
this print for content only—size & color not accurate spine = 0.711" 304 page count

Books for professionals By professionals®

Practical REST on Rails 2 Projects
Dear Reader,

Over the last few years, the landscape of the Web has been changing. Service
providers are progressively opening up their applications—making their data
available to anyone who wants to use it. This aspect of the Web 2.0 phenom-
enon has resulted in unprecedented new opportunities for developers.

At the same time, Ruby on Rails has become an increasingly well-known
option for building applications on the web, and it has been undergoing con-
tinuous development and refinement. Toward the end of 2007, Rails 2 was
released, bringing with it a number of new features and encapsulating a particular
philosophy—REST (Representational State Transfer)—that meshes nicely with
the open Web.

This book is about the intersection of those two trends. You’ll see arguments
for the benefits of openness, and you’ll learn how the newest features in Rails
make it easier than ever to develop interconnected applications. Using RESTful
methodologies, you’ll learn how to make your web applications less complex
and more responsive. You’ll also get hands-on experience in building these
applications—from MovieList, a fully fledged Rails 2 RESTful server application,
to a variety of clients (in JavaScript, PHP, and Rails) on several platforms (including
Safari on the iPhone and the Facebook application platform) that consume the
movie data it provides. It will bring you up to speed on real-world best practices
through a variety of commonly encountered scenarios.

I can’t think of a more exciting time to be building things for the Web, and I
hope that the projects in this book convey some of that excitement to you.

Happy coding!

Ben Scofield

US $42.99

Shelve in
Programming Languages

User level:
Intermediate–Advanced

Scofield
REST

 on Rails 2 Projects

The eXperT’s Voice® in WeB DeVelopmenT

 cyan
 maGenTa

 yelloW
 Black
 panTone 123 c

Ben Scofield

Companion
eBook Available

THE APRESS ROADMAP

Beginning Ruby:
From Novice to Professional

Beginning Rails:
From Novice to Professional

Beginning Ruby on Rails
E-Commerce: From

Novice to Professional

Practical REST
on Rails 2 Projects

Practical Ruby Gems

Practical Rails Projects

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-994-5
ISBN-10: 1-59059-994-2

9 781590 599945

54299

Learn everything you need to know to build
open Web 2.0 applications with Rails

Practical

REST on

Rails 2
Projects

Practical

Ben Scofield

Practical REST on
Rails 2 Projects

9945FM.qxd 4/7/08 11:06 AM Page i

Practical REST on Rails 2 Projects

Copyright © 2008 by Ben Scofield

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-994-5

ISBN-10 (pbk): 1-59059-994-2

ISBN-13 (electronic): 978-1-4302-0655-2

ISBN-10 (electronic): 1-4302-0655-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Ben Renow-Clarke
Technical Reviewer: Bruce Williams
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: James A. Compton
Associate Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9945FM.qxd 4/7/08 11:06 AM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To Lacie, without whom so many things would not be possible—
and to the memory of our sweet Daisy

9945FM.qxd 4/7/08 11:06 AM Page iii

9945FM.qxd 4/7/08 11:06 AM Page iv

Contents at a Glance

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Why REST? . 1

■CHAPTER 2 REST in Rails . 19

■CHAPTER 3 Developing a Server . 37

■CHAPTER 4 Your First Clients: JavaScript and JSON . 79

■CHAPTER 5 See You on the Server Side: PHP . 107

■CHAPTER 6 An Apple a Day: The iPhone . 143

■CHAPTER 7 With a Little Help from Your Friends: Facebook 179

■CHAPTER 8 Dealing with Success . 237

■CHAPTER 9 REST in the Enterprise . 259

■INDEX . 269

v

9945FM.qxd 4/7/08 11:06 AM Page v

9945FM.qxd 4/7/08 11:06 AM Page vi

Contents

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Why REST? . 1

The Argument for Openness . 1

Community Outsourcing . 1

Unexpected Consequences . 3

The Cost of Openness . 4

A Brief Historical Interlude . 9

XML-RPC . 9

SOAP . 11

REST. 12

The Basics of REST . 13

Constraints . 13

Resources and the Uniform Interface. 14

REST and HTTP . 15

The Benefits of REST . 15

Building Clients . 15

Building Servers . 16

Building for the Future . 16

Building Rails Applications . 16

Summary. 17

■CHAPTER 2 REST in Rails . 19

ActionWebService . 19

The Rise of REST . 21

Integration. 22

Routing . 22

The Forgotten Methods: PUT and DELETE. 29

Formats . 30
vii

9945FM.qxd 4/7/08 11:06 AM Page vii

3861e87730b66254c8b47a72b1f5cf56

Helpers. 31

Scaffolding . 32

ActiveResource. 34

Sessions . 34

The Future . 35

Summary. 35

■CHAPTER 3 Developing a Server . 37

Introducing MovieList . 37

Creating the Infrastructure. 38

Authenticating Users. 39

Adding Resources to the Application . 41

Adding Movies . 42

Adding Administrators. 45

Adding People. 50

Adding Interests . 56

Adding Releases. 60

Adding Notifications . 64

Enhancing MovieList . 67

The Singleton User . 67

Searching the Application. 70

Adding Images . 72

Further Projects . 75

Summary. 77

■CHAPTER 4 Your First Clients: JavaScript and JSON 79

The Widget Approach . 79

Planning. 79

All Upcoming Releases . 80

Releases for a User . 83

Widget Problems . 86

A JSON Client . 88

Planning. 89

Implementation . 90

Testing . 103

Further Projects . 104

Summary . 105

■CONTENTSviii

9945FM.qxd 4/7/08 11:06 AM Page viii

■CHAPTER 5 See You on the Server Side: PHP . 107

About Squidoo . 107

Getting Started. 110

Prerequisites. 110

All about Squidoo Modules. 112

A Simple Example . 114

A More Complex Module . 119

Injection Flaws . 123

Providing Interactivity . 126

MovieList updates . 126

Reading the Comments . 132

Writing Comments . 135

Ajax Troubles . 139

Cross-Site Request Forgery . 140

Further Projects . 141

Summary. 142

■CHAPTER 6 An Apple a Day: The iPhone . 143

Device Considerations . 143

Interface Constraints . 145

Data Concerns . 147

Planning . 147

A New Interface . 148

Infrastructure Decisions . 148

Design . 148

Setup . 149

Development. 153

iUI and iPhone Web Applications . 173

Further Projects . 176

Summary. 177

■CHAPTER 7 With a Little Help from Your Friends: Facebook 179

Planning the Facebook Application . 179

Initial Setup. 180

FBML and iframe Applications. 186

Project 1: The iframe Application . 190

Setup . 190

Socialization . 191

Potential Issues . 208

■CONTENTS ix

9945FM.qxd 4/7/08 11:06 AM Page ix

Project 2: The FBML Application. 208

Setup . 209

Facebook Integration. 214

Adding Interactivity . 223

Further Projects . 234

Summary. 235

■CHAPTER 8 Dealing with Success . 237

Scaling Your Application. 238

Planning to Scale . 238

Caching Static Content . 241

Optimizing Code. 243

Adding Hardware . 244

Throttling Access . 245

The Bad Problems . 252

Monitoring Your Site . 252

Identity and Authorization. 257

Other Tactics . 257

Summary. 258

■CHAPTER 9 REST in the Enterprise . 259

What Is the Enterprise? . 259

Problems with REST . 260

Problems with Rails. 260

Why REST? . 261

Integration with REST . 261

Examples of Integration . 261

Scalability . 263

Introducing Rails . 263

Summary. 268

■INDEX . 269

■CONTENTSx

9945FM.qxd 4/7/08 11:06 AM Page x

About the Author

■BEN SCOFIELD has been active on the Internet for as long as he can remember, building appli-
cations with Perl, PHP, ASP with VBScript, C#, Java, and Ruby. He’s been obsessed with Ruby
and Rails since approximately version 0.6, and he’s lucky enough to be working with startups
like Squidoo and ODEO with the DC area–based Viget Labs. He has spoken about Ruby and
Rails at various conferences since early 2007 and is constantly amazed at the fantastic things
the community creates.

Ben lives in Durham, NC, with his wife and newborn daughter, Morgan. He is currently
trying to make a dent in the ever-expanding to-be-read pile of books in his office.

xi

9945FM.qxd 4/7/08 11:06 AM Page xi

9945FM.qxd 4/7/08 11:06 AM Page xii

About the Technical Reviewer

A Ruby developer since 2001, BRUCE WILLIAMS has been pleased to see his favorite language
rise out of obscurity the past few years—and pay the bills in the process. A full-time Ruby and
Rails developer, Bruce has contributed to or served as the technical reviewer for a number of
related books, speaks at conferences when inspiration strikes, and is an aimless open source
hacker and language designer in his copious free time.

xiii

9945FM.qxd 4/7/08 11:06 AM Page xiii

9945FM.qxd 4/7/08 11:06 AM Page xiv

Acknowledgments

No book is written on a desert island, and this one is no exception. I’ve been fortunate
enough to work with talented professionals, from my coworkers who inspired me to write this
(foremost among them Clinton Nixon and Patrick Reagan) to the staff at Apress (Steve Anglin,
Ben Renow-Clarke, Beth Christmas, and Kelly Winquist), and I’d like to thank all of them. My
thanks also go to Jim Compton, whose copyediting has made the book as a whole much easier
to digest.

The technical expertise of Bruce Williams has been an invaluable resource over the course
of writing this, and he’s helped make this book much better than I ever thought it could be—
any errors that remain are entirely my own fault.

Finally, and most importantly, I’d like to thank my wife, Lacie, who has been pregnant
with our first child throughout the writing of this book, and who has been more patient and
supportive than I deserve.

xv

9945FM.qxd 4/7/08 11:06 AM Page xv

9945FM.qxd 4/7/08 11:06 AM Page xvi

Introduction

I think of this book as a door. It’s a gateway to the open Web, where sites and applications
share data and functionality to the benefit of all. Over the past several years, it’s become
increasingly obvious that openness is the future of the Internet—from the success of mashups
based on Google Maps, Flickr, Twitter, and other sites, to the explosive growth of the Facebook
application platform, the most exciting work being done today lies at the boundaries of
systems.

This book codifies that idea, and relates it to a specific application framework: Ruby on
Rails. At the same time that the open Web has become increasingly important, Rails has been
growing in popularity thanks to the productivity it allows and the programmer joy that it cre-
ates. Rails has also, with the release of version 2, become one of the best-suited frameworks
for building components in the new, interconnected Internet.

I’ve targeted the intermediate developer in the chapters that follow. If you’ve built an
application with Rails (regardless of the version) and know a bit about how the Web works, you
should be able to work through the projects without a problem. But even the advanced reader
should find something new here.

In Chapter 1, for instance, I lay out the benefits of building for the open Web and describe
some of the history of web services in general. In the course of that, I talk about XML-RPC
and SOAP, and the more recent rise of REST as an alternative style of design.

Chapter 2 moves the focus to Rails and especially the features added in Rails 2 that sup-
port the design and development of RESTful applications. Rails 2 has been out since late
2007, but many developers seem unaware of the functionality it provides and the conven-
tions that have grown up around using it.

After the introductory content in the first two chapters, Chapter 3 includes the first proj-
ect. As you work through it, you’ll be building a fully RESTful Rails application to serve as
the base for your work later in the book. Once you’ve completed the chapter, you’ll have a
functioning site ready to join the interconnected world.

Chapters 4 and 5 move you further into that world, by walking you through the construc-
tion of clients for your sample application in JavaScript and PHP. In these chapters, you’ll
dig deeper into many of the features new to Rails 2, and you’ll see just how easy it is to
open up your site to others.

Chapter 6 takes a different direction; instead of building a client for your application,
you’ll be building an interface for Apple’s iPhone. This brings with it new challenges, and
allows you to work with even more of the capabilities built in to Rails.

xvii

9945FM.qxd 4/7/08 11:06 AM Page xvii

In Chapter 7, you’ll be creating an entirely new application to integrate with your sample
site. The difference here, however, is that you’ll be building it on the Facebook application
platform. This means that you’ll be able to use the social graph of your users to improve
the overall experience, and you’ll work with the final piece of the REST support in Rails:
ActiveResource.

