THE EXPERT’S VOICE® IN OPEN SOURCE

Practical

Ruby Projects

Ideas for the Eclectic Programmer

Learn advanced programming techniques and
explore Ruby’s full potential through a varied
series of exciting projects

Topher Cyll

Apress:

Practical Ruby Projects
Ideas for the Eclectic Programmer

Topher Cyll

Apress’

Practical Ruby Projects: Ideas for the Eclectic Programmer
Copyright © 2008 by Topher Cyll

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-911-2

ISBN-10 (pbk): 1-59059-911-X

ISBN-13 (electronic): 978-1-4302-0470-1

ISBN-10 (electronic): 1-4302-0470-2

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Chris Mills and Tom Welsh

Technical Reviewer: Ben Matasar

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,
Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Candace English

Copy Editor: Kim Benbow

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Molly Sharp, ContentWorks

Proofreader: Martha Whitt

Indexer: Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

Dedicated to the Author and the Engineer, for all they taught me.

Contents at a Glance

Aboutthe AUthor XV
About the Technical ReVIEWEr i Xvii
ACKNOWIBdgMENTS Xix
CHAPTER 1 Introduction.............. i, 1
CHAPTER 2 Making Music withRuby................................ 7
CHAPTER 3 AnimatingRuby........... 51
CHAPTER 4 Pocket Change: Simulating Coin Systems with Ruby 93
CHAPTER 5 Turn-Based Strategy inRuby.................................. 119
CHAPTER 6 RubyCocoa................... ..., 153
CHAPTER 7 Genetic AlgorithmsinRuby 197
CHAPTER 8 Implementing LispinRuby.................................... 223
CHAPTER 9 ParsinginRuby............... 261

Contents

Aboutthe AUthor XV
About the Technical ReVIEWEr i Xvii
ACKNOWIBdgMENTS Xix
CHAPTER1 Introduction............................... 1
Why RUDY? . 1

The Language.coirii e 1

The Community 2

Why This BOOK? 2

Getting SetUp ... 3

Source Code inThisBook 4

Your Projects. 5

CHAPTER 2 Making Music withRuby 7
MIDI: Giving YourselfaVocabulary 7

Talking C and Making Noise ..., 9

SharingCode 10

Interfacing with Windows Multimedia 12

Interfacing with CoreMIDI.t 16

Interfacing With ALSAl 19

BuildingaMetronome 22

Keeping Time i 23

AWorking Metronome. 25

Fixing Your Timer Drift. 26

Writing the Play Method 26

AvoidingTooMany Timerscoiiiiit. 28

COMPOSING .. oot 29

Notation......... 29

Patterns. ... 29

Playing SONGS.o 33

CONTENTS

CHAPTER 3

TempoTap. 34
Taking Patterns Further. 35
SavingYour MUSIC. . ..o 36
Live Coding.coovii 39
Interfaces for Live Coding. ...t 40
Improvements for Live Coding. 45
SUMMArY ... 49
AnimatingRuby ... 51
Scalable Vector Graphics 51
SVGBASICSot 52
SVGShapes ... 52
The Animator 55
Rendering the Animation 57
Registering and Running Callbacks 58
Embedded Ruby Templating 60
Renderingthe Frames. i, 61
Binding Objectso 62
Wrapping SVG with Objects................ 64
DrawingOne Cube.o i 65
Drawing Many Cubes i 67
Domain-Specific Languages ...t 67
Implementing GridDrawer 69
Metaprogramming................. i Al
TheDraw Method 73
Deferring Execution................... i 74
Adding Deferred Execution to GridDrawer...................... 76
A Few More Helper Methods ...t 77
Your First Animation 78
Putting the Animations Together............. 83
ImageMagick 83
IMovie 83
JPGVIdED. 85
DontGiveUp ... 86
SpICING HUD. ..o 86

SUMMANY .. 91

CONTENTS

CHAPTER 4 Pocket Change: Simulating Coin Systems with Ruby93

GOING ShOPPINGo 93
HowtoMakeChange............ ..o, 95
The Greedy Algorithml 95
Problems with the Greedy Algorithm 96
Brute FOrce 96
Adding the min_byMethod, 97
Putting It All Together 98
Dynamic Programming. ... 99
The Customer. 100
Memoization............ 106
Hash Problems..........l 107
Paying ... 109

The ChangeSimulator. o it 110
So How Heavy Are Your Pockets?..........................coonet. 111
ReplacingaCoin........... o i, 111
Adding aCoin.o 112
Optimal Coins.o 113
TWoC0INS 114
Three CoiNS.ot 114
FourCoins. ... 114
Beyond. 115
Wizard MONeY 116
Inthe Literature 117
SUMMArY 118
CHAPTER 5 Turn-Based Strategy inRuby.............................. 119
AStrategy. 119
Anlimplementation 121
Building the World Around US ..., 121
StartingwithTerrainl 122
Implementing Maps with Matrices........................... 122
Cartography 101 o 124
Where Does Terrain Come From?............................ 125
RepresentingaMap i 128

CONTENTS

CHAPTER 6

Meeting Your HEroes. 129
The Universal Skeleton..................................... 129
Stubbing Out Undefined Classes............................. 132
RepresentingUnits i i 133

Making ChoiCeso 133
Finding Possible Movesl 135
Choosing Among Actions ...t 135

TaKing ACHIONo 136

The Players.o 139

The Artificial Intelligence Doesn’t Seem So Intelligent 142

Writing a Command-Line Player.................................. 143

The Game 144

Putting It All Together 150

SUMMANY .. 152

RubyCocoa 153

TheVeryBasics.............oo i 153
OpeningaWindow................. il 154
Learning Objective-CBasics 155
Calling Objective-Cfrom Ruby............................... 156
Applicationsand Windows 157

Building a Turn-Based Strategy Game............................. 158
Building a Player Using Cocoa.oon... 158
AnOddWaytoDoThings.................ooi ... 161
Understanding Views, Controls,and Cells..................... 162
AddingaView........... 163
Displaying Messagescooiiiiiiiiiiiniian... 166
Creating a Row of NSButtonCells 167
The Choice Bar................... i 169
DrawingtheMap.............. 172
Making ChoiCeSo 177

Selecting Units fromtheMap 180
Highlighting Map Locations 180

Handling Clicks.o 181

CHAPTER 7

CONTENTS

Usinglmage Tileso i 184
PlanetCute tothe Rescue.........................ooiintt. 184
Switching from Colorstolmages 185
Adding Image-Based Tilesets to DinoCocoaPlayer. 186
Fixing the Weirdness. ..., 187

Packaging It Upo 192

SUMMANY ... 195

Genetic AlgorithmsinRuby 197

Simulating Evolution. 198
Implementing the Algorithm. 199
Running the Iterations. 200
What's Required to Be a Genome?........................... 201
Remembering Winning Solutions 202

Thinking About Encodingso 203
Using Integers As Bit Stringso il 203
Playing with Crossover ..., 204
Modeling Crossover. 205
Uniform CroSSOVErottt 206
Point CrosSOVersot 207

Using Mutation. i 208
Subclassing Integer.o 208
Subclassing Bitint ... 209
Wrapping Bitint ReturnValues. 210

Making Change ... Again!.......... i, 211
ChoosinganEncoding. ..., 212
Running the Simulation. 214
LookingattheResults il 215

Adding Further Improvements. ... 216
Dealing with Invalid Genomes............................... 216
Letting Parents Live On................. ...t 216
Experimenting with Gray Code 217
Roulette Selection 219

SUMMANY ... 221

x

CHAPTER 8

CHAPTER 9

Implementing LispinRuby................................ 223
Learning Lisp ... 224
Choosing Your Lisp DataTypes ...t 224
BuildingConsCells ... 224
Saving Values in the Environment 226
Understanding eval and apply. ..., 230
BVl . 230
applY 232
Talking About Special Forms 233
Finishingeval i 233
Using the Helper Functions Arrayify and Consify 234
Making It Look Like LiSp ... 235
Choosing Your Primitive Functions................................ 236
Creating an Interpreter Object. il 238
But What About Special Forms? ...l 240
Addingquote......... ... 240
Adding defineandset! 241
Adding Conditional Expressions 241
Addinglambda. 242
Implementing Macros.o i 247
Implementing theletMacro................................. 248
It Just Ain’t Lisp Withouteval 250
Adding Lexical Macros. ... 251
Interoperatingwith Ruby 253
Opening aWindowtoRuby 254
Sending Messages ..ot 254
Making Lisp LambdaWork inRuby 255
SUMMArY 256
ParsinginRuby .. 261
Parsingwith Ruby L. 262
Understanding Grammarscccoiiiiininn.. 262
Recursive DescentParsing. ..., 263

RParseC 263

CONTENTS Xiii

Parsing S-EXpressionst 265
Revisiting S-Expressions 265
ParsingIntegers...... ... i 265
UnitTestEverything............. 266
Parsing Floats.c i 267
Deciding Between Different Number Types. 268
Parsing Symbols with Regular Expressions 268
ParsingValueso i 270
Parsing Lists and Discarding ReturnValues 271
Using the Lazy Combinator 272
Parsing Your First S-Expressions to the End of File Marker 273
Quoting inLisp ... 274
Parsing String Literals. i 274
Abstracting String Parsing 276
Putting lttoWork 277

Parsing List Comprehensionsccviiiiiinininan... 278
MakingaPlan........... ... 278
Creating Abstract Syntax Tree Nodes......................... 279
Reusing Combinators from the Last Parser.................... 280
Parsing the List Comprehension Syntax 281
Testing Your Partial Implementation.......................... 282
Parsing Method Calls withDot. 282
Eliminating Left Recursion.................................. 283
Method Calls in List Comprehensions 285
Running the Comprehensions 286
Adding Some Conveniencecoviiiinin... 288
Abusing Ruby Bindings. ... 289

SUMMANY ... 290

... 293

About the Author

TOPHER CYLL is a software engineer and writer living in Cambridge, Massachusetts. He
received his bachelor’s degree in computer science from Williams College and works for a
small Boston-area startup.

In reverse alphabetical order, he finds programming languages, music, Free Software,
education, bioengineering, and beer terribly exciting.

Topher loves Ruby not only for the language itself, but also for the light-hearted and
intellectually curious community that surrounds it.

Xv

About the Technical Reviewer

BEN MATASAR is a developer at Smallthought Systems, where he works
on Dabble DB, an online database written from scratch in Squeak
Smalltalk. He considers himself lucky because he is able to make a liv-
ing writing mostly Smalltalk and Ruby. He earned a B.S. in Electrical
Engineering and Computer Science from the University of California
at Berkeley, and is a political activist in his home state of Oregon. He
bounces between Portland, Oregon, and Vancouver, British Columbia.

Xvii

Acknowledgments

Thanks go to the wonderful Apress team and all my editors.

I'm grateful to Ben Matasar and Adam Bouhengal for brainstorming and listening to
my ideas with a critical ear. Thanks to the hackers on the Intel Oregon CPU Architecture
Team and to the sharp minds at Adverplex for their support and enthusiasm. Special
thanks to the eclectic programmers of the Portland Ruby Brigade for showing me the
curious excitement of Ruby.

Additional thanks to my family, friends, and roommates for cutting me a year’s worth
of slack. I owe you!

Xix

CHAPTER 1

Introduction

This book is titled Practical Ruby Projects. And let me start by saying that the projects
are practical. But they might not be quite what you’re used to. Flip through the book. You
won'’t find any references to enterprise deployment. Not a word about business logic. In
fact, hard as it is to believe, there’s no web programming! But if you exclude those things,
what’s left? Why, everything else, of course!

Each chapter in this book turns Ruby loose on a new interesting problem or project.
They range from creative endeavors to investigative simulations to the exploration of
computer programming languages themselves. Ruby is a programming language, but it’s
also a tool to create, understand, and entertain. This book is all about Ruby.

Why Ruby?

Since this book was written with the assumption that you have a basic knowledge of Ruby;,
odds are you already know about Ruby’s strengths.

The Language

You know that Ruby’s blocks are a joy to use. You know how Ruby’s programmer-oriented
core API can make programming feel effortless. Despite what the popular press some-
times says, Ruby isn’t the final word in programming languages. But Ruby holds a unique
position in the current landscape.

Borrowing from the Smalltalk tradition, Ruby brings a new level of purity to the world
of contemporary object-oriented languages that includes Java and Python. It has also
brought the concision and utility of Perl to the world of structured development. Finally,
it's captured some of the dynamism of Smalltalk and introduced it to the current pro-
gramming landscape.

It's a wonderful language for hacking, design, and programming, not to mention an
excellent tool for scripting, text-processing, and system administration. Combined with
the Ruby on Rails web development buzz, Ruby’s future is promising, particularly with
progress toward a faster runtime environment.

CHAPTER 1 ©" INTRODUCTION

The Community

I first encountered Ruby in 2004 while working at Intel in Hillsboro, Oregon. The approved
higher-level languages were Perl and Ruby. I was a Python programmer at the time and felt
a little bit threatened by Ruby’s supposed elegance. But [knew Perl well enough to know I
was going to want to learn Ruby.

It was an exhilarating experience. In between maintaining legacy Perl modules, I
started plowing through the pickaxe book (Programming Ruby: The Pragmatic Program-
mer’s Guide by Dave Thomas with Chad Fowler and Andy Hunt [Pragmatic Bookshelf,
2004, 2nd Edition]). And, at some point, I stopped reaching for Python in my personal
projects and started turning to Ruby:.

That’s when I went to my first Portland Ruby Brigade (PDX.rb) meeting. Which brings
me to Ruby’s second strength: its community. Now, every language community has its own
flavor and culture. Maybe it is just because it’s a fresh language with the right set of features,
but the programmers you meet in the Ruby track at conferences, the hackers at your local
Ruby Brigade, and the guy down the hall at work sneaking Ruby into the system all seem to
have something in common. They're curious, reflective, and lighthearted, but they’re also
highly effective programmers. And they’re all working on some kind of project. It'll be born
of personal interest, but odds are it will be shared—and adopted. That’s just the community
standard around here!

Why do Rubyists choose Ruby? Probably because it gets their work done. But I sus-
pect that the project culture is part of it. This book was inspired by the amazing Rubyists
out there hacking on their own projects and sharing them with the world.

Why This Book?

Whether you maintain a host of Ruby libraries, simply tinker on your own code at night,
or are just getting started with Ruby and looking for new ideas, you're part of this select
and curious project culture. This book is a collection of ideas that excite me, which are
interesting to code and understand on their own. They’re also great stepping stones for
deeper work or even potential sources of ideas to mine for your projects, not to mention
that most of the chapters touch on the strange and interesting corner cases of the Ruby
programming language.

Unlike an introductory book, this is a project book, and the chapters are designed to
be mostly independent (although a few are complementary). So if a chapter looks good
to you, skip right to it! Here’s what to expect.

In Chapter 2, you'll use Ruby to play and compose music and briefly discuss live cod-
ing music as a performance art. In the process, you'll use Ruby’s dynamic linking interface
to call directly into C code, letting you build a cross-platform MIDI library that works on
Windows, Mac, and Linux.

CHAPTER 1 " INTRODUCTION

Chapter 3 focuses on using Ruby to build animations programmatically. You'll use
scalable vector graphics (SVG) to describe shapes and pictures that will be rendered into
frames and ultimately combined into movies. By the end you’ll have a distinctly pro-
Ruby animation.

Chapter 4 uses simulation to explore the world of pocket change. Ever wondered if we
could make better change and carry fewer coins if we had a different system of denomina-
tions? You'll use Ruby to build a simulator to answer that question. In the process, you'll
look at how Ruby can help you learn about the world.

Chapter 5 is all about games, turn-based strategy games to be specific. You'll experi-
ment using a very loosely coupled system to model the complex rules of a strategy game
and build the core game engine.

In Chapter 6, you'll take the game engine from Chapter 5 and put a beautiful inter-
face on it using RubyCocoa for Mac OS X. You'll learn about Objective-C, Cocoa, runtime
bridges, and, of course, do a lot of GUI programming.

Chapter 7 focuses on genetic algorithms. Inspired by the process of evolution,
genetic algorithms are an interesting technique for exploring large search spaces when
solving problems. You'll cook up an implementation in Ruby and then turn it loose on the
coin problem from Chapter 4. It will let you tackle much larger problems than you could
previously.

Chapter 8 explores what it is that makes a programming language, while also delving
into Lisp. By the end of the chapter, not only will you have your own Lisp interpreter
(written in Ruby), but also an improved understanding of both languages! And, of course,
you'll have insight into how to build your very own programming language.

Chapter 9 looks at the art of parsing text. This often overlooked skill is an indispensi-
ble part of any programmer’s toolbox. You'll address it in the context of programming
languages (building on Chapter 8) as well as exploring new syntactic ground, but the
tricks learned will be applicable to a wide range of everyday text-processing problems.

And as I mentioned, each chapter is designed to be explored on its own, extended for
future work, or even mined for ideas related to other original, independent concepts.

Getting Set Up

You're obviously going to need Ruby installed! This book was written using the Ruby 1.8
series. The code was tested on Ruby 1.8.5, but it should work on any 1.8 release. Time will
tell how well it bridges the gap to 2.0. (I'm optimistic.)

Ruby is available for most major operating systems from its web site: www.ruby-lang.org/.
There are detailed instructions for each platform, but the basic idea is that Windows users
should use the installer bundle, Linux users should use their distribution’s package man-
ager, and Mac users can choose between an installer or a package manager like MacPorts.

http://www.ruby-lang.org

CHAPTER 1 ©" INTRODUCTION

You'll also want RubyGems installed. RubyGems is the convenient system for man-
aging Ruby libraries. Depending on how you installed Ruby, you may or may not have
RubyGems already installed. You can easily check by typing the following into irb:

require 'rubygems'

Tip irbis the interactive Ruby environment. Type some Ruby in and see the result. You'll probably need to
open a terminal or command prompt, and then type irb to launch it.

If you get a LoadError, you'll need to install RubyGems. There are excellent directions
available at www.rubygems.org/read/chapter/3.

Once you've installed RubyGems, installing any of the gems mentioned in the follow-
ing chapters is as simple as typing (at the terminal or command prompt):

gem install GEMNAME

If you'd like to install all the gems before you start, you can install the midilib, sexp,
rparsec, and extensions gems.

Source Code in This Book

Most computer books have some source code kicking around inside their covers. This
book has a lot of it. Source code is presented throughout the book in monospaced font.
Method definitions are usually written in open class style, so they can be cumulatively
executed in an irb session or sequentially added to a file (most of the projects only
require a single file for code).

The bundled versions of the source code for each chapter are available online. Each
chapter is provided in a separate directory containing multiple versions of the source
files moving through time. Each new section of code is successively integrated into each
new source file. So while the chapters provide a walk through the code, you can also look
at how it all fits together at each step in the process.

While following along in the text, there are a few helpful conventions to be aware of.
In most cases, each line of Ruby code fits on a printable line. However, in a few cases, 1
have been forced to break lines on the page. You'll recognize this by the = symbol.

This is not to be confused with the transformation symbol ». This symbol is used
in various sections of imperative code (for demonstration purposes) to show the return
value of an evaluated expression. For example:

1+1>» 2

http://www.rubygems.org/read/chapter/3

CHAPTER 1 " INTRODUCTION

Your Projects

While the ideas in this book are useful and exciting concepts, the best projects always
come from your own interests. I hope these projects are engaging and fun, but I also
hope they’re a place from which to explore.

I'm looking forward to seeing your projects in the Ruby community. Blog, publish,
speak—whatever works best. I can’'t wait to see what you're working on!

CHAPTER 2

Making Music with Ruby

In his book Hackers: Heroes of the Computer Revolution (Doubleday, 1984), Stephen Levy
describes Peter Samson'’s struggles to get the TXO0 to play music. This was in the early days
of computing at MIT, and to the right sort of person, the results were astonishing.

In my own life, it wasn’t a game that first riveted me to that 286. It wasn’t even a pro-
gramming language. It was the sound of 12 tinny, hard-coded songs bleeping out of a PC
speaker.

It can be frustrating to programmers that many modern computer music systems
are designed either as full applications or as complete programming languages or envi-
ronments. There’s a shortage of good libraries to get you started making music in your
favorite programming languages. Of course, you could do much worse than to learn one
of the specialized environments. They’re immensely powerful. If you like this chapter,
you should definitely have a look at systems like SuperCollider, Impromptu, ChuckK, and
cmusic.

http://supercollider.sourceforge.net/
http://impromptu.moso.com.au/
http://chuck.cs.princeton.edu/
www.crca.ucsd.edu/cmusic/

In this chapter, you're going to build a music system from the ground up in Ruby. The
goals are (of course) to use Ruby, make getting started easy, and keep it simple enough for
users to extend. Music theory is, alas, beyond the scope of this chapter (and I'm not the
guy to teach it anyway). But hopefully this will be enough to make you dangerous. You
can always learn the rest later.

MIDI: Giving Yourself a Vocabulary

Music is just sound waves, and computer music is no different. But the vocabulary of
sounds isn’t necessarily the best vocabulary with which to describe or compose music.
Directly controlling sound wave synthesis does unlock the full range of musically possi-
bility, but most of the time it’s just overwhelming.

http://supercollider.sourceforge.net
http://impromptu.moso.com.au
http://chuck.cs.princeton.edu
http://www.crca.ucsd.edu/cmusic

CHAPTER 2 = MAKING MUSIC WITH RUBY

Luckily computer music has evolved a vocabulary that closely parallels traditional
music notation. Well, sort of. The standard is called Musical Instrument Digital Interface,
usually shortened to MIDI. MIDI is a lot of things, including a device specification, a wire
protocol, and an abstract software APL. It’s this abstract API I'll be targeting; in fact, a very
small subset of this API is all you need.

I'll use these three basic operations: note on, note off, and program change. Note on
starts playing a note, and note off stops playing a note. These operations require a chan-
nel number (used to distinguish between instruments), a note number, and a velocity.
Each of the 16 MIDI channels belongs to an instrument. The velocity represents how
hard a note has been pressed or released and is expressed between 0 and 127.

The note number identifies a specific note and is also expressed between 0 and 127.
Although initially, note numbers can be confusing compared to conventional musical
notation (A, B, C, D, E, E and G), they make your job as a programmer much easier. Mid-
dle C is note number 60. Each increase in the note number represents a half step up the
scale. A difference of 12 represents a whole octave. You can see this relationship visually
in Figure 2-1 (make sure to count the black notes as well when measuring the distance).

A B C D E F G A B C D

Figure 2-1. An octave range on a piano keyboard

To play middle C on your first instrument as hard as possible, you would send a note
on message to channel 0, with a note number of 60 and a velocity of 127. Then a short

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

time later, you would send a note off message to channel 0, with a note number of 60 and
a velocity of 127. The note off velocity can differ from the note on velocity, of course.
Some synthesizers ignore the note off velocity, but to those that use it, it represents how
quickly the note has been released.

The other important operation is program change. Most synthesizers support a wide
selection of instruments. However, since MIDI only supports 16 channels, not all of these
can be active at once. The program change command takes a number for an instrument
preset and a number for the channel and binds the instrument to that channel (in fact,
127 turned out to be too few instruments, so an additional mechanism was added, but
you can ignore that).

Of course, don't get too attached to MIDI. There are some powerful and impressive
sound synthesis systems out there that allow you to take music beyond simple note on,
note off instructions. I'll talk a briefly about these systems in the “Summary” section at
the end of the chapter, but in the meantime, try not to get too locked in to one way of
looking at digital music.

Talking C and Making Noise

Since MIDI is so convenient, let’s use it to make some noise. All of the big operating sys-
tems provide MIDI support, but you'll need to interface with those system libraries from
Ruby. These libraries are typically written in C, and getting Ruby to talk to them can be
tricky. Traditionally, the “bindings” between a high-level language like Ruby (which is
implemented in C) and lower-level C libraries are written in C.

Using this strategy, you'd write a C file that interfaced and linked with the MIDI
libraries. This C file would also use the Ruby C API to expose this functionality to Ruby as
objects. This approach is very flexible because you can use the full power of C to interface
with the library exactly as it was designed. Unfortunately, it also means dealing with the
hassles of writing and compiling C code. Distribution also becomes harder because users
of your bindings may need to compile them as well.

Luckily, Ruby provides a dynamic linking library to interface directly into C libraries
from Ruby! The library is called Ruby DL, and it comes with Ruby right out of the box.

Caution There is a new version of Ruby DL in progress. Version 2 will fix some of the problems associ-
ated with the original. However, the code in this chapter is written for version 1 (the version that is bundled
with the Ruby 1.8 series).

You're now going to build Ruby MIDI bindings for all three major operating systems
(via the Multimedia API for Windows, CoreMIDI for OS X, and the Advanced Linux Sound
Architecture [ALSA] for Linux). Each section in the chapter will contain more information

10

CHAPTER 2 = MAKING MUSIC WITH RUBY

about Ruby DL, so you'll probably want to read about all three, not just the section for
your particular operating system. All the code in this chapter should go in a file named
music.rb right up until the end, when you’ll add an additional file as well.

Sharing Code

All of these platform-specific MIDI interfaces will share some code. In addition to provid-
ing code for its own setup and tear down, you'll require each operating system-specific
interface to implement a message method. The method will take up to three integers to be
turned into a valid MIDI message. Not all MIDI messages can fit in just three bytes. How-
ever, the three types of messages you're concerned with do. Note on and note off both
require three bytes, while program change only requires two.

The specification of these messages is actually pretty interesting. There are two kinds
of MIDI bytes. Status bytes always have a 1 in their most significant bit, while data bytes
always have a 0 in their most significant bit. If you think about a byte as a number (from 0
to 255) instead of simply a set of bits, then numbers 0-127 are interpreted as data bytes
and numbers 128-255 are interpreted as status bytes. In turn, status bytes are basically
commands.

Every type of status byte takes a corresponding number of data bytes as parameters.
You can actually avoid resending the status bytes when repeating messages by simply send-
ing more data bytes, but there’s no need to use the feature. Therefore, every message you
send will start with a status byte and contain only the data bytes it requires as parameters.

In order to conserve wire bandwidth, the designers of MIDI used another interesting
trick (for many commands)—part of the status byte is also used to encode the MIDI
channel the command affects! For example, picture this:

1001****

The four most significant bytes encode the status type (note on). The four least sig-
nificant bytes (marked in the preceding code snippet with asterisks) encode which of the
16 channels will be affected.

Another way to think about this is that the status byte 144 means “note on channel 0,”
the status byte 145 means “note on channel 1,” and so on! Meanwhile “note off channel 0”
is represented by 128.

Caution Being marketed to musicians, MIDI uses terminology that often begins counting at one. Chan-
nels and instruments are therefore numbered 1-16 and 1-128, instead of the more natural representations
0-15 and 0-127, which closely match their binary representations. Since we’re computer programmers,
we’ll stick to the latter version. If you ever find yourself with a sound that doesn’t seem quite right, check to
make sure you’re not off by one because of the conversion.

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

Both note on and note off are then followed by two data bytes. The first encodes the
note to play (between 0-127), and the second encodes the velocity. Note on messages
with velocities of 0 are also sometimes used to mean note off.

Program change is even simpler because it takes one data byte. However, just like
note on and note off, program change encodes a channel in its status byte. Thus the data
byte specifies which of the 128 instruments to map to the specified channel.

Given the preceding information, here’s the common code all the MIDI interfaces
will share.

require 'dl/import’

class LiveMIDI

ON = 0x90
OFF = 0x80
PC = oxCo

def initialize
open
end

def note_on(channel, note, velocity=64)
message(ON | channel, note, velocity)
end

def note off(channel, note, velocity=64)
message(OFF | channel, note, velocity)
end

def program change(channel, preset)
message(PC | channel, preset)
end
end

You start by requiring the d1/import module. I'll talk about that more in the next sec-
tion, “Interfacing with Windows Multimedia.” In the meantime, what else do you see? The
constants 0x90, 0x80, and 0xC0 are hexadecimal numbers that represent the magic values
for note on, note off, and program change for channel 0. You can then use the bitwise or
operator to combine them with the channel on the low bits to produce the complete sta-
tus byte. Note and velocity are passed straight on to message. As you can see, ['ve also
specified a default velocity of 64.

11

12

CHAPTER 2 = MAKING MUSIC WITH RUBY

Tip Hexadecimal numbers are in base 16. They use the characters 0, 1,2, 3,4,5,6,7,8,9,A,B,C, D, E,
and F to represent digits 0 through 15. If you want to see the decimal value of a hex number, type it into irb
prefixed with a ox to let Ruby know it’s in hex.

Now you need open and message methods for each operating system (a close method
would be nice as well). Because the code for one platform will fail on a different platform,
only the code for the current operating system will be loaded. I could have used sub-
classes here, but because the three sets of code are incompatible, I'll simply use open
classes to load them directly into the main LiveMIDI class, depending on the operating
system.

if RUBY_PLATFORM.include?('mswin")
class LiveMIDI
Windows code here
end
elsif RUBY PLATFORM.include?('darwin')
class LiveMIDI
Mac code here
end
elsif RUBY _PLATFORM.include?('linux")
class LiveMIDI
Linux code here
end
else
raise "Couldn't find a LiveMIDI implementation for your platform"
end

The code throws an exception if it can’t find a good match.

Interfacing with Windows Multimedia

You'll start with Windows. The code begins with this unusual piece of Ruby:

class LiveMIDI
module C
extend DL::Importable
dlload 'winmm'
end
end

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

Here’s what you're doing. You've reopened the LiveMIDI class using Ruby’s open
classes. But then you define a module named C inside the class! You usually see this the
other way around (classes inside of modules). But this is legal Ruby. In fact, classes can
contain both modules and other classes. Not only is this useful from time to time, it
makes sense, since Class is a subclass of Module. Once you've opened up this inner mod-
ule, you extend DL: : Importable.

Now is a great time to talk about two of Ruby’s weirder keywords: extend and include.
Both inject the contents of one module (or class) into another module (or class). extend
injects a module’s class methods into the target, while include injects a module’s instance
methods into the target. In this case, you want easy access to DL: : Importable’s class meth-
ods, so you'll use extend to put them in your namespace.

Here’s an example of how you call the extern method that you gained access to when
you extended DL : : Importable.

class LiveMIDI
module C
extend DL::Importable
dlload 'winmm'

extern "int midiOutOpen(HMIDIOUT*, int, int, int, int)"
extern "int midiOutClose(int)"
extern "int midiOutShortMsg(int, int)"
end
end

Each call to the extern method is passed a string containing a C function signature.
If you've coded C before, these should look familiar. If not, here’s the key to deciphering
them. The second word is the name of the function. So your first extern call declares the
C function midiOutOpen. The first word is the return type of the function. As you can see,
midiOutOpen returns an integer. The types of the function’s parameters are written inside
the parentheses.

The preceding types are not the exact types used in the API. The actual definition
uses a variety of custom-defined C types. However, because you'll be ignoring most of the
parameters, there’s no harm in just pretending they're all int types. You can also ignore
the fact that the parameters are technically of the type unsigned int because they will
never need to be converted back into Ruby types. Of course, do try to be careful when
working with return values.

For the experienced C programmers who know about pointers, let me mention that
Ruby DL doesn'’t really care what type of pointer you are declaring, only that it is a pointer.
I've left this definition using the custom type HMIDIOUT, but in most of the rest of the code

13

14

CHAPTER 2 = MAKING MUSIC WITH RUBY

in this chapter, I've simply written void* for efficiency. If that didn't make any sense, don’t
worry! You don't need to understand C pointers to get this code working.

So now you have a class that contains a module that’s had the extern class method
called repeatedly inside it. It turns out that every call has been defining methods in the C
module. This lets you write the following:

class LiveMIDI
def open
@device = DL.malloc(DL.sizeof('I"))
C.midiOutOpen(@device, -1, 0, 0, 0)
end
end

The cool thing about using a module this way is that not only are the C functions
neatly tucked out of the way in the C module inside the class, it’s also easy to call them
and easy to tell that they are invocations of C functions.

C programmers out there will also recognize the familiar call to malloc in the pre-
ceding code. The memory allocate (malloc) function returns the address of a block of
memory of the requested size. The programmer can then use the memory however he
or she wants.

Notice how you use the DL.sizeof method to get the size of an integer and used that
in your request to malloc for memory. Since malloc returns a pointer, and midiOutOpen
also takes a pointer (to what is essentially an integer), you can pass @device right into
midiOutOpen. The -1 parameter instructs the system to choose the default MIDI device.
The other parameters can safely be ignored and passed in 0 values. To be rigorous, you'd
need to check the return code of C.midiOutOpen to see if the function succeeded. But I
think we should play it fast and loose here in order to keep the code short.

You'll also define a close method that will end the class’s connection to the MIDI
subsystem. If your code is just exiting, there’s no need to call the close method because
the operating system will handle that situation itself. But having close around means you
can shut down and open our MIDI connections as you please.

class LiveMIDI
def close
C.midiOutClose(@device.ptr.to i)
end
end

C programmers are probably wondering at this point if you're going to call the free
function on the memory you requested to return it to the operating system. The good
news is you don’t have to! When the Ruby object that represents your allocated memory
is garbage collected, the memory will automatically be released. (If you'd like to prevent

mailto:midiOutClose(@device.ptr.to_i

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

this happening, use the free= accessor to set the clean-up function for that allocation
to nil.)

All that’s left is the message method. The API method you'll be using takes a MIDI
message as an unsigned four-byte integer. You'll use default arguments to accept up to
three, then cram them all into that integer, and Windows will do the work of sending
them on to the synthesizer correctly.

class LiveMIDI
def message(one, two=0, three=0)
message = one + (two << 8) + (three << 16)
C.midiOutShortMsg(@device.ptr.to i, message)
end
end

You use the shift operator << to move the two and three bytes over into their appro-
priate locations inside the 32-bit number, and then add all three together (you could also
have used bitwise or). Care to try it out all you Windows developers?

midi = LiveMIDI.new
midi.note on(0, 60, 100)
sleep(1)

midi.note_off(0, 60)
sleep(1)

midi.program change(1, 40)
midi.note on(1, 60, 100)
sleep(1)

midi.note_off(1, 60)

You should hear a nice middle C played on a piano. Then you should hear another
middle C on the violin after the code executes a program change to set the second chan-
nel’s instrument.

Note There are no rules about which instrument numbers correspond to which instrument. There is,
however, a standard called General MIDI. When a synthesizer uses the General MIDI instrument layout,
you can count on piano being instrument 0 and violin being instrument 40, as well as many other fixed
placements.

Now, how would you go about doing the same thing on a Mac?

15

mailto:midiOutShortMsg(@device.ptr.to_i

16

CHAPTER 2 = MAKING MUSIC WITH RUBY

Interfacing with CoreMIDI

Apple’s CoreMIDI subsystem is a little different from the Windows Multimedia API.

For one, while the Multimedia API functions are primarily intended for playing music,
CoreMIDI is intended mostly as a MIDI routing system. Your code will attempt to auto-
connect to a MIDI output, but unless you have a program that accepts and plays MIDI
streams open, you won't hear a sound, no matter what MIDI messages you're sending.
Which is not to say you couldn’t use Apple’s built-in audio libraries to do things the way
you did in Windows. It’s possible to instantiate a Downloadable Sounds (DLS) synthesizer
and send MIDI messages to it directly. In the interest of keeping the code simple, though,
you'll rely on a third-party application to turn our MIDI messages into sounds.

Pete Yandell’s excellent SimpleSynth is a free application built upon the DLS synthe-
sizer. You can download it from his web site at http://pete.yandell.com/software/. Run
SimpleSynth now. Your Ruby code will connect automatically and use it to play.

You're going to end up importing more functions than you did in the Windows
example. This is because you have to do a little extra work to auto-connect to an available
MIDI destination (in this case, provided by SimpleSynth).

Don't forget that, although this code is also injected in the LiveMIDI class, because
of the if statement, only one operating system’s implementation code will be loaded
and used.

class LiveMIDI
module C
extend DL::Importable
dlload '/System/Library/Frameworks/CoreMIDI.framework/Versions/Current/CoreMIDI'

extern "int MIDIClientCreate(void *, void *, void *, void *)"
extern "int MIDIClientDispose(void *)"
extern "int MIDIGetNumberOfDestinations()"
extern "void * MIDIGetDestination(int)"
extern "int MIDIOutputPortCreate(void *, void *, void *)"
extern "void * MIDIPacketlListInit(void *)"
extern "void * MIDIPacketlListAdd(void *, int, void *, int, int, int, void *)"
extern "int MIDISend(void *, void *, void *)"
end
end

Much as in previous code, you have methods to connect and disconnect from the
MIDI subsystem. You also have methods to choose a destination port, as well as create an
output port, build MIDI packet structures, and send MIDI messages.

However, this isn't enough! The MIDIClientCreate function takes a name parameter
but, unfortunately, not a regular C string. Instead, it takes a special CoreFoundation string.

http://pete.yandell.com/software

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

Note Apple’s CoreFoundation provides a set of data structures and functions for C. They are used by
many of Apple’s lower-level systems.

So you’ll add a second module to your LiveMIDI class to contain the required
CoreFoundation function. You'll call it CF for obvious reasons!

class LiveMIDI
module CF
extend DL::Importable
dlload '/System/Library/Frameworks/CoreFoundation.framework/Versions/Current/w
CoreFoundation’

extern "void * CFStringCreateWithCString (void *, char *, int)"
end
end

This function takes a CoreFoundation allocator as its first parameter (thankfully, if you
pass in null, it'll just use the default allocator). The C string comes next. And, finally, you
pass in an integer to describe the encoding of the string (you'll just use 0).

With that out of the way, you can write the initialize method:

class NoMIDIDestinations < Exception; end

class LiveMIDI
def open
client_name = CF.cFStringCreateWithCString(nil, "RubyMIDI", 0)
@client = DL::PtrData.new(nil)
C.mIDIClientCreate(client name, nil, nil, @client.ref);

port_name = CF.cFStringCreateWithCString(nil, "Output”, 0)
@outport = DL::PtrData.new(nil)
C.mIDIOutputPortCreate(@client, port name, @outport.ref);

num = C.mIDIGetNumberOfDestinations()
raise NoMIDIDestinations if num < 1
@destination = C.mIDIGetDestination(0)
end
end

17

mailto:@client.ref
mailto:@outport.ref

18

CHAPTER 2 = MAKING MUSIC WITH RUBY

Those function names look pretty funny. It turns out that Ruby DL lowercases the first
character of each function in order to make them proper Ruby methods. So MIDIClientCreate
becomes mIDIClientCreate. It looks weird but it’s harmless.

The method names the MIDI client, and then creates it. It also names the output
port, and then creates it. Finally, it searches for an output destination. If it can’t find one,
it raises a NoMIDIDestinations exception.

In the process, however, it created several instances of the PtrData class. These Ruby
objects represent pointers. Using the ref method, you can pass pointers to these point-
ers into CoreMIDI functions, and CoreMIDI will set them to point at the appropriate
structures.

Because CoreMIDI automatically closes ports when a client closes, the close method
is a one-liner.

class LiveMIDI
def close
C.mIDIClientDispose(@client)
end
end

Which brings us to the message method. Unfortunately, the MIDISend function is more
complicated than the function you used on Windows. It takes a packet list structure that
you'll allocate with malloc. You'll allocate a full 256 bytes (an unnecessarily large value,
but one that you won'’t ever overflow with your single message packet lists). The packet
can then be initialized with a call to C.mIDIPacketListInit.

Once initialized, you can add packets to the list using C.mIDIPacketListAdd. That func-
tion takes the packet list and size and a pointer to know where to put the next packet. It
also takes an optional time value (if you would like the message delivered at a later time).
It’s fine to pass in 0, meaning now, but the time is represented as a 64-bit data type. As long
as you're on a 32-bit platform, you can get around this using two integer values. You then
pass in the number of MIDI bytes you're adding and a pointer to the bytes themselves.

class LiveMIDI
def message(*args)
format = "C" * args.size
bytes = args.pack(format).to_ptr
packet list = DL.malloc(256)
packet ptr = C.mIDIPacketlListInit(packet list)
Pass in two 32 bit 0s for the 64 bit time
packet_ptr = C.mIDIPacketListAdd(packet list, 256, packet ptr, 0, 0, =
args.size, bytes)
C.mIDISend(@outport, @destination, packet list)
end

end

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

The trickiest step here is the usage of pack. The pack method is a standard Ruby Array
method. The method contains a list of values that will be encoded into a byte string using
the format supplied as an argument. In this case, the format will contain a letter C for
each argument passed in.

Tip In Ruby, if you multiply a string by a positive integer, you'll get a new string containing that many
repetitions of the original string. A similar trick works on arrays as well!

Since the letter C tells pack to encode the data as an 8-bit character, your arguments
will each be encoded into an 8-bit value. The addition here, of course, is that Ruby DL has
provided a to_ptr method that returns a DL pointer to allocated memory containing the
byte string. You can then use it as you see fit. In this case, pass it in to MIDIPacketListAdd
as a raw byte buffer.

Excellent! With SimpleSynth open, let’s give it a try, Mac folks.

midi = LiveMIDI.new
midi.note on(0, 60, 100)
sleep(1)

midi.note_off(0, 60)
sleep(1)

midi.program change(1, 40)
midi.note on(1, 60, 100)
sleep(1)

midi.note_off(1, 60)

All that leaves is Linux!

Interfacing with ALSA

ALSA provides several ways to sequence MIDI events. It provides a higher-level API (the
sequencer API) that is similar to CoreMIDI. It also provides a lower-level API (the raw APT)
that is similar to the Windows Multimedia system API.

Unfortunately, because of its use of complex C structs and macro functions (which
don't exist as runtime functions for Ruby DL to interact with), the higher-level API is a
bad fit for Ruby DL. However, you can use a special feature of the raw API to be full citi-
zens in the world of MIDI routing graphs.

19

20

CHAPTER 2 = MAKING MUSIC WITH RUBY

Just like the other implementations, you'll start with a module named C.

class LiveMIDI
module C
extend DL::Importable
dlload 'libasound.so’

extern "int snd_rawmidi open(void*, void*, char*, int)"
extern "int snd _rawmidi close(void*)"
extern "int snd_rawmidi_write(void*, void*, int)"
extern "int snd_rawmidi drain(void*)"
end
end

The one tricky thing here is that your Linux distribution may not include a symlink
from the libasound.so name to the actual version you're running (both typically live in
the /usr/1ib directory). In this case, you should change the d11oad line to specify an exact
version or even a full path to the dynamic library:.

Writing your initialize and close methods should be old hat by now:

class LiveMIDI
def open
@output = DL::PtrData.new(nil)
C.snd_rawmidi open(nil, @output.ref, "virtual", o)
end

def close
C.snd_rawmidi close(@output)
end
end

Notice that you've passed the string "virtual" into the constructor. This tells ALSA to
create a sequencer endpoint, even though you're using the raw API.
With the addition of your message method, you're done!

class LiveMIDI
def message(*args)
format = "C" * args.size
bytes = args.pack(format).to ptr
C.snd_rawmidi write(@output, bytes, args.size)
C.snd_rawmidi drain(@output)
end
end

mailto:@output.ref

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

Again, you can use the pack trick to get the bytes you'd like to write out. But make
sure to call snd_rawmidi_drain to flush out your messages.

Now, in order to try this out, you're going to need some assistance. First of all, just as
you used SimpleSynth under OS X, you're going to use a program called TiMidity under
Linux. Start by installing TiMidity from your distribution’s package manager. Then run it
with the following options:

timidity -iA -B2,8 -Os

The -i knob tells TiMidity to read its input from an ALSA sequencer. The -B knob
adjusts the buffer to prevent stutters, and the -0s knob tells it to output the generated
audio via ALSA.

Next, because you haven't written any connection code, you're going to need to man-
ually connect your Ruby LiveMIDI object’s output port to TiMidity’s input port. There are
a number of utilities to do this, but I recommend gjackctl. Launch it, click the Connect
button to open the connections window, and select the MIDI tab. Select TiMidity in the
right-hand list. As soon as you launch your script (you'll put a call to the sleep method at
the beginning), an entry starting with the word “Client” should appear on the left. Select
it and click the Connect button. A line should be drawn between the two of them, and
they should now be linked (see Figure 2-2).

\ jACK Audio Connection Kit [{default)] Stopped.

’ Start ¥ Ouit |
[Messages | M- Status @ Setup...

m D4 Patchbay |_|_|_|L|_|m| |

Audio | MIDI |

Readable Clients / Output Port Writable Clients / Input Port
+-[F§ 14:Midi Through +-[F§ 14:Midi Through
+-[FJ16:Ensoniq AudioPCl +-[F§ 16:Ensoniq AudioPCl

»;-- 130:Client-130

Sl 128:TiMidity

o | X Disconnect | 2€ Disconnect All | (5 Refresh |

Figure 2-2. Connecting your ALSA client to TiMidity

21

22

CHAPTER 2 ' MAKING MUSIC WITH RUBY
Of course, if you prefer, you may also use the aconnect command-line utility that
ships with ALSA. Here’s the test code:

midi = LiveMIDI.new
Wait for user to connect

sleep(8)

midi.note_on(0, 60, 100)
sleep(1)

midi.note off(0, 60)
sleep(1)

midi.program_change(1, 40)
midi.note on(1, 60, 100)
sleep(1)

midi.note_off(1, 60)

puts "Done"

And with that, you've built a MIDI interface for all three major operating systems.
You've played your first few notes over the speakers. Ready to start your first music project?

Building a Metronome

The first project will be building a metronome. A metronome makes a small noise at
regular intervals. It’s a great tool for developing an internal sense of tempo. Many MIDI
systems support the ability to schedule events in time. To keep things simple, none of
your wrappers expose this functionality. With that said, if you're going to implement a
metronome, you're going to need some kind of timer! And if you want to play music,
you're going to need to trigger and release notes at specific times.

First, some definitions. I'm going to use the terms bang and interval alot. A bangis
aregularly scheduled action, and an interval is the time between bangs. The term bang
was popularized by Alex Mclean in his article “Hacking Perl in Nightclubs” (August 31,
2004, www.perl.com).

The interval represents the smallest musical duration in your computer music com-
position. You could specify intervals directly to your software. However, in the world of
music, tempos are often expressed in beats per minute because it’s easier to conceptual-
ize. A bang is not necessarily the same as a beat because a bang must be the smallest note
resolution, whereas beats are not required to be the smallest note used in a piece. Bangs
are not beats, but beats per minute is a useful measure, so I'll use bangs per minute
instead. If you want 120 quarter note beats per minute and want to use sixteenth notes,
you’ll need 480 bangs per minute. Dividing 60 seconds by the number of bangs per minute,
gives your interval (the time between bangs).

Unfortunately, Ruby isn’t good at precise timing. Even ignoring major timing prob-
lems like garbage collection, Ruby performance is sometimes erratic. But don’t worry

http://www.perl.com

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

too much. You may hear a hiccup occasionally, but provided you have a fast system,
this shouldn’t be much of a problem. Running your Ruby process with high priority can
help too.

Tip On Linux or Mac 0S X, prefixing your commands on the terminal with sudo nice -n -20 . . .
runs them at the highest priority.

Keeping Time

Here’s the strategy for doing reasonable sleep/wake timing in Ruby. The Timer class will
be initialized with a resolution. This resolution should be significantly smaller than the
smallest unit of time you want to measure. So, given the tick duration of 60/480 seconds
I just mentioned, you'd divide that by 10 and use that as our resolution. This means that
you'll never be off by much more than a 1/10 of a tick. You can increase this number for
better resolution at a performance cost.

The Timer class simply provides an at method that schedules a callback for the pro-
vided block. Here’s an example:

timer = Timer.new(0.01)
timer.at(Time.now + 1) { puts "hello" }

You give your Timer a 1/100 of a second resolution, and then tell it to puts "hello"
one second from now. Here’s how it works. In order to prevent a Timer from blocking all
execution, you want to put its run loop inside a second Ruby Thread that loops forever,
calling sleep when required and regularly calling its private dispatch method.

class Timer
def initialize(resolution)
@resolution = resolution
@queue = []

Thread.new do
while true
dispatch
sleep(@resolution)
end
end
end
end

23

24

CHAPTER 2 = MAKING MUSIC WITH RUBY

The Timer class’s Thread instance starts immediately and runs the private dispatch
method that triggers the callbacks. This Thread sleeps for the resolution before running
dispatch again. This is repeated forever.

Meanwhile, the dispatch method just checks to see if any scheduled events need to
be executed. This busy loop does unnecessary work, but the overall CPU cost is tolerable,
and it gets you moderately accurate resolution. The sleep intervals keep the total cost
much lower than it would be otherwise.

class Timer
private
def dispatch
now = Time.now.to f
ready, @queue = @queue.partition{|time, proc| time <= now }
ready.each {|time, proc| proc.call(time) }
end
end

The method records the time when it begins. This makes sure that it won’t ever
accidentally release a later event and not release a previous event because of the delay
involved in sequentially checking each scheduled event. It also passes in the time the
callback is expected to be called at. I'll talk about why that is in the section titled “Fixing
Your Timer Drift.”

But what about a method to add an event?

class Timer
public
def at(time, &block)
time = time.to f if time.kind of?(Time)
@queue.push [time, block]
end
end

Let’s try out that example you wrote before.

timer = Timer.new(0.01)
timer.at(Time.now + 1) { puts "hello" }

It works! So how do you implement your metronome? Well, the good news is that a
metronome is basically a timer with a little bit extra.

mailto:@queue.push

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

A Working Metronome

Here’s the actual implementation:

class Metronome

def initialize(bpm)
@midi = LiveMIDI.new
@nidi.program change(0, 115)
@interval = 60.0 / bpm
@timer = Timer.new(@interval/10)
now = Time.now.to f
register next_bang(now)

end

def register next bang(time)
@timer.at(time) do
now = Time.now.to f
register next bang(now + @interval)
bang
end
end

def bang
@midi.note on(0, 84, 100)
sleep(0.1)
@midi.note off(0, 84, 100)
end
end

The class uses the bangs per minute convention. Also note how each time
register next bang is called, it registers the next callback immediately, and then calls
bang. It plays a C two octaves up from middle C, played on channel 0 using the General
MIDI woodblock instrument. Want to hear what it sounds like?

m = Metronome.new(60)
Sleep here to keep the program running
sleep(10)

If you pass in 120, you'll get 120 bangs per minute, so your metronome will tick every
half second. Mostly. It turns out you have a small problem with drift.

25

mailto:@midi.program_change
mailto:@timer.at
mailto:@midi.note_on
mailto:@midi.note_off

26

CHAPTER 2 = MAKING MUSIC WITH RUBY

Fixing Your Timer Drift

If a particular callback is even a little bit late (and with the way the timing is imple-
mented, this will happen), the next callback time will be calculated from the time the
block is triggered instead of when it was supposed to be triggered. This causes the
metronome to lag farther and farther behind as time goes on. Each interval still sounds
basically the right length, but a program making music using an accurate clock would
soon get out of phase with this code. The fix is to stop ignoring the time passed into the
callback. If you use that as a base instead of the current time, you can circumvent the
drift problem:

class Metronome
def register next bang(time)

@timer.at(time) do |this_time|
register next bang(this time + @interval)
bang

end

end
end

It’s going to be a pain, though, if you need to manually sleep after each note on just so
that you can call note_off again. Instead, let’s add a play method to the LiveMIDI class that
understands durations.

Writing the Play Method

If you're going to manage the timing of note_off messages yourself, you're definitely
going to need a Timer. Which means you’ll need to pass in beats per minute so you
can choose a small enough Timer resolution. You'll need to create this Timer during
initialization:

class LiveMIDI
attr reader :interval
def initialize(bpm=120)
@interval = 60.0 / bpm
@timer = Timer.new(@interval/10)
open
end
end

mailto:@timer.at

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

The play method needs to take an additional duration parameter. I've decided to
insert the duration parameter before velocity, since velocity is the one parameter that
it’s possible to come up with a good default for. You'll set the default velocity to 100,
which is louder than the previous default of 60, but it leaves a little room before you hit
the maximum of 127.

class LiveMIDI
def play(channel, note, duration, velocity=100, time=nil)
on_time = time || Time.now.to f
@timer.at(on_time) { note on(channel, note, velocity) }

off time = on_time + duration
@timer.at(off time) { note off(channel, note, velocity) }
end
end

It’s obvious why you're using the Timer class for the note_off messages (since you
need to defer the note shutoff). But it’s not instantly clear why you're scheduling the
note_on messages as well. Because timing can be so erratic, it's sometimes advantageous
to use runahead—Dby figuring out which notes you’ll play and scheduling them ahead of
time, you can avoid accidentally taking too long to select the next note when it is sup-
posed to be played. If the time parameter is supplied, the note_on message won’t be
triggered until then. The note_off time will always be relative to the note_on time.

With the play method finished, you can rewrite your Metronome class’s initialize
and tick methods to look like this:

class Metronome

def initialize(bpm)
@nidi = LiveMIDI.new(bpm)
@midi.program change(0, 115)
@interval = 60.0 / bpm
@timer = Timer.new(@interval/10)
now = Time.now.to f
register next_bang(now)

end

def bang
@midi.play(o, 84, 0.1, Time.now.to f + 0.2)
end
end

27

mailto:@timer.at
mailto:@timer.at
mailto:@midi.program_change
mailto:@midi.play

28

CHAPTER 2 = MAKING MUSIC WITH RUBY

Avoiding Too Many Timers

Hmm, but now you've got an interesting situation. You have two Timer instances running
simultaneously (the metronome’s and the synthesizer’s). This isn’t technically wrong, but
itincreases system load (and therefore the rate of hiccups and timing problems).

You could solve this with an accessor for the LiveMIDI @timer instance variable. Then,
inside Metronome, you could schedule events using that timer. But that’s an awfully big
abstraction violation. More to point, what if you have more than one instance of the
LiveMIDI interface running?

Instead, let’s modify the Timer class itself. Let’s provide a way for everyone to easily
share Timer instances. You're going to add a get class method that returns a shared Timer
instance when it can (the Singleton design pattern, the most reviled of all patterns).

But wait! What if your Timer instances want to use different intervals? If this code
were really fancy, you'd find the least common denominator and then dynamically
change the already running Timer’s interval. Instead, why not just share Timer instances
that use the same interval?

class Timer
def self.get(interval)
@timers ||= {}
return @timers[interval] if @timers[interval]
return @timers[interval] = self.new(interval)
end
end

Timer instances with different intervals won't synchronize their start times using this
approach, so that’s a great reason to make sure all the Timer instances you use have the
same interval (so you only end up creating one).

Your LiveMIDI and Metronome classes can be changed as follows to take advantage of
this class method:

class LiveMIDI
def initialize(bpm=120)
@interval = 60.0 / bpm
@timer = Timer.get(@interval/10)
open
end
end

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

class Metronome
def initialize(bpm)
@midi = LiveMIDI.new
@nidi.program change(0, 115)
@interval = 60.0 / bpm
@timer = Timer.get(@interval/10)
now = Time.now.to f
register next bang(now)
end
end

Now your Ruby has less work to do.

Composing

The bad news is that even though computers are a powerful tool for composition, they
can’t teach music theory (and neither can I). If you're interested, most community col-
leges do offer music classes. But even if you aren’t an expert, you can still have fun
playing with computer music, especially when Ruby’s involved!

Notation

Every profession has its own lingo and shorthand representations. Music has a very com-
prehensive and standard representation. Unfortunately, sheet music is mainly visual.
Luckily, a number of people have come up with ways to represent musical notes in plain
old ASCII text (of the sort you write code in). The details vary a little, but the idea is the
same. You'll build your own system here to make life easier. I'll talk more about what a
comprehensive solution might look like in the section titled “Taking Patterns Further,”
but let’s start with a simple pattern system.

Patterns

Patterns use sequential characters to represent events. Patterns are really great for drums,
but can be used all over. Consider the following:

Kick: *--—%¥_

You'll hear this pattern in a second, and it should be instantly recognizable from
many popular songs. But visually, you also get an immediate understanding of the timing

29

mailto:@midi.program_change

30

CHAPTER 2 = MAKING MUSIC WITH RUBY

and relationships of the drumbeats. In order to turn them into patterns, you'll need to the
take the strings apart. Let’s start by breaking them into individual characters:

class Pattern
def parse(string)
characters = string.split(//)
no_spaces = characters.grep(/\S/)
return no_spaces.map do |char]
case char
when /-/ then nil
when /\D/ then 0
else char.to i
end
end
end
end

A quick demo is in order.

p = Pattern.new
p.parse('*--- *k-_') » [0, nil, nil, nil, 0, 0, nil, nil]

What's that final clause doing with char.to_i, though? Consider this example:
p.parse('0--- 12-') » [0, nil, nil. nil, 1, 2, nil, nil]

What's interesting about this is that the patterns can represent more than just on (*)
or off (-). By allowing numbers, you're able to represent notes as well. I'll come back to
this in just a few paragraphs, but let’s get the Pattern class usable first.

