance characteristics. An
example might include limiting the amount of data you create in a controller method. It ’ s good
practice because thin controllers are easy to test, and has a good performance profile because
there ’ s some overhead involved in passing the controller instance variables around. Similarly,
splitting views into separate partials is both easier to read and easier to cache. These aren ’ t
enhancements as much as things that you should just be doing as part of your regular practice.

 Legitimately suboptimal implementations in your code that can be fixed by bringing the code
in line with standard Ruby and Rails conventions, or by relatively straightforward algorithm
improvement. An example might be a controller method that calls the same model find
method multiple times, or a parent model that should use the :include flag to automatically
grab its child objects. In general, it ’ s reasonable to make these changes as they are identified. For
me, the key here is that the objective quality and maintainability of the code is being enhanced,
rather than compromised.

 Performance optimizations that move the code away from Rails conventions or readability in
the name of pure performance. This can be relatively benign, such as replacing link_to calls
with wrapper functions that use string interpolation. Or it can be slightly more awkward, such

❑

❑

❑

c13.indd 352c13.indd 352 1/30/08 4:19:01 PM1/30/08 4:19:01 PM

Chapter 13: Performance

353

as replacing an ActiveRecord find with a raw SQL query. Or it can be extreme refactoring, such
as replacing a metaprogramming construct with something less dynamic. I tend to put caching
in this category as well, because caching doesn ’ t necessarily reduce the readability of the code
but it does introduce a behavior difference between development and production that can make
a system harder to debug and maintain.

 It ’ s dealing with the third category where the art and the headaches come in. For my part, I ’ m extremely
reluctant (perhaps to a fault) to significantly reduce the long - term viability of the code in the name of a
short - term performance boost. A lot of the maintainability issues can be managed by continuing to use
good programming techniques. Replacing link_to with custom wrapper methods doesn ’ t bother me
much, for example (although making sure the custom method is actually used can be a problem).
However, if it turned out that, say, the metaprogramming in a table form builder was a little slow, I ’ d be
loathe to replace all that code with raw HTML if I could improve performance another way — via
caching or server settings. I ’ d have to see a really serious performance problem to take the short - term
and long - term hit of adding all that duplication to a series of forms.

 I don ’ t mean to minimize the importance of good performance. Clearly, poor performance will make
your application significantly less valuable to your users. Every improvement comes with a cost, short -
 term in making the change, and long - term in making future changes more difficult. In this discussion of
performance enhancements, it ’ s important to keep the costs in mind, so that you can effectively manage
the tradeoffs and make the choices that are appropriate for your application.

 Managing Sessions
 Most applications store at least some persistent data in the session object, and Rails has to put that
session data somewhere. Between the core and commonly used extensions, Rails offers several ways to
store session data, of which there are about five that are reasonable choices. Prior to Rails 2.0, the default
behavior was to store the data in a series of flat files. This had a certain admirable simplicity to it, but it
had extremely poor performance characteristics under heavy load, because operating systems tend to
have an upper limit on the number of files that can be in a directory before they go blooey.

 Cookie - Based Sessions
 The Rails 2.0 default is different, and a little unusual. By default, Rails stores session content as a user
cookie. There are a number of potential issues involved in keeping this from being a massive security
problem, and the implementation deals with them the best it can. The Rails cookie store takes the session
data, encrypts it with a hashing algorithm — the default is SHA1, but any system available in Ruby ’ s
SSH implementation can be used. If the values in the session change, the old cookie automatically
expires. If the uploaded cookie doesn ’ t decrypt, the cookie is discarded. Plus there ’ s nothing stopping
you from putting your own secret value in the session and validating that as well.

 If you use cookie - based storage, you need the following line in your environment.rb :

config.action_controller.session = { :session_key = > “_soupsonline”,
 :secret = > “this phrase is a really, big secret. W0)oT!” }

 This sets some parameters for the cookie store. The session key is used as the name of the session, and
disambiguates it from other session cookies that you might be storing from other applications. The secret
is used as the passphrase for the encryption of the data, so long and random is indicated here. Another
option, :digest , allows you to set the encryption mechanism used. Alternately, you can arbitrarily

c13.indd 353c13.indd 353 1/30/08 4:19:02 PM1/30/08 4:19:02 PM

Chapter 13: Performance

354

specify the encryption mechanism by monkey patching the class CGI::Session::CookieStore and
the method generate_digest(data) . This would, for example, let you arbitrarily change the secret
passkey on a per - user basis.

 There are two very strong positives to using the cookie session store: speed and scaling. Although I don ’ t
think there ’ s a whole lot of production - level evidence as I write this, there ’ s every reason to believe that
recovering session data from the cookie is much faster than recovering it from a database. Even better,
because the session data is actually stored on the client, issues of scaling the session storage just vanish.
The time to get session data from a cookie should not materially change from storing one session to
storing jillions of them.

 Cookie storage is definitely not the perfect solution for all needs, though. First off, cookies have a very
tight limit on the amount of data they can store — usually 4 kilobytes. The idea here is that most Rails
applications don ’ t store a lot of data in the session — typically just a user ID, an authentication token,
some preferences, and maybe a string that ’ s about to be displayed. If you are storing a lot more data than
that, you should think about whether the information really needs to be stored in the session at all. In
particular, if you are storing entire ActiveRecord objects in the session, then you have one of those cases
where you are violating good practice and should stop immediately. You might think that you are saving
time by avoiding the lookup from the ID, but in fact, the marshalling and unmarshalling of the object to
a string is far slower.

 The second issue is the security issue. The data is being stored on the client, and even though it ’ s being
encrypted, the mere fact that the information leaves the server is going to give security - minded IT
managers fits, especially if the cookie is the key to highly private information. Although I might not have
a problem with storing the user ID to a recipe - swapping site on the client side, I ’ d probably think twice
before storing an ATM PIN number, even if it ’ s encrypted. And I ’ d definitely pause before I ’ d store
anything where there might be legal privacy issues, such as an ID to a medical site.

 Finally, there are some logistical issues common to cookies. Some people just shut them off, and the
cookie store doesn ’ t seem to have a graceful default — those people just don ’ t get session values. Also,
the sessions need to be uploaded with the request, which adds a slight overhead that ’ s probably too
small to make a meaningful difference.

 Sessions in the Database: ActiveRecord Store
 If you don ’ t like the cookie session store — either for security reasons or because you are storing too
much data in the session — there are a couple of options for storing session data in some kind of
database. If you go to your environment.rb file, you ’ ll see the following line (which is commented out
by default):

config.action_controller.session_store = :active_record_store

 You need to uncomment it.

 The ActiveRecord store stores your session in your ActiveRecord database, just as though it was any
other model in your application. For this to work, you need to also create the database table. Here ’ s a
convenient Rake task for doing that:

rake db:sessions:create

c13.indd 354c13.indd 354 1/30/08 4:19:02 PM1/30/08 4:19:02 PM

Chapter 13: Performance

355

 This creates the following migration:

class CreateSessions < ActiveRecord::Migration
 def self.up
 create_table :sessions do |t|
 t.string :session_id, :null = > false
 t.text :data
 t.timestamps
 end

 add_index :sessions, :session_id
 add_index :sessions, :updated_at
 end

 def self.down
 drop_table :sessions
 end
end

 After you migrate the database and restart your server, sessions will work as before, but behind the
scenes, the data will be stored in the new sessions table. Using ActiveRecord as your storage medium
has a couple of nice features. The data stays on your server, and you ’ re using core Rails mechanisms to
access it. The timestamp allows you to sweep the session data to expire old sessions using an external
process. The ActiveRecord store also stays reasonably consistent under load, at least when compared to
file - based cookie storage.

 Sessions in the Database: SQLSessionStore
 The ActiveRecord store can be slow. And if this is starting to cause you pain, you can try a faster option,
called SQLSessionStore, created by Stefan Kaes, who is also responsible for Railsbench. It ’ s available as a
plugin, which you install as follows:

script/plugin install -x http://railsexpress.de/svn/plugins/sql_session_store/trunk

 SQLSessionStore is faster largely because it avoids ActiveRecord overhead and uses SQL queries directly.
It also is nontransactional. Currently, the plugin is designed for MySQL, PostgreSQL, and Oracle.

 SQLSessionStore uses the same migration and database table as the ActiveRecord store. To use it, you
need to add some code to the environment.rb file. Toward the bottom of the file, after the initializer
block, add the following:

ActionController::CgiRequest::DEFAULT_SESSION_OPTIONS.
 update(:database_manager = > SqlSessionStore)

 And then add whichever one of the following three lines is appropriate:

SqlSessionStore.session_class = MysqlSession
SqlSessionStore.session_class = PostgresqlSession
SqlSessionStore.session_class = OracleSession

c13.indd 355c13.indd 355 1/30/08 4:19:02 PM1/30/08 4:19:02 PM

Chapter 13: Performance

356

 That should do it. Kaes ’ s data suggests you can get an increase of about 150 – 200 percent in requests per
second from SQLSessionStore as compared to ActiveRecordStore. Your mileage may vary somewhat, but
there seems to be little doubt that SQLSessionStore is faster at saving session data in a database.

 Other Storage Methods
 There are two other widely used methods for storing Rails sessions. One method uses memcached , which
is a separate program which maintains a global, memory - based, object - caching program. Another
method uses Distributed Ruby (DRb), which is a common mechanism for doing remote method
invocation or data transfer between Ruby programs. In this case, the DRb server would store the data for
you. Both of these methods are extremely fast, and both require much more complex setup than the
methods you ’ ve seen so far. If you are already using DRb or memcached to manage other data in the
system, then it ’ s probably worth it to add session data as well — but unless sessions are becoming a
really significant bottleneck, I wouldn ’ t recommend installing one of those systems just to manage
session data.

 ActiveRecord and Database Issues
 It ’ s highly likely that your first point of performance pain in a new Rails application will involve your
database. The clever use of your database via ActiveRecord is one of Rails ’ great strengths, although the
database independence and general assumptions made by ActiveRecord will cause it to perform
suboptimally at some point in your program. Often, though, the problem isn ’ t ActiveRecord itself, but
the usage pattern of your program that can be improved. It ’ s easy to forget that ActiveRecord objects are
more expensive to create and save than regular Ruby objects, but keeping in mind the database layer and
actual SQL requirements as you work with your models will take you a long way.

 Database issues often fall cleanly into the three - way split of “ dumb things you should stop doing right
now, ” “ smart things you should do more of, ” and “ tricky things you should try when all
else fails. ”

 Render Unto MySQL
 There are some things that databases don ’ t do particularly well. They generally aren ’ t optimized for
complex math, multi - table relationships can be hard to model, and they make lousy cheese omelets.
There are two very important things, though, that your database is going to do faster than anything else
in your program stack: sort things and find things.

 You should almost never call the Ruby sort on a list of ActiveRecord objects that just came from the
database. Instead, use the :order option when you do your ActiveRecord find , and let the database do
all that work. If you are sorting on a derived attribute, you should consider deriving the column using
the :select option of an ActiveRecord find (alternatively, depending on your database, you could
create a view with that column, or if it ’ s a value you ’ re sorting or searching on frequently, cache the
value in the table).

 While I ’ m on the subject, here ’ s a quick coding tip. Do you remember whether the default sort order in
your database is ascending or descending? Me neither. So always specify the direction of the sort in your
order by clause (name DESC , rather than just name). Your future self will thank you.

c13.indd 356c13.indd 356 1/30/08 4:19:03 PM1/30/08 4:19:03 PM

Chapter 13: Performance

357

 Similarly, when you do a find , use the :conditions option to limit the number of records sent from the
database, rather than running a Ruby select on the resulting list. If the condition gets a bit more
complex, try the find_by_sql method to pass in your own lovingly handcrafted SQL query.

 The database is also pretty fast for counts, sums, averages, and the like. Try to use the Rails ActiveRecord
counting features rather than the Ruby standard Enumerable functions where you can because the
ActiveRecord features use the faster database aggregators.

 Don ’ t Repeat Yourself (Have I Said That Before?)
 Here ’ s an example of a duplication that I ’ ve certainly done in my own code:

if Recipe.find_by_serving(“2”).name == “Chicken”
 return Recipe.find_by_serving(“2”)
else
 return nil
end

 This is kind of a simple example, but the issue here is the duplicate ActiveRecord find call. It ’ s easy to
forget how expensive an ActiveRecord find can be relative to a normal Ruby method call. However, it ’ s
one of the quickest ways to overload your database by requesting duplicate information unnecessarily.

 This one is usually pretty easy to mitigate, once you have identified the problem. The easiest way to fix
the preceding example is to use a local variable like this:

recipe = Recipe.find_by_serving(“2”)
if recipe.name == “Chicken” then recipe else nil end

 Just to point out how tricky performance tuning can be, if your database is set to do object caching or if
you are using memcached, then this example probably won ’ t have much of a performance hit — the
second database call will just go to the cache and return the cached data. (In Rails 2.0, there is a new
ActiveRecord caching mechanism that might also catch issues like this.)

 Using a local variable works only if the data object is used locally in a single method. Data that is used
globally can be stored in model class variables. This is especially useful for data that is in the database
but is rarely changed. Most applications will end up storing data that is rarely, if ever, changed in a
database because it ’ s easy to manage the data there. An example of this type of data might be a list of
U.S. states, or a standard list of occupation types that you might place in a pull - down list from which
users can choose.

 Let ’ s say you have a list of job types in the database, but this data is essentially static. You can preload
the data with something like this:

@@all_types = JobTypes.find(:all, :order = > “name ASC”)

def all_types
 @@all_types
end

c13.indd 357c13.indd 357 1/30/08 4:19:03 PM1/30/08 4:19:03 PM

Chapter 13: Performance

358

 This can also be done with a lazy load rather than a load at start up as follows:

@@all_types = nil

def all_types
 @@all_types ||= JobTypes.find(:all, :order = > “name ASC”)
end

 Congratulations — you ’ ve achieved your own mini - cache. This is even compatible with updating the
information, provided you clear the cache as follows:

after_save :clear_cache
after_create :clear_cache

def clear_cache
 @@all_types = nil
end

 N + 1
 A common performance problem is caused by inefficient use of child objects. Look at the following code:

@recipes = Recipe.find(:all, :limit = > 25, :order = > “created_at DESC”)
@result = []
@recipes.each do |recipe|
 @result < < recipe.user.name
end

 The problem here is that the initial Recipe.find triggers one database query, and then each request
within the loop to get a user name from the subordinate user object triggers a separate database query to
get that one user object — which means that the call to get 25 recipes triggers 26 separate database calls.
This is often referred to as the “ N+1 ” problem. It ’ s a pretty fast way to overwhelm your database.

 This example is composed deliberately to show the problem — normally, I ’ d do something like this
using collect , but the same issue would still apply. The most common manifestation of this problem in
Rails is probably an index page, where the collection is generated in the controller, and the loop making
the calls across the relationship is in the view code. Again, the same issue would still hold, perhaps even
more insidiously because the list generation and list walkthrough are separated in the code.

 There are a couple of workarounds for this, increasingly elaborate. The recommended mechanism within
ActiveRecord is to use the eager loading feature by passing an :include parameter to the find method.

@recipes = Recipe.find(:all, :limit = > 25, :order = > “created_at DESC”,
 :include = > :users)

 This tells Rails to generate a SQL statement using a JOIN that will load the user information in the initial
query, such as:

SELECT * from recipes, users LEFT OUTER JOIN users ON users.id = recipes.user_id

c13.indd 358c13.indd 358 1/30/08 4:19:03 PM1/30/08 4:19:03 PM

Chapter 13: Performance

359

 That ’ s for those of you with the SQL skills to correctly tell the difference between an outer join and an
inner join. The upshot for the rest of us is that the user data comes in with the same query as the recipe,
and is converted to ActiveRecord objects that are associated correctly. Now, when the code goes walking
through the loop, it doesn ’ t need to perform another query to get the user name because the data has
already been loaded.

 The :include parameter can also be a list if there are multiple relationship objects — which in Soups
Online would be users and ingredients. And the parameters can be nested like this to include the users
and user addresses:

:include = > [{:users = > :addresses}]

 If you find yourself in a position where nesting your :include parameters seems like the thing to do,
please consider reconsidering. An :include with a very complex set of joins can easily slow down the
database so much that it defeats the purpose of using the :include in the first place.

 The typical use of :include is a pretty straightforward technique, cleanly implemented in Rails, and is
recommended in just about any case where you know that there ’ s a subordinate object that is going be
needed for each entry in the list.

 There are a couple of down sides. You ’ re not actually going to get the 2500 - percent increase in speed that
going from 26 database queries to one database query might imply. Because you ’ re actually gathering
the same overall amount of information from the database either way, the savings is largely in the setup
and overhead of the queries. Exactly how much that savings is going to be is dependent on how much
data you ’ re talking about. There will probably be a noticeable speedup, but it ’ s not going to solve your
problems all by itself.

 Also, because the generated query needs to custom - write the SELECT portion of the SQL statement, any
use of the :select option in the find command to limit the data transfer will be ignored. For similar
reasons, this technique is not recommended for :has_many :through relationships.

 If you know that there ’ s only going to be one or two attributes of the child object that you need, then you
have some other options that might cause a more dramatic speedup by reducing the amount of data
transfer. One option is denormalizing, as discussed in Chapter 6 , which would in this case mean adding
another column or two to the parent object with the needed child data. This works best in a one - to - one
relationship.

 If you ’ re more comfortable with SQL joins, you can customize the join in the find code to take only the
child attribute that you need, a technique that ’ s sometimes called piggybacking . Here ’ s an example (which
is similar to the example in Stefan Kaes ’ s discussion of piggybacking, where he coincidentally uses
recipes and users):

Recipe.find(:all, :limit = > 25
 :conditions = > “recipes.user_id = users.id”,
 :joins = > “recipes, users”,
 :select = > “recipes.*, users.name as username”)

c13.indd 359c13.indd 359 1/30/08 4:19:04 PM1/30/08 4:19:04 PM

Chapter 13: Performance

360

 Personally, I ’ d only recommend this kind of manual join if it was clear that the call was a huge
bottleneck. I ’ d try some other things first, like manually getting just the name from the user table with
the :select option, like this:

@recipes = Recipe.find(:all, :limit = > 25, :order = > “created_at DESC”)
@result = []
@recipes.each do |recipe|
 @result < < recipe.user.find(recipe.user_id, :select = > :name)
end

 This still has the overhead of the multiple queries, but the amount of data being transferred is much
lower. In some circumstances, that ’ s a tradeoff worth exploring.

 Indexing
 Database indexing is one of the simplest ways to improve your database performance. Adding indexing
is as simple as putting a line like this in a migration:

add_index :recipe, :servings

 This is simple, easy, and without fuss. If the index is on multiple columns in tandem, then just add all the
columns to the method call. If you ’ d like the database to enforce unique values in the column (rather
than having ActiveRecord do it), throw in :unique = > true .

 Indexing helps only if you are searching on or sorting by the column being indexed. And there is a
downside to indexing on too many columns. Not only does it increase the size of your database instance
on the hard drive, but too many indexes can actually slow down performance by causing the database to
spend time trying to decide which index to use.

 My recommendation is to not worry about indexing during early development, but once you have a
good sense of which columns are frequently searched and sorted, add indexes later on for those
columns. If the search is on two columns at the same time, adding a combined index will be much faster
than adding two single indexes.

 Dynamism
 Here ’ s a final tip to shave a little bit of time off of a potential bottleneck. The find_by and find_all_by
dynamic methods are really cool — but they are also kind of slow because each one needs to run through
 method_missing and parse the filename against the list of columns in the database table. If you ’ ve
identified a hotspot that includes a dynamic method, you ’ ll get some performance improvement by
converting it to a regular find with conditions.

 Caching
 Databases aren ’ t the only places where your Rails application might need a speed boost. Your view code
can slow to a crawl as well. This section discusses a way to speed up views, and provides a look at
what can slow them down.

c13.indd 360c13.indd 360 1/30/08 4:19:04 PM1/30/08 4:19:04 PM

Chapter 13: Performance

361

 Caching is the purest way to speed up your Rails application. By that, I mean that caching has a sort of
strict adherence to the Don ’ t Repeat Yourself (DRY) principle — don ’ t redo page generation that you ’ ve
already done. The basic idea of caching is that your Rails application automatically stores generated
HTML for a page or some segment of a page. When the next user requests that part of the application,
the cached file is sent to the browser, saving you from regenerating the data. The performance
improvement here can be substantial, not just because you are saving the render time, but also because
you are saving the bandwidth to and from the database. Where applicable, caching can give you a
multiple order - of - magnitude speedup.

 Caching is applicable for any page or portion of a page that will be identical for multiple users. Even if
the underlying data changes rapidly, you can still get a performance speedup for a cache that is expired
frequently. If you ’ re getting 10 hits a second, then even with a cache that lives for 30 seconds, well over
99 percent of your page hits will be served from the cache.

 Rails can cache at three different scales: an entire page, an entire controller action, or an arbitrary
fragment of a view. Each scale has the same basic issues — you need to tell Rails what to cache, you need
a place to store the cached information, and you need a way to expire old caches.

 To test caching on your development machine, turn it on in the environment.rb file as follows:

config.action_controller.perform_caching = true

 Caching is turned on in production mode by default. You need to be careful if you are going to keep
caching in development mode — it can make debugging kind of a pain because you need to clear the
cache to see any changes.

 Page Caching
 Page caching is far and away the fastest way to cache in Rails. An entire URL request is cached, and
when the request is made again, Rails is completely bypassed. Unfortunately, page caching is also far
and away the least flexible of all the Rails caching structures. Because a page cache stores the entire page,
this means that the entire page must display identically to all users (at least for a certain period of time).
Among other things, this means that any page that has a different face for a user who has logged in is
disqualified, as is any page that displays any user - customized content at all.

 You inform Rails of your desire to cache a page in the controller, by including the following method call
in the controller:

caches_page :index, :show

 The arguments to the caches_page method are publicly accessible actions within the controller, and you
can use as many of them as you want. When a user request goes to one of those actions, Rails will take
all the HTML for that page and store it in the Rails public directory based on the request URL.

 In other words, the index page for recipes would be stored in public/recipes.html , and the show
page would be stored in something like public/recipes/1.html (the default directory root can be
changed in the environment.rb file as well — it is config.action_controller.page_cache_
directory). This method of storing the cached data explains how Rails can be completely bypassed
when the same URL is requested again. Because an HTML page that matches the URL exists in the public

c13.indd 361c13.indd 361 1/30/08 4:19:04 PM1/30/08 4:19:04 PM

Chapter 13: Performance

362

directory, your Rails server knows to serve that page up without passing the request along to the Rails
application proper. If you are using a web server such as Apache for static serving, you can configure
Apache to look for cached pages before sending the request on to Mongrel (see the “ References ” section
in this chapter for more information on this).

 There ’ s one thing to watch out for in page caching. As a result of how the page cache filename is
generated, any information in the URL query string is completely ignored. This means that a URL that
differs from the cached URL only in the query string will still receive the same cached file. This can be a
big problem that affects pagination queries as well as any dynamic request to the page. The workaround
is to adjust the Rails route for the page to include any parameters in the main part of the URL, and not in
the query string. If you can ’ t do that for your page, then look into action or fragment caching.

 Action Caching
 Action caching is like page caching, only different. Rather than caching an entire page, you instead cache
the results of an entire action. Now you may ask, “ But isn ’ t the action the entire page? ” Well . . . yes, but
in action caching, Rails is actually invoked before the cache file is sent out. In particular, any before_
filter actions defined for your controller action are invoked, and then the cache file is sent out in lieu
of actually invoking the action. The primary practical advantage this has over page caching is in the case
where you have a before filter that authenticates that the user has the rights to access the page, and
redirects away if access is denied. In the action caching world, that redirect will be performed if needed,
and if the user qualifies, then the cached action can be sent. So, although action caching is not quite as
fast as page caching, it ’ s a good deal more flexible — although it still assumes that the entire page can be
cached together.

 Action caching is also determined at the controller level with this very similar command:

caches_action :index, :show

 The only issue with the placement is that any before filters you want triggered for those actions need to
be defined before the caches_action call.

 The default storage location for action cached files is in the tmp/cache directory. The file naming is
broadly similar to page caching, except the filenames end in .cache . Because Rails is no longer worried
about having the page name actually match a request URL, you also don ’ t have to worry about query
strings in the cached request.

 Fragment Caching
 The most flexible way to cache in Rails is fragment caching, which works on any arbitrary part of your
view. A fragment cache is set up in your view code by wrapping the desired fragment in a cache block,
like this:

 < % cache do % >
 < % for recipe in @recipes % >
 < %# expensive code % >
 < % end % >
 < % end % >

c13.indd 362c13.indd 362 1/30/08 4:19:05 PM1/30/08 4:19:05 PM

Chapter 13: Performance

363

 The fragment is also stored in tmp/cache , and the default name is based on the controller and action
being partially cached. You can give the cache a different name by passing an argument to the cache
method. This can be a string, like this:

 < % cache “recipe_cache” do % >

 Or it can be a set of hash keys that conform to the options for url_for . A nice thing about using this
mechanism is that the resulting URL is only used to tag the cache fragment in storage, and does not have
to correspond to any actually existing controller and action. Here ’ s an example:

 < % cache :controller = > :recipe_cache, :action = > :cached_list % >

 Why would you want to name a cached fragment? So you can identify it in the controller. Where page
caching bypasses Rails entirely, and action caching bypasses the controller action in question, fragment
caching calls the action in question, and it ’ s up to you to tell Rails which parts of the action can be
skipped if a fragment is already cached. This is accomplished with the read_fragment method,
returning true if there is a fragment there to read. For example:

def index
 unless read_fragment({}) do
 @recipes = Recipe.find_for_index(params[:format])
 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml = > @recipes }
 format.atom { render :layout = > false }
 format.rss { render :xml = > @recipes.to_rss_feed(“Soups OnLine”,
 formatted_recipes_url(:rss), “New Recipes from Soups OnLine”)}
 format.json { render :json = > @recipes.to_json }
 format.yaml { render :text = > @recipes.to_yaml, :layout = > false}
 end
 end
end

 If the cached fragment already exists, then the database call and the other calculations are not necessary.

 The argument to read_fragment is the name of the cache as specified in the view. If an empty hash is
specified, then the default controller and action is used, but you can also use matching custom names as
in this example:

read_fragment(“recipe_cache”)
read_fragment(:controller = > :recipe_cache, :action = > :cached_list)

 This means that you definitely want to name your caches whenever you have more than one of them in
an action. Otherwise, you ’ d have no way of distinguishing between them for retrieval or for blocking out
database code.

c13.indd 363c13.indd 363 1/30/08 4:19:05 PM1/30/08 4:19:05 PM

Chapter 13: Performance

364

 Cache Expiring
 Cached data exists until explicitly expired by Rails, Rake, or some other external process. One way to
explicitly expire a page is with the expire_page method, which takes the same set of arguments as the
 url_for method:

expire_page(:controller = > :recipes, :action = > :index)

 Action and fragment caches are removed with the analogous methods expire_action and
 expire_fragment .