The distinct projects end with Chapter 7, but there’s still much to discuss. Chapter 8 is all
about dealing with the problems that can arise from opening your application to the
world—from the hoped-for issues with scaling to handle rapidly increasing traffic, to the
less desirable problems with security and malicious users.

Finally, in Chapter 9 I touch on the emerging roles for REST and Rails in the enterprise.
Many of us are watching the developments here with great interest; the enterprise is noto-
riously conservative, but it can clearly benefit from adopting aspects of the philosophies
and technologies discussed throughout the book.

A word of warning is in order, however. One of the more exciting things about working in
REST and Rails is the speed of change. During the writing of this book, Rails 2 was officially
released (and quickly upgraded to version 2.0.2), the iPhone SDK (for building completely
native applications, as opposed to the iPhone web applications you’ll be working with in
Chapter 6) was made available, and the Facebook application platform has undergone a num-
ber of significant changes. The information in the chapters that follow is as current as it can
be, but will eventually fall out of date. The underlying principles, however, will last much
longer; when working through the book, then, make sure that you try to understand why I
advocate one approach over another, and you’ll be better for it in the long term.

Now for a confession: I don’t know everything. One thing I do know, however, is that the
way to get better at anything (including RESTful application development) is to learn from the
community around you. To that end, I welcome any and all questions and comments—you
can reach me via my blog, at http://www.culann.com/, or directly at scofield@culann.com.

■INTRODUCTIONxviii

9945FM.qxd 4/7/08 11:06 AM Page xviii

http://www.culann.com
mailto:scofield@culann.com

Why REST?

Today’s Web 2.0 applications are vastly different from the applications built five or ten years
ago. Sites are no longer limited to exchanging links and interacting via hypertext; instead, the
interconnectedness of the Internet has become progressively more important with the rise of
web services. Today, a site in Poland can pull data directly from another application in Califor-
nia and display it seamlessly within the Polish site’s interface. Today’s applications, and even
more so tomorrow’s, will rely on this capacity—and the technologies and philosophies that
make it possible will be even more significant than they are now.

This book is about those technologies, and it’s about being a part of this new Internet. As
you work through it, you’ll be building projects with Ruby on Rails 2, the latest release of the
popular web framework. You’ll be creating applications in accordance with the principles of
REST (Representational State Transfer), a philosophy of system design explicitly intended to
reflect the structure of the Web. As you’ll see, RESTful sites like these are quicker and easier to
develop, and they live more comfortably within this more connected world.

The Argument for Openness
The most important assumption underlying this book is that it is a good thing to take part in
this open, Web 2.0 world. Many people might challenge that assumption; sometimes, these
are the proprietors of data that sits in silos, who limit access to it by charging a fee or requiring
membership in an exclusive club. Much of the time, however, these are people who just
haven’t realized the benefits that openness provides.

The best counterargument to this isolationism is to point to the dramatic successes of
sites that have fully joined the new Internet and to recognize the benefits that openness
makes possible.

Google Maps, del.icio.us, Flickr, Twitter—all owe a large portion of their success to their
willingness to open up their data to clients built by interested Internet users from around the
globe. Each of them exposes an API to the world, inviting others to use the site as a service,
pulling the site’s data as needed. This openness has resulted in new phenomena: the growth of
community outsourcing and the discovery of novel uses of the data—uses that the providers
of the original site would never have anticipated.

Community Outsourcing
Google Maps and its offspring HousingMaps are easily the most prominent example of com-
munity outsourcing. Paul Rademacher realized the potential of Google’s offering soon after it

1

C H A P T E R 1

9945CH01.qxd 3/28/08 10:47 AM Page 1

was made public and took advantage of the data made available by hacking a link between it
and information from Craigslist’s real estate listings, creating HousingMaps (http://www.
housingmaps.com/), illustrated in Figure 1.1.

Figure 1-1. HousingMaps

The powers-that-be at Google understood the potential represented in this mashup and
as a result officially opened the Google API to the Internet at large. Since then, tens of thousands
of mashups have been created, tying comic book stores, urban crime, and my sister-in-law’s
personal photos to tiny red or yellow thumbtacks on a virtual map and opening up a whole
new market for companies built to show information in new, useful ways.

It can be difficult for those of us who date back to the more isolated Web 1.0 world to real-
ize the potential impact of this openness, but it is important to make the effort to understand.
By opening up your application, you make it possible for anyone who might have an interest
in your data to contribute their time and talent to building clients for you. By providing an
API, you make it possible for any interested developer to contribute his or her efforts to
improving access to your data—it’s almost as if you’ve increased the size of your development
team far beyond that of your internal staff, freeing your employees to concentrate on improv-
ing your core application and leaving the development of mashups and external clients to the
community. Even more importantly, you’ve vastly expanded the reach of your application—
everyone using any of the community-developed clients is actually using your site, however
indirectly.

CHAPTER 1 ■ WHY REST?2

9945CH01.qxd 3/28/08 10:47 AM Page 2

http://www.housingmaps.com
http://www.housingmaps.com

It is interesting to note that open source software (like Rails itself) is based in part on this
same principle; people who are interested in a project will contribute to it for free, and the
multiplicity of contributors is itself a benefit—you get new perspectives, new problem-solving
techniques, and better results overall by including more perspectives in the process.

By exposing your data to the world, you are in effect creating an open source project for
(at least part of) your application, and you invite people to donate their time to it. It’s a win-
win situation: you get free developer time from a potentially huge pool of talent, and the
community gets another source of data to leverage.

Unexpected Consequences
Beyond the time and effort contributed by external developers, however, community out-
sourcing carries another potential benefit. Once anyone with the inclination and free time is
given leave to play around with your data, you’re almost guaranteed to see them use it in sur-
prising ways. This may be as simple as creating a novel interface to the data (see http://
bcdef.org/flappr/ for a reimagining of the Flickr interface, shown in Figure 1.2), or it may be
as significant as creating completely new functionality (for instance, http://labs.systemone.
at/retrievr/—a site that lets users search for photos on Flickr by sketching what they’re look-
ing for, shown in Figure 1.3) that you may then integrate into your application directly.

Figure 1-2. Flappr

CHAPTER 1 ■ WHY REST? 3

9945CH01.qxd 3/28/08 10:47 AM Page 3

http://bcdef.org/flappr
http://bcdef.org/flappr
http://labs.systemone

Figure 1-3. Retrievr

The lesson is that the community is more creative than you are. They can come up with
all sorts of ideas that your designers and developers just don’t have the time or motivation to
consider, and you can never know when one of those innovations will strike a chord with a
previously uninterested group of users. Rademacher’s HousingMaps was the mashup that
launched tens of thousands of sites, each of which satisfied someone’s needs—and some of
which satisfied the needs of a lot of people.

And that’s the important point: these new clients have the potential to bring in entire
audiences that you, for whatever reason, can’t target—maybe they’re too small, or they don’t
stay long enough on the site you’ve built. Regardless, there’s always the chance that if you
provide an open interface, someone somewhere will hook into your system in a way that’s
irresistible to a segment of the community that otherwise wouldn’t be using your data—and
that benefits everyone.

The Cost of Openness
One argument against openness is the cost associated with creating an API; opponents of the
open Web can rightfully point to the time and effort required to implement an interface in all
the various languages in use on the Web (Perl, Java, PHP, Ruby, and dozens more).

Community outsourcing, however, refutes this argument. Instead of paying an internal
(or traditionally outsourced) team of developers to write the interfaces for all the languages
you wish to support, the savvy application provider instead merely publishes the interface
in one or two languages—say, Java and Ruby. After that, it’s in the hands of the developer

CHAPTER 1 ■ WHY REST?4

9945CH01.qxd 3/28/08 10:47 AM Page 4

community; language advocates far and wide will port the API into their preferred languages
on their own time.

Often, you’ll even see competing versions of the interface within a single language. For
instance, there are at least half a dozen different Ruby gems providing a wrapper around the
Flickr API. In some cases, the competitors provide different functionality; in others, they differ
only in their feel and coding style. Either way, the multiplicity of options can be helpful to
developers. (Of course, once you reach a certain number of choices, the sheer number can be
confusing. At that point, it may make sense to identify one of the options as the “official”
choice, as Facebook has done with the RFacebook gem.)

Interestingly, you may also see competing versions of your API in the languages that you
originally published in—perhaps adding support for features only available to another lan-
guage’s implementation, or providing an interface that’s more idiomatic for the language
(Rubyists in particular prefer to work with APIs that “feel” like Ruby code).

MASHUP INSPIRATION

If you still doubt the creativity of developers outside of your project team, take a look at the following sites—
all of which were developed on top of open applications.

• HousingMaps (http://www.housingmaps.com/): The grandfather of all Google Maps mashups.

• Amazon Light (http://www.kokogiak.com/amazon4/): An alternative interface to Amazon, incor-
porating a number of open APIs (including del.icio.us).

CHAPTER 1 ■ WHY REST? 5

9945CH01.qxd 3/28/08 10:47 AM Page 5

http://www.housingmaps.com/):
http://www.kokogiak.com/amazon4/):

• ChicagoCrime (http://www.chicagocrime.org/): —A site that lets you track the location of
recently reported crimes across Chicago.

• Ficlets (http://ficlets.com/): A collaborative creative writing site based around OpenID, AIM, and
Flickr.

CHAPTER 1 ■ WHY REST?6

9945CH01.qxd 3/28/08 10:47 AM Page 6

http://www.chicagocrime.org/):
http://ficlets.com/):

• Flickrvision (http://flickrvision.com/): A site that lets you view photos from Flickr plotted on a
world map.

• Musiclovr (http://www.musiclovr.com/): A music discovery site combining Amazon, Flickr, Tech-
norati, and other services.

CHAPTER 1 ■ WHY REST? 7

9945CH01.qxd 3/28/08 10:47 AM Page 7

http://flickrvision.com/):
http://www.musiclovr.com/):

• Popurls (http://popurls.com/): A site that aggregates information from several services to give a
sense for the current state of the Web.

• Twittervision (http://twittervision.com/): A site that’s similar to Flickrvision, plotting recent
posts to Twitter on a world map.

CHAPTER 1 ■ WHY REST?8

9945CH01.qxd 3/28/08 10:47 AM Page 8

http://popurls.com/):
http://twittervision.com/):

• Wikimapia (http://www.wikimapia.org/): A site that combines Wikipedia with Google Maps, pro-
viding information about almost any place on Earth.

A Brief Historical Interlude
How did we get from an Internet consisting of independent, isolated sites to this network of
interconnected applications and services? What technologies are currently being used to build
our servers and clients? A brief foray into the history of web services may help answer those
questions.

As everyone knows by now, the Web started out modestly, as a means of distributing sci-
entific papers. The earliest versions of the technologies we now use—HTML, HTTP, and the
like—were simple compared to the (sometimes bloated) state they exist in now. Over time,
familiar elements (the tag, for instance) were added, and we moved forward into some-
thing approaching the modern Web. Still, sites were very much isolated for most of the Web’s
early years—linked only by hypertext, with little in the way of the more intimate data connec-
tions we see today.

XML-RPC
In 1998, several technologies arrived on the scene nearly simultaneously. Most relevant for our
purposes, XML 1.0 became a full Recommendation from the W3C (the World Wide Web Con-
sortium, the standards body governing the Web), and a group of people began working on the
Simple Object Access Protocol (which became the Service Oriented Architecture Protocol and

CHAPTER 1 ■ WHY REST? 9

9945CH01.qxd 3/28/08 10:47 AM Page 9

http://www.wikimapia.org/):

was eventually released as SOAP). Delays from various parties to the SOAP discussions, how-
ever, irked Dave Winer (among others), resulting in his release of XML-RPC.

XML-RPC (where RPC stands for Remote Procedure Call) provides a standard framework
for interactivity between servers and clients on the Web. It includes a limited set of data types,
and it allows servers to define methods accessible to the client; communication is conveyed
by XML over HTTP. Samples of the resulting requests and responses can be seen in Listings 1-1
and 1-2.