You'll make the parse method private, since it’s just a helper for the constructor.
The constructor will do little more than save the produced list.

class Pattern
def initialize(base, string)
@base = base
@seq = parse(string)
end
end

I'd explain the @base variable, but the next method will do a better job than I can.

class Pattern
def [](index)
value = @seq[index % @seq.size]

mailto:@seq.size

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

return nil if value.nil?
return @base + value
end
end

Tip Having a method named [] lets you index into instances using the same syntax that arrays and
hashes use.

Once you've created a sequence, you can index into it and get back one of the num-
bers in the sequence plus the base you used to create the sequence (nil is kept as nil).
This way you can use your simple on/offs to represent the pattern for a single drum in
either of these ways:

beat using symbols = Pattern.new(36, '*--- **--')
beat using zeroes = Pattern.new(36, '0O--- 00--')

Both represent the same pattern, and as long as they are ultimately played through
a channel that is mapped to drums where the 36 is a valid note (for example, the kick
drum), you'll get the sound you're looking for. Because you modulo the index by the
sequence size, the pattern will repeat as the index increases. Of course, you'd also like to
be able to get the length of the pattern.

class Pattern
def size
return @seq.size
end

end

Patterns are good for more than just drums. The way it’s written, patterns can
contain more than a single note.

Pattern.new(60, '4202 444- 222- 477-') » [4, 2, 0, 2, 4, 4, 4, nil, 2, 2, 2, nil, 4,
7, 7, nil]

Recognize that as “Mary Had a Little Lamb”? It looks a little different this way. Of
course, youd really rather not have gaps at the end of the last three measures. You'd
rather have those notes on the third beat be half notes and last for two beats instead.

If you're willing to sacrifice some simplicity, you can add the concept of durations to the
Pattern class.

31

mailto:@seq.size

32 CHAPTER 2 = MAKING MUSIC WITH RUBY

From now on, your sequences will have a pair at each slot. The first item will be the
note number and the second will be the note duration. The durations are expressed in
pattern slots, not raw times, since there is no notion of real time inside the Pattern class.

class Pattern
def parse(string)
characters = string.split(//)
no_spaces = characters.grep(/\S/)
return build(no_spaces)
end

def build(list)
return [] if list.empty?
duration = 1 + run_length(list.rest)
value = case list.first
when /-|=/ then nil
when /\D/ then 0
else list.first.to i
end
return [[value, duration]] + build(list.rest)
end

def run_length(list)
return 0 if list.empty?
return 0 if list.first != "="
return 1 + run_length(list.rest)
end

end

Before I talk about the new parse method, consider the rest method you've used on
an Array instance. This method isn't part of standard Ruby (even though it nicely comple-
ments the first method by returning all elements except the first). You'll be using it
throughout the book, so keep the following definition somewhere handy:

module Enumerable

def rest
return [] if empty?
self[1..-1]

end

end

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

Defining it inside the Enumerable module (where all the common collection methods
live) means that any collection type that mixes in Enumerable will get the rest method
for free.

Okay, returning to the new parse method. Now notes can be extended by following
them with an equal sign (=). This is exclusive (you can’t extend a note on top of another
note) for clarity. Anyone interpreting the values returned from a pattern will now need
to remember to make use of the duration. Here’s how’d you write “Mary Had a Little
Lamb” now:

Pattern.new(60, '4202 444= 222= 000=")

Why'd I choose =? No good reason. A period (.) or plus sign (+) might have been good
choices, but both already have meanings in conventional music theory, so it seemed bet-
ter to choose a neutral glyph. You should feel free to use whatever makes the most sense
to you.

You'll also need to change the way the [] method adds in the base note value:

class Pattern
def [](index)
value, duration = @seq[index % @seq.size]
return value, duration if value.nil?
return @base + value, duration
end
end

Playing Songs
Okay, what do you need to play a pattern out loud?

class SongPlayer
def initialize(player, bpm, pattern)
@player = player
@interval = 60.0 / bpm
@pattern = Pattern.new(60, pattern)
@timer = Timer.new(@interval / 10)
0
play(Time.now.to f)

@count

end

def play(time)
note, duration = @pattern[@count]
@count += 1
return if @count >= @pattern.size

33

mailto:@seq.size
mailto:@pattern.size

34

CHAPTER 2 = MAKING MUSIC WITH RUBY

length = @interval * duration - (@interval * 0.10)
@player.play(0, note, length) unless note.nil?
@timer.at(time + @interval) {|at| play(at) }
end
end

The class stops playing when it exceeds the length of the pattern; and when it plays
notes, it stops them a little before the next note (to help avoid the possibility that a
delayed note off message might turn off a note that just started). And the pattern?

bpm = 120

midi = LiveMIDI.new(bpm)

SongPlayer.new(midi, bpm, "4202 444= 222= 477=")
sleep(10)

Mary’s little lamb!

Tip If you're still hearing the woodblock sound from the metronome example, you probably want to reset
your MIDI synthesizer (SimpleSynth or TiMidity) or at least change channel 0 back to the piano.

Tempo Tap

An interesting modification to these sorts of patterns (especially if you play a musical
instrument and are looking to use the computer for accompaniment) is to play notes
every time you “tap” instead of linking the notes to some inexorable timer.

With the right glue, you could use a MIDI keyboard (a piano-like keyboard that sends
MIDI messages) or pedals to provide the tap; but you should keep it simple for now and
just use the Return key. Every time you tap it, the code will play the next note in the
sequence. You don’t need to bother with any sort of beats per minute measure, since the
user will be providing the tempo himself. Instead, the constructor is parameterized on
the length of time to play an activated note (similar, but not quite the same thing).

class Tapper
def initialize(player, length, base, pattern)
@player = player
@length = length
@pattern = Pattern.new(base, pattern)
@count = 0
end

mailto:@player.play
mailto:@timer.at

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

def run
while true
STDIN.gets
note, duration = @pattern[@count]
@player.play(0, note, @length * duration) if note
@count += 1
end
end
end

Cool, now you can tap along as you play (well, as long as you don’t mind putting your
keyboard on the floor and stomping on it while you jam on your guitar).

midi = LiveMIDI.new(120)

midi.program change(0, 16)

t = Tapper.new(midi, 0.5, 60, "4202 444= 222= 477=")
t.run

Taking Patterns Further

Admittedly, the system you've put together is limited in some ways. It can’t represent
more than ten half steps, which isn't even a full octave. If you want more flexibility, you'll
probably want a space delimited pattern format. Changing your call to split to /\s+/
could switch you over. Since you'd be giving up the use of space as a separator, you could
make the single pipe symbol (|) a throwaway character to replace it (this code doesn’t
work, of course).

ep = ExtendedPattern.new(0, "64 62 60 62 | 64 64 64 = | 62 62 62 = | 60 60 60 =")

Another feature might be to add the ability to specify notes using the form e4 to rep-
resent the fourth octave E. A simple lookup table could do the translation. The defining
characteristic of the pattern syntax, though, is that each position represents a unit of the
smallest time interval (even though the pattern has no knowledge of the time signature
itself). But if you play the “Mary Had a Little Lamb” pattern at 120 bpm, and the smallest
notes you use are quarter notes, you can calculate the exact time interval for each pattern
position.

Of course, now imagine a piece that uses sixteenth notes. A whole note is going to be
areal pain to write each time youneed one ("60 = = = = = = = = = = = = = = ="). With

35

mailto:@player.play

36

CHAPTER 2 = MAKING MUSIC WITH RUBY

some changes to the parser, though, you could add the ability to use duration prefixes.
Consider the following mapping:

times = {
's' o= 1,
'e' = 2,
'de' => 3,
q' =>4,
'dq' => 6,
'h' => 8,
"dh' => 12,
'w' => 16,
"dw' => 24,

}

A middle C sixteenth note would be written 's60"' or 'sc5' while a whole note would
be written 'w60'. A dotted quarter note would be 'dg60'. But what about chords? Obvi-
ously, you can just run multiple patterns simultaneously.

pl = ExtendedPattern.new('c5")
p2 = ExtendedPattern.new('es5")
p3 = ExtendedPattern.new('g5")

Another way would be to use the + symbol to join notes that should be played
simultaneously.

You won'’t be implementing the ExtendedPattern class in this chapter, but these are all
features you might want to consider if the original Pattern class is too constraining and
you feel like striking out on your own. This level of control gets you much closer to the
level of expression required for complex composition.

Saving Your Music

Accompanying the MIDI music interface is a corresponding file format. The file format
looks very similar to the MIDI wire protocol with some extras. But instead of worrying
about the details of the format, you'll use the excellent Ruby midilib library. The midilib
library can easily be installed from RubyGems with the following command:

gem install midilib

You're going to implement an alternate class named FileMIDI that you can use
instead of the LiveMIDI interface when you want to save your products. FileMIDI will use
the classes inside the midilib MIDI module. Your initialize method looks like this:

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

class FileMIDI
attr reader :interval

def initialize(bpm)
@bpm = bpm
@interval = 60.0 / bpm

@base = Time.now.to_f
@seq = MIDI::Sequence.new

header track = MIDI::Track.new(@seq)
@seq.tracks << header_track
header_track.events << MIDI::Tempo.new(MIDI::Tempo.bpm to mpqg(@bpm))

@tracks = []
@last = []
end
end

Start by setting up a simple MIDI Sequence that contains one Track. You have to set
up the Tempo for that Track and call the super class’s initialize method, but unlike the
LiveMIDI class, you don't need to instantiate a Timer.

note_off messages don't need to be delivered at their actual time. It's enough to sim-
ply write it to midilib’s sequence, and it will do the appropriate interleaving. Of course
you still won’t be able to produce MIDI files faster than real time because of the way tim-
ing is handled.

The program_change method is kind of interesting. You create a new Track each time
it’s called, write out the program_change method to it, add the Track to the Sequence, and
then store it in an array indexed by channel. When it comes time to play a note, you can
retrieve the right track for the specified channel by looking into the array. All the tracks
get written out eventually.

class FileMIDI
def new_track(channel)
track = MIDILIB::Track.new(@seq)
@tracks[channel] = track
@seq.tracks << track
return track
end

def program change(channel, preset)
track = new_track(channel)

37

mailto:@seq.tracks
mailto:@seq.tracks

38 CHAPTER 2 = MAKING MUSIC WITH RUBY

Bind the preset to channel 0, since each channel has its own track
track.events << MIDILIB::ProgramChange.new(0, preset, 0)
end
end

Here’s the play method. You'll see the seconds_to_delta method in a second.

class FileMIDI
def channel track(channel)
@tracks[channel] || new_track(channel)
end

def play(channel, note, duration=1, velocity=100, time=nil)
time ||= Time.now.to f
on_delta = time - (@last[channel] || time)
off delta = duration * @interval
@last[channel] = time
track = channel track(channel)
track.events << MIDILIB::NoteOnEvent.new(0, note, velocity,w
seconds_to_delta(on_delta))
track.events << MIDILIB::NoteOffEvent.new(0, note, velocity,w
seconds_to delta(off delta))
end
end

Events are dropped into the tracks with a time delta that describes how long
they come after the last event. Wait, but if you're already passing in deltas, what’s the
seconds_to_delta method doing? Unsurprisingly (given what you've seen so far), MIDI
times are represented in a special format. Luckily, using seconds_to_delta converts the
floating point seconds delta into a real MIDI time delta.

class FileMIDI
def seconds to delta(secs)
bps = 60.0 / @bpm
beats = secs / bps
return @seq.length to delta(beats)
end
end

mailto:@seq.length_to_delta

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

To cap it off, you'll want a save method that writes out a MIDI file:

class FileMIDI
def save(output filename)
File.open(output filename, 'wb') do |file|
@seq.write(file)
end
end
end

Let’s use the SongPlayer class with the FileMIDI to save a copy of “Mary Had a Little
Lamb.”

bpm = 120

midi = FileMIDI.new(bpm)

SongPlayer.new(midi, bpm, "4202 444= 222= 477=")
sleep(10)

midi.save("mary.mid")

Okay, so sleeping until it’s time to call save is a little silly, but it works. Try playing
mary.mid with your computer’s MIDI player.

Ahead-of-time composition is not the only way to make computer music. The rest
of this chapter is dedicated to a (regrettably brief) tour of some of the more avant-garde
applications of computer music, including live coding.

Live Coding

Live coding is computer programming as a performance art. Typical performances
involve the live synthesis of music or visuals for an audience. If that sounds strange to
you, just wait until you see it!

Of course, historically, there is nothing odd about live coding. Humans have been
doing improvisational art since the beginning. It’s only natural that as you build more
powerful creative tools, the tools become part of the improvisational process. As the most
flexible tool yet created, computers are becoming a common artistic tool. Most live cod-
ing is still done by laptop musicians, but coders are also exploring the full range of visual
effects made possible by screen projection, as well as audience driven performance art.

The web site TOPLAP has become a hub for many of these artists. According to the
front page, TOPLAP stands for “(Temporary|Transnational|Terrestrial| Transdimensional)
Organisation for the (Promotion|Proliferation|Permanence|Purity) of Live (Algorithm|
Audio|Art|Artistic) Programming.” For more information about live coding, you should
visit their web site at http://toplap.org and sign up for their mailing list if you are inter-
ested.

39

mailto:@seq.write
http://toplap.org

40

CHAPTER 2 = MAKING MUSIC WITH RUBY

Interfaces for Live Coding

The first question about live coding is always, What are you going to use for an interface?
Some languages, like Impromptu (a Scheme-based audio environment) provide their
own live editor that interfaces with the language’s run time. Other languages, like Chuck,
provide both command-line interfaces as well as advanced Integrated Development
Environments (IDEs) with 3D effects and visualization tools for performances.

All you really need, though, is a text editor and the ability to hot swap code (replace
parts of a running program). You'll be taking this simple approach and building a moni-
tor that watches your source file. Whenever you modify and save the file, the monitor will
notice and reload the source. If the load is successful (no syntax errors, etc.), then the
new code will be swapped in for the old code.

This approach was described in depth by Alex Mclean in his Perl.com article “Hack-
ing Perl in Nightclubs.” His system is more powerful than what you'll be putting together,
since he built his own editor that gives his programs the ability to rewrite their own
source code. But this system should give you all the power you need for the moment!

Here’s an example of what your live code source might look like. Save this to a file
named live.rb.

bpm(120)
midi = LiveMIDI.new(bpm)
midi.program_change(0, 40)

bang do |b]
midi.play(o, 60, 1) if b % 2 ==
end

This code will be evaluated using instance_eval, so calls like bpm() are actually
method calls on the target object. The bpm method requests that the system trigger 120
times per minute. It’s then used on the next line to request the current bangs per minute
number.

The most important feature of this code is the bang callback. Every time a new time
slice passes, the bang callback is triggered, giving the code a chance to do something. In
this example, you play middle C on the violin every other bang. In order to make this
work, you're going to need a class to read and execute your source code, as well as a class
to manage the callbacks.

The Player class will do the hard work of managing the callbacks. It will support two
kinds of callbacks: the standard bang callbacks, as well as close callbacks that are trig-
gered when the player is being unloaded or shutting down. You might as well call the
close callbacks closebacks to distinguish them. The initialize method will give you a
default bpm of 120 and call reset to clear both the callbacks and closebacks.

CHAPTER 2 ©© MAKING MUSIC WITH RUBY 4

class Player
attr reader :tick
def initialize()
bpm(120)
reset
end

def reset
@callbacks = []
@closebacks = []
end

def bpm(beats per minute=nil)
unless beats per minute.nil?
@bpm = beats_per minute
@tick = 60.0 / beats_per minute
end
return @bpm
end
end

The bang and close methods let you add callbacks. They’ll support adding blocks in
the block slot or any object that supports a call passed in as an argument.

bang do
Play something here
end

bang(object that bangs)

The methods to implement this along with the methods that trigger these callbacks
(and closebacks) look like this:

class Player
def bang(callback1=nil, &callback2)
@callbacks.push(callback1) if callback1
@callbacks.push(callback2) if callback2
end

def close(closebacki=nil, 8closeback2)
@closebacks.push(closeback1) if closebacki
@closebacks.push(closeback2) if closeback2
end

mailto:@callbacks.push
mailto:@callbacks.push
mailto:@closebacks.push
mailto:@closebacks.push

42

CHAPTER 2 = MAKING MUSIC WITH RUBY

def on_bang(b)
@callbacks.each{|callback| callback.call(b) }
end

def on_close
@closebacks.each{|closeback| closeback.call }
end
end

That’s it. But wait, who calls the on_bang method? That responsibility lies with the
Monitor class. The monitor is the heart of your live coding system. It is responsible for
watching the source code file for changes, loading it into a Player object, and then calling
on_bang every tick.

class Monitor
def initialize(filename)
raise "File doesn't exist" if ! File.exists?(filename)
raise "Can't read file" if ! File.readable?(filename)

Reload timer is independent of other times - every half second should be fine
@timer = Timer.get(0.5)

@filename = filename

@bangs = 0

@players = [Player.new()]

load
end
end

First you need to make sure the file exists and is readable. Raising String instances is
probably fine here (instead of using real exceptions), since this is a top-level module and
no one is intended to catch them.

Also note the Monitor keeps the master bang counter in @bangs. This bang counter
won'’t reset when the file changes and a new player is loaded. This is important. If the
counter was reset, you would lose your place in the song. The bang counter provides a
reference, since all time is measured in bangs, so newly loaded code will evaluate where
the old code left off.

You keep a stack of loaded Player objects in @players. This way, if you load code with
a syntax error, you can revert to an old Player object. You put a Player instance with no
loaded code at the bottom so there is always at least one valid Player.

The load method you call at the end of the initialize method needs to read the code
in and call instance_eval on it into a new object on the stack:

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

class Monitor
def load()
code = File.open(@filename) {|file| file.read }

dup = @players.last.dup
begin
dup.reset
dup.instance_eval(code)
@players.push(dup)
rescue
puts "LOAD ERROR: #{$!}"
end

@load time = Time.now.to i
end
end

In the case of a syntax error, the new Player instance doesn’t get pushed onto the
stack, so things continue with the old Player object.

How do you know when you need to reload the code? Notice that the monitor kept
track of the load time in the preceding code using the @load time variable. The modified?
method compares it to the modified time on the file.

class Monitor
def modified?
return File.mtime(@filename).to i > @load time
end
end

All that’s left is to put together the run loop that will manage everything:

class Monitor
def run(now=nil)
now ||= Time.now.to f
load() if modified?

begin
@players.last.on_bang(@bangs)
rescue
puts "RUN ERROR: #{$!}"
@players.pop
retry unless @players.empty?
end

43

mailto:@players.last.dup
mailto:@players.push
mailto:mtime(@filename).to_i
mailto:@players.last.on_bang(@bangs
mailto:@players.last.on_bang(@bangs
mailto:@players.last.on_bang(@bangs
mailto:@players.last.on_bang(@bangs
mailto:@players.last.on_bang(@bangs

44

CHAPTER 2 = MAKING MUSIC WITH RUBY

@bangs += 1

@timer.at(now + @players.last.tick) {|time| run(time) }
end
end

The now parameter indicates when run is supposed to have been started. Since you
probably won'’t provide this when starting the monitor running, make it optional and set
it to the current time if it's nil. Reload the file if it is modified; otherwise, it’s time to call
on_bang on the player at the top of your @players stack.

As with the load method, you need to be vigilant to make sure an error doesn’t kill the
entire system. If you get a runtime error, remove this player and try to use the previously
loaded Player object. If an error also occurs in that Player object, you'll keep retrying
until the stack is empty.

All that’s left is to increment @angs and schedule the next run method with your
Timer. Of course, it'd be nice to be able to call a version of the run method that runs for-
ever and prevents Ruby from exiting so that you can live code.

class Monitor
def run_forever
run
sleep(10) while true
end
end

Okay, let’s look at some live coding examples. Say you start with the following code:

require 'music’

bpm(120)
midi = LiveMIDI.new(bpm)
midi.program _change(0, 40)

bang do |b|
midi.play(o, 60, 1) if b % 2 ==
end

Save it to a file named 1live.rb. Then run the following command (assuming you've
named the file with the rest of your code music.rb):

ruby -e "require 'music'; Monitor.new('live.rb').run forever"

Your monitor should load the file, and on every other bang, you'll play middle C over
channel 0 to preset 1. Of course, it’s a pain to manually manage channel numbers, but
there are some small improvements that you can make to express this more naturally.

mailto:@timer.at
mailto:@players.last.tick

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

Improvements for Live Coding

First of all, creating a new LiveMIDI instance each time the file is reloaded is silly. In par-
ticular, it can cause problems for your connection-based MIDI systems. So you'd like to
reuse instances across reloads. Adding a class method to the LiveMIDI class for reuse and
a means for it to change the bpm will let you reuse instances in most cases.

class LiveMIDI
attr_accessor :bpm

@@singleton = nil
def self.use(bpm)
return @@singleton = self.new(bpm) if @@singleton.nil?
@@singleton.bpm = bpm
return @@singleton
end
end

What about all the raw channel numbers you've been using? The introduction of a
simple proxy class can really improve the readability.

class Instrument
def initialize(midi, channel)
@midi = midi
@channel = channel
end

def play(*args)
@nidi.play(@channel, *args)
end
end

This would let you rewrite the code like this:

bpm(120)
midi = LiveMIDI.use(bpm)
midi.program_change(0, 40)
melody = Instrument.new(midi, 0)
bang do |b|

melody.play(60, 1) if b % 2 == 0
end

45

mailto:@@singleton.nil?
mailto:@@singleton.bpm
mailto:@midi.play(@channel

46

CHAPTER 2 = MAKING MUSIC WITH RUBY

But this still isn’t as clear as it could be. Let’s add a new instrument method to LiveMIDI
and make a few changes to the rest of the infrastructure to support it. Feel free to make
similar changes to the FileMIDI class to keep them compatible, but it’s not required.

class LiveMIDI
def self.use(bpm=120)
return @@singleton = self.new(bpm) if @@singleton.nil?
@@singleton.bpm = bpm
@@singleton.reset
return @@singleton
end

def initialize(bpm=120)
self.bpm = bpm
@timer = Timer.get(@interval/10)
@channel_manager = ChannelManager.new(16)
open

end

def instrument(preset, channel=nil)
channel = @channel manager.allocate(channel)
program_change(channel, preset)
return Instrument.new(self, channel)

end

def reset
@channel_manager.reset
end
end

This is a big improvement because channels are now automatically allocated, and
the Instrument object is created inside the method. The ChannelManager class is basically
just a queue containing the numbers 0 through 15. Each allocate call dequeues a chan-
nel number. If the channels are released, the channel number goes back on the queue.
You don't need to worry about releasing them yourself, though. Just make sure that when
the code is reloaded, the ChannelManager is reset.

class ChannelManager
def initialize(total)
@total = total
reset
end

mailto:@@singleton.nil?
mailto:@@singleton.bpm
mailto:@@singleton.reset
mailto:@channel_manager.allocate
mailto:@channel_manager.reset

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

def reset
@channels = (0...@total).to a
end

def allocate(channel=nil)
raise "No channels left to allocate" if @channels.empty?
return @channels.shift if channel.nil?
raise "Channel unavailable" unless @channels.include?(channel)
@channels.delete(channel)
return channel

end

def release(channel)
@channels.push(channel)
@channels.sort!
end
end

This extra code lets you rewrite the live coding example as follows:

bpm(120)
midi = LiveMIDI.use(bpm)
melody = midi.instrument(40)

bang do |b|
melody.play(60, 1) if b % 2 ==
end

Okay, you're playing a C on the violin every other bang. Let’s add drums using the
Pattern class you wrote before. By default, the ChannelManager allocates an arbitrary chan-
nel. But it also allows the user to request a channel. This is because General MIDI has a
special convention for drums. Channel 10 (what you call channel 9, since you start num-
bering at 0 like a good computer scientist) is dedicated to drums. Each note represents a
different drum sound.

So when you want to use a full drum kit, make sure to specify channel 9. It doesn’t
even matter which preset instrument you request. Just ask for the right channel.

bpm(120)
midi = LiveMIDI.use(bpm)
drums = midi.instrument(0, 9)
pattern = Pattern.new(36, "x--- x-x-"
bang do |b|
note, duration = pattern(b]
drums.play(note, duration) if note
end

47

mailto:0...@total
mailto:@channels.empty?
mailto:@channels.shift
mailto:@channels.include?
mailto:@channels.delete
mailto:@channels.push
mailto:@channels.sort

48

CHAPTER 2 = MAKING MUSIC WITH RUBY

Once again, a little extra work can shorten this up and make your live coding more
agile. You add a pattern method to the Instrument class that creates a Pattern instance,
and then, rather than returning it, returns a proc that can be passed into the bang method
and called directly!

class Instrument
def pattern(base, string)
pattern = Pattern.new(base, string)
interval = midi.interval
return proc do |b]
note, duration = pattern[b]
length = interval * duration - (interval * 0.10)
play(note, length) if note
end
end
end

Here’s the new version:

bpm(120)

midi = LiveMIDI.use(bpm)

drums = midi.instrument(o, 9)
bang drums.pattern(36, "x--- x-x-"

If you save your file now, the kick drum pattern plays alongside the violin Cs. Next,
let’s add the hi-hat and a slightly more complicated melody.

bpm(120)

midi = LiveMIDI.use(@bpm)

melody = midi.instrument(40)

drums = midi.instrument(o, 9)

bang melody.pattern(60, "4-00 4==2")
bang drums.pattern(36, "x--- xx--")

bang drums.pattern(40, "--x-"

Very cool, huh? I do have one caution, however. Patterns are a great tool and are one
of the easiest ways to compose or accompany yourself. But it’s only the most basic ver-
sion of live coding. Many serious live coders strive for their code itself to be art (instead of
simply a tool for making art). For this reason, most live coders focus on live coding gener-
ative music (music composed by algorithm).

Generative music has fascinated since even before the computer revolution. John
Cage is particularly famous for his experimentation with aleatoric music starting in the
early 1950s. Aleatoric music is a subtype of generative music. Like generative music,
aleatoric music is composed or played through a predefined algorithm; however, in

CHAPTER 2 ©© MAKING MUSIC WITH RUBY

the case of aleatoric music, that algorithm must use a source of randomness to make
decisions.

There is a rich tradition to generative music, but it is beyond the scope of this chap-
ter. If you find the idea interesting, please do pursue it further!

Summary

In this chapter, you built a MIDI interface for playing music on all three major computing
platforms. You then used this interface to build a metronome, play music, accompany us,
and even turn your computer itself into an instrument for live coding. In the process, you
mastered the world of dynamic linking interfaces, learned about the MIDI protocol, and
worried about some of the implications of time-keeping for music.

Obviously, the world of computer music software is quite large. There are any num-
ber of ways to continue your work inside Ruby. There are more ways to interact with your
MIDI subsystem, build better pattern systems, and experiment with algorithmic compo-
sition. But to really unlock the possibilities, you'll want to interact with external systems.

Perhaps the most interesting standard is called Open Sound Control (OSC). OSC is
a simple network protocol for music applications. A whole host of applications support
it, including Pure Data (Pd) and SuperCollider. Best of all, there are several modules
available to send and receive OSC messages from Ruby including the osc and rubyosc
modules. Your operating system’s MIDI subsystem also provides access to a whole new
class of systems.

And, of course, feel free to combine this project with other projects in the book.
Music definitely goes with animation, but it also goes with games, Lisp, and even parsing
(as you've seen in the Pattern class). Like all good hobbies, computer music and live cod-
ing can be addictive. Consider yourself warned!

49

CHAPTER 3

Animating Ruby

Think back to writing your first computer program. If you're from the right era (when
BASIC was popular), it probably looked like this.

10 PRINT "Hello World!"

Or if you were going to be one of those problem programmers, it might have looked
something like this.

10 PRINT "Hello World!"
20 GOTO 10

But do you remember your second program? A lot of folks dove straight into graph-
ics, animation, and art. I still remember mine. It was the classic, randomly colored
bubbles demo. It was simple, it was mesmerizing, and it was written in GWBasic.

It’s often lamented that modern programming environments make it too hard to
get started on programming projects like these. While this is true, some innovations
have also made things easier. Thanks to copy and paste, there’s no need to painstak-
ingly transcribe BASIC code out of books, and these days tutorials and FAQs are freely
available on the Web. But finding an accessible drawing API for your programming lan-
guage and operating system combination can be difficult. And languages seldom ship
with a blessed implementation.

Thankfully, with the right tools under your belt and a little work on your part, Ruby
makes animation easy. In this chapter, you'll have a look at creating animations using
Ruby, scalable vector graphics (SVG), templating, and coroutines.

Scalable Vector Graphics

Modern operating systems don’t let you just poke video memory any more, drawing lines
directly to the display. There are some great modern APIs for drawing, but many of them
are operating-system specific, and most require building a native code module for Ruby.
Luckily, you don’t need one of those drawing frameworks to do your animation.
There’s an excellent W3C (World Wide Web Consortium) standard called scalable vector

51

52

CHAPTER 3 = ANIMATING RUBY

graphics. SVG is XML based, freely documented, and there are implementations and
viewers for all major operating systems (including the popular Firefox web browser).
Because lines and shapes are described by XML, SVG can be easily generated from any
language with an XML library or even simple text output.

SVG Basics

The basics of SVG are simple. Like XHTML or any other XML document type, SVG images
consist of a series of nested tags. Most SVG documents will look something like this:

<?xml version="1.0"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/CGraphics/SVG/1.1/DTD/svg11.dtd">

<svg width="800" height="800" xmlns="http://www.w3.0rg/2000/svg" =
xmlns:xlink="http://www.w3.0rg/1999/x1ink">

<!--CONTENT WOULD GO HERE -->

</svg>

The document begins with a header indicating that it uses XML version 1.0, and then
sets the document type to SVG and includes the official SVG document type description
(DTD) that can be used to catch simple formatting errors in the image. The actual meat
goes between the <svg> opening and closing tags. Note that the <svg> opening tag puts
you inside the SVG namespace and sets the height and width. It also opens up the XLink
namespace (a separate XML standard that is optionally used by certain SVG features).

Setting the height and width probably isn't exactly like what you're used to in other
image formats. Because SVG descriptions are mathematical, SVG images can be grown or
shrunk with no loss of clarity or pixilation. So when you set the height and width, you're
just defining the units that you'll use inside the SVG canvas (although SVG viewers will
respect the outermost height and width attributes at display time).

Since I've chosen 800 by 800, if I define a shape with width 400, it will take up half of
the horizontal space. So let’s get to the interesting bit and see what you can put inside the
<svg> tag.

SVG Shapes

Here’s the code for a rectangle.

<rect x="200" y="200" width="400" height="400" fill="#FF0000" w»
stroke-width="1" stroke="#000000" />

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

CHAPTER 3 © ANIMATING RUBY 53

Immediately you'll notice that rectangles have a height and width just like the <svg>
container node. SVG reuses attribute names whenever possible. The notion of x and y
positional attributes should be familiar. The rectangle shown in Figure 3-1 sits right in the
middle of the image.

Figure 3-1. A rectangle defined with SVG

You can use hex notation to color your images. The fil1 attribute sets the body color,
and the stroke attribute sets the border color for the rectangle. And finally, the stroke-width
attribute sets the width of the border to 1.

Tip With hex color notation, the first two digits of the hex number represent the red value (#FF0000), the
second two represent the blue value (#00FF00), and the third represents the green (#0000FF). Black contains
no red, no green, and no blue (#000000), and white has the full values of all (#FFFFFF). Other colors can be
created by varying the values of each color. For example, #FF33CC produces a strange magenta color.

SVG has an enormous number of node types you can use to draw images. A full
list can be found in the SVG specifications. The most recent nondraft specification is
version 1.1, which is available at www.w3.0rg/TR/SVG11/.

http://www.w3.org/TR/SVG11

54

CHAPTER 3 © ANIMATING RUBY

Let’s start by looking at a few more interesting node types. For example, polygons are
one of the most versatile SVG objects. Polygons can have many of the attributes you're
used to, like x, y, height, width, fil1, and so forth. But they also introduce a points attrib-
ute. The points attribute is a list of x, y pairs that describe the perimeter of the polygon.
Here’s an example:

<polygon fill="#O0OFF00" stroke="#000000" stroke-width="2" w
points="0,0 200,0 300,200 100,200" />

Remember, the polygons connect the last point in the list to the first automatically.
Figure 3-2 shows what the polygon would look like.

Figure 3-2. A polygon defined with SVG

CHAPTER 3 © ANIMATING RUBY

Note Some consider it a questionable design decision that SVG uses a special string formatting conven-
tion to encode the points of the polygon. A more native way to do this in XML might have been to use
subnodes of type <point> that describe the path of the polygon. However, the SVG way is probably easier to
write and takes up less space.

If you wanted to embed bitmapped images (or even other SVG images) in your SVG,
you could use the <image> tag. Nonscalable graphics will be scaled to the best of the
viewer’s ability if they are presented at a non-native zoom. As with other tags, <image>
has positional and size attributes. Files are referenced using the XLink standard’s href
attribute (short for hypertext reference), which should look familiar to anyone with
HTML experience. Of course, because href comes from a different XML namespace,
you’ll need to prefix it with x1ink: when you use it. This is the reason I opened the XLink
namespace in the initial <svg> tag. I won't be using this in the simple animations, but if
you try your hand at more sophisticated animations after reading this chapter, the
<image> tagis a boon.

<image x="200" y="200" width="100" height="100" xlink:href="other.bmp" />

Obviously, these are just some of the basic tags. More sophisticated tags that describe
curves (like cubic splines) can be used to create truly breathtaking images like the famous
SVG tiger, but they can also be quite complicated.

Well, that’s enough of an introduction to SVG to get you started. Let’s dive in now
with a simple animation.

The Animator

Most of the programs you could use to convert your pictures into animations expect a
traditional rasterized image (JPEG seems to be the most popular format). In order to
rasterize your pictures, though, you'll need to put together a complete SVG file.

Note A rasterized image consists of a two-dimensional matrix of pixel values. While vector images are
represented using abstract concepts like lines or shapes, a rasterized image has been converted solely to
pixels.

This file will be the responsibility of the Animation class. Animations keep track of
the SVG objects that belong to them. When it is time to render a new frame, the anima-
tion is responsible for calling the render method on each component and combining the
returned SVG into a single image.

55

56

CHAPTER 3 = ANIMATING RUBY

In addition, Animation objects will manage and track time increments during the ani-
mation. The class will provide a callback system so that programmers can script actions
(for example, updating the appearance or location of animated objects).

You'll be able view and debug your SVG images using the excellent Firefox web
browser, the Adobe SVG Viewer, or any number of other SVG-compatible applications.
Later, when you knit the images into movies, you'll use operating system-specific appli-
cations, but there are solutions for Mac, Linux, and Windows.

Let’s take this opportunity to dive into the Animation class with the following code:

class Animation
attr _reader :frame, :width, :height, :objects

def initialize(width, height)

@width = width
@height = height
@objects =[]
@frame =0

@step_callbacks = []
@at_callbacks = Hash.new {|hash, key| hash[key] = [] }
end
end

I'll initialize the class with a width and a height to specify how big the animation will
be. The initializer also prepares other instance variables, including two to store callbacks,
one for the frame number, and, most important, a list of objects to dump to SVG in each
frame. The frame, height, width, and objects list are all made publicly accessible so that
objects in the animation can ask the animator questions about the current frame, dimen-
sion, or even their fellow objects during callbacks.

Notice how the @at_callbacks hash table is initialized using a block. This block will be
called every time the hash is indexed with a nonexistent key. It gives you a chance to
insert a default value into the hash table.

Caution Another popular method for providing hash table defaults is to pass in a default value to the
new method like this: Hash.new([]). Think carefully before writing something like that! In the preceding
example, the empty array will be returned for nonexistent keys, but the value won’t actually be inserted into
the hash. What’s worse is that all nonexistent keys will return the exact same Array object (so mutations of
that one return value affect all others)!

While you're at it, let’s take the time to implement an add method that will insert
objects into the animation.

CHAPTER 3 © ANIMATING RUBY

class Animation
def add(obj)
@objects.push(obj)
end
end

But how do you turn these Ruby objects into an animation? You're going to need to
create an SVG image for each frame and save them individually.

Rendering the Animation

When you're ready to render the animation, call the run method with an output directory
and a number of frames to output, which is shown in the following code snippet:

animation = Animation.new(800, 800)
animation.run("myfirstanimation", 5)

With no objects, this will be a pretty boring animation. You'll get five blank frames.
The run method’s implementation is simple (but only because I've put the hard work in a
helper function):

class Animation
def run(dir, frames)
Dir.mkdir(dir) rescue nil
digits = frames.to s.size

frames.times do |n|
@frame = n
file = frame_id(n, digits)
filename = File.join(dir, file)

run_callbacks
render(filename)
end
end
end

The method begins by creating a directory to save the images in. But if you've run
this animation before, the directory will already exist and the mkdir method will throw an
exception. Putting a rescue modifier after mkdir prevents the program from stopping if an
exception is thrown. Writing it this way is concise because it avoids begin and end state-
ments as well as several line breaks.

57

mailto:@objects.push

58

CHAPTER 3 = ANIMATING RUBY

The other thing you need to do (and this may seem silly at first) is to figure out how
many digits it will take to represent the number of frames you’ll use. So if you're going to
render 100 frames, you'll need three digits; therefore, your first frame’s file name will be
000. jpg. This is important because a lot of the tools used to turn the individual frames
into a movie require the file names to be sorted alphabetically.

By always padding with the needed digits, you ensure that "100" is not sorted before
"11" and this will make your life a lot easier in the long run. The frame_id method turns
the number and the digits into an appropriately padded string using the sprintf method:

class Animation
def frame_id(frame, digits)
sprintf("%.#{digits}d", frame)
end
end

Inside the animation loop, setting the @frame instance variable also means that calls to
the frame accessor will always return the right value. I want to talk about the run_callbacks
and render methods in the next few sections, but here’s a quick digression.

Instead of writing your times iterator with a parameter named n, and then storing n in
@frame, you could have written it like this:

frames.times do |@frames|

end

Code like preceding example is appearing more frequently in the Ruby community.
It relies on the fact that closure parameters exist in their parent scope as previously
discussed in Chapter 2. I'm occasionally tempted to use this style myself and shorten
my code.

Unfortunately, it’s often confusing, especially when used on temporary variables
(as opposed to the preceding instance variables). More important, the creator of Ruby,
Yukihiro Matsumoto (affectionately known to the Ruby world as Matz), has said he'd like
to fix this “feature” and have block parameters exist inside their own scope. The change is
probably for the best, too, because the current behavior can be quite surprising and
sometimes leads to bugs that are difficult to diagnose.

Registering and Running Callbacks

You'll need the ability to run user-specified code at times (to control the animation).
It would be simple enough to call a step method on each registered object when the

CHAPTER 3 © ANIMATING RUBY

animation advances. But instead, you should embrace the Ruby way and register blocks.
The blocks can manipulate, add, or remove objects from the animation.

I'll provide two means of registering blocks as callbacks. The first allows you to trig-
ger an event at a specific time.

animation.at(4) { puts animation.frame }

This callback will only be called while constructing frame 4, and you can see how it
uses the frame method to get the current frame and print it.

The other kind of callback is invoked on every frame change. This doesn’t mean these
callbacks need to do something every time they wake, but they have the opportunity. The
following example prints the number of every frame.

animation.step { puts animation.frame}

The code for the registration methods is small. Thanks to the auto-initializer block
you provided the hash with, it is always safe to assume a location in the hash contains
a list.

class Animation
def at(frame, &callback)
@at_callbacks[frame].push(callback)
end
end

The step callback is almost identical:

class Animation
def step(&callback)
@step_callbacks.push(callback)
end
end

step just stores the callback in its list. The at method keeps a list of callbacks for each
frame in a hash table in order to support multiple callbacks attached to the same frame.
Triggering the callbacks is equally simple.

class Animation
def run_callbacks
@step_callbacks.each{|cb| cb.call }
@at_callbacks[frame].each {|cb| cb.call }
end
end

59

mailto:@step_callbacks.push

60

CHAPTER 3 = ANIMATING RUBY

Notice how every step callback ever registered is called, but only the current frame’s
at callbacks are invoked.

So far, the process of rendering the frames themselves has been ignored. Here’s
where your knowledge of SVG comes in handy. You're going to need to output all the
standard SVG headers and footers each time. You could embed these as text fragments
and print them before and after everything else. But let’s use a single string along with
embedded Ruby templating (ERB) instead.

Embedded Ruby Templating

ERB is an elegant Ruby templating language that ships with the standard distribution.
Some purists say it gives too much freedom for a templating system (since you can
include arbitrary Ruby code), but it’s a fantastic tool for combining and arranging text
fragments. It's mostly used for HTML templating, so the template tags look a bit like XML,
but it’s perfectly usable for all types of textual content.

Tip If you've used Ruby on Rails, ERB should look familiar. All those RHTML files you’ve been writing are
actually ERB!

require 'erb’
class Animation
Template = ERB.new(<<-END)
<?xml version="1.0"?>
<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.0rg/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg width="<%= width %>" height="<%= height %>" xmlns="http://www.w3.0rg/2000/svg">
<% objects.each do |obj| %>
<%= obj.rendexr(frame) %>
<% end %>
</svg>
END
end

The Template variable is declared as a class constant (the capital letter it starts with
tells you that it’s a constant). Although you often see constants used in modules, they are
perfectly legal inside classes (Class is a subclass of Module anyway).

http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd
http://www.w3.org/2000/svg

CHAPTER 3 © ANIMATING RUBY

Template is initialized with a new ERB template, which is initialized with a HereDoc
string (which starts with the funny <<-END statement). HereDoc lets you embed arbitrary
text blocks in your code that continue until the end word is encountered (I use END in the
preceding example). As you can see, you're even allowed to close your parenthesis before
starting the HereDoc on the next line.

Four of the previous lines contain templating directives. Your <svg> tag is templated
on both its height and its width.

<svg width="<%= width %>" height="<%= height %>" xmlns="http://www.w3.01g/2000/svg">

The syntax for a text replacement is <%= SOME RUBY EXPRESSION %>. Arbitrary Ruby
code can be placed inside the template tag (although often a single variable or method
call is sufficient). The result of its evaluation is substituted for the template expression in
the final document.

The next three templating lines are a little more sophisticated:

<% objects.each do |obj| %>
<%= obj.render(frame) %>
<% end %>

Unlike <%= %> template tags, <% %> tags don't get replaced with their evaluation.
Instead, they disappear from the final document entirely. Don'’t think, however, that this
means they have no effect. For example, in the preceding code, you can see how an itera-
tion expression can be put inside these tags, and then a substitution tag can be used
between them to repeat its substitution over and over again. <% %> template tags are also
extremely useful for conditional expressions:

<% if foo %>
Foo is true.
<% end %>

I won't use conditional expressions here, but you can see how they'd be useful. I'll
talk more about the process by which these expressions are evaluated and how the final
template text result is produced in the following “Binding Objects” section. But first, look
at the process by which the SVG is rendered.

Rendering the Frames

The render method is responsible for outputting each frame. You open an SVG file for
writing, and then fill it with the results of your template. Finally, you convert the SVG file

61

http://www.w3.org/2000/svg

62

CHAPTER 3 = ANIMATING RUBY

into a JPEG so you can easily knit the frames into a video, as shown in the following
snippet of code:

class Animation
def render(filename)
File.open("#{filename}.svg", "w") do |file|
file.write(Template.result(objbinding))
end
system("convert #{filename}.svg #{filename}.jpg")
Un-comment the next line to delete the intermediate SVG
File.unlink("#{filename}.svg")
end
end

ImageMagick’s convert utility does the conversion. Convert is able to translate
almost any image format into almost any other. There are plenty of other converters that
may support different subsets of SVG features. ImageMagick, Apache Batik, rsvg, and the
Cairo rendering library all provide programs to perform this conversion. Use whatever is
easiest and available for your operating system.

Unless you have problems with ImageMagick on your operating system (or need
better SVG support), I recommend it for now. It is available for most platforms at
www. imagemagick.org, or it can be installed from a packaging system on Linux (use your
distribution’s packaging system) or Mac (try MacPorts).

If you'd like to remove the intermediate SVG files, calling File.unlink is simple
enough. But what is this objbinding passed into the Template?

Binding Objects

The RDoc (standard Ruby documentation format) page for ERB states that the result
method of an ERB instance takes a Binding object. What is a Binding object? If you poke
around, you'll notice that the Binding class is documented in the Ruby Core API Docu-
mentation. But the documentation is sparse. Binding doesn’t support any methods
beyond those provided by Object. So what's a Binding object used for?

Binding objects represent the visible scope from some location. They have no meth-
ods because they are intended to be opaque. You can capture the current bindings at any
time with the binding kernel method.

mybinding = binding()

This Binding can then be passed to a very few other methods, one of which is eval.
Consider this example.

http://www.imagemagick.org

CHAPTER 3 © ANIMATING RUBY

def binding with foo
foo = 7
return binding

end

bf = binding with foo
eval("foo") » NameError: undefined local variable or method 'foo' for main:Object.
eval("foo", bf) » 7

So a Binding object remembers all the variables you could see at the time it was cre-
ated. By accepting a Binding object, ERB lets you determine in exactly what context your
embedded Ruby expressions are evaluated.

Tip The Ruby Extension project, which provides additional useful methods for a variety of core Ruby
classes, has several new pure Ruby methods for the Binding class that make it less opaque. These include
[] and []= methods to access inner variables, as well as defined?, eval, local variables, and the very
powerful of _caller, which lets you get the bindings of the method that called you. Many of these methods
are implemented using eval and strings containing Ruby expressions.

You need to be careful where you get your Binding objects from. If you simply call the
kernel binding method when you invoke results on the template, both the filename and
file variables would already be defined in the method. In this case, since you use neither
name inside your template, no damage would be done. However, in web application
templating, this could lead to bugs. You can get a mostly clean environment with the fol-
lowing trick:

class Animation
def objbinding
return binding
end
end

This method has no arguments and no variables, so it gives you as clean of an envi-
ronment as possible. You then capture that environment as a binding and pass into ERB.
All you need to worry about now is calling one of the object’s instance methods by acci-
dent. This is easy, unfortunately, because Ruby goes out of its way to make internal
method calls look identical to temporary variable accesses. Keeping this in mind can
help avoid these mistakes.

Since you have methods to access the animation’s height, width, current frame, and
contents, you have everything you need to fill in the template.

63

64

CHAPTER 3 = ANIMATING RUBY

Wrapping SVG with Objects

You can easily create a thin wrapper to represent the SVGObjects class.

class SVGObject
def initialize(name, attrs={})
@name = name
@attrs = attrs
@contents = []
end
end

The name argument will be the XML node name, and the attrs will be its attributes.
Thus SVGObject.new(:rect, :x => 0, :y => 0, :width => 100, :height => 100) becomes
<rect x="0" y="0" width="100" height="100">.

Attributes can be read or set using the [] and []= methods, and nested objects can be
added with the add method.

class SVGObject
def [1(key)
@attrs[key]
end

def []=(key, value)
@attrs[key] = value
end

def add(obj)
@contents.push(obj)
return self
end
end

And at render time, the render method converts the objects straight into SVG.

class SVGObject
def render(frame)
attrs = @attrs.map{|k, v| %Q{#{k}="#{v}"} }.join(" ")
body = @contents.map{|obj| obj.render(frame) }.join("\n")

return %0{<#{@name} #{attrs}>#{body}</#{@name}>}
end
end

mailto:@contents.push

CHAPTER 3 © ANIMATING RUBY

Though not strictly necessary, the move_to and move_by methods are convenient ways
to manipulate x and y coordinates.

class SVGObject
def move by(xd, yd)
raise "Has no coordinates" unless @attrs[:x] &3 @attrs[:y]

@attrs[:x] = @attrs[:x] + xd
@attrs[:y] = @attrs[:y] + yd
return self

end

def move to(x, y)

@attrs[:x] = x
@attrs[:y] =y
return self
end
end

You can use instances of these SVG0bject subclasses anywhere you need simple access
to SVG shapes. For example, consider this subclass that draws a rectangle:

class Rect < SVGObject
def initialize(x=0, y=0, width=100, height=100, attrs={})
attrs[:x] = x
attrs[:y] =y
attrs[:width] = width
attrs[:height] = height
super(:rect, attrs)
end
end

Of course, SVGObject subclasses can be significantly more complex as well.

Drawing One Cube

Let’s use your SVG wrapper to draw a cube, using the special SVG <g> tag to bundle poly-
gons together. You'll be using an isometric view of your cubes. Isometric perspectives
are interesting because they let you create recognizably 3D environments without using
foreshortening (at a slight cost to accuracy—there is some subtle distortion). This effect
works because each edge of the cube is drawn as the same length. It’s especially popular

65

66

CHAPTER 3 " ANIMATING RUBY

in older video games because it simplifies a rendering engine dramatically. In fact, you
won't be using exact isometric dimensions, but the numbers should be close enough to
preserve the effect (the cube edges will be 25 x 25 x 22.4). You can check this using the fol-
lowing polygon descriptions.

In turn, because of this perspective, some extra math is required to convert your
simple grid index x and y values into real SVG coordinate x and y values.

class Cube < SVGObject
def initialize(x, y, z)
super(:g)
3D coordinates, _not_ SVG coordinates
@x, @y, @z = x, y, z

svgx = (x * 20) + (y * -20)

svgy = (x * 10) + (y * 10) - (z * 20)

self[:transform] = "translate(#{svgx}, #{svgy})"

self[:fill] = "#FEFEFE"
[
[

self[:stroke] = "#000000"
self[:'stroke-width'] = 1

add(SVGObject.new(:polygon, :points => "0,10 20,20 40,10 20,0"))
add(SVGObject.new(:polygon, :points => "0,10 0,35 20,45 20,20"))
add(SvVGObject.new(:polygon, :points => "20,20 20,45 40,35 40,10"))
end
end

Inside the cube you describe three polygons, one for each of the visible faces (see
Figure 3-3). By setting attributes like the fill, stroke, and stroke-width in the <g> tag, you
change them for the cube faces as well. Most important, you'll use the translate transfor-
mation to position the cube at the appropriate geometric position, shifting the cube left,
right, up, or down accordingly.

Figure 3-3. A simple (almost) isomorphic cube

CHAPTER 3 © ANIMATING RUBY

Drawing Many Cubes

In the following sections, you're going to focus mostly on animating simple geometric
shapes. Let’s make a pro-Ruby animation you can share with your friends. Heck, you can
even put it to music. If you've composed something from the previous chapter, this could
be the music video to accompany it.

Timing the video to the music won't be a problem. For example, if the music has
120 BPM, this comes out to two beats per second. If the song had four beats per measure,
you have a new downbeat every two seconds, and each new beat is triggered every half
second. You just need to make sure the final video frame rate is a ratio of that interval so
that you get a frame change on each beat, and if required, you can scale the number of
frames up or down as demanded.

Domain-Specific Languages

If you've spent enough time in the Ruby community, you've probably heard more than
you intended about domain-specific languages (DSLs). DSLs are a great tool, and since
their stunning rise to popularity, they’ve been getting a lot of press.

Martin Fowler divides DSLs into two categories, internal DSLs and external DSLs.
Internal DSLs are nothing more than your programming language along with whatever
definitions and extensions you've added to make describing your problem domain easi-
est. Most Ruby DSLs are of this type (although they take a wild joy in stretching poor
Ruby’s syntax). Lisp DSLs are probably best described as internal DSLs as well, although
as you saw in Chapter 2, macros and s-expressions give you extraordinary power to
change how the language is evaluated, raising some question here.

External DSLs are also designed for a specific problem domain, but instead of being
written in the syntax of the host programming language, they are actually mini-languages
that the host language knows how to evaluate.

Frustratingly, you sometimes see DSLs in Ruby code where they don’t belong. Often
they are used to avoid writing a parser, hijacking Ruby’s own syntax. Unfortunately, this
technique tends to collapse when stressed. Here is an example DSL you might be tempted
to use in Chapter 5 to configure the monsters in your turn-based strategy game:

monster "Dragon" do
hp 10
attack 7
defense 0.5

end

I love how readable the preceding code is. It could be understood by a novice. It
almost looks like it could be written by a novice. But could it actually be? That’s a good

67

68

CHAPTER 3 = ANIMATING RUBY

question. Copying and pasting might be possible, but as soon as you ask the novice to
start remembering the format, they’ll begin to have questions. For example, what does
the word do mean after the monster’s name? And why is the name in quotes, when noth-
ing else is? Why do decimal numbers have to start with a leading zero? The answer to all
these questions is, of course, because you are using Ruby syntax (even if you're pretend-
ing not to).

Or in a worse scenario, let’s say a naive user decides to give the dragon a new
attribute:

monster "Dragon" do

hp 10

attack 7

defense 0.5

breathes "FIRE!"
end

Assuming the user manages to put FIRE! in quotes, he’ll get an undefined method
error for breathes. On the other hand, if he accidentally calls a preexisting method, the
results can be even more interesting:

monster "Dragon" do
hp 10
attack 7
defense 0.5
chomp knights
end

Although that’s not the weirdest error he could generate, consider this:

monster "Demon" do
require binding
end

With those warnings out of the way, are you ready to commit the same sin? I rational-
ize it by telling myself that this code is intended for experts only (but do try to feel a little
guilty).

An example of the internal DSL you'd like to be able use is written in the GridDrawer . new
block:

anim = Animation.new(800, 800)
cubes = SVGSorted.new
anim.add(cubes)

CHAPTER 3 © ANIMATING RUBY

griddrawer = GridDrawer.new(cubes) do
north(2)
east(2)
south(2)
west(2)
up(2)
end
anim.step{ griddrawer.step }
anim.run(20)

Implementing GridDrawer

GridDrawer performs the same function as an Etch A Sketch, and its core implementation
is simple. It is passed a container to which it adds cubes based on the user’s commands.
You can create a GridDrawer with this container, a set of initial coordinates, and a list of
commands like this:

griddrawer = GridDrawer.new(cubes, 4, 4, 0) do
north
north
east
east
up
end

The GridDrawer will populate your cubes container with each executed command.
The code block provided to the constructor is the list of commands. The block is
instance_evaled on the GridDrawer object, so method calls like north in the block are
invoked on the object itself, which is accomplished like this:

self.instance eval(&@block)

A first take at implementing the navigation method north follows. This code assumes
a draw method that places a cube at the coordinates described by the cube drawer’s x, y,
and z coordinates.

def north
@y -=1
draw
end

69

70

CHAPTER 3 = ANIMATING RUBY

Note SVG defines 0, 0 to be the top-left corner of the view. These cubes use the same orientation
(although a different scale). In the preceding code, north is defined to be the top-right corner of the monitor.

You need to repeat this method stub for each direction: north, south, east, west, up,
and down. This scales poorly as you expand the code each of these method shares. For
example, if you'd like to able to specify long runs of drawing in a particular direction, it
would be nice to be able to write the following:

griddrawer = GridDrawer.new(cubes, 4, 4, 0) do
north(2)
east(2)
up

end

The change is simple enough:

def north(n=1)
n.times do
@y -=1
draw
end
end

But propagating this code to all the other directional methods is beginning to look a
bit tedious. You should immediately look at refactoring the directional methods. If you're
willing to move the looping and coordinate arithmetic into draw, you can shorten things
down to just this:

def north(n=1)
draw(n, 0, -1, 0)
end

You're also going to use directives like northwest to draw a cube one unit north and
one unit west. The definition of northwest would look like the following:

def northwest(n=1)
draw(n, -1, -1, 0)
end

It might also, of course, be nice to support n for north, nw for northwest, u for up, and
so on. You could add each of these definitions, but this will lead to repetition and become
frustrating as you add more methods. Luckily, Ruby allows you to move one level up the

CHAPTER 3 © ANIMATING RUBY

abstraction hierarchy (beyond what some other languages can do) and write methods to
implement other methods.

Metaprogramming

In the pursuit of DRY (don’t repeat yourself), you're going to write a class method that will
help you define each of these directional methods. Ideally, you'll be able to write some-
thing like the following when you're done.

class GridDrawer
def draw :north, :n, :y => -1
def draw :south, :s, :y => +1

y
y
def draw :west, :w, :x => -1
X
z
z

def draw :east, :e, :x => +1
def draw :down, :d, :z => -1
def draw :up, U, 1z => +1
def draw :northwest, :nw, :y => -1, :x => -1
def draw :northeast, :ne, :y => -1, :x => +1
def draw :southwest, :sw, :y => +1, :x => -1
def draw :southeast, :se, :y => +1, :x => +1

end

First though, you'll need to define the def draw class method on GridDrawer. You need
it to be in the source above the location where it’s called, and since it is a class method,
let’s go ahead and just put it at the top of the class definition.

class GridDrawer
protected

def self.def draw(*names)
delta = {}
delta = names.pop if names.last.kind of?(Hash)
delta.default = 0
X, Y, z = delta.values at(:x, :y, :z)

names.each do |name|
self.class_eval("def #{name}(n=1); draw(n, #{x}, #{y}, #{z}); end")
end
end

public
end

I

72

CHAPTER 3 = ANIMATING RUBY

What'’s going on here? First of all, notice that def isn’'t defining an instance method.
By prefixing the method name with self, you make the method a class method. In other
words, the method exists on the class object GridDrawer itself instead of on the objects
created by calling GridDrawer.new. If you wanted to call the class method outside of the
GridDrawer, you'd need to write the following.

