

Pro Active Record
Databases with Ruby and Rails

Kevin Marshall, Chad Pytel, Jon Yurek

8474FM.qxd 8/25/07 9:08 AM Page i

Pro Active Record for Ruby: Databases with Ruby and Rails

Copyright © 2007 by Kevin Marshall, Chad Pytel, Jon Yurek

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-847-4

ISBN-10 (pbk): 1-59059-847-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Adam Stein
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Production Director and Project Manager: Grace Wong
Copy Editor: Heather Lang
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section. You will need to answer questions pertaining to this book in order to successfully download the code.

8474FM.qxd 8/25/07 9:08 AM Page ii

To my wife, Catherine, I love you . . . more.
—KM

To my wife, Rachel, I love you all the way to the moon, and back.
—CP

To my fiancée, Karen, for making everything fun and for making me happy.
—JY

8474FM.qxd 8/25/07 9:08 AM Page iii

Contents at a Glance

Contents . vii

About the Authors . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 Introducing Active Record . 1

■CHAPTER 2 Active Record and SQL. 25

■CHAPTER 3 Setting Up Your Database . 43

■CHAPTER 4 Core Features of Active Record. 59

■CHAPTER 5 Bonus Features . 91

■CHAPTER 6 Active Record Testing and Debugging . 125

■CHAPTER 7 Working with Legacy Schema . 161

■CHAPTER 8 Active Record and the Real World . 187

■APPENDIX Active Record Methods in Detail . 215

■INDEX . 267

v

8474FM.qxd 8/25/07 9:08 AM Page v

Contents

About the Authors . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 Introducing Active Record. 1

The Story Behind Active Record . 2

Active Record Mostly Adheres to the ORM Pattern . 2

Active Record Is a Different Kind of ORM . 3

Active Record Is One Part of the MVC Concept . 4

Active Record Is Primarily Used for CRUD Database Transactions 4

The Active Record Library Is Ruby Code . 5

From Active Record Objects to Database Records and Back Again 5

Creating an Active Record Object . 6

Manipulating or Accessing the Attributes of the Object 6

Saving the Attributes as a Record in the Database 6

Why Active Record Is a Smart Choice . 7

Installing and Configuring Active Record. 8

Installing the Active Record Gem . 8

Installing Any Additional Required Libraries or Gems 9

Supplying the Adapter-Specific Information . 10

Learning More . 16

Building Your First Active Record Program . 18

Your First Example . 18

Active Record Assumptions and Conventions 19

Overriding the Assumptions . 20

Retrieving Objects from the Database . 21

Exploring Active Record Relationships . 22

Them’s the Basics! . 24

vii

8474FM.qxd 8/25/07 9:08 AM Page vii

■CHAPTER 2 Active Record and SQL . 25

Creating a Record . 25

Reading a Record . 27

:conditions. 28

:include . 29

:order . 31

:select . 31

Dynamic Finders . 33

Updating a Record. 34

Deleting a Record . 35

Completely Nondynamic Finders . 37

Transactions . 38

Locking . 40

Optimistic Locking . 41

Pessimistic Locking. 42

CRUD Isn’t Cruddy. 42

■CHAPTER 3 Setting Up Your Database . 43

Designing Active Record–Friendly Tables . 43

Traditional Database Management. 44

Common Problems with the Traditional Approach . 45

Managing Your Database with Migrations. 46

How the DSL Works. 46

Using Migrations . 47

Executing Migration Scripts . 48

The Anatomy of a Migration File . 50

Migrations in Action. 50

Migrations Are Easier Than They Sound . 57

■CHAPTER 4 Core Features of Active Record . 59

Callbacks . 59

Implementing Callbacks . 60

Callback Macros. 61

Specific Types of Callbacks . 63

One Down, Two to Go . 69

■CONTENTSviii

8474FM.qxd 8/25/07 9:08 AM Page viii

Associations . 69

Farmers, Cows, Milk, and How They Relate . 69

Association Types . 70

Association Modifiers . 76

Two Core Features Down, One to Go . 80

Validations . 80

Why Bother with Validations? . 80

Implementing Validations . 81

Convenience Functions. 83

Your Core Is Strong . 89

■CHAPTER 5 Bonus Features. 91

Active Record Observers . 91

Canned Functionality . 92

Acting as a List. 93

Acting as a Tree . 97

Acting as Nested Sets . 101

Aggregations . 105

Step 1: Calling the composed_of Method . 106

Step 2: Defining Your Value Object . 107

Putting It All Together: Using Aggregations . 108

Extending Active Record. 109

Extending Active Record the Easy Way . 109

Writing Code That Writes Code . 110

Meet method_missing . 112

What Column Did You Want, Again? . 116

But What About the Farmer? . 117

Adding Class Methods . 120

Don’t Shoot Yourself in the Foot . 123

■CHAPTER 6 Active Record Testing and Debugging . 125

Unit Testing . 125

Why Write Unit Tests? . 126

How to Write Good Unit Tests. 127

Assertions . 129

Fixtures . 139

Fixture Formats . 142

Wrapping It All Up . 144

■CONTENTS ix

8474FM.qxd 8/25/07 9:08 AM Page ix

Active Record Errors and Exceptions . 144

Active Record Error Methods . 144

Preparing for Problems . 153

Debugging Tips and Tricks . 153

Active Record and Logging . 153

Active Record Benchmarking. 159

Testing Is Fun! . 160

■CHAPTER 7 Working with Legacy Schema. 161

Give and Take. 162

How Much Do You Want to Do in Active Record? 162

Who’s Responsible? . 163

How Do Things Get Done? . 163

Is There an Easier or More Efficient Way? . 163

Configuration Options for Active Record . 164

primary_key_prefix_type . 164

table_name_prefix . 165

table_name_suffix. 166

pluralize_table_names . 166

colorize_logging. 167

default_timezone . 167

allow_concurrency . 168

generate_read_methods . 169

schema_format . 169

set_table_name . 170

set_primary_key . 171

set_Inheritance_column. 171

set_sequence_name. 172

Making the Complex Easier . 173

CRUD Operations and Complex SQL Statements 175

Improving Performance and Cutting Out the Middle Man. 177

Stored Procedures, Custom Functions, and Sequences 179

Data Types . 181

■CONTENTSx

8474FM.qxd 8/25/07 9:08 AM Page x

Importing and Exporting . 181

Exporting XML . 182

Importing XML . 183

Exporting YAML . 184

Importing YAML . 184

Exporting CSV . 185

Importing CSV. 185

You’re on Your Way to Becoming a Legend. 186

■CHAPTER 8 Active Record and the Real World . 187

Exploring Active Record Source Code . 187

Finding the Code . 188

Following the Code Trail . 188

Putting It All Back Together . 191

The Future of Active Record . 192

The Keys to the Enterprise . 192

Little by Little, Big Things Will Happen . 193

Two Steps Forward, One Step Back . 193

A World of Resources . 194

Active Record on Its Own . 195

Adding Your Own Two Cents . 195

Alternatives to Active Record. 196

DBI . 196

Og . 197

ActiveRelation. 199

Database-Specific Libraries. 199

Active Resource . 200

Even More Alternatives . 201

Common Active Record Questions and Answers . 201

How Do I Use Multiple Databases with Active Record?. 201

How Do I Handle Internationalization and Localization? 204

How Do I Use Composite Primary Keys? . 205

How Do I Use GUID/UUID Primary Keys? . 205

Can I Use Active Record in a Multithreaded Program? 206

How Do I Ensure Proper Handling of Decimal Numbers? 206

What Database Locking Mechanisms Does Active
Record Support? . 206

■CONTENTS xi

8474FM.qxd 8/25/07 9:08 AM Page xi

Does Active Record Support Prepared Statements? 207

How Do I Select a Random Record from the Database?. 207

How Do I Model X with Active Record? . 208

What Support Does Active Record Have for Database
Foreign Keys? . 210

How Do I Properly Use find_by_sql? . 210

How Do I Ensure that All My Records Are Valid? 211

Can I Use the Same Name for a Database Column
and an Active Record Model? . 212

Does Active Record Support enum Column Types? 213

Does Active Record Support Adding Security to Individual
Models or Columns? . 213

What Is the Difference Between has_one and belongs_to?. 213

How Can You Paginate Active Record Results? 213

Where Can I Get More Active Record Help? . 214

■APPENDIX Active Record Methods in Detail . 215

ActiveRecord::Base . 215

Public Class Methods . 215

Protected Class Methods . 224

Public Instance Methods. 225

ActiveRecord::Calculations::ClassMethods . 231

Public Instance Methods. 231

ActiveRecord::Callbacks. 233

Public Instance Methods. 233

ActiveRecord::ConnectionAdapters::AbstractAdapter 235

Public Instance Methods. 235

Protected Instance Methods . 236

ActiveRecord::ConnectionAdapters::Column . 236

Public Class Methods . 236

Public Instance Methods. 237

ActiveRecord::ConnectionAdapters::DatabaseStatement. 238

Public Instance Methods. 238

Protected Instance Methods . 240

ActiveRecord::ConnectionAdapters::Quoting . 240

Public Instance Methods. 240

ActiveRecord::ConnectionAdapters::SchemaStatements 241

Public Instance Methods. 241

Protected Instance Methods . 245

■CONTENTSxii

8474FM.qxd 8/25/07 9:08 AM Page xii

ActiveRecord::ConnectionAdapters::TableDefinition 245

Public Class Methods . 245

Public Instance Methods. 245

ActiveRecord::Errors . 246

Public Instance Methods. 246

ActiveRecord::Migration . 249

Public Class Methods . 249

ActiveRecord::Observer . 250

Public Class Methods . 250

Protected Instance Methods . 250

ActiveRecord::Observing::ClassMethods. 250

Public Instance Methods. 250

Protected Instance Methods . 251

ActiveRecord::Reflection::ClassMethods . 251

Public Instance Methods. 251

ActiveRecord::Reflection::MacroReflection . 252

Public Class Methods . 252

ActiveRecord::Schema . 252

Public Class Methods . 252

ActiveRecord::Transactions::ClassMethods . 253

Public Instance Methods. 253

ActiveRecord::Validations. 254

Public Instance Methods. 254

Protected Instance Methods . 255

ActiveRecord::Validations::ClassMethods . 255

Public Instance Methods. 255

■INDEX . 267

■CONTENTS xiii

8474FM.qxd 8/25/07 9:08 AM Page xiii

About the Authors

■KEVIN MARSHALL is a software developer at heart. He is a consultant to a number of companies
and currently runs a number of sites on his own—many of which are now happily taking advan-
tage of Active Record with the Ruby on Rails framework, including the popular Draftwizard.com.
As a technology writer, Kevin has published a short article, “Web Services with Rails,” contributed
a few recipes to the Ruby Cookbook (Lucas Carlson and Leonard Richardson. O’Reilly, 2006), and
contributed a number of articles to the Association of Computing Machinery’s periodical, Com-
puting Reviews (available online at http://www.reviews.com).

Kevin is also a member of the Pro Football Writers Association, the Fantasy Sports Trade
Association, and the Fantasy Sports Writers Association. When he’s not deep into coding,
building content, or talking football, he’s generally off playing with his two sons or spending
time with his amazing wife Catherine. To learn more about what he’s up to right now, you can
visit his company site, http://falicon.com, or just drop him a note at info@falicon.com.

■CHAD PYTEL is president of thoughtbot, inc., a software development consulting firm located
in Boston and New York that specializes in agile, test-driven web application development using
the Ruby on Rails framework. With a history in Java and EJB development, thoughtbot switched
to Ruby on Rails as its primary development platform in 2005. Chad is a firm believer in the
model-view-controller design pattern and realistic software development, and those philoso-
phies, combined with Ruby and Ruby on Rails, represent a new, exciting, and better way to
develop software.

Chad lives with his wife in Ambler, PA. When not managing projects and writing code, Chad
enjoys acting in and producing theater, film, and improv comedy. To follow along with Chad and
the rest of the thoughtbot team’s ideas on business, design, development, and technology, visit
their blog at http://giantrobots.thoughtbot.com.

■JON YUREK is the chief technical officer at thoughtbot, inc. Born a programmer, Jon has been
developing software professionally since 1999. After seeing the elegant and expressive power
of Ruby, Jon quickly moved all new development at thoughtbot away from Java and Perl to
using Ruby and Rails.

Jon is a graduate of Worcester Polytechnic Institute and currently lives in Somerville, MA.

xv

8474FM.qxd 8/25/07 9:08 AM Page xv

About the Technical Reviewer

■ADAM STEIN is a software engineer and has been working in Java and ColdFusion for the past
eight years. He has always been curious about Ruby, and toying with Active Record was his
first venture into the Ruby world. Adam is most proud of his wonderful wife, Marcy, and their
three great children: Thomas, Joseph, and Julia.

xvii

8474FM.qxd 8/25/07 9:08 AM Page xvii

Acknowledgments

We would like to give special thanks to Yukihiro “Matz” Matsumoto for getting the ball rolling
by creating the Ruby language. We would also like to thank David Heinemeier Hanson and the
many other contributors to the Ruby on Rails framework, especially for their work on the Active
Record library. Without their innovation and selfless dedication to creating something as special
as Active Record, this book would not have been possible.

KM, CP, JY

I would like to thank my wife Catherine for sharing life’s adventures with me; my coauthors
Chad and Jon and the entire thoughtbot staff for making this book ten times better than I could
have done on my own; Anthony Molinaro for being a good friend and inspiring me to do more
than just code; Keith Nordberg for always listening (and encouraging) my crazy ideas and plans;
Mike Cole for being the good person I can only strive to be; my half-brother Mike for sharing
his wisdom, life experience, and wonderful family with me; my mother Barbra Taylor, my sis-
ter Kim, my aunt K.T., and my grandmother Nancy for raising me; Bruce Antelman and the
Reviews.com staff as well as the various clients I’ve worked for over the years for giving me
exciting challenges and a reason to always keep learning; and finally, thank you to both my
sons Timothy and Brady for making every day a fun day.

KM

Thank you to everyone at thoughtbot for your hard work, determination, and commitment to
excellence and to my awesome wife Rachel for her love and support. Additionally, thank you
to all the friends, clients, colleagues, and teachers—good and bad—who have shaped the
way that I think about life, programming, and business.

CP

Thanks to the guys at thoughtbot for challenging me every day and to anyone who ever had
a kind word or a harsh one about anything I’ve done; the praise kept me going, and the criti-
cism made me better.

JY

xix

8474FM.qxd 8/25/07 9:08 AM Page xix

Introduction

When we first shared the idea for this book with some of our peers in the Ruby community,
they all had the same initial question, “Is there really enough to talk about in Active Record to
fill a whole book?”

Our answer, then and now, is, “Yes and no.”
You see, at the time of this writing, Active Record has primarily been covered as a subsec-

tion, or maybe as a chapter or two, within a larger scoped book generally about the Ruby on
Rails (RoR) framework. And almost all of those books actually do a great job of introducing
you to the basics of Active Record; they go a long way toward getting you started with the library.
However, because they are addressing a larger scope, all of the existing books also fall short in
exposing the hidden features and benefits of using the Active Record library, and almost none
even mention the fact that you can get many of the same advantages in your Ruby programs
outside of the Rails framework.

If all we were going to do was get you enough knowledge to use the basics of Active Record as
you build new Ruby on Rails projects, then no, there would not be enough to fill an entire book.
Within this book however, we go much deeper into the library than any other source has to date.
We explore the raw source code for the Active Record library. We help to explain the concepts, the
rules, and the goals for the Active Record library—and we show you how to bend and break the
library as you see fit for your own applications. We do this with lots and lots of examples, so you
can try it all for yourself and learn by doing.

Our motivation for writing this book goes back to our beginnings using the Ruby on Rails
framework. When first introduced to Ruby on Rails, we really liked what we were seeing. Clearly,
Ruby on Rails was a powerful and intuitive framework that would make us more productive in
our daily work. In our enthusiasm for the newfound tool, we began applying Ruby on Rails to
many of our existing projects—and those words, “existing projects,” are key here. They are at
the root of our motivation to write this book.

Active Record can be deceptively simple to use in an environment that you develop around
Ruby on Rails from the very beginning. But sooner or later, you’ll run into a database that’s
been designed without Active Record in mind, or you’ll need to design a database yourself that
doesn’t conform to all of Active Record’s defaults. And that’s where this book comes in. Many,
if not all of the books about Ruby on Rails that we have read assume that you will only be build-
ing a stand-alone Rails application from scratch. But this isn’t the case for us! It probably won’t
be the case for you either. We saw a clear need for a book to help developers take full advantage
of the Ruby on Rails framework while continuing to use legacy databases that their other busi-
ness applications depend on.

Among the three of us, we have a pretty fair bit of experience in applying Active Record
to the problem of legacy databases. In our work with clients, we often find ourselves writing
ad-hoc Ruby scripts using Active Record to manage various client databases or to perform
various incidental tasks. Whether it’s pulling data from an Oracle database for a Ferret indexing

xxi

8474FM.qxd 8/25/07 9:08 AM Page xxi

script for Reviews.com, pulling and pushing content from an MS SQL Server database for
the SportsXchange, or doing simple data manipulation and calculations in a local MySQL
instance, we can now do it all in Ruby with the Active Record library.

However, the steps it took us to get to this comfort level opened our eyes to the fact that
there is no real, centralized source of Active Record information. We had to piece together
what’s in this book over time by collecting tips, playing with code, using trial and error, and
digging through all the source code line by line. While we didn’t mind the work (and we got
lots of help from the Ruby community), we thought it would be selfish not to share our new-
found experience and knowledge with everyone else and hopefully save a few of you some
time. Maybe we’ll even convert a few new people over to Ruby who’ve been using the “I can’t
work with my legacy schema” argument as a reason for not trying it.

So, long story short, if you are looking to know more about Active Record than the basics
covered in other books, if you want to know how your Ruby on Rails applications really do all
that magic communication with your database (and how to improve it for your specific situa-
tion), if you want to work with Active Record but have a legacy schema you need to deal with,
or if you simply want an easy way to create ad-hoc database-driven Ruby scripts, then this
book was written just for you. The combination of Ruby on Rails and Active Record can be just
as powerful against legacy databases as against databases that you build with Active Record to
begin with. The magic is there. We want to show it to you. We hope that we’ve succeeded.

■INTRODUCTIONxxii

8474FM.qxd 8/25/07 9:08 AM Page xxii

Introducing Active Record

One of the first jobs Kevin had as a teenager was as a dishwasher at a local diner. For those of
you who aren’t familiar with the job, dishwashers are generally at the bottom of the totem pole
in most kitchens. If there’s a job nobody wants to do, like digging through the trash for a retainer
someone left on a plate, the dishwasher is the one who ends up having to do it. As you can
imagine, he hated that job. Still, he did learn a lot of good life lessons, and he learned to be
a jack-of-all-trades at an early age.

As a developer, you can probably relate to the jack-of-all-trades situation (though we hope
you don’t have to dig through the trash like Kevin did!). Developers are expected to know every-
thing there is to know about our language of choice, our development and production platforms,
our database software, and, of course, our business logic. In reality, that’s a lot of stuff, and just
completing a simple task often requires changing hats from a developer to a database administra-
tor to a designer to an end-user. Active Record helps free our brains up a little bit by combining
some of these roles into one simple skill set—that of Active Record developer.

Since this entire book covers the niche topic of Active Record for Ruby, it’s probably safe
to assume that you already know at least the very basics of what the Ruby Active Record library
is. That is, you’ve heard that it’s an object relational mapping (ORM) library that is the model
part of the Rails model, view, controller (MVC) framework and primarily allows for create,
read, update, and delete (CRUD) database operations. If nothing else, you got that much
information from the back cover of this book!

But maybe you skipped the back cover and just flipped to this section to see if this book is
worth buying (it is, and we recommend two copies; we hear it makes a great gift!), or maybe
you’re like us and hate acronyms, or your eyes just glaze over when you hear many technical
terms in a row like that. Whatever the case, we don’t feel like this explanation helps people to
understand what Active Record really is or what can actually be done with it. So here’s our lay-
man’s explanation, which we hope is a bit more direct and easier to digest:

Active Record is a Ruby library that allows your Ruby programs to transmit data and

commands to and from various data stores, which are usually relational databases.

In even more basic terms, you might say:

Active Record allows Ruby to work with databases.

1

C H A P T E R 1

■ ■ ■

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 1

Admittedly, there’s a lot more to Active Record than just this basic explanation, but hope-
fully, this gives you the core idea of what the Active Record library was designed to accomplish.
Throughout the rest of this book, we’ll dig into a lot of little tips, tricks, and features that will
turn you into a master of Active Record for Ruby. But before we get too deep into the guts of it
all, let’s lay a little groundwork and cover some of the background of the Active Record library
and the concepts it incorporates, just so we’re all on the same page at the start.

The Story Behind Active Record
Active Record is actually a design pattern originally published by Martin Fowler in his book
Patterns of Enterprise Application Architecture (Addison-Wesley Professional, 2002). The
now-famous creator of Rails, David Heinemeier Hansson (commonly referred to online and
throughout the rest of this book as simply DHH), took the concepts laid out by Mr. Fowler
and implemented them as a Ruby library that he also called Active Record.

■Note Since both the design pattern and the Ruby library are called Active Record, it can quickly become
confusing which we’re referring to throughout this book. Since the majority of this book is specifically written
for and about the Active Record library for Ruby, when we refer to something as simply “Active Record,”
we mean the Active Record library for Ruby. Therefore, when we refer to the Active Record design pattern,
we will use the full label “Active Record design pattern.”

When DHH released the Rails framework to the public, Active Record was part of the core
bundle, and it’s now also available as its own Ruby gem.

As is often the case with open source projects, once the initial library was out there, a number
of Ruby and Rails contributors took it upon themselves to take the next step so that the library
could be used with almost all of the popular database applications. They did this by develop-
ing various database-specific adapters for Active Record. Active Record adapters are basically
custom implementations of various parts of the Active Record library that abstract the propri-
etary bits of each database system, such as connection details, so that the Active Record library
pretty much works the same regardless of the backend database system you are using. The most
popular and widely used of these adapters are now also directly included as part of the library
(we’ll mention many of the contributors and developers later in this chapter when we cover
the specifics of each database adapter for Active Record).

Active Record Mostly Adheres to the ORM Pattern
The core concept of Active Record and other object relational mapping (ORM) libraries is that
relational databases can be represented reasonably in object-based code if you simply think of
database tables as classes, table rows as objects, and table fields as object attributes. Looking
at a quick example will help to explain this concept best, so assume we had something like the
following accounts table in some type of database:

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD2

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 2

Accounts table
ID field (integer; auto-incremented; primary key)
Username field (text type field)
Password field (text type field)

Our Active Record Account class, or model as it’s commonly referred to, would look some-
thing like this:

Class Account < ActiveRecord::Base
end

And finally, throughout our Ruby or Rails code, we would create instances of account
objects like this:

creates a new account object in memory and a new account record in our database
newacc = Account.new
newacc.Username = "Kevin"
newacc.Password = "Marshall"
newacc.save

creates an Account object in memory from data in Account table with ID of 1
(equivalent to the ANSI SQL statement of "select * from accounts where ID = 1")
findacc = Account.find(1)

deletes records from database that have username of "Kevin"
Account.delete("username = 'Kevin'")

Don’t worry if all this sort of seems like magic at this point—right now, we’re simply trying
to show you the ORM concept without any clutter. We’ll dive into the details of all this stuff and
explain all the ins and outs of Active Record syntax in later chapters.

Active Record Is a Different Kind of ORM
Active Record differs from other ORM libraries, such as Java’s Hibernate, mostly in the way it’s
configured or, rather, in the general lack of initial configuration it requires. Out of the box,
Active Record makes a number of configuration assumptions, without requiring any outside
XML configuration files or mapping details, so nearly everything just works as DHH believed
most would expect or want it to—in fact, our previous example showed this was the case and
took full advantage of Active Record assumptions. We weren’t required to do any additional
configuration or set up any special files or instructions. We just opened a text program and
typed a few short lines of code, and before you knew it, we had a fully functional Active Record
program.

In fact, the lack of configuration and taking advantage of the default assumptions
Active Record makes on our behalf is most likely why the previous example felt like magic.
Later in the book, we’ll go into more detail about configuration and the default assumptions
Active Record makes, as well as how to override any of those assumptions whenever you need.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 3

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 3

Active Record Is One Part of the MVC Concept
Active Record is probably most famous as being an important part of the Ruby on Rails frame-
work. And if we had to pick one single thing about the Rails framework that we think makes it
successful, it would be the fact that it adheres to the MVC design. The concept of MVC is to
break code into logical groupings and programs into logical functional groupings. Traditionally,
the model section is where the majority of your business logic code would be; the view is where
your user interface code would be, and the controller code primarily deals with the communi-
cation between the model and view. Rails MVC implementation is a little bit different. With Rails,
the model section is generally your Active Record classes and other data-descriptive or data-
communication code. The view section remains primarily for the user interface, which tends
to be a heavy dose of HTML in most Rails applications. The controller also handles the com-
munication between the models and the views; however, it also tends to host a larger part of
the business logic than traditional MVC systems might.

Since we are focusing on Active Record and not Rails throughout this book, we won’t spend
too much time on MVC concepts or details. From strictly an Active Record developer’s point of
view, it doesn’t really matter where our code is located or how it’s sectioned off. But the MVC
design is worth knowing about when you plan to build programs of any serious size. And it’s
especially important to understand where Active Record fits into the picture of the MVC frame-
work when you are building Rails applications.

Active Record Is Primarily Used for CRUD
Database Transactions
There are four general tasks you perform when working with databases: creating (C), reading
(R), updating (U), and deleting (D) rows of data. As a group, these actions are often referred to
as CRUD. Almost all modern applications perform CRUD operations, and Active Record was
specifically designed to make CRUD operations easy to write and understand. The following
examples display the four basic CRUD operations as you would see them in most Active Record
programs:

newacc = Account.new(:username => "Kevin")
newacc.save #=> creates the new record in the account table

temp = Account.find(1)
=> selects the record associated with id of 1 from the account table
temp.username = 'Kevin' # => assigns a value to the username attribute of the object
temp.save #=> does the actual update statement applying the changes we just stated.

Account.destroy_all(1) #=> deletes the record in the account table with id of 1

Of course, there are a lot more options and ways to do things than the preceding examples
show, but these are the most generic, and probably most common, ones you’ll see in Active Record
applications. In the next chapter, we’ll talk about the Active Record CRUD operations and their
various options in detail.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD4

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 4

The Active Record Library Is Ruby Code
Probably the most important thing to remember when working with Active Record is that in
the end, it’s all really just Ruby code. This means anything you can do with Ruby objects, such
as inheritance, overriding of methods, metaprogramming, and more, also can be done with
Active Record objects. True, the object attributes are generally populated with data pulled from
a database through SQL statements, and in most cases, the object attribute values are eventu-
ally written out to a database through SQL statements. But outside of those two important
processes, everything else you do with or to Active Record objects is really done just like you
are working with any other Ruby object.

Though the whole idea is to represent database records as objects, it’s important to remem-
ber that they really are two separate things: Ruby objects and database records. As such, you can
(and will) sometimes have your database record in a different state or with a different value than
its corresponding Active Record object and its attributes. This is probably most obvious when
you are dealing with data validations. When a data validation fails during an attempt to save,
your Active Record object attribute will still have the value assigned by your application (which
fails validation), but your database record will not have been updated. We talk more about this
issue, and data validation in detail, in Chapter 4.

From Active Record Objects to Database Records
and Back Again
Even though Active Record objects are really just Ruby objects, when packaged as the Active Record
library, they do go through a number of built-in steps or methods each time they are created,
accessed, updated, or deleted. Whether you are saving new records, updating existing ones, or
simply accessing data with Active Record, there are three general steps to follow:

1. Create an Active Record object.

2. Manipulate or access the attributes of the object.

3. Save the attributes as a record in the database.

As mentioned previously, updating data can be done using the previous steps or with
a special update call shown in the following example:

Account.update(1, "Username = Kevin")

Deleting data from a database, on the other hand, is a little bit of a special situation, since
you often want your database records to exist long after your Active Record objects have been
destroyed or gone out of scope. If we tied the deletion of data from the database to the life cycle
of our objects, every time our code was finished executing, our objects would be removed from
memory and our data deleted from our database. That would be a very bad thing. Therefore,
deleting data is done by special destroy or delete statements—not by simply removing the object
from memory. The following example shows one way of deleting the record with a primary
key of 1:

Account.delete(1)

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 5

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 5

If it seems like we are glossing over the details of all this, don’t worry; we’ll break down the
specifics of each of these steps throughout different parts of this book. For now, let’s just take
a peek at the basics of these three steps, so you have a base understanding of how things work.

Creating an Active Record Object
Most often, you create your Active Record objects with a call to the create or new method. Both
of these methods also allow you to set the values of your object’s attributes directly, as shown
in the following example:

example = Account.new(:Account_Name => "Kevin Marshall",
:Account_Username => "Falicon")

The other common way to create an Active Record object is to use one of the various find
methods. All of these methods populate the object’s attributes from records in the database
that matched the search criteria. The following example creates an object that is populated
with the data of the record with a primary key of 1:

example = Account.find(1)

Again, we will cover all the various details and options of create, new, update, delete, and
find methods throughout the following chapters.

Manipulating or Accessing the Attributes of the Object
Once you have an Active Record object, you have the ability to set or get all of its attributes.
The attributes are usually directly mapped from the fields of your database table. So for exam-
ple, if our Account table had an Account_Username field, then our Account Active Record objects
would have a corresponding Account_Username attribute. The following example shows one way
of directly setting an attribute’s value as well as how to access the value of a given attribute:

example.Account_Username = "Falicon"
puts "Your username is now #{example.Account_Username}"

Saving the Attributes as a Record in the Database
It’s important to remember that when you are working with an Active Record object you are
really only setting and accessing the attributes of a Ruby object. Your changes are not reflected
within your database until you make a call to the ActiveRecord::Base.save method.

The save method is where most of the real action and power of the Active Record library
takes place:

Example.save

It’s this method that has built-in support for things like callbacks, data validations, and
many of the other features explained throughout the remainder of this book.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD6

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 6

Why Active Record Is a Smart Choice
Active Record is easy to install, simple to write and read, and full-featured object-based code.
Out of the box, it comes with support for most all modern database systems, is platform inde-
pendent, and goes a long way in abstracting the messy details of dealing with various database
implementations. All this means that you, as a developer, can focus on learning just one thing,
Active Record, to deal with storing and retrieving data from your database. You don’t have to worry
about learning all the ins and outs of your specific database software, the unique version of
SQL it supports, or the related tips and tricks for massaging data in and out of the database.
That leaves you more time and energy for coding your real applications.

If you’ve been reading through this chapter in hopes of deciding if Active Record is worth
learning more about, we hope that you are now anxious to dive into the details with us. However,
if you aren’t yet quite sold on working through the rest of the book, consider the following list
of added benefits to the Active Record approach, each of which we will cover in detail through-
out the remainder of this book:

• Simplified configuration and default assumptions

• Automated mapping between tables and classes and between columns and attributes

• Associations among objects

• Aggregation of value objects

• Data validations

• Ability to make data records act like lists or trees

• Callbacks

• Observers for the life cycle of Active Record objects

• Inheritance hierarchies

• Transaction support on both the object and database level

• Automatic reflection on columns, associations, and aggregations

• Direct manipulation of data as well as schema objects

• Database abstraction through adapters and a shared connector

• Logging support

• Migration support

• Active Record as an important part of the Ruby on Rails framework

• Active Record as it’s integrated in other emerging frameworks like Merb and Camping

This is just a small list of the features of Active Record, but I hope it gives you an idea of just
how powerful Active Record can be. Still, before you can take advantage of anything Active Record
has to offer, you must first get it installed and configured, so let’s get started with that step now.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 7

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 7

Installing and Configuring Active Record
One of the primary design goals of Active Record (and Rails for that matter) was to favor, as DHH
puts it, “convention over configuration.” This means, from a developer’s point of view, it should
be very quick and simple to install and start to use. A developer should not have to spend hours
setting up and learning about all the various configuration options and files before even starting
to do some real coding. As you can imagine, this is a lofty goal for any library designer, but it’s
one that DHH was actually able to achieve! In fact, it’s probably the single biggest reason that
Active Record (and Rails) is being so quickly adapted by developers around the world. In this
chapter, we’ll walk you through the very simple three-step process to get Active Record installed
for your specific situation.

Since Active Record is really just a collection of Ruby code, it stands to reason that you
must first have Ruby correctly installed on your machine. And since Active Record is primarily
distributed as a gem, it should be no surprise that you must also have the Ruby Gem system
correctly installed on your machine. There are many good books and resources that cover the
installation of these requirements, so we won’t go into the details of these here and will instead
assume that you already have them installed.

■Note If you are looking for more information on installing Ruby or the Ruby Gem system, two good web
sites full of Ruby resources are http://www.rubycentral.com and http://www.rubyforge.com.

Assuming that you do, in fact, have Ruby and the Ruby Gem system installed correctly on
your machine, installing Active Record requires just three simple steps:

1. Install the Active Record gem.

2. Depending on the database adapter you intend to use, install the required files or libraries.

3. Supply the adapter-specific connection information to make a connection to the database.

Let’s look at each of these steps in a little more detail. When we’re finished with this
chapter, you’ll have Active Record fully installed, and you’ll be ready to dive into coding!

Installing the Active Record Gem
You are probably already familiar with the idea of Ruby Gems—a simple system for packaging,
distributing, and installing various Ruby libraries. You’re probably also already aware that
www.rubyforge.com is the default remote gem distribution site. So it should be no surprise to
learn that Active Record is, in fact, a gem available through the RubyForge.com system and
that the most basic command to install the Active Record gem is to simply type gem install
activerecord at a command line. The gem system should then walk you through any addi-
tional steps that are required for installing the library, including installing the Active Support
library, which is a Ruby requirement for Active Record.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD8

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 8

■Note If you prefer, you can download the Active Record library for local installation from www.rubyforge.com.
However, it’s generally easier and, therefore, recommended that you simply use the remote gem installation
procedure described in this section.

Installing Any Additional Required Libraries or Gems
Active Record handles communication between your code and the database through the use
of database-specific adapters. Because each of these adapters is unique and specific to the
database that it communicates with, each adapter also has unique and varying underlying
requirements in addition to those required by the general Active Record library.

Since Active Record is really just Ruby code, you can view the source code at any time. The
source code for each Active Record adapter can be found in your Ruby installation directory
under the lib/ruby/gems/1.8/gems/activerecord-1.15.1/lib/active_record/connection_
adapters directory. Looking directly at the source code is the best possible way to get familiar
with the real ins and outs of what each adapter actually does and supports. If you’re serious
about becoming an Active Record expert, I highly recommend taking a peek at the inner work-
ings of each. It’s also a great way to see high-level Ruby programming and design in action.

Out of the box, Active Record comes with adapters for connecting to the most popular
and commonly used databases currently on the market: DB2, Firebird, FrontBase, MySQL, Open-
Base, Oracle, PostgreSQL, SQLite, SQL Server, and Sybase. Let’s take a little more detailed look
at the specific dependencies of each database adapter:

DB2: The DB2 adapter was written and is currently maintained by Maik Schmidt. The
adapter requires the ruby-db2 driver or Ruby DBI with DB2 support to be installed on the
machine as well. You can obtain the ruby-db2 library or the Ruby DBI files from www.
rubyforge.org/projects/ruby-dbi.

Firebird: The Firebird adapter was written and is currently maintained by Ken Kunz. The
adapter requires the FireRuby library to be installed on the machine as well. You can install
the FireRuby library via the gem command gem install fireruby.

FrontBase: The FrontBase adapter does not currently have any author or maintenance
information in its source code. The adapter requires the ruby-frontbase library to be
installed on the machine as well. You can obtain the ruby-frontbase library via the gem
command gem install ruby-frontbase.

MySQL: The MySQL adapter does not currently have any author or maintenance informa-
tion in its source code. The adapter requires the MySQL library to be installed on the machine
as well. You can obtain the MySQL library via the gem command gem install mysql.

OpenBase: The OpenBase adapter does not currently have any author or maintenance
information it in its source code. The adapter requires the OpenBase library to also be
installed on the machine. You can obtain the OpenBase library via the gem command
gem install openbase.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 9

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 9

Oracle: The Oracle adapter was originally written by Graham Jenkins and is currently
maintained by Michael Schoen. The adapter requires the ruby-oci8 library, which itself
requires that the OCI8 API be installed on your machine. The OCI8 API can be installed as
part of the Oracle client available via www.oracle.com, and the ruby-oci8 library files can
be obtained from www.rubyforge.org/projects/ruby-oci8.

PostgreSQL: The PostgreSQL adapter does not currently have any author or maintenance
information in its source code. The adapter requires the ruby-postgres library to be installed
on the machine as well. You can obtain the ruby-postgres library via the gem command
gem install ruby-postgres.

SQLite: The SQLite adapter was originally written by Luke Holden and was updated
for SQLite3 support by Jamis Buck. The adapter requires the sqlite-ruby library for
SQLite2 support and the sqlite3-ruby library for SQLite3 support. You can obtain the
sqlite-ruby library via the gem command gem install sqlite-ruby. You can obtain
the sqlite3-ruby library via the gem command gem install sqlite3-ruby.

SQLServer: The SQLServer adapter was written by Joey Gibson with updates provided by
DeLynn Berry, Mark Imbriaco, Tom Ward, and Ryan Tomayko. The adapter is currently
maintained by Tom Ward. The adapter requires the Ruby DBI library and support for either
ADO or ODBC drivers be installed on the machine. You can obtain the DBI library from
www.rubyforge.org/projects/ruby-dbi. If you intend to use the ADO drivers, included in
the DBI download should be the file bdi-0.1.0/lib/dbd/ADO.rb. Once the DBI library is
installed, this ADO.rb file should be copied to your-ruby-install-directory/lib/ruby/
site_ruby/1.8/DBD/ADO/ directory. ODBC driver support varies for each operating system
and is outside of the scope of this book. Please refer to your specific operating system’s doc-
umentation for details on properly setting up ODBC driver support.

■Note You will probably need to manually create the ADO directory within the DBD directory before placing
the ADO.rb file in it.

Sybase: The Sybase adapter was written and is maintained by John R. Sheets. The adapter
requires the Sybase-ctlib library to be installed on the machine as well. You can obtain the
Sybase library via http://raa.ruby-lang.org/project/sybase-ctlib/.

Supplying the Adapter-Specific Information
The final step before you can start to actually use Active Record is to establish a connection to
your specific database. If you are connecting to Active Record through a Rails application, you
generally provide these details in a database.yml file in your applications config directory. You
supply these connection details in YAML format. However, the YAML approach is really just Rails
syntactic shorthand for calling the ActiveRecord::Base.establish_connection method. Since
this is a book about Active Record (and not Rails), throughout our examples, we will generally
call the establish_connection method rather than use the YAML file option.

The establish_connection method expects parameters to be passed as hash values, and
each adapter has its own set of acceptable parameters. Let’s take a look at each situation in

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD10

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 10

detail. We will also provide an example call of the establish_connection method for each
adapter.

DB2 Parameters
The minimum DB2 requirements are the adapter and database parameters. Here is the complete
list of parameters to consider:

adapter: Specifies that this is connection information for a DB2 database. The value can
be either db2 or ibm-db2 for the IBM adapter.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database. The default value is nothing.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text. The default value is nothing.

schema: Optional parameter containing the initial database schema to be set.

The following example shows how to open an Active Record database connection for DB2:

ActiveRecord::Base.establish_connection(:adapter => "db2",
:database => "artest", :username => "kevin", :password => "test")

Firebird Parameters
The minimum Firebird requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a Firebird database. The value
should be firebird.

database: The name of the database that you are attempting to connect to. This value can
be either an alias of the Firebird database, the full path of the database file, or a full Firebird
connection string.

■Note If you provide a full Firebird connection string in the database parameter, you should not specify the
host, service, or port parameters separately.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database. If this value is not provided, the underlying operating system
user credentials are used (on supporting platforms).

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text. This parameter is required if
the username parameter is supplied but should be omitted if the username is not provided.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 11

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 11

host: Optional parameter containing the domain name of the machine that hosts your
database. You should not provide this parameter if you are providing the full connection
information in the database parameter. Some platforms require that you set this to localhost
when connecting to a local Firebird instance through a database alias.

port: Optional parameter containing the port on which the database is available for connec-
tions. This parameter is required only if the database is only available on a nonstandard port
and the service parameter is not provided. If the service parameter is provided, this value
will not be used.

service: Optional parameter containing the service name. This parameter is required only
if the host parameter is set and you are connecting to a nonstandard service.

charset: Optional parameter containing the character set that should be used for this con-
nection. You should refer to your Firebird documentation for the valid values that can be
used with this parameter.

The following example shows how to open an Active Record database connection for Firebird:

ActiveRecord::Base.establish_connection(:adapter => "firebird",
:database => "test", :host => "www.yourdbserver.com",
:username => "kevin", :password => "test")

FrontBase Parameters
The minimum FrontBase requirements are the adapter, database, and port parameters. Here
is the complete list of parameters to consider:

adapter: Specifies that this is connection information for a FrontBase database. The value
should be frontbase.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

host: Optional parameter containing the domain name of the machine that hosts your
database.

The following example shows how to open an Active Record database connection for
FrontBase:

ActiveRecord::Base.establish_connection(:adapter => "frontbase",
:database => "test", :host => "www.yourdbserver.com")

MySQL Parameters
The minimum MySQL requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD12

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 12

adapter: Specifies that this is connection information for a MySQL database. The value
should be mysql.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

socket: Optional parameter that contains the socket that should be used to communicate
with the MySQL database. If this parameter is omitted, the adapter assumes a value of
/tmp/mysql.sock.

port: Optional parameter containing the port on which the database is available for
connections.

sslkey: Required parameter if you are connecting to a MySQL database via SSL.

sslcert: Required parameter if you are connecting to a MySQL database via SSL.

sslca: Required parameter if you are connecting to a MySQL database via SSL.

sslcapath: Required parameter if you are connecting to a MySQL database via SSL.

sslcipher: Required parameter if you are connecting to a MySQL database via SSL.

The following example shows how to open an Active Record database connection for
MySQL:

ActiveRecord::Base.establish_connection(:adapter => "mysql", :database => "test",
:username => "kevin", :password => "test")

OpenBase Parameters
The minimum OpenBase requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for an OpenBase database. The
value should be openbase.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

host: Optional parameter containing the domain name of the machine that hosts your
database.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 13

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 13

The following example shows how to open an Active Record database connection for
OpenBase:

ActiveRecord::Base.establish_connection(:adapter => "openbase",
:database => "test", :host => www.yourdbserver.com,
:username => "kevin", :password => "test")

Oracle Parameters
The minimum Oracle requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for an Oracle database. The value
should be oracle.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

The following example shows how to open an Active Record database connection for Oracle:

ActiveRecord::Base.establish_connection(:adapter => "oracle",
:database => "test", :username => "kevin", :password => "test")

PostgreSQL Parameters
The minimum PostgreSQL requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a PostgreSQL database. The value
should be postgresql.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

port: Optional parameter containing the port that the database is available for connections.

host: Optional parameter containing the domain name of the machine that hosts your
database.

min_messages: Optional parameter that allows you to set the min_message value within
your database for this connection.

schema_search_path: Optional parameter containing a comma-separated list of schema
names to use in the schema search path for the connection.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD14

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 14

allow_concurrency: Optional parameter that contains either the value true or false. If the
value is set to true, the connection uses asynchronous query methods, which will help
prevent the Ruby threads from deadlocking. The default value is false, which uses blocking
query methods.

encoding: Optional parameter that allows you to specify the encoding to use.

The following example shows how to open an Active Record database connection for
PostgreSQL:

ActiveRecord::Base.establish_connection(:adapter => "postgresql",
:database => "test", :username => "kevin", :password => "test")

SQLite Parameters
The minimum SQLite requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a SQLite database. The value
should be sqlite.

database: The name of the database that you are attempting to connect to.

The following example shows how to open an Active Record database connection for
SQLite:

ActiveRecord::Base.establish_connection(:adapter => "sqlite", :database => "test")

SQL Server Parameters
The minimum SQL Server requirements are the adapter and the database parameters. Here is
the complete list of parameters to consider:

adapter: Specifies that this is connection information for a Microsoft SQL Server database.
The value should be sqlserver.

mode: Optional parameter containing the mode in which you wish to make the connec-
tion. Valid values are ado or odbc. If this parameter is omitted, the adapter defaults to the
ADO mode.

database: The name of the database that you are attempting to connect to.

host: Optional parameter containing the domain name of the machine that hosts your
database.

dsn: Required parameter if the mode is odbc. This parameter references the name of your
data source set up in your ODBC settings.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 15

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 15

port: Optional parameter containing the port on which the database is available for
connections.

autocommit: Optional parameter to turn the autocommit feature of SQL Server on or off.
Valid values are true and false. If this parameter is omitted, the adapter defaults to true.

The following example shows how to open an Active Record database connection for SQL
Server:

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:database => "test", :username => "kevin", :password => "test",
:host => "www.yourdbserver.com")

Sybase Parameters
The minimum Sybase requirements are the adapter and the database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a Sybase database. The value
should be sybase.

database: The name of the database that you are attempting to connect to.

host: Optional parameter containing the domain name of the machine that hosts your
database.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

The following example shows how to open an Active Record database connection for
Sybase:

ActiveRecord::Base.establish_connection(:adapter => "sybase",
:database => "test", :host => "www.yourdbserver.com",
:usrname => "kevin", :password => "test")

Learning More
By design, Active Record abstracts many of the details of each database, leaving the developer
free to focus on the details of coding the application. Switching from one backend database to
another, from an Active Record view, generally requires little more than changing your connec-
tion information. For the most part, Active Record developers are shielded from having to learn
the specifics of any one database implementation—or even most of ANSI SQL for that matter.

Still, each database is fundamentally different and will provide varying levels of support
for features and data types. Some will readily support triggers, sequences, and stored proce-
dures; others will not. Some will have elegant ways of dealing with CLOB and BLOB data types;
others will not. Each ActiveRecord adapter does its best to create a common denominator for

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD16

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 16

each of these issues, so that nearly all Active Record methods, techniques, and data types are
available for each type of database. But as you can imagine, this is a difficult goal to achieve.
Databases, like any software application, continue to grow more and more complex and add
new features all the time.

With all this in mind, I recommend that you become as familiar as you can with the spe-
cific database application you intend to use. I also highly recommend that you learn at least
the basics of ANSI SQL. These two chores will help you tremendously throughout your career
in debugging and developing even the most advanced Active Record programs. The following
list is a rundown of the most common databases available today and some good starting points
for learning more about each:

DbB2: DB2 has been around for a very long time, and some even consider it to be the first
database product to use SQL. DB2 is a commercial product provided by IBM and comes
in a variety of forms for a variety of platforms. For more information about DB2 you should
visit www-306.ibm.com/software/data/db2.

Firebird: Firebird is a free-of-charge relational database that runs on Linux, Windows,
and a variety of Unix platforms. It is based on the source code released by Inprise Cor-
poration on July 25, 2000. For more information and to download Firebird, you should
visit www.firebirdsql.org.

FrontBase: FrontBase is a relational database primarily designed for Mac OS X. Licenses
for FrontBase are now free. For more information, you should visit www.frontbase.com.

MySQL: MySQL is an open source relational database developed and primarily maintained
by MySQL AB. There are MySQL versions for most all platforms. For more information, you
should visit www.mysql.com.

OpenBase: OpenBase is a commercial relational database that has been around since
1991. It is provided by OpenBase International and is available for a variety of platforms
including Max OS X, Linux, and Microsoft Windows. For more information on OpenBase,
you should visit www.openbase.com.

Oracle: Oracle is a commercial relational database provided by Oracle Corporation.
There are Oracle versions for most all platforms. For more information, you should visit
www.oracle.com.

PostgreSQL: PostgreSQL is an open source, object-relational database. PostgreSQL is avail-
able for various platforms. For more information, you should visit www.postgresql.org.

SQLite: SQLite is a public domain C library that implements a SQL database engine. You
can run SQLite on most platforms. For more information, you should visit www.sqlite.org.

SQL Server: SQL Server is a commercial relational database provided by Microsoft. SQL
Server is primarily designed for the Microsoft platform. For more information, you should
visit www.microsoft.com/sql.

Sybase: Sybase is a commercial relational database provided by Sybase Corporation. Sybase
versions are available for a variety of platforms. For more information, you should visit
www.sybase.com.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 17

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 17

Building Your First Active Record Program
This section will walk you through writing your first Active Record program. It will explain the
core concepts of Active Record, including the assumptions it makes in order to dramatically
simplify development. Finally, we’ll begin to explore the ways you can change these assump-
tions (a topic which we’ll dig deeper into later on in the book).

As previously mentioned, Active Record is an ORM library. ORM is a way of persisting
objects to and from relational databases. Recall that, with ORM, an object is analogous to
a database table, and individual instances of that object are represented as rows in the table.
Finally, the individual member variables of an object are represented as columns in the table.

The elements of a standard Active Record program follow:

1. Include or require the Active Record gem.

2. Establish a connection to your database using the appropriate adapter.

3. Define your Active Record classes by extending the ActiveRecord::Base class.

4. CRUD away.

Recall the accounts table from earlier in this chapter:

Accounts table
id field (integer; auto-incremented; primary key)
username field (text type field)
password field (text type field)

We’ll use this accounts table in our examples throughout the rest of this chapter.

Your First Example
Below is the source code for your first Ruby program that uses the Active Record library. The
program simply establishes a connection, creates an account object, and stores the attributes
of that account object in the database as a new record:

require "rubygems"
require_gem "activerecord"

ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "localhost",
:username => "project",
:database => "project_development")

class Account < ActiveRecord::Base
end

account = Account.new
account.username = "cpytel"
account.save

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD18

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 18

This simple Active Record program includes the Active Record gem, which you installed
previously. It establishes a connection to the project_development database with username
project.

Next, the Account class is defined. Notice that there is nothing in the class. Our Active Record
objects will eventually have stuff in them, but for now, its important to note that no configura-
tion is needed to get up and running with basic functionality. We’ve merely supplied the database
connection parameters.

Finally, we instantiate a new Account object, set the username member variable, and save
the instance of the object back to the database.

It’s possible to merely connect to the database and be up and running because of the
assumptions that Active Record is making and because Active Record gets the rest of its con-
figuration from the database itself.

Active Record Assumptions and Conventions
Our first Active Record program example makes full use of Active Record assumptions and coding
conventions. This speeds our development, eases our typing workload, and makes our example
seem almost magical. Active Record makes the following assumptions:

• It infers database table names based on class names.

• It assumes the existence of certain database columns.

The first assumption of an Active Record class is the table name. In the case of our Account
class, the table Active Record assumes is accounts. It makes this assumption based on the fol-
lowing guidelines:

• The name of the table within the database is the pluralized name of the class defined in
your Active Record program. In our experience, this assumption turns out to be one of
the large productivity boosts you’ll recognize with Active Record once you get used to it,
because it enables the developer to gloss over the naming conventions and instead
concentrate on the programming aspects.

• The table name is in lowercase. This is important to note because each database may
support case in a variety of ways. Since Ruby variables start with lowercase characters and
constants start with uppercase characters, Active Record prefers to force all table and col-
umn names to lowercase (via a downcase method call). In many of the database systems,
case does not really matter when referring to a table or column, so the Active Record
downcasing should not cause a problem. For the select few in which case is important,
Active Record jumps through as many hoops for you as it can to keep its lowercase prefer-
ence in line with the specific adapter code for that database.

• If the class name includes multiple words that begin with capital letters, the words will
be separated by underscores in the table name.

Table 3-1 lists some examples of assumptions Active Record would make based on the
guidelines we’ve just outlined.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 19

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 19

Table 3-1. Examples of Active Record Table Pluralization

Class Name Table Name

Account accounts

Person people

UserImage user_images

Address addresses

Currency currencies

Mouse mice

As you can see from the Table 3-1, Active Record is intelligent about pluralizing the class
names. In addition, Active Record also assumes that each table has an automatically incremented
integer primary key column named id.

When an Active Record class is instantiated and any data is accessed within the class,
Active Record reads the columns of the table and maps these to the class’s attributes. While
there aren’t formal conventions for the naming of columns, since Active Record only creates
an attribute in the Active Record class that matches the name of the column, many of the
Ruby and Rails naming conventions are seen in a typical Active Record table, including the
liberal doses of underscores.

When Active Record reads the columns of the database table and creates the attribute
mappings, it also reads the data types of those columns and makes sensible mappings among
the attribute types and the database column types, as you might expect. However, the boolean
attribute type is a little different for two reasons. First, a boolean type is not supported in all
databases supported by Active Record. Second, in Ruby only the false constant and the value nil
are considered false. As a workaround, Active Record attribute methods expand the values
considered false to include an empty string, 0, "0", "false", and "f". Conversely, the val-
ues 1, "1", "true", and "t" are considered true.

These few assumptions, coupled with the dynamic language features provided by Ruby
(such as duck typing), provide a foundation that makes it possible to provide an incredibly
powerful, yet straightforward, feature set.

■Note Duck typing is a form of dynamic typing in which the type of an object is not determined strictly by
its class but by its capabilities. This term comes from the idea that if it walks like a duck, and quacks like
a duck, it must be a duck. You can read more about duck typing at http://en.wikipedia.org/wiki/
Duck_typing.

Overriding the Assumptions
While staying true to the Active Record way of doing things can free you up to worry about
other things during application development, obviously your application may have some
constraints that require you to override some of the assumptions that Active Record is making,
particularly if you are working with a legacy database.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD20

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 20

If you want table names to be singular instead of plural, you can set the configuration
parameter pluralize_table_names:

ActiveRecord::Base.pluralize_table_names = false

If, instead, you need to override a table name completely, you specify this in the Active Record
class itself. For instance, if our Accounts class should persist to a table named AccountBean, we
would specify the Account class as follows:

class Account < ActiveRecord::Base
set_table_name "AccountBean"

end

Additionally, if your primary key column is not named simply id, you can override this
from within the class definition as well:

class Account < ActiveRecord::Base
set_primary_key "accountId"

end

If you want to use a primary key other than an automatically incremented integer, you
must set the value of the primary key yourself, and you must still use the id attribute to do so.
Additionally, you should only use the id attribute to set the primary key. To retrieve the value
of the primary key, you must use your overridden attribute name.

For example, if we’ve overridden the account primary key to be account_number, and we
want to use a custom key format, our Account creation code would need to be as follows:

account = Account.new
account.id = "X5476"
account.save

And to retrieve the account_number of an account, you would use this:

puts account.account_number #=> X5476

Retrieving Objects from the Database
With the groundwork laid regarding Active Record knowledge about our database, the dynamic
nature of Ruby Active Record is able to help us work with our objects. For instance, to retrieve
objects from the database we have a core method find. If we know the value of the primary
key that we want, for instance 1, we can simply call it:

Account.find(1)

In addition, it is possible to use a feature of Active Record called dynamic finders. These
allow you to easily find records by their attribute values. For example, if you wish to find the
account with the username equal to cpytel you can simply write:

Account.find_by_username("cpytel")

While dynamic finders are fun magic, let’s be sure not to get ahead of ourselves. Using the
normal find method, the following code would return the same result as the dynamic finder:

Account.find(:all, :conditions => ["username = ?", "cpytel"])

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 21

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 21

■Note A lot of Active Record magic, such as dynamic finders, is made possible by using the Ruby’s
method_missing function; method_missing allows you to handle situations when a message is sent to an
object for which it doesn’t have a method. The method find_by_username doesn’t exist in the code anywhere,
so it is being handled by method_missing.

Once we’ve retrieved an Active Record object, say with

account = Account.find_by_username("cpytel")

we can delete the associated record from the database by calling this method:

account.destroy

When you use the destroy method listed here, you are really only executing a SQL delete
statement within your database. The record will no longer be available within your database,
but your Active Record object, whose attributes were populated with data from that record,
will still be available to you as a read-only instance of the object. This object will persist until
it goes out of scope within your application or you specifically delete that instance. This turns
out to be a handy feature when you want to report on the deletion of data, as the following code
snippet shows:

account = Account.find(1)
do a variety of things within your application...
account.destroy
puts "we just deleted the record with id of #{account.id} from the database"

We go into more detail on the various CRUD actions you can perform with Active Record
in Chapter 2.

Exploring Active Record Relationships
Relationships among objects, that is, when one or more objects are associated with one
another, are not only an incredibly important part of the functionality of the Active Record
library, but also of any real-world application. There are several types of relationships, and
we’ll cover them all in detail in Chapter 4.

All configuration options for a relationship occur within the Active Record class definitions
themselves. For our Account class, we want to add a relationship to a Role object, so we can tell
what type of account we have on our hands. We start off by manually defining our roles table
within our database:

Roles table
id field (integer; auto-incremented; primary key)
name field (text type field)
description field (text type field)

We want our account class to hold the reference to the account’s role, and we want the
foreign key (the column in one table that points to the ID of a row in another) to be in the accounts
table. So we define this relationship of roles to accounts in our account model with the belongs_to
method. First, we add our Role class definition:

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD22

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 22

class Role < ActiveRecord::Base
end

Next, we modify our definition of the Account class as follows:

class Account < ActiveRecord::Base
belongs_to :role

end

With those new class definitions we now have a unidirectional relationship between
Account and Role. This relationship is unidirectional, because Account knows what role it has,
but Role does not know what Account class instances have it.

With this relationship in place, we now have an attribute for the role relationship of our
account objects. However, we first need to make sure that we have a role to work with.

Along with the dynamic finder methods we’ve already seen, Active Record also has
a find_or_create_by_* dynamic finder. This finder works just like the normal find_by_*
method, but if a matching object is not found, one will be created for you. We’ll use this
method to make sure that our desired role exists:

admin_role = Role.find_or_create_by_name("Administrator")

We can then assign our administrator role to our account:

account.role = admin_role

Putting the pieces together, we can now show a more complete and realistic example
of an Active Record program. Here we set up our connection, define two models that have
a one-to-many relationship, and perform a number of basic CRUD operations:

require "rubygems"
require_gem "activerecord"

ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "localhost",
:username => "project",
:database => "project_development")

class Role < ActiveRecord::Base
end

class Account < ActiveRecord::Base
belongs_to :role

end

admin_role = Role.find_or_create_by_name("Administrator")

account = Account.new
account.username = "cpytel"
account.role = admin_role
account.save

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 23

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 23

puts "#{account.username} (#{account.id}) is a(n) #{account.role.name}"
cpytel (1) is a(n) Administrator

comment out the following line to avoid deleting the created account
account.destroy
puts "We have just deleted the #{account.username} account!"

Them’s the Basics!
Believe it or not, in just one chapter, we’ve introduced you to Active Record and walked you
completely through installing and configuration; plus, we’ve built and explained complete
working programs showing the basic CRUD operations. It really is amazing how little you need
to do to get started with Active Record!

Of course, there’s a lot more to Active Record than just the basics we’ve covered here
(otherwise, this would be a very short book!). In the next few chapters, we’ll dig into the guts of
Active Record and show you how to take full advantage of the Active Record feature set. Before
you know it, you’ll go beyond building simple CRUD programs and start building full-featured
applications with complex business logic seamlessly integrated with your database via
Active Record!

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD24

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 24

Active Record and SQL

Active Record interacts with SQL primarily on a CRUD (create, read, update, delete) basis.
Those are the only actions that happen to model objects, and there are a number of ways that
Active Record makes their use much easier on programmers. In this chapter, we’re going to go
over how each of these actions translates to the SQL you would normally use to accomplish
the same tasks. Then, we’ll show you how you can accomplish other common SQL functions,
such as locking and transactions.

Creating a Record
Creating an object inserts it into its table in the database. In SQL, this would happen with an
INSERT statement. With Active Record, this happens with the save method. From this angle,
both creating and updating a record look the same. The save method will create new records
and update old ones with equal ease and transparency.

Recall the example from the previous chapter:

account = Account.new
account.username = "cpytel"
account.password = "secret"
account.save

Assuming that you are saving a new object, the foregoing code would translate into the
following SQL:

INSERT INTO accounts ('username', 'password') VALUES ('cpytel', 'secret')

■Note The id column is not specified in the INSERT preceding statement. Active Record knows the pri-
mary key column is special and leaves it out. Normally, you would make the id automatically increment in
a manner that’s appropriate to your database, which keeps the rows individually accessible.

If the creation of the object is successful, the values will be inserted into the database.
However, if the save is unsuccessful, the save method will return false. Then too, there is an
alternative save method called save!. The save! method will raise a RecordNotSaved exception
if the save was not successful.

25

C H A P T E R 2

■ ■ ■

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 25

It’s also possible to create objects in one swift stroke using the create method. This
method works almost exactly like new plus save. If it is possible for Active Record to save the
object with the attributes you’ve passed in, it will. If it can’t, it won’t. In either case, the object
is returned and ready for normal use. This is useful if you have an object that can easily be
instantiated in one line, for example:

bookmark = Bookmark.create(:url => "http://www.apress.com", :name => "Apress")

There are also some dynamic methods for creating objects, but we’ll discuss those when
we get to the finder methods.

■Note When Active Record translates the value of an attribute into the data that will be used in the SQL
query, the value is given to the connection-specific adapter for translation into the format that the database
expects. For example, giving a date or time field a Ruby Time object will convert the value into YYYYMMDD
hh:mm:ss format when used with a MySQL database. Each type of value is converted in the same way. The
values are also escaped by the adapter so that errant quotation marks or comment sections do not acciden-
tally trip up the database and cause it to do something it wasn’t meant to do.

Active Record also allows you to create multiple objects across associations. For example,
if you had the following object

class Person < ActiveRecord::Base
belongs_to :parent, :class_name => "Person"
has_many :children, :class_name => "Person", :foreign_key => :parent_id

end

you could perform the following actions to create a parent and its children all at once:

person_1 = Person.new :first_name => 'Bonnie', :last_name => 'Pytel'
person_2 = Person.new :first_name => 'Chad', :last_name => 'Pytel'
person_1.children << person_2
person_1.save

The preceding code will result in the following SQL statements, assuming that the first
record inserted will be given the id of 1:

INSERT
INTO people (`first_name`, `last_name`)
VALUES (`Bonnie`,`Pytel`);

INSERT
INTO people (`first_name`, `last_name`, `parent_id`)
VALUES (`Chad`, `Pytel`, 1);

CHAPTER 2 ■ ACTIVE RECORD AND SQL26

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 26

Reading a Record
Once you’ve saved your records to the database, you’re going to need a way to get them back.
In SQL, this would happen with the SELECT statement, and with Active Record, you use the
find method. The definition of the find method is rather ambiguous, so looking at the names
of the arguments isn’t going to help. As it turns out, find has a few different ways of getting
your data back to you.