Listing 1-1. Sample XML-RPC Client Request

<?xml version="1.0"?>
<methodCall>
<methodName>movie.getMovieName</methodName>
<params>
<param>
<value><i4>17</i4></value>

</param>
</params>

</methodCall>

Listing 1-2. Sample XML-RPC Server Response

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value><string>The Bourne Identity</string></value>

</param>
</params>

</methodResponse>

XML-RPC web services provided the first real option for openness between sites, and as
such they quickly became (and remain) very common. They exhibit various problems, how-
ever—most notably in their complexity, their often-tight coupling to the underlying software,
and their opacity to client developers.

When XML-RPC is implemented for large, complicated systems, the number of available
methods and variety of parameters required can overwhelm client developers—and the exclu-
sive use of XML as the messaging format doesn’t make it any easier. The specification does
nothing to constrain the available methods or to guide their naming; each implementation of
an XML-RPC server is custom-built. As a result, any experience gained while building a client
for one server is often mostly inapplicable to building a client for another.

This freedom from both constraints and conventions also means that XML-RPC services
are often very closely linked to their underlying implementation. Newer server developers are
especially likely to expose their internal method names as RPC methods, resulting in harder-
to-understand APIs for the client developer. This becomes especially detrimental when the
underlying server code changes independently of the external interface, rendering the latter
unmaintainable or, in the worst cases, broken.

CHAPTER 1 ■ WHY REST?10

9945CH01.qxd 3/28/08 10:47 AM Page 10

Finally, because each XML-RPC server is custom-built, a client developer must consult a
separate WSDL (Web Services Description Language) file to even begin to understand what to
expect from the server. While there are tools that can automatically generate code on both the
server and client side when given a WSDL file, the average developer has a greatly reduced
chance of being able to work properly with such generated code and maintain it.

Thanks to the benefits accrued from being the only viable early option, XML-RPC is still
in wide use despite these flaws. More depressing, however, is the realization that new XML-
RPC services are still being built every day, even though better options are now available.

SOAP
In 1999, the full SOAP specification finally emerged from the political limbo that had delayed
it (and that allowed XML-RPC to flourish as the first viable option). Several of the underlying
components (notably, the XML Schema specification) remained incomplete, but enough work
had been finished that SOAP itself was at least usable. As a superset of XML-RPC, SOAP still
uses XML as its message format, but it is not limited to HTTP (it can also work over SMTP, for
instance).

SOAP communications are more nested than those in XML-RPC services; all messages
are submitted within a SOAP envelope, for instance. Once within the envelope, however, the
entity communicated is often clearer (that is, more abstracted from an underlying implemen-
tation) than the comparable entity in XML-RPC. Contrast Listings 1-3 and 1-4 with the earlier
examples of an XML-RPC request and response.

Listing 1-3. Sample SOAP Client Request

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/movies">
<m:GetMovieName>
<m:MovieId>17</m:MovieId>

</m:GetMovieName>
</soap:Body>

</soap:Envelope>

Listing 1-4. Sample SOAP Server Response

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/movies">
<m:GetMovieNameResponse>

CHAPTER 1 ■ WHY REST? 11

9945CH01.qxd 3/28/08 10:47 AM Page 11

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.example.org/movies
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.example.org/movies

<m:Name>The Bourne Identity</m:Name>
</m:GetMovieNameResponse>

</soap:Body>

</soap:Envelope>

In particular, compare the procedure call movie.getMovieName to the more abstract mes-
sage GetMovieName. SOAP is often used to implement Service-Oriented Architecture (SOA),
which is a style for building web services that relies on messages instead of on procedure calls.
This extra level of abstraction allows for more independence between the server’s underlying
code and the API promised to the world.

Despite the benefits of SOAP’s emphasis on messages, however, it still suffers many of the
same flaws as XML-RPC. Client developers must still rely on WSDL documents to learn how
to interact with these services, as the particular messages accepted and generated by a SOAP
server can be as arcane as any set of methods exposed in an XML-RPC interface. Similarly,
when implemented on complex sites, SOAP services can become just as complicated and
confusing as a comparable XML-RPC architecture.

REST
While XML-RPC and SOAP are technical specifications, a philosophical competitor arose in
2000. Roy Fielding, one of the coauthors of the HTTP specification, first described REST in his
dissertation. This alternative style is closely related to the architecture of the early Web, and
over the past several years it has gained popularity as an alternative to the more complicated
options already discussed.

REST is not, strictly speaking, a specification in the same sense that XML-RPC and SOAP
are; instead, it is a philosophy of service design that contradicts the standard conventions.
Instead of focusing on the procedures, clients may call or the messages they might send,
RESTful web services constrain the “verbs” available to a client to just those provided by
HTTP: GET, POST, PUT, and DELETE (for now, I’ll just ignore HEAD and the other available HTTP
methods). The complete spectrum of functionality provided by the large set of procedures and
messages that a comparable XML-RPC or SOAP service might provide is accomplished in the
RESTful service by using those limited methods to access and manipulate resources on the
server, each of which has a unique address (its URI).

Unlike a SOAP service, where all requests are directed to a single endpoint, a RESTful web
service accepts requests at a multitude of URIs—each mapping to a different resource. Instead
of requiring a WSDL to describe all of the various methods and parameters the client might
call, then, the specification of a RESTful service is just the list of resources it exposes. (It
should be noted, however, that WSDL-like documents can be created for RESTful services.
These documents use WADL, the Web Application Description Language.)

RESTful web services are currently much less common than XML-RPC and SOAP—they
are newer, for one thing—but they are becoming more popular thanks to some substantial
benefits that you’ll see later, as well as the adoption of RESTful principles by popular web
frameworks (including Rails 2). Before getting to the benefits, however, it makes sense to dig a
bit deeper into just what it means to be RESTful.

CHAPTER 1 ■ WHY REST?12

9945CH01.qxd 3/28/08 10:47 AM Page 12

THE HTTP REQUEST METHODS

The methods that RESTful servers make available to clients are those provided by HTTP. They are:

• GET: Retrieves a resource from a known URI.

• POST: Sends data to create a resource when the eventual URI is unknown.

• PUT: Sends data to update a resource with a known URI.

• DELETE: Destroys a resource at a known URI.

RESTful services need not expose all of these methods on all resources; you might very well want to
protect PUT and DELETE on user records, for instance—or at the very least restrict them to authenticated
administrators. I will go into greater detail on this topic in Chapter 3.

The Basics of REST
It is important to reiterate that REST is itself just a philosophy of system design (Fielding calls
it an architectural style)—it is not a technology to be compared directly with XML-RPC, SOAP,
or the other enablers of web services. REST can be applied to a system independently of the
technologies constituting that system. As such, it doesn’t really make sense to say that systems
“use REST”—instead, systems are “RESTful” to the degree that they follow the principles on
which REST is built.

Fielding describes those principles as architectural constraints. I will discuss them each in
turn here, and you’ll see how they apply to the current state of the Web (and to your soon-to-
be-created sample application).

Constraints
RESTful systems, according to the first constraint, are based on the client-server model—that
is, the user interface and the data store are divided. Obviously, this is a requirement that all
web systems follow, with web servers playing the role of data store and web browsers playing
the role of user interface. The sample application and various clients you build later in the
book will also follow the client-server model, of course.

RESTful systems are also stateless. This means that each request from the client must con-
tain all the data required to interpret the request correctly. This is a more difficult requirement
to implement—web developers are accustomed to circumventing the inherent statelessness
of HTTP by, for instance, storing session data on the server and keying requests to that data
via some sort of key. When building a truly RESTful service, however, developers must aban-
don server-based sessions and other such tricks for simulating statefulness. Happily, however,
Rails 2 incorporates a solution to this issue, as you’ll see in the discussion of cookie-based ses-
sions in Chapter 2.

The third constraint requires that responses from a server in a RESTful system must be
flagged (implicitly or explicitly) as cacheable. In such a system, the client is empowered to
reuse cached content whenever the end user initiates a similar request. You’ll see more detail

CHAPTER 1 ■ WHY REST? 13

9945CH01.qxd 3/28/08 10:47 AM Page 13

on this in Chapter 8, as caching is one of the first strategies to employ when you set out to
scale a successful application.

These three constraints may look very familiar if you remember what the early Web
looked like—and that resemblance is intentional. A RESTful architecture requires further
characteristics, however, that may move beyond this similarity: the requirement of a uniform
interface (which I will defer for the moment), layered systems, and code-on-demand.

The layered system constraint requires that each component in the chain between client
and server know only about its immediate neighbors. This requirement is beyond the scope of
this book and of the sample application—you won’t have to worry about proxies, tunnels, and
the like here.

With code-on-demand, clients of a RESTful application can be modified on-the-fly by
downloading additional functional code from the server (e.g., applets). This is another con-
straint that you will not find much information about in this book; it is a topic that has not yet
been addressed in the Rails community, though it opens up possibilities of client extensibility
that may make it worthwhile to work toward.

Resources and the Uniform Interface
The uniform interface constraint is responsible for one of the most recognizable characteris-
tics of RESTful systems—the focus on resources. Resources are at the heart of the four
requirements of the RESTful uniform interface: resource identification, resource manipulation
via representations, self-descriptive messaging, and the use of hypermedia as the engine of
application state.

To understand these, you must first understand resources. In REST, a resource is any dis-
crete piece of information under a specific description; resources may map onto things
(physical objects, concepts, phrases), but they are not identical to those things. For instance, a
given movie (Seven Samurai) may map to many resources (the movie with a given universal
identifier, my wife’s current favorite movie, the last movie I saw, and so on).

RESTful resource identification requires that each of these distinct resources be inde-
pendently addressable—for your sample movie application, you might allow clients to access
the examples just cited via the URIs /movies/123, /users/1/favorite_movie and /users/2/
most_recent_movie. Each of these URIs corresponds to a different resource, though at a given
time they may all map to the same underlying object (and conversely, at different times they
may map to different underlying objects—when I go and see The Hidden Fortress, the resource
available at /users/2/most_recent_movie no longer points to the same object as /movies/123).

The second requirement of the uniform interface is that RESTful systems allow the
description and transformation of resource state via representations of that resource. If you
want to retrieve info about a given movie, you issue a GET request to the server. The server then
constructs a representation appropriate to the request and returns it to your client. Similarly, if
you want to update a movie, you use the client to construct a representation with the modifi-
cations in place and send it via a PUT to the server, which then updates the resource locally.
Self-descriptive messages are those that make all the information needed to handle them
available to clients prior to the client opening the body of the message. In other words, the
message headers and metadata must be sufficient to process the message as a whole.

Finally, using hypermedia as the engine of application state requires that any given
response from the server include the means to access the available subsequent states—so the
response to a GET request for a movie should contain the links to edit or destroy that movie, or

CHAPTER 1 ■ WHY REST?14

9945CH01.qxd 3/28/08 10:47 AM Page 14

to move to another movie (assuming those are available transitions—which they might well be
if the current user is an administrator). A RESTful application that meets this constraint will,
in effect, be completely discoverable by a client starting at the right location.

Taken together, these four requirements force a RESTful system into a client-friendly
structure—and that is the entire point of a uniform interface. Clients can be built quickly and
easily for RESTful servers, as they are guaranteed to be able to interact with the server’s
resources in a predictable and discoverable manner, and any messages from the server are
guaranteed to be understandable.

REST and HTTP
REST and HTTP are often spoken of together, but it is important to note that nothing requires
that REST be implemented only on systems that use HTTP. REST is, after all, a style of system
architecture, and as such it could potentially be used in the design of any sort of communica-
tion system.

This distinction is, however, a bit esoteric for the purposes of this book. We are Rails
developers, building web applications that use HTTP. Given that, and that the specific imple-
mentation of REST in Rails 2 is in fact tightly linked to HTTP (as you’ll see in the next chapter)
—we can be forgiven for ignoring the distinction for now.