 You don ’ t have to do all this expiring by hand, however. You can set up a special object called a sweeper ,
which will do it for you. Sweepers are sort of mutant hybrids of observers and filters. Here ’ s an example
of a sweeper:

class RecipeSweeper < ActionController::Caching::Sweeper
 observe Recipe

 def after_save(record)
 expire_page(:controller = > :recipes, :action = > :index)
 end
end

 The observe method takes one or more model arguments. Those are the models that the sweeper looks
at for life - cycle methods. The sweeper can define actions on the full set of filter methods, but the most
commonly used ones are going to be after_create , after_save , after_update , and after_
destroy . Within those methods, you can do whatever you want, but it should probably include expiring
any cache that contains data that is now obsolete. The record argument is the actual ActiveRecord
under consideration, so you can use that to determine which show page to expire, for example.

 For a sweeper to work, it must be registered with the appropriate controller like this:

cache_sweeper :recipe_sweeper, :only = > [:save]

 The :only argument is a list of the life - cycle actions that have defined filters in the sweeper.

 There is also a Rake task called tmp:cache:clear that expires all action and fragment caches by simply
deleting the contents of the tmp/cache directory.

 Cache Storage
 Page caches have to be stored in the file, but action and fragment caches have a couple of options that are
similar to session options: DRb and memcache. The storage mechanism can be changed in the
 environment.rb file as follows:

ActionController::Base.fragment_cache_store = :drb_store

 As with sessions, I don ’ t recommend starting out with one of these mechanisms, but if you are using
them elsewhere, they are probably faster than the file store.

c13.indd 364c13.indd 364 1/30/08 4:19:05 PM1/30/08 4:19:05 PM

Chapter 13: Performance

365

 References
 The most recent release of Railsbench was announced at https://railsexpress.de/blog/
articles/2007/04/01/new-railsbench-release-0-9-2 . Watch this blog for further updates. Also
watch it for some interesting insights into Rails speed improvements, such as http://railsexpress
.de/blog/articles/2005/11/06/the-case-for-piggy-backed-attributes . A tutorial on
profiling Rails applications is available at http://cfis.savagexi.com/articles/2007/07/10/
how-to-profile-your-rails-application .

 Jason Hoffman ’ s presentation on Rails performance is available at http://jxh.bingodisk.com/
bingo/public/presentations/JHoffmanRailsConf-Berlin-Sept2007.pdf . There are a couple of
different versions of this talk online, and this may have been updated by the time you read this.

 You can find information on optimizing ActiveRecord from Bruce Tate at www.ibm.com/
developerworks/java/library/wa-rails3/index.html?ca=drs . A similar look at Ajax is at
www.thinkvitamin.com/features/ajax/5-ways-to-optimize-ajax-in-ruby-on-rails .
A general look at improving Rails performance is at www.infoq.com/articles/Rails-Performance .

 A good rundown of cookie sessions is available at http://blog.caboo.se/articles/2007/2/21/
new-controversial-default-rails-session-storage-cookies . That blog also has other articles
on Rails performance and scaling. Also, the Rails Envy team has a great overview of Rails caching at
 www.railsenvy.com/2007/2/28/rails-caching-tutorial .

 Summary
 Eventually you ’ ll get to the point where you need to squeeze more speed out of Rails. Before you do
that, it ’ s very important that you have good diagnostic data. Railsbench is a tool for automatically hitting
your application and measuring timings. It provides useful data for finding where slow controller
actions are located. Railsbench also allows you to compare two runs made under different server
settings.

 The Rails log contains a lot of useful information about the timing of pages, especially the timing of
individual SQL statements. The query_trace plugin augments that information with a stack trace
showing the code location of each SQL query.

 The ruby - prof gem is a profiler that runs specific calls to your Rails application and breaks down the
time spent by method. It ’ s a firehose of information, but the various reporting options allow you to find
the bottlenecks of interest.

 When making performance changes, never compromise the maintainability of the program unless
absolutely necessary. Using benchmarks to narrow down the problem can help tremendously. Sessions
are potential speed bottlenecks for high - load sites, and cookie - or SQL - based storage can speed up their
behavior. ActiveRecord is often the root cause of the initial performance problems. The SQL generated by
ActiveRecord can be tuned in many ways to improve database response time.

 Caching is a common way to improve the performance of a web application. Rails provides support for
caching at the entire page level, at the level of an individual controller action, and at the arbitrary
fragment level. Fragments can be stored in a file, or by an external system such as DRb or memcache.

c13.indd 365c13.indd 365 1/30/08 4:19:05 PM1/30/08 4:19:05 PM

c13.indd 366c13.indd 366 1/30/08 4:19:06 PM1/30/08 4:19:06 PM

 Going Meta

 If you ’ ve been playing along with the book to this point, you ’ ve created a functional (albeit quirky)
Ruby on Rails application, added some features, and deployed it. What ’ s left? In the real world,
you ’ d move the deployed code to a separate Subversion branch for bug fixes, and move on to
version 2.0. In our book world, the next few chapters will be spent talking about various extensions
and expansions of Ruby and Rails that are going to be useful additions to your set of tools.

 First up is Ruby and metaprogramming. Ever since Rails first came out, it has been accompanied
by claims that the Ruby programming language is not just a useful way to script behavior, but an
integral part of the Rails architecture. There were also remarks that Rails could only have been
written in Ruby, although now that most of the major features have been ported (one way or
another) to other languages, you hear that somewhat less these days. Even so, all the statements
about how Rails depends on Ruby are responding to something real and different about Ruby: its
extraordinary support for changing the program ’ s context and structure at runtime, or
 metaprogramming .

 Throughout the book, you ’ ve seen some examples of how metaprogramming can be used to create
elegant and flexible code, and you ’ ve also seen a little bit of how metaprogramming constructs are
used throughout Rails. In this chapter, you ’ ll take a full tour of Rails metaprogramming and see
how it can be used effectively.

 Any discussion of metaprogramming tends to bog down because the concepts are kind of mind -
 twisting and everybody tends to use a slightly different set of terms. For our purposes here,
metaprogramming is any attempt to dynamically change not just the data that the program is
running on, but the actual code structure itself. The structural change can be as simple as using an
 eval statement to dynamically generate code to execute or as complex as a Rails plugin changing
the behavior of preexisting core Rails tasks.

c14.indd 367c14.indd 367 1/30/08 4:19:30 PM1/30/08 4:19:30 PM

Chapter 14: Going Meta

368

 Eval and Bindings
 Many scripting languages have a facility to allow an arbitrary string to be executed at runtime. In Ruby,
that feature comes from the eval method. Here ’ s an example of that method:

 > > eval(“2 + 2”)
= > 4

 By default, variables in the code string are evaluated in the current context, as follows:

 > > x = 3
= > 3
 > > y = 5
= > 5
 > > eval(“x * y”)
= > 15

 However, you can evaluate the string in a more - or - less arbitrary environment by passing in an optional
second argument, which must be a Ruby binding . Bindings are kind of odd entities that encapsulate the
context of a block, which is basically a lookup table that stores the values of all accessible variables and
constants. From the binding, the state of variable values when the block is created can be revisited.

 Every block or Proc object defines its own binding, within which it can set local variable values. Under
normal circumstances, this binding is accessed only when the block is executed, to determine the values
of variables used by the block. However, you can retrieve just the binding and execute an arbitrary
statement within it using the variable values as defined when the block was created.

 Here ’ s a test script that shows how bindings work:

def some_crazy_thing
 a = 10
 b = 20
 Proc.new {c = 10}
end

p eval(“a * b”, some_crazy_thing.binding)

 The method some_crazy_thing sets a couple of variables and returns a Proc object. The last line of the
script takes that block, grabs its binding, and tries to add two variables. When run, a and b are evaluated
in the binding of the Proc object returned by some_crazy_thing , with this result:

 > > > eval_binding.rb

200

 Even though the actual block does not contain the variables a and b , both are accessible from the block
because they were in scope when the block was created. The block itself is never executed.

 By using a binding argument, you are re - entering the variable context as it existed when the block was
created — any variable that was available to be used inside the block can also be referenced inside the

c14.indd 368c14.indd 368 1/30/08 4:19:31 PM1/30/08 4:19:31 PM

Chapter 14: Going Meta

369

 eval string. On the other hand, the binding doesn ’ t know or care what variables are actually created
inside the block because the block is never run. Those values are not available to the binding and cannot
be referenced inside the eval string. In other words, placing the following line at the bottom of the
preceding script would result in an error:

p eval(“a * c”, some_crazy_thing.binding)

 Because c is defined only inside the block and is not accessible at the time the block was created, it
cannot be referenced in the eval string. You can, however change the values of a variable that is then
used in the block, like this:

def another_crazy_thing
 a = 10
 Proc.new {a * a}
end

proc = another_crazy_thing
eval(“a = 5”, proc.binding)
p proc.call

 This code snippet returns 25 , because the eval changes the value of a in the binding, and therefore in
the block execution context as well. It seems, though, that you are limited to changing the value of
existing variables in the binding, you can ’ t add a new variable to the scope.

 Ruby offers a couple of other ways to choose an execution context for an eval string. Probably the most
important is instance_eval , shown in the following code:

 > > r = Recipe.find(1)
= > # < Recipe id: 1, title: “Grandma’s Chicken Soup”, servings: “3”,
description: “Yummy!”, directions: “Things”, created_at:
“2007-08-05 20:03:33”, updated_at: “2007-09-25 00:55:17”, user_id: 2,
cached_tag_list: “grandma, chicken, yummy”, cached_ingredient_string: “2 cups stock
2 cups stock
1/2 oz. carrot
1/2 oz. ca...”, soup_image_id: 1 >
 > > r.instance_eval(“title”)
= > “Grandma’s Chicken Soup”

 The instance_eval method uses the method receiver instance as the context for evaluating the string.
Specifically, the code string will be evaluated as though the self object is implicitly set to the receiver of
the instance_eval . In this example, the simple string title is evaluated as though it was r.title .
Instead of calling instance_eval with a string, you can also call it with a block, like this:

 > > r.instance_eval do
? > title
 > > end
= > “Grandma’s Chicken Soup”

 The contents of the block are then evaluated within the receiving object ’ s context.

c14.indd 369c14.indd 369 1/30/08 4:19:31 PM1/30/08 4:19:31 PM

Chapter 14: Going Meta

370

 Ruby also has analogous methods called class_eval and method_eval . You can use class_eval as
one of several mechanisms to dynamically add instance methods to a class at runtime. For example:

class EvalTest

end

EvalTest.class_eval do
 def hello
 p “hi there”
 end
end

test = EvalTest.new
test.hello

 In this example, the class_eval method evaluates its block in the context of the EvalTest class. Within
that block, a method is defined, so when the class_eval is executed, that method definition is
evaluated in the context of that class, adding the instance method hello to EvalTest . Note that the
method is added as an instance method because the evaluation is done in the class context. If you want
to use eval to add a method as a class method, then you need to use instance_eval , like so (but I ’ ll
show you a better way of adding class methods in a moment):

EvalTest.instance_eval do
 def good_bye
 p “so long”
 end
end
EvalTest.good_bye

 And this is where metaprogramming can start to get a little headache - inducing. Calling class_eval
creates an instance method, while calling instance_eval creates a class method (technically, an
 instance method of the class). This is all perfectly logical within the counterintuitive world of treating
classes as instances in their own right. More on this when we discuss singleton classes in a couple of
sections.

 Introspection Tools
 Metaprogramming and introspection are fairly tightly integrated. When you ’ re writing
metaprogramming code, you will usually need to call methods or get the value of variables whose
names are only determined when the code is run. Ruby contains a rich set of methods to allow access to
the internal state of its objects. Most of this functionality is in the classes Class , Module , and Object .

 The following tables provide a quick guide to the most commonly used methods. The eval family of
methods is not included in this section, and some methods will be explained in more detail later in this
chapter. The Module class, in particular, has some less commonly used introspection methods involving
access control levels that are not listed here.

c14.indd 370c14.indd 370 1/30/08 4:19:31 PM1/30/08 4:19:31 PM

Chapter 14: Going Meta

371

 The first table describes the introspective methods of the Class class.

Method Description

inherited(subclass) Automatically called when a subclass of the class is defined.

superclass Returns the superclass of the class. If the class is Object, this returns nil.

 The following table describes the introspective methods of the Module class.

Method Description

self.constants Returns an array of all constants currently defined. This con-
tains not just system-level constants, but also the classes and
modules available. The names are returned as strings.

self.nesting Returns an array of all the nested modules currently in
scope, innermost to outermost.

alias_method(new_name,
old_name)

Defines new_name as a copy of the definition of old_name.
Even if old_name changes, new_name still points to the orig-
inal definition.

ancestors Returns a list of all the modules currently included in the
given module.

class_variable_
defined?(symbol)

Returns true if the class or module has a class variable
(@@ syntax) named symbol. The symbol name must include
the @@ signs.

class_variable_get(symbol) Introspectively gets the value of symbol, if symbol is a class
variable. The symbol name must include the @@ signs.

class_variable_set(symbol,
value)

Introspectively sets the value of symbol, if symbol is a class
variable. The symbol name must include the @@ signs.

class_variables Returns a list of all class variable names, as strings.

const_defined?(symbol) Returns true if the symbol is a constant in the given module.

const_get(symbol) Returns the value of the constant in the module.

const_set(symbol, value) Sets the symbol as a constant with the given value.

constants Returns an array of the names of all constants in the receiv-
ing module.

define_method(symbol) Takes a block and dynamically defines a method within the
module. See the “Defining Methods Dynamically” section
later in this chapter for a full description of this method.

Table continued on following page

c14.indd 371c14.indd 371 1/30/08 4:19:32 PM1/30/08 4:19:32 PM

Chapter 14: Going Meta

372

Method Description

include(*modules) Includes all the given modules, with the defined methods
becoming instance methods on the containing class.

included(other) Automatically called when this module is included within
another class or module.

instance_method(symbol) If the containing class contains an instance method named
symbol, returns a Ruby UnboundMethod with that method.
The method can be invoked by passing it the bind message
with an instance of the class as an argument.

instance_methods(include_
super)

Returns a list of the names of all the public instance methods
in the receiving module. If include_super is true
(the default), then superclass methods are also listed.

method_defined?(symbol) Returns true if a method named symbol is defined in the
module.

private_class_
method(*symbols)

Makes the class method named in the symbols list into
private methods.

 The following table describes the introspective methods of the Object class.

Method Definition

extend(*modules) Extends the object by adding the methods defined in each
module. Note that if extend is applied to a class object,
then the methods are instance methods of the class, mak-
ing them class modules from the perspective of instances
of that class.

instance_variable_
defined?(symbol)

Returns true if the symbol is currently defined as an
instance variable in the instance. The symbol name needs
to have the @ sign.

instance_variable_get(symbol) Returns the value of the instance variable named symbol.
The name must include the @ sign. An undefined symbol
will raise an exception.

instance_variable_set(symbol,
value)

Assigns the instance variable named symbol the value,
“thereby frustrating the efforts of the class’s author to pro-
vide proper encapsulation”, the Ruby documentation
observes. The symbol name must have the @ sign.

instance_variables Returns an array of currently defined instance variables.

method(symbol) Returns the instance method named symbol. The method
can then be invoked by sending it the call message.

c14.indd 372c14.indd 372 1/30/08 4:19:32 PM1/30/08 4:19:32 PM

Chapter 14: Going Meta

373

Method Definition

methods Returns a list of the names of all public methods in the
object as strings.

respond_to?(symbol, include_
private=false)

Returns true if the object will respond to a message
named symbol. If include_private is true, then
private methods are included in the search.

send(symbol, *args) If the object responds to a method named symbol, this
calls that method with the passed arguments. This can
also be referenced as __send__ if send is already defined
(or if you are a Python programmer feeling nostalgic for
double underscores). This works even if symbol is a pri-
vate method.

singleton_method_added(symbol) Automatically called when a method is added to the
object’s singleton class (see the next section for an expla-
nation).

singleton_methods Returns a list of the names of all methods of the object’s
singleton class.

 Classes, Metaclasses, and Singletons
 Consider the following irb session.

irb(main):001:0 > “abcd”.class
= > String
irb(main):002:0 > “abcd”.class.class
= > Class
irb(main):003:0 > “abcd”.class.class.class
= > Class
irb(main):004:0 > “abcd”.class.class.class.class
= > Class

 In this code, the abcd string is, like everything in Ruby, an object. Every object in Ruby belongs to a class.
The class for abcd is, naturally, String . The class for the class String is the class Class .

 It ’ s hard to proceed from this point without sounding a little bit like a deranged Philosophy
professor: “ What is the meaning of self ” , “ What is the essence of object ? ” “ What is the nature of being a
 class ? ” “ What does it mean if a class is also an object ? ” “ If a class is an object , where do classes come from? ”

 Classes and Objects
 A Ruby object has two essential features. It has some set of attributes, which define its state, and it
belongs to a class, which defines its behavior. For example, in Soups OnLine, a Recipe object contains
several pieces of data representing its state, including a title, a list of ingredients, and a description.

c14.indd 373c14.indd 373 1/30/08 4:19:32 PM1/30/08 4:19:32 PM

Chapter 14: Going Meta

374

It also belongs to the Recipe class, which defines a number of useful things that the object can do with
its data, such as converting it to XML. And Recipe is a subclass of ActiveRecord::Base , which defines
a whole boatload of useful things to do with data. Similarly, the characters abcd represent the state of a
 String , and all the methods of String define what you can do to and with a String .

 Unlike some other programming languages, Ruby classes do not impose a set of data on their instances.
Although the class may set data or expect certain attributes in defined methods, there ’ s nothing stopping
you from adding attributes to the object that no method knows about. The class can define accessors —
 but accessors are methods, not descriptions of data.

 A Ruby class has three additional features, beyond a typical object. A class has a lookup table that maps
symbols to executable methods — this provides the behavior for instances of the class. There ’ s a special
link to a parent class, which allows the class to use previously defined behavior (technically, the class
 Object is a special case because it has no parent class). Classes also have the ability to create objects that
are instances of that class, which in this context means that the objects will look to the class ’ s symbol
table to respond to messages. (I ’ m leaving Ruby modules out of this discussion. Modules have the first
two properties but cannot create instances of their own without being included inside a class.)

 The graph in Figure 14 - 1 shows the relationships. There ’ s the traditional isa link between a class and its
superclass, and I ’ ve also added an instance of relationship. The string abcd is an instance of String ,
which is an instance of Class , which is also an instance of Class .

abcd

String

Class

Object

instance of

instance of

instance of

isa

isa

Figure 14-1

 So, classes have some special powers, but they are also objects. Everything in Ruby is an object. (I know
I ’ ve said that already, but I find that repeating that point a few times really does help.) This means that a
class can have instance variables and belong to another class. The class that classes belong to is actually
called Class . And the class of Class is itself also Class . If this is becoming confusing, go back to the
IRB session at the beginning of this section which explores the same concept.

c14.indd 374c14.indd 374 1/30/08 4:19:33 PM1/30/08 4:19:33 PM

Chapter 14: Going Meta

375

What Is Ruby’s Metaclass?
If you wander through online Ruby discussions about dynamic programming and
metaprogramming in Ruby, you’ll probably see statements that say something like
“Class is the metaclass of Ruby”. What does this mean?

Conceptually, just as a class is the thing that creates instances, a metaclass is the thing
that creates classes. In some object-oriented programming languages, most notably
Smalltalk, there is an actual class called Metaclass, which is the source of class behavior
and class instances. (Actually, the Smalltalk hierarchy is a little more tangled than this,
but that’s the basic idea.) However, there isn’t an explicit Metaclass in Ruby, and the
source of class instances and class behavior is Class itself — hence “Class is the meta-
class of Ruby.”

 Adding instance variables to a class makes them available to that class instance, of course, but the
variables are also available to instances of that class. I find the following helps me remember the
relationship:

 Instance variables of the class are class variables of the instances.

 This is also true if you substitute “ methods ” for “ variables. ” (Plus, it has the added benefit of sounding
like a lost Zen koan.)

 The relationship works the other way as well. When you use the @@ syntax to add a class attribute, you
are actually adding an instance attribute to the class object. And when you define a class method using
 def self.method_name , you are actually adding an instance method to the class . . . sort of. As I
mentioned only a few paragraphs earlier, Ruby instances don ’ t have methods — only classes do. There
is, however, a way to attach methods to specific instances.

 Singletons
 Take a closer look at the syntax for creating a class method:

def self.do_something
end

 The use of self in this location is a recent addition to Ruby. You used to have to define a class method
explicitly using the class name, like this:

def Recipe.do_something
end

 What ’ s going on here?

 Well, remember when I said that instances don ’ t have methods? Strictly speaking, that ’ s true, but there ’ s
a way around that. Every object in Ruby can have a special attribute, often called a singleton class , not to
be confused with the Singleton design pattern.

c14.indd 375c14.indd 375 1/30/08 4:19:34 PM1/30/08 4:19:34 PM

Chapter 14: Going Meta

376

 This special class goes by a number of different names — you ’ ll often see it called a metaclass, which
technically, it isn ’ t.

 The singleton class can have instance methods, and the methods in a singleton class have precedence
over the normal instance method hierarchy of an object — a method declared in an object ’ s singleton
class will be executed instead of a normally defined method of the same name. (This is the key to mock
objects in Ruby.)

 When you define a method using the def object.method_name syntax, you are actually adding an
instance method to the singleton class of the object, implicitly creating the singleton class if necessary.
Later, you can call that method by normal means. Note that there ’ s only one singleton class for each
object — no matter how many different times or places you define something in the singleton context, it
will always go to the same class.

 So, in the preceding def Recipe.do_something example, the method is added to the singleton class
for the class instance Recipe , and can then be called with the same Recipe.do_something syntax.
Remember, Ruby will not search the class singleton object when looking for an instance method (this is
different from the way other languages, such as Java, handle class methods). Therefore, the following
will not work:

r = Recipe.new
r.do_something ## needs to be Recipe.do_something

 The form def self.do_something also works in this case only because the method is presumably
being defined within the Recipe class definition. Inside that definition, self resolves to the class
 Recipe , so the method names are effectively identical.

 Even though this syntax is usually used to define class methods, there ’ s nothing privileged about classes
here — any Ruby object can have singleton methods defined this way. Consider the following script:

x = “Are you hungry?”
y = “Are you thirsty?”

def x.add_response
 self < < “ Yes I am”
end

x.add_response
p x

y.add_response

 When this code is run, the output is as follows:

 > > > singleon.rb

“Are you hungry? Yes I am”
NoMethodError: undefined method ‘add_response’ for “Are you thirsty?”:String

c14.indd 376c14.indd 376 1/30/08 4:19:35 PM1/30/08 4:19:35 PM

Chapter 14: Going Meta

377

 What happened? The method definition def x.add_response creates a singleton method for the x
instance, but not for the y instance. When the method call x.add_response is made, the singleton class
is the first place Ruby looks for a method definition, and it finds one there. But the singleton method has
been added only to x , so y.add_response finds no definition and returns an error.

 There ’ s actually another syntax for accessing the singleton class of a method, which is much more
popular for instance singleton classes and is becoming increasingly popular for class methods. The
 x.add_response method in the previous example could have been written as follows:

class < < x
 def add_response
 self < < “ Yes I am”
 end
end

 The class < < object syntax is a Ruby special form. It sets up a block, which is evaluated in the
context of the singleton class belonging to object . Any methods defined in that block become singleton
methods, and any instance variables defined in the block become singleton instance variables.

 Having singleton instance variables in a singleton class for an ordinary Ruby object isn ’ t usually that
helpful, but having singleton instance variables for a class is very interesting. Take a look at this example:

class SingletonParent
 @@greeting = “I am”

 def self.set_greeting(greeting)
 @@greeting = greeting
 end

 class < < self
 attr_accessor :name

 def who_am_i
 p “#{@@greeting} #{name}”
 end
 end
end

class SingletonChild < SingletonParent
end

SingletonParent.name = “Ernie”
SingletonParent.who_am_i

SingletonChild.who_am_i
SingletonChild.name = “Bert”

SingletonChild.who_am_i
SingletonParent.who_am_i

SingletonParent.set_greeting(“My name is”)
SingletonChild.who_am_i

c14.indd 377c14.indd 377 1/30/08 4:19:35 PM1/30/08 4:19:35 PM

Chapter 14: Going Meta

378

 Take a second and see if you can work out what the output of this program will be.

 Here ’ s the output:

“I am Ernie”
“I am “
“I am Bert”
“I am Ernie”
“My name is Bert”

 This code sample shows two different ways of defining class variables. The @@ syntax is used for the
greeting, while a conventional instance atribute accessor is used for the name.

 Although the two definitions seem similar, there ’ s an important difference. Because the name variable is
set inside the singleton context it ’ s reevaluated dynamically for each subclass. Practically speaking, this
means that each subclass gets its own copy of the variable. This fact can be seen in the example — setting
the parent ’ s name to Ernie does not set the child ’ s name. However, the greeting variable is common to
both the parent and child classes. In the last two lines, the greeting is reset in the parent class, but the
greeting has also changed in the child class.

 Going through the Rails source, you ’ ll see that the singleton mechanism is the preferred method of
defining class methods. The capability to have separate instance values for subclasses is one reason, plus
it ’ s also nice to have all the class methods defined within a specific, dedicated block.

 Monkey Patching and Duck Punching
 One of Ruby ’ s most distinctive features is that class definitions never close — you can always add new
methods to existing classes, even classes that are in the core Ruby library. I ’ ve already shown you some
examples of this functionality in action, most of which have been along the lines of adding utility
methods to core classes like this:

require ‘rss/2.0’
class Array
 def to_rss_feed(title, link, description=””)
 rss = RSS::Rss.new(“2.0”)
 channel = RSS::Rss::Channel.new
 rss.channel = channel
 channel.title = title
 channel.link = link
 channel.description = description
 self.each do |item|
 channel.items < < item.to_rss_item
 end
 rss.to_s
 end
end

 The feature is still controversial. The most commonly used term for it — monkey patching — comes out
of the Python community, and was originally a derogatory way of describing the practice of changing
classes at runtime (which can be done in Python, although somewhat awkwardly). Ruby programmers

c14.indd 378c14.indd 378 1/30/08 4:19:35 PM1/30/08 4:19:35 PM

Chapter 14: Going Meta

379

adopted the phrase as their own, although there has been some searching for an alternate term with a
less negative connotation. However, the phrase presented as an alternative — duck punching — doesn ’ t
sound like all that much of an improvement.

 Anyway, the question at hand is “ Monkey Patching: Threat or Menace? ” Strict software - engineering
types argue that the ability to change the definition of any method in the system at whim is a recipe for
chaos — “ How can you verify the correctness of a program, ” they argue, “ when you can ’ t even count on
the definition of a string? ” Even less - strict programmers feel a certain amount of queasiness at the idea
of going in and potentially messing with the very guts of the system. In answer to this, Ruby
programmers point out that it ’ s often useful to add features directly to existing classes, and that it can
lead to more readable code. They point to Rails as an example of a system that relies heavily on monkey
patching, and yet somehow manages to not fall apart. In fact, Rails does an unusually good job of
supporting extensions via plugins, and the plugin system is almost impossible to imagine without
monkey patching.

 At the risk of sounding wishy - washy, I do want to point out that, in one way or another, everybody in
this discussion is somewhat right. It is possible to shoot yourself in the foot pretty dramatically via a
monkey patch — and yet, monkey patching is an extremely useful thing to be able to do. For example,
I ’ ve always wanted to be able to add functionality String in both Java and Python.