It’s probably best if we deal with find as acting like two different methods: one that will
retrieve objects with the specified IDs (which is simple) and one that will find objects with
a more complicated set of criteria. The first form of the find method takes a list of one or more
integers:

book = Book.find 5

This invocation of find will query the database for the row that has an ID column equal to
5. Specifically, it is equivalent to

SELECT* FROM books WHERE (id = 5)

Similarly, you can give an array of integers to this form of find, and it will return all of the
corresponding rows. For example, the following invocation of find

books = Book.find 1, 3, 5, 7, 9

will generate the equivalent of the following SQL statement:

SELECT * FROM books WHERE (id IN (1, 3, 5, 7, 9))

The find method possesses quite a lot more power than simply fetching a list of IDs. We
have a whole relational database at our disposal, so we’d better use it for something more than
a glorified hash table, right? As it turns out, find’s other syntax has a much longer list of avail-
able options.

This second version of find takes two arguments. The first controls how many results will
be returned. It can be either :first or :all. Using :first is the same as tacking LIMIT 1 to the
end of the equivalent SQL. Using :all does what you’d expect; it selects over the entire table;
an example follows:

Account.find :all
SELECT * FROM accounts
Account.find :first
SELECT * FROM accounts LIMIT 1

The last argument to find can be a hash of options; this is where the real fun happens.
The list contains a number of possible options, each of which roughly correspond to some
part of a normal SQL SELECT statement. The valid keys for the options hash are :conditions,
:include, :order, :select, :group, :joins, :from, :limit, :offset, :readonly, and :lock. Each
of the following sections will present these different values, and offer instructions for their use.

CHAPTER 2 ■ ACTIVE RECORD AND SQL 27

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 27

:conditions
The :conditions options supplied to the find method will be converted into the WHERE clause
of the SQL statement. Like the find method itself, there are a number of ways you can prop-
erly pass it in. You can pass a string or a hash of column names and values, or you can specify
a more complex string of SQL along with values to interpolate inside an array, as follows:

Account.find :all, :conditions => "keyword = 'ruby'"
Account.find :all, :conditions => { :keyword => 'ruby' }
Account.find :all, :conditions => ["keyword = ?", 'ruby']

These statements will all generate the following WHERE clause:

SELECT * FROM accounts WHERE keyword = 'ruby'

You can also do more interesting things like find all accounts named John Doe who have
no favorite band:

Account.find :all, :conditions => { :first_name => @first_name,
:last_name => @last_name,
:favorite_band_id => nil }

which would result in the following SQL query:

SELECT *
FROM accounts
WHERE
first_name = 'John'
AND last_name = 'Doe'
AND favorite_band_id IS NULL

You can also have full control over the content of the WHERE clause, because in the Array
form of the conditions parameter, you can specify full SQL instead of having it generated for
you. This SQL is grouped inside parentheses in the final query, so you don’t have to worry
about a stray OR statement ruining your results. In the following example, the Array form of the
conditions parameter is used in a query to find the records that have been recently updated,
or those in the included set of IDs:

Account.find :all, :conditions => ["updated_on > ? OR id IN (?)",
@last_update,
[2, 3, 5, 7, 11]]

It will result in the following SQL:

SELECT *
FROM accounts
WHERE
updated_on > '20061214 15:29:12'
OR id IN (2, 3, 5, 7, 11)

As mentioned earlier, Active Record will interpolate the values supplied as conditions for
you, making sure that they are quoted properly to avoid any potential issues, both accidental

CHAPTER 2 ■ ACTIVE RECORD AND SQL28

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 28

and intentional. It will also make sure to properly convert data types, like the date used in the
previous example, into whatever format your database expects.

:include
Here, we have the FROM clause in your SQL statement. The :include parameter will take a (poten-
tially very) nested hash of symbols that corresponds to the names of relationships you’ve defined
for your model, and add them as joining conditions. For example, assume that, in your social
network, you have the following classes:

class Person < ActiveRecord::Base
has_many :favorites

end

class Favorite < ActiveRecord::Base
belongs_to :person
belongs_to :band

end

class Band < ActiveRecord::Base
belongs_to :location

end

class Location < ActiveRecord::Base
end

If you wish to find people who like bands that are based in a particular city, you can use
the :include hash as follows:

city = 'Boston'
Person.find :all, :include => { :favorites => { :bands => { :location => {} } } },

:conditions => ["locations.city = ?", city]

The generated SQL would be

SELECT *
FROM people
LEFT OUTER JOIN favorites
ON people.id=favorites.person_id

LEFT OUTER JOIN bands
ON favorites.band_id=bands.id

LEFT OUTER JOIN locations
ON bands.location_id=locations.id

WHERE locations.city = `Boston`

The SQL will look like the preceding statement under most circumstances. However, if the
tables included loop back on themselves, the table names will need to be relabeled. Therefore,
if we had the following class

CHAPTER 2 ■ ACTIVE RECORD AND SQL 29

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 29

class Person < ActiveRecord::Base
belongs_to :parent, :class_name => "Person"
has_many :children, :class_name => "Person", :foreign_key => :parent_id

end

we would need to use the following statement to find people who have a child with a particu-
lar name:

Person.find :all, :include => {:children => {}},
:conditions => ["children_people.name = ?", name]

If Active Record finds that it’s trying to join back to a table it has already included, it will
change the name of the table to eliminate ambiguity. It does this using a breadth-first search
of all the keys in the hash table, so in the rather contrived example of

:include => { :parent => { :parent => {}}, :children => {}}

the parent can be referenced via parents_people, but the parent’s parent must be referenced
via parents_people_2. The full method call for obtaining all the people whose grandparents
have a specific name is

Person.find :all, :include => { :parent => { :parent => {} },
:conditions => ["parents_people_2.name = ?", name]

This would generate the following SQL clause:

SELECT *
FROM people
LEFT OUTER JOIN people AS parents_people
ON parents_people.id = people.person_id

LEFT OUTER JOIN people AS parents_people_2
ON parents_people_2.id = parents_people.person_id

When there are no includes specified—so there is only one table involved in the query—
the SELECT clause is an asterisk (*) for simplicity. However, once you include other models into
your find call, the columns become specified and are aliased so Active Record can tell them
apart. For example, the actual SELECT clause from the preceding query looks like this:

SELECT
people.`id` AS t0_r0,
people.`person_id` AS t0_r1,
people.`name` AS t0_r2,
parents_people.`id` AS t1_r0,
parents_people.`person_id` AS t1_r1,
parents_people.`name` AS t1_r2,
parents_people_2.`id` AS t2_r0,
parents_people_2.`person_id` AS t2_r1,
parents_people_2.`name` AS t2_r2
FROM
...

CHAPTER 2 ■ ACTIVE RECORD AND SQL30

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 30

This way, all of the fields can be differentiated and placed into their proper objects before
being given back to you.

:order
The :order parameter is where you define the sorting order that would normally appear in the
ORDER clause.

Account.find :all, :order => "created_on DESC, last_name, first_name"

As you can see this example, the format for the order string is the same as the ORDER BY
clause in SQL. Therefore, the SQL generated from the preceding example is

SELECT * FROM accounts ORDER BY created_on DESC, last_name, first_name

When you specify the :order option, you are literally specifying a snippet of the SQL
statement that will be sent to your database server. Therefore, the naming rules described in
the previous section, which come as a result of using the :include option, apply to the columns
specified in the :order parameter as well.

:select
You can use the :select option to specify some extra columns in the SELECT clause. Any extra
columns will be added as additional attributes on the returned objects. However, because
Active Record doesn’t know how to save these extra attributes, the objects it returns will auto-
matically be marked as read only, so they cannot be saved.

The :select option is most often used together with the :group or :joins options, both of
which are described in the following subsections. For now, let’s do something simple and add
an extra string to our returned objects, as shown in the following SQL statement:

SELECT accounts.*, "extra data" FROM accounts

The Active Record equivalent would be

Account.find "all", :select => "accounts.*, 'extra data'"

:group
Much like the :order option described earlier, what you specify in the :group option directly
translates to a portion of the SQL query to be performed. In this case, it is the GROUP BY clause
of the SQL statement. The Active Record find call

Account.find :all, :group => "last_name"

will result in the following SQL:

SELECT * FROM accounts GROUP BY last_name

It will most often be the case that you will use the :group option in concert with the
:select option to define some additional grouped parameters. For instance, if you wanted to
find the number of people who have the same last name, you could do the following

Account.find :all, :select => "COUNT(last_name) AS total, *", :group => "last_name"

CHAPTER 2 ■ ACTIVE RECORD AND SQL 31

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 31

which would result in the following SQL:

SELECT COUNT(last_name) AS total, * FROM accounts GROUP BY last_name

:joins
While the join parameter is similar in function to the :include option, it works on a lower level
in the resulting SQL statement. The value given to the :joins option is a string that will get
added to the FROM clause of the SQL statement. You can use this to perform a join on tables to
which you don’t have a defined Active Record relationship. While such a join may not be some-
thing that you will use on a normal basis, it can be very powerful in the situations where you
do need it.

For example, if you have a legacy table named visits that does not have a defined rela-
tionship to your Active Record model’s table and you need to join against and select out of
visits, your code might look something like the following:

Account.find :all,
:joins => "LEFT JOIN visits ON accounts.id=visits.account"

The result will be the following SQL query:

SELECT * FROM accounts LEFT JOIN visits ON accounts.id=visits.account_id

As you can see, the value given to the :joins option is appended to the FROM portion of the
SQL; it does not replace it. Therefore, your model’s table, in this case accounts, will always be
included in the FROM clause. If you don’t want your model’s table to be included, you can use
the :from option, described next—but, in that case, you also should probably consider just
querying the database directly, using either the find_by_sql or execute methods, described
later in this chapter.

:from
Whereas the :joins option will let you specify extra tables to join to in the FROM clause, the
:from option allows you to specify the entire contents of the FROM clause of the SQL statement.
For example, given the same visits table mentioned in the :joins example, we can reverse
the query to stem from visits:

Account.find :all,
:from => "visits LEFT JOIN accounts ON visits.account=accounts.id"

And the following SQL query will result:

SELECT * FROM visits LEFT JOIN accounts ON visits.account=accounts.id

:limit and :offset
The :limit and :offset options both take an integer and correspond directly with the LIMIT
and OFFSET clauses in SQL. For example, the following statement:

Account.find :all, :limit => 10, :offset => 20

CHAPTER 2 ■ ACTIVE RECORD AND SQL32

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 32

will find you the twenty-first to thirtieth people in the people database, using the following
SQL query:

SELECT * FROM accounts LIMIT 10 OFFSET 20

:readonly
As previously mentioned, when a query returns data columns that don’t correspond to
columns in a table, for example, manually added joins using the :joins option or grouped
columns using :select and :group, Active Record will mark the each record returned as read
only, as it won’t know what to do with those columns. You can override that behavior by pass-
ing :readonly => false as an option.

Likewise, sometimes you just don’t want your data to be changed. For security purposes,
you can add :readonly => true to your options, and you won’t be able to save the records that
come out of that particular find call.

:lock
You can use the :lock option to have the database lock the selected rows. The value given for
the lock option is either the Boolean true or an SQL fragment like LOCK IN SHARE MODE. If you
pass in true, Active Record will use the default locking syntax for your connection. For a com-
plete discussion of the locking features of Active Record, see the “Locking” section later in this
chapter.

Dynamic Finders
It just wouldn’t be Ruby if we didn’t have a cleaner, easier way to access data. The normal find
method works well, but it can get unwieldy if you’re not careful. Thankfully, Active Record pro-
vides dynamic finders that can find your data while still looking clean.

You can use these dynamic finders by starting a method call with find_by_ or find_all_by_
and adding in the columns you want to search on, as shown in the following example:

Person.find_by_username @username

You can also search on multiple columns by separating them with _and_:

Song.find_all_by_artist_id_and_genre @artist.id, @genre

These uses of the dynamic finder methods are the same as the detailed find calls:

Person.find :first, :conditions => { :username => @username }
Song.find :all, :conditions => { :artist_id => @artist.id, :genre => @genre }

Like all of the different find variations, the dynamic finders also take an options parame-
ter as their last argument, so you can :limit, :order, :group, :lock, and so on, just as you
would with the normal syntax.

Additionally, if you find yourself in a scenario where you want to search for an object and
create it if it does not exists, you can use the dynamic finder find_or_create_by_, which works
just like the find_by_ method but with one exception: instead of returning nil if a matching
object is not found, that object will be created. find_or_create_by can come in handy during
legacy data importing, for instance, if you have a list of categories to which a product could

CHAPTER 2 ■ ACTIVE RECORD AND SQL 33

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 33

belong. Assume you’re given a text file that tells you the product and to which category it
belongs, as shown here:

HTW2, Dairy
HTZ3, Meat
HTW3, Dairy
HTH9, Product

In this example data set, you know each product is unique, and therefore, you could loop
through each line of the file, creating the product. However, you know that the categories can
be repeated, as shown with the Dairy category above. You wouldn’t want to create the Dairy
category twice. This is an ideal scenario for find_or_create_by_, as follows:

p = Product.new(:number => @product_number)
p.category = Category.find_or_create_by_name(@category_name)
p.save

This code will appear inside a loop and assumes that the product number and category
name have been placed inside the @product_number and @category_name, respectively. The cat-
egory on the product can safely be set, without fear of duplication, because that category has
either been found or was created based on the category name.

Updating a Record
Updating a record looks a lot like creating a record, at least with save. Like creating, though,
there are a few other methods for updating one or more attributes besides the normal save
method. For example, the use of the save, update_attribute, and update_attributes methods
will all generate the same SQL statement in the end:

song.name = "Ruby Dear"
song.save

song.update_attribute :name, "Ruby Dear"
song.update_attributes :name => "Ruby Dear"

The resulting update statement would look as follows:

UPDATE songs SET `name` = 'Ruby Dear', `artist` = 'Talking Heads' WHERE id = 2

The update_attribute method only works on a single attribute. It takes two parameters,
the name of the column and the new value to save. The update_attributes method takes in
only one parameter, a hash containing the pairings of names and values that should be saved.

■Note When you call update_attributes (and update_attribute), Active Record basically sets the
attributes you specify and calls save, so any other changes you’ve made to attributes will be saved along
with the arguments to update_attributes.

CHAPTER 2 ■ ACTIVE RECORD AND SQL34

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 34

It’s important to note that when a record is saved because of update_attributes, that save
is not subject to validation checks. If you have an invalid record for whatever reason, the
attributes will be updated anyway. This is important to know, because if you’re ever in a situa-
tion in which you have an invalid object but still need to toggle a flag or set a status, you can.

While creation of related objects will occur when your object is created, as described in
the “Creating a Record” section earlier, it is important to note that associated objects do not
behave similarly when updates are performed. For example, in the following code, the modifi-
cation to the Category model will not be saved:

p = Product.find 1
p.category.name = "Changed"
p.save

Therefore, you must explicitly call save on associated objects, for example:

p = Product.find 1
p.category.name = "Changed"
p.category.save

That being said, it is not necessarily commonplace to perform the type of operation illus-
trated here, especially in a web-based application.

Deleting a Record
Sometimes, data has to go away. We know, it’s not always a pleasant thought, but not all data is
useful all the time. Sometimes the user makes a mistake; sometimes data is past its prime and
needs to get put out to pasture. Regardless of the reason, Active Record is capable of handling
the deletion of rows from the database using several different methods: destroy, destroy_all,
delete, and delete_all.

Calling destroy on an object will delete it from the database keyed on its primary key. For
example, the following call

song = Song.find(3)
song.destroy

would be the same as this one:

DELETE FROM songs WHERE id = 3

Similarly, you can use the destroy class method like you can use find and pass in one or more
IDs, which will be instantiated and then have the destroy method called on them. For example

Song.destroy(10, 11, 20)

would be the same as

DELETE FROM songs WHERE id IN (10,11,20)

Calling destroy (and also passing an ID to the class’s destroy method) means that any
deletion-triggered callbacks that the model might have instantiated, such as a cascading
delete or a cascading nullify on its relationships, will be called. If you would prefer to delete
something without calling all the callbacks or instantiating the objects, you can call delete. It
works exactly the same way as destroy but does not call the callbacks.

CHAPTER 2 ■ ACTIVE RECORD AND SQL 35

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 35

You can also delete_all and destroy_all. These two methods work the same way as the
destroy and delete methods do, except they delete all of the records of the Active Record class
on which they are called. Additionally, they optionally take a hash of options that will be used
to construct the WHERE clause of the SQL statement as a parameter. This options hash works in
exactly the same way as the :conditions option does for the find method. The following
example

Song.destroy_all :artist => "Garth Brooks"

is the same as this:

DELETE FROM songs WHERE artist = "Garth Brooks"

When you have associated models that should not exist without each other being present,
such as the person models used previously in the chapter, you may want to ensure that when
one object is deleted, the others are deleted as well. You can accomplish that using the
:dependent option on the relationship definition, as shown here:

class Person < ActiveRecord::Base
belongs_to :parent, :class_name => "Person"
has_many :children,

:class_name => "Person",
:foreign_key => :parent_id,
:dependent => :destroy

end

With the :dependent => :destroy option on the :children association, if the object is
deleted, then the associated children objects will also be deleted, for example:

bm = Person.new(:first_name => "Bob", :last_name => "McCracken")
pm = Person.new(:first_name => "Pam", :last_name => "McCracken")
jm = Person.new(:first_name => "Joey", :last_name => "McCracken")

bm.children << pm
bm.children << jm
bm.save

This code executes the corresponding SQL statements:

BEGIN;
INSERT
INTO people (`first_name`, `last_name`, `parent_id`)
VALUES ('Bob', 'McCracken', 0);

INSERT
INTO people (`first_name`, `last_name`, `parent_id`)
VALUES ('Pam', 'McCracken', 1);

INSERT
INTO people (`first_name`, `last_name`, `parent_id`)
VALUES ('Joey', 'McCracken', 1);

COMMIT;

CHAPTER 2 ■ ACTIVE RECORD AND SQL36

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 36

Afterward, the people table would have the following entries:

+----+-----------+------------+-----------+
| id | parent_id | first_name | last_name |
+----+-----------+------------+-----------+
1	0	Bob	McCracken
2	1	Pam	McCracken
3	1	Joey	McCracken
+----+-----------+------------+-----------+

Now, if you subsequently execute the following code

bm = People.find_by_first_name_and_last_name("Bob", "McCracken")
bm.destroy

it will result in the following SQL statements being executed:

SELECT * FROM people WHERE (people.parent_id = 1)
BEGIN
SELECT * FROM people WHERE (people.parent_id = 2)
DELETE FROM people WHERE `id` = 2
SELECT * FROM people WHERE (people.parent_id = 3)
DELETE FROM people WHERE `id` = 3
DELETE FROM people WHERE `id` = 1

COMMIT

As you can see in these SQL statements, each of the children is loaded and deleted, and
then the parent object is deleted as well. Each of the objects is loaded because each is literally
having destroy called on it, which means that all of the callbacks are called as with a normal
destroy call. If you do not wish for all of the callbacks on the children to be called, you can
change :dependent => :destroy to :dependent => :delete_all. If you do this, the call to
bm.destroy will result in the following SQL statements being called:

BEGIN
DELETE FROM people WHERE (parent_id = 1)
DELETE FROM people WHERE `id` = 1
COMMIT

You can see from this SQL that when :dependent => :delete_all is used on the children’s
relationship, the children are not loaded. Rather, a normal delete_all is performed. This means
that any destroy callbacks on the children will not be executed.

Completely Nondynamic Finders
It should be mentioned that Active Record, in the end, works by passing an SQL string to the
database through an adapter. Since Active Record doesn’t deny its roots, you are also able to
access the database in a more direct fashion. To this end, Active Record supplies a find_by_sql
method as well as the execute method.

You can use the find_by_sql method to pass in a string of SQL and obtain an object that
contains the attributes you specify in the SELECT clause. The useful thing about find_by_sql is

CHAPTER 2 ■ ACTIVE RECORD AND SQL 37

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 37

that Active Record will still return an array of objects, saving you the tedium of having to parse
through everything yourself. The type of object that gets returned is the same as the class that
find_by_sql was called on. That this means if you call

Song.find_by_sql("SELECT users.* FROM users")

you’ll have an array of Song objects that contain User data. So be careful about what data
you’re expecting to return.

Because the find_by_sql method will create objects from the return value of the SQL, you
cannot use it to execute any bit of arbitrary SQL. Therefore, if you are seeking to execute truly
custom SQL statements, including INSERT and UPDATE statements, the execute method is what
you’d want to use. You can do anything with the database that you’d need to (except, of course,
return fields) through this function.

Transactions
Many databases support the idea of transactions, that is, if there is an error performing
a statement, which occurs within a specified block, the database will be rolled back to the
state it was in before the block of statements.

A simple example for transactions is when you need to perform two actions, the second of
which should not occur if there is a problem performing the first. The classic example is a bank
account transfer. In SQL, an account transfer would be performed in the following manner:

UPDATE accounts SET balance=balance-300.00 WHERE id=3;
UPDATE accounts SET balance=balance+300.00 WHERE id=4

In this example, $300.00 is being transferred from account number 3 to account number 4.
If something were to go wrong with removing the $300.00 from account number 3, the addi-
tion of $300.00 to account number 4 would still occur. While that might make account holders
happy, it certainly doesn’t make the bank happy. The solution to the problem is to wrap the
SQL statements in a transaction. With most databases that support transactions, you demar-
cate a transaction using the BEGIN and COMMIT (or ROLLBACK) statements, as follows:

BEGIN
UPDATE accounts SET balance=balance-300.00 WHERE id=3
UPDATE accounts SET balance=balance+300.00 WHERE id=4

COMMIT

With the BEGIN and COMMIT (or ROLLBACK) statements now enclosing the SQL commands, if
something goes wrong, the database will be returned to the state it was in before the opera-
tions were performed. In other words, any failure will cause the database to be rolled back to
before the transaction began.

Fortunately, Active Record fully supports transactions. In fact, all save and destroy method
calls are wrapped in transactions by default, to ensure that all save and destroy procedures,
including the callbacks, are atomic.

However, the transactions in Active Record really just result in the BEGIN, COMMIT, and
ROLLBACK statements being used (or the corresponding statements specific to the database you
are using). Therefore, if your underlying database does not support transactions (such as the
MyISAM table format in MySQL), then the transaction code will have no effect. Fortunately,

CHAPTER 2 ■ ACTIVE RECORD AND SQL38

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 38

you can use the transaction code without error on databases that don’t support transactions,
but this may result in a false sense of security.

Our simple update statements for transferring the money, like the previous SQL state-
ments, follow:

my_account.update_attribute(:balance, my_account.balance-300.00)
your_account.update_attribute(:balance, your_account.balance+300.00)

To wrap this code in a transaction, you use the transaction class-level method on the
Active Record model, which would look like the following:

my_account = Account.find 3
your_account = Account.find 4
Account.transaction do
my_account.update_attribute(:balance, my_account.balance-300.00)
your_account.update_attribute(:balance, your_account.balance+300.00)

end

The SQL generated from these statements will be very similar to the SQL statements that
added and subtracted from the account balance previously, but the computation of the new
balance was performed in Ruby (i.e., my_account..balance-300.00). The resulting SQL statements
from the Active Record preceding update_attributes calls are shown following:

SELECT * FROM accounts WHERE id=3;
SELECT * FROM accounts WHERE id=4;
BEGIN;
UPDATE accounts SET balance=20.00 WHERE id=3;
UPDATE accounts SET balance=340.00 WHERE id=4;

COMMIT;

It’s important to note that a transaction will not only be rolled back if something wrong
occurs at just the database level. When using an Active Record transaction, if any exception is
raised, the transaction will automatically be rolled back by Active Record. To take advantage of
this rollback, the preceding Ruby code that modifies the account balances can be refactored
to ensure that no account will contain less than $0.00. Because additional code will be added,
the existing Account model will be refactored to have withdraw and deposit methods, as follows:

class Account < ActiveRecord::Base
def withdraw amount
update_attribute(:balance, balance-amount)
if balance < 0
raise

end
end

def deposit amount
update_attribute(:balance, balance+amount)

end
end

CHAPTER 2 ■ ACTIVE RECORD AND SQL 39

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 39

Now, given the preceding Account class, you can perform the following actions:

my_account = Account.find 3
your_account = Account.find 4
Account.transaction do
my_account.withdraw(300.00)
your_account.update_attribute(300.00)

end

If subtracting $300.00 from my_account will result in a negative balance, an exception will
be raised, and the transactions will be rolled back. In the preceding scenario, if the beginning
balance of account number 3 is only $20.00, which would result in a negative balance, then
the SQL for the Ruby code would actually look like this:

SELECT * FROM accounts WHERE id=3;
SELECT * FROM accounts WHERE id=4;
BEGIN;
UPDATE accounts SET balance=-280.00 WHERE id=3;

ROLLBACK;

Because the balance of the account is negative, COMMIT is not called at the end of the
transaction block; rather, the ROLLBACK statement is called.

■Note If you need to do transactions across multiple databases, you can nest transactions. For an example
of how to do this, see the “Common Active Record Questions” section in Chapter 5.

It is important to note that the value of my_account.balance at the end of the previous
actions will still be -$190.00. Because the transaction rollback occurs at the database level, not
at the object level, the objects themselves will not be returned to their original state. Currently,
Active Record does support object-level transactions, but they are deprecated. They are not
commonly needed and will be removed from the release of Active Record included in Rails 2.0;
therefore, they will not be covered here. If you do, in fact, need this functionality, it is available
in the object_transactions plug-in from Jeremy Kemper (also known as bitsweat) at http://
code.bitsweat.net/svn/object_transactions.

Locking
Active Record supports two forms of locking, optimistic and pessimistic. In Active Record,
optimistic locking means that the database records are versioned, and before an objects is
actually saved back to the database record, the version you are saving is checked against the
version in the database to make sure the model was not otherwise modified while you were
working on it. If it was modified, an exception is raised. The other type of locking in Active Record,
pessimistic locking, is simply row-level locking, as supported by the database.

CHAPTER 2 ■ ACTIVE RECORD AND SQL40

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 40

Optimistic Locking
As previously mentioned, optimistic locking in Active Record is accomplished by keeping track
of which version of a model you are working with. The use of optimistic locking is triggered
simply by adding a column named lock_version to your model’s database table.

■Tip You are responsible for ensuring that the database schema defaults the lock_version column to 0.
Additionally, you can use a different column name by calling the set_locking_column method in your model.

If the version of the object you are working on is out of date, when you attempt to save
your object, an ActiveRecord::StaleObjectError exception will be raised. It is your responsi-
bility to handle this error by either rolling back or providing the logic needed to resolve the
possible conflict. Because of this, it is very common to use transactions along with locking.

To further illustrate optimistic locking, it can be used to ensure that the Account records
are not modified by multiple processes, thereby ensuring that your account data remains con-
sistent. Here’s our trusty Account model, repeated here for your reference:

class Account < ActiveRecord::Base
def withdraw amount
update_attribute(:balance, balance-amount)
if balance < 0
raise

end
end

def deposit amount
update_attribute(:balance, balance+amount)

end
end

If optimistic locking is enabled on the Account model by including a lock_version column
in your accounts table, the following code will cause an ActiveRecord::StaleObjectError to
be raised:

my_account1 = Account.find 3
my_account2 = Account.find 3

my_account1.withdraw 20
my_account1.save

my_account2.withdraw 40
my_account2.save # This line raises an ActiveRecord::StaleObjectError

The exception was raised, because the object was previously modified. This example is
somewhat contrived, but hopefully, you can envision that the modification of the Account
object might take place in another process or web request, and in that case, knowing that your
underlying record has changed before attempting to save it would be very important.

CHAPTER 2 ■ ACTIVE RECORD AND SQL 41

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 41

Pessimistic Locking
The second form of locking that Active Record is capable of is pessimistic locking. Active
Record’s implementation of pessimistic locking is simply row-level locking as supported by
your database. Therefore, if your underlying database does not support locking, neither will
Active Record.

There are two different ways to invoke a row-level lock on your data. The first is by using
the :lock option of the find method. As described when we introduced the find method, the
:lock option to find takes either the Boolean true or a string that is a database-specific lock-
ing statement. If you give the option the Boolean true, the locking statement will default to
FOR UPDATE. For example, the following statement

Account.find 3, :lock => true

will result in this SQL statement, with the row for the account with an ID of 3 locked for updating:

SELECT * FROM accounts WHERE id=3 FOR UPDATE

And this Active Record code

Account.find 3, :lock => "LOCK IN SHARE MODE"

will result in the following SQL statement, with the row for the account with the ID of 3 locked
in share mode:

SELECT * FROM accounts WHERE id=3 LOCK IN SHARE MODE

You can also use the instance method lock!, which will reload your row with locking for
just that row. For example, the following method call

my_account = Account.find 3
my_account.lock!

results in the following SQL statements:

SELECT * FROM accounts WHERE id=3
SELECT * FROM accounts WHERE id=3 FOR UPDATE

CRUD Isn’t Cruddy
Now that you’ve explored how Active Record relates to the underlying SQL statements it cre-
ates, you have a better appreciation for the power of Active Record, as well a more complete
understanding of what Active Record does and how it works. In addition, hopefully you’ve
begun to understand how to think about the basic Active Record operations in the context of
the four basic CRUD operations. If you’re using Active Record in the context of Ruby on Rails,
thinking about Active Record this way will be especially helpful.

You may have also started to notice recurring patterns in the way names of Active Record
classes and attributes relate to the generated SQL. In the next chapter, we’ll explain how to set
up and maintain your database using standard Active Record naming conventions and tools.
And of course, we’ll show you how to break these conventions for your own twisted uses.

CHAPTER 2 ■ ACTIVE RECORD AND SQL42

8474_ch02FINAL.qxd 8/25/07 9:11 AM Page 42

Setting Up Your Database

If you’ve been reading through this book from the start, you should now be pretty comfort-
able with the basic idea of Active Record and how to write create, update, read, and delete
operations. So you’re just about ready to start digging into all the juicy details and extras that
Active Record brings to the table. There is just one last detail to get out of the way, and that’s
the process of actually setting up our database.

Designing Active Record–Friendly Tables
Later in this chapter, you will be introduced to Active Record migrations, a powerful way to set
up and maintain your database schema with nothing more than simple Ruby code. Before we
get into that though, let’s take a quick minute to review the things you should keep in mind
when designing tables for use with Active Record. Most of these things were covered in Chapter 1
when we talked about Active Record assumptions, but as these assumptions are especially
important to keep in mind when you are designing your tables, they’re worth a quick review
here as well. Ready?

Every table should have an automatically incrementing primary key called id. If you chose
not to follow this rule, you will have to specifically define your primary keys within your
models with the set_primary_key method and specifically define your foreign keys for
each of your associations.

Table names should be plural. If you choose not to follow this rule, you will have to specifi-
cally define your table names from within your models with the set_table_name method.

Tables and fields should stick to lowercase letters. Ruby is a case-sensitive language, so it
stands to reason that Active Record objects are also case sensitive. For example, assume
you have an account table with a field labeled account_username. From within your Ruby
code, you would be able to access the data from an Active Record object (account in this
example) as account.account_username but not as account.Account_Username or any other
case variation (this would throw a method_missing error). We will revisit this issue when
we talk about legacy systems and especially the find_by_sql method in Chapter 7.

43

C H A P T E R 3

■ ■ ■

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 43

To track record additions and updates, tables should have fields called created_on or
created_at and updated_on or updated_at. If these fields exist within your table, Active
Record will automatically populate them with the timestamp when records are created
for the created_on or created_at field or when records are updated for the updated_on or
updated_at field. If you prefer to use another field name for either of these, you can just
use callbacks to keep these fields properly updated. We cover the details of callbacks in
Chapter 4.

Foreign keys should be of the structure tablename_id. If you choose not to follow this rule,
you will have to specifically define what field to use for each of your associations.

Active Record treats 0, "0", "false", and "f" as false for Boolean field types, whereas in
general Ruby syntax, all those values evaluate to true. Each database implements Boolean
data types a little bit differently, and some don’t support them at all. As an attempt to work
properly in as many cases as possible, Active Record will convert values to Ruby true or
false values for most Boolean field types. Just keep in mind that this conversion to Boolean
types is done by Active Record magic to work around a Ruby design issue. If you find that
you are having problems with Booleans in your Active Record programs, you should check
how the specific adaptor for your database implements Boolean types. We talk more about
Booleans and other data types in Chapter 7.

Active Record assigns values to all fields within a table. When you save a new Active Record
object or do an update on an Active Record object, Active Record actually assigns a value
to every field within the table in the database. If you haven’t set a value for a given field,
the field will be set to nil. This is important to remember, because it means default values
set up within your database (like a timestamp) will most likely not be triggered since
a specific value is provided (nil) for the field. We covered this issue in Chapter 2 with cre-
ate and update statements and will speak about it again in Chapter 7, when we deal with
legacy database systems.

The items in this list are the key things you should keep in mind when designing your
database tables. You can ignore each as you see fit for your specific needs, but doing so gener-
ally means more typing and more work for you as a developer. So, all things being equal, we
believe you’re better off making your database conform to the way that Active Record is designed
to work.

Traditional Database Management
Now that you recall the basic naming conventions and design rules we should follow when
defining our tables, it’s finally time to start building our real tables. If you are coming from
a development background in another language such as Java, PHP, Perl, or Active Server Pages
(ASP), it’s likely that you’ve been building database-driven applications in the traditional man-
ner. That is, every time you build an application, you go through steps like these:

CHAPTER 3 ■ SETTING UP YOUR DATABASE44

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 44

1. Define and design your tables in a database management program such as SQL Server
Enterprise Manager, TOAD for Oracle, MySQL Administrator, or even in something like
batch SQL scripts.

2. Configure your development environment to work with the database details you have
just defined and set up, generally with configuration files (XML, properties, or simply
text files).

3. Start writing your application logic.

4. Load data into your testing database manually with your database administration pro-
gram, through some batch SQL scripts, or through a custom-built web or application
administration tool.

5. Test, release, repeat.

While your specific situation may vary from project to project, the previous steps are the
common and general things we programmers do when we build an application. And while
they are a proven and tested approach, there are some common problems that most of us
have just learned to accept.

Common Problems with the Traditional Approach
Admittedly building database-dependent web sites and applications with the traditional
approach is not too complex of a process. We’ve all been using that same process for years,
and many successful projects have been built using it. Still, if you take a minute to think about
the process itself, there are a few common problems that come into focus:

• You need to do a lot of jumping back and forth between your database application and
your code environment. This means a slower development time and a higher potential
for error. Each environment also comes with its own set of knowledge requirements,
and that means you have to learn a lot to do even the simplest of projects.

• You need to know how to work within your specific database environment, which often
includes having to know the ins and outs of the specific SQL syntax your database engine
supports. Dealing with the various SQL syntax gets worse if you intend to develop against
one database backend but release to production on another

■Note Switching from one database backend to another is common in Rails development, because it’s
usually easier to work locally with a database like MySQL, but many people prefer the higher performance of
an Oracle or SQL Server for production environments.

• As you make updates and changes to your database, you must maintain those changes
across all of your environments—and often there is no easy way of rolling back or
undoing those changes if errors occur.

CHAPTER 3 ■ SETTING UP YOUR DATABASE 45

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 45

While none of these problems are show stoppers on their own, it certainly seems like
there should be an easier way to do things. And, as you probably guessed by now, Active
Record does have another option for you—migrations.

Managing Your Database with Migrations
Before we get into the details of using Active Record migrations and show you some example
code, we need to get a few key definitions out of the way. First, just what are Active Record
migrations? The following is our plain English base definition: Active Record migrations offer
a pure Ruby solution to managing the creation and evolution of database schema.

From a more technical point of view, migrations come in the form of a Domain Specific
Language (DSL) that is expressly created for abstracting out the differences in database defini-
tions and managing changes of the database and its tables. In case you are not familiar with
what a DSL is, Wikipedia defines DSL as “a programming language designed for, and intended
to be used for, a specific kind of task” (see http://en.wikipedia.org/wiki/Domain_Specific_
Language for more Wikipedia information on DSL).

We think that’s a pretty clear definition, but we’ll take it a few steps further to be specific
within our realm. As Active Record developers, our migration DSL is a set of Ruby instructions
or modules that allow us to create more Ruby programs that we use to build and manage our
database schema. The migration DSL is like a language within a language. It is how we interact
with our database without having to actually learn everything about our database environment
and without having to do anything directly within our database application.

For us, the key to working with our migration DSL is to learn the keywords and their
related actions. The rest is all Ruby syntax (which you already know) and database design the-
ory (we covered the basic rules for this at the start of this chapter and have hopefully defined it
in more detail as part of our application specifications before we sat down and started to write
any code).

How the DSL Works
The DSL essentially enables us to map our database schema to an Active Record schema. The
documentation for Active Record Schema states this:

Active Record Schema allows programmers to programmatically define a schema in

a portable DSL. This means you can define tables, indexes, etc. without using SQL

directly, so your applications can more easily support multiple databases.

What this really means is that the ActiveRecord::Schema class is where all the real action
of your database schema definitions and maintenance happens. As we build our migrations,
we will be continuously switching between our database schema and our Active Record schema.
While this switching back and forth between database and Active Record schema will often be
transparent to you, the developer, it nonetheless occurs quite often and is accomplished pri-
marily through the ActiveRecord::SchemaDumper class.

CHAPTER 3 ■ SETTING UP YOUR DATABASE46

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 46

■Note We’ll use ActiveRecord::SchemaDumper at various points in our examples later in the chapter to
show just in what state our database schema is at a given time.

Finally, we have the actual migration wrapper class. This is where all the parts we’ve talked
about previously come together and our scripts come to life.

The important thing to remember is that migrations involve a DSL and act as a wrapper,
or glue, for the other pieces of our database to set up the code and DSL we’ve mentioned pre-
viously. We should also mention that, because migrations abstract the details of working with
your specific database, they rely heavily on each database adapter to perform many of the
database-specific functions (that is, to do the actual conversion from the migration DSL to the
database-specific SQL that will be executed against the database). If you find that you are hav-
ing trouble with a specific migration situation, you will likely want to refer to your adapter code
and documentation first.

It’s also important to remember that with migrations you’re actually just working with
Ruby code. Migrations can perform calculations, manipulate data, and do anything that you’d
normally be able to do within Ruby. Because of this, migrations can prove to be a very, very
powerful tool in the Ruby programmer’s arsenal.

In the end, using migrations means that, as a developer, you can work strictly in Ruby
code to set up and manage your database. And you can more easily switch among database
backends as you like, because all of the database SQL specifics have been abstracted for you!

Migrations are also an important part of making sure you and your development team
keep your databases in sync from revision to revision and to make sure that everything goes as
planned when you’re deploying your applications to a different database or machine. That
sounds pretty exciting, doesn’t it? And, believe it or not, migrations are not even all that hard
to learn or use!

Using Migrations
We’ve mentioned the traditional steps that programmers go through when building database
applications. Now, let’s compare that process to the steps that a programmer goes through
using Active Record migrations:

1. Create a connection for your Active Record program to your database. This is generally
done through a YAML configuration file or through the ActiveRecord::Base.establish_
connection method.

2. Create and execute Ruby scripts using the Active Record migration DSL syntax and rules.

3. Start writing your application logic.

4. Load data into your testing database manually with your database administration
program, through some batch SQL scripts, through custom-built web or application
administration tool, or via fixtures with your migration scripts.

5. Test, release, repeat.

CHAPTER 3 ■ SETTING UP YOUR DATABASE 47

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 47

At first glance, this process may not seem that much different than the traditional approach.
However, after closer examination, you will see the following key differences and that those
differences directly address the common problems with the traditional approach:

• Everything is done from within Ruby scripts. There is no switching among environments
or wasting time learning the ins and outs of multiple environments.

• The migration DSL abstracts the database-specific details for you, so you no longer
need to know the ins and outs of your specific database. Oftentimes, you don’t even
need to know anything about the specific SQL that your database engine supports. You
can now switch among database engines with almost no extra effort (as long as the
Active Record database adapter supports migrations).

• Since all of your database schema changes are now stored in migration scripts (which
should be versioned), you now have an audit trail of all your actions. The biggest advan-
tage to this is that you can rebuild your database from scratch regardless of the database
backend by simply running your migration scripts in sequential version order! If your
database supports the related database management SQL syntax, such as rollback state-
ments, you can also roll back from a given state to any previous state by simply executing
your migration scripts in reverse version number order.

If you aren’t excited by now about working with Active Record migrations, then you’re
either in the wrong profession or you just haven’t suffered through the traditional approach
enough yet (build a few more midsized Java applications and then come check out Ruby and
Active Record)! For the rest of us who can’t wait any longer, let’s get into the details of actually
using migrations—and what better place to start then with how to execute your migration
scripts.

Executing Migration Scripts
Migrations, like Active Record itself, evolved out of the Rails framework, so migrations are still
somewhat tightly coupled with the Ruby on Rails framework. If you want to run migrations
outside of the Rails framework, it’s very feasible, but you will need to do just a little bit more
work than if you want to run migrations within your Rails framework. To be thorough, we’ll
explain how to execute migrations in both situations, starting with the Ruby on Rails framework.

Executing Migrations Within Ruby on Rails
Within a Ruby on Rails project, migrations are stored in the db/migrations folder and are named
by prepending numbers, in sequential order, to the script name. When you run script/generate
migration from your Rails root and give it a name, it will generate a file using the next number
available. For example, executing the command script/generate migration create_users_
table will make a file in db/migrate called 001_create_users_table.rb.

Running the migrations to apply the Active Record schema to your database schema
within the Rails framework is done with a Ruby on Rails rake task and can move the migration
version up or down to any specific revision using a command like rake db:migrate [VERSION=X].

CHAPTER 3 ■ SETTING UP YOUR DATABASE48

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 48

■Note If you leave off the VERSION parameter, it will attempt to migrate the database as high as it can go
by adding one to the highest version number found in the schema_info table.

Executing Migrations Outside of Ruby on Rails
The rake method for generating and running migrations described previously is only valid if
you are working from within the Ruby on Rails framework. As we mentioned, though, you can
still use migrations outside of the Rails framework, you will just need to create your own script
to run the migrations. Lucky for you, we’re going to get you started on that task.

The following script assumes that you will be storing your database configuration details
in a YAML file called database.yml. For simplicity, the following script, the YAML file, and your
migrations are assumed to all be located in the same directory.

require 'rubygems'
require_gem 'activerecord'

if ARGV[0] =~ /VERSION=\d+/
version = ARGV[0].split('=')[1].to_i

else
version = nil

end

@logger = Logger.new $stderr
ActiveRecord::Base.logger = @logger
ActiveRecord::Base.colorize_logging = false

@config = YAML.load_file(File.join(File.dirname(__FILE__), 'database.yml'))
ActiveRecord::Base.establish_connection(@config["development"])
ActiveRecord::Migrator.migrate("", version)

Assuming you place the preceding script in a file called migrate.rb, you can run your
sequentially numbered migrations with the command ruby migrate.rb.

■Note This script does not generate the migration files. You’ll still need to create and populate the files by
hand (or write another script to generate them).

Finally, executing a migration will create (or update depending on the project life cycle)
a table in your database called schema_info that contains the number of the latest run migra-
tion file. The schema_info table is used to determine which migration script to start with the
next time you run a migration process as well as what number to prepend to any new migra-
tion scripts.

CHAPTER 3 ■ SETTING UP YOUR DATABASE 49

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 49

■Note You should always be able to run your migrations back and forth from version zero to wherever you
are at any time. It’s not mandatory to be able to do that, but it’s sound migration practice, because it lets you
make sure your database is in a sane state at all times. If you can’t bring your database from migration zero
to your latest state, then migrations really haven’t allowed you to automate or simplify the management of
your database schema. Therefore, you should avoid using model class names inside migration files, because
if you remove one of those classes later on, you won’t be able to do a clean migration from zero forward.
Stepping through your scripts will, instead, throw an error when older versions of your script can’t find the
referenced class.

The Anatomy of a Migration File
Regardless of how you create your migration scripts (either via the Rails generate command or
simply by hand), they all should start out with a basic structure that looks something like the
following:

class CreateUsersTable < ActiveRecord::Migration
def self.up
end

def self.down
end

end

In this structure, the up method will get called when you’re migrating up to the latest ver-
sion (i.e., when you are releasing new code and updates) and down will get called when you’re
migrating down to a previous version (i.e., when you are rolling back because of unexpected
errors or problems).

The up and down methods are each run inside of a transaction. This means that if an
exception occurs during migration execution, the transaction will be rolled back, and the
schema_info version number will not be updated.

■Caution At the time of this writing, MySQL could not successfully roll back ALTER TABLE statements, so
despite the fact that a migration is run in a transaction, if an exception occurs, the MySQL database will
likely be left in the state just prior to the occurrence of the exception. This situation is a good reason to get
very comfortable with the ActiveRecord::SchemaDumper class, as it will allow us to check just what state
our database is in at any given time (and act accordingly). We’ll show the SchemaDumper in action within our
example code in a minute.

Migrations in Action
Because the concept of migrations is somewhat of a paradigm shift for most of us traditional
developer types (those of us coming from a background other than Ruby or Ruby on Rails),

CHAPTER 3 ■ SETTING UP YOUR DATABASE50

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 50

we’ve found that some examples can make learning migrations easier. Examples go a long way
in helping to point out the specific details and situations involved in implementing migrations.

Let’s pretend that we need to build an application that is going to track information about
milk production. We’ll have information about farmers, cows, milk, and various other milk
production issues (some of which we will recognize and retrofit as needed). The overall basic
concept of our example will be to report on how much a given farmer sells milk to various
stores for.

With all of this in mind, we are finally ready to start coding our migrations! Throughout
the rest of this chapter, we’ll walk you through the various CRUD operations as they relate to
migrations, and where possible, we’ll compare and contrast the migration approach to that of
the traditional database development approach.

Creating Tables
The first thing you’re going to want to do when you start using migrations is create the tables
that you’re going to be using for your application.

Since this is our first migration and we want to move forward with our development
process, we’ll be using the up method. And since we want to create our first table, we’ll be
using the create_table method to give the table its definition. In the following code we create
a cows table:

Script to create the first version of a cows table
def self.up

create_table :cows do |t|
t.column :name, :string
t.column :breed, :string
t.column :born_on, :datetime
t.column :milkable, :boolean

end
end

Before the code is run, your application database should be empty. Here’s how to check
on that:

mysql> show tables;
Empty set (0.12 sec)

The migration code is run when you run rake db:migrate, resulting in the cows table
being created with the following columns:

mysql> describe cows;
+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	YES		NULL	
breed	varchar(255)	YES		NULL	
born_on	datetime	YES		NULL	
milkable	tinyint(1)	YES		NULL	
+----------+--------------+------+-----+---------+----------------+

CHAPTER 3 ■ SETTING UP YOUR DATABASE 51

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 51

Additionally, if you now list the tables in your database, you can see that not only has the
cows table been created but an additional table as well:

mysql> show tables;
+-----------------------------+
| Tables_in_test2_development |
+-----------------------------+
| cows |
| schema_info |
+-----------------------------+

The schema_info table is a table used internally by the Active Record migrator. It has a sin-
gle integer column named version that is updated with the number of the migration that was
last run. If migrations are run and this table does not yet exist, the Active Record migration
process we are executing will create it. If you select from the table, you can see that there is
a single row, and the value of the version column is 1.

mysql> select * from schema_info;
+---------+
| version |
+---------+
| 1 |
+---------+
1 row in set (0.00 sec)

Referring to the original migration code, you can see the create_table method takes the
block form endemic to most DSLs. You can pass a few different options to the create_table
method itself to change the way the table works. You can specify the name of the primary key
column with the :primary_key option. You can turn off a default primary key completely by
adding :id => false; this is most useful when you’re creating a join table for HABTM relation-
ships, which don’t typically have a normal id column. Supplying :temporary => true will
create a temporary table. The :options option will add a free-form string after the definition,
allowing you to specify things like the charset or the database engine in MySQL. Finally, if you
want the table to be created regardless of its current existence, you should use :force => true.

The column method also has a nonblock counterpart, add_column. The difference between
the two is that add_column takes the name of the table it operates on. Aside from that, they’re the
same. Both methods take the name of the column you want to create and the data type.
The possible data types are :primary_key, :string, :text, :integer, :float, :decimal, :datetime,
:timestamp, :time, :date, :binary, and :boolean, and each corresponds to its database-specific
counterpart when the table is generated. Additionally, the add_column and column methods
take a third argument that is a hash of options that define column configuration. The available
options are :limit, :default, :null, :precision, and :scale. For more information on the
add_column and column methods and their arguments, including database-specific considera-
tion regarding of each of the configuration options, see TableDefinition#column in Appendix A.

Now that you’ve provided the self.up method, it will be executed when we run rake
db:migrate from the command line. But what happens if you run rake db:migrate VERSION=0?
If you did that right now, the cows table would still be in the database, which isn’t the state you
might expect it to be in. You might expect, naturally, that version zero of the database is com-
pletely empty. That is what the self.down method is for. The self.down method should always
reverse the action performed in self.up.

CHAPTER 3 ■ SETTING UP YOUR DATABASE52

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 52

Of course, there will be times where a destructive action will have consequences that you
cannot reverse, such as the deletion of data. However, it’s still best to think of migrations as
primarily maintaining the structure of the application’s database, and therefore, self.down
should do its best to maintain structure both in forward and reverse. In this case, you need to
remove the table in the self.down method.

You can remove a table with the predictably named drop_table method. This method
actually takes an options hash, but it doesn’t use anything in there as of this writing. Simply
pass it the name of the table you want to drop, and it’s dropped.

def self.down
drop_table :cows

end

It’s that simple. Now, migrating from zero to the most current schema, as defined by our
most recent migration script, and back will keep our database in a consistent state, as shown
following:

mysql> show tables;
+-----------------------------+
| Tables_in_test2_development |
+-----------------------------+
| schema_info |
+-----------------------------+

Adding, Removing, and Changing Database Columns
There’s more to migrations than simply creating and dropping tables. They let you deal with
any part of database management in an abstract way. If you look at our previous cows table,
you may notice that we forgot to add the farmer_id column. Since a Cow belongs to a Farmer,
the foreign key farmer_id is an important field. What’s more, we’ve already committed the
migration to source control, so we should assume that someone else has already run it.

■Note Once you’ve committed a migration file, you need to assume that someone else on your project has
obtained the file and run it. This means that you cannot make changes to that file, since the migrator will
assume that the file has already been run and completely ignore your changes, making the database incon-
sistent with the code. It’s completely acceptable to have a lot of little migration files that make small changes,
because it keeps everyone working together and unconfused. Migration errors and consistency problems are
some of the most annoying to clean up.

Since we need to add the farmer_id column to the table, we create another migration with
script/generate migration add_farmer_id_column. This command will make the file db/migrate/
002_add_farmer_id_column.

To add a single column, we use the add_column method, as we described previously. It works
just the same as the column method in create_table’s block form, only now you must supply
the name of the table you’re working on:

CHAPTER 3 ■ SETTING UP YOUR DATABASE 53

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 53

def self.up
add_column :cows, :farmer_id, :integer

end

And for reversibility we define the following down method:

def self.down
remove_column :cows, :farmer_id

end

Note that the method is remove_column, which may be different from what you’d expect
from the command your DBMS would use.

Now that your migration to add the farmer_id column is finished, you should run rake
db:migrate to make sure that our Cows can see our Farmers. If you go into the mysql console,
you can see that the changes are immediate:

mysql> describe cows;
+-----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	YES		NULL	
breed	varchar(255)	YES		NULL	
born_on	datetime	YES		NULL	
milkable	tinyint(1)	YES		NULL	
farmer_id	int(11)	YES		NULL	
+-----------+--------------+------+-----+---------+----------------+

You can also rename columns using the rename_column method, which takes as arguments
the table name and the old and new names of the column you want to rename:

rename_column :cows, :born_on, :created_on

Finally, you can also change columns with the change_column method. The change_column
method works just like the add_column method, except that it works on existing columns and
will change their data types instead of creating a new column. Most database engines will pre-
serve the existing data in a column, if it’s possible.

change_column :address, :postal_code, :string

Indexing Columns
One of the important things that developers often forget to do is create indexes on their tables.
Indexes can dramatically decrease query times and should always be in place on often-queried
columns or groups of columns. Especially important are indexes on foreign keys, join tables,
type columns, and compound keys from polymorphic associations. They often go overlooked,
which adds a great deal of overhead to traversing relationships.

You can add an index with the add_index method. Indexes are placed on a table over one
or more columns. The add_index method takes a table name and either a column name or an
array of column names.

CHAPTER 3 ■ SETTING UP YOUR DATABASE54

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 54

add_index :cows, :farmer_id, :name => "index_on_cows_for_farmers"
add_index :ownerships, [:farmer_id, :tractor_id], :unique => true

Notice the :unique => true option. This makes the index a unique index, which will allow
only one instance of any combination of tractor_id and farmer_id.

By default, the name of the index is tablename_allcolumnnames_index. If you didn’t want
the index on the cows table to be named cows_farmer_id_index, you could specify the :name
option (as has been done in the preceding example). However, since Active Record doesn’t
really care about the name of the index, it’s not terribly important to have a nice name on it.

The syntax for removing the index depends on how it was named in the first place. If you
let the standard Active Record index naming take place, then you do not need to specify the
index name, as it will be assumed:

remove_index :ownerships, :column => [:farmer_id, :tractor_id]

However, if you did not take the standard Active Record name, you will need to explicitly
specify the index name in order to successfully remove it:

remove_index :cows, :name => "index_on_cows_for_farmers"

You should note that if you’re going to remove an index and a table at the same time, it’s
important to remove the index first.

Managing Application Data
As mentioned previously, you can use any Ruby code within your migrations. Additionally,
when working within the Ruby on Rails framework, you’re migrations will have full access to
all your models (and anything else in the base environment).

When the need arises to manipulate data in your application, such as the need to prepop-
ulate a new column with computed date (e.g., a column called total on a model Order that
holds the precomputed total of all of Order’s LineItems), your first instinct may be to use your
models directly within the migrations to populate this new column. However, it is strongly
recommended that you not use your models directly inside your migrations. This is because
migrations are all about mitigating the problems that come from the differences among data-
bases, developers, and even the times in the same project.

Strictly speaking, you don’t know when you’ll need to change your models, so referencing
them in your migrations, while it could work out perfectly, may end up breaking the migration
process. The ways that your models can change are many, from renaming a method to removing
an entire model altogether. You may not notice that a change has made it impossible to migrate
from migration zero to the latest one (e.g., if your database is at revision thirty and you changed
the model back around revision eight or nine), but you will notice when it comes time to deploy
to the production environment and an empty database.

As we mentioned, you might be inclined to create a migration like the following one to
populate the total column for our Orders model:

def self.up
add_column :orders, :total, :decimal

orders = Order.find(:all)
orders.each do |order|

CHAPTER 3 ■ SETTING UP YOUR DATABASE 55

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 55

subtotal = 0
order.line_items.each do |line_item|
subtotal += line_item.quantity * line_item.price

end
order.total = subtotal

end
end

def self.down
remove_column :orders, :total

end

While this migration will work just fine, it is brittle. If the relationship between the Order
and LineItem models were to change or the quantity or price methods were to be removed,
the migration would not run. Therefore, rather than using models directly in your migrations,
it is recommended that you use the execute method and ANSI-compliant SQL to perform
manipulations on the data directly, as shown in the following migration code:

def self.up
add_column :orders, :total, :decimal
ActiveRecord.execute("UPDATE orders LEFT OUTER JOIN line_items
SET orders.total=SUM(line_items.quantity * line_items.price) ON
orders.id=line_items.order_id")

end

def self.down
remove_column :orders, :total

end

Additionally, if your data manipulations rely on logic contained within your model, you
might go so far as to copy this logic directly into the migration file as a separate method. This
is because you cannot guarantee that that same code will still be present within the model the
next time that migration is run.

■Note At the start of this chapter, we talked about migrations being a great, database-independent Active
Record feature, but here we seem to be going against that statement by including raw SQL into our migra-
tion scripts. The difference is that, in our current example, we are using migrations not only to manage our
schema but also to populate various tables within our schema. When you use migrations in this dual-purpose
way, it is better to give up some of the abstraction by using direct SQL rather than give up the ability to move
from one version to another because of the use of models within your scripts.

Another common scenario where you may be tempted to reference your models within
migrations is when you need to load static data into the database. It is much better to use
YAML files (i.e., fixtures within Rails) to perform load operations. Fortunately, Ruby on Rails
has a rake task specifically for data loading chores, available at db:bootstrap. Again, if you are

CHAPTER 3 ■ SETTING UP YOUR DATABASE56

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 56

working outside of Ruby on Rails, we still recommend writing a script to load YAML files or
another data format to store and load your basic set of application data into your database,
rather than using migrations.

Migrations Are Easier Than They Sound
Migrations are one of the hardest concepts for new Active Record programmers to truly grasp,
because the concept goes somewhat against the SQL-heavy traditional development process
most of us have been successfully using for years. But if you take a second to step back and
think about what migrations really provide by abstracting much of the database-specific SQL
and adding a sense of version control, you’ll see the true advantages of speed and simplicity of
development.

By learning the simple migration DSL and using normal Ruby syntax, Active Record migra-
tions allow you to spend less time thinking about how to create or manage your schema and
more time actually doing it.

CHAPTER 3 ■ SETTING UP YOUR DATABASE 57

8474_ch03FINAL.qxd 8/25/07 9:12 AM Page 57

Core Features of Active Record

Kevin’s a strange bird. Outside of technical books like this one, the books he likes to read
most are marketing- and sales-related. He always tells us that after you’ve read a few of those
types of books, you’ll notice a strong theme of advice that basically boils down to one simple,
golden rule: Get to the core of what you’ve got and focus relentlessly on it. As it turns out, it’s
great advice for more than just marketing, so without further ado, let’s get to the core of what
really makes Active Record a “wow” library. If you aren’t impressed with what Active Record
provides after this chapter, you’re just not passionate enough about coding!

There are three main features of Active Record that are at the real core: callbacks, associa-
tions, and validations. Callbacks are hooks into various logic points of the Active Record life
cycle. Associations provide a means to handle SQL and link together your Active Record models,
and validations allow you to do some basic checks and balances on your data via code. Through-
out this chapter, we’ll take a deeper look at each of these features, and since callbacks directly
relate to the life cycle of Active Record objects, we’ll start by focusing on them and cover valida-
tions and associations later in this chapter.

Callbacks
When initially trying to learn Ruby and Active Record, we all found the term “callbacks” con-
fusing. The documentation’s definition of callbacks didn’t really help much, and we needed to
play around with real code a while before we felt like we really got the concept. Still, we need
a definition to build from, so here’s a plain English explanation of callbacks:

Active Record objects can perform a large number of methods or actions throughout

their existence; callbacks allow you to insert your business logic before or after many of

these actions.

59

C H A P T E R 4

■ ■ ■

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 59

As we’ve mentioned previously, some plain English examples of tasks accomplished by
callbacks may also help you to visualize the concept:

• Before you save an update to the Account table, set the last updated field to the current
time.

• Before you delete a record from the Account table, make sure you delete records from
the contact table that have the deleted record’s account_id.

• After you find a promotional code record, calculate the current subscription cost.

As these examples show, callbacks are really just a nice and simple way to add some poten-
tially complex business logic right into the process of communicating with your database. From
a developer’s point of view, you can implement callbacks by either manually overwriting the call-
back method or by using a callback macro. There are a few subtle differences to each approach,
so let’s look a quick example to explain each.

Implementing Callbacks
The easiest way to implement a callback is to just overwrite the method within your model:

class Account < ActiveRecord::Base
def before_save

self.Account_Updated = Time.now
end

end

This approach works great for situations like the preceding example, where you want to
set values for fields programmatically or when you want each descendant of an inheritance
hierarchy to decide if it wants to call the super command and trigger the inherited callbacks—
which points out the biggest disadvantage to the overwriting approach: your callbacks are not
executed through an inheritance hierarchy. This is probably most important, and obvious,
when using callbacks to delete associated records from other tables. Consider this example
from the Active Record documentation:

class Topic < ActiveRecord::Base
def before_destroy()

destroy_author
end

end
class Reply < Topic

def before_destroy()
destroy_readers

end
end

Basically, with this approach, when you delete a reply, the destroy_readers method is
called, but the destroy_author method is not. If you want to use this approach and make sure
destroy_author is called, you need to update your Reply model to take advantage of the super
command:

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD60

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 60

class Reply < Topic
def before_destroy()

destroy_readers
super.destroy_author

end
end

Callback Macros
Of course, there’s an easier way to that ensure your callbacks are kept intact down through the
inheritance hierarchy—callback macros. Continuing with our example from the Active Record
documentation, you could rewrite the example using macros:

class Topic < ActiveRecord::Base
before_destroy :destroy_author

end
class Reply < Topic

before_destroy :destroy_readers
end

Now, when you delete a reply, both the destroy_readers and destroy_author methods are
called.

■Note If you intend to use callback macros to ensure your callbacks are kept intact down through your
inheritance hierarchy, it’s important that you define your callback macros in your model before you specify
your associations. Otherwise, you risk loading your children records before their parent callback, and there-
fore, the parent callback would not be applied to the children.

As you probably guessed, in most cases, callback macros are the way to go. Because of the
inheritance hierarchy, callback macros probably operate like you would intend in most cases,
and they give you the most options for implementation. Actually, four types of callbacks are
accepted by callback macros: method references, callback objects, inline methods, and inline
eval methods (though inline eval methods are now deprecated).

Probably the easiest, and most common, approach you will see is the method reference.
You simply define a protected or private method in your model:

class Account < ActiveRecord::Base
before_save :setupdate

private
def setupdate

self.Account_Update = Time.now
end

end

Sometimes, you might need to perform a large number of tasks with a callback that you
don’t want to clutter up you model with or perhaps share some functionality for callbacks

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 61

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 61

across multiple models. These situations are a good times to use objects. There are a couple of
steps required to use this approach to creating callbacks:

1. Specify the object you want called by your callback:

class Account < ActiveRecord::Base
before_save AccountChecks.new

end

2. Define a method within your object that has the name of the callback and accepts your
data record as a parameter:

class AccountCheck
def before_save(record)

record.Account_Update = Time.now
end

end

The third, and somewhat less common, approach is to use an inline method. To do this,
you simply put your code into a single-quoted string:

class Account < ActiveRecord::Base
before_save 'self.Account_Update = Time.now'

end

You use single quotation marks so that you can include double-quoted strings inside your
inline method; values enclosed in double quotation marks won’t be evaluated until the call-
back is actually triggered:

class Account < ActiveRecord::Base
before_save 'self.Account_Update = "Updated at #{Time.now}"'

end

Though the code for this appears to be shorter, it could also be said that it’s more obscure
and difficult to understand. For this reason, we recommend that, in most cases, you use either
the method or object approach when possible.