GridDrawer.def draw(:north, :n, :y => -1)

But since this method is for internal use and not really part of the exported API, you
make the method protected so that no one will add new drawing methods without at
least understanding that you didn’t plan for such behavior.

The def_draw method takes a variable list of parameters, which are called names. In
fact, though, the last item in the list may not be a name. If it is a hash, then you’ll assume
it was meant as a group of keyword arguments defining the deltas to move in each direc-
tion (x, y, and z). This is a peculiarity of Ruby.

Ruby doesn’t have variable keyword arguments, but Matz allowed unenclosed (by
braces) hash literals to form a hash when used as part of an argument list. This doesn’t
work outside of argument lists.

:x => -1 » SyntaxError: compile error

It does, however, let you emulate variable keyword arguments in a method call. By
writing your method this way, you accept a variable number of names, plus an optional
and variable set of coordinate deltas specified like keyword arguments. If no deltas are
specified, the delta variable will contain an empty hash. Either way, you instruct the hash
to provide a default value of 0 if the key is not found, and then unpack the deltas from the
hash table for easy use later.

Ultimately, though, the class method needs to dynamically add the methods to its
own class. You could use the define_method method, but in this case it will probably be
quicker to eval a string that contains the method definition. You can use class_eval here
to make sure the definitions you add get added to the class itself. The code generates
methods that would look like the following if they weren't defined on one line using semi-
colons:

def north(n=1)
draw(n, 0, -1, 0)
end

By creating a method that generates these other methods, you've reduced the overall
length of your app and made further changes quicker (because you don’t need to change
each method). You now have the ability to write code using your DSL, but you'll need to
implement the draw method before it will work.

CHAPTER 3 © ANIMATING RUBY

The Draw Method

You know the draw method needs to take a number of repetitions as well as the x, y, and z
deltas to move the pen. You're going to need to move the current coordinates and place a
cube once for each repetition. These coordinates will need to be stored in instance vari-
ables, so let’s start with an initializer for GridDrawer.

class GridDrawer
def initialize(object class, container, x=0, y=0, z=0, &block)
@object class = object class
@container = container

@pen = true

@x =X

@y =y

@z =12

@block = block
end

end

A new GridDrawer is initialized with two crucial objects. The first is the class of the
objects you'll be drawing with (the Cube class, in this case). The second is an instance of a
container object that will hold all the instances of the object class. You could have just
integrated this code into the GridDrawer, but separating it like this leaves you some flexi-
bility. You can also take optional starting coordinates for your “pen.” The last parameter is
a block that will eventually be called to make your DSL work. That’s more than you need
to get draw up and working, so let’s have a look at that.

class GridDrawer
def draw(rep=1, xd=0, yd=0, zd=0)
rep.times do
@x += xd
@y += yd
@z += zd
@container.add(@object class.new(@x, @y, @z)) if @pen
wait
end
end
end

By giving draw’s arguments default values, you let someone add a cube at the current
square by calling draw with no parameters.

73

mailto:@container.add(@object_class.new(@x

74

CHAPTER 3 = ANIMATING RUBY

Caution I've written this so that each cube is placed after the cursor is moved. | also tried writing it so
that the cube is placed before the cursor is moved. Both ways ended up confusing me, but moving first
seemed more intuitive.

Deferring Execution

In order animate this drawing, a new cube needs to appear in each frame. Without some
way to defer execution, the first time you started running code from your DSL, all the
cubes in the entire animation would be added, and your first frame would contain all the
cubes you were ever going to add. Luckily, deferred execution is within reach. Notice the
call to the undefined wait method inside draw?

You'll be using paused threads in order to pause execution, but continuations (a
powerful, if sometimes baffling, language feature that Ruby provides) could also be used.
Most programmers will find the thread-based approach easier to understand. Let’s start
by implementing a class along the lines of Ruby’s Generator class. If you haven't used the
Generator class, here’s an example:

require 'generator’

generator = Generator.new do |g|
9.times{|n| g.yield(n) }

end

generator.next » 0

generator.next » 1

generator.next » 8
generator.next » EOFError: no more elements available

Caution Don't confuse g.yield with the Ruby keyword yield. Ruby’s yield invokes an unnamed
block parameter to a method. The generator yield defers its execution and returns any parameters it is
passed.

The Generator class is implemented using continuations, and the source is a great
read if you're interested in delving deeper. The deferred execution example will look

CHAPTER 3 © ANIMATING RUBY 75

somewhat similar, except you won't bother returning values when execution is sus-
pended. You'll also instance_eval the initialization code block so that method calls are
invoked on the object itself. Here’s a usage example:

sleeper = Sleeper.new do
puts 1
sleep
puts 2
sleep
puts 3
end

sleeper.next » 1
sleeper.next » 2
sleeper.next » 3
sleeper.next » nil
sleeper.next » nil

See how the sleep method refers to the sleeper object? How will you implement this?
It’s actually pretty simple. First of all, your initializer needs to take a block argument and
save it in an instance variable like the following:

class Sleeper
def initialize(&block)
@block = block
end
end

Now, in order to pause execution, you're going to run this block in a new thread. By
default, the sleeper object starts out asleep, so you won't call it until the first time next
is called. If it’s a successive call and the thread hasn’t run out of work to do yet, you can
reawaken the thread. For calls after the thread has run out of work, you do nothing.
Throwing an exception would also be a reasonable thing to do here, but you'll be using
a variant of this code in your animation where the correct response is to remain silent.

class Sleeper
def next
if | @thread
@thread = Thread.new { self.instance eval(8@block) }
Thread.pass until @thread.stop?

mailto:@thread.stop?

76

CHAPTER 3 = ANIMATING RUBY

elsif @thread.alive?

@thread.run

Thread.pass until @thread.stop?
end

return nil
end
end

A new thread is created, and the block is instance_evaled in that thread. The next
method then spins loops until the thread has stopped executing. It spins, repeatedly call-
ing Thread.pass. Thread.pass is a class method that tells the current thread of execution to
let other threads run instead for a while. A loop like this makes sure you don’t waste time
running as long as the subthread still has work to do.

The difference on successive calls is simply that the thread already exists, so you sim-
ply need to verify that it hasn’t ended yet. Provided that it is still alive, you can simply run
it and then wait for it to stop. Which brings us to the last bit of code, the sleep method:

class Sleeper
def sleep
Thread.stop
return nil
end
end

Thread.stop suspends the current thread, which will cause the next cycle through
the spin loop in the next method to find that the subthread has stopped. By using
instance_eval, you can call the sleep method from inside the block without needing to
pass the sleeper object itself into the closure. Of course, this changes the scope of all
method calls inside the block, so it’s important to be aware of the change.

The other feature of note is the return statements at the end of both the next and
sleep methods. These make sure the last evaluation of the methods is not returned as the
result of the method, and that the return value remains nil.

Adding Deferred Execution to GridDrawer

Let’s add the functionality of the Sleeper class into the GridDrawer class. You'll call the
method that sleeps wait and method that resumes step, but other than that, the code
should be mostly the same.

mailto:@thread.alive?
mailto:@thread.run
mailto:@thread.stop?

CHAPTER 3 © ANIMATING RUBY 77

class GridDrawer
def step

if | @thread
@thread = Thread.new { self.instance eval(&@block) }
Thread.pass until @thread.stop?

elsif @thread.alive?
@thread.run
Thread.pass until @thread.stop?

end

return nil
end

def wait
Thread.stop
return nil
end
end

This not only provides the missing wait method, but it also evaluates the block using
instance_eval so that the block can invoke methods like north, draw, and wait without
needing to explicitly reference an object instance.

A Few More Helper Methods

Before finishing up the GridDrawer, let’s add just a few more methods. In particular, it'd be
nice to be able to move the drawing cursor without leaving a trail. Depending on the cir-
cumstances, here are some different methods to help:

class GridDrawer
def pendown
@pen = true
end

def penup
@pen = false
end

def j(x, y, z); jump(x, y, z); end
def jump(x, y, z)

@x, @y, @z = x, y, Z
end

mailto:@thread.stop?
mailto:@thread.alive?
mailto:@thread.run
mailto:@thread.stop?

78

CHAPTER 3 = ANIMATING RUBY

def m(xd, yd, zd); move(xd, yd, zd); end
def move(xd, yd, zd)
@x += xd
@y += yd
@z += zd
end
end

You've provided a one-letter shorthand for jump and move as well. You could have
done this using Ruby’s powerful alias keyword (to actually clone the methods!), but
keeping the synonyms powered by method calls means if someone wants to use a sub-
class or open classes to redefine the main definitions, the synonyms will be automatically
changed as well.

Your First Animation

Let’s take the GridDrawer out for a test drive and write a very special Ruby message. Here’s
your code skeleton:

anim = Animation.new(800, 800)

bg = Rect.new(0, 0, "100%", "100%", :fill => "#CCCCCC")
anim.add(bg)

cubes = SortedSVG.new

anim.add(cubes)

griddrawer = GridDrawer.new(cubes, Cube) do
Do something here!
end

anim.step{ griddrawer.step }
anim.step{ puts anim.frame }
anim.last("animation", 20)

You create your 800 by 800 animation, give it a neutral gray background using the
rectangle class, and create a new SortedSVG container, which you’ll use to keep your cubes
ordered so that cubes farther “forward” are not drawn behind cubes that are farther back
(not having this can lead to some really weird-looking shapes).

The SortedSVG object is a simple SVG <g> container that inherits from SVGObject with
its add method overridden to keep the contents sorted in 3D space.

CHAPTER 3 © ANIMATING RUBY

class SortedSVG < SVGObject
def initialize
super(:g)
end

def add(obj)
@contents.push(obj)
@contents.sort!
return self
end
end

Since SortedSVG inherits from SVGObject, its render method will properly output the
@contents. You'll also need to make sure the cube objects have a comparison method
(sometimes jokingly called the “spaceship operator”) that will sort them in 3D order. This
ensures that the cubes “behind” other cubes are not accidentally drawn in front of them.

class Cube
attr reader :x, :y, :z
def <=>(other)
return (x + y + z) <=> (other.x + other.y + other.z)
end
end

Now for each frame, advance the GridDrawer one step and render the current frame.
The animation is 20 frames long, but to save time, use the special last convenience
method. The last method does all the animation steps just like run, but instead of render-
ing every frame, last only renders the final frame. For cumulative animations like these,
this is a great tool and can save you a lot of rendering time.

class Animation
def last(dir, frames)
Dir.mkdir(dir) rescue nil
frames.times do |n|
@frame = n
run_callbacks
end
render ("#{dir}/last")
end
end

79

mailto:@contents.push
mailto:@contents.sort

80 CHAPTER 3 = ANIMATING RUBY

But what should the animation be? Let’s write a little message.

griddrawer = GridDrawer.new(cubes, Cube) do
move(5, 4, 0)
draw
north(6)
east(2)
se
south(2)
west(2)
south
se(2)

end

anim.step{ griddrawer.step }
anim.last("animation", 20)

Nice! It’s like Etch A Sketch. One cube is added per frame to make the letter R. But
this letter R (shown in Figure 3-4) seems like a pretty good candidate for abstraction. So
let’s subclass GridDrawer into LetterDrawer. That way if you want to use GridDrawer for
another project, you won't need to strip the code for drawing letters out.

class LetterDrawer < GridDrawer
def r
move(0, 6, 0)
draw
north(6)
east(2)
se
south(2)
west(2)
south
se(2)
move(3, -6, 0)
end

Be careful here. You're using single-letter method names, and a few have already
been defined (n, s, e, w) for directional navigation. Luckily, however, also provided are
full-word method names like north and south, so if you overwrite the single-character
versions, you'll still have access. Just make sure none of your code relies on n moving
north if you go this route.

CHAPTER 3 " ANIMATING RUBY 81

Figure 3-4. The letter R

The rest of the letters aren’t very interesting, but they can be found in the full source.
Let’s look at how to initialize LetterDrawer. It’s going to take a block just like a GridDrawer
(because it is a subclass).

letterdrawer = LetterDrawer.new(Cube, cubes) do

jump(s, -2, 0)
T

u
b
y

jump(17, 8, 0)

w o = <

end

CHAPTER 3 " ANIMATING RUBY

82

If you add in the logic to make this run, you'll be able to see your picture (see

Figure 3-5).

anim.step{ letterdrawer.step }
anim.step{ puts anim.frame }

anim.last("animation", 132)

OO OO

NARVAN AW ”0

OO
\ N\ _{

N\ 0’ [/
N NS
’4’ \ Y) ”."’ [N/
BN s
LA 0
O
0

[/
[/
[/

[/

NARVARL AW
”‘.
NAAQVAY,

Figure 3-5. The final frame is distinctly pro-Ruby.

Pretty slick. Okay, let’s make a movie, and then you’ll see how you can make things

more interesting.

CHAPTER 3 © ANIMATING RUBY

Putting the Animations Together

Your operating system is going to determine how you stitch the images into a movie.
There are a variety of tools to do the job, but some are better than others.

ImageMagick

Most of the utilities you'll be using only support JPG inputs. However, ImageMagick,
which you've already used to do the SVG to JPG conversion, can obviously understand
SVG perfectly. Here’s an example of how to go straight from SVG to MPEG1, MPEG2, and
AVlvideo files.

convert -delay 25 *.svg ruby.mpg
convert -delay 25 *.svg ruby.m2v
convert -delay 25 *.svg ruby.avi

The -delay option tells ImageMagick how long to show each frame. By showing each
picture for 25 hundredths of a second, you get a frame rate of four frames per second.

When using these video formats, ImageMagick uses padding frames to get the appro-
priate frame rate. Using a more animation-oriented format like Multiple-image Network
Graphics (MNG) allows ImageMagick to create a much smaller output file, with each
frame only being represented once. Of course, MNG isn’t supported by web browsers
very well. But animated GIFs are!

convert -delay 25 *.svg ruby.mng
convert -delay 25 *.svg ruby.gif

Just make sure you always use the most up-to-date version of ImageMagick.
ImageMagick SVG support is not complete, and the bugs can occasionally cause sur-
prising visuals.

A final word of caution though: putting the video together with ImageMagick is very
slow. If one of the following techniques works for you, you should probably go with that.

iMovie
Mac users have a great option for putting their videos together. Uncomment the line in

your script that deletes the intermediate SVG files. This will let you easily lasso only the
JPG files.

File.unlink("#{filename}.svg")

83

84 CHAPTER 3

Run your program, then drag the JPG files from the Finder into the sources list of

ANIMATING RUBY

iPhoto and create a named photo album for them, as shown in Figure 3-6. When the
import completes, retitle the album Ruby Animation.

w

Soulce

I

Y"E"‘ Library

@ E Early Photos
¥ [2004
¥ B zo05
¥ [2006
¥ [2007

¥ Last Roll

[Last 12 Months

ﬁ Trash

L]

Rotate

/]

Edit

[

Slideshow

L=

Card

clkprm

Calendar

=

Book

kij L 1)

Email Order Prints

=
By
L,

&)

Web Photocast

()
Pl-ay

Figure 3-6. The Ruby Animation album in iPhoto

From inside iMovie, select the Media tab and the Photos option. Then select the

album you just created from the drop-down box. Next, highlight all your images. Show
the photo settings, and turn off the Ken Burns effect. Don’t forget to set the speed slider

(featuring a rabbit and turtle) to your frame length (set it 0:15 for a half second), as shown

in Figure 3-7. Finally, click Apply and wait for the video to be rendered.

Now you can add audio tracks if you want by selecting Audio and then dragging

songs down into one of the unused tracks.

CHAPTER 3 " ANIMATING RUBY 85
[%/ My Great Movie (DV-NTSC)
 Audio 7‘ _Photos
¥ @ iPhoto]
& Library
[P Last Roll

] Last 12 Months
[Ruby Animation

123 124 125
126 127 128
i
Photo Settings 129 130 v
B Ken Burns Effect Q 131 items
R —" 1] (Hide Photo Settings)
R
0:15
En e
(" apply) {laa)l P VD" o ———— Oy o | Clips = Themes |M¢dia 1 Editing Chapters

Drag photos here to build your project.

417 GBavailable [1f 23.7M8 |,

Figure 3-7. Combining the frames in iMovie

JPGVideo

On Windows, I found a tool called JPGVideo that can do the trick. Unfortunately, it is
picky about input image formats. It demands 32-bit color depth and a nonindexed col-
orspace mode. You can download JPGVideo from the following web site: www.ndrw.co.uk/

free/jpgvideo/

I found using the following ImageMagick convert command in the render method

was enough to get JPGVideo working.

system("convert #{filename}.svg -colorspace HSL #{filename}.jpg")

Make sure the intermediate SVG files are deleted.

File.unlink("#{filename}.svg")

Click Configure to select your animation output directory, and then name your video.
Click OK for the final rendering. There’s a sample configuration in Figure 3-8.

http://www.ndrw.co.uk

86 CHAPTER 3 © ANIMATING RUBY

Files
JPG Directory
Olutput C:ADocuments and SettingsiAdminiztrator J
Keep Temporary files [Create Log File [-
Remember Codec [Runon Start Up ™ Eﬁ
Display File Names [Max files |32700

Dirop |dentical Frames JPG Sorting

(+ File Last Modified Time
0 Difference
" File Creatian Time

Frames per Second " Alphabetically 42

Ji 2 " Alphabetically Z-4
QK | Cancel | Syglnfo | Help

Figure 3-8. /PGVideo configuration

Don’t Give Up

If none of these options works for you, don’t give up. There are plenty of other software
programs for putting these sorts of animations together. You should almost certainly be
able to find one that works for you.

Spicing It Up

From here on out, the sky is the limit. It's up to your creative desires. For example, if you
wanted to give your cube writing some depth, it’s as simple as making the following
change (pictured in Figure 3-9):

letterdrawer = LetterDrawer.new(cubes) do
3.times do |z|
jump(s, -2, z)
T

u
b
y

87

CHAPTER 3 " ANIMATING RUBY

Jump(17, 8, z)

HN S —H O wn

end

end

/N
\ Y

NN

A A

PN

Ty
0 .».‘.

N YWY
IVAYAYANRNANA S VAN
[N

NARARANNY
’f¢<0..~

o~ /T

AN 04

DA

>0’ff’<’.- N YNV LSS

AN

N LT TN

oy
sy
0‘0>0> [{17
NN

N VRN
[L

AN AN
[/7 AN SN
N\ Y Y
0’!0"4’"’
\N YV /17

oy
\/

Figure 3-9. Triple-high letters

Or what if you want to make the drawing mechanism work the same as in the game
Centipede, where only a certain number of cubes are ever drawn at any given time while

moving through the animation? The SortedSVG structure seems like a good place to start.

Let’s make a new FixedSizeSortedSVG subclass. You still need to make sure to print your
cubes in the proper 3D order, but you also need to keep around the order they were
added to the structure so you can evict objects at the right time. Here’s the code:

88 CHAPTER 3 " ANIMATING RUBY

class FixedSizeSortedSVG < SVGObject
def initialize(size)

super(:g)

@size = size

@fifo = []
end

def add(obj)
@fifo.push(obj)
@fifo.shift while @fifo.size > @size
@contents = @fifo.sort
end
end

Initialize the FixedSizeSortedSVG object with a size, and keep an FIFO (First In, First
Out) queue around. Each time an object is added that would push over the size, you'll
remove the oldest object from the list. But of course, if you want your @contents rendering
to work, you'll need to make sure that @contents is always stored in 3D order; so use the
sort method, which both orders the objects from the FIFO and makes a new copy of the
list that you'll store in @contents.

cubes = FixedSizeSortedSVG.new(20)

A snapshot of the results can be seen in Figures 3-10 through 3-12.

Figure 3-10. Near the beginning of the animation

mailto:@fifo.push
mailto:@fifo.shift
mailto:@fifo.size
mailto:@fifo.sort

CHAPTER 3 " ANIMATING RUBY 89

Figure 3-11. Later on

Figure 3-12. Later still

CHAPTER 3 = ANIMATING RUBY

Okay, pretty cool, but let’s put it in time with the music from Chapter 1. I like this
Centipede version, but since there’s a beat to match up with here, let’s also have all the
cubes visible every four beats. Once again, all it takes is a tweak to the cube storage class.

class BeatSortedSVG < SVGObject
def initialize(beats, size)
super(:g)
@size = size
@beats = beats

@count = 0
@all =[]
end

def add(obj)
@all.push(obj)
setup_contents
end

def step
@count = (@count + 1) % @beats
setup_contents

end

private
def setup contents
if @count == 0 || @all.size < @size
@contents = @all.sort
else
@contents = @all[-@size..-1].sort
end
end
end

And sure enough, now everything you've drawn is visible on the pulse beats, but the
rest of the time it just looks like the Centipede version.

cubes = BeatSortedSVG.new(4, 20)
anim.step{ cubes.step }

mailto:@all.push
mailto:@all.size
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough
mailto:@size@contents=@all.sortelse@contents=@all[-@size..-1].sortendendendAndsureenough

CHAPTER 3 © ANIMATING RUBY

Summary

SVG images are really quite powerful. With nothing more than simple string manipulation,
you built a Ruby animation framework. And with tricks like domain-specific languages
and deferred execution, you've made something that is quite pleasant to use and script.

Of course, there are always more places to take the project. Once you've put your
animation to music, you might want to try experimenting with colors! Remember, you
can vary colors over time if you do it right. For example, see if you can make the cubes
at the end of the Centipede-style cube chain gradually fade out instead of abruptly dis-
appearing.

There’s also a lot to be done using movement. What if the writing pulsed on the
downbeat and jumped into the air? Or the writing exploded apart at the very end?

And, of course, if you find this sort of thing interesting, the next obvious step is to
experiment with animated characters. Using the SVG <image> tag is a great way to add
moving sprites and lush backgrounds. Or you could imagine coding a Ruby object that
uses ERB templating to let you control how wide an SVG-drawn character’s mouth is.
From professional data visualization to cartoons in the style of Why The Lucky Stiff’s The
Least Surprised, the options are really limitless.

91

CHAPTER 4

Pocket Change: Simulating
Coin Systems with Ruby

A lot of software today is written to help us perform tasks. But there exists an often
unseen subcategory of software dedicated to the simple task of better understanding the
world we live in.

Computer simulation is the art of building software models of real processes in order
to learn more about them. It’s a powerful tool for asking and answering questions, and it’s
used by scientists and engineers around the globe.

Scientific computing simulations are often written in fast execution languages like C
or Fortran. Physicists simulating particles might require every ounce of computer power
their machines have. But not all problems require this level of performance. In many
cases, the trade-off between slower execution performance but faster development time
can make higher-level languages like Ruby very compelling simulation tools.

Indeed, object-oriented programming languages (like Ruby) and simulation have a
long history together. Simula-67, a language specifically designed for simulation, was the
first to introduce the notion of objects to computer programming. So in this chapter, I'm
going to ask one particular question and try to answer it with a simulation written in Ruby.

Here’s the question: given prices in the United States, does our current set of coin
denominations minimize the amount of change the average person carries around in his
pocket? And if not, what are some better denominations of coins we could use?

In the process, you'll learn about simulations, but I'll also touch on algorithms for
making change, how to speed up computation with dynamic programming, the perils of
hash tables, optimal coin configurations, using searches to explore solution spaces, a
work of fiction, and the coin replacement consensus.

Going Shopping

In order to run the change simulation, you're going to need to simulate a lot of purchases.
During each of these purchases, a simulated consumer will pay the cashier using the

93

94

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

change he is carrying (plus an unlimited supply of dollar bills). The cashier will then
make change using the fewest coins possible. We'll track the average number of coins
in the customer’s pockets over time in order to gauge the success of various systems of
coinage.

And if you want good results, you're going to need the prices from actual purchases.
Luckily, I saved all my receipts for the past year or so. I've painstakingly entered 253 of
these purchases into the computer.

You can find the full list in prices.txt. I've only included the portion of each price
that is less than a dollar. 'm not going to worry about dollar bills at all, since I'll just
assume there’s an unlimited supply from the ATM.

I've also omitted purchases that cost some number of dollars but no cents, since they
won't affect our change-making. And lastly, I've omitted my bagel purchases from the list.
Spending $1.35 on a bagel and cream cheese every single morning has a serious potential
to bias your results. Of course, if this were a real science experiment, you'd want to keep
the bagels and increase the number of consumers sampled. But this price list should be
sufficient for this investigation.

Randomizing the purchase data will help avoid fitting the solution too tightly to the
specific order the receipts were entered in. (However, this also means we’ll have to simu-
late more purchases in order to find a stable solution.) Let’s start building the simulation
by constructing an object that will let us randomly select a price from the list. All of the
code in this chapter will reside in a single file. Title it change. rb.

class Prices
def initialize(*data)

@data = data
end
def get
@data[rand(@data.size)]
end

end

This compact data structure takes a list of prices supplied on creation and gives you
the ability to request one back at random. Here’s a usage example:

prices = Prices.new(1, 2, 3)
prices.get » 2
prices.get » 1
prices.get » 2

It would also be useful to have Prices be able to feed a number of random prices into
a block.

mailto:rand(@data.size

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

class Prices
def each(count)
count.times{ yield get }
end
end

The each method can be used like this:

price list = []
prices.each(4) {|price| price list.push price }
price list » [1, 1, 3, 2]

Now let’s read in the price file and put the prices into the random price object.

price list = I0.readlines("prices.txt").map{|price| price.to i }
prices = Prices.new(*price list)

This price generator (based on real amounts, of course) gives the first part of what
you need to simulate purchases. You're also going to simulate the customer who is paying
for all these purchases, as well as someone capable of making change when the customer
can’t pay exactly.

How to Make Change

Making change at first seems like an easy problem. In the United States, we have four
coins in common circulation, a 1-cent coin known as a penny, a 5-cent coin known as a
nickel, a 10-cent coin known as a dime, and a 25-cent coin known as a quarter. For inter-
national readers, it's worth noting that there are 100 cents in a dollar (the fundamental
monetary unit in the United States), and that the code we’ll work with in this chapter will
assume a coin system based on units of 1/100th of a dollar.

The Greedy Algorithm

In order to make change in the United States (and a great number of other countries for
that matter), all you need to do is start with the largest coin denomination, take as many
as you can without exceeding the amount of change you're making, and then proceed to
the next smallest coin and repeat. Since we have a 1-cent coin, which is also the smallest
unit used in U.S. prices, we're always able to make proper change. All our simulations will
share this constraint that the coin systems must include a 1-cent coin.

Here’s an example. If a price is 61 cents, and the customer pays one dollar (which is
equal to 100 cents), the clerk will need to give the customer 39 cents in change. The clerk

95

96

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

starts with the quarters. He picks one up, giving him 25 cents out of the needed 39, but
cannot select another quarter without exceeding 39 cents. So he keeps the quarter in his
hand, and proceeds to the dimes. He can add one dime, giving him 35 cents, without
exceeding 39 cents, and so taking the sole dime, he proceeds to the nickels. He can’t take
any nickels without going over, so he finally looks at the pennies. He needs to take four of
them to make correct change, so he grabs them and hands a fistful of coins back to the
customer that contains one quarter, one dime, no nickels, and four pennies.

Computer scientists call this process the greedy algorithm, but not because it has
anything to do with money. In fact, this algorithm is useful for solving a variety of prob-
lems. At its simplest, the algorithm merely says, “for every decision, make the choice that
will get you closest to your goal state.” By always choosing to take the largest coin that
you can without exceeding the amount, the greedy algorithm lets you make perfect
change in the United States.

Problems with the Greedy Algorithm

Unfortunately, the greedy algorithm is not a very good general solution. There’s a large
class of problems it can’t solve for the simple reason that sometimes always trying to
get as close to your goal state as possible backfires, leaving you with a suboptimal fin-
ishing state.

Let me give an example using coins. While a greedy algorithm works for the U.S. coin
system, it doesn’t work for coin systems in general. Let’s say you need to make 14 cents
worth of change in a country where the coins are valued at 1, 7, and 10 cents. The greedy
algorithm would have you first take a 10-cent coin, then ignore the 7-cent coins because
taking one would exceed the desired amount. Finally, you would take four pennies. This
gives a total of five coins’ worth of change when you really should have given the cus-
tomer back two 7-cent coins.

Brute Force

The obvious advantage of a coin system like the United States’ is how easy it is for clerks
to make change. A lot of the coin systems explored in this chapter won’t necessarily have
that property. Luckily, you can still always find the optimal change by running through all
possible sets of coins that add up to the right amount and then picking the best. This is
often referred to as a brute force algorithm. It won't be fast, but it will always get the job
done. So while a human being might find some of these systems confusing, the simula-
tion won't ever have problems making perfect change.

Would the United States ever switch to a system that made making change this hard,
even if it meant people would end up hypothetically carrying less change? Definitely not.
But it wouldn’t actually be as crazy of an idea as it sounds. After all, most change is now
made using computerized cash registers. It wouldn’t be difficult for cash registers to

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

instruct clerks which coins to return. In fact, many stores now use automatic change
makers that remove the cashier from the process entirely.

Still, it'll never happen.

But let’s ignore that for now. Since you can't rely on the greedy algorithm, you're
going to implement a solution that relies on computational brute force.

Adding the min_by Method

You want to find the solution with the fewest possible coins, so begin by adding a method
to the Enumerable module named min_by.

The Enumerable module is a special module that is mixed in (this means “has its
methods added”) to most common collection classes. This lets them all share common
code and gives you a convenient place to add code you'd like all Ruby collections to sup-
port! Even though you'll probably only call min_by on arrays, by adding it to Enumerable, it’s
available anywhere you might need it.

Enumerable already provides a min method. The min method finds the minimum element
in an enumerable instance. min_by is a related yet different operation. You want to find
the element that is the smallest after the block is applied to it, as opposed to simply the
smallest element. This is a common pattern in Ruby. Take sort and sort_by for example:

[5) _8) 3) 9]-50It > [_81 3) 5) 9]
[5, -8, 3, 9].sort _by{|num| num.abs } » [3, 5, -8, 9]

The relationship between min and min_by is similar:

[5, -8, 3, 9].min » -8
[5, -8, 3, 9].min_by{|num| num.abs } » 3

Here’s one way to implement this method:

module Enumerable
def min_by
pairs = map{|x| [yield(x), x] }
min_pair = pairs.min{|a, b| a.first <=> b.first }
return min_pair.last
end
end

The user must supply a block used to sort objects based on the result of calling the
block on them. In this implementation, you build a list of pairs containing both the origi-
nal value and the result of calling the block with the value. You then find the pair with the
smallest result value, and return its original value.

97

98

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

This is a variation on the decorate-sort-undecorate pattern and is closely related to
the Schwartzian Transform (which does sorting instead of minimization) of Perl fame.
More important, though, it will help you make optimal change.

Putting It All Together

The ChangeMaker class will need to be passed in a list of denominations to use when mak-
ing change. You'll assume it has a limitless supply of each of these coins. While cashiers
occasionally run out of certain coins in the real world, these virtual businesses will make
sure they always have enough coins on hand.

class ChangeMaker
def initialize(*coins)
raise "ChangeMaker must have a coin of denomination 1" unless coins.include?(1)
@coins = coins.sort
end
end

The ChangeMaker constructor accepts a list of coins and stores them (sorted) in an
instance variable. This is where you should enforce the rule that all coin systems must
include a 1-cent coin. The actual change-making operation will be performed by a recur-
sive method change.

class ChangeMaker
def change(amount)
return [] if amount ==

possible = @coins.find_all{|coin| coin <= amount }
best = possible.min_by{|coin| change(amount - coin).size }

return [best, *change(amount - best)].sort
end
end

The method change is called with an amount the cashier is supposed to return to the
customer as change. Since you're using recursion (this method will call itself), you have
two cases.

In the so-called “base case,” the amount of change you need to return equals 0. When
this happens, you'll return an empty list representing no coins. On the other hand, most
of the time you're actually going to need to make change. This is the “recursive case.”

First you exclude any coins that are larger than the desired amount. Trying to use
them would cause you to give back too much change. Then, of the possible coins you

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

could use, you figure out which one would require the least number of coins to finish
the job (returning the amount of change required minus the value of the coin we could
choose).

The whole process is repeated again and again, calling change with successively
smaller amounts each time, until at least you reach the case where you are required to
return 0 cents, at which point the base case is reached and you return no more coins. The
collection of the best coins to pay is built up from each successive call until at least the
original invocation returns the best possible change. Here’s an example:

cm = ChangeMaker.new(1, 5, 10, 25)
cm.change(17) » [1, 1, 5, 10]
cm2 = ChangeMaker.new(1, 7, 10)
cm2.change(14) » [7, 7]

Excellent! It even handles coin systems where the greedy algorithm doesn’'t work.

So what'’s wrong? Well, on my machine, trying to make change for 25 cents takes
over a minute. The times get much worse as the values get even a little larger. What'’s
going on here?

The way this is written, you may need to calculate the best possible way to make
change for any given value over and over again. When changing 25 cents, there are a
number of ways to pay 15 cents, and when comparing them, each is required to figure
out the best way to make change for the remaining 10 cents. These values are recalcu-
lated repeatedly in the recursive call tree. Luckily, there’s an easy solution for this kind
of problem called dynamic programming.

Dynamic Programming

Dynamic programming is a technique used to improve the performance of algorithms
that solve the same subproblems repeatedly. The answers are saved the first time they
are computed and then the result is immediately returned by future calls, thus avoiding
costly recomputation. This process is called memoization.

You'll be using top-down dynamic programming, where the subproblems are solved
when they are needed to solve the original problem, instead of ahead of time. To do this,
you’'ll need to use memoization in your change method.

Tip Memoization is one of those words you’ll probably only hear computer programmers use. It is
the proper name of the process by which function results are cached based on the arguments that pro-
duced them.

99

100 CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

class ChangeMaker
def initialize(*coins)
raise "ChangeMaker must have a coin of denomination 1" unless coins.include?(1)
@coins = coins.sort

{}

@cache

end

def change(amount)
return @cache[amount] if @cache[amount]
return [] if amount ==

possible = @coins.find_all{|coin| coin <= amount }
best = possible.min by{|coin| change(amount - coin).size }

return @cache[amount] = [best, *change(amount - best)].sort
end
end

I've added two lines and changed a third. The hash table stored in the instance
variable named @cache will store the best way to make change for all amounts changed
before. At the beginning of your change method, add a short circuit return to retrieve the
answer from the cache if it exists. And at the end of the method, before you return any
solution, make sure to save it in the cache. With this modification, your method makes
change almost instantly.

cm = ChangeMaker.new(1, 5, 10, 25)
cm.change(99) » [1, 1, 1, 1, 10, 10, 25, 25, 25]

Caution In coin systems where there are multiple optimal coin sets for a given value, the ChangeMaker
will return one particular set every time. This means you can’t use a ChangeMaker to check whether a given
coin set is optimal simply by comparing it to the returned solution; instead you must check the size of the
returned size against the size of your set.

The Customer

You've now got a random selection of purchase prices and an object to act as your cashier
that always makes optimal change. But you still need to code a customer who can pay the
cashier the optimal payment given what he has in his pocket.

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

If the goal is to minimize the amount of change the customer is lugging around, the
customer should always give the cashier the combination of coins in his possession that
will leave him with as few coins as possible remaining (including any change he receives)
when the transaction is finished.

In real life, people don't always do this. Sometimes we're in too much of a hurry and
sometimes we're just not smart enough to figure out exactly what we should give the
cashier. Luckily, your simulated customer never has these problems. Here’s the beginning
of the Customer class:

class Customer
attr_reader :denoms, :coins

def initialize(denoms, *coins)
@coins = coins.sort
@denoms = denoms.sort

@cm = ChangeMaker .new(*@denoms)
end
end

The customer is passed a list of coin denominations, as well as a starting set of coins
in the variable arguments slot. You'll create a new customer like this from now on:

customer = Customer.new([1, 5, 10, 25], 1, 1, 1, 5, 25)

This customer is using the U.S. coin system and starts with three 1-cent coins, one
5-cent coin, and one 25-cent coin.

The customer has three instance variables. The first two hold the denominations and
the coins that were passed to the constructor. You sort them before storing them for pret-
tier printing. You also provide accessors for these variables. In the last instance variable,
the Customer keeps a ChangeMaker object initialized with the appropriate denominations.

Unfortunately, the constructor in the preceding code doesn’'t do much in the way of
error checking. A slightly more reliable version looks like this:

class Customer
def initialize(denoms, *coins)
@coins = coins.sort
@denoms = denoms.sort

coins.each{|denom| check_denom(denom) }

@cm = ChangeMaker .new(*@denoms)
check_optimal_start
end
end

101

102 CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

Why is this important? Well, obviously the first check is important because it keeps
you from accidentally starting up in a bad state. It’s the second check, though, that’s
more interesting. Without this code, there’s the potential to initialize your customer in a
nonoptimal configuration—for example with five 1-cent coins, instead of one 5-cent coin
(a situation that should have never occurred given how good the customer is at paying).
The following code implements these two checks:

class Customer
def check_denom(denom)
raise "Bad denomination #{denom}" unless denoms.include?(denom)
end

def check optimal start
optimal = @cm.change(amount)
if coins.size != optimal.size
raise "Bad starting state #{coins.inspect} should be #{optimal.inspect}"
end
end
end

To make the preceding code work, you'll need the amount helper. Here’s its imple-
mentation along with the number method. The first totals the coins, while the second
counts them.

class Customer
def amount
coins.sum
end

def number
coins.size
end
end

Of course, amount in turn needs the sum method defined on Enumerable.

module Enumerable
def sum
inject(o) {|a, b| a + b } rescue nil
end
end

mailto:@cm.change

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

sum assumes the Enumerable contains numbers and adds them up. If anything goes
wrong, it uses the rescue modifier to return nil.

As a convenience I'll also provide a class method on Customer to create a customer
using the U.S. coin denominations.

class Customer
def self.us(*coins)
self.new([1, 5, 10, 25], *coins)
end
end

This method isn't for actual simulation, but it will be useful for testing your work.
Although I haven’t been talking about tests or writing them in this chapter, all of this code
is unit tested. It’s always a good idea to write tests while you write code. How else will you
know if you wrote it right?

Using the previous class method, you can now create a new American Customer
like this:

customer = Customer.us(1, 1, 1, 5, 25)

In order to do proper testing, you're also going to need some basic Ruby methods for
your customer object as well. You're going to want a == method and a to_s method at the
very least. Without the ability to compare your objects or print them, testing and debug-
ging can be difficult. The following two little methods will make life easier:

class Customer
def ==(other)
return false unless other.kind of?(Customer)
return false unless coins == other.coins
return false unless denoms == other.denoms
return true
end

def to s
dollars = sprintf("$%.2f", amount.to_f/100)
return "#{dollars} (#{coins.join(', ")})"
end
end

The == method will consider a customer equal to another object only if the other
object is also a Customer and has the same list of coins and denominations. For this

103

104

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

reason, you're going to need to always keep the coins and denominations lists sorted.
Here are some usage examples for both methods:

customer1 = Customer.us(1, 5)

customer2 = Customer.us(1, 10)

customer3 = Customer.new([1, 5, 10, 25], 1, 5)
customer4 = Customer.new([1, 3, 5, 7], 1, 5)

customerl == customerl » true
customerl == customer2 » false
customerl == customer3 » true
customerl == customer4 » false

customeri.to s » "$0.06 (1, 5)"
customer2.to s » "$0.11 (1, 10)"

This brings us to the last and most important method. The pay! method is responsible
for having the customer pay the clerk a certain amount. The hyper-intelligent customer
will always give the clerk the amount that will result in him leaving the transaction with as
few coins as possible in his pocket. This method combined with the ChangeMaker’s change
method are the heart of the simulation.

Tip Why does the pay! method end with an exclamation point? It's not because we’re excited (and we
are)! We’'re following Ruby’s convention of marking methods that change the state of an object with an
exclamation point as a warning.

In order to write the pay! method, however, you're going to need to look at different
configurations of the coins. Let’s add another method named permutations (and its helper
rest) to the Enumerable module.

module Enumerable
def permutations
return [[]] if empty?
others = rest.permutations
(others.map{|o| [first] + o} + others).unig

end

def rest
return [] if empty?
self[1..-1]

end

end

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

You'll be using the permutations method on ranges as well as arrays. The preceding
version is a recursive solution. If the collection is empty, there is only one possible per-
mutation, an empty collection. This is the base case, so you return it right away if
permutations is called on an empty collection.

However, if the collection is not empty, you're going to recursively call permutations
on a list of all of the elements except the first one. This is done using the rest method that
has been added to Enumerable as well.

rest is typically used along with first. Between the two of them, they return all the
elements in an enumerable. rest is often useful in recursive solutions and mimics the
behavior of Lisp’s cdr function when used on a cons list (I'll talk about this more in
Chapter 9).

Before returning to the pay! method, you need a way to give and receive coins.
Without the following code, your simulated customer would be paralyzed, halting the
very engine of commerce itself.

class Customer
def take!(coin)
coins.push coin
coins.sort!
return self
end

def give!(coin)
Be careful not to call delete() because it removes all instances of an
object, and we support having more than one of each coin. Use delete at
instead.
raise "Don't have #{coin} coin to give" unless coins.include?(coin)
coins.delete at(coins.index(coin))
return self

end

end

These methods are pretty straightforward (although, notice that the coins are kept in
order). So let’s finally return to the pay! method. It runs through all the combinations of
coins the customer could give the cashier, using the permutations method, and selects the
best using the min_by method. This is how the customer knows which coins are the best to
give the clerk. It tries them all!

class Customer
def pay!(bill)
give = coins.permutations.min by do |perm|
amount = (perm.sum - bill) % 100

change = @cm.change(amount)

105

mailto:@cm.change

106 CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

number - perm.size + change.size
end

amount = (give.sum - bill) % 100
get = @cm.change(amount)

give.each {|d| give!(d) }
get.each {|d| take!(d) }
return self
end
end

Using the rest and permutations methods recurses and calculates what the permuta-
tions would be excluding the first element. But of course, you actually want the first
element, too. Luckily, if you have a list of configurations, it’s straightforward to find out
what the new configurations are if you add one more coin. The answer is simply all of the
old combinations as well as each old combination with the new coin added to them. So
there are twice as many permutations when you’re done. So you concatenate them and
then call unig at the end to avoid the duplicate permutations that can arise if a collection
contains duplicate items. Unfortunately, this code is really slow.

Memoization

Solving for the optimal set of two coins (where one of them must be 1 cent!) took me

52 seconds with this implementation. But reusing the old memoization trick dropped
the time to 15 seconds. When you increase the number of coins to three (still requiring
a 1-cent coin), the nonmemoized version takes 18 minutes while the memoized version
completes in around 8 minutes on my particular machine. You can memoize the code
like this.

module Enumerable
@@permutations cache = {}

def permutations
return @@permutations cache[self].dup if @@permutations cache[self]
return [[]] if empty?
others = rest.permutations
return (@@permutations cache[self] = w
(others.map{|o| [first] + o} + others).uniq).dup
end
end

mailto:@cm.change

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

You use the @@permutations_cache class variable (a confusing designation in this case
because the class variable is being added to a module instead of a class) to store your
results. You use a class variable this time instead of an instance variable because the
input to the method is the Enumerable object itself. The class variable gives you a central
place that is not unique to any particular instance where you can store all the precalcu-
lated answers.

The code now checks the cache for a result and returns it immediately if it exists.
Well, actually, it returns a duplicated copy. The risk of returning something straight out
of the cache is that someone could modify it and corrupt future results. A good way to
get around this is to call freeze on the value stored in the cache. Another way is to call
dup on the value stored in the cache to return a copy. Both ways ensure that your cached
answers remain valid. Some quick tests I ran suggested that the strategy using dup was
faster (surprisingly), so I used that technique. Unfortunately, there’s a bug in this code.
Any guesses?

Hash Problems

In my haste for better performance, I added a subtle bug to the code along with memo-
ization. Hash tables are so darn fast because they compute a special hash index for each
key object, and then use this index as a wrapped reference into a table of memory. In
Ruby, these hash codes are generated by a method named hash. All objects inherit a sim-
ple hash method from the Object class and all the built-in classes provide class-specific
implementations to instances. So when it’s time to use an object as a hash key, the hash
code for the object is calculated, the hash code is modulated so that it is between 0 and
the number of slots in the hash table, and then the object is placed in that slot.

What happens if there’s something else already in that slot? Well, there are a couple of
ways to do it, but they all involve having a consistent rule about where to put the object
instead. Some implementations might add a constant number to the hash code and try
that slot instead. Others have a linked list at each slot of the table that they can hang
additional objects off of. But the fact that multiple objects can have the same hash code
leads to problems at lookup. It is no longer enough to solely use the key’s hash code on
storage or lookup. Instead, you must also check the equality of the lookup key against the
key you used to store to the value. That means you'll need to keep that key object around
somewhere in the hash table.

But this is all just background. Here’s an example of two arrays that hash to the same
value (111):

[8, 8, 8].hash » 111
[1, 8, 8, 8, 8].hash » 111

107

108

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

Luckily, though, because of the equality check performed on hash lookup, these two
arrays won't interfere with each other when used as keys.

h=1{}

h[[8, 8, 8]] =1

h[[8, 8, 8]] » 1

h[[1, 8, 8, 8, 8]] » nil
h[[1, 8, 8, 8, 8]] =2
h[[1, 8, 8, 8, 8]] » 2
h[[8, 8, 8]] » 1

But then why does the following happen?

h ={}

a=[8, 8, 8]
h[a] = 1

a.push 8
a.unshift 1

a>» [1, 8, 8, 8]
h[a] » 1

Well, I made one of the cardinal mistakes of hash tables. I stored something with a
key and then modified the key. Depending on the hash table implementation, this can
have all sorts of interesting effects.

Here’s what happens in Ruby. When you use an object as a key in Ruby, a reference to
the original key is kept in the hash to be used for disambiguating collisions in the table. It
is neither cloned nor frozen. If you ever accidentally modify the key to another state, hash
lookups using keys equal to the modified state will retrieve the originally stored value,
but only if the modified key hashes to the same hash code as it did in its original state. In
fact, if you peer beneath the hood into Ruby’s C code, you'll see that Ruby doesn’'t even
bother calling the compare method if it’s been passed two references to the same object:

#tdefine EQUAL(table,x,y) ((x)==(y) || (*table->type->compare)((x),(y)) == 0)

The lesson learned here is don't mutate the keys you've used to store values in a hash.
Unfortunately, if you make this mistake, the mechanics of the problem make symptoms
intermittent and very difficult to debug.

So where’s the bug in the preceding memoization code? permutations is called on
the coin list, therefore you use the coin list as a key to your memoization hash. Unfortu-
nately, the coin list changes throughout execution, giving rise to the strange behavior
previously discussed. You can get around this by duplicating your keys before you use

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

them to store objects in the hash. That way you won'’t accidentally change them. Here’s
the fixed solution:

class Enumerable
def permutations
return @@permutations cache[self].dup if @@permutations cache[self]
return [[]] if empty?
others = rest.permutations
return (@@permutations cache[self.dup] = =
(others.map{|o| [first] + o} + others).uniq).dup
end
end

Note I'm duplicating both the keys used to store answers in the hash and the answers themselves. The
first is to avoid the key modification problem just discussed. The second is to make sure no one accidentally
changes any of the answers either. The problems are similar, but not quite the same.

Paying
So with the permutations method working, blazing fast, and now correct, the pay! method
should work, too. Let’s revisit the code:

Class Customer
def pay!(bill)
give = coins.permutations.min_by do |perm|
amount = (perm.sum - bill) % 100
change = @cm.change(amount)

number - perm.size + change.size
end

amount = (give.sum - bill) % 100
get = @cm.change(amount)

give.each {|d| give!(d) }
get.each {|d| take!(d) }
return self
end
end

109

mailto:@cm.change
mailto:@cm.change

110

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

The min_by invocation will return the set of coins the customer should give to the
cashier to minimize the change in his pocket. Once you have this value, calculate the
amount of change the cashier will give him in exchange, then have him give up the coins
he’s paying with and take the new ones. And that’s all there really is to it. Here’s an exam-
ple of how to use the pay! method:

customer = Customer.us(1, 1, 5, 10, 25)
customer.pay!(15)

customer.coins » [1, 1, 25]
customer.pay!(98)

customer.coins » [1, 1, 1, 1, 25]

Everything seems to work, so let’s put the pieces together and do some simulation.

The ChangeSimulator

The simulator itself is very small. I've put most of the intelligence into the Customer class
and Enumerable’s new permutations method. I'll initialize the ChangeSimulator with a price
list and a list of coin denominations, as follows:

class ChangeSimulator
def initialize(prices, *denoms)

@prices = prices
@customer = Customer.new(denoms)
end
end

Then I'll tell it how many purchases to run for, and it will return an average amount
of change in the customer’s pocket between each purchase.

class ChangeSimulator
def run(length)
sum = 0
@prices.each(length) do |bill|
@customer.pay! (bill)
sum += @customer.number
end
return sum.to_f/length
end
end

Now the simulator is ready for use.

mailto:@prices.each
mailto:@customer.pay
mailto:@customer.number

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

So How Heavy Are Your Pockets?

Let’s start by running a simulation to see how much change we'd be carrying around on
average if we all made perfect change all the time using the American coin system. First
you’'ll need your price list.

price list = I0.readlines("prices.txt").map{|price| price.to i }
prices = Prices.new(*price list)

You're going to have to decide how long the simulation should run. You only have
253 purchases in your purchase list, but since they're randomly selected and the order of
purchases affects the outcome, you’ll want to run more purchases than that. The more
purchases you run, the less variance you'll see between simulations. This is not a guaran-
tee of real-world accuracy, of course, since you can’t be sure that the data set or
simulation accurately mimic the real world.

My computer is able to happily run 10,000 purchases in a short time, so let’s start by
simulating 10,000 purchases with the U.S. coin system.

sim = ChangeSimulator.new(prices, 1, 5, 10, 25)
puts sim.run(10000)

I ran this simulation a few times, and the average number of coins in the customer’s
pocket hovered at 4.7. I personally happen to have six coins in my pocket right now, for
what it’s worth. An interesting followup to the simulation would be to track your own
average coin load for a month. The difference between your average and 4.7 could give
you a sense of how close you come to making optimal change decisions at the register.

Replacing a Coin

Okay, let’s make the next simulation a little more complicated. Now you're going to try to
find the best replacement coin you could choose if you were given the chance to swap
out one current U.S. coin. First you'll need to generate all the possible ways you could
replace a coin. You need to leave the penny, but you can ditch the 5-, 10-, or 25-cent
coin in exchange for any coin between 2 and 99 cents (including even the coin you have
removed). If you found that the best move you could make was to replace one of your
current coins with itself, it would mean your current system was optimal.

possibilities = []

us_denoms = [5, 10, 25]

us_denoms.size.times do |i|
(2..99).each do |replacement|

111

112 CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

denoms = us_denoms.dup
denoms[i] = replacement

possibilities << [1, *denoms]
end
end

Once you've calculated all the possible configurations, search for the one that will
minimize pocket weight. Of course, since you are now running almost 300 different simu-
lations instead of just one, you can’t afford to run as many purchases. I've dropped the
number of purchases down to 1000, which makes things manageable (a run time of a few
minutes):

winner = possibilities.min by do |denoms|
sim = ChangeSimulator.new(prices, *denoms)
sim.run(1000)

end

puts "The winner is: #{winner.sort.inspect}"

I've run this a number of times and I always seem to get one of two answers. The
most frequent result is to replace the 10-cent coin with an 18-cent coin. The less com-
mon answer is to replace the 25-cent coin with a 32-cent coin. Of course, I'd hate to
see the looks on Americans’ faces if they were ever forced to make change with 18- or
32-cent coins.

Adding a Coin

What if, though, instead of replacing a coin, you wanted to add one? The code doesn't
have to change much. The main difference is that you'll be simulating with five coins.
This slows you down because it means a larger set of possible ways to make change with
each purchase.

winner = (2..99).min_by do |extral|
sim = ChangeSimulator.new(prices, 1, 5, 10, 25, extra)
sim.run(1000)

end

puts "The winner is: #{winner}"

Several simulations of this variety suggest that adding a 22-cent coin would be a
good way to cut down on loose change. Other answers are possible as well.

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

Optimal Coins

If adding or swapping a coin seemed improbable, this next hypothetical is downright
unbelievable. But let’s say the U.S. government commissioned you to completely redo
the U.S. coin system with no regard for ease of use, but instead with the goal of eliminat-
ing as much pocket change as possible. What should the new system look like?

The first question you need to ask is how many coins you get to use. After all, if you
can have 99 of them, you can reduce the number of coins someone needs to carry down
to one. On the other hand, trying to fit 99 coin trays into a cash register probably wouldn’t
work so well. Never mind figuring out how to make vending machines recognize all 99
coins. Luckily, you're limited to fairly small numbers of coins by the amount of permuta-
tions that can be simulated.

Remember, you'll need to always include a 1-cent coin. Also note that you've
parameterized the simulation on the number of coins it’s allowed to use, as well as the
number of purchases to simulate. In order to make this possible, you'll need a variation
on permutations named permuations of size.You could implement this method by post-
filtering the permutations to remove permutations of the wrong size. But this will still
have to produce all the combinations (an increasingly difficult task)!

Instead, let’s implement it like this. To start with, this version uses iteration instead of
recursion. It also ignores any combinations containing more elements than the specified
limit. It is diligent about removing duplicates, and right before the very end, it removes
any permutations without enough elements (it was important to keep them around until
then, since they would be used to form combinations of the right size).

module Enumerable
def permutations_of size(n)

perms = [[]]
each do |item|
add = []

perms.each do |prev|
newone = prev + [item]
add.push newone if newone.size <= n
end
perms.push(*add)
Adding perms.uniq! here enables us to process large values of coins
that are all the same without combinatorial explosion.
perms.uniq!
end
return perms.find all{|p| p.size == n }
end
end

113

114 CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

You can then use this to write a generic coin system solver. The following code finds
the best two-coin system.

number = 2
purchases = 400
choices = (2..99).to_a.permutations of size(number - 1).map{|p| p.push(1) }

winner = choices.min_by do |denoms |
sim = ChangeSimulator.new(prices, *denoms)
sim.run(purchases)

end

puts "The winner is: #{winner.sort.inspect}"

As an aside, if you thought the combinatoric explosion was bad before, you're really
in trouble now. The number of simulations being performing is now growing with the
number of permutations that can be made using coins between 2 and 99 for 7 coins.

Two Coins

If you restrict yourself to systems that include a penny, there are only 98 two-coin sys-
tems. This means you can get away with a relatively large number of simulated purchases
(though quite small compared to earlier simulations). For this number of simulations, I
was able to run 400 purchases each while still keeping the simulation relatively fast. You'll
find out quickly that if you only got two coins, you'd probably want an 11-cent coin to go
along with the penny.

Three Coins

What about three-coin systems, though? I've kept the number of purchases at 400, even

though this simulation takes significantly longer than the two-coin system. One simula-
tion suggested that the optimal system would consist of a 1-cent, a 7-cent, and a 24-cent
coin. Another suggested a 1-cent, a 13-cent, and an 18-cent coin. This simulation would
benefit from several reruns with a much larger number of purchases.

Four Coins

At four coin denominations and 400 purchases each, the simulation took an entire week-
end, clocking in at a little over 50 hours of simulation. But I did get an answer. It appears
that if you were to replace the current four-coin system with a new one, you should have

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

atleast a passing look at [1, 3, 13, 31]. Of course, I didn't have the patience to run the
simulation again to confirm the result.

This was the only occasion when permutations_by size took any significant time.
If you were consistently simulating problems with this large of a search space, it would
probably be advisable to memoize permutations by size as well.

Beyond

Unfortunately, five- and six-coin systems lay outside my simulating power. It’s frustrating
but a common problem with simulation. One solution is to wait for faster machines. This
helps, but never as much as you'd like because problems often grow exponentially in size.

Another solution, of course, is to find yourself a computer cluster. There’s nothing
quite like a few thousand computers to speed up your simulation. This technique is
especially useful for simulations like this one where you have a large independent
search space. Each machine can try running a different coin system and compare their
best result when all machines are finished.

But what if you don’t have a computer cluster? Well, you could check with your
friends and see if they have one. But if that doesn’t work out, you're probably going to
have to come at the problem from a different angle.

What if you could avoid checking every possible configuration? At its core, this is a
search problem. Up until now, the code has been using the brute force strategy and trying
every configuration. This means you’ll always find the optimal solution. But it also makes
your larger simulations take forever. If you're constrained by processing power and need
an answet, avoiding checking every possible solution makes a lot of sense.