 Where the people who criticize the practice tend to go a little overboard, in my opinion, is by assuming
that the most damaging uses of monkey patching are the most common, or are even common at all.
My experience is that radical alterations in the core classes are pretty rare, and although Rails does sort
of encourage extending Rails base classes, it does so by providing a few commonly used templates to
ensure that existing functionality is not compromised.

 There are some legitimate concerns about how to manage a large team of developers, all of whom can
mess around with the core classes. And again, I can see the concern, but think that the practical cost is
minimal. Any Rails application that uses plugins is implicitly the work of a larger team, and it all seems
to hold together as well or better than you ’ d expect.

 This is another round in the never - ending debate between dynamic - language proponents and static -
 language fans. I ’ ve always felt that, although there is some risk inherent in dynamic features, the amount
of time I save as a programmer by using a dynamic language more than makes up for the amount of
time I have to spend on increased testing or tracking down the potential flaws. It ’ s not that you can ’ t
make mistakes in a dynamic language — it ’ s just that the most dramatic possibilities are both relatively
rare, and usually not subtle and easily caught.

 Monkey Patching Without Slipping On a Banana Peel
 Even a defender of the monkey patch such as I knows that there ’ s a right way and a wrong way to do it.
Here are some ways to make sure that your monkey patch doesn ’ t come back and bite you.

 I think there are two good reasons to add a utility method to an existing core class with a monkey patch.
The first is if a normal object - oriented analysis would cause the method to live in the core class. The Rails
ActiveSupport library has several examples of this, such as Integer#even? and Hash#diff . In both of
these cases, the method could easily have been included in the original core class — it ’ s obviously a
method that acts on the data of that class. This is your chance to include utility methods that are
important to your project, even if they are too obscure to be utility methods for everybody.

c14.indd 379c14.indd 379 1/30/08 4:19:36 PM1/30/08 4:19:36 PM

Chapter 14: Going Meta

380

 I also think that it ’ s reasonable to add a method to a core class purely for readability. Ruby programmers
in general are known for putting extra work into their libraries and APIs to make them particularly
elegant to read. A good example within Rails is the time functions, such as 3.days.ago and the like. You
could argue that days and ago are conceptually methods of the Time class. I suppose that ’ s true, but
 Time.days_ago(3) doesn ’ t quite have the clarity of 3.days.ago .

 You are relatively unlikely to cause a significant problem by adding new methods to an existing class —
 the biggest risk is that you ’ ll just assume the new method is core, and use it in places where it hasn ’ t
been defined, which is an error you ’ ll catch quickly. Things get more dangerous when you start
modifying existing methods. The first thing to do is to have an “ Is this trip really necessary? ”
conversation with yourself. Monkey patching to change behavior is desirable only if you are trying to
change the behavior of already existing code. If you are just trying to change the behavior in the new
code you are going to write, then you should consider creating a subclass of the class you want to use,
and overriding the appropriate methods as needed.

 There are legitimate reasons not to go the subclass route. You might actually need to affect the behavior
of other code, because you are writing a trace utility, or because you want to change default
ActiveRecord behavior. Some classes are just awkward to subclass — trying to ensure that you will
always use MySpecialString in your application sounds nightmarish.

 When you do extend an existing class, it ’ s a good idea to use the alias mechanism similar to the one
shown in the next section to ensure that the original behavior is still available for objects that want it.
Where possible, use the existing method to provide part of the new functionality — this prevents
repetition and allows you to use already tested code.

 Finally and always, test, test, test . Test your patches to validate correctness. Having 100 - percent coverage
on your entire program dramatically reduces the possibility of some weird interaction sneaking through
and causing havoc.

 Alias
 A common use of monkey patching is to augment or decorate an existing method. The usual pattern here
is to have the new method call the old method while providing an additional piece of functionality. For
instance, you might want to write a Rails plugin that specially logs ActiveRecord behavior by tracking
the identity of all objects saved to your database. Obviously you still want to preserve the existing save
behavior, if for no other reason than that you ’ ll want to call it.

 So, you start out doing something like this:

module ActiveRecord
 class Base
 def save
 log < < “Saving #{class} #{id} at #{Time.now}
 ## Now I want to call the pre-existing save....
 end
 end
end

 There ’ s kind of a gotcha waiting there — you ’ ve redefined save , but then you need to call the original
 save , and there ’ s no way to access it.

c14.indd 380c14.indd 380 1/30/08 4:19:36 PM1/30/08 4:19:36 PM

Chapter 14: Going Meta

381

 The first step toward resolving this problem involves Ruby ’ s alias keyword. The alias method allows
you to specify a new method name as being identical to an existing method name — the new one
becomes a literal, also - known - as alias. Now you can try to solve the issue thusly:

module ActiveRecord
 class Base
 def new_save
 log < < “Saving #{class} #{id} at #{Time.now}”
 save
 end
 alias :save, :new_save
 end
end

 Sadly, this still won ’ t work. The alias command is called when the module is loaded, but the internal
 save call doesn ’ t happen until a save is actually triggered. By that time, save has long since been
renamed, and you ’ re headed for an infinite loop.

 To make this work, you need to have two aliases: one that stores the original version of the method, and
another that redirects the original name to the new method. Here ’ s how you define those aliases:

module ActiveRecord
 class Base

 def new_save
 log < < “Saving #{class} #{id} at #{Time.now}”
 old_save
 end

 alias :old_save :save
 alias :save :new_save
 end
end

 Because the alias calls still happen at load time, it doesn ’ t matter whether they come before or after the
definition of the new method. However, the two lines do have to stay in the same relative order — the
alias to the existing method has to come first.

 This is a common enough pattern in the Rails source that there ’ s a helper method to simplify it a bit. The
Rails idiom for this pattern looks like this:

module ActiveRecord
 class Base

 def save_with_logging
 log < < “Saving #{class} #{id} at #{Time.now}
 save_without_logging
 end

 alias_method_chain :save, :logging
 end
end

c14.indd 381c14.indd 381 1/30/08 4:19:36 PM1/30/08 4:19:36 PM

Chapter 14: Going Meta

382

 The naming convention here is a little different from what the original examples had. The
alias_method_chain creates two aliases as follows:

alias : < method > _without_ < descriptor > : < method >
alias : < method > < method > _with_ < descriptor >

 In this example, the method is :save , and the descriptor is :logging . Therefore, with the usual style of
convention - over - configuration, Rails assumes that the new method will be called save_with_logging ,
and the old method can be accessed as save_without_logging .

 Even though this mechanism saves only one line of code, it imposes a naming convention, and prevents
you from making mistakes when dealing with a kind of tangled code structure. It ’ s recommended
that you use the method chain whenever you patch an existing method in this pattern.

 Plugging In
 Over the course of this book, you ’ ve seen a couple of Rails plugins work in the acts_as_something
style. They define a class method declaration or two, which is available to all ActiveRecord subclasses.
When that class method is called inside a class definition, it acts as a trigger for several other methods to
become available — both at a class and an instance level.

 Think about the acts_as_taggable_on_steroids plugin. The acts_as_taggable declaration is
available to any ActiveRecord class. That seems like a straightforward monkey patch — adding a new
method to the existing ActiveRecord class object. However, when acts_as_taggable is called, then the
ActiveRecord subclass in question grows a few new methods: both class methods like find_with_tags , and
instance methods like tag_list . That ’ s monkey patching, of a sort, but it ’ s an even more dynamic version
that you ’ ve already seen. The plugin is patching a class that is not explicitly defined — in fact, it ’ s likely that
the class being patched didn ’ t even exist when acts_as_taggable was written. How is that done?

 The basic functionality is provided by some hook methods defined in standard Ruby that allow you to
get access to some class lifecycle events. That ’ s combined with what has become a sort - of - standard way
to use those methods to inject code into new classes.

 Two of the Ruby hooks are event triggers, automatically invoked by Ruby in response to code events.
The first is included(other) , which is a method of the class Module . You write this method inside your
module, and any time that module is included within another class using include , this method is
eventually triggered. The argument is the other module object, and you can do whatever you want with
that module from here. Obviously, that gives you a lot of power to abuse. For our purposes, you ’ ll be
using it just to insert new methods.

 The other hook is the analogous one for class inheritance. The method is inherited(subclass) , and
it ’ s a method of the class Class , called whenever a new class is declared with a superclass. Again, you
define your behavior within the superclass, and any prospective subclasses have to pass through this
method while being defined.

 The two methods that actually perform the injection are include and extend . You ’ ve seen include all
over the place — it ’ s what you always use to add a module to a class. Specifically the methods of the
module being included are added to the class as instance methods. The extend method works similarly,
except that the methods of the module being passed in are added to the original module as class
methods, instead of as instance methods.

c14.indd 382c14.indd 382 1/30/08 4:19:37 PM1/30/08 4:19:37 PM

Chapter 14: Going Meta

383

 Acts As Reviewable
 In your basic acts_as_whatever plugin that affects ActiveRecord, you ’ ve got three kinds of methods
that you need injected into Rails core behavior. First off, you have class methods that will be accessible to
any ActiveRecord subclass. Typically this is the acts_as_whatever method itself, along with any other
top - level method designed to be used as a declaration. Then you have class methods that are only
available to a class after it has invoked acts_as_whatever , as well as instance methods that are
only available to a class that has invoked acts_as_whatever . Ideally, you ’ d want the structure of your
plugin module to map easily to this structure, so any necessary changes can be made cleanly.

 To illustrate the commonly used structure that is used to monkey patch ActiveRecord this way, I ’ m going
to show you a plugin called acts_as_reviewable . This plugin will associate recipes with an arbitrary
number of user reviews in much the same way that acts_as_taggable associates a recipe with an
arbitrary number of tags. In fact, the design of acts_as_taggable_on_steroids informed this
discussion. The actual implementation of the plugin will be covered in the next chapter. Here, the
concern is how a plugin might inject its code into an unknown ActiveRecord subclass.

 The initial skeleton structure of the main module of the plugin places it in the exiting ActiveRecord
module structure as follows (eventually, this file will be vendor/plugins/acts_as_reviewable/lib/
acts_as_reviewable.rb):

module ActiveRecord
 module Acts
 module Reviewable
 end
 end
end

ActiveRecord::Base.send(:include, ActiveRecord::Acts::Reviewable)

 It ’ s the responsibility of the plugin structure to make sure this file is loaded in the first place (which is
covered by an init file that ’ s discussed in the next chapter), but this file is responsible for making sure
that the right things happen thereafter. To that end, I ’ ll start by setting up the skeleton module structure,
and the last line will call the include method of ActiveRecord::Base . In effect, that last line is knocking
on the door of ActiveRecord::Base and insisting that the new module be included. This is our first
dynamic monkey patch of the plugin: adding a new module ’ s methods to ActiveRecord::Base .

 As discussed a couple of paragraphs ago, using include on a module triggers a call to the included
method for the module being included. This is still true even when, as in this case, the include call is
outside the actual class. Here ’ s what I put in the included method for the Reviewable module:

 module Reviewable
 def self.included(base)
 base.extend(ClassMethods)
 end
 end

c14.indd 383c14.indd 383 1/30/08 4:19:37 PM1/30/08 4:19:37 PM

Chapter 14: Going Meta

384

 The single argument, base , is the module to which the plugin is being included — in this case,
 ActiveRecord::Base . All this method does is extend ActiveRecord::Base with a module called
 ClassMethods . This is a submodule of Reviewable that contains all the methods defined by the plugin
that are expected to be available to all subclasses of ActiveRecord::Base . The full structure looks
like this:

 module Reviewable

 def self.included(base)
 base.extend(ClassMethods)
 end

 module ClassMethods
 def acts_as_reviewable
 #what kinds of goodness need to go here??
 end
 end

 end

 Remember, extend takes all the methods defined in the module and adds them as class methods of the
extending class. In this case, the module defines just one method: the actual acts_as_reviewable
method.

 By the way, given the implementation of included here, it would be possible to bypass the need to
implement it and just have the statement at the end of the module read like this:

ActiveRecord::Base.extend ActiveRecord::Acts::Reviewable::ClassMethods

 That ’ s a little more code - efficient because it ’ s a few lines shorter. However, the longer version is more
flexible and allows intrepid book authors to show an actual case of how included is used. Feel free to
use whichever version you like better.

 At this point, the following usage is enabled:

class Recipe < ActiveRecord::Base
 acts_as_reviewable

 # and so on

 That fulfills the first of three requirements. There is now a method that is accessible to all subclasses of
 ActiveRecord::Base , and any implementation of the second two requirements — class and
 instance methods for ActiveRecords that decide to act as renewable — will need to take place inside
the acts_as_reviewable method inside the ClassMethods module.

 I suspect it will not surprise you at this point to discover that the implementation involves two other
modules: one for inclusion as instance methods, and one for extension as class methods. Here are the
definitions for those modules:

 module ClassMethods
 def acts_as_reviewable
 # define new relationships and filters here
 extend ActiveRecord::Acts::Reviewable::SingletonMethods

c14.indd 384c14.indd 384 1/30/08 4:19:37 PM1/30/08 4:19:37 PM

Chapter 14: Going Meta

385

 include ActiveRecord::Acts::Reviewable::InstanceMethods

 # define aliases and other initializations here
 end
 end

 module SingletonMethods
 def find_reviews_for(options = {})
 # implementation TBD
 end
 end

 module InstanceMethods
 def average_rating
 # implementation TBD
 end

 # and so on...
 end

 The acts_as_reviewable method absolutely needs to do two things. First, it calls extend to inject the
 SingletonMethods module into its class. The extend method is called without an explicit receiver,
meaning that the receiver is self in the context when the method is called. Because acts_as_
reviewable is a class method, when it ’ s called, self will be the new class itself — in this example, it
would be the Recipe class. All methods in the SingletonMethods module are therefore added as class
methods to the base class. (The module is called SingletonMethods because the methods are
technically being added to the singleton class of the class instance.) At this point, the plugin has enabled
the following usage:

Recipe.find_reviews_for

 The mechanism for injecting the instance methods is similar, but instead of using extend , the include
method is used. Again, the fact that self is the class instance enables this to work. This enables the final
piece of functionality needed to make the plugin work:

r = Recipe.find(1)
r.average_rating

 At this point, the base functionality of the plugin has been intertwined with ActiveRecord::Base . As
you ’ ll see in the next chapter, the full implementation of this plugin will need take care of some other
logistics in the acts_as_reviewable method. For instance, the reviews will almost certainly be stored
in a new database table or tables, so the method will need to define the relationships to those tables. If
the plugin needs to redefine any ActiveRecord functionality, then any alias definitions also come here.

 This should give you a basic idea of how to take advantage of the flexibility of Ruby and the Rails plugin
system to add new features to ActiveRecord.

c14.indd 385c14.indd 385 1/30/08 4:19:37 PM1/30/08 4:19:37 PM

Chapter 14: Going Meta

386

 The Case of the Missing Method
 In most programming languages, calling a method that doesn ’ t exist is a one - way ticket to Exception -
 land. As should be clear by now, Ruby isn ’ t like most programming languages, so there are a couple of
hook methods defined to allow you to have last - ditch access to any wayward method calls. The first
method in question is called method_missing(symbol, *args) , where symbol is the name of the
nonexistent method and args is the list of all the arguments in the call. (To be fair, the method_missing
idea comes from Smalltalk, which uses a similar method called doesNotUnderstand . Python also has a
similar feature, although in practice Python programmers tend not to use it quite as often.)

 There are all kinds of interesting things you can do with method_missing , if you are so inclined. The
default implementation is just to throw an exception. An obvious thing to do in method_missing is to
use some kind of different logging of that exception, but still throw the exception anyway.

 On a more functional level, method_missing can be used to implement a simple proxy as follows:

def method_missing(symbol, *args)
 proxy.send(symbol, *args) if proxy.respond_to?(symbol)
 super
end

 All this does is redirect the missing method to an object designated as the proxy. The if clause just
ensures that the proxy will only get the method if it actually defines the method.

 But it ’ s possible to get much more inventive. I really love the example given for method_missing in the
official Ruby documentation, which I ’ ve modified somewhat here:

class RomanNumeral
 def self.method_missing(symbol, *args)
 RomanNumeral.new.roman_to_int(symbol.to_s)
 end
end

 This, of course, assumes that roman_to_int is defined somewhere in the class itself. This shows that
 method_missing can be defined as a class method as well. With that in place, you get to do this:

RomanNumeral.v
RomanNumeral.vii
RomanNumeral.xvi + RomanNumeral.xx

 In other words, this definition allows you to treat any Roman numeral as an integer with the simplest
possible API.

 The Roman - numeral example shows a very common use of method_missing , which is to create a more
readable API for other programmers to use. The most famous use of method_missing within Rails
has much the same goal. This is, of course, the find_by series of method calls that are trapped by
 method_missing , parsed, and converted to regular find calls. This is a more aggressive example of
parsing the method name to determine the behavior, and it ’ s a good example of how much elaborate
behavior can be placed in method_missing .

c14.indd 386c14.indd 386 1/30/08 4:19:38 PM1/30/08 4:19:38 PM

Chapter 14: Going Meta

387

 Ruby also defines an analogous method, constant_missing , which is called when you request a
constant value from a symbol with a capital letter. This is much less commonly overridden, but it ’ s
frequently used to automatically load modules when they are defined — Rails will do this if it can
determine that a module is in a known location.

 Although method_missing is a very cool thing, and it ’ s definitely a tool you should get comfortable
with, it ’ s not without its drawbacks. There are two major ones, and which one is a bigger problem
depends on your project and general outlook. Using method_missing will be slower than using a
regularly defined method. This is because Ruby needs to take the method all the way up the class
hierarchy to determine that the method is, in fact, missing. In addition, the method name is often parsed
in order to determine the appropriate response. The second issue is that it ’ s often difficult to document
the behavior defined in method_missing . Basically, by definition, method calls that are handled by
 method_missing won ’ t show up in your RDoc, which is normally the lookup of first resort for confused
programmers. On a related note, if method_missing shows up more than once in the same object
hierarchy, you run the risk of name collisions or other difficult - to - predict behavior.

 Most of these issues are manageable with some forethought, and you shouldn ’ t let them prevent you
from exploring method_missing - based solutions where they are applicable. For me, the hardest part is
getting into the mindset where you think in a method_missing kind of way.

 Defining Methods Dynamically
 Perhaps the most powerful tool in the metaprogrammer ’ s toolkit is the capability to create brand - new
methods at runtime that are indistinguishable from the methods defined when the module is loaded.

 Because method declarations are just another kind of command inside a Ruby script, they can actually be
placed inside conditionals and invoked based on other program logic. Another programming language
might force you to do something like this:

def error_messages
 if ENV[“RAILS_ENV”] == “development”
 p “A very verbose error message”
 else
 p “A terse message”
 end
end

 But in Ruby, you can do this:

if ENV[“RAILS_ENV”] == “development”
 def error_messages
 p “A very verbose error message”
 end
else
 def error_messages
 p “A terse message”
 end
end

c14.indd 387c14.indd 387 1/30/08 4:19:38 PM1/30/08 4:19:38 PM

Chapter 14: Going Meta

388

 The second code snippet example (the Ruby one) actually changes which version of the error_
messages method is defined. The advantage of this is that it performs the conditional test once and only
once, whereas the traditional version performs the conditional test every time the method is called. The
downside is of the dynamic version is that it looks weird, and will take most programmers some extra
time to figure out.

 Ruby allows you to create methods with the module - level method define_method , which takes a
symbol and a block as arguments.

 There isn ’ t anything you can do with define_method that can ’ t be done another way. In particular,
 define_method is basically syntactic sugar for class_eval . As an example, take a look at the following
 define_method :

define_method(method_name) do |args|
 print args
end

 This is basically equivalent to the following class_eval :

class_eval < < -END
 def #{method_name}(*args)
 print args
 end
end

 However, because the class_eval version takes in its code as a string rather than a block, it ’ s
significantly harder to work with (although you do still see that version from time to time). For one
thing, doing string processing inside the method body can be a pain. For another, most syntax - coloring
editors will treat the whole thing as a string, making it harder to visualize the code. In general, the
 define_method form is more flexible and easier to work with.

 You can use define_method in a variety of ways. It ’ s commonly placed in a part of a class definition
that is always run to define several similar methods that conform to a common template. Using define_
method in this way reduces the duplication in your code. Here ’ s an example inspired by the Rails source
— it ’ s the code that enables the so - called “ sexy migrations ” such as t.string :name and t.integer
user_id :

%w(string text integer float decimal datetime timestamp time date binary
boolean).each do |column_type|
 define_method(column_type) do |args|
 options = args.extract_options!
 column_names = args
 column_names.each { |name| column(name, ‘#{column_type}’, options) }
 end
end

 Technically, this code in the Rails source is implemented via the class_eval mechanism, rather than
 define_method , but this way is a little nicer. For each of the potential column types, this code block
creates a new method named after that column type. When that method is called, the options and column
names are extracted from the argument list, and the column method is called to create the column, using
the same column type that ’ s used to name the method.

c14.indd 388c14.indd 388 1/30/08 4:19:38 PM1/30/08 4:19:38 PM

Chapter 14: Going Meta

389

 Without define_method , you ’ d likely have to do something like this:

def column_of_type(column_type, *args)
 options = args.extract_options!
 column_names = args
 column_names.each { |name| column(name, ‘#{column_type}’, options) }
end

def string(*args)
 column_of_type(“string”, *args)
end

def integer(*args)
 column_of_type(“integer”, *args)
end

and so on...

 That ’ s not horrible, and certainly there ’ s a ton of Java code that looks more or less like this. But it does
require the duplication of the structure of each call to column_of_type , and extending the method to
new types is a little more difficult.

 Earlier in this book, define_method was used similarly in the TabularFormBuilder to reduce the
amount of duplication in the different form - helper handlers.

 Often, when define_method is used within a Rails plugin, the name of the method being defined is also
being created dynamically. For instance, the following code shows the method definition for in_place_
edit_for , from the Rails core plugin for in - place editing. This method is called as a class method in a
controller to tell the controller that there ’ s an in - place editor in a view that is going to call this controller:

in_place_edit_for :recipe, :description

 The implementation of this method uses define_method to create the set_recipe_description
method that the in - place editor widget expects to call:

 def in_place_edit_for(object, attribute, options = {})
 define_method(“set_#{object}_#{attribute}”) do
 @item = object.to_s.camelize.constantize.find(params[:id])
 @item.update_attribute(attribute, params[:value])
 render :text = > @item.send(attribute)
 end
 end

 The snippet also uses some other Ruby and Rails reflective goodness. The first line of the internal
method object.to_s.camelize.constantize converts the name of the symbol, :recipe , into the
associated class name, Recipe , in a nice use of Rails convention - over - configuration ethos. The find
method is then called on that class, and update_attribute is used to change the arbitrary attribute
specified in the method name. Then the send method is used to get the new value back from the object
and that text is rendered — on the view side, it ’ s recovered by the JavaScript widget that made the edit
call in the first place and displayed back in - place in the page.

c14.indd 389c14.indd 389 1/30/08 4:19:39 PM1/30/08 4:19:39 PM

Chapter 14: Going Meta

390

 References
 Jay Fields has a nice online discussion of eval and bindings at http://blog.jayfields
.com/2006/07/ruby-eval-with-binding.html . There ’ s an interesting discussion about the benefits
and dangers of monkey patching anchored around Chad Fowler ’ s post www.chadfowler.com/index
.cgi/Computing/Programming/Ruby/TheVirtuesOfMonkeyPatching.rdoc,v .

 One of the best general overviews of Ruby metaprogramming and singleton classes is provided by the
Ruby programmer known as “ why the lucky stiff ” at http://whytheluckystiff.net/articles/
seeingMetaclassesClearly.html . (My only quibble is with why ’ s naming conventions, which differ
from what I used in this book.)

 A plugin called Acts As Taggable On Steroids (or AATOS) was the basis for much of the discussion on
plugin structure. Its home page is http://agilewebdevelopment.com/plugins/acts_as_
taggable_on_steroids .

 I want to acknowledge Dave Thomas ’ s excellent talk on Metaprogramming from The Rails Edge in
August 2007. It wasn ’ t a direct influence on this chapter (and the slides are, sadly, not online), but it was a
great overview of metaprogramming and a strong defense of using that part of Ruby ’ s toolkit. Plus, it
contained the quote, “ The key to metaprogramming is understanding self . Isn ’ t that also the key to life? ”

 Summary
 Rails takes advantage of Ruby ’ s features that enable metaprogramming, or changing the programming
context at runtime. Like many languages, Ruby has a statement that enables you to evaluate an arbitrary
string. Unlike many languages, Ruby allows you to choose the execution context for that string to be any
block or object. The classes Object , Class , and Module all have interesting introspective methods that
enable metaprogramming constructs.

 Ruby classes are also instances of the class Class , which permits class objects to be treated just like any
other Ruby object. In addition, every Ruby object has a slot for a singleton class that lets you add
methods to any individual instance in the system. When that instance is itself a class, the instance
method of the class becomes a class method of instances of that class.

 Ruby also allows classes to be reopened for the purpose of adding new methods at any time. This
permits some elegant code, but can cause problems if used incorrectly. Ruby ’ s alias feature can mitigate
some of the risks, as well as offer an easy way to decorate an existing method. Rails offers an alias
chaining feature that simplifies a common - use case. These features used together give the Rails plugin
system much of its power.

 When a method name is not found in Ruby, a special hook method called method_missing is invoked.
You can use it to provide flexible behavior based on parsing the method names that are requested. You
can also add method definitions at runtime by using define_method .

c14.indd 390c14.indd 390 1/30/08 4:19:39 PM1/30/08 4:19:39 PM

 Extending Rails with Plugins

 Ruby on Rails has become a complex framework, and it has a lot of useful features. But it doesn ’ t
have every feature every user wants. The Rails design team has deliberately chosen not to try and
put every imaginable feature in core Rails, a decision backed in Rails 2.0 by the removal of several
features out of the core (admittedly, there are still a lot of features there). The Rails mechanism for
managing feature overload is the plugin system, which does a fantastic job of delivering Rails
extensions of all kinds to the user community. The Rails community as a whole has augmented
Rails in every imaginable direction, in a vibrant and active ecology. If you ’ re doing something in
your website, and it ’ s a feature that applies to other websites, odds are there ’ s a plugin to help you
with it. If there ’ s not, bundle one up and distribute it yourself.

 This chapter how to extend Rails with plugins. Although several plugins have already been used
in the development of Soups OnLine, there are still some features of plugin management that are
worth talking about. You ’ ll also see how to create your own plugins and generators.

 Using Plugins
 Rails plugins cover a wide range of complexity and features. Just within the space of this book, the
installed plugins cover everything from the simple addition of a Rake task or two, to text
searching, to an entire internationalization system, to graph generators, to in - place editing. And
that covers less than half of the plugins that we ’ ve explored in Soups OnLine. Still, it ’ s only a drop
in the bucket compared to what ’ s actually out there.