The Benefits of REST
Now that you’ve been convinced of the value of opening your application to the world via web
services, and you have seen something of the requirements a RESTful system must meet, it is
time to turn to the benefits a RESTful architecture grants—the reasons you should prefer
developing RESTfully instead of using XML-RPC, SOAP, or another competitor.

These benefits arise from the inherent simplicity of REST. In particular, RESTful systems
are easier to work with when building clients, when building servers, and when considering
future maintenance and extensibility. You and I also reap another benefit from employing
REST, however, as you’ll see in a moment.

Building Clients
Because RESTful systems are so constrained, they are predictable; this is almost just a restate-
ment of the uniform interface requirement. They are, therefore, much easier for client
developers to understand than a comparable system providing a SOAP or XML-RPC interface.
When contrasted with the obscure WSDL file provided by the latter sort of service provider, the
simple list of resources a RESTful server must provide (given that discoverability for the rest of
the system is built into the architecture) is simple and nonthreatening.

Client developers are also saved from dealing with many of the complexities of the XML
messages required by other web service architectures; RESTful applications manipulate the
state of their resources via a standardized transfer of representations, as opposed to impene-
trable lists of parameters submitted to arbitrarily named methods.

Finally—and perhaps somewhat surprisingly—the statelessness of a RESTful system also
helps client developers. Assured that the server can hold no unknown factors that might inter-
fere with the processing of their requests, the developers of client applications can stop

CHAPTER 1 ■ WHY REST? 15

9945CH01.qxd 3/28/08 10:47 AM Page 15

worrying that a corrupted or incorrect session might cause unforeseen problems in their
interactions.

Building Servers
Just as the simplicity of a RESTful system makes life easier for the developers of client applica-
tions, so too does it make life easier for server developers. The constraints placed on RESTful
servers make designing an application (as you will see in detail in Chapter 3) much easier than
it would otherwise be. Once you identify the resources in your domain and decide on what
methods (from the limited set of GET, POST, PUT, and DELETE) you wish to expose on them, your
system design is essentially complete.

Self-descriptive messaging is another boon for the server developer. Clients in a RESTful
system are required to submit all the information necessary to process a request in the header
of the request itself—unlike in a SOAP or XML-RPC system, the body of the message need not
be examined for the server to route it to the proper segment of code.

Statelessness, too, holds benefits for server developers—and in particular for Rails devel-
opers, given the recent emphasis on scalability. Session management is one of the first
problems many developers run into when scaling an application to multiple servers. Server-
based session storage is fraught with problems; from the inherent difficulties with file-based
storage to the latencies of database stores, it never becomes easier. With the requirement that
each client request carry all the data necessary to process it, server developers are largely freed
from the yoke of session management.

Building for the Future
Perhaps less compelling, but no less important, is the argument that RESTful systems are
easier to maintain and extend than are comparable systems that employ alternative designs.
Imagine two systems, identical in functionality. One is RESTful, while the other uses a tradi-
tional SOAP architecture. Now imagine the steps required to expose new functionality via your
API. In the RESTful system, it may be as simple as adding code to handle a new method
(again, from a limited set) on an existing resource and adding links to the appropriate pages
(to satisfy the discoverability requirement). Once that is done, clients can automatically access
the new functionality by browsing the site normally. For the SOAP system, you must make the
changes needed to respond to the new message, modify the WSDL file, and distribute the
updated WSDL file to your clients, which must then process the description file and undergo
the appropriate updates to reflect the new functionality. The RESTful approach is clearly less
painful than the alternative.

Similarly, the simplicity of a RESTful system is helpful in maintenance. The constrained
set of methods means there are fewer places you need look in to debug problems, for
instance—and the added abstractions that make SOAP superior to XML-RPC can hide
implementation flaws that might otherwise be more obvious.

Building Rails Applications
The final benefit of adopting REST is relevant to you and me for a very different reason. Since
2006, the developers behind Rails have made a concerted effort to support RESTful architec-
tures. Through new features, new conventions, and educating the community, they have
made it much easier to develop a RESTful application in Rails than it has been in most other

CHAPTER 1 ■ WHY REST?16

9945CH01.qxd 3/28/08 10:47 AM Page 16

frameworks in the past. In fact, REST is so thoroughly integrated into Rails 2 today that you get
a RESTful interface automatically when you generate scaffold code.

I’ll go into much greater depth on how REST is implemented in Rails in the next chapter,
but suffice it to say that you are essentially reinventing the wheel if you decide to open up your
Rails application and you do not use REST.

Summary
To summarize the work so far, you’ve seen that being a full partner in the Web 2.0 world and
opening your data up to the Internet community at large means that you can benefit from the
work of third-party developers and discover new, unexpected uses for your data. You’ve also
(briefly) seen the history of the more popular technologies (in XML-RPC and SOAP) that web
services have been built upon, as well as the emergence of RESTful architectures that, through
their simplicity and predictability, have become an alternative to those technologies. Given all
of that, and that this is a book about REST as it is implemented in Rails 2, it only makes sense
to proceed from here by looking at how the constraints and concepts of REST are realized in
the current version of the Rails framework.

CHAPTER 1 ■ WHY REST? 17

9945CH01.qxd 3/28/08 10:47 AM Page 17

9945CH01.qxd 3/28/08 10:47 AM Page 18

REST in Rails

Ruby on Rails is an opinionated framework. Since it was first announced back in 2004, Rails
has hewed close to the opinions of the core team—on MVC (model-view-controller architec-
ture), on directory structure, on database independence (and refusing to allow business logic
into the database), and on a number of further questions. As a result, Rails at any point in time
is a reflection of the collective ideals of a small team. This aspect of the framework is responsi-
ble for much of its success, since a great deal of the pain of building software is in making the
“unimportant” decisions. Adopting a framework like Rails removes those decisions from the
end-developers’ hands, making standardized applications easier and faster to create.

At the same time, however, using a framework that is heavily based on the opinions of
others can be a frustrating experience. Opinions, after all, change. Rails is no different; over
the past three years, the framework has changed direction dramatically several times. At
times, those changes have forced developers to learn new techniques and technologies—and
while being forced to adapt in that manner can be painful in the short term, it has resulted in a
more flexible and knowledgeable developer community and in better applications. One such
shift occurred in 2006, when the conventions around Rails’ support for web services under-
went a massive change.

ActionWebService
Open up almost any Rails application built prior to version 1.2, and chances are you’ll find a
directory called app/apis. This is a relic of the ActionWebService gem, which was distributed
as part of the Rails core until mid-2007, and provides support for XML-RPC and SOAP web
services. The heart of ActionWebService is the web service generator, used to create the files
a Rails application needs to respond to traditional web service requests. Running this
command:

script/generate web_service Movie find_movies find_movie

creates the output shown in Listing 2-1.

Listing 2-1. Output of the Generator

create app/apis/
exists app/controllers/
exists test/functional/
create app/apis/movie_api.rb

19

C H A P T E R 2

9945CH02.qxd 4/7/08 11:09 AM Page 19

create app/controllers/movie_controller.rb
create test/functional/movie_api_test.rb

The files generated by this process contain a framework for the developer to build on, as
you can see in Listings 2-2, 2-3, and 2-4.

Listing 2-2. Autogenerated app/apis/movie_api.rb

class MovieApi < ActionWebService::API::Base
api_method :find_movies
api_method :find_movie

end

Listing 2-3. Autogenerated app/controllers/movie_controller.rb

class MovieController < ApplicationController
wsdl_service_name 'Movie'

def find_movies
end

def find_movie
end

end

Listing 2-4. Autogenerated test/functional/movie_api_test.rb

require File.dirname(__FILE__) + '/../test_helper'
require 'movie_controller'

class MovieController; def rescue_action(e) raise e end; end

class MovieControllerApiTest < Test::Unit::TestCase
def setup
@controller = MovieController.new
@request = ActionController::TestRequest.new
@response = ActionController::TestResponse.new

end

def test_find_movies
result = invoke :find_movies
assert_equal nil, result

end

def test_find_movie
result = invoke :find_movie
assert_equal nil, result

CHAPTER 2 ■ REST IN RAILS20

9945CH02.qxd 4/7/08 11:09 AM Page 20

end
end

These files contain the framework for your site’s web service; all you have to do is update
them with code to specify the exact behavior you want, and the client can access the applica-
tion via XML-RPC or SOAP. Within the API file, for instance, you specify the input and output
parameter types for each method. Similarly, you populate the actions in the controller to
return the appropriate data. You can see both of these steps in Listings 2-5 and 2-6.

Listing 2-5. Completed movie_api.rb

class MovieApi < ActionWebService::API::Base
api_method :find_movies, :returns => [[Movie]]
api_method :find_movie, :expects => [:int], :returns => [Movie]

end

Listing 2-6. Completed movie_controller.rb

class MovieController < ApplicationController
wsdl_service_name 'Movie'

def find_movies
Movie.find(:all)

end

def find_movie
Movie.find(params[:id])

end
end

And with that, you’ve added support for both XML-RPC and SOAP web services to your
application. ActionWebService generates a WSDL file on demand, allowing clients to be built
in any language or framework.

ActionWebService provides more features, as well—dynamic scaffolding (akin to the
dynamic scaffolding formerly found in the ActionPack component of Rails), multiple dis-
patching modes, filters, functional testing, etc.—all helping your Rails application handle
XML-RPC and SOAP web services as easily as possible. As I stated before, however, Rails fol-
lows the opinions of the core team, and in 2006 those opinions regarding web services
changed—in large part because of a plugin named simply_restful.

The Rise of REST
There are several mechanisms available to change Rails; one of the most powerful is the plug-
in system. Any member of the Rails community can create new functionality and distribute it
to other developers and, when it is proven valuable, may eventually see it incorporated into
the core framework. This is the path REST took; it began as a plugin called simply_restful,
written by core team member Rick Olson. Over time, the approach illustrated by the plugin

CHAPTER 2 ■ REST IN RAILS 21

9945CH02.qxd 4/7/08 11:09 AM Page 21

became the accepted way to do REST in a Rails application, and the core team’s opinions
changed as a result—work on ActionWebService essentially ceased, and REST became the
established philosophy for web services from that point forward.

David Heinemeier Hansson announced the change of direction to the community in his
keynote at the first International Rails Conference in 2006. You’ve already seen the basic argu-
ments he presented, back in Chapter 1: REST allows for a simpler, more predictable interface.
He also argued that REST (like Rails itself) provides a helpful consistency across applications
and, when properly implemented, can reduce the amount of repetition in your code (a philos-
ophy often called DRY, for “don’t repeat yourself”) by taking advantage of the features of HTTP.

Heinemeier Hansson also described a number of the features from simply_restful that
were being integrated into Rails. You’ll see what has become of those, as well as features that
have been added since, shortly, but first I’d like to point out an underappreciated aspect of the
keynote: it described a revolution in the way Rails applications were to be built, and it also
began the education of the community toward REST.

Rails developers are a diverse crowd, ranging from highly technical programmers who’ve
worked with a wide variety of languages and concepts over decades, to recent converts from
PHP and design who adopted the framework for the promise of rapid, easy development. As a
result, much of the community lacks knowledge of the more esoteric topics in web develop-
ment. For many Rails developers, Heinemeier Hansson’s keynote was their first introduction
to the concepts; RESTful systems were (and in many cases remain) foreign to the way these
developers work. One of the most important consequences of the keynote is that it exposed
these concepts to this part of the community and started a number of discussions around the
topic.

Even though REST has been “the Rails way” for over a year and a half, many applications
are still built non-RESTfully; the new practices and techniques haven’t quite filtered down
through the entire community. The education of the community, however, continues—via
blogs, articles, screencasts, and books (like this one). If you search for REST and Rails today,
you’ll get millions of results that are largely individual people talking about how REST works
and how it fits into the Rails framework. The community is actively educating itself—dis-
cussing, debating, and demonstrating how and why to build RESTful applications. As a result,
Rails (in both features and conventions) supports REST better than any other currently avail-
able web framework, and that support is constantly improving.