One way to cut down the search space is to throw out possibilities ahead of time.
From the results you've seen so far, you might be tempted to throw out all small coin sys-
tems that include a coin larger than 50 cents. None of the optimal systems has included a
coin that large yet. Of course, there are no guarantees this heuristic would be a good one.
After all, a coin system with 50 coins must have a coin worth 50 cents or more. In fact,
coins larger than 50 cents probably appear long before you reach 50-coin systems.

Since culling the search space ahead of time requires a greater understanding of the
problem than we have, we are lucky that there are algorithms available to dynamically
decide which possibilities to explore next. These algorithms are designed to maximize
value, but they can’t guarantee you the optimal solution unless you have a way to
cheaply test a given solution for optimality (we don’t). But they can still often find an
acceptable solution. Using an algorithm with an exotic name like best first search, hill
climbing, and simulated annealing might be exactly what you need to get your simula-
tion running in the time you have. I'll return to this question later in Chapter 7 using
genetic algorithms.

115

116

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

Wizard Money

Okay, but if you're going to make up improbable currency schemes, why limit yourself to
the mundane world of American currency? In J. K. Rowling’s award-winning Harry Potter
fiction series, wizards use a currency system based on galleons. Each galleon is worth

493 knuts. Wizards also use a second coin called a sickle that is worth 17 knuts, which also
means that a galleon is worth 29 sickles. The classifications I've been using previously fall
apart a little here.

So far I've been excluding dollars from the calculations. Since they are bills, I've
accepted the fact that you can carry an almost unlimited supply (and get more when you
need them) without weighing down your pockets.

Although as far as I can tell, Rowling never addressed this issue, so I'm going to have
to assume wizards have some magical way to carry around large numbers of galleons
(otherwise, they’re walking around with sacks of gold all the time). This would mean all
a wizard needs to worry about lugging around are his or her knuts and sickles.

Given this assumption, you have a two-coin system valued at 1 and 17 “cents” (knuts
actually), accordingly. With a quick retooling, you can tweak your simulator to answer
questions about Rowling’s mythical world. The first step is to replace all occurrences of
100 in the code with 493. Like a good software engineer, I'll refactor the values into a con-
stant named Unit:

Unit = 100

def pay!(bill)
give = coins.permutations.min_by do |perm|
amount = (perm.sum - bill) % Unit
change = @cm.change(amount)
number - perm.size + change.size
end

amount = (give.sum - bill) % Unit

Then I'll redefine Unit to 493.
Unit = 493

Since Rowling has not provided us with a very extensive list of wizard prices, I'm
going to have to use random prices between 1 and 492. According to the following code,
wizards are carrying on average around 22 knuts and sickles at all times.

mailto:@cm.change

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

prices = Prices.new(*1..(Unit - 1))
sim = ChangeSimulator.new(prices, 1, 17)
puts sim.run(10000)

That’s way more than what average Americans would be carrying. So I'll ask the same
questions about the wizard’s system that I did about the U.S. coins. First of all, is there a
better coin than a sickle the wizards could use (ignoring the fact that the whole 493 knuts
to a galleon is probably an arbitrary number to begin with, unlike 100 which fits nicely
into the base 10 system—unless, of course, wizards do math in base 4932

winner = (2..492).min_by do |denom|
sim = ChangeSimulator.new(prices, 1, denom)
sim.run(300)

end

puts winner

And the answer? The simulation suggests a 10-knut coin. But what if you got to add a
coin to make the wizards’ lives a little more bearable? The code looks almost identical.

winner = (2..492).min by do |denom|
sim = ChangeSimulator.new(prices, 1, 17, denom)
sim.run(300)

end

puts winner

Apparently what they need is a 7-knut coin. Since the wizards seem to care so little
for round numbers and are apparently capable of doing complex arithmetic in their
heads, you might have better luck with them than with the U.S. government. Perhaps
someone should write Ms. Rowling a letter?

In the Literature

I didn’t mention it at the beginning of the chapter, but other researchers have looked at
this problem before. Mathematician Jeffery Shallit apparently used a “Diophantine equa-
tion” (don’t ask me, I don’'t know what that is either) to answer the same questions. One
crucial difference in his investigation was that Shallit’s assumed an equal distribution of
all prices between 0 and 99 cents. A quick look at the prices.txt file shows that more

than one third of all the prices were over 80 cents, with a full 15 percent equal to 99 cents.
Despite that, what's startling is that Shallot recommends the exact same coin substitution
as this simulation did. Both of these results suggest removing the 10-cent dime and
adding a new 18-cent coin instead.

117

118

CHAPTER 4 = POCKET CHANGE: SIMULATING COIN SYSTEMS WITH RUBY

What about adding a coin? Well, the results differed. My simulation suggested adding
a 22-cent coin, while Shallit suggested a 32-cent coin. Still, it’s great to be able to compare
results. After all, the whole point of simulation is to learn about the world around us, and
science depends on corroborating evidence. And it’s pretty cool that Ruby can be a tool
for this discovery. For more information, see the following web sites:

www.discover.com/issues/oct-03/departments/featscienceof/

www.sciencenews.org/articles/20030510/mathtrek.asp

Summary

You've cobbled together an excellent framework for simulating pocket change and found
tentative answers to real-world questions (and not so real-world questions). You've
looked at change-making algorithms, as well as dynamic programming through memo-
ization. And you've even explored some of the odder corner cases of the Ruby language.

However, you haven't even come close to exhausting the simulation possibilities of
coins! For example, it would be interesting to see how taking the physical weights of the
coins into account would changed the numbers. What if each coin had to be half again
as heavy as the denomination before it? How many coins would be optimal then? What
would their values be? And that’s just coins. There’s a whole world full of things waiting
to be simulated, and Ruby is just the language to simulate them.

http://www.discover.com/issues/oct-03/departments/featscienceof
http://www.sciencenews.org/articles/20030510/mathtrek.asp

CHAPTER 5

Turn-Based Strategy in Ruby

He peered through the thick foliage, gun in his hand, his men at his back. He didn'’t
want to be here. If only Lewis and Clark had returned from their damn expedition.
Then the president wouldn’t have sent him, Captain Nathaniel Adams of the U.S.
Army, to find them.

He could be home right now, smoking his pipe and watching the evening roll
in, instead of on this godforsaken mission into the heart of unexplored America,
gun cocked, waiting for the next dinosaur attack.

Dinosaurs?!

Somehow the president had forgotten to mention that in the mission briefing.
Lewis and Clark were probably velociraptor food somewhere between here and the
Pacific. And if Adams didn't make it back alive, no one in Washington would ever
learn the truth.

Trees snapped and the ground shook, breaking his reverie. Footsteps that heavy
could only mean one thing.

T-Rex!

In this chapter, you'll be putting together a turn-based strategy game. Personally, I've
always loved the genre, but the fact that you can do a solid job without fancy graphics
makes it perfect for hobbyists. In fact, you'll be building the core engine for the game
without any graphics at all. It'll be a text-based, turn-based strategy game, if you will.
But don't worry, this project is designed so that you can easily drop a GUI on top. In fact,
you’'ll build a graphical user interface for it in the very next chapter.

The game’s story will follow a group of westward explorers (patterned on the Lewis
and Clark expedition) in the young United States who discover that the center of the
country is inhabited by dinosaurs.

A Strategy

Turn-based strategy games have their roots firmly in the world of board games. But since
then, the genre has evolved heavily. At the games’ most fundamental, players alternate

119

120

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

taking turns. During their turns, players maneuver their characters or minions (often
referred to as units) around a map, bringing them into conflict with other players’ units.
They may often claim resources or develop infrastructure on top of the map as well. I'll
keep this game simple (almost more tactical than strategic), but by the end you'll have a
working turn-based strategy game back end that supports multiple GUI front ends.

How do you decouple the game engine from the front end so completely, though?
The key is to carefully define the sorts of operations the GUI is going to have to support,
and then follow the Ruby way and build a loosely coupled, flexible system. Given this sort
of foundation, you should be able to add new features simply by adopting new conven-
tions on top of the existing infrastructure.

What are the ways a player interacts with a turn-based strategy game? First, the
player observes the game. Typically this is done visually by looking at a map. However, it
is fairly common for there to be textual descriptions involved as well. Second, the player
must make a variety of choices typically regarding movement and actions of the units the
player controls.

From this list, I've isolated three interactions: messages, map description, and
choices. The first two are straightforward. Textual messages can be displayed in some
kind of notification or added to a message log. Meanwhile, the map can be drawn using
simple information about its layout. As long as everything that needs to be drawn has
names, the user interface can use those names to pick a visual representation (perhaps
find an image based on the name) or in the simple text-based example display the word
itself.

This is an example of what I mean by loosely coupled. The game engine itself doesn’t
demand a piece of the map covered in forest be drawn in any particular way. Of course,
you will need to tell the user interface how to draw a tree eventually. But this way keeps
the game engine’s code as simple as possible.

The last interaction, the ability to make choices, is the most complicated. You'll
need a way to describe each option and present them to the user. The simple text-based
front end will simply list a shorthand description of each option and let the user select
one. But you'll architect things so that a user interface has the information it needs to
present each type of decision in uniquely appropriate and intuitive ways. For example,
when moving a unit, you might like the potential new locations to glow on the map. By
clicking on one of the possible squares, the player selects a unit’s destination. On the
other hand, when selecting a weapon to attack with, a simple list of choices is probably
more appropriate.

If you accept the same notion of loose coupling here, the game engine doesn’t need
to know how these choices will be presented. But it will need just enough information to
let the interface present the choice in the best manner.

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

An Implementation

All of this sounds good, of course. But without a well-defined communication layer, how
will the engine even talk to the user interface? Here’s a general system of “representa-
tions” you can use. The game object will trigger these three interactions (message, draw,
and choice) on the player objects. The player objects will be responsible for interacting
with the user interface.

For the computer player classes, no interface is really required beyond the ability to
make choices. For each interface type your game supports (only one is necessary, but
you'll be building a text-based interface in this chapter, and then a Mac-only GUI in the
next), you'll have a distinct player class that will handle the particulars of that interface.
The player classes will be written in Ruby, but that doesn’'t mean the interfaces they talk
to need to be! You could build a front end in C++ using OpenGL, Javascript using DHTML
and AJAX, or Python using the PyGame framework.

How? You need to keep the requirements on the messages and descriptions minimal
and only use four simple data structures (that all those programming languages support).
The messages can consist of lists, strings, numbers, and nil. Lists are of course called
arrays in Ruby, but the idea is the same. When talking about these representations, even
outside of the code, I'll use Ruby syntax, but remember that these data structures are
nearly universal and easily serialized.

As a simple example, textual messages to the interface are represented using a string.
The representations for maps and choices are more complicated. You'll see them in detail
later in this chapter in the sections “Representing a Map” and “Making Choices.”

Now that you have a strategy for dividing work between the game engine and the
game interface, let’s make a list of what you'll need for the game engine. My list for the
simplest game possible includes terrain classes, a Map class, unit classes, action classes, a
Game class, a computer player class, and a human-controlled player class.

All these classes can live in a single file, perhaps named tbs.rb (although you might
later want to separate out the generic infrastructure into a reusable file if you start build-
ing your own game). I'll start with the Terrain and Map classes.

Building the World Around Us

Most strategy game play is tightly linked to the map. The map not only describes what the
world around the player looks like (in terms of terrain and distance); it also keeps track
of any units (characters). As programmers, we must also be able to translate maps into a
form the human players can understand (you’ll be translating your maps into the special
intermediate representation structures first, though).

The maps in this chapter will be represented with a two-dimensional grid. Each
square will have a slot for a terrain type and for a unit. All squares should have a terrain

121

122

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

type, but many squares won't be occupied by a unit at any particular time. Terrain objects
tell the game whether a square is covered in forest, mountains, or perhaps part of a river.

Starting with Terrain

Let’s think about the Terrain class first. At its simplest, different Terrain types need to be
presented distinctly in the interface. A name should be sufficient for this. Some games
use complicated Terrain bonuses and penalties, but I'll avoid this.

class Terrain
attr reader :name

def initialize(name)
@name = name
end

def rep
[@name]
end
end

forest = Terrain.new("Forest")
grass = Terrain.new("Grass")
mountains = Terrain.new("Mountains")
plains = Terrain.new("Plains")
water = Terrain.new("Water")

As you can see, a Terrain is really only distinguished by its name. But this is the first
example of a representation. Notice how the rep method returns a list containing the ter-
rain’s name. I've only used the allowed types.

You'll be using these Terrain types to describe your map, and you'll also need to
keep track of both the terrain at any given square and who (if anyone) is standing on it.
I'll simplify life by only allowing one Unit to occupy a given square at a time. Even given
the restriction that the maps must be rectangular, how are you going to store these two-
dimensional grids of objects?

Implementing Maps with Matrices

In the Map class, you're going to need to store objects in a data structure indexed by x and
y coordinates. You'd like to write code that looks like this:

map[x, vyl

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

However, if you were doing this with a regular array, the previous expression would
return the element at index x as well as the element at index y. Instead, you'd like to get
back an object from a two-dimensional structure at the intersection of the x'th column
and the y’th row. So you're going to need to build it. Let’s call it a Matrix. It will be inter-
nally built using an instance of class Array that contains more instances of Array inside
itself.

class Matrix

def initialize(cols, rows)
@rows = rows
@cols = cols
@data = []
Tows.times do |y]|

@data[y] = Array.new(cols)

end

end

def [1(x, y)
@dataly][x]
end

def []=(x, y, value)
@data[y][x] = value
end
end

The initialize method accepts the height and width of the two-dimensional array;,
stores the values, and then creates an Array instance of Array to fit the dimensions. The
lookup method and set method then index into this structure. You could have used a raw
Array instance of Array directly in the code, but encapsulating them like this allows you to
abstract the code to create them and gives you a class to which to attach methods. Meth-
ods like what? Well, how about a method that returns all positions in the Matrix?

class Matrix
def all _positions
(0...@rows).collect do |y]|
(0...@cols).collect do |x|
[x, vl
end
end.inject([]) {|a, b| a.concat b}
end
end

123

mailto:0...@rows
mailto:0...@cols

124

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Tip You're used to using the map method to transform Enumerable collections using a block. The name
map comes from the Lisp programming language tradition. The Smalltalk programming language supports
an identical operation. However, in Smalltalk, it's named collect. Out of kindness, Matz (the designer of
Ruby) has provided us with both names for the same method in Ruby! In general, I've called it map through-
out this book, but because you're dealing with actual maps in this chapter, I've made a conscious decision to
spell the Enumerable map method as collect instead.

This method returns a list of coordinates pairs (each also in a list) that exist within
the Matrix.

matrix = Matrix.new(2, 2)
matrix.all positions => [[0, 0], [1, 0], [0, 1], [1, 1]]

Cartography 101

The Map class will contain two matrices in instance variables. One will hold Terrain
instances. One will hold Unit instances. Both will require accessors.

class Map
attr _reader :terrain, :units
end

Both matrices will be the same size. The @units Matrix will start unpopulated and
units will be added using the place method).

class Map
def place(x, y, unit)
@units[x, y] = unit

unit.x = x
unit.y =y
end

def move(old x, old y, new x, new_y)
raise LocationOccuppiedError.new(new x, new_y) if @units[new x, new_y]
@units[new x, new_y] = @units[old x, old_y]
@units[old x, old y] = nil
end
end

class LocationOccupiedError < Exception
end

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

I haven't talked about units yet, but trust for now that they have x and y accessors.
The place method stores them in the @units matrix and then sets the unit’s x and y fields.
After the initial placement of a unit, the move method is used instead. This is the same
move method that the units called earlier. It takes both the old and new x and y positions.
It sets the object to its new location and then removes it from the old.

The LocationOccupiedError exception should never be raised (since you should only
present movement choices for unoccupied locations to the player). But it’s better to be
safe than sorry.

So you've seen that the @units Matrix starts out empty. But what about the @terrain
Matrix? It needs to populated.

Where Does Terrain Come From?

In a larger game, the game designers or the artists would create the maps. Typically a
map editor program is built, which the designers use to lay out maps. When they are fin-
ished, the maps are often saved into a special file format designed for the game, which
will be loaded into the structures the game engine uses.

But as amateurs, we don’t have the manpower to do things that way. On the other
hand, do you really want to write code like the following? (Not that this would work yet—
you haven't written an initialize method.)

map = Map.new(20, 20)

map.terrain[0,0] = forest
map.terrain[1,0] = forest
map.terrain[2,0] = plains

Heck no! It’s time to use an old game hacker’s trick to avoid this. Consider the following:

8888888888
£88888gWww
ggggggwwt
888ppPPPPP
ggppggwipt
ggpgggwwff

What on earth is that? It all becomes clear once you have the key.

terrain_key = {
"f" => forest,

n_n

g" => grass,

non

m" => mountains,

non

p" => plains,

w' => water,

125

126 CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Each letter in the string represents a Terrain type in a simple ASCII-encoded map.
This leaves you with the interesting problem of turning a string or file containing the lay-
outinto a Map. The initialize method will do the heavy lifting!

class Map
def initialize(key, layout)
rows = layout.split("\n")
rows.collect! {|row| row.gsub(/\s+/, '').split(//) }

y = rows.size
rows[0].size

x
1}

@terrain = Matrix.new(x, y)
@units = Matrix.new(x, y)

rows.each with_index do |row, y|
row.each with _index do |glyph, x|
@terrain[x, y] = key[glyph]
end
end
end
end

You start with a terrain key and a layout string. Then you break the text into lines to
get your rows. Ignore any white space. This is nice because it means you can have spaces
at the beginning of the lines if you have maps embedded in your source code and want to
tab indent them to the level of the surrounding code. Of course, there would be advan-
tages to leaving the spaces alone, too. Then you could use them to represent a Terrain
type, perhaps whatever the “normal” Terrain type of a Map was for cleaner layout. If you
wanted to take that approach, you'd need to cut the gsub call that removes the spaces.

Anyway, you now have your two-dimensional array of character data. All that
remains is to create the Matrix instances and insert the appropriate Terrain types based
on the characters. The calls to each_with_index let you easily iterate through the arrays
retrieving both the data stored in them and the locations it is stored at. This lets you eas-
ily copy it over to the @terrain Matrix, translating it through the terrain key on the way.

How about an example of all this in use?

terrain key = {
"f" => forest,

g" => grass,

non

m" => mountains,

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

p" => plains,

non

w" => water,

map = Map.new terrain key, <<-END

8888888888
£8888ggwWw
geggggwwif
888PppPPPPP
gegppggwfpf

ggpgggwwff
END

map.terrain[0,0].name » "Grass"
You're almost ready to finish up the Map class, but let’s add a few helper methods first.

class Map
def all positions
@terrain.all positions
end

def within?(distance, x1, y1, x2, y2)
(x1 - x2).abs + (y1 - y2).abs <= distance
end

def near positions(distance, x, y)
all positions.find all{|x2, y2| within?(distance, x, y, x2, y2) }
end
end

The all positions method just passes responsibility off to the Matrix class (whose
all positions method you've already looked at).

The within? method is a little more interesting. It calculates whether the Manhattan
distance between two points is less than a certain number. Despite the fact that I've obvi-
ously included it in the preceding code, I honestly don’t believe it belongs in the Map class!
It uses none of the class’s instance variables or methods and only operates on its parame-
ters. This is always a clue that a method actually belongs to another class! In this case,
however, because you are using unencapsulated x and y coordinates, there is no class to
attach the method to. Since the Map class is related, attaching the method here is a satis-
factory alternative. Finally, near positions uses the other two methods to return a list of
nearby locations.

127

mailto:@terrain.all_positions

128

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Note Manhattan distance is a funny term. It’s an allusion to the fact that the blocks in Manhattan are all
based on right angles. For example, if you need to travel diagonally, you’ll need to make your trip in a series
of movements that are at 90-degree angles to each other instead of simply following the shortest path at a
45-degree angle (as the crow flies).

Representing a Map

Brilliant! All you have left to do is to find a good representation for the Map. This will be
passed to the player’s interface via the player’s draw method. Like the other representa-
tions, it can be made up of lists, strings, numbers, and nil. In the case of the Map, it needs
to give enough information to distinguish among Unit instances and among Terrain
instances and to figure out where they are located.

We'll use a very simple representation. It isn't set in stone, though, so if you feel like a
different representation might fit your game better, all you'll need to do is to change this
method and the draw methods in your player classes as well as any interfaces with the
display (I'll talk about these shortly in the section titled “The Players”).

Since a Map consists of information about Terrain and Unit instances, you'll return a
list containing each in turn.

class Map
def rep
return [@terrain.rep, @units.rep]
end
end

But to do this, you're going to need a rep method for the Matrix class as well. You'll
just use a list of lists, and at each location that an object could reside, you'll include its
representation.

class Matrix
def rep
@data.collect do |row|
row.collect do |item|
item.rep
end
end
end
end

mailto:[@terrain.rep
mailto:@units.rep
mailto:@data.collect

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

However, while you should always have a fully populated @terrain Matrix, you will
definitely have empty spaces in the @units Matrix. These empty spots contain nil objects,
and so nil must have representation. Luckily, all along nil has been an acceptable repre-
sentation type. Using open classes, you can go ahead and make this work.

class NilClass
def rep
nil
end
end

That should do the trick. With the Map class done, let’s think about the Unit class and
its many subclasses.

Meeting Your Heroes

You'll need some classes to represent both the player’s characters as well as the enemy
dinosaurs. Despite their obvious differences, both will support the same basic actions,
so you'll derive them from a common base class named Unit. You'll further subclass Unit
into Human and Dinosaur in case each species has its own unique abilities. From there
you’'ll make distinctions between human rank/profession and dinosaur species.

class Unit; end

class Human < Unit; end
class Soldier < Human; end
class Doctor < Human; end

class Dinosaur < Unit; end
class VRaptor < Dinosaur; end
class TRex < Dinosaur; end

So what’s common to all Unit classes?

The Universal Skeleton

To start with, all Unit classes have a name and a health counter.

class Unit
attr_reader :name, :health, :movement, :actions
attr_accessor :x, :y

129

130 CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

def initialize(player, name)
@player = player
@name = name
@health = 10
@movement = 2
@actions = []

end

end

You'll obviously initialize each Unit with its own name. You'll also bestow a default of
ten health points, a standard movement rate of two squares, and an empty list of actions
(these values can be overwritten in the subclasses). You'll also provide accessors to x and
y coordinates (which are left blank by default; remember that the Map#place method sets
them). However, the Unit initializer also accepts a player object.

I haven't talked about players yet, but for now it’s enough to know that they represent
either a human or a computer that controls a team of units. Player objects also provide
access to the Game object through the game method. Once you have a reference to the
Game, you can script anything you need. For example, to get access to the map, you would
write the following.

@player.game.map

Since the units have health points (and this is a combat game), you'll want a way for
units to be injured as well. The following additions make that possible as well as opening
the door for subclasses to perform special behavior upon death.

class Unit
def hurt(damage)
return if dead?
@health -= damage
die if dead?

end

def dead?
return @health <= 0
end

def alive?
return ! dead?
end

mailto:@player.game.map

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

def die
player.game.message all("#{name} died.")
end
end

Units are considered dead if they have 0 or fewer hit points. Units that are dead
can’t take any more damage, and when they first drop to 0 or lower, the die method is
called.

Units also can tell that another unit is an enemy if it is controlled by another player,
or that a unit is a friend if it is controlled by the same player.

class Unit
def enemy?(other)
(other != nil) 8& (player != other.player)
end

def friend?(other)
(other != nil) 8& (player == other.player)
end
end

Units also keep track of whether they’ve already acted this turn.

class Unit

def done?; @done; end

def done; @done = true; end

def new_turn; @done = false; end
end

Beyond living and dying, perhaps the most important thing units do is move. The
move method will take absolute coordinates to make things easy.

class Unit
def move(x, y)
@player.game.map.move(@x, @y, X, y)

@x = x
@y =y
end

end

131

mailto:@player.game.map.move(@x

132

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

All the hard work is actually done by the Map class. But it’'s worth noting that you pass
both the old and new coordinates into the map’s move method, and, afterward, update the
unit’s internally stored location. Keeping copies of the x and y coordinates around in the
Unit instances makes it easy for range-limited actions to figure out where the unit per-
forming them is standing. You could wrap methods on the map to avoid storing x and y
within the units, but the cost is low and it simplifies your code.

Stubbing Out Undefined Classes

As you can see, the code is very interdependent (maps contain references to units and
units contain references to players that contain references to maps). Interdependence
like this makes incremental construction painful and should, in general, be avoided
when possible.

Because you haven't written your Game classes or classes to represent your players,
you can'’t run the preceding code. However, if you're willing to “stub out” the missing
classes with a bare minimum of functionality, you can at least try out some of the code.

class FakeGame
attr_accessor :map
end

class FakePlayer
attr_accessor :game
end

This is enough to create a fake player and game to use with your units. Now you can
try out the move method.

player = FakePlayer.new

player.game = FakeGame.new

player.game.map = Map.new(terrain_key, layout)
dixie = Unit.new(player, "Dixie")
player.game.map.place(dixie, 0, 0)
dixie.move(1, 0)

This technique is used a lot when building complex systems. Just don’t forget to write
the rest of the code later!

Now that your units are equipped with basic functionality and you've stubbed out
the dependent classes, let’s take a minute to nail down unit representations.

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Representing Units

As you’ll remember, representations are limited to lists, strings, numbers, and nil. Almost
all of your representations will use at least one list (since it’s your only container type).
You'll also almost always list the distinguishing type of the representation in the first
position of the list. This is not to be confused with the more general type. You're describ-
ing a Unit instance here, yet the first item in your array will be the kind of unit, not the
word “Unit” itself. The user interface will know this representation is for a unit simply
because of when and where it receives the representation (in this case as part of the map
drawing). Here’s the code:

class Unit
def rep
[self.class.shortname, name]
end
end

class Class
def shortname
name().gsub(/*.*:/, ")
end
end

As you can see, the rep method uses a new method added to Class. The method
returns the name of the class it is called on, but unlike the name method on class, it strips
any module prefixes out. So, calling shortname on the Dinosaur class returns "Dinosaur"
even if Dinosaur is inside the DinoWars module. For example, consider the full representa-
tion for a T-Rex named Johan.

trex = TRex.new(player, "Johan")
trex.rep » ["TRex", "Johan"]

The first string is his type, the second is his name.

Making Choices

There are more features to add to your Unit class. But they all resolve around this notion
of letting the player make choices. For example, your units have a move method, but it’s
not enough to be able to move. The units also need to be able to present a list of move-
ment choices. You should only present movement choices that are reachable given a

133

134

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

unit’s movement rate, and it should only include valid coordinates on the map (you can't
move past the borders). The representations for these movement choices will look like
the following:

["Move", 2, 3]
["Move", 3, 2]

The numbers are the x coordinate followed by the y coordinate. In order to support
this, however, you need a class to represent choices that will bind these representations
to the actions that accompany them.

class Choice
attr _reader :rep
def initialize(*rep, &action)
@rep, @action = rep, action
end

def call(*args, &proc)
@action.call(*args, &proc)
end
end

Instances of the Choice class are created with a representation and an action. The
representation can be accessed through the rep method, and the action can be triggered
with the call method (call isn’t the most intuitive name, but it’s the standard Ruby invo-
cation method name, so you might as well use it). Here’s an example:

X, y=0,1

choice = Choice.new("Move", x, y) { unit.move(x, y) }
choice.rep » ["Move", 0, 1]

choice.call

You can assume the representations are all contained within a list, so you can just
pass the parameters into the new method, and they will be grouped automatically. You can
also use the special * prefix operator to inject a prebuilt list as the representation. You'll
also define a constant Choice named DONE.

DONE = Choice.new("Done")

You'll use DONE to represent the player’s desire to avoid a choice or finish making
choices. The DONE Choice has no action to be invoked, but since it is available as a con-
stant, code can easily compare the selected choice against it. See the section titled “The
Players” for more information.

mailto:@action.call(*args

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Finding Possible Moves

Let’s put the information about what moves are valid together with these Choice objects
inside the Unit class.

class Unit
def move choices
map = @player.game.map
all = map.all positions
near = all.find all {|x, y| map.within?(@movement, @x, @y, x, y) }
valid = near.find all {|x, y| map.units[x, y].nil? }
return valid.collect do |x, y]|
Choice.new("Move", x, y) { self.move(x, y) }
end
end
end

The move_choices method uses the all positions convenience method to generate a
list of coordinate pairs that exist on the map. The method then limits the list to the posi-
tions that are within movement distance and have no one else standing on them. This list
is then used to build a set of choices that if selected and invoked would perform the
appropriate movement.

Choosing Among Actions

The last piece of code missing from the Unit class handles actions. Each Unit type will
have a list of actions it can take after it moves (tradition limits each unit to moving and
then performing one action). The user will select one of the unit’s actions, and then
potentially select among the possible ways to take that action. Here’s how the list of
action choices is generated:

class Unit
def action_choices
return actions.collect do |action|
Choice.new(*action.rep) { action }
end
end
end

Notice how the * prefix operator’s job is to flatten the representation returned by
action.rep into a parameter list for Choice.new. Okay, now let’s look closer at the Action class.

135

mailto:@player.game.map

136

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Taking Action

The Action class is relatively simple compared to the Unit class. Specific actions will be
subclasses of the Action class. Each subclass of the Action class will have its own repre-
sentation available via the rep method. Each will also have a method that will produce a
list of instances of the class that represent the possible ways the action could be taken.
These instances will have their own representations and a call method that can be
invoked to actually perform the actions.

It’s pretty easy for instances of subclasses of the Action class to support the same
interface as a Choice object (rep and call), so you'll be able to avoid wrapping them in
Choice objects when you need the player to select between them. But the subclasses
themselves won't implement the interface, only their instances.

Because the generate method requires parameters before it can produce its
instances, you can't just rename it to call. Here are the class methods that Action supports.

class Action
def self.rep
["Action", self.class.shortname]
end
def self.range(unit); 1; end
def self.target?(unit, other); unit.enemy?(other); end

Default Action generator assumes action is something you

do to the enemy standing next to you. This behavior will

overriden in many subclasses.

def self.generate(unit, game)
map = game.map
near = map.near_positions(range(unit), unit.x, unit.y)
targets = near.find all{|x, y| target?(unit, map.units[x, y]) }
return targets.collect{|x, y| self.new(unit, game, x, y) }

end

end

See how the generate method takes the current unit and the master Game object?
These can be used to figure out exactly which ways to execute this action are possible.
Let’s look at the instance methods of Action. Following are the methods that will be called
on the results returned from the generate class method.

class Action
attr_reader :unit, :game
def initialize(unit, game, x, y)
@unit = unit
@game = game

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

@x = x
@y

end

def call
raise NotImplementedError
end

def target
game.map.units[@x, @y]
end

def rep
[self.class.shortname, @x, @y]
end
end

The parameters passed into the generate class method will also be passed into to the
instance objects it creates so that they can perform any manipulations they need to actu-
ally perform the action. Additionally, an x and y coordinate is passed in to represent the
location of the action that could be performed. This information is important to have
around so you can pass it to the interface so that it can present a spatial selection mecha-
nism. The representation will contain the name of the action and the location it will
occur at. Action types that don’t have a location should probably use the location of the
acting unit.

Since the generic Action superclass should never have its call method invoked, you
should stub it out and raise a NotImplementedError.

To make this all a little more concrete, let’s implement some Action subclasses. For
example, consider the Bite action we will give to our dinosaurs and the Shoot and FirstAid
actions we give the humans.

class Attack < Action
def damage caused(unit); raise NotImplementedError; end
def past_tense; raise NotImplementedError; end

def call
amount = damage_caused()
game.message_all("#{unit.name} #{past tense} #{target.name} for w
#{amount} damage.")
target.hurt(amount)
end
end

137

138 CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

class Bite < Attack
def damage caused; @unit.teeth; end
def past_tense; "bit"; end

end

class Shoot < Attack
def self.range(unit); unit.range; end
def damage caused; @unit.caliber; end
def past_tense; "shot"; end

end

class FirstAid < Action
def self.target?(unit, other); unit.friend?(other); end
def call
target.hurt(-unit.heal)
game.message_all("#{unit.name} healed #{target.name} for #{unit.heal} health.")
end
end

The representation for a Bite instance looks like this.
["Bite", 0, 1]
Wiring these up to our Unit classes is easy.

class Human < Unit
attr reader :caliber, :range
def initialize(*args)
super (*args)
@actions << Shoot
@caliber = 4
@range = 3
end
end

class Doctor < Human
attr_reader :heal
def initialize(*args)
super (*args)
@actions << FirstAid
@heal = 2
end
end

mailto:@unit.teeth
mailto:@unit.caliber

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

class Dinosaur < Unit
attr reader :teeth
def initialize(*args)
super (*args)
@actions << Bite
@teeth = 2
end
end

class TRex < Unit
def initialize(*args)
@teeth = 5
end
end

If you wanted to have a weapon system where each weapon did a different amount
of damage, or even potentially a random amount of damage, you could rewrite the call
method like this:

def call

enemy = game.map.units[x, y]

damage = unit.weapon.damage

enemy . hurt(damage)

game.message_all("#{unit.name} attacked #{enemy.name} for #{damage} damage.")
end

With this understanding, let’s see what you have to do to get the game up and
running!

The Players

I'm going to take a flexible approach to players in the game. I'll start by creating a base
player class that provides the required infrastructure, and then each different kind of
player can subclass and fill in the interesting bits. These subclasses of BasePlayer will
replace the FakePlayer class. I'll write one class for human players and one class for com-
puter players. In the next chapter, I'll write a full GUI for the human player, but for now
the interface will be strictly command line.

class BasePlayer
attr_reader :name
attr_accessor :game

139

140 CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

def initialize(name)
@name = name
@units = []

end

def message(string); raise NotImplementedError; end
def draw(map); raise NotImplementedError; end
def do_choose; raise NotImplementedError; end

end

At the minimum, each player needs a name and a reference to the master Game
object. You'll also need to keep track of a player’s units. The game instance variable is not
set in the constructor because it is set via the accessor defined in the preceding code
when a player is added to a game with add player.

However, you'll also expect the subclasses to provide message, draw, and do_choose
methods (I've stubbed them out in the base class by raising NotImplementedError excep-
tions). For the most part, the rest of the methods in BasePlayer will work just fine if the
subclasses make sure to provide these three.

What kind of functionality are you going to provide them, though? For one, you'd like
to be able to assign units to a player. The class should have a simple add_unit method for
that and provide a method to check if a player still has units left alive (so the game can
tell when a player has been defeated). The clear units method will empty the list of
units, the new_turn method resets the units themselves, and the unit_choices method
returns all units that aren’t marked done.

class BasePlayer
def add unit(unit); @units.push unit; end
def clear units; @units = []; end
def units_left?; @units.any?{|unit| unit.alive? }; end
def new_turn; @units.each{|unit| unit.new_turn }; end
def done; @game.message all("Level finished"); end

def unit_choices
not_done = @units.find all{|unit| unit.alive? 8& ! unit.done? }
return not_done.map do |unit]|
Choice.new("Unit", unit.x, unit.y) { unit }
end
end
end

Implementing the various choice methods will be the majority of the code. Since
all of these methods are in BasePlayer, they still don't talk to any particular front end.
However, you can use the do_choose method, which will be implemented in the

mailto:@units.push
mailto:@game.message_all

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

subclasses to get a choice back from the user. The method choose is mostly a thin
wrapper on do_choose.

class BasePlayer
def choose(choices, &block)
do_choose(choices, 8block) if choices?(choices)
end

def choices?(choices)
! (choices.empty? || (choices.size == 1 88 choices[0] == DONE))
end
end

Notice how do_choose is only called if choices? returns true. The choices? method
specifically checks to make sure you aren't presenting DONE as the only option. In that
case, you shouldn't bother the user. However, this is not the same as having only one
choice. If the user has a non-DONE option, you should still let the user select it so that he
knows what’s happening.

On top of the choose and the choices? methods, you can build the choose all method,
the choose_all or done method, and the choose or done method.

class BasePlayer
def choose_all(choices, 8block)
while choices?(choices)
choose(choices) do |choice|
block.call(choice)
choices.delete(choice)
end
end
end

def choose all or done(choices, &block)
choices _or done = choices.dup
choices_or_done.push DONE
choose_all(choices or done, &block)
end

def choose_or_done(choices, &block)
choices_or_done = choices.dup
choices_or_done.push DONE
choose(choices or done, &block)
end
end

141

142

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

The choose_all method should keep looping until there are no meaningful choices
left (either none at all, or only a DONE choice). For each selected choice, the method
removes the choice from the list and then restarts the loop. A break statement inside the
invoked block will terminate the loop if reached. This is how the early exits on DONE are
achieved.

Additionally, youd like the convenience methods that automatically added DONE to
the choices like we used earlier. The list is duplicated first, just in case it was going to be
reused again. This way you won’t modify the original. Everything else happens inside the
subclasses of BasePlayer.

The Artificial Intelligence Doesn’t Seem
So Intelligent

What'’s the simplest computer player you could code? It doesn’t get much simpler
than this:

class DumbComputer < BasePlayer
def message(string)
end

def draw(map)
end

def do_choose(choices)
yield choices[0]
end
end

That’s right! The message and draw methods don’t even do anything. An empty message
method will probably be standard for computer players, since they can't understand
human language and have little use for the niceties of the messages the game sends out.
They certainly don’'t need to be fed bits of the story or alerted when characters die (after
all, they can see the data structures—they don’t need to be told in words). The same goes
for the draw method. The drawing data could theoretically be used by the computer
player to figure where units are on the map, but in fact, the Al has a much better means
of inspecting the world.

Since the computer player class inherits from the BasePlayer class, it has direct access
to the Map class through the map instance method. It can use this to “see” the map in a

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

much simpler fashion. A computer player could hypothetically cheat using this access
(for example, removing its opponents from the board), but since you’ll be coding the
computer players yourself, it's not a big deal.

So what'’s the DumbComputer class’s do_choose method do? Some advanced Al algo-
rithm? Machine learning? Nope. You'll just always select the first choice of the options
presented. You couldn’t possibly ship this with a real game, but it’s good enough to start
testing. If you go on to write your own game, putting together a reasonable Al will be one
of the challenges you face. On the other hand, an Al that moves toward its enemies and
attacks any it can reach will get you a long way.

Writing a Command-Line Player

Okay, the DumbComputer player almost shouldn’t count it was so quick. The command-line
player class will provide a better example of a well-implemented player class. Since this
client forgoes fancy graphics for a simple command-line interface, implementing the
message method is as simple as printing the text.

require 'pp'
class CLIPlayer < BasePlayer
def message(string)
puts string
end

def draw(map)
puts "Terrain:"
pp map.terrain.rep

puts "Units:"
pp map.units.rep
end
end

Drawing the map is a little more interesting. You could potentially draw an ASCII rep-
resentation where each square was one letter representing the terrain type or the unit
standing there. However, for simplicity, I'll just use the standard “pretty print” module to
dump the terrain and units. This is reasonably human-readable. The do_choose method is
the most interesting of the three methods.

class CLIPlayer
def do_choose(choices)
mapping = rep_mapping(choices)

143

144 CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

choice = nil

until choice
puts "Choose: "

puts mapping.keys

print "Input: "

choice _key = STDIN.gets

choice = mapping[choice key]

puts "Bad choice" unless choice
end

yield choice
end

def rep_mapping(data)
mapping = {}
data.each do |datum|

mapping[datum.rep.inspect] = datum

end
return mapping

end

end

do_choose first calls a helper method that builds a mapping between the textual rep-
resentations of choices and the choices themselves. This method is called rep mapping
and builds a hash table from versions of the representations of the choices converted into
strings.

The do_choose method then prints all the representations from the mapping and
waits for command-line input. This input is then indexed into rep_mapping to retrieve
the choice the user selected. If the input is bad, the process is repeated. Finally, when a
choice is selected, do_choose invokes its code block on the selected choice, which brings
us to the Game class.

The Game

The Game class is going to control your turn-based strategy game. For each specific game,
you'll subclass this base class. Most of the basic functionality remains in the base class,

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

but each subclassed game will be responsible for naming itself and for defining how a
turn progresses (which turns out to vary dramatically across games).

The base Game class will keep track of lists of maps and players, as well as an index
into each of the lists pointing to the current map and the player whose turn it is currently.
Game replaces the previously defined FakeGame class.

class Game
attr _reader :players

def initialize
@naps = []
@on_start = []
eplayers = []

@map_index = 0
@player index = 0
@done = false

end

def map; @maps[@map index]; end

def player; @players[@player_ index]; end

def next_map; @map_index += 1; end

def next_player; @player index = (@player index + 1) % @players.size; end

def start map; @on_start[@map index].call(map) if @on_start[@map index]; end
end

The methods map and player return the current objects, and next_map and next_player
advance the indexes. As you rotate through the players, you expect to return to the begin-
ning again, so make sure to modulo the index by the total number of players. You don’t
need to worry about this for the maps because, when all the maps have been played,
youd like the game to end.

Because Ruby arrays return nil if indexed past their last element, letting the map
index keep increasing is no problem, since calls to the map method will return nil no mat-
ter how high the index gets (even though you’ll probably only call it once, at most, before
noticing you're done).

Maps and players can be added to a game instance using the add_map and add_player
methods. The game’s add_player method also stores the game in the player’s game attrib-
ute. The add_map method also takes an optional block to be triggered using the start_map
method in the preceding code. The game’s turn method will be able to invoke this

145

mailto:@players.size
mailto:@on_start[@map_index].call

146

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

callback for the current map using the start method. This is useful for dynamically
creating enemies for maps and laying out the units.

class Game
def add map(map, &on_start)
@maps.push map
@on_start.push on_start
end

def add player(player)
@players.push player
player.game = self
end
end

You also need a done method that notifies each player that the level is over and a
done? method to check if the @done variable has been set.

class Game
def done
players.each{|player| player.done }
@done = true
end

def done?; @done; end
end

There are two more important methods to implement before you reach the run
method. In particular, you want methods to force all players to redraw their displays or
display a message.

class Game
def draw_all
@players.each {|player| player.draw(map) }
end

def message all(text)
@players.each {|player| player.message(text) }
end
end

These methods just pass the messages on to the players, and the run method you've
been waiting for isn’'t any more complicated.

mailto:@maps.push
mailto:@on_start.push
mailto:@players.push
mailto:@players.each
mailto:@players.each

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY 147

class Game
def run
message_all("Welcome to #{name}!")

while true
break unless map

start_map

until done?
turn(player())
next_player()

end

next_map
end

message _all("Thanks for playing.")
end
end

Aha! That’s because all the hard work is done inside the turn method (a method our
subclasses must provide). The name method will also be implemented there.

class Game
def turn
raise NotImplementedError
end

def name
raise NotImplementedError
end
end

But all of this is useless without a defined turn method, so it’s time to subclass Game
and write one!

class DinoWars < Game
def name
return "DinoWars: Westward Ho!"
end

def turn(player)
player.new turn

148

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

draw_all()

player.choose_all or done(player.unit_choices) do |choice|
break if choice == DONE
unit = choice.call

draw_all()

player.choose(unit.move choices) do |move|
move.call
end

draw_all()

player.choose_or_done(unit.action_choices) do |choice|
break if choice == DONE
action = choice.call

player.choose(action.generate(unit, self)) do |action instance]
action_instance.call
end
end

unit.done

draw_all()
end

done() unless players().find all{|player| player.units left?}.size > 1
end
end

Whoa. That’s a big method. Let’s have a closer look and see what rules I've defined
for the game. It looks like the first thing to do is notify the current player object that it’s
his turn. This gives the player class a chance to notify his units in turn and perform any
appropriate actions (for example, health recovery or poison damage).

Caution While there is no fossil record that suggests the existence of venom-spitting dinosaurs, a
video game is a work of fiction. These dinosaurs can damn well spit poison if you want them to. Approach
with care.

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

The first part of a turn consists of selecting a unit from the list of units that haven't
acted yet. We use a method named choose_all or done to make this choice. choose_all is
unusual because, unlike other choices, the options aren’t exclusive. You can expect the
player to give each unit instructions one at a time. Of course, the player isn’t required to
give every unit a command, that’s why you use the or_done version, which adds the DONE
choice to the list, allowing you to stop early. This method will continue looping until
you've selected each unit and had it perform an action or else selected DONE.

You can see in the following code that if the choice was DONE, you break out of the
choice loop. Otherwise, we can invoke Choice to get a reference to the data it represents
(the Unit).

break if choice == DONE
unit = choice.call

Next the player must move the unit. You first have all players redrawn using the
draw_all method. Then you present the player with a list of movement choices for the
unit. You call the regular choose method this time, since the unit can only move to a single
one of the valid movement spaces. Don’t bother including the DONE choice this time, since
you’ll make sure one of the movement choices is the square the unit is currently standing
on. When a movement choice has been selected, you perform the move using the choice’s
call method.

Now it’s time for the player to select an action type the unit will perform. You'll present
a list of actions the unit has to the player, using the choose_or _done method. This method
allows only one selection, but also automatically adds the DONE choice.

player.choose or done(unit.action choices) do |action]
break if action == DONE
player.choose(action.generate(unit, game)) do |action_instance|
action_instance.call
end
end

If the player chooses no action, you break from the choice; otherwise, you'll need to
generate the list of ways the action could be taken. Pass in both the Unit instance and the
Game instance to the generation. The player must then choose from these ways to take the
action (DONE is not an option here). The call method invokes whatever final action was
selected. Finally, the unit is marked as done and redrawn one final time.

unit.done
draw_all()

The only other important note is the end game condition at the bottom of the turn
method. Since the termination conditions vary depending on the game, relying on the

149

150

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

turn method to decide when the map is done is a great way to put control in the hands
of the game designer (you!). This DinoWars class together with some maps, units, and, of
course, the player classes all come together to make up the game.

Putting It All Together

Let’s put everything together now into a real game. Let’s use the DinoWars game class and
the Map instances and Unit subclasses we've already defined. You start by constructing
your Game instance and your players.

game = DinoWars.new

human = CLIPlayer.new("Human")
computer = DumbComputer.new("Computer")

game.add player(human)
game.add player(computer)

Then we add the human player’s units (which will persist across Map instances).

nathan = Soldier.new(human, "Nathan")
vik = Soldier.new(human, "Vik")
winston = Doctor.new(human, "Winston")

human.add_unit(nathan)
human.add_unit(vik)
human.add_unit(winston)

Assuming that the map you defined before has been named map1, you can script
the placement of the good guys and the creation of the bad guys in the add_map method
callback.

game.add _map(map1) do |map]|
map.place(3, 0, nathan)
map.place(4, 0, vik)
map.place(5, 0, winston)

vrl = VRaptor.new(computer, 'Velociraptor 1')
vr2 = VRaptor.new(computer, 'Velociraptor 2')
vr3 = VRaptor.new(computer, 'Velociraptor 3')

computer.clear units

computer.add unit(vri)
computer.add_unit(vr2)
computer.add unit(vr3)

map.place(0, 5, vri)

map.place(1, 5, vr2)

map.place(2, 5, vr3)
end

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Finally, all you need to do is run the game.

game.run

Here’s a sample of the interactions from the game.

Choose: ["Unit", 5, 0] ["Unit", 3,
Input: ["Unit", 4, 0]

Choose: ["Move", 4, 1] ["Move", 2,
["Move", 4, 2] ["Move", 3, 1]
Input: ["Move", 4, 2]

Choose: ["Unit", 5, 0] ["Unit", 3,
Input: ["DONE"]

Choose: ["Unit", 5, 0] ["Unit", 4,
Input: ["Unit", 4, 2]

Choose: ["Move", 4, 1] ["Move", 2,

["Move", 5, 2] ["Move", 5, 1] ["Move", 4, 4] ["Move", 3, 3] ["Move", 4, 3] =

["Move", 3, 2] ["Move", 3, 1]
Input: ["Move", 2, 2]

o] ["Unit", 4, 0] ["DONE"]

0] ["Move", 5, 1] ["Move", 6, 0] =

0] ["DONE"]

2] ["Unit", 3, 0] ["DONE"]

2] ["Move", 4, 0] ["Move", 5, 3] =

Choose: ["DONE"] ["Action", "Shoot"]

Input: ["Action", "Shoot"]

Choose: ["Shoot", 2, 3] ["Shoot", 0, 3] ["Shoot", 1, 3]

Input: ["Shoot", 2, 3]

Vik shot Velociraptor 3 for 3 damage.

Choose: ["Unit", 5, 0] ["Unit", 3,

And those are the basics.

0] ["DONE"]

151

152

CHAPTER 5 " TURN-BASED STRATEGY IN RUBY

Summary

In this chapter, you built a functional and extensible engine for a turn-based strategy
game. It supports all the basic conventions of strategy games including maps, units,
special abilities, a combat system, and even computer opponents. In the process, you
experimented with a loosely coupled system (using the representation format). You also
built several complex subclass hierarchies to accurately model the differences among
units and actions. And hopefully you thought of some game ideas of your own you’d like
to play with in the future!

I'll spend the next chapter discussing how to get an attractive GUI on the game.

But a lot of improvements can still be made to the engine and gameplay. Some gameplay
changes would require very little new engine support for example, designing new maps,
adding new unit types, or actions can all be done immediately.

Other gameplay improvements will require new support code in the engine. A
weapon and item system, for example, would require an Item class, unit support for
inventories, a means to acquire items, and major changes to the combat system. Or, for
example, an experience or leveling system would require a complete overhaul of the
Unit class.

And finally, there are also just simple improvements to the engine that could improve
the total excitement of the game. For example, sound effects could easily be integrated
by adding a play sound_all method that worked just like the message all method. Rich
interfaces would be able to use the information passed in to select a sound effect, while
simple interfaces like the Al and command-line system could ignore them.

And, of course, the single best increase in gameplay would come from an improved
Al system. The good news is, this simple decoupled system gives you a lot of flexibility to
experiment. For example, try modifying the DumbComputer player to check the list of selec-
tions for "Move" choices. The computer can then use the coordinates in those choices as
well as its access to the map to find the move choice that puts it closest to an enemy unit.
Suddenly, the dinosaurs have the ability to chase the player’s units! It’s that simple. After
all, building a complicated game can be complicated. But building a simple game? Not
hard at all, thanks to Ruby.

As the smoke cleared, Captain Adams took stock of the battlefield. At least they'd be
eating dino steaks tonight, he thought grimly. But at what cost in ammunition and
bandages?

“Medic!” Vik called weakly from high grass. As Winston dashed out to help him,
Nathan idly wondered if theyd live to see the west coast. Or would they spend the
rest of their lives lost in the dizzying jungle, fighting for their very lives, waging
DinoWars!

CHAPTER 6

RubyCocoa

Ruby plays nice everywhere. From Windows to Mac to Linux, you can almost always
find a way to do what you want (or need). And most of the time, you can do it in a cross-
platform manner. Cross-platform is wonderful, but there’s one big exception. User
interfaces deserve to be native.

There are good multiplatform widget libraries out there, but even with the best,
your users will be able to tell. And while users can’t see your novel algorithms or your
beautiful class hierarchy, they’ll spend every moment using your interface. Good design
can minimize the cost of a separate, native user interface for each platform. The core of
your application is cross-platform, but a set of native interfaces exists to wrap it.

There’s a lot to be learned from any of the big interface toolkits for Ruby. But in this
chapter I'll focus on RubyCocoa, the Ruby bindings to Apple’s premier application and
GUI framework for Mac OS X.

But RubyCocoa is more than just bindings for the Cocoa Application Kit. It provides
a complete interface layer between Ruby and the Objective-C runtime (Objective-C is the
programming language Cocoa is written in), which is pretty cool. Interestingly, Ruby and
Objective-C were both influenced by Smalltalk. You'll be able to see some of the similari-
ties as you go.

Let’s put RubyCocoa to use and build a RubyCocoa interface for last chapter’s turn-
based strategy game!

The Very Basics

I'm told that Mac OS X 10.5 may very well ship RubyCocoa (this book is going to press
just before Leopard is released). Otherwise, you can get RubyCocoa from http://
rubycocoa.sourceforge.net/ or by using the excellent DarwinPorts tool (sudo port -d
selfupdate; sudo port install rb-cocoa). To make sure it’s installed properly and work-
ing, try this in irb:

require 'osx/cocoa’

153

http://rubycocoa.sourceforge.net
http://rubycocoa.sourceforge.net

154

CHAPTER 6 ©* RUBYCOCOA

Depending on your installation, Ruby may have trouble finding the RubyCocoa
install. When this happened to me on my PPC Mac using MacPorts, I was able to fix the
problem by locating the installed files and manually adding them to the Ruby library
search path by putting the following at the top of my Ruby code. You probably won’t need
to add any lines like this.

$: << '/opt/local/lib/ruby/vendor ruby/1.8'
$: << '/opt/local/lib/ruby/vendor ruby/1.8/powerpc-darwing.2.0'

As long as you can get this working for your development, don’'t worry too much. I'll
cover the process by which you can bundle your Ruby applications into full OS X applica-
tions later. You'll bundle RubyCocoa inside the application, so your users won't ever have
to worry about things like search paths.

Opening a Window

There’s no example quite like Hello World, so let’s start by opening a window (see Figure 6-1).
You can set the window’s title accordingly.

Tip You’ll be running a lot of the code in this chapter from the command line. To stop your program, sim-
ply hit Ctrl+C on the command line. You may need to hit it twice.

require 'osx/cocoa'
app = 0SX::NSApplication.sharedApplication

window = 0SX::NSWindow.alloc.initWithContentRect_ styleMask backing_defer([0, 0, =
500, 500], OSX::NSTitledWindowMask + OSX::NSClosableWindowMask, ‘=

0SX: :NSBackingStoreBuffered, true)

window.setTitleWithRepresentedFilename('Hello")

window.makeKeyAndOrderFront(nil)

O0SX.NSApp.run

This simple example actually has a lot of complexity, so I'll take it line by line, start-
ing with the require at the top. You'll see that require 'osx/cocoa’ is at the top of every
RubyCocoa project. It hooks you up to the Objective-C runtime and dynamically gener-
ates the Ruby interface into the Cocoa classes. These classes, as well as all other exposed
functionality, are available through the 0SX module.

CHAPTER 6 " RUBYCOCOA

] Hello

Figure 6-1. Hello World, RubyCocoa style

But you're still not quite ready to start using Cocoa yet. You first need to retrieve your
application object. Calling the class method sharedApplication of NSApplication returns
the singleton object that represents the current application. It also connects to the OS X
windowing environment.

So far, so good, right? But what’s up with line 32 It starts out like standard Ruby,
using the NSwindow class from the 05X module. But what is this alloc method? And why is
initWithContentRect styleMask backing defer named so weirdly?

Learning Objective-C Basics

It’s time to do a quick overview of Objective-C and Cocoa. Unlike Ruby, versions of
Objective-C prior to 2.0 are not garbage collected. This means memory is managed
manually. In other words, every time you create an object, you must at some later point
explicitly delete it. This can be tricky to keep track of, which is why most languages are
garbage collected these days. The garbage collector does the work for you. With that
said, if you've only ever managed memory in C (using malloc and free), you're in for a
surprise. Life with Objective-C is a definite step forward.

Allocation is performed using a class method (object-oriented—how about that for
a C-based language?) named alloc. Memory can be explicitly freed using dealloc. But

155

156

CHAPTER 6 ©* RUBYCOCOA

Objective-C objects also support manual reference counting. When you’re done using an
object, you can call the release method to decrease its reference count. If you'd like to
hang on to an object (for example, in an add method of a collection class), you can call
retain, which will increment the reference count.

If the reference count ever hits 0, the object is deallocated. Here are some examples
(written in real Objective-C, so you can get a look at the syntax—which turns out to be
important).

NSString *string = [[NSString alloc] initWithCString: "Hello World"];
[string retain];
[string release];
[string release];

Reading this code, you should understand two things. First of all, messages are “sent”
(read: methods are called) inside square brackets. Just as important, they are written in
Smalltalk style. The method name is separated from the object by a space. Parameters are
always passed in keyword style. And just as in Smalltalk, the keywords are part of the
method name. Consider the following method call:

[mutable array insertObject: an object atIndex: 7]

Its name is insertObject:atIndex:. This is very different from Ruby, although both
approaches have their benefits. And the difference will cause some hiccups as the two
languages interact.

For now, notice the pattern of alloc and init. You'll see this throughout Cocoa code.
In Ruby, the class method new automatically calls initialize for you. In Cocoa, it’s a two-
step process. One nice thing about this is that a class can provide multiple initializers.

Calling Objective-C from Ruby

The previous string example uses an initializer that takes a C-style string and uses it to
initialize the newly allocated NSString. It only has one keyword argument. How would
you write the previous code in Ruby?

NSString.alloc.initWithString("foo")

It’s not quite the same (since you don’t have a C-style string sitting around), but you
can see the similarities. And no-argument methods are straightforward too, as you can
see from the previous call to alloc.

It’s the multi-argument methods that are complicated. Thankfully, RubyCocoa pro-
vides a couple of different ways to call these methods. One of these approaches is bound
to resonate with your sense of style.