 Installing Plugins
 Every plugin installed thus far in the book uses the entire URL of that plugin ’ s subversion
repository, with something like the following:

$ script/plugin install http://url/plugin_name

c15.indd 391c15.indd 391 1/30/08 4:20:07 PM1/30/08 4:20:07 PM

Chapter 15: Extending Rails with Plugins

392

 Rails attempts to automatically determine the best way to download the plugin. If Subversion is on your
system, meaning that the svn command is in your path, then Rails will perform a Subversion export
command to your local system; otherwise, Rails will get the files via HTTP. In either case, a new
directory is created in vendor/rails/plugin_name , and the files are placed there locally without
Subversion metadata and without touching your existing source control repository. Because of this,
you ’ ll need to reinstall the plugin to incorporate any later code updates. Ordinarily, Rails will not allow
you to install a plugin that is already there; however, the - f option will force a load even if the plugin
already exists locally.

 There are two different command - line options that you can use to incorporate the plugin ’ s Subversion
metadata and allow for automatic updates from the remote plugin Subversion server. The - o option
causes the data to be transferred via a Subversion checkout . The - x option, which you ’ ve seen before in
this book, includes the plugin into your repository as a Subversion external. In both cases, the files are
copied into your local working copy but are not copied to your project ’ s repository. The - x option adds
the external property to your repository, meaning that the plugin ’ s repository is automatically included
on any svn update of your entire project. If the file is acquired via checkout, then an explicit update is
required to update the plugin. This can be managed either by using svn update vendor/plugin/
plugin_name or by issuing the following command:

$ script/plugin update

 If no argument is given, all Subversion - based plugins are installed; otherwise, you can give the
command one or more plugin names, which will limit the update to just those plugins.

 To use either of the Subversion download methods, you not only need to have Subversion available, but
your project must be using Subversion for its own source control — the specific test is whether your
project root directory has a .svn subdirectory. In addition, the - x option requires that the vendor/
plugin directory be included in the Subversion repository. Try it any other way, and you ’ ll get a helpful
message explaining that you can ’ t do that.

 The other Subversion - related option for plugin installation is - r NUMBER , which takes a specific revision
number from the plugin host Subversion server, rather than the most current version. Also, the - q option
will suppress output from the plugin installation (should that be important to you for some reason).

 The flipside of installing a plugin is removing one, which you can do with the following command:

$ script/plugin remove plugin_name

 The argument is the plugin name, which is the same as the name of the plugin ’ s directory in
 vendor/plugins .

 Plugin Repositories
 Although it seems that the full - URL method is the preferred way of linking to a plugin repository (at
least, that ’ s the way about 99 percent of plugins advertise their download links), Rails maintains a list of
known plugin repositories and their current plugins. Using that list, you can then install a plugin using
just the name, as follows:

$script/plugin install < NAME >

c15.indd 392c15.indd 392 1/30/08 4:20:08 PM1/30/08 4:20:08 PM

Chapter 15: Extending Rails with Plugins

393

 If you want to see a list of all the plugins that are available via this method enter the following:

$script/plugin list

 You ’ ll get output that ’ s similar to the following (I ’ ve included the part of the listing that contains the
 “ official ” plugins hosted on the same Subversion server as the Rails core):

account_location
http://dev.rubyonrails.com/svn/rails/plugins/account_location/
acts_as_list
http://dev.rubyonrails.com/svn/rails/plugins/acts_as_list/
acts_as_nested_set
http://dev.rubyonrails.com/svn/rails/plugins/acts_as_nested_set/
acts_as_tree
http://dev.rubyonrails.com/svn/rails/plugins/acts_as_tree/
atom_feed_helper
http://dev.rubyonrails.com/svn/rails/plugins/atom_feed_helper/
auto_complete
http://dev.rubyonrails.com/svn/rails/plugins/auto_complete/
continuous_builder
http://dev.rubyonrails.com/svn/rails/plugins/continuous_builder/
deadlock_retry
http://dev.rubyonrails.com/svn/rails/plugins/deadlock_retry/
exception_notification
http://dev.rubyonrails.com/svn/rails/plugins/exception_notification/
in_place_editing
http://dev.rubyonrails.com/svn/rails/plugins/in_place_editing/
javascript_test
http://dev.rubyonrails.com/svn/rails/plugins/javascript_test/
legacy
http://dev.rubyonrails.com/svn/rails/plugins/legacy/
localization
http://dev.rubyonrails.com/svn/rails/plugins/localization/
open_id_authentication
http://dev.rubyonrails.com/svn/rails/plugins/open_id_authentication/
scaffolding
http://dev.rubyonrails.com/svn/rails/plugins/scaffolding/
scriptaculous_slider
http://dev.rubyonrails.com/svn/rails/plugins/scriptaculous_slider/
ssl_requirement
http://dev.rubyonrails.com/svn/rails/plugins/ssl_requirement/
token_generator
http://dev.rubyonrails.com/svn/rails/plugins/token_generator/
tzinfo_timezone
http://dev.rubyonrails.com/svn/rails/plugins/tzinfo_timezone/
tztime
http://dev.rubyonrails.com/svn/rails/plugins/tztime/
upload_progress
http://dev.rubyonrails.com/svn/rails/plugins/upload_progress/

 And on and on it goes for a few pages. Use this command with the - - local command switch to see just
a list of plugins installed locally.

c15.indd 393c15.indd 393 1/30/08 4:20:08 PM1/30/08 4:20:08 PM

Chapter 15: Extending Rails with Plugins

394

 You can get an updated list of the available plugin repositories with this command:

$ script/plugin discover

 And you can see the available sources that are currently stored with this:

$ script/plugin sources

 You can make manual adjustments to the list of sources with the source and unsource commands.
Each takes one or more repository URLs as arguments. The source command adds those URLs to the
sources list, and the unsource command removes them.

 Creating a Plugin
 Downloading a plugin is such a simple and quick way to add functionality to your program that it ’ s
easy to overlook the value of writing your own plugins. And I don ’ t mean that just in a “ there ’ s value in
giving back to the Rails community ” kind of way — although releasing plugins is a great way get your
code out there in the community (disclaimer: as of this writing, I have exactly zero publicly available
plugins). Writing your program extensions as plugins is extremely simple, and it ’ s the best way to
package snippets of Rails functionality that you might reuse from application to application.

 To demonstrate how to write your own plugin, I ’ ll walk you through the process of creating the acts_
as_reviewable plugin referenced in the previous chapter. The goal of this plugin is to allow a class to
automatically reference a separate table of reviews, aggregate the values, and manage the reviews. This
plugin includes a migration and integration with ActiveRecord. Many plugins won ’ t need all of the
features discussed here. However, this example should be a good guide toward designing your plugins.

 As with so many things in Rails, plugin layout is governed by convention. In this case, the convention is
enforced by the following generator:

$ script/generate plugin acts_as_reviewable --with-generator
create vendor/plugins/acts_as_reviewable/lib
create vendor/plugins/acts_as_reviewable/tasks
create vendor/plugins/acts_as_reviewable/test
create vendor/plugins/acts_as_reviewable/README
create vendor/plugins/acts_as_reviewable/MIT-LICENSE
create vendor/plugins/acts_as_reviewable/Rakefile
create vendor/plugins/acts_as_reviewable/init.rb
create vendor/plugins/acts_as_reviewable/install.rb
create vendor/plugins/acts_as_reviewable/uninstall.rb
create vendor/plugins/acts_as_reviewable/lib/acts_as_reviewable.rb
create vendor/plugins/acts_as_reviewable/tasks/acts_as_reviewable_tasks.rake
create vendor/plugins/acts_as_reviewable/test/acts_as_reviewable_test.rb
create vendor/plugins/acts_as_reviewable/generators
create vendor/plugins/acts_as_reviewable/generators/acts_as_reviewable
create vendor/plugins/acts_as_reviewable/generators/acts_as_reviewable/templates
create vendor/plugins/acts_as_reviewable/generators/acts_as_reviewable/acts_as_
reviewable_generator.rb
create vendor/plugins/acts_as_reviewable/generators/acts_as_reviewable/USAGE

c15.indd 394c15.indd 394 1/30/08 4:20:09 PM1/30/08 4:20:09 PM

Chapter 15: Extending Rails with Plugins

395

 The generator takes one mandatory argument, which is the name of the plugin, and one optional
argument, which is - - with - generator . It generates the basic skeleton structure of the plugin and
places it in a vendor/plugins subdirectory with the same name as the plugin itself. Including the
- - with - generator option causes the generators directory and subfiles to be included in the new
plugin skeleton.

 Being in the vendor/plugins directory enables several different features. Rails automatically runs
through the vendor/plugins directory on startup. The following facts are guaranteed for Rails
applications that include your plugin:

 Your install.rb file, if it exists, will be run exactly once, when your plugin is installed into a
project via script/plugin install . In general, you use this file to ensure that the system
setup is as the plugin expects. That might include the existence of other plugins, or a specific
Rails version, file structure, or operating system. The file may be deleted from your
development repository if it ’ s not needed. Another common usage of this file is to print a
message to the console with usage information that the developer can see when the plugin is
installed.

 The uninstall.rb file will be run once when the plugin is removed from a project via script/
plugin remove. Use this to clean up any structures your plugin created at installation. This
file may be deleted from your development repository if it ’ s not needed.

 The lib directory of your plugin is added to the Rails path. This means that any classes in the
directory can be autoloaded by other Rails code, assuming that the filename and class name
have the standard Rails relationship. (For example, the class ActsAsReviewable is in the file
 acts_as_reviewable.rb .) This is not the only way to load your classes — the acts_as_
taggable design on which this plugin is based makes only some of its code available via
autoloading.

 The Rakefile generated for the plugin is automatically searched by Rake. Any tasks defined in
this file are available from the Rake command - line task for the project that includes the plugin.
As initially generated, the rakefile defines two tasks: a documentation task, rdoc , which is used
by the main project ’ s rdoc:plugins task; and a testing task, test , which is used by the main
project ’ s test:plugins task.

 Any compliant subdirectories in the generators directory are made available to the script/
generate task. The convention for a generator directory is that the name of the directory is the
name of the generator. Inside the directory is a file named < name of generator > _generator .
The generator that is automatically created for you if you use - - with_generate has the same
name as the plugin. So in the example, the directory that is created is named generators/
acts_as_reviewable and contains a file called acts_as_reviewable_generator . The
directory also contains another directory named templates.

 The init.rb script for your plugin is executed when the server starts and initializes Rails. By
default, plugins are loaded in an arbitrary order. Normally that ’ s fine because plugins are
orthogonal. However, in Rails 2.0, you can specify the load order of plugins by including the
following in your config.rb :

config.plugins = [:plugin_name, :other_plugin]

❑

❑

❑

❑

❑

❑

c15.indd 395c15.indd 395 1/30/08 4:20:09 PM1/30/08 4:20:09 PM

Chapter 15: Extending Rails with Plugins

396

 Any plugins not included in the list are loaded after the list is complete, in arbitrary order. If you want
the unspecified plugins to be loaded at a different spot — that is, if you want to ensure that a specific
plugin is loaded last — then include the special symbol :all in the list, which will cause all unlisted
plugins to be loaded at that point.

 Figure 15 - 1 shows the plugin lifecycle.

Generators

Rakefile

lib directory
uninstall.rbinit.rbinstall.rb

On Rails
Startup

On Plugin
Installation

On Plugin
Removal

Figure 15-1

 In addition to all the code files, you also get some additional text files. The MIT - LICENSE file is the
standard license for Rails plugins, with the name of the copyright holder filled in. The license simply
allows users to do nearly anything with the code as long as the copyright notice and a disclaimer are
included in all distributions. Of course, if you ’ ve hung around open source development for any length
of time, you know there ’ s nothing simple about a license. You can, of course, change the license if
desired. There is a README file that is intended both for text readers and to serve as the front page of your
eventual RDoc package. The default file has a skeleton to get you started writing your plugin in RDoc
format. Similarly, each generator directory contains a USAGE file. This file is used by Rails to respond
to - - help requests from script/generate .

 Writing a Generator
 The Rails generator system is a simple but powerful way to create a family of files from a set of templates
based on user commands. The Rails core defines generators for controllers, models, mailers, integration
tests, plugins, scaffolds, and a couple of other things. In addition to supporting more complex plugins,
generators can stand on their own to automate repetitive tasks. Examples might include custom
scaffolding for controllers and models, standard layout templates, or test suites.

 Basic Generator Functionality
 Generators are called via the script/generate command. The general format is as follows:

$ruby script/generate generator_name arg1 arg2 --opt1 --opt2

c15.indd 396c15.indd 396 1/30/08 4:20:09 PM1/30/08 4:20:09 PM

Chapter 15: Extending Rails with Plugins

397

 Every generator responds to a set of common option flags, which are described in the following table.

Flag Meaning

-c --svn Add new files to subversion, if available.

-h --help Show the help message.

-f --force Overwrite existing files without asking.

-p --pretend Show the list of files that would be created, but
don’t actually create any files.

-q --quiet No output.

-s --skip Skip existing files without asking.

-t --backtrace Show a stack trace on error.

-v --verbose Verbose output.

 The arguments and options are parsed for you in the parent generator class before your generator is
initialized. You have the ability to add new option arguments to your generator.

 Generators come in two flavors: basic and named. In a basic generator, the arguments are placed in the
instance variable args , and command - line flags are accessible via the accessor options stored in a hash
and keyed to the long name of the command, such as options[:svn] .

 In a named generator, the first argument after the generator name is privileged. A model generator is an
example of a named generator, where the first argument is the name of the model to be generated.
Named generators do a little extra processing on their first argument. It ’ s inflected multiple ways, and
the results are stored in instance variables called name , singular_name , and plural_name . So, for a
model named soup_image , the three values are soup_image , soup_image , and soup_images
respectively. A side effect of this parsing is that it doesn ’ t matter whether you enter the argument as
singular or plural value — Rails will calculate both versions of the name and use the singular version for
the class, and the plural version for the database table. Another side effect is that either singular_name
or plural_name will match the original name .

 Rails also defines the class_name (SoupImage), table_name (soup_images), file_name , and class_
path . For the latter two, the full path can be entered either using Unix directory convention (app/
model/soup_image) or Ruby module nesting (App::Model::SoupImage).

 If you are specifying a set of attributes in name:type format, then the named generator base class will
automatically parse them into attributes, which is an array of GeneratedAttribute objects. Here ’ s a big
warning, though: If you use attributes, then every argument after the name needs to be in name:type
format because Rails will try to parse all the attributes. The following will be an error if you expect
attributes:

$script/generate model fred barney

c15.indd 397c15.indd 397 1/30/08 4:20:10 PM1/30/08 4:20:10 PM

Chapter 15: Extending Rails with Plugins

398

 Rails will try to parse barney as an attribute, and will get an error (fred is considered to be the name of
the model). Worse, the error will be noticed only after some files have already been generated. You can
change this behavior in your generator class by overriding the attributes method.

 The Generator Class
 For the acts_as_reviewable plugin, the generator is kind of simple. It needs to generate the database
migration for the review data table, and that ’ s about it. This is not a named generator — it ’ s always
going to create the same basic migration. I see the data structure for a review as having a polymorphic
association to reviewable objects, an integer rating, a text description, and a relationship to the user that
created the review. To make the generator a little more interesting, I allow an option to change the name
of the user_id foreign key, and allow the generator to add additional attributes to the database table
from the command line.

 The first step in the generator is to extract that data from the command line as follows:

class ActsAsReviewableGenerator < Rails::Generator::Base

 attr_accessor :user_table, :attributes

 def initialize(runtime_args, runtime_options = {})
 super(runtime_args, runtime_options = {})
 @user_table = init_user_table
 @attributes = @args.collect do |attribute|
 if attribute.include?(“:”)
 Rails::Generator::GeneratedAttribute.new(*attribute.split(“:”))
 end
 end
 @attributes.compact!
 end

 def init_user_table
 return “user” if @args.blank? || @args[0].include?(‘:’)
 @args[0].underscore.singularize
 end
end

 This is the ActsAsReviewableGenerator class, extending Rails::Generator::Base (if it was a
named generator, it would extend Rails::Generator::NamedBase). The class starts by overriding the
 initialize method. The runtime_args and runtime_options arguments are parsed into args and
 options by the parent class, so all this class needs to do is gather the user table name, if entered, and
any new attributes. The assumption in the code is that if the first argument does not have a colon, then
it ’ s intended to be the user table name; otherwise, it ’ s an attribute. The default user table is users :
otherwise, it ’ s the suitably inflected version of whatever is entered at the command line. Any command
line entry with a colon is converted to an attribute.

 The Generator Manifest
 The most important part of your generator class is a method called manifest . The manifest contains the
list of actions that the migration will take. The acts_as_reviewable manifest contains only two
commands, as shown here:

c15.indd 398c15.indd 398 1/30/08 4:20:10 PM1/30/08 4:20:10 PM

Chapter 15: Extending Rails with Plugins

399

 def manifest
 record do |m|
 m.directory “db/migrate”
 m.migration_template “migration.rb”, “db/migrate”,
 :migration_file_name = > “acts_as_reviewable”,
 :assigns = > {:user_table = > @user_table, :attributes = > @attributes }
 end
 end

 The first command creates the directory db/migrate in the unlikely event that it doesn ’ t already exist. If
it does already exist, then the command does nothing. The second command creates a migration file
based on a file in the generator templates directory called migration.rb and will place it in the
directory db/migrate . The two key/value pairs in the hash :assigns will be set at local variables when
the template is actually generated.

 The manifest is what is called by script/generator when your generator is run. The record method
gives you a manifest object, and runs the block. The manifest object is where you call your actual
generator commands. The following table describes the generator commands that are available in your
manifest file ’ s record block.

Generator Command Description

class_collisions(*class_names) Raises an exception if any of the class names
passed as arguments already exist in Rails. This
command does not check the user application
space for class names.

directory(path) Creates a directory at path, relative to the root of
the project. Any necessary parent directories are
also created. Existing directories are skipped.

file(source, dest, options = {}) Copies the file from source to dest. The paths are
relative to the root directory of the Rails project.
You can use the :chmod option with this command
to specify the access mode for the output file in
three-digit Unix format. To override the normal
behavior of asking the user what to do on a
collision, you can set the:collision option to
:ask, :force, or :skip.

The method takes an optional block. If provided,
the block has the input file as an argument, and
allows you to manipulate the input file before
output, giving a rudimentary template feature. If a
block is not provided, then the source file is copied
to the destination, and lines beginning with # or !
are ignored. If there is no block, and a :shebang
option is provided, it’s expected to be the path to
the Ruby interpreter in the destination
environment, and is inserted at the top of the file.

Table continued on following page

c15.indd 399c15.indd 399 1/30/08 4:20:11 PM1/30/08 4:20:11 PM

Chapter 15: Extending Rails with Plugins

400

Generator Command Description

migration_template(template, dest,
options={})

Identical to template, but generates the
destination filename based on the next available
migration number. You need to explicitly set dest
to db/migrations.

readme(source) Displays the file in the source to the console as a
README file.

route_resources(*resources) Adds a RESTful resource set of routes to the
routes.rb file for each listed resource.

template(template, dest, options={}) Converts a template file via ERB and places it in
the destination location. All the options that can be
passed to file can be passed here. If there is an
:assigns option with a hash value, then that hash
sets the local context that the template is rendered
within. Otherwise, the all the key/value pairs in
the option hash are available to the template.

 Each of these actions has a defined undo equivalent, which is invoked if the generator is called via
 script/destroy .

 Testing Generators
 Here ’ s the good news: There is a facility in Rails for testing generators, and it ’ s actually quite useful.
Here ’ s the bad news: It was clearly intended for use only by the Rails core plugins, so it ’ s buried rather
deep in the Rails source and is something of a challenge to get set up correctly. Further complicating
matters is the fact that you want to run the migration test outside the Rails environment, so you can
control where the generated files go and you don ’ t clobber existing application code to run the test.

 Here ’ s how I set up my tests. (I ’ m not prepared to defend this as the most elegant way to test — there ’ s
clearly some room here for augmenting the existing helper.) The test file goes in vendor/plugins/
acts_as_reviewable/test/generator_test.rb , and the first thing you need to do is require a
bunch of stuff as follows:

require ‘test/unit’
plugin_dir = “#{File.dirname(__FILE__)}/..”
require “#{plugin_dir}/../../rails/railties/lib/rails_generator”
require “#{plugin_dir}/../../rails/railties/test/generators/generator_test_helper”
require “#{plugin_dir}/generators/acts_as_reviewable/acts_as_reviewable_generator”

 The first require line, test/unit , should be self - explanatory. The last line is the actual generator class
file under test — you ’ d need to change this line for your own tests. The lines in between are key files
from the Rails core that need to be loaded for all the expected classes to be in place. Remember, the Rails
environment has not been loaded, so Rails classes are available here only if they are explicitly loaded.
The first file, rails_generator , contains the actual Rails::Generator::Base and Rails::

c15.indd 400c15.indd 400 1/30/08 4:20:11 PM1/30/08 4:20:11 PM

Chapter 15: Extending Rails with Plugins

401

Generator::NamedBase classes, and it loads the rest of the generator infrastructure. The generator_
test_helper class contains the actual test helper methods that will be used in this test to make
assertions about generator behavior.

 Moving on, the next step is to explicitly reset the Rails root directory for purposes of the tests. You do
this for two reasons. First, the generator classes depend on the Rails root as the anchor point for the
source and destination files, and because this test has not loaded the Rails environment, the value hasn ’ t
been set. Second, even if the value had been set, the last thing you want is to use the real Rails root —
 generating fake migrations into the user ’ s application space tends to be frowned upon. Set the Rails root
directory for this test as follows:

tmp_dir = “#{File.dirname(__FILE__)}/tmp”
if defined?(RAILS_ROOT)
 RAILS_ROOT.replace(tmp_dir)
else
 RAILS_ROOT=tmp_dir
end
Dir.mkdir(RAILS_ROOT) unless File.exists?(RAILS_ROOT)

 This sets the Rails root to the test/tmp file of the plugin directory, which is more or less arbitrary — it ’ s
directory space that this plugin controls, and it ’ s unlikely to be used by anybody else. This snippet,
adapted from the existing generator test examples in the Rails core, properly sets the Rails root and
ensures that the root directory exists.

 Depending on exactly what your migration plans on doing, you may need to stub out some further
methods of ActiveRecord::Base or ActiveRecord::ConnectionAdapters::Columns . In particular,
if you are testing a named generator, you may need the following stub inside the ActiveRecord
module:

 module ActiveRecord
 class Base
 class < < self
 attr_accessor :pluralize_table_names
 end
 self.pluralize_table_names = true
 end
 end

 This allows the name inflection code to work correctly. Again, this is from the existing Rails source
generator tests — see those examples if it looks like you need to stub other pieces. A sign that you need
to do a stub is if you get a method_missing exception on something deep in the guts of ActiveRecord.

 You could, I suppose, use Flexmock, Mocha, or a similar mock object tool to manage stubs. I didn ’ t here,
largely because examples of generator testing aren ’ t all that thick on the ground, and the examples I have
to go on used the direct mechanism.

 You also need to ensure that the migration will always get the prefix 001 , or if the migration is run from
the regular Rake command line, it will get the next migration prefix based on the current state of the real
 db/migrate directory. There are two options for dealing with this from a test perspective. You can either

c15.indd 401c15.indd 401 1/30/08 4:20:11 PM1/30/08 4:20:11 PM

Chapter 15: Extending Rails with Plugins

402

calclaute the migration prefix you expect to come up and use that in the testing, or you can stub out the
appropriate method to always return 001 . I think the latter is a bit more stable, so here ’ s how to do it:

module Rails
 module Generator
 module Commands
 class Base
 def next_migration_string(padding = 3)
 “001”
 end
 end
 end
 end
end

 Writing the Generator Test
 That takes care of the warm - ups, now you can get to the actual test class. Well, almost — first you need
to do the following minor housekeeping inside the test class before you can get to the tests:

class ActsAsReviewableGeneratorTest < Test::Unit::TestCase
 include GeneratorTestHelper

 def teardown
 FileUtils.rm_rf “#{RAILS_ROOT}/db/migrate/001_acts_as_reviewable.rb”
 end

 def build_generator(name, params)
 ActsAsReviewableGenerator.spec = Rails::Generator::Spec.new(:plugin,
 “#{File.dirname(__FILE__)}/../generators/acts_as_reviewable”, nil)
 ActsAsReviewableGenerator.new(params)
 end
end

 The GeneratorTestHelper is the Rails core module that will provide a lot of the useful test
functionality. The teardown method removes the migration test that the migration should be creating —
 notice that it uses the same fake Rails root that you set up earlier.

 The build_generator method is perhaps a bit of a hack. It ’ s an override of a method provided in
 GeneratorTestHelper . However, the original method checks the standard Rails repository for the
generator name, and doesn ’ t seem to want to look in plugin directories. After I tried a series of
arguments but still failed to convince it, I decided it was easier to bypass the standard mechanism and
just create a new generator object directly. The Spec object is used internally by Rails to manage the
generator repository.

 And now, an actual unit test. Place the following inside the test class:

 def test_should_create_migration_file
 run_generator(‘acts_as_reviewable’, [])
 assert_file_exists “db/migrate/001_acts_as_reviewable.rb”
 assert_generated_migration :acts_as_reviewable do |body|
 assert_generated_column(body, “reviewable_id”, “integer”)

c15.indd 402c15.indd 402 1/30/08 4:20:12 PM1/30/08 4:20:12 PM

Chapter 15: Extending Rails with Plugins

403

 assert_generated_column(body, “reviewable_class”, “string”)
 assert_generated_column(body, “rating”, “integer”)
 assert_generated_column(body, “user_id”, “integer”)
 assert_generated_column(body, “review”, “string”)
 end
 end

 The first thing the test does is run the generator, using the handy run_generator method provided by
 GeneratorTestHelper . The first argument is the name of the generator, although the build_
generator override method provided by this test actually ignores it. The second argument is an array of
the command line arguments — in this case, the test is for the basic case with no arguments.

 After that, the test uses some of the assertions provided by GenerateTestHelper . First is assert_
file_exists , which asserts that a given file exists. Then it uses assert_generated_migration ,
which is one of several assert methods in GeneratorTestHelper that validate specific things about the
generated file. In this case, the method validates that the generated file contains a subclass of
 ActiveRecord::Migration . The method takes an optional block, which allows you to run arbitrary
tests against the body of the generated migration file. In this case, you ’ re asserting that the columns that
you expected to create are actually in the migration. This is not, by the way, a full syntactic check of the
generated file — it ’ s just a few key regular expression matches.