It should also be mentioned that in all of the cases mentioned, you may assign multiple
methods, objects, or inline methods to your callbacks:

class Account < ActiveRecord::Base
before_save :setupdate, :setloggedin

private
def setupdate

self.Account_Updated = Time.now
end
def setloggedin

self.Account_LoggedIn = Time.now
end

end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD62

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 62

Here’s the same example using the inline method approach we outlined previously:

class Account < ActiveRecord::Base
before_save 'self.Account_Update = Time.now', 'self.Account_LoggedIn = Time.now'

end

Specific Types of Callbacks
Now that you understand what callbacks are and the basics of implementing them, let’s look
at the 16 specific types of callbacks we can use. As we mentioned before, we all needed to
digest some code with callbacks before we really felt like we understood them, so we’ll also
examine a working example for each.

after_find
As you would expect, the after_find method is initiated after an ActiveRecord::Base.find
operation.

■Note To use the after_find method, you must define it as a method in your ActiveRecord class; there
is no callback macro for this specific method. The lack of a callback macro for the after_find method is built
into the design of Active Record to help improve performance when you use after_find. The method is
called once for every record that the find method returns, so executing the method via a macro would be
very expensive for your processing resources.

The following example adds a fullname attribute to the account records that are found.
Because we are adding an attribute that is not directly derived from the database table, we
must use the class attribute accessor method (cattr_accessor) as well. We discuss the details
of cattr_accessor in other chapters.

class Account < ActiveRecord::Base
cattr_accessor :Account_fullname
def after_find

self.Account_fullname = self.Account_firstname + " " + self.Account_lastname
end

end

With this example, the following code would trigger the after_find method, so each record
within the results would now have an Account_fullname attribute, even though your database
table does not have that specific field or collection of data:

useraccount = Account.find(1)
puts "Found account for #{useraccount.Account_fullname}"
#=> Found account for Kevin Marshall

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 63

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 63

after_initialize
The after_initialize method is executed after an ActiveRecord::Base.new or ActiveRecord::
Base.create call. It’s important to note that this method is executed before a corresponding
record in the database exists for this object.

■Note To use after_initialize, you must define the method in your ActiveRecord ; there is no callback
macro for after_initialize. This is built into the design to improve performance.

class Account < ActiveRecord::Base
cattr_accessor :Account_initialized
def after_initialize

self.Account_initialized = Time.now
end

end

With this example, Account objects will now have an Account_initialized attribute through-
out the object’s existence; the attribute contains a time stamp noting when the object was
initialized. The following code shows this in action:

useraccount = Account.new
puts "Account object created #{useraccount.Account_initialized}"
#=> Account object created Sun Jul 9 10:09:32 Eastern Standard Time 2006

before_save
This method is executed before an ActiveRecord::Base.save call; it will be executed before
creating and saving records with the ActiveRecord::Base.save statement:

class Account < ActiveRecord::Base
def before_save

self.Account_updated = Time.now
end

end

This example ensures that the account_updated field always contains the time that the
record was last saved (this callback value would overwrite any value that may have been set
within your code for the Account_updated attribute).

after_save
The after_save method is executed after an ActiveRecord::Base.save statement for both new
records (inserts) and record updates:

class Account < ActiveRecord::Base
cattr_accessor :Account_lastsaved
def after_save

self.Account_lastsaved = Time.now

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD64

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 64

end
end

This example populates the Account_lastsaved attribute with the time just after the
record was saved to the database. Again, the following example shows the callback we just
defined in action:

example = Account.new(:Account_Name => "Kevin")
example.save
puts Account.Account_lastsaved
Sun Oct 15 21:41:39 Eastern Standard Time 2006

before_create
This method is executed before an ActiveRecord::Base.save statement when the object does
not already have a corresponding record in the database:

class Account < ActiveRecord::Base
def before_create

self.Account_updated = Time.now
end

end

This example populates the Account_updated attribute with the time immediately before
an Account object is created. The following code shows an example use of this callback:

Example = Account.new(:Account_Name => "Kevin")
puts Account_updated # Sun Oct 15 21:41:39 Eastern Standard Time 2006

after_create
This method is executed after an ActiveRecord::Base.save statement when the object does
not have a corresponding record already in the database.

class Account < ActiveRecord::Base
def after_create

logger.info("Account was created at #{Time.now}")
end

end

This example assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that a new account object was created and the time. Remember
that this example logs the object’s creation even if a database record is not created (because of,
say, failed validations or the lack of an ActiveRecord::Base.save call).

before_update
You would execute the before_update method before an ActiveRecord::Base.save or an
ActiveRecord::Base.update statement when the object already has a corresponding record in
the database.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 65

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 65

class Account < ActiveRecord::Base
def before_update
self.Account_updated = Time.now

end
end

This example ensures that the Account_updated field always has the current time before
a record is updated. The following code will use the before_update callback to update the
account_updated field within our database:

Account.update(1,{:Account_Name => "Kevin Nelson"})
Account_updated would now have the current time

after_update
after_update is executed after an ActiveRecord::Base.save or an ActiveRecord::Base.update
statement when the object already has a corresponding record in the database.

class Account < ActiveRecord::Base
def after_update
logger.info("Account was updated at #{Time.now}")

end
end

This example assumes that we have a logger object to which we are recording certain
actions; we log the fact that an account record is updated and the update time:

Account.update(1,{:Account_Name => "Kevin Nelson"})
Logger now has a record and time of our update

before_validation
This method is executed before an ActiveRecord::Validations.validate statement (which is
itself executed from within an ActiveRecord::Base.save statement).

class Account < ActiveRecord::Base
def before_validation

logger.info("Account data about to be validated")
end

end

This example also assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that our attribute data is about to be submitted to our validation
methods.

after_validation
The after_validation method is executed after an ActiveRecord::Validations.validate
statement (which is itself executed from within an ActiveRecord::Base.save statement).

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD66

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 66

class Account < ActiveRecord::Base
def after_validation
logger.info("data passed all validations")

end
end

This example assumes that we have a logger object to which we are recording certain
actions, and this time, we log the fact that our attribute data has just returned from our valida-
tion methods.

before_validation_on_create
This method is executed before an ActiveRecord::Validations.validate_on_create or an
ActiveRecord::Validations.validate statement is initiated from an ActiveRecord::Base.save
statement on an object that does not yet have a corresponding record in the database.

class Account < ActiveRecord::Base
def before_validation_on_create
logger.info("Account data about to be validated for new record")

end
end

This example assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that our data is about to be passed to our validation methods
before a new database record is created (the new record would be created only if all the valida-
tions are passed successfully).

after_validation_on_create
The after_validation_on_create method is executed after an ActiveRecord::Validations.
validate_on_create statement or an ActiveRecord::Validations.validate statement is
initiated from an ActiveRecord::Base.save statement on an object that does not yet have
a corresponding record in the database.

class Account < ActiveRecord::Base
def after_validation_on_create
logger.info("Account data passed all validations for a new record")

end
end

This example again assumes that we have a logger object to which we are recording certain
actions. Here, we log the fact that our data just passed through all of our validation methods.

before_validation_on_update
This method is executed before an ActiveRecord::Validations.validate_on_update statement
or an ActiveRecord::Validations.validate statement is initiated from an ActiveRecord::Base.
save or ActiveRecord::Base.update statement on an object that already has a corresponding
record in the database.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 67

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 67

class Account < ActiveRecord::Base
def before_validation_on_update
logger.info("Account data about to be validated for existing record")

end
end

This example assumes that we have a logger object to which we are recording certain
actions; we are logging the fact that our data is about to be passed to our validation methods
before executing a SQL update statement.

after_validation_on_update
This method is executed after an ActiveRecord::Validations.validate_on_update statement
or an ActiveRecord::Validations.validate statement is initiated from an ActiveRecord::
Base.save or ActiveRecord::Base.update statement on an object that already has a correspon-
ding record in the database.

class Account < ActiveRecord::Base
def after_validation_on_update
logger.info("Account data passed all validations for existing record")

end
end

This example assumes that we have a logger object to which we are recording certain actions.
Here, we log the fact that our data passed through all of our validation methods before executing
a SQL update statement.

before_destroy
before_destroy is executed before an ActiveRecord::Base.destroy,
ActiveRecord::Base.destroy_all, ActiveRecord::Base.delete, or
ActiveRecord::Base.delete_all statement is executed.

class Account < ActiveRecord::Base
def before_destroy

Contacts.delete_all(["Account_ID = ?", self.Account_ID])
end

end

With this example, we are making sure that we delete all contact records that were associ-
ated with an account record before we delete the actual account record. This would produce
similar results to performing a cascading delete within a database.

after_destroy
This method is executed after an ActiveRecord::Base.destroy, ActiveRecord::Base.destroy_
all, ActiveRecord::Base.delete, or ActiveRecord::Base.delete_all statement is executed.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD68

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 68

class Account < ActiveRecord::Base
def after_destroy
logger.info("Account record was deleted")

end
end

This example assumes that we have a logger object to which we are recording certain actions;
we are logging the fact that an account record was deleted from the database.

One Down, Two to Go
You should now be an expert on Active Record callbacks, or at least well on your way. As we
mentioned at the start of this chapter, it sometimes takes a little bit of playing around with real
code before you can truly understand callbacks, so we do encourage you to try it. We promise
that it can only improve your understanding.

Let’s now shift our focus to the second of the three core features we introduced at the start
of this chapter, Active Record associations.

Associations
Up until this point, we’ve pretty much been talking about Active Record objects as stand-
alone objects—they’re tied to a table in the database, and they can update some records in
that table. That’s fine, but relational databases can provide so much more than a simple
place to mark down some values. One of their strong points is right out in front as part of
their name: relationships.

As it you probably guessed, Active Record makes it easy to maintain relationships between
your models. You do this by associating each of your Active Record models to one another through
various association methods. We’ll cover each of these methods in the next section, but first,
let’s take a minute to talk a little about the idea of associations.

For some reason, associations—or joins, as SQL refers to them—cause a lot of confusion
for many developers. The basic idea is actually quite simple. You have two or more tables, and
each contains a set of data that is logically associated in some way. You want to grab a collection
or subset of that data and treat it as one set of data. Seems simple enough, right?

The confusion generally comes when you start to describe these connections as inner joins,
outer joins, left outer joins, and so forth. Oftentimes, expressing what you want to in plain English
is easy enough, “Give me a list of cows owned by farmers who live in Ohio.” Somehow, though,
translating that into proper SQL statement to return the correct set of data gets mucked up.
We know we want to join the cow and farmer tables, but do we want to do an inner or outer
join on the tables? Should it be a left or full join? How do we know if it’s really returning just
the data we want without having to manually check all the results?

Farmers, Cows, Milk, and How They Relate
In an attempt to clear things up and to explain how Active Record tackles associations between
models, let’s take an example to talk about and break down each specific situation. For the remain-
der of this section, let’s say we’re writing an application to maintain the books for a cooperative
of farmers who raise cattle.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 69

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 69

Every farmer needs to keep track of a lot of cows, and all farmers sell their cows’ milk to vari-
ous resellers at their own unique prices. Finally, each reseller and farmer has an address, because
the reseller needs to know where to send the checks, and the farmer needs to know where to send
the milk. The basics of the tables are laid out as follows (we are using basic migrations for these
definitions, for more on migrations refer to the previous chapter):

create table :cows do |t|
t.column :name, :string
t.column :farmer_id, :integer

end
create table :farmer do |t|
t.column :name, :string

t.column :address, :string
end
create table :reseller do |t|
t.column :name, :string
t.column :address, :string

end
create table :farmers_resellers do |t|
t.column :resller_id, :integer
t.column :farmer_id, :integer

end
create table :distributors do |t|
t.column :reseller_id, :integer
t.column :farmer_id, :integer
t.column :milk_price, :float

end

This should now give us a good starting point to break down each type of association.

Association Types
Active Record actually has support for a wide variety of different association types. These asso-
ciation types include belongs_to, has_many, has_one, has_and_belongs_to_many, and has_many
:through. Along with these association types, there are also a handful of association modifiers
that give you full control of your Active Record models.

belongs_to
belongs_to is the most straightforward of the relationships. When you say your model belongs
to another model, it just means that only one object will be on the other side of the association.
The ID of that association is stored directly in this model. In our example, each cow belongs to
just one farmer, so the Cow model would look like the following:

class Cow < ActiveRecord::Base
belongs_to :farmer

end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD70

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 70

Referring to the cow table, you can see that one cow will only ever belong to one farmer at
a time, because the table definition for the cows contains the foreign key of the farmer to whom
it belongs. In the world of SQL, the cow table foreign key is the “one” side of a one-to-one or
one-to-many relationship. With this association defined, we can fulfill the following real-world
requirement: get the farmer who owns a given cow.

Here, we are starting with the cow table, and we know which cow we want. We need to join
the farmer table based on farmer_id so that we can see the name of the farmer who owns the
cow. This means we want to do a left join (we want all the data from the cow table for this cow
and we want the farmer’s name from the farmer table). With SQL, our join query would look
something like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)
cow = Cow.find_by_sql("Select farmer.name as farmername from
cow inner join farmer on cow.farmer_id = farmer.farmer_id")

puts cow[0].farmername # => "Farmer Fred"

The Active Record equivalent should look something like the following (regardless of which
version of SQL your database supports!):

cow = Cow.find(:first)
cow.farmer.name # => "Farmer Fred"

As you can see, with this simple association, you automatically have access to all the attributes
of the associated table (farmer).

■Note Inner joins return only records that have a match in both tables (we would not get results if we tried
to find a cow that didn’t have an owner). Left joins return all the records from the left table, even if there is no
matching record in the right table (in this case, we would get the cow information even though it belonged to
no farmer). Inner joins are generally denoted by the use of the keyword AND in their plain English representation.

has_many
On the other end of belongs_to, there is has_many. It’s pretty easy to think of where this can be
applied: A farmer owns many cows. A blog has many posts, which may have many comments.
A customer has many orders, each of which has many products, and a product has many images.
A site has many pages. We could go on all day.

This association, like has_one, does not keep track of its own foreign key (looking at our
farmer table, you see that there are no foreign keys defined within that table). This means that
any number of other objects can be associated with this one, and the database can still keep
a normalized form (that is, without excess duplication of data). This becomes more clear with
our example, so let’s define our farmer model and show the association in action:

class Farmer < ActiveRecord::Base
has_many :cows

end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 71

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 71

The has_many association returns an array of objects from the table containing the match-
ing foreign key from the table specified. Again, walking through a plain English version makes
this easier to understand, so let’s use this association as follows: get a list of the cows a given
farmer owns.

Here, we are starting with the farmer table—we know the farmer we want information about,
and we want to get a list of cows that this farmer owns. This is really a lot like our belongs_to
example, in that we just want to join the two tables together based on farmer_id. However,
this time, we are starting in the farmer table with just the farmer ID. With SQL, our inner join
would look like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)
cowlist = Farmer.find_by_sql(["Select cows.name as cowname from
farmer inner join cows on farmer.farmer_id = cows.farmer_id
where farmer_id = ?",1])

cows.each do |rec|
print rec.cowname + ", "

end
=> Bessie, Spotty,

The Active Record equivalent should look something like the following (again, regardless
of which version of SQL your database supports):

fred = Farmer.find(1)
fred.cows each do |cow|
print cow.name + ", "

end
=> Bessie, Spotty,

As you can see, with this simple association, you automatically get the collection of asso-
ciated records from the associated table (cow) and have access to all the attributes of those
records (like the cows’ names).

has_one
Sometimes, you don’t have a collection of items to associate; sometimes, you have just one.
In this case, has_one is what you need. Basically, has_one is the same as has_many, but Active
Record will return only one object instead of all of them.

To be honest with you, it should be a rare case that you find yourself using the has_one
association, because you would more likely just add the fields to one master table rather than
split them across two tables and create a one-to-one relationship. Still it does happen, so let’s
take a look at one possible example. First, here’s the migration for the extra table we are going
to use for this example:

create table :tractors do |t|
t.column :name, :string
t.column :farmer_id, :integer

end

And we would then update the Farmer model to the following for this example:

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD72

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 72

class Farmer < ActiveRecord::Base
has_many :cows
has_one :tractors

end

■Note This is actually bad table design, in our opinion, because each tractor can be owned by only one
farmer, and because of our has_one association, each farmer can own only one tractor. In real life, we would
more likely just add the tractor name field to the farmer table or make this a many-to-many relationship so
that each farmer could own multiple types tractors, and each type of tractor could be owned by more than
one farmer. Still, this example lets us quickly demonstrate the use of has_one.

With the model defined, we can now achieve the following real-world requirement: get
the tractor a farmer owns.

Again, we are starting with the farmer table, and we know which farmer we want informa-
tion about; we just want to get the name of the tractor that this farmer owns. The SQL query
for this example would look something like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)
tractor = Farmer.find_by_sql(["Select tractor.name as tractorname from
farmer inner join tractors on farmer.farmer_id = tractors.farmer_id
where farmer_id = ?",1])

tractors.each do |rec|
print rec.cowname

end
=> Big Red

The Active Record equivalent should look something like the following (regardless of
which version of SQL your database supports):

tractor = Farmer.find(1)
tractor.tractors each do |tractor|
print tractor.name

end
=> Big Red

As you can see, the code is identical to the has_many code; it’s really only the results that
are limited.

■Note The difference, basically, between has_many and has_one is the same as the difference between
find(:all) and find(:first).

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 73

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 73

has_and_belongs_to_many
Our tractor example showed a serious design flaw in that each tractor type could only be
owned by one farmer and each farmer could only own one tractor at a time. That is probably
unrealistic. It’s more likely that a given farmer would own one or more tractor types and each
tractor type would be owned by one or more farmers. That is, this would have been better
implemented as a many-to-many relationship.

In theory, a many-to-many relationship is the same thing as two has_many relationships
tacked back to back. However, in a normal has_many relationship, one of the tables is supposed
to hold the foreign key of the other table. Doing that would only allow one of the tables to be
associated to many records in the other (it would only be a many-to-one relationship). In order
to keep the database normalized, a has_and_belongs_to_many (habtm) association uses an extra
table, generally referred to as a join table, which is nothing more than a pair of foreign keys for
each associated model.

Going back to our original example, let’s say we wanted our farmer to be able to distribute
the milk from his cows. He would need to have resellers. And a reseller should be able to sell
the milk of many farmers. Clearly, a farmer has_and_belongs_to_many resellers, and a reseller
has_and_belongs_to_many farmers.

As we’ve mentioned throughout this book, Active Record is part of an opinionated frame-
work. As such, it has some default assumptions about the naming convention for join tables:

1. Take the names of the two tables.

2. Alphabetize them.

3. Join them with an underscore.

With these rules in mind, the table that would be used to join our farmers with their resellers
would be named farmers_resellers (refer to our table definitions at the start of this section).
Since this is nothing more than a join table storing the association between farmers and resellers,
only one column for each side of the association is needed in this table: reseller_id and
farmer_id. Our models would be updated to look like the following:

class Reseller < ActiveRecord::Base
has_and_belongs_to_many :farmers

end
class Farmer < ActiveRecord::Base
has_many :cows
has_one :tractors
has_and_belongs_to_many :resellers

end

Now that we have our associations defined, let’s look at another plain English requirement:
get a list of resellers for a given farmer.

With this example, we are starting with the farmer table, we know the specific farmer about
whom we want information, and we want to get a list of resellers associated with the given
farmer. Our SQL version would look something like the following:

this is the T-SQL version (MS SQL Server uses T-SQL)
resellerlist = Farmer.find_by_sql(["Select resellers.name as resellername from
farmer, farmer_reseller, reseller where

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD74

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 74

farmer.farmer_id = farmer_reseller.farmer_id and
farmer_reseller.reseller_id = reseller.reseller_id and farmer.farmer_id = ?",1])

resellerlist.each do |rec|
print rec.resllername + ", "

end
=> Dairy Barn, McDonalds,

The Active Record equivalent should look something like the following (regardless of
which version of SQL your database supports):

fred = Farmer.find(1)
fred.resellers each do |rec|
print rec.name + ", "

end
=> Dairy Barn, McDonalds,

■Note When you’re using the has_and_belongs_to_many association, it works just like a has_many

association: you can push new records onto it; you can iterate over it with each, and you can do basically
anything else you could with a has_many association. The difference is that both sides of the association
can do the same things.

has_many :through
Many-to-many associations can be very powerful, but sometimes, you need to add more to
the many-to-many relationship than just a direct tie between the two tables. Let’s say you want
to know the price of milk that a given farmer will sell milk to a given reseller for. Ideally, our
application should allow each farmer to sell milk to each reseller at a unique price. This design
means that we can’t store the price of milk in the farmer table (because it differs for each reseller
each farmer deals with), and we can’t store the price in the reseller table (because resellers buy
it at different prices depending on the farmer). What we really want to do is store the price of
milk in the join table that associates each farmer to each reseller. By adding attributes like this
to the join table, we are molding it into something more than just a join table; we’re making it
a join model.

In Active Record, we call this type of model and association a has_many :through relationship.
As you saw in our has_and_belongs_to_many example, Active Record glosses over the existence
of a join table, generally, because from a code point of view, it’s not important to know it’s there.
The join model, on the other hand, is like a join table, in that it has two foreign keys, but because
there is a model attached, it allows the intermediate table to have attributes that can more fully
describe the relationship than a simple join table.

Let’s define our new table and refactor our models so we can use this type of association:

class Reseller < ActiveRecord::Base
has_many :distributions
has_many :farmers, :through => :distributions

end
class Distributions < ActiveRecord::Base

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 75

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 75

belongs_to :reseller
belongs_to :farmer

end
class Farmer < ActiveRecord::Base
has_many :distributions
has_many :resellers, :through => :distributions

end

Going back to our example, let’s use this type of association. Here’s our question: at what
price does a given farmer sell milk to a given reseller?

We know which farmer and which reseller we want information about; we just need to get
the price of milk to which these two have agreed. In SQL, this would look something like the
following:

this is the T-SQL version (MS SQL Server uses T-SQL)
milkprice = Farmer.find_by_sql(["Select farmers.name as farmer,
resellers.name as reseller, distributors.milk_price as price from farmer,
distributors, reseller where farmer.farmer_id = distributors.farmer_id and
distributors.reseller_id = reseller.reseller_id and farmer.farmer_id = ?",1])

milkprice.each do |rec|
puts "#{rec.farmer} sells to #{rec.reseller} for $#{rec.price} per gallon"

end
Fred sells to Mary's Market for $0.50 per gallon
Fred sells to Sam's Shop for $0.65 per gallon

The Active Record equivalent should look something like the following (regardless of which
version of SQL your database supports):

fred = Farmer.find(:first)
fred.distributions.each do |distribution|
puts "#{distribution.farmer.name} sells to #{distribution.reseller.name} for
$#{distribution.price} per gallon"

end
sells to Mary's Market for $0.50 per gallon
sells to Sam's Shop for $0.65 per gallon

As you can see, the resellers association also works as a has_many association would work.
The only difference is in getting the two models association with each other. It is no longer the
case that you can add a reseller with fred.resellers << new_reseller. Now, you must create
the join model and add that to the association:

puts fred.resellers.size # => 2
Distribution.create(:farmer => fred, :reseller => sallys_store)
puts fred.resellers(true).size # => 3

Association Modifiers
Now that we’ve covered all the types of associations that Active Record supports, we can dig
even deeper and talk about all the various association modifiers. As you’ve seen throughout
this book, Active Record makes a lot of assumptions about the structure of your database to

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD76

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 76

keep things simple, so you can imagine that associations are no exception. For example, the
standard foreign key is the class’s table name plus _id (e.g., farmers_id).

But what if your tables weren’t designed with Active Record in mind or you just don’t want
to use the default assumptions for some reason? Do you lose your power to use Active Record
associations? Luckily, no. You can set various attributes of all of the Active Record associations
at definition to override any of the defaults. Let’s take a look at all of these options in detail now.

Finder Options
All of the options that can be applied to finders can also be applied to associations. When
used, they scope the results. This means you can use :conditions, :order, :group, :limit, and
:offset exactly like you would in a finder.

The following example would limit the association of cows to only farmers with the name
of Fred:

class Farmer < ActiveRecord::Base
has_many :cows, :conditions => "farmer.name = 'Fred'"

end

:class_name
The class name attribute is for when your association’s name doesn’t match up with the class’s
name. For example, let’s say we have a class defined as comment, and we also want to refer to
the association as comment (not the plural label of comments as the default assumption wants us to).
We could specify this as such:

class Account < ActiveRecord::Base
has_many :comment, :class_name => "comment"

End
class Comment < ActiveRecord::Base
end

Now, when you reference your association collection, you would use the comment label as
well, since that is now our collection name (again instead of comments, which was the default):

Temp = Account.find(:all)
Temp.each do |rec|
Puts rec.comment.collect {|c| c.subject}
=> Note we used comment instead of comments.

end

:foreign_key
Sometimes, Active Record will not be able to directly infer the foreign_key name, most often
when the class_name option is not enough to specify the relationship in the database. In this
case, you can specify the foreign key specifically. Again, this option is also useful if the column
is named differently from the normal conventions:

class Person < ActiveRecord::Base
has_many :children, :class_name => "Person", :foreign_key => "parent_id"

end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 77

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 77

:through
The :through option is used to define through associations as described previously. You’ll pass
in the name of a has_many or has_one association already defined in the model, and Active Record
will use that association as the join model.

:polymorphic and :as
Our examples so far have covered normal associations, which are between two models. In the
real world, however, there are times when you will want to have your class implement an
association with multiple models using just one key. For example, both our farmers and
resellers should have an association to addresses, and since all addresses contain the same
basic data types we want this to be just one table. This is called a polymorphic association,
and Active Record supports it quite nicely.

Technically, polymorphic associations use a technique similar to single-table inheritance,
where a type column is used to specify the associated model. But it’s not as hard as it sounds.
Let’s walk through our farmers example to prove it. First, we need to define the address table
via our migration scripts:

create table :addresses do |t|
t.column :street, :string
t.column :city, :string
t.column :addressable_id, :integer
t.column :addressable_type, :string

end

Next, since it is on the model that contains the primary key, the polymorphic option is
really on the belongs_to method. The name of the relationship is the name that’s used for the
:as option when specifying the other sides of the relationship. This means our models would
look something like the following:

class Address < ActiveRecord::Base
belongs_to :addressable, :polymorphic => true

end
class Farmer < ActiveRecord::Base
has_one :address, :as => :addressable

end
class Reseller < ActiveRecord::Base
has_one :address, :as => :addressable

end

Now, we have a polymorphic association that allows us to reference address data for both
farmers and resellers, all stored in one address table, as the following example demonstrates:

Example = Reseller.find(:first)
Puts example.address.city # => Edinboro
Example = Farmer.find(:first)
Puts example.address.city # => Somerville

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD78

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 78

By convention, the fields required by a polymorphic join are the association name plus
_id and _type. For the preceding example, the important fields in the address table were
addressable_id and addressable_type.

:join_table
In a has_and_belongs_to_many relationship, this modifier specifies the name of the join table. It
is required only if you choose to ignore the naming rules outlined earlier, which said to take the
names of the two tables, alphabetize them, and join them with an underscore.

For example, if you wanted to use the distributors table in your has_and_belongs_to_
many relationship, you could do so like the following:

class Farmers < ActiveRecord::Base
has_and_belongs_to_many :resellers, :join_table "distributors"

end
class Resellers < ActiveRecord::Base
has_and_belongs_to_many :farmers, :join_table "distributors"

end

:association_foriegn_key
In a has_and_belongs_to_many relationship, the association_foreign_key is the association on
the other side of the relationship and is only required if you go against the default naming
conventions for your foreign keys (which is tablename_id):

class Farmer < AR::Base
has_and_belongs_to_many :shared_tractors,
:association_foreign_key => "tractor_id"

end

:dependent
The :dependent attribute allows the associated model to depend on the existence of the model
referenced. If you set it to :destroy, all associated objects are instantiated and have their destroy
methods called. In that case, it’s semantically equivalent to the before_destroy callback.

def before_destroy
association.each {|each| each.destroy }

end

You can also pass :delete_all as an option, which will, as it says, delete all associated
objects from the database, but Active Record won’t instantiate them or call the destroy method
on any of them.

Finally, you can also pass :nullify to set the foreign ID of the associated object to NULL in
the database. This lets you keep the associated record without worrying about RecordNotFound
exceptions, because the association is cleared.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 79

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 79

Two Core Features Down, One to Go
We don’t know about you, but all this talk of cows and milk has gotten us in the mood for a nice
cup of milk and a warm chocolate chip cookie! But don’t take too long for a snack break, because
we’ve still got a lot more to tell you about Active Record. To be honest, at this point, if you did-
n’t bother to read another page, you should have enough knowledge to build quite powerful
and full-featured Active Record programs. But don’t put this book down just yet, because we
are far from finished. Active Record still has a lot more to offer, including one more core fea-
ture—data validations.

Validations
Data validations within Active Record are simply code-based rules applied to data. They ensure
that the data is of a certain format, type, length, or value. Some plain English examples of data
validation rules would be

• Account usernames must be seven characters long to be saved into the database.

• Promotional codes must be one of our predefined values or reset to “none” before being
saved into the database.

• Phone numbers must contain only numbers to be saved into the database.

Active Record validations are actually just specialized callbacks. Within the life cycle of an
Active Record object, validations occur on attribute values before your data is saved into the
database—that is, before a SQL insert or update clause is actually executed.

From a technical point of view, all Active Record objects have an associated ActiveRecord::
Error object associated with them. Data is only mapped to the database, via SQL insert or
update calls, when this object is empty. So when applying validation code, you simply need to
add data to the ActiveRecord::Error object when a validation rule fails, and this will prevent
the SQL insert or update clause from being executed.

Why Bother with Validations?
Data validation with Active Record is really a pretty simple concept and very easy to implement.
Still, there are a few questions you might have, and some quick tips that will hopefully make
things even easier for you, so let’s address those now.

Why do you need to validate data in the first place? Well, believe it or not, there are a lot
times when it comes in handy:

• Data validations are a handy way to ensure that your data is always in a clean and expected
format before it gets into your database. From a programmer’s point of view, if you know
your data is cleaned and scrubbed, you won’t need to write as many checks and balances
or deal with as many potential error-handling procedures (though you probably should
still have that code in place just in case future programs bypass your data validations).
From a database administrator’s (DBA) point of view, it also means there is less need for
database checks and procedures to ensure data integrity. From a user’s point of view, it
usually means a more intuitive experience where typos and common errors are auto-
matically caught and dealt with.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD80

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 80

• Many times, business logic is applied to specific data values or types; validations make
for more accurate results and expected execution in these situations.

• Validations make your database more secure; potentially harmful data or scripts can be
prevented from getting into your database.

• Validations help save on bandwidth and processing; rejecting data and throwing an error
as early as possible within the life cycle of your Active Record object saves on resources.
There is no need to involve the expensive call to the database until the data is really
ready to be stored.

As you can see, there can be lots of reasons to do data validations, and hopefully, by now,
you’ve decided that data validations really are useful. But how do Active Record validations
actually work?

Implementing Validations
What are the options for implementing data validations? As you probably guessed, there are
a couple of approaches you can take:

• You can use Active Record validations in your models and Active Record class files. Since
this is a book about Active Record, you can probably guess that this is our suggested
route. By putting your data validation code into your Active Record models, you get all
the benefits outlined in this chapter with very little downside (however, there is a little
bit of a downside, and we’ll cover the pros and cons in a minute).

• You can use custom code throughout your applications (generally in your controller meth-
ods and client-side code such as JavaScript). In some situations, this will meet your needs
just fine; for example, perhaps you want to check that a field contains a certain data value
only in certain situations within your controller, or you’re just developing a quick and dirty
unit test. However, outside of the most trivial situations, it makes more sense to centralize
the validation code into your model so that any instance of the Active Record object can
take advantage of it. This isn’t to say that you can’t use multiple approaches together, and
in fact, it’s often a good idea to use some level of validations in your controllers and
JavaScript to make a better environment for your users and to double-check that those
validations are properly enforced within your models.

• You can use database constraints, triggers, and stored procedures. As a Ruby developer,
this option probably doesn’t appeal to you, because it means taking the control out of
your hands and giving it to your DBA (if you’re also the DBA, at a minimum, it still means
taking off your Ruby hat and putting on your DBA hat). The other big downside to this
approach is that your validations would be database- and schema-specific, which makes
migrations or switching to another database backend more difficult down the road. Still,
if you’ve got more than one application accessing your database, especially if they aren’t
all using Active Record to do so, you’ll probably want to move—or at least duplicate—
your critical validations directly inside of the database. This way all applications are
dealing with the same rules and can reasonably expect the data to be in the same format
regardless of its originating source.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 81

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 81

This last implementation option really shines a light on the main design decision you
have to make when thinking about implementing data validations—do you implement them
in Ruby or directly in your database? Before you make your choice, consider these pros and
cons of Active Record validations:

• Pros: The good news is that because Active Record objects are really just Ruby objects,
Active Record validations are database independent. You don’t need to know any spe-
cial syntax or language such as TSQL or PL/SQL; you just write Ruby methods with
Ruby code. Additionally, the validations occur on the object before data gets mapped
to the database via SQL calls, which means that you save expensive (in terms of band-
width and processing) database calls for just those times that you really want them.

• Cons: The bad news is that Active Record validations are only applied within your Ruby
code. If other applications or programs, such as Java programs, access your database,
they would need to do their own data validations.

In the end, it’s up to you, the developer, to choose where and how to implement your data
validations. My personal recommendation is that you centralize your validations within your
database via constraints and other database-specific features when more than one application
or program will be directly accessing your database—especially if they all won’t be written in
Ruby. But I also recommend adding Active Record validations to your models in all your Ruby
applications. It won’t hurt your program and can only help to ensure that at least your Ruby appli-
cations and programs are inserting and dealing with clean data.

OK, enough theory and design, let’s get into the details of how Active Record validations
work and how to implement them within your models. Implementing Active Record data vali-
dations is a very simple two-step process:

1. Add a protected validate method to your model.

2. Within that validate method, simply add items to the ActiveRecord::Error object
when your validation rules are not met.

Using these steps will ensure that data will be saved to the database only when your valida-
tion rules are adhered to. Let’s look at a quick example where we only want to save new accounts
or update accounts that have a value for the Account_Name field and that value must be "Kevin":

Class account < ActiveRecord::Base
protected

def validate
if self.Account_Name == nil

errors.add(":Account_Name", "You must supply an account name")
elsif self.Account_Name != "Kevin"

errors.add(":Account_Name", "Account name must be Kevin!")
end

end
end

There are also validate_on_create and validate_on_update methods, which, as expected,
allow you to implement custom validations only on record creation or record updates, respec-
tively. As you can see in the following examples, from a developer’s view, everything is the same
as in our previous example except the method name:

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD82

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 82

Class account < ActiveRecord::Base
protected

def validate_on_create
if self.Account_Name == nil

errors.add(":Account_Name", "You must supply an account name")
elsif self.Account_Name != "Kevin"

errors.add(":Account_Name", "Account name must be Kevin!")
end

end
end
Class account < ActiveRecord::Base
protected

def validate_on_update
if self.Account_Name == nil

errors.add(":Account_Name", "You must supply an account name")
elsif self.Account_Name != "Kevin"

errors.add(":Account_Name", "Account name must be Kevin!")
end

end
end

That’s basically all you need to know to happily implement data validations in Active
Record.

Convenience Functions
Active Record was initially developed to be used with Rails. In typical Rails fashion, there are
a number of convenience methods (currently 11 to be exact) built into Active Record that make
the common case validations even simpler to implement. Keep in mind that Rails is a web-based
framework, so many of these validations are specific to applying validations to data submitted via
HTML forms. Let’s take a quick look at each one of these convenience methods in a little more
detail.

validates_each
The validates_each method evaluates each listed attribute against the associated block. The
current record, the attribute to be evaluated, and the current value associated with the attrib-
ute are passed as parameters to the block. The following example uses validates_each to
ensure that the submitted account_name value is "Kevin":

Class Account < ActiveRecord::Base
validates_each :Account_Name do |rec, attr, val|

if val != "Kevin"
rec.errors.add(":Account_Name", "Account name must be Kevin!")

end
end

end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 83

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 83

You can also specify a few options with validates_each, :on, :allow_nil, and :if. The :on
option allows you to specify if the validation should occur :on => :save, :on => :create, or on
=> :update. Here’s our example again, but limited to just updates:

Class Account < ActiveRecord::Base
Validates_each :Account_Name, :on => :update do |rec, attr, val|

If val != "Kevin"
Rec.errors.add(":Account_Name", "Account name must be Kevin!")

end
end

end

The :allow_nil option (:allow_nil => true or :allow_nil => false) lets you perform the
validation block for those attributes listed that do or do not have nil values. The :if option
evaluates a specified method, proc, or string and execute the associated block only if the return
value from the call was true (remember that Ruby returns true by default in most situations).
Here’s our example one more time, now limited to executing only when the associated ID
attribute is at a value of 1:

Class account < ActiveRecord::Base
Validates_each :Account_name, :if => :checked do |rec, attr, val|

If val != "Kevin"
Rec.errors.add(":Account_Name",
"Account name must be Kevin for this record!")

end
end

private
def checked

return false if self.ID != 1
end

end

validates_confirmation_of
The convenience method validates_confirmation_of is designed to simplify the process of
confirming two HTML form field values—a common practice for things like password fields.
Your table has one field associated with an attribute, and your HTML form has two fields that
are similar except that one of them has _confirmation appended to its name. An example
explains this best:

1. In your HTML form, you need to have something like this (it’s more common to use
the Rails helper methods for this, but I’m going to use straight HTML to keep the focus
on just Active Record specifics):

<input type="password" name="password">
<input type="password" name="password_confirmation">

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD84

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 84

2. Now, when the data is submitted to your model, the validates_confirmation_of method
will check that the values in these two fields match as part of the validation process. If
they do match, the data from the password field would be mapped to the password field
in your account table. The duplicate password_confirmation value would not map to
anything in the database and would quietly be ignored beyond the validation steps.

Class Account < ActiveRecord::Base
validates_confirmation_of :password

end

Again there are a few options that you can use with this method: :message => "" allows
you to specify a custom error message when the values don’t match. :on => :create, :on =>
:save, and :on => :update limit the validation check to just those types of actions, and :if
operates just as explained in the validates_each method.

validates_acceptance_of
The convenience method validates_acceptance_of is designed to simplify the process of
ensuring that an HTML check box was checked when data was submitted. This HTML field
does not map to any field in your database. Again, an example explains this best:

1. In your HTML form, you need to have something like this:

<input type="checkbox" name="terms" >

2. Now when your data is submitted, the following code will make sure that the user did,
in fact, select the check box:

Class Account < ActiveRecord::Base
validates_acceptance_of :terms

end

The options you can add to this method are :message, :on, and :if, as explained for the
previous methods, as well as an :accept option. The :accept option allows you to define what
value the check box needs to pass in order for the value to be accepted. The default value of
:accept is 1, which is generally the default value submitted by HTML check boxes. Here is
a custom example:

<input type="checkbox" name="terms" value="accepted">
class Account < ActiveRecord::Base

validates_acceptance_of :terms, :accept => "accepted"
end

validates_presence_of
The validates_presence_of method ensures that the values of specified attributes are not blank
by applying the Ruby Object.blank? method:

Class Account < ActiveRecord::Base
validates_presence_of :Account_Name

end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 85

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 85

The options for this method are :message, :on, and :if, which all operate as explained in
the previous methods.

■Note It’s important to remember that the validates_presence_of method is for confirming the pres-
ence of attributes and their values, not for confirming the presence or value of the associated object. If you
attempt to confirm the presence of the object, you’ll get errors when both the parent and child objects are new.

validates_length_of
The method validates_length_of allows you to check that the values of specified attributes
are of a certain length or within a certain range of lengths. The following example requires that
the submitted Account_Name is five characters long:

Class Account < ActiveRecord::Base
validates_length_of :Account_Name, :is => 5

end

The options for this method include :message, :on, :allow_nil, and :if, as explained in
other methods. You can also specify :minimum and/or :maximum, which allow you to state what
the minimum or maximum length of the attribute can be. The :is option, like we used in the
preceding example, allows you to specify the specific length an attribute must be, while the
:within and :in options allow you to specify a range of values that the attribute’s length may
fall within (you can use a combination of the :minimum and :maximum options to achieve the
same results). Additionally, you can use the :too_long, :too_short, or :wrong_length options
to specify custom error messages for those specific situations.

validates_uniqueness_of
validates_uniqueness_of ensures that the value of the specified attribute is unique within the
field of the database. Again, an example helps to make this most clear. In the following exam-
ple, every submitted account_username will be checked to ensure that no other records already
have the submitted value (on updates, it excludes its own record):

Class Account < ActiveRecord::Base
validates_uniqueness_of :Account_Username

end

The :message and :if options explained in the previous methods are available. Additionally,
you can use the :scope option, which allows you to limit your uniqueness check to specific
groupings of fields. Here’s an example that will ensure that a user can answer a question only
once:

Class Answer < ActiveRecord::Base
Validates_uniqueness_of :account_id, :scope => [:question_id]

end

The :scope option can be an array of fields to limit by.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD86

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 86

validates_format_of
Use validates_format_of to ensure that the value of the specified attribute adheres to a regu-
lar expression. The following example ensures that the account_name contains only uppercase
or only lowercase letters:

Class Account < ActiveRecord::Base
validates_format_of :Account_Name, :with => /[a-zA-z]+/

end

The :with option is required and must contain a regular expression.

validates_inclusion_of
Use validates_inclusion_of to ensure that the value of the specified attribute is within a sup-
plied enumerable object, such as an array. The following example once again checks that the
submitted account_name is "Kevin":

Class Account < ActiveRecord::Base
validates_inclusion_of :Account_Name, :in => ["Kevin"]

end

The :in option allows you to specify the enumerable object that is searched and used for
the comparison. The other options available to this method are :message, :allow_nil, and :if,
which operate as explained in previous methods.

validates_exclusion_of
The validate_exclusion method ensures that the value of the specified attribute is not within
a supplied enumerable object, such as an array. The following example checks that the sub-
mitted account_name is not "Marshall":

class Account < ActiveRecord::Base
validates_exclusion_of :Account_Name, :in => ["Marshall"]

end

The :in option allows you to specify the enumerable object that is searched and used for
the comparison. The other options available to this method are :message, :allow_nil, and :if,
each of which operates as explained in previous validation methods.

validates_associated
validates_associated ensures that the associated objects are all valid themselves. We talk
more about associations in their own chapter, but for now, consider the following example,
which ensures accounts are associated with accountrights:

class Account < ActiveRecord::Base
has_many :accountrights
validates_associated :accountrights

end
class Accountright < ActiveRecord::Base

belongs_to :account
end

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 87

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 87

There are two important things to remember when doing this type of validation:

• You should only put the validates_associated method on one side of the association. If
you place it on both sides, you will create a dreaded infinite loop! Consider this example
(do not do this!):

class Account < ActiveRecord::Base
has_many :accountrights
validates_associated :accountrights

end
class Accountright < ActiveRecord::Base

belongs_to :account
validates_associated :account

end

• The validates_associated method only ensures that the association is valid; it does not
check that the association is present. To do that, you should also include the validates_
presence_of method, as in this example:

class Account < ActiveRecord::Base
has_many :accountrights

end
class Accountright < ActiveRecord::Base

belongs_to :account
validates_associated :account
validates_presence_of :account, :on => :update

end

Validates_associated also accepts the :on and :if options explained in previous valida-
tion methods.

validates_numericality_of
Use validates_numericality_of to ensure that the value of the associated attribute is numeric.
The following example ensures that the submitted value of account_age can be converted with
Kernal.Float:

class Account < ActiveRecord::Base
validates_numericality_of :Account_Age

end

Like many of the other validation methods, validates_numericality accepts the :message,
:on, :allow_nil, and :if options. You can also specify :only_integer => true if you want to
ensure that the value is specifically an integer (in this case, the value is tested against the regu-
lar expression /^[+\-]?\d+$/). The default :only_integer => false uses the Kernal.Float
conversion to test if the value is a number.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD88

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 88

Your Core Is Strong
You’ve now been exposed to all three of what we view to be the core features and biggest
advantages of Active Record. Hopefully, you feel pretty comfortable with all the concepts, but
as we’ve mentioned before, real-world practice of these concepts and techniques is what will
truly make you an expert. So if you haven’t already picked an Active Record project of your
own to play around with, we suggest you do that now and start getting your feet wet.

In any case, you’ve completed your initial Active Record training. You’ve got the basics
and core understanding of Active Record concepts and are now ready to move on to all of the
really fun stuff. Throughout the rest of this book, we’ll focus on various tips, tricks, bonus fea-
tures, and using Active Record in the real world.

CHAPTER 4 ■ CORE FEATURES OF ACTIVE RECORD 89

8474_ch04FINAL.qxd 8/25/07 9:12 AM Page 89

Bonus Features

“It slices. It dices. It even chops! But wait, there’s more...”
Like those great infomercials you find on late night television, Active Record piles on so

many nice extras you almost can’t resist wanting to become an Active Record developer! These
bonus features include observers to allow you to monitor various actions through the life cycle
of your objects, aggregations that allow you to group common data sets or attribute groupings
into objects themselves, and acts-as packages that allow you to make your Active Record
objects mimic other structure types like lists or trees. Each of these features fill their own small
niche, and each is very useful within it. Even better (as is common with Active Record) all of
these bonus features are pretty simple and straightforward to implement. Let’s take a quick
look at the details of each.

Active Record Observers
Active Record observers are a great way to include functionality to your model that isn’t neces-
sarily a core concept. Everything you define within an Active Record observer can, instead, be
defined within callbacks directly in your Active Record classes. However, adding things like
transaction logging within your callbacks may clutter up and obfuscate the main role your
model fills. Observers are a nice, clean way to keep this functionality without cluttering up the
actual data model. If you’re coming from a database background, observers are a lot like trig-
gers, except that they are fired on various Active Record callbacks (see Chapter 5 for more on
callbacks) rather than by SQL statements or actions.

Implementing observers is a pretty simple procedure, but there is one small catch: you
must first configure Active Record to be aware of any observers. You do this with a call to the
ActiveRecord::Base.observers method to specify either the symbols that correspond to your
observer class names, or explicit class names. For example, the following code will make Active
Record aware of AccountObserver:

ActiveRecord::Base.observers = :account_observer
ActiveRecord::Base.observers = AccountObserver

■Note In Rails applications, you would include your observer configurations in your config/
environment.rb file.

91

C H A P T E R 5

■ ■ ■

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 91

Within your actual observer class, you simply define the callback methods you want to
perform observations on. Probably the most common use of observers is to populate a trans-
action log or to send notification alerts on specific actions. So let’s take a quick look at an
example class that populates a log every time an Account record is saved:

class AccountObserver < ActiveRecord::Observer
def after_save(record)
@@logger.info "Account ID #{record.ID} was just saved at #{Time.now}!"

end
end

■Note Ruby 1.8 and beyond includes the nice Logger library, which is often used with Active Record
observers to log various events and actions to a local log file. Rails is configured for Logger support out of
the box. For more information on Logger, visit http://log4r.sourceforge.net.

By default, observers map to the class they share a name with, so in our example,
AccountObserver would be attempting to observe the Account class. Sometimes, you might
want to abstract an observer, say to observe more than one class. You can do this by calling
the observe method within your observer class. In the following example, our generic observer
would send an e-mail whenever a new comment or vote is placed:

class GenericObserver < ActiveRecord::Observer
observe Comment, Vote
def after_save(record)
Alerts.deliver_alert(info@falicon.com,"New posting", record)

end
end

Canned Functionality
I wish I had a dollar for every time I found myself saying, “I wish my X had a feature like my Y,”
or “I wish my X acted more like my Y.” I sure would be a rich Ruby programmer instead of just
“acting as” one! All kidding aside though, many developers have felt this pain before as well,
and in response, the acts_as features were built into Active Record.

Basically, the acts_as_* methods add various methods to your Active Record objects so
that they act as other types of objects or collections.

■Note It’s important to keep in mind that acts_as does not actually change the object type. It merely adds
functionality to the Active Record object.

CHAPTER 5 ■ BONUS FEATURES92

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 92

By default, Active Record has three primary acts_as methods—acts_as_list, acts_as_
tree, and acts_as_nested-set—though others do exist and more are in development. Each
acts_as method is really quite useful and comes with its own set of rules and implementation
options. Because acts_as features work on collections, each relies on the various data associa-
tion methods (see Chapter 4) to work properly.

Acting as a List
We’ve all seen top-ten lists; we’ve all put together a grocery list, and as programmers, we’ve
certainly all had to deal with to-do lists. So I’m pretty sure we’re all familiar with the core traits
of a list. As I’m sure we all know, lists can be powerful things. It only makes sense that, at times,
you may want to add list-like functionality to some of your Active Record collections, and as
luck would have it, Active Record gives you just that ability with an acts_as_list method.
Using acts_as_list requires a minimal amount of work to set up. Here are the steps to follow:

1. Make sure that your Active Record associations are correctly set up.

2. Make sure that the table containing records that will essentially be the items in your
list contains an Integer column to be used for ordering the list.

3. Add the acts_as_list method to model that relates to the items your list will contain.

Let’s break each of these steps down into a little more detail, so we fully understand them.

Step 1: Setting Up Your Associations
Technically, this isn’t a required step at all. If you really wanted to, you could add list-like func-
tionality to any Active Record model simply by following the other two steps. However, it’s most
common to deal with a list that is associated with a parent object. Every item in a top-ten list
would be related to the list title; every item on a grocery list is associated with the grocery
store you will be shopping at, and every to-do list is associated with a person or entity that is
responsible for getting the items on the list done. So in most cases, you’ll deal with acts_as_
list along with models that have data associations, and when that is the case, the acts_as_list
method will generally go in the model that has the belongs_to method, as you can see here:

class TopTenTopics < ActiveRecord::Base
has_many :top_ten_items

end
class TopTenItems < ActiveRecord::Base
belongs_to :top_ten_topics
acts_as_list :scope => :top_ten_topic

end

Because we cover data associations in detail in Chapter 4, we will not dive into the design
issues of the TopTen associations at this time. Just know that a given top-ten topic record would
have a number of associated top-ten item records for this example.

CHAPTER 5 ■ BONUS FEATURES 93

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 93

Step 2: Defining an Integer Column Used for Sorting the List
Sometimes, like with a grocery list, you won’t really care about the order of the list, but that
doesn’t mean that it doesn’t have an order. The list has a beginning and an end, and each item
is either before or after other items on the list. In fact, order is a basic and fundamental element
of all lists, so it should come as no surprise that, to use acts_as_list, within Active Record you
need to have an integer field within your database that stores the order of items within your list.
By default, acts_as_list assumes that this field name is position, but you can override that by
passing the name of the column with your acts_as_list method, as the following example
shows (we use the column named listorder instead of the default column name of position):

class TopTenItems < ActiveRecord::Base
belongs_to :top_ten_topics
acts_as_list :scope => :top_ten_topic, :column => "list_order"

end

Requiring this integer field becomes obvious when you think about how you would actu-
ally implement some of the list-like features if you had to write the code yourself. For example,
if you want to move an item lower in the list, you would obviously need to know the current
position and have some way of adjusting that position as well as the position of all the items
on the list that were previously below the item you are moving.

■Note Many of the acts_as_list methods attempt to directly manipulate the value of integer field sort
key within the database even if you never make a call to the update or save method.

Step 3: Adding the acts_as_list Method
Adding the acts_as_list method is what really includes all the list-like functionality to your
model. There are two basic parameters that this method accepts, scope and column. Both param-
eters are actually optional, but using the scope parameter allows you to store multiple lists in
the same table. If you omit the scope parameter, the entire model will represent a single list.

The scope attribute allows you to specify the criteria records must meet to be considered
an item for the list. Scope equates to the where part of a SQL SELECT statement. In fact, you can
specify a string that would be the same as your where clause to narrow the specific records you
want this list-like collection to include. The other option for scope is to list a symbol for the
parent table of your list-like collection. When you do this, acts_as_list will automatically
append "_id" if it’s not already a part of your symbol, and then attempt to find a foreign key
field of this name in your table. A quick example will express this idea more clearly:

class TopTenItems < ActiveRecord::Base
creates a list-like collection with the same top_ten_topic ids
and that were posted to the system in the last year
belongs_to :top_ten_topics
acts_as_list :scope => "top_ten_topics_id = #{top_ten_topics_id} " +

"and posted > (sysdate – 365)"
end

CHAPTER 5 ■ BONUS FEATURES94

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 94

class TopTenItems < ActiveRecord::Base
belongs_to :top_ten_topics
acts_as_list :scope => :top_ten_topics
=> same as "top_ten_topics_id = #{top_ten_topics_id}"

end

The column parameter lets you specify the column in your table that will hold the order
the list’s items are in. It should be an integer column, and it is usually called position by
default. You can name it anything you wish, as long as you specify its name. Typically, the
default name is good enough.

What acts_as_list Gives You
Now that you’ve got your Active Record models set up to act as a list, you’re probably thinking,
“Now what? What did that work actually get me?” Well, believe it or not, a lot! You now have 13
different list-like methods you can use to examine and manipulate your collection. We’ll use
our Top Ten example:

class TopTenTopic < ActiveRecord::Base
has_many :top_ten_items

end

class TopTenItems < ActiveRecord::Base
belongs_to :top_ten_topics
acts_as_list :scope => :top_ten_topic

end

todayslist = TopTenTopic(1)
listdetails = todayslist.top_ten_items

We’ll go over the methods we get from acts_as_list in the following sections.

insert_at(value)

This method changes the value of the position column to the value specified and moves the
values of the other items as needed to correctly insert an item at this spot. This method imme-
diately saves the change of these position column values to the database.

listdetails[0].insert_at(3)

This method adjusts the position column to now hold a value of 3, and, if needed,
updates other records so that no other item is at the third position.

move_lower

If the collection contains an item with a position column value that is one greater than the
current one, this method will swap the values of those position columns. This method imme-
diately saves the change of these position column values to the database. This example would
swap the position value for the listdetails[0] and listdetails[1] records:

listdetails[0].move_lower

CHAPTER 5 ■ BONUS FEATURES 95

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 95

move_higher

If the collection contains an item with a position column value that is one less than the current
one, this method will swap the values of those position columns. This method immediately
saves the change of these position column values to the database. This example would swap
the position value for the listdetails[1] and listdetails[0] records:

listdetails[1].move_lower

move_to_bottom

The move_to_bottom method changes the value of the position column to the highest-numbered
position column value in the collection (thinking of position as an index) and adjusts the
other positions accordingly. This method immediately saves the change of these position
column values to the database. This example moves the first record to the end of the list:

listdetails[0].move_to_bottom

move_to_top

This method changes the value of the position column to 1 and adjusts the other positions
accordingly. This method immediately saves the change of these position column values to
the database. This example moves the fourth item in the list to the top of the list:

listdetails[3].move_to_top

remove_from_list

This method removes the specified item from the list in memory and updates the other items’
position columns to reflect the absence of this item from the list. This method immediately
saves the change of these position column values to the database. This example removes the
first record from the in-memory collection and subtracts one from each of the “lower” items’
position column values:

listdetails[0].remove_from_list

■Caution The item is only removed from the in-memory list-like collection. The Active Record collection
still has the record, and the record remains unchanged in the database. In fact, if you rerun your finder and
rebuild your list-like collection, this item would once again be included in the list (assuming you didn’t
update your code to specifically exclude it) and would have the same position column value it did previ-
ously (which would now be the same as the item that had previously been one position value higher).

increment_position

This method increments the position column value by one, regardless of the rest of the collec-
tion members’ position column values. This method immediately saves the change to the

CHAPTER 5 ■ BONUS FEATURES96

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 96

database. This example makes the position value one number higher than it previously was.
Note that this is not the same as move_lower, as it does not renumber the other records in the list.

listdetails[0].increment_position

decrement_position

Use this method to decrement the position column value by one, regardless of the rest of the
collection members’ position column values. This method immediately saves the change to
the database. Like increment_position, this does not renumber the other list records, so it
does not act like move_higher would. The following example lowers the position column by
one:

listdetails[3].decrement_position

first?

The first? method determines if the item is in the first position of the list and returns either
true or false.

listdetails[1].first?

last?

This method determines if the item is in the last position of the list and returns either true or
false.

listdata[1].last?

higher_item

The higher_item method returns the item with a position column value one number lower or
returns nil. Remember, “higher” in the method name refers to the first element of the list
(numbered 1) as the top, so the lower the position column’s value is, the closer to the top of
the list it is, for example:

listdetails[2].higher_item #=> listdetails[1]

lower_item

The lower_item method returns the item with a position column value one number higher or
returns nil.

listdetails[0].lower_item # => listdetails[1]

Acting as a Tree
Let’s face it, lists are great, but they will only let you go so far in defining the relationship
among a collection’s items. This is because lists lack depth. Say, for example, you want to build
a simple comment board application. You want your comment board to have various topics,
various threads within each topic, and various posts or replies within those threads. Actually,
lists could work for this application, but your code would get awfully messy, awfully fast. Luckily,

CHAPTER 5 ■ BONUS FEATURES 97

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 97

there’s a better structure to deal with this sort of problem—trees. Even better, there’s an Active
Record acts_as_tree method that was designed to help you to deal with collections of just this
sort!

Though it usually takes a little bit of work to visualize the concept of a tree structure, once
you do, it’s quite simple to implement:

1. Define a foreign key column in your table that maps back to the primary key of the
same table.

2. Call the acts_as_tree method.

Let’s break each of these steps down into a little more detail to help you fully understand
them.

Step 1: Defining a Foreign Key Column in Your Table
Your first step is to define a foreign key column that maps a recursive relationship back to the
primary key of your table. Trees are really a way of describing a parent/child relationship. In
our comment board example, we need a way to know when a record in our comments table is
a topic, a thread within a topic, or a comment/reply within a thread. We could use an additional
field that described the type, but this only gets us halfway there, because we still wouldn’t know
things like which thread a given comment relates to.

A better solution is to add a foreign key field that simply maps back to the primary key
within the same table. This way, our comments can each have a foreign key value that maps
to a specific thread’s primary key. Our thread records would have a foreign key value that
maps to a specific topic’s primary key and so on. With this design, we can tell the type of a spe-
cific record by its depth in the tree and we can also tell what record a given comment, thread,
or topic is a child of (if any). Cool.

■Caution Acts_as_tree relies heavily on a has_parent? method that, as expected, returns true when
the foreign key field properly maps to a record with that primary key value. This means that you cannot
assign a valid value to the foreign key field of a top-level record. If you were to set the foreign key value to,
say, the same value as the record’s primary key, calling a method like ancestors would actually create an
infinite loop!

Step 2: Defining Your acts_as_tree Method
Adding an acts_as_tree method is what really includes all the tree-like functionality in your
model. There are three basic parameters that the method accepts: foreign_key, order, and
counter_cache. All of these parameters are optional. This is the most basic tree you can have:

class Comment < ActiveRecord::Base
acts_as_tree

end

As good as the defaults may be, the options to acts_as_tree are worth explaining.

CHAPTER 5 ■ BONUS FEATURES98

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 98

foreign_key

By default, the acts_as_tree method assumes that the foreign key column in your table has
a name of parent_id. If you use this column name, you do not need to specify the foreign_key
attribute, but if you want to use a different name for your foreign key column, you can change
it here. This is an example of setting the foreign_key to a nondefault value:

class Comment < ActiveRecord::Base
acts_as_tree :foreign_key => "related_id"

end

order

The order parameter can be added as a SQL snippet to sort siblings. It is the equivalent of the
ORDER BY clause in a standard SQL statement. Here’s an example of setting the order parameter:

class Comment < ActiveRecord::Base
acts_as_tree :order => "comments_posted"

end

counter_cache

The counter_cache attribute can be used to tell your model to store the number of children
a record has within the database. Using this attribute helps to improve performance when you
want to know how many children a given record has, as it will avoid accessing the database
unnecessarily. Your table must contain a children_count column of integer type for this fea-
ture to work. By default, this attribute is set to a value of false.

What acts_as_tree Gives You
acts_as_tree really only adds three methods—ancestors, root, and siblings—but each is
very useful for navigating tree-like structures. To help make the breakdown of each of these
methods easier to understand, let’s first take a step back and define the generic comment
table we referenced previously:

Comments table
id, integer (primary key, auto-incremented)
subject, varchar
parent_id, integer (nulls ok)

And recall our Comment class:

class Comment < ActiveRecord::Base
acts_as_tree

end

CHAPTER 5 ■ BONUS FEATURES 99

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 99

Now that we’re all on the same page for the following examples, let’s also assume our
database has at least the following three records:

id: 1
subject: Post 1
parent_id: null

id: 2
subject: Post 2
parent_id: 1

id: 3
subject: Post 3
parent_id: 1

Finally, let’s assume that we have a program that eventually executes the following line:

temp = Comment.find(2)

With all this preliminary stuff out of the way, we should now be ready to explore the three
tree-like methods.

ancestors

Use the ancestors method to return a collection of ancestors, starting from the parent of the
current record and continuing through the root record. If the current record is a top-level
record or does not have a valid foreign key value, this method will return an empty collection,
for example:

temp.ancestors.each do |rec|
puts rec.subject # => Post 1

end

The collection does not include the actual instance from which you are calling the
method. This makes sense when you think about the name “ancestors,” as you would not
include yourself in a list of your ancestors.

root

Invoke the root method to return the top-most record in the ancestor tree for the current
record. If the current record is a top-level record or does not have a valid foreign key value, the
root method will return the current record value. We can get the subject of the topmost com-
ment like so:

temp.root.subject # => Post 1

siblings

Call siblings to return a collection of siblings, that is, records that have the same foreign_key
value as the current record. If the current record is a top-level record or does not have a valid
foreign_key value, the siblings method will return an empty collection. This example will
print out the subjects of all the comments that are replying to the same comment as temp:

CHAPTER 5 ■ BONUS FEATURES100

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 100

temp.siblings.each do |rec|
puts rec.subject # => Post 3

end

The siblings collection does not include the actual instance you are calling the siblings
method from, which makes sense when you think about the name “siblings,” as you would not
include yourself in a list of your siblings.