CHAPTER 6 " RUBYCOCOA

Using insertObject:atIndex: as an example, consider the following Ruby code.

mutable array.insertObject atIndex (an_object, 7)
mutable array.insertObject atIndex(an object, 7)
mutable array.insertObject(an object, :atIndex, 7)

All three do the same thing. The first convention replaces colon (:) with underscore
(). This rule is straightforward and consistent. But man is it ugly!

Note Pyob;c, the Python to Objective-C bridge, provides method names in this format only. They believe
the weirdness of the names is worth the consistency. Hard to say if we Rubyists should follow their example
or not.

The second example will be the preferred one in this chapter. It simply omits any
trailing underscores. This aids readability, and, while it potentially hinders dispatch
(consider a no-argument and a one-argument method of the same name), these situa-
tions are extremely rare and can be resolved by inspecting the arguments.

The last example is the closest stylistically to Objective-C. It uses Ruby symbols to
mimic Objective-C syntax. This syntax reads well, but will be deprecated in RubyCocoa
1.0, so should be avoided.

In your own objects, you’ll use Ruby-style naming for method names on objects
that inherit from Ruby objects, but you’'ll use Objective-C method names (but translated
using the conventions mentioned previously) for methods on objects that inherit from
Objective-C objects.

Applications and Windows

With that out of the way;, let’s flip back to the Hello World example.

require 'osx/cocoa’
app = 0SX::NSApplication.sharedApplication

window = 0SX::NSWindow.alloc.initWithContentRect styleMask backing defer([0, 0, w»
500, 500], OSX::NSTitledwWindowMask + OSX::NSClosableWindowMask, w»

0SX: :NSBackingStoreBuffered, true)

window.setTitleWithRepresentedFilename('Hello")

window.makeKeyAndOrderFront(nil)

OSX.NSApp.run

157

158

CHAPTER 6 ©* RUBYCOCOA

The invocations upon 05X: :NSWindow should make more sense now. You first allocate
a new window, then initialize it with the sophisticated initwWithContentRect:styleMask:
backing:defer: method. Put this method aside for the moment, and let’s move on. The
next method call sets the window’s title (putting the Hello in Hello World). And the
method call after it makes sure the window appears as the application’s key window. The
last line is worth mentioning. This is the line that starts up the Cocoa part of the applica-
tion (which handles the event loop, and so forth).

Note that NSApp is not a constant here, but actually a method call. NSApp returns the
current application. You could also have run the following and reused your old reference
to the application object.

app.run

That would have been just as effective, but 0SX.NSApp.run is nice because it can be
called from anywhere.

Okay, back to the window initializer. styleMask isn’t too complicated, it’s a simple set
of constants that identify different features the window can have. You add together the
ones you want and pass them in. backing is another argument that defines how the win-
dow is buffered, and passing in true for defer only determines when the window is first
drawn and can be ignored.

But let’s not forget this first argument ContentRect. Cocoa includes a C structure
named NSRect that defines an x and y coordinate plus a width and height. RubyCocoa
allows you to use an NSRect class, or simply an array of four items. Here’s how you'd use
the class version of NSRect:

window_rect = 0SX::NSRect.new(0, 0, 500, 500)

Okay, enough examples. Let’s dive into the turn-based strategy game front end.

Building a Turn-Based Strategy Game

You're going to reuse the engine from the previous chapter, so there’s no need to worry
about game logic. All you need to do is implement the user interface methods discussed
in the last chapter. You'll need to provide a draw method, a message method, and the
ability to make choices. But no more ugly text clients. This is your chance to make things
look good.

Building a Player Using Cocoa

Let’s start by refactoring the Hello World example into a CocoaPlayer class that opens a
window. You'll need to load the tbs.rb file from the previous chapter. I've provided a

CHAPTER 6 " RUBYCOCOA

slightly modified version that has all its setup code inside a method named run_dino. This
method does all of the same setup, including creating a new game, except instead of cre-
ating a human player, it uses the one passed in as an argument. At the end it returns the
newly created game object.

This method makes it easy to load and configure the game, but avoids starting play
immediately. You should be able to perform this refactoring yourself, or you just grab the
modified version in this chapter’s source code bundle. The CocoaPlayer class will be a
subclass of that project’s BasePlayer class.

require 'tbs'
require 'osx/cocoa’

class CocoaPlayer < BasePlayer
DEFAULT_WIDTH = 500
DEFAULT_HEICHT = 500

def initialize(name)
super(name)

app = 0SX::NSApplication.sharedApplication
app.setMainMenu(0SX: :NSMenu.alloc.init)

@window = 0SX::NSWindow.alloc.initWithContentRect styleMask backing defer([o0, 0,
500, 500], OSX::NSTitledwindowMask + OSX::NSClosableWindowMask, w»
0SX::NSBackingStoreBuffered, true)

@window.setTitleWithRepresentedFilename('Turn Based Strategy')

@window.makeKeyAndOrderFront(nil)

return self
end
end

Returning self at the end of init is important because variables are often assigned
from the product of initializer methods. You also create an NSMenu, even though you won’t
be using it for a very long time.

To prove that you have a player, even if it is not complete, you can add the following
methods:

class CocoaPlayer
def message(text)
puts text
end

159

mailto:@window.setTitleWithRepresentedFilename
mailto:@window.makeKeyAndOrderFront

160 CHAPTER 6 ©* RUBYCOCOA

def draw(map)
puts map.inspect
end

def do_choose(choices)
handle events while true
end
end

These are the basic methods you're required to add to a player class. But I need to
talk about the handle_events method for a minute. The do_choose method is supposed to
wait for the human player to make a choice, so looping forever is a reasonable response,
considering the code isn’t ready for that yet. But if the method just loops, the Cocoa inter-
face will freeze (since Ruby has full control of the master thread).

It would be wonderful if you could use Ruby’s green threads to get around this prob-
lem. Then you run the game engine in a separate thread. Unfortunately, using Ruby
threads along with RubyCocoa can lead to strange behavior and even crash occasionally.
Instead, you can do something a little deviant and dispatch the queued up Cocoa events
yourself. This is sort of bad form, but it works very well in this case. Here’s the implemen-
tation of handle events

class CocoaPlayer
def next_event(app)
return app.nextEventMatchingMask untilDate inMode_ dequeue(

0SX: :NSAnyEventMask,
nil,
0SX.NSDefaultRunLoopMode,
true)

end

def handle events
app = 0SX::NSApplication.sharedApplication
while event = next_event(app)
app.sendEvent (event)
end
end
end

With that in place, you should be able to pass your player into a game instance and
see the initial welcome message like this:

CHAPTER 6 " RUBYCOCOA

class ApplicationGameDelegate < OSX::NSObject
def initWithGame(game)
init
@game = game
self
end

def applicationDidFinishLaunching(sender)
@game.run
end
end

human = CocoaPlayer.new("Human")

game = run_dino(human)

delegate = ApplicationGameDelegate.alloc.initWithGame(game)
0SX: :NSApplication.sharedApplication.setDelegate(delegate)
O0SX.NSApp.run

NSApplication is designed so that subclassing isn't required. Instead, you create a del-
egate that will handle selective messages for the application. The ApplicationGameDelegate
is very simple. When the application finishes launching, it starts the game. All you need
to do is run the app and everything starts.

Of course, so far you haven't really implemented any of the methods the BasePlayer
abstract class expects.

An Odd Way to Do Things

Before you go too much farther, you should be aware that this is an unusual way to write
a Cocoa application (even beyond dispatching events yourself). To start with, I'm ignor-
ing the excellent Interface Builder tool and constructing the GUIs programmatically in
order to minimize the scope of this chapter and keep it focused on Ruby.

Equally unusual is the way I'm having you run the code. Cocoa applications are
almost always distributed as an application bundle. The bundle contains not only the
binary code, but also any libraries, resources, and metadata required. One result of this is
that you can double-click these bundles, and the application will start. It will have a Dock
icon and only allow one instance to be running.

You've done none of this so far (although you will before you finish). The results are
a little weird. As you've seen, you have no application menu or Dock icon. If you hit
Control-C in the terminal, the application terminates. All in all, very unnatural for a
Cocoa application. This approach is simple, however, and makes debugging easier, since
there is no need to rebuild the application after modifying it.

161

mailto:@game.run

162

CHAPTER 6 ©* RUBYCOCOA

Okay, how do you go about putting something inside your window? You'll need to use
something called a view. Let’s talk about views, controls, and cells.

Understanding Views, Controls, and Cells

Cocoa can be confusing at times, and understanding the difference between NSViews,
NSControls, and NSCells isn't easy.

An NSView is an abstract class that supports the ability to draw and receive input. Like
other GUI canvas classes, it allows the programmer to programmatically draw on its sur-
face. Windows have a setContentView method that takes a view and associates it with the
window. This is how the contents of your windows get drawn.

Tip An abstract class is a class that is not meant to be instantiated and used directly, but is intended to
be subclassed for code reuse purposes. So when you subclass NSView, you get all of its graphics manage-
ment code for free, but you still need to tell it what to draw.

View objects are very useful, but you wouldn'’t necessarily like to implement every
part of your user interface library with them. Because they are so sophisticated, they are
expensive objects (in terms of memory and CPU used). As a result, Cocoa was designed
with the notion of controls and cells. NSControl is a subclass of NSView (though it is also
abstract and not meant to be used without further subclassing). Its main addition is the
logic necessary to interact with cells. Cells are not views. They do not manage a canvas
like views do, but they do know how to draw themselves upon a view.

So, NSButtonControl is a subclass of NSControl, and NSButtonCell is a subclass of
NSCell. Whenever you create an NSButton, you also get an NSButtonCell (see Figure 6-2).
This raises the following question: if for every element in your interface, you have both an
NSControl (which is a subclass of NSView, with all its overhead) and an NSCell, how is this
helping?

As always, the savings come when you buy in bulk. Picture for a moment a row of
buttons. Do they all really need their own canvas? Or could they share a view? Or better
yet, picture a file list like the Finder presents. There’s a lot of potential savings there, if you
can share the same view. There are a couple of control classes just for this purpose. The
most common is probably NSMatrix, which I'll talk about more later when I use it and
some NSButtonCell subclasses to build a button bar for making choices.

But first, let’s get the messages showing up in the window instead of printing on the
command line.

Control/Cell Relationships

NSControl NSCell

(subclass) (subclass)

NSButtonControl NSButtonCell

(uses)

Figure 6-2. Controls and cells

Adding a View

A new CocoaPlayer can be created with the following code:

human = CocoaPlayer.new("Human")
O0SX.NSApp.run

CHAPTER 6

RUBYCOCOA

Notice how you don'’t start the NSApplication inside the CocoaPlayer, but wait until
after it is created. This is a more flexible approach, since you can initialize multiple Cocoa

objects before you start the application.

Let’s also move the creation of the NSWindow into its own method to make the initialize

method a little easier to read.

class CocoaPlayer < BasePlayer
DEFAULT _WIDTH = 500
DEFAULT _HEIGHT = 500

def initialize(name)
super (name)

app = 0SX::NSApplication.sharedApplication
app.setMainMenu(0SX: :NSMenu.alloc.init)

163

164

CHAPTER 6 ©* RUBYCOCOA

@window = create window
return self
end

def create window(view=nil)
window = 0SX::NSWindow.alloc.initWithContentRect styleMask backing defer(
[0, 0, DEFAULT WIDTH, DEFAULT HEIGHT],
0SX: :NSTitledWindowMask + 0SX::NSClosableWindowMask,
0SX: :NSBackingStoreBuffered,
true)
window.setTitleWithRepresentedFilename('Turn Based Strategy')
window.makeKeyAndOrderFront(nil)
window.setContentView(view)
return window
end
end

You've added a view parameter that defaults to nil and then set the window’s content
view to it. As is, this code should give the same results as before.
But now let’s add a view. Let’s call it TBSView.

class TBSView < OSX::NSView
def drawRect(rect)
color = 0SX::NSColor.colorWithDeviceRed green blue alpha(0.0, 1.0, 0.0, 1.0)

color.set
0SX: :NSBezierPath.fillRect(rect)
end

end

You won't be explicitly calling drawRect, but every time the windowing system
needs to redraw, it will call drawRect for you. If you want the view to redraw, you can call
setNeedsDisplay(true), and it will be redrawn at the earliest convenient point.

Inside the drawRect method, you create an instance of NSColor. You pass in values
between 0 and 1 for red, green, blue, and the level of transparency. But setting green to 1,
while setting red and blue to 0, you'll end up with a completely green view (see Figure 6-3).
And by setting the alpha value to 1.0, this example will be completely opaque.

So let’s change the CocoaPlayer’s initialize method a little.

CHAPTER 6 " RUBYCOCOA

class CocoaPlayer
def initialize(name)
super(name)

app = 0SX::NSApplication.sharedApplication
app.setMainMenu(0SX: :NSMenu.alloc.init)

@view = TBSView.alloc.init
@window = create window(@view)
return self

end

end

000 [Turn Based Strategy

Figure 6-3. A simple green view

Let’s pretend that what’s shown in Figure 6-3 is the grass of the playing field for now
and work on getting some of the player methods working better.

165

166

CHAPTER 6 ©* RUBYCOCOA

Displaying Messages

You'll be using the simple NSTextView, which is a type of view. Here’s a create_messages
method that builds the message box for you:

class CocoaPlayer
def create messages(y, width)
position = 0SX::NSRect.new(0, y, width, MESSAGE HEIGHT)
messages = OSX::NSTextView.alloc.initWithFrame(position)
return messages
end
end

It’s positioned at the top of your window. You don’t make it too tall because it should
only need to hold a couple of lines of text. Then you'll add it to your TBSView as a subview.
The initialize method should now look like this:

class CocoaPlayer
MESSAGE_HEIGHT = 30

def initialize(name)
super (name)

app = O0SX::NSApplication.sharedApplication
app.setMainMenu(0SX: :NSMenu.alloc.init)

@view = TBSView.alloc.init
@window = create window(@view)

messages_y = @view.frame.height - MESSAGE_HEIGHT
@messages = create_messages(messages y, @view.frame.width)
@view.addSubview(@messages)

return self
end
end

The whole point of the message box is to send messages, though, so let’s update the
message method. You can see the results in Figure 6-4.

class CocoaPlayer
def message(text)
@messages.setString(text)
end
end

mailto:@view.frame.height
mailto:@view.frame.width
mailto:@view.addSubview(@messages
mailto:@messages.setString

CHAPTER 6 " RUBYCOCOA 167

000 [Turn Based Strategy
Welcome to DinoWars: Westward Ho!l

Figure 6-4. The newly added message box

Creating a Row of NSButtonCells

The first step will be to make a create button _bar method, just like the create_window
method. For now, you’ll make a label and a button and put them into your 2 x 1 matrix.

class CocoaPlayer
def create button bar(x, y, width)
label = 0SX::NSTextFieldCell.alloc.init
label.setStringValue("Actions:")

button = 0SX::NSButtonCell.alloc.init
button.setTitle("Test")
button.setBezelStyle(0SX: :NSRoundedBezelStyle)

height = button.cellSize.height
matrix = OSX::NSMatrix.alloc.initWithFrame([x, y, width, height])

matrix.renewRows columns(1, 2)
matrix.putCell atRow_column(label, 0, 0)

168

CHAPTER 6 ©* RUBYCOCOA

matrix.putCell atRow_column(button, 0, 1)
matrix.setCellSize(button.cellSize)
return matrix
end
end

The label and the button require no explanation, except to point out that
0SX: :NSRoundedBezelStyle is the default style you're used to for Cocoa buttons. Not set-
ting a bezel style gives you a bland grayish button reminiscent of Microsoft Windows.

The matrix is interesting. You've passed in x and y coordinates as well as a width.
(The button bar shouldn't extend out of the window;, after all!) However, you wait until
inside the create_button bar method to calculate the height. You'll base the height on the
height of a button so that you can make sure it fits.

It’s also important to note that NSMatrix uses row major ordering, meaning the first
index represents the vertical position, while the second represents the horizontal posi-
tion. Finally, set the matrix to use the button’s dimensions as its cell size. You'll have to
do some work to find the largest-sized button in the bar later, but for now this is enough.

With a few quick changes to the initialize method, the button bar is up and
working.

class CocoaPlayer
def initialize

@view = TBSView.alloc.init
@window = create window(@view)

messages y = @view.frame.height - MESSAGE HEIGHT
@messages = create_messages(messages y, @view.frame.width)
@view.addSubview(@messages)

@bar = create_button_bar(o, 0, DEFAULT_WIDTH)
@view.addSubview(@bar)
return self
end
end

Adding it to the master view as a subview causes it to draw itself inside the main view.
Position it at the bottom left (see Figure 6-5).

Try clicking the button. See how it works, even though it doesn’t do anything?

Okay, it’s time to start making things a little more object-oriented.

mailto:@view.frame.height
mailto:@view.frame.width
mailto:@view.addSubview(@messages
mailto:@view.addSubview(@bar

CHAPTER 6 " RUBYCOCOA

86086 [Turn Based Strategy
Welcome to DinoWars: Westward Ho!l

(Fest

Figure 6-5. Adding the button bar

The Choice Bar

Since the button bar will behave rather differently than a standard NSMatrix, it makes
sense to create a subclass to do exactly what you want. Since you'll be presenting choices
to the user, why not call it a ChoiceBar? The ChoiceBar will support the following opera-
tions: clear, add, and setup. Clearing the ChoiceBar removes all buttons (used when the
choice has been made). The add method appends a button with a label and a callback to
the ChoiceBar. And setup lets the ChoiceBar know you're done adding buttons and that it
should resize itself appropriately.

Here’s the skeleton of the ChoiceBar class. (Limiting it to a max number of choices lets
you tell it how many it will have at setup time with the renewRows_columns method and
avoids some of the trickiness of changing it at run time.)

class ChoiceBar < 0SX::NSMatrix
MAX = 5

def initAt(point)
initWithFrame(0SX: :NSRect.new(point.x, point.y, 1, 1))
renewRows_columns (1, MAX)
clear
self
end

169

170 CHAPTER 6 ©* RUBYCOCOA

def clear
@buttons = []
setup

end

def add(label, &callback)
button = 0SX::NSButtonCell.alloc.init
button.setTitle(label)
button.setBezelStyle(0SX: :NSRoundedBezelStyle)
button.setRepresentedObject(callback)
button.setTarget(self)
button.setAction(:clicked)
@buttons.push(button)

end

def clicked(me)
callback = selectedCell.representedObject
callback.call unless callback.nil?
end
end

The initAt method calls the superclass’s initializer with the specified coordinates and
1-by-1 dimensions. You can then call clear, which always resets your button list to empty,
a perfect starting value. It then calls setup to appropriately size things. I'll talk about that
more in just a bit.

The add method is no more complicated. It creates your button, saves the callback in
the special representedObject slot for NSButtonCell, and instructs this cell to send mes-
sages back to the ChoiceBar.

You don’t want to automatically invoke setup from add like you do with clear. This is
because you'll usually be adding several buttons at a time to the ChoiceBar and resizing it
for each of them would be a waste. Instead, just always call setup after you've finished
adding buttons.

The clicked method will handle any mouse clicks on the buttons. Because the argu-
ment passed into clicked is the ChoiceBar itself (not the NSButtonCell), you'll need to use
the selectedCell method to figure out which cell was clicked on.

So what does setup look like? It’s a little hairy.

class ChoiceBar
def setup
MAX.times do |i]

mailto:@buttons.push

CHAPTER 6 " RUBYCOCOA

putCell atRow column(nil, 0, i)
end

@buttons.each with index do |button, 1i|
putCell atRow column(button, 0, i)
end

if @buttons.size == 0
setFrameSize(0SX: :NSSize.new(1, 1))

else
size = @buttons.sort_by{|b| b.cellSize.width }.last.cellSize
setFrameSize(0SX: :NSSize.new(size.width * @buttons.size, size.height))
setCellSize(size)

end

setNeedsDisplay(true)

sv = superview

sv.setNeedsDisplay(true) unless sv.nil?

end
end

The first line just sets the NSMatrix subclass’s dimension to be one cell high and as
many cells wide as required. You then place each ButtonCell in the appropriate location
in the NSMatrix subclass.

The last chunk of code sets the appropriate cell and frame dimensions for your
NSMatrix subclass. If it doesn’t have any buttons, it can go back to the old 1-by-1 dimen-
sions and not worry about the cell size. If you have buttons, though, the code first needs
to find the size of the biggest button. Then it'll use that as its cell size and to calculate the
total size of the frame.

All you need to do to start using the ChoiceBar is replace the following line in your
CocoaTBS#initialize method

@bar = create_button_bar(0, 0, DEFAULT WIDTH)
with this line:
@bar = ChoiceBar.alloc.initAt(0SX::NSPoint.new(0, 0))

You can also delete the create button bar method.

Now put ChoiceBar aside for the moment. It’s time to switch over to working on draw-
ing the map. But your ChoiceBar will be waiting for you as soon as you're ready to start
implementing do_choose.

17

mailto:@buttons.each_with_index
mailto:@buttons.size
mailto:@buttons.size

172

CHAPTER 6 ©* RUBYCOCOA

Drawing the Map

It’s time to finally implement the draw method. This will replace the long-standing green
background to your TBSView object.

The map is a two-dimensional grid. Since locations share common tile images, you'll

need to decouple the visual representation of a particular location from its general type.

Each location must have a terrain type, may have a unit located on it, and may also be

highlighted. Here’s a crack at representing all that:

class Location
attr_accessor :col, :row, :terrain, :unit, :highlight, :on_click
def initialize(col, row, drawer)
@col, @row, @drawer = col, row, drawer
end

def draw
@drawer.terrain(col, row, terrain) unless terrain.nil?
@drawer.unit(col, row, unit) unless unit.nil?
@drawer.highlight(col, row, highlight) unless highlight.nil?
end

def clear
@on_click = nil
@highlight = nil
end
end

Each Location is initialized with its own column and row coordinates and a Drawer
object. The Drawer object knows how to actually draw each tile, provided you give it a
location for the tile, as well as an identifier for which tile is requested. You can use strings
for the identifiers.

What does the Drawer look like? The Drawer just handles retrieving the right tile object
and then invoking draw on it.

class Drawer
def initialize(terrain, units, highlights)
@terrain, @units, @highlights = terrain, units, highlights
end

def terrain(col, row, type); draw(col, row, @terrain[type]); end
def unit(col, row, type); draw(col, row, @units[type]); end
def highlight(col, row, type); draw(col, row, @highlights[type]); end

mailto:@drawer.terrain
mailto:@drawer.unit
mailto:@drawer.highlight

CHAPTER 6 " RUBYCOCOA

def draw(col, row, tile)
tile.draw(col, row) unless tile.nil?
end
end

Let’s start by using NSColors to draw the tiles. Here’s the super simple ColorTile:

class ColorTile
attr_reader :width, :height
def initialize(width, height, r, g, b, a=1.0)
@width, @height = width, height
@color = 0SX::NSColor.colorWithDeviceRed green blue alpha(r, g, b, a)
end

def draw(col, row)
x = col * @width
y = row * @height
area = 0SX::NSRect.new(x, y, @width, @height)
@color.set
0SX: :NSBezierPath.fillRect(area)

end

end

This is almost ready to go, but you've reached the point where CocoaPlayer is losing
its orthogonality. The images and colors used really depend on the specific game being
played. You could pass in lists of tiles when you create the player, but as you go on, the
number of customizations will keep getting larger.

Instead, let’s create a subclass of CocoaPlayer named DinoCocoaPlayer. Any game-
specific code or data can go into DinoCocoaPlayer. A lot of that data can be easily stored in
class constants. Unfortunately, code in CocoaPlayer won't be able to see constants belong-
ing to the subclass, even when the subclass inherits the code. This is a pain, but you can
get around it with the following little dance. Add the following methods:

class CocoaPlayer

def cols; self.class.const get(:COLS); end

def rows; self.class.const get(:ROWS); end

def terrain_tiles; self.class.const_get(:TERRAIN); end

def unit_tiles; self.class.const get(:UNITS); end

def highlight tiles; self.class.const get(:HIGHLICHTS); end
end

173

mailto:@color.set

174

CHAPTER 6 ©* RUBYCOCOA

The methods retrieve the actual player class and then request the constants from
that. Admittedly, you could have asked the child to implement methods instead of using
class constants, but I think this strategy makes the subclasses read cleaner. With the
refactoring and the addition of the tile maps, the DinoCocoaPlayer now looks like this:

class DinoCocoaPlayer < CocoaPlayer

COLS = 10

ROWS = 6

W =50

H = 50

TERRAIN = {
'Blank' => ColorTile.new(W, H, 0.5, 0.5, 0.5),
'Grass' => ColorTile.new(W, H, 0.0, 1.0, 0.0),
'"Water' => ColorTile.new(W, H, 0.0, 0.0, 1.0),
'Forest' => ColorTile.new(W, H, 0.0, 0.8, 0.3),
'Plains' => ColorTile.new(W, H, 0.8, 0.8, 0.8),

}

BLACK BLOB = ColorTile.new(W, H, 0, 0, 0)

UNITS = {

'Captain' => BLACK_BLOB,
'Doctor' => BLACK BLOB,
'Soldier' => BLACK BLOB,
'VRaptor' => BLACK_BLOB,
}
HIGHLIGHTS = {
'Unit" => ColorTile.new(W, H, 0.8, 0.4, 0.0, 0.5),
"'Shoot' => ColorTile.new(W, H, 1.0, 0.0, 0.0, 0.5),
'Move' => ColorTile.new(W, H, 0.1, 0.1, 1.0, 0.5),

end

For now, the interface just uses black blobs to represent the units. However, in order
to actually store the locations of terrains and units, you'll need to build a grid of loca-
tions. You can use the Matrix class from the last chapter and slip this code in at the top of
the initialize method before the Cocoa setup.

See how Drawer uses the methods that retrieve the constants? The Drawer is then
passed into each Location.

class CocoaPlayer
def initialize(name)
super (name)

CHAPTER 6

@drawer = Drawer.new(terrain tiles, unit tiles, highlight tiles)
@grid = Matrix.new(cols, rows)
@grid.each_position do |col, row|
@grid[col, row] = Location.new(col, row, @drawer)
end

some_tile = terrain_tiles.values.first
window width = cols * some_tile.width
window_height = rows * some_tile.height

app = 0SX::NSApplication.sharedApplication
app.setMainMenu(0SX: :NSMenu.alloc.init)

@view = TBSView.alloc.initGrid(@grid)
@window = create window(window width, window_height, @view)

end

end

RUBYCOCOA

The code also grabs a random terrain tile and uses it, plus the newly added cols
and rows arguments to calculate the appropriate width and height for the window. The
create_window method uses these values to size the window, like this:

class CocoaPlayer

def create window(width, height, view=nil)

position = 0SX::NSRect.new(0, 0, width, height)

window = 0SX::NSWindow.alloc.initWithContentRect styleMask backing defer(

position,

0SX::NSTitledWindowMask + OSX::NSClosableWindowMask,
0SX: :NSBackingStoreBuffered,

true)

end

end

But you've still got to write drawRect.

class TBSView
def initWithGrid(grid)

init
@grid = grid
self

end

175

mailto:@grid.each_position

176

CHAPTER 6 © RUBYCOCOA

def drawRect(rect)
@grid.all positions.reverse.each do |x, y|
@grid[x, y].draw
end
end
end

It’s great to have drawRect implemented, but unfortunately the grid Location objects
are still empty. The CocoaPlayer’s draw method needs to populate them.

class CocoaPlayer
def draw(map)
map.terrain.all positions.each do |x, y|
terrain = map.terrain[x, y]
terrain type = terrain.rep.first
@grid[x, y].terrain = terrain type
end
map.units.all positions.each do |x, y|
unit = map.units[x, y]
unit_type = unit.nil? ? nil : unit.rep.first
@grid[x, y].unit = unit_type
end
@view.setNeedsDisplay(true)
end
end

You use the first element of each terrain type’s rep to tag the appropriate drawing
type. At the end, you use setNeedsDisplay to let the view know it should redraw as soon as
possible. Ready to try out your new CocoaPlayer? Check it out in Figure 6-6!

anmnme

| 7] Turn Based Strategy
Welcome to DinaWars: Westward Ho!!

_—
I

Figure 6-6. A first look at the map

mailto:@grid.all_positions.reverse.each
mailto:@view.setNeedsDisplay

CHAPTER 6 " RUBYCOCOA

Making Choices

The user interface may seem hung at this point, but what'’s actually going on behind the
scenes is that the game is waiting for you to make a move. But there’s not really any way
to tell yet! It’s time to look at the choice code.

All of the inherited choice-related methods from BasePlayer depend on do_choose
being implemented. This method is passed in a list of choice objects as well as a code
block. One of the choices must be selected and then passed in as a parameter to the
invoked code block. Each of the Choice objects has a rep method, as you may remember,
that provides the relevant information about the choice in a nice platform-independent
representation of lists, strings, and numbers.

I should point out that player object cannot be truly decoupled from the game
design. Theoretically, you could just present a list of buttons for every action. This is great
for deciding whether to attack or defend, but clicking on the button labeled “Unit 3 4” to
select the unit at location 3, 4 is a horrible interface. You want your users to be able to just
click on the unit!

So there’s a need to present choices by alternate means. Additionally, you can't even
depend on all choice instances in a given decision using the same presentation. In turn-
based strategy games, it is quite common to be presented with the choice to select a unit
or do nothing. The unit selection should happen via the map, but ending the turn should
be accomplished with a Done button.

The only distinguishing feature about each Choice object is its rep. So you're going to
use the first item in the rep to figure out how to present each choice. The default can fall
back on the button bar, but you should let each type of choice have its own presentation.

class CocoaPlayer
def do_choose(choices)
choices.each do |choice|
choice _rep = choice.rep
choice type = choice rep.first
ideal = "present #{choice type.downcase} choice"
if respond to?(ideal)
send(ideal, choice rep, *choice rep.rest)
else
present choice(choice rep)
end
end
start _choice
. # Code to be resumed shortly
end

177

178

CHAPTER 6 ©* RUBYCOCOA

As you can see, do_choose loops through the choices, converting them into their rep
methods. It then checks to see if the ideal presentation method exists for them in the
form of present_TYPE_choice. If it finds one, it calls it; otherwise, it falls back on the default
present_choice method. Not that the full rep of the Choice object is passed in as well as the
unpacked arguments into the present TYPE_choice methods. This is for convenience.
Calling make choice will eventually require the full rep, so keeping that around is handy.
But passing in the rest of the rep (without the type) as flattened arguments lets you name
them and use them easily inside the presentation methods, as you'll see shortly.

Don'’t forget the definition of the rest method from previous chapters:

module Enumerable
def rest
self[1..-1]
end
end

It’s time to finish the do_choose method. The old infinite loop that dispatched events
should now be changed to wait for @choosen_rep to be set.

class CocoaPlayer
. . # Code resumed
start_choice

while @choosen rep.nil?
handle_events
end

choosen_rep = @choosen_rep
@choosen_rep = nil
end_choice

choices.each do |choice]

choice rep = choice.rep

return yield choice if choice_rep == choosen_rep
end

raise "Somehow a bad choice was selected"
end
end

mailto:@choosen_rep.nil?

CHAPTER 6 " RUBYCOCOA

The start_choice invocation triggers any code that needs to be run before the
choice is made (you'll use it to set up and resize the button bar). The end_choice code
performs any teardown that needs to happen (you’ll use it to clear the button bar, high-
lighted squares, and registered choice callbacks). Nestled between those two method
calls is the meat.

Once @choosen_rep is set, it copies the choice out of the instance variable into a tem-
porary variable, and then resets the instance variable. This gets everything ready for the
method to be called again.

Next the method needs to use the rep to figure out which Choice it came from, and
then finally call the supplied block with that selected Choice object. If somehow the rep
is not found in the choices, you’ll throw a string exception (since this would be a highly
aberrant situation and it doesn’t make sense to rescue the exception).

Here are the related methods:

class CocoaPlayer
def make choice(choosen_rep)
@choosen_rep = choosen rep
end

def start choice
@bar.setup
end

def end choice
@bar.clear
@grid.all positions.each do |col, row|
@grid[col, row].clear
end
end

def present choice(rep)
@bar.add(rep.join(" ")) { make choice(rep) }
end
end

The make_choice method is just a nicer face on setting @choosen_rep. The start choice
and end_choice methods set up and tear down, respectively. And the generic present_choice
method simply uses the button bar combined make_choice. Still, with this code, you
should actually be able to play the game now! You can see the choices being presented
in Figure 6-7.

179

mailto:@bar.setup
mailto:@bar.clear
mailto:@grid.all_positions.each
mailto:@bar.add

180

CHAPTER 6 ©* RUBYCOCOA

Turn Based Strategy
Welcome to DinoWars: Westward Holl]

Figure 6-7. Presenting choices as buttons

Selecting Units from the Map

With a working game, you're in a good place to start identifying potential improvements.
For example, wouldn't it be nice to be able to select units by just clicking on them?

Highlighting Map Locations

You've got most of the code required for visual unit selection already. Let’s start by defin-
ing a convenience method in the CocoaPlayer class that you can use to set a Location
instance’s highlight.

class CocoaPlayer
def highlight(x, y, type)
@grid[x, y].highlight = type
end
end

Let’s also create three present TYPE choice methods. They will call highlight, but you
will still use present_choice to make the actual selection for the moment.

class DinoCocoaPlayer
def present unit choice(rep, x, y)
highlight(x, y, 'unit')
present_choice(rep)
end

CHAPTER 6 " RUBYCOCOA 181

def present move choice(rep, x, y)
highlight(x, y, 'Move')
present_choice(rep)

end

def present shoot choice(rep, x, y)
highlight(x, y, 'Shoot")
present_choice(rep)

end

def present_firstaid_choice(rep, x, y)
present_shoot choice(rep, x, y)
end
end

You can see the effects of highlighting on the lightened black unit squares in Figure 6-8.

0oy e n

|1 Turn Based Strategy
Welcome to DinoWars: Westward Ho!!

Figure 6-8. The bottom three black unit blobs have been lightened by highlighting.
The action buttons are still being used for decisions, though.

Handling Clicks

It’s not enough to just highlight the squares, though. You need to catch mouse clicks on
squares and trigger the appropriate callbacks. Luckily, you already wired the Location
objects to support an on_click attribute. With the addition of a simple on_click method,
you can start storing useful callbacks in that attribute.

182

CHAPTER 6 ©* RUBYCOCOA

class CocoaPlayer
def on_click(x, y, 8callback)
@grid[x, y].on click = callback
end
end

So how do you receive the mouse click notification? You need to implement the
mouseDown (event) method on TBSView to receive its clicks. But since you're going to want to
hand the clicks back to the CocoaPlayer (which has access to the grid and can trigger the
right on_click callback), TBSView will need a reference to CocoaPlayer. Change the initial-
izer to pass the CocoaPlayer in.

class TBSView < 0SX::NSView
def initWithGrid mouseResponder(grid, responder)

init
@grid = grid
@responder = responder
self

end

def mouseDown(event)
@responder.mouseDown(event)
end
end

This means the CocoaPlayer now initializes the TBSView like this:
@view = TBSView.alloc.initWithGrid mouseResponder(@grid, self)

You'll also need a mouseDown method for CocoaPlayer. In order to translate window
coordinates into map grid locations, the constructor will need to be changed to save the
width and height of the tiles.

class CocoaPlayer
def initialize(name)

some_tile = terrain_tiles.values.first
@tile width = some_tile.width
@tile height = some_tile.height

end

mailto:@responder.mouseDown

CHAPTER 6 " RUBYCOCOA

def xy to_colrow(x, y)
col = (x / @tile width).to i
row = (y / @tile_height).to_i
return col, row

end

def mouseDown(event)
click = event.locationInWindow
col, row = xy _to colrow(click.x, click.y)
if col < cols && row < rows
callback = @grid[col, row].on click
callback.call unless callback.nil?
end
end
end

In order to calculate the column and row that were clicked on, you need to not only
divide the click’s x and y by the width and height, but you also need to convert the result-
ing values into integers so they can be used as indexes. Since the view starts right at the
bottom of the window (the choice bar hovers above it), the math works out perfectly, as
long as you make sure the click isn't greater than the maximum column and row (if the
user clicks somewhere in your message box, for example).

Your present_TYPE_choice methods should now resemble the following code. You can
see the results in Figure 6-9.

class DinoCocoaPlayer
def present unit choice(rep, x, y)
highlight(x, y, 'Unit")
on_click(x, y) { make_choice(rep) }
end

def present move choice(rep, x, y)
highlight(x, y, 'Move')
on_click(x, y) { make choice(rep) }

end

def present shoot choice(rep, x, y)
highlight(x, y, 'Shoot")
on_click(x, y) { make choice(rep) }

end

end

183

mailto:@tile_width).to_i
mailto:@tile_height).to_i

184

CHAPTER 6 © RUBYCOCOA

[aXala) || Turn Based Strategy

Welcome to DinoWars: Westward Ho!l

Figure 6-9. You can click directly on units now, so there’s no need for any
button choices, except for Done.

Using Image Tiles

You've got a playable strategy game now. There’s only one problem. It’s ugly! If you were
part of a real game production team, the artists would be cranking out top-notch tilesets.
But since you don’t have that luxury, you're going to need to scavenge, even if this means
the tileset doesn't quite match the game.

PlanetCute to the Rescue

You'll be using Danc’s freely available PlanetCute tileset. Danc released the tileset to help
developers prototype games more easily. This game was aiming for Dinosaur Western,
and this is a more of a Chibi-space look—but beggars can't be choosers.

Note The PlanetCute tileset is available for download at www. lostgarden.com/2007/05/
dancs-miraculously-flexible-game.html.

The tileset is made of PNG images using alpha transparency. Lucky for us, Cocoa’s
NSImage can handle them with no problem. The one weirdness (actually a virtue) of these
tiles is that they depict three-dimensional blocks. This makes them great for prototyping

http://www.lostgarden.com/2007/05

CHAPTER 6 " RUBYCOCOA

because you can build complex multilevel environments. You won't be using them like
that, but the tiles look incredible no matter what. Unfortunately, though, this means that
each tile is actually larger than the square it fills.

That'’s right. The part of the tile that a unit would stand on doesn't start until about
26 pixels or so up. This has two important implications. First of all, the mouse click to
grid coordinate translation code will need to be adjusted. I'll talk about that later in the
section titled “Fixing the Weirdness.” Additionally, suddenly the drawing order of tiles
becomes important. Since tiles hang down below themselves, if you draw the “front” tiles
first, the overhangs from the back tiles will draw partially on top of them. So you'll need
to draw in reverse order as well.

Switching from Colors to Images

You'll deal with the challenges of the new tile size eventually, but let’s start by coding up
an ImageTile class to replace ColorTile.

class ImageTile
attr reader :image, :height, :width

def initialize(filename)
@filename = filename
@image

0SX: :NSImage.alloc.initByReferencingFile(filename)
@width = @image.size.width
@height = @image.size.height

end

def source
0SX::NSRect.new(0, 0, @width, @height)
end

def destination(col, row)
0SX::NSRect.new(col * @width, row * @height, @width, @height)
end

def draw(col, row)
image.drawInRect fromRect operation fraction(destination(col, row),
source,
0SX: :NSCompositeSourceAtop, 1.0)
end
end

185

mailto:@image.size.width
mailto:@image.size.height

186

CHAPTER 6 ©* RUBYCOCOA

You can use NSImage to load the actual image. The height and width are derived from
the image’s height and width. You're responsible for making sure your images all have the
same size. The source and destination methods are just convenience methods to calcu-
late the parameters for the drawing method. The source is the entire image, and the
destination is the appropriate coordinates in the TBSView.

Adding Image-Based Tilesets to DinoCocoaPlayer

Here’s the adjusted DinoCocoaPlayer class using the awesome PlanetCute art.

class DinoCocoaPlayer
TERRAIN = {
'Grass' => ImageTile.new('PlanetCute/Grass Block.png'),
'Water' => ImageTile.new('PlanetCute/Water Block.png'),
'Forest' => ImageTile.new('PlanetCute/???.png'),
'Plains' => ImageTile.new('PlanetCute/Stone Block.png'),

}

UNITS = {
'Captain' => ImageTile.new('PlanetCute/Character Boy.png'),
'Doctor' => ImageTile.new('PlanetCute/Character Pink Girl.png'),
'Soldier' => ImageTile.new('PlanetCute/Character Horn Girl.png'),
'VRaptor' => ImageTile.new('PlanetCute/Enemy Bug.png'),

}

W = TERRAIN.values.first.width

H = TERRAIN.values.first.height

HIGHLIGHTS = {
'Unit' => ColorTile.new(W, H, 0.8, 0.4, 0.0, 0.5),
'Shoot' => ColorTile.new(W, H, 1.0, 0.0, 0.0, 0.5),
'Move' => ColorTile.new(W, H, 0.1, 0.1, 1.0, 0.5),

}

end

Most of the images loaded work pretty well, but there isn’'t an obvious image for the
forest tiles. Putting in an invalid filename like ???.png will give you a blank image, so
that’s fine for now. Of course, the characters don’t look much like cowboys, and that bug
isn't a very realistic raptor (see Figure 6-10). I think this is probably what separates us
amateur game developers from the pros.

CHAPTER 6 " RUBYCOCOA 187

P66 [] Turn Based Strategy
Welcome to DinoWars: Westward Holl

Figure 6-10. DinoWars using the PlanetCute tileset

Fixing the Weirdness

Okay, there are two problems that I see. First of all, you're missing a forest tile. If you
browse the tileset, there is a tree tile, but it's missing a background. You can fix this with
a new tile class.

class MergedTile
def initialize(*tiles)
@tiles = tiles
end

188

CHAPTER 6 ©* RUBYCOCOA

def draw(col, row)
@tiles.each{|tile| tile.draw(col, row) }
end

def height; @tiles.first.height; end
def width; @tiles.first.width; end
end

With this merged tile class, you can implement the forest tile like this:

class DinoCocoaPlayer
TERRAIN = {
'Grass' => ImageTile.new('PlanetCute/Grass Block.png'),
'Water' => ImageTile.new('PlanetCute/Water Block.png'),
'Forest' => MergedTile.new(ImageTile.new('PlanetCute/Grass Block.png'), =
ImageTile.new('PlanetCute/Tree Ugly.png')),
'Plains' => ImageTile.new('PlanetCute/Stone Block.png'),
}

end

The forest tile looks good, as shown in Figure 6-11. But the next problem is a little
more serious. There are clearly some spacing issues.

As I mentioned previously, the tiles’ images not only extend below the space where
units stand, they also extend beyond it (although luckily their backgrounds are transpar-
ent).You can start by tweaking the ImageTile to eliminate the padding. You're going to
have to decouple the image’s height and width used for calculating its drawing bound-
aries from its height and width used for placement. You can do this in a subclass:

CUTE_TERRAIN_SHORTEN_Y = 66

class CuteTile < ImageTile
def height; @height - CUTE_TERRAIN_SHORTEN_Y; end
def destination(col, row)
0SX::NSRect.new(col * @width, row * height, @width, @height)
end
end

You'll then need to replace all your ImageTile.new terrain instances with CuteTile.new.
You can see the results in Figure 6-12.

mailto:@tiles.first.height
mailto:@tiles.first.width

CHAPTER 6 " RUBYCOCOA 189

/68 [Turn Based Strategy
Welcome to DinoWars: Westward Hol!

Figure 6-11. The forest tile replaces the previously blank squares.

(sl ¥a) [%) Turn Based Strategy
Welcome 1o DinoWars: Westward Ho!l

Figure 6-12. With the terrain spacing problem solved, the map is starting to look great.

190

CHAPTER 6 ©* RUBYCOCOA

This is a huge step forward, but another part of the offset problem is visible now. The
units and highlights are resting too low, and the top of the uppermost row of tiles is cut
off (along with the enemy sprites that are standing there). You can fix this with more tile
classes modifications. (Although beware: mouse clicks are still expected in the old loca-
tions, which won't be obvious right now.)

CUTE_TILE_OFFSET Y = 28

class CuteUnitTile < CuteTile
def destination(col, row)
0SX: :NSRect.new(col * @width, row * height + CUTE_TILE_OFFSET Y, w
@width, @height)
end
end

class CuteColorTile < ColorTile
def draw(col, row)
x = col * @width
y = row * @height
area = 0SX::NSRect.new(x, y + CUTE_TILE_OFFSET_Y, @width, @height)
@color.set
0SX: :NSBezierPath.fillRect(area)
end
end

Don't forget to change the unit instances of ImageTile to CuteUnitTile. Also change
your ColorTile instances to CuteColorTile instances.

Now’s probably a good time to change the drawing order between units and high-
lights (see Figure 6-13). While it made sense when you were using opaque blocks to put
the semi-transparent highlight at the very top, it doesn’t look as good as it used to when
you were using images.

Changing Location’s draw method makes things look better, as you can see in
Figure 6-13.

class Location
def draw
@drawer.terrain(col, row, terrain) unless terrain.nil?
@drawer.highlight(col, row, highlight) unless highlight.nil?
@drawer.unit(col, row, unit) unless unit.nil?
end
end

mailto:@color.set
mailto:@drawer.terrain
mailto:@drawer.highlight
mailto:@drawer.unit

CHAPTER 6 " RUBYCOCOA

000 [Turn Based Strategy

Welcome to DinoWars: Westward Ho!!

Figure 6-13. Highlights are now drawn over the terrain, but under the units.

All that’s left is to add the required padding to the total window size and fix the
mouse down handling. Mouse handling is easy. Check this out:

class DinoCocoaPlayer
def xy to_colrow(x, y)
col = (x / @tile width).to i
row = ((y - CUTE_TILE OFFSET Y) / @tile height).to i
return col, row
end
end

And adding some extra padding? Piece of cake.

class DinoCocoaPlayer
def create window(width, height, view=nil)
super(width, height + CUTE TILE OFFSET Y + 10, view)
end
end

191

mailto:@tile_width).to_i
mailto:@tile_height).to_i

192

CHAPTER 6 ©* RUBYCOCOA

Packaging It Up

Now that you've built an entire Cocoa app running just from the command line, let’s
bundle it together as a real Cocoa application bundle. You'll use a Makefile based on the
Hakoiri-Musume RubyCocoa example written by Masatoshi SEKI san. The install should
have placed this project at /Developer/Examples/RubyCocoa/Hakoiri-Musume. In fact, you'll
use variants on the Makefile, the main.m Objective-C file, and the Info.plist.tmpl prop-
erty list. main.m must be changed to run your Ruby code.

#import <RubyCocoa/RBRuntime.h>

int main(int argc, const char* argv[])

{

return RBApplicationMain("cocoa.rb", argc, argv);

}

This file provides the binary stub necessary to load the RubyCocoa environment and
run your code. It will be compiled by the Makefile, which looks like this:

-*-makefile-*-

APPNAME = DinoWars
BUNDLEID = rubyapp.$(APPNAME)

RUBYSRCS = cocoa.rb tbs.rb
0BJS = main.o
LIBS

-lobjc -framework RubyCocoa

TARGET = $(APPNAME).app
CFLAGS = -Wall

SED CMD 0 = -e "s/%%%APPNAME%%%/$(APPNAME) /"
SED CMD 1 = -e "s/%%%BUNDLEID%%%/$(BUNDLEID)/"

$(TARGET): $(0BJS) $(RUBYSRCS)
$(CC) $(0BIS) $(LIBS)
-/bin/xm -xf $(APPNAME).app
mkdir $(APPNAME).app
mkdir $(APPNAME).app/Contents
mkdir $(APPNAME).app/Contents/Mac0S

CHAPTER 6 " RUBYCOCOA

mkdir $(APPNAME).app/Contents/Resources

mv a.out $(APPNAME).app/Contents/Mac0S/$(APPNAME)

sed $(SED_CMD_0) $(SED_CMD_1) Info.plist.tmpl > $(APPNAME).app/Contents/w»
Info.plist

echo -n "APPL?2??" > $(APPNAME).app/Contents/PkgInfo

cp -p $(RUBYSRCS) $(APPNAME).app/Contents/Resources/

cp -r PlanetCute $(APPNAME).app/Contents/Resources/

clean:
-/bin/xm -xf $(APPNAME).app *.0 a.out *~ core

As you can see, the APPNAME is set to DinoWars, RUBYSRCS includes your two Ruby files,
and additionally, the PlanetCute tiles are copied into the Resources directory. Among
other things, the Info.plist.tmpl gets filled in with the APPNAME. Before the template sub-
stitution, it looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE plist SYSTEM "file://localhost/System/Library/DTDs/PropertylList.dtd">

<plist version="0.9">

<dict>
<key>CFBundleExecutable</key>
<string>%%%APPNAME%%%< /string>
<key>CFBundleIdentifier</key>
<string>%%%BUNDLEID%%%</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleSignature</key>
<string>???22</string>

</dict>

</plist>

The Info.plist describes the application to Mac OS X.

You're now ready to run Make! Make will build a DinoWazr.app bundle that you can
double-click (or launch with open Dinowar.app in the same directory). But, uh oh! Nothing
happens!

Unfortunately, you can no longer use the current working directory to find your tile-
set. This means your window’s calculated size is negative. You'll need to make a quick
change to the ImageTile class to get around this. The new initializer looks like the follow-
ing code and uses a special Cocoa function to get access to the Resources directory inside
the bundle. Writing it this way allows you to continue to run from the command line
when you wish but also work as a bundle.

193

file://localhost/System/Library/DTDs/PropertyList.dtd

194 CHAPTER 6 ©* RUBYCOCOA

class ImageTile
def initialize(filename)
if | File.exist?(filename)
path = 0SX::NSBundle.mainBundle.resourcePath.fileSystemRepresentation
filename = File.join(path, filename)
end

@filename = filename
0SX: :NSImage.alloc.initByReferencingFile(filename)

@image
@width = @image.size.width
@height = @image.size.height
end
end

You probably also want to give the application a menu item to let users quit! Replace
the line in CocoaPlayer’s initializer that reads app. setMainMenu(0SX: :NSMenu.alloc.init)
with a call to create_menu. The new method looks like this:

class CocoaPlayer
def create_menu
app = 0SX::NSApplication.sharedApplication
main menu = O0SX::NSMenu.alloc.initWithTitle("MainMenu")

app_item = main_menu.addItemWithTitle action_keyEquivalent("Apple", nil, "")
app_menu = 0SX::NSMenu.alloc.initWithTitle("Apple")
app_item.setSubmenu(app_menu)

quit item = app menu.addItemWithTitle action keyEquivalent("Quit DinoWars", ‘w»
:terminate_, "q")
quit_item.setTarget(app)

app.setAppleMenu(app_menu)
app.setMainMenu(main_menu)
end
end

And with your users able to quit, you've created your first Cocoa application!

mailto:@image.size.width
mailto:@image.size.height

CHAPTER 6 " RUBYCOCOA

Summary

Whether it’s games or business applications, a native user interface will always help woo
your users. And RubyCocoa makes native interfaces easy for Ruby on the Mac. You should
have enough under your belt now to continue working on the game engine or building
user interfaces of your own.

A great next step would be to explore some of the many wonderful resources for
RubyCocoa online at http://rubycocoa.sourceforge.net/doc/ or www.rubycocoa.com/.
This has been a relatively unorthodox look at RubyCocoa. I've avoided using some of
the excellent Cocoa development tools like Xcode and Interface Builder. So there’s still
plenty more to learn if you're interested. (You can read more about Cocoa in general at
www . cocoadev. com.)

And next time you're thinking about writing a Ruby application, think about giving it
a native user interface. The results can be stunning.

195

http://rubycocoa.sourceforge.net/doc
http://www.rubycocoa.com
http://www.cocoadev.com

CHAPTER 7

Genetic Algorithms in Ruby

In Chapter 2, you simulated the average weight of pocket change given different coin
systems. In order to find the best denominations of coins (given a specific sample of
prices), the code did a brute force search of all possible configurations you were inter-
ested in. But it become apparent that, as the coin set grew larger, the time required
became exponentially longer with each additional possible coin.

This happens all the time in optimization problems. Trying every possibility is only
a feasible strategy for the smallest of search spaces. Happily, there are a variety of algo-
rithms and strategies for exploring large solution spaces. Many of these algorithms take
advantage of the fact that good solutions often resemble the best solutions. Searching
for solutions similar to your best solutions may reveal better ones still. Of course, these
strategies can get trapped in locally optimum solutions, missing even better solutions.
It’s a delicate balance, but many of these algorithms take steps to prevent this kind
of shortsightedness. Some of these strategies have exciting names like hill climbing,
simulated annealing, and ant colony optimization.

But you'll be focusing in one particular strategy that’s received a lot of popular press
since its inception. Genetic algorithms are based on the observed process of biological
evolution. Solutions are randomly generated and then pitted against each other. The
most promising solutions are kept for the next round where they will “reproduce” in
order to produce new solutions, which then compete in the next round. Capturing the
essence of this biological process makes genetic algorithms a fascinating topic for begin-
ners and experts alike. It’s easy to be awed as you watch evolution play out before your
Very eyes.

In this chapter, you'll put together a flexible system for building genetic algorithms.
Then you’ll return to the coin simulation and use genetic algorithms to explore some of
the larger variants of the problem (like the optimal 4- and 5-coin variants). With any luck,
you'll get some interesting insights into evolution along the way.

197

198

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

Simulating Evolution

So what, exactly, does a genetic algorithm look like? To start with, you need an initial pop-
ulation. You can think of it as having four phases: initialization, selection, recombination,
and termination (although the selection and recombination phases are executed multiple
times). However, in order to start, you'll need to be able to generate an initial population.
You can think of the population as the life-forms in our ecosystem (although, to be accu-
rate, the population is really these life-forms’ genetic material). Which brings us to an
interesting question: what would this collection of genetic material (genome) look like
inside a computer?

In many biological systems genetic information is stored using deoxyribonucleic
acid (DNA). DNA is built from four nucleotides named adenine (A), cytosine (C), guanine
(G), and thymine (T). In the right light, DNA starts to look a lot like a number in base
four. So why shouldn't you just represent the genetic information using numbers? Most
computers store numbers as base two (binary) numbers, but there’s no fundamental dif-
ference between base two and base four systems (just simple practical differences).

Given that, there are four main phases in a genetic algorithm. During initialization,
the population of genomes is usually generated randomly, although it is possible to intel-
ligently select a starting population. Be careful, though, if you try to prime your system
like that. It’s possible to exclude the best solutions if you focus your starting population
on the wrong features. Because you'll be using numbers to represent genetic informa-
tion, Ruby’s built-in random number generation will be all you need to construct the
initial population.

Then it’s time for selection. In some ways, this step models the natural selection
process seen in real ecosystems. Instead of being a simple label attached to the genomes
that survive, the very definition of fitness is bent on the goal of finding your optimal solu-
tion. Selection then occurs based on that metric. Inferior solutions will be removed from
the pool before reproduction occurs. This can be done across the board, but an even bet-
ter idea is to let chance have some say. Pruning all unsuccessful solutions might prevent
the very best solutions from being discovered later.

Next, during recombination, a new population is produced from the survivors of
selection. Just like biological sexual reproduction, the recombination stage of a genetic
algorithm creates children from the combined genetic material of their two parents. The
process that merges portions from each of their genomes is called crossover, and it is
vitally important. Crossover is the mechanism that allows two parents to produce a child
with strengths from both of them. Of course, not all crosses produce better solutions.
Luckily, the next round of selection will probabilistically cull these less-successful off-
spring. During recombination, mutation (the random changing of genetic material) is
usually modeled as well. Mutation adds an element of variability (just as in biological
systems) and helps produce entirely new solutions.

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

This sequence of steps can be repeated indefinitely, so you'll have to impose a fermi-
nation condition. In many cases, you'll want to halt the algorithm after you've hit your
desired number of iterations. But if you know something about your problem space, you
can simply keep running until you've found an answer that you consider an acceptable
solution. In the coin example, you might run for an hour and keep the best result, or you
might keep searching until the code found a solution superior to a previous best effort (or
it finished exploring the search space and couldn’t find one).

Implementing the Algorithm

You'll start by implementing the algorithm itself, encapsulated inside the GeneticAlgorithm
class. It might help to think of the GeneticAlgorithm class as an ecosystem, which also
describes the rules of existence for the genetic material.

Probably two of the most important parameters for the algorithm (besides the
details of the genomes themselves) are the population size (how many genomes com-
pete in each round) and the selection size (how many genomes survive each round).
The initialize method represents the initialization phase of the algorithm.

class GeneticAlgorithm
attr_reader :population

def initialize(population size, selection size)

@population = (0...population size).map{|i| yield i }
@selection_size = selection_size
end
end

Notice how each genome is created using a block provided to the initialize method.
The selection size is stored for later use. You'll need some helper methods to implement
the iterations of the algorithm, so let’s start by defining them.

class GeneticAlgorithm
def fittest(n=@selection size)
@population.sort by{|member| member.fitness }[-n..-1]
end
end

module Enumerable
def random
self[rand(size)]
end
end

199

200

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

The method named fittest selects the n fittest members of the population, using the
fitness method on each genome and the previously specified selection size. If no num-
ber n is specified, it uses @selection_size by default.