 To run the test, you can use the testing task created by the plugin generator, which you can invoke from
the plugin directory with a simple rake test command. If you are at the application Rails root, the test
directory is automatically seen by the top - level rake test:plugins task . Just calling test:plugins
will get you the test suite for every plugin in the application. You can limit it to just the plugin you want
with this:

$ rake test:plugins PLUGIN=acts_as_reviewable

 If you want a Rake task that will specify a set of plugins to run, you ’ re best off writing your own Rake
task, which you can place in lib/tasks like this:

namespace :test do
 Rake::TestTask.new(:acts_as_reviewable = > :environment) do |t|
 t.libs < < “test”
 t.pattern = ‘vendor/plugins/acts_as_reviewable/**/test/**/*_test.rb’
 t.verbose = true
 end

 Rake::TestTask.new(:another_plugin = > :environment) do |t|
 t.libs < < “test”
 t.pattern = ‘vendor/plugins/another_plugin/**/test/**/*_test.rb’
 t.verbose = true
 end

 task :my_plugins = > [:acts_as_reviewable, :another_plugin]
end

 This will allow the Rake test:my_plugins command to run both plugin directory tests. If you are
developing the plugin alongside your application, you probably also want to add that task to your rcov
coverage task.

c15.indd 403c15.indd 403 1/30/08 4:20:12 PM1/30/08 4:20:12 PM

Chapter 15: Extending Rails with Plugins

404

 The following two tests cover the case where a user table is specified and where additional columns have
been specified:

 def test_should_create_migration_file_custom_user
 run_generator(‘acts_as_reviewable’, [“critic”])
 assert_file_exists “db/migrate/001_acts_as_reviewable.rb”
 assert_generated_migration :acts_as_reviewable do |body|
 assert_generated_column(body, “reviewable_id”, “integer”)
 assert_generated_column(body, “reviewable_class”, “string”)
 assert_generated_column(body, “rating”, “integer”)
 assert_generated_column(body, “critic_id”, “integer”)
 assert_generated_column(body, “review”, “string”)
 end
 end

 def test_should_create_migration_file_with_attributes
 run_generator(‘acts_as_reviewable’, [“critic”, “cuisine:string”])
 assert_file_exists “db/migrate/001_acts_as_reviewable.rb”
 assert_generated_migration :acts_as_reviewable do |body|
 assert_generated_column(body, “reviewable_id”, “integer”)
 assert_generated_column(body, “reviewable_class”, “string”)
 assert_generated_column(body, “rating”, “integer”)
 assert_generated_column(body, “critic_id”, “integer”)
 assert_generated_column(body, “review”, “string”)
 assert_generated_column(body, “cuisine”, “string”)
 end
 end

 GeneratorTestHelper
 Within GeneratorTestHelper , several assertions are available. All of them take a name as an
argument. Where applicable, they also take an optional second argument, which is the parent class. The
second argument defaults to whatever the standard Rails parent class for that type would be — for
example, the standard controller parent class is ApplicationController . The following table describes
what the methods check for. All these methods take an optional block for further testing. Unless
otherwise specified, all these tests check for the existence of a file, and that the class inside the file is
there and has the correct parent class. The name argument is converted to underscore format before the
test is applied, so you can pass in the name in CamelCase if that ’ s what you have.

Method Description

assert_generated_controller_for Asserts the creation of the file app/controllers/
#{name}_controller.

assert_generated_fixtures_for Asserts that test/fixtures/#{name}.yml is a
valid YAML file by using the assert_generated_
yaml method. It also tests to see that the fixtures
include timestamp information.

assert_generated_functional_test_for Asserts that test/functional/#{name}_
controller_test has been created.

c15.indd 404c15.indd 404 1/30/08 4:20:12 PM1/30/08 4:20:12 PM

Chapter 15: Extending Rails with Plugins

405

 In addition to assert_file_exists , there are a couple of other more generic tests that test for a specific
file type. The following table describes the methods used in these tests, and unless otherwise specified,
all of these methods also yield to an optional block for further testing.

Method Description

assert_generated_class Takes a file path and an optional parent class. Asserts that a
file has been created and checks that a class is defined with
the name inferred from the filename and the given parent
class.

assert_generated_file Takes a file path as an argument, and asserts that the file
exists.

assert_generated_module Takes a file path, and tests to see if the file has been created
with an associated module declaration within it.

assert_generated_stylesheet Takes a partial path, and asserts that public/stylesheets/
#{path}.css exists. It does not do syntax checking on the
stylesheet.

assert_generated_yaml Takes a partial path and asserts that #{path}.yml exists. It
also tests that the contents of the file can be loaded via the
YAML module. Unlike other methods, this method yields to a
block with the result of the YAML load rather than the raw file
contents.

Method Description

assert_generated_helper_for Asserts that an app/helpers/#{name}_helper
file has been created.

assert_generated_migration Asserts that db/migrate/001_#{name} has been
created, and that it has timestamps defined. A
separate method, assert_skipped_migration,
tests that the migration file does not exist.

assert_generated_model_for Asserts that a file app/models/#{name} has been
created.

assert_generated_unit_test_for Asserts that a file test/unit/#{name}_test has
been created.

assert_generated_views_for Takes multiple action arguments after the name
argument, and validates that app/views/#{name}/
#{action} exists for each action specified.

c15.indd 405c15.indd 405 1/30/08 4:20:13 PM1/30/08 4:20:13 PM

Chapter 15: Extending Rails with Plugins

406

 There are three assertions that test for specific features within a file, as described in the following table.

Assertion Description

assert_added_route_for Given the name of a resource, checks that config/routes.rb has
an associated map.resources command.

assert_genrated_column Given a migration file body, a name, and a type, this asserts that the
file contains a migration for the column. (See the previous example.)

assert_has_method Given the text of a file and an arbitrary amount of methods, asserts
that each method has a def statement in the file. For example,
assert_has_method(body, :parse_name, :full_name).

 I think it ’ s a shame that this test suite hasn ’ t gotten more publicity. A lot of teams would probably benefit
from writing more generators to automate common project tasks, and these test helpers go a long way
toward simplifying the task.

 The Migration that Passes the Tests
 At this point, the actual migration template seems almost anticlimactic. The convention for migration
templates is to put them in the templates subdirectory of the generator directory. The files are ERB files,
but the convention is to give them the file extension of the kind of file being generated. The following
template will generate a migration file named migration.rb :

class ActsAsReviewable < ActiveRecord::Migration
 def self.up
 create_table :reviews do |t|
 t.integer :reviewable_id
 t.string :reviewable_class
 t.integer :rating
 t.integer : < %= user_table % > _id
 t.string :review
 < % attributes.each do |attribute| % >
 t. < %= attribute.type % > : < %= attribute.name % >
 < % end % >
 t.timestamps
 end
 end

 def self.down
 drop_table :reviews
 end
end

 In this file, the user_table and attributes values come from the :assigns option when the
migration is invoked from the manifest file.

c15.indd 406c15.indd 406 1/30/08 4:20:13 PM1/30/08 4:20:13 PM

Chapter 15: Extending Rails with Plugins

407

 Writing the Plugin
 If your plugin doesn ’ t change ActiveRecord::Base or affect Rails data structures in any way, then test -
 first development for your plugin is quite similar to test - first development of any code.

 ActiveRecord Test Setup
 If you are trying to modify ActiveRecord::Base in your plugin with an acts_as_whatever method,
then you have some additional setup work to do. Ideally, you ’ d like to be able to do something like this:

require ‘test/unit’
require “#{File.dirname(__FILE__)}/../../../../test/test_helper”

class ReviewableThing < ActiveRecord::Base
 acts_as_reviewable
end

class ActsAsReviewableTest < Test::Unit::TestCase

 def setup
 @rt = ReviewableThing
 end

 def test_this_plugin
 assert_responds_to @rt, :reviews
 end
end

 Unfortunately, if you try that test exactly as written here, it will fail in the depths of ActiveRecord.
 ActiveRecord::Base assumes that it will be able to query a database to get information about its
attributes. Because the ReviewableThing class doesn ’ t have a database table associated with it,
 ActiveRecord fails to load the class.

 This is another manifestation of the larger issue about plugins and testing. The plugin isn ’ t really part of
the project that uses it, so it can ’ t depend on that project for test fixtures and setup. Broadly speaking,
there are two options for working around this issue. You can either do a lot of setup work to give the
plugin its own database setup, which introduces a dependency on a specific database in the developers
requirement (any dependency added for testing purposes shouldn ’ t affect a user who just wants to use
the plugin). Or you can do a lot of setup work to break the connection between ActiveRecord and the
database for the purposes of these tests, which can add a dependency on a mock object package as the
mechanism for preventing ActiveRecord from needing the database.

 For this plugin, I decided to go with the detached ActiveRecord option, on the grounds that it ’ s much
easier to set up. The recipe I ’ m using to manage this was written by Muness Alrubaie and is available
online at http://muness.blogspot.com/2007/06/unit-testing-activerecord-models-now.html .

c15.indd 407c15.indd 407 1/30/08 4:20:13 PM1/30/08 4:20:13 PM

Chapter 15: Extending Rails with Plugins

408

Take the code sample in that blog post and insert it into the test file before the declaration of
 ReviewableThing , or place it in another file to be inserted, like this:

class Test::Unit::TestCase
 class ActiveRecordUnitTestHelper
 attr_accessor :klass

 def initialize(klass)
 self.klass = klass
 self
 end

 def where(attributes = {})
 klass.stubs(:columns).returns([id_column])
 instance = klass.new()
 attributes.each do |key, value|
 next if key == :id
 begin
 instance.meta_eval{undef_method(key.to_sym) if respond_to? key}
 instance.meta_eval{undef_method(“#{key.to_s}=”.to_sym) if respond_to?
“#{key.to_s}=”}
 instance.meta_eval{attr_accessor key.to_sym}
 instance.send(“#{key}=”.to_sym ,value)
 rescue Exception = > exception
 instance.stubs(key.to_sym).returns(value)
 end
 end
 instance.id = attributes[:id] if attributes[:id]
 instance
 end

 def where_without_associations(attributes)
 klass.stubs(:columns).returns(columns(attributes))
 instance = klass.new(attributes)
 instance.id = attributes[:id] if attributes[:id]
 instance
 end
 protected

 def columns(attributes)
 attributes.keys.collect do |attribute|
 column attribute.to_s, attributes[attribute]
 end
 end

 def id_column
 column(:id, 0)
 end

 def column(column_name, value)
 ActiveRecord::ConnectionAdapters::Column.new(column_name,
 nil,

c15.indd 408c15.indd 408 1/30/08 4:20:14 PM1/30/08 4:20:14 PM

Chapter 15: Extending Rails with Plugins

409

 ActiveRecordUnitTestHelper.active_record_type(value.class),
 false)
 end

 def self.active_record_type(klass)
 return case klass.name
 when “Fixnum” then “integer”
 when “Float” then “float”
 when “Time” then “time”
 when “Date” then “date”
 when “String” then “string”
 when “Object” then “boolean”
 end
 end
 end

 def disconnected(klass)
 ActiveRecordUnitTestHelper.new(klass)
 end
end

 The code recipe is a fancy piece of metaprogramming that allows you to specify an ActiveRecord object
to be detached from a database. ActiveRecord always goes to the database to determine the expected
type of the attribute based on the database column type. This code creates an elaborate stub, replacing
the database check of the column with an educated guess based on the Ruby class of the attribute value.
As such, it has a couple of limitations — perhaps most notably, it doesn ’ t create true ActiveRecord
association objects. Because it ’ s not actually touching the database, you can ’ t really test find or save
behavior via this recipe, although you could mock those methods separately. Also, the code as written on
the website is dependent on the Mocha mock object framework (gem install mocha) to stub out the
critical piece of ActiveRecord::Base .

 The recipe used here is not the only way to detach ActiveRecord from the database. I chose it because it
affects only ActiveRecord objects that are specifically declared to be detached. Another mechanism or
two is referenced at the end of this chapter. One of those mechanisms overwrites ActiveRecord::
Base#new , affecting all ActiveRecords in the test environment — which could be very useful, depending
on your overall test structure. Plugins that test the actual database behavior should go through the
process of creating a local plugin test database — again, the references at the end of the chapter point
you to a good description.

 With this recipe in hand, you can set up the tests as follows:

require ‘test/unit’
require “#{File.dirname(__FILE__)}/../../../../test/test_helper”
require ‘mocha’

INSERT HELPER RECIPE HERE

class ReviewableThing < ActiveRecord::Base

(continued)

c15.indd 409c15.indd 409 1/30/08 4:20:14 PM1/30/08 4:20:14 PM

Chapter 15: Extending Rails with Plugins

410

 acts_as_reviewable
end

class ActsAsReviewableTest < Test::Unit::TestCase

 def setup
 @rev_1 = disconnected(Review).where({:id = > 1,
 :rating = > 4,
 :created_at = > ‘2007-10-20 11:00:00 ‘ })
 @rev_2 = disconnected(Review).where({:id = > 2,
 :rating = > 3,
 :created_at = > ‘2007-10-18 11:00:00 ‘ })
 @rev_3 = disconnected(Review).where({:id = > 3,
 :rating = > 2,
 :created_at = > ‘2007-10-19 11:00:00 ‘ })
 @rt = disconnected(ReviewableThing).where({:id = > 1,
 :reviews = > [@rev_1, @rev_2, @rev_3]})
 end
end

 The helper recipe defines a method called disconnected , which takes as its argument an
 ActiveRecord::Base subclass, and returns an instance of that class that is specially metaprogrammed
to not hit the database to get type information. The setup creates four of these objects: three of the
 Review class that will be built by the plugin, and one of the ReviewableThing class that declares that it
 acts_as_reviewable .

 You can see one of the limitations of this test method in the last line, where the reviews attribute is
explicitly set to the array of reviews. As mentioned, this is not an ActiveRecord association object, so you
can ’ t mimic a more common way of placing these reviews in the reviewable class, such as @rt.reviews
 < < @rev1 . Also, the foreign key columns of the Review class are not automatically set for the Review
instances when they are associated. However, that ’ s not really the functionality under test, so I ’ m not all
that worried about it.

 You can now write an initial unit test for basic review functionality, starting with this basic test:

 def test_reviews
 assert_equal(3, @rt.reviews.size)
 end

 Acts_As_Reviewable Structure
 The basic structure of the acts_as_reviewable plugin was covered in the previous chapter with
a particular eye towards explaining how the metaprogramming code injection works. This section
expands on that to show how the actual functionality of the plugin is structured.

(continued)

c15.indd 410c15.indd 410 1/30/08 4:20:14 PM1/30/08 4:20:14 PM

Chapter 15: Extending Rails with Plugins

411

 The plugin point of entry is the init.rb file. For many plugins, this file will be only one or two lines.
Typical behavior is to require the loading of one or more files in the plugin ’ s lib directory, or alternately
to extend an existing class with a module stored in the lib directory. For acts_as_renewable , I chose
the following require route:

require File.dirname(__FILE__) + ‘/lib/acts_as_reviewable’

 This places the actual extension of the ActiveRecord::Base class within the lib/acts_as_
reviewable file. There ’ s not a whole lot of practical difference between putting the extend in the init
file or in the lib file, but I kind of like the idea of keeping the actual mechanism for injecting the code
encapsulated in the lib directory. To this end, the following code snippet takes the structure talked
about in the previous chapter (the other modules have been left off this snippet for the time being) and
adds the highlighted line:

module ActiveRecord
 module Acts
 module Reviewable

 def self.included(base)
 base.extend(ClassMethods)
 end

 module ClassMethods
 def acts_as_reviewable

 has_many :reviews, :as = > :reviewable

 include ActiveRecord::Acts::Reviewable::InstanceMethods
 extend ActiveRecord::Acts::Reviewable::SingletonMethods
 end
 end

 ### SingletonMethod and InstanceMethod modules here

 end
 end
end

ActiveRecord::Base.send(:include, ActiveRecord::Acts::Reviewable)

 A class that calls acts_as_reviewable gets a has_many relationship with the Review class. The
relationship is polymorphic, allowing multiple reviewable classes in the same project.

 The other half of the relationship belongs to the Review class, which is defined as part of the plugin,
with the following definition in vendor/plugins/acts_as_reviewable/lib/review.rb :

class Review < ActiveRecord::Base
 belongs_to :reviewable, :polymorphic = > true
end

c15.indd 411c15.indd 411 1/30/08 4:20:14 PM1/30/08 4:20:14 PM

Chapter 15: Extending Rails with Plugins

412

 At this point, the basic test runs. The ReviewableThing class can call acts_as_reviewable , and it gets
the relationship set up correctly (assuming you have the InstanceMethods and SingletonMethods
modules set up as outlined in the preceding chapter). Now it ’ s time to augment the test to add a little bit
of functionality, like this:

 def test_reviews
 assert_equal(3, @rt.reviews.size)
 assert_equal(3, @rt.average_review_score)
 assert_equal(1, @rt.best_review.id)
 assert_equal(3, @rt.worst_review.id)
 assert_equal(1, @rt.most_recent_review.id)
 end

 These features are all instance methods of the ReviewableThing class, injected after it calls acts_as_
reviewable . In the module structure, that means these methods go in ActiveRecord::Acts::
Reviewable::InstanceMethods , as follows.

 module InstanceMethods
 def best_review
 reviews.max
 end

 def worst_review
 reviews.min
 end

 def most_recent_review
 reviews.max { |a, b| a.created_at < = > b.created_at }
 end

 def average_review_score
 reviews.collect(& :rating).sum / reviews.size
 end
 end

 These implementations are all fairly straightforward. For the best and worst review methods to work as
implemented here, the Review class needs to be comparable on the review score. You can set that up as
follows:

class Review < ActiveRecord::Base
 include Comparable

 belongs_to :reviewable, :polymorphic = > true

 def < = > (other)
 rating < = > other.rating
 end
end

 Alternatively, the reviews can be sorted by explicitly by calling max with a block, the way the most_
recent_review function does. In theory, doing this sorting in Rails, rather than in the database, is a
potential performance issue. I ’ m assuming that the reviews will already have been loaded from the
database by the time these methods are called, meaning that the Ruby functions would be faster than

c15.indd 412c15.indd 412 1/30/08 4:20:15 PM1/30/08 4:20:15 PM

Chapter 15: Extending Rails with Plugins

413

going back to the database again. To facilitate eager loading of the reviews, the plugin makes the
following method available as a class method to all classes that implement the plugin. This method is
placed in the SingletonMethods module:

 module SingletonMethods
 def find_with_reviews(*args)
 options = args.last.is_a?(Hash) ? args.pop : {}
 options.merge :include = > :reviews
 args < < options
 find(*args)
 end
 end

 All this method does is augment an existing find call with an additional option to include reviews.

 Not all the functionality of the plugin is placed in the reviewable class — some of it needs to go in the
actual Review class itself. The following code snippet shows an example of a method that converts the
rating score into a list of the form full , full , empty , empty , empty . This is meant to be used to simplify
converting the rating into a graphical set of stars or something similar. In addition, the reviewable class
should have access to the feature for its average rating. Here ’ s the test, which covers various cases
related to fractional scores:

 def test_star_images
 assert_equal(%w{full full full full empty}, @rev_1.star_images)
 assert_equal(%w{full full full empty empty}, @rt.star_images)
 assert_equal(%w{empty empty empty empty empty}, Review.star_images(0))
 assert_equal(%w{empty empty empty empty empty}, Review.star_images(0.1))
 assert_equal(%w{half empty empty empty empty}, Review.star_images(0.5))
 assert_equal(%w{full empty empty empty empty}, Review.star_images(1))
 assert_equal(%w{full full empty empty empty}, Review.star_images(2))
 assert_equal(%w{full full empty empty empty}, Review.star_images(2.1))
 assert_equal(%w{full full half empty empty}, Review.star_images(2.5))
 assert_equal(%w{full full full empty empty}, Review.star_images(2.9))
 assert_equal(%w{full full full full full}, Review.star_images(5))
 end

 The bulk of the implementation goes into the Review class like this:

 def self.star_images(rating, max = 5)
 partial = rating
 result = []
 max.times do
 if partial > 0.75
 result < < “full”
 elsif partial < 0.25
 result < < “empty”
 else
 result < < “half”
 end

(continued)

c15.indd 413c15.indd 413 1/30/08 4:20:15 PM1/30/08 4:20:15 PM

Chapter 15: Extending Rails with Plugins

414

 partial -= 1
 end
 result
 end

 def star_images(max=5)
 Review.star_images(rating, max)
 end

 In this case, max is the highest possible rating, and therefore the total number of elements in the array. To
allow the reviewable method access to the feature, add the following to the InstanceMethods module:

 def star_images(max = 5)
 Review.star_images(average_review_score, max)
 end

 Distributing Plugins
 After your plugin is complete, you ’ re encouraged to share it with the Rails community at large. The
primary requirement to distribute a plugin is a publicly available Subversion server. If you don ’ t have a
public Subversion server that you want to expose to the world, there are a number of hosting services
that will provide you with space for your Rails project for the low cost of absolutely free. The most
commonly used service is rubyforge.org , where you can create a project and get a Subversion server, a
project home page, a bug tracker, and a mailing list.

 If you place your project on your own Subversion server, you can register the server at http://wiki
.rubyonrails.org/rails/pages/Plugins . This will cause the server to be added to the sources list
generated when somebody does a script/plugin discover command.

 As I write this, there isn ’ t really an official online plugin repository, although there have been a few
attempts to create one. The de facto standard location is http://agilewebdevelopment.com/plugins ,
which allows you to register a plugin and assign it to various categories. Plugin users can rate plugins at
that site. A newer plugin repository is www.railsify.com — it has a nice UI, but as of right now, it
doesn ’ t have quite as large a collection of plugins as the Agile Web Development site.

 References
 Geoffrey Grosenbach has a nice introduction to plugins at http://nubyonrails.com/
articles/2006/05/04/the-complete-guide-to-rails-plugins-part-i . You also should check
out the Rails wiki at http://wiki.rubyonrails.com/rails/pages/HowTosPlugins . For more
detail, try the O ’ Reilly Short Cut, Rails Plugins: Extending Rails Beyond the Core by James Adam. Another
good overview is by Alex Young at http://alexyoung.org/articles/show/40/a_taxonomy_
of_rails_plugins .

 You might also seek out RaPT, which is a replacement for the Rails script/plugin . It ’ s available at
 http://rapt.rubyforge.org .

(continued)

c15.indd 414c15.indd 414 1/30/08 4:20:15 PM1/30/08 4:20:15 PM

Chapter 15: Extending Rails with Plugins

415

 For more information on testing ActiveRecord classes without a database, check out Jay Fields Thoughts
at http://blog.jayfields.com/2007/03/rails-activerecord-unit-testing-part-ii.html .
Muness Alrubaie also discusses this topic at http://muness.blogspot.com/2006/12/unit-
testing-rails-activerecord-classes.html and http://muness.blogspot.com/2007/06/
unit-testing-activerecord-models-now.html . For information about the UnitRecord RubyGem,
go to http://unit-test-ar.rubyforge.org .

 Summary
 Rails uses the plugin architecture to allow all kinds of functionality to be added to a Rails project without
making the core even bigger than it already is. The script/plugin script covers the discovery,
installation, and removal of plugins.

 Creating your own plugin is a great way to package common code for use across multiple projects. The
basic skeleton is created by a Rails generator, including hooks for behavior on installation, load, and
plugin removal.

 Your plugin can create its own generators, which allows your own arbitrary templates to be called from
the script/generator method. With some judicious environment tweaking, a generator test helper
used in the Rails core can be adapted to test your generators. Generator behavior is guided by a manifest
file, which accepts several commands that involve the creation of directories and files.

 The plugin structure discussed in the previous chapter can be augmented with actual behavior in the
modules, and again, tested despite being outside the environment of the Rails application.

 After the plugin is developed, it can easily be hosted on one of several freely available servers and
distributed to the Rails community at large.

c15.indd 415c15.indd 415 1/30/08 4:20:16 PM1/30/08 4:20:16 PM

c15.indd 416c15.indd 416 1/30/08 4:20:16 PM1/30/08 4:20:16 PM

 Replacing Ruby Tools

 Ruby and Rails are linked together tightly, but not so tightly that they can ’ t be pried apart here and
there where it makes sense to do so. In this chapter, you ’ ll explore various ways to use Rails and
languages or tools other than Ruby itself.

 ERB Replacements
 The stated design rationale for using ERB as the template language for Rails views is to keep the
programming language as consistent as possible — Ruby in the controller, Ruby in the model, and
Ruby in the view. There ’ s an admirable consistency to that structure, but nevertheless, Rails has
been dogged by complaints about the ERB structure from the very beginning. To some extent,
that ’ s because it ’ s a hard problem — I ’ m not aware of any web tool whose view language is
considered completely satisfying. The paradigm of mixing HTML with markup has been around
since the first web frameworks, though, and it ’ s certainly a comfortable one for many web
developers.

 However, there ’ s also a feeling that the mixing of HTML and Ruby code is not always the clearest
or most satisfying way of describing a view. For my part, I find the issue of indenting an ERB file
properly to be annoying. A table with a header row and then rows within a loop, for instance,
winds up with the table rows at two different levels of indentation. (I ’ m also not happy with the
way the ERB delimiters mess up the indentation.) On some level, that ’ s just an aesthetic gripe, but
I also feel that it suggests that the structure of the HTML/markup file is wrong, or at least not
optimal.

 In this section, you ’ ll look at a few replacements that have been developed for ERB views. Design
goals of these tools include the desire to create a simpler, more flexible template language, as well
as to add a more object - oriented, program - like structure to view output.

c16.indd 417c16.indd 417 1/30/08 4:34:05 PM1/30/08 4:34:05 PM

Chapter 16: Replacing Ruby Tools

418

 Markaby
 Markaby is one of the many ingenious Ruby tools from “ why the lucky stiff ” (http://code
.whytheluckystiff.net/markaby/). Inspired by the core Ruby CGI library, it attempts to make the
output markup look more like Ruby (the name Markaby comes from Mark up a s Ru by). Markaby is
distributed as a Ruby gem (gem install markaby), but for use within a Rails project, you ’ re better off
installing it as a plugin like this:

script/plugin install http://code.whytheluckystiff.net/svn/markaby/trunk

 Markaby Template Files
 The basic idea of Markaby is to have the HTML tags in your output represented by Ruby blocks. Here ’ s a
section of Markaby corresponding to a significant chunk of the recipe controller index page:

table :width = > “75%” do
 tr do
 th “Title”
 end
 @recipes.each do |recipe|
 tr do
 td do
 if recipe.has_image?
 image_tag recipe.soup_image.public_filename(:tag)
 else
 “ & nbsp;”
 end
 end
 td do
 link_to h(recipe.title), recipe
 end
 end
 end
end

 After the Markaby plugin is installed, a Rails controller will search for files with the extension .mab
when looking for an associated view file. To run this, I created a new controller app/controllers
/output_choice_controller , and added the following action called markaby_test :

class OutputChoiceController < ApplicationController
 layout “recipes”
 before_filter :load_user

 def markaby_test
 @recipes = Recipe.find_for_index(params[:format])
 respond_to do |format|
 format.html
 end
 end

c16.indd 418c16.indd 418 1/30/08 4:34:05 PM1/30/08 4:34:05 PM

Chapter 16: Replacing Ruby Tools

419

 The view code was placed in app/views/output_choice/markaby_test.mab . You do not need to
change the routes.rb file for this to work — with the Markaby plugin installed, Rails will include
 *.mab files in its search for valid view files.

 So an ordinary HTML tag is represented by a method with an argument representing the text within the
tag, like this:

th “title” ### < th > title < th >

 Alternatively, the tag method takes a block, which represents the contents of the tag as follows:

tr do
 td do
 span @recipe.title
 end
end ###### < tr > < td > < span > Title of Recipe < /span > < /td > < /tr >

 Tags that don ’ t contain content, such as br and hr , are treated as simple methods, and block or content
attached to them is ignored. As you can see in the preceding code snippet, any variables that would be
available to the view (meaning they were specified in the controller action) can be used directly in
Markaby. There ’ s no need to surround them in a special syntax to specify that the text should be output
— Markaby is smart enough to know that @recipes.each should not be directly output to HTML, but
that @recipe.title should. The general rule is that Markaby knows an instance variable lookup is not
a method call and should not be converted to an HTML tag.