Acting as Nested Sets
Though powerful, a tree structure may still have some performance issues. They are especially
obvious when you need to select the children of all the descendants of a given branch. With
a tree structure, that would require a new query for each child node. Luckily, there is a struc-
ture that was specifically created for this type of scenario—nested sets. Actually, in practice,
nested sets work a lot like tree structures but involve a little more setup and design work. They
can be a little complex to grasp and manage, but as we mentioned, they do come with some
added performance benefits.

Since nested set structures are a little hard to conceptualize, we’ll dig into some example
code to show how it all works. For now though, let’s start by covering the steps required to get
acts_as_nested_set working:

1. Define three foreign key columns in your table that map back to the primary key of the
same table.

2. Call the acts_as_nested_set method.

Step 1: Defining the Foreign Keys
Nested sets contain information about a parent/child relationship just like a tree structure,
but they also contain information about what items each item is next to within the structure.
The nested set structure relies on having each record reference the primary key of the record
to the right of itself and the primary key to the left of itself. Actually, the left and right values do
not have to directly relate to the primary key of the records directly to the right and left the
current record but rather need to be small and large enough to include the values of those pri-
mary keys (this is because a SQL between clause is used to find those left and right records).

By default, the acts_as_nested_set method assumes that the three foreign key field names
are parent_id for the reference to the parent record, lft for the reference to the lower sibling
boundary, and rgt for the upper sibling boundary. Of course, each of these defaults can be
overridden, but we’ll save the details of that for the next step (since it’s really done there).

Step 2: Defining Your acts_as_nested Method
Adding the acts_as_nested method is what really includes all the nested set functionality to
your model. There are four parameters that this method accepts: parent_column, left_column,
right_column, and scope. All of these parameters are optional, making the following example
the most basic working example possible:

class Comment < ActiveRecord::Base
acts_as_nested_set

end

CHAPTER 5 ■ BONUS FEATURES 101

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 101

The optional parameters show very clearly how the nested set can work both like a list
and like a tree at the same time.

parent_column

Use the parent_column parameter to specify a name for the foreign key column in your table.
By default, the acts_as_nested_set method assumes that the foreign key column in your table
has a name of parent_id. If you use that column name, you do not need to specify it via the
parent_column attribute. But if you want to use a different name for your foreign key column,
you do need to specify that name via the parent_column attribute. For example, the following
example specifies a foreign key column name of realtedID:

class Comment < ActiveRecord::Base
acts_as_nested_set :parent_column => "related_id"

end

Keep in mind that the foreign key column named by the parent_column parameter is
intended to reference the parent record of the current record. If the current record is a root
record, the column’s value should either be nil/null or set to a nonexistent key (probably
something like 0).

left_column

Use the left_column parameter to specify an alternative name for the left boundary column.
The left boundary column stores the lowest primary key value that the current record shares
a level with. By default, this column is assumed to be named lft. If you want to use a different
name for your left boundary column, specify that name via the left_column parameter, for
example:

class Comment < ActiveRecord::Base
acts_as_nested_set :left_column => "lower_boundary"

end

right_column

The right_column parameter is analogous to left_column. The right boundary column stores
the highest primary key value plus one that the current record shares a level with. By default,
this column is assumed to be labeled rgt. If you want to use a different name, specify that
name via right_column. The following example specifies higher_boundary as the right bound-
ary column name:

class Comment < ActiveRecord::Base
acts_as_nested_set :right_column => "higher_boundary"

end

scope

The scope parameter allows you to further limit what is considered a part of a given set. If you
specify a symbol that does not end in _id, then _id will automatically be appended to the symbol.
For example, the following calls to acts_as_nested_set are equivalent:

CHAPTER 5 ■ BONUS FEATURES102

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 102

class Comment < ActiveRecord::Base
acts_as_nested_set :scope => :related #=> actually uses the column related_id

end
class Comment < ActiveRecord::Base
acts_as_nested_set :scope => :related_id #=> actually uses the column related_id

end

If you require even more control on the scope for nested sets, you can simply pass an
entire string that will be used as the where clause. Here’s an example that limits the set to only
those records with a related_id equal to zero:

class Comment < ActiveRecord::Base
acts_as_nested_set :scope => "related_id = 0"

end

What acts_as_nested_set Gives You
The acts_as_nested_set method provides nine methods. To help make the breakdown of each
of these methods easier to understand, let’s define our comments table with default acts_as_
nested_set columns:

Comments table
id, integer (primary key, auto-incremented)
parent_id, integer (nulls ok)
lft, integer (nulls ok)
rgt, integer (nulls ok)
subject, varchar (nulls ok)

And recall our Comment model class:

class Comment < ActiveRecord::Base
acts_as_nested_set

end

And, so that we’re all on the same page for the following examples, let’s also assume our
database has at least the following records:

id, parent_id, left, rgt, subject
1,null,1,16,'root topic'
2,1,2,'node 1'
3,2,3,'node 1 child 1'
4,2,5,'node 1 child 2'
5,1,8,'node 2'
6,5,9,'node 2 child 1'
7,5,11,'node 2 child 2'
8,1,14,'node 3'

Finally, let’s assume that we have a program that eventually executes the following line:

temp = Comment.find(1)

CHAPTER 5 ■ BONUS FEATURES 103

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 103

With all this preliminary stuff out of the way, we should be ready to explore the nested
set’s methods.

root?

Since nested set structures are fairly complex, you’ll often find yourself wanting to do a quick
check just to see where in the structure you are. The root? method simply returns true if the
current record is the root of the structure. The following example will print true if the temp
record is the root of the tree:

puts temp.root? #=> true

child?

The child? method returns true if the current record is a child within the current structure.
This will print true if the record is not the root of the tree and false if it is:

puts temp.child? #=> false

unknown?

Depending on the depth of your structures, it can become pretty easy to lose track of the depth
of the current item. The unknown? method returns true if it can not currently be determined if
the current record is the root or a child.

puts temp.unknown? #=> false

add_child

Use add_child to add a child node to the current object in the tree. All elements of the struc-
ture will be updated to shift them one position to the right as needed. If the current object has
not been initialized within the structure, it gets set up as the root. The following example first
creates a new record and then adds it as a new child node to our nested set example:

new_comment = Comment.new(:subject => 'node 4')
new_comment.save
temp.add_child(new_comment)
temp.save

children_count

This method returns the number of direct children that the current record has. If the current
record is the root, this method will return the total number of items in this structure. This
example assumes that the previous add_child example has been run and is still in the data-
base; it shows how to find the number of children for a given node:

temp.children_count #=> 8
newexample = Comment.find(2)
puts newexample.children_count #=> 2 (node 1, child 1 and node 1, child 2)

CHAPTER 5 ■ BONUS FEATURES104

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 104

full_set

The full_set method returns the entire structure set of data, including the current record this
method is being called against. This example prints out all eight titles, including the root’s:

temp.full_set.each do |rec|
puts rec.subject

end

all_children

This method returns all the children records of the current record. The result is similar to that
from the full_set method, but all_children does not return the current record as an item in
the structure. This example will print out all of the children’s titles, but not the root’s:

temp.all_children.each do |rec|
puts rec.subject

end

direct_children

Return just those records that are immediate children of the current record with this method.
The result of this example will be the subjects of children 1, 2, and, 3.

temp.direct_children.each do |rec|
puts rec.subject

end

before_destroy

before_destroy is a callback method that is not intended to be referenced directly. It assures
that the structure depth is kept intact when you are destroying objects within the structure.
With this following call, we will not only destroy record 2 (which is Node 1), but it will also
destroy the child records:

comment.destroy(2)

before_destroy is actually a standard Active Record callback, not something special for
this functionality.

Aggregations
Many times, you’ll have multiple fields within a table that are almost always grouped together
and treated as a single entity throughout your application—like an address that is made up of
a street, city, state, and ZIP code information. Active Record aggregations give you the ability
to wrap these fields into a single object—generally referred to as a value object—making the
data collection more logical for your application (or rather, for us humans who are program-
ming the application) to deal with.

CHAPTER 5 ■ BONUS FEATURES 105

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 105

Implementing Active Record aggregations is actually a pretty simple process:

1. Place the macro-like composed_of method call in the table’s class, passing the related
attribute mappings.

2. Define your value object.

Step 1: Calling the composed_of Method
This is a pretty straightforward and self-explanatory step. There are only three parameters for
the method call: the name of your value object, the actual class name of your value object
(class_name), and the mapping of your attributes (mapping). In the example that follows, we
are adding the value object of Songinfo to our Song class. We’ll start by defining a simple Song
table:

Song table
id integer (primary key, autoincremented)
artist varchar
songtitle varchar
songlength varchar

Next, we’ll define our Active Record class to reference this table and include our call to
implement our value object:

class Song < ActiveRecord::Base
composed_of :songinfo, :class_name => "Songinfo",

:mapping => [%w(artist artist),
%w(songtitle songtitle),
%w(songlength songlength)]

end

Now that we have our example code in place, let’s quickly talk about each of the options
we passed to composed_of above in a little more detail before we go on to step two.

The Name of Your Value Object
Since the name of your value object is the name that you will use to reference your aggregated
object, that name is a required parameter and can be any nonreserved, standard, Ruby-like
variable name.

■Note If you choose a value object name that is also the name of a field within your database table, the
aggregated object will override the table attribute and its methods. After that, using the aggregated object
will be the only way to access the overridden value. What this means is that if your table has a balance

field and you decide to create an aggregated object referenced by the name of balance, you will only be
able to get and set the balance value within the database through the implementation of the aggregated
object—you will not be able to directly set the balance value like you do with other fields in the table, as in
Account.username = "Kevin".

CHAPTER 5 ■ BONUS FEATURES106

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 106

class_name
The class_name parameter specifies the name of the value object’s class and can be any nonre-
served, standard, Ruby-like class name. This parameter is optional and, by default, assumes
the class is named the same as the aggregation’s name. For example, both of the following
examples would reference the class Userinfo:

composed_of :userinfo, :mapping => %w(username username)
composed_of :personalstuff, :class_name => "userinfo",

:mapping => %w(username username)

mapping
The mapping parameter associates table fields with value object attributes. Each association
should be an array containing the database field name (the attribute on the model) and the
parameter name (the attribute on the value object). To assign multiple attributes, you group
them as an array of arrays. The order in which you define your attributes within your value
object is the order in which these values will be set.

Some examples should clear things up a little bit. Let’s assume we have an accounts table
with an account_username and account_password field and a Userinfo value object with username
and password attributes. We can use the mapping option to tell Active Record where to look for
our data in the aggregated objects. Here, we create an aggregation, first with just the username
field, and then with both username and password fields:

composed_of :userinfo, :mapping => ["account_username","username"]
composed_of :userinfo, :mapping => [["account_username","username"],

["account_password", "password"]]

Step 2: Defining Your Value Object
For the most part, defining your value object is just like defining any other standard Ruby class.
You can include references to any other objects or classes that you want to extend, inherit, or
otherwise manipulate, and you can write any methods for which you want this class to provide
functionality. However, it’s important to remember that you must at least define the attributes
you specified in the mapping parameter and an initialize method, or your class really won’t
know how to collect the database information into an object state.

Once again, an example helps explain the details a little better, so let’s create a value object
for some basic song information. To make things a little more interesting than just grouping
things together, we’ll also define a method that lets us automatically get all the songs of the
same name as the current record but recorded by other artists. Here’s our new value object:

class Songinfo
attr_reader :artist, :songtitle, :songlength
def initialize(artist, songtitle, songlength)
@artist, @songtitle, @songlength = artist, songtitle, songlength

end
def by_other_artist

Song.find(:all, :conditions => ["songtitle = ? and artist != ?",
songtitle, artist])

end
end

CHAPTER 5 ■ BONUS FEATURES 107

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 107

Note that this is just a regular Ruby object, not a descendant of ActiveRecord::Base. The
idea behind the value objects used in aggregation is to encapsulate functionality and keep
related data and behavior in a separate place, as it’s easier to understand.

Putting It All Together: Using Aggregations
Now that we’ve set up our code, let’s use that code to take a quick look at how a program might
actually use aggregations. Let’s assume that our simple song table has the following records:

id,artist,songtitle,songlength
1, Johnny Cash, Walk the Line, 166
2, Four Tet, Hands, 341
3, Jimi Hendrix, Red House, 223

Our example is simply showing the basic idea of aggregations, so we aren’t cluttering up
our table with additional data. It’s important to remember that in the real world it’s more likely
that your tables would have more fields than just those involved in your aggregations, and that
the other fields’ data would be handled in traditional, Active Record ways mentioned through-
out the rest of this book.

To start our demonstration, let’s have our program create a few new records. We’ll create
one record by using the value object approach and a second record using the traditional
Active Record approach. Here’s the code for both approaches:

temp = Song.new
temp.songinfo = Songinfo.new("The Books","Tokyo",223)
temp.save #= > adds "4, The Books, Tokyo, 223" to our table
temp = Song.new
temp.artist = "Albert King"
temp.songtitle = "Red House"
temp.songlength = 336
temp.save # => adds "5, Albert King, Red House, 336" to our table

Finally, let’s use the value object with an existing Song record to display some information
about that song. The following examples will print out the name and artist of the last song:

temp = Song.find(5)
puts "#{temp.songtitle} : #{temp.artist}"
puts "#{temp.songinfo.title} : #{temp.songinfo.artist}"

In this example, we can find use the by_other_artist method we defined on the value
object to get all songs of the same name by different artists:

temp.songinfo.by_other_artist.each do |rec|
puts rec.artist # => Jimi Hendrix

end

CHAPTER 5 ■ BONUS FEATURES108

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 108

■Caution Value objects are immutable, that is, their values can’t be changed once set. Instead, you
should create a new value object. For example, calling song.songinfo = Songinfo.new("Judas
Priest","Exciter","303") is correct, but calling song.songinfo.artist = "Prince" would throw
an error. To change the value object associated with this record, you would actually need to once again
call song.songinfo = Songinfo.new("Prince","1999","371"). This is because value objects are
intended to represent a given value strongly dependent on its data, such as a specific song that is a spe-
cific instance of a generic song object, rather than a reference to just the generic song object. The Active
Record documentation also suggests you read more about value objects at http://www.c2.com/cgi/
wiki?ValueObject and the dangers of not keeping value objects immutable at http://www.c2.com/
cgi/wiki?ValueObjectsShouldBeImmutable.

As you can see, implementing and using Active Record aggregations is pretty simple and
is also a good way to keep your code clean, organized, and more object oriented.

Extending Active Record
One of the most wondrous parts of Active Record is the fact that it was built using Ruby. As
a result, any part of it can be modified, replaced, tinkered with, and enhanced. Ruby classes are
extremely malleable, so it’s very easy to change the behavior of classes even while your applica-
tion is running. Where code writes other code, this practice is called metaprogramming. You can
use it to add declarations (the same way has_many, validates_presence_of, and acts_as_list
do), or you can use it to modify how pieces of Active Record work.

According to DHH the original code for the plug-in system for Ruby on Rails was written
in five lines. It’s grown a bit since then, but the basis of it is still grounded around the principle
that Ruby classes and objects are always open to modification. Since you can inject your own
code wherever you want, the plug-in system doesn’t have to worry about making sure there
are hooks for you; it can just get on with business.

■Note While Rails has the concept of plug-ins, they only work automatically with Rails as a whole. You can
still use plug-ins meant for Rails with Active Record apart from Rails, but you’ll have to do the work of initial-
izing them yourself, much like you have to worry about setting up your own database connection. In practice,
it’s about as simple as that as well: just require the init.rb file in the plug-in and most of the time that
should be enough.

Extending Active Record the Easy Way
The easiest way to add functionality to Active Record is to open the ActiveRecord::Base class
and define some new functions. For example, we can add a method, which will be available to
all models, that can greet the user and display its class name and ID:

CHAPTER 5 ■ BONUS FEATURES 109

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 109

class ActiveRecord::Base
def hello_world
"Hello from #{class.name}, World! My ID is #{id}."

end
end
cow = Cow.find_by_name("Bessie")
cow.hello_world # Hello from Cow, World! My ID is 5.

The hello_world method is now available to all Active Record objects. If we added our
code into a file called ar_hello_world.rb, all we have to do to make sure it gets included is add
the following line to our program:

require "ar_hello_world"

Yes, modifying Active Record classes really is that simple. But, admittedly, the previous
example is a simple case. We’re not really messing with the guts of Active Record, and we’re
also not doing anything terribly useful. But, the course of action is much the same even in
more complicated cases.

Writing Code That Writes Code
To make changes to Active Record, we’re going to have to metaprogram. This is somewhat of
a dark art to some people, and a lot of times when programmers from Java or C# are exposed
to it for the first time, they grow fearful because of the power you have over other people’s
code. The paradigm of other languages has a tendency towards protecting your code, whereas
in Ruby, it’s often expected that your classes will get tinkered with at some point. The basis
behind metaprogramming is the concept of writing code that writes code. While this may
sound difficult, it’s actually pretty easy to do in Ruby.

Let’s say we want to change the way ActiveRecord::Base.find is called. We have the whole
power of Ruby at our hands, and ActiveRecord::Base.find isn’t a very Ruby-looking function.
What if we could pass a block in that we could use it to specify our conditions in a more Ruby-like
way? As it turns out, there are a number of plug-ins that will do just this (including one that
Jon’s written—we know, we know; you’re shocked, right?). We can still use the concept as a basis
for exploring both metaprogramming and extending Active Record. The example we’ll be
building lets you specify a query that would normally look like this:

Cow.find(:all, :conditions => ["breed = ? AND gallons_per_day >= ?", breed, amount])

and turns it into this:

Cow.find(:all) do |cow|
cow.breed == breed
cow.gallons_per_day >= amount

end

The plug-in represents a fairly extensive change to the normal operation, but the change
covers a large portion of the information we are able to get out of Active Record. Other versions
of this functionality actually do a fair bit more than what we’re presenting here, but we can use
this as a good basis for example; and since we’re trying to make our queries more Ruby-like,
we’ll call this extension RQuery.

CHAPTER 5 ■ BONUS FEATURES110

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 110

First things first, you need to know how to override find. The simplest method is to open
up the ActiveRecord::Base class like we did at the beginning of the chapter and write a new
one. Of course, find does a lot of things already, and it’s not the best idea to go overwriting
existing code. Whenever possible, you should make sure the old functions are still callable. We
can use alias_method to make sure that the original find call is available after we’re through
poking around:

class ActiveRecord::Base
class << self
def find_with_rquery(*args, &blk)
We'll get to this in a minute. But for now, don't break anything.
find_without_rquery(*args, &blk)

end

alias_method :find_without_rquery, :find
alias_method :find, :find_with_rquery

end
end

■Note In Active Support, there exists a method that will basically do what we just did, but in a more
straightforward manner. It’s called alias_method_chain. You give it the name of the method you want to
override and the name of the feature you’re adding, and it will handle all of the aliasing itself. That amounts
to exactly what we just did, but it looks nicer. However, it’s only available when you’re using Active Support,
so if you’re using Active Record on its own, you have to handle the aliasing yourself.

Now we have our two functions: the original find, which has been renamed to find_
without_rquery, and the new find that will be replacing it, which is called both find_with_
rquery and find, thanks to the alias_method call. If you were to call find now, you’d be calling
our newly defined version (which just so happens to do nothing at all except call the original
version). These functions are supposed to appear on the class itself (i.e., we want to be able to
call Cow.find), and so we need to define them in an eigenclass.

■Note Eigenclasses, also called singleton classes, are used to define methods on a specific object. Nor-
mally, a def or define_method call inside a class definition means that instances of that class can call that
newly defined method. When you use an eigenclass, which uses the form class << foo, you’ll be able to
define methods that only foo can call. You do a similar thing when you define a class method with def
self.foo. The difference is that the eigenclass lets you work on the class with any class methods that would
normally be available, like include, attr_accessor, and alias_method. We’ll have more on eigenclasses
later in this chapter.

CHAPTER 5 ■ BONUS FEATURES 111

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 111

Now we have a method that’s in the right place but doesn’t actually do anything. This is
great, because we have a place to start building our functionality. Something to note is that the
new version of find expects to be passed a block, which is what the &blk parameter becomes.
This block contains code which will eventually get parsed into a format suitable for ActiveRecord:
:Base#find. Since the original find doesn’t take a block at all, we can use its presence to deter-
mine whether or not the user wants to use the extension we’re adding with RQuery:

class ActiveRecord::Base
class << self
def find_with_rquery(*args, &blk)
if blk
conditions = RQuery::Conditions.new(&blk)
amount = args.first
options = args.last || {}
find_without_rquery(amount, options.merge(:conditions =>

conditions.to_find_conditions))
else
find_without_rquery(*args)

end
end

alias_method :find_without_rquery, :find
alias_method :find, :find_with_rquery

end
end

Now we know that if there is no block passed in, we obviously don’t want to be using our
new block syntax, so we forward them to the original version, and everyone is happy. But what’s
that new RQuery::Conditions object? And what’s it doing? You caught me, I jumped forward
a bit. We need an object to actually do the work for us, and we do need to call the original find
method in the end. Like I said, it does a lot of stuff already, so we shouldn’t go messing around
with something that’s already working if we don’t need to.

Meet method_missing
The RQuery::Conditions class is what actually runs the block we’ve passed into find that con-
tains the comparisons, but it can’t run the block as it is; it needs to know a few things beforehand.
First, what’s the cow object that gets passed in? And how does it turn comparisons into SQL?
Well, to answer that, you need to know something about Ruby method calling.

When you call a method, like some_array.size, Ruby looks for the size method in its method
tables for the class in question, and if Ruby finds the method, it executes the code that’s asso-
ciated with it. If not, Ruby searches all the superclasses of that object until it finds one that has
a method of that name. If it can’t find such a method, Ruby calls a special method called
method_missing and passes in the name it was trying to find and the arguments it was given.

Here’s an example where we’ve added method_missing to the String class, which will print
out a message to the user instead of raising an error:

class String
def method_missing method_name, *args

CHAPTER 5 ■ BONUS FEATURES112

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 112

puts "You tried to call #{name} and I don't know what that means!"
end

end
"Hello".foo_method
prints "You tried to call foo_method and I don't know what that means!"

We can use the behavior of method_missing to our advantage, because we can make an
object that will use the method names passed to it through method_missing and build our SQL,
for example:

module RQuery
class Conditions
def initialize(&blk)
@columns = []
blk.call(self) unless blk.nil?

end

def method_missing(name, *args)
column = Column.new(name)
@columns << column
column

end
end

end

So we have a skeleton of how the code will get executed. We keep the amount (the :all or
:first that’s normally in a find call) and the options (like :limit and :offset) stashed away
so we can get to them later, and we make an array that we can use to hold the conditions we’re
building. Then we call the &blk block (finally) and pass in the Conditions object itself as the
parameter.

Now we know what cow was in the example when we started, and we know what will get
its method_missing called when we use the name of an attribute. What about those pesky com-
parisons, though? They aren’t arguments to the method; they’re methods themselves. How will
we get that data into a usable form? The answer lies in the Column object being created and
returned (which you probably wondered about when you saw it—and I’m only telling you
about now).

Like I said, the equality symbols are actually methods on the objects, and they can be
overridden. We can define a whole bunch of methods that, instead of returning true or false
like a normal comparison, will actually record the whole comparison into the object they were
called on. Once we have that, we can turn that object into a format suitable for handing to
find_without_rquery.

The only annoying part is that we’re basically going to be writing the same method over
and over, so we can loop over a list of method names and use define_method to keep our code
straightforward. Keep in mind that using define_method is almost exactly like using def,
except you use a symbol for the name of the function instead of just typing it. This means our
comparison functions will be named according to the symbols :==, :<, :>, :<=, :>=, and :=~.
Since the body of each comparison will be the same, we can iterate over an array containing
the operators and use define_method, like so:

CHAPTER 5 ■ BONUS FEATURES 113

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 113

module RQuery
class Column
attr_reader :name, :operator, :operand
def initialize(name)
@name = name

end

[:==, :<, :>, :<=, :>=, :=~].each do |operator|
define_method(operator) do |operand|
@operator = operator
@operand = operand

end
end

end
end

After executing our block, we have an array full of Column objects for which we know
exactly what column was specified and how and what they were compared to. We’re well over
halfway there now. All we need to do is translate the resulting Column objects into a format like
find’s :conditions array. We have the condition operators stored in our objects, but the prob-
lem is that SQL doesn’t use all the same operators as Ruby. We can use the following mapping
to make sure we’re using the right SQL syntax:

module RQuery
class Column
OPERATOR_MAP = {
:== => "=",
:>= => ">=",
:<= => "<=",
:> => ">",
:< => "<",
:=~ => "LIKE"

}

def to_find_conditions
["#{name} #{OPERATOR_MAP[operator]} ?", operand]

end
end

end

There, when we call to_find_conditions, we’ll get the right SQL syntax. Next, we need to
convert and merge the whole array of Column objects into one big array we can pass to find_
without_rquery. Here’s the code to do that:

module RQuery
class Conditions
def to_find_conditions
sql_strings = []
arguments = []

CHAPTER 5 ■ BONUS FEATURES114

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 114

columns.each do |column|
Get the conditions of each column
sql_string, *column_arguments = column.to_find_conditions

Append them to the rest
sql_strings << sql_string
arguments << column_arguments

end

Build them up into the right format
full_sql_string = sql_strings.join(" AND ")

Return them in one nice, flat array
[full_sql_string, arguments].flatten

end
end

end

If we try to use our new SQL generator, we should be able to create a new Conditions
object, give it a block, and be able to see the SQL that comes out, for example:

conditions = RQuery::Conditions.new do |cow|
cow.breed == breed
cow.gallons_per_day >= amount

end
conditions.to_find_conditions
=> ["breed = ? AND gallons_per_day >= ?", "Holstien", 8]

which is exactly how we want the conditions to come out! Next, we can see that when we pass
the same block to find, we’ll get the correct result set back:

original_cows = Cow.find(:all, :conditions =>
["breed = ? AND gallons_per_day >= ?",
breed, amount])

rquery_cows = Cow.find(:all) do |cow|
cow.breed == breed
cow.gallons_per_day >= amount

end

original_cows == rquery_cows # => true

So now we have an extension to Active Record that will take a block of actual code and
convert it—without much hassle—into an array fit for passing as the :conditions argument to
ActiveRecord::Base.find, and that process of conversion is completely transparent to find’s
normal operation. Not bad.

Still, our solution could use some tweaks. There is one big problem with relying on
method_missing to tell us the name of the column we want: that approach only works if there
isn’t already a method by that name, like id. I admit I glossed over this problem for simplicity,
but now that it’s out in the open, we can do something about it. We can ask Active Record for
the name of the columns and define methods ourselves.

CHAPTER 5 ■ BONUS FEATURES 115

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 115

What Column Did You Want, Again?
Defining methods on the fly is an important part of metaprogramming—it’s the very heart of
code that writes other code. We can use the column_names array that Active Record supplies
and define a function for every column. This method will perform the same actions as the
method_missing we used before, but instead of being called implicitly (as method_missing
does), they will be called explicitly. This will remove any ambiguity and let us be sure our
methods refer to columns in the database.

However, we’ll need to rearrange our conditions class a little, for example:

module RQuery
class Conditions
def initialize(active_record, &blk)
@active_record = active_record
@columns = []
define_column_methods
blk.call(self) unless blk.nil?

end

def define_column_methods
active_record = @active_record
(class << self; self; end).class_eval do
active_record.column_names.each do |column|
define_method(column) do
column = Column.new(column_name)
@columns << column
column

end
end

end
end

def method_missing(name, *args)
raise "The column #{name} was not found on #{@active_record.class.name}"

end
end

end

The define_column_methods method is where our new work is getting done. Adding
a method to a class at runtime is a little trickier than it seems. We need to add the methods at
runtime, and we need to make sure they only get added to this particular object. That’s where
the eigenclass comes in: it holds the methods we’re adding, and it’s only visible to this instance
of the Conditions object. See the eigenclass sidebar for more details.

CHAPTER 5 ■ BONUS FEATURES116

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 116

A NOTE ABOUT EIGENCLASSES

Let’s talk more about eigenclasses. The only difference, practically speaking, between classes and objects in
Ruby is that classes are objects that are able to have methods.

“But I can call methods on objects!” you say. Well, yes, you can, but when you do that, Ruby actually
starts looking for the method definition in the object’s class. Under normal circumstances, all instances of an
object have the same parent class. If the method you’re trying to access isn’t defined in the class (e.g., if you
called object_id on a String), Ruby will look in that class’s parent class (or Object in this case) for the
method. It will continue along doing this until it runs out of superclasses. Then, it will start over by calling
method_missing on the original object (which, as you guessed, means it starts searching in that object’s
class).

Now, here’s why eigenclasses are sometimes called singleton classes. When you define methods using
an eigenclass, Ruby actually inserts a fake class object between the real class and your object. So if you
define a new to_s method for this object, Ruby will find that one before it finds the one defined in the class
with def to_s. This means there’s only ever one instance of that special class object, and it only ever
applies to that one object. Similarly, if you use an eigenclass like we did at the beginning of the chapter, you
still make the special class, but it’s inserted above the class’s class. This is where metaprogramming can
really tweak some people’s brains.

Now that we have our methods, we don’t need to worry about method_missing picking up
any slack. It would be nice, however, to have some better error messages if we do happen to
type something wrong, so we can have it raise an error, since it couldn’t find a column we were
talking about.

Now, we’re able to accomplish the following:

Cow.find(:all){ id == 2 }

If we had done that previously, we would have gotten a list of all of the cows, because id
would have called the id method on Object instead of triggering our method_missing to add
a new Column object.

But What About the Farmer?
Not only does Active Record allow you to find the names of the column in your models, but
you can also get the names of all the relationships defined in the model as well. We can use
this information to let our extension create joins automatically too.

There are a number of ways to get the names of the associations. You can obtain a list of
all of them with ActiveRecord::Base#reflect_on_all_associations. That method will return
an array of AssociationReflection objects, which hold all the information you need about
a particular relationship including the source and destination classes, the name, the type (e.g.,
has_many, belongs_to), and any options that were defined on them. We can iterate over these
associations like we did for the column names to create functions with the names of our rela-
tionships. In the following code, you can see the new method that will create more methods
based on the association names, as well as a method that will return a list of associations gen-
erated during the condition block’s execution:

CHAPTER 5 ■ BONUS FEATURES 117

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 117

module RQuery
class Conditions
def initialize(active_record, &blk)
@active_record = active_record
@columns = []
@associations = {}

define_column_methods
define_association_methods

blk.call(self) unless blk.nil?
end

def define_association_methods
active_record = @active_record
(class << self; self; end).class_eval do
associations = active_record.reflect_on_all_associations

associations.each do |association|
define_method(association.name) do
@associations[association.name] = Conditions.new(association.klass)

end
end

end
end

def to_find_includes
includes = {}
@associations.each do |name, association|
includes[name.to_sym] = association.to_find_includes

end
includes

end
end

end

Our new method for defining the association methods looks an awful lot like the method
for defining the column methods. The big difference is that we’re placing the associations into
a hash table, which will make building the :include definition for find that much easier. Remem-
ber, you pass :include options to find in a nested hash formation, so building the placeholders
in the same format will be advantageous to us. We’ve also added a method for turning the new
Conditions objects into the hash that the :include option expects. If we referenced a relation-
ship like cow.farmer.distributor, this would build a hash of {:farmer => {:distributor =>
{}}}, which is exactly what you’d pass to :include.

The only thing we’re not doing is getting the conditions that are being built by the condi-
tions objects. We can change our to_find_conditions call in the following manner:

CHAPTER 5 ■ BONUS FEATURES118

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 118

module RQuery
class Conditions
def to_find_conditions
sql_strings = []
arguments = []

@associations.each do |name, association|
sql_string, *column_arguments = association.to_find_conditions

sql_strings << sql_string
arguments << column_arguments

end

@columns.each do |column|
sql_string, *column_arguments = column.to_find_conditions

sql_strings << sql_string
arguments << column_arguments

end

Build them up into the right format
full_sql_string = sql_strings.join(" AND ")

Return them in one nice, flat array
[full_sql_string, arguments].flatten

end
end

end

If we treat the association condition blocks like any others, we can get the conditions it
would have generated and append them to the rest. Let’s see the new code in action:

Cow.find(:all) do |cow|
cow.farmer.state == "MA"
cow.gallons_per_day >= 8

end

This generates the exact same query and result as the following:

Cow.find(:all, :conditions => ["state = ? AND gallons_per_day >= ?", "MA", 8],
:include => {:farmer => {}})

There are a few more things we can do to make our little plug-in here more robust, but
they’re outside the scope of this chapter. Suffice it to say that, thanks to Ruby, we were able to
do a lot more in modifying the behavior of find than we could ever have done with a more tra-
ditional language.

Overriding and wrapping Active Record functions allow for a lot of flexibility in how you
can write your code. Even better, often you don’t have to worry about doing the heavy lifting
(i.e., writing out all the SQL) because you can still call the original Active Record methods,
allowing you to change the look without changing the ultimate behavior.

CHAPTER 5 ■ BONUS FEATURES 119

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 119

Adding Class Methods
Not all problems are solvable through such gross procedures as overloading a method that
everyone uses. Sometimes, you only want things to happen to one or two models or even one
or two attributes in a single model. Fortunately, using the same techniques of adding in meth-
ods at runtime and overloading existing methods, we can add our own class methods that can
alter behavior.

Class methods like has_many, validates_presence_of, and even attr_accessor aren’t any-
thing new, but to people who first get involved with Ruby (lately, often through Ruby on Rails),
they can look as though they’re part of the language. After all, they look like keywords (because
you can call them, like all Ruby methods, without parentheses on their arguments), and they’re
used bare inside a class (which is just plain weird if you’re coming from something like Java or
C++). We can use them to add functionality to a model the same way Active Record does.

Your plain basic class method is typically defined in a class by prefixing either the class
name or self to the name of a method:

class ActiveRecord::Base
def self.print_args(*args)
p args

end
end

Then, you can execute the following code:

class Cow < ActiveRecord::Base
print_args [1,2,3], { :one => 1 }

end

and it will print out this:

[[1,2,3], {:one => 1}]

For the most basic case, the preceding example shows all you need to do to add a method
that can be called inside the class definition to a model. In practice, things should be a little
more complicated, because well, hopefully what you want to do is more complicated.

■Note There is a subtle difference between the include and extend methods. If you include a module
in your class, the methods defined inside that module will act as though they were defined inside the class.
Basically, if you include a module, those methods will be accessible to instances of that class. If you
extend an object with a module, then the methods defined in the module will be available to that object and
that object only. The include method works on classes and will affect every instance of that class; the
extend method works on objects themselves and affects only that object.

For the most part, if you want to use a class method, you want the instances of that model
to have some particular behavior. That means you’ll have to add both class methods and
instance methods. Best practice for making sure both class and instance methods get added is
to separate them out into modules called ClassMethods, InstanceMethods, and SingletonMethods.

CHAPTER 5 ■ BONUS FEATURES120

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 120

Here’s a simple skeleton set of modules that will demonstrate the general concepts, using
a module that will allow your models to track and save changes to their fields:

module Auditable
def self.included(base)
base.extend ClassMethods

end

module ClassMethods
def auditing_columns
@auditing_columns

end

def audits *columns
include Auditable::InstanceMethods
extend Auditable::SingletonMethods

@columns = columns
end

end

module InstanceMethods
end

module SingletonMethods
end

end

The linchpin of this technique is the self.included method. It’s called on a module when
that module is included in another class. In this case, when the Auditable module is included
in a class it gives that class access to all the methods in the ClassMethods module. That makes
the audits method available to your models but doesn’t add any other code until you actually
want it. For example, we can include our Auditable module like so:

class ActiveRecord::Base
include Auditable

end

which will add the audits method to all models. Once we have done that, we can call it like so:

class Cow < ActiveRecord::Base
audits :name, :gallons_per_day, :farmer_id

end

When you call audits inside the class, two things happen: your class then has access to
the methods in the SingletonMethods module (which means, in this case, that the Cow class has
access to methods that other models don’t), and all of your instances have access to the methods
in the InstanceMethods module (so all of your individual Cow objects have extra functionality).
Now that you know where everything goes, we can start implementing our methods.

CHAPTER 5 ■ BONUS FEATURES 121

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 121

The next thing we need is a way to know if a column has changed, since we can’t record
the change if we don’t know it’s changed. We can keep track of column changes by overriding
the attribute setter methods in the model instance. Since we’re given the columns we want to
audit in the call to the audits class method, we can use those names to create new attribute
setters, like so:

module InstanceMethods
def self.included(base)
base.class_eval do
auditing_columns.each do |column|
define_method :"#{column}=" do |new_val|
@previous_attribute_values[column] ||= {}
@previous_attribute_values[column][:old] ||= base.send(column)
@previous_attribute_values[column][:new] = new_val
write_attribute(column, new_val)

end
end

end
end

end

This code creates a setter method for every symbol specified in the call to audits. In this
case, base is whatever model we were in when we called the audits method. Using class_eval
means we’re working exactly as though we were inside the class, which lets us access the
auditing_columns method and call define_method to make the setters.

At this point, we have a command that will let us be able to tell when columns were over-
written but doesn’t let us keep a record of all the changes that have been made along the way.
We need to tinker with ActiveRecord::Base#save so we can record the audits the same time
the record gets saved. We can add the following code to the self.included function inside the
InstanceMethods module, which will wrap the save function:

def save_with_auditing(validations = true)
if save_without_auditing(validations)
@previous_attribute_values.each do |column, values|
Audit.create(:model => self, :column => column, :record_id => self.id,

:changed_from => values[:old], :changed_to => values[:new])
end
@previous_attribute_values = {}

end
end

alias_method :save_without_auditing, :save
alias_method :save, :save_with_auditing

With this code in place, we will have a number of Audit records created every time we
save a record: one for each column that we are watching and that we changed. For reference,
here is the migration I am using for the Audit class:

create_table :audits do |t|
t.column :model, :string

CHAPTER 5 ■ BONUS FEATURES122

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 122

t.column :column, :string
t.column :record_id, :integer
t.column :changed_from, :string
t.column :changed_to, :string
t.column :created_on, :datetime

end

Since we’ll be leaving such a trail of Audit objects (every change to a Cow object, for exam-
ple, can create up to three Audit objects), we should have a way of getting relevant ones. We
can use the SingletonMethods module for this. Here is a method that can query the Audit
model for us, in a nice, neat package:

module SingletonMethods
def revisions_for object
id = object.is_a?(ActiveRecord::Base) ? object.id : object
Audit.find(:all, :conditions => ["class_name = ? AND record_id = ?",

self.name, id])
end

end

We can pass in the id of the record we wish to query or the object itself, and we will receive
an array of Audit objects. Because the methods in the SingletonMethods module are (not sur-
prisingly) singleton methods, they are applied only to the class we originally called audits on.
Therefore, we should call the revisions_for method through that class. In this case, we should
call the following:

Cow.revisions_for 1

which will give us all of the changes we’ve ever made to the Cow with an id of 1.
These are the basic building blocks for extending, not just Active Record, but any Ruby

class. Metaprogramming is a powerful tool that Ruby provides eagerly to everyone, and it can
create some very clean and easy to read code. Likewise, Active Record gives you a lot of infor-
mation about your database and its contents. You can use these two features together to create
nearly anything, from simple helper methods to automatic, transparent database connection
pooling.

Don’t Shoot Yourself in the Foot
Active Record hands you a lot of power in manipulating your data. While it gives you methods
like acts_as_tree out of the box, the fact that it is written in Ruby means you can write your
own methods that can grant a wide array of functionality with very little code.

While being able to modify Active Record is powerful, it’s also potentially problematic.
Being able to open classes and redefine methods is very useful, but you can easily overwrite
necessary functionality by accident. Metaprogramming can be difficult and sometimes con-
fusing, and using it inside a library as large as Active Record even more so. Fortunately, there
are a wealth of testing and debugging aids at your disposal, so you can be sure your code is
correct.

CHAPTER 5 ■ BONUS FEATURES 123

8474_ch05FINAL.qxd 8/25/07 9:13 AM Page 123

Active Record Testing and
Debugging

As you’ve seen throughout this book, a number of features and intentional design decisions
went into Active Record to make it quite unique in the world of database communication
libraries. Testing and debugging are two more areas in which Active Record was designed to be
both easy and useful to implement.

To be honest, Active Record doesn’t really have testing built in so much as it was designed
to take full advantage of Ruby’s preexisting Unit Testing library. An in-depth look at unit test-
ing is outside the scope of this book, but we do need to cover a large portion of the concepts
and options so that we can write some Active Record tests.

We’ll start this chapter by covering the details of Ruby unit testing as they relate to
Active Record tests. And because testing is really all about preparing for and dealing with
problems and exceptions, we’ll also spend a little time talking about the specific Active Record
exception types—what each means and how to gracefully handle them all. We’ll wrap up this
chapter by providing a number of tips and examples on debugging your Active Record programs
in the real world. So let’s dive right in with unit testing.

Unit Testing
Let’s face it; if you’re like us (and most programmers), you were probably thinking about skip-
ping this chapter, because you hate testing, and writing tests seems like it would be a waste of
time (you could be writing real code instead of wasting time writing tests, right?). However,
there really are some big advantages to writing unit tests when you’re building database-reliant
applications, so before we get into the details of writing unit tests, let’s take a minute to outline
those advantages.

125

C H A P T E R 6

■ ■ ■

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 125

Why Write Unit Tests?
In our opinion (and experience) formal testing doesn’t really become an important part of
your programming tool set until you start to work on large applications over a lengthy period
of time. When a project is small, or you are just doing something quick, it’s easy to write quick
ad hoc code to ensure things are working; you can always refer to the full code base to deter-
mine what the application is really doing.

The problem is that once you start working on larger projects, you’ll quickly find that
reading through the full source code trailing a logic path to locate a bug can be quite time con-
suming. Having to do it six months or more after having last worked on the application will
make it even harder! So with that in mind, here’s a list of our top five reasons to bother with
unit testing:

1. Assures you that your code works as you expect it to: This is a pretty obvious reason,
since it’s the whole point of any test. If you’ve been a programmer for any length of
time, you’ve noticed that sometimes features don’t always work as advertised (yes, even
in Ruby). Sometimes, your logic is just off. The only way to know if the code you wrote
works the way you intended is to actually execute it. If you let the first time that hap-
pens be in front of your user, you’ll deserve the lack of faith they put in you and your
work when it doesn’t work as expected.

2. Helps document how you expect your code to work: Unit tests have an interesting side
result in that, by defining your tests, you essentially end up saying, “This is how I expect
and want my code to work.” Down the road, if other programmers (or yourself) need to
address a certain section of your code, they can refer to the tests to see just what you
expected the code to be able to handle (and they can add to the tests to determine what
they need to do for new updates). Believe it or not, reading through the source code (and
even code comments, if you are lucky enough to have them in the source) does not
always reveal the true intention of the programmer; the source and comments just state
what the code actually does. However, reading through the unit testing logic does give
you the developer’s intentions, and therefore, allows you to build from there without
having to worry about breaking anything the original developer expected to work.

3. Helps you to distinguish among data, communication, and logic problems: This is espe-
cially important in database applications, because there are a lot of layers of complexity
going into the final application. When a program starts going awry, how do you know just
where the problem is? Is it a specific type of data or data value that is causing a problem?
Is it just a problem connecting or communicating with the database? Or is it really
a problem in the programming logic that needs to be addressed? If you have done
proper unit testing, you’ll be able to quickly remove the question of it being your pro-
gramming logic (the real time killer in debugging) and oftentimes even remove questions
of it being data related. At a minimum, you’ll be able to work in some quick additional
tests to test a new and unique data value set. This gives you more time to focus on
working through the other layers of potential problems.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING126

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 126

4. Simplifies the process of finding trouble areas in code: Without solid unit testing, debug-
ging becomes a time-consuming process of reading through your application line by
line, tracing the process flow until the trouble spot is located—and you’ll have to do this
every time for each bug! With unit testing, you build your application flow into your testing,
making it easier to access and execute a specific function or chunk of code for testing.
So when trouble pops up, you can start at any number of key points within your appli-
cation to narrow down the real issue (rather than starting from scratch each time).

5. Helps document feature sets and how various parts of your code are related to (or rely on)
one another: One of the nice things that Ruby unit testing does is allow you to roll each
unique test case into a group of tests, referred to as a test suite. Test suites can also be
rolled into larger test suites and so on. This design gives you the power to test down to
a specific line or section of code in a test case, up to the entire program flow from start
to finish, and anywhere in between.

In the end, as a programmer, you are only as good as your programs, and your programs
are only good if they work as expected. Writing good unit tests helps ensure your reputation as
a quality programmer (and saves you a lot of headaches down the road).

Hopefully, we’ve done a good enough job selling you on the importance of unit testing.
So let’s get down to business and talk about how to actually write good unit tests for your
Active Record applications.

How to Write Good Unit Tests
Unit testing in Ruby, as most Ruby tasks are, is actually very simple. It relies on the Unit::Test
library maintained by Nathaniel Talbott and comes as a part of the core Ruby installation, so it
should always be available for all your Ruby applications.

As its documentation states, “The general idea behind unit testing is that you write a test
method that makes certain assertions about your code, working against a test fixture.” So it
only make sense that the key methods in your unit tests will be assertions, and the data that
generally is used within your tests is defined in data sets called fixtures.

Before we go into detail about each of these, though, it’s probably easiest to show a basic
example, so we have something to work from throughout the rest of this chapter. Obviously,
in order to write tests, we first need some code that we want to test against. Let’s start with the
following generic example, which does very little but return a few vanity messages and do some
basic calculations:

artest.rb ActiveRecord example code to test against
class Artest

set up our account class (ties to account table in DB)
class Account < ActiveRecord::Base
end

make our connection to the MS SQL Server database
ActiveRecord::Base.establish_connection(:adapter => "sqlserver",

: host => "localhost",:database => "myapp", :username => "sa", :password => "",
:port => "1433")

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 127

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 127

def appreciate(account_id)
return a message of appreciation
return Account.find(account_id.to_i).account_name + " is great!"

rescue
return nil

end

def insult(account_id)
return a mean message
return Account.find(account_id.to_i).account_name + " is lame!"

end

def earnedmoney(account_id)
return the money this account has earned
return Account.find(account_id.to_i).account_earned.to_f

rescue
return nil

end
end

The really important thing to note about our test program is that we put in very generic
exception handling. Basically, in the event of any type of error, our various methods are simply
going to return a nil value. This means that the program will not halt within a given method
even if we pass an invalid account_id or if some type of database communication error occurs.

■Note Without proper testing, handling exceptions by passing a nil value makes debugging very difficult,
because it’s very quietly handling potentially fatal errors. If, for example, a record was not found, the pro-
gram would continue on and fail only when a future part of the program expected to deal with the results of
a method and instead found a nil value. Most programmers who are believers in unit testing would not be
very happy to see this type of exception handling in your code, but we use it here to help illustrate the bene-
fits of good testing in identifying issues that your code may otherwise unintentionally mask.

Now that we have a very simple program, we can write our first test against it. Here, we
will just do the most basic of tests—checking to see if the right message is returned for the
account ID we pass in (this, of course, assumes we know the data that should be associated to
the given ID, but we’ll talk about that more in a minute).

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING128

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 128

assert_equal("Kevin Marshall is great!", temp.appreciate(1).to_s)
end

end

Running this test will produce one of two results. If the first record in your account table
does, in fact, have an account_name value of "Kevin Marshall", you will have a successful test
looking something like the following:

Loaded suite test_artest
Started
.
Finished in 0.765 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Otherwise, you should get an error message like the following one (here, the name
"Catherine Marshall" was associated with the ID we passed instead of "Kevin Marshall",
as our test expected):

Loaded test suite test_artest
Started
F
Finished in 0.906 seconds.
1) Failure:
Test_simple(TestArtest) [test_artest.rb 6]:
<"Kevin Marshall is great!"> expected but was
<"Catherine Marshall is great!">.

1 tests, 1 assertions, 1 failures, 0 errors

This is a pretty generic example, which makes just one assertion, and it is unrealistic,
because it relies heavily on the specific data found in our database for a given ID (something
that is likely to change given its dynamic nature). Still, it should help you to see the basic con-
cepts of unit testing with assertion methods, and we can build from here.

Before we dive into more realistic examples, though, let’s take a minute to cover the vari-
ous assertion methods we have available to us.

Assertions
As we mentioned, the basic concept of unit testing is to attempt various assertions against our
code. These assertions should either pass or fail, that is, they will be either true or false, and as
such, provide us with details about how our code is actually executing in real-world situations.

There are currently 18 assertion methods to choose from when writing our tests. The
functionality of most is fairly obvious thanks to logical naming. Still, we’ll show an example of
each in an effort to be complete (and to show just how easy and painless unit testing is).

assert
The most basic of all assertion methods is simply the assert method, which evaluates
a Boolean value. It will pass all cases except for Boolean values that are false or result in nil.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 129

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 129

■Note It’s important to remember that all values in Ruby other than the specific false and nil values
resolve to be Boolean values of true. This means that if you attempt to assert a string, it would always pass,
because strings are true values in Ruby.

The assert method accepts two parameters, the Boolean value (or expression that returns
a Boolean value) and an optional message you would like to display in the event that the
assertion fails. In the following example, we rewrite our test case using just the assert method.
The important thing to note is our use of the == operator, which makes our expression return
a Boolean value:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert ("Kevin Marshall is great!" == temp.appreciate(1).to_s)

end
end

assert_nil
As the name implies, this assertion method checks if the given expression or value is equal to
nil. This method also accepts two parameters, the expression (or value) to be evaluated and
an optional message you would like display in the event that the assertion fails.

The important thing to remember with the assert_nil method is that your expressions or
values are only being checked to see if they are nil—anything other than the value of nil will
fail. In this example, we check the value returned for an account that is not currently in our
database (this case does happen to return nil, and therefore passes, because the generic
exception handling within our code is triggered when a record cannot be found).

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_nil(temp.appreciate(100).to_s)

end
end

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING130

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 130

assert_not_nil
The assert_not_nil method is simply the inverse to the assert_nil method; it checks that
value is anything but nil.

Please note that anything that is not nil will pass the test, including an expression testing
against the value of nil (because that would be a Boolean expression returning a value of true
or false). In our example, we check that the return value is equal to nil.

As we mentioned, this specific example will always pass the test regardless of the value
returned by the appreciate method call, because it’s a Boolean value from the expression that
is actually evaluated and therefore is either true or false (never nil).

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_not_nil(temp.appreciate(1) == nil)

end
end

assert_equal
This method simply checks the equality of the first two parameters passed. A third parameter
can be optionally provided to display a specific message in the event that the assertion fails.
This is probably one of the most common types of assertions you will make, “Is X really equal
to Y?”

The key here is that the default failure message reports what both the expected and actual
values were, based on the order in which you provide the parameter values (the order is expected
first, actual second).

■Note It’s also important to note that, like Ruby itself, case does matter when comparing strings. "Kevin"
is not equal to "kevin". When you want to ignore case in your tests, you should upcase or downcase both
strings first.

We already showed an example of this method at the start of this section, but since it’s so
commonly used, we’ll provide another quick one:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 131

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 131

assert_equal(temp.appreciate(1).to_s, nil)
end

end

assert_in_delta
Computers have always had a little bit of trouble accurately dealing with floating point values.
This method allows you to test that a given floating point value is within a given range of another
floating point value. It’s up to you, as the application developer, to determine an acceptable
range for floating point accuracy.

This method accepts four parameters: The first is the expected floating point value you
want to test against. The second parameter is the actual floating point value you want to test.
The third parameter is the floating point value that is the range for which the actual value may
vary in relation to the expected value. Finally, the fourth parameter is an optional message to
display in the event that the assertion fails.

Just remember, you are comparing numbers within a given range, so it’s not strictly a com-
parison of two values (hence the word “delta” in the method name).

Our example checks if a given user is within five cents of the expected balance of $6.50:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_in_delta(6.50, temp.earnedmoney(1), 0.05)

end
end

assert_raise
The assert_raise method is executed in block form and expects an exception of given type to
be thrown during execution. It accepts any type of exception, or a list of exceptions, as its
parameters to be passed into the block.

The important thing to remember with this method is that it only passes when the correct
exceptions are thrown. That is, if the expected exception does not occur, this test will fail. Hav-
ing your tests pass only when an exception is thrown is a little confusing at first, so hopefully,
an example will clear up the concept.

Here, we expect our insult method to throw an ActiveRecord::RecordNotFound error,
because we are using an account ID that is not in our data at this time (and we did not use any
exception handling on the insult method within our application):

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING132

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 132

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_raise ActiveRecord::RecordNotFound do
temp.insult(1000)

end
end

end

Again, because a record for this account does not currently exist in our database, an
ActiveRecord::RecordNotFound error is thrown. This, in turn, allows our test to actually com-
plete successfully, that is, everything happened as we expected it to. We’ll cover the various
Active Record exception types later in this chapter.

assert_nothing_raised
This is simply the inverse to the assert_raised method; it checks that no exceptions are raised
within the block.

The interesting thing here is that this assertion acts much like a transaction wrapper, where
any exception within the block will cause the entire method to fail.

In our example, we take multiple steps, most of which will evaluate correctly, but because we
include a call to a method with an ID that is not in our database, an ActiveRecord::RecordNotFound
exception is thrown and, therefore, causes our entire assertion block to fail.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
assert_nothing_raised do
t = 100.0
a = t * 50.0
temp = Artest.new
assert_in_delta(6.50, temp.earnedmoney(1000), 0.05)

end
end

end

assert_instance_of
This method just checks if a given object is an instance of a given class. Calling the assert_
instance_of method is really the equivalent of calling the instance_of? Ruby method.

This method accepts three parameters: the class to which you want to assert an object
belongs and instance of the object, and an optional message to display in the event that the
assertion fails.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 133

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 133

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_instance_of String, temp.insult(1)

end
end

assert_kind_of
This method checks if a given object is a kind of a given class. Invoking the assert_kind_of
method is really the equivalent of calling the kind_of? Ruby method.

This method accepts three parameters: the class of which you want to assert an object is
a kind, the object, and an optional message to display the in the event that the assertion fails.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_kind_of String, temp.insult(1)

end
end

assert_respond_to
This method checks if a given object responds to a given method call. The assert_respond_to
method accepts three parameters: the object, the method to which you want to assert that this
object responds, and an optional message to display in the event that the assertion fails.

Please note that you can check that your object responds to user-defined methods as well as
Ruby methods. In our example, we check that our result responds to the upcase method (which
is a part of the String class) and that our object itself responds to our appreciate method.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_respond_to temp, :appreciate
response = temp.appreciate(1)
assert_responds_to response, :upcase

end
end

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING134

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 134

assert_match
The asset_match method checks that a given regular expression has a match within a given
string value. The method accepts three parameters: the regular expression, the string to apply
the regular expression to, and an optional message to display in the event that the assertion fails.

The key thing to keep in mind is that this test simply checks that the regular expression
has at least one match in the given string. In our example, we check that the username we
expect is a part of the return value of our method call.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_match /Kevin/, temp.appreciate(1)

end
end

assert_no_match
This method is simply the inverse of the assert_match method, the big difference being that
the test will pass so long as the given regular expression cannot be found within the given
string. Therefore, even though the regular expression match technically fails, the assertion
passes.

In our example, we use a regular expression looking for digits; if any are found in our
response, our test will fail.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_no_match /\d+/, temp.appreciate(1)

end
end

assert_same
This method checks that two objects are actually equal and of the same instance. The method
accepts three parameters: the expected instance, the actual instance, and an optional message
to display in the event that the assertion fails.

Of special interest is that when comparing instances of objects, you are really comparing
object_id values. When you create a new object, you generally assign it a new object_id, but
when you use an operator such as the equal operator, you are simply assigning a reference to
the existing object_id. Using the equal operator makes them the same.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 135

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 135

In our example, our first assertion should pass, because both objects are associated to
the same object_id. However, our second assertion will fail even though the actual value of the
two objects is the same, because when we created our third object, it was associated to a new
object_id by default.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
obj1 = Artest.new
obj2 = obj1
obj3 = Artest.new
assert_same obj1, obj2
assert_same obj1, obj3

end
end

assert_not_same
This method is simply the inverse of the assert_same method.

Again, the important thing to remember with this method is that you are really compar-
ing object_id values. It’s also important to remember that in this case, you are checking that
the objects do not have the same object_id value—only when the IDs are different does the
test actually pass.

In our example, our first assertion should pass, because our first and third objects are, in
fact, associated to different object_id values. However, our second assertion will fail, because
our first and second objects are associated to the same object_id value.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
obj1 = Artest.new
obj2 = obj1
obj3 = Artest.new
assert_same obj1, obj3
assert_same obj1, obj2

end
end

assert_operator
The assert_operator method compares two given objects using the given operator. It accom-
plishes that comparison via the Ruby send method. The method accepts four parameters: the
first object you want to compare, the operator as a symbol that you want to use to compare

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING136

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 136

the objects, the second object you want to compare, and an optional message to display in the
event that the assertion fails.

The important thing to remember with this method is that you should pass the operator
as a symbol (otherwise, you will get a syntax error). It’s also important to remember that this
method is the equivalent of running object1.send(operator, object2) and treating the Boolean
response value as the assertion result.

In our example, we create two distinct objects and use assert_operator to check that the
values of the objects are equal.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
obj1 = Artest.new
obj3 = Artest.new
assert_operator obj1, :==, obj2

end
end

assert_throws
This method checks that a given symbol is thrown during the execution of the block. The method
accepts three parameters: the expected symbol, an optional message to display in the event
that the assertion fails, and an optional proc to execute against.

■Note We have not covered Ruby proc statements in this book, but they make up a very powerful feature
set that is worth knowing about. If you are not familiar with them, you should refer to your Ruby documenta-
tion or one of the many good Ruby tutorial books available.

Pay close attention to the fact that the assertion will pass only if the expected symbol is
thrown within the execution of the block. The throw can occur directly within your test (as it
does in our generic example that follows) or anywhere within your code so long as that code is
executed at some point within this assertion block.

In our example, we check for the instance of a specific string in our result and throw the
:awesome symbol if it’s found. In this example, if the string is anything but "Kevin is great!",
the assertion will fail.

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 137

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 137

assert_throws :awesome do
throw :awesome if temp.appreciate(1) == "Kevin is great!"

end
end

end

assert_send
The assert_send method checks that a send command executed with the given values returns
a value of true. The method accepts two parameters: an array that contains the details of the
send method and an optional message to display in the event that the assertion fails.

The important thing to remember is that the details of the send method are sent as an array.
The array should contain the object that will receive the send call, the method you intend to
execute for the object, and the arguments you are going to pass to the method.

In our example, we test that our temp object has a method called appreciate, which responds
properly when passed a valid ID from our database (because we are returning nil when an ID is
not found and nil equates to false in a Boolean comparison, if we pass an invalid ID via our
send command our assertion will fail).

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_send [temp, :appreciate, 1]

end
end

flunk
The flunk method will always cause a failure within your test. The method accepts one optional
parameter, which is a message to display at the point of failure.

The important thing to remember with the flunk method is that your test will stop execu-
tion at the first flunk method it encounters (unless you handle the exceptions within your tests).
So you can use flunk as a break point for your tests and even assign a custom error message to
help you narrow down especially tricky problems.

In our example, we use two different messages to help us quickly determine which bit of
our test is really being executed:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
if temp.appreciate(1).include?("Kevin")

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING138

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 138

flunk "Kevin was found in our text!"
else
flunk "Kevin was not found in our text!"

end
end

end

So far, we’ve just been focusing on showing examples of each of the unit test assertion
methods. While they are real tests that involve Active Record and our database and are great
for helping you to understand each method, they aren’t the best examples of the proper way
to test against your Active Record programs.

The problem is that many of this chapter’s previous examples rely heavily on the tester
knowing what values are in the database at the time of testing and on those values remaining
unchanged over time (or else our tests would have to be updated to match the data changes).
While there are definitely situations where you want to do this type of testing, on another level,
it defeats the whole idea of a database, that is, that your data should be somewhat dynamic. It’s
just unrealistic to think that your data values will not change as you develop, test, and mold
your application, even if you have a dedicated test database, as is recommended for proper
testing.

But here’s the dilemma: you often need to know specific data values to be able to ensure
your application logic is correct, but you also need a way to test various data values to see just
what sort of data will cause your application to break down (which they all do eventually). So
you don’t want to spend time writing and rewriting tests with hard-coded values to test against,
and you also don’t want to continuously update your database test records manually just to test
various situations. So what do you do?

The way Active Record approaches this common testing problem is to provide support for
something called fixtures, and as it turns out, they solve this dilemma quite nicely.

Fixtures
Fixtures are basically a way of organizing and serving up data that you want to test against. It’s
sort of like hard-coding your database for testing situations, but doing it in a way that allows
for quick and dynamic changes to your data set by simply switching out files or moving around
lines within a file. On a basic level, fixtures take care of inserting records into our test database
prior to executing our test code and removing these records from the database when our tests
are finished. Fixtures also load the test data into memory in the form of a hash, giving us two
ways to test and play with our data sets (either through the database or via the in-memory hash).

Fixtures come in three basic formats for our testing use: YAML, CSV, and single file. Before
we break each of these formats down, though, let’s look at just how fixtures can help us.

Benefits of Fixtures
Since fixtures are used in testing, we need to start with an example test case:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 139

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 139

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_equal("Kevin is great!", temp.appreciate(1))

end
end

As we mentioned in our discussion on assertions, in this example, if our database does not
contain an account record with an ID of 1 and a username of Kevin, our test will fail. So we need
to set up a fixture that matches the data we expect and to tell our test case to use the fixture.

Telling our test case to use fixtures is actually a very simple two-step process:

1. Require the active_record/fixtures code. This step is not required when working
within a Rails environment, but it won’t hurt in any case and is essentially what one of
the steps in the Rails environment setup is.

2. Call the Fixtures.create_fixtures method. This method accepts three parameters:
the directory where your fixture files are located, the table names the fixtures relate to
within your database, and the class names to associate with your tables (the class names
parameter is optional). Additionally, if you want to create fixtures for more than one
table at a time, you can pass in the table names as an array.

In the following example, we update our test case to use a fixture for our account data.
Here, we are running our tests on a Windows client directly from the Ruby root (in this case
C:\ruby) primarily to show that tests with fixtures can be run anywhere using this approach:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'
require 'active_record/fixtures'
Fixtures.create_fixtures("c:\\ruby\\", :accounts)

class TestArtest < Test::Unit::TestCase
def test_simple
temp = Artest.new
assert_equal("Kevin is great!", temp.appreciate(1))

end
end

Before we can actually run this test (with any success), we need to make sure we create
the fixture file that we are referring to. Our create_fixtures method call told our code to look
for an accounts.yml file in our C:\ruby directory, so let’s create that file now (we’ll talk more
about the YAML format in just a minute).