The second helper method is named random. By defining it in the Enumerable module,
all collections that mix in Enumerable will automatically get the random method. The random
method uses the rand method from the set of Kernel methods (functions) to generate a
random index between 0 and the number of elements in the collection, and then return
the element at that location. Here’s an example:

[1, 2, 3].random » 3
[1, 2, 3].random » 2

But how do the actual algorithmic iterations work?

Running the Iterations

During each step in the selection phase, the algorithm selects a group containing the
fittest members of your population using your helper method. Then, in the recombination
phase, it rebuilds the population to its full size by repeatedly selecting random members
of the survivors and asking them to reproduce using some form of crossover. The details of
the reproduction are up to the survivor, but it passes in the list of all survivors (including
itself!) so that you can implement any sort of genetic product you choose. This actually
means reproduction can involve more than two genomes, although you'll stick to the sim-
plest models of crossover in this chapter.

Restricting the GeneticAlgorithm class’s knowledge about the intimate details of genome
reproduction means you won't need to alter the class’s code if you change the underlying
representation of the genomes (a subject you'll be looking at in the next section).

I'll call the method step, since it steps the algorithm forward one round by running
the selection and recombination phases.

class GeneticAlgorithm
def step
survivors = fittest
@population = (0...@population.size).map do |i|
parent = survivors.random
parent.reproduce(survivors)
end
end
end

And that’s it. You'll add a run method for convenience that takes a number of itera-
tions to run, and then returns the fittest member of the final population. Running for a
fixed number of iterations like this is the simplest form of condition for the termination

mailto:0...@population.size

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

phase, but more sophisticated heuristics based on the quality of the population can be
used instead.

class GeneticAlgorithm
def run(steps)
steps.times { step }
return fittest(1).first
end
end

All that’s left is a simple genome to run the algorithm on, and you can test it out.
After that, you'll figure out what you need to run a real example, and then get your coin
problem up and running.

What'’s Required to Be a Genome?

Looking at the previous code, the requirements on your genomes are minimal. Each
must have a fitness method that returns a comparable value that they can be sorted by.
They also need a reproduce method that takes a list of population members and returns a
new member.

Let’s try to design the simplest possible genome to test the algorithm before you dive
into the full complexities of designing encodings and reproduction algorithms. This class
exists solely to exercise the GeneticAlgorithm class.

The fitness method is supposed to calculate its value from the genome’s genetic mate-
rial. In the coin problem, you'll need to run a simulation, and the fitness will be the average
number of coins your customers need to carry (actually, the inverse of the number of coins,
since you select for larger numbers but want to minimize the number of coins).

To test the algorithm here, though, the genome will just return the very number
you're using to encode the genetic information. This causes the genetic algorithm to
select genomes that are encoded as the largest binary numbers (that have 1s instead of 0s
in the most significant bits).

class DummyGenome
attr_reader :fitness

def initialize(information)
@fitness = information
end

def reproduce(mates)
return self
end
end

201

202

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

The reproduce method is also simplified. It returns a reference to the instance it is
called on. This lets you test your algorithm without implementing a mechanism for
combining parent genomes (crossover). These simplifications let you test out the
GeneticAlgorithm class.

ga = GeneticAlgorithm.new(10, 4) { DummyGenome.new(rand(8)) }
ga.run(10) » 6

You create a population of ten DummyGenome instances, four of which will be selected
with each iteration. You'll run the algorithm for ten iterations on a starting population
consisting of DummyGenome instances assigned an arbitrary fitness value between 0 and 7.

The end result? 6. Why not 72 Remember, your genome fitness values were assigned
arbitrarily. In this case, it appears that no 7s were in the initial population. Which brings
us back to the issue of genetic algorithms. In order to run the GeneticAlgorithm class on
anything more than test objects, you're going to need to implement a proper genome.

But let’s make one small improvement to the GeneticAlgorithm class before you call it
complete.

Remembering Winning Solutions

Consider the situation where the initial population has an extremely fit genome. It’s cur-
rently possible for successive iterations to lose or destroy this genome. You can avoid this
by always remembering the best genome the algorithm has seen yet.

class GeneticAlgorithm
def remember best
current = fittest(1).first
@best = current if @best.nil? || current.fitness > @best.fitness
end
end

You then integrate this code into the initialize and step methods, and make sure to
return @best from the run method.

class GeneticAlgorithm
def initialize(population_size, selection size)
@population = (0...population size).map{|i| yield i }
@selection size = selection size
remember_best
end

def step
survivors = fittest

mailto:@best.nil?
mailto:@best.fitness

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

@population = (0...@population.size).map do |i]
parent = survivors.random
parent.reproduce(survivors)

end

remember_best

return @best

end
end

def run(steps)
steps.times { step }
return @best

end

end

Now, even if the algorithm runs in a bad direction, it'll never accidentally make
things worse than the initial state. Of course, you certainly expect your algorithms to
produce better solutions than the starting state. But this buys you some freedom in the
selection process (you can take bigger risks and not worry about conserving good solu-
tions). It also means you don’t need to worry as much about crossover and mutation’s
ability to erase your solutions.

Okay, back to thinking about bit fields and ways you might encode your problem
domain.

Thinking About Encodings

You could implement your bit strings in a few ways. The simplest conceptually is probably
alist of boolean values. But you're going to encode them as integers. The two approaches
work in a similar fashion, but it's more common to encode the genome as integers. This
also gives you a chance to explore some of the features of Ruby integers.

Using Integers As Bit Strings

The Integer class already provides some good features for you. One nice aspect of Ruby’s
integers is that they already support bitwise indexing using the standard [] accessing
method.

203

mailto:0...@population.size

204

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

The number 5 is represented by the following bits (from the most significant to the
least significant): 101. At the zeroth index (the rightmost digit), you see that the first bit is
1. The second is 0, the third is 1, and all indexes beyond that (3, etc.) are 0. This gets you
part way to what you need, but you still need a way to combine two integers.

Playing with Crossover

It's time to start thinking about crossover. Remember that crossover is the process by
which two genomes produce a new genome. Happily, while crossover strategies need to
be implemented specifically for each underlying genome representation, they are general
purpose. So as long as a given problem (say the test code or the coin problem) can be
encoded for the genome implementation, the crossover methods you've implemented
will work seamlessly.

Since you're combining bits, you might naively try to use Ruby’s bitwise operations.
For example, bitwise “and” (spelled & in Ruby) produces a new number that only has 1s
for bits, where both input bits were also 1. Bitwise “or” (spelled | in Ruby) results in a new
number with 1s for bits, where either or both input bits were 1. Where both input bits
have a 0, the resulting bit is 0. Bitwise “exclusive or” (spelled * in Ruby) results in a new
number with a 0 for any bit where the two source bits are the same, and 1 for any bit
where the source bits are different.

0b0100 & 0b1100 == 0b0100 » True
4 & 12 == 4 » True
0b0101 & 0b1100 == 0b1101 » True
58& 12 == 13 » True
0b0100 * 0b1100 == 0b1000 » True
4 N 12 == 8 » True

Unfortunately, each of these approaches is flawed. By their very definitions, bitwise
“and” tends to produce numbers with fewer 1s, and bitwise “or” tends to produce num-
bers with more 1s. Since these genomes represent real solutions in your problem domain,
this kind of bias would be disastrous. Imagine if the reproduction step of the coin solver
genetic algorithm kept repeatedly producing certain inferior genomes because of a bias
like this!

“Exclusive or” is better because it at least tends to preserve the bit ratios (although
because a number combined using bitwise “exclusive or” with itself produces 0, there’s a
potential to accidentally converge on an all 0 population). The real problem is that these
solutions are too deterministic. Instead of looking to standard bitwise operations for inspi-
ration, let’s switch back to biology for inspiration. For example, in sexual reproduction,

a process called chromosomal crossover is used to synthesize new genetic combinations
from a given parent’s set of chromosomes. An offspring is provided with one of these new
genomes from each parent.

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

In the biological case, crossover is literal. Parts of one genome literally replace the
corresponding parts of other genomes and vice versa (although unaligned crossovers are
possible and can cause serious problems). Of course, our genomes aren’t diploid (they
don't have two sets of genetic material), but that doesn’t mean you can'’t use the notion of
chromosomal crossover to combine genomes. The fact that this strategy is such a good fit
(and is almost always used) is the reason that the phase of the algorithm where genetic
material is combined is usually referred to simply as crossover.

Modeling Crossover

Since you're using integers to model your numbers, you'll probably want to attach your
crossover methods to them somehow. Since you're only producing one new set of genetic
material, you can actually afford to think of the problem not as “swapping” strings of bits,
but as selecting strings of bits in turn from alternating parent genomes.

You'll start with the uniform crossover method. Using uniform crossover, each bit has
equal probability of coming from either parent. In order to implement this, you're going
to need to know how many bits are needed to represent a given number and you'll also
need a means of converting a list of bits back into a number.

module Enumerable
def bits to_int
(0...size).inject(0){|total, i| total + (self[i] * 2**i) }
end
end

class Integer
def bit size
raise "bit_size only valid for positive integers" if self < 0
to s(2).size
end
end

bits to size uses one of my favorite Ruby tricks. You create a Range object between
0 and the number of items, then take advantage of the fact that the Range class supports
Enumerable methods, and then use the result as a big list of indexes. You call inject to
transform the indexes into the binary values each value would represent if that bit was
part of a binary coded number. An inject with_index method could have avoided the
need to do this, but implementing a version that supplies indexes for every method in
Enumerable would get boring pretty quickly, while the preceding example works with no
fuss. Oh, and it goes without saying that the results are undefined if you call bits to_int
on a list that contains values other than 0 or 1.

205

206

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

As for bit_size, well, you're cheating here! In order to find out how many bits are
required to encode a number, you'll use the feature of Integer#to s, which lets you spec-
ify an output base. Then you just need to count up the characters. Of course, this is a slow
and complicated way to do things (for example, it only works for positive integers as the
raised exception should indicate).

The right way to do this would be to use a base two logarithm method. Unfortunately,
even though Matz okayed the addition of a 1log2 method to Ruby, the method hasn't made
it into a released version of Ruby. (See http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/
ruby/ruby-talk/191465 for more information.)

You could implement it using log or 1log10, but using to_s works well enough. Note
that I've given myself permission to use a string exception here, since the method’s means
of calculating log2 is convoluted enough that it won't find its way into larger circulation.

Uniform Crossover

Given those helpers, here’s the uniform_crossover method.

class Integer
def uniform_crossover(other)
max_bit size = [self.bit size, other.bit size].max
decision = rand(2**max_bit size)
crossover when(other) {|i| decision[i] == 0 }
end
end

You first figure out which integer has the largest bit size. You then generate a random
number large enough to hold the same number of bits as the largest of the two integers.
The actual crossover is performed by the crossover when method.

The idea is that you'll pass in a block that will be called with the index of the current
bit. If the block returns true, you'll switch which source you're currently reading bits
from. You'll keep reading bits from that source until the next time the block returns true.

class Integer
def crossover when(other)
max_bit_size = [self.bit_size, other.bit_size].max
one, two = self, other
result = (0...max_bit size).inject(0) do |total, 1i|
one, two = two, one if yield(i)
total + (2**i * one.to_i[i])
end
return result
end
end

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

You can get away with using the notion of “switching” because the probability of a
switch each time is always 50 percent, so in the end it’s no different than randomly select-
ing a source for each bit. But the real reason you've implemented it this way is to make it
easier to implement another kind of crossover.

So far you've been using uniform crossover where each bit can be randomly selected
from either parent. What if, instead, you took whole chunks of bits from one parent or the
other?

Point Crossovers

Point crossovers only switch sources a few times during crossover. This lets larger chunks
from previous genomes continue to exist in their descendants. The chance of “good”
structures being utterly destroyed during crossover is lowered by this kind of crossover.

class Integer
def point crossover(other, n)
possible points = (0...bit size).to a
points = []
n.times { points.push(possible points.delete at(rand(possible points.size))) }
crossover_when(other){|i| points.include?(i) }
end

def one point crossover(other)
point crossover(other, 1)
end

def two point crossover(other)
point crossover(other, 2)
end
end

You implement point crossover by generating a list of all possible crossover points.
You then select as many of them as requested. You implement this selection in such a
way that no point can be chosen more than once (because you remove them from the list
after selection). You then call the crossover_when method with a block that will return true
only if the given index was one of your selected points, thus triggering a crossover.

Since one- and two-point crossovers are relatively common, you might as well give
them convenience methods. However, while proper crossover will ensure that good
genomes are combined to (hopefully) produce new genomes, crossover can't introduce
every desired variation. Consider a population where all the genomes contain a 0 in the
first bit. Just using crossover, there’s no way for that bit to ever get set to 1. You need to fix
this before you can successfully run a real simulation.

207

208

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

Using Mutation

To help encourage diversity, you're going to need mutation. Mutation (which occurs in
real biology all the time) is the random altering of genetic values. You'd like to just keep
grafting methods onto the Integer class to do all the hard work.

class Integer
def mutate(prob)
decision = rand(2**bit size)
mutated = (0...bit size).map{|i| decision[i] == 0 ? self[i] : self[i] ~ 1}
mutated.bits to_int
end
end

Considering the following, as it seems to work:

5.mutate(0.25) » 5
5.mutate(0.25) » 1
5.mutate(0.25) » 5
5.mutate(0.25) » 7

Unfortunately, there’s a problem. bit_size returns the number of bits needed to
encode the number. Unfortunately, this is not actually the same as the size of your con-
ceptual bit space. For example, if you've decided that your genome value uses 3 bits (and
can therefore encode up to a 7), youd like bit_size to return 3. But if you call it on a num-
ber like 1, you'll only get a bit size returned of 1. After all, you can code the number 1 in
1 bit with no problem.

But if the code thinks the size is only 1, the top two bits will never mutate! So you're
going to need to start explicitly tagging bit fields with their length so that bit size can
return the intended value. Having to set this at the instance level would be a pain, so let’s
look at what you need to do to create a subclass of Integer with a predefined number of
bits. You won't actually enforce a limit; you'll just use the number to return the right num-
ber of bits from bit_size. In the process, you're going to encounter some weird stuff
about the Integer class.

Subclassing Integer

Unfortunately, while you can subclass Integer, you may not get the results you expect.
Because Integer is layered on the “value class” Fixnum, there’s no way to construct a new

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

instance explicitly. All references to a given integer actually refer to the same underlying
instance. In that context, initializing a “new” Integer doesn’'t make sense.

class MyInt < Integer
end

MyInt.new » NoMethodError: undefined method 'new' for MyInt:Class
MyInt.allocate » NoMethodError: undefined method 'allocate' for MyInt:Class

Instead, you'll need to use delegation. Delegation is when one object wraps another
object and passes method calls through to the wrapped object. This lets the delegate
implement methods of its own but also forward some method calls straight on to the
proxied object. Ruby even gives you some tools to make this process automatic. Using
the delegate library and its DelegateClass makes the process nearly transparent (it almost
looks just like subclassing!).

require 'delegate’
class BitInt < DelegateClass(Integer)
def bit_size
self.class::BIT_SIZE
end
end

bi = BitInt.new(5)
bi + 4 >» 8
bi.bit size » NameError: uninitialized constant BitInt::BIT SIZE

Hmm, but bit_size still doesn’t work, and you need integers tagged with sizes to get
mutation to work! You've made the bit size method read from a class constant, a class
constant you've left undefined.

Subclassing BitInt

In order to set BIT_SIZE, you'll want to subclass BitInt. It’s lot of inheritance, but doing
it this way means that you can have multiple BitInt subclasses that each have different
bit sizes.

class BitInt8 < BitInt
BIT SIZE = 8
end

209

210

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

Of course why can't it be even simpler? Check out this class method:

class BitInt
def self.sized(bits)
subclass = Class.new(self)
subclass.const_set(:BIT SIZE, bits)
return subclass
end
end

sized is a class method. It uses the optional parameter to Class.new to create sub-
classes of the class it’s called on. Then it uses the const_set method to declare BIT SIZE
and returns the subclass. Now all you need to write is this:

BitInt8 = BitInt.sized(8)
While you're at it, you might want to add some checking to BitInt’s initialization.

class BitIntAbuseError; end

class BitInt
def initialize(value)
raise BitIntAbuseError.new("Please subclass BitInt!") if self.class == BitInt
raise BitIntAbuseError.new("BitInt values must be positive") if value < 0
super(value)
end
end

The constructor raises an exception if the value is negative or if someone is trying to
directly instantiate BigInt without subclassing first. This trick lets you encapsulate the
process of creating new subclasses and keeps the code readable. If you settle on a fixed
size encoding for a given genome, you can simply declare a new subclass using the sized
class method. And because this functionality is exposed as a method, you can also write
code that easily creates subclasses on the fly to represent differently sized data.

Wrapping BitInt Return Values

There’s only one problem left. Because it’s a delegate, methods delegated to Integer return
Integer values. You'll need to wrap any results youd like to return in instances of BitInt
subclasses explicitly. This matters most for any method that will be used during reproduc-
tion to make a new genome (like crossover methods and your newly defined mutate).

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

Ideally, you'd only need to wrap crossover when because it generates the new
instance. But here’s where delegation can bite you if you're not careful. Because
crossover_when is called from inside the Integer class, redefining it in the delegate won't
affect calls that originate from inside Integer. So you'll need to wrap each individual
crossover method plus mutate.

class BitInt
def uniform crossover(other); self.class.new(super(other)); end
def one point crossover(other); self.class.new(super(other)); end
def two_point crossover(other); self.class.new(super(other)); end
def point crossover(other, n); self.class.new(super(other, n)); end
def mutate(prob); self.class.new(super(prob)); end

end

With a generic skeleton for running genetic algorithms and a delegate for Integer
that supports crossover and mutation for genome representation, you're ready to return
to the problem from Chapter 4.

Making Change . . . Again!

Since you've already got an interesting problem and simulator, let’s return to the
change-making simulation from Chapter 4. Here’s the problem again (in case you've
been skipping around, which, of course, is encouraged!): prices being what they are and
assuming cashiers make optimal change, what is the average number of coins someone
will end up carrying if he pays intelligently? You explored the possible coins you could
add or replace existing coins with to reduce that number.

I've included a copy of the source from Chapter 4 in this chapter’s source code
bundle. Remember the simulator was called like this:

purchases = 400

coins = [1, 5, 10, 25]

price list = I0.readlines("prices.txt").map{|price| price.to i }
prices = Prices.new(*price list)

sim = ChangeSimulator.new(prices, *coins)

sim.run(purchases)

You're going to need to encode the coin list in the genome, but you're also going to
need to pass around most of those parameters. The situation is actually a lot like BigInt.
You'd like to parameterize a subclass of the ChangeGenome. Since you're inheriting from

211

212

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

BitInt anyway, let’s wrap up the parameterization in another method that does the
subclassing for you.

class ChangeGenome < BitInt
def self.given(prices, purchases, number of coins, bits per coin)
bits = (number of coins - 1) * bits per coin
subclass = self.sized(bits)
subclass.const_set(:PRICES, prices)
subclass.const_set(:PURCHASES, purchases)
subclass.const_set(:NUMBER_OF COINS, number of coins - 1)
subclass.const_set(:BITS_PER_COIN, bits per coin)
return subclass
end
end

Notice how it automatically calculates the number of bits you want as the number of
coins (minus the mandatory 1-cent coin) times the number of bits you'd like to use per
coin for encoding.

Choosing an Encoding

Picking a bits_per coinvalue will be tricky. You'd really like to encode a range from 2 to
99, but unfortunately that’s not an option. Using 6 bits gets you 64 distinct values. Using
7 bits gets you 128. For now, stick with 6 bits, since that will cover coins from 2 to 65,
which shouldn’t get in your way (good systems with very large coins are rare).

You can reuse the old reproduce method.

class ChangeGenome
def reproduce(mates)
mate = mates.random
return uniform crossover(mate).mutate(0.25)
end

def fitness
sim = ChangeSimulator.new(self.class::PRICES, *denoms)
return 1.0/sim.run(self.class: :PURCHASES)
end
end

But this is your first real fitness method. And in order to use the simulator, you need
to turn the bit string into a list of coin denominations.

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY 213

Tip Notice how you divide 1.0 by the simulation result. Remember that the simulator returns the average
number of coins the simulated person would have in his pockets at any given time. If you didn’t take the
reciprocal of the number, you’d be solving for the coin system that causes the heaviest pockets.

It calls the denoms method, which unpacks the denominations from your genome and
returns a simple ordered list of coins (including the required 1-cent coin). I've defined
some helper methods to retrieve constants from the appropriate class as well.

class ChangeGenome
def num
self.class::NUMBER_OF_COINS
end

def bpc
self.class::BITS PER _COIN
end

def denoms
coins = [1] + (0...num).map do |i]
starting = 1 * bpc
ending = (i + 1) * bpc
value = unpack(starting, ending) + 2
end
coins.sort
end
end

You calculate indexes where the bits for any particular coin’s representation begin,
and then use a method named unpack to extract the number (normalized to start at 2)
from the appropriate bits. The unpack method looks very similar to other bit-to-number
conversions you've done.

class ChangeGenome
def unpack(starting, ending)
num = ending - starting
(0...num).inject(0) do |total, i|
total + (self[starting + i] * (2**i))
end
end
end

214

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

And just for convenience, let’s add a class method to create a random ChangeGenome
with the appropriate bits.

class ChangeGenome
def self.new_random
bits = self::NUMBER OF COINS * self::BITS PER COIN
return new(rand(2**bits))
end
end

The method first calculates the bits, then create a new genome. This is enough to run
the first simulation, so shall we?

Running the Simulation

Here’s the basic code:
require 'change’

number = 3
purchases = 400
bpc = 6

price list = I0.readlines("prices.txt").map{|price| price.to i }
prices = Prices.new(*price list)

ChangeGenomeNumber = ChangeGenome.given(prices, purchases, number, bpc)
ga = GeneticAlgorithm.new(10, 7) { ChangeGenomeNumber.new_random }
puts ga.run(20).denoms.inspect » [1, 7, 17]

Excellent. One quick fix stands out immediately. Caching your previous results for a
given set of coins prevents you from needlessly rerunning costly simulations. Admittedly,
the first result isn’t guaranteed to be “representative,” but you only ran simulations once
for each combination during your brute force exploration, so this is not a new inaccuracy.

So here’s how you'll memoize the fitness method. You'll start by creating a class
constant named CACHE during subclassing and add a helper method to access it. Class
constants are often useful because each subclass can have its own separate constant,
unlike class variables (written as @@cache), which are shared down the inheritance tree.

class ChangeGenome
def self.given(prices, purchases, number of coins, bits per coin)
bits = (number of coins - 1) * bits per coin
subclass = self.sized(bits)

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

subclass.const_set(:PRICES, prices)
subclass.const_set(:PURCHASES, purchases)
subclass.const_set(:NUMBER_OF_COINS, number_of_coins - 1)
subclass.const_set(:BITS_PER_COIN, bits per coin)
subclass.const_set(:CACHE, {})
return subclass

end

def cache
self.class::CACHE
end
end

You can then tweak the fitness method to use the cache:

class ChangeGenome
def fitness
coins = denoms
if I cache.key?(coins)
sim = ChangeSimulator.new(self.class::PRICES, *coins)
cache[coins] = 1/sim.run(self.class: :PURCHASES)
end
return cache[coins]
end
end

Running 400 purchases on a size 10 population and size 7 survivor population using
a 6-bit per coin genome with 3 coins for a total of 20 iterations took 1 minute 41 seconds
without caching. With caching, that time is down to 41 seconds on my laptop. Not a bad
little speed boost!

Looking at the Results

All of the following results were obtained running 400 purchases per simulation, 6 bits
per coin, a population of 20, and a survivor population of 15.

In the previous chapter, you fully explored the optimal three-coin problem. There
were no guarantees that you'd found the “one true answer,” since you randomized the
price list for each simulation. But to provide an easy comparison, I reran the brute force
check on the three-coin problem. It took 36 minutes and selected a coin set (1, 14, and
22) with an average pocket weight of 4.98. Meanwhile, the simple 50-round genetic algo-
rithm selected a coin set (1, 15, and 19) with an average pocket weight of 5.06. But it took
only 17 seconds to run!

215

216 CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

In addition, the five-coin simulation (which was too intensive to be run before) can
now be explored within a reasonable time. In 50 iterations, it comes up with an average
pocket weight of 3.31 for the coins 1, 4, 11, 16, and 49. This took 3 minutes 15 seconds. For
comparison, [rewrote the brute force search to only generate permutations as needed and
let it run for the same length of time. This partial brute force search selected 1, 2, 4, 19, and
30 with the larger average weight of 3.50.

Take these results with a grain of salt, since randomizing the price list sometimes
prevents them from being directly comparable. But hopefully they explain why genetic
algorithms can be so useful!

Adding Further Improvements

There’s a lot you can still do to tweak your algorithm. Here are some more tricks you
can try.

Dealing with Invalid Genomes

You'd really like to resolve the problem of invalid genomes. It’s frustrating to be able to
solve the coin problem only for denominations valued up to 65. If you used a 7-bit encod-
ing, you'd have 128 possible encodings, but you'd only need 98 of them (2 through 99).

In order to get around the problem, you'd need a policy about what to do when an
invalid genome is generated. For example, you could allow invalid genomes, but then
assign them a fitness of 0. Another option might be to discard them at generation time,
repeating reproduction until a valid genome is generated. Or you could attempt to cor-
rect the genome and convert it into a valid encoding.

Unfortunately, each of these strategies risks subtly skewing your results. Penalizing
the offspring of any particular sort of genome (in particular the genomes that are valid
themselves but are very close to invalid genomes) will risk diverting exploration of the
nearby space. This is why you stuck with a 6-bit range earlier. Since the numeric range
produced should be sufficient, you can avoid these biases. But if you really needed to
solve for the coin denominations all the way between 2 and 99, you'd have to deal with
the problems associated with using all 7 bits and risk possible skew.

Letting Parents Live On

One interesting variant allows parents to live on to the next generation. This preserves
some of the best genomes for future rounds of reproduction, thus exploring the space
around them more thoroughly. Adding this kind of multigenerational survival to your
algorithm is easy.

Here’s a straightforward modification to the step method:

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

class GeneticAlgorithm
def step
survivors = fittest
num_old = @population.size / 2
num_new = @population.size - num_old
population old = (0...num old).map{ survivors.random }
population_new = (0...num_new).map do |i|
parent = survivors.random
parent.reproduce(survivors)
end
@population = population_old + population_new
remember best
return @best
end
end

In the preceding code, half of each new population is directly from the previous
generation and half belong to the new generation.

Experimenting with Gray Code

So far I've taken the binary number system for granted. I haven't really discussed what
using the standard unsigned binary encoding really means. The simple binary encoding
is not the only game in town. There are other ways to encode numbers as bits.

One of these systems, named Gray code, has some very interesting properties. Gray
code is built around the notion that you should never need to flip more than one bit to
raise or lower a number by one. You can implement this several ways in practice, but it’s
often done using the rule that to increase a number, you toggle the bit farthest “right”
(talking about least and most significant bits is deceptive with Gray code) that will pro-
duce a yet unused representation.

I'll talk about why this single-bit adjacency is good for genetic algorithms in a
minute. But first some examples. Here are the first seven numbers in Gray code as previ-
ously described. The left bit is the least significant in the following Gray code numbers:

Decimal Binary Gray Code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

217

mailto:@population.size
mailto:@population.size

218

CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

Weird, huh? So why is Gray code so interesting for genetic algorithms? One problem
with traditional binary encodings is that there are certain numerical barriers between
values. In order to convert a 3 into a 4 in two’s complement, you must flip three bits.

Because you never need to flip more than one Gray code bit to reach the next con-
secutive integer, Gray code makes it easier for genetic algorithms to walk toward better
solutions. But there are side effects as well. Gray code also enables mutation to change
numbers dramatically. In two’s complement, the largest number you can convert 000 into
with a single flip is 100 (also known as 4). But with Gray codes, you can turn 000 into 100,
which represents 7!

There’s been a lot of research into using Gray codes with genetic algorithms. What
would you need to do to try out Gray codes? Start by subclassing the venerable BitInt:

class GrayBitInt < BitInt
def from gray
bits = [0]
indices = (0...bit size).to a.reverse
indices.each{|i| bits.unshift((self[i] + bits.first) % 2) }
bits.bits to int
end
end

The only new method is the from gray method. The algorithm is a little bit tricky, but
basically each bit (starting from the leftmost, known as the most significant in two’s com-
plement) is the sum (modulo 2) of that bit in the raw representation and the previously
converted bit (use 0 for the previously converted bit on the first iteration).

Let’s calculate the bits for 10. You start with the leftmost bit 1. You add it to 0 (since
this is the first iteration), and mod it by 2 (to produce a value that is 1 or 0). Thus the first
bitis 1. You then take the next bit (0) and add it to the previous result bit (1). You mod by 2
and get 1. Thus your binary two’s complement representation is 11, also known in deci-
mal as 3.

The code does this exact operation, but with a few tricks. You initialize your list of
final bits starting with a 0. You'll insert bits at the beginning of the list as you go, so this
is essentially a right padded 0, which will have no effect on the final outcome. It makes
looking at the previous result bit simple, though.

You then generate a list of all the indexes (in reverse) for the bits. Each is added to the
result of the previous, modded by 2 (just as in your algorithm), and then you use the Ruby
array’s unshift method to insert the new bit at the beginning of your bit list. At the very
end, the bits are turned back into an integer and returned.

All you need to do to put this to work is to subclass GrayBitInt and call from gray
on each genome before you unpack the value for fitness computation. Reproduction,
crossover, and mutation should all happen with the original encoding.

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

class ChangeGenome < GrayBitInt
def unpack(starting, ending)
value = from_gray
num = ending - starting
(0...num).inject(0) do |total, i|
total + (value[starting + i] * (2**i))
end
end
end

That’s all that’s needed. Of course, encodings are not the only area that need
improvement.

Roulette Selection

A genetic algorithm doesn’t simulate biological evolution; it merely takes inspiration
from it. The algorithmic definition of fitness underscores this distinction. In real evolu-
tion, fitness is an emergent property of the system. However, even though it’s not a direct
translation doesn’t mean you shouldn’t look to real evolution for improvements. One
problem so far is that you've been deterministically selecting the best candidates in each
round. In real life, there is significantly more chance in the selection/survival process. By
culling all of the least-fit genomes in each round, you're robbing the algorithm of a major
source of diversity that might ultimately provide even better solutions.

Roulette selection is a popular remedy. Picture, if you will, a roulette wheel. Assign
each genome to a portion of the wheel sized in proportion to the genome’s fitness. Now,
you spin the wheel, but instead of a marble or a pointer, consider the case where you
have an arbitrary number of pointers in the center. The distance between each pointer is
equidistant, so they all point outward like star or the spokes of a wheel. Thus every spin
selects a whole batch of evenly spaced genomes. And, of course, the probability of selec-
tion is directly linked to a given genome’s fitness (as represented by its size).

Following is an implementation of roulette selection. It uses two helper methods. The
shuffle method randomly reorders a list of elements and helps avoid any ordering bias.

module Enumerable
def shuffle
sort by { rand }
end

def weighted_ranges
total = 0.0
ranges = map do |item|
value = yield(item)
start = total

219

220 CHAPTER 7 " GENETIC ALGORITHMS IN RUBY

total += value
[start, value, item]
end
return total, ranges
end
end

The weighted ranges method uses the supplied block to calculate the value of each
element. Then it assembles a list of triples. Each triple contains the start of an item’s posi-
tion in the ring, its length, and the item itself. When it’s done, total conveniently contains
the size of the wheel’s circumference.

module Enumerable
def roulette(n, &block)
total, ranges = weighted ranges(&block)

pointer = rand * total
interval = total / n

selected

(]

while true
ranges.each do |start, length, item|
if start <= pointer && pointer < start + length
selected.push(item)
pointer = (pointer + interval) % total
end
return selected unless selected.size < n
end
end
end
end

The roulette method uses the calculated ranges and picks a starting point around
the ring (pointer). Then it calculates the spacing between this pointer and all the other
virtual pointers you'll consider to exist evenly spaced around the center of your ring.

And finally, it loops as many times as it needs to through this list of ranges and values
until it finds the right one that matches the pointer. Then it increments the pointer by the
interval and finds the next selection. When it’s built the full list, it returns it. Here’s an
example:

[1, 2, 3, 4, 5, 6, 7].roulette(2){|x| x}

CHAPTER 7 © GENETIC ALGORITHMS IN RUBY

Notice that you needed to supply a block for value computation. And here’s the
modification you'd need to use it in the GeneticAlgorithm class:

class ChangeGenome
def fittest(n=@selection size)
@population.roulette(@selection size){|genome| genome.fitness }
end
end

See how easy it was to integrate that into your system? One of the interesting things
about genetic algorithms is the sheer diversity of improvements or customizations you
can make.

Summary

In this chapter, you implemented a harness for running genetic algorithms. You also
explored how to use Ruby integers to implement a genome class. You looked at various
means of implementing crossover and how to encode your problem domain in a genome.
Best of all, you put the genetic algorithm to use on the change problem from Chapter 4
and compared the solutions to the results of a brute force search.

However, you've barely scratched the surface of genetic algorithms. If you'd like to
learn more, there are a number of good papers available on the Internet. A good place to
start is Darrell Whitley’s survey of genetic algorithms titled “A Genetic Algorithm Tutorial.”
You can find the paper online at his web site: www.cs.colostate.edu/~genitor/Pubs.html.

There are still a ton of tweaks left, including everything from tracking and preventing
incest to simply avoiding the introduction of duplicates. You can fiddle with your algo-
rithm for hours, but, of course, don't forget: the whole point is problem solving!

221

http://www.cs.colostate.edu/~genitor/Pubs.html

CHAPTER 8

Implementing Lisp in Ruby

All the hip hackers seem to be talking about Lisp these days. Not a lot of them are using
Lisp, but they're definitely talking about it. Why? Well, there are a lot of reasons. Despite
its age (it was invented by John McCarthy in 1958!), most Lisp implementations have all
the features that programmers demand of modern languages, like garbage collection and
closures. But Lisp also has a powerful homoiconic syntax that makes macros, code gener-
ation, and metaprogramming incredibly easy. Of course, it’s no silver bullet, but learning
Lisp can be a great educational experience.

Note Homoiconic means that a language’s syntax is represented by that language’s basic data struc-
tures. For example, Lisp’s syntax consists of symbols and lists.

It’s a rite of passage to implement your own Lisp interpreter. A lot of the language’s
intricacies only become apparent once you get under the hood. The exercise is typically
done in Lisp itself, but unless it is your primary language, you're not necessarily going to
get everything out of the exercise that you can. Since you're reading this book, chances
are you know Ruby pretty well. So I'm going to go ahead and buck tradition by imple-
menting Lisp in Ruby.

In this chapter, you'll explore how to implement the standard Lisp data types, man-
age variables and environments, implement the intertwined eval and apply functions,
supply special forms to the language, learn about s-expressions, write the basic Lisp
primitive functions, build support for closures and macros, and even make it easy for
Ruby and Lisp to interoperate!

If it sounds like a lot, don’t worry! You'll take it one step at a time. And when you're
done, you'll have your own Lisp—not to mention a window into the world of program-
ming language implementation.

223

224

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

Learning Lisp

If you haven’t had a chance to learn Lisp yet, you've got a lot of fun ahead of you. Learn-
ing Lisp probably won't change your life, but it sure is interesting. If you need somewhere
to start, I recommend beginning with a dialect named Scheme. Lisp comes in a few fla-
vors these days, the most popular of which are named Common Lisp and Scheme. In
turn, each of these language variants has a variety of implementations you can download
and run on your computer.

Probably the most interesting book about Lisp is titled Structure and Interpretation
of Computer Programs, Second Edition, by Harold Abelson and Gerald Jay Sussman (MIT,
1996), shortened in hacker pop-culture to SICP. Another interesting book is Practical
Common Lisp by Peter Seibel (Apress, 2005), which tackles the Common Lisp dialect in
a project-oriented manner (similar to this book). However, both are large books, so I've
included a guide to Lisp (see the sidebar titled “Lisp Basics”) at the end of the chapter.

If you're quite familiar with Lisp, just keep reading. Otherwise, you should flip to the
overview of the language. Without some basic Lisp knowledge, this chapter might be hard

going!

Choosing Your Lisp Data Types

A working Lisp interpreter doesn’t really require that many data types. You're going to
need symbols, conses (constructs), and functions at the minimum. You'll probably also
want numbers and strings. It's possible to implement numbers and strings only using
symbols and conses, but since you have nice Ruby implementations available, just steal
those. You can reuse Ruby’s symbols, as well, but you're going to need to implement
conses yourself.

Note Quick refresher about symbols. A symbol is an archetypal representation of some text. Ruby symbol
literals are prefixed by a colon and are immutable. For example, while the string "foo" is a string that hap-
pens to contain the word “foo,” the symbol : foo actually represents the word “foo.”

Building Cons Cells

A cons cell (sometimes just called a cons) is just a pair of values as illustrated in Figure 8-1.
You can get the first element of a cons using the car function. You can get the other element
of a cons using the cdr function. Cons cells are created with a function named cons.

CHAPTER 8 " IMPLEMENTING LISP IN RUBY

Note So what’s up with the strange names? cons is just an abbreviation for “construct.” But car and
cdr are a little weirder. They’re named for the assembly instructions that were used to retrieve the first and
second half of a machine word on the IBM 704, the machine Lisp was originally designed for. car stands for
Contents of Address of Register and cdr stands for Contents of Decrement of Register.

Building a Cons class in Ruby is pretty easy.

class Cons
attr reader :car, :cdr
def initialize(car, cdr)
@car, @cdr = car, cdr
end
end

Here are some usage examples:

c = Cons.new(1, 2)
c.car » 1
c.cdr » 2

1 2
Y ¢

CAR CDR

(Cons Cell)

Figure 8-1. A cons cell points to two values.

225

226

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

d = Cons.new(1, Cons.new(2, Cons.new(3, :nil)))

d.car » 1

d.cdr » #<Cons:0x32e810 @cdr=#<Cons:0x32e824 @cdr=:nil, @car=3>, @car=2>
d.cdr.car » 2

d.cdr.cdr.cdr » :nil

Look closely at Figure 8-2. A list in Lisp is nothing more than a sequence of conses,
each contained in its predecessor’s cdr and ending with the symbol nil, as in the preced-
ing code sample. So d is a list containing the numbers 1, 2, and 3.

1 2 3
f ! !

]
CAR CDR P CAR CDR P CAR COR |—Pp» nll

(Cons Cell) (Cons Cell) (Cons Cell)

Figure 8-2. A list containing the numbers 1, 2, and 3 built from cons cells and terminated
with a nil value

The cons structure is the backbone of any Lisp implementation, and your interpreter
will be no exception. Before you're done, you'll need to add some additional methods to
your Ruby cons object, but let’s move on for now.

Saving Values in the Environment

Most programming languages are built around the notion of an environment that binds
symbolic names to values. In Lisp, you'll just use symbols to name the values in your
environment. While symbols are prefixed with a colon in Ruby, a plain bare word is con-
sidered a symbol in Lisp.

A Lisp implementation works by getting the value of (or evaluating) an expression. I'll
talk more about this in the section titled “eval.” But there are different rules for evaluating
different types. When symbols are evaluated, though, the value stored in the environment
under that symbol name is returned. If there’s no value stored under that name, it is con-
sidered an error.

(define a 1)
a>» 1

CHAPTER 8 " IMPLEMENTING LISP IN RUBY

To support this notion of environments and bindings, you're going to need to have
a Ruby environment class. You'll need to be able to define bindings, set bindings, and
lookup bindings. All the keys in this structure will be symbols.

At first it seems like you might just be able to get away with using a hash table, but
there’s one more feature to support. You're going to be implementing a form of scoping
known as lexical scoping. Lexical scoping means that variable references retrieve their
values from the nearest lexically enclosing block in the source code where the variable is
defined. In order to do this right, you need the ability to chain your environments. An
example might help:

(define var 1)
(define f (lambda (x) var))
(f2)»1

So the environment of f is going to be chained to the root environment (see Figure 8-3).
When a lookup fails in f’'s environment, the root environment will be checked as well.
Technically, only the values in the root environment at the time they were defined should
be accessible, but I'll talk more about that in the section titled “Saving the Environment.”

(Root Environment)

var = 1

(Lambda References Its Environment)
f = (lambda ...)

1

(Environment Chaining)

(F's Environment)

Figure 8-3. An example of environment chaining

Note Ruby uses lexical scoping (with a few strange corner cases), as do most other modern languages.
But it wasn’t always that way. Lexical scoping didn’t appear in Lisp until version 1.5, and it didn’t become
the default in any version of Lisp until Scheme. Sometimes good ideas take a while.

227

228

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

So given the need to support environment chaining, the constructor of your environ-
ment class probably should look something like this.

class Env
def initialize(parent=nil, defaults={})
@parent = parent
@defs = defaults
end
end

Each Env has a parent that is nil by default. Lookups and set operations will be chained
to the parent. A new Env can also be passed a hash table to be used as its starting set of defi-
nitions. The define method is the easiest of the four I'll be providing, so let’s start with it.

class Env
def define(symbol, value)
@defs[symbol] = value
return value
end
end

A call to define sets the definition for a given symbol. Actually, define could bind a
value to any kind of object, not just a symbol. But you'll be sticking to symbols. At this
point you're basically just wrapping the @defs hash table.

If you wanted, you could throw an exception if someone tried to define a variable
that has already been defined in this scope, but I don't see any reason why the interpreter
shouldn'’t allow the following code, so you can leave things as they are.

(define a 1)
(define a 2)

Now let’s implement the defined? method. This will check to see if a symbol is
defined in the environment.

class Env
def defined?(symbol)
return true if @defs.has_key?(symbol)
return false if @parent.nil?
return @parent.defined? (symbol)
end
end

If the binding is stored in the current environment’s @defs hash, then the symbol is
defined. If it’s not and this environment doesn’t have a parent, then it isn’t defined. If,

mailto:@defs.has_key?
mailto:@parent.nil?
mailto:@parent.defined?

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

however, the symbol is not in the hash table, but the environment does have a parent, it
asks the parent if the symbol is defined in its table and returns the answer. Here’s some
Ruby code to test what you've written so far:

e = Env.new
e.defined?(:var) » false
e.define(:var, 1)
e.defined?(:var) » true

Of course, you're going to want to know more than just whether a symbol has a value.
You're also going to want to know what that value is!

class Env
def lookup(symbol)
return @defs[symbol] if @defs.has_key?(symbol)
raise "No value for symbol #{symbol}" if @parent.nil?
return @parent.lookup(symbol)
end
end

The lookup function is patterned on the defined? method. However, instead of
returning true or false, it returns the value or throws an exception. If it exists in the @defs
hash, then return it. If it doesn’t and the environment has no parent, throw an error.
Otherwise, return the lookup from the parent Env. Here’s an example in Ruby:

e = Env.new

e.define(:var, 1)

e.lookup(:var) » 1

e.lookup(:var2) » RuntimeError: No value for symbol var2

And last but not least, you'll need to be able to change the values stored in an
environment.

class Env
def set(symbol, value)
if @defs.has_key?(symbol)
@defs[symbol] = value
elsif @parent.nil?
raise "No definition of #{symbol} to set to #{value}"
else
@parent.set(symbol, value)
end
end
end

229

mailto:@defs.has_key?
mailto:@parent.nil?
mailto:@parent.lookup
mailto:@defs.has_key?
mailto:@parent.nil?
mailto:@parent.set

230

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

It’s the same basic pattern again. If the binding already exists, change it; otherwise,
try to change the value in the parent environment.

Understanding eval and apply

The archetypal design for a Lisp interpreter consists of two complementary functions
(see Figure 8-4). These functions are named eval and apply. eval (which is short for evalu-
ate) gets the values of expressions. apply calls functions. That’s all there is to it, seriously.

Figure 8-4. The circular relationship between eval and apply

eval

Let’s think about eval first. I've talked about a few basic types already, like numbers and
strings, as well as symbols and conses. Numbers and strings evaluate to themselves.
Since the interpreter reuses Ruby’s numbers and strings, all you need to do is add a

lispeval method to each. Using Ruby’s “monkeypatching” capability, it’s easy to add this
method to existing classes.

class Numeric
def lispeval(env, forms)
self
end
end

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

class String
def lispeval(env, forms)
self
end
end

But at this point, it's worth wondering if you'll be stealing other Ruby types at some
point. Instead of adding 1ispeval to each type you might want to use, just add a default
lispeval method to Object that returns self. (You can delete the 1ispeval methods on
Numeric and String now.)

class Object
def lispeval(env, forms)
self
end
end

Notice that the lispeval method takes two parameters that I've named env and forms.
These aren’t used in the default lispeval method.

1.lispeval(nil, nil) » 1
"foo".lispeval(nil, nil) » 1

The evaluation method for the Symbol class is a little more interesting. In Lisp,
unquoted symbols evaluate to the value stored in the environment under their name.
This is where the env parameter to the 1ispeval method comes in.

class Symbol
def lispeval(env, forms)
env. lookup(self)
end
end

You take the environment passed into the 1ispeval method and look up the symbol
that is being evaluated in it. This will return the value stored in the environment, if such a
value exists; otherwise, it will throw an error. Let’s play around with this in Ruby.

e = Env.new

e.define(:a, 1)

:a.lispeval(e, nil) » 1

:b.lispeval(e, nil) » RuntimeError: No value for symbol b

231

232

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

You're astonishingly close to a working Lisp interpreter at this point. You've provided
evaluation methods for three of the four literal values the interpreter offers (numbers,
strings, and symbols). The last type that needs a lispeval method is cons.

Arbitrary cons expressions don't necessarily have a valid evaluation. However, there
is a rule for evaluating cons structures that are valid lists. For example, the following cons
list containing a + symbol and two numbers has a valid evaluation.

(+12)

The numbers will evaluate to themselves, the symbol + will evaluate to whatever is
stored in the environment at the slot +. And last but not least, you will trigger the other half
of the evaluator and attempt to “apply” the value returned from evaluating + to the values
1 and 2, which were the result of evaluating 1 and 2. By the time you've finished your work,
the end result will hopefully be 3, but you're not quite there yet.

apply

In the classic “build your own” Lisp interpreter, eval and apply are written as functions
that use the Lisp cond to decide what to do. This interpreter takes a slightly different
approach and uses Ruby’s class-based dispatch to let Ruby do the hard work of decision-
making for you. For example, with eval, you can simply call foo.lispeval(env, forms),
and if foo is a number, you'll get the number back; but if foo is a cons, the cons will be
evaluated using the rules for conses.

You're going to use the exact same model for apply. In fact, Ruby already has a built-
in apply method for its own callable values like instances of Proc and Method classes. Ruby
names the method call instead of apply, but the meaning is the same. The procedure is
triggered, and the arguments to call/apply are used as its arguments.

You could define a 1ispapply method for the objects in your interpreter, but reusing
the name call saves you some trouble. Here’s an example of how this already works
in Ruby:

a = proc{ "hello" }
a.call » "hello"

b = proc{|x| x + 2}
b.call(3) » 5

c = 3.method(:+)
c.call(1) » 4

You can probably see how you're going to implement primitive functions in the inter-
preter. All you need to do is store Ruby Proc objects in the environment. Ruby Proc objects

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

can also be defined with the lambda method instead of the proc method, a convention
inherited from Lisp, actually.

First though, you need to go back and finish the lispeval method, now that you have
an apply method (named call).

Talking About Special Forms

In order for you to finish the lispeval method for cons cells, I need to briefly talk about
special forms. In Lisp, not all cons cells obey the standard rules of evaluation. A symbol
in the first position of a list that causes that list to be evaluated abnormally is called a
special form.

You'll be implementing special forms as functions whose arguments get passed in
unevaluated and can choose whether to evaluate them or not. The previously mysterious
forms parameter in the 1ispeval keeps track of these functions.

Finishing eval

So keeping the existence of special forms in mind, here’s an implementation of lispeval
for conses.

class Cons
def lispeval(env, forms)
return forms.lookup(car).call(env, forms, *cdr.arrayify) if forms.defined?(car)
func = car.lispeval(env, forms)
return func.call(*cdr.arrayify.map{|x| x.lispeval(env, forms) })
end
end

You can ignore the first line of the function for now. It handles the special forms. You
can see in the second line, though, that it evaluates the car of the current cons cell (the
first item in the list) and assumes it’s a function. The code then calls the function with the
rest of the elements from the cons list evaluated.

Let’s try out the evaluation function now:

env = Env.new(nil, {:+ => lambda{|x, y| x +y }})
Cons.new(:+, Cons.new(1, Cons.new(2, :nil))).lispeval(env, nil) » 3

That’s it. That’s honest-to-goodness Lisp, right there, running. But it doesn’t look very
much like Lisp, does it? That’s fixable, but first, in the preceding code I introduced a new
method that I should talk about.

233

234 CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

Using the Helper Functions Arrayify and Consify

Lisp uses cons-based lists, and Ruby uses the Array class. You'd like the two languages to
interoperate as smoothly as possible. So I've added two methods, arrayify and consify.
The consify method added to Object simply returns self. But if you call consify on an
Array, it is converted into a cons list.

class Object
def consify
self
end
end

class Array
def consify
map{|x| x.consify}.reverse.inject(:nil) {|cdr, car| Cons.new(car, cdr)}
end
end

Arrayify goes the other direction. It also has a default method on Object that returns
self. The arrayify method depends on the conslist? method, which simply checks to
makes sure the entity in question is a valid list of cons cells that could be successfully
transformed into an array. In all other cases, it leaves the object untransformed.

class Object
def arrayify
self
end

def conslist?
false
end
end

class Cons
def arrayify
return self unless conslist?
return [car] + cdr.arrayify
end

def conslist?
cdr.conslist?
end
end

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

The processes are not necessarily reversible, though, because the Lisp nil symbol
also represents an empty list. Without this additional definition, the method won’t work.

class Symbol
def arrayify
self == :nil ? [] : self
end

def conslist?
self == :nil
end
end

That’s what the arrayify and consify methods are all about. I didn’t use the standard
Ruby convention of to_a and to_cons because to methods in Ruby are expected to always
make the conversion. They don’t have this same behavior of converting some objects and
leaving others alone.

Note Why didn’t | only add the arrayify method to the :nil symbol instance itself? In general, Ruby
lets you add methods to specific object instances. Unfortunately, it doesn’t let you add them to symbol
instances. That’s why you add the method to the symbol, and then check to see if the symbol is :nil.

Making It Look Like Lisp

Okay, back to the problem of making the user’s code look more like Lisp. Luckily, there’s
a RubyGem available that can make your work a little easier. It's named sexp. That’s short
for s-expression, which is in turn short for symbolic expression. Symbolic expression is just
a fancy term for the lists of symbols you've already been working with.

The sexp module provides a simple parser for strings of s-expressions. I've also added
a call to the gem method to force the sexp gem to override files provided by other gems
(the ParseTree gem also provides a file named sexp, which can conflict).

require 'rubygems'
gem 'sexp'
require 'sexp'

"1".parse_sexp » 1.0
"foo".parse_sexp » :foo
"\"foo\"".parse sexp » "foo"

"(+ 1 2)".parse sexp » [:+, 1.0, 2.0]

235

236

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

Oops. One problem: parse_sexp returns real arrays. Well, this makes sense for Ruby
folks using the module, but not so much for us intrepid Lisp implementers. Luckily you
already defined the consify compatibility method. You can tack on a call to consify after
the calls to parse_sexp.

"(+ 1 2)".parse_sexp » [:+, 1.0, 2.0]
"(+ 1 2)".parse_sexp.consify » #<Cons:0x578aa0 @cdr=#<Cons:0x578b18 w»
@cdr=#<Cons:0x578d0c @cdr=:nil, @car=2.0>, @car=1.0>, @car=:+>

The previous result is a little hard to read because Ruby’s default printing of cons
cells puts the cdr first, but if you flip things around in your head, this looks right. So
where does this leave things?

env = Env.new(nil, {:+ => lambda{|x, y| x +y }})
"(+ 1 2)".parse_sexp.consify.lispeval(env, nil) » 3.0

Oh yeah, that’s more like it.

Note The sexp library returns all numbers as Float values, so even numbers that go in as Integer
values will return as Float values.

Choosing Your Primitive Functions

So what will the primitive functions be? The good news is you really only need to support
a few operations to be considered Lisp.

One possible set of primitives might include CAR, CDR, and CONS for manipula-
tion of S-expressions, READ and PRINT for the input/output of S-expressions and
APPLY and EVAL for the guts of an interpreter. But then you might want to add
LAMBDA for functions, EQ for equality, COND for conditionals, SET for assign-
ment, and DEFUN for definitions. QUOTE might come in handy as well. If you add
more specialized data types, such as integers, floats, arrays, characters, and struc-
tures, you'll need to add primitives to construct and access each.

—Lisp FAQ (www.cs.cmu.edu/Groups/AI/html/faqs/lang/lisp/part1/faqg-doc-6.html)
You're going to get by with cons, car, cdr, atom?, eq?, eval, quote, if, define, set, and

lambda, as well as some numeric functions. Of these, only cons, car, cdr, atom?, eq?, and
eval are primitive functions. quote, if, define, set, and lambda are all special forms. I'll talk

mailto:@car=2.0
mailto:@car=1.0
http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/lisp/part1/faq-doc-6.html

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

about how to add these in the section titled “But What About Special Forms?” Here’s the
default environment for your Lisp.

DEFAULTS = {
nil => :nil,
to=> it
i+ => lambda {|x, y| x +y },
:- => lambda {|x, y| x -y },
2% => lambda {|x, y| x *y },
1/ => lambda {|x, y| x 7y },

:car => lambda {|x| x.car },

:cdr => lambda {|x| x.cdr },

:cons => lambda {|x, y| Cons.new(x, y) },

:atom? => lambda {|x| x.kind of?(Cons) ? :nil : :t},
teq? => lambda {|x, y| x.equal?(y) ? :t : :nil},
:1ist => lambda {|*args| Cons.from a(args)},

:print => lambda {|*args| puts *args; :nil },

You'll notice the first two definitions aren’t functions at all. When the symbols nil and
t are looked up in the default environment, their value will be themselves. This is impor-
tant for list termination literals, as well as true and false literals.

Note Those familiar with Lisp will probably notice at this point that I’'m using notation from both Scheme
and more traditional Lisps. Scheme postfixes predicate functions (functions that return true or false) with a
question mark. Common Lisp uses a postfixed letter “p” (like the function 1istp, which tests if something is
a list). Of course, John McCarthy’s original predicates atom and eq contained no distinguishing postfix. I'll be
using Scheme question marks because | like the way they read. However, unlike Scheme, | won’t be using
#t to represent true and #f to represent false; I'll use the classical Lisp values t and nil.

The next four definitions are basic arithmetic. These aren’t required to be a Lisp, but
they're great for demos and test cases because the Lisp interpreter already understands
numbers. You don’t provide string operations, but who said life was fair?

Note The primitive functions receive a standard argument list. If you didn’t use the arrayify method
and flatten the result into the parameter list, the primitives would receive a cons list and have to extract their
own parameters.

237

238

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

The car, cdr, and cons functions are also provided. There should be no surprises here,
considering you're using your own cons data structure.

atom? returns true if the value is not a list, and false otherwise. You can’t just write
! x.kind_of?(Cons) because you need to return :t or :nil, not Ruby’s true and false. eq?
tests address equality (whether two objects are actually the same object) and also returns
Lisp truth values.

You might as well toss in the List constructor function list too, since the simple
interpreter won't have the ability to write functions that accept a variable number of
arguments on the Lisp side, a feature needed for the 1ist function.

Creating an Interpreter Object

The Interpreter class doesn’t actually do much. It’s going to keep track of your root envi-
ronment, and it’s going to provide an eval method for evaluating Lisp code from Ruby, as
well as a repl method (which stands for read-eval-print loop) that will let you interact
with your Lisp interpreter on the command line.

FORMS = {}
class Interpreter
def initialize(defaults=DEFAULTS, forms=FORMS)

@env = Env.new(nil, defaults)
@forms = Env.new(nil, forms)
end
end

I've defined DEFAULTS as stated in the preceding code, and I'll leave FORMS as an empty
hash for now. They both get stored in the new interpreter unless the user specifies his or
her own set of default bindings and special forms.

class Interpreter
def eval(string)
exps = "(#{string})".parse_sexp
exps.map do |exp]|
exp.consify.lispeval(@env, @forms)
end.last
end
end

The eval method performs one little trick. It first wraps the code string in an extra
set of parentheses. This means that if the user has specified multiple bare s-expressions
in the string, you'll get both of them back from the parser, instead of just the first. This

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

means you'll always get a list back from the sexp library. You'll evaluate each expression
and then return the value of the last one.