 Attributes are managed similarly to the way they are in most Rails helpers, as key/value pairs on the
method call. For example, the following code:

table :width = > “75%” do
end

gets converted to this:

 < table width=”75” > < /table >

 The attributes for CSS class and DOM ID have Markaby shortcuts. To specify a class, treat the class name
as though it was a method of the HTML tag, like this:

span.subtle “Enter text” #### < span class=”subtle” > Enter text < /span >

 For a DOM ID, it ’ s the same thing, except the method ends in a bang! For example:

span.recipe_name! “Chicken Soup” #### < span id=”recipe_name” > Chicken Soup < /span >

 Markaby throws an exception if you try to use the same DOM ID multiple times on a page. However,
one limitation of this mechanism is that it precludes the use of variable ID or class names, such as
 “ recipe_#{recipe.id} ” . To do something like that, you need to fall back to the hash mechanism used
for other attributes.

c16.indd 419c16.indd 419 1/30/08 4:34:06 PM1/30/08 4:34:06 PM

Chapter 16: Replacing Ruby Tools

420

 You can call any helper method that is available to the view from within your Markaby file. Markaby
assumes that the output of the helper method should be placed directly in the stream of text being
rendered. For instance, both image_tag and link_to in the earlier example are helpers that output
strings that are part of the final HTML file. Sometimes you may have a helper method whose text you
don ’ t want to output at that point — in that case, you can access the method via the special instance
method @helper . Setting local variables works just fine, too, so you can do something like this:

x = @helper.my_helper_method
td x

 There ’ s a similar issue with named routes. By default, Markaby tends to misnterpret the header in order
to put it directly out into the stream, which is not what you want when the route is going to be part of a
larger helper that is constructing a form or anchor tag. The workaround for named routes is to explicitly
convert to a string, and goes something like this:

link_to “Recipes”, recipes_path(@instance).to_s

 You can store the output of a block of code, whether it contains Markaby calls or Rails helpers, using the
following capture method:

header = capture do
 tr do
 th “Column”
 th “Another Column”
 end
end

 This snippet gives you the following header variable, which you can reuse in multiple tables:

table do
 header
end

 One other issue to be aware of is that in some cases, the tag name will conflict with an existing helper
method — the most prominent probably being select . You can force Markaby to create a tag using the
following tag! method:

tag! select name = > :thingies do
 option “a”
 option “b”
end

 Markaby Standalone
 Using Markaby as an ERB template replacement is pretty nice, but that ’ s not Markaby ’ s only trick. You
can also call the Markaby::Builder class from any arbitrary location within your Rails project. This
makes Markaby a very elegant replacement for content_tag and concat from within a helper method.
To wit, the following helper method is suitable for use in your ApplicationHelper class (you must
 require ‘ markaby ’ for this to work):

 def show_a_recipe(recipe)
 builder = Markaby::Builder.new
 builder.html do

c16.indd 420c16.indd 420 1/30/08 4:34:06 PM1/30/08 4:34:06 PM

Chapter 16: Replacing Ruby Tools

421

 h1 recipe.title
 p “Servings: #{recipe.servings}”
 p recipe.description
 h2 “Ingredients”
 p recipe.ingredient_string
 p recipe.directions
 end
 builder.to_s
 end

 That ’ s pretty, if I do say so myself.

 There ’ s one unusual feature of the code inside the html do block. You may have noticed that the
internal h1 , p , and h2 methods (which are technically methods of the Markaby builder) are called
without the builder as a recipient. This works because Markaby does a little metaprogramming magic
inside its blocks to prevent you from having to type builder. repeatedly. Specifically, the entire block is
executed inside an instance_eval call, which effectively points self at the Markaby builder for the
duration of the block. The problem is that if you intend to call methods of the class that is calling the
Markaby builder, it won ’ t work — you can ’ t access the calling context ’ s self object directly. There are
two possible workarounds. The new method takes two optional arguments. The first is a hash of
key/value pairs representing variables available within the Markaby builder block, similar to the
 locals array you ’ d pass to a partial view, as follows:

builder = Markaby.Builder.new(:object = > self)
builder.html do
 h1 object.title
end

 The second argument takes a single object as a helper, and all methods of that object are accessible as
though they were methods of the Markaby builder. For example:

builder = Markaby.Builder.new({}, recipe)
builder.html do
 h1 title
end

 Also, the block can be an argument of the new method, rather than of the html method giving a slight
shortcut, as follows:

builder = Markaby.builder.new do
 html do
 h1 object.title
 end
end

 If Markaby has a weakness, it ’ s speed. All the metaprogramming and method_missing tricks that make
it such a nice API do tend to slow it down some. Still, if you ’ re in a situation where you can take the
performance hit (because it ’ s just being cached, for instance), Markaby is a pretty clean way to specify
outputs.

c16.indd 421c16.indd 421 1/30/08 4:34:06 PM1/30/08 4:34:06 PM

Chapter 16: Replacing Ruby Tools

422

 Haml
 Haml is a very aggressive attempt to rewrite a view template to be as concise as possible — the home
page suggests that Haml is “ markup haiku. ” You can get Haml with this:

$ script/plugin install http://svn.hamptoncatlin.com/haml/tags/stable

 It ’ s also available as a Ruby gem (gem install haml).

 As I write this in October 2007, there seems to be a bad interaction between the Haml plugin and the
Markaby plugin (they seem to be trying to override the same template method with a different number of
arguments). I suspect this is a temporary issue that should be resolved by the time you read this. If you
continue to have trouble, though, you may need to remove Markaby to get Haml to work.

 Here ’ s the same recipe page done up Haml - style:

%table{:width = > “75%”}
 %tr
 %th Title
 - @recipes.each do |recipe|
 %tr
 %td
 - if recipe.has_image?
 %image{:src = > recipe.soup_image.public_filename(:tag)}
 - else
 & nbsp;
 %td= link_to h(recipe.title), recipe

 I invoke this with another controller method, which is identical to the one for Markaby:

 def haml_test
 @recipes = Recipe.find_for_index(params[:format])
 respond_to do |format|
 format.html
 end
 end

 This means that the view page goes to app/views/output_choice/haml_test.haml .

 Two things are apparent immediately. The Haml page takes a lot less text than the Markaby or Liquid
pages (which you ’ ll look at shortly), and it ’ s also a little opaque on first glance (at least to me). Let ’ s
break it down.

 Haml uses the percent sign (%) to indicate that a tag is coming. The tag name is optionally followed by
one or more special characters, and then by the contents of the tag. Unless the = modifier is used, the text
after the tag declaration is assumed to be a string literal — you don ’ t need to enclose it in quotes (in fact,
if you enclose it in quotes, the quotes will be part of the output). So, for example, the following code:

%th Title

c16.indd 422c16.indd 422 1/30/08 4:34:07 PM1/30/08 4:34:07 PM

Chapter 16: Replacing Ruby Tools

423

gets converted to this:

 < th > Title < /th >

 Haml does not actually check to see that your tag is part of HTML and will happily convert any string
after the % to a tag. That enables Haml to be used to generate XML as well as HTML.

 Haml uses indentation to specify the contents of a complex tag. Every line with content that should be
contained in the outer tag needs to be indented two spaces relative to the outer tag. The outer tag
automatically ends on a line that is set back to the same level of indentation. If you are familiar with
Python ’ s use of whitespace to manage blocks, it ’ s the same general idea.

 The plus side of Haml’s structure is that it encourages readable and consistent layout practice, and
makes the code much more compact because blocks don ’ t have to have explicit end markers. The
downside is that in long blocks, it can be difficult to keep track of where blocks begin and end
(admittedly that can also be a problem in nonindented languages). My experience with Python is that it
works largely because the indentation rule subtly encourages refactoring to smaller blocks. In Haml, that
would imply refactoring to partials or helpers aggressively to encourage readability.

 Here ’ s a longer example. This series of indented blocks in Haml:

%table
 %tr
 %td
 %span Hi
 %td
 %span There

gets converted to this HTML (indentation cleaned up by me):

 < table >
 < tr >
 < td > < span > Hi < /span > < /td >
 < td > < span > There < /span > < /td >
 < /tr >
 < /table >

 A line that does not begin with a % is considered to be literal text belonging to the containing tag. Haml
will expect this text to be indented just as if it was another tag. So the following Haml code:

%span
 A line of text

becomes this HTML:

 < span > A line of text < /span >

 Unlike Markaby, which defaults to putting all its HTML characters in a jumble with no new lines or
indentation, Haml attempts to make its output more human - readable.

c16.indd 423c16.indd 423 1/30/08 4:34:07 PM1/30/08 4:34:07 PM

Chapter 16: Replacing Ruby Tools

424

 There are about a dozen or so special characters that modify the interpretation of a tag or line of text.
Braces after the tag indicate tag attributes. The braces are in standard Ruby hash syntax, just like the
HTML options hash that most Rails helpers take. So this:

%table{:width = > “75%”}

becomes this HTML:

 < table width=”75” >

 As in Markaby, class and id are privileged. The usage is taken from CSS descriptors. The class name
starts with a period, and the id name starts with a pound or hash sign. So this:

%span.subtle#try_it_span

converts to this HTML:

 < span class=”subtle” id=”try_it_span” >

 The class and id can come in either order.

 An object reference placed inside brackets automatically sets the class and id in a manner similar to the
Rails standard dom_id method. So this:

%span[@recipes[0]]

converts to this HTML:

 < span class=”recipe” id=”recipe_1”/ >

 The class name is the name of the Ruby class of the object, converted to underscore syntax, and the id
is the class name followed by its ID — for our purposes, this is meant to be an ActiveRecord ID.

 If there is just a class or id specification but no tag name, the tag is implicitly assumed to be a div . So
the following code:

.emphasis#recipe_title

is interpreted by Haml to the follwing HTML:

 < div class=”emphasis” id=”recipe_title” >

 If you include an equal sign (=) after the tag name, the remainder of the line is evaluated as Ruby code.
For example, this:

%div= recipe.title

becomes this HTML (assuming the exact recipe object, of course):

 < div > Grandma’s Chicken Soup < /div >

c16.indd 424c16.indd 424 1/30/08 4:34:07 PM1/30/08 4:34:07 PM

Chapter 16: Replacing Ruby Tools

425

 You can also do string interpolation. For example, this:

%div= “Title: #{recipe.title}”

is converted to this HTML:

 < div > Title: Grandma’s Chicken Soup < /div >

 Starting a line with a hyphen (-)signifies that the line should be evaluated as Ruby code, but not output
to the screen. This can be used to define local variables. For example:

- days = 3 * 45

 Or it can be used to specify control behavior with regular Ruby conditional or loop statements. Well, the
statements are almost regular Ruby. In keeping with the Haml indentation structure, blocks are started
with the normal structure, but are ended using the indentation as a marker. This goes for both language
structures like if or for as well as do / end blocks. For example:

 - if recipe.has_image?
 %image{:src = > recipe.soup_image.public_filename(:tag)}
 - else
 & nbsp;

 Notice that the else line is outdented back to the level of the if statement. Or consider this:

%table
 - @recipes.each do |recipe|
 %tr
 %td= recipe.title
%h2 End of table

 Outdenting all the way back for the h2 tag implicitly closes the td , tr , and table tags and the each
block. Frankly, seeing Ruby - type blocks with Pythonic indentation is giving me a bit of mental whiplash,
although I was always a fan of Python ’ s indentation, and I certainly appreciate the impulse to bring that
kind of concise syntax to HTML markup.

 Let ’ s look at a few more special characters. A forward slash (/) at the beginning of the line indicates an
HTML comment — that is, a comment that is part of the output sent to the browser. Structurally, it
behaves like a tag. It can start a line, in which case the contents of the line are placed in the comment tag
like this:

/ Fred wrote this part

which is interpreted as this HTML comment:

 < !-- Fred wrote this part -- >

 A forward slash at the end of the line indicates that the tag is self - closing. So the following Haml code:

%end_of_line/

c16.indd 425c16.indd 425 1/30/08 4:34:07 PM1/30/08 4:34:07 PM

Chapter 16: Replacing Ruby Tools

426

signifies this tag:

 < end_of_line / >

 Haml already knows about the HTML tags that are self - closing, such as br , so you don ’ t need the
forward slash in those cases.

 The slash can also be treated as a tag with indented comments. So the following Haml code:

/
 On second thought
 %div A bad idea

is interpreted as this HTML:

 < !-- On second thought < div > A bad idea < /div > -- >

 The backslash, for its part, fulfills its traditional role as an indicator that a control character should be
treated as a literal. For example:

%tr
 %td
 + Positives
 %td
 \- Negatives#### < tr > < td > + Positives < /td > < td > - Negatives < /td > < /tr >

 A triple - bang (!!!) gets you a standard XHTML document header. The default is XHTML version 1.0
Transitional; however, you can specify alternative versions by placing text after the bangs like this:

!!! 1.1 Strict

 You can include either of the two elements by themselves, and you can add an optional encoding type.

 Haml also has a flexible set of filters that act on a set of indented text. The basic structure goes like this:

%div
 :plain
 This text is evaluated by the filter
%div This text is not

 Most of the filters allow you to specify an alternate text - parsing method for the text inside the filter.
In the example, the plain filter passes the filtered text through without any further processing. The
 preserve filter maintains whitespace in the output, similar to the way many blogging text engines do,
by converting newlines into HTML new lines. If you are a fan of Textile or Markdown as simple text
markup, there are both textile and markdown filters. The textile filter depends on the RedCloth gem
being installed, and the markdown filter depends on the BlueCloth gem. There ’ s also a redcloth filter,
which uses RedCloth ’ s rendering engine to render either Textile or Markdown. The erb filter evaluates
the text using ERB, and the ruby filter evaluates the text as Ruby code, with all text sent to STDOUT
(standard output) included in the output. Finally, the sass filter uses the Sass tool to generate CSS.

 You can define your own filters. To do so, include a line like the following in your environment.rb file.

c16.indd 426c16.indd 426 1/30/08 4:34:08 PM1/30/08 4:34:08 PM

Chapter 16: Replacing Ruby Tools

427

HAML::Template.options :filters = > {:filter_name = > FilterClass}

 You can include as many name/class pairs in the hash as you ’ d like. The filter class needs to respond to
an initialize(text) method, where the argument is the text being filtered, and then a render
method to output the rendered text.

 Benchmarks posted by the Haml team suggest that Haml is about 30 - percent slower than ERB, but more
than 15 times faster than Markaby. The stated goal of the Haml developers is for the 2.0 release to be
faster than ERB.

 Liquid
 Liquid is a Rails templating tool with a very different design goal than Markaby and Haml. Whereas
Markaby and Haml are supposed to make markup more elegant for the developer, Liquid is designed to
enable a designer separate from the code team to create the output files. Toward that end, Liquid
provides a markup language that is much less complex than the ones you ’ ve seen previously, and it also
allows the coding team to limit what the design template can do with the data objects. One prominent
use of Liquid is in the Mephisto blog engine, where Liquid is the language that defines site - specific
templates. This is a use case where the template designers are likely to not have any contact with the
coding team, and where limiting what a template can do with the data seems like a good idea.

 Liquid is available as a Rails plugin:

$ ruby script/plugin http://liquid-markup.googlecode.com/svn/trunk/

 After the Liquid plugin is in place, you can create another test controller method like this:

 def liquid_test
 @recipes = Recipe.find_for_index(params[:format])
 @recipes.collect {|r| r.to_liquid }
 respond_to do |format|
 format.html
 end
 end

 This controller is slightly different than the controllers for Haml and Markaby in that it converts all the
recipes using a to_liquid method, which you haven ’ t written yet (more on that in a second).

 Here ’ s the recipe index page presented in Liquid, and placed in app/views/output_choice/liquid_
test.liquid :

 < table width=”75%” >
 < tr > < th > Title < /th > < /tr >
 {% for recipe in recipes %}
 < tr >
 < td >
 {% if recipe.has_image? %}
 < img src=”{{ recipe.image }}” / >
 {% else %}
 & nbsp;

(continued)

c16.indd 427c16.indd 427 1/30/08 4:34:08 PM1/30/08 4:34:08 PM

Chapter 16: Replacing Ruby Tools

428

 {% endif %}
 < /td >
 < td > < a href=”{{recipe.link}}” > {{recipe.title | strip_html }} < /a > < /td >
 < /tr >
 {% endfor %}
 < /table >

 At first glance, this looks very similar to ERB, but with slightly different marker characters. In fact,
Liquid defines only three markers. Double braces ({{ }}) denote output — anything inside the braces is
evaluated and placed in the output stream. Percent braces ({% %}) mark a logic tag. Liquid defines basic
tags such as if , for , case , and cycle . It ’ s also possible to create your own tag (more on that in a
moment). The third marker is the pipe character (|), which is used within an output block to indicate a
filter. The output block is of the following form:

{{ text | filter }}

 The filter is a function that modifies the text — for example, by changing its case. You can have
multiple filters in the same output block, in which case they are evaluated left to right. This is the same
idea as the Django templates. Again, a standard set of filters is provided, but it ’ s possible to create
your own.

 If the filter takes an argument other than the string to be modified, the syntax looks like this:

{{ recipe.created_at | date: “%Y %m %d” }}

 The argument is passed following the colon in the filter.

 Looking at the example with sharp eyes, you ’ ll notice that the actual code has changed. For one thing,
the Rails helpers image_tag and link_to are not used, and the recipe object appears to have grown a
few new methods. Liquid limits the reach of the template. Rails helper methods are not available. In
addition, Liquid allows only a special kind of object, called a Drop , to be passed to the template. The
methods of the Drop are the only methods on the object that can be invoked from the template.

 This means that the controller method for Liquid is different from the other two output engines because
it has to convert Recipe to Drop , as shown in the following highlighted code line:

 def liquid_test
 @recipes = Recipe.find_for_index(params[:format])

 @recipes.collect {|r| r.to_liquid }

 respond_to do |format|
 format.html
 end
 end

 The controller bounces control to Recipe#to_liquid , which goes like this:

 def to_liquid(options = {})
 RecipeDrop.new self
 end

(continued)

c16.indd 428c16.indd 428 1/30/08 4:34:08 PM1/30/08 4:34:08 PM

Chapter 16: Replacing Ruby Tools

429

 This, of course, requires a RecipeDrop class. Here it is (I put the class inside the app/models/recipe
.rb file, but if you are doing an entire site in Liquid, you probably want to put all your drops in an
app/drops directory):

class RecipeDrop < Liquid::Drop

 def initialize(recipe)
 @recipe = recipe
 end

 def has_image?
 @recipe.has_image?
 end

 def title
 @recipe.title
 end

 def image
 @recipe.soup_image.public_filename(:tag)
 end

 def link
 “/recipes/#{@recipe.id}”
 end
end

 An instance of the Drop class is the object passed to the view, and only methods specifically defined by
the Drop class can be called by the view. You ’ ll need to create a Drop class for any of your objects that
you want visible in the view. Base classes (Array , Date , DateTime , Hash , Numeric , String , and Time ,
plus the three constants true , false , and nil) are all predefined by Liquid to act as their own Drop
class, meaning that objects in these classes behave the same within a Liquid template as they do
normally. Admittedly, you could define a similar functionality for your own class like this:

def to_liquid
 self
end

But doing so would defeat the purpose of using Liquid in the first place.

 You can create your own custom filters and tags to augment the standard ones. The standard filters
include capitalize , date , downcase , escape , first , join , last , sort , strip_html , truncate , and
 upcase . Many of these are simple wrappers around the Rails helper methods of the same name. The
 date filter reformats a date or time and takes a standard format string as an argument. The escape filter
is also aliased to h , and calls CGI.escapeHTML . The first and last filters both work on arrays.

 To create filters, place your filter methods in a module. Each method should take at least one argument
— the input object to the filter. Additional arguments can be specified, and the argument list will be
enforced at runtime when a template is interpreted. To register your template, make the following call
somewhere in your code (the last line of the file loading your module is a common spot):

Liquid::Template.register_filter(< < Your Filter Module > >)

c16.indd 429c16.indd 429 1/30/08 4:34:08 PM1/30/08 4:34:08 PM

Chapter 16: Replacing Ruby Tools

430

 All of the public methods of the module you specify will be available as filters in your Liquid templates.

 Tags are a little more complicated to create. By default, Liquid creates the tags described in the following
table.

Tag Description

assign Sets a value for use later in the template, for example:
{% assign var = value %}

capture Renders the contents in the block, and assigns them to the variable, for example:
{% capture varname %} some stuff {% endcapture %}

Later on, you can write {{varname}} and the output will be inserted. This stores
output to be used multiple times in the template.

case Standard case statement. The template code in the block where the variable matches
the value in the when clause is rendered. If no when block matches, the else block is
rendered. The syntax is as follows:

{% case variable %}{% when ‘value’ %} stuff {% else %} more stuff
{% endcase %}

comment Everything inside the block is ignored. The syntax is as follows:
{% comment %} comment text {% endcomment %}

cycle Similar to the Rails helper; designed to be used inside a loop. This cycles between the
values provided, moving from the last back to the first and so on. The syntax is as
follows:

{% cycle ‘a’, ‘b’, ‘c’ %}

for A basic for loop with the following syntax:
{% for each in list %} stuff {{each}} {% endfor %}

Takes two possible arguments, limit and offset, as in {% for each in list
limit: 3 offset: 2 %}. limit sets an upper boundary on the size of the list, and
offset starts in a location other than the first element in the list. The list can also be
a range, using the Ruby range syntax. Within the block, in addition to the loop con-
trol variable, there is a series of values of the form for loop.length (which returns
the length of the list being looped over). Other attributes of the for loop include
index (the number of the iteration, starting at 1), rindex (the number of iterations
remaining, and first and last, Boolean markers of the first or last iteration.

if A basic if statement with the following syntax:
{% if condition %} do something {% else %} do something {% endif
%}

The condition can be a simple Boolean statement, but Boolean operators aren’t avail-
able there (complex logic is supposed to be placed in the drop object). There’s also no
else if feature — you should use a case block for that.

c16.indd 430c16.indd 430 1/30/08 4:34:09 PM1/30/08 4:34:09 PM

Chapter 16: Replacing Ruby Tools

431

Tag Description

include Allows the inclusion of another template within the current template, as follows:
{% include another_template %}

This can be called on a collection, as in {% include other with collection %},
in which case the template is rendered once for each element in the collection and the
element forms the context for the internal template.

unless The opposite of if. It has the following syntax:
{% unless condition %} do something {% endunless %}

 It ’ s possible to create your own tags in Liquid, but at the moment that ’ s not for the faint of heart.
Interested parties are invited to check out the source for existing tags in liquid/lib/tag.rb , liquid/
lib/block.rb , and liquid/lib/tags — and extrapolate from there.

 Liquid is interesting to me because all the messing around with Drop classes feels like the kind of
redundant task that Rails was designed to prevent. And yet there are certainly use cases, like the blog
template example, where I can understand a desire to limit the damage that a user can do from a view. If
you think your project has that particular need, Liquid is worth checking out.

 JRuby on JRails
 Switching gears to cover a different way to incorporate other languages into Rails, we come to JRuby, a
100 - percent Java implementation of a Ruby interpreter and compiler. Although there are a number of
languages that have Java Virtual Machine (JVM) interpretations, JRuby has one thing that the others
don ’ t — official support from Sun, which employs the core JRuby developers and funds JRuby
development. The explicit goal of JRuby, at least from Sun ’ s perspective, was to provide a Java - based
platform to run Rails web applications.

 This naturally begs the question of why you ’ d want to run a Rails application on top of a JVM. There are
at least three potential answers:

 From JRuby, your Rails application can access Java - based APIs and services. There are still a
number of libraries and tools with Java implementations but not Ruby interpretations. With
JRuby, you can access those tools from your Ruby code.

 JRuby allows for deployment using standard Java .war files, which you can generate from Rake
and deploy in any Java web application environment. This is potentially a much simpler
deployment story than exists with standard Ruby and Capistrano, especially because JRuby
allows access to large - scale enterprise servers such as Glassfish.

 JRuby has the only full compiler for the Ruby language. Although the goal hasn ’ t been fully
achieved as of this writing, the JRuby team expects that JRuby will soon be faster than the
current Ruby interpreter. (It should be mentioned here that there are multiple non - Java – based
Ruby interpreter projects that also project speed improvements over the current interpreter.)

❑

❑

❑

c16.indd 431c16.indd 431 1/30/08 4:34:09 PM1/30/08 4:34:09 PM

Chapter 16: Replacing Ruby Tools

432

 Getting Started
 JRuby can be downloaded from http://dist.codehaus.org/jruby . Because it ’ s based on Java, you ’ ll
need a Java Software Development Kit (SDK) on your machine. If you are on a Mac running OS X 10.4.x
or higher, you ’ re fine — Java comes preinstalled. For Windows, you should head to http://java.sun
.com , and install Java SDK version 1.5 or later. On Linux, the JDK may come with your distribution, or it
may be available via your package installation system. If not, Linux installations are also available at
 http://java.sun.com . You ’ ll need to have the JAVA_HOME environment variable set and have the
 JAVA_HOME/bin directory in your PATH — that should be taken care of by the Java installer.

 As I write this, the current stable version of JRuby is 1.0.1, and you want jruby - bin - 1.0.1.zip or
 jruby - bin - 1.0.1.tar.gz . The source file and instructions on building from source are available at the
JRuby wiki (see the “ References ” section for more details).

 Unpack the file, and place the resulting directory someplace convenient on your file system. I put mine
at /usr/local/lib/jruby - 1.0.1 to parallel the location where Ruby installed itself, but it really
doesn ’ t matter. What does matter is that you register the JRUBY_HOME environment variable. On a Unix
or Mac OS X machine, do the following in your .bash_login (or other shell equivalent):

export JRUBY_HOME=”/usr/local/lib/jruby-1.0.1”

 Again, you ’ ll need to adapt this to your location and command shell. On Windows, set the environment
variable in My Computer Properties Advanced Environment Variables . It ’ s not strictly
necessary, but things will go a lot easier if you add the JRUBY_HOME/bin directory to your PATH variable
as well.

 JRuby is now installed, giving you a completely parallel Ruby environment with its own interpreter
command (jruby), its own interactive console (jirb), and its own version of gem and rake . You need
to be careful with gem and rake because they share the same name as their regular Ruby siblings —
 the potential for a name collision is high. If you just type one of these commands at a command line, the
 PATH variable determines whether the regular Ruby or the JRuby version will be installed — the directory
earlier in the list wins. Make sure you know which version you want to be the primary one, and adjust
your PATH list so that version comes first. On Unix - derived systems, you can use the which command to
ask the system to tell you where an executed command is located, like this:

$ which gem
/usr/local/bin/gem

 To access the nonprimary version, you need to explicitly specify its directory at the command line as
follows:

$ /usr/local/lib/jruby-1.0.1/gem

 This is a particular issue for gem because each Ruby installation maintains its own list of installed gems.
You want to make sure the gem gets installed to the Ruby version you expect.

c16.indd 432c16.indd 432 1/30/08 4:34:10 PM1/30/08 4:34:10 PM

Chapter 16: Replacing Ruby Tools

433

 After the setup is complete, jruby and jirb work exactly as you would expect:

$ jirb
irb(main):001:0 > 1 + 1
= > 2
irb(main):002:0 > x = “a string”
= > “a string”
irb(main):003:0 > x.reverse
= > “gnirts a”

 Now, let ’ s look at what you can do with this stuff.