Test data set in YAML format saved as account.yml
Kevin:
id: 1
username: Kevin

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING140

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 140

Now, we should be able to run our test successfully against our fixture data. To confirm
that the tests really are using the data from your fixtures, go ahead and change the username
value in your account.yml file and rerun the test. Your test should now fail, confirming that you
are using fixtures.

Transaction Support with Fixtures
Fixtures also have support for transactions so that your test cases use the begin/rollback
approach instead of the default insert/delete. Using transactions is, of course, a pretty simple
task—you just set the use_transactional_fixtures method to a value of true, as shown in the
following example:

test_artest.rb Unit Test example
require 'artest'
require 'test/unit'
require 'active_record/fixtures'
Fixtures.create_fixtures("c:\\ruby\\", :accounts)

class TestArtest < Test::Unit::TestCase
use_transactional_fixtures = true
def test_simple
temp = Artest.new
assert_equal("Kevin is great!", temp.appreciate(1))

end
end

However, there are two key situations in which you should avoid using transactions with
your fixtures:

• Don’t use transactions with fixtures if you are testing that a transaction is working
within your application. This is because nested transactions do not commit until all
parent transactions commit. Within tests, transactions are started in the setup method
and committed in the teardown method.

• You can’t use transactions if your database doesn’t support transactions itself. All of the
databases we’ve mentioned throughout this book, that is, all of the ones that Active Record
currently has adaptors for, support transactions except MySQL ISAM. We recommended
that, if you can, you switch from MySQL ISAM to MySQL InnoDB.

The last thing we need to mention is that with YAML and CSV fixture formats, you can
actually use embedded Ruby (ERb). This is especially useful when you need to do testing
against the volume of data you expect in your system.

In the following example, we create a fixture file that will result in 1,000 records being
added for us to test with:

Test data set in YAML format saved as account.yml
<% 1000.times do |i| %>Kevin<%= i %>:
id: <%= i %>
username: Kevin<%= i %>

<% end %>

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 141

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 141

Rails views, and most of the other Ruby web frameworks, also use ERb, so you are
likely familiar with the syntax. If you want more information on ERb you should refer to
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc.

Fixture Formats
Now that you know pretty much all there is to know about unit testing assertion methods and
the basics of how to actually use fixtures, the last bit we need to cover is the specific details of
formatting your fixture files. As we mentioned, there are three basic formats that you can use
for defining fixtures: YAML, CSV, or single file. Let’s take a look at each of these now.

YAML
According to http://www.yaml.org, YAML is a “machine parsable data serialization format
designed for human readability and interaction with scripting languages.” It’s the preferred
default for fixtures with frameworks like Ruby on Rails and is also the format that most Active
Record developers use.

YAML fixtures are all stored in one file per model (or rather, one file per database table).
Each file should be located in the directory set by the TestCase.fixture_path method (or in
the create_fixtures method, as we described previously). Each file should also have the .yml
extension. Within the file, each record you want in your data should have a unique name, and
each field you for which want to represent data should be indented and represented in the
key: value format.

Our previous example fixture files were all in YAML format, but we’ll show one more in the
next example, with two records this time, to be thorough:

Test data set in YAML format saved as account.yml
Kevin:
id: 1
username: Kevin

Catherine:
id: 2
username: Catherine

The important thing to note with this format is that the records are really unordered (though
the use of IDs in the preceding example helps to make this irrelevant in our examples). If order
will matter in your testing, you should use the Ordered Mapping Language-Independent (omap)
Type for YAML. You can learn more about the omap type and the entire YAML syntax at http://
www.yaml.org.

CSV
CSV stands for “comma separated value” and is one of the oldest and historically most com-
monly used data exchange formats. So it’s probably no surprise that you can use that format
with Active Record fixtures as well.

Like YAML fixtures, CSV fixtures are all stored in one file per model (or rather, one file per
database table). Each file should be located in the directory set by the TestCase.fixture_path
method (or in the create_fixtures method, as we described previously). Each file should also
have the .csv extension. Within the file, the first line should be a comma separated list of field
names, and each additional line should be the actual data, with one record per line.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING142

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 142

Since the comma is a special character in the CSV format, you must wrap any data that
contains a comma inside of double quotes. Additionally, since the double quotes are used to
wrap fields that contain commas, you must also escape any instances of double quotes in your
data with another double quote.

In our example, we show three records in our CSV format applying these various rules:

Test data set in CSV format saved as account.csv
id, username
1,Kevin
2,"Marshall, Catherine"
3,"Married ""with children"""

The most important thing to remember when working with CSV fixtures is that they will
be loaded only if a YAML format cannot first be found. The other thing to note is that, within
the CSV format, you have no way of naming each record. Fixture names are, instead, automat-
ically generated from the class name of the fixture file with an incrementing number appended.
In our preceding example, we would have accounts_1, accounts_2, and accounts_3 (which only
match the record IDs by coincidence).

While YAML is the recommended format because of human readability, many programs
such as Microsoft Excel (and all databases that I know of) provide tools to export data in the
CSV format. This might save you quite a bit of time and energy if you already have your test
data stored in one of these types of applications.

Single File
Single-file fixtures are stored in a directory named after the model (or rather, in a directory
named after the database table). The directory should be located in the directory set by the
TestCase.fixture_path method (or in the create_fixtures method, as we described previ-
ously). Each record is a separate file, and data within the file is presented in key => value
format. The files do not require an extension, but you may use the .txt extension if you like.

■Note The single-file format has officially been deprecated in favor of the YAML and CSV formats, so we
don’t recommend using it. Still, we’ll cover the basic idea just in case you run into it while working with
legacy applications.

In the following example, we show two files that will equate to two records in our database.
The files in this example are located in C:\ruby\accounts:

Test data record in Single File format saved as kevin.txt
id => 1
username => Kevin

Test data record in Single File format saved as catherine.txt
id => 2
username => Marshall, Catherine

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 143

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 143

Again, we don’t recommend using the single-file format, because it can quickly become
a time-consuming task just managing the files involved (and really, with this format, you aren’t
saving much time as compared to directly doing the work in your database). I think you can
see that the YAML or CSV formats are much more friendly choices.

Wrapping It All Up
Believe it or not we have covered only the basics of unit testing. There are a lot more details
and scenarios we could go into, as they relate to doing proper testing for your applications (it
could probably fill a book in and of itself), but again, that is outside of the scope of this book.
Instead, it’s our hope that we’ve given you enough information to get your feet wet and feel
comfortable actually writing and using Ruby unit tests with your Active Record programs.

Of course, writing and running unit tests is really only part of the whole testing process.
You still need to actually evaluate the results of the tests you run, and to do that, you need to
have a thorough understanding of Active Record exceptions. So let’s turn our focus to those
now.

Active Record Errors and Exceptions
Working with a database means adding at least one additional layer of application complexity,
and each layer of complexity, of course, means more potential for errors and exceptions to occur.
Sadly, when it comes to having to deal with errors and exceptions Active Record is, uh, no
exception (sorry about the horrible pun).

Since Ruby is a pure object-based language, the approach that Active Record wisely took
with exception handling was to simply use inheritance, so all of the default error classes that
Active Record defines inherit from the general ActiveRecordError class. The ActiveRecordError
class itself inherits from Ruby’s StandardError class. All of this basically means that Active Record
errors and exceptions are simply handled in the same way any other Ruby error is; that is, they
can be raised by a raise clause and caught by a rescue clause.

Perhaps, rather than focusing on how straightforwardly Active Record handles errors,
a more important thing to consider is how to prevent errors from occurring altogether. To do
that, we need to decipher each error Active Record can throw, what it means when it does throw
an error, and what really causes each to occur. Once we know the answers to these questions,
perhaps we can update our applications to avoid the exceptions altogether, or at least eliminate
them in as many cases as reasonably possible (rather than simply handling them).

Active Record Error Methods
By default, the Active Record Base class defines 17 Active Record error types. You can override
each of these error types as needed within your application, and each can be caught and dealt
with via the Ruby rescue clause. As we take a look at the details of each class, we’ll attempt to
explain when each is raised, why it is raised, and what you can do to try to avoid the error in
the future.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING144

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 144

ActiveRecordError
This is the generic Active Record error class and the superclass of all other errors that might be
raised by ActiveRecord. It’s actually very rare that your code would directly raise this error
without you explicitly defining the situation and raising the error yourself. The reason is that
within the Active Record source code, the ActiveRecordError is raised only in a unique situa-
tion of hierarchy traversal where a class for which you are attempting to find the base does not
inherit from ActiveRecord itself. Because of Ruby’s single-class inheritance rules, this situation
is almost impossible to produce and, therefore, very uncommon.

In the following example, to easily show the details of the exception, we raise the exception
ourselves when the record with an ID of 1 has the username of "Kevin".

program that throws a general ActiveRecordError
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

begin
raise ActiveRecord::ActiveRecordError if Account.find(1).username == "Kevin"

rescue ActiveRecordError => e
puts "ActiveRecordError thrown: #{e}"

end

SubclassNotFound
This error is related to single-table inheritance and improper reference to a subclass from
within your data.

Within ActiveRecord, you can define a subclass that inherits from an ActiveRecord::Base
class. This class association is stored, within the database in the inherited Active Record superclass
table, in a field called type by default (the field you defined with the Base.inheritance_column
method overrides this). If, for some reason, you have data in this field that does not relate to
a defined subclass within your program, you will generate the SubclassNotFound error.

In the following example, we assume that we have the following data within our database:

data stored in our database (represented here in CSV format to save space)
id,username,type
1,Kevin,Husband
2,Catherine,Wife

And now, when we attempt to work with the second record in our data within our
ActiveRecord application, we will actually raise a SubclassNotFound error, because we have no
defined Wife subclass of Account:

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 145

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 145

program that throws SubclassNotFound
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

class Husband < Account
end

begin
temp = Account.find(2)
puts temp.inspect

rescue ActiveRecord::SubclassNotFound => e
puts "SubclassNotFound: #{e}"

end

Also, it should be pointed out that when you do correctly associate the subclass within
your data, an instance of the subclass (and not the superclass) is returned. For example, if we
changed the preceding code to find the data associated with ID 1, we would see that a Husband
object was correctly returned, even though we did the find using the Account class.

For more information about single-table inheritance, you should investigate Martin
Fowler’s work at http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html.

AssociationTypeMismatch
As you probably expect, this error has to do with improperly associating Active Record
objects—if you attempt to assign an object to an association that is not inferred by Active Record
(or specifically set with the class_name attribute of the association methods), you will generate
an AssociationTypeMismatch error.

In the following example, we raise an AssociationTypeMismatch error when we attempt to
add a dog object to our pet collection, because our pet collection only has_many cats; that is,
there is no association to the Dog class:

program to raise an AssociationTypeMismatch error
require 'rubygems'
require 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Pet < ActiveRecord::Base
has_many :cats

end

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING146

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 146

class Cat < ActiveRecord::Base
belongs_to :pet

end

class Dog
attr_accessor :name

end

temp = Pet.find(1)
p1 = Dog.new
p1.name = "Abby"
temp << p1 # => raises the AssociationTypeMismatch error

SerializationTypeMismatch
This error is raised when you attempt to assign an object of the wrong type into a field that is
to be serialized within the database.

The following example generates a SerializationTypeMismatch error, because we state
that data in our yamldata field should be of Array type, but within our actual program, we
attempt to assign a Hash instead.

program that raises a SerializationTypeMismatch error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
serialize :yamldata, Array

end

temp = Account.find(1)
temp.yamldata = {:problem => "expecting Array, not Hash"}

AdapterNotSpecified
This error is raised when you omit the :adapter parameter in your database connection state-
ment (or YAML file).

In the following example, we forget to include the :adapter => "sqlserver" bit, causing
the AdapterNotSpecified error to be raised:

program that raises a AdapterNotSpecified error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:host => "mydbhost.com",
:database => "test", :username => "sa", :password => "")

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 147

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 147

AdapterNotFound
Similar to the AdapterNotSpecified, this error is raised when you incorrectly specify an adapter
value; that is, you either misspell your adapter or list one that your Active Record library does
not currently support.

In the following example, we raise the AdapterNotFound error by misspelling the sqlserver
value (as slqserver):

program that raises a AdapterNotFound error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "slqserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

ConnectionNotEstablished
This error is raised when you attempt to perform Active Record actions, like executing a find
statement, before you have actually made a connection to your database (via the establish_
connection method).

In the following example, we raise the ConnectionNotEstablished error when we attempt
to find the first account, because we have not yet made the actual connection to the database:

program that raises a ConnectionNotEstablished error
require 'rubygems'
reuiqre 'activerecord'

class Account < ActiveRecord::Base
end

temp = Account.find(1)

Of special note is that the error does not actually get raised until you attempt to execute
a CRUD operation against the database; defining your classes and associations does not cause
a problem. This makes sense when you consider the fact that Ruby does not really create an
object from a class until the class is actually referenced during the execution of the program.

ConnectionFailed
This error is generally raised when there are problems between the communication of the
machine from which you are running your code and the machine that your database is run-
ning on (assuming they are different).

This type of error is raised because of issues outside of your code, so we cannot show you
an example that creates this error. In our experience, this error is most common when the con-
nection between your application machine and your database machine is lost while your
application is running. Generally, after repairing the connection between the machines, you can
simply restart your application, and things will once again be fine.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING148

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 148

RecordNotFound
This error is raised when a find method cannot find any results within the database.

It’s important to note that this error is raised only when doing find operations in associa-
tion with ID values, that is, only the simple find method. Using find_by_sql or a version of
dynamic finders like find_by_username will not raise this error but instead simply return a nil
object. Additionally, if you pass a list of IDs to your find method and any one of those IDs does
not exist in the database, a RecordNotFound error will be raised.

In the following example, we raise RecordNotFound, because our find method call includes
an ID that does not exist within our dataset (we have no record with an ID of 0):

program that raises a RecordNotFound error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

temp = Account.find(1,0)

RecordNotSaved
This error is raised if a record could not be saved into the database.

A RecordNotSaved error is generally related to table-locking issues and is, in fact, only
called when you are using the save! or update_attributes! methods. The regular save and
update_attributes methods will not raise this error if they fail, they will simply not save the
data within the database!

What’s important to keep in mind is that, even if this error is raised, your Ruby object
itself (the object that is tied to your database) was likely updated, so now, your object attrib-
utes potentially differ from those of your database values. We covered this situation in more
detail within our discussion of data validations previously.

Since this error is primarily raised because of locking issues, it’s a bit difficult to show
a reliable example you can duplicate. The basic idea would be if you were attempting to do an
update to something like a page-count field without using transactions but were at least using
the proper save! method. In the event that two or more users hit the update code at the exact
same time, one would likely get the RecordNotSaved error rather than both getting the wrong
number.

StatementInvalid
This error is raised when the SQL statement that is eventually passed to your database engine
by Active Record is incorrect or has syntax errors. The error generally provides specific details
about what part of the SQL statement is thought to be invalid for your database.

In the following example, we raise a StatementInvalid error with our find_by_sql method,
because our account table has no field named Kevin (our SQL query has the field name and
value swapped in the where clause).

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 149

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 149

program that raises a StatementInvalid error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

temp = Account.find_by_sql("select * from accounts where kevin = 'username'")

This should raise an error that looks something like the following (note the first line that
tells us Invalid column name 'kevin'):

/usr/lib/ruby/gems/1.8/gems/activerecord-1.15.3/lib/active_record/
connection_adapters/abstract_adapter.rb:128:in `log':
DBI::DatabaseError: S0022 (207)
[Actual][SQL Server] Invalid column name 'kevin'.: select * from accounts where
kevin = 'username' (ActiveRecord::StatementInvalid)

from /usr/lib/ruby/gems/1.8/
gems/activerecord-1.15.3/lib/active_record/
connection_adapters/sqlserver_adapter.rb:318:in `execute'

from /usr/lib/ruby/gems/1.8/
gems/activerecord-1.15.3/lib/active_record/
connection_adapters/sqlserver_adapter.rb:502:in `select'

from
/usr/lib/ruby/gems/1.8/
gems/activerecord-1.15.3/lib/active_record/
connection_adapters/abstract/database_statements.rb:7:in
`select_all'

from /usr/lib/ruby/gems/1.8/
gems/activerecord-1.15.3/lib/active_record/base.rb:427:in
`find_by_sql' from artest.rb:10

PreparedStatementInvalid
This error is raised when you have not provided the correct bind variables for a prepared
statement. Prepared statements are often used as a defense against SQL injection attacks (we
talk about SQL injection attacks in Chapter 2 and again in Chapter 8) as well as for improving
performance with certain compiled languages, such as Java. The most common problem is
forgetting to supply the correct number of values for your prepared statement. In the follow-
ing example, our prepared statement expects a username and password to be supplied, but
we only provide a username ("Kevin"), thereby raising a PreparedStatementInvalid error.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING150

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 150

program that raises a PreparedStatementInvalid error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

temp = Account.find(:first,
:conditions => ["username = ? and password = ?", "kevin"])

StaleObjectError
If you are using optimistic locking (we cover locking in detail in Chapter 2) and you create
more than one object from a given database record, when you save changes to one of the
in-memory objects to the database, the second object will be considered stale. If you then
attempt to save changes to the second object, you will raise a StaleObjectError. An example
helps to make this much clearer.

In our example, we first create two objects from the same record within our database.
Next, we make and save changes to one of the objects (t1) without problems. Finally, when we
attempt to save changes made to the second object (t2), we raise a StaleObjectError.

program that raises a StaleObjectError error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

t1 = Account.find(1)
t2 = Account.find(1)

t1.username = 'Kevin Marshall'
t1.save

t2.username = 'Kevin Nelson Marshall'
t2.save

Generally, this type of error results from general programming logic errors, and to handle
them, you will most likely need to rethink the solution to the problem you are really attempt-
ing to solve. In our example, we probably don’t want to create two objects and instead just
update the first object twice, making it incremental as we expected.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 151

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 151

It’s also important to remember that optimistic locking relies on the existence of a lock_
version field within your database with a default zero integer value. When you encounter this
type of error, it will be up to you to rework your solution, roll back your code, or otherwise
solve the stale state issue.

ConfigurationError
This error is raised when you attempt to access an association that was either not defined or
does not support the combination of parameters you are attempting to use (for example, you
cannot call a join using both the limit and offset parameters).

In the following example, we attempt to have our find method include the friend association.
However, we have defined that association within our class, so we raise a ConfigurationError.

program that raises a ConfigurationError error
require 'rubygems'
reuiqre 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

class Account < ActiveRecord::Base
end

temp = Account.find(1, :include => :friends)

ReadOnlyRecord
This error is raised when you attempt to create or save a record to the database that you have
only read access to. If you encounter this error, you will most likely need to update your account
rights within your database (or update your connection values to use an account with proper
privileges).

AttributeAssignmentError
The AttributeAssignmentError error is raised while doing assignments en masse through the
attributes method.

The most common cause of this error is related to attempting to assign date values in
a Ruby on Rails application using something like the ActionView::Helpers::DateHelper#date_
select helper method. Here’s what really happens in a situation like that: if a user has provided
an invalid date (like June 31, 2007), the helper method attempts to use the values to create a date
object (from within ActiveRecord). The Ruby Date.new method throws an error, and that bubbles
up to the Active Record error level, eventually raising an AttributeAssignmentError.

The fix for these type of errors is generally not ActiveRecord-code-based, but rather some-
thing that should be dealt with in your business logic (controller code) or at a specific data-value
level (i.e., scrub the data within your database).

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING152

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 152

MultiparameterAssignmentErrors
This error is raised in the same way as the AttributeAssignmentError and is really just a collec-
tion of those errors.

Preparing for Problems
Handling exceptions is really about preparing for potential problems. We’ve now covered the
details of the 17 basic error classes that Active Record defines. We’ve shown examples of how
and why each type of error is raised, and hopefully, we’ve given you enough information to
help you avoid most of them in your applications.

In the end, dealing with errors and exceptions is just something every database applica-
tion has to be prepared to do. Ruby’s raise and rescue structure makes it easy to do this, but it’s
still up to you to implement the proper rescue actions for each of the errors. In many cases,
using good unit tests, as shown in the first section of this chapter, should help you to identify
the majority of these errors and help you to correct them so that they are very unlikely to
occur in your production applications.

Still, there are times when even the best of unit tests and elegant exception handling
aren’t enough. In those cases, you’ve got to turn to a few additional tricks.

Debugging Tips and Tricks
Outside of the communication and log issues we’ve attempted to prepare ourselves to debug
and handle in the preceding sections, there is one other large area of concern for most data-
base applications—that is the issue of scale. How well will your code scale as its user base
increases and your application becomes more and more popular? Do you know when it will
be time to add more hardware or focus on rewriting some business logic to improve perform-
ance? What and where are the bottlenecks in your current code?

These are all issues that you should be testing for sooner rather than later (if you intend to
keep your sanity throughout your career). But these are also issues that the tests we’ve previ-
ously talked about don’t handle very well. They are not issues that reveal themselves easily;
these issues can’t be pinpointed with “yes, I work” statements, or even “I don’t work this way”
statements, as unit tests and exceptions can. No, these problems are going to require a little
more manual effort, and few more tricks that we’ll talk about now.

Active Record and Logging
When it comes to scaling, probably the most important thing to keep an eye on is how much
activity is really going on. In other words, “What’s really happening when people use my applica-
tion?” And logging key parts of your application is the simplest way to help answer that question.

The great thing about logging is that you have complete control over what information
you want to see. You can pick the critical spots in your code to log activity, and you can define
just what information you want to log at those points.

If you are using Active Record through Rails, logging will already be set up and quietly
running in the background for key events. The logs themselves will be stored in your railsroot/
log directory. But even if you are just writing stand-alone Active Record programs (like we
have been throughout this book), you can still take advantage of the power of logging. You just
need to do a few simple configuration steps:

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 153

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 153

1. Define a Logger object. Log4r is a Ruby logging library that comes standard with Ruby
and is, therefore, available to all Ruby applications. Creating an instance of a logger is
as simple as adding the following line of code:

mylog = Logger.new('mylog.txt')

In the preceding example, we told the logger to record details to a file called mylog.txt,
but we could just as easily have it dump output to STDOUT. Doing that would cause the
log details to be reported to the console, as we ran our programs from a command line.

2. Associate your Logger object to your Active Record Base class. Now that we have an
instance of a Logger object, we just need to tell the Active Record Base class to use that
for logging all activity. We do that with a simple assignment statement like the following:

ActiveRecord::Base.logger = mylog

3. Set the logging level, and start logging your key events. The last step to proper logging is
to set the logging level you want your application to use and then, of course, to actually
denote what special situations to log.

Breaking down a simple example is probably the best way to show just how powerful and
helpful logging can be in your debugging (and code improvement) process. The following
example is a complete Active Record program that will manually log a couple of small events
we define as well as some background things that we may not have even realized were going
on (until we looked at the logs):

Program to show ActiveRecord Logging in Action. (artest.rb)
require 'rubygems'
require_gem 'activerecord'

class Account < ActiveRecord::Base
set_table_name "accounts"
has_many :comments

end

class Comment < ActiveRecord::Base
set_table_name "comments"
belongs_to :account

end

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

mylog = Logger.new('mylog.txt')
ActiveRecord::Base.logger = mylog

temp = Account.find(1)
mylog.info("found a record with username: #{temp.username}")

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING154

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 154

mylog.info("About to show comments")
temp.comments.each do |rec|
puts "#{temp.username} said #{rec.subject}"

end
mylog.info("Done showing comments")

Assuming we have some comments in our database for the given user, the following is an
example of the output displayed at the command line when we run this program:

FaliconMobileMac:~ falicon$ ruby artest.rb
Kevin said Hi.
Kevin said Good Bye

While that’s nothing too exciting, it had an interesting side affect. Within the directory
where you ran the code, you should now see a mylog.txt file. Upon examining that file, you
should see something like the following:

[4;36;1mAccount Columns (0.069632) [0m [0;1m
SELECT
cols.COLUMN_NAME as ColName,
cols.COLUMN_DEFAULT as DefaultValue,
cols.NUMERIC_SCALE as numeric_scale,
cols.NUMERIC_PRECISION as numeric_precision,
cols.DATA_TYPE as ColType,
cols.IS_NULLABLE As IsNullable,
COL_LENGTH(cols.TABLE_NAME, cols.COLUMN_NAME) as Length,
COLUMNPROPERTY(OBJECT_ID(cols.TABLE_NAME),
cols.COLUMN_NAME, 'IsIdentity') as IsIdentity,
cols.NUMERIC_SCALE as Scale
FROM INFORMATION_SCHEMA.COLUMNS cols
WHERE cols.TABLE_NAME = 'accounts'
[0m
[4;35;1mSQL (0.079272) [0m [0m

SELECT
cols.COLUMN_NAME as ColName,
cols.COLUMN_DEFAULT as DefaultValue,
cols.NUMERIC_SCALE as numeric_scale,
cols.NUMERIC_PRECISION as numeric_precision,
cols.DATA_TYPE as ColType,
cols.IS_NULLABLE As IsNullable,
COL_LENGTH(cols.TABLE_NAME, cols.COLUMN_NAME) as Length,
COLUMNPROPERTY(OBJECT_ID(cols.TABLE_NAME),
cols.COLUMN_NAME, 'IsIdentity') as IsIdentity,
cols.NUMERIC_SCALE as Scale
FROM INFORMATION_SCHEMA.COLUMNS cols
WHERE cols.TABLE_NAME = 'accounts'
[0m
[4;36;1mSQL (0.071729) [0m [0;1m

SELECT * FROM accounts WHERE (accounts.[id] = 1) [0m

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 155

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 155

found a record with username: Kevin
About to show comments

[4;35;1mSQL (0.193857) [0m [0m
SELECT
cols.COLUMN_NAME as ColName,
cols.COLUMN_DEFAULT as DefaultValue,
cols.NUMERIC_SCALE as numeric_scale,
cols.NUMERIC_PRECISION as numeric_precision,
cols.DATA_TYPE as ColType,
cols.IS_NULLABLE As IsNullable,
COL_LENGTH(cols.TABLE_NAME, cols.COLUMN_NAME) as Length,
COLUMNPROPERTY(OBJECT_ID(cols.TABLE_NAME),
cols.COLUMN_NAME, 'IsIdentity') as IsIdentity,
cols.NUMERIC_SCALE as Scale
FROM INFORMATION_SCHEMA.COLUMNS cols
WHERE cols.TABLE_NAME = 'comments'
[0m
[4;36;1mSQL (0.066720) [0m [0;1m

SELECT * FROM comments WHERE (comments.account_id = 1) [0m
[4;35;1mComment Columns (0.063691) [0m [0m

SELECT
cols.COLUMN_NAME as ColName,
cols.COLUMN_DEFAULT as DefaultValue,
cols.NUMERIC_SCALE as numeric_scale,
cols.NUMERIC_PRECISION as numeric_precision,
cols.DATA_TYPE as ColType,
cols.IS_NULLABLE As IsNullable,
COL_LENGTH(cols.TABLE_NAME, cols.COLUMN_NAME) as Length,
COLUMNPROPERTY(OBJECT_ID(cols.TABLE_NAME),
cols.COLUMN_NAME, 'IsIdentity') as IsIdentity,
cols.NUMERIC_SCALE as Scale
FROM INFORMATION_SCHEMA.COLUMNS cols
WHERE cols.TABLE_NAME = 'comments'
[0m

Done showing comments

Wow, that’s a lot of data for just the simple little program we built and ran! Let’s take
a minute to dissect what’s really in there.

■Note The example we walk through in this section is connecting to a SQL Server database and therefore
uses the SQL Server adapter. Each adapter has a somewhat unique set of instructions that it performs based
on the various things the database engine supports. Many of these instructions or actions are then logged in
the log file for review. If you are using a different database engine to run these examples, the queries in your
log may look slightly different. However, the overall concepts we show here should be the same across all
implementations and, therefore, still useful.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING156

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 156

We started our actual program by calling the Account.find method, which our log reveals
to in turn to have caused Active Record to execute a number of queries to the database—three
in this example, to be exact. The first two appear to be gathering information about the columns
available within the table we are querying:

SELECT
cols.COLUMN_NAME as ColName,
cols.COLUMN_DEFAULT as DefaultValue,
cols.NUMERIC_SCALE as numeric_scale,
cols.NUMERIC_PRECISION as numeric_precision,
cols.DATA_TYPE as ColType,
cols.IS_NULLABLE As IsNullable,
COL_LENGTH(cols.TABLE_NAME, cols.COLUMN_NAME) as Length,
COLUMNPROPERTY(OBJECT_ID(cols.TABLE_NAME),
cols.COLUMN_NAME, 'IsIdentity') as IsIdentity,
cols.NUMERIC_SCALE as Scale
FROM INFORMATION_SCHEMA.COLUMNS cols
WHERE cols.TABLE_NAME = 'accounts'
[0m
[4;35;1mSQL (0.079272) [0m [0m

SELECT
cols.COLUMN_NAME as ColName,
cols.COLUMN_DEFAULT as DefaultValue,
cols.NUMERIC_SCALE as numeric_scale,
cols.NUMERIC_PRECISION as numeric_precision,
cols.DATA_TYPE as ColType,
cols.IS_NULLABLE As IsNullable,
COL_LENGTH(cols.TABLE_NAME, cols.COLUMN_NAME) as Length,
COLUMNPROPERTY(OBJECT_ID(cols.TABLE_NAME),
cols.COLUMN_NAME, 'IsIdentity') as IsIdentity,
cols.NUMERIC_SCALE as Scale
FROM INFORMATION_SCHEMA.COLUMNS cols
WHERE cols.TABLE_NAME = 'accounts'

If we search through the Active Record source code, we find that this query is, in fact,
unique to the SQL Server adapter (though each adaptor does have its own query to gather col-
umn information and that would be executed here in your log as well).

Active Record uses this information to populate the various instance and class variables,
such as the columns collection. It also uses the information from these queries to determine
what attributes a given object should have.

The next thing we see in our log is the execution of the actual query the find method built,
as well as the details we said to manually log:

[4;36;1mSQL (0.071729)[0m [0;1mSELECT * FROM accounts WHERE (accounts.[id] = 1)
[0m
found a record with username: Kevin

The interesting thing about the preceding result is that it shows you both the exact query
that was executed and the time required to execute that SQL statement. As your application

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 157

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 157

grows and performance becomes a concern, you may want to use this as a way to compare
performance between using the default find methods and executing the SQL directly via
find_by_sql methods or other less friendly ways.

■Note It’s important to note that much of Active Record was designed to make life easier on developers
trying to do standard or normal things. The more you adhere to the standard, the more you can benefit from
Active Record features. However, one of the things that you are agreeing to give up a little of to gain some of
these time-saving development features is performance. As your application grows and performance
becomes more and more important, you will likely find yourself having to take back some of those trade-offs
and work a little harder to get slighter better performance. Still, using things like logs allows us to make this
process much easier, as we use the generated SQL within our logs as a guide or starting point to rewriting
our own, hopefully faster, custom SQL statements.

The other thing to note in the preceding SQL query section of our file is the line we manually
inserted stating that a record was, indeed, found. More important than the fact that a record
was found (since we knew it would be from our unit testing earlier) is the location of line
within the file. Using manual logging like this turns out to be a great way to narrow down just
when and where various database operations and programming logic is occurring. As you get
more comfortable with logging as whole, you can start to add your own timers as well, so that
you will not only know when and where but also how long various sections of code take to
execute.

The final section of our log shows us the results of accessing data through our Comments
association. We bookended this information with manual comments so that we could see
what really happens when we access an association though a has_many relationship.

Once again, you see the columns queries being executed (because it’s the first time we
accessed the comments table), and of special interest is the query that Active Record built and
executed to access our children records.

[4;36;1mSQL (0.066720) [0m [0;1mSELECT * FROM comments WHERE
(comments.account_id = 1) [0m

When performance becomes an issue within our application, we can use all of this infor-
mation to determine what SQL code could be improved, updated, or simply replaced. We will,
however, leave those decisions and the details of that work for you to investigate as you see fit.

Our logging example is admittedly very simplistic. There is a lot more you can, and
probably should, do with logging when it comes to debugging and tuning your Active Record
applications. The logging features inherited from Ruby’s Logger class provide a number of
additional settings and methods that are outside of the scope of this book.

For example, we simply used the Active Record default logging level of Logger::DEBUG for
our examples, which shows you lots of useful information about your queries and other activi-
ties. There are a number of other log levels that you can work through as you hit different stages
and focus on different parts of your overall testing process.

For more information on Ruby logging, you should visit http://www.ruby-doc.org/core/
classes/Logger.html.

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING158

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 158

Active Record Benchmarking
The final tip we need to mention when debugging and tuning your Active Record applications
is the idea of benchmarking. Benchmarking is basically the process of grouping some actions
or statements together (like transactions) and timing how long it takes to execute the set.

Active Record provides benchmarking through a method aptly named benchmark, which,
in association with a Logger object, makes benchmarking very simple for us. Let’s take a quick
look at the details of the benchmark method.

The benchmark method accepts three parameters: the message to output in the log along
with the benchmark result time, the log level to record benchmarks at, and whether or not to
use silence mode.

If you set the log level to something other than that of the current Logger log level, the
benchmark will not be logged. This makes it easy to include benchmarking in production code
without taking the performance hit of actually executing benchmarks all the time.

Additionally, if you set the use_silence parameter to false, the benchmark will log all of
the statements within the benchmark.

The follow example shows our basic program using a benchmark and logging data to our
command line terminal:

test program to show benchmark in action
require 'rubygems'
require_gem 'activerecord'

class Account < ActiveRecord::Base
set_table_name "accounts"
has_many :comments

end

class Comment < ActiveRecord::Base
set_table_name "comments"
belongs_to :account

end

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbhost.com", :database => "test", :username => "sa", :password => "")

mylog = Logger.new(STDOUT)
ActiveRecord::Base.logger = mylog

Account.benchmark("Testing benchmark") do
temp = Account.find(1)
temp.comments.each do |rec|
puts "#{temp.username} said #{rec.subject}"

end
end

When we execute the preceding program from a command line, we should get results that
look something like the following (assuming we have the data in our database):

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING 159

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 159

FaliconMobileMac:~ falicon$ ruby artest.rb
Kevin said Hi.
Kevin said Good Bye
Testing benchmark (1.11170)

As you can see, benchmarking is a great way to quickly see how long various blocks of
code are really taking to execute.

Testing Is Fun!
OK, so maybe “fun” is a bit of a stretch, but I think you’ll agree that Active Record does, in fact,
make testing a lot less painful than many other libraries and languages. Hopefully, you’ve seen
the light and no longer have a reason to skip testing your applications. Even if you use only
a small percentage of the tips, tricks, and tools we showed you throughout this chapter, we
believe your applications will be a lot stronger, more stable, and loved by more people than
ever before. Don’t believe us? Test it out and see!

CHAPTER 6 ■ ACTIVE RECORD TESTING AND DEBUGGING160

8474_ch06FINAL.qxd 8/25/07 9:13 AM Page 160

Working with Legacy Schema

Kevin lives in New York, NY. He rides a motorcycle. He has jumped out of a perfectly good
airplane at 13,000 feet for fun—with his wife no less! Kevin and his wife decided to have two
kids. Heck, he even asked Apress to let us write this book! Our point is Kevin seems to have
a taste for doing crazy things.

Still, we don’t think most people would classify him as insane. Yet within the Ruby world
(and especially within the Rails community), “insane” is exactly how you’ll be tagged if you
intend to work with a legacy database schema!

While Kevin admits he sort of likes the idea of being labeled insane by his peers, we do
think it’s a bit of an extreme label. He runs a number of Rails sites that use legacy schema
behind the scenes, and we do a lot of ad hoc Active Record scripting for various legacy data-
base schema in our day-to-day consulting work. So we speak from a wealth of experience
when we say it’s really not all that insane. In fact, it’s not even all that hard! It just requires
a little bit of inside knowledge, a willingness to type a little bit more, and making some key
decisions up front.

Throughout this chapter, we’ll outline the key decisions you’ll have to make. We’ll cover
the details of what you really need to know to use Active Record with legacy database schema.
We’ll show you how to do some of the tricky database-specific things like executing stored
procedures and triggers. And finally, just in case you decide you really don’t want to deal with
that legacy schema after all, we’ll cover how to move your data to other systems via importing
and exporting.

Before we get into any details, though, we should take a second to define just what we
consider a legacy database schema so we all start on the same page. For the purpose of this
chapter, we are considering a legacy schema to be

Any database schema that was not primarily designed to adhere to the Active Record

schema recommendations.

Admittedly, this is a very general definition, but it allows us to think of any schema, whether
new or old, as a legacy schema that we can use Active Record to work with. Our general definition
also helps us to cover a very wide range of schema designs that stretch from simply choosing to
ignore one Active Record recommendation, like how you name your primary key fields, to more
complex designs that ignore just about every Active Record recommendation there is.

In any case, now that we have a common understanding of what a legacy schema is for
our purposes, we need to cover some of the key decisions that a developer needs to make
when they are deciding to use Active Record with legacy database schema.

161

C H A P T E R 7

■ ■ ■

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 161

Give and Take
As with most important decisions in life, working with a legacy schema is always a give and
take situation. You have to decide just how much you want to accomplish in Active Record
versus how much you want to accomplish within your database. Who’s going to be responsible
for each development part of your application? How will they want to do what they most fre-
quently need to do? Is there an easier way, or at least a more efficient way, to accomplish
everyday chores?

The answers to these questions will help you to design a better application as well as
determine just how much you can and should do in Active Record. That means these are all
important questions that you should be asking yourself before you even begin to write your
first bits of code.

Let’s examine some of the finer points about each of these questions now, so we can make
more informed design decisions about our applications.

How Much Do You Want to Do in Active Record?
Traditional database applications are considered N-tier applications precisely because they
involve multiple tiers of complexity. That is, multiple applications run independently from
each other but are connected in some fashion so as to run a unique and complete process
together, handing data back and forth between the tiers of complexity as needed. Usually,
each tier would be responsible for processing the data in some way before handing the result-
ing data off to the next tier.

This meant that for a simple database application you could potentially need both an
application developer and a database developer (or database administrator depending on
how your company views the various roles). Among the people involved, knowledge of the fol-
lowing was a bare minimum to get an application working:

• Application programming syntax and concepts

• How your language of choice communicates with your database of choice

• The SQL syntax your specific database requires

• How your database of choice handles various SQL statements and requests

That’s a lot of knowledge required to build even the most basic application. Worse, in
many small companies (like the ones we have most often worked in), you are often the only
person available, so you have to fill all the roles. That means you’ve got to have all that knowl-
edge, by yourself! Better start reading all those manuals and tech books fast.

If you’re like us, you’ve longed for solutions that allow you to spend more time in the realms
you truly enjoy (in our case, programming) and outside of those that are the necessary evils (in
our case, database administration). Active Record goes a long way in addressing just this situa-
tion, allowing you to stay within Ruby code for just about everything you need to do. With the
help of things like migrations, validations, and callbacks, you barely have to know that there’s
another tier involved at all.

Still, when it comes to legacy systems, and especially when you are working with a legacy
system that has other applications using it, it becomes clear that there are advantages to mov-
ing some of the processing into other tiers. For example, your Ruby validations are not going
to help prevent bad data from seeping into your database from Java programs hitting it. And

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA162

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 162

how many data scrubbing procedures do you want to write to ensure the data you read in is
really as clean as you need it to be when those Java programs continue to let in new variations
on bad data? In that sort of situation, it’s clear that the database itself should be the gatekeeper,
allowing in and sending out only good data.

So, the decision comes down to you, as an Active Record programmer; how much should
you deal with directly in your Active Record program, and how much should your database
directly handle? In the end, it’s a personal decision that each developer will need to make.
However, our advice to you is to move central issues, such as data validations, into your data-
base tier but leave custom details, like figuring out the proper tax for your application via
a callback, directly in your code.

This way, you maintain as much control (and simplicity) as possible while at the same
time only spending time and effort outside of your realm when it really makes sense to do so.

Who’s Responsible?
When you are trying to decide just where to place various parts of your application processing,
another important issue to consider is who’s ultimately responsible for that part of the process-
ing. Who’s going to have to fix the problems when they appear (and trust me they will)?

If, ultimately, you are going to be the one responsible for maintaining the application and
all its related parts, and you’re most comfortable within the Ruby realm, it probably makes
sense to keep as much as you can within that realm. On the other hand, if you need to share
responsibility, it might make more sense to move more of your application logic inside of the
database application and let someone else deal with all the related issues as they occur.

How Do Things Get Done?
Along the same lines of deciding where things get done and who should do them is to deter-
mine just how things actually get done. Again, if you are the one who will need to actually
maintain the application, resolve issues, and apply updates, it might make sense to keep as
much as you can inside of the Active Record realm. If you have another person who feels more
comfortable in the database realm or you have other reasons that require you do more in the
database realm, it probably makes sense to give up some of the clean and simple Active Record
features.

Is There an Easier or More Efficient Way?
Active Record was created to make working with databases simple for Ruby developers. Over
time, it’s evolved into a pretty complete realm allowing those of us who prefer to keep as much
as possible in code to actually stick to our world almost 100 percent of the time. We can do just
about everything from defining and setting up our schema with Active Record migrations, to
populating massive amounts of data with fixtures, to incorporating complex business logic
through data validations and callbacks, and we can even move from one database backend to
another with very little effort. And we can do almost all of this without even having to know all
that much about the SQL! This means we can spend more time focusing on our business logic
and on becoming better Ruby programmers as a whole.

Still, there are times when sticking to just one realm may cause you more trouble than it’s
worth. For example, many of us have already spent a large amount of our time and energy
learning the details of various SQL syntax and database management systems. So sometimes,

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 163

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 163

it’s just easier for us to write a quick SQL statement than to define all of our models, specify
our associations, and then write the proper finder method.

It really depends on what your current needs are and how long you are going to need to
support your scripts (we often just use find_by_sql with raw SQL statements for ad hoc stuff
but go the proper Active Record route for scripts that are going to exist longer). Only you know
what you’re really good at, and only you know what realm really makes the best sense for spend-
ing the majority of your time. So in the end, it’s really about what’s most efficient for you.

Configuration Options for Active Record
You’ve decided that the trade-offs are worth it, and you want to go ahead and use Active Record
with your legacy schema, moving most of your work into the Active Record realm. Now, what
do you do? How do you get everything to actually work?

As it turns out, the real key to using Active Record with a legacy schema is primarily in the
configuration work that you have to do. That is, you have to tell Active Record which of its
default assumptions it should not make for your schema, or put another way, what assumptions
your schema doesn’t adhere to.

It sounds like things could get messy, but it’s not so bad. In fact, most database libraries
available today do not come with any assumptions built in and instead, require you, the devel-
oper, to define all the details of how to interpret your schema for each of your programs. Many
times, they ask you to abstract those details into an external XML configuration file.

In our case, though, we don’t have to spend hours writing XML configuration files. We can
just specify most of our configuration options as simple assignments directly in our applications,
which many of our examples throughout this chapter will outline.

Best of all, after you work through the various options listed as follows, you’ll probably
find your designs are not that far off from the design decisions Active Record assumes, which
often means that you only need to make a few small configuration settings to get your legacy
schema realizing the full power of Active Record!

Remember that one of the primary design goals of Active Record is to cut down on config-
urations required to get our programs to work. Active Record achieves that goal by making
assumptions about the way most Active Record developers would want or expect something
to work.

However, DHH was wise enough to realize that there may be cases where someone needs
or wants to override these assumptions, so he made sure that Active Record allows us to override
each of these assumptions as we see fit. Thanks to that design decision, we are able to work
with just about any schema by doing just a little more configuration than you might see in your
average Active Record program.

Each of the settings in the following sections can be combined in numerous ways to
accomplish a variety of goals. For example, you can use the primary_key_prefix_type setting
along with the set_primary_key method to fine-tune just how and what Active Record uses as
the primary key for a given table.

primary_key_prefix_type
This is an attribute that you set directly on the ActiveRecord::Base class that allows you to
define the type of prefix that should be used when accessing your tables throughout all of your
Active Record instances. If you do not set this attribute, Active Record will assume each table

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA164

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 164

has a primary key of the string ID (except for those models that override this setting via the
set_primary_key method). The value options for primary_key_prefix_type are :table_name or
:table_name_with_underscore.

If you use a setting of :table_name, Active Record will append the model’s class name
directly to the string ID (unless you define a different primary key with the set_primary_key
method) when it attempts to access the primary key. The following example shows this in
action:

Setting the primary_key_prefix_type
ActiveRecord::Base.primary_key_prefix_type = :table_name
class Account < ActiveRecord::Base
end
a = Account.find(1)
#=> executes SQL equal to "Select * from accounts where accountid = 1"

If you use a setting of :table_name_with_underscore, Active Record will append the model’s
class name and an underscore to the string ID (unless you define a different primary key with
the set_primary_key method) when it attempts to access the primary key. The following exam-
ple shows this in action:

Setting the primary_key_prefix_type
ActiveRecord::Base.primary_key_prefix_type = :table_name_with_underscore
class Account < ActiveRecord::Base
end
a = Account.find(1)
#=> executes SQL equal to "Select * from accounts where account_id = 1"

■Note It’s important to notice that the class name is used without the help of the Active Support Inflector
class for this prefix. That is, we define our model as an Account model that maps to an accounts table (the
Active Support Inflector class helps us to figure out the proper table name that our code should look for),
but within that table, we expect to have a primary key of account_id rather than accounts_id. If you think
about a record and how it relates to a single instance of a class, this should seem like a reasonable deduction
for our code to make. If our primary key does not follow this design, we would need to use the set_primary_
key method within each model rather than just setting this attribute.

It’s quite common to see primary keys defined as the table name and the string ID (some-
times with an underscore, sometimes without). So this attribute is a great way to work with
that convention without having to override the primary key setting in every model (via the
set_primary_key method).

table_name_prefix
This is an attribute that you set directly on the ActiveRecord::Base class that allows you to
define the prefix to be used with all tables throughout all of your Active Record instances. The
default prefix used when you do not set this attribute is an empty string (which equates to no
prefix being used).

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 165

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 165

The following example states that all of our tables should have the string "draftwizard_"
attached as a prefix:

Setting the table_name_prefix
ActiveRecord::Base.table_name_prefix = "draftwizard_"
class Account < ActiveRecord::Base
end
a = Account.find(1)
#=> executes SQL equal to "Select * from draftwizard_accounts where id = 1"

This attribute is very handy when you are working within a shared database that has
tables for a number of virtual schema. Prefixing all your tables with their project names makes
them easier to manage within your database management system (DBMS); by using this
attribute, you can quickly and easily utilize the Active Record library with your schema as well.

table_name_suffix
This attribute is also set directly on the ActiveRecord::Base class; it allows you to define the
suffix to be used with all tables throughout your Active Record instances. When you do not set
this attribute, the default suffix used is an empty string (which equates to no suffix being used).

The following example states that all of our tables should have the string "draftwizard_"
attached as a suffix:

Setting the table_name_suffix
ActiveRecord::Base.table_name_suffix = "_draftwizard"
class Account < ActiveRecord::Base
end
a = Account.find(1)
#=> executes SQL equal to "Select * from accounts_draftwizard where id = 1"

Much like the table_name_prefix attribute, this attribute is very handy when you are
working within a shared database that has tables for a number of virtual schema. By adding
the project name as a suffix to all your tables, they can be more easily managed within your
DBMS, and by using this attribute, you can also quickly and easily utilize the Active Record
library with your schema.

pluralize_table_names
This attribute, which you also set directly on the ActiveRecord::Base class, allows you to tell
Active Record whether or not it should use the Active Support Inflector class to determine
table names. The default setting is true.

The following example shows how to make Active Record ignore the pluralization assump-
tions and instead just use the class name as the table name:

Setting the pluralize_table_names
ActiveRecord::Base.pluralize_table_names = false
class Account < ActiveRecord::Base
end
a = Account.find(1) #=> executes SQL equal to "Select * from account where id = 1"

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA166

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 166

Many legacy systems we have worked with do not use a mixed sense of pluralization like
Active Record assumes. That is, it has been our experience that a schema would likely have an
Account table rather than an Accounts table (even though technically the table is holding data
about a variety of accounts). So we find ourselves setting this attribute to false in most of our
legacy schema work.

It also helps us to avoid the confusion that our brains seem to add with pluralization. That
is, when pluralization is turned on, we often find ourselves having to talk (out loud, to the dis-
may of those around us) through the relationship a bit more. We have to say things like, “We
want to get the account_id of the accounts table through an instance of my Account object.”
Then we can type out the actual code to accomplish it. Therefore, we also find ourselves set-
ting this attribute to false in many of the Active Record systems we start from scratch and
avoiding pluralization confusion all together!

colorize_logging
This is an attribute, which you set directly on the ActiveRecord::Base class, that tells your log-
ger whether or not to use ANSI codes to colorize your log. Colorizing your log can often help
you quickly find things as you review them, but not all programs you use to review your logs
may display these colors. When the colors cannot be properly displayed, the extra ANSI color
code tends to make the log much harder to read. In those situations, you can use this attribute
to turn off the use of those codes. The default value for this attribute is true.

The following example shows how to turn log colorization off:

Specify colorize_logging
ActiveRecord::Base.colorize_logging = false

Colorizing your log really has nothing to do with working with legacy systems, but we list
the attribute here because it is, in fact, one of the configuration options you can specify. We
suppose you could make an argument that working with legacy systems can require more
involved testing and therefore more involved reviewing of your log files. In which case, col-
orization would help to ease that process.

default_timezone
This is an attribute, which you set directly on the ActiveRecord::Base class, that allows you to
have Active Record use either your local system time or coordinated universal time (UTC) when
dealing with date and time field types in your database. The default setting is :local; the other
option is :utc.

The following example tells Active Record to use UTC time values when dealing with dates:

Specify the default_timezone
ActiveRecord::Base.default_timezone = :utc
a = Account.find(1)
puts a.created_on #=> Tue Jun 05 22:09:44 UTC 2007

A complete discussion on date and time issues is outside of the scope of this book, but
I will say that it’s worth spending a little time thinking about. The applications of today are
becoming more and more global, which, in turn, is causing us to make more and more global
decisions about how or why something should work the way it does. Many older systems

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 167

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 167

logged dates and times as local dates and times, because the applications that used the data
were expected to also run in that local time zone. Often, that is no longer the case, making
standards such as UTC a much more interesting option.

allow_concurrency
The allow_concurrency attribute, again set directly on the ActiveRecord::Base class, lets you
tell Active Record if it should use a connection for each thread or if it should simply use
a single shared connection for all threads. The default is false, which states that Active Record
should use a single shared connection for all threads.

The following example shows a threaded example (each time you run this, the results are
likely to be displayed in a different order, as the threads end at various and slightly random
times):

Threaded example using concurrency
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "mysql",
:database => "testdb", :username => "root", :password => "", :host => "localhost")
ActiveRecord::Base.allow_concurrency = true

class Direct < ActiveRecord::Base
end

threads = []
20.times do |i|
t = Thread.new do
data = Direct.find(i + 1)
puts "Thread: #{i} #{data.contact_email}"

end
threads.push(t)

end
threads.each {|t| t.join }

The preceding example assumes, of course, that you have a table called directs with at
least the 20 records we reference (ids with values from 1 to 20). It’s also important to note that
the preceding example is just a generic example of a threaded application where one process
manages the single database connection intelligently for a concurrent process.

■Note Each Active Record adaptor handles threads in its own way, and that way often depends on how the
underlying relational DBMS itself handles threads. You should refer to your specific adapter code and your
database documentation for more details.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA168

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 168

Threads are a powerful, yet complex, realm to explore. If you intend to do any applications
of any serious size, it would probably be worth your time to learn as much as you can about
how to best implement and manage them.

generate_read_methods
This is an attribute that you, again, set directly on the ActiveRecord::Base class; it tells Active
Record whether or not to dynamically generate reader methods. That is, it tells Active Record if it
should access an attribute directly and perform a type cast once the presence of a reader
method is established for that attribute or if it should always perform the task through the
method_missing method. The default value for this attribute is true.

The following example shows this setting in action with a simple benchmark to show the
time processing takes. If you toggle the value for generate_read_methods, you should see there
is a significant processing hit:

Setting the generate_read_methods
require 'rubygems'
require_gem 'activerecord'
require 'benchmark'

ActiveRecord::Base.establish_connection(:adapter => "mysql",
:database => "testdb", :username => "root", :password => "", :host => "localhost")
ActiveRecord::Base.generate_read_methods = false

class Account < ActiveRecord::Base
end

2.times do |x|
Account.benchmark("starting benchmark") do
temp = Account.find_by_username("Kevin")
puts temp.created_at

end
end

This setting primarily has to do with performance issues, because when you choose not to
generate read methods, Active Record is forced to call the method_missing method each time
you attempt to access an attribute—and calling the method_missing method is resource intensive.

Again, this attribute has little to do directly with legacy schema, but we include it here,
because it is a configuration option you can set.

schema_format
This is also an attribute that you set directly on the ActiveRecord::Base class; it tells Active
Record what format to use when dumping the database schema to flat files. The default value
is :ruby, and :sql is the other available option.

If you set the attribute to the :ruby value, the schema is dumped as an ActiveRecord::Schema
format (discussed in Chapter 3), which can then be used to load the schema into any database
that supports Active Record migrations. If you set the attribute to :sql, according to the

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 169

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 169

Active Record documentation, the schema is dumped as SQL statements that are likely database
specific (since each database uses its own variation of ANSI SQL).

■Note At the time of this writing, a search through all of the Active Record source code revealed no real
implementation of the schema_format attribute. Regardless of the value you set, it appears as though
Active Record just acts as though the :ruby value was provided; that is, it always dumps the schema in the
ActiveRecord::Schema format.

This attribute is designed primarily for use with the Ruby on Rails task rake db:schema:dump.
However, as we outlined in Chapter 3, you can dump the schema from a standard Active Record
program as well.

set_table_name
This is a method that you can use within a model to override the table naming assump-
tions built into Active Record. You may also provide a block rather than a table name, and
the result of the block will be the value Active Record attempts to use to locate the table
within the database.

In the following example, we override the Active Record assumptions for two models. In
the first model, Active Record would normally have attempted to locate an accounts table, but
we tell it to look for a table called members instead. In the second model, we use a block to tell
Active Record to use a table name of feedback instead of the default of comments:

Using the set_table_name method
require 'rubygems'
require_gem 'activerecord'
ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "localhost", :username => "sa", :password => "", :database => "testdb")

class Account < ActiveRecord::Base
set_table_name "members"

end

puts Account.find(1).inspect

class Comment < ActiveRecord::Base
set_table_name {
d = ["feed","back"]
d.join

}
end

puts Comment.find(1).inspect

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA170

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 170

This method is quite useful when you have tables within your database that would be
more logical within your application if they were referred to by different names (our Account
versus Member override is a good example of this). This method is also handy for helping you to
avoid the pluralization confusion I mentioned in the pluralize_table_name attribute section.

This method will override any Active Record table naming assumptions as well as the
pluralize_table_name attribute setting.

set_primary_key
This is a method that you can use within a model to override the Active Record assumption
that each table has a primary key labeled id. You may also provide a block rather than a pri-
mary key label, and the result of the block will be the value Active Record attempts to use as
the primary key.

In the following example, we override the Active Record assumptions for two models. In
both models, Active Record would normally assume each table has a primary key in a field
labeled id. However, in the first model, we say to use account_id as the primary key, and in the
second model, we use a block to assign a primary key of comments_id:

Using the set_table_name method
require 'rubygems'
require_gem 'activerecord'
ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "localhost", :username => "sa", :password => "", :database => "testdb")

class Account < ActiveRecord::Base
set_primary_key "account_id"

end

puts Account.find(1).inspect

class Comment < ActiveRecord::Base
set_primary_key {
d = ["comm","ents","_id"]
d.join

}
end

puts Comment.find(1).inspect

set_Inheritance_column
You can use this method within a model to override the Active Record assumption that inheri-
tance is stored in a field labeled type. You may also provide a block rather than a specific
inheritance field label, and the result of the block will be the value Active Record attempts to
use as the field to store inheritance.

In the following example, we override the Active Record assumptions for two models
(Account and Comment). In both models, Active Record would normally assume each table has
a field labeled type, which stores the inheritance information. However, in the first model, we

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 171

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 171

say to use account_type as the inheritance column, and in the second model, we use a block to
assign the name of the inheritance column:

Using the set_table_name method
require 'rubygems'
require_gem 'activerecord'
ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "localhost", :username => "sa", :password => "", :database => "testdb")

class Account < ActiveRecord::Base
set_inheritance_column "account_type"

end

class Reader < Account
end

puts Reader.find(1).inspect

class Comment < ActiveRecord::Base
set_primary_key {
d = ["comm","ents","_category"]
d.join

}
end

class Storycomment < Comment
end

puts Storycomment.find(1).inspect

set_sequence_name
This is a method that you can use within a model to specify the name of the sequence
Active Record should use to generate id values for primary keys. You may also provide a block
rather than a specific sequence name, and the result of the block will be the value Active Record
attempts to use as the sequence name.

Each database may handle sequences in its own way, so there is some variation in what is
required from Active Record’s point of view. If you are using Oracle or Firebird, Active Record
assumes that sequences exist for each of your tables and are in the format of tablename_seq. If
you are using Firebird, Active Record will discover the proper sequence for you by default.

■Note Because there is variation here on the Active Record assumptions, I recommend that you review
your specific adapter code just to be sure how sequences are handled.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA172

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 172

In the following example, we assign an Oracle sequence called aid_seq to our Account
model:

Setting sequence name with Oracle
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => 'oci',
:host => 'test, :username => 'tester', :password => 'tester')

class Account < ActiveRecord::Base
set_sequence_name "aid_seq"

end

acc = Account.new # => this should trigger the execution of the sequence aid_seq
acc.username = 'Kevin'
acc.save

puts acc.id #=> this should display the value of the sequence we executed.

Making the Complex Easier
We’ve got the basic configuration concepts under control, and we think we can at least get
Active Record talking to our database in a fairly standard Active Record way using those options.
Now, it’s time to shift our focus a little bit from setting things up to actually dealing with the
more complex issue of working with the things we’ve set up.

To do that, we need to have an example we can work with. The first thing we should prob-
ably do is to define some tables for our legacy schema to use in the examples throughout the
rest of this chapter, so we are all on the same page as we work through various issues.

To start, let’s pretend that we are going to be writing some Active Record scripts to work
with a legacy schema that also has some historical Java applications accessing it. Because the
Java applications are distributed to a number of clients (which are not entirely under our con-
trol anymore), and we want those Java programs to continue to work, we cannot remove any
existing tables or change the existing column names in our database. However, we can proba-
bly add columns to tables without causing too much backlash, and we can certainly add data
as needed.

Our development and production database systems are SQL Server systems and have
hundreds of tables already, but for our interests, we are concerned with only a couple of them
right now.

■Note Our examples are using SQL Server data stores for our own simplicity during our writing and testing
process, but the theory and details listed should work across all systems unless otherwise noted. If you are
comfortable with migrations as discussed in Chapter 3, you may even want to do your development in one
DBMS, such as MySQL, and release to another DBMS, such as Oracle, for your production system.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 173

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 173

Our first example table is a members table. The members table is where we store all the basic
member information like username, password, name, and e-mail address (though we will
probably want to refer to it as an account table for our needs). The table is defined with the fol-
lowing basic properties:

members table, basic plain-English definition of fields
Members_ID, int, auto-incremented, primary key
Members_Name, varchar
Members_Email, varchar
Members_Username, varchar
Members_Password, varchar

We also are interested in a comments table that stores user comments. The table is defined
with the following basic properties:

comments table, basic plain-English definition of fields
Comments_ID, int, auto-incremented, primary key
Comments_Subject, varchar
Comments_Message, text
Comments_Name, varchar
Comments_RealtedID, int
Comments_BoardID, int
Members_ID, int
Comments_DatePosted, datetime

Finally, we are also interested in a table called direct that contains a list of our member’s
direct friends. The table is defined with the following basic properties:

direct table, basic plain-English definition of fields
Direct_ID, int, auto-incremented, primary key
Direct_Name, varchar
Direct_Email, varchar
Members_ID, id
Direct_Added, datetime

Now that we have some sample tables to work with, we can talk about what’s required to
use this schema with Active Record. Believe it or not, our legacy system is not too far off from
most of the Active Record assumptions. In fact, we only need to use the set_table_name and
set_primary_key model methods to accomplish most of what we want.

The initial setup work we need to do follows:

Example working with Legacy schema
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbserver", :database => "testdb", :username => "sa", :password => "")

class Account < ActiveRecord::Base
set_table_name "members"

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA174

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 174

set_primary_key "Members_ID"
end

class Comments < ActiveRecord::Base
set_table_name "comments"
set_primary_key "Comments_ID"

end

class Direct < ActiveRecord::Base
set_table_name "direct"
set_primary_key "Direct_ID"

end

At this point, you might be wondering why we chose to use the set_primary_key method
instead of just setting the class attribute primary_key_prefix_type to :table_name_with_
underscore, since it appears that in all of our cases, our primary key is the table name plus an
underscore and the string ID. The answer lies in the fact that our column labels are of mixed
case. This is an important thing to note, because Active Record will force all column or field
names to be lowercase with a call to the Ruby downcase method unless you specifically tell it in
which cases not to do so.

■Note Active Record is case sensitive. This means that a field name of account_id is not the same as
a field name of Account_ID even if your database system itself does not recognize a difference. From within
your application, the attributes would be considered two different objects.

We’ll spend a little more time on the importance of case in the next section when we
cover using the various find methods. For now though, just keep in mind that case does
matter, and since our legacy schema uses mixed case for field names, we were required to
use the set_primary_key method within each model rather than set the global attribute on
the ActiveRecord::Base class.

The other interesting thing to note about our initial setup here is that even though within
our database we store member data in the member table, within our application we defined the
model as an Account model. This means that our code will reference it as an Account object. It’s
a subtle thing, but it should help to clear up the meaning of our model as we use it within our
code when other humans (if you can consider your developers and testers human) need to
read through our code.

Now that we have our models set up, we can finally start doing our CRUD operations.

CRUD Operations and Complex SQL Statements
We covered the basics of the various CRUD operations back in Chapter 2. And so long as you
use the various configuration options listed previously, you should be able to accomplish all
of the normal CRUD actions and take advantage of things like validations, callbacks, and
associations.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 175

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 175

Still, there are many times when dealing with legacy systems that you may want to bypass
some of the advantages that Active Record gives you in exchange for better performance (obvi-
ously, there is some processing overhead that goes into providing all those nice features). And
sometimes, it’s easier to port your application from another language into Ruby by just using
the existing SQL statements, especially if you’re comfortable with the SQL syntax your chosen
database supports. Depending on your background, you may find working with SQL joins a little
less confusing than dealing with model associations.