You're also going to want a repl method. The classic REPL (read-eval-print loop) is
defined with three chained functions. The read function returns an s-expression from the
input. The eval function interprets that s-expression. The print function outputs the
result. The whole process is then looped.

For a more classical REPL, you could have implemented each of these stages as a prim-
itive function (eval is already there), and then defined repl to call each in turn. Instead, to
take advantage of Ruby features like each_line and exception handling, you'll be imple-
menting it as a single, monolithic Ruby method.

class Interpreter
def repl
print "> "
STDIN.each line do |line]
begin
puts self.eval(line).to sexp
rescue StandardError => e
puts "ERROR: #{e}"
end
print "> "
end
end
end

Caution Because | use STDIN.each_line, s-expressions entered on the REPL will need to be on one line.

This repl uses a > prompt, reads input from STDIN, uses eval, and rescues any errors.
It also calls the to_sexp method on the results before it prints them. The sexp library has
provided to_sexp methods for symbols, arrays, numbers, and strings, but you'll want to
add a to_sexp expression for your cons cells. If the cell is part of a list, you’'ll use standard
list notation; otherwise you’ll just print the cons cell.

class Cons
def to_sexp
return "(cons #{car.to_sexp} #{cdr.to sexp})" unless conslist?
return "(#{arrayify.map{|x| x.to_sexp}.join(' ")})"
end
end

239

240

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

You should now be able to execute the following code in Ruby:

lisp = Lisp.new
lisp.eval("(+ 1 2)")

You should also be able to call the repl method and have the following interaction:

> (+12)
3.0

But What About Special Forms?

Yeah, okay, but you can’'t do anything exciting yet. You can’'t define new functions, write
conditional code, quote symbols without evaluating them, or even create and set vari-

ables. All of these things happen through the magic of special forms. And as you recall,

you've left the special forms default hash empty.

Adding quote

Let’s start by implementing quote, since it’s probably the simplest of the special forms.
You'll notice, the special forms don’t look all that different from the primitive functions.
But one obvious difference is that special forms receive the current environment and the
special forms hash as parameters.

Just as important, though, the arguments to a special form are not evaluated. If the
form wants them to be evaluated, it needs to call lispeval itself. This is one (of several)
reasons that the env and forms are passed in.

FORMS = {
:quote => lambda {|env, forms, exp| exp },

}

This definition is startling in its succinctness and power. The quote function’s job is to
prevent arguments from being evaluated. Since arguments to special forms aren't evalu-
ated, all quote needs to do is return its argument as is.

(quote a) » a
(quote (+ 2 3)) » (+ 2 3)
(quote (quote 1)) » (quote 1)

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

Adding define and set!

Variable definitions and how to set them are next. As a reminder, variable manipulation
looks like this:

(define a 1)
a» 1

(set! a (+ 12))
a» 2

As you can see in the previous listing, the symbol name the value is stored under is
not quoted. This means it is not evaluated. The second argument, however, is evaluated,
allowing you to bind the evaluation of complex expressions. define and set! map almost
directly onto the methods the Env class supports.

:define => lambda {|env, forms, sym, value]
env.define(sym, value.lispeval(env, forms))

b

:set! => lambda {|env, forms, sym, value|
env.set(sym, value.lispeval(env, forms))

b

You've got the preceding examples working now, so let’s talk a little about conditional
expressions.

Adding Conditional Expressions

McCarthy’s original Lisp used a structure called cond. The cond form sometimes gets
unwieldy, but it is very powerful.

(cond ((atom? a) (list 1))
((eq? a (quote b)) (list 1 2))
(t (list 1 2 3)))

The value of the preceding code depends entirely on the value of a. The cond
expression tries each clause. If the first half of the first clause is true and the value
stored at a is an atom, the cond will evaluate to the list (1). If the second clause proves
right and a equals the actual symbol b, then it will evaluate to (1 2). And if neither of
these is true, the value t always evaluates to itself (which is not nil), so the cond will
have the value (1 2 3).

241

242

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

Despite the history of cond, you'll be implementing the simpler if expression. if will
give you the power you need and be slightly easier to implement.

(if (eq? 1 2) (+ 12) (- 32)) » 1.0
(if (atom? (quote a))

t

nil) » t

The first argument (the condition) is evaluated. If the condition evaluates to true,
then the second argument is evaluated (the then clause), otherwise the third argument
is evaluated (the else clause). As in Ruby, if returns a value that can be used in other
expressions.

(cons (if t 0 1) nil) » (0)
The implementation is pretty simple.

:if => lambda {|env, forms, cond, xthen, xelse|
if cond.lispeval(env, forms) != :nil
xthen.lispeval(env, forms)
else
xelse.lispeval(env, forms)
end

1

You use Ruby’s if expression to build Lisp’s if special form. First the implementation
evaluates the condition parameter, and if it evaluates to any value except the symbol
:nil, which your Lisp considers false, it evaluates the then clause. If the condition evalu-
ates to the symbol :nil, though, it evaluates the else clause. That’s all it takes to add
conditional statements to your interpreter.

Adding lambda

The use of the word “lambda” to refer to functions in Lisp is historical and dates back to
the Lambda Calculus of Alonzo Church and Stephen Kleene. You can write Lisp lambda
expressions like this:

(lambda () 1) » (lambda () 1.0)
(lambda (x) (+ x 1) » (lambda (x) (+ x 1.0))

Lambda expressions are written starting with lambda, followed by a list of parameters,
and then by an expression. When the lambda is invoked, the value of the evaluated expres-
sion will be returned. You'll allow the body of the lambda to contain several expressions.

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

The expressions will be evaluated sequentially and the evaluation of the last expression
will be returned. In most cases, though, the body will consist of just one expression (it’s
more Lispy that way).

(define one (lambda () 1))
(one) » 1.0

Lambda expressions are called/applied when they are the first value in a nonspecial
form. They are typically called by name from the environment, or occasionally the value
of alambda expression is invoked immediately.

(define addone (lambda (x) (+ x 1)))
(addone 3) » 4.0

((lambda () 1)) » 1.0

((lambda (x) (+ x 1)) 3) » 4.0

lambda is the most interesting of the special forms you'll be implementing. It’s going
to need to remember the names of its parameters and also the code that forms its body.
But because lambdas are closures, they’ll also need to capture the environment they were
created in.

(define x 1)

(define increment (lambda () (set! x (+ x 1))))
x» 1

(increment)

X » 2

So what will the Lambda class look like in Ruby? Well, it will have a captured environ-
ment and a reference to the special forms mapping so that code inside the closure can be
evaluated using lispeval. It will also have a list of parameter names and the expressions
that will be evaluated when it is called.

class Lambda
def initialize(env, forms, params, *code)
@env = env
@forms = forms
@params = params.arrayify
@code = code
end
end

The list of parameters is passed in as a cons list, but is turned into an array for ease
of use. The code reference keeps its data as conses, though, because you’'ll need to call
lispeval on them later.

243

244

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

What operations do lambdas support? Well, really just one—apply—which you've
renamed to call as discussed previously.

class Lambda
def call(*args)
raise "Expected #{@params.size} arguments" unless args.size == @params.size
newenv = Env.new(@env)
@params.zip(args).each do |sym, value]
newenv.define(sym, value)
end
@code.map{|c| c.lispeval(newenv, @forms) }.last
end
end

The first thing it does is confirm that the same number of arguments were supplied
to the call as the lambda has parameters.

The next step is to create a new environment for the call to take place in. Not all lan-
guages create the new environment at call time. In Squeak Smalltalk, blocks reuse their
new context during successive calls. This means a block can see the values of its variables
from past invocations. This makes for faster code, since each call does not need to create
anew environment.

You could make your code behave this way by removing the creation of the new
environment from the call method and adding it to the initializer. But this isn't really
the way functions traditionally work in Lisp, so there’s no need to tamper with things.

Now that the lambda has a new environment, it injects the arguments into the
environment using the parameter names specified when the lambda was created.

@params.zip(args).each do |sym, value]
newenv.define(sym, value)
end

As an interesting aside, Ruby gives its blocks new contexts, like your Lisp does. But
even up until Ruby 1.8 (the latest released version at the time of this publication), blocks
can reuse variables defined in the enclosing scope for their parameters, which can be
very confusing. Matz (the creator of Ruby) has said he'd like to fix this in the future. The
following code illustrates the problem:

a=1

1.upto(5){|al }
a>» 5

mailto:@params.size
mailto:@params.zip
mailto:@params.zip

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

As you can see, despite doing no assignment at all, the value of a has been changed
simply because it was reused as a block name. A more complicated example follows:

def foo
X =0
return proc{ [proc{|x| }, proc{ x }] }.call
end
a, b = foo()
b.call » 0
a.call(1)
b.call » 1

Despite no assignment to x, it changes values when the first returned Proc instance
is called. In the world of programming languages, this is very unusual. You could imitate
this in your Lisp interpreter with the following snippet, but I don’t know why you would
want to.

@params.zip(args).each do |sym, value]
if @env.defined?(sym)
@env.set(sym, value)
else
@env.define(sym, value)
end
end

Anyway, once you've got the environment all configured, it’s time to actually evaluate
the code.

@code.map{|c| c.lispeval(newenv, @forms) }.last

This evaluates each expression from the body of the function and returns the last
one. Your lambdas are now callable!

1 = Lambda.new(Env.new, Env.new, :nil, 1.0)
l.call » 1.0

You're also going to want to provide a to_sexp method so that you can print lambdas
on the REPL reasonably.

class Lambda
def to_sexp
"(lambda #{@params.to sexp} #{@code.map{|x| x.to_sexp}.join(' ")})"
end
end

245

mailto:@params.zip
mailto:@env.defined?
mailto:@env.set
mailto:@env.define

246

CHAPTER 8 " IMPLEMENTING LISP IN RUBY

You can demo to_sexp using the lambda defined in the previous example.
1.to_sexp » (lambda () 1.0)
The only thing left is to hook this new class up to the lambda special form.

:lambda » lambda {|env, forms, params, *code]
Lambda.new(env, forms, params, *code)

1

With that last bit of wiring, you can now write pure Lisp functions in your interpreter.

(define addone (lambda (x) (+ x 1)))
(addone 3) » 3.0

You have a working Lisp interpreter! Try running this:
Interpreter.new.repl
or this:
Interpreter.new.eval "(+ 1 2)"

You're part of the Lisp club now. You should probably consider buying a John McCarthy
T-shirt (see Figure 8-5).

Figure 8-5. The elusive John McCarthy T-shirt

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

Saving the Environment

Now, if you've been following closely, you've noticed a problem with the closures. Most
Lisps are relatively careful as to where they allow you to use define expressions. Because
your Lisp interpreter lets you use define anywhere, you've created a problem for yourself.
Consider the following code:

(define broken (lambda () b))

(broken) » ERROR: No value for symbol b
(define b 3)

(broken) » 3.0

This isn’t really the expected behavior. A closure is only supposed to capture vari-
ables that exist when it was taken. There are a number of ways to solve this problem.
Most of them are a little tricky, though. One way to get around this is to create a new
environment for each line of code evaluated in the same scope using the previous line’s
environment as a parent. A naive implementation of this method would be a major
memory hog, but if you were smart about reusing environments that had no definitions
in them, you could do a lot better.

The easiest solution, though, is probably just to remove define. It isn't a strictly nec-
essary form, since you can build let expressions that will allow you to make bindings in a
different way. (I'll talk about this more in the section titled “Implementing the let Macro.”)
But define sure does make coding at the top scope level easier.

Since trying to make define only available at the top scope would be complicated,
you're going to take a third route. You'll leave define in (even with this funny behavior),
but encourage people to use let expressions when inside nested scopes. Before you can
define let, though, you're going to need to implement macros, one of the Lisp’s coolest
features.

Implementing Macros

If you need any more primitive functions, it’s as simple as adding them to the DEFAULTS
hash. And now that you have lambdas, you can add new functions from inside the inter-
preter. For example, defining the length function is as easy as this:

(define length (lambda (x) (if (eq? x nil) 0 (+ 1 (length (cdr x))))))

(length (list 1 2 3 4)) » 4.0
(length ()) » 0o

If you need more special forms, you add them to the FORMS hash. But what if you want
to define your own special forms inside the interpreter, using Lisp? User-defined special

247

248

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

forms in Lisp are called macros. Macros are passed their arguments unevaluated, and the
result of whatever transformations they apply to those arguments is evaluated once they
are done.

Implementing the let Macro

I talked earlier about a let form that would help avoid using define. let looks like this
in Lisp:

(let ((a (+ 1 3))
(b (- 42))
(* a b))

First you define a to be 4, then b to be 2, then the value of the entire let expression is
a times b. As you can see, let allows you to define multiple variables. A simpler version of
let is named let1. let1 only gives you one definition, but since let1 can be nested when
you need multiple definitions, it’s just as powerful.

(let1 (a 5)
(-a1))
(let1 (a (+ 1 3))
(let1 (b (- 4 2))
(* ab)))

The cool thing about let and let1 is that they can be implemented using lambdas.
Here’s a let1 expression.

(let1 (a 4) (+ a 1))
Transformed into a lambda, the previous expression looks like this.
((lambda (a) (+ a 1)) 4)

You could implement this in your FORMS hash fairly easily by creating and calling a
lambda object:

:let1 => lambda {|env, forms, binding, body|
Lambda.new(env, forms, [binding.car], body).call(binding.cdr.car.lispeval(env, forms)

1

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

You could also build the Lisp code in Ruby and then evaluate it:

:let1 => lambda {|env, forms, binding, body]|
params = Cons.new(binding.car, :nil)
func = Cons.new(:lambda, Cons.new(params, Cons.new(body, nil)))
exp = Cons.new(func, Cons.new(binding.cdr.car, nil))
exp.lispeval(env, forms)

1

But wouldn't it be better if you had a way to define special forms straight from Lisp
code? That’s what macros will let you do. Now, most Lisp implementations let you use
some fancy syntax when defining macros. They often provide templating functionality as
well. For example, in Common Lisp you could write it like the following, using the syntax
and templating:

(defmacro let1 (binding body) " ((lambda (,(car binding)) ,body) w»
,(car (cdr binding)))

This means define a macro let1 that has binding and body arguments. The * means
quasiquote and does the templating. Quasiquotes act like regular quote (regular quote is
also spelled ' in many Lisps, but we've ignored that convention so far—see Chapter 9 for
more information). However, quasiquote will evaluate any expressions prefixed by , and
include the result in the quasiquote. You can get by without fancy quasiquote templating,
though, by using a ton of 1ist and quote expressions.

(defmacro let1 (binding body) (list (1list (quote lambda) (list (car binding)) body) w
(car (cdr binding)))

Your defmacro won't have a special syntax either, so you'll have to write it as a special
binding between a name and a lambda. (It looks a lot like how you would define a func-
tion in your Lisp, except it defines a special form.)

(defmacro let1 (lambda (binding body) (list (list (quote lambda) w
(list (car binding)) body) (car (cdr binding)))))

This binds the macro expressed as a lambda expression to the special form let1.
When a let1 form is encountered, your interpreter will call the lambda function passing
in the two unevaluated arguments. It will build a list that contains a lambda and the
value of the variable, so when the whole expression is evaluated, the code inside the
lambda will have a parameter with the variable name and the given value.

249

250

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

Okay, but how do you implement defmacro? Well, it needs to be a special form instead
of a primitive function. This is because it uses the name of the macro unevaluated, but it
also needs access to the forms object so it can insert a new special form for the macro.

:defmacro => lambda {|env, forms, name, exp|

func = exp.lispeval(env, forms)

forms.define(name, lambda{|env2, forms2, *rest| w»
func.call(*rest).lispeval(env, forms) })

name

b

The first thing the defmacro special form does is to evaluate its second argument to
get a lambda expression it will use to perform the actual transformation. You then add a
Ruby Proc object into the forms object. This Proc object invokes the lambda expression
using the environment and forms defined at the time the macro was added.

You can now define your let1 macro form in pure Lisp inside your interpreter. You
can also add other macros like the following unless macro:

(defmacro unless (lambda (cond then else) (list (quote if) cond else then)))

Everything just works.

It Just Ain’t Lisp Without eval

One of Lisp’s coolest features is its programmer accessible eval function. Ruby and most
other dynamic languages provide eval functions today, but Lisp blazed the trail.

eval takes Lisp code as data, and then evaluates the result. Indeed, the story goes
that the first implementation of Lisp came about when Steve Russell realized that the
Lisp eval function could be implemented in a lower-level language, thus creating a Lisp
interpreter. This is basically what you've been doing, although it might not be accurate to
describe Ruby as a lower-level language.

Anyway, eval has been a part of Lisp from the beginning. You don’t technically need
to provide an eval function, since it is quite possible to build one within your interpreter.
However, since you've already done the work, you might as well make yours available to
code running inside the interpreter. This is accomplished easily enough.

I wish I could make eval a primitive function instead of a special form. Unfortu-
nately, while you don’t need any of its arguments unevaluated (Lisp code passed to eval is
expected as data), you do need access to an environment and special forms map. If you
were willing to always use the default bindings, you could create a new environment and
special forms using the standard values. But eval is more interesting when it has access to

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

all the definitions your normal code has access to. You can define eval as a special form
with behavior like this:

:eval => lambda {|env, forms, *code|
code.map{|c| c.lispeval(env, forms)}.map{|c| c.lispeval(env, forms) }.last

b

I've intentionally written the preceding definition so it can handle multiple expres-
sions. These expressions in the code array are each evaluated using the environment and
special forms dictionary at the point of definition. This evaluation brings them to the
state they would be at if eval had been defined as a regular primitive function instead of
a special form with unevaluated arguments.

Then you evaluate them again. This second evaluation does the dirty work and
allows arbitrary s-expressions from inside the interpreter to be executed:

(eval (quote (+ 1 2))) » 3.0

Just as important, because you use the current environment, the following is also
possible:

(let1 (a 1) (eval (quote (+ a 2))))

Now it really feels like Lisp.

Adding Lexical Macros

One thing you may have noticed at this point is that a macro defined anywhere affects all
code run after it. You never create a new forms environment.

(define a (lambda () (defmacro myquote (lambda (thing) (list (quote quote) thing))) w»
(myquote b)))

(myquote b) » ERROR: No value for symbol myquote

(@) » b

(myquote b) » b

When a is run, the myquote macro suddenly becomes usable everywhere. It will also
overwrite any macros named myquote that already existed and were defined elsewhere.

You could avoid this situation with a setup called lexical macros. Lexical macros work
just like your lexical closures. You create a new forms environment object for new scopes.
Within this scope, the macro exists, but elsewhere it won't bother anything else. What's
really cool is that you can change your macros to work this way with two lines of code

251

252

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

(see the bold code in the definition that follows this one). The original call method for
the Lambda class looked like this:

class Lambda
def call(*args)
raise "Expected #{@params.size} arguments" unless args.size == @params.size
newenv = Env.new(@env)
@params.zip(args).each do |sym, value]
newenv.define(sym, value)
end
@code.map{|c| c.lispeval(newenv, @forms) }.last
end
end

To implement lexical macros, you'll add a line that creates a new forms environment,
and then evaluate the function body using that new forms environment.

class Lambda
def call(*args)
raise "Expected #{@params.size} arguments" unless args.size == @params.size
newenv = Env.new(@env)
newforms = Env.new(@forms)
@params.zip(args).each do |sym, value]
newenv.define(sym, value)
end
@code.map{|c| c.lispeval(newenv, newforms) }.last
end
end

Let’s try rerunning that previous example in the modified interpreter.

(define a (lambda () (defmacro myquote (lambda (thing) (list (quote quote) thing)))

(myquote b)))
(myquote b) » ERROR: No value for symbol myquote

(@) » b
(myquote b) » ERROR: No value for symbol myquote

This time around, the myquote macro is only available inside the function it was
defined in. Unfortunately, this technique suffers from the same scoping issues as the clo-
sures. A defmacro defined in the following code is a closure, but in the same scope, will
affect the closure.

mailto:@params.size
mailto:@params.zip
mailto:@params.size
mailto:@params.zip

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

(define example (lambda () (define closure (lambda () (myquote b)))
(defmacro myquote (lambda (thing) (list (quote w»
quote) thing)))
closure))
((example)) » b

Even though the myquote macro is defined after the closure, the closure is affected by
it. The techniques I talked about early on, like creating new chained environments after
each successive expression, would solve this problem if you extended them to do the
same thing for forms as for the environment. But as before, that would add some com-
plexity to the interpreter. Instead, you can steal a construct that other Lisps have, named
letmacro. Just as let1 allowed you to define local bindings, letmacro lets you define a local
macro. Unfortunately, you can't just use the old trick of transforming let1 into a lambda
expression. Thankfully, it's not too hard to just implement letmacro in Ruby.

:letmacro => lambda{|env, forms, binding, body|

name = binding.car

func = binding.cdr.car.lispeval(env, forms)

newforms = Env.new(forms)

newforms.define(name, lambda{|env2, forms2, *rest| func.call(*rest).lispeval(env, w
forms)})

body.lispeval(env, newforms)

1

The name of the macro is the first part of the bindings pair, and the function that will
implement the macro is available when you evaluate the second part of the pair. You cre-
ate a new forms environment and register alambda expression to the transformation,
then evaluate the body with the new forms environment. This gives you letmacro:

(letmacro (myquote (lambda (thing) (1list (quote quote) thing))) (myquote b))
(myquote b) » ERROR: No value for symbol myquote

That's all there is to lexical macros.

Interoperating with Ruby

Okay, so you provided some primitive functions to manipulate numbers, but you didn’t
provide your users any functions to manipulate strings. And you don’t have an easy way
to add objects like files or network sockets to the interpreter.

You could add primitives for each string operation and for creating objects with
names like substring or newfile. But that would be a lot of work. Let’s aim higher.

253

254

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

Opening a Window to Ruby

Since all Ruby objects are already valid values in the interpreter, let’s provide a window
into the Ruby world. You'll define it as a special form so the names of the Ruby objects
don’t need to be quoted.

:ruby => lambda {|env, forms, name
Kernel.const get(name)

}s
You can use this to retrieve constants (like classes) from the Ruby base namespace.
(ruby Integer) » Integer

Without the ability to send messages to these objects, they aren’t very useful.

Sending Messages

You'll need a good convention for message sends. You could name the function some-
thing like send, but if you're going to be typing it over and over again, a one-character
symbol might be a better name. Let’s name the method !.

(! object message paraml param2)

You can implement the message send primitive extremely easily. You'll also make it a
special form so the message name doesn’'t need to be quoted.

L

=> lambda {|env, forms, object, message, *params|
object.lispeval(env, forms).send(message, *params.map{|p| p.lispeval(env, forms)})

1

First it evaluates the object and all of the parameters, then it calls the Ruby send
method to trigger the appropriate method on the object. This enables you to write the
following:

(define f (! (ruby File) open "lisp.rb"))
(define lines (! f readlines))
(! f close)

Unfortunately, if you try to interact with lines, you hit a problem.

(car lines) » ERROR: undefined method “car' for #<Array:0x50a5a0>

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

The Ruby method has quite unsurprisingly returned an array. Most types are shared
between Ruby and your Lisp interpreter, but on the Lisp side, it’s better to interact with
conses rather than arrays. You can modify your ! special form to use the consify method
defined earlier.

L

=> lambda {|env, forms, object, message, *params|
object.lispeval(env, forms).send(message, *params.map{|p| ‘=
p.lispeval(env, forms)}).consify

1

However, you probably also want the reverse as well. Ruby doesn’t know what to
do with cons lists, so it should probably receive arrays from the Lisp code. You'll use
arrayify here:

S

=> lambda {|env, forms, object, message, *params|
object.lispeval(env, forms).send(message, *params.map{|p| ‘=
p.lispeval(env, forms).arrayify }).consify

1

Now the Lisp interpreter can interact with Ruby when it needs to. New primitive
functions and values are easy to add. In fact, you could rewrite a lot of the primitive func-
tions in pure Lisp at this point if you wanted using the ! method.

Making Lisp Lambda Work in Ruby

What if you want to pass Lisp lambdas into Ruby code? This would be a pretty cool fea-
ture, but adding it is a little complicated. How come? Unlike most other languages with
closures, Ruby doesn’t pass blocks in a standard argument slot. Ruby has a special slot for
passing a single block. Even worse, there’s no way to tell if a given method expects a block
or not. This makes the decision to coerce a Lisp lambda into a block difficult.

Still, the following heuristic is probably good enough. If the last argument to a method
call is alambda, try passing it in the block slot. In order to do this, though, you'll need a
to_proc method for the Lambda class.

class Lambda
def to proc
return lambda{|*args| self.call(*args) }
end
end

255

256

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

The to_proc method just builds a Proc wrapper. Even though your Lambdas support
the call method, Ruby will only accept a proper Proc object in the block slot. Even if Ruby
was more flexible, youd still probably be better off creating a real Proc in case other code
depended on methods besides call.

With to_proc defined, you can begin to look at modifying your ! function:

sy

=> lambda {|env, forms, object, message, *params|

evaled params = params.map{|p| p.lispeval(env, forms).arrayify }

proc = nil

proc = evaled params.pop if evaled params.last.kind of?(Lambda)
object.lispeval(env, forms).send(message, *evaled params, 8proc).consify

1

The previous code relies on two idiosyncrasies of Ruby. First of all, anything passed
as the last argument of a method call and prefixed with a & calls to_proc on the object and
then inserts it into the block slot. Obviously, you could call to_proc yourself, but it’s con-
venient that Ruby will do it for you.

The other idiosyncrasy you rely on is that Ruby allows one other non-Proc value in
the block slot. A nil value in the slot means there is no block. Between the two of these,
you've got a system that works both when the method is and isn’t expecting a block.
Another option would have been to use a different invocation function, perhaps double
exclamation points (!!), when you want to pass a block. I suspect the smarter, first
approach is easier to use. You can see the results in the following code.

(define f (! (ruby File) open "datafile"))
(! f each (lambda (line) (print line)))
(! f close)

It works like a charm.

Summary

In this chapter, you implemented the basic Lisp data types, implemented the eval/apply
cycle, looked at primitive functions and special forms, and even touched on Lisp integra-
tion with Ruby. At this point you have the keys to the kingdom.

Ever wanted to add a new feature to Lisp? Ever wanted to build your own program-
ming language? You really can do anything. Especially if you don’t obsess over writing
everything in C. If you use a higher-level language like Ruby, you'll get it done sooner and
you’ll have more fun doing it. Here’s your chance to do something that no one’s ever done
before.

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

LISP BASICS

This section is meant to be read before the rest of the chapter if you’re not familiar with Lisp. | definitely
recommend reading Structure and Interpretation of Computer Programs if you're interested in learning
Lisp. The Little Schemer, Fourth Edition, by Daniel P. Friedman and Matthias Felleisen (MIT, 1995) is also
a fascinating book and definitely worth picking up at the library.

Lisp can seem strange at first, but it’s governed by a few basic rules. At its most basic, Lisp syntax
consists of lists and symbols. Most Lisp implementations also support other literal values, including
numbers and strings (see Table 8-1).

Table 8-1. Example Symbolic Expressions

Expression Example
Symbol foo
Symbol nil
Symbol t

Empty List 0
Empty List nil

List (foo t)
Number 2

String "a string"

This syntax of symbols and lists is called symbolic expressions, or s-expressions. These s-
expressions are not only Lisp code, but also Lisp data structures, too. When you enter an s-expression
into a Lisp implementation, it is converted into data, and then that data is treated as code and evalu-
ated. Evaluating a symbol like foo looks it up in the current environment. So you can give values
(including functions) symbolic names in the same way you might use variables in other languages.

Evaluating a list like (foo 1) means calling the function named foo on the value 1. What if foo
is not a function? Well, your Lisp implementation will probably complain. Here’s an example that will
hopefully make things clearer:

(+ 12) » 3.0

When the + symbol is evaluated, it is looked up in the current environment. It turns out that it
corresponds to a function that adds numbers together, so the evaluation of (+ 1 2) is 3.

It's important to realize though that the arguments are evaluated as well, before the function
named + is called. Literals like numbers or strings evaluate to themselves. The symbols t and nil
also evaluate to themselves. t is used to represent true values, and nil is used for many purposes.

257

258

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

The standard rules of evaluation hold for arguments, so if the symbol a is associated with the
value 4, the following expression is valid.

(+a3)» 7.0
And the following compound expression is also evaluated like you might think:
(+4(-52)) » 7.0

Now what if you want to use the value of a symbol or a list, instead of having the Lisp implemen-
tation evaluate them? Well, there’s a special Lisp function named quote that prevents its parameter
from being evaluated.

(quote foo) » foo

(quote (these (symbols will not) be evaluated)) » (these (symbols will not) be w»
evaluated)

(quote (+ 1 2)) » (+ 1 2)

quote and other expressions that don’t obey standard evaluation rules are called special forms.
That’s all there is to basic Lisp syntax.

Note Most Lisps provide a shorthand for quote written as '. You'll use the simpler full-named
version.

You'll probably also want to know about cons cells and list structure before you begin though. A
cons cellis conceptually just a pair of values. A new cons cell, often just called a cons, is created with
the function of the same name.

(cons "a" "b") » (cons "a" "b")

(cons "a" (cons "b" "c")) » (cons "a" (cons "b" "c"))

Cons cells can be used independently and often are. But they also form the backbone of Lisp’s list
data structure. A list is a sequence of cons cells terminated by the symbol nil.

(cons "a" (cons "b" (cons "c" nil))) » ("a" "b" "c")

Note that unlike the previous examples, the result is not expressed as a chain of cons. It could
have been printed as (cons "a" (cons "b" (cons "c" nil))), but the shorthand in the preceding

CHAPTER 8 ©" IMPLEMENTING LISP IN RUBY

code is typically used because it’s more concise. This is the shorthand you’re using anytime you input
code into your Lisp implementation. So your addition of 1 and 2 from before is actually represented
like this:

(cons + (cons 1 (cons 2 nil)))

What if you want to retrieve the values you stashed inside a cons cell? Well, you’ve got two
functions to do that, one for each value in the cell. The first item in the cons is called the car and the
second is called the cdr. These names are historical as well, and there’s a brief discussion of their ori-
gin in the section titled “Building Cons Cells” in the main part of this chapter.

(car (cons 1 2)) » 1.0
(cdr (cons 1 2)) » 2.0
(car (cdr (cons 1 (cons 2 3)))) » 2.0

So when you want to generate lists without using cons cells, the quote expression works well
provided you don’t want the arguments evaluated. If you do, though, the 1ist function is useful.

(list 1 2 3) » (1.0 2.0 3.0)

(list (+ 0 1) 2 3) » (1.0 2.0 3.0)
(car (1list 1 2 3)) » 1.0

(car (cdr (cdr (list 1 2 3)))) > 3.0

That’s the secret of cons cells. The only other thing you need to know about before diving in is
lambda expressions. The word “lambda” means function in Lisp convention. The word lambda is histor-
ical and reflects Lisp’s close relationship with Church’s Lambda Calculus. Lambdas are written like this
using the 1ambda special form:

(lambda (parameteri parameter2) (body))
A more concrete example looks like this:
(lambda (a) (+ 1 a))

This defines a function that takes one parameter named a and adds 1 to the value of a. You would
call the function like this:

((lambda (a) (+ 1 a)) 2) » 3.0

lambda is a special form, like quote, so the parameter list and the function body aren’t evaluated
when the function is created. If you want to name the function and keep it around for later, you'll use a

259

260

CHAPTER 8 ©' IMPLEMENTING LISP IN RUBY

define expression. define expressions can be used to associate values with symbols in the current
environment.

(define a 1)

a>» 1.0

(define addone (lambda (a) (+ a 1)))
(addone 2) » 3.0

(addone a) » 2.0

define is also a special form. The symbol name the value is assigned to doesn’t need to be
quoted, and it is not evaluated. The last thing you’ll need to know before you can get on with the chap-
ter is scoping.

Lambda expressions can reference variables besides their parameters and the temporary vari-
ables they define inside themselves. The rules for which variables they can reference are called
scoping. It’s not required that a lambda expression be able to access variables outside its own body,
but in practice almost all Lisps provide this ability. Equally important, with the exception of Emacs
Lisp, almost all Lisps have settled on a form of scoping called /exical scoping. What does lexical scop-
ing mean? It means that lambda can reference bindings that exist inside scopes that the code also
exists in. (This should be familiar from Ruby.) Have a look at this example:

(define a 1)

(define adda (lambda (x) (+ x a)))
(adda 3) » 4.0

(set! a 2)

(adda 4) » 6.0

The a expression used inside the adda lambda refers to the a defined in the same scope as the
adda function itself. And when you change that value for a, the value the lambda sees changes as well.
This makes the lambda expression a closure. It “closes” on the values it can see when it is defined. I'll
talk a bit more about scoping in the rest of the chapter, so if that didn’t quite click, don’t worry.

It's time to dive in and write your own Lisp implementation. Ready? Then pull a “choose your own
adventure,” and flip back to the beginning of the chapter.

CHAPTER 9

Parsing in Ruby

There are a few fields in computer science that are generally regarded as “experts only.”
Judging from the structure of most undergraduate computer science curriculums, oper-
ating systems and programming language implementation (especially compilers) are
probably two of the most deeply revered.

I won't try to pretend that operating systems are easy. Anything that touches hard-
ware has a way of becoming a real pain in the neck. But while advanced compilers and
programming language work can sometimes be just as daunting, as you've seen in the
last chapter, it’s easy to dip your toe into the world of programming languages. In fact,
the biggest barrier to entry is simply the breadth of knowledge required for a full imple-
mentation. But the good news is that a lot of the required expertise can be learned
incrementally. Equally important, a lot of that knowledge is useful on its own!

This chapter is dedicated to talking about parsing. Parsing is a central part of pro-
gramming language implementation, but it’s also a wonderfully useful skill for all sorts
of projects. So what is parsing? The Oxford English Dictionary defines its meaning in
computing as “to analyze (a string) into syntactic components, esp. to test conformabil-
ity to a grammar.” In other words, to recognize when text satisfies certain structural
rules. In practice, though, most uses of parsing also convert the structured text into data
structures. Compilers definitely do this, but so does almost any code that reads a data
file. Everything from “parsing XML” to opening a Word document uses some parsing.
Typically, though, when you hear someone speaking of parsing, they're talking about
using a formal grammar.

In this chapter, you'll use grammars along with a technique known as recursive
descent parsing to build parsers with a “parser combinator” library. If that sounded
complicated, just hang on. It’s not! I'll mostly focus on parsing from the perspective of
programming languages, but everything is directly relevant to parsing data files as well.

By the end of the chapter, you'll be seeing situations everywhere where a good parser
would make your code better, whether you're writing compilers, games, or even business
logic. And as a bonus, you'll look at the process of test-driven development, a technique
you can use to dramatically increase your confidence in the correctness of your code.

261

262

CHAPTER 9 " PARSING IN RUBY

Parsing with Ruby

I think one of the reasons parsing has a reputation for being somewhat esoteric is that
there is some theory involved. But you only need to know a little bit to open up a lot of
interesting applications. Let’s start by talking about grammars.

Understanding Grammars

A grammar formally encodes the rules of a language. Grammars are somewhat abstract

concepts, and there are many ways to express them. One common notation is Extended
Backus-Naur Form (EBNF). You can think of EBNF as a series of rules to describe “what

comes next.” Consider this example:

Food = Soup | Sandwich
Soup = Meat " " SoupType
Meat = "Chicken" | "Turkey"

SoupType = "Noodle" | "Chili"

Sandwich = Meat " on " Bread {" with " Cheese}
Bread = "Wheat" | "Rye"

Cheese = ("Cheddar" | "Swiss") "Cheese"

Given that Food is the start rule, you know that any particular sentence or string satis-
fying this grammar will follow either the Soup or Sandwich rules. So the equal sign means
“composed of,” while the vertical bar means “this or that.”

So a Soup consists of Meat followed by a space, followed by a SoupType, like this:

Food » Soup

Soup » Meat " " SoupType

Meat " " SoupType » "Turkey" " " SoupType
"Turkey" " " SoupType » "Turkey" " " "Noodle"

That’s an example of how you use a grammar to generate a valid string. But how
about checking to see if a string is valid for a grammar? It’s basically the reverse!

"Turkey Noodle" » Meat " " SoupType
Meat " " SoupType » Soup
Soup » Food

Many parsing systems are built to be able to accept grammars in notations very simi-
lar to this. Probably the most famous system is YACC. Short for Yet Another Compiler
Compiler, YACC translates grammars similar to this one into the C code for a parser.

Ruby has its own library based on a similar principle. It is named Racc and is also
very cool. You won't be using Racc in this chapter (since its separate grammar syntax and

CHAPTER 9 ©' PARSING IN RUBY

dependence on a native code core make it a little complicated). Instead, you're going to
be using the excellent RParsec library.

Recursive Descent Parsing

What makes a parser a recursive descent parser? Well, to start with, it must be made of
recursive components. And it must also be a kind of parser known as top-down (hence
the descent). You're familiar with the term “recursive,” but what does top-down mean?

A top-down parser uses its knowledge about the acceptable states of the grammar to
keep track of which possible rules might have been applied to produce the input. And of
course, if you stray into a state that couldn’t possibly be produced from the grammar, you
know immediately that the input is not a production of that grammar.

Recursive descent parsers can be further subdivided over whether they can always
tell which production rule a particular portion of the input belongs to, or if they some-
times have to guess and then later change their mind. Changing their mind is called
backtracking. Backtracking is powerful, but it comes with a performance and complexity
cost. There are a lot of ways you can write recursive descent parsers. As long as you have
functions and basic data types, you can always manually construct a recursive descent
parser.

But parser combinators make life even easier! Parser combinators can be easily
assembled to form larger components. A parser combinator library is a toolkit that pro-
vides useful basic components that you can build your own parser components (and
ultimately a complete parser) on top of. All of the common match types, like “sequences,”
“alternatives,” “optionals,” and “repeats,” are there. And the best of all? Because parser
combinator frameworks are usually written with combinators as first-class values directly
in your language, there’s no need for special grammar files. This also makes it easy to
dynamically generate and manipulate them for really powerful effects.

Probably the most famous parser combinator library is called Parsec. Implemented
in Haskell, it’s drawn a lot of alternative geek and academic press. Parsec has spawned a
number of ports, including JParsec and, the tool you'll be using, RParsec!

RParsec

So what does code using a parser combinator library look like in Ruby? It looks some-
thing like this:

require 'rubygems'
require 'rparsec'

include Parsers

263

264

CHAPTER 9 " PARSING IN RUBY

Space = string(" ")
With = string("with")
On = string("on"

Swiss = string("Swiss")
Cheddar = string("Cheddar")
Rye = string("Rye")

Wheat = string("Wheat")
Chili = string("Chili")
Noodle = string("Noodle")
Chicken = string("Chicken")
Turkey = string("Turkey")

Cheese = alt(Cheddar, Swiss)
Bread = alt(Wheat, Rye)

SoupType = alt(Noodle, Chili)
Meat = alt(Chicken, Turkey)

RepeatCheese = sequence(Space, With, Space, Cheese).many

Sandwich = sequence(Meat, Space, On, Space, Bread, RepeatCheese)
Soup = sequence(Meat, Space, SoupType)

Food = alt(Soup, Sandwich) << eof

It’s a little overwhelming, but I've tried to divide it into sections for easier reading.
The first few combinators are created with the string method. This method returns
a parser that matches the exact string passed in. In fact, the combinator itself is an
instance of class AreParser, a parser that matches only when the head of the input is
identical to one of its stored values. The method string is just a convenience method
you can mix into your current namespace (with that include line) that will create an
instance you can use.

You can try it out for yourself like this:

Food.parse("Chicken Noodle")

Food.parse("Turkey Chili")

Food.parse("Turkey on Rye")

Food.parse("Chicken on Wheat with Cheddar")
Food.parse("Chicken on Wheat with Cheddar with Swiss")

Food.parse("This will faill")

CHAPTER 9 ©' PARSING IN RUBY

Parsing S-Expressions

In the previous chapter, you used the sexp RubyGem to turn Lisp code into s-expressions.
Want to see how it works? In fact, the sexp gem is implemented using parser combinators!

Revisiting S-Expressions

Here’s a quick reminder of what s-expressions look like. Numbers and string literals are
parsed in much the same way as Ruby would parse them. Bare words are interpreted as
symbols, and lists consist of any of these values delimited by spaces inside parentheses.
They look like this:

(define ignore (lambda (x) 4.0))

Parsing Integers

You can create a module named SExpressionParser to contain all your combinator
objects. Start with the simplest rule, the rule that turns strings into Integers.

require 'rubygems'
require 'rparsec’

module SExpressionParser
extend Parsers

Integer = integer.map{|x| x.to i }
end

As you can see, you'll need to require the rparsec gem and then extend the Parsers
module. This makes all of the convenience methods from Parsers available. These meth-
ods will help you instantiate all the prebuilt parser components you need to build your
Parser. The module has everything from simple parsers that match exact text to intelli-
gent parsers like integer that know the rules for parsing numbers.

The preceding integer method is actually creating an instance of the RegexpParser
using the following regular expression /\d+(?!\w)/, which, if you know regular expres-
sions, matches a series of digits not immediately followed by any standard word
characters.

But what does the map call do at the end? It transforms the text matched by the parser
into something new. Well, sort of. What you're seeing there is a little more complex. The
code is actually not doing the transformation when map is called. Instead it’s returning a
new parser object. This parser is just like the parser that map was called on, except that it
knows how to do the transform when the parser is finally called.

265

266

CHAPTER 9 " PARSING IN RUBY

It helps to keep in mind that none of the parser code you're writing is imperative. It’s
declarative, so most methods you can call on parser combinators actually return a new
Parser instance.

Caution For such an excellent library, RParsec plays very fast and loose with namespaces. Its parser
classes are installed directly into the root namespace. As a library author, try not to do this.

Unit Test Everything

Complete parsers are notoriously complicated pieces of code. You'd be crazy to write a
parser without a serious test suite to compare your final product against. Unfortunately,
some parsing techniques make unit testing difficult because their correct behavior
depends on a complete set of rules. One bug can cause errors to surface in multiple loca-
tions. One of the great features of parser combinators is that each rule can always be
considered in isolation, so testing is easy!

So with no more excuses, it’s time to see if it works. As always, the best way to find
out is to write a test! You'll be using Test: :Unit and keeping your unit tests in separate
files (if you called the first file sexp.rb, perhaps call this one test_sexp.rb). At its sim-
plest, a Test::Unit test suite consists of at least one subclass of Test::Unit::TestCase.
Any method declared on this object will be executed when the file is run. TestCase pro-
vides a number of easy-to-use assertion methods as you can see in the following code.

For complicated test suites, each test can have its own class and can make use of
methods to initialize special data structures, and so on. But for these purposes, one
method per test will be fine.

require 'test/unit’
require 'sexp'

class SExpressionParserTest < Test::Unit::TestCase
include SExpressionParser

def test int
assert_equal(45, Integer.parse('45'))
end

def test int_fail
assert raises(ParserException) { Integer.parse('not an integer') }
end
end

CHAPTER 9 ©' PARSING IN RUBY

By including SExpressionParser in your SExpressionParserTest module, you get direct
access to the values defined inside the module. This saves you from extra typing! And
when you refer to Integer inside the test_int method, you're really referring to the
SExpressionParser::Integer class, not the core Ruby Integer class (what youd get if you
typed 7.class). Running this file should tell you that two tests succeed. Notice how you
wrote a test for both success and failure. It won't be uncommon to have even more test
cases for complicated rules.

From now on, I'll be writing the code for the tests and parsing interleaved. It
shouldn’t be hard to figure out which file the code belongs to (the parser or the test
suite) because the test methods will all start with “test.” I also won'’t be using fully quali-
fied module and class syntax (where every method is clearly placed inside an open
module or class) because this would add significantly to the length of the code with
very little real value.

Note For the rest of your SExpressionParser you'll be using a style of programming known as test-
driven development. You'll write tests for each unit of code before you even start writing the code. This
process can produce amazingly reliable software because you define the behavior of the code (via the tests)
before you’ve even written it. This approach doesn’t work everywhere. If you’re exploring a new problem
domain and constantly rewriting code, test-driven development can make you want to pull your hair out (and
slow you down to a crawl). But for a well-defined problem domain, like parsing, it’s very effective.

Parsing Floats

Following the decision to use test-driven development, here are some tests for your
unwritten Float parser.

def test float
assert_equal(4.5, Float.parse('4.5"))
end

def test float fail
assert raises(ParserException) { Float.parse('not a float') }
end

And here’s the code that does the actual parsing.
Float = number.map{|x| x.to f }

Unsurprisingly, it looks a lot like the integer example. The rule is constructed from a
prebuilt parser type.

267

268

CHAPTER 9 " PARSING IN RUBY

Deciding Between Different Number Types

You'd like the next rule (Number) to accept either an Integer or a Float, depending on the
presence of a decimal point.

def test number
assert equal(4.5.class, Number.parse('4.5").class)
assert_equal(45.class, Number.parse('45').class)
end

See how you can pass either type of number into Number and get the right type back?
This is actually a little tricky to do. Since you've already seen the alt parser in use, you
might as well start there.

Number = alt(Integer, Float)

You'd like this to match either an Integer or a Float, but you've got a little problem.
Let’s run the tests.

A failure! Why? Your Float is being parsed as an Integer. Unless you force a parser
to require the end of a string, it can always leave whatever input it doesn’'t want uncon-
sumed. So your Integer combinator is matching the leading 4 of 4.5 and leaving .5 for
the next parser to accept or deny.

Unfortunately, reversing the order doesn’t help! Because you've defined float
using number, it can also match integers (not just floats). One solution might be to only
use number and return a different value type (integer or float), depending on the pres-
ence of a decimal point. I like having two distinct combinators, though, and you can
make this work.

Number = longest(Integer, Float)

The longest parser always chooses the parser that consumes the most input. So, it
will select Integer unless it could also match as a Float and consume more characters.
This solves the problem.

So what else will you need to parse for s-expressions? How about symbols?

Parsing Symbols with Regular Expressions

As you will recall, Lisp symbols are just bare words.

def test _symbol simple
assert_equal(:foo, Symbol.parse('foo'))
end

CHAPTER 9 ©' PARSING IN RUBY

def test symbol tricky
assert_equal(:+, Symbol.parse('+"))
end

def test number letter number
assert_equal(:'4w4', Symbol.parse('4ws'))
end

def test symbol no leading numbers
assert raises(ParserException) { Symbol.parse('4word') }
end

def test symbol fail
assert raises(ParserException) { Symbol.parse('4') }
end

You can start from the Parsers module’s word method. Out of the box, it handles a
string of letters.

Symbol = word.map {|x| x.to sym }

But this only gets you past some of the tests. If you're going to use this parser for Lisp
code, you'll need to be able to handle symbols like + and make-array. You'll have to match
more than just letters. There’s no easy prebuilt combinator for this, so you'll have to put
one together. You could define an exact match using the string method for each addi-
tional character you want, and then put together an alt parser that accepts both regular
letters and any of your symbols. Then you could use repeat to collect a series of them. But
wow, does that sound painful.

Instead, just use the regular expression parser. Here’s a first attempt:

Symbol = regexp(/\w+/).map{|x| x.to sym }

Unfortunately, \w means a word character that is either a letter or a number! It’s not
a problem for your symbols to contain numbers, but you'd like them to contain at least
one alphabetic character or a symbol (otherwise, they'd be parsed as numbers). You can
rewrite it like this:

Symbol = regexp(/[\w]*[A-Za-z][\w]*/).map{]|s| s.to_sym }

But you're going to need to add special characters manually if you want them. And
it's worth noting that you should take care when using nonalphanumeric characters
inside regular expressions. Many of these characters have special meanings there.
Although, interestingly, many of these special meanings are ignored inside character
groups (the brackets that describe acceptable matches).

269

270

CHAPTER 9 " PARSING IN RUBY

So while + and * normally need to be escaped, you only need to worry about - and /
inside the character group.

Symbol = regexp(/[\w+\-*\/]*[A-Za-z+\-*\/][\w+\-*\/]*/) .map{|s| s.to_sym }

Of course, youd like to add more special characters beyond just basic math opera-
tors. It’s quickly going to get painful to maintain three separate lists in the two character
groups. So, take advantage of Ruby’s string interpolation and avoid repeating yourself.

Special = "+\-*/'
Symbol = regexp(/[\wi#{Special}]*[A-Za-z#{Speciall}][\wi{Special}]*/)w
.map{|s| s.to_sym }

That’s a big win in terms of maintenance and readability. But you can probably do a
little bit better! You can use the Regexp.escape class method to do your backslash escaping
for you. This will actually escape all of the normal dangerous characters, even the ones
that are safe inside character classes. But since this is still valid, you can rewrite the pre-
ceding code like this:

Special = Regexp.escape('+-*/=<>?1@#$%"&:~")
Symbol = regexp(/[\wi#{Special}]*[A-Za-z#{Speciall}][\wi{Speciall}]*/)w
.map{|s| s.to_sym }

Notice how you didn’t need a backslash before the minus or any of the other symbols
you added. This is because the call to Regexp.escape does the work for you. All your tests
from before should pass. You should also add a test that exercises all of the newly added
special characters.

Parsing Values

You'll add a few more of these literals (so far you have numbers and symbols) in a minute.
But let’s first collect the ones you've defined so far using an alt combinator. The tests
should make sure that Value accepts both numbers and symbols.

def test value
assert equal(:x, Value.parse('x"))
assert_equal(7, Value.parse('7'))
end

def test value on_numbers
assert_equal(:'4w4’, Value.parse('4ws"))
end

CHAPTER 9 ©' PARSING IN RUBY

And here’s the rule itself:
Value = alt(Symbol, Number)

Symbol is listed first because substrings of valid symbols can look like numbers. How-
ever, because of the constraint that Symbol must include at least one alphabetic character,
if it doesn’t find one, the Number definition can take over.

This is a good start to your s-expression parser, but now it’s time to think about lists.

Parsing Lists and Discarding Return Values

You can begin by writing a parser to handle a series of Value matches. They will be sepa-
rated by plain old whitespace, since that’s how s-expression lists work.

There’s a cool prebuilt Parser method to help you out here. It’s called separated and
takes a parameter that matches the separation between the repeated type. This may
sound odd, but it is quite common, even in the English language. When you make a list in
a sentence, you separate each item with a comma and a space.

You can use this in combination with the built-in whitespaces parser (which accepts
one or more characters of whitespace) to match your sequence. Here’s the test code:

def test values
assert_equal([:x, 1], Values.parse('x 1'))
end

And here’s the implementation:
Values = Value.separated(whitespaces)

Just like map, separated actually returns a new parser that gets assigned to the Values
constant.
You've almost got lists! All you need to do is wrap the Values class in parentheses.

def test list empty
assert _equal([], List.parse('()"))
end

def test list of symbols
assert _equal([:x, :y, :z], List.parse('(xy z)"))
end

def test list of lists

assert _equal([[:x], [:y, :z]], List.parse('((x) (y z))"))
end

27

272

CHAPTER 9 " PARSING IN RUBY

You want to test not only a simple list of symbols, but also the empty list and nested
lists. To get the first of these tests starting to pass, you'll need to define a List combinator.

List = char('(") >> lazy{Values} << char(')")

The char combinator simply takes a single character (the string combinator would
have worked fine as well). But what do the >> and << operators mean?

To start with, you could have avoided using the shift and unshift operators by using a
sequence combinator instead. sequence parsers must match each combinator in order. By
default, a sequence returns the last matched item as the result. In this case, that would be
a closing parenthesis. Not very useful.

However, if you call sequence with a block, all of the matched items are passed in as
parameters and the return value of the block is used as the parser return value. So to use
sequence in the previous code, you'd have written this.

List = sequence(char('("), lazy{Values}, char(')')){|lparen, values, rparen| w
values }

In other words, you'd throw away the results of the parentheses matching and only
keep the list of Values.

You're doing the exact same thing with the >> and << operators. Each of these opera-
tors produces a new parser that must match the combined parsers in the right order.
However, the parser produced by << returns the result of the first merged parser. The
parser produced by >> returns the result of the second merged parser. You can think of
these as “use the next guy’s result” or “use my result.”

So, your list definition using the two operators throws out the parentheses and
returns only the Values result. This leaves one last question. What does the 1lazy method
do? And why have you wrapped Values inside a block?

Using the Lazy Combinator

The reason that Values is wrapped inside the lazy combinator and a code block becomes
clear when you think about what you’ll need to do to support nested lists. Have a look at
the code as a whole:

module SExpressionParser
extend Parsers

Integer = integer.map{|x| x.to i }
Float = number.map{|x| x.to f }

CHAPTER 9 ©' PARSING IN RUBY

Number = alt(Float, Integer)
Special = Regexp.escape('+-*/ =<>?10#$%"&:.~")
Symbol = regexp(/[A-Za-z#{Special}][\w#{Special}]*/).map{|s| s.to_sym }
List = char('(') »> lazy{Values} << char(')")
Value = alt(List, Number, Symbol)
Values = Value.separated(whitespaces)
end

You need List to be a Value, but you also need Lists to be made up of Values. Ruby
won't let you write Values in the list definition, however, because you haven’t defined
Values yet! The problem arises because the definition is recursive, and you're using Ruby
constants. You can get around this by forging one of the connections lazily. The lazy
method does just this and ensures the Values constant won’t be looked up until call time.

You could have accomplished something similar by wrapping each definition in a
method instead of storing them in constants. Method bodies are always lazy, so this
problem couldn’t arise. But then, you'd also be wastefully creating new parser objects for
every parse attempt. There are reasons you might want to do that; but this parser’s needs
are much simpler, so constants will be fine.

Parsing Your First S-Expressions to the End of File Marker

You're going add a few more niceties in a minute, but for all intents and purposes, you
have a working s-expression parser now. Congratulations! Let’s just add a final line to the
module.

Parser = Values << eof

With this you've created a main Parser object. All real parses should go through this
object. You can even wrap this in a module level parse method for convenience.

def self.parse(text)
Parser.parse(text)
end

The eof is a combinator that demands that all input must have already been con-
sumed for a particular input string to be considered validly parsed. Here’s the result!

SExpressionParser.parse("(+ 1 (- 5 3))") » [:+, 1, [:-, 5, 3]]

Right on! Let’s go ahead and add some other common features.

273

274

CHAPTER 9 " PARSING IN RUBY

Quoting in Lisp

Almost all Lisps allow you to prefix a value with a single quote to prevent it from being
evaluated. Under the hood, this is sometimes translated into an application of the quote
special form.

def test quoted
assert_equal([:quote, :foo], Quoted.parse("'foo"))
end

def test quoted double
assert_equal([:quote, [:quote, :foo]], Quoted.parse("''foo"))
end

def test quoted complicated
assert_equal([:quote, [:foo, [:quote, :baz]]], Quoted.parse("'(foo 'baz)"))
end

The tests start with the simple test of a quoted symbol. Then they test a twice-quoted
symbol. And finally they try quoting a list containing a symbol and a quoted symbol. In
every case, you expect the quotes to get translated into applications of the quote form.

Here’s how you make it happen. You need to match the single quote character using
char and then throw away its return value using >>. Since Quoted will be a Value, but also
uses Value, you'll need to use lazy again. And the matched result must be enclosed in the
special quote form. (Well, actually, it’s only a call if the result is fed into a Lisp interpreter;
otherwise, it’s just items in a list.)

Quoted = char("'") >> lazy{Value}.map{|value| [:quote, value] }
And to make it properly a Value, you add the following:
Value = alt(Quoted, List, Number, Symbol)

Now the only thing you're missing is proper string handling.

Parsing String Literals

S-expression strings are enclosed inside double quotes, but they can also contain back-
slash escaped characters. These escapes let you write another double quote without
ending the string, as well as represent newlines, tabs, and so on.

CHAPTER 9 ©' PARSING IN RUBY

Caution You'll be using the special Ruby %q{} quote operator to avoid the confusion of writing
s-expression strings contained in quotes inside Ruby strings enclosed by quotes.

def test string
assert_equal('foo bar', String.parse(%q{"foo bar"}))
end

def test string escape
assert_equal('a', String.parse(%q{"\a"}))
end

def test string escape quote
assert_equal(%g{"}, String.parse(%g{"\""}))
end

As you see, even the quote marks themselves can be difficult to decipher. In the first
test, you're parsing a %q{} quoted Ruby string that contains an s-expression string built
with double quotes. It is then compared against an answer written with single quotes
instead of %q{} (because regular quotes are more readable when the string doesn’t actu-
ally contain quote marks).

In the second test, you can see escaping working, although for a character with no
special meaning. Since a has no special meaning, you'll just pass it through, just as you
do with the escaped double quote mark in the third test. After you've got this working,
you can look into adding translations for \n and \t.

Here’s a first attempt at implementing strings:

Escape = (string('\\') >> any)

Quote = string("'")

NotQuote = not string("'")

String = (Quote >> (Escape|NotQuote).many << Quote).map do |charseq|
charseq.map{|charnum| charnum.chr }.to s

end

Any other character is allowed to follow an Escape. They are consumed together as a
unit, with the backlash being thrown away. When you add tab and newline handling, you
can do it here easily with a map block.