Integration
So, what is the current state of REST in Rails? There are many features contributing to the
development of RESTful Rails applications—some stemming from the original simply_restful
plugin, and others added more recently. Unlike ActionWebService, where all the support for
XML-RPC and SOAP services was encapsulated in a single gem, you can find traces of REST
throughout the Rails stack, as you’ll see here. This distribution of functionality makes for
better overall support, as REST now provides something of a guiding philosophy throughout
many of Rails’ components.

Routing
Back in Chapter 1, you saw that resource identification was one of the cornerstones of REST.
Resources are identified by their URI—your application may use the URI /movies/1 to identify

CHAPTER 2 ■ REST IN RAILS22

9945CH02.qxd 4/7/08 11:09 AM Page 22

a given movie, for instance. This practice is obviously tightly linked with routing in a Rails
application, and Rails 2 does indeed have several routing-related features designed to support
REST.

The core REST-related additions to routing are three macros: map.resources,
map.resource, and map.namespace. These macros allow you to define a standard set of routes
for a given resource and provide various options to extend those routes in useful directions.

Using map.resources
Map.resources is the most common of the macros; it is used to set up routes for all seven of
the standard Rails CRUD actions for a given resource. Suppose you add the line shown in
Listing 2-7 to your routes file.

Listing 2-7. Updating config/routes.rb: with a resources declaration

ActionController::Routing::Routes.draw do |map|
map.resources :movies
…

end

Your application will automatically recognize the set of routes listed in Table 2-1, all
named appropriately (e.g., the named route for MoviesController#new is new_movie; for
MoviesController#show, it is just movie).

Table 2-1. Standard Resource Routes

Method Route Action

GET /movies MoviesController#index

POST /movies MoviesController#create

GET /movies/new MoviesController#new

GET /movies/:id/edit MoviesController#edit

GET /movies/:id MoviesController#show

PUT /movies/:id MoviesController#update

DELETE /movies/:id MoviesController#destroy

GET /movies.:format MoviesController#index

POST /movies.:format MoviesController#create

GET /movies/new.:format MoviesController#new

GET /movies/:id/edit.:format MoviesController#edit

GET /movies/:id.:format MoviesController#show

PUT /movies/:id.:format MoviesController#update

DELETE /movies/:id.:format MoviesController#destroy

With just the single line of code in routes.rb, then, you’ve set up named routes for your
index, show, new, create, edit, update, and destroy actions on a resource (as well as a number
of formatted routes, which I’ll talk about in a later section). Furthermore, each of these actions

CHAPTER 2 ■ REST IN RAILS 23

9945CH02.qxd 4/7/08 11:09 AM Page 23

is appropriately limited to the correct HTTP verb: GET for index, show, new, and edit; POST for
create; PUT for update; DELETE for destroy. By using all four verbs, your application is able to
limit the number of distinct URIs that map to a given resource; note that the show, update, and
destroy actions are all accessed via /movies/:id in the preceding example.

In addition, since the named route methods correspond to URIs, the HTTP request
method conditions also reduce the number of named routes that the macro generates—
movies_url is used for both the index and create actions, differentiated by the request method
you specify when you call the route. Similarly, the show, edit, and destroy actions all map to
movie_url. The map.resources macro, then, creates a complete set of routes for the standard
CRUD—create, read (or show, in the parlance of Rails), update, and destroy, the four core
activities for a database-driven application—actions on a given resource.

ROUTE INTROSPECTION: RAKE ROUTES

In a large application, routing can become exceedingly complicated—and that problem is magnified when
you use the RESTful routing macros, since you can’t easily see all the routes they generate by perusing
routes.rb.

Luckily, Rails 2 includes a tool that allows you to introspect all of the routes your application recognizes.
From the command line, type rake routes, and you’ll see a table of the routes defined in your system.
Each will specify any request method conditions, the parameters (including controller and action) that it maps
to, the URI it may be found by, and (for the first instance of each URI) the named route method it is available
under.

Sample output of the rake routes command:

POST /blog {:controller=>"blogs", :action=>"create"}
POST /blog.:format {:controller=>"blogs", :action=>"create"}
new_blog GET /blog/new {:controller=>"blogs", :action=>"new"}

…

This is a tremendously useful command, but for many RESTful applications it eventually becomes
unwieldy, as each map.resources and map.resource declaration adds over a dozen lines to the output.
In such cases, remember that grep is your friend—it’s much easier to understand the output of rake
routes | grep new than it is to read through line after line of generated code to find the new_blog route
you’re looking for.

You can still add other, nonstandard routes, however; the :collection and :new options
allow you to specify additional routes that operate on a collection of resources (like index) or
a single resource (like show), respectively. Both :collection and :member take hashes like
{:action => :method}, where method is one of :get, :put, :post, :delete, or :any. As you’ll see
shortly, access to the route is then restricted by the framework to requests that use the speci-
fied method. You can also control other aspects of the generated routes by adding further
options (:path_prefix, :requirements, :controller, :singular, etc.), but those are secondary
to the main use of the macro.

CHAPTER 2 ■ REST IN RAILS24

9945CH02.qxd 4/7/08 11:09 AM Page 24

Using map.resource
In some situations, however, your application may not need all of the routes provided by
map.resources. Imagine, for instance, that you have a site on which there is a single blog. You
don’t need an index action for the blog resource, since there is only (and can only ever be) one
blog in the application. The second RESTful macro, map.resource, is designed for just this situ-
ation. You use it in just the same way as its plural relative, adding the line shown in Listing 2.8
to your routes file.

Listing 2-8. Updating config/routes.rb with a singleton resource declaration

ActionController::Routing::Routes.draw do |map|
map.resource :blog
…

end

But the routes it creates are different, as shown in Table 2-2.

Table 2-2. Singleton Resource Routes

Method Route Action

POST /blog BlogsController#create

GET /blog/new BlogsController#new

GET /blog/edit BlogsController#edit

GET /blog BlogsController#show

PUT /blog BlogsController#update

DELETE /blog BlogsController#destroy

POST /blog.:format BlogsController#create

GET /blog/new.:format BlogsController#new

GET /blog/edit.:format BlogsController#edit

GET /blog.:format BlogsController#show

PUT /blog.:format BlogsController#update

DELETE /blog.:format BlogsController#destroy

The map.resource macro handles these singleton resources by removing the route for
index and dropping the ID parameter. Like map.resources, it also allows for the addition of
nonstandard routes, though it does not recognize the :collection option (as there can be no
collection for a singleton).

You may be wondering why the new and create routes are still provided by map.resource;
the answer is that even singleton resources may be created during the course of an applica-
tion’s use. The first place many Rails developers see this is in the restful_authentication plugin
(like simply_restful, created by Rick Olson), which uses the macro to generate the routes for a
resource representing a user’s authentication session. In that case, sessions/new is the appli-
cation’s login form.

CHAPTER 2 ■ REST IN RAILS 25

9945CH02.qxd 4/7/08 11:09 AM Page 25

Nesting Resources
Both map.resources and map.resource can be nested, to better represent those situations in
which your domain identifies one resource as belonging to another—for instance, if your blog
has comments associated with registered users, you might represent those resources in your
routes file as shown in Listing 2-9.

Listing 2-9. Updating config/routes.rb: with a nested resource declaration

ActionController::Routing::Routes.draw do |map|
map.resources :users do |users|
users.resources :comments

end
…

end

This nesting produces the routes you would expect for the users resource, but it also creates a
series of routes for a user’s comments, as you can see in Table 2-3.

Table 2-3. Nested Resource Routes

Method Route Action

GET /users/:user_id/comments CommentsController#index

POST /users/:user_id/comments CommentsController#create

GET /users/:user_id/comments/new CommentsController#new

GET /users/:user_id/comments/:id/edit CommentsController#edit

GET /users/:user_id/comments/:id CommentsController#show

PUT /users/:user_id/comments/:id CommentsController#update

DELETE /users/:user_id/comments/:id CommentsController#destroy

GET /users/:user_id/comments.:format CommentsController#index

POST /users/:user_id/comments.:format CommentsController#create

GET /users/:user_id/comments/new.:format CommentsController#new

GET /users/:user_id/comments/:id/edit.:format CommentsController#edit

GET /users/:user_id/comments/:id.:format CommentsController#show

PUT /users/:user_id/comments/:id.:format CommentsController#update

DELETE /users/:user_id/comments/:id.:format CommentsController#destroy

These routes are similar to those generated by a standard map.resources call, but each
request requires a user_id in addition to any other requirements. Instead of just using

<%= link_to 'comments', comments_url %>

in your view, then, you would use

<%= link_to 'comments', user_comments_url(@user) %>

CHAPTER 2 ■ REST IN RAILS26

9945CH02.qxd 4/7/08 11:09 AM Page 26

If you wanted to expose your comments both on their own and as belonging to users, you
could also add the standard

map.resources :comments

line to your routes file (and, of course, add the appropriate code to your comments controller
to handle requests both with and without a user ID).

■Tip Rails, like Ruby, often provides alternative syntactical structures to accomplish the same task, on the
assumption that different people will prefer different styles. In the case of nested routes like the ones you’ve
just seen, you can also declare them in config/routes.rb like this:

map.resources :users, :has_many :comments

That single, highly readable line of routing code generates exactly the same set of routes that you
saw earlier.

Using map.namespace
In some cases—administration interfaces, for instance—you may need to namespace a
resource without actually nesting it under another. For instance, you may wish to expose blog
posts via a standard map.resources :posts line (giving you the URI /posts, among others), but
hide the administrative functionality under a different URI. In such a situation, you can use
the third macro: map.namespace. Add the code shown in Listing 2-10 to your routes file.

Listing 2-10. Updating config/routes.rb with a namespaced resource declaration

ActionController::Routing::Routes.draw do |map|
map.namespace :admin do |admin|
map.resources :posts

end
…

end

The namespace declaration works somewhat similarly to the nested resource example
earlier, creating the namespaced routes shown in Table 2-4.

Table 2-4. Namespaced Routes

Method Route Action

GET /admin/posts Admin::PostsController#index

POST /admin/posts Admin::PostsController#create

GET /admin/posts/new Admin::PostsController#new

GET /admin/posts/:id/edit Admin::PostsController#edit

GET /admin/posts/:id Admin::PostsController#show

Continued

CHAPTER 2 ■ REST IN RAILS 27

9945CH02.qxd 4/7/08 11:09 AM Page 27

Table 2-4. Continued

Method Route Action

PUT /admin/posts/:id Admin::PostsController#update

DELETE /admin/posts/:id Admin::PostsController#destroy

GET /admin/posts.:format Admin::PostsController#index

POST /admin/posts.:format Admin::PostsController#create

GET /admin/posts/new.:format Admin::PostsController#new

GET /admin/posts/:id/edit.:format Admin::PostsController#edit

GET /admin/posts/:id.:format Admin::PostsController#show

PUT /admin/posts/:id.:format Admin::PostsController#update

DELETE /admin/posts/:id.:format Admin::PostsController#destroy

These are the same routes you would get from a simple map.resources :posts, but name-
spaced under admin—and instead of being sent to app/controllers/posts_controller.rb for
processing, requests to these URIs will be sent to app/controllers/admin/posts_controller.rb,
providing you with a clean separation between your end-user and administrative interfaces.

Doing It Yourself
It is important to understand exactly what these macros generate, because there are occasions
when you may have to forgo them. There are two main circumstances when you might want
to hand-code your RESTful routes instead of using the macros: when your application does
not expose the full set of actions, and when your URIs follow a nonstandard pattern.

The map.resources and map.resource macros always give you the same, complete set of
routes for your actions, but in some cases your application may not actually offer the full
range. In the administrative interface I described in the discussion of map.namespace, you very
well might remove the new, create, edit, update, and destroy actions from the user-facing
PostsController (keeping them only in the namespaced Admin::PostsController). To remove
these actions (including the routes for them) completely, however, you have to abandon the
map.resources macro and hand-code the routes for each of the actions your application does
expose on PostsController.