In any case, if you want to work more with SQL and less with Active Record syntax, your
answer is the find_by_sql method. The find_by_sql method simply takes a raw SQL statement
and uses the ActiveRecord::Base.connection.select_all statement to execute the provided
SQL (we talk about the select_all statement in more detail in the next section).

An example helps us to explore this option a bit more—getting back to our example appli-
cation, let’s pretend that we need to generate a quick report that shows us only what comments
a given user has posted. If we had set up our models with proper associations, we could simply
use that information to access the subset of data. However, we did not set up our models with
proper associations for this section, and since we just want this to be an ad hoc report, we’ll
use raw SQL and the find_by_sql method to achieve the desired results.

The following example shows our solution using the find_by_sql method:

Code snippet showing use of find_by_sql method in action
acid = 1 #=> this is the id of the account we are going to generate the report for

pc = Account.find_by_sql(["Select * from members, comments where
members.members_id = ? and members.members_id = comments.members_id", accid])

pc.each do |rec|
puts "#{rec.Members_Name} posted #{rec.Comments_Subject}"

end

A few really important things are happening in the preceding example, so we’ll take
a minute to point out each one:

• We called the find_by_sql method on the Account model. Really, we could have exe-
cuted the same code against any of our defined models though, since we were passing
in a complete SQL string. The find_by_sql method uses only the connection informa-
tion of the model it’s called with.

• The SQL statements we use with the find_by_sql method must adhere to the specific
SQL syntax that our backend database supports (in this example, we are using SQL Server
so that means we need to use T-SQL syntax). This means, in our example, that we may
need to update our SQL statements if we develop against a SQL Server backend but
later decide to release to production in Oracle, since each implements a different ver-
sion of SQL (T-SQL for SQLServer and PL/SQL for Oracle).

• We referenced the members table by its true database label (members) even though we
defined the model as Account. This is once again required, because the find_by_sql
method directly passes the raw SQL string to the database for execution, meaning that
we must refer to tables and columns as the database knows them rather than as our
Active Record application would.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA176

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 176

• The find_by_sql method returns an array of Active Record objects, even if only one
Active Record object is in that array. This differs slightly from the regular find methods,
which return an Active Record object if only one result is found or an array of Active
Record objects if more than one result is found.

In the following example, we use find_by_sql to get the number of records in our
Direct table. Though we expect only one result, we are still required to use the array to
access that data.

Code snippet showing find_by_sql as Array of ActiveRecord objects
thecount = Direct.find_by_sql("select count(0) mycount from direct")
puts thecount[0].mycount

• Finally, since we did a select * type of SQL statement, we reference the field values with
mixed case, because that is how they are truly defined within the database. If we had,
instead, used an SQL statement like select members_name, comments_subject from . . .
we would have been required to reference the field values in our example as rec.media_
name and rec.comments_subject (lowercase). This is because, in this situation, our SQL
statement specifically defined them as lowercase, and Ruby and Active Record result sets
are case sensitive. When in doubt, it’s probably safer to define your select fields in lower-
case so that you can reference them that way in your code. Otherwise, it may become
difficult to debug your programs, because it will not always be clear if you are talking
about a model attribute, method, or constant.

■Note When working with legacy schema, case is very important to note for table and field labels. If you
use a select * type of statement with find_by_sql and then attempt to reference a value with the wrong
case, you will get a method_missing error. If you do get a method_missing error, you should always check
that you are using the correct case for all of your attribute references.

As long as you keep these key issues in mind, the find_by_sql method can be a very power-
ful tool when working with legacy databases. It allows you to quickly execute select statements
of any level complexity (as long as you can correctly write the complex SQL you need).

Improving Performance and Cutting Out the Middle Man
As powerful and helpful as find_by_sql can be when working with legacy systems, there are
still times when it’s just not enough. Perhaps you have a large data set you need for a number
of statements, or perhaps speed is critical to your application and you want to cut out as many
of the unnecessary steps as possible.

In these situations, you can bypass just about all of Active Record, except for the
connection, and simply call the raw statements themselves. Each Active Record CRUD
operation eventually boils down to either a connection.insert, connection.update,
connection.select_all, or connection.delete statement, so as you can guess, you can
directly use any of these as you need.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 177

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 177

The following example shows each of these low-level operations in use (in a real-world
situation, you would want to include exception handling, because you are opening yourself up
to a large number of potential errors when you work with low-level operations):

Code snippet showing use of low level connection statements
ins = ActiveRecord::Base.connection.insert("insert into
members(members_name, members_username, members_password)
values('Kevin', 'Falicon', 'CAKNTOBA')")

puts ins #=> should return the id of the record that was inserted

upd = ActiveRecord::Base.connection.update("update members set
members_password = 'CAKNTOBA1' where members_id = #{ins}")
puts upd #=> returns 0 regardless of if the update really ran or not!

sel = ActiveRecord::Base.connection.select_all("select * from members
where members_id = #{ins}")
sel.each do |rec|
puts "Name: #{rec["Members_Name"]} Username: #{rec["Members_Username"]"

end

del = ActiveRecord::Base.connection.delete("delete members
where members_id = #{ins}")
puts del #=> returns 0 regardless of if the delete really ran or not!

Again there are a few key things we should point out about the previous example.

• Each of these low-level statements requires a full SQL statement that is compatible with
your backend database. In the example of SQL Server, that means your SQL statements
must be T-SQL compliant, and with Oracle, they must be PL/SQL compliant. Each data-
base uses a variation of ANSI SQL, and when you work directly with these low-level
statements, you must know and maintain the details of this on your own.

• Both the update and delete statements return a zero value regardless of their execution.
This means that you have no real information saying whether or not the statement exe-
cuted properly, so checking for proper execution is left up to you.

• When you use these low-level statements, you are bypassing everything Active Record
brings to the table, except for the ability to connect to the database. Essentially, you are
using Active Record to easily connect to your database, but otherwise, you are writing
custom SQL for all of your communication with that database.

• The select_all statement returns an array of hash objects rather than an array of
Active Record objects. So rather than access values as if they are attributes, you must
access them as you would a hash value (e.g., rec["Members_Name"] instead of the
Active Record version of rec.Members_Name).

Again, as long as you keep the preceding points in mind, working with the low-level state-
ments can provide you with significant performance boosts—especially when you are running
scripts that move a lot of data around and require a large number of database calls.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA178

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 178

Stored Procedures, Custom Functions, and Sequences
There’s actually one last low-level statement that we have left to discuss, connection.execute.
With this statement, we can add support for database-specific features like stored procedures,
custom functions, and sequences.

Actually, many of these features can be executed in simple ways that we already know about.
For example, most custom functions can be executed as part of normal SQL statements, and
many times you can access a sequence in this way as well.

The following example shows how to call custom functions and sequences with Active
Record and Oracle:

Script showing use of custom function and sequences
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "oci",
:host => "test", :username => "tester", :password => "tester")

class Direct < ActiveRecord::Base
end

seqval = Direct.find_by_sql("select test_seq.nextval from dual")
puts seqval[0].nextval
#=> will display the next available value from the test_seq sequence

cf = Direct.find_by_sql("select custfunc(123) myres from members where
members_id = 1")
puts ef[0].myres
#=> will display the value that was returned from the custom
function custfunc when the value 123 was passed to the function.

Again, it’s worth noting that, because you are using a method like find_by_sql for these
features, you are relying on SQL statements and features that must be compatible with your
specific database situation. It should also be noted that each database may implement (or not
support at all) each of these type of features in different ways, so you should always refer to
your database documentation before attempting to work with these type of features.

As with our previous examples, you can also choose to go to the lower level and use the
connection.select_all statement to access sequence or custom function values via SQL
statements.

One of the common database features that we haven’t talked about yet is stored proce-
dures. Stored procedures are basically encapsulated code or logic stored intended to help
apply business logic to your data from directly within your database, and each database has
a varying level of support for them (some have no support for stored procedures).

Since one of the primary goals of Active Record is to decentralize your business logic from
within your database and instead move that to your application and your models, it’s probably
no surprise that there is no direct support for stored procedures within Active Record. But that
doesn’t mean you can’t use them, it just means you’ll have to do a little more work on your
own again.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 179

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 179

The secret to executing stored procedures is the final low-level statement we have yet to
mention, connection.execute. The connection.execute method is similar to the other low-level
statements we’ve been talking about in that it accepts a raw SQL statement. However, it varies
slightly in that it’s more generic than the other statements and, therefore, can execute any type
of SQL statement including insert, update, delete, and select statements.

It can also execute a series of SQL statements, and this turns out to be the key for accessing
stored procedures with certain database systems, such as Oracle. Some examples will probably
help make this easier to understand.

In the following example, we make a call to an Oracle stored procedure that resets a sequence
within our database (the stored procedure takes the name of the sequence to reset as its lone
parameter):

Running an Oracle stored procedure
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "oci",
:host => "test", :username => "tester", :password => "tester")

res = ActiveRecord::Base.conection.execute("begin reset_sequence('test_seq'); end;")
puts res.inspect
#=> because our stored procedure does not return a value we get back an empty Array

As this example shows, we execute a begin/end block calling the stored procedure
(reset_sequence in this example). As we mentioned though, each database implements stored
procedures in its own way, so this example is specific to Oracle stored procedures. To show
you what we mean, let’s look at one more example with a different database.

The following example executes a built-in SQL Server stored procedure (sp_helprole) and
displays the results from this stored procedure:

Running a SQL Server stored procedure
require 'rubygems'
require_gem 'activerecord'

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",
:host => "mydbserver.com", :database => "test", :username => "sa",
:password => "", :autocommit => false)

roles = ActiveRecord::Base.connection.select_all("exec sp_helprole")
roles.each do |rec|
puts rec["RoleName"]

end

This example shows a number of interesting differences between Oracle and SQL Server
in how they execute stored procedures. First, SQL Server requires that we set the connection
parameter of :autocommit to false. Second, to execute a SQL Server stored procedure, you use
the connection.select_all statement, instead of connection.execute like you do with Oracle
(calling the execute statement for SQL Server will not return results). Finally, you can see that

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA180

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 180

the select_all statement returned an Array of Hash values, so we are required to access the
data via this array and hash structure instead of as Active Record objects.

These differences alone should highlight the fact that working with stored procedures
from within your Active Record programs is a bit of headache and requires some research on
your part into how specifically your adapter can support them (as well as how your SQL syntax
can execute them).

Because of these various issues and the work required to ensure stable results, we recom-
mend that, where possible, you stay away from accessing stored procedures in your Active Record
applications. Still, the previous two examples should at least show that it is possible when you
absolutely must deal with a stored procedure within your Active Record code.

Data Types
Now that we’ve covered all the configuration options, the tips and tricks for CRUD operations,
and how to deal with various database-specific features like stored procedures, we have just
one more important area worth addressing when dealing with legacy systems—data types,
specifically, unique data types and how Active Record handles each.

Ruby itself has only a handful of data types, and for the most part, they can be reasonably
mapped to standard database types. For example, String can be mapped to varchar or char
types. Integer can be mapped to integer. Float can be mapped to fixnum or float types.

But like most things, there are a few exceptions.
Our first data type exception is the Boolean type. Ruby has a fairly simple definition of

Boolean values. Everything is true except for the value false and the value nil. However, many
databases also allow values like 0, "false", or null to also evaluate as false Boolean values. To
address this, each Active Record database adapter is expected to also accept and properly con-
vert the values of "false" and "0" to Boolean false values.

The next data type of interest to us is the large text object (often referred to as Text or CLOB
data types). Each database has a varying level of support for large text objects, but most do
implement or support them in one way or another. Throughout our testing, each of the adapters
correctly converted data to and from Ruby string types for this type.

Finally, closely related to large text objects are large binary objects (often referred to as BLOB
data types). This data type also has varying support from within each database system and relies
on each Active Record adaptor to properly map data to and from this type. The equivalent Ruby
type is generally :binary, :string, or an I/O stream.

As you can see, data types and their mappings are often unique to each database system
and, therefore, are implemented in each Active Record adapter. We recommend you spend
a little time in your specific adapter’s source code getting familiar with how it handles data
type conversions.

Importing and Exporting
While the primary storage mechanism for Active Record objects is a relational database, there
are several reasons why you might export the data stored in Active Record objects to other for-
mats. Whether for integration with other systems, reporting, or testing purposes, converting
Active Record objects into other formats is, thankfully, easy.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 181

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 181

Exporting XML
XML has emerged as a standard data interchange format, and Active Record includes, on every
object, a to_xml method that allows you to get an XML representation of the Active Record object.

■Note While the to_xml method does take a hash of configuration options, it is generally recommended
that for more complex XML generation you should use Active Support’s Builder class and either override
to_xml or provide a custom method with a different name.

The default generated XML will include all attributes for the object, a type attribute for
attributes that are not of type String, and processing instructions. In addition, associations are
not expanded by default. An example of the XML for an object of our Account class would be

<?xml version="1.0" encoding="UTF-8"?>
<account>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site-id tyle="integer">1</site-id>

</account>

The default name for the root element is the class name of the Active Record object we are
formatting. The :root option should be a string and provides you a way to override the name
of the root element:

account.to_xml(:root => "myaccount")
=> <myaccount>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site-id>1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</myaccount>

You can use the :only and :except options to explicitly include or exclude attributes from
the resulting XML:

account.to_xml(:only => [:last_name])
=> <account>
<last-name>Pytel</last-name>

</account>
account.to_xml(:except => [:last_name])
=> <account>
<id type="integer">1</id>
<first-name>Chad</first-name>
<site-id>1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</account>

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA182

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 182

As previously mentioned, associations are not expanded in the XML by default. To cause
certain associations to also be included in the XML, use the :include option:

account.to_xml(:include => [:site])
=> <?xml version="1.0" encoding="UTF-8"?>
<account>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site>
<id type="integer">1</id>
<name>Account Site</name>

</site>
<site-id type="integer">1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</account>

Importing XML
While Active Record contains a to_xml method for writing XML, it does not contain a from_xml
method for reading it. Thankfully, Active Support extends the hash object with a create_
from_xml method. Because Active Record objects can be created by passing in a hash, you can
utilize this method to create Active Record objects from XML.

The create_from_xml method expects the same types of XML attributes that are output
when using the to_xml method. It uses these attributes, which indicate type, to typecast the
values in XML to the correct values in the hash.

Given the following XML markup

<?xml version="1.0" encoding="UTF-8"?>
<account>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site>
<id type="integer">1</id>
<name>Account Site</name>

</site>
<site-id type="integer">1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</account>

the create_from_xml method would return the following hash:

{"account"=>{"site_id"=>1, "id"=>1, "site"=>{"name"=>"Account Site", "id"=>1},
"first_name"=>"Chad", "last_name"=>"Pytel",
"created_at"=>Fri Nov 10 15:22:56 UTC 2006}}

You can then pass the generated hash into the model’s new, create, or update_attributes
method. The create_from_xml method can also be used to read in XML that contains markup
for more than one model record. The following code is a simple script that reads in an XML file

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 183

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 183

that contains data for multiple accounts. In our data, it assumed that some records do not yet
have a primary key, while others do. Therefore, if the primary key in the XML is not nil, the
script will attempt to find the corresponding record and update it. If the record is not found,
or if the primary key was nil, then the record will be created.

accounts_xml_string = File.read("accounts.xml")
accounts = Hash.create_from_xml(accounts_xml_string)
accounts.each do |account|
if account["id"].nil? || !Account.exists?(account["id"])
Accounts.create(account)

else
Accounts.find(account["id"]).update_attributes(account)

end
end

While, the preceding code may not be considered production ready (it does not include
any error checking or reporting), you can see that in a few simple lines, we can import an entire
XML file of accounts into our database, updating records that already exist. If, for instance, you
know that none of the records exist, you can even eliminate that part of the program.

Exporting YAML
YAML, which stands for “YAML Ain’t Markup Language,” is a data serialization format first
proposed in 2001 by Clark Evans, who designed it together with Ingy döt Net and Oren Ben-Kiki.
In Active Record, YAML can be used as Active Record fixture data for testing purposes. As YAML
continues to grow in popularity, it can be useful as a lightweight markup language.

Regardless of your specific use of YAML, you get the benefit that a YAML parser and gener-
ator are included in the Ruby standard libraries and are fully supported by Active Record. Each
Active Record object contains a to_yaml method, which returns a String, which is the YAML
representation of the object. Collections also support the to_yaml method, and therefore, the
code to export your entire accounts table in YAML is straightforward:

Account.find(:all).to_yaml

The configuration options are minimal and are used to configure the output format of YAML.
In addition, model associations are not included in the default YAML output.

Because of the minimal configuration options, if you need to customize the actual data
output from to_yaml, it may be best write your own custom YAML output methods.

Importing YAML
The Ruby YAML parser has a transform method that converts the parsed YAML into Ruby objects.
This method can be used to convert the YAML generated by the to_yaml method back into
Active Record objects.

Given a file named accounts.yml, the contents of which are the YAML output by the com-
mand Account.find(:all).to_yaml, we can create a simple program to read in the file and
save the objects to the database. The relevant code follows:

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA184

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 184

accounts_yaml_string = File.read("accounts.yml")
accounts = YAML::parse(accounts_yaml_string).transform
accounts.each { |account| account.save }

Exporting CSV
Like YAML, CSV is a data type that is supported by Active Record fixtures, which are used for
unit, functional, and integration tests. In addition, CSV is a popular file type for importing or
exporting from legacy systems or providing information to users for importing into their
spreadsheet or other programs. Because the Ruby standard libraries contain CSV reading and
writing capabilities, output of Active Record objects as CSV data is straightforward.

In the following example code, we export all of our accounts to a CSV file. We utilize the
Account model’s content_columns method to give us just the content of the class; this excludes
the primary key, all columns ending in _id or _count, and the column used for single-table
inheritance. If, for instance, you do not wish to export only the content columns and you actu-
ally want all of the columns, you can replace the calls to content_columns with columns.

headers = Account.content_columns.collect { |column| column.human_name }
only_columns = Account.content_columns.collect { |column| column.name }
accounts = Account.find(:all)
outfile = File.open('csvoutput.csv', 'wb')
CSV::Writer.generate(outfile, ',') do |csv|
csv << headers
accounts.each do |account|
csv << account..attributes(:only => only_columns).values

end
end

■Tip While writing out your Active Record objects as CSV data is relatively straightforward, there is a useful
Active Record plug-in that augments your Active Record objects with a to_csv method. This plug-in makes
it even easier to export your model data as CSV and allows you to easily customize the output. You can find
out more about this plug-in, called Convertible to CSV at its web site: http://rubygreenblue.com/project/
convertible_to_csv.

Importing CSV
The CSV format is a very common format that is used in countless situations. These situations
may vary from initial or repeated batch imports of large data sets to providing a user with a way
to upload a small data set. Therefore, the method you might use to import data from CSV may
depend heavily on the nature and purpose of the CSV data.

Frankly, if you need to do a very large import of well formatted data into your database,
the best solution may not be to use Active Record at all. Rather, your database software may
have a mechanism to import CSV data directly. This will result in a much faster import, and if
you know the data is well formed, the benefits of using Active Record as an intermediary may
not be necessary.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA 185

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 185

Using your database mechanism for CSV importing aside, there are several benefits to
writing a program using Active Record to import your CSV data. You can use Active Record val-
idations to verify the validity of your CSV data, and either address the issues in your program
or exclude those records. In addition, if you know you need to do data manipulations, such
as concatenating and modifying fields in the CSV, it can be very effective to write a Ruby pro-
gram to do this import.

In the following code snippet, we read in a CSV file to import into our accounts data that
contains a first name and a last name column:

CSV::Reader.parse(File.open('accounts.csv', 'rb')) do |row|
Account.create(:last_name => row[0], :first_name => row[1])

end

If any one of the records that are being imported fail validations, it will not be created.
Our program could attempt to fix these errors and try again or just log these errors.

You’re on Your Way to Becoming a Legend
Throughout this chapter, we’ve tried to lay the groundwork for you on dealing with legacy
schema in your Active Record programs. Still, the real learning will come when you get into
your applications and start getting your hands dirty with the actual issues and problems asso-
ciated with your legacy systems.

When it comes down to it, working with legacy systems in Active Record is more about
making sound design decisions and choosing what to implement in Active Record (instead of
another language or application) than it is about learning specific syntax or configuration
options. Like many things in life, the more you do it, the better you will become at making the
right decisions. Before you know it, you’ll be a legendary Active Record developer, able to take
even the most insane of legacy schema and bend it to your will with nothing more than Ruby
code and your Active Record know-how and experience!

First, though, you’ve got to get out there in the real world and start playing around with
Active Record. With that in mind, in the next—and final—chapter, we will try to get you started
by giving you some final tips, hints, and tricks that we’ve learned in our Active Record experi-
ences out in the real world.

CHAPTER 7 ■ WORKING WITH LEGACY SCHEMA186

8474_ch07FINAL.qxd 8/25/07 9:14 AM Page 186

Active Record and the Real World

Throughout the previous chapters, we’ve covered just about everything Active Record has to
offer. We’ve talked about all the theory and design issues, walked you through as many exam-
ples as we could reasonably fit into a book of this size, and tried to show you all the tips and
tricks we know and use ourselves.

Still, as any experienced developer knows, what you find in a book is often quite different
than what you find in the real world of coding and problem solving. With that in mind, we put
together this last chapter as a starting point for you to address those unknown questions or
issues as you go out into the real world and move forward as an Active Record developer.

Exploring Active Record Source Code
When Kevin was a kid, he once got an OmniBot robot as a gift. The OmniBot was basically
a remote-controlled programmable robot with a built-in tape recorder; it was the size of
a small office trash can (it sort of looked like one too, in retrospect). The remote control could
be used to steer it and as a walkie-talkie system you could speak through. You could also
program steps and words for it to replay at any time (so it seemed like it had artificial intelli-
gence, though it really didn’t). In any case, OmniBots cost about $300—a small fortune in his
world at that time and more than his family spent in an entire week—so you can imagine that
it was quite a special gift! You can also probably guess that Kevin, being a young geek in train-
ing, had a blast with that thing and spent hours mapping out commands for it.

Even though it was a very expensive gift and Kevin knew he shouldn’t, he just couldn’t resist
tearing it apart to see how it really worked, what it was built from, and of course, if he could get it
back together and working after he had explored its guts! He fought and fought with his urge to
rip apart his precious OmniBot, but alas, the urge was too strong. Within about two weeks of get-
ting it, Kevin had removed every single screw, bolt, and nut he could. He explored all the circuits
and wires. But best of all, he somehow managed to successfully rebuild it using almost all of the
parts he had taken out (there were a few leftover screws and parts that it clearly didn’t need).

Looking back, Kevin was always doing stuff like that. Regardless of the cost or the conse-
quences, he just has to know how things work. We’re guessing that, as a fellow programmer,
you do, too. So while it’s not really a requirement to developing great Active Record programs,
knowing just where the Active Record source code is and how it really works is something we
think we should spend a little time on. This way you can rip the guts out and take a look when-
ever you want—just remember to put it all back together before your mom gets home!

187

C H A P T E R 8

■ ■ ■

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 187

Finding the Code
At the start of this book, we mentioned that Active Record is really nothing more than Ruby code.
This turns out to be a great fact for those of us who want to dive into the source code, because all
we need to know is where the files are and, of course, how to follow a Ruby program.

Active Record is distributed as a Ruby gem, so hopefully, it seems pretty obvious that its
source code is stored within your Ruby gems’ folder structure. The exact location of this folder
depends on where you have installed Ruby and, to a lesser extent, on what version of Ruby Gem
you are running. In most cases, though, once you’ve located your root Ruby directory (we’ll
refer to that location as YourRubyRoot in this chapter), the Active Record source files are found
in the following location:

YourRubyRoot\lib\ruby\gems\1.8\gems\activerecord-1.15.3\lib

■Note The 1.8 in the path refers to the specific version of Ruby gems we are running, and
activerecord-1.15.3 refers to the specific version of Active Record we have installed. These values
may vary slightly depending on the version you are running. Browsing the directory at the locations speci-
fied in the path should make the correct values obvious for your specific situation.

Following the Code Trail
Now that you know where all the Active Record source code is physically located, we can start
working our way through it. Since there’s only one Ruby file located in the lib directory, called
active_record.rb, that seems like a good place to start. Load active_record.rb into your favorite
editor, and let’s walk through some of the most interesting tidbits of code.

Walking Through active_record.rb
The first thing you should notice in active_record.rb is that Active Record requires the
Active Support library. Active Support was primarily built, as was Active Record, for use with
the Ruby on Rails framework, and according to its documentation, it “is a collection of various
utility classes and standard library extensions that were found useful for Rails.”

Probably the most important thing Active Support adds to Active Record is the inflection
support for pluralization of table names. There are, of course, a number of other things
Active Support adds, but going into detail about each is outside of the scope of this book.
However, we do recommend that you take some time to browse the Active Resource documen-
tation or source code. It can only help to improve your overall knowledge about how things
work within your Ruby and Active Record programs.

Beyond the Active Support requirement, the active_record.rb file really just loads the
various source files that make up the whole of the Active Record library. Many of these files are
self-explanatory, and the details of methods they contain are covered throughout various
parts of this book, so we won’t repeat that information here. However, there are a few key files
like base.rb, abstract_adapter.rb, and connection_specification.rb that do warrant a little
bit more detailed explanation, so let’s walk through those now.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD188

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 188

Walking Through base.rb
You’ve probably noticed by now that we’ve been directly referencing the base.rb file in almost
all of our examples throughout this book with a line like the following:

class Account < ActiveRecord::Base

We use the preceding syntax to define an Active Record model that directly maps to a table
within our database. That line basically says that our new class inherits from the Active Record
module’s base class. Before we break down that base class, though, let’s open the source file
and see what we find.

When you open the base.rb file, the first things you should notice are the dependencies
or requirements. Surprisingly, there are only four dependencies listed here: base64, yaml, set,
and active_record/deprecated_finders. Let’s briefly look at what each of these gives us.

base64: This library contains methods that are designed to handle base64 encoding and
decoding of binary data; base64 is the default representation most databases use for han-
dling binary data.

yaml: YAML stands for “yet another markup language” and is often used in configuration
files throughout Ruby. Active Record also allows you to set configuration values via YAML files.
Serialization and the to_yaml method also rely on the YAML library. We cover YAML in more
detail in Chapters 6 and 7.

set: The set library adds functionality to manage collections of unordered, unique values.
Its documentation bills it as “a hybrid of Array’s intuitive inter-operation facilities and
Hash’s fast lookup.”

active_record/deprecated_finders: This simply provides backward compatibility for
older, and now deprecated, Active Record finder methods. The current list of deprecated
finders follows:

• find_on_conditions: You should now use find(ids, :conditions => "").

• find_first: You should now use find(:first, . . .).

• find_all: You should now use find(:all, . . .).

Immediately following the requirements, a number of Active Record error and exception
classes are defined. We covered the details of these exceptions in Chapter 6, so we won’t go
into them again here. The most important thing to note about this section of the code is that
all the Active Record errors inherit from Ruby’s standard StandardError class, which itself
inherits from the Exception class.

Past the exception definitions, we find the Rdoc documentation that briefly outlines the
details of the ActiveRecord class. This information provides the base for the official Active Record
documentation and for much of this book. Of course, most things are only briefly explained in
the Rdoc (or there would be no need for this book). Still, reading through the documentation
there is always a good idea.

Moving on, we finally get to the definition of the Base class itself—this is where all the
action really starts to happen. We’ve covered many of the details of the methods listed here
throughout various parts of this book, so we won’t go into fine-grained detail again for these
either. Instead, we’ll just point out of the most interesting tidbits about the details and methods

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 189

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 189

in this class and leave it to you to do additional exploration as you see fit. Here’s our high-level
view of important features the Base class provides to all Active Record objects:

Event logging: Active Record supports detailed event logging and, by default, uses the
Log4r class. The specific logger to use is set through the cattr_accessor method. We
covered logging in detail in Chapter 6.

Configuration settings: One of the first things defined in the Base class are the various
class variables that store the Active Record configuration settings. Here, you can see all
the Active Record default assumptions and get a brief explanation of what each means.
We covered the details of overriding each of the configuration settings in Chapter 7.

Finder methods: Finder methods are probably the most used methods in Active Record
programs, so exploring these methods is highly recommended and educational. Of par-
ticular interest is the use of connection.select_all for the find_by_sql method (we’ll come
back to this point later when we review the private and protected methods of this file). We
covered the details of the find methods in numerous places throughout this book.

Other CRUD methods: The create, update, and delete methods have also been covered in
numerous spots throughout this book. Again, the interesting thing to note about the update
and delete methods is the fact that they all eventually boil down to connection.update or
connection.delete methods.

Guessing table names and keys: Here, you see just how Active Record attempts to guess
your table names and primary and foreign keys based on your Active Record class names.
This guessing relies heavily on the Active Support Inflector class. We covered the details
of picking proper table and key names and overriding the preferred defaults in Chapter 7.

Various methods: Just below the methods for guessing table and key names are a variety of
simple methods that add a lot of nice little features, such as the abilities to get a list of
columns from a table, check if a given table exists in the database, and sanitize SQL state-
ments (which, interestingly, just defers the sanitization to the connection.quote method).

Benchmarking: Benchmarking is important to any database application that expects to
have a significant number of statements executed throughout its life cycle. Here, you can
see that benchmarking really only occurs when the log level of the logger matches the
application’s log level. We cover benchmarking in detail in Chapter 6.

Scope: Handling scope is an interesting logic problem from a programming point of view,
so it’s well worth examining the source code to see just how Active Record implements
support for scoping. We cover the details of Active Record scope in Chapter 2.

Private and protected methods: Most of the public methods throughout the Base class
really just pass their values to the various private methods listed here, so this is where
a lot of the real Active Record code occurs. These methods include functionality that
builds the actual raw SQL that gets executed against your database. You can also see the
details of the method_missing method that is ultimately the true secret behind the magic
of Active Record. Here, you can also see that all finder methods are eventually molded into
find_by_sql calls (and, therefore, eventually execute a connection.select_all statement).

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD190

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 190

Public methods: We’ve covered all of these methods throughout the course of this book,
so there shouldn’t be any big surprises here. Some of the methods worth looking into
here include the destroy method (because of its direct use of the database connection),
the update_attribute method (because it’s overwritten by the validation module), and the
reload method (because it clears cache values for aggregations and associations before
reloading).

Walking Through abstract_adapter.rb
In the end, Active Record programs are all about communicating with a database, and to do
that, you need to start by establishing a connection to your database. Active Record accom-
plishes this connection through each unique database-specific connection adapter, and each
of those adapters follows the interface laid down in the ConnectionAdaptors module defined in
this abstract_adapter.rb file.

Probably the most important thing to note about this file is the requirement of connection_
specification, because that is where the real database connection is set up (we talk a little
more about this in the next file walk-through). Of course, each adapter has its own special set
of methods, rules, and logic that it adds to this outline, and for those details, you should refer
to the source code of your specific adapter choice (also located in the connection_adapters
folder).

Other things to note about the methods in this file include the support of methods to
determine the state of the connection as well as methods to tell your Active Record programs
what features the specific database supports (such as require_reloading? and prefetch_
primary_key?).

Walking Through connection_specification.rb
Active Record connections are ultimately achieved through calling the Base.establish_connection
method that is defined in this module. Each connection requires a set of configuration values
either passed as a Ruby hash variable or loaded through a YAML file in your Rails environment
(assuming you are using Active Record with the Ruby on Rails framework). We covered the
details of each adaptor’s configuration values in detail in Chapter 1.

Putting It All Back Together
By now, you should be an expert in everything Active Record, or at least have a very solid under-
standing of how it all works and where to look in the source code for more details as you need
them. We started this book attempting to make the point that the Active Record library is really
nothing more than Ruby code, and our exploration of the source has just reiterated that state-
ment. What’s more important to note, though, is that since it really is nothing more than Ruby
code, you can change and mold it as you see fit. You can play with it as much as you want until
you feel like you have a full grasp of how it all works.

If, in your coding or in playing around, you find that the library is not handling something
the way you would like it to, you can change it. And if you think others can benefit from that
change as well, you can submit it to the official distribution for inclusion and be a central part
of the future of Active Record. Incidentally, this leads us nicely to our next topic.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 191

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 191

The Future of Active Record
While it may seem like Active Record (and the related Ruby libraries) have appeared overnight
on the developer’s landscape, it’s actually taken years of thought and work by a variety of con-
tributors just to get where we are today. Still, it’s true; in the big picture, Active Record is just
a baby. It has a lot of room to evolve and luckily, being open source software, it has a lot of
interested parties working on it, so the future should be a bright one.

At the time of this writing, there are only a few new additions in the edge version of
Active Record slated to be a part of the next release of Active Record. We’ll talk about each
of these in just a minute.

■Note The latest Ruby on Rails–related libraries, such as Active Record, are referred to as “edge,” because
they are considered to be on the cutting edge of development. You can obtain edge versions of various libraries
with a Subversion client directly from rubyforge.org.

To be completely honest, though, Active Record does not necessarily have a roadmap of
new features that are slated to be included from one release to another. Active Record develop-
ment is more organic than that. It’s hand pruned by a small group of core developers and
contributed to by hundreds (if not thousands) of others from around the world who use it
for their day-to-day work. As such, like many open source applications, the future of Active
Record truly will be determined by the needs of its users like you.

The Keys to the Enterprise
As Active Record, Ruby, and the Ruby on Rails framework see more adoption in the marketplace,
it is clear that the direction of Active Record will tend toward more enterprise-level functional-
ity. However, the core team is committed to the very simple “getting real” methodology that
made Active Record everything it is today and have decided to tackle the big enterprise chal-
lenges in, hopefully, simple ways that solve the main problems for 80 percent of all uses.

One such modification is database caching. Because instantiating objects from rows in the
database can be expensive, many ORM frameworks implement some method of caching
the results return by the database. The ORM framework then watches whether any of the objects
it has cached have been modified, and if so, invalidates the cache.

Until now, Active Record has had no method of caching database results. Unfortunately,
the problem of caching is a tricky one, and in this case, the Rails core team decided to knock
some low-hanging fruit off the tree first, rather than implement a more complex object
caching methodology.

In the latest version of Active Record slated for release with Ruby on Rails 2.0, they’ve
implemented a simple cache that caches the results of each SQL query. If the exact query
is called, and there have been no updates or inserts since the results were cached, then
the cached results are returned. However, if there have been any updates or inserts (with
no attention paid to the actual records updated or inserted) the cache is invalidated, and
the query is performed again. While it’s not a sophisticated caching strategy for queries
such as you might find in an enterprise database management system like Oracle, it’s better

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD192

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 192

than nothing. And it is one example of the enterprise features being added to Active Record,
as well as an excellent example of the mindset of the core team implementing those fea-
tures. Finally, this example shows that some Active Record solutions are still being actively
sought out.

Little by Little, Big Things Will Happen
While no one is ruling out the possibility of major changes to Active Record, the authors of
Rails and Active Record have said that many of the upcoming changes to the framework will
be minor changes intended to make working with Active Record easier and more enjoyable.

One such upcoming change is the integration of the ideas contained in plug-in that was
called Sexy Migrations. Sexy migrations are a new shorthand form of migration.

■Note We covered migrations in detail in Chapter 3.

Previously, to create a table called products with several fields, you might do something
like the following:

create_table "products" do |t|
t.column "shop_id", :integer
t.column "creator_id", :integer
t.column "name", :string, :default => "Untitled"
t.column "value", :string, :default => "Untitled"
t.column "created_at", :datetime
t.column "updated_at", :datetime

end

With the new migrations shorthand, the preceding table-creation code can now be
expressed as follows:

create_table :products do |t|
t.integer :shop_id, :creator_id
t.string :name, :value, :default => "Untitled"
t.timestamps

end

Two Steps Forward, One Step Back
In addition to taking ideas that originally appeared in plug-ins to Active Record and integrat-
ing them into it, the core team has also indicated that some features will be removed from
the core of Active Record and instead be available only as plug-ins. The reasons for this are
being explained as a result of various features being deemed outside the scope of the primary
intention of Active Record or of features not working well enough to be included in the core at
this time.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 193

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 193

Pagination, which is basically the process of displaying or working through a data result set
in small chunks (rather than all at once), is one example of a feature expected to be removed and
made available only via a plug-in. Actually, pagination isn’t really a part of Active Record even right
now; it’s a part of the Action Controller library that only appears to be a part of the Active Record
feature set. This is possibly part of the issue with the current pagination implementation that
many developers have. In any case, many of the new pagination plug-ins functionally put their
feature set as a part of Active Record, and pagination is, indeed, better suited in Active Record.
However, no pagination is expected to be included directly in Active Record.

A World of Resources
Interestingly enough, a big part of the future of Active Record may not be Active Record at all
but another component of Ruby on Rails called Active Resource. Active Resource exposes a Rails
application, and therefore Active Record models, to the outside world via RESTful interfaces.

■Note In case you’re not familiar with web service terminology, Representation State Transfer (REST) is
a wide-sweeping term used to define an approach to distributed computing. There are currently a few camps
of thought, which are often in heated debate, on what a system must support to truly be considered a REST
system (or RESTful), but most people agree that, at the very least, a REST system involves at least two serv-
ices exchanging data in some agreed-upon format. For example, the World Wide Web itself is considered to
be a REST-based system. There are many great books on REST and web services available, including a short
PDF written by one of this book’s authors, Kevin Marshall, called “Web Services with Ruby on Rails;” it’s
available at http://www.oreilly.com/catalog/websor/.

During his keynote address at RailsConf 2006, DHH revealed that Ruby on Rails would
include full support for REST and would encourage RESTful application development. Since
that time, REST support has been growing rapidly, and the number of developers implement-
ing RESTful applications has grown dramatically.

With Rails 2.0, REST will become the default application structure, unless otherwise
specified. This means that, by default, an application will have a remote API built in, and the
application will be exposed to remote access. The client-side library for this API access is
Active Resource. A developer programming with Active Resource can program with local code,
operating on remote resources in a syntax that is nearly identical to that of Active Record.

Like Active Record, Active Resource is also completely functional outside of the Ruby on
Rails framework. Additionally, because Active Resource is merely a client-side implementation
of the server-side API, RESTful clients can be implemented in pretty much any language.
Alternate client libraries have already been created for JavaScript and Adobe Flex. Therefore,
Active Resource and REST open up a new avenue for the integration of disparate or legacy sys-
tems with Rails or Active Record applications.

It should be noted though that, even within a RESTful system, it’s likely that code will, at
some point, need to access data stored within a database. So, while Active Resource (and web
services as a whole) have been gaining a lot of traction as of late, they are not so much meant
to replace libraries such as Active Record as to complement them (and maybe help to abstract
the complexities of data stores a bit more).

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD194

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 194

Active Record on Its Own
As we’ve attempted to communicate throughout this book, Active Record is entirely functional
outside of the Ruby on Rails framework for which it was created. As such, other frameworks
have also started to use Active Record as their database ORM layer. Two such examples are
Camping and Merb:

• Camping, a microframework, describes itself as a “little white blood cell in the vein of
Rails” and was written and is maintained by “_why the lucky stiff”. For more informa-
tion about Camping, visit http://code.whytheluckystiff.net/camping.

• Merb, which is Mongrel plus Erb, is a small, fast web development framework written
by Ezra Zygmuntowicz that is meant to complement Rails. For more information about
Merb, visit http://rubyforge.org/projects/merb.

The needs and stresses that these and other frameworks put on Active Record continue to
bring enhancements to Active Record. Merb, for instance, has provided insight and solutions
to concurrency in Active Record. The benefits to Active Record from being used in new situa-
tions outside of Rails such as these are great. We also believe that these uses help to prove that
Active Record is already a rich, dynamic, and robust ORM library that continues to get better!

Adding Your Own Two Cents
As we mentioned at the start of this section, the future of Active Record is really up to those of
us (including you now) who use it day in and day out. If there’s a feature you think is worth
adding, or a problem you’ve hit that Active Record doesn’t already address as you would like it
to, you can try to get your solution added to the library source. If contributing to the develop-
ment of Active Record sounds interesting to you, there are several resources for you to get
started with:

http://groups.google.com/group/rubyonrails-core is the discussion forum for the core
development of Active Record and the rest of the Ruby on Rails framework.

http://rubyforge.org/projects/active record is the location to download the latest
Active Record release, as well as past releases (or you can install via the gem system out-
lined in Chapter 1).

http://dev.rubyonrails.org is the main web site for Active Record and Ruby on Rails
development. Hosted within Trac, this site includes documentation for how to check out
the latest version using SVN, as well as the bug and issue database.

As you can probably guess by now, we’re big fans of Active Record, and we hope that we’ve
helped to make you a big fan as well. Still, we wouldn’t feel as if we were being complete, or
totally honest, if we didn’t acknowledge that Active Record doesn’t do everything. It’s not per-
fect for every situation, and there are alternatives. So before we can wrap up our coverage, we
feel compelled to mention at least a few alternatives to Active Record you should know about.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 195

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 195

Alternatives to Active Record
If there’s one thing you can count on in the programming world, it’s that any successful code
implementation will be copied. Alternatives will emerge. Everyone wants to add their two
cents and mold it to their specific needs. Sometimes these alternatives even turn out to be
a better fit for specific tasks.

Active Record is no exception. In fact, there are a number of Ruby database-access library
alternatives that you can choose from. Of course, we think Active Record is the cream of this
crop (for the many reasons that we’ve outlined throughout this book), but perhaps one or two
of these will be a better fit for your specific needs, and it’s at least good to know you have options.
So let’s take a quick look at some of the more popular alternatives to Active Record and some
of the pros and cons of each.

First, we feel compelled to point out the single biggest con, in our opinion, to each of the
libraries mentioned below and, by contrast, the single biggest pro to the Active Record library—
the built-in integration with the Ruby on Rails framework. If you’re only planning on working
with Rails applications, there is no need to bother with any of the libraries in the following sec-
tions at this time.

Also, it’s important to note that the pros and cons we mention here are just our opinions
when comparing each library to Active Record for our own applications. It is not our intention
to demean or take anything away from each library. Again, each of these libraries could be
a perfect choice for your application needs.

DBI
DBI stands for Database Interface and is actually at the core or behind the scenes of many
of the other libraries mentioned in the following sections (it’s also one of the backbones of
Active Record). This description comes directly from its documentation, “The DBI package is
a vendor-independent interface for accessing databases. It’s similar, but not identical to, Perl’s
DBI module.”

The official DBI site is http://ruby-dbi.rubyforge.org and installation files can be obtained
at http://rubyforge.org/projects/ruby-dbi.

The Pros of DBI
The biggest advantage to the Ruby DBI package, as the documentation outlines, is that for the
most part it’s database independent. You only need to learn a couple of classes (DatabaseHandle
and StatementHandle), and the majority of database-specific details are abstracted from your
point of view.

In fact, viewing the source code reveals that many of the Active Record adaptors actually
rely on DBI classes and logic.

The Cons of DBI
The first disadvantage to the DBI package is that, you are required to install the specific driver
for each database that you intend to work with. This probably isn’t a deal breaker, but it does
mean at least a little extra work in switching from one database to another in the background.

The second biggest drawback to using DBI directly, as we see it, is that even though your
database communication has been abstracted, your code really has not. It is not a true ORM

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD196

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 196

library. Your database interaction is often embedded throughout various points of your code.
You also have to do a lot of the legwork yourself, oftentimes resorting to pure SQL statements.

A DBI Example
The following example quickly shows some of the basic CRUD operations using DBI. For more
information, examples, and options for implementing DBI, you should check the library’s offi-
cial web site.

require "dbi"

begin

connect to DB
dbiexamp = DBI.connect("DBI:Mysql:test:localhost","root","rootpass")
add a record
added = dbiexamp.do("insert into account(account_name) values('Kevin')")
puts "added #{added} records" # => added 1 records

update the record
dbiexamp.do("update account set account_name = 'Kevin Marshall' where " +

"account_name = 'Kevin'")

records = dbiexamp.execute("select * from account")
records.fetch do |row|
puts "found account for #{row["account_name"]}"

end

delete a record
dbiexamp.do("delete account where account_name = 'Kevin Marshall'")

rescue DBI::DatabaseError => error
puts "Error: #{error}"

ensure
dbiexamp.disconnect if dbiexamp

end

As you can see, all the basic CRUD operations are supported and easy enough to achieve.
They just require a little more typing than their Active Record alternatives; there are no built-
in helpers to abstract the SQL language, and you need to handle the opening and closing of
your connections directly. Of course, many old-school developers coming from languages like
Perl or Java are used to doing this type of work.

Og
Og is short for ObjectGraph and is probably the most full-featured Ruby ORM library alterna-
tive to Active Record available today. It was designed for handling the model section of the
Nitro framework (a Ruby framework alternative to Ruby on Rails).

Og takes a slightly different approach to the ORM design pattern than Active Record. With
Active Record, you define your database schema first and then Active Record creates the Ruby

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 197

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 197

objects from that information. With Og, you define the Ruby objects, and Og takes care of
creating the database schema for you.

You can learn more about Og (and the Nitro framework) and access its official documen-
tation from its official web site, http://www.nitroproject.org.

The Pros of Og
Obviously, the biggest pro to Og is its integration with the Nitro framework. If you are looking
for an alternative to the Ruby on Rails framework but don’t want to give up working with Ruby
or an ORM, Nitro is where you should look.

Another big advantage to Og is its reliance on Ruby objects to glean the database struc-
ture rather than the other way around (as Active Record does). If your background is that of
a programmer more than of a database person, this probably feels more natural to you.

The use of the Og library is very similar to that of Active Record, which means the basic
use and concepts from a coder’s point of view are almost the same.

The Cons of Og
Honestly, from a top-level view, there aren’t a lot of cons to the Og library, since it’s so similar
to that of Active Record (outside of the obvious fact that it’s not integrated with the Ruby on
Rails framework). If you are coming from a traditional database-driven application environ-
ment or are used to working with languages like Perl, the object approach might be a little
confusing, but once you get over that hurdle, Og really is pretty simple and straightforward.

Also, to our knowledge, to date, documentation and publications covering Og are limited,
and the Nitro framework has not gained quite the traction that the Ruby on Rails framework has.

An Og Example
The following example quickly shows some of the basic CRUD operations using Og. For more
information, examples, and options for implementing Og, should check the library’s official
web site.

require 'og'

class Account
property :account_name, String

end

establish connection and create any tables that are not yet there.
Og.setup({ :destroy => false,

:store => :mysql,
:user => "root",
:password => "rootpass",
:name => "exampledb" })

test = Account.new
test.account_name = "Kevin"
test.save! # => saves the record into the account table

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD198

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 198

accs = Account.first
puts accs.account_name # => "Kevin"

test.account_name = "Kevin Marshall"
test.save!

puts test.account_username # => Kevin Marshall
test.delete! # => delete the record

ActiveRelation
ActiveRelation is a new ORM library that has been getting some attention recently. It was
designed to build on Active Record concepts while adding support for some features that were
intentionally left out of the Active Record library (like support for multicolumn primary keys,
auto-detection of foreign keys, and eloquent handling of multiple-table joins).

Additional information and installation details can be found at http://rubyforge.org/
projects/active-relation.

The Pros of ActiveRelation
Additional features such as support of multicolumn primary keys and auto-detection of foreign
keys, while keeping the core functionality and beauty of Active Record, makes ActiveRelation
very promising. Its support for handling more complex joins in a user-friendly way also intrigues
us. If this library can really deliver on just these benefits (we have not extensively tested it),
this is a library worth keeping your eyes on in the near future.

The Cons of ActiveRelation
The glaring problem with this library at the time of this writing was the lack of documentation,
official support, or even word-of-mouth buzz. While we find the list of issues it’s attempting to
tackle inspiring, the fact that ActiveRelation has not seen more adoption probably shows the
lack of need for many of these problems to actually be solved in most Ruby on Rails applications
(these are issues that are generally found only in legacy systems, and most Rails applications are
not currently legacy conversions).

Because of its lack of widespread use, only a couple of database adapters have been updated
with support. If you wanted to start using this library with something like SQL Server, you would
first need to update the adapter and library yourself.

The syntax for ActiveRelation, aside from configuration, if nearly identical to that of
Active Record, so it should be relatively familiar to anyone reading this book.

Database-Specific Libraries
Though the concepts are generally the same, every database program is unique. They all have
their own ways of allowing and handling connections. They all support a variety or version of
SQL and different database features (like sequences, triggers, and stored procedures). So as
you might expect, each database also has its own unique Ruby library that you can use for
data access.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 199

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 199

Check with your database vendor or the database community for details on existing Ruby
libraries and Ruby support. Searching RubyForge.org is also a good place to find database-specific
Ruby libraries and information.

The Pros of Database-Specific Libraries
Since these libraries are tightly coupled with a specific database implementation, they often
provide the most complete support of the given database’s feature set. If you know your appli-
cation will only ever be connecting to a specific type and version of a database application,
this approach will give you the most direct control from within your Ruby code.

The Cons of Database-Specific Libraries
Today’s development world is full of rapid changes and updates. Using a database-specific
library not only locks you into that database store, it generally locks you into a specific version
of that database. For example, there are different Ruby libraries for working with different ver-
sions of Oracle (oracle for older version of Oracle, oci8 for Oracle 8i, and ruby9i for Oracle 9i).

This basically means that every time you update your database version, or switch to
a completely new database store, you will, at a minimum, need to update your database-
specific library (and rewrite large sections of your application code, at a maximum). Using
database-specific libraries also has a lot of the same cons that we mentioned with using the
DBI library, the most important of which is the coupling of your code and SQL statements.

Active Resource
For a few years now, web services have been a hot topic. It’s been only recently, though, that
many sites and services have started to actually implement web services as a core part of their
applications and feature sets. The Ruby on Rails framework is no exception. DHH has been
hard at work for the past year fleshing out the details of the Active Resource library, which is,
in many ways, simply a web services take on the Active Record library.

While it’s not directly intended to replace Active Record, in some situations, you may be
able to use it as an alternative to Active Record. For more information on Active Resource, you
should check out the official Ruby on Rails web site at http://www.rubyonrails.org.

The Pros of Active Resource
Implementation of true RESTful services is what has everyone talking about Active Resource
right now, but on a more general level, it’s the idea of a distributed data store, accessible
through web service standards, that makes Active Resource an interesting potential alternative
to Active Record.

The web service approach also allows you to remove the knowledge and support of
a database from your core duties and focus on nothing more than your application code and
the interaction with the web service.

The Cons of Active Resource
Eventually, data has to be stored—whether in a database, flat text files, or RAM, it’s got to end
up somewhere. So even behind a web service wall, there is likely a database that requires
knowledge and support. Also, relying on web services means trusting that the service will continue

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD200

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 200

to be available to your application at all times and will continue to support the features you
have implemented. Basically, it means relinquishing control of and trusting your data to
a third party, and that’s something that most real-world programs have a tough time doing.

Even More Alternatives
We’ve already mentioned a handful of alternatives to Active Record, and as you are probably
starting to notice, there is no shortage of them! In fact, there are so many that mentioning
them all is outside of the scope of this book. So instead, we’ll just mention some quick points
on a handful more of the next best options we could find:

Kansas: Kansas is an older ORM library that sits on top of DBI. Essentially, it’s designed to
add ORM functionality to the DBI library without large amounts of overhead. You can
learn more about Kansas at http://enigo.com/projects/kansas.

Criteria: Criteria is a little-known library designed to abstract the querying of various data
sets. The idea is that regardless of what your data store is (a database, a flat file, or an array
of Ruby objects for example) you can perform the same query without having to alter your
code. You can learn more about Criteria at http://mephle.org/Criteria.

Lafcadio: Lafcadio is another ORM designed specifically for use with the MySQL database.
You can learn more about Lafcadio at http://lafcadio.rubyforge.org.

LDAP and flat files: LDAP stands for Lightweight Directory Access Protocol, and while there
are other directory services available, LDAP is the most commonly used one today. Basically,
LDAP allows you to search directories like SQL allows you to search databases. As you can
imagine, there are a lot of design issues that go into building a LDAP application, all of which
are out of scope for this book. However, it should be noted that there are many times when
using LDAP may be a smarter choice than Active Record for your application (if you are build-
ing a contacts application to run on your local computer for example). For more information
about the Ruby LDAP library, you should visit http://ruby-ldap.sourceforge.net.

Common Active Record Questions and Answers
If you take a quick browse through the computer section at just about any book store, you’ll
probably notice a plethora of cookbooks or recipe books. There’s a good reason for that: the
real world of programming is all about problem solving and answering questions. A lot of
times, you know exactly what you want to do, and you just want a quick answer on how to get
it done without having to read an entire book or learn all the ins and outs.

So with that in mind, we’ve compiled this last section to provide quick answers to common
problems. We’ve seen most of these questions mentioned on various forums and blogs or had
them ourselves when we were starting out with Active Record.

How Do I Use Multiple Databases with Active Record?
It is possible to use Active Record seamlessly across multiple databases. This can be useful in
many scenarios, from performing database maintenance and migrations to application inte-
grations where separate models are stored in separate databases.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 201

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 201

When working with multiple databases (and really when working with a single database
as well), it can be handy to store your connection parameters in a YAML configuration file. For
this example, the file will be called database.yml, but you can name it whatever you want. The
file should look something like this:

database1:
adapter: mysql
host: localhost
username: myuser
password: mypass
database: db1

database2:
adapter: mysql
host: remote.host
username: youruser
password: yourpass
database: db2

With the preceding configuration file in hand, we can now use it to individually configure
our Active Record models to talk to the separate databases. We will first create a separate
Active Record class that our real Active Record classes will extend, which will make our code
cleaner and easier to maintain:

require "rubygems"
require "activerecord"

@config = YAML.load_file(File.join(File.dirname(__FILE__), 'database.yml'))

class LocalDatabase < ActiveRecord::Base
establish_connection @config['database1']

end

class RemoteDatabase < ActiveRecord::Base
establish_connection @config['database2']

end

The Active Record classes LocalDatabase and RemoteDatabase can now be used to indicate
which database each particular Active Record class uses. In this example, you have a remote
database where your customers are stored, and a local database stores the users who belong
to those customers. In addition, the local database also hosts a table containing the e-mail
addresses of the users.

class Customer < RemoteDatabase
has_many :users

end

class User < LocalDatabase
belongs_to :customer

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD202

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 202

has_on :email
end

class Email < LocalDatabase
belongs_to :user

end

You can now use the Customer, User, and Email Active Record classes normally, within the
limitations of your database server.

■Caution In the first example, our databases are stored on different database servers. The ability to cor-
rectly interact with multiple servers varies among the different database servers. For instance, MySQL can
make table joins across different databases only if they run on the same server. However, Oracle can make
table joins across different servers.

In the first example of working with multiple databases, the Active Record models are
using different models on each database. However, if you wanted to perform a migration of
similar or identical models between two databases, it would be useful to put each of your
classes inside of a module. For example, assume you have User and Email databases on both
servers and you wish to copy a user from one database to the other:

Module LocalDb
class User < LocalDatabase
belongs_to :customer
has_on :email

end

class Email < LocalDatabase
belongs_to :user

end
end

Module RemoteDb
class User < RemoteDatabase
belongs_to :customer
has_on :email

end

class Email < RemoteDatabase
belongs_to :user

end
end

You can then reference the remote User model with RemoteDb::User and the local User
model with LocalDb::User.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 203

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 203

user = RemoteDb::User.find_by_name('Chad Pytel', :include => [:email], :limit => 1)
new_user = LocalDb::User.new user.attributes
new_user.email = LocalDb::Email.new user.email.attributes
new_user.save

How Do I Handle Internationalization and Localization?
Active Record does not include default support for internationalization or localization. The
default validation error messages, for example, are all in English, regardless of your or your users’
system language. Therefore, there are several things to consider to ensure that your Active Record
program can handle internationalization.

First, if you have an international requirement, you will very likely want to make sure that
your database is storing all characters with the UTF-8 character set. The mechanism for doing
this may vary depending on your specific database. On most database servers, the character
set can be specified at the database server, database, and table levels.

For example, to ensure that a MySQL database table for your Account model has default
character set of UTF-8, you would use the following create_table statement:

create_table(:accounts, :options => 'DEFAULT CHARSET=utf8') do |t|
t.column :first_name, :string
t.column :last_name, :string
t.column :email, :string

end

Additionally, there are problems with the String class in Ruby 1.8, as it does not support
Unicode characters, except in regular expressions. These problems are present in any String
method that expects each character of a string to be a single byte, such as String#count,
String#slice, and so on. Fortunately, Active Support includes a module called Multibyte,
which adds a chars accessor to the String class, on which you can safely perform these opera-
tions on multibyte (Unicode) strings. Therefore, instead of calling "hello".slice, you can
safely call "hello".chars.slice. For more information about ActiveSupport::Multibyte, read
the API documents for the chars method at

http://api.rubyonrails.org/classes/ActiveSupport/CoreExtensions/String/
Unicode.html#M000417

■Note The authors of Ruby have said that Ruby will get full Unicode support in Ruby 1.9 and 2.0, so
hopefully, internationalization will be less of a problem.

Finally, it is likely necessary to provide translations for the messages displayed to users in
your programs. There are several plug-ins available to assist with internationalization and local-
ization. One of the simplest is the Localization plug-in, written by Thomas Fuchs. For more
information about this plug-in, visit http://mir.aculo.us/2005/10/30/localization-plugin.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD204

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 204

How Do I Use Composite Primary Keys?
Because Active Record is opinionated software, it includes no support for using composite primary
keys. Even if, like the Active Record developers, you believe that composite primary keys are
generally unnecessary, many legacy database schemas may use composite primary keys.
Fortunately, there is an Active Record extension that adds composite primary key support. You
can download and find documentation on this plug-in at http://compositekeys.rubyforge.org.

How Do I Use GUID/UUID Primary Keys?
Active Record not only uses sequential, integer primary keys by default, but contains no built-
in support for any other type of primary key. Fortunately, it is relatively straightforward to
override the default primary key behavior of Active Record to use nonsequential, noninteger
primary keys.

There are actually two different methods of overriding Active Record to support Univer-
sally Unique Identifier (UUID) primary keys: including the UUID functionality in a module
and using an abstract Base class. For completeness, let’s run through both ways of implement-
ing this functionality.

Regardless of which method you use to implement this functionality, you will need to
generate a UUID to be used as the primary key. You can do this with the UUIDTools library,
which is available via the Ruby Gems system. Install this gem with

gem install uuidtools

You can now use the UUIDTools library in Active Record by including the following lines:

require 'rubygems'
require 'uuidtools'

■Note UUIDTools is written by Bob Aman. Documentation can be found online at http://sporkmonger.com/
projects/uuidtools.

To use a module to implement this functionality, define the module that provides
a before_create method:

module UUIDKeys
def before_create
self.id = UUID.timestamp_create().to_s

end
end

Next, in your ActiveRecord class, include the module:

class User < ActiveRecord::Base
include UUIDKeys
your additional model code

end

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 205

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 205

The before_create method is a callback supported by Active Record that is called before
the object is actually persisted to the database. As you can see, we are explicitly setting the ID
of the object. Then, because our object already has a value in the id attribute, Active Record
will not attempt to generate a new one.

The second way to implement this functionality is by using an abstract Base class. This
abstract class will provide the same functionality as the previous module, by providing
a before_create method:

class UUIDKeyClass < ActiveRecord::Base
self.abstract_class = true

def before_create
self.id = UUID.timestamp_create().to_s

end
end

Next, rather than having your Active Record class extend ActiveRecord::Base, your class
will extend the class UUIDKeyClass:

class User < UUIDKeyClass
your additional model code

end

Can I Use Active Record in a Multithreaded Program?
Active Record can work inside of a multithreaded program. However, with all the Active Record
adapters except those for PostgreSQL and Oracle, deadlocks can occur, because their underly-
ing APIs do not use nonblocking I/O.

How Do I Ensure Proper Handling of Decimal Numbers?
Historically, Active Record, like many libraries, has had issues with ensuring that decimal val-
ues, such as currency, are handled correctly. However, as of Active Record 1.15, the BigDecimal
class is supported for columns of type :decimal. Ruby’s BigDecimal class provides arbitrary-
precision floating-point arithmetic.

What Database Locking Mechanisms Does Active Record Support?
While Active Record supports its own optimistic and pessimistic record-level locking, there is
no built-in support for table level locking. Fortunately, it is relatively straightforward to add
this functionality. First, create the table locking module:

module TableLocking
def lock_table(options = {})
sql = "LOCK TABLES #{table_name}"
sql += ' WRITE' if options[:write]
sql += ' READ' if options[:read]
execute sql

end

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD206

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 206

def unlock_table
execute "UNLOCK TABLES"

end
end

Next, in your Active Record class, include the module:

class User < ActiveRecord::Base
include TableLocking
your additional model code

end

With the module included in your class, you can now lock and unlock the table at will for
read access, write access, or both, as in the following example:

User.lock_table(:read => true, :write => true)
User.delete(1)
User.unlock_table

Does Active Record Support Prepared Statements?
Because of the dynamic nature of Active Record, it does not support prepared statements, and
while this feature may be added in the future, it is currently not possible.

How Do I Select a Random Record from the Database?
This is a common problem, with a number of mediocre solutions. The most obvious solution
follows:

random_record = Model.find(:all)[rand(Model.count)]

Because every single record is instantiated, this method is the incorrect and extremely
inefficient method, unless the number of records is incredibly small.

You may be tempted to use the following solution:

random_record = Model.find(rand(Model.count)+1)

Because you cannot guarantee that all IDs are present in the database (there may be gaps
caused by deleting records, for example), this is an incorrect solution. The best solution, which
doesn’t rely on database-specific functionality, is to select an ID less than a random number
and limited to one result.

random_record = Model.find(:first, :conditions => ["id < ?", Model.maximum('id')])

There is one deficiency in the preceding code—if large sections of the database are
deleted, there will be large gaps in the record IDs, so some records are less likely to be selected
than others. If a more perfectly random selection method is important to you, you can solve
this problem by creating a separate index column in your model that can be reindexed every
once in a while, to remove gaps.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 207

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 207

How Do I Model X with Active Record?
While each application may have its own data model needs, there are common patterns that
will emerge once you start to use Active Record for your application. Also, if you are familiar
with other ORM libraries, it may be helpful to see how data models with which you may be
familiar are built using Active Record. Some common data models and explanations of how
they would be coded follow in Listings 8-1 to 8-7.