Since you'll be using it twice, you’'ll define a Quote constant for the parser that han-
dles a double quote mark. You'll also define a parser that handles everything except a
quote mark.

275

276

CHAPTER 9 " PARSING IN RUBY

The String definition itself is then remarkably simple. A Quote is followed a sequence
of many things that are NotQuotes or are Escapes, and is finally terminated by another
Quote. You use the >> and << operators again to throw out matched data you have no
interest in. And you define the repetition using the many method, which by default accepts
0 or more matches for the parser.

This now leaves you with the chore of putting the string back together. The many
method returns an array by default. The matched text is returned as character numbers,
so you need to translate each character number into a string containing that character
and then use to_s to smush them together.

All the tests are passing now, but I find this code a little messy.

Abstracting String Parsing

What if you rewrote string parsing as a method in Parsers that produced a parser using
the specified quotation symbol and escape symbol? This would also be a good time to
add escape translations like I talked about.

Consider this helper method:

module Parsers
def stringer(opener, closer=nil, translate={})
closer = opener if closer.nil?
escape = (string('\\") >> any).map do |charnum|
escaped = charnum.chr
translate[escaped] || escaped

end

open = string(opener)

close = string(closer)

other = not_string(closer).map{|charnum| charnum.chr }

string = (open >> (escape|other).many << close).map {|strings| strings.to s }
end
end

The method stringer works almost identically to the previous example. The two
changes you've made involve the separation of opener and closer quote marks, as well as
an escape translation mechanism. Allowing different open and closing quote marks adds
a little flexibility without much cost. This would let you support something like Ruby-
style word lists.

Tip Ruby word lists are written %w{one two three} and translated into ["one", "two", "three"].
They are opened with %w{ and closed with }, and the result is split on whitespace.

CHAPTER 9 ©' PARSING IN RUBY

The stringer method also allows you to omit a closing quote mark, since many string
systems use the same character for both opening and closing. The translation happens in
a map statement on the escape. If a translation is found, it is used instead of the original
character; but if no translation is found, the original is simply returned. Because the
translations are done on actual strings, it makes sense to move the character number to
character conversion a little earlier in the process (up into the definition of escape and
other).

You can replace the previous multipart String definition using this code:

String = stringer(%q{"})
Or if you'd like to add some translations, you'd do this:
String = stringer(%q{"}, %q{"}, "n" => "\n", "t" => "\t")
Now you just have to make String a proper Value.
Value = alt(Quoted, List, String, Number, Symbol)

You've implemented a complete s-expression parser!

Putting It to Work

You've been unit testing the parser all along, so you should feel pretty confident that it
actually works. Let’s just add a system test now and call it done.

Note While unit tests are supposed to verify one single component in a software system, system tests
are intended to exercise the software as a whole.

Usually you'd want a few system tests, but this one does a pretty good job of exercis-
ing the whole parser system.

def test system
assert _equal([[:*], [:quote, [:a3e, :b, :c]], :b, "a\nstring", [:add, 4, 5.5]],=
Parser.parse("(*) '(a3e b c) b \"a\\nstring\" (add 4 5.5)"))
end

And with that, you're done with s-expressions.

277

278

CHAPTER 9 " PARSING IN RUBY

Parsing List Comprehensions

Before I even talk about what list comprehensions are, I'd like to start by saying that
they’re not a very good fit for Ruby. I'll discuss why in a minute, as soon as I've talked
about the list comprehension basics.

A list comprehension is a special syntactic structure that is used to transform and
select values from lists. List comprehensions can be found in languages like Python,
Haskell, Erlang, and even in newer versions of C#.

It'’s not that I have anything against transforming and selecting values from arrays,
per se. But Ruby has such a concise syntax for anonymous closures that adding list com-
prehensions to the core Ruby language would increase syntactic complexity with no real
benefit.

Compare the following Python and Ruby code. Here’s the Python:

resultsl = [thing.transform() for thing in things]

results2 = [thing.transform() for thing in things if thing.valid()]
Here’s the Ruby:

resultsi

things.map{|thing| thing.transform }
results2 = things.select{|thing| thing.valid? }.map{|thing| thing.transform }

As you can see, the Ruby is a little shorter in the transform-only case, and a little
longer in the select/transform case. Both are very readable and do the same thing.

The uncomfortable question the Python example forces me to ask myself is, why do
only transform and select get their own special syntax? Ruby’s more general usage of con-
cise, anonymous closures ends up being more flexible.

With that said, a lot of people really like list comprehensions, so wouldn't it be cool if
you could support them in Ruby? Even better, what if you could support them as a simple
add-on? Not to mention, list comprehensions need special syntax, and that means pars-
ing! This is a perfect project to tackle next, since it will require more sophisticated
parsing.

Just a warning, though: this will be a somewhat complex example. I'll try to limit the
scope by ignoring a lot of the full Ruby syntax. I won’t deal with blocks, classes, or most
control structures. But even with those restrictions, you're going to need to allow method
calls plus literals like numbers and strings at the very least. And in the middle of all this,
you'll learn a little parsing theory as well. Ready?

Making a Plan

You can actually reuse quite a bit of your s-expression parser here. The Integer and Float
combinators stay the same. Single- and double-quoted strings can be defined in one line
using the stringer helper.

CHAPTER 9 ©' PARSING IN RUBY

Symbols are a little different in Ruby—they have a leading colon (:)—but you’ll want
to keep around a notion similar to Lisp symbols. You'll parse these unprefixed words with
the Word combinator instead. These words will be used for method and variables names.

Caution Ruby has slightly stricter rules about variable names than | will be using.

The tricky bit will be putting it all together (well, that and method calls). Method calls
are going to be surprisingly complicated, but you'll learn some pretty important lessons
about recursive descent parsers in the process.

You're also going to use an abstract syntax tree (AST). An AST is an interconnected
tree of objects representing the programming language structures. This tree can then be
used in any number of ways. It could be interpreted like Ruby’s own internal AST, com-
piled into native code, analyzed for assertions, or optimized via restructuring. You'll
interpret the AST in order to run the list comprehension.

Creating Abstract Syntax Tree Nodes

By default, your nodes will have no behavior associated with them. They just need slots
to hold their children. You can add methods to them later, if you want, using Ruby’s open
class mechanism.

Instead of creating a new class for each, you'll take advantage of Ruby’s built-in
Struct class. Structs provide a straightforward way to declare classes with slots. Here’s a
simple example:

Struct.new("Example", :one, :two)
example = Struct::Example.new(1, 2)
example.one » 1

example.two » 2

This isn’t quite what you want, though. To start with, you probably don’t want your
nodes living inside of Struct’s namespace. You also probably want a common base class,
in case you need to add any features to all of the nodes. Turns out you get all this just by
subclassing Struct.

module ListComp
class AST < Struct; end
AST.new("Symbol", :value)
AST.new("Integer", :value)
AST.new("Float", :value)
AST.new("String", :value)

279

280

CHAPTER 9 " PARSING IN RUBY

AST.new("Variable", :name)

AST.new("Call", :target, :method name, :args)

AST.new("Comprehension", :transform, :name, :source, :conditional)
end

The AST should give you basic idea what you'll need to handle in the parser.

Reusing Combinators from the Last Parser

You should put all of your code under a ListComp module, including both the AST and the
parser combinators. To keep them out of everyone’s hair, you'll put the parser combina-
tors in a separate Parsers submodule. Unfortunately, if you're not careful, you'll “shadow”
RParsec’s Parsers module with that name and prevent yourself from reaching the real one
to extend it. You can solve this by saving a reference to Parsers in a constant named
ParsersAlias.

require 'rubygems'
require 'rparsec’

module ListComp
ParsersAlias = Parsers

module Parsers
extend ParsersAlias

_ = whitespaces
Special = Regexp.escape('+-*/_=<>?21@#$%"8:~")
Word = regexp(/[A-Za-z#{Special}][\w#{Special}]*/).map{|s| s.to sym }
Symbol = string(":") >> Word.map{|x| AST::Symbol.new(x) }
Integer = integer.map{|x| AST::Integer.new(x.to i) }
Float = number.map{|x| AST::Float.new(x.to f) }
Number = longest(Integer, Float)
String = stringer('"').map{|x| AST::String.new(x) }
Stringl = stringer("'").map{|x| AST::String.new(x) }
String2 = stringer('"', '"', "n" => "\n", "t" => "\t").map{|x| =
AST::String.new(x) }
Variable = Word.map{|x| AST::Variable.new(x) }
Literal = alt(Symbol, Number, Stringl, String2, Variable)
end
end

You can basically reuse your tests from the last section, so I won’t take up space on
them here. Do notice, however, I made a super short alias for whitespaces named with an
underscore. This reads pretty well, as you'll see later.

CHAPTER 9 ©' PARSING IN RUBY

Parsing the List Comprehension Syntax

To add in the syntax support for "for" and "in", you'll need to provide some structure.

Expr = Literal

For = string("for")
In = string("in"
If = string("if")

Conditional = If >> >> Expr
Iteration = sequence(Expr, _, For, _, Word, , In, _, Expr) do
|transform, wi, f, w2, name, w3, i, w4, source|
AST: :Comprehension.new(transform, name, source)
end
CompBody = sequence(Iteration, (_ >> Conditional).optional) do |comp, cond|
comp.conditional = cond
comp
end
Comp = char("[") >> CompBody << char("]") << eof

You assign Literal to Expr for now. Later you'll have to add in method calls and
change this definition, but it works for now. For, In, and If all match the strings of the
same name. Conditional’s job is to parse the optional if statement at the end of the
comprehensions.

See how the underscore makes it more readable than writing whitespaces in all of
those places?

The Iteration section represents the main looping part of the comprehension.
Separating it out like this makes it easier to test. As you can see from the block, you
ignore many of the parser’s matches. You can’t use the >> and << operators this time
because you want more than one of the values, but you can use a block instead to throw
out all the matches except the transformation, the name, and the source.

The CompBody is then responsible for knitting the Iteration and the optional Conditional
together. If no Conditional was found, cond is nil. Either way, you just set the conditional on
the AST: : Comprehension object and return it. Any methods on the Comprension node will need
to support this potentially nil Conditional.

And last but not least, you put Comprehension inside brackets and require it to be
followed by the end of the string.

If you intended to use the component as part of a larger parser for a whole program-
ming language, you'd leave out the eof. But since each string you parse is only supposed
to contain one list comprehension and nothing else, adding it here is the right thing.

281

282 CHAPTER 9 " PARSING IN RUBY

Testing Your Partial Implementation

Here are some tests to try it out:

def test _conditional
assert_equal(AST::Integer.new(1), Conditional.parse("if 1"))
end

def test iteration
transform = AST::Variable.new(:thing)
name = :thing
source = AST::Variable.new(:things)
answer = AST::Comprehension.new(transform, name, source)
assert_equal(answer, Iteration.parse("thing for thing in things"))
end

Here you can see both the Conditional and the Iteration parser combinators
working. And here’s the test that proves the whole thing works together!

def test_comp_simple

transform = AST::Variable.new(:thing)

name = :thing

source = AST::Variable.new(:things)

cond = AST::Variable.new(:thing)

answer = AST::Comprehension.new(transform, name, source, cond)

assert_equal(answer, Comp.parse("[thing for thing in things if thing]"))
end

Notice that the names the parser expects are raw symbols, not AST types. This is
because these names aren't part of the syntax tree. They are only information about
which slot to inject the iterated variable into.

Even though getting back an AST: : Comprehension won't do you a lot of good until you
implement some way to evaluate it, let’s stick with parsing for the moment and add
method calls to the mini-language you used inside your list comprehensions.

Parsing Method Calls with Dot

This is about to get interesting. Let’s try simplifying the example as much as possible. For
the moment, forget about list comprehensions. Instead, picture an imaginary language
named Dot. This language’s only features are number literals and postfix, unargumented,
method calls. Here’s an example:

4.inc.recip

CHAPTER 9 ©' PARSING IN RUBY

You can imagine the preceding line evaluating to 1/5 (the reciprocal of the result of
four incremented by one). You might be tempted to try to parse the language like this:

require 'rubygems'
require 'rparsec'

module Dot
extend Parsers

class AST < Struct; end
AST.new("Integer", :value)
AST.new("Call", :target, :name)

Dot = string(".")

Word = word

Integer = integer.map{|x| AST::Integer.new(x) }

Call = sequence(lazy{Expr}, Dot, Word){|expr, dot, name| w
AST::Call.new(expr, name) }

Expr = alt(Call, Integer)

Parser = Expr << eof
end

Go ahead and give this code a shot!
Dot::Parser.parse("4.inc.recip")

You should be almost immediately greeted by a message like this: “stack level too
deep (SystemStackError).” What's going on?

Recursive descent parsers parse input from left to right. Unfortunately, you've cre-
ated a situation with a left recursive loop. Left recursion causes recursive descent parsers
to infinitely loop. An Expr can start with a Call, and a Call starts with an Expr. Reordering
the elements in Expr’s alt won't help either. Putting Integer first just causes it to be con-
sumed, and then an error is thrown about the extra input (because you require eof).

Eliminating Left Recursion

Luckily, there’s a rule for translating left recursive grammars into non-left-recursive gram-
mars. The basic idea is that you start with a grammar like the following (this is essentially
the grammar from the previous code written in a simpler EBNF-style notation).

Call = Expr "." Word
Expr = Call | Integer

283

284

CHAPTER 9 " PARSING IN RUBY

You then translate it into something that looks like this:

Call = "." Word CallChain
CallChain = Call | Empty
Expr = Integer CallChain

In the preceding example, Empty is a special parser that always matches and con-
sumes no input. The previous code has factored out the common parts of the grammar to
the left side. So now you look for the actual values you know can start off one of these call
chains (in this case, only an Integer), and then you allow as many calls as desired to chain
off that. The previous example uses right recursion, but you could have written it using
repeat as well (to hide the details under the hood).

CallChain = "." Word
Expr = Integer CallChain*

What do these look like in Ruby code? Here’s the recursive version:

Empty = string("").map{|x| nil }

Call = sequence(Dot, Word, lazy{CallChain})
CallChain = alt(Call, Empty)

Expr = sequence(Integer, CallChain)

And here’s the slightly shorter version that uses many:

CallChain = sequence(Dot, Word).many
Expr = sequence(Integer, CallChain)

But you've got a problem. The original recursive version you wrote made it really
easy to build up your AST. But your new version is more complicated. Putting together
any sort of node after a Call match is tricky because the Call doesn’t have access to the
target the method is being invoked on. You can work around this in the recursive case by
returning proc objects that will produce the appropriate node type later when called
with the missing target.

Empty = string("").map{|x| nil }
Call = sequence(Dot, Word, lazy{CallChain}) do |dot, method name, chain|
proc do |target|
call = AST::Call.new(target, method name)
return call if chain.nil?
chain[call]
end
end

CHAPTER 9 ©' PARSING IN RUBY

CallChain = alt(Call, Empty)

Expr = sequence(Integer, CallChain) do |expr, chain]
return expr if chain.nil?
chain[expr]

end

Cool, huh? But it's complicated. It's probably best to use the repeat version instead.
While still not as nice as the first way you tried to write it, this version will help simplify
building the AST.

CallChain = sequence(Dot, Word).many

Expr = sequence(Integer, CallChain) do |expr, chain|
chain.inject(expr){|chain, name| AST::Call.new(chain, name.to sym) }

end

Because many returns a list, you can just use inject to left fold the list! And if the call
chain is empty, then expr is just returned. The feasibility of this technique depends on
how many important matches the chain contains.

Method Calls in List Comprehensions

With this new understanding about how to avoid left recursion, let’s add method calls
into the list comprehension syntax. You can worry about argument lists in a minute. For
now, start with the no-argument list methods from the previous section.

Here’s the unit test:

def test _method call
answer = AST::Call.new(AST::Call.new(AST::Integer.new(1), :baz), :grr)
result = Expr.parse("1.baz.grr")
assert_equal(answer, result)

end

And here is the code to make it happen:

Literal = alt(Symbol, Number, Stringl, String2, Variable)

Dot = string(".")

CallChain = sequence(Dot, Word).many

Expr = sequence(Literal, CallChain) do |expr, chain|
chain.inject(expr){|target, name| AST::Call.new(target, name) }

end

285

286

CHAPTER 9 " PARSING IN RUBY

Okay, so you'd like to add argument lists as well, though. Start by writing a test case to
show what they look like. Let’s replace the old test.

def test _method call

args = [AST::Integer.new(2), AST::Integer.new(3)]
AST::Call.new(AST::Call.new(AST::Integer.new(1), :baz, []), :grr, args)
Expr.parse("1.baz().grr(2, 3)")
assert_equal(answer, result)

answer

result

end

And then you can implement it. Notice how the number of definitions increased
(though the grammar is still quite manageable).

Literal = alt(Symbol, Number, Stringi, String2, Variable)
Dot = string(".")

non

Comma = string(",

Delim = .optional >> Comma << _.optional
LParen = string("(")
RParen = string(")")

Arglist = LParen >> lazy{Expr}.separated(Delim) << RParen

Call = sequence(Dot, Word, Arglist){|dot, name, args| [name, args] }

CallChain = Call.many

Expr = sequence(Literal, CallChain) do |expr, chain|
chain.inject(expr){|target, name| AST::Call.new(target, name[0], name[1]) }

end

You've added several more simple parsers like Comma, LParen, RParen, and even Delim
(which is just a comma surrounded by optional whitespace). You use them to build an
Arglist enclosed in parentheses and separated by commas.

You've also broken the definition of Call out of CallChain. Adding Arglist to the
sequence means you'll need a translation block to preserve both the method name and
the method args (return them as a pair). Separating Call makes this easier.

Lastly, you've changed the code that builds Call nodes to use both the method name
and the argument list. And with that, the parser is done!

Running the Comprehensions

All that’s left now is the behavioral code to make the list comprehensions run. Because
you'll be adding the methods via Ruby’s open classes, you can put this code in a separate
file if you choose so that you could potentially have multiple behavior implementations.

CHAPTER 9 ©' PARSING IN RUBY

In this case, you could pull in the asteval. rb for the simple execution model, or perhaps
bytecode.rb for a version that compiled down to byte code for one of the next-generation
Ruby virtual machines.

require 'listcomp'
require 'listcomp/asteval’

For now, though, you'll put them in the same file (1istcomp.rb).

Just as in your Lisp interpreter, you'll add an eval method to each AST node type. And
like your Lisp interpreter, you'll pass an environment into each. Because of the odd way
in which Struct subclasses are stored inside their parent, you'll have to nest the defini-
tions of each AST subclass inside the AST class. But you'll also provide a default eval
method that simply calls and returns the value method (just an accessor for the value
instance variable).

class AST
def eval(env)
value
end
end

In this default case, you totally ignore the passed-in environment. Not so in the
evaluation of the AST: :Variable node.

class AST
class Variable
def eval(env)
env[name]
end
end
end

Evaluating a Variable node type retrieves its value from the environment and
returns it.
The Call evaluation looks a lot like the Lisp apply code.

class Call
def eval(env)
target.eval(env).send(method name, *args.map{|a| a.eval(env) })
end
end

287

288

CHAPTER 9 " PARSING IN RUBY

You evaluate both the target and the arguments, and then use send to actually invoke
the method. All that’s left is the Comprehension node itself (well, that and some glue, as
you'll see in a minute).

class Comprehension
def eval(env)
list = source.eval(env)
unless conditional.nil?
list = list.select do |value|
env[name] = value
conditional.eval(env)
end
end
list.map do |value|
env[name] = value
transform.eval(env)
end
end
end

The source you'll be iterating over is first evaluated in the environment. If the com-
prehension has a conditional statement, eval uses a select call to filter the list. You bind
each list item into the given name (one at a time) and evaluate the conditional to deter-
mine if the element should remain. Then eval uses map to transform the list. Again, each
of its components is bound into the environment with the designated name. The trans-
formation is then evaluated once for each binding and the result is returned. You can try
it out right now!

n

ListComp::Parsers::Comp.parse("[n.+(1) for n in s]").eval({:s => [1, 2, 3]})
> (2, 3, 4]

Wow, is that cumbersome! Let’s add a little glue to make the whole thing nicer.

Adding Some Convenience

The biggest win will come from wrapping up the parser and evaluating code inside a
helper method.

def list comp(text, env)
ListComp::Parsers::Comp.parse(text).eval(env)
end

list comp("[n.+(1) for n in s]", {:s => [1, 2, 3]})

CHAPTER 9 ©' PARSING IN RUBY

As you can see, this helps, but passing in the environment is still painful. You can
make this a little easier with the help of Ruby bindings.

Abusing Ruby Bindings

Ruby ships with a class named Binding. It represents a Ruby environment (which con-
tains variables and constants). You can create one at any time using the binding kernel
method. By default the objects aren’t terribly useful, except that you can evaluate code in
the context they were created. This is typically used when you want to explicitly restrict
the environment code runs in when you call Ruby’s native eval method.

However, the members of the Ruby Extensions project have cleverly extended the
Binding class for you. If you install the gem extensions, you can make use of their extra
methods. You'll need them for the next section.

One member, Tom Sawyer, has used eval to implement a series of methods that let
you easily look inside Binding objects. You can use this to convert Binding objects into
hash tables that your eval method can understand. Consider this new 1ist comp
definition:

def list comp(text, b)
env = {}
b.local variables.each{|var| env[var.to _sym] = b[var] }
ListComp::Parsers::Comp.parse(text).eval(env)

end

The 1ist_comp method would be called like this:

S = [1) 2, 3]
list comp("[n.+(1) for n in s]", binding)

There’s actually an even more interesting extension to Binding that actually allows
you to look at the values defined in the caller’s environment. This is perfect, since it
would let the 1ist_comp method peek outside of its own scope and use the values defined
in the scope it was called.

Unfortunately, since Ruby 1.8.5, this extension no longer works. The Ruby commu-
nity may eventually get this functionality back via one of several projects that involved
manipulating Ruby internals from within Ruby, but I won'’t sidetrack you by diving into
those. Suffice it to say that if you are running Ruby 1.8.4 or before, you could write the
following:

require 'extensions/binding'

def list comp(text)
ast = ListComp::Parsers::Comp.parse(text)

289

290

CHAPTER 9 " PARSING IN RUBY

Binding.of caller do |rubyenv|
env = {}
rubyenv.local variables.each{|var| env[var.to_sym] = rubyenv[var] }
ast.eval(env)
end
end

This code uses Binding.of caller to grab the environment that called the method.
Because of the way it’s written, of_caller is used with a block (you can read about why on
the Ruby Extensions web site). You then copy all the variables out of the captured Ruby
environment into a hash that you’ll use as your environment. And then you eval the AST!
This would let you completely omit the call to bindings.

list comp("[n.+(1) for n in s]")

If you were using this regularly, you might consider removing the brackets around
the comprehension because they aren't really required. And for a complete solution,
you'd probably also want to add array and hash literals and maybe cache the results of
previous parse attempts. Infix operators like + might not be bad either. But I'll leave those
up to you! If you get that far, you'll have made a good start on your very own complete
Ruby parser.

Best of luck!

Summary

In this chapter, you covered the basics of parsing using the RParsec parser combinator
library. You worked with grammars and learned about what it means to be a top-down
parser and a recursive descent parser. Then you dove in and implemented a full
s-expression parser that handled all the basic literal types, plus extras like quoting. In
the process, you built a relatively generic combinator for parsing quoted strings. Then
you moved on to parsing list comprehensions and learned about what’s required to
parse Ruby method calls and how to avoid using left recursion. Your parser built an exe-
cutable abstract syntax tree using the helpful Ruby Struct class. All along the way you
used test-driven development to help you write reliable and accurate code.

If you're looking for more information about parsing and Ruby, the following web
pages (the documentation for RParsec and Racc) may be of use to you:

http://docs.codehaus.org/display/JPARSEC/rparsec+overview

http://i.loveruby.net/en/projects/racc/

http://docs.codehaus.org/display/JPARSEC/rparsec+overview
http://i.loveruby.net/en/projects/racc

CHAPTER 9 ©' PARSING IN RUBY

Additionally, most good compiler books dedicate a portion of their pages to parsing.
Principles of Compiler Design by Alfred V. Aho and Jeffrey D. Ullman (Addison-Wesley,
1977), affectionately nicknamed “the Dragon book,” has been a standby for years,
although a newer text, Compilers: Principles, Techniques, and Tools (Addison-Wesley,
2006, 2nd Edition) has been released by the same authors as well. Andrew W. Appel also
has several compilers books available for a variety of languages (although not Ruby).

I hope this chapter has shed some light into the dark magic of parsers. In the end,
they really aren’t that hard. You've focused mostly on parsing programming languages
(because they're fun!). But keep your eyes out for places where parsers can make your life
easier. Parsers are everywhere!

291

Index

Numbers and symbols
& (bitwise and), 204
A (bitwise exclusive or), 204
| (bitwise or), 204
[] method
and []= methods, 64
in Pattern class, 33
..-¥[._* (on/off) characters, in Pattern
class, 29
= (equal sign)
extending notes with, 33
meaning in grammars, 262
==method, for testing, 103-104
+ (plus) symbol, 232
* prefix operator, 134-135
* (quasiquote), in Lisp, 249
%q quote operator, parsing literal strings
with, 275-276
<< (shift operator), moving bytes with, 15

A
“A Genetic Algorithm Tutorial” paper, web
site address, 221
@@permutations_cache class variable,
memoizing code, 106-107
@at callbacks hash table, initializing, 56
@base variable, in Pattern class, 30
@choosen_rep, 178-179
@load_time variable, 43
@terrain Matrix, populating, 125-127
@units Matrix, 124-125
Abelson, Harold, 224
abstract syntax tree (AST)
creating nodes, 279-280
interpreting to run list comprehensions,
279
accessors, required by Terrain and Unit
instances, 124-125
aconnect command-line utility, ALSA, 22

Action class, taking actions with, 136-139
Action subclasses, implementing, 137-139
add method, 169-170
inserting objects into animations with,
56-57
add_unit method, BasePlayer class, 140
Advanced Linux Sound Architecture
[ALSA] for Linux, 9
Aho, Alfred V., 291
algorithmic iterations, running, 200-201
algorithms, for exploring large solution
spaces, 197
alias keyword, 78
all_positions method, 127
finding moves with, 135
ALSA, interfacing with, 19-22
amount helper, implementation, 102
Animation class, 55-57
animation loop, settings in, 58
Animation objects, managing and
tracking time increments with, 56
animations
code skeleton for, 78
putting together, 83-86
rendering, 57-58
spicing them up, 86-91
writing message for, 80
your first GridDrawer, 78-82
animations, 91
animator, converting pictures to
animations with, 55-66
ant colony optimization, 197
Appel, Andrew W., 291
application bundle, Cocoa applications
distributed as, 161
ApplicationGameDelegate, 161
applications and windows, 157-158
apply method, 232-233
arithmetic definitions, in Lisp default
environment, 237

293

204

INDEX

Array class
building Matrix class with, 122-124
calling consify on, 234

arrayify method, 233-235

arrays, in Ruby, 121

at method, 59

audio tracks, adding to iMovie

animations, 84

backtracking, 263
bang
as regularly scheduled action, 22
callback, 40
counter master kept by Monitor, 42
BasePlayer class
adding functionality of, 140-142
command line interface for, 139-140
Binding class, shipped with Ruby, 289-290
binding kernel method, capturing current
bindings with, 62
Binding objects, 62-63
Binding.of_caller, using, 289-290
bit strings
implementing, 203-207
using integers as, 203-204
Bite action, implementing, 137-139
Bitnt class
subclassing, 209-210
wrapping return values, 210-211
bits_to_int, calling, 205-206
bitwise and (&), 204
bitwise exclusive or (1), 204
bitwise or (|), 204
BIT_SIZE, setting, 209-210
blocks, registering as callbacks, 58-60
bpm method, 40
brute force algorithm, 96-97

C
C module, defining inside LiveMIDI class,
13

call method

in Ruby, 232-233

invoking to perform actions, 136
callbacks, registering and running, 58-60
car function, 224-225

cartography 101, 124-125
cdr function, 224-225
cells, 195. See also views, controls, and
cells
Centipede game, making drawing
mechanism work as, 87-90
chaining, environments, 227-230
change making simulation, 211-216
change method, change_making
operation performed by, 98-99
change simulation
adding a coin, 112
coin systems, 114-115
Customer class, 100-110
determining change carried around,
111
going shopping for, 93-95
hash problems, 107-109
making change, 95-99
memoization, 106-107
optimal coins, 113-114
pay! method, 109-110
replacing a coin, 111-112
wizard money, 116-117
change.rb, creating, 94-95
ChangeGenome class, 214
ChangeMaker class, 98-99
ChangeSimulator, 110
adding a coin, 112
adjusting for wizard money, 116-117
beyond four coin systems, 115
coin systems, 114-115
determining optimal coins, 113-114
four coin system, 114-115
getting the price list, 111
initializing, 110
replacing a coin, 111-112
simulating 10K purchases, 111
telling number of purchases to run for,
110
ChannelManager class, 47-49
Choice class, 134
Choice objects, rep method, 177
ChoiceBar class, 169-171
choices, making, 177-179
choices? method, 141
choose_all method, building, 141-142

choose_all_or_done method, 141-142, 149
choose_or_done method, 141-142,
149-150
chromosomal crossover, in sexual
reproduction, 204
Chuck, 7, 40
class eval, adding definitions with, 72
class method, defining directional
methods with, 71-72
clear method, 169
clear_units method, BasePlayer class, 140
clicked method, 170
CLIPlayer class, writing, 143-144
close method
CoreMIDI for OS X, 18
defining, 14
writing ALSA, 20
C.mIDIPacketListAdd, using, 18-19
cmusic, 7
Cocoa application. See also RubyCocoa
odd way to do things, 161-162
packaging it up, 192-194
Cocoa Application Kit, 153
CocoaPlayer class
as subclass of BasePlayer class, 159
changing initialize method, 164-165
creating, 163
defining convenience method in, 180
DinoCocoaPlayer subclass, 173-174
mouseDown method for, 182-183
TBSView initialization by, 182
CocoaTBS#initialize method, changing to
use ChoiceBar, 171
coin list, encoding in genome, 211-212
coin system solver, writing generic, 114
coin systems, simulating with Ruby,
93-118
ColorTile class, 173
coding ImageTile to replace, 185-186
combinators. See also parser combinators
reusing, 280.
command-line player, writing, 143-144
comparison method, for cube objects, 79
Compilers, Principles, Techniques, and
Tools, 291
composing music, 29-36
conditional expressions, adding, 241-242

INDEX

cons cells, 258-259
building, 224-226
Cons class, building in Ruby, 225-226
cons function, cons cells created with, 224
consify method, 235
const_set method, declaring BIT_SIZE
with, 210
Contents of Address of Register, 225
Contents of Decrement of Register, 225
controls. See views, controls, and cells
CoreFoundation string, taken by
MIDIClientCreate function, 16-17
CoreMIDI for OSX, 9
interfacing with, 16-19
create_button_bar method, 167-168
create_menu method, 194
create_messages method, building
message box with, 166
create_window method, sizing window
with, 175
crossover method, playing with, 204-205
crossover modeling, 205-206
crossover_when method, 206-207
Ctrl+C, stopping program with, 154
Cube class, 73
cubes
drawing, 65-78
giving depth to, 86-87
making visible every four beats, 90
Customer class, 100-110
creating new American, 103
creating new customer in, 101
giving and receiving coins, 105
CUTE_TERRAIN_SHORTEN_Y, 188-190
CUTE_TILE_OFFSET_Y, 190

D

Danc, PlanetCute tileset by, 184
data bytes, MIDI, 10-11
data types, choosing Lisp, 224
deferred execution, 74-76

adding to GridDrawer, 76-77
define and set! special forms, variable

manipulation with, 241

define expression, 259-260
define method, for Env class, 228-230
define method method, 72

295

296

INDEX

defined? method, implementing, 228-230
defmacro, syntax for, 249
defmacro?, implementing, 250
def_draw method, parameters, 72
delegate library, using, 209
delegation, using when subclassing
Interger class, 209
denoms method, defining helper methods
for, 213
die method, 130-131
DinoCocoaPlayer class, 173-174
adding extra padding, 191-192
adding image-based tilesets to, 186
creating present_TYPE_choice methods
in, 180-181
fixing mouse down handling, 191
DinoWars game class, 150-151
directional methods, 69-71
dispatch method, Timer class, 23-24
DL:Importable, 13
DL.sizeof method, 14
domain-specific languages (DSLs). See
DSLs
DONE Choice, 134
done method, 146
done? method, 146
do_choose method, 140-141
implementing, 177-179
making choices with, 179
Dragon book, 291
draw method, 73, 128
drawing map with, 172-176
populating Location objects with, 176
Drawer class, 172-173
passed into each Location, 174-175
drawing mechanism, 87-90
drawRect, writing, 175-176
draw_all method, redrawing displays
with, 146
DRY (don't repeat yourself), 71
DSLs (domain specific languages), 67-68.
See also external DSLs; internal
DSLs
DumbComputer class, coding simple,
142-143
dup, calling on value stored in cache, 107
duration parameter, for play method, 27

duration prefixes, changing parser to use,
35-36

dynamic linking library, provided by
Ruby, 9

dynamic programming, 99-100

E

each method, 95
encodings
choosing, 212-214
thinking about, 203-207
end_choice method, 179
Enumerable module
adding min_by method to, 97-98
defining random method in, 200
defining rest method in, 32-33
Env class, constructor supporting
chaining, 228
env parameter, lispeval method, 231
environments
chaining, 227-230
changing values stored in, 229-230
saving, 247
saving values in, 226-230
eof combinator, 273
equal sign (=)
extending notes with, 33
meaning in grammars, 262
ERB (embedded Ruby templating
language), 60-61
error checking, 101-106
eval function, 230-232
defining as a special form, 251
in Lisp, 250-251
eval method, 62-63
evolution, simulating, 198-206
execution, deferring, 74-76
extend keyword, in Ruby, 13
Extended Backus-Naur Form (EBNF),
262-263
extern method, calling, 13
external DSLs, 67

F

Felleisen, Mathias, 257
File.unlink, removing intermediate SVG
files with, 62

fill attribute, 53

fitness method, 200

fittest method, 200

Float parser, tests for, 267

forest tile, implementing, 188

forms parameter, lispeval method, 231

Fowler, Chad, 2

Fowler, Martin, 67

frame id method, 58

frame method, getting and printing
current frame with, 59

free function, 14

free= accessor, 15

freeze, calling on value stored in
cache, 107

Friedman, Danial P, 257

from_gray method, 218-219

G
<g>tag, 65-66
galleons currency system, used by
wizards, 116
Game class, controlling game with,
144-150
garbage collector, Objective-C, 155
gem method, adding, 235-236
General MIDI standard, 15
generate method, 136-137
Generator class, example, 74-76
Genetic Algorithm class
adding block for value computation,
221
implementing, 199-200
genetic algorithms, 197-221
adding improvements, 216-221
experimenting with Gray code, 217-219
implementing, 199-200
initial population needed for, 198-199
letting parents live on, 216-217
roulette selection, 219-221
genome, 200
dealing with invalid, 216
designing to test algorithm, 201-202
encoding coin list in, 211-212
remembering winning solutions,
202-203
requirements, 201-202

INDEX

grammars, understanding, 262-263
Gray code, experimenting with, 217-219
greedy algorithm, 95-99
GridDrawer
adding deferred execution to, 76-77
defining def draw class method on,
71-72
helper methods, 77-78
implementing, 69-71
initializer for, 73
subclassing into LetterDrawer, 80-81
GridDrawer.new block, internal DSL
example written in, 68-69

Hackers, Heroes of the Computer
Revolution, 7

“Hacking Perl in Nightclubs” article, 22, 40

Hakoiri-Musume RubyCocoa example,
Makefile based on, 192-194

handle_events method, 160

hash, problems with, 107-109

hash keys, duplicating before storing
objects, 107-109

hash method, 107-109

Hash.new([]) method, caution about
using, 56

health points, counter for, 129-130

Hello World application

RubyCocoa style, 154
written in Objective-C, 156

helper functions, using arrayify and
consify, 233-235

helper methods, for GridDrawer, 77-78

hex color notation, 53

highlight, setting Location instance’s,
180-181

hill climbing algorithms, 197

homoiconic syntax, in Lisp, 223

href attribute (hypertext reference), 55

Hunt, Andy, 2

l
<image> tag, embedding images in SVG
with, 55
image tiles, using, 184-191

207

298

INDEX

ImageMagick utility
converting SVG to JPEG files with, 62
putting animations together with, 83
web site for, 62
images, embedding in SVG, 55
ImageTile class
coding to replace ColorTile, 185-186
creating new initializer for, 193-194
eliminating padding in, 188
iMovie, putting animations together with,
83-84
Impromptu, 7, 40
include keyword, in Ruby, 13
Info.plist.tmp], filling with APPNAME, 193
initAt method, 170
initialization phase, genetic algorithms,
198
initialize method, 166
Genetic Algorithm class, 199-200
getting button bar up and running, 168
helper methods for, 199-200
Map class, 126
writing ALSA, 20
inject_with_index method, 205
installing, RubyCocoa, 153-154
instance_eval, evaluating code with, 40
instrument method, adding new, 46
Integer class, 208-211
Integer method, 265-266
Integer#to_s, specifying output base with,
206
integers, parsing, 265-266. See also Ruby
integers
internal DSLs, 67, 91
Interpreter class, creating, 238-240
interval, as time between bangs, 22
irb (interactive Ruby environment), 4
iterations, running, 200-201

J-K
JParsec, 263
JPGVideo, putting animations together
with, 85

knuts, used by wizards, 116

L
Lambda class, 252
lambda expressions, 259-260
lambda special forms, adding, 242-246
last convenience method, saving
rendering time with, 79-80
lazy combinator, using, 272-273
left recursion, eliminating, 283-285
let macro, implementing, 248-250
LetterDrawer, initializing, 81-82
Levy, Stephen, 7
lexical macros, adding, 251-253
lexical scoping, 227
libraries, for making music, 7
Lisp
basics of, 256-260
choosing your data types, 224
default environment for, 237
FAQ about primitives, 236
implementing in Ruby, 223-260
learning, 224
making code look like it, 235-236
quoting in, 274
Lisp lambda, making it work in Ruby,
255-256
Lisp symbols, parsing with regular
expressions, 268-270
lispapply method, defining, 232-233
lispeval method
adding to existing classes, 230-232
implementation of for conses, 233
List combinator, defining, 272
list comprehensions
making a plan, 278-279
method calls in, 285-286
parsing, 278-290
running, 286-288
list function, using in Lisp, 259
lists, parsing and discarding return values,
271
list_comp method, 289
Little Schemer, The, 257
live coding, 39-49
adding proxy class, 45
examples, 44

reusing instance across reloads, 45
using text editor for, 40
LiveMIDI class, defining C module in,
12-13
load method, 42-43
Location class, 172, 190-191
Location instance, setting highlight for,
180
Location objects, populating, 176
LocationOccupiedError exception, 125
log2 method, web site for information, 206
longest parser, 268
lookup function, 229
loosely coupled, 120

macros
adding lexical, 253
implementing, 247-250
main.m Objective-C file
binary stub provided by, 192-193
changing to run Ruby code, 192
make choice method, 178
Make!, building DinoWar.app with,
193-194
Manbhattan distance, calculating, 127
Map, representing, 128-129
Map class
adding helper methods to, 127
building, 122-124
map method, current objects returned
by, 145
Map#place method, 130
maps
adding to game instance, 145-146
drawing, 172-176
highlighting locations, 180-181
maps with matrices, implementing,
122-124
Matrix class, building, 122-124
Matrix instances, creating and inserting
Terrain types, 126-127
Matsumoto, Yukihiro (Matz), 58
McCarthy, John, 223
McLean, Alex, 40

INDEX

memoization, using in change method,
99-100
memory allocation (malloc), 14
MergedTile class, 187
message method, 15
CoreMIDI for OS X, 18-19
implementing, 143
needed for operating systems, 12
updating to send messages, 166-167
writing ALSA, 20-21
messages
displaying, 166
sending, 254-255
message_all(text) method, 146
metaprogramming, 71-72
method calls
in list comprehensions, 285-286
parsing with dot, 282-283
metronome
creating Timer for, 26
duration parameter, 27
fixing time drift, 26
implementing, 25
writing the play method, 26-28
Metronome class, rewriting methods for,
27-28
MID], 8-9
interfaces for, 9-12
talking C and making noise, 9-22
using keyboard for tepo tap, 34-35
min_by method
adding, 97-98
for selecting best coins to use, 105-106
implementating, 97-98
mkdir method, 57
modified? method, 43
Monitor class, on_bang method called
by, 42
mouseDown method, for CocoaPlayer,
182-183
mouseDown (event) method,
implementing on TBSView, 182
move method, 131-132
move to and move by methods, 65
move_choices method, finding moves
with, 135

299

300

INDEX

multi-argument methods, 156-157
music
composing, 29-36
playing, 33-34
saving, 36
Musical Instrument Digital Interface
(MIDI). See MIDI
mutation, using, 208-211
myquote macro, in modified interrpreter,
252-253

name method, 133

navigation methods, using when drawing,
69-71

near_positions method, 127

next_map method, indexes advanced
by, 145

next_player method, indexes advanced
by, 145

NilClass class, 129

no-argumet methods, 156

node types, drawing images with, 53-55

NoMIDIDestination exception, CoreMIDI
for OSX, 18

north method, 69

note number, 8

NSApplication, 161

NSButtonCells, 162

creating a row of, 167-168

NSCell, 162

NSControls, 162

NSImage, loading image with, 186

NSTextView, 166

NSViews, 162

NSWindow, moving creation of to own
method, 163-164

number method, implementing, 102

number types, deciding between, 268

0
object class, 73
Objective-C
calling from Ruby, 156-157
learning basics of, 155-156

opening a window and connecting to,
154-155
runtime, 153
on_bang method, called by Monitor class,
42
on_click method, handling clicks with,
181-183
open method, needed for operating
systems, 12

P
pack method, CoreMIDI for OSX, 19
packet list structure, CoreMIDI for OSX,
18-19
padding frames, used by ImageMagick, 83
parse method, in Pattern class, 30, 32-33
Parsec parser combinator library, 263
parser, putting to work, 277
parser combinators, library code example,
263-265
Parsers module, starting from word
method, 269
ParsersAlias constant, saving a reference
to Parsers in, 280
parse_sexp, 235-236
parsing
abstracting string parsing, 276-277
list comprehensions, 278-290
lists and discarding return values, 271
method calls with dot, 282-283
string literals, 274-276
values, 270-271
Pattern class, making usable, 30-33
patterns
breaking into individual characters, 30
taking further, 35-36
pay! method, 104-106, 110
permuations_of_size method,
implementing, 113-114
permutations method, adding to
Enumerable module, 104-105
place method, adding units with, 124-125
PlanetCute tileset
prototyping games with, 184-191
web site address, 184
play method, writing metronomes, 26-28

Player class, managing callbacks with,
40-42
player method, current objects returned
by, 145
Player objects, loaded in @players, 42
players
adding to a game instance, 145-146
coding simple, 142-143
passing into a game instance, 160
proving you have one, 159-160
point crossovers, implementing, 207
pointers, using in Ruby, 13-15
points attribute, for polygons, 54
polygons, drawing, 54
Portland Ruby Brigade (PDX.rb), 2
Practical Common Lisp, 224
Practical Ruby Projects, introduction, 1-5
present_choice method, 178-179
present_TYPE_choice methods, 178
code for, 183-184
creating, 180-181
“pretty print” module, dumping terrain
and units with, 143
price file, reading, 95
prices.txt, list of purchases in, 94
primitive functions, choosing, 236-238
Principles of Compiler Design, 291
program change, 9
Programming Ruby, The Pragmatic
Programmer’s Guide, 2
proxy class, adding to improve readability,
45
Python code vs. Ruby code, 278

Q

quasiquote (*), in Lisp, 249
quote special form, implementing, 240
quoting, in Lisp, 274

Racc, web site address for, 290

random method, defining in Enumerable
module, 200

raw API, provided by ALSA, 19

recombination phase, genetic algorithms,
198

recursive descent parsing, 263

INDEX

Regexp.escape class method, 270
registration methods, code for, 59
regular expressions, parsing symbols with,
268-270
render method, 64-65
rendering frames with, 61-62
renewRows_columns method, 169
rep method, 133, 136
for Matrix class, 128
making choices with, 177-179
reproduce method, 201
choosing an encoding with, 212-214
rep_mapping method, 144
rescue modifier
for mkdir method, 57
used by sum method, 103
rest method, 178
adding to Enumerable module, 104-105
use on Array instance, 32
roulette method, 220-221
roulette selection, implementating,
219-221
Rowlings, J. K., 116-117
rparsec RubyGem, 265
RParsec tool, 263-265
web site address for, 290
Ruby
animating, 51-91
calling Objective-C from, 156-157
community, 2
genetic algorithms in, 197-221
implementing Lisp in, 223-260
interoperating with, 253-256
making Lisp lambda work in, 255-256
opening a window to, 254
parsing with, 262-265
reasons to use, 1-2
setting up, 3-4
web site address for, 3
Ruby bindings, abusing, 289-290
Ruby code vs. Python code, 278
Ruby DL, 9-10
Ruby Extension project, methods
provided by, 63
Ruby integers, exploring features of,
203-207
Ruby library, manually adding lines to, 154

302

INDEX

RubyCocoa, 153-195
adding a view, 163-165
basics of, 153-158
ChoiceBar, 169-171
creating row of NSButtonCells, 167-167
development tools, 195
displaying messages, 166-167
drawing the map, 172-176
handling clicks in, 181-183
highlighting map locations, 180-181
installing, 153-154
making choices, 177-179
odd way to do things, 161-162
opening a window, 154-155
packaging your application, 192-194
selecting units from map, 180-183
understanding views, controls, and
cells, 162
using image tiles, 184-191
RubyGems
symbolic expression (sexp), 235-236
web site address for, 4
run loop, putting together, 43-44
run method, 146-147, 200-201
calling, 57-58
that runs forever, 44

S

s-expressions, parsing, 265-277
Samson, Peter, 7
save method, for writing out MIDI file, 39
Sawyer, Tom, 289
scalable vector graphics (SVG)
basics, 52
embedding images in, 55
node types, 53-55
rendering the frames, 61-62
shapes, 52-55
specification web site, 53
viewing and debugging images, 56
W3C drawing standard, 51-55
wrapping with objects, 64-65
Scheme dialect
Common Lisp and, 224
postfixes, 237
seconds_to_delta method, 38-39
Seibel, Peter, 224

selection phase, genetic algorithms, 198

separated prebuilt Parser method, 271

sequencer API, provided by ALSA, 19

sequences, in Pattern class, 31-32

setup method, 169-171

sexp (symbolic expression), 235-236

sexp library, numbers returned by, 236

SExpressionParser module, creating,
265-266

Shallit, Jeffery, 117

shapes, rectangle defined with SVG, 52-55

Shoot and FirstAid actions, implementing,
137-139

shortname, calling on Dinosaur class, 133

SimpleSynth application, 16

Simula-67, designed for simulation, 93

simulated annealing algorithms, 197

sleep interval, Timer class, 24

sleep method, implementing, 75-76

Sleeper class, adding to GridDrawer, 76-77

SongPlayer class, using with FileMIDI, 39

songs, playing, 33-34

sort method, 97

SortedSVG container, creating, 78-82

sort_by method, 97

source code, for book, 4

spaceship operator, for cube objects, 79

special forms, 233-235

using, 240-247

sprintf method, 58

start_choice method, 179

STDIN.each_line, using on REPL, 239

step callback, 59-60

step method, 58, 200

modifying to let parents live on,

216-217

string literals, parsing, 274-276

string parsing, abstracting, 276-277

stroke attribute, 53

stroke-width attribute, 53

Struct namespace, subclassing, 279-280

Structure and Interpretation of Computer
Programs, 224, 257

sum method, 102-103

SuperCollider, 7

Sussman, Gerald, 224

SVG (scalable vector graphics). See
scalable vector graphics (SVG)
<svg>/</svg> tags, 52
SVG wrapper, drawing a cube with, 65-66
SVGObiject subclasses, 65
SVGObjects class, creating thin wrapper to
represent, 64-65
symbolic expression (sexp), 235-236,
257-258
symbols
parsing with regular expressions,
268-270
refresher in Ruby, 224
system test, exercising parser with, 277

T
TBSView
adding, 164
mouseDown(event) method on, 182
Template variable, in ERB, 60-61
tempo tap, using, 34-35
termination phase, genetic algorithms,
199
Terrain class, building, 122
test-driven development
testing partial implementation, 282
using for SExpressionParser, 267
The Little Schemer, 257
Thomas, Dave, 2
time, keeping in Ruby, 23-24
time drift, fixing metronomes, 26
Timer, creating for metronome, 26-27
Timer class, 23-24
Timer instances, sharing, 28-29
timers, avoiding too many, 28-29
TiMidity program, connecting ALSA client
to, 21-22
TOPLAP, web site address for, 39
to_s method, 103-104, 206
turn method, 147-148
turn-based strategy games
building a player, 158-161
building the world around us, 121-129
building using RubyCocoa, 158-179
cartography 101, 124-125
choices interaction in, 120

INDEX

choosing among actions, 135

finding possible moves, 135

Game class for controlling game,
144-150

how players interact with, 120

implementation, 121

interactions in, 120

making choices, 133-135

meeting your heroes, 129-133

players, 139-142

putting it all together, 150-151

representing a map, 128-129

representing units, 133

in Ruby, 119-152

simple computer player, 142-143

starting the terrain, 122

strategy for building, 119-121

stubbing out undefined classes, 132

taking action, 136-139

universal skeleton, 129-132

where terrains come from, 125-127

writing command-line player, 143-144

u
Ullman, Jeffrey D., 291
undefined classes, stubbing out, 132
uniform_crossover method, 204-207
Unit class
adding features for making choices,
133-135
choosing among actions, 135
creating player’s characters and
dinosaurs, 129-133
finding possible moves, 135
name and health counter, 129-132
units
determining friends or enemies, 131
in turn-based strategy games, 120
keeping track of turns, 131
programming for injuries to, 130
representing, 133
unit_choices method, BasePlayer class,
140
unpack method, 213-214
user-defined special forms, in Lisp, 247

303

304

INDEX

'}
variable keyword arguments, emulating in
method call, 72
view, adding, 163-165
views, controls, and cells, understanding,
162

w

web site addresses
“A Genetic Algorithm Tutorial” paper,
221
DarwinPorts tool, 153
ImageMagick utility, 62
Lisp FAQs, 236
log2 method information, 206
Perl, 22
PlanetCute tileset, 184
Racc, 290

RParsec tool, 290
Ruby, 3
RubyGems, 4
RubyCocoa, 153
RubyCocoa resources, 195
Ruby simulation information, 118
SimpleSynth application, 16
SVG specification, 53
TOPLAP, 39
weighted_ranges method, 220
Whitley, Darrell, 221
windows, applications and, 157-158
within? method, 127
wizard money, 116-117

XYZ

XLink namespace, 52

	Practical Ruby Projects
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Why Ruby?
	The Language
	The Community

	Why This Book?
	Getting Set Up
	Source Code in This Book
	Your Projects

	Making Music with Ruby
	MIDI: Giving Yourself a Vocabulary
	Talking C and Making Noise
	Sharing Code
	Interfacing with Windows Multimedia
	Interfacing with CoreMIDI
	Interfacing with ALSA

	Building a Metronome
	Keeping Time
	A Working Metronome
	Fixing Your Timer Drift
	Writing the Play Method
	Avoiding Too Many Timers

	Composing
	Notation
	Patterns
	Playing Songs
	Tempo Tap
	Taking Patterns Further

	Saving Your Music
	Live Coding
	Interfaces for Live Coding
	Improvements for Live Coding

	Summary

	Animating Ruby
	Scalable Vector Graphics
	SVG Basics
	SVG Shapes

	The Animator
	Rendering the Animation
	Registering and Running Callbacks
	Embedded Ruby Templating
	Rendering the Frames
	Binding Objects
	Wrapping SVG with Objects
	Drawing One Cube

	Drawing Many Cubes
	Domain-Specific Languages
	Implementing GridDrawer
	Metaprogramming
	The Draw Method
	Deferring Execution
	Adding Deferred Execution to GridDrawer
	A Few More Helper Methods

	Your First Animation
	Putting the Animations Together
	ImageMagick
	iMovie
	JPGVideo
	Don’t Give Up

	Spicing It Up
	Summary

	Pocket Change: Simulating Coin Systems with Ruby
	Going Shopping
	How to Make Change
	The Greedy Algorithm
	Problems with the Greedy Algorithm
	Brute Force
	Adding the min_by Method
	Putting It All Together

	Dynamic Programming
	The Customer
	Memoization
	Hash Problems
	Paying

	The ChangeSimulator
	So How Heavy Are Your Pockets?
	Replacing a Coin
	Adding a Coin
	Optimal Coins
	Two Coins
	Three Coins
	Four Coins
	Beyond

	Wizard Money
	In the Literature
	Summary

	Turn-Based Strategy in Ruby
	A Strategy
	An Implementation
	Building the World Around Us
	Starting with Terrain
	Implementing Maps with Matrices
	Cartography 101
	Where Does Terrain Come From?
	Representing a Map

	Meeting Your Heroes
	The Universal Skeleton
	Stubbing Out Undefined Classes
	Representing Units

	Making Choices
	Finding Possible Moves
	Choosing Among Actions

	Taking Action
	The Players
	The Artificial Intelligence Doesn’t Seem So Intelligent
	Writing a Command-Line Player
	The Game
	Putting It All Together
	Summary

	RubyCocoa
	The Very Basics
	Opening a Window
	Learning Objective-C Basics
	Calling Objective-C from Ruby
	Applications and Windows

	Building a Turn-Based Strategy Game
	Building a Player Using Cocoa
	An Odd Way to Do Things
	Understanding Views, Controls, and Cells
	Adding a View
	Displaying Messages
	Creating a Row of NSButtonCells
	The Choice Bar
	Drawing the Map
	Making Choices

	Selecting Units from the Map
	Highlighting Map Locations
	Handling Clicks

	Using Image Tiles
	PlanetCute to the Rescue
	Switching from Colors to Images
	Adding Image-Based Tilesets to DinoCocoaPlayer
	Fixing the Weirdness

	Packaging It Up
	Summary

	Genetic Algorithms in Ruby
	Simulating Evolution
	Implementing the Algorithm
	Running the Iterations
	What’s Required to Be a Genome?
	Remembering Winning Solutions

	Thinking About Encodings
	Using Integers As Bit Strings
	Playing with Crossover
	Modeling Crossover
	Uniform Crossover
	Point Crossovers

	Using Mutation
	Subclassing Integer
	Subclassing BitInt
	Wrapping BitInt Return Values

	Making Change . . . Again!
	Choosing an Encoding
	Running the Simulation
	Looking at the Results

	Adding Further Improvements
	Dealing with Invalid Genomes
	Letting Parents Live On
	Experimenting with Gray Code
	Roulette Selection

	Summary

	Implementing Lisp in Ruby
	Learning Lisp
	Choosing Your Lisp Data Types
	Building Cons Cells
	Saving Values in the Environment
	Understanding eval and apply
	eval
	apply
	Talking About Special Forms
	Finishing eval
	Using the Helper Functions Arrayify and Consify

	Making It Look Like Lisp
	Choosing Your Primitive Functions
	Creating an Interpreter Object
	But What About Special Forms?
	Adding quote
	Adding define and set!
	Adding Conditional Expressions
	Adding lambda
	Saving the Environment

	Implementing Macros
	Implementing the let Macro

	It Just Ain’t Lisp Without eval
	Adding Lexical Macros
	Interoperating with Ruby
	Opening a Window to Ruby
	Sending Messages
	Making Lisp Lambda Work in Ruby

	Summary

	Parsing in Ruby
	Parsing with Ruby
	Understanding Grammars
	Recursive Descent Parsing
	RParsec

	Parsing S-Expressions
	Revisiting S-Expressions
	Parsing Integers
	Unit Test Everything
	Parsing Floats
	Deciding Between Different Number Types
	Parsing Symbols with Regular Expressions
	Parsing Values
	Parsing Lists and Discarding Return Values
	Using the Lazy Combinator
	Parsing Your First S-Expressions to the End of File Marker
	Quoting in Lisp
	Parsing String Literals
	Abstracting String Parsing
	Putting It to Work

	Parsing List Comprehensions
	Making a Plan
	Creating Abstract Syntax Tree Nodes
	Reusing Combinators from the Last Parser
	Parsing the List Comprehension Syntax
	Testing Your Partial Implementation
	Parsing Method Calls with Dot
	Eliminating Left Recursion
	Method Calls in List Comprehensions
	Running the Comprehensions
	Adding Some Convenience
	Abusing Ruby Bindings

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