You may also want to bypass the macro-generated routes when your application is using
nonstandard URIs—for instance, you might want to access users with the URI /u/:username.
While you can achieve some modified URLs with the :controller, :singular, and :path_
prefix options, you cannot change the name of the :id parameter, or add any truly new com-
ponents to the URI, unless you write the routes yourself.

Luckily, hand-coding the routes is easy; to re-create the basic routes just as they are
created by map.resources, you can use the code shown in Listing 2-11.

Listing 2-11. Hand-coded RESTful Routes

ActionController::Routing::Routes.draw do |map|
These 'with_options' calls are just to reduce duplication
you could also specify the controller and method individually for each route.

CHAPTER 2 ■ REST IN RAILS28

9945CH02.qxd 4/7/08 11:09 AM Page 28

map.with_options :controller => 'movies' do |m|
m.with_options :conditions => {:method => :get} do |get|
get.movies 'movies', :action => 'index'
get.new_movie 'movies/new', :action => 'new'
get.movie 'movie/:id', :action => 'show'
get.edit_movie 'movies/:id/edit', :action => 'edit'

end

m.movies 'movies', :action => 'create', :conditions => {:method => :post}
m.movie 'movie/:id', :action => 'update', :conditions => {:method => :put}
m.movie 'movie/:id', :action => 'destroy', :➥

conditions => {:method => :delete}

formatted routes ...
end

…
end

From this example, it is clear how to adjust or remove any of the routes—just leave out the
ones your application doesn’t need, and change the URI string for those that should follow a
different pattern.

There is a further reason to understand how to create the slate of RESTful routes by hand;
it is always good to know exactly how macros and other time- and labor-saving code tricks
work. When you do fully understand them, after all, you’re better able to take advantage of
them and debug them when they malfunction.

The Forgotten Methods: PUT and DELETE
You may have noticed that the standardized routes rely on all four of the primary HTTP verbs:
GET, POST, PUT, and DELETE. As was pointed out in the REST keynote, the four actions in a CRUD
application map directly onto these verbs. The Web to date, however, has been built solely on
GET and POST—support for PUT and DELETE is limited or entirely lacking in most web servers
and in all current (to my knowledge) web browsers—though this may be changing.

The simply_restful plugin (and core Rails, since the integration of the plugin) deals with
this issue by simulating the unsupported request methods. Any POST request to a Rails appli-
cation can include a field named _method; if that field is present and it contains PUT or DELETE,
the request is treated as if it came in with that HTTP method. The processing here is case-
insensitive, as well—so put and delete are equally acceptable.

■Note This method-override does not occur for GET requests—some software (like Google’s Web Acceler-
ator) could wreak havoc on an application if, say, GET /movies/1?_method=DELETE actually deleted the
specified record.

CHAPTER 2 ■ REST IN RAILS 29

9945CH02.qxd 4/7/08 11:09 AM Page 29

There are flaws with this implementation; in particular, it can raise problems for accessi-
bility, as you’ll see in the section on helper methods that follows. Nevertheless, it is at present
the best compensation for crippled browsers and servers, and it is, to a fair extent, future-
proof—even when newer browsers (such as, potentially, Firefox 3) are released with support
for these methods, the existing approach will still work—it relies on server-side processing of
POST requests, after all, and there’s no reason to expect a browser to change how those are
handled. The Rails 2 applications you write today, then, should continue to function properly
even after improved browsers become available.

Formats
The RESTful routing macros generate two sets of routes—the familiar routes that map directly
to the seven CRUD actions and a parallel set of formatted routes. The standard routes are
familiar to anyone who has worked with Rails before; the formatted routes, on the other hand,
open up a new set of possibilities. Basically, the formatted routes enable clients to request
resources in a particular format (e.g., XML), and your application to respond appropriately
depending on the format of the request, as demonstrated in Listing 2-12.

Listing 2-12. Respond_to Block in app/controllers/posts_controller.rb

class PostsController < ApplicationController
def index
respond_to do |format|
format.html { @posts = Post.find(:all, :limit => 5) }
format.xml { render :xml => Post.find(:all) }
format.js { # do something else }

end
end

end

In this example, a request for HTML returns five posts, rendered in the standard index
view. A request for XML, on the other hand, will return an XML document containing all the
posts in the system, while a JavaScript request (for instance, from an Ajax call) will do some-
thing else entirely.

You are not just limited to the built-in formats, however; you can add new ones as
needed. When you create a new Rails 2 application, you get a file called mime_types.rb in
config/initializers. You can register new formats in config/initializers/mime_types.rb by
following a simple syntax:

Mime::Type.register_alias "text/html", :iphone

After adding that line or something similar, your application can issue a respond_to for the
new format just as if it were predefined, as you will see in more detail in later chapters.

Views have also changed to reflect different formats. Instead of the old index.rhtml and
index.rxml filenames, views are now named according to their format and their processor—
so index.rhtml becomes index.html.erb, and index.rxml becomes index.xml.builder. The new
rendering code determines which view to use automatically based on the requested format.
If a view exists for the format requested (e.g., index.html.erb for an HTML request), that view
will be rendered. If no view for the requested format exists, the system will attempt to render a

CHAPTER 2 ■ REST IN RAILS30

9945CH02.qxd 4/7/08 11:09 AM Page 30

mailto:@posts=Post.find(:all

view without a specified format (e.g., index.erb). Only when no appropriate view can be found
will the system raise an exception. This behavior allows you to define a default view for an
action and provide alternatives as needed.

Similarly, layouts can be customized for various formats; they follow the same behavior.
An application.erb layout file, then, will be used for every request that does not have a more
specific (e.g., application.html.erb) layout.

Helpers
This range of new features might overwhelm Rails developers more accustomed to the func-
tions provided by earlier versions of the framework. To make these features easier to use, there
are also a number of both modified and new helper methods to hide much of the complexity.

For instance, you will rarely have to add the _method field in your forms by hand; defining
the :method option on any of the various form tag helpers (form_tag, form_for, etc.) will auto-
matically result in a hidden field for _method being added to your page. Similarly, when you
specify a non-GET method for the link_to method, the resulting link will automatically contain
JavaScript that, when the link is clicked, builds a form with the appropriate hidden field and
submits it.

■Note This behavior in particular can have accessibility consequences. If a user is browsing without
JavaScript, these links will either fail outright or malfunction. I will address this in more detail in the next
chapter.

The link_to and form_for helpers have been enhanced in other ways, as well. If you add
the following to a view:

<%= form_for @user do |form| %>

the system will determine whether @user is a new record and define the action of the form tag
appropriately (sending a POST request to the create action for a new record, and a POST [with
the hidden _method parameter set to PUT] for an existing record). Similarly, <%= link_to
'User', @user %> is now sufficient to create a link to the show action for a given user.

Testing also has a couple of new helper methods. In functional tests, you can use put or
delete with an action, as well as using the old methods get and post. Listing 2-13 demon-
strates this type of functional test.

Listing 2-13. Example of New Functional Tests

def test_should_get_new
get :new
assert_response :success

end

def test_should_update_movie
put :update, :id => 1, :movie => { }

CHAPTER 2 ■ REST IN RAILS 31

9945CH02.qxd 4/7/08 11:09 AM Page 31

assert_redirected_to movie_path(assigns(:movie))
end

def test_should_destroy_movie
assert_difference('Movie.count', -1) do
delete :destroy, :id => 1

end

assert_redirect_to movies_path
end

In fact, you have to use put and delete if you’re using the new RESTful routing—unlike
requests that go through the normal processing methods, you cannot simulate PUT and DELETE
requests by manually adding a _method parameter to a POST request in a functional test. The
code in Listing 2-14, for example, will not work.

Listing 2-14. Invalid Method Assignment

def test_should_update_movie
post :update, :_method => 'PUT', :id => 1, :movie => { }
assert_redirected_to movie_path(assigns(:movie))
end

The problem with this code is that the get, post, put, and delete methods in your functional
tests circumvent certain parts of the normal request-processing code—in particular, they
avoid the code that parses parameters and resets the request method.

Scaffolding
Scaffolding, too, has been updated to follow RESTful principles. The scaffold generator itself
now creates RESTful code out-of-the-box, handling both HTML and XML via respond_to and
map.resources. For example, running this command:

./script/generate scaffold Movie

generates the output shown in Listing 2-15.

Listing 2-15. Output of the Scaffold Generator

create app/models/
exists app/controllers/
exists app/helpers/
create app/views/movies
create app/views/layouts/
exists test/functional/
create test/unit/
create app/views/movies/index.html.erb
create app/views/movies/show.html.erb
create app/views/movies/new.html.erb
create app/views/movies/edit.html.erb

CHAPTER 2 ■ REST IN RAILS32

9945CH02.qxd 4/7/08 11:09 AM Page 32

create app/views/layouts/movies.html.erb
create public/stylesheets/scaffold.css

dependency model
exists app/models/
exists test/unit/
create test/fixtures/
create app/models/movie.rb
create test/unit/movie_test.rb
create test/fixtures/movies.yml
exists db/migrate
create db/migrate/001_create_movies.rb
create app/controllers/movies_controller.rb
create test/functional/movies_controller_test.rb
create app/helpers/movies_helper.rb
route map.resources :movies

■Note You can also specify attributes for your new resource when invoking the generator, by adding
field:type pairs to the end of the command (e.g., name:string description:text). When these are
present, the appropriate code is automatically added to the generated migration.

A new resource generator is also available in Rails 2; it is nearly identical to the scaffold
generator, differing only in that the resource version leaves the controller and functional test
blank (and does not create views). The resource generator, then, is more appropriate if you are
building functionality by hand, as opposed to modifying the standard code produced by the
scaffold.

A DEBATE OVER SCAFFOLDING

The scaffolding produced by the generator is in an uncertain state at the moment, as debate continues over
its proper role. One faction argues that scaffolding should be production-ready code (much like Django’s
admin interface). The opposing faction wants scaffolding to be primarily educational, to teach the best prac-
tices of RESTful systems.

The conflict between these two factions may not be immediately obvious; after all, code that exhibits
best practices should be production-ready. The problem, however, is that code that follows best practices
may not be the most effective teacher of those practices. In some cases, best-practice code may be too
clever, obscuring what is actually going on for the new developer.

As a result of this tension, the scaffolding currently produced by the Rails generator fails at both goals: it
is neither production-ready nor the most ideal teacher of best practices. For the immediate future, it is best to
use it as it is named—as a scaffold. Generate it if you need it, but only to support your own code long enough
to replace the generated code with something more robust.

CHAPTER 2 ■ REST IN RAILS 33

9945CH02.qxd 4/7/08 11:09 AM Page 33

ActiveResource
The features I’ve described so far make building a RESTful server easier, and as such they
replace the XML-RPC and SOAP web service support provided by the older ActionWebService
gem. Rails 2, however, goes beyond that by including an entirely new gem dedicated to mak-
ing RESTful clients easier to develop, as well. This new library is ActiveResource, and it wraps
RESTful web services, providing an ActiveRecord-like interface for interacting with objects in
another application—often hosted on a remote server, but sometimes (as you’ll see in the
chapter on REST in the enterprise) located in another application running locally.

For example, say you’re building a client to interact with a server that provides Movie
objects. In your application, you might define a local Movie class as a subclass of Active-
Resource::Base:

class Movie < ActiveResource::Base
self.site = "http://example.com/movies"

end

With this definition, you can call Movie.find(1) in your application; instead of sending a
SELECT statement to a local database, however, your application will send a GET request to
http://example.com/movies/1.xml. Assuming the remote server follows the RESTful Rails con-
ventions, it will then return an XML representation of the specified movie to you, where the
XML will be translated into a local Movie object.

Similarly, ActiveResource allows you to save and destroy remote objects as if they were
ActiveRecord models in your local application—each method sending the appropriate HTTP
requests to the remote server. Despite some limitations, then, ActiveResource is a powerful
tool for developing clients for a RESTful service, as you’ll see in more detail in later chapters.