Listing 8-1. Customers and employees

class Company < ActiveRecord::Base
has_many :employees

end

class Employee < ActiveRecord::Base
belongs_to :company

end

Listing 8-2. E-commerce

class Category < ActiveRecord::Base
has_many :products

end

class Product < ActiveRecord::Base
belongs_to :category

end

class Order < ActiveRecord::Base
has_many :line_items

end

class LineItem < ActiveRecord::Base
belongs_to :product
belongs_to :order

end

Listing 8-3. Role-Based Access Control

class User < ActiveRecord::Base
has_and_belongs_to_many :roles

end

class Roles < ActiveRecord::Base
has_and_belongs_to_many :users
has_and_belongs_to_many :permissions

end

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD208

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 208

class Permission < ActiveRecord::Base
has_and_belongs_to_many :roles

end

Listing 8-4. Surveys / Questionnaires / Quizzes

class Survey < ActiveRecord::Base
has_many :questions
has_many :responses

end

class Question < ActiveRecord::Base
belongs_to :survey
has_many :choices

end

class Choice < ActiveRecord::Base
belongs_to :question

end

class Response < ActiveRecord::Base
belongs_to :survey
has_many :response_choices

end

class ResponseChoice < ActiveRecord::Base
belongs_to :response
belongs_to :question
belongs_to :choice

end

Listing 8-5. Hierarchical Content Management

class Page < ActiveRecord::Base
acts_as_tree
acts_as_list :scope => :parent

end

Listing 8-6. Blogs

class Post < ActiveRecord::Base
has_many :comments, :dependent => true, :order => "created_at ASC"

end

class Comment < ActiveRecord::Base
belongs_to :post

end

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 209

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 209

Listing 8-7. Social Networking (Friends)

class Users < ActiveRecord::Base
has_many :friends, :through => :relationships
has_many :relationships

end

class Relationship < ActiveRecord::Base
belongs_to :user
belongs_to :friend, :class => User

end

What Support Does Active Record Have for Database Foreign
Keys?
The short answer is that Active Record does not include any support for database foreign keys.
As opinionated software, Active Record takes the view that foreign key management should be
managed at the ORM level, without any specific support for SQL foreign keys.

That said, you could always just use the execute method in your migrations to include
raw SQL to create and modify your foreign key constraints.

In addition, several enterprising developers have made Active Record plug-ins that add
various levels of foreign key support to Active Record. Plug-ins providing foreign key support
essentially come in two flavors:

• Augmenting your existing relationship ID columns with foreign keys

• Actually establishing relationships based on foreign keys for you

If you are interested in using foreign keys with Active Record in either of these ways, there
are a few resources you should check out. RedHill Consulting, has made several plug-ins related
to foreign key support; you can find more about them at http://www.redhillonrails.org.
Additionally, for magic support for foreign keys (and much more) explore Dr. Nic’s Magic
Models plug-in at http://magicmodels.rubyforge.org.

How Do I Properly Use find_by_sql?
The find_by_sql method simply accepts raw SQL, so you can essentially do any type of select
statement for which you can generate the SQL code.

■Note We cover the find_by_sql method in detail in Chapter 7 as a part of our discussion on working
with legacy database systems.

Honestly, if you find yourself using find_by_sql often for anything outside of legacy systems,
you should probably take a step back and reevaluate what you are trying to accomplish. Using the
normal find method and its various options, you should be able to accomplish many very com-
plex database tasks. By relying on straight SQL to perform queries, you are circumventing some of

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD210

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 210

the benefits of using Active Record, such as database abstraction. In addition, by not relying on
straight SQL to perform your tasks, your code will be less brittle as your models change and much
easier to maintain (for yourself and other Active Record developers).

How Do I Ensure that All My Records Are Valid?
Perhaps you are importing a large data set from another database to initially set up your
application or adding new validations to an existing model, and you need to identify existing
records that don’t pass the new validations. Either way, it can be very handy to be able to ensure
that all of your existing records are valid. The following script is a simple rake task that will val-
idate all of your models; it is written specifically to be used within a Ruby on Rails application
(another version modified to work with any model and YAML database configuration file will
follow):

file: validate_models.rake
task: rake db:validate_models
namespace :db do
desc "Run model validations on all model records in database"
task :validate_models => :environment do
puts "-- records - model --"
Dir.glob(RAILS_ROOT + '/app/models/**/*.rb').each { |file| require file }
Object.subclasses_of(ActiveRecord::Base).select { |c|

c.base_class == c}.sort_by(&:name).each do |klass|
total = klass.count
printf "%10d - %s\n", total, klass.name
chunk_size = 1000
(total / chunk_size + 1).times do |i|
chunk = klass.find(:all, :offset => (i * chunk_size), :limit => chunk_size)
chunk.reject(&:valid?).each do |record|
puts "#{record.class}: id=#{record.id}"
p record.errors.full_messages
puts

end rescue nil
end

end
end

end

■Note Special thanks go to Josh Susser (http://blog.hasmanythrough.com) for the preceding code.

The following script is a modification of the previous program that works with any
Active Record models, even outside of a Ruby on Rails program. It will work on a Ruby on Rails
program as well, given the correct arguments. It assumes that you have a YAML file to hold the
database connection parameters, with the following format:

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 211

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 211

database:
adapter: mysql
host: localhost
username: myuser
password: mypass
database: db1

The first argument is the path to the YAML configuration file; the second is the configura-
tion root, in this case, database; and the remaining arguments are the paths to one or more
Active Record models you’d like to validate:

require "rubygems"
require_gem "activerecord"

config_file = ARGV.shift
environment = ARGV.shift

@config = YAML.load_file(config_file)
ARGV.each { |file| puts file; require file }

Object.subclasses_of(ActiveRecord::Base).select { |c|
c.base_class == c}.sort_by(&:name).each do |klass|
klass.establish_connection @config[environment]
total = klass.count
printf "%10d - %s\n", total, klass.name
chunk_size = 1000
(total / chunk_size + 1).times do |i|
chunk = klass.find(:all, :offset => (i * chunk_size), :limit => chunk_size)
chunk.reject(&:valid?).each do |record|
puts "#{record.class}: id=#{record.id}"
p record.errors.full_messages
puts

end
end rescue nil

end

Can I Use the Same Name for a Database Column and an Active
Record Model?
No, you cannot have a column in your database with the same name as an Active Record model
or database table, as it will cause errors. If the column is a reference (foreign key) to another
model, Active Record conventions dictate it should be the name of the table followed by _id,
but naming it anything other than the actual name of the table will avoid conflicts. For more
information about Active Record naming conventions, see Chapter 3.

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD212

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 212

Does Active Record Support enum Column Types?
No, Active Record currently has no support for this database-specific feature. However, there
is a way to create a read-only accessor to get at this data in your model, for use with a legacy
database.

Given a table with the following enum column

`number` enum('ONE','TWO','THREE') NOT NULL default 'ONE'

use the following model with a custom accessor using the attributes_before_type_cast
method to get the column value:

class Klass < ActiveRecord::Base
def number
attr = attributes_before_type_cast
"#{attr['number']}"

end
end

Does Active Record Support Adding Security to Individual
Models or Columns?
Active Record does not include any support for security by default. Fortunately, there are ways
to implement model-level security and plug-ins available that do it for you. One such plug-in
is the ModelSecurity plug-in written by Bruce Perens, which is available at http://perens.com/
FreeSoftware/ModelSecurity.

What Is the Difference Between has_one and belongs_to?
The difference between the two association types is in where the foreign key resides. In short,
belongs_to is used when the related model’s primary key is stored in the model’s class, and
has_one is used when the related model’s primary key is stored in the other model’s table. For
more information about has_one, belongs_to, and the rest of the associations possible with
Active Record, see Chapter 4.

How Can You Paginate Active Record Results?
Paging through result sets is a very common database-related task. At the time of this writing,
Active Record has some limited support for pagination through the Action Controller library.
However, it’s buggy, to say the least, and therefore, in the near future, pagination is expected to
be removed from this library and made available only as a plug-in to Active Record.

So our first recommendation would be to search for an Active Record pagination plug-in.
Failing that, you can always deal with pagination via a fancy use of SQL LIMIT clauses. In SQL
Server, for example, the following query allows you to get a subset of records you may want
(records 10–20 here):

SELECT * FROM (SELECT TOP 10 * FROM (select top 20 * from comments order by id desc)
as tmp1 ORDER BY id asc) AS tmp2 ORDER BY id desc

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD 213

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 213

Most every flavor of SQL supports some form of the TOP or LIMIT clause and can therefore
use a version of the preceding SQL statement. Refer to your specific SQL documentation for
more details. You may also want to take a peek into your database adaptor source code to see
if and how pagination is currently supported.

Where Can I Get More Active Record Help?
Throughout this book, we’ve tried to be as thorough as possible and cover everything about
Active Record we could think of. Still, we’ve been around the block enough times to know
that it’s impossible to cover everything for everyone. If you’ve still got questions, a great
place to start is by asking for help from the Ruby community itself by getting active on
forums at sites like www.ruby-forum.com. You could also follow various blogs, like DHH’s at
http://www.loudthinking.com.

The Ruby on Rails official site at http://www.rubyonrails.org also has a number of help-
ful tips and tricks that are worth reading through.

Of course, if after reading this book and following those resources, you still have questions
please feel free to e-mail us directly at info@falicon.com (Kevin Marshall), cpytel@thoughtbot.com
(Chad Pytel), or jyurek@thoughtbot.com (Jon Yurek) with your comments and questions. We’ll
do our best to help you out, and we’ll keep detailed notes, so we can improve later versions of
this book!

CHAPTER 8 ■ ACTIVE RECORD AND THE REAL WORLD214

8474_ch08FINAL.qxd 8/25/07 9:15 AM Page 214

Active Record Methods in Detail

ActiveRecord::Base
Public Class Methods
==(object_to_compare)
This method returns true if the object_to_compare is the same as the receiving object or is of
the same Active Record class and has the same ID.

[](attribute_name)
This method returns the value of the specified attribute after it has been typecast and is an
alias for the protected read_attribute method of an Active Record class. While a common
method of accessing the attributes of an Active Record class is via a method call, like
account.first_name, Active Record overrides the [] operator to make each of the attributes
available as a hash parameter on the Active Record class. For example, you can also use the
form account[:first_name].

[]==(attribute_name, new_value)
This method is an alias for the protected write_attribute method of an Active Record class,
and it allows you to set attribute values using a hash-like syntax, for example:

account[:last_name] = "Pytel"

abstract_class?()
abstract_class? returns true if the specified Active Record class is a base Active Record class
and false if it is not.

attr_accessible(*attributes)
This method takes an array of attributes and makes them the only available attributes for mass
assignment operations, such as with new(attributes) and attributes=(attributes). All other
attributes of the Active Record class become unavailable for mass assignment operations. The
attr_protected(*attributes) method is the reverse of this operation.

215

A P P E N D I X

■ ■ ■

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 215

attr_protected(*attributes)
This method takes an array of attributes and makes them unavailable for mass assignment
operations, such as new(attributes) and attributes=(attributes). All other attributes of the
Active Record class remain unchanged. The attr_accessible(*attributes) method is the
reverse of this method.

base_class()
base_class returns the base Active Record class from which the specified Active Record class
descends.

benchmark(title, log_level = Logger::DEBUG, use_silence = true) {|| . . .}
This method logs and benchmarks the statements that are specified in its block:

Account.benchmark("Creating and Finding Account") do
account = Account.new(:username = > "cpytel")
account.save
accout.find_by_username("cpytel")

end

The benchmark is only performed if the current logging level matches the specified
log_level. This allows you to specify benchmarking calls in production software without
worrying about a performance hit from the benchmark.

Logging multiple statements of the benchmark is enabled by default but can be turned off
by passing false to use_silence.

clear_active_connections!()
The method clears the cache that maps classes to database connections.

column_names()
column_names returns an array of strings that are the column names for the database table
associated with this Active Record class.

columns()
With columns, you can return an array of column objects for the database table associated with
this Active Record class.

columns_hash()
This method returns a hash of column objects for the database table associated with this
Active Record class.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL216

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 216

connected?()
The connected? method returns true if a database connection that is usable by this class has
been opened.

connection()
To return the connection currently associated with the class, use the connection method. This
method can also be used to obtain the connection in order to work directly with the database,
for example:

Account.connection.select_values("SELECT id FROM accounts WHERE created_at < " +
Time.now – 1.day)

connection=(connection_specification)
This method manually sets the database connection for an Active Record class.

content_columns()
This method returns an array of column objects that Active Record considers the actual con-
tent, or data, of the Active Record class. Therefore, this array does not include the primary ID
column, any columns ending in _id or _count, and any columns used for single table inheritance.

count_by_sql(sql_query_string)
The method returns the result of an SQL query that should only include COUNT(*) in the SELECT
part of the SQL query:

Account.count_by_sql("SELECT COUNT(*) FROM accounts")

create(attributes = nil)
The create method instantiates and immediately saves the Active Record class with the values
specified in the attributes hash, if validations permit. The newly created Active Record object
is returned regardless of whether the save succeeded.

decrement_counter(counter_name, id)
This method works just like the increment_counter(counter_name, id) method, but it decre-
ments the counter instead.

delete(id)
This method deletes the database record with the given id but does not instantiate the object
first. Therefore, the destroy method and any other callbacks are not triggered. If an array of
IDs is provided, all of the records matching the IDs are deleted.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 217

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 217

delete_all(conditions = nil)
This method deletes all of the database records that match the given conditions but does not
instantiate the objects first. Therefore, the destroy method and any other callbacks are not
triggered. The format of conditions is the same as those given to the find method. If no condi-
tions are specified, all of the database records for this class will be removed.

destroy(id)
destroy removes the database record associated with the given primary key by first instantiat-
ing the object and then calling the destroy method on the object. Therefore, when using this
method, the destroy callbacks are triggered. If an array of IDs is provided, all of the records
matching the IDs are destroyed.

destroy_all(conditions = nil)
Use this method to destroy all the database records that match the given conditions by first
instantiating each object and then calling the destroy method. Therefore, when using this
method, the destroy callbacks are triggered. The format of conditions is the same as those
given to the find method. If no conditions are specified, all of the database records for this
class will be destroyed.

establish_connection(connection_specification = nil)
This method is used to establish a connection to a database. It accepts a hash of connection
parameters, where the :adapter key must be specified with the name of a valid database
adapter:

ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "localhost",
:username => "project",
:database => "project_development")

exists?(id)
exists? returns true if the specified id matches the primary key of a record in the database.

find(*args)
The find method can retrieve a record by its id, the first record matching a query, or all records
matching a query. When retrieving records by id, the find method can take a single id, a list of
ids, or an array of ids, as shown in the following examples:

Account.find(1)
Account.find(1, 2, 3)
Account.find([1, 2, 3])

Return only the first matching record like this:

Account.find(:first)

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL218

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 218

Return all matching records like this:

Account.find(:all)

All of these approaches to returning records take an optional hash as the final parameter.
The valid options in this hash follow:

:conditions: The :conditions options supplied to the find method will be converted into
the WHERE clause of the SQL statement. You can pass a string or a hash of column names
and values, or you can specify a more complex string of SQL along with values to interpo-
late inside an Array.

:order: The :order parameter defines the sorting order that would normally appear in the
ORDER clause of the resulting SQL statement. When you specify the :order option, you are
literally specifying a snippet of the SQL statement that will be sent to your database server.

:group: The :group parameter defines the GROUP BY portion of the resulting SQL statement,
and like the :order parameter, the string supplied will directly translate to the GROUP BY
portion of the SQL statement.

:limit: The :limit parameter takes an integer and directly corresponds to the LIMIT portion
of the resulting SQL statement.

:offset: The :offset parameter takes an integer and directly corresponds to the OFFSET
portion of the resulting SQL statement.

:include: The :include option is used to augment the FROM portion of the resulting SQL
statement. The :include parameter will take a nested hash of symbols that correspond to
the names of relationships you’ve defined for your model and add use them as joining
conditions.

:joins:While the :joins parameter is similar in function to the :include option, it works
on a lower level in the resulting SQL statement. The value given to the :joins option is
a string that will get added to the FROM clause of the SQL statement. You can use this to
join on tables to which you don’t have a defined Active Record relationship.

:from: Whereas the :joins option will let you specify extra tables to join to in the FROM
clause, the :from option allows you to specify the entire contents of the FROM clause of the
SQL statement.

:select: You can use the :select option to specify extra columns in the SELECT clause of
the resulting SQL statement. Any extra columns will be added as additional attributes on
the returned objects, called piggyback attributes. However, because Active Record doesn’t
know how to save these extra attributes, the objects it returns will automatically be marked
as read only.

:readonly: Specifying true for this parameter will mark the records returned from this find
call as read only and prevent changes to the objects from being saved. Likewise, specifying
false for this parameter will ensure that the records returned will not be marked as read
only, regardless of whether they should (such as when the :select parameter is used).

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 219

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 219

:lock: You can use the :lock option to have the database lock the selected rows. The value
given for the :lock option is either the Boolean true or an SQL fragment like LOCK IN SHARE
MODE. If you pass in true, Active Record will use the default locking syntax for your connection.

For a complete description of the find method, see Chapter 2.

find_by_sql(sql_query)
This method works like find(:all) but takes a complete SQL query. For each of the results
returned by the query, an Active Record object is instantiated.

increment_counter(counter_name, id)
This method increments the specified counter by one. A counter, in this context, is any integer
Active Record attribute. Changes are made to the database record immediately, without
instantiating the Active Record object. This method is most commonly used, along with the
decrement_counter method, to maintain a cache of an aggregate value, such as the number of
posts in a forum.

inheritance_column()
This method defines the name of the database column used with single table inheritance, in
which the name of the subclass will be stored. Unlike many Active Record configuration meth-
ods, this does not take an argument. Rather, you override the method in the Active Record
subclass itself. The following example changes the column used for the Account class from the
default of "type" to "object_type":

class Account < ActiveRecord::Base
def inheritance_column
"object_type"

end
end

new(attributes=nil) { |self if block_given?| . . . }
The new method is used to instantiate a new instance of an Active Record object. It takes
parameters as a hash or can be used in block form. A hash example follows:

account = Account.new(:first_name => "Chad", :last_name => "Pytel")

Here’s an example of an initialization of an Active Record object via a block:

Account.new do |account|
account.first_name = "Chad"
account.last_name = "Pytel"

end

Finally, you can specify no parameters and set the attributes at a later time.

account = Account.new
account.first_name = "Chad"
account.last_name = "Pytel"

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL220

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 220

primary_key()
This method defines the name of the database column that holds the primary key for the
Active Record class. This method is overridden in the Active Record class. The following exam-
ple overrides the primary key column for the Account class from the default of "id" to
"account_key":

class Account < ActiveRecord::Base
def primary_key
"account_key"

end
end

remove_connection(klass=self)
This method removes the connection for the specified class, which includes closing the active
and defined connections. This method will default to the current class if no class is specified.
It also returns the specification for the connection that was just removed. This specification
can be used as an argument for establish_connection, to reestablish the connection.

reset_column_information()
Reset all of the cached information about the database columns for the specified Active
Record class with this method. The columns will be reloaded on the next request.

serialize(attribute_name, class_name = Object)
It is possible to serialize an object to an Active Record attribute. The data in this object is
stored in YAML format, which makes it possible to store arrays, hashes, and other objects for
which Active Record does not include default mappings.

class Account < ActiveRecord::Base
serialize :preferences

end

account = Account.find(1)
account.preferences = { "receive_email_alerts" => "weekly", "default_sort" =>
"price" }

The class_name parameter to this method takes a specific class name. When the serial-
ized object is retrieved from the database, if it is not a descendent in the class hierarchy,
a SerializationTypeMismatch exception will be raised.

serialized_attributes()
serialized_attributes returns a hash of all the Active Record attributes for this class that
have been specified as serialized (using the serialize method). The keys of the hash are the
attribute names; the values are the class restrictions.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 221

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 221

set_inheritance_column(value = nil, &block)
This method defines the name of the database column used with single table inheritance in
which the name of the subclass will be stored. Unlike many Active Record configuration meth-
ods, this does not take an argument. Rather, you override the method in the Active Record
subclass itself. The following example changes the column used for the Account class from the
default of "type" to "object_type":

class Account < ActiveRecord::Base
def set_inheritance_column
"object_type"

end
end

set_locking_column(value = nil, &block)
Active Record supports optimistic locking if the database column lock_version is present. For
more information about the optimistic locking features of Active Record, see Chapter 2. You
can override the name of the expected database column from lock_version to something dif-
ferent with this method, for example:

class Account < ActiveRecord::Base
set_locking_column "locking_column"

end

set_primary_key(value = nil, &block)
Set the name of the database column that holds the primary key as follows:

class Account < ActiveRecord::Base
set_primary_key "accountid"

end

set_sequence_name(value = nil, &block)
Set the name of the sequence to use for the generation of primary keys with this method; use
it with Oracle or other databases that use sequences for primary key generation.

If the sequence name is not specifically set when using an Oracle or Firebird database, the
common sequence name of #{table_name}_seq will be used.

When using a PostgreSQL database, if the sequence name is not explicitly set, Active
Record will discover the sequence for your primary key for you:

class Account < ActiveRecord::Base
set_sequence_name "accountseq"

end

set_table_name(value = nil, &block)
Set the name of the database table to use for this Active Record class as follows:

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL222

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 222

class Account < ActiveRecord::Base
set_table_name "account_table"

end

silence() { || . . . }
Silence the logger for the given block with this method.

table_exists?()
This method returns true if the database table associated with this Active Record class exists;
it returns false if it does not.

table_name()
table_name returns the name of the database table based on the name of the class in the inheri-
tance hierarchy directly descending from Active Record. So, if called on the class CustomerAccount
with a class hierarchy of CustomerAccount < Account < ActiveRecord, the Account class is still
used to generate the table name.

The rules for table name generation are provided by the Inflector class in Active Support.
In addition, the table names are always lowercase, and any settings specified for table_name_
prefix and table_name_suffix are applied to the generated table name.

update(id, attributes)
This method finds the record in the database with the specified primary key, sets the values in
the specified attribute hash, and instantly saves the object back to the database. This method
does instantiate an object for each record. Therefore, this method does ensure that validations
are applied. If the validations fail, the unsaved class is returned. If the object is successfully
saved, the newly saved object is returned.

Account.update(1, { :first_name => "Test", :last_name => "Account" })

You can also pass in arrays as the arguments of this method to update several objects at
once, for example:

accounts = { 1 => { :first_name => "Test", :last_name => "Account" },
2 => { :first_name => "Test", :last_name => "Account 2" }}

Account.update(accounts.keys, accounts.values)

update_all(update_sql, conditions)
This method applies the specified updates all of the matching rows in the database; it takes in
SQL for the SET part of the UPDATE statement as the first argument, and the conditions to find
the matching records are the second argument. The format of the conditions argument is the
same as the Active Record find method. This method performs its operation directly on the
database records, without instantiating a copy of each object. Therefore, any validations and
callbacks are not performed.

Account.update_all("first_name = 'Test', last_name = 'Account'", ["account = ?", 1])

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 223

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 223

with_exclusive_scope(method_scoping = {}, &block)
This method works like with_scope but ignores any nested properties.

with_scope(method_scoping = {}, action = :merge) { || . . . }
Scope parameters to method calls within the specified block with this method, which takes
a hash of method names and parameter hashes. Valid method names are :find and :create.
Valid parameters for the options hash to the find method are :conditions, :joins, :include,
:offset, :limit, and :readonly. The parameters to the create method are an attribute hash.

Account.with_scope(:find => { :conditions => "site_id = 1" },
:create => { :site_id => 1} do

=> SELECT * FROM accounts WHERE last_name = 'Pytel' AND site_id => 1
Account.find_by_last_name("Pytel")
a = account.create(:last_name => "Pytel")
a.site_id # => 1

end

It is also possible to nest multiple calls to with_scope. In nested calls to with_scope, all
previous parameters are overwritten, except for the :conditions parameter to the find method,
whose hash is merged:

Account.with_scope(:find => { :conditions => "site_id = 1" },
:create => { :site_id => 1} do

Account.with_scope(:find => { :conditions => "creator_id = 1", :limit => 1 } do
=> SELECT * FROM accounts WHERE last_name = 'Pytel'
AND side_id = 1 AND creator_id = 1 LIMIT 1
Account.find_all_by_last_name("Pytel")

end
end

If you wish to overwrite all previous scoping, including :conditions to find, then you
should use the with_exclusive_scope method.

Protected Class Methods
class_of_active_record_descendant(klass)
This method returns the class that is directly descended from Active Record in the class hierarchy:

class Account < ActiveRecord::Base
end
class CustomerAccount < Account
class_of_active_record_descendant(self) # => Account

end

compute_type(type_name)
compute_type returns the class type of the record using the current module as a prefix. For example,
descendents of MyApp::Business::Account would appear as MyApp::Business::AccountSubclass.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL224

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 224

sanitize_sql(sql_to_sanitize)
This method accepts either an Array or a String. If the argument is a String, the string will be
returned unchanged. If the argument is an Array, this method expects the first element of the
array to be an SQL statement. This SQL statement will be sanitized and the remaining elements
of the array will be interpolated into the SQL statement. These additional elements will also be
sanitized. The following code

sanitize_sql(["last_name = '%s', first_name = '%s'", "Mc'Donald", "Old"])

would return "last_name = 'Mc\'Donald', first_name = 'Old'".

Public Instance Methods
==(object_to_compare)
This method returns true if the object_to_compare is the same as the receiving object or is of
the same Active Record class and has the same id.

[](attribute_name)
This method returns the value of the specified attribute after it has been typecast and is an alias
for the protected read_attribute method of an Active Record class. While a common method of
accessing the attributes of an Active Record class is via a method call, like account.first_name,
Active Record overrides the [] operator to make each of the attributes available as a hash param-
eter on the on Active Record class. For example, you can also use the form account[:first_name].

[]==(attribute_name, new_value)
This method is an alias for the protected write_attribute method of an Active Record class
and allows setting of attribute values using a hash-like syntax, for example:

account[:last_name] = "Pytel"

attribute_names()
This method returns an alphabetically sorted array of the names of all the attributes available
on this Active Record class.

attribute_present?(attribute)
attribute_present? returns true if the specified attribute has a value that was either set by
you or loaded from the database. To return true, the value should be neither nil nor return
false to empty?.

attributes(options = nil)
This method returns a hash of all of this object’s attributes, with the attribute names as keys
and clones of the attribute objects as their values:

Account.find(1).attributes # => { "last_name" => "Pytel", "first_name" => "Chad"}

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 225

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 225

The only options are :except and :only, and each should be an array of the attribute
names. :except specifies that all attributes should be included in the return hash except for
those in the specified array. :only specifies that only the attributes whose names match those
in the specified array should be included in the returned hash:

Account.find(1).attributes({:only => ["last_name"]})
=> { "last_name" => "Pytel" }
Account.find(1).attributes({:except => ["last_name"])
=> { "first_name" => "Chad" }

attributes=(new_attributes)
This method accepts a hash with keys matching the attribute names of this object and sets all
of the object’s attributes at once using this hash. You can protect sensitive attributes from this
form of mass assignment by using the attr_protected and attr_accessible methods:

Account.find(1).attributes = { :last_name => "Pytel", :first_name => "Chad" }

attributes_before_type_cast()
Return a hash of attributes and their cloned values before typecasting and deserialization with
this method.

clone()
This method returns a clone of the Active Record object where all the attributes are cloned
copies; the id remains unset, and the clone is treated as a new record. Be advised that this is
a shallow clone in that it only applies to the object’s attributes and not to its associations.

Active Record takes the opinion that a deep clone, one in which the entire object and all
related objects are replicated, is application specific, and its implementation should be left up
to you.

column_for_attribute(attribute_name)
Return the Column object for the specified attribute with this method.

connection()
connection returns the database connection that is currently being used by the Active Record
object. You can then use this connection to perform miscellaneous database work unrelated
to the Active Record object itself.

decrement(attribute)
Decrease the specified attribute by one with this method. If the attribute is nil, the attribute
will be initialized to zero before being decremented (resulting in a value of -1). This method
does not cause the Active Record object to be saved.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL226

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 226

decrement!(attribute)
This method also decreases the specified attribute by one. If the attribute is nil, the attribute
will be initialized to zero before being decremented (resulting in a value of -1). This method
does save the changed attribute to the database. However, when the attribute is saved, the object
validations are not run, allowing the attribute to be saved even if the full object is not valid.

destroy()
destroy deletes the database record for this Active Record object and freezes the attributes of
the object.

eql?(object_to_compare)
eql? returns true if the specified object is equal to the current Active Record object or false if
it is not. This method simply calls the equals operator (==).

freeze()
This method freezes the attributes of the Active Record object so that they cannot be changed.
Also, it allows you to access the associations of an object, even after the object has been
destroyed.

frozen?()
frozen? returns true if the attributes of this object have been frozen; otherwise, it returns
false.

has_attribute?(attribute)
This method returns true if the specified attribute is in the attribute hash of this object.

hash()
hash delegates to id() in order to allow standard operations on Active Record objects of the
same type and id, for example:

[Acccount.find(1), Account.find(3)] & [Account.find(1), Account.find(4)]
=> [Account.find(1)]

id()
The id() method makes it so that an Active Record object’s primary key attribute is always
available as ar_object.id, even if its name has been overridden. This method is also aliased to
to_param().

id=(value)
This method sets the primary key of this Active Record object. The method is always available,
even if you have overridden the name of the primary key attribute to something besides id.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 227

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 227

increment(attribute)
Increase the specified attribute by one with this method. If the attribute is nil, the attribute
will be initialized to zero before being incremented (resulting in a value of 1). This method
does not cause the Active Record object to be saved.

increment!(attribute)
You can increase the specified attribute by one with this method as well. If the attribute is
nil, the attribute will be initialized to zero before being incremented (resulting in a value of 1).
This method does save the changed attribute to the database. However, when the attribute is
saved, the object validations are not run, allowing the attribute to be saved even if the full
object is not valid.

new_record?()
new_record? returns true if this Active Record object has not been saved yet. In other words, if
there is not yet a row in the database for this object, this method will return true.

readonly?()
This method returns true if the attributes of this object have been marked as read only, which
will happen when piggyback attributes have been added to the object. For more information
on piggyback attributes, see find().

reload()
reload causes the attributes of this object to be reloaded from the database.

respond_to?(method, include_priv=false)
This method returns true if the specified method name appears on the Active Record object.
An Account object with a last_name attribute would return true to account.respond_to?
("last_name"), account.respond_to?("last_name="), and account.respond_to?("last_name?").

save()
Save the current Active Record object with this method. If the object has not yet been saved,
a new record is created in the database. If the object already has a corresponding database
record, that record is updated with the current values of this object’s attributes. If the object
has been marked as read only, this method will raise a ReadOnlyRecord exception. If the save
was successful, this method will return true; otherwise, it will return false.

By default, Active Record mixes in the Validation module, which overrides the default
implementation of this method with the ActiveRecord::Validations.save_with_validation
method. This method takes in a Boolean value that indicates whether validations should be
run, the default of which is to run validations. Therefore, the default behavior of this method
is to trigger validations before the object is saved. If you wish to save the Active Record object
without validations, you can call the method as follows:

account.save(false)

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL228

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 228

save!()
This method also saves the current Active Record object. If this object has not yet been saved,
a new record is created in the database. If the object already has a corresponding database
record, that record is updated with the current values of this objects attributes. If the save was
successful, this method will return true; otherwise, it will raise a RecordNotSaved exception.

By default, Active Record mixes in the Validation module, which overrides the default
implementation of this method with the ActiveRecord::Validations.save_with_validation!
method. Therefore, the default behavior of this method is to trigger validations before the
object is saved.

to_param()
This method is an alias for id().

to_xml(options = {})
This method returns an XML representation of the Active Record object. While this method
does take a hash of configuration options, for more complex XML generation, using Active
Support’s Builder class is generally recommended.

The XML generated by default will include all attributes for the object, and a type attribute
for attributes that are not of type String. In addition, associations are not expanded by default.
An example of the XML for an object of our Account class would be

<?xml version="1.0" encoding="UTF-8"?>
<account>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site-id>1</site-id>

</account>

Valid options for the options hash are :skip_instruct, :root, :except, :only, and :include.
The :skip_instruct option, if set to true, will cause the XML processing instruction line to be
excluded from the resulting XML:

account.to_xml(:skip_instruct => true)
=> <account>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site-id>1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</account>

The default name for the root element is the class name of the Active Record object we are
formatting. The :root option should be a string and allows you to override the name of the
root element:

account.to_xml(:root => "myaccount")
=> <myaccount>

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 229

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 229

<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site-id>1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</myaccount>

You can use the :only and :except options to explicitly include or exclude attributes from
the resulting XML:

account.to_xml(:only => [:last_name])
=> <account>
<last-name>Pytel</last-name>

</account>
account.to_xml(:except => [:last_name])
=> <account>
<id type="integer">1</id>
<first-name>Chad</first-name>
<site-id>1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</account>

As previously mentioned, associations are not expanded in the XML by default. To cause
certain associations to also be included in the XML, use the :include option:

account.to_xml(:include => [:site])
=> <?xml version="1.0" encoding="UTF-8"?>
<account>
<id type="integer">1</id>
<last-name>Pytel</last-name>
<first-name>Chad</first-name>
<site>
<id type="integer">1</id>
<name>Account Site</name>

</site>
<site-id>1</site-id>
<created-at type="datetime">2006-11-10T10:22:56-05:00</created-at>

</account>

toggle(attribute)
The method sets the specified attribute to true if the current value is false and sets it to false
if the current value is true. This method does not cause the Active Record object to be saved.

toggle!(attribute)
This method also sets the specified attribute to true if the current value is false and sets it to
false if the current value is true. This method does save the changed attribute to the data-
base. However, when the attribute is saved, the object validations are not run, allowing the
attribute to be saved even if the full object is not valid.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL230

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 230

update_attribute(name, value)
This method updates the specified attribute with the specified value and saves the record. By
default, Active Record mixes in the Validation module, which overrides the default imple-
mentation of this method with the ActiveRecord::Validations.update_attributes method.
Therefore, the default behavior of this method is to skip validations, allowing the attribute to
be saved even if the full object is not valid.

update_attributes(attributes)
This method takes in a hash with attribute names as the keys and the corresponding attribute
values as the values. The corresponding attributes on the object are updated, and the record is
saved. This method does cause validations to be run. Therefore, if the object is invalid, the
save will fail, and false will be returned.

ActiveRecord::Calculations::ClassMethods
Public Instance Methods
average(column_name, options = {})
Calculate the average of the data in the specified column with this attribute. Valid options are
the same as those for the calculate method.

Account.average('age')

calculate(operation, column_name, options = {})
This method calculates aggregate values of columns on the database table backing the Active
Record class. Valid operations are count(:count), sum(:sum), average(:avg), minimum(:min),
and maximum(:max). When the aggregate value is a single value, the type of the returned value is
Fixnum for count, Float for average, and the actual of the column we are aggregating for all
other operations.

Account.calculate(:count, :all) # The same as Account.count
Account.average(:age) # SELECT AVG(age) FROM accounts...
Select the minimum age for everyone with a last name other than 'Pytel'
Account.minimum(:age, :conditions => ['last_name != ?', 'Pytel'])
Select the minimum age for any family without any minors
Account.minimum(:age, :having => 'min(age) > 17', :group => :last_name)

The :group option takes either the name of a column or the name of a belongs_to association,
and it causes the calculate method to return an ordered hash of the values, where the keys
are the grouped object:

values = Account.average(:age, :group => :last_name)
values["Pytel"] # => 42
this_site = Site.find(1)
values = Account.average(:age, :group_by => :site)
values[this_site] # => 42

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 231

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 231

The options valid to the calculate method are the same options valid to find, including
:conditions, :joins, :order, :group, :select, :having, and :distinct.

count(*args)
This method returns a Fixnum equal to the number of rows returned by the resulting database
query. If no arguments are passed in, this method will return the total number of rows in the
database table.

Account.count # => SELECT COUNT(*) FROM accounts

This method also will take one or two strings as arguments, representing, respectively,
conditions for the WHERE part of the SQL query and a string to be added to the FROM part of the
query.

Account.count("site_id != 1") # SELECT COUNT(*) FROM accounts WHERE side_id != 1
Account.count("name != 'My Site'", "LEFT JOIN sites on accounts.site_id = sites.id")
SELECT COUNT(*) FROM accounts LEFT JOIN sites on accounts.site_id = sites.id
WHERE name != 'My Site'

Finally, this method also accepts arguments similar to the arguments to find, including
an options hash containing options for :conditions, :joins, :order, :group, :select, :having,
and :distinct.

Account.count(:conditions => "site_id != 1"
SELECT COUNT(*) FROM accounts WHERE side_id != 1

Account.count(:conditions => "name != 'My Site'", :include => :site)
SELECT COUNT(*) FROM accounts LEFT JOIN sites WHERE name != 'My Site'

Account.count('id', :conditions => "site_id != 1"
SELECT COUNT(id) FROM accounts where site_id != 1

Account.count(:all, :conditions => "site_id != 1"
SELECT COUNT(*) FROM accounts where site_id != 1

maximum(column_name, options = {})
This method returns the maximum value present in the specified column. Valid options are
the same as those for the calculate method, which in turn derives its options from the find
method.

Account.maximum('age')

minimum(column_name, options = {})
Return the minimum value present in the specified column with this method. Valid options
are the same as those for the calculate method, which in turn derives its options from the
find method.

Account.average('age')

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL232

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 232

sum(column_name, options = {})
Calculate the sum of the specified column with this method, for which valid options are again
the same as those for the calculate method, which in turn derives its options from the find
method.

Account.sum('age')

ActiveRecord::Callbacks
Public Instance Methods
after_create()
This method is called after Base.save() only on objects that have not been saved yet. Override
this method in your Active Record model to specify functionality. For more information on
callbacks, see Chapter 4.

after_destroy()
This method is called after Base.destroy(). Therefore, the corresponding database record has
already been deleted, and the attributes have already been frozen. Override this method in
your Active Record model to specify functionality. For more information on callbacks, see
Chapter 4.

after_save()
This method is also called after Base.save(), and it’s called regardless of whether the object
was being created or updated. Override this method in your Active Record model to specify
functionality. For more information on callbacks, see Chapter 4.

after_update()
This method is also called after Base.save() only when the object has already been saved and
already has a corresponding record in the database. Override this method in your Active Record
model to specify functionality. For more information on callbacks, see Chapter 4.

after_validation()
after_validation is called after the Validations.validate() method. Validations.validate()
is included in calls to Base.save(). Override this method in your Active Record model to spec-
ify functionality. For more information on callbacks, see Chapter 4.

after_validation_on_create()
After the Validations.validate() method is called, you can call this method only on objects
that have not been saved yet. Validations.validate() is included in calls to Base.save().
Override this method in your Active Record model to specify functionality. For more informa-
tion on callbacks, see Chapter 4.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 233

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 233

after_validation_on_update()
This method is also called after the Validations.validate() method is called; this one is
called only when the object has already been saved and already has a corresponding record
in the database. Validations.validate() is included in calls to Base.save(). Override this
method in your Active Record model to specify functionality. For more information on call-
backs, see Chapter 4.

before_create()
Call before_create before Base.save() only on objects that have not yet been saved. Override
this method in your Active Record model to specify functionality. For more information on
callbacks, see Chapter 4.

before_destroy()
This method is called before Base.destroy(). Therefore, the corresponding database record
has not yet been deleted, and the attributes have not yet been frozen. Override this method in
your Active Record model to specify functionality. For more information on callbacks, see
Chapter 4.

before_save()
before_save is called before Base.save(), regardless of whether the object was being created
or updated. Override this method in your Active Record model to specify functionality. For
more information on callbacks, see Chapter 4.

before_update()
before_update is called before Base.save() as well but only when the object has already been
saved and already has a corresponding record in the database. Override this method in your
Active Record model to specify functionality. For more information on callbacks, see Chapter 4.

before_validation()
Call before_validation before the Validations.validate() method is called; Validations.
validate() is included in calls to Base.save(). Override this method in your Active Record model
to specify functionality. For more information on callbacks, see Chapter 4.

before_validation_on_create()
This method is called before the Validations.validate() method but only on objects that
have not yet been saved. Validations.validate() is included in calls to Base.save(). Override
this method in your Active Record model to specify functionality. For more information on
callbacks, see Chapter 4.

before_validation_on_update()
This method, also called before the Validations.validate() method, is called only when the
object has already been saved and already has a corresponding record in the database.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL234

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 234

Validations.validate() is included in calls to Base.save(). Override this method in your
Active Record model to specify functionality. For more information on callbacks, see Chapter 4.

ActiveRecord::ConnectionAdapters::AbstractAdapter
Public Instance Methods
active?()
active? returns true if the connection is active and ready to perform database queries.

adapter_name()
adapter_name returns the human readable name of the connection adapter.

disconnect!()
disconnect! closes the database connection associated with this adapter.

prefect_primary_key?(table_name = nil)
This method returns true if the primary key for a new record must be retrieved before the
insert statement is executed. If this is true, then next_sequence_value is called before each
insert to get the new record’s primary key value. This is currently only true for the Firebird
database adapter.

raw_connection()
Return the underlying database connection with this method, which can be used to call pro-
prietary database methods.

reconnect!()
Close the current connection and open a new connection to the database with reconnect!.

requires_reloaded?()
This method returns true if it is safe to reload the database connection between requests. It is
used in development mode and is currently unsafe for the Ruby/MySQL adapter and unnec-
essary for any database adapter except SQLite.

supports_count_distinct?()
This method returns true if this connection adapter supports using DISTINCT with COUNT. This
is currently true for all adapters except SQLite.

supports_migrations?()
Return true with this method if this connection adapter supports Active Record migrations.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 235

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 235

verify!(timeout)
This method calls and returns the value of active? only if it has not been called for timeout
seconds.

Protected Instance Methods
format_log_entry(message, dump = nil)
This method adds color to the log message if ActiveRecord::Base.colorize_logging = true
and returns the given log message with formatting applied.

log(sql_statement, name) { || . . .}
This method writes the given SQL statement to the log. If given a block, the method will
benchmark the statements contained within it while also logging them.

log_info(sql, name, runtime)
Log the given SQL statement and its runtime with this method, which is called by
log(sql_statement, name) { || . . . } and calls format_log_entry(message, dump = nil).

ActiveRecord::ConnectionAdapters::Column
Public Class Methods
binary_to_string(value)
This method is used to convert BLOBs to Strings.

new(name, default, sql_type = nil, null = true)
Create a new column in the database table with this method: name is the name of the new col-
umn; default is the typecasted default value for the new column; sql_type specifies the type,
including the length of the new column; and null specifies whether this column allows NULL as
a value.

string_to_binary(value)
Convert Strings to BLOBs with this method.

string_to_date(value)
This method converts the given value, which is a String, to a Date.

string_to_dummy_time(value)
string_to_dummy_time converts the given value, which is a String containing only time infor-
mation, with dump information.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL236

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 236

string_to_time(value)
This one converts the given value, which is a String containing date and time information, to
a Time value.

value_to_boolean(value)
Convert the given value to a boolean with this method. It returns true for true, "true", "t",
and "1" and returns false for all other values.

value_to_decimal(value)
With this method, you can convert the given value to a BigDecimal.

Public Instance Methods
human_name()
Return the human readable version of the column name as follows:

Column.new("first_name", nil, "varchar(255)").human_name #=> "First name"

klass()
klass returns the Ruby class that corresponds to the abstract data type of the column. For
example, if the SQL column is of type :integer, the class returned from this method is Fixnum.
Table A-1 lists the abstract data types for columns and the corresponding classes that this
method will return.

Table A-1: Abstract Data Types and Corresponding Classes

Type Class

:integer Fixnum

:float Float

:decimal BigDecimal

:datetime Time

:date Date

:timestamp Time

:time Time

:text String

:string String

:binary String

:boolean Object

number?()
number? returns true if the data type of this Column is a float, integer, or decimal.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 237

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 237

text?()
text? returns true if the data type of this Column is string or text.

type_cast(value)
type_cast casts the given column value to an appropriate instance. Valid column types are
string, text, integer, float, decimal, datetime, timestamp, time, date, binary, and boolean.

type_cast_code(var_name)
This method returns the Ruby code that would be used to convert a variable with the given
name to the type of this Column.

ActiveRecord::ConnectionAdapters::
DatabaseStatement
Public Instance Methods
add_limit!(sql, options)
This method is an alias for add_limit_offset!(sql, options).

add_limit_offset!(sql, options)
Modify the given SQL by adding LIMIT and OFFSET statements to it, as in the following example:

add_limit_offset!("SELECT * FROM accounts", {:limit => 10, :offset => 30})

The preceding code would return the following SQL query:

SELECT * FROM accounts LIMIT 10 OFFSET 30

add_lock!(sql, options)
Modify the given SQL by adding a locking statement with add_lock!. The statement "FOR
UPDATE" will be added if the :lock option is true; otherwise, the given locking statement will be
added.

add_lock("SELECT * FROM accounts", :lock => true)
#=> "SELECT * FROM accounts FOR UPDATE"
add_lock("SELECT * FROM accounts", :lock => " FOR UPDATE")
#=> "SELECT * FROM accounts FOR UPDATE"

begin_db_transaction()
This method begins the transaction and turns off automatic committing. See
transaction(start_db_transaction = true) { ||| . . . }.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL238

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 238

commit_db_transaction()
This method commits the transaction and turns on automatic committing. See
transaction(start_db_transaction = true) { ||| . . . }.

default_sequence_name(table, column)
Return the default sequence name for the current adapter with this method.

delete(sql, name = nil)
This delete method executes the given SQL statement in the context of the current connec-
tion and returns the number of rows deleted.

execute(sql, name = nil)
Execute the given SQL statement in the context of the current connection with this method,
which raises a NotEmplementedError by default and must be implemented by the specific data-
base connection adapters.

insert(sql, name = nil, pk = nil, id_value = nil, sequence_name = nil)
This method executes the given SQL INSERT statement in the context of the current connec-
tion and returns the automatically generated ID that the new record was given. The method
raises a NotEmplementedError by default and must be implemented by the specific database
connection adapters.

reset_sequence!(table, column, sequence = nil)
Reset the given sequence to the maximum value of the given table’s column with this method;
it does nothing by default and must be implemented by the specific database connection
adapters.

rollback_db_transaction()
You must roll back the database transaction with this method if the transactional block raises
an exception or returns false. See transaction(start_db_transaction = true) { ||| . . . }.

select_all(sql, name = nil)
select_all returns an array of database record hashes with the column names as keys and the
column values as values.

select_one(sql, name = nil)
select_one returns a record hash of the first record to be returned by the given SQL statement
with the column names as keys and the column values as values.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 239

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 239

select_value(sql, name = nil)
Return the value from the first column of the first record that matches the given SQL state-
ment with select_value.

select_values(sql, name = nil)
Return an array of values of the first column of the records that match the given SQL with
select_values.

transaction(start_db_transaction = true) { || . . . }
This method wraps the given block in a database transaction and returns the value of the
block.

update(sql, name = nil)
Execute the given UPDATE SQL statement and return the number of rows that were affected.

Protected Instance Methods
select(sql, name = nil)
Execute the given SELECT SQL statement and return an array of record hashes with the column
names as keys and the column values as values with this method. It raises a NotEmplementedError
by default and must be implemented by the specific database connection adapters.

ActiveRecord::ConnectionAdapters::Quoting
Public Instance Methods
quote(value, column = nil)
This method quotes the given value to help prevent SQL injection attacks. If a column is given,
this method will use the column type to determine how this value should be quoted; otherwise,
it will use the value’s type to determine the quoting method.

quote_column_name(name)
This method returns a quoted form of the given column name. The method of quoting is
highly database specific, and therefore, this method is typically overridden by the connection
adapter.

quote_string(value)
Quote the given String with this method, which escapes any single quotation mark (') and
backslash (\) characters.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL240

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 240

quoted_date(value)
Format the given date value as a String with this method.

quoted_false()
This quoted method returns the String 'f'.

quoted_true()
This method returns the String 't'.

ActiveRecord::ConnectionAdapters::
SchemaStatements
Public Instance Methods
add_column(table_name, column_name, type, options = {})
This method adds a new column to the given table with the given name and type. See
TableDefinition#column for details on what options you can use.

add_index(table_name, column_name, options = {})
add_index adds a new database index to the given table for the given column. column_name can
be a single Symbol or an Array of Symbols. The index will be named after the table and the col-
umn name (or the first column name if given an array), unless you give this method the :name
option.

The following example creates a simple index on only the email column of our accounts
table:

add_index(:accounts, :email)

Here’s the SQL statement generated for the preceding example:

CREATE INDEX accounts_email_index ON accounts(name)

You can also create a multicolumn index by passing in an Array of symbols for the column
name attribute:

add_index(:accounts, [:first_name, :last_name])

The SQL statement generated for that example would be

CREATE INDEX accounts_first_name_last_name_index ON accounts(first_name, last_name)

To override the name given to the index, you use the :name option:

add_index(:accounts, [:first_name, :last_name], :name => "name_index")

The SQL generated for the :name example would be CREATE INDEX name_index ON
accounts(first_name, last_name).

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 241

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 241

Lastly, if you wish the create a UNIQUE index, use the :unique option:

add_index(:accounts, [:first_name, :last_name], :unique => true)

The SQL generated for this example would be CREATE UNIQUE INDEX accounts_first_
name_last_name_index ON accounts(first_name, last_name).

add_order_by_for_association_limiting!(sql, options)
With this method, you can modify the given SQL statement by adding the clause specified in
options[:order] to it. The PostgreSQL connection adapter overrides this method because of
its stricter standards compliance.

sql = "SELECT last_name FROM accounts"
add_order_by_for_association_limiting!(sql, :order => "last_name")
sql #=> "SELECT last_name FROM accounts ORDER BY last_name"

change_column(table_name, column_name, type, options = {})
The change_column method changes the specified column definition to match those specified
in options. See TableDefinition#column for details on what options you can use.

This method raises a NotEmplementedError by default and must be implemented by the
specific database connection adapters.

change_column_default(table_name, column_name, default)
You can use this method to change the default value for the specified column. Unfortunately,
you cannot use it to set the default value of a column to NULL. To do that, you must use
DatabaseStatements#execute to run the appropriate SQL statement manually.

This method raises a NotEmplementedError by default and must be implemented by the
specific database connection adapters.

columns(table_name, name = nil)
columns returns an Array of Column objects for the given table.

create_table(name, options = {}) { || . . . }a
This method creates a new table with the given name, and by default, automatically adds
a column for the primary key to the table.

You can use the method either in regular or block form. The regular form does not add
any columns besides the one for the primary key to the table, and you would then use
add_column to add additional columns to the table.

For example, we could use the regular form of this method to create our accounts table:

create_table(:accounts)
add_column(:accounts, :first_name, :string)
add_column(:accounts, :last_name, :string)
add_column(:accounts, email, :string)

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL242

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 242

However, if, instead, you wish to use the block form of this method to create the same
table, the code would be

create_table(:accounts) do |t|
t.column :first_name, :string
t.column :last_name, :string
t.column :email, :string

end

The valid options for the options hash are :id, :primary_key, :options, :temporary, and
:force.

The :id option, which defaults to true, specifies whether the primary key column should
be added to the table automatically.

The :primary_key option, which defaults to :id, specifies the name of the primary key
column in the table.

The :options option specifies any additional options that you wish to append to the table def-
inition. For instance, if you are using a MySQL database and wish to use an InnoDB table and to set
the default character set of the table to be UTF-8, you would specify :options => 'ENGINE=InnoDB
DEFAULT CHARSET=utf8'.

The :temporary option defaults to false; if set to true, it indicates that this table should
be a temporary table.

The :force option defaults to false; if set to true, it indicates that the table should be
dropped before attempting to create it.

distinct(columns, order_by)
distinct executes a SELECT DISTINCT SQL statement, with the given ORDER BY clause for the
given set of columns. The PostgreSQL and Oracle database connection adapters override this
method to account for their custom DISTINCT syntax. The following example executes a SELECT
DISTINCT statement on the id column for the accounts table, ordered by the created_at column:

distinct("accounts.id", "accounts.created_at DESC")

drop_table(name, options = {})
This method drops the specified table from the database. The following example drops the
accounts table from your database:

drop_table(:accounts)

The options hash is available for database-specific options.

initialize_schema_information()
Initialize the schema information in the database by creating the schema information table,
named schema_info by default, and inserting the current schema version into the table. You
should not need to call this method under standard operation, as the migration process handles
this automatically. However, calling this method is nondestructive; if the schema information
table already exists, this method completes silently.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 243

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 243

native_database_types()
This method returns a Hash where the keys are the abstract data types and the values are
the native database types. See TableDefinition#column for details regarding the recognized
abstract data types.

remove_column(table_name, column_name)
Remove the specified column from the specified table with this method.

remove_index(table_name, options = {})
Remove the specified index from the specified table with this method. The index to remove is
specified in the options hash, whose syntax is taken from the add_index method. For example,
to remove the index on the email column you would call

remove_index(:accounts, :email)

Remove a multicolumn index by passing in an Array of symbols for the :column option:

remove_index(:accounts, :column => [:first_name, :last_name])

If the name of the index does not conform to the standard index naming conventions, you
can specify that it should be removed with the :name option:

remove_index(:accounts, :name => "name_index")

rename_column(table_name, column_name, options = {})
Rename the specified column on the specified database table with this method, which raises
a NotEmplementedError by default and must be implemented by the specific database connec-
tion adapters.

rename_table(name, new_name)
With this method, you can rename the specified table to the name of new_name. It raises
a NotEmplementedError by default and must be implemented by the specific database connec-
tion adapters.

structure_dump()
structure_dump returns a string that contains the CREATE TABLE statements needed to re-create
the entire structure of the database.

table_alias_for(table_name)
Return the alias for the table name, truncated to comply with the maximum table name length
of the specific database connection adapter, using this method.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL244

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 244

table_alias_length()
This method will return the maximum possible length of a table alias for this database con-
nection adapter.

Protected Instance Methods
options_include_default?(options)
This internal method checks the supplied options to see if they contain a :default key.

ActiveRecord::ConnectionAdapters::
TableDefinition
Public Class Methods
new(base)
Instantiate a new table definition with the specified base class as the base with this method.

Public Instance Methods
[](name)
Use this method to return a ColumnDefinition for the column with the specified name.

column(name, type, options = {})
This column method instantiates a new column with the specified name for the table, return-
ing the TableDefinition instance on which the column method was called. Valid values for the
type parameter are :primary_key, :string, :text, :integer, :float, :decimal, :datetime,
:timestamp, :time, :date, :binary, and :boolean.

The available options are :limit, :default, :null, :precision, and :scale. None of the
options have a default value.

The :limit option specifies the maximum length for values in the column. This option is
only valid for columns of type :string, :text, :binary, and :integer.

The :default option specifies the default value of this database column. Specifying
:default => nil will result in a default of NULL.

The :null option, either true or false, specifies whether NULL values should be allowed in
this database column.

The :precision option specifies the precision of the database column. This option is only
valid for columns of type :decimal.

The :scale option specifies the scale of the database column values. This option is only
valid for columns of type :decimal.

The SQL standard declares that the default scale for a decimal column should be zero and
that scale should be less than or equal to the precision. However, the standard makes no require-
ments for precision. In addition, you should note the following points regarding columns of type
:decimal for various database implementations.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 245

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 245

• MySQL: The valid values for decimal precision in MySQL are 1 to 63, and the valid val-
ues for decimal scale are 0 to 30. The default scale is 10, and the default precision is 0.

• PostgreSQL: The valid values for decimal precision in PostgreSQL are 1 to infinity, and
the valid values for decimal scale are 0 to infinity. PostgreSQL does not have a default
precision or scale.

• SQLite2: Any precision or scale can be used, as this database stores everything as strings.
SQLite2 does not have a default precision or scale.

• SQLite3: The valid values for decimal precision in SQLite3 are 1 to 16, and there is no
limit on the values for decimal scale. SQLite3 does not have a default precision or scale.

• Oracle: The valid values for decimal precision in Oracle are 1 to 38, and the valid values
for decimal scale are -84 to 127. The default scale is 38, and the default precision is 0.

• DB2: The valid values for decimal precision in DB2 are 1 to 63, and the valid values for
decimal scale are 0 to 62. The default precision is 38, and the default scale is 0.

• Firebird: The valid values for decimal precision in Firebird are 1 to 18, and the valid val-
ues for decimal scale are 0 to 18. The default scale is 9, and the default precision is 0.

• FrontBase: The valid values for decimal precision in FrontBase are 1 to 38, and the valid
values for decimal scale are 0 to 38. The default scale is 38, and the default precision is 0.

• SQL Server: The valid values for decimal precision in SQL Server are 1 to 38, and the
valid values for decimal scale are 0 to 38. The default scale is 38, and the default preci-
sion is 0.

• Sybase: The valid values for decimal precision in Sybase are 1 to 38, and the valid values
for decimal scale are 0 to 38. The default scale is 38, and the default precision is 0.

• OpenBase: The valid values for decimal precision in OpenBase are unspecified.

primary_key(name)
This method adds a new primary key definition to the table; it can be called multiple times.

to_sql()
Returns a String that is the column definitions for the columns in this table concatenated
together. This string and be prepended and appended to generate the final table-creation SQL
statement.

ActiveRecord::Errors
Public Instance Methods
[](attribute)
This method is an alias for on().

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL246

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 246

add(attribute, msg = @@default_error_messages[:invalid])
This method adds an error message to the specified attribute. The error message will be
returned when you call on(attribute) and will ensure that object.errors[:attribute].empty?
returns false. If no message is supplied, the default error message of "invalid" is used.

add_on_blank(attributes, msg = @@default_error_messages[:blank])
This method takes an array of attributes. The specified error message will be added to each of
the blank attributes in the array. If no message is supplied, the default error message of "blank"
is used.

add_on_boundary_breaking(attributes, range, too_long_message =
@@default_error_messages[:too_long], too_short_message =
@@default_error_messages[:too_short])
This method takes an array of attributes. For each of the specified attributes, if the length of
the attribute is longer than the given range, the too_long_message error message will be used.
If the attribute is shorter than the given range, the too_short_message will be used. If either
error message is not supplied, the default error messages will be used. This method is also
aliased as add_on_boundary_breaking().

add_on_boundary_breaking(attributes, range, too_long_message =
@@default_error_messages[:too_long], too_short_message =
@@default_error_messages[:too_short])
This method is an alias for add_on_boundary_breaking().

add_on_empty(attributes, msg = @@default_error_messages[:empty])
This method takes an array of attributes. For each empty attribute in an object, the specified
error message will be added. If no error message is supplied, the default error message for
"empty" will be used.

add_to_base(msg)
Use this method to add the specified error message to the actual Active Record object instance
instead of to any particular attribute. These messages do not get prepended with any attribute
name when iterating the errors with each_full(), so the error messages should be a complete
sentence.

clear()
clear removes all of the errors that have been added to this object.

count()
This method is an alias for size().

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 247

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 247

each() { |attribute, msg| . . . }
each yields each attribute and error message.

each_full() { |msg| . . . }
each_full yields each error message for all of the attributes on the object.

empty?()
This method returns true if there are no errors on the object.

full_messages()
This method returns the full error messages (as returned by each_full) in an Array.

invalid?(attribute)
This method returns true if the specified attribute has had any errors added for it.

length()
This method is an alias for size().

on(attribute)
This method returns the error, or errors, that have been added for the specified attribute. If no
errors have been added, nil will be returned. If only one error has been added, a String will be
returned. If more than one error has been added, an Array of the errors will be returned. This
method is also aliased as [].

on_base()
on_base returns the error, or errors, that have been added directly on the Active Record class
(as opposed to onto a specific attribute). If no errors have been added, nil will be returned. If
only one error has been added, a String will be returned. If more than one error has been
added, an Array of the errors will be returned.

size()
size returns the number of errors that have been added to the specified Active Record object,
which includes all of the individual errors on each attribute, as well as errors added directly to
object itself. This method is also aliased as length() and count().

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL248

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 248

ActiveRecord::Migration
Public Class Methods
announce(message)
By default, migrations log what they are doing and the amount of time it takes to run them to
the console. You can add your own messages to the console with this method.

method_missing(method, *arguments, &block)
This class method overrides method_missing() as a mechanism for performing actions on the
many different types of databases that Active Record migrations will run. There should be no
need for you to call this method during standard operation.

migrate(direction)
This method executes a migration in the specified direction. Valid directions are :up and :down.

say(message, subitem = false)
By default, migrations log what they are doing and the amount of time it takes to run them to
the console. You can add your own messages to the console with this method. This method for-
mats its messages beginning with -- (or -> for subitems), which is different than announce(). If
subitem is true, the message will have additional formatting to indent the message on the
console.

say_with_time(message) { || . . . }
By default, migrations log what they are doing and the amount of time it takes the console to
run them. You can add your own messages to the console with this method. This method for-
mats its messages beginning with --, which is different than announce(), and will also call
benchmark for each of the statements contained within the given block.

suppress_messages() { || . . . }
By default, migrations log what they are doing and the amount of time it takes the console to
run them. This method will suppress this logging for all statements contained within the given
block.

write(text="")
This is the method used by announce(), say(), and say_with_time() to output text to the con-
sole. The given text will only be written to the console if ActiveRecord::Migration.verbose
is true.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 249

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 249

ActiveRecord::Observer
Public Class Methods
new()
This new method instantiates this observer class, starting the observation of the declared
classes and their subclasses.

observe(*models)
Attach the observer to the specified Active Record model classes with this method.

observed_class()
This method returns the class observed by this observer. The class observed by default is
determined by the class name of the observer class. For example, the AccountObserver class
will observe the Account class, and the EmailObserver class will observe the Email class.

Protected Instance Methods
add_observer!(klass)
This method adds the observer class as an observer to the class specified with klass.

observed_classes()
This one returns the classes that are currently observed by this observer.

observed_subclasses()
And this method returns the subclasses that are currently observed by this observer.

ActiveRecord::Observing::ClassMethods
Public Instance Methods
instantiate_observers()
Instantiate all of the global Active Record observers using this method.

observers()
Returns the current Active Record observers with observers.

observers=(*observers)
Set the Active Record observers and activate them with this method. However, the assigned
observers are not instantiated by this method, rather instantiate_observers() is called dur-
ing Active Record startup and before each request when running in development mode.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL250

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 250

Protected Instance Methods
inherited(subclass)
This method notifies all of the observers of this class that the class has been subclassed. The
notification sent is :observed_class_inherited.