 Crossing the Boundary
 If you ’ ve used any of the JVM scripting languages (such as Jython, Rhino, or Groovy), you know
that one thing that makes them powerful is their capability to interact with existing Java libraries. It ’ s
also one of the sources of pain because crossing the language boundary means that the existing code is
executed in a new context, and the Ruby code is dealing with new data structures. The possibility for
problems is high.

 From JRuby, the magic line is this:

include Java

 Once that is placed in your scripts, you have access to any Java class in your classpath . There isn ’ t any
way to specify a class path in the command - line invocation of JRuby — if you want your application to
have a custom class path, you need to set up a batch file that modifies the classpath .

 You can reference a Java class by using its fully qualified class name, as in this jirb session:

$ jirb
irb(main):001:0 > include Java
= > Object
irb(main):002:0 > button = javax.swing.JButton
= > Java::JavaxSwing::JButton

 Swing programs are good for exploring the use of Java classes from Ruby because the Swing library is so
heavily dependent on JavaBeans. Here ’ s a short JRuby program:

include Java

include_class javax.swing.JFrame
include_class javax.swing.JButton
include_class javax.swing.JOptionPane
include_class java.awt.event.ActionListener

class ClickAction
 include ActionListener
 def actionPerformed(evt)

(continued)

c16.indd 433c16.indd 433 1/30/08 4:34:10 PM1/30/08 4:34:10 PM

Chapter 16: Replacing Ruby Tools

434

 JOptionPane.show_message_dialog(nil, “Ouch, that hurts!”)
 end
end

frame = JFrame.new(“JRuby Test”)
button = JButton.new(“I’m A Swing Button!”)
button.add_action_listener(ClickAction.new)
frame.content_pane.add(button)
frame.default_close_operation = JFrame::EXIT_ON_CLOSE
frame.pack
frame.visible = true

 This sets up a simple JFrame with one button that triggers an alert message when clicked. Figure 16 - 1
shows what I see when I run it.

(continued)

Figure 16-1

 From this example, you can see the following facts about calling Java from JRuby:

 The shortcut method include_class takes a fully qualified Java class name and allows the rest
of the script to refer to it by the short name of the class. The fully qualified name is still available
should you want to use it.

 You can declare your Ruby class to extend a Java interface by calling include with the interface
class, as in include ActionListener . Object inheritance, which isn ’ t shown in this example,
is managed exactly the same as it is in Ruby — except with a Java class name, class MyButton
 < JButton .

 JRuby does not have a compile - time check to determine that your interface extension class
actually implements all the methods needed. If you were to comment out the actionPerformed
method, the script would fail, but not until the button is actually clicked and the Java runtime
attempts to call the method.

❑

❑

❑

c16.indd 434c16.indd 434 1/30/08 4:34:10 PM1/30/08 4:34:10 PM

Chapter 16: Replacing Ruby Tools

435

 Any method you declare in a class will override a parent method of the same name. The Ruby
side will not validate the number or type of arguments, but discrepancies will be noticed by the
Java side when you attempt to call the Java methods. So, if you try to call add_action_listener
with something that is not actually an ActionListener, you get an error on the method call.

 New Java objects are created using the Ruby new syntax.

 JRuby converts Java CamelCase method names to more Ruby - like name_with_underscore
versions. In this example, add_action_listener is an alias for the Java method
 addActionListener . The Java spellings of these method names are still available.

 The Ruby - style method names do not work for the purposes of overriding a parent class or
implementing an interface. For this reason, the listener method must be actionListener , not
 add_action_listener . This may be addressed in a future version of JRuby.

 Any JavaBeans property of a Java object (meaning any property with a getter and setter) gets
an implicit Ruby attr_accessor . So, for example, you should use frame.visible = true
instead of frame.setVisible(true) . The original getter and setter methods are still available
if you want them. The accessors are also converted to Ruby underscores, as in frame
.default_close_operation .

 Class methods and constants of Java classes are accessed using the Ruby :: syntax.

 You can pass Ruby objects to Java classes where there is an obvious paired class — Ruby strings
can be passed as Java strings, numbers can be passed, arrays and hashes become Java lists and
maps, and so on.

 You can also go the other way and call a Ruby script from a Java class. The basic Java magic is this:

Ruby runtime = Ruby.getDefaultInstance();
try {
 runtime.evalScript(script);
} catch (Exception e) {e.printStackTrace();}

 script is a string with the JRuby code to interpret. You can also instantiate and call methods of Ruby
objects from your Java classes, with some limitations. However, because those limitations are somewhat
baroque and incidental to our purpose here, I ’ m going to point you to the “ Reference ” section later in
this chapter for more information on this topic.

 Running JRails
 Let ’ s get down to the point: running Rails under JRuby. You can install gem Rails from JRuby the same
way as from regular Ruby (although if you have memory problems, you may need to change your
default Java memory size to at least 512MB). Just enter the following command and watch the results:

$ /usr/local/lib/jruby-1.0.1/bin/gem install rails
Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency activesupport? [Yn] Y
Install required dependency activerecord? [Yn] Y

❑

❑

❑

❑

❑

❑

❑

(continued)

c16.indd 435c16.indd 435 1/30/08 4:34:11 PM1/30/08 4:34:11 PM

Chapter 16: Replacing Ruby Tools

436

Install required dependency actionpack? [Yn] Y
Install required dependency actionmailer? [Yn] Y
Install required dependency actionwebservice? [Yn] Y
Successfully installed rails-1.2.5
Successfully installed activesupport-1.4.4
Successfully installed activerecord-1.15.5
Successfully installed actionpack-1.13.5
Successfully installed actionmailer-1.3.5
Successfully installed actionwebservice-1.2.5

 This installs the Rails gems in the JRuby gem directory, and also puts the rails application creation
script in JRUBY_HOME/bin — in other words, it does exactly what the regular gem install rails does.

 If you are on a Unix - based system, you may have to change the mode of JRUBY_HOME/BIN/rails to
make it executable.

 You can use the JRuby rails script to create a new Rails application. You can also run an existing Rails
application under JRuby by calling script/server with JRuby like this:

$jruby script/server

 There are a couple of issues you ’ ll need to straighten out before you can actually run the Rails
application under JRuby. If you ’ ve just installed JRuby, the odds are that you ’ ll need to reinstall all the
gems that your Rails project depends on. That ’ s easy enough — you just need to run the JRuby gem
command for each gem. Any gem that is written in pure Ruby should work, but gems that have
components written in C won ’ t work. (It ’ s actually possible to specify that your JRuby gem directory be
the same as your existing Ruby gem directory, but I recommend keeping them separate.)

 Another problem is the database connections. Rails normally uses the ActiveRecord connectors that are
specific to each database, but because Java is supposed to have its own database - independent API, those
connectors will not work in JRuby. Instead, JRuby Rails applications connect to the database via the Java
API called JDBC. The JDBC connections are available as a gem, so naturally, you install them as follows:

/usr/local/lib/jruby-1.0.1/bin/gem install activerecord-jdbc --no-rdoc --no-ri

 For some reason, the JRuby documentation is extremely consistent about recommending the no -
 documentation options for gem installation. I ’ m not completely sure why it matters, but I figured I ’ d
pass along the recommendation.

 With the gem installed, you need to tell Rails that the JDBC connector is available. The following code
shows the recommended syntax, which you need to place in your environment.rb file (but check with
current documentation — the JRuby team is hoping to automate this step in the future):

 if RUBY_PLATFORM =~ /java/
 require ‘rubygems’
 gem ‘ActiveRecord-JDBC’
 require ‘jdbc_adapter’
 end

(continued)

c16.indd 436c16.indd 436 1/30/08 4:34:11 PM1/30/08 4:34:11 PM

Chapter 16: Replacing Ruby Tools

437

 You also need to go into your database.yml file and convert it to JDBC. Here ’ s a sample:

production:

 adapter: jdbc
 driver: org.mysql.jdbc.Driver
 url: jdbc:mysql://localhost/soupsonline_production

 username: root
 password:
 encoding: utf8

 The adapter is now jdbc instead of mysql . You need to specify the JDBC driver class, just as you would in
a Java program. Rather than specifying the database name, the host, and the socket, the database instance
is now specified using a JDBC URL. The format for the URL is somewhat dependent on the driver. For
MySQL, the basic format is jdbc:mysql:// < hostname > /database_name . You don ’ t need to include the
user name and password in the URL — they will be inserted based on the user name and password
entries in the YAML file. You will need to convert all the database references, not just the production
version. You might want to do this using a separate working copy from your source control server.

 As I write this, ActiveRecord - JDBC supports the following databases: DB2, Derby, Firebird, H2,
HSQLDB, MySQL, Oracle, PostgreSQL, and SQL Server. That includes all the most common databases
used for ActiveRecord except for SQLite (but Derby makes a good lightweight in - memory alternative for
this). Certain kinds of column changing activities are not available for DB2, Derby, Firebird, and
SQLServer, but again, check the documentation for current information as development is ongoing.

 The actual .jar file containing the driver class must also be placed in your class path. To do this,
modify the classpath either in the batch file that starts your Rails application, or in your shell profile.
Alternatively, if you ’ ll be running your Rails application inside Tomcat or some other servlet container,
there will usually be some directory to place the .jar file in so that it ’ s automatically available to the
web application.

 At this point, you should be able to run your Rails application locally under JRuby by using script/
server . That will invoke WEBrick without searching for Mongrel because WEBrick is pure Ruby, and
Mongrel is not. If you want something with a little bit more oomph, you ’ ll need to deploy the application
to a Java application server.

 Deployment via WAR
 The generic way to deploy your JRuby Rails application is to convert it to a standard WAR file, suitable
for handing off to your Java server. To do this conversion, you need a plugin called GoldSpike. You can
get this plugin as follows:

script/plugin install http://jruby-extras.rubyforge.org/svn/trunk
/rails-integration/plugins/goldspike

 With GoldSpike installed, you have access to four new Rake tasks that mange deployment. The two basic
ones are war:standalone:create and war:shared:create . Both of these convert the Rails
application to a WAR file. The standalone version includes JRuby itself in the archive, so it can be
deployed into an application server with no other dependencies. The shared version assumes that the

c16.indd 437c16.indd 437 1/30/08 4:34:11 PM1/30/08 4:34:11 PM

Chapter 16: Replacing Ruby Tools

438

JRuby JAR file will be visible to the application at runtime (which it will be if you ’ re in the Tomcat /
shared directory, for example), which results in a smaller archive. The shared version is preferred if you
want to save space on a server with multiple JRuby applications installed.

 You also have the task war:standalone:run , which creates the standalone WAR file and immediately
starts up the Jetty web server running the archive (this one assumes you are running JRuby). The task
 tmp:war:clean cleans up any temporary files left behind by WAR creation.

 This WAR file is not a true compile of the Rails application. Instead, it bundles the JRuby interpreter and
the Rails files in such a way as to invoke the interpreter to start the Rails application and respond to
requests as expected.

 As I write this, a compiler deployment solution is in the works, but has not yet been released publicly.

 There are two places in your Rails application where you can put external information of interest to the
WAR deployment tasks. The lib/java directory should contain all the Java JAR files you need to be
deployed in your application. These will be bundled into the WAR file. There is also an optional
 config/war.rb file that allows you to specify dependencies on RubyGems or Java Maven - based
libraries. Refer to external gems with a line in the file for each gem, of the following form:

add_gem ‘gemname’, ‘version string’

 The version string should be something like = 1.5 or > 3.5 . Omitting the version string should always
get you the most recent version of the gem. Any gem included in this listing will be bundled with the
WAR file, which implies that it needs to be already installed locally. Because Rails is a gem, you can use
this mechanism to specify a Rails version. For example:

add_gem ‘rails’, ‘= 1.2.3’

 Java libraries are added using the following syntax:

maven_library ‘mysql’, ‘mysql-connector-java’, ‘5.0.4’

 The fields are the Maven group ID, the Maven artifact ID, and the Maven version. (See the Maven
documentation for details about how to find specific third - party plugins.) You may need to explicitly
add a line like this for each JAR file in your lib/java file, although by the time you read this, that step
may no longer be necessary. Remember that this is only for bundling the dependent JAR file in your
complete WAR file. You can always include third - party JARs in the shared directory of your web
application server.

 You can specify the JRuby version you want to use with this mechanism:

maven_library ‘org.jruby’, ‘jruby-complete’, ‘1.0.1’

 After you have obtained the WAR file, place it in the application server just like any other file.

c16.indd 438c16.indd 438 1/30/08 4:34:12 PM1/30/08 4:34:12 PM

Chapter 16: Replacing Ruby Tools

439

 GlassFish
 Using a WAR file is a pretty straightforward deployment story, but it ’ s possible to make Java
deployment even easier. GlassFish is an open - source Java Enterprise server that is available at http://
glassfish.dev.java.net . (It ’ s also bundled with Sun ’ s Netbeans IDE.) GlassFish supports clustering,
and is suitable for production work in a variety of environments. It also supports a brand - new Rails
deployment solution.

 To get this to work, you need to download the gem. As of this writing, it ’ s still a preview release, and it ’ s
not registered with the gem system, so you need to download the gem file from http://download
.java.net/maven/glassfish/com/sun/enterprise/glassfish/glassfish-gem/10.0-
SNAPSHOT/glassfish-gem-10.0-SNAPSHOT.gem . Download it, and then try this:

$ cd ~/Desktop/downloads
$ /usr/local/lib/jruby-1.0.1/bin/gem install glassfish-gem-10.0-SNAPSHOT

 Mac users should note that Safari seems to want to download the file and insert a .tar extension.
That can mess up the download a bit. Try using Firefox if possible.

 After the gem is installed, it creates a script called glassfish_rails (which you may need to change to
executable). You can then run it like this:

$ glassfish_rails soupsonline/

 You ’ ll see something like the following:

Oct 26, 2007 9:26:10 PM com.sun.enterprise.v3.services.impl.GrizzlyAdapter
postConstruct
INFO: Listening on port 8080

 This does bring up GlassFish — unfortunately, Soups OnLine is not completely JRuby ready at this point
(for one thing, the Ferret text engine is not pure Ruby). However, with a JRuby - ready application, you
get a GlassFish server running Rails without even having to create a WAR file.

 As I write this, the GlassFish plugin is at a very early stage, but it ’ s worth keeping an eye on because it
could become a very important Rails deployment tool.

 References
 RDoc documentation for Markaby is available at http://markaby.rubyforge.org . Also of interest is
the wiki from “ why the lucky stiff ” at http://code.whytheluckystiff.net/markaby . Haml lives at
 http://haml.hamptoncatlin.com — see that page for additional documentation as well as
information about Sass, which is an output tool aimed at creating CSS files.

 Liquid ’ s home page is www.liquidmarkup.org . Bruce Williams and Marcel Molina, Jr. have a great
presentation from RailsConf 2007 that discusses all the alternatives listed here and more — slides from
this presentation are available at www.codefluency.com/assets/2007/5/18/VisForVexing.pdf .

c16.indd 439c16.indd 439 1/30/08 4:34:12 PM1/30/08 4:34:12 PM

Chapter 16: Replacing Ruby Tools

440

 JRuby ’ s home page is http://jruby.codehaus.org . There ’ s also a wiki at http://wiki.jruby
.org/wiki/Main_Page . Charles Nutter maintains a blog at http://headius.blogspot.com — watch
this blog for announcements and news of new releases. Maven, which is mentioned in the chapter as a
tool for managing Java libraries, can be found at http://maven.apache.org . There ’ s already a book,
 Practical JRuby on Rails Web 2.0 Projects: Bringing Ruby on Rails to Java , written by Ola Bini and published
by Apress (www.apress.com/book/view/9781590598818), and I believe another one is forthcoming.

 Summary
 Although ERB has the advantage of allowing all code in your Rails system to be in Ruby, there are
alternative view - output languages that serve some different needs. Markaby is a system that uses Ruby
metaprogramming constructs to create a view language that looks as much like Ruby code as possible.
It ’ s simple and powerful, but somewhat slow. Haml is an attempt to create very concise views, using a
mix of Ruby syntax, Python indentation, and CSS selectors. It ’ s almost as fast as ERB, and quite flexible,
but also rather cryptic. Liquid is a templating language designed to completely separate the template
from the live model objects. Liquid is particularly well suited to the case where the creators of the
templates are widely separated from the coders, or where there ’ s a good reason to do some extra work to
limit what can be done from a view.

 JRuby is an alternative implementation of the Ruby interpreter that runs inside a JVM. It is not solely
intended for running Rails; however, Rails support is a big part of JRuby ’ s reason for existing. JRuby is
especially indicated in cases where you want to access a Java library from your Rails program. It also
boasts a nice, simple deployment story, converting Rails projects to .war files that can be run within any
standard Java web application server. JRuby requires some minor changes to the setup of your Rails
program, mostly to support database access via JDBC. The JRuby team is also working on a Ruby
compiler, and expects to have a JRuby implementation that is faster than the standard Ruby 1.8
implementation quite soon.

c16.indd 440c16.indd 440 1/30/08 4:34:12 PM1/30/08 4:34:12 PM

 Things You Should Download

 A Ruby on Rails application is made up of many parts. Although the installation of the gems and
plugins used in a Rails application is covered in the main text, the installation of the basic pieces is
not covered consistently. This appendix provides a brief guide to what to download and where
to get it.

 Platform Notes
 Ruby on Rails runs on any platform where Ruby itself runs. Most likely, you ’ ll be running a Linux
distrubution, Mac OS X, or Microsoft Windows (XP or Vista). Each platform has a slightly different
set of steps to follow. Here are some general notes on each platform.

 Linux
 All the standalone tools here should be available via the package manager for your Linux
distribution — in fact, many of them should be preinstalled as part of the general operating system
(OS) installation. For updates, the package installer is your first and easiest choice for getting the
program onto your system. All the described Linux tools allow for compilation from source — if you
want that option, you ’ ll need to have the standard developer tools such as gcc and make installed.

 Mac OS X
 If you are running the new Mac OS X 10.5 Leopard version, you ’ re in luck because Ruby 1.8.6 and
Rails 1.2.3 are both preinstalled. In addition, the Ruby distribution includes RubyGems and several
other popular gems. One thing to keep in mind is that the Ruby installation itself has been patched
for better integration with the underlying OS and developer tools. This may be an issue when the
time comes to update Ruby. You may also want to run a custom Ruby build, in which case, you
should go to the URL in the next paragraph.

bapp01.indd 441bapp01.indd 441 1/30/08 4:37:11 PM1/30/08 4:37:11 PM

Appendix A: Things You Should Download

442

 If you ’ re on OS X 10.4 Tiger, you need to do some work. The Ruby version that shipped with Tiger was
a variant of Ruby 1.8.4, and it had some critical bugs that broke MySQL integration. You ’ ll find full
instructions for getting everything in order at http://hivelogic.com/narrative/articles/
ruby-rails-mongrel-mysql-osx . Dan Benjamin, the maintainer of this page, appears committed to
keeping it up - to - date for Leopard as well.

 For both system versions, you ’ ll need to have XCode and Developer tools installed if you want to
compile from source.

 Windows
 The Windows installation instructions are pretty straightforward, and should work for both XP and
Vista. To compile from source, you need the free Microsoft compiler available at http://msdn2
.microsoft.com/en-us/express/aa700735.aspx . You also need nmake , which is available at
 http://download.microsoft.com/download/vc15/patch/1.52/w95/en-us/nmake15.exe .

 Ruby
 The current version of Ruby is 1.8.6. That ’ s the version that should be installed on most recent Linux
distributions as well as Mac OS X 10.5.

 For Windows, a one - click installer for Ruby 1.8.6 is available at http://rubyinstaller.rubyforge
.org/wiki/wiki.pl . This installs Ruby, Gems, Rake, and a slew of other commonly used Ruby tools.

 Under Linux distributions that support APT, the following command works:

% sudo apt-get install ruby irb rdoc

 A source download is available at www.ruby-lang.org/en/downloads . This distribution contains
instructions for building from source. (Dan Benjamin ’ s page noted earlier also has instructions for OS X,
and the make/install steps should work for Linux as well.)

 The Windows one - click installer includes RubyGems, as does OS X Leopard. For other platforms, head to
 http://rubyforge.org/frs/?group_id=126 and download the most recent version (0.9.4 as I write
this). Unpack the download and run ruby setup.rb from the top level of the downloaded files.

 The developer release of Rails 1.9 is brand new as this book heads for production, and Rails is rapidly
being patched to accommodate it. While not recommended for production web sites in the immediate
future, it ’ s worth keeping an eye on for the future of Ruby development as well as for it s promised
performance updates.

 Rails
 Even if you eventually use Edge Rails for your projects, you need to have a version of Gem Rails
installed to get the rails command for creating new projects. Here ’ s the command:

$ sudo gem install rails --include-dependencies

bapp01.indd 442bapp01.indd 442 1/30/08 4:37:11 PM1/30/08 4:37:11 PM

Appendix A: Things You Should Download

443

 Windows users don ’ t need the sudo . This installs all of the various Rails components to your Ruby
installation. Upgrading to Edge Rails for your project is covered in Chapter 1 .

 Subversion
 Subversion is covered in depth in Chapter 2 . Downloads of Subversion are available at http://
subversion.tigris.org/project_packages.html . The source package is official, but binary
packages are unofficially maintained for most platforms. Subversion is also available via the APT package
manager. Even if you don ’ t plan on using Subversion for your source control, having the client available
makes it easier to manage Rails resources that are distributed via their public Subversion servers.

 Windows users might be interested in TortoiseSVN, a Subversion client that integrates with Windows
Explorer. You can get it at http://tortoisesvn.tigris.org . Mac users should try SCPlugin,
a similar but less mature tool available at http://scplugin.tigris.org . Also keep an eye on the
Mac OS X Subversion client called Versions at www.versionsapp.com — it hasn ’ t shipped yet, but
the screenshots look very pretty.

 Databases
 Most Rails applications use MySQL, which is available at http://dev.mysql.com . The free version is
called MySQL Community Edition. Right now, there ’ s a stable 5.0 branch, a beta 5.1 branch, and an
alpha 6.0 branch. Choose the binary that corresponds to your operating system.

 You should also consider the administrative tools, the MySQL Administrator and the MySQL Query
Browser, which are available at http://dev.mysql.com/downloads/gui-tools/5.0.html . The
interfaces are a little on the clunky side, but they will let you see what ’ s going on in your database. Your
platform may have third - party MySQL administrative applications as well.

 For smaller projects, consider SQLite, which is available at www.sqlite.org . It has binaries for Linux
and Windows. An older version of SQLlite was included in Mac OS X 10.4. As of Rails 2.0.2, SQLite is the
default database for new Rails applications. The database.yml file generated by Rails contains
instructions for using SQLite.

 Mongrel
 The Mongrel web server is available as a RubyGem (gem install mongrel). This is not critical for
development, but if installed, it will replace WEBrick on your development machine, leading to better
performance.

bapp01.indd 443bapp01.indd 443 1/30/08 4:37:12 PM1/30/08 4:37:12 PM

Appendix A: Things You Should Download

444

 Choosing a Text Editor
 You ’ ll need to type your code into something. Here are a few of options to consider.

 On the Mac, TextMate (www.macromates.com) has emerged as the clear favorite among Ruby
programmers. Unlike the other programs on this page, it ’ s not free, but it is extremely powerful and
flexible. It comes with a number of easily extendible shortcuts for Ruby, Rails, and Subversion.

 On the Windows side, the E text editor (www.e-texteditor.com) attempts to recreate the TextMate
structure, but at the time of this writing, it ’ s not quite mature.

 There are a few cross - platform text editors worth a look. Eclipse (www.eclipse.org) includes the
Aptana plugin, formerly known as RadRails. At one point, this was pretty much the only game in town
for Ruby syntax coloring and such on Windows, but other tools have been catching up fast. If you are
already comfortable with Eclipse, this is an easy way to get a Rails tool.

 NetBeans (www.netbeans.org) has just added significant Ruby support for version 6.0, with an eye
toward supporting JRuby development. It ’ s feature - rich but in a user interface that I ’ ve never quite been
able to get used to. IntellJ IDEA (www.jetbrains.com/idea) has added Ruby and Rails support for
version 7, but I haven ’ t yet gotten a chance to evaluate it. IDEA is also a commercial program.

 jEdit (www.jedit.org) is a Java - based text editor that contains a Ruby plugin. It ’ s a little barebones
compared to the full IDEs, but it ’ s still quite usable.

 If you want to go old - school, both Emacs and Vim have Ruby plugins that provide support for Ruby
programming.

 One - Stop Shopping
 If you want to get everything at once, there are a couple of packages that provide a single installer for
most of the components you need for Rails.

 Locomotive, at http://locomotive.raaum.org , is the Mac OS X entry into this field. It consists of a
bundle with Ruby, Rails, and MySQL. It also has a control panel to monitor all applications created
within Locomotive, and a separate bundle with a binary installation of ImageMagick and RMagick.

 Instant Rails (http://instantrails.rubyforge.org) is the Windows entry. It installs Ruby, Rails,
Apache, Mongrel, and MySQL, as well as any Ruby component included in the OneClick Windows
installer.

bapp01.indd 444bapp01.indd 444 1/30/08 4:37:12 PM1/30/08 4:37:12 PM

 Web Frameworks Inspired
by Rails

 Rails has had a bit of an influence on the larger world of web frameworks. This appendix
introduces you to a series of other frameworks that were inspired by Rails in one way or another.
Some are attempts to bring the Rails design philosophy to other languages; others are Ruby - based
attempts to create an even more lightweight framework.

 CakePHP
 CakePHP is a PHP framework to support a Model - View - Controller breakdown in the PHP
application. A CakePHP project has a directory framework that is similar to a Rails project, and it
allows for database configuration, scaffolding, and models using structures that are inspired by
Rails. Naming conventions are also based on the Rails example.

 You can download CakePHP from http://cakephp.org .

 Camping
 Camping is a Ruby web framework, written in 60 lines of extremely dense code. Its home page is
 http://code.whytheluckystiff.net/camping . You can download Camping as a gem, either
by itself or in a bundle that includes SQLite, ActiveRecord, Mongrel, RedCloth, and the Acts As
Versioned plugin.

 A Camping application is a Ruby script that calls the framework via a line such as Camping.goes
:MyController . When the script is run, the Camping framework does some massive
metaprograming on itself, changing its names to match the controller created by the goes call.

bapp02.indd 445bapp02.indd 445 1/30/08 4:37:27 PM1/30/08 4:37:27 PM

Appendix B: Web Frameworks Inspired by Rails

446

 Modules within the script define controllers with actions as well as views. Camping uses Markaby as its
view language.

 Camping is designed for small web applications that could reasonably fit in a single file. Complex
applications that use Camping are expected to be built out of the smaller applications.