Sessions
In addition to all of that, Rails 2 has also added a new mechanism for session management
that meets the statelessness constraints of REST—the requirement that all the information
required to process a message be included with the message itself. In previous versions of
Rails, sessions were by default stored on the server file system, and you had the option to
switch the store to the database or to memcache. Now, however, the default session store is
cookie-based, meaning that an unmodified Rails application will store its user sessions on
the client’s machine instead of on the server (though you can still change to one of the other
stores if you so choose).

This new default has been the subject of a minor controversy in the Rails community, as
various individuals have (rightly) pointed out that it is inherently much less secure than
server-based storage—especially since the encryption used by default is known to be weak. At
present, the consensus seems to be that this insecurity helpfully reinforces best practices by
encouraging developers to avoid storing sensitive data in session. Similarly, the limited size of
a cookie-based session (cookies are specifically limited to 4096 bytes) is seen as an incentive
to avoid storing large amounts of data in session.

All in all, the cookie-based session store is a workable default. Many (if not most) develop-
ers can and should outgrow it quickly, but it does help to familiarize new users with some of
the best practices of session management, and it does contribute to Rails’ support of REST.

CHAPTER 2 ■ REST IN RAILS34

9945CH02.qxd 4/7/08 11:09 AM Page 34

http://example.com/movies
http://example.com/movies/1.xml

The Future
Support for REST in Rails began with the simply_restful plugin; over time, it was incorporated
into the core framework and enhanced in the various ways you’ve seen here. That general
strategy—of starting new features as plugins and integrating the best of them into the frame-
work directly—continues today.

A number of individuals and groups are working to make building RESTful applications
in Rails even easier by building new plugins. Currently, make_resourceful, resource_this,
resources_controller, and many more are available, and all attempts to “DRY” up RESTful
code and ease the pain remaining in the creation of RESTful Rails applications.

While these plugins can be very useful, I won’t be looking at any of them in this book. As I
mentioned while talking about the RESTful routing macros, you should in general only use
advanced, “magical” code once you already understand the basics quite well. That way, if the
plugin fails unexpectedly, you have at least a fighting chance of fixing it or working around the
problem—and even when it works perfectly, you will be better able to customize it to fit your
particular application.

Nevertheless, it is a very good idea to keep an eye on how these plugins are developing.
You may be able to extract some excellent ideas for your own code from the ways in which
they tackle various problems, and (as simply_restful itself illustrates) you never know when
one of them might become successful enough to be integrated into the core.

Summary
By now, you’ve reviewed some of the history of web services in general, briefly seen how REST
overcame ActionWebService in Rails, and read through many of the features in Rails 2 that
support the development of RESTful applications. It is certainly time to get on to the good
stuff: designing and building a RESTful Rails application of your own that exposes its
resources to the world. In the next chapter, you’ll begin work on MovieList, a site that will
allow users to set up watchlists for movies, actors, and directors they like so that they can
more easily find out about new releases in the theater and on DVD.

In the process of designing and building this sample system, you’ll learn about the con-
ventions currently used in RESTful Rails applications, and you’ll see a number of the features
from this chapter in use. So, without further ado, on to MovieList!

CHAPTER 2 ■ REST IN RAILS 35

9945CH02.qxd 4/7/08 11:09 AM Page 35

9945CH02.qxd 4/7/08 11:09 AM Page 36

Developing a Server

In future chapters, you’ll build a series of clients for a single RESTful server application. To get
to that point, however, you need the server itself—some sort of sample application to provide
the data you’ll be consuming later. In this chapter, you’ll build that server, starting by analyz-
ing the requirements and moving through an in-depth discussion of coding the system. In the
process, you’ll use many of the features described in the previous chapter, and you’ll learn
about some of the best practices for designing a RESTful application.

Introducing MovieList
Picture a user—I’ll call her Gwen. Gwen loves movies of all type, but she doesn’t spend a whole
lot of time tracking down information on new releases or following her favorite actors and
directors. She’s often surprised to learn that a new movie will be opening in the theaters next
week, or that an old favorite was just released on DVD. MovieList, the sample application that
you’ll be building here (and using throughout the book) is intended to help Gwen keep track
of those sorts of things. Using the MovieList site, Gwen can identify individual movies and the
people (actors, writers, and directors) that interest her; with those interests recorded, she can
then see at a glance when matching movies are being released in the theater or on DVD.

Formalizing this description results in the following list of requirements:

• Gwen can browse upcoming movies and the people associated with them.

• Gwen can browse upcoming releases.

• Gwen can register for an account.

• Gwen can log into and out of the system.

• Gwen can add and remove movies as interests.

• Gwen can view just those upcoming releases that relate to her interests.

If this were a real application (as opposed to just an example meant to illustrate the
lessons in this book), you might want to write code that would automatically retrieve informa-
tion about movies and the people associated with them from elsewhere on the Web—IMDB,
for instance, or Yahoo! Movies. Given the limited scope of this project, however, it makes sense
to rely on administrators for that. These administrators should also be able to manage user
accounts, so you can add to the preceding list of requirements the following:

37

C H A P T E R 3

9945CH03.qxd 4/7/08 11:11 AM Page 37

• Administrators can add, edit, and remove movies

• Administrators can add, edit, and remove people

• Administrators can associate people with movies

• Administrators can promote an existing user to administrator status

• Administrators can remove existing user accounts

There are a whole host of other features that could be added to the application—for
instance, you might want to track television series as well as movies, or record releases to
channels other than the theater and DVD (for instance, Internet broadcasts). In the interest
of keeping the sample system lean, however, MovieList will not do anything more than has
already been specified—or at least, not until we start building clients for it. Each client will,
after all, impose its own set of requirements on the application.

This, then, is the roadmap for the application. Without further delay, let’s get started!

Creating the Infrastructure
First, you need to make sure that you’re running the appropriate version of Rails. From the
command line, type rails --version—if you see anything less than 2.0, you’re going to have
to update. Luckily, Rubygems makes this as easy as typing gem update rails.

Once you’re up-to-date with Rails 2 or later, type rails –d mysql movielist to create the
skeleton of the sample application. If you omit the –d option, your application will be set up to
use the SQLite database; if you prefer some other system (say, PostgreSQL), you can specify it
in this command as well.

Once the generator finishes, change directories into the root of your new application and
freeze Rails with rake rails:freeze:gems—this will unpack the Rails gems from your system
into vendor/rails so that they will be distributed whenever you deploy your application, help-
ing to ensure that it will work regardless of the version of Rails the host has installed.

Next, open up config/database.yml in your favorite text editor and edit it to reflect the
databases and credentials you use locally. For my development machine, for instance, that
looks like Listing 3-1.

Listing 3-1. A sample config/database.yml file

development:
adapter: mysql
encoding: utf8
database: movielist_development
username: root
password: testing4me
socket: /tmp/mysql.sock

test:
adapter: mysql
encoding: utf8
database: movielist_test

CHAPTER 3 ■ DEVELOPING A SERVER38

9945CH03.qxd 4/7/08 11:11 AM Page 38

username: root
password: testing4me
socket: /tmp/mysql.sock

production:
adapter: mysql
encoding: utf8
database: movielist_production
username: limited_user
password: s3cr3t
socket: /tmp/mysql.sock

Once your database configuration is correct, go back to the command line and type rake
db:create:all. This is a new rake task in Rails 2 that uses the credentials you’ve just provided
to create your development, test, and production databases automatically.

■Tip In any application I intend to deploy to a production environment, I generally install the
exception_notification plugin at about this point. Exception_notification modifies your application so that
any unhandled exceptions in production automatically generate an email to whomever you specify, helping
you to keep track of problems as they occur. For this sample application, such detailed monitoring probably
isn’t required, but if you want to try out the exception_notification plugin, you can install it by running this
command:

ruby script/plugin install ➥

http://dev.rubyonrails.org/svn/rails/plugins/exception_notification/

Authenticating Users
In the interest of getting to more interesting work quickly, MovieList will use restful_
authentication as a foundation for its user authentication and authorization. Rick Olson wrote
this plugin over a year before Rails 2 was released, and it helped to clarify some of the ways in
which REST was integrated into the Rails core.

■Caution Since restful_authentication was originally released, the best practices of RESTful Rails devel-
opment have diverged a bit from those illustrated in the plugin—and as of today, it is still being updated to
reflect the new trends. As such, it’s not a perfect model for the whole of the MovieList application, but it pro-
vides an excellent starting point and is not so different that it is harmful.

CHAPTER 3 ■ DEVELOPING A SERVER 39

9945CH03.qxd 4/7/08 11:11 AM Page 39

http://dev.rubyonrails.org/svn/rails/plugins/exception_notification

To install the plugin, run the following commands from your application root:

ruby script/plugin install ➥

http://svn.techno-weenie.net/projects/plugins/restful_authentication
ruby script/generate authenticated user sessions

The first command will download and install a number of files, after which you’ll see
instructions on how to use the plugin. You can review these at any point by looking at the
vendor/plugins/restful_authentication/README file. The second command comes directly
from those instructions and creates the models, controllers, and views needed for the func-
tionality the plugin provides. Once all of that is complete, you’ll also need to update a few files
to finish the integration.

In your routes file, you need to add directives for your new user and session resources.
Users get the standard map.resources, but restful_authentication expects the session to be a
singleton resource, so for it you use map.resource. While you’re there, you can also delete the
unnecessary comments and default routes (the ones that look like map.connect ':controller/
:action/:id'), since RESTful applications typically define all of their routes explicitly.
Listing 3-2 shows the additions highlighted in bold.

Listing 3-2. Updating config/routes.rb for restful_authentication

ActionController::Routing::Routes.draw do |map|
map.resources :users
map.resource :session

end

The next step is to make sure that the authentication and authorization code is accessible
from all of your controllers; by default, restful_authentication adds it only to the controllers
that it creates directly (in this case, UsersController and SessionsController). To broaden
that, update your application controller, as shown in Listing 3-3.

Listing 3-3. Updating app/controllers/application.rb for restful_authentication

class ApplicationController < ActionController::Base
include AuthenticatedSystem

helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details
Uncomment the :secret if you're not using the cookie session store
protect_from_forgery # :secret => '51c6473c18afddc1f930646e39d01b86'

end

You should also delete the include AuthenticatedSystem lines from your users_
controller.rb and sessions_controller.rb files at this point, since those are redundant after
you’ve added the include to application.rb.

CHAPTER 3 ■ DEVELOPING A SERVER40

9945CH03.qxd 4/7/08 11:11 AM Page 40

http://svn.techno-weenie.net/projects/plugins/restful_authentication

At this point, you can start your application server from the command line with ruby
script/server; if all has gone well, you should then be able to open http://localhost:3000/
users/new in a browser, where you should see a login page like that shown in Figure 3-1.

Figure 3-1. The default login page provided by restful_authentication

Go ahead and create a new user here, since you’ll need at least one account in the system
later in this chapter. For my copy of this project, the first user I created was “admin,” for rea-
sons you’ll see shortly.

■Note If you spend a minute reading the documentation for the plugin, you might wonder why it uses a
SessionsController for login and logout. The answer lies in REST; when a user logs in or logs out, she
can be seen as creating or destroying a particular resource: an authenticated user session. Instead of adding
login and logout as nonstandard actions to a RESTful users controller, then, restful_authentication pro-
vides a sessions controller with new, create, and destroy actions (new displays the login form, create
processes a login attempt, and destroy logs a user out).

Adding Resources to the Application
When developing any RESTful application, there are two basic questions to ask: what
resources are available, and what methods are defined on those resources? In a Rails applica-
tion in particular, it’s easy to fall into the trap of thinking that your models are your
resources—but that would be a mistake. If you take a closer look at the files generated by
restful_authentication, for instance, you’ll notice that you now have a User model to go
with the UsersController, but you don’t have a Session model corresponding to your
SessionsController. Resources are actually more closely aligned with controllers than models,
so keep that in mind as you work through the specification of the system and figure out what
resources it exposes.