ActiveRecord::Reflection::ClassMethods
Public Instance Methods
create_reflection(macro, name, options, active_record)
Creates a new reflection, that is, either an AssociationReflection or an AggregateReflection
depending on the macro specified. An AssociationReflection will be created when macro is
:has_many, :belongs_to, :has_one, or :has_and_belongs_to_many. An AggregateReflection will
be created when the macro specified is :composed_of.

reflect_on_aggregation(aggregation)
Return the AggregateReflection object for the named reflection specified by aggregation with
this method.

reflect_on_all_aggregations()
This method returns an Array of all the AggregateReflection objects for the aggregations in
the class.

reflect_on_all_associations(macro = nil)
With this method, you can return an Array of all the AssociationReflection objects for the
associations in this class. If you only want the associations of a specific type, specify its symbol
in a macro. The valid types are :has_many, :belongs_to, :has_one, or :has_and_belongs_to_many.

reflect_on_association(association)
Return the AssociationReflection object for the named reflection specified by association
with this method.

reflections()
Use this method to return a Hash containing all of the AssociationReflection and
AggregateReflection objects for the class.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 251

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 251

ActiveRecord::Reflection::MacroReflection
Public Class Methods
new(macro, name, options, active_record)
This new method creates a new reflection class with the given macro, name, and options.

class_name()
Return the class name of this reflection class with this item.

klass()
klass returns the class for the reflection.

macro()
macro returns the name of the macro that this reflection represents. For example, this method
would return :has_many for the association has_many :accounts.

name()
Returns the name that was specified for the aggregate or association reflection. For example,
this method returns :accounts for the association has_many :accounts.

options()
Return the hash of options that were used for the association or aggregation with the options
method. For example, this method would return { :conditions => "active = 1" } for the
association has_many :accounts, :conditions => "active = 1".

ActiveRecord::Schema
Public Class Methods
define(info = {}, &block)
This method allows you to define a database schema in a portable Domain Specific Language
(DSL) within the given block. All methods available to the current connection adapter are
available within the block, allowing you to call create_table, add_index, and so forth.

The optional info hash allows you to pass in additional metadata for the schema, such as
the schema’s version number.

ActiveRecord::Schema is very similar to the migrations class and, as such, is only available
when using a database connection adapter that supports migrations.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL252

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 252

ActiveRecord::Transactions::ClassMethods
Public Instance Methods
transaction(*objects, &block)
This method executes all of the statements in the given block within an atomic action. An
atomic action is a group of operations that all must succeed in order for the action to be com-
pleted. If one of the statements in the block fails (throws an exception), none of the statements
will take effect.

For example, when a user creates a new account in our computer system, their old
account is deleted; if we do not want to delete the previous account unless the creation of the
new account succeeds, we might wrap these two actions in a transaction, to ensure that they
are atomic:

old_account = Account.find(1)
Account.transaction do
new_account = Account.create(:last_name => old_account.last_name,

:first_name => old_account.first_name)
old_account.destroy()

end

In the preceding example, if either of the statements raises an exception, ROLLBACK will be
called on the database. Rollbacks return the database to the state it was in before the transac-
tion began. You should be aware that, by default, Active Record objects will not have their
instance data returned to the state it was in before the transaction began. In order to return
the instance data its pretransaction state, you must explicitly pass the objects as arguments to
the transaction method, for example:

account = Account.find(1)
account2 = Account.find(2)
Account.transaction(account, account2) do
account.site_id = account2.site_id
account2.destroy()

end

Both ActiveRecord::Base.save() and ActiveRecord::Base.destroy() are already wrapped
in a transaction to ensure that the entire save or destroy action, including callbacks and vali-
dations, will be atomic. Therefore, you can take advantage of this fact in your callbacks and
validations and raise exceptions to cause the entire save or destroy action to be rolled back.

The exceptions thrown by a statement in a transaction continue to propagate. Therefore,
it is likely that you will want to specifically handle the transactions as well.

Another important point regarding transactions is that they are only valid on a single
database connection. Therefore, if you have multiple database connections that are class spe-
cific, the transaction will not protect the individual statements of each record. A workaround
for this problem is to nest the transactions. For example, if we are using a different database to
store our Site objects than our Account objects, we would need to nest a transaction that
involved both objects:

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 253

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 253

account = Account.find(1)
Site.transaction do
Account.transaction do
new_site = Site.create(:name => "New Site")
account.site_id = new_site.id

end
end

Please note that this is a generally poor solution, but fully distributed transactions are
outside of the scope of Active Record.

ActiveRecord::Validations
Public Instance Methods
errors()
This method returns the Errors object associated with the Active Record object. Each Active
Record object has an Errors object automatically assigned to it.

save_with_validation(perform_validation = true)
This method causes the Active Record object to be saved, but it first runs all of the validations
of the object. This method returns false if there are validation errors. This method overrides
the default ActiveRecord::Base.save() method when the Validations module is mixed in,
which is the default behavior of Active Record.

save_with_validation!()
This method causes the Active Record object to be saved, but it first runs all of the validations
of the object. If the save fails, the RecordInvalid exception is raised. This method overrides the
default ActiveRecord::Base.save!() method when the Validations module is mixed in, which
is the default behavior of Active Record.

update_attribute_with_validation_skipping(name, value)
This method updates the specified attribute with the specified value and saves the record.
However, when the attribute is saved, the object validations are not run, allowing the
attribute to be saved even if the full object is not valid. This method overrides the default
ActiveRecord::Base.update_attributes method when the Validations module is mixed
in, which is the default behavior of Active Record.

valid?()
valid? runs validate and validate_on_create or validate_on_update. It returns true if no
errors were detected and false if there were validation errors.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL254

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 254

Protected Instance Methods
validate()
This method is run for all saves (both create and update). Override this method in your class
to provide validations, and use errors.add(attribute, msg) to register validation errors.
ActiveRecord::Validations::ClassMethods contains several higher level validation helper
methods.

validate_on_create()
This method is run on a save action for an Active Record object when the object has not yet
been saved to the database. Override this method in your class to provide validations, and use
errors.add(attribute, msg) to register validation errors. ActiveRecord::Validations::
ClassMethods contains several higher level validation helper methods.

validate_on_update()
This method is run for all saves where the Active Record object already has been saved and
has a corresponding record in the database table. Override this method in your class to
provide validations, and use errors.add(attribute, msg) to register validation errors.
ActiveRecord::Validations::ClassMethods contains several higher level validation helper
methods.

ActiveRecord::Validations::ClassMethods
Public Instance Methods
condition_block?(condition)
This method returns true if the supplied block responds to call and has an arity of 1 or -1.

create!(attribute = nil)
The create! method instantiates the Active Record class with the values specified in the attributes
hash and immediately saves it, if validations permit, just like ActiveRecord::Base.create. How-
ever, this method calls save! so that an exception is raised if the record is not able to be saved.

evaluate_condition(condition, record)
Use this method to determine, based on the given condition, whether or not to validate the
given record. This method is used by the validate_each method.

validate(*methods, &block)
The validate method is overridden in an Active Record class and is called each time a record
of that class is created or saved. In the example Account class that follows, each time the
Account class is saved or created, the first_name and last_name attributes will be checked to
make sure they are not empty:

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 255

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 255

class Account < ActiveRecord::Base
protected
def validate
errors.add_on_empty %w(first_name last_name)

end
end

Additionally, it is possible to supply validation method names with the nonblock form of
this method:

class Account < ActiveRecord::Base
protected
validate :check_names

def check_names
errors.add_on_empty %w(first_name last_name)

end
end

For more information regarding validations, see Chapter 4.

validate_on_create(*methods, &block)
The validate_on_create method is overridden in an Active Record class and is called only
before a record of that class is created. In the example Account class that follows, each time the
Account class is saved or created, the first_name and last_name attributes will be checked to
make sure they are not empty:

class Account < ActiveRecord::Base
protected
def validate_on_create
errors.add_on_empty %w(first_name last_name)

end
end

Additionally, it is possible to supply validation method names with the nonblock form of
this method:

class Account < ActiveRecord::Base
protected
validate_on_create :check_names

def check_names
errors.add_on_empty %w(first_name last_name)

end
end

For more information regarding validations, see Chapter 4.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL256

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 256

validate_on_update(*methods, &block)
The validate_on_update method is overridden in an Active Record class and is called only
before an existing record of that class is saved. In the example Account class that follows, each
time an existing Account record is saved, the first_name and last_name attributes will be
checked to make sure they are not empty:

class Account < ActiveRecord::Base
protected
def validate_on_update
errors.add_on_empty %w(first_name last_name)

end
end

Additionally, it is possible to supply validation method names with the nonblock form of
this method:

class Account < ActiveRecord::Base
protected
validate_on_update :check_names

def check_names
errors.add_on_empty %w(first_name last_name)

end
end

For more information regarding validations, see Chapter 4.

validates_acceptance_of(*attribute_names)
This method is used to validate that an attribute value when you do not want to store the
attribute as an actual column in the database. This would typically be used for an acceptance
of terms check box on a web page.

class Account < ActiveRecord::Base
validates_acceptance_of :terms_of_service

end

The preceding class definition adds a virtual terms_of_service attribute to the Account
class. The terms_of_service attribute is not represented by a column in the database.

In addition to the virtual attributes to create, this method takes the configuration options
of :message, :on, :accept, or :if.

The :message option provides a custom error message. The default error message is "must
be accepted":

validates_acceptance_of :terms_of_service, :message => "must be verified"

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_acceptance_of :terms_of_service, :on => :create

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 257

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 257

The :accept option specifies exactly what value should be considered as an indication of
acceptance. The default is the string "1", which makes it easy to use with an HTML check box.

validates_acceptance_of :terms_of_service, :accept => true

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all.

validates_acceptance_of :terms_of_service, :if => :check_acceptance
validates_acceptance_of :terms_of_service, :if => "check_acceptance"
validates_acceptance_of :terms_of_service, :if => Proc.new {|a| a.create_step == 2 }

For more information regarding validations, see Chapter 4.

validates_associated(*attribute_names)
This method validates whether the associated object or objects specified also successfully val-
idate. This method will work for any type of association. But, be careful of infinitely recursive
validations on bidirectional associations.

class Account < ActiveRecord::Base
validates_associated :site

end

Also, you should note that this validation will not fail if the association has not yet been
set (if it is nil or empty). If you wish to validate that the attribute is both present and valid, you
need to also use validates_presence_of.

In addition to the association attributes to validate, this method takes the configuration
options of :on and :if.

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_associated :site, :on => :create

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_associated :site, :if => :check_site
validates_associated :site, :if => "check_site"
validates_associated :site, :if => Proc.new {|a| a.create_step == 2 }

For more information regarding validations, see Chapter 4.

validates_confirmation_of(*attribute_names)
This method is used to validate that a virtual attribute matches the value of a real attribute,
such as dual e-mail or password entry boxes on a web form.

validates_confirmation_of :email_address

In the preceding example, email_address is an actual database-backed attribute. A new
virtual attribute that is not represented by a column in the database is created named
email_address_confirmation.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL258

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 258

In addition to the attributes to validate the confirmation, this method takes the configuration
options of :message, :on, and :if.

The :message option provides a custom error message. The default error message is
"doesn't match confirmation".

validates_confirmation_of :email_address, :message => "does not match"

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_confirmation_of :email_address, :on => :create

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_confirmation_of :email_address, :if => :check_email
validates_confirmation_of :email_address, :if => "check_email"
validates_confirmation_of :email_address, :if => Proc.new {|a| a.create_step == 2 }

For more information regarding validations, see Chapter 4.

validates_each(*attribute_names) { |record, attribute, value| . . . }
This method validates each of the specified attributes against the specified block:

class Account < ActiveRecord::Base
validates_each(:first_name, :last_name) do |record, attribute, value|
record.errors.add(attribute, "is Chad") if value == "Chad"

end
end

In addition to the attributes to validate, this method takes the configuration options of
:on, :allow_nil, and :if.

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

class Account < ActiveRecord::Base
validates_each(:first_name, :last_name, :on => :create) do |record, attr, value|
record.errors.add(attr, "is Chad") if value == "Chad"

end
end

The :allow_nil option, if true, specifies that that the validation should be skipped if the
attribute is nil:

class Account < ActiveRecord::Base
validates_each(:first_name, :last_name, :allow_nil => true) do |record, attr, value|
record.errors.add(attr, "is Chad") if value == "Chad"

end
end

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 259

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 259

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

class Account < ActiveRecord::Base
validates_each(:first_name,

:last_name,
:if => :check_each) do |record, attr, value|

record.errors.add(attr, "is Chad") if value == "Chad"
end

end

class Account < ActiveRecord::Base
validates_each(:first_name,

:last_name,
:if => "check_each") do |record, attr, value|

record.errors.add(attr, "is Chad") if value == "Chad"
end

end

class Account < ActiveRecord::Base
validates_each(:first_name,

:last_name,
:if => Proc.new {|a| a.create_step == 2 }) do |record, attr, value|

record.errors.add(attr, "is Chad") if value == "Chad"
end

end

For more information regarding validations, see Chapter 4.

validates_exclusion_of(*attribute_names)
This method adds errors to the specified attributes if the attributes values appear in the speci-
fied enumerable object:

class Account < ActiveRecord::Base
validates_exclusion_of(:first_name, :in => %w(Chad Jon Kevin))

end

In addition to the attributes to validate, this method takes the configuration options of
:in, :message, :allow_nil, and :if.

The :in option specifies an enumerable object against which the attribute values should
be checked:

validates_exclusion_of(:first_name, :in => %w(Chad Jon Kevin))

The :message option provides a custom error message. The default error message is "is
reserved".

validates_exclusion_of(:first_name, :in => %w(Chad Jon Kevin), :message => "cannot
be one of the authors' names")

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL260

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 260

The :allow_nil option, if true, specifies that that the validation should be skipped if the
attribute is nil:

validates_exclusion_of(:first_name, :in => %w(Chad Jon Kevin), :allow_nil => true)

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_exclusion_of(:first_name, :in => %w(Chad Jon Kevin), :if => :check_name)
validates_exclusion_of(:first_name, :in => %w(Chad Jon Kevin), :if => "check_name")
validates_exclusion_of(:first_name,

:in => %w(Chad Jon Kevin),
:if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

validates_format_of(*attribute_names)
This validation method matches each attribute against a specified regular expression, adding
errors to the attributes if they do not match the given regular expression:

class Account < ActiveRecord::Base
validates_format_of(:first_name, :with => /^chad$/i)

end

In addition to the attributes to validate, this method takes the configuration options of
:with, :message, :on, and :if.

The :with option specifies the regular expression against which the attribute values
should be checked:

validates_format_of(:first_name, :with => /^chad$/i)

The :message option provides a custom error message. The default error message is "is
invalid".

validates_format_of(:first_name, :with => /^chad$/i, :message => "is not correct")

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_format_of(:first_name, :with => /^chad$/i, :on => :create)

The :if option specifies a method, proc, or string that is called in order to determine whether
the validation should occur at all:

validates_format_of(:first_name, :with => /^chad$/i, :if => :check_name)
validates_format_of(:first_name, :with => /^chad$/i, :if => "check_name")
validates_format_of(:first_name,

:with => /^chad$/i,
:if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 261

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 261

validates_inclusion_of(*attribute_names)
This method adds errors to the specified attributes if the attribute’s values do not appear in
the specified enumerable object:

class Account < ActiveRecord::Base
validates_inclusion_of(:first_name, :in => %w(Chad Jon Kevin))

end

In addition to the attributes to validate, this method takes the configuration options of
:in, :message, :allow_nil, and :if.

The :in option specifies an enumerable object against which the attribute values should
be checked:

validates_inclusion_of(:first_name, :in => %w(Chad Jon Kevin))

The :message option provides a custom error message. The default error message is "is
not included in the list".

validates_inclusion_of(:first_name,
:in => %w(Chad Jon Kevin),
:message => "must be one of the authors' names")

The :allow_nil option, if true, specifies that that the validation should be skipped if the
attribute is nil:

validates_inclusion_of(:first_name, :in => %w(Chad Jon Kevin), :allow_nil => true)

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_inclusion_of(:first_name, :in => %w(Chad Jon Kevin), :if => :check_name)
validates_inclusion_of(:first_name, :in => %w(Chad Jon Kevin), :if => "check_name")
validates_inclusion_of(:first_name,

:in => %w(Chad Jon Kevin),
:if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

validates_length_of(*attribute_names)
This method adds errors to the specified attributes if the attribute’s values do not match the
specified restrictions on length:

class Account < ActiveRecord::Base
validates_length_of :first_name, :maximum => 30

end

The validates_length_of method takes only one length-check operation. Valid operations
are :minimum, :maximum, :is, :within, and :in.

The :minimum operation checks whether the attribute is longer than the specified minimum
length. Either :message or :too_short can be used to customize the error message when this
check is used. The default is "is too short (minimum is %d characters)".

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL262

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 262

validates_length_of(:first_name, :minimum => 5, :message => "is too short")

The :maximum operation checks whether the attribute is shorter than the specified maxi-
mum length. Either :message or :too_long can be used to customize the error message when
this check is used. The default is "is too long (maximum is %d characters)".

validates_length_of(:first_name, :maximum => 35, :message => "is just too long")

The :is operation checks whether the length of the attribute exactly matches the speci-
fied length. Either :message or :wrong_length can be used to customize the error message
when this check is used. The default is "is the wrong length (should be %d characters)".

validates_length_of(:first_name,
:is => 35,
:message => "must be exactly 35 characters long")

The :within operation checks whether the length of the attribute falls within the specified
range. The options :too_long and :too_short should be used to customize the error messages
when this check is used. The defaults are "is too long (maximum of %d characters)" and "is
too short (minimum of %d characters)", respectively.

validates_length_of(:first_name,
:within => 5...35,
:too_short => "is too short",
:too_long => "is too long")

The other valid configuration options for this method are :on, :allow_nil, and :if.
The :on option specifies for what methods this validation should be active. Valid options

are :save, :create, and :update. The default value is :save.

validates_length_of(:first_name, :maximum => 35, :on => :create)

The :allow_nil option, if true, specifies that that the validation should be skipped if the
attribute is nil:

validates_length_of(:first_name, :maximum => 35, :allow_nil => true)

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_length_of(:first_name, :maximum => 35, :if => :check_name)
validates_length_of(:first_name, :maximum => 35, :if => "check_name")
validates_length_of(:first_name,

:maximum => 35,
:if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

validates_numericality_of(*attribute_names)
This method adds errors to the specified attributes if the value of the attribute is not numeric.
By default, this is done by attempting to convert it to a float with Kernel.Float, but this can be
overridden with the :only_integer options.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 263

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 263

class Account < ActiveRecord::Base
validates_numericality_of :value

end

In addition to the attributes to validate, this method takes the configuration options of
:only_integer, :on, :message, :allow_nil, and :if.

The :only_integer option specifies that we are only looking for integers, not floats. The
default is :only_integer => false. When this option is used, the attribute value is matched
against the regular expression /^[+\-]?\d+$/ instead of using Kernel.Float.

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_numericality_of(:value, :on => :create)

The :message option provides a custom error message. The default error message is "is
not a number".

validates_numericality_of(:value, :message => "must be a number")

The :allow_nil option, if true, specifies that the validation should be skipped if the
attribute is nil:

validates_numericality_of(:value, :allow_nil => true)

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_numericality_of(:value, :if => :check_value)
validates_numericality_of(:value, :if => "check_value")
validates_numericality_of(:value, :if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

validates_presence_of(*attribute_names)
This validation method adds errors to the specified attributes whose values are blank:

class Account < ActiveRecord::Base
validates_presence_of :first_name

end

For association attributes, it is important to validate the presence of the foreign key, not
the object itself:

validates_presence_of :site # Incorrect
validates_presence_of :site_id # Correct

In addition to the attributes to validate, this method takes the configuration options of
:on, :message, and :if.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL264

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 264

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_presence_of(:first_name, :on => :create)

The :message option provides a custom error message. The default error message is
"can't be blank".

validates_presence_of(:first_name, :message => "must be provided")

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_presence_of(:first_name, :if => :check_first_name)
validates_presence_of(:first_name, :if => "check_first_name")
validates_presence_of(:first_name, :if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

validates_size_of(*attribute_names)
This method is an alias for validates_length_of. For more information regarding validations,
see Chapter 4.

validates_uniqueness_of(*attribute_names)
Use this method to add errors to the specified attributes if the attribute value is not unique in
the database table. This can be useful, for example, for ensuring that each account has a unique
username.

class Account < ActiveRecord::Base
validates_uniqueness_of :username

end

In addition to the attributes to validate, this method takes the configuration options of
:scope, :on, :message, and :if.

The :scope option indicates one or more database columns that should be used to limit
the scope of the uniqueness check. For instance, if you wanted usernames to be unique only
on a site-by-site basis, you could use this line:

validates_uniqueness_of :username, :scope => :site_id

The :on option specifies for what methods this validation should be active. Valid options
are :save, :create, and :update. The default value is :save.

validates_uniqueness_of(:username, :on => :create)

The :message option provides a custom error message. The default error message is “has
already been taken".

validates_uniqueness_of(:username, :message => "must be unique")

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL 265

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 265

The :if option specifies a method, proc, or string that is called in order to determine
whether the validation should occur at all:

validates_uniqueness_of(:username, :if => :check_username)
validates_uniqueness_of(:username, :if => "check_username")
validates_uniqueness_of(:username, :if => Proc.new {|a| a.create_step == 2 })

For more information regarding validations, see Chapter 4.

APPENDIX ■ ACTIVE RECORD METHODS IN DETAIL266

8474_chAppAFINAL.qxd 8/25/07 9:17 AM Page 266

Symbols
* (asterisk), 30
[]==(attribute_name, new_value), 215, 225
[](attribute), 246
[](attribute_name), 215, 225
[](name), 245
~:as attribute, 78–79
==(object_to_compare), 215, 225

A
abstract_adapter.rb file, 191
abstract_class?(), 215
:accept option, 85
Account class, 3, 19, 22, 40, 146, 182
Account model, 165, 176, 204
account objects, 3, 65
Account record, 92
Account table, 60, 167
Account_fullname attribute, 63
account_id primary key, 165, 171
account_id table, 167
account_id type, 128
Account_initialized attribute, 64
Account_lastsaved attribute, 65
account_name value, 83, 129
account_number primary key, 21
account_password field, 107
Account_updated attribute, 65
account_updated field, 64, 66
Account_Username attribute, 6
Account_Username field, 6, 107
account_username table, 43
Account.find method, 157
AccountObserver class, 91
Accounts class, 21
accounts table, 167
accounts.yml file, 140, 184
account.yml file, 141
Action Controller library, 194
ActionView::Helpers::DateHelper#date_selec

t helper method, 152
active?(), 235
Active Record Schema, 46
Active Server Pages (ASP), 44
active_record/deprecated_finders library,

189
active_record.rb file, 188

Active Record, 1
advantages of, 7
alternatives to, 196–201

ActiveRelation, 199
Active Resource, 200–201
Database Interface (DBI), 196
database-specific libraries, 199–200
ObjectGraph (Og), 197–199

associations, 69–80
callbacks, 59–69
create, read, update, and delete (CRUD)

database transactions, 4
debugging, 153–160

benchmarking, 159–160
logging, 153–158

development of, 2
error methods, 144–153
establishing connections to databases,

10–16
DB2, 11
Firebird, 11–12
FrontBase, 12
learning more, 16–17
MySQL, 12–13
OpenBase, 13–14
Oracle, 14
PostgreSQL, 14–15
SQL Server, 15–16
SQLite, 15
Sybase, 16

extending, 109–123
adding class methods, 120–123
column_names array, 116–117
metaprogramming, 110–112
method_missing method, 112–115
retrieving association names, 117–119

frequently asked questions, 201–214
future of, 192–195

Active Resource, 194
enterprise-level functionality, 192–193
feedback, 195
minor changes, 193
plug-ins, 193–194
use as database ORM layer, 195

getting help, 214
installing, 8–10

additional libraries, 9–10
gems, 8–10

Index

267

8474IDX.qxd 8/24/07 6:43 PM Page 267

localization, 204
model, view, controller (MVC) framework, 4
object relational mapping (ORM) concept,

2–3
objects, 5–6
overview, 1–2
Ruby code, 5
source code, 187–191

abstract_adapter.rb file, 191
active_record.rb file, 188
base.rb file, 189–191
connection_specification.rb file, 191
finding, 188

unit testing, 125–144
assertion methods, 129–139
fixtures, 139–144
reasons for, 126–127
writing tests, 127–129

validations, 80–88
writing programs, 18–24

assumptions, 19–20
coding conventions, 19–20
overriding assumptions, 20–21
relationships among objects, 22–24
retrieving objects from databases, 21–22

ActiveRecord::Base class, 109, 145, 164–165,
167, 169, 175

ActiveRecord::Base#reflect_on_all_associatio
ns method, 117

ActiveRecord::Base#save argument, 122
ActiveRecord::Base.connection.select_all

statement, 176
ActiveRecord::Base.create call, 64
ActiveRecord::Base.delete statement, 68
ActiveRecord::Base.delete_all statement, 68
ActiveRecord::Base.destroy statement, 68
ActiveRecord::Base.destroy_all statement, 68
ActiveRecord::Base.establish_connection

method, 10, 47
ActiveRecord::Base.find class, 110, 112
ActiveRecord::Base.find operation, 63
ActiveRecord::Base.observers method, 91
ActiveRecord::Base.save method, 6, 64–65, 67
ActiveRecord::Base.update statement, 65
ActiveRecordError class, 144, 145
ActiveRecord::Error object, 80, 82
ActiveRecord::RecordNotFound error, 132
ActiveRecord::Schema class, 46
ActiveRecord::Schema format, 169
ActiveRecord::SchemaDumper class, 46, 50
ActiveRecord::StaleObjectError exception, 41
ActiveRecord::Validations.validate statement, 66
ActiveRecord::Validations.validate_on_create

statement, 67
ActiveRelation, 199
Active Resource, 194, 200–201
acts_as features, 92

acts_as_* method, 92
acts_as_list method, 93–97

adding, 94–95
decrement_position method, 97
defining integer columns used for sorting

lists, 94
first? method, 97
higher_item method, 97
increment_position method, 96–97
insert_at(value), 95
insert_at(value) method, 95
last? method, 97
lower_item method, 97
move_higher method, 96
move_lower method, 95
move_to_bottom method, 96
move_to_top method, 96
remove_from_list method, 96
setting up associations, 93

acts_as_nested-set method, 93, 101–105
add_child method, 104
all_children method, 105
before_destroy method, 105
child? method, 104
children_count method, 104
defining, 101–103

left_column parameter, 102
parent_column parameter, 102
right_column parameter, 102
scope parameter, 102–103

defining foreign keys, 101
direct_children method, 105
full_set method, 105
root? method, 104
unknown? method, 104

acts_as_tree method, 93, 97–101, 123
ancestors method, 100
defining, 98–99
root method, 100
siblings method, 100–101

adapter parameter, 11–16
adapter_name(), 235
AdapterNotFound error, 148
AdapterNotSpecified error, 147
adapters, 10–16

DB2, 11
Firebird, 11–12
FrontBase, 12
MySQL, 12–13
OpenBase, 13–14
Oracle, 14
PostgreSQL, 14–15
SQL Server, 15–16
SQLite, 15
Sybase, 16

add_child method, 104
add_column method, 52–54

■INDEX268

8474IDX.qxd 8/24/07 6:43 PM Page 268

add_column(table_name, column_name,
type, options = {}), 241

add_index method, 54
add_index(table_name, column_name,

options = {}), 241–242
add_limit_offset!(sql, options), 238
add_limit!(sql, options), 238
add_lock!(sql, options), 238
add_observer!(klass), 250
add_on_blank(attributes, msg =

@@default_error_messages[:blank]),
247

add_on_empty(attributes, msg =
@@default_error_messages[:empty]),
247

add_order_by_for_association_limiting!(sql,
options), 242

add_to_base(msg), 247
add(attribute, msg =

@@default_error_messages[:invalid])
, 247

ADO directory, 10
ADO.rb file, 10
after_create(), 233
after_create method, 65
after_destroy(), 233
after_destroy method, 68–69
after_find method, 63
after_initialize method, 64
after_save(), 233
after_save method, 64–65
after_update(), 233
after_update method, 66
after_validation(), 233
after_validation method, 66–67
after_validation_on_create(), 233
after_validation_on_create method, 67
after_validation_on_update(), 234
after_validation_on_update method, 68
aggregations, 105–109

composed_of method, 106–107
class_name parameter, 107
mapping parameter, 107
names of value objects, 106

defining value objects, 107–108
using, 108–109

aid_seq sequence, 173
alias_method call, 111
:all control, 27
all_children method, 105
allow_concurrency attribute, 168–169
allow_concurrency parameter, PostgreSQL,

15
:allow_nil option, 84, 86
ALTER TABLE statements, 50
ancestors method, 99, 100
announce(message), 249

ar_hello_world.rb file, 110
Array form, 28
:as option, 78
ASP (Active Server Pages), 44
assert method, 129–130
assert_equal method, 131
assert_in_delta method, 132
assert_instance_of method, 133
assert_kind_of method, 134
assert_match method, 135
assert_nil method, 130
assert_no_match method, 135
assert_not_nil method, 131
assert_not_same method, 136
assert_nothing_raised method, 133
assert_operator method, 136–137
assert_raise method, 132–133
assert_raised method, 133
assert_respond_to method, 134
assert_same method, 135–136
assert_send method, 138
assert_throws method, 137–138
assertion methods, 129–139

assert, 129–130
assert_equal, 131
assert_in_delta, 132
assert_instance_of, 133
assert_kind_of, 134
assert_match, 135
assert_nil, 130
assert_no_match, 135
assert_not_nil, 131
assert_not_same, 136
assert_nothing_raised, 133
assert_operator, 136–137
assert_raise, 132–133
assert_respond_to, 134
assert_same, 135–136
assert_send, 138
assert_throws, 137–138
flunk, 138–139

:association_foriegn_key attribute, 79
AssociationReflection object, 117
associations, 59, 69–80

example of, 69–70
modifiers, 76–79

:as, 78–79
:association_foriegn_key, 79
:class_name, 77
:dependent, 79
finder options, 77
:foreign_key, 77
:join_table, 79
:polymorphic, 78–79
:through, 78

overview, 69
setting up, 93

■INDEX 269

Find it faster at http://superindex.apress.com
/

8474IDX.qxd 8/24/07 6:43 PM Page 269

types of, 70–76
belongs_to, 70–71
has_and_belongs_to_many, 74–75
has_many, 71–72
has_many:through, 75–76
has_one, 72–73

AssociationTypeMismatch error, 146–147
assumptions, 19–20
asterisk (*), 30
attr_accessible(*attributes), 215
attr_accessor class method, 120
attr_protected(*attributes), 216
attribute_names(), 225
attribute_present?(attribute), 225
AttributeAssignmentError error, 152
attributes, 6
attributes method, 152
attributes_before_type_cast(), 226
attributes_before_type_cast method, 213
attributes=(new_attributes), 226
attributes(options = nil), 225–226
Audit class, 122
auditing_columns method, 122
audits class method, 122
audits method, 121
autocommit parameter, 16, 180
average(column_name, options = {}), 231
:awesome symbol, 137

B
balance field, 106
Base class, 144, 154, 189
base_class(), 216
base64 library, 189
Base.establish_connection method, 191
base.rb file, 189–191
before_create(), 234
before_create method, 65, 205
before_destroy(), 234
before_destroy callback, 79
before_destroy method, 68, 105
before_save(), 234
before_save method, 64
before_update(), 234
before_update method, 65–66
before_validation(), 234
before_validation method, 66
before_validation_on_create(), 234
before_validation_on_create method, 67
before_validation_on_update(), 234–235
before_validation_on_update method, 67–68
BEGIN statement, 38
begin_db_transaction(), 238
belongs_to association, 70, 71, 213
belongs_to method, 22, 78, 93
belongs_to relationship, 70–71
benchmark method, 159

benchmarking, 159–160, 190
benchmark(title, log_level = Logger::DEBUG,

use_silence = true) {|| . . .}, 216
between clause, 101
BigDecimal class, 206
:binary type, 181
binary_to_string(value), 236
BLOB data type, 16
boolean attribute, 20
Boolean data types, 44
Boolean type, 181
Builder class, 182
building programs, 18–24

assumptions, 19–20
coding conventions, 19–20
objects

relationships among, 22–24
retrieving from databases, 21–22

by_other_artist method, 108

C
calculate(operation, column_name, options

= {}), 231–232
callbacks, 59–69

callback macros, 61–63
implementing, 60
overview, 59–60
types of, 63–69

after_create, 65
after_destroy, 68–69
after_find, 63
after_initialize, 64
after_save, 64–65
after_update, 66
after_validation, 66–67
after_validation_on_create, 67
after_validation_on_update, 68
before_create, 65
before_destroy, 68
before_save, 64
before_update, 65–66
before_validation, 66
before_validation_on_create, 67
before_validation_on_update, 67–68

cattr_accessor method, 63, 190
change_column method, 54
change_column_default(table_name,

column_name, default), 242
change_column(table_name, column_name,

type, options = {}), 242
char type, 181
chars accessor, 204
charset parameter, 12
child? method, 104
:children option, 36
children_count column, 99
children_count method, 104

■INDEX270

8474IDX.qxd 8/24/07 6:43 PM Page 270

class methods, 120, 123
class_name(), 252
:class_name attribute, 77
class_name option, 77
class_name parameter, 107
class_of_active_record_descendant(klass),

224
ClassMethods module, 121
clear(), 247
clear_active_connections!(), 216
CLOB data type, 16
clone(), 226
colorize_logging attribute, 167
column method, 52
Column objects, 114
column parameter, 94
column_for_attribute(attribute_name), 226
column_names(), 216
column_names array, 116–117
column(name, type, options = {}), 245–246
columns(), 216
columns

adding security to, 213
changing, 53–54
enum, 213
foreign key, defining, 98
indexing, 54–55
integer, defining, 94
naming, 212
removing, 53–54

columns_hash(), 216
columns(table_name, name = nil), 242
comma separated value (CSV) format,

142–143, 185–186
comment association, 77
Comment model class, 103
Comments association, 158
comments table, 174
COMMIT statement, 38, 40
commit_db_transaction(), 239
composed_of method, 106–107
composite primary keys, 205
compute_type(type_name), 224
condition_block?(condition), 255
:conditions argument, 115
:conditions array, 114
:conditions option, 28–29, 36
config directory, 10
configuration options, 164–173

allow_concurrency attribute, 168–169
colorize_logging attribute, 167
default_timezone attribute, 167–168
generate_read_methods attribute, 169
pluralize_table_names attribute, 166–167
primay_key_prefix_type attribute, 164–165
schema_format attribute, 169–170
set_Inheritance_column attribute, 171–172

set_primary_key attribute, 171
set_sequence_name attribute, 172–173
set_table_name attribute, 170–171
table_name_prefix attribute, 165–166
table_name_suffix attribute, 166

ConfigurationError error, 152
configuring connections to databases, 10–16

DB2, 11
Firebird, 11–12
FrontBase, 12
MySQL, 12–13
OpenBase, 13–14
Oracle, 14
PostgreSQL, 14–15
SQL Server, 15–16
SQLite, 15
Sybase, 16

connected?(), 217
connection(), 217, 226
connection_specification.rb file, 191
connection=(connection_specification), 217
ConnectionAdaptors module, 191
connection.delete method, 177, 190
connection.execute method, 179, 180
ConnectionFailed error, 148
connection.insert statement, 177
ConnectionNotEstablished error, 148
connection.select_all method, 177, 179,

190
connection.update method, 177, 190
content_columns(), 217
content_columns method, 185
convenience methods, 83–88

validates_acceptance_of, 85
validates_associated, 87–88
validates_confirmation_of, 84–85
validates_each, 83–84
validates_exclusion_of, 87
validates_format_of, 87
validates_inclusion_of, 87
validates_length_of, 86
validates_numericality_of, 88
validates_presence_of, 85–86
validates_uniqueness_of, 86

count(), 247
count(*args), 232
count_by_sql(sql_query_string), 217
counter_cache attribute, 99
counter_cache method, 98
cows table, 51
cows_farmer_id_index index, 55
create method, 6, 26, 190
create, read, update, delete (CRUD), 1, 4, 25,

51, 148, 175, 177, 190
create_attributes method, 183
create_fixtures method, 140
create_from_xml method, 183

■INDEX 271

Find it faster at http://superindex.apress.com
/

8474IDX.qxd 8/24/07 6:43 PM Page 271

create_reflection(macro, name, options,
active_record), 251

create_table method, 51–52, 204
create_table(name, options = {}) { || . . . }a,

242–243
create!(attribute = nil), 255
create(attributes = nil), 217
created_at field, 44
created_on field, 44
CRUD (create, read, update, delete), 1, 4, 25,

51, 148, 175, 177, 190
CSV (comma separated value) format,

142–143, 185–186
.csv extension, 142

D
data models, 208, 210
data types, 181
data validations. See validations
database administrator's (DBA), 80
database configuration root, 212
database foreign keys, 210
Database Interface (DBI), 196–197
database locking mechanisms, 206–207
database management system (DBMS), 166
database parameter, 11–16
databases, 17, 43–57

Active-Record friendly tables, 43–44
DB2, 11
Firebird, 11–12
FrontBase, 12
learning more about specific, 16–17
migrations, 46–57

anatomy of, 50
Domain Specific Language (DSL), 46–47
example of, 50–57
executing, 48–50
using, 47–48

MySQL, 12–13
OpenBase, 13–14
Oracle, 14
PostgreSQL, 14–15
retrieving objects from, 21–22
saving attributes as records in, 6
selecting random records from, 207
SQL Server, 15–16
SQLite, 15
Sybase, 16
traditional management of, 44–46
using multiple with Active Record, 201–203

database-specific libraries, 199–200
database.yml file, 10, 49
date object, 152
DB2, 9, 11
DBA (database administrator's), 80
DbB2 database, 17
db:bootstrap option, 56

DBD directory, 10
DBI (Database Interface), 196–197
db/migrate/002_add_farmer_id_column file, 53
db/migrations folder, 48
DBMS (database management system), 166
debugging, 153–160

benchmarking, 159–160
logging, 153–158

decimal numbers, 206
decrement_counter(counter_name, id), 217
decrement_position method, 97
decrement(attribute), 226
decrement!(attribute), 227
def call, 111
def to_s method, 117
default_sequence_name(table, column), 239
default_timezone attribute, 167–168
define_column_methods method, 116
define_method call, 111
define_method method, 113, 122
define(info = {}, &block), 252
defining

acts_as_nested-set method, 101–103
left_column parameter, 102
parent_column parameter, 102
right_column parameter, 102
scope parameter, 102–103

acts_as_tree method, 98–99
foreign key columns, 98
foreign keys, 101
integer columns used for sorting lists, 94
value objects, 107–108

delete method, 35, 190
:delete_all attribute, 79
delete_all method, 35
delete_all(conditions = nil), 218
delete(id), 217
delete(sql, name = nil), 239
deleting records, 35–37
:dependent => :delete_all option, 37
:dependent => :destroy option, 36–37
:dependent attribute, 79
:dependent option, 36
deposit method, 39
destroy(), 227
:destroy attribute, 79
destroy method, 35, 38, 191
destroy_all method, 35
destroy_all(conditions = nil), 218
destroy_author method, 60
destroy_readers method, 60
destroy(id), 218
development decisions, 162–164

efficiency, 163–164
process, 163
responsibility, 163
scope, 162–163

■INDEX272

8474IDX.qxd 8/24/07 6:43 PM Page 272

development of Active Record, 2
DHH (Hansson, David Heinemeier), 2
direct table, 174
direct_children method, 105
directs table, 168
disconnect!(), 235
distinct(columns, order_by), 243
Domain Specific Language (DSL), 46–47
down method, 50, 54
downcase method, 175
drop_table method, 53
drop_table(name, options = {}), 243
DSL (Domain Specific Language), 46–47
dsn parameter, SQL Server, 15
dynamic finders, 33–34

E
each() { |attribute, msg| . . . }, 248
each_full() { |msg| . . . }, 248
Email database, 203
embedded Ruby (ERb), 141
empty?(), 248
encoding parameter, PostgreSQL, 15
enterprise-level functionality, 192–193
enum columns, 213
eql?(object_to_compare), 227
ERb (embedded Ruby), 141
error methods, 144–153

ActiveRecordError, 145
AdapterNotFound, 148
AdapterNotSpecified, 147
AssociationTypeMismatch, 146–147
AttributeAssignmentError, 152
ConfigurationError, 152
ConnectionFailed, 148
ConnectionNotEstablished, 148
MultiparameterAssignmentErrors, 153
PreparedStatementInvalid, 150–151
ReadOnlyRecord, 152
RecordNotFound, 149
RecordNotSaved, 149
SerializationTypeMismatch, 147
StaleObjectError, 151–152
StatementInvalid, 149–150
SubclassNotFound, 145–146

errors(), 254
establish_connection method, 10
establish_connection(connection_specificati

on = nil), 218
establishing connections to databases, 16
eval methods, 61
evaluate_condition(condition, record), 255
Evans, Clark, 184
Event logging, 190
:except option, 182
Exception class, 189
execute method, 32, 37, 56, 210

execute(sql, name = nil), 239
exists?(id), 218
exporting

comma separated value (CSV) format, 185
XML format, 182–183
YAML format, 184

extend method, 120
extending Active Record, 109–123

adding class methods, 120–123
column_names array, 116–117
metaprogramming, 110–112
method_missing method, 112–115
retrieving relationship names, 117–119

F
farmer_id column, 53
feedback table, 170
find method, 21, 27, 33, 36, 42, 63, 152, 157,

175, 210
find operations, 149
find(*args), 218–220
find_all_by method, 33
find_by method, 23, 33
find_by_sql method, 32, 37, 43, 149, 158, 176,

210–211
find_by_sql(sql_query), 220
find_by_username method, 22
find_or_create_by method, 33
find_or_create_by_* dynamic finder, 23
find_with_rquery method, 111
find_without_rquery method, 111, 113–114
Finder methods, 190
finder options, 77
finders

dynamic, 33–34
nondynamic, 37–38

finding source code, 188
Firebird, 11–12
Firebird adapter, 9
Firebird database, 17
:first control, 27
first? method, 97
fixnum type, 181
fixtures, 139–144

benefits of, 139–141
formats, 142–144

comma separated value (CSV), 142–143
single file, 143–144
YAML, 142

transaction support with, 141–142
Fixtures.create_fixtures method, 140
flat files, 201
float type, 181
floating point values, 132
flunk method, 138–139
FOR UPDATE statement, 42
:force => true option, 52

■INDEX 273

Find it faster at http://superindex.apress.com
/

8474IDX.qxd 8/24/07 6:43 PM Page 273

foreign key columns, 98
foreign keys, 101
:foreign_key attribute, 77, 99
foreign_key method, 98
foreign_key name, 77
foreign_key value, 101
format_log_entry(message, dump = nil), 236
freeze(), 227
FROM clause, 29, 32
:from option, 32
from_xml method, 183
FrontBase, 9, 12, 17
frozen?(), 227
full_messages(), 248
full_set method, 105
fullname attribute, 63
functions, custom, 179–181

G
gems, installing, 8–10
generate command, 50
generate_read_methods attribute, 169
generate_read_methods method, 169
:group option, 31–32, 33
GUID primary keys, 205–206

H
Hansson, David Heinemeier (DHH), 2
has_and_belongs_to_many relationship,

74–75, 79
has_attribute?(attribute), 227
has_many association, 70, 72, 76, 78
has_many class method, 120
has_many relationship, 71–72, 74, 158
has_many :through association type, 70
has_many:through relationship, 75–76
has_one association, 70, 71–72, 78, 213
has_one relationship, 72–73
has_parent? method, 98
hash(), 227
hello_world method, 110
higher_item method, 97
host parameter, 12–16
human_name(), 237

I
id(), 227
:id => false option, 52
id attribute, 21, 206
id primary key, 43
id=(value), 227
:if operates, 85
:if option, 86
implementing

callbacks, 60
validations, 81–83

importing
comma separated value (CSV) format,

185–186
XML format, 183–184
YAML format, 184

:in option, 86–87
include method, 120
:include option, 31, 118, 183
:include parameter, 29, 31
increment_counter(counter_name, id), 220
increment_position method, 96–97
increment(attribute), 228
increment!(attribute), 228
indexing columns, 54–55
Inflector class, 165–166, 190
inheritance_column(), 220
inherited(subclass), 251
initialize method, 108
initialize_schema_information(), 243
init.rb file, 109
Inner joins, 71
INSERT statement, 25, 38
insert_at(value) method, 95
insert(sql, name = nil, pk = nil, id_value = nil,

sequence_name = nil), 239
installing

additional libraries, 9–10
gems, 8–10

InstanceMethods module, 121–122
instantiate_observers(), 250
insult method, 132
integer columns, 94
integer type, 99
internationalization, 204
invalid?(attribute), 248

J
Java, 44
:join_table attribute, 79
:joins option, 31, 32

K
key: value format, 142
keys

composite primary, 205
database foreign, 210
GUID primary, 205–206
Universally Unique Identifier (UUID)

primary, 205–206
klass(), 237, 252

L
Lafcadio, 201
last? method, 97
LDAP (Lightweight Directory Access

Protocol), 201

■INDEX274

8474IDX.qxd 8/24/07 6:43 PM Page 274

Left joins, 71
left_column parameter, 101, 102
legacy schema, configuration options,

164–173
allow_concurrency attribute, 168–169
colorize_logging attribute, 167
default_timezone attribute, 167–168

length(), 248
lib directory, 188
libraries, installing additional, 9–10
Lightweight Directory Access Protocol

(LDAP), 201
LIMIT clause, 32, 213
:limit option, 32–33
LineItem model, 56
listdetails[0] record, 96
listdetails[1] record, 96
LocalDatabase class, 202
localization, 204
lock! method, 42
:lock option, 33, 42
lock_version column, 41
lock_version field, 152
locking, 40–42
log_info(sql, name, runtime), 236
Log4r class, 190
Logger class, 154, 158
Logger::DEBUG method, 158
logging, 153, 158
log(sql_statement, name) { || . . .}, 236
lower_item method, 97

M
macro(), 252
macros, 61–63
mapping option, 107
mapping parameter, 107, 108
maximum(column_name, options = {}), 232
member table, 175
members table, 170, 174, 176
Merb, 195
:message => "" method, 85
:message option, 86
metaprogramming, 110–112
method_missing error, 177
method_missing function, 22
method_missing method, 112–115, 169, 190
method_missing(method, *arguments,

&block), 249
methods, assertion. See assertion methods
methods, error. See error methods
migrate(direction), 249
migrate.rb file, 49
migrations, 46–57, 193

anatomy of, 50
Domain Specific Language (DSL), 46–47

example of, 50–57
columns, 53–55
managing data, 55–57
tables, 51–53

executing, 48–50
outside of Ruby on Rails, 49–50
within Ruby on Rails, 48–49

using, 47–48
min_messages parameter, PostgreSQL, 14
minimum(column_name, options = {}), 232
mode parameter, SQL Server, 15
model, view, controller (MVC) framework, 1
models

adding security to, 213
naming, 212

modifiers, association, 76–79
:as, 78–79
:association_foriegn_key, 79
:class_name, 77
:dependent, 79
finder options, 77
:foreign_key, 77
:join_table, 79
:polymorphic, 78–79
:through, 78

move_higher method, 96, 97
move_lower method, 95, 97
move_to_bottom method, 96
move_to_top method, 96
MultiparameterAssignmentErrors error, 153
multiple databases, using with Active Record,

201–203
multithreaded programs, using Active Record

in, 206
MVC (model, view, controller) framework, 1
mylog.txt file, 155
MySQL, 9, 12–13, 17

N
name(), 252
:name option, 55
naming columns and models, 212
native_database_types(), 244
new(), 250
new method, 6
new_attributes method, 183
new_record?(), 228
new(attributes=nil) { |self if block_given?| . . .

}, 220
new(base), 245
new(macro, name, options, active_record),

252
new(name, default, sql_type = nil, null =

true), 236
nil field, 44
nil value, 20, 128

■INDEX 275

Find it faster at http://superindex.apress.com
/

8474IDX.qxd 8/24/07 6:43 PM Page 275

nondynamic finders, 37–38
N-tier applications, 162
:nullify attribute, 79
number?(), 237

O
object relational mapping (ORM), 2–3, 18,

192
object_id values, 135
Object.blank? method, 85
ObjectGraph (Og), 197–199
objects

attributes of, 6
creating, 6
relationships among, 22–24
retrieving from databases, 21–22

observe method, 92
observe(*models), 250
observed_class(), 250
observed_classes(), 250
observed_subclasses(), 250
observers, 91–92
observers(), 250
observers=(*observers), 250
OFFSET clause, 32
:offset option, 32–33
Og (ObjectGraph), 197–199
omap type, 142
:on => :create method, 85
:on => :save method, 85
:on => :update method, 85
:on option, 84, 86
on_base(), 248
on(attribute), 248
:only option, 182
OpenBase, 13–14
OpenBase adapter, 9
OpenBase database, 17
optimistic locking, 41
options(), 252
:options option, 52
options_include_default?(options), 245
Oracle, 14
Oracle adapter, 10
Oracle database, 17
ORDER BY clause, 99
order method, 98
:order option, 31, 33
order parameter, 31, 99
Orders model, 55
ORM (object relational mapping), 2–3, 18,

192
overriding assumptions, 20–21

P
paginating results, 213–214
parent_column parameter, 101, 102

password attribute, 107
password parameter, 11–16
Perl, 44
pessimistic locking, 42
PHP, 44
plug-ins, 193–194
pluralize_table_name attribute, 171
pluralize_table_names attribute, 166–167
pluralize_table_names parameter, 21
:polymorphic attribute, 78–79
port parameter, 12–16
position column, 95
position method, 94
PostgreSQL, 10, 14–15, 17
prefect_primary_key?(table_name = nil), 235
prepared statements, 207
PreparedStatementInvalid error, 150–151
price method, 56
primary_key(), 221
:primary_key option, 52
primary_key_prefix_type class attribute, 175
primary_key_prefix_type method, 165
primary_key_prefix_type setting, 164
primary_key(name), 246
primay_key_prefix_type attribute, 164–165
private methods, 190
proc method, 84
proc statement, 137
procedures, stored, 179–181
project_development database, 19
protected methods, 190
public methods, 191

Q
quantity method, 56
quote_column_name(name), 240
quote_string(value), 240
quoted_date(value), 241
quoted_false(), 241
quoted_true(), 241
quote(value, column = nil), 240

R
railsroot/log directory, 153
raise clause, 144
rake db:migrate method, 51, 53–54
rake db:schema:dump task, 170
rake task, 48, 56, 211
raw_connection(), 235
reading (R) task, 3
reading records

:conditions options, 28–29
dynamic finders, 33–34
:from option, 32
:group option, 31–32
:include parameter, 29, 31
:joins option, 32

■INDEX276

8474IDX.qxd 8/24/07 6:43 PM Page 276

:limit option, 32–33
:lock option, 33
:offset option, 32–33
:order parameter, 31
:readonly option, 33
:select option, 31

readonly?(), 228
:readonly => false option, 33
:readonly => true option, 33
:readonly option, 33
ReadOnlyRecord error, 152
realtedID attribute, 102
reconnect!(), 235
RecordNotFound error, 79, 149
RecordNotSaved error, 25, 149
records

creating, 25–26
deleting, 35–37
reading, 27–34

:conditions options, 28–29
dynamic finders, 33–34
:from option, 32
:group option, 31–32
:include parameter, 29–31
:joins option, 32
:limit option, 32–33
:lock option, 33
:offset option, 32–33
:order parameter, 31
:readonly option, 33
:select option, 31

selecting random from databases, 207
updating, 34–35
validation of, 211–212

RedHill Consulting, 210
reflect_on_aggregation(aggregation), 251
reflect_on_all_aggregations(), 251
reflect_on_all_associations(macro = nil), 251
reflect_on_association(association), 251
reflections(), 251
related_id method, 103
relationships

general discussion, 22–24
retrieving names of, 117–119

reload(), 228
RemoteDatabase class, 202
remove_column method, 54
remove_column(table_name,

column_name), 244
remove_connection(klass=self), 221
remove_from_list method, 96
remove_index(table_name, options = {}), 244
removing columns, 53–54
rename_column(table_name,

column_name, options = {}), 244
rename_table(name, new_name), 244
Representation State Transfer (REST), 194

requires_reloaded?(), 235
rescue clause, 144
reset_column_information(), 221
reset_sequence!(table, column, sequence =

nil), 239
respond_to?(method, include_priv=false),

228
REST (Representation State Transfer), 194
RESTful interfaces, 194
results, paginating, 213–214
retrieving objects from databases, 21–22
revisions_for method, 123
right_column parameter, 101, 102
Role class definition, 22
ROLLBACK statement, 38, 40
rollback_db_transaction(), 239
root method, 99, 100
root? method, 104
:root option, 182
RQuery::Conditions object, 112
Ruby Gem system, 8
ruby migrate.rb command, 49
Ruby on Rails

executing migrations outside of, 49–50
executing migrations within, 48–49

S
sanitize_sql(sql_to_sanitize), 225
save(), 228
save!(), 229
save method, 6, 25, 34, 38, 122
save! method, 149
save_with_validation!(), 254
save_with_validation(perform_validation =

true), 254
saving attributes as records in databases, 6
say_with_time(message) { || . . . }, 249
say(message, subitem = false), 249
schema, legacy. See legacy schema
schema parameter, DB2, 11
schema_format attribute, 169–170
schema_info database, 49
schema_info table, 49, 52
schema_search_path parameter, PostgreSQL,

14
SchemaDumper method, 50
scope, 190
:scope option, 86
scope parameter, 94, 102–103
script/generate migration

add_farmer_id_column file, 53
script/generate migration command, 49
script/generate migration create_users_table

command, 48
security, adding to models/columns, 213
select * type, 177
SELECT clause, 30, 38

■INDEX 277

Find it faster at http://superindex.apress.com
/

8474IDX.qxd 8/24/07 6:43 PM Page 277

:select option, 31
SELECT statement, 27, 94, 210
select_all statement, 178, 181
select_all(sql, name = nil), 239
select_one(sql, name = nil), 239
select_value(sql, name = nil), 240
select_values(sql, name = nil), 240
selecting random records from databases,

207
select(sql, name = nil), 240
self.down method, 52
self.included method, 121
self.up method, 53
send command, 138
sequences, custom, 179–181
SerializationTypeMismatch error, 147
serialize(attribute_name, class_name =

Object), 221
serialized_attributes(), 221
service parameter, Firebird, 12
set library, 189
set_Inheritance_column attribute, 171–172
set_inheritance_column(value = nil, &block),

222
set_locking_column(value = nil, &block), 222
set_primary_key attribute, 171
set_primary_key method, 43, 164–165,

174–175
set_primary_key(value = nil, &block), 222
set_sequence_name attribute, 172–173
set_sequence_name(value = nil, &block), 222
set_table_name attribute, 170–171
set_table_name method, 43, 174
set_table_name(value = nil, &block), 222–223
setup method, 141
Sexy Migrations, 193
siblings method, 99, 100–101
silence() { || . . . }, 223
simplification, 173–181

CRUD operations, 175–177
custom functions, 179–181
custom sequences, 179–181
data types, 181
improving performance, 177–178
low-level operations, 177–178
SQL statements, 175–177
stored procedures, 179–181

single file format, 143–144
SingletonMethods module, 121, 123
size(), 248
size method, 112
socket parameter, MySQL, 13
some_array.size method, 112
sorting lists, 94
source code

abstract_adapter.rb file, 191
active_record.rb file, 188

base.rb file, 189–191
connection_specification.rb file, 191
finding, 188

SQL, 25–42
creating records, 25–26
deleting records, 35–37
locking, 40–42
nondynamic finders, 37–38
reading records, 27–34

:conditions options, 28–29
dynamic finders, 33–34
:from option, 32
:group option, 31–32
:include parameter, 29, 31
:joins option, 32
:limit option, 32–33
:lock option, 33
:offset option, 32–33
:order parameter, 31
:readonly option, 33
:select option, 31

transactions, 38, 40
updating records, 34–35

SQL Server, 15–16
SQL statements, 5, 175–177
SQL syntax, 45
:sql value, 169
SQLite, 15
SQLite adapter, 10
SQLite database, 17
SQLServer adapter, 10
sqlserver value, 148
sslca parameter, MySQL, 13
sslcapath parameter, MySQL, 13
sslcert parameter, MySQL, 13
sslcipher parameter, MySQL, 13
sslkey parameter, MySQL, 13
StaleObjectError error, 151–152
StandardError class, 144, 189
StatementInvalid error, 149–150
statements, prepared, 207
stored procedures, 179–181
String class, 112, 204
:string type, 181
string_to_binary(value), 236
string_to_date(value), 236
string_to_dummy_time(value), 236
string_to_time(value), 237
structure_dump(), 244
SubclassNotFound error, 145–146
sum(column_name, options = {}),

232–233
super command, 60
supports_count_distinct?(), 235
supports_migrations?(), 235
suppress_messages() { || . . . }, 249
Sybase, 16, 17

■INDEX278

8474IDX.qxd 8/24/07 6:43 PM Page 278

T
table_alias_for(table_name), 244
table_alias_length(), 245
table_exists?(), 223
table_name(), 223
:table_name option, 165
table_name_prefix attribute, 165–166
table_name_suffix attribute, 166
:table_name_with_underscore class

attribute, 175
:table_name_with_underscore option, 165
tablename_allcolumnnames_index index, 55
tablename_id field, 44
tables

Active-Record friendly, 43–44
creating, 51–53

Talbott, Nathaniel, 127
teardown method, 141
temp object, 138
:temporary => true option, 52
TestCase.fixture_path method, 142–143
testing, unit. See unit testing
text?(), 238
the find_by_sql method, 190
:through attribute, 78
Time object, 26
to_csv method, 185
to_find_conditions method, 114, 118
to_param(), 229
to_s method, 117
to_sql(), 246
to_xml method, 182–183
to_xml(options = {}), 229–230
to_yaml method, 184
toggle!(attribute), 230
toggle(attribute), 230
TOP clause, 214
transaction class-level method, 39
transaction support, with fixtures, 141–142
transaction(*objects, &block), 253–254
transactions, 38, 40
transaction(start_db_transaction = true) { || . .

. }, 240
transform method, 184
type attribute, 182
type_cast_code(var_name), 238
type_cast(value), 238

U
:unique => true option, 55
unit testing, 125–144

assertion methods, 129–139
assert, 129–130
assert_equal, 131
assert_in_delta, 132
assert_instance_of, 133
assert_kind_of, 134

assert_match, 135
assert_nil, 130
assert_no_match, 135
assert_not_nil, 131
assert_not_same, 136
assert_nothing_raised, 133
assert_operator, 136–137
assert_raise, 132–133
assert_respond_to, 134
assert_same, 135–136
assert_send, 138
assert_throws, 137–138
flunk, 138–139

fixtures, 139–144
benefits of, 139–141
formats, 142–144
transaction support with, 141–142

reasons for, 126–127
writing tests, 127, 129

Unit::Test library, 127
universal time (UTC), 167
Universally Unique Identifier (UUID)

primary keys, 205–206
unknown? method, 104
up method, 50–51
upcase method, 134
update call, 5
update method, 190
UPDATE statement, 38, 68
update_all(update_sql, conditions), 223
update_attribute method, 34, 191
update_attribute_with_validation_skipping(

name, value), 254
update_attribute(name, value), 231
update_attributes method, 34, 39
update_attributes! method, 149
update_attributes method, 183
update_attributes(attributes), 231
updated_at field, 44
updated_on field, 44
update(id, attributes), 223
update(sql, name = nil), 240
updating (U) task, 3
updating records, 34–35
use_silence parameter, 159
use_transactional_fixtures method, 141
User database, 203
User model, 203
Userinfo class, 107
username attribute, 107
username parameter, 11–16
UTC (universal time), 167
:utc class, 167
UUID (Universally Unique Identifier)

primary keys, 205–206
UUIDKeyClass class, 206
UUIDTools library, 205

■INDEX 279

Find it faster at http://superindex.apress.com
/

8474IDX.qxd 8/24/07 6:43 PM Page 279

V
valid?(), 254
validate(), 255
validate method, 82
validate(*methods, &block), 255–256
validate_exclusion method, 87
validate_on_create(), 255
validate_on_create method, 82
validate_on_create(*methods, &block), 256
validate_on_update(), 255
validate_on_update method, 82
validate_on_update(*methods, &block), 257
validates_acceptance_of method, 85
validates_acceptance_of(*attribute_names),

257–258
validates_associated method, 87–88
validates_associated(*attribute_names), 258
validates_confirmation_of method, 84–85
validates_confirmation_of(*attribute_names

), 258–259
validates_each method, 83–84
validates_each(*attribute_names) { |record,

attribute, value| . . . }, 259–260
validates_exclusion_of method, 87
validates_exclusion_of(*attribute_names),

260–261
validates_format_of method, 87
validates_format_of(*attribute_names), 261
validates_inclusion_of method, 87
validates_inclusion_of(*attribute_names),

262
validates_length_of method, 86
validates_length_of(*attribute_names),

262–263
validates_numericality_of method, 88
validates_numericality_of(*attribute_names)

, 263–264
validates_presence_of class method, 120
validates_presence_of method, 85–86, 88
validates_presence_of(*attribute_names),

264–265
validates_size_of(*attribute_names), 265
validates_uniqueness_of method, 86
validates_uniqueness_of(*attribute_names),

265–266
validations, 80–88

convenience methods, 83–88
validates_acceptance_of, 85
validates_associated, 87–88
validates_confirmation_of, 84–85
validates_each, 83–84

validates_exclusion_of, 87
validates_format_of, 87
validates_inclusion_of, 87
validates_length_of, 86
validates_numericality_of, 88
validates_presence_of, 85–86
validates_uniqueness_of, 86

implementing, 81–83
overview, 80
of records, 211–212
uses, 80–81

value objects
defining, 107–108
names of, 106

value_to_boolean(value), 237
value_to_decimal(value), 237
varchar type, 181
verify!(timeout), 236
version column, 52
VERSION parameter, 49

W
WHERE clause, 28, 36, 94, 103
Wikipedia, 46
:with option, 87
with_exclusive_scope(method_scoping = {},

&block), 224
with_scope(method_scoping = {}, action =

:merge) { || . . . }, 224
withdraw method, 39
:within option, 86
write(text=""), 249
writing programs, 18–24

assumptions, 19–20
coding conventions, 19–20
objects

relationships among, 22–24
retrieving from databases,

21–22

X
XML configuration file, 164
XML format

exporting, 182–183
importing, 183–184

Y
YAML format, 56, 142, 184
yaml library, 189
yamldata field, 147
.yml extension, 142

■INDEX280

8474IDX.qxd 8/24/07 6:43 PM Page 280

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	back-matter.pdf