 Django
 Django (www.djangoproject.com) isn ’ t a Ruby clone at all, but a project that became public in a similar
time frame using a similar set of design principles. Django is written in Python and includes an
ActiveRecord - like mechanism for associating Python classes to database tables. Unlike Rails, where you
define the database tables and the models are inferred, in Django, you define the model objects and the
database table is inferred. Django also has a flexible URL routing system and a powerful template
language. Django does not directly support an Ajax framework, but it allows users to select their own
Ajax tool to use within the Django application.

 Django is an interesting comparison to Rails because although similar design principles were at work,
the two tools came out of very different environments and constraints, which have led to some sharp
differences in how the tools are structured. Rails was developed by a small business company to support
building a small number of different sites. Django was developed by a media company to allow rapid
creation of a number of different content - management kinds of sites. For example, Django maintains a
common admin site for all applications, which is important in a newsroom content system, but which
was not a necessity for early Rails projects. Conversely, Ajax was much more important to the early
development of Rails.

 Grails
 Grails (http://grails.codehaus.org) uses the Groovy language (a scripting language built on top of
the JVM) to implement a web tool that incorporates both the Rails - like convention - over - configuration
structure and the model - view - controller (MVC)structure. Like Rails and CakePHP, Grails enforces a
standard project layout and database configuration. Grails can also integrate with Java tools like
Hibernate and Spring for its data management. Like Django, Grails defines model attributes inside the
model object.

 Merb
 Merb (http://merb.rubyforge.org) is a Ruby web application tool designed to be very lightweight
and have a tight integration with Mongrel. A Merb application has a slightly different structure than
Rails — it ’ s designed to allow easier partitioning of a project into deployable and non - deployable
sections. Merb uses Erubis to define output views and, unlike Rails, allows for multiple render points in
a single controller action. Merb allows for RESTful controller definitions.

bapp02.indd 446bapp02.indd 446 1/30/08 4:37:27 PM1/30/08 4:37:27 PM

Appendix B: Web Frameworks Inspired by Rails

447

 Merb is specifically designed to hold on to a Mongrel process for less time than a Rails request would,
allowing for a much faster web application. For example, Merb allows multiple files to be uploaded to
the server at once. Also, Merb allows a controller action to return a block, which can be rendered by
Mongrel in a separate thread for output processing.

 TurboGears
 TurboGears (http://turbogears.org) is a Python framework that was built using some of the best - in -
 class web tools available around the time Rails was released. Essentially, there were individual Python
tools that covered much of the Rails functionality, but which hadn ’ t been combined into a single
application stack. TurboGears is made up of separate components for the view template (Kid), the
controller logic (CherryPy), the data layer (SQLObject), and a JavaScript library called MochiKit.

bapp02.indd 447bapp02.indd 447 1/30/08 4:37:28 PM1/30/08 4:37:28 PM

bapp02.indd 448bapp02.indd 448 1/30/08 4:37:28 PM1/30/08 4:37:28 PM

In
de

x

A
AATOS (Acts as Taggable On Steroids), installing, 132
ActAsReviewableGenerator class, 398
action caching, 362
ActiveCalendar, 270
ActiveRecord, 158

callback feature, 173–174
class names, 158
MySQL and, 356–357
:polymorphic option, 175–176
table names, 158
test setup, 407–410
translations and, 279–281

ActiveResource, 241–242
client script, 243–244
copy operations, 245
deletions, 245
find, 244
rails:edge:freeze, 242
updates, 245

ActiveWebService, 241
acts_as_ferret method, 147
acts_as_reviewable plugin, 383–385
acts_as_taggable method, 133
after_save method, 173
ago method, 272
Ajax, in-place editing, 34
alert method, 233
alias keyword, 381
alias method, 381
Apache, Mongrel load balancing and, 333–334
APIs (application program interface), tags, 133–134
applications, starting points, 2
Aptana plug-in, 444
ARTS plugin, 235–236
asserting HTML, 23–25

creation, 31–34
assert_parse method, 26
assert_select, 23–25
assign method, 233
associations, data hijacking prevention, 178–179
Atom Feed Helper, 250–253
attachment_fu plugin, 288–296

data setup, 289
forms, 293–294
has_attachment method, 290
images, displaying, 294–296
testing, 291–293

authentication
controller, 72–74

routes.rb, 71
tests, 71–72
using, 76–78
views and, 74–76

autocomplete, JavaScript and, 228–229
auto_complete_for method, 229
automation, 103

B
BDD (Behavior-Driven Design), 193
before_filter method, 19
before_save method, 174
Behaviors gem, 205–206
benchmarks, Railsbench, 340–344
bindings, 368–370

Proc object, 368
block helpers, 77
Bloglines, 241
bots, 80

CAPTCHA, 86–94
protection

authorization email, 84–86
controller logic, 83
token model, 80–81

bottlenecks, 338
branches directory, 42
builder templates, XML, 248–249
Builder::XmlMarkup, 248

C
caching, 360–361

action caching, 362
expiration, 364
fragment caching, 362–363
page caching, 361–362
storage, 364
tags, 134–135

CakePHP, 445
calendars, 270–271
call method, 233
Camping, 445–446
can_edit_ingredient method, 220
Capistrano

dependencies, creating, 324
deployment

basic, 316–318
clustered deployment, 329–333
multistage, 325

Index

bindex.indd 449bindex.indd 449 1/30/08 4:37:42 PM1/30/08 4:37:42 PM

450

Capistrano (continued)
installing, 314
introduction, 313–314
SSH and, 314
tasks, 318–320

writing, 322–323
variables, 320–321

CAPTCHA (Completely Automated Public turing test to tell
Computers and Humans Apart), 86–94

charts
RMagick, Gruff, 306–309
Sparklines, 309–311

classes
ActAsReviewableGenerator, 398
DateTime, 262
FileList, 112
FormBuilder, 64
metaprogramming, 373–375
Time, 262
TimeZone, 264
TzinfoTimezone, 264
TzTime, 265

class_eval method, 370
commands

generators, 399–400
rake, 17
revert, 44
svn commit, 46–47
svn mkdir, 42
svnadmin create, 42
svnserve, 50–52

consuming web services, 257–259
controller object

before_filter method, 19
testing, 19–20

controllers
authentication, 72–74
create method, 13–14
delete method, 14–15
edit method, 13
index method, 11–12
new method, 13
show method, 12
update method, 14

cookies
life cycle, 97–98
login, validation, 98–100
persistent login cookies, 94
persistent login mechanism, 95–97

create method, 13–14
created_at, 263
cross-site scripting security, 237–238
CRUD (Create, Read, Update, Delete), 4
CruiseControl.rb, 120–123

D
data hijacking, preventing, associations and, 178–179
databases

downloading, 443
flat databases, 170

hierarchical databases, 170
indexing, 360
legacy, 156–157
relational databases, 170

normalization, 170
sessions

ActiveRecord store, 354–355
SQLSessionStore, 355–356

setup, 17
tz, 264

date and time, 262
ago method, 272
date arithmetic, 271–273
distance_of_time_in_words method, 271
DST (daylight savings time), 263
duration helpers, 271–272
from_now method, 272
GMT (Greenwich Mean Time), 263
inputting dates, 266

text input, 268–269
time zones, 266–268

JavaScript calendars, 270–271
outputting dates, 271–273
string formats, 272–273
time zones, 263–266
time_ago_in_words, 271
timestamps, 263–266
TimeZone class, 264
TzinfoTimezone class, 264
TzTime class, 265
UTC (Coordinated Universal Time), 263

DateTime class, 262
db:abort_if_pending_migrations, 105
db:charset, 106
db:collation, 106
db:create, 105
db:create:all, 105
db:drop, 105
db:fixtures:identify, 105
db:fixtures:load, 105
db:migrate, 105
db:migrate:redo, 105
db:migrate:reset, 105
db:reset, 105
db:rollback, 105
db:schema:dump, 105
db:schema:load, 105
db:sessions:clear, 106
db:sessions:create, 106
db:structure:dump, 105
db:test:clone, 106
db:test:clone_structure, 106
db:test:prepare, 106
db:test:purge, 106
db:version, 106
delete method, 14–15, 238
deployment, 313

Capistrano and, 313–316
basic deployment, 316–318

hot deployment, 317
Mongrel, 326–328

basic deployment, 328–329

Capistrano (continued)

bindex.indd 450bindex.indd 450 1/30/08 4:37:43 PM1/30/08 4:37:43 PM

451

In
de

x

clustered deployment, 329–333
multistage, 325

desc method, 112
distance_of_time_in_words method, 271
Django, 446
doc:app, 107
doc:clobber_app, 107
doc:clobber_plugins, 107
doc:clobber_rails, 107
doc:plugins, 107
doc:rails, 107
doc:reapp, 107
doc:rerails, 107
DOM, elements, selecting, 233
downloads

databases, 443
installers, 444
Mongrel, 443
platform notes

Linux, 441
Mac OS X, 441–442
Windows, 442

Rails, 442–443
Ruby, 442
Subversion, 443
text editors, 444

DRY (Don’t Repeat Yourself), 77
DSL (domain-specific language), 112
DST (daylight savings time), 263
duck punching, 378–385

E
E text editor, 444
Eclipse, 444
Edge Rails, 53–55

rake, 55–56
edit method, 13
editing, in-place, 34
Emacs, 444
encrypted passwords, storing, 67–70
ERB, replacements

Haml, 422–427
Liquid, 427–431
Markaby, 418–421

.erb files, 215
eval method, 368–370
:except option, 247
executable files, marking, 46

F
Ferret

fields, 148–149
installation, 146–147
search results, 150–151

FileList class, 112
fixture_file_upload method, 292
fixtures method, 160–163
FixtureScenario plugin, 206–207

FixtureScenarioBuilder plugin, 206–207
flat databases, 170
FlexMock, 187–189

expectations, 191–192
stubs, 189–191

foreign keys, 164
FormBuilder, refactoring forms, 64–67
FormBuilder class, 64
form_for method, 15
forms

attachment_fu plugin, 293–294
refactoring, FormBuilder, 64–67
user creation form, 60–64

fragment caching, 362–363
frameworks

CakePHP, 445
Camping, 445–446
Django, 446
Grails, 446
Merb, 446–447
TurboGears, 447

FreeImage, 286
from_now method, 272

G
generators

ActAsReviewableGenerator class, 398
basic functionality, 396–398
commands, 399–400
manifest method, 398–400
testing, 400–402

GeneratorTestHelper, 404–406
migration templates, 406
writing test, 402–404

GlassFish, 439
Globalize plugin, 274–275

localize method, 275–276
translations, 276–278

displaying, 278–279
GMT (Greenwich Mean Time), 263
Google Reader, 241
Grails, 446
graphics

files, uploading, 288–296
library

ImageScience, 296–297
MiniMagick, 303–306
RMagick, 297–303

graphics packages, RMagick, 286
GraphicsMagick, 285, 286
Gregorian calendar, 262
Gruff, 306–309

H
Haml, 422–427
has_attachment method, 290
helper methods, block helpers, 77
helpers, testing, 207–209

helpers, testing

bindex.indd 451bindex.indd 451 1/30/08 4:37:43 PM1/30/08 4:37:43 PM

452

hide method, 233
hierarchical databases, 170
hot deployment, 317
HTML (Hypertext Markup Language), asserting, 23–25

I
ImageMagick, 285, 286

installation
Mac OS X, 287
Windows, 286

images
displaying, attachment_fu, 294–296
uploading, 288–296

ImageScience, 285
FreeImage, 286
graphics library, 296–297
with_image method, 296

in-place editing, 34
JavaScript and, 226–228

index method, 11–12, 250
indexing database, 360
IngredientParser class, 27
ingredient.user method, 221
installers, 444
Instant Rails, 444
internationalization, 273

tracking routes, 281–282
introspection

metaprogramming and, 370
methods, 371–373

J
JavaScript

autocomplete, 228–229
calendars, 270–271
DRY violations, fixing, 213–217
in-place editing, 226–228
tooltips, 222–226
writing, RJS example, 230–232

JDN (Julian day number), 262
jEdit, 444
JRails, running, 435–437
JRuby on JRails, 431
JSON (JavaScript Object Notation), 241

producing, 256–257
Julian day number, 262

L
legacy databases, 156–157

testing, fixtures method, 160–163
lightboxing, RJS, 234–235
link_to method, 15
link_to_remote method, 217, 219
link_to_unless_current method, 125

Liquid, 427–431
localization, 273
localize method, 275–276
localtime method, 263
Locomotive, 444
log:clear, 109
login

cookies, validation, 98–100
persistent login cookies, 94
persistent login mechanism, 95–97

logs, performance and, 345–346

M
manifest method, 398–400
Markaby

standalone, 420–421
template files, 418–420

menus
object cache, 130–131
single-level, 125–130
YAML files, 128

Merb, 446–447
merge feature of YAML, 156–157
metaprogramming

classes, 373–375
duck punching, 378–385
introduction, 367
introspection and, 370
methods, defining dynamically, 387–389
monkey patching, 378–385
objects, 373–375
singletons, 375–378

method timings, ruby-prof, 346–352
method_eval method, 370
method_missing method, 248
methods

acts_as_ferret, 147
acts_as_taggable, 133
after_save, 173
ago, 272
alert, 233
alias, 381
assert_parse, 26
assign, 233
auto_complete_for, 229
before_filter, 19
before_save, 174
call, 233
can_edit_ingredient, 220
class_eval, 370
create, 13–14
defining dynamically, 387–389
delete, 14–15, 238
desc, 112
distance_of_time_in_words, 271
edit, 13
eval, 368–370
fixture_file_upload, 292

hide method

bindex.indd 452bindex.indd 452 1/30/08 4:37:44 PM1/30/08 4:37:44 PM

453

In
de

x

fixtures, 160–163
form_for, 15
from_now, 272
has_attachment, 290
index, 11–12, 250
ingredient.user, 221
introspective, 371–373
link_to, 15
link_to_remote, 217, 219
link_to_unless_current, 125
localize, 275–276
localtime, 263
manifest, 398–400
method_eval, 370
method_missing, 248
missing, 386–387
new, 13
paginate, 152
parse, 27
render :xml, 246
replace_html, 232
respond_to, 11–12
returning, 254–255
sanitize, 237
select, 233
show, 12
span_for, 214
super, 247
time_ago_in_words, 271
timestamps, 8
time_zone_select, 266–267
to_date, 262
toggle, 233
to_time, 262
to_xml, 246
unit, 28
update, 14, 219
utc, 263
validates_as_attachment, 291
visual_effect, 233
with_image, 296
zone_names, 267–268

migrations, 7–8
MiniMagick, 285, 286

graphics library, 303–306
installation

Mac OS X, 287
Windows, 286

missing methods, 386–387
mock object testing, 187

FlexMock, 187–189
expectations, 191–192
stubs, 189–191

Mongrel
Apache and, 333–334
deployment, 326–328

basic deployment, 328–329
clustered deployment, 329–333

downloading, 443
monkey patching, 378–385

multistage deployment, 325
MySQL, 17

N
nested routes, 9–10
NetBeans, 444
network protocols, REST and, 4–5
new method, 13

O
object cache, menus, 130–131
objects, metaprogramming, 373–375
OOP (object-oriented programming), REST and, 4

P
page caching, 361–362
paginate method, 152
paginating_find plugin, 153
pagination

paginating_find plugin, 153
will_paginate plugin, 152

parse method, 27
parsing, 25–29
passwords, encrypted, storing, 67–70
performance

fixing problems, 352–353
logs, 345–346
measurement, 337

Railsbench, 338–344
session management

ActiveRecord store, 354–355
cookie-based sessions, 353–354
SQLSessionStore, 355–356

PHP, CakePHP, 445
plugins

ActiveCalendar, 270
acts_as_reviewable, 383–385
ARTS, 235–236
attachment_fu, 288–296
creating, 394–396
distributing, 414
FixtureScenario, 206–207
FixtureScenarioBuilder, 206–207
Globalize, 274–275
installing, 391–392
listing, 393
paginating_find, 153
rails_rcov, 183–184
repositories, 392–394
Shoulda, 205–206
view_test, 204–205
will_paginate, 152
writing

ActiveRecord test setup, 407–410
acts_as_reviewable plugin, 410–414

plugins

bindex.indd 453bindex.indd 453 1/30/08 4:37:44 PM1/30/08 4:37:44 PM

454

POSIX (Portable Operating System Interface) shell,
Capistrano and, 314

Proc object, bindings, 368
profiling, 350–352
Prototip, 222–226

R
RadRails, 444
Rails, versions, 53–55

rake command, 55–56
Railsbench, setup, 338–340
rails:edge:freeze, 242
rails:freeze:edge, 109
rails:freeze:gems, 109
rails_rcov plugin, 183–184
rails:unfreeze, 109
rails:update, 110
rails:update:configs, 110
rails:update:javascript, 110
rails:update:scripts, 110
Rake, 103

capabilities of, 104–111
cleanup tasks, 108–109
database tasks, 104–106

db:charset, 106
db:collation, 106
db:sessions:clear, 106
db:sessions:create, 106
db:test:clone, 106
db:test:clone_structure, 106
db:test:prepare, 106
db:test:purge, 106
db:version, 106
management, 106
output, 106
sessions, 106

db:abort_if_pending_migrations, 105
db:create, 105
db:create:all, 105
db:drop, 105
db:fixtures:identify, 105
db:fixtures:load, 105
db:migrate, 105
db:migrate:redo, 105
db:migrate:reset, 105
db:reset, 105
db:rollback, 105
db:schema:dump, 105
db:schema:load, 105
db:structure:dump, 105
doc:app, 107
doc:clobber_app, 107
doc:clobber_plugins, 107
doc:clobber_rails, 107
doc:plugins, 107
doc:rails, 107
doc:reapp, 107
doc:rerails, 107
documentation tasks, 107

log:clear, 109
notes, 110
notes:fixme, 110
notes:optimize, 110
notes:todo, 110
Rails in, 116–117
Rails tasks, 109–110
rails:freeze:edge, 109
rails:freeze:gems, 109
rails:unfreeze, 109
rails:update, 110
rails:update:configs, 110
rails:update:javascript, 110
rails:update:scripts, 110
routes, 110
stats, 110–111
tasks, 111–112

dependencies, 113–115
file tasks, 115–116
legacy database testing, 160
testing, 117–119

test, 108
test:coverage, 185
test:coverage:clean, 185
test:functionals, 108
testing tasks, 107–108
test:integration, 108
test:plugins, 108
test:recent, 108
test:uncommitted, 108
test:units, 108
tmp:cache:clear, 109
tmp:clear, 109
tmp:create, 109
tmp:pids:clear, 109
tmp:sessions:clear, 109
tmp:sockets:clear, 109

rake command, 17
Rails version, 55–56
RDoc, 56–58

rcov
installing, 183–184
tasks, 184

RDoc, rake and, 56–58
recipe input form, 22
redirect_to_recipe variable, 221
refactoring forms, FormBuilder, 64–67
relational databases, 170

normalization, 170
relationships

functionality, 165–166
multiple databases, 165–170
proxy model, 167

accessors, 168–169
remote_edit, 35
remote_update, 35
render :xml method, 246
replace_html method, 232
replacement tools

ERB, 417–431
JRuby on JRails, 431–439

POSIX (Portable Operating System Interface) shell, Capistrano and

bindex.indd 454bindex.indd 454 1/30/08 4:37:44 PM1/30/08 4:37:44 PM

455

In
de

x

repositories
adding files, 43–44
changes, committing, 46–47
checking out files, 43–44
commands

revert, 44
svn commit, 46–47

conflicts, 48–50
creating, 42–43
database files, 45
doc folder, 44
executable files, marking, 46
file-level changes, 50
life cycle, 47–50
log folder, 44
plugins, 392–394
tmp folder, 44
updates, 48–50

resources
building, 6–16
migrations, 7–8
routes

customizing, 10–11
nested, 9–10
standard, 8–9

respond_to method, 11–12
JavaScript block, 215

REST (REpresentational State Transfer), 1, 241
client side, 242–243
network protocols and, 4–5
OOP and, 4
pages versus resources, 4
Rails and, 5–6
reasons for, 6
resources, finding, 243–245

returning method, 254–255
revert command, 44
REXML toolkit, 257
REXML::Document, 257
RJS

lightboxing, 234–235
methods, 233
testing

ARTS plugin, 236
assert_select_rjs, 235–236

writing JavaScript, 230–232
RMagick, 285, 286

draw method, 301–302
graphics library, 297–303
GraphicsMagick and, 286
Gruff, 306–309
Image class, 298–299
ImageList, 298
ImageMagick and, 286
installation

Linux, 288
Mac OS X, 287–288
Windows, 286

MiniMagick and, 286
roles, uers, 78–79
routes

customizing, 10–11
display, 16
nested, 9–10
standard, 8–9

routes.rb, 8–9
RSpec

loading, 193–194
writing specs, 194–195

controller specifications, 198–199
model tests, 195–197
testing helpers, 201–202
view behavior, specifiying, 199–201

RSS feeds
Atom Feed Helper, 250–253
channels, 254
generating, 253–255
items, 254
producing, 249–255

ruby-prof, 346–352

S
salt sequences, 67–68
sanitize method, 237
scripting, security, cross-site, 237–238
searches

Ferret and
fields, 148–149
installation, 146–147
results, 150–151

SQL and, 144–146
security, cross-site scripting, 237–238
select method, 233
servers, Subversion, setup, 50–52
session management

ActiveRecord store, 354–355
cookie-based sessions, 353–354
SQLSessionStore, 355–356

sessions, 94
Shoulda plugin, 205–206
show method, 12, 233
single-level menus, 125–130
singletons, 375–378
SOAP, 241
Soups OnLine, introduction, 1
source control, 39

client-server model, 40
commands

revert, 44
svn commit, 46–47

conflicts, 48–50
database files, 45
doc folder, 44
executable files, marking, 46
file-level changes, 50
log folder, 44
repositories

adding files, 43–44
checking out files, 43–44
committing changes, 46–47

source control

bindex.indd 455bindex.indd 455 1/30/08 4:37:45 PM1/30/08 4:37:45 PM

456

source control (continued)
creating, 42–43

systems, 40
tmp folder, 44
updates, 48–50

spam, 80
CAPTCHA, 86–94

span_for method, 214
Sparklines, 309–311
SQL (Structured Query Language)

injection attack, 176–177
searches and, 144–146

SQLite3, 17
SSH (Secure Shell), Capistrano and, 314
storage, encrypted passwords, 67–70
stubs, 187

FlexMock, 189–191
Subversion, 41

changes, committing, 46–47
commands

revert, 44
svn commit, 46–47
svn mkdir, 42
svnadmin create, 42

conflicts, 48–50
database files, 45
directories

branches, 42
tags, 42
trunk, 42

doc folder, 44
downloading, 443
executable files, marking, 46
file-level changes, 50
log folder, 44
plugin installation and, 392
repositories

adding files, 43–44
checking out files, 43–44
creating, 42–43

server, setup, 50–52
tmp folder, 44
updates, 48–50
working copies, 41

subversive control, introduction, 39
super method, 247
svn commit command, 46–47
svn mkdir command, 42
svnadmin create command, 42
svnserve command, 50–52

T
tagging, AATOS (Acts As Taggable On Steroids), installing,

132–133
tags

API, 133–134
caching, 134–135
cloud, calculation, 139–142
count display, 143

entering data, 135
models, applying to, 133–135
showing detail, 136–137
viewing, 137–139

tags directory, 42
task method, 112
TDD (Test Driven Development), 1, 23, 181

process, 181–182
Rake testing tasks, 107–108

templates, free online, 29
test doubles, 187
test:coverage, 185
test:coverage:clean, 185
test:functionals, 108
testing, 17–18

assert_select, 23–25
behavior of application, 193
Behaviors gem, 205–206
controller object, 19–20
FixtureScenario plugin, 206–207
FixtureScenarioBuilder plugin, 206–207
generators, 400–402

GeneratorTestHelper, 404–406
migration templates, 406
writing test, 402–404

helpers, 207–209
legacy databases, fixtures method, 160–163
mock object testing, 187

FlexMock, 187–189
rcov

installing, 183–184
tasks, 184

RJS, 235–236
Shoulda plugin, 205–206
state of application, 193
stubs, 187

FlexMock, 189–191
TDD, 181
test object, 18–19
turn and, 21–22
views, 20–22

Test::Rails, 202–204
view_test plugin, 204–205
ZenTest, 202–203

ZenTest, 119–120
test:integration, 108
test:plugins, 108
Test::Rails, 202–204
test:recent, 108
tests, authentication, 71–72
test:uncommitted, 108
Test::Unit, Behaviors gem, 205–206
test:units, 108
text editors, 444
TextMate, 444
Time class, 262

localtime method, 263
utc method, 263

time zones, 263–266
inputting, 266–268
zone_names method, 267–268

source control (continued)

bindex.indd 456bindex.indd 456 1/30/08 4:37:45 PM1/30/08 4:37:45 PM

457

In
de

x

time_ago_in_words method, 271
timestamps, 263–266
timestamps method, 8
TimeZone class, 264
time_zone_select method, 266–267
tmp:cache:clear, 109
tmp:clear, 109
tmp:create, 109
tmp:pids:clear, 109
tmp:sessions:clear, 109
tmp:sockets:clear, 109
to_date method, 262
toggle method, 233
tools, replacing

ERB replacements, 417–431
JRuby on JRails, 431–439

tooltips, JavaScript and, 222–226
to_time method, 262
to_xml method, 246

overriding, 247
transactions, 177–179
translations

ActiveRecord and, 279–281
Globalize plugin, 276–278

displaying, 278–279
trunk directory, 42
t.string syntax, 8
TurboGears, 447
turn, testing and, 21–22
Twitterific, 241
tz database, 264
tzinfo gem, 264
TzinfoTimezone class, 264
TzTime class, 265

U
Unicode, 274
unit method, 28
unit tests, quality, 183
update method, 14, 219
update_attributes, 188
updated_at, 263
user creation form, 60–64
user interface, tags and

cloud calculation, 139–142
count display, 143
entering data, 135
showing detail, 136–137
viewing, 137–139

users
creating, introduction, 59–60
definition of, 60
roles, 78–79

UTC (Coordinated Universal Time), 263
utc method, 263
UTF-8, 274

V
validates_as_attachment method, 291
vender/plugins directory, 395
views

authentication and, 74–76
form_for method, 15
link_to method, 15
testing, 20–22

view_test plugin, 204–205
Vim, 444
visual_effect method, 233

W
web services, consuming, 257–259
websites

www.cookingforengineers.com, 2
www.freecsstemplates.org/preview/canvass, 29
www.freewebtemplates.com, 29

will_paginate plugin, 152
with_image method, 296
working copies, 41
www.cookingforengineers.com, 2
www.freewebtemplates.com, 29

X
XML, 241

producing, 246–248
builder templates, 248–249

render :xml method, 246
to_xml, 246

Y
YAML, producing, 256–257
YAML files

menus, 128
merge feature, 156–157
object cache, 130–131

Z
ZenTest, 119–120
zone_names method, 267–268

zone_names method

bindex.indd 457bindex.indd 457 1/30/08 4:37:45 PM1/30/08 4:37:45 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 458badvert.indd 458 1/30/08 4:36:49 PM1/30/08 4:36:49 PM