CHAPTER 3 ■ DEVELOPING A SERVER 41

9945CH03.qxd 4/7/08 11:11 AM Page 41

http://localhost:3000

Adding Movies
MovieList, as the name implies, has a single core resource: the movie, around which every-
thing else revolves. From the specifications discussed earlier, you know that users will be able
to browse and view movie information, and that administrators will be able to create, edit, and
destroy them. If you think about it for a moment, you’ll realize that those are exactly the stan-
dard RESTful actions provided by Rails 2’s scaffolding, so you can set up the foundation for
your movie resource by running the following scaffolding generator command:

ruby script/generate scaffold Movie title:string description:text rating:string

This line creates all of the standard scaffolding files—a model, controller, views, and
migration. What’s more, the title:string description:text rating:string part of the com-
mand sets up the initial fields for the model—adding them both to the new migration and
the forms created in app/views/movies. For instance, the generated migration looks like
Listing 3-4.

Listing 3-4. Generated db/migrate/002_create_movies.rb

class CreateMovies < ActiveRecord::Migration
def self.up
create_table :movies do |t|
t.string :title
t.text :description
t.string :rating

t.timestamps
end

end

def self.down
drop_table :movies

end
end

■Tip While this pre-filling of the migration is helpful, there is still more you might want to do—for instance,
you might want to specify which fields can be NULL, any default values, and any limitations (such as a
length constraint). You may also want to add your indexes to optimize the performance of your database.
All of that, however, is optional—and much of it can be done in your application code, as you’ll see in a
moment.

You can do a quick test to make sure that everything is working as expected by updating
your database with rake db:migrate; if all goes well, your development database should now
have tables for both users and movies.

CHAPTER 3 ■ DEVELOPING A SERVER42

9945CH03.qxd 4/7/08 11:11 AM Page 42

While the migration was fine as-is, you should update at least the generated model file
with some validations, as highlighted in Listing 3-5.

Listing 3-5. app/models/movie.rb updated with validations

class Movie < ActiveRecord::Base
validates_presence_of :title
validates_length_of :title, :in => 1..100
validates_length_of :rating, :in => 0..10, :allow_nil => true

end

These commands ensure that your movie records will have a title (and that it is reason-
ably brief), and that ratings—if provided—will be 10 characters or less. That limit should be
more than sufficient, given that the longest rating for films in the United States is PG-13.

At this point, you might also want to update your application so that you see something
more interesting than the standard “Welcome Aboard” page when you browse to your applica-
tion’s homepage, as shown in Listing 3-6.

Listing 3-6. Declaring the movie resource mapping in config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :movies
map.resources :users
map.resource :session
map.root :controller => 'movies', :action => 'index'

end

And with that, you will see MoviesController#index at http://localhost:3000/, as shown
in Figure 3-2.

Figure 3-2. Generated movie listing page

At this point, you can create, edit, view, and delete movies, and you can create new user
accounts and log in—but you’re still a long way from meeting the requirements set out earlier.
Before you start work on the next major piece of functionality, however, it may be helpful to
tweak some of the existing files to make things easier down the road.

Right now, you have to know the appropriate URL to access any of the three main sections
of the site: /session/new to log in, /users/new to register, and /movies to access the movie
functionality. It makes sense to add some global navigation to the site to simplify movement
between these sections (and the ones you’ll be building later). To get started, rename app/
views/layouts/movies.html.erb (one of the files generated by the movie scaffolding) to
app/views/layouts/application.html.erb. Layouts, remember, are invoked hierarchically; if a

CHAPTER 3 ■ DEVELOPING A SERVER 43

9945CH03.qxd 4/7/08 11:11 AM Page 43

http://localhost:3000

controller-specific layout cannot be found, MovieList will automatically use the application
layout instead.

Once you’ve renamed the file, you can add the appropriate navigation. Listing 3-7 shows
an example.

Listing 3-7. Adding navigation links to app/views/layouts/application.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<title>MovieList: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>

<div id="header">
MovieList

<ul id="navigation">
<%= link_to 'movies', movies_path %>
<%= link_to 'users', users_path %>
<%= link_to 'log in', new_session_path %>

</div>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

There are two main changes in this layout. First, the title tag has been updated to show
the name of the application, instead of the controller name. More interestingly, however, the
layout now has a header div with the name of the site and a set of navigation links. At present,
the various links are in an unordered list—as you add more sections to the site, the default
rendering of this approach may become unwieldy, but we’ll be addressing such presentational
issues later in the chapter. Regardless of that, the new layout changes the previous
MoviesController#index page to resemble Figure 3-3 (note also that I added a variety of
movies to my system).

CHAPTER 3 ■ DEVELOPING A SERVER44

9945CH03.qxd 4/7/08 11:11 AM Page 44

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Figure 3-3. The movie listing page with navigation links added

Adding Administrators
As you’ve been browsing around, adding and updating movies, you may have noticed a fairly
significant difference between the site as it currently stands and as it was specified. In particu-
lar, anyone can manage movie records at present, without even logging in. Of course, even
with login not everyone should be able to manage movie records—it’s time to add the admin-
istrator role.

The first step is to add a column to the user table in the database to store which accounts
are administrators. This is accomplished via a migration, which you can generate with

ruby script/generate migration AddAdministratorColumnToUser

This generates the framework for the migration you need, so go in and edit it as shown in
Listing 3-8.

Listing 3-8. Updated 003_add_administrator_column_to_user.rb

class AddAdministratorColumnToUser < ActiveRecord::Migration
def self.up
add_column :users, :administrator, :boolean, :default => false

CHAPTER 3 ■ DEVELOPING A SERVER 45

9945CH03.qxd 4/7/08 11:11 AM Page 45

User.find(:first).update_attribute(:administrator, true) if User.count > 0
end

def self.down
remove_column :users, :administrator

end
end

With this code, the migration will add a boolean column for administrator status to the
user table. By default, it will be false, so you don’t have to worry about newly created accounts
being granted administrative privileges by accident. The migration also checks to see if any
accounts have been created in the system so far; if it finds any, it then makes the first one an
administrator. This, then, is the reason I created the “admin” account earlier—when you run
this migration (with rake db:migrate again), that account becomes the first MovieList admin-
istrator.

■Caution If you didn't create an account earlier or are deploying MovieList to a new server, this
migration may not find any user records to make administrators. In that case, go ahead and register
through the web interface. Once you have an account, run ruby script/console from the command line.
This opens up an interactive Ruby (irb) session from which you can interact directly with your application;
from here, you can promote your freshly created account by running User.find(:first).
update_attribute(:administrator, true).

The next step is to add the code that allows administrators to manage other users—
including promoting a user to administrator status. Basically, you just need to add the
standard RESTful actions for index, edit, update, and destroy to UsersController, along with
the appropriate views. Both actions and views should closely parallel those for movies, differ-
ing only as shown in Listing 3-9.

Listing 3-9. Updating app/controllers/users_controller.rb for user administration

class UsersController < ApplicationController
GET /users
GET /users.xml
def index
@users = User.find(:all)

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @users }

end
end

CHAPTER 3 ■ DEVELOPING A SERVER46

9945CH03.qxd 4/7/08 11:11 AM Page 46

render new.rhtml
def new
end

def create
cookies.delete :auth_token
protects against session fixation attacks, wreaks havoc with
request forgery protection.
uncomment at your own risk
reset_session
@user = User.new(params[:user])
@user.save!
self.current_user = @user
redirect_back_or_default('/')
flash[:notice] = "Thanks for signing up!"

rescue ActiveRecord::RecordInvalid
render :action => 'new'

end

GET /users/1/edit
def edit
@user = User.find(params[:id])

end

PUT /users/1
PUT /users/1.xml
def update
@user = User.find(params[:id])

respond_to do |format|
if @user.update_attributes(params[:user])
flash[:notice] = 'User was successfully updated.'
format.html { redirect_to(@user) }
format.xml { head :ok }

else
format.html { render :action => "edit" }
format.xml { render :xml => @user.errors, ➥

:status => :unprocessable_entity }
end

end
end

DELETE /users/1
DELETE /users/1.xml
def destroy
@user = User.find(params[:id])
@user.destroy

CHAPTER 3 ■ DEVELOPING A SERVER 47

9945CH03.qxd 4/7/08 11:11 AM Page 47

mailto:@user.save
mailto:@user.update_attributes
mailto:@user.errors
mailto:@user.destroy

respond_to do |format|
format.html { redirect_to(users_url) }
format.xml { head :ok }

end
end

end

The new code here is exactly parallel to that generated by Rails 2’s scaffolding, as you
can see if you compare these new actions to their analogs in MoviesController. With the
views, however, you can take the time to correct some of the less desirable aspects of scaffold-
generated files. In the edit view, for instance, you can use the label tag to associate input fields
with their names properly, as illustrated in Listing 3-10.

Listing 3-10. Updating app/views/users/edit.html.erb

<%= error_messages_for :user %>

<% form_for @user do |f| %>
<p><label for="user_login">Login</label>

<%= f.text_field :login %></p>

<p><label for="user_email">Email</label>

<%= f.text_field :email %></p>

<p><label for="user_password">Password</label>

<%= f.password_field :password %></p>

<p><label for="user_password_confirmation">Confirm Password</label>

<%= f.password_field :password_confirmation %></p>

<% if logged_in? && current_user.administrator? %>
<p><label for="user_administrator">Administrator</label>

<%= f.check_box :administrator %></p>

<% end %>

<p><%= submit_tag 'Save' %></p>
<% end %>

The edit.html.erb view shares much of its code with the (already existing) new.html.erb
view; the main difference is that administrators should be able to grant or revoke administra-
tor privileges when editing a user account. The section in bold checks that the editing user is
an administrator before presenting that function.

For the index.html.erb view, you can hide some of the user model’s attributes—there’s no
need to display the hashed password or secret, for instance. This view, then, ends up looking
like Listing 3-11.

CHAPTER 3 ■ DEVELOPING A SERVER48

9945CH03.qxd 4/7/08 11:11 AM Page 48

Listing 3-11. app/views/users/index.html.erb with fields removed

<h1>Listing users</h1>

<table>
<tr>
<th>Login</th>
<th>Email</th>

</tr>

<% @users.each do |user| %>
<tr>
<td><%=h user.login %></td>
<td><%=h user.email %></td>
<td><%= link_to 'Edit', edit_user_path(user) %></td>
<td><%= link_to 'Destroy', user, :confirm => 'Are you sure?', ➥

:method => :delete %></td>
</tr>

<% end %>
</table>

<%= link_to 'New user', new_user_path %>

The next step is to protect the various administrator-only actions from users who should
not be able to access them. To do this, you need to add a method to ApplicationController, as
in Listing 3-12.

Listing 3-12. Adding administrator filter to app/controllers/application.rb

class ApplicationController < ActionController::Base
helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details
Uncomment the :secret if you're not using the cookie session store
protect_from_forgery # :secret => 'f999754e60b1e6aaf17a3ea2d7726e7b'# ...

protected
def require_admin
access_denied unless logged_in? && current_user.administrator?

end
end

The require_admin method parallels the require_login method provided by restful_
authentication (as you can see in lib/authenticated_system.rb). To use it, you simply add it as
a before_filter for any actions you wish to protect, as in Listing 3-13.

CHAPTER 3 ■ DEVELOPING A SERVER 49

9945CH03.qxd 4/7/08 11:11 AM Page 49

mailto:@users.each

Listing 3-13. Adding the administrator filter to app/controllers/users_controller.rb

class UsersController < ApplicationController
before_filter :require_admin, :only => [:index, :edit, :update, :destroy]

...
end

By adding this line, you’ve prevented nonadministrators from viewing the user listing and
from editing or deleting user accounts. The new and create actions are excluded from the filter,
however, since they need to be public.

Finally, you can also protect the movie management functions (Listing 3-14).

Listing 3-14. Adding the administrator filter to app/controllers/movies_controller.rb

class MoviesController < ApplicationController
before_filter :require_admin, :except => [:index, :show]

...
end

Again, some of the actions (the movie listing and detail pages, from index and show) need
to be public. All of the rest, however, should be administrator-only—and this filter declaration
ensures that.

Adding People
Movies are nothing without the people who make them—actors, writers, directors, and every-
one else. The next addition to MovieList, then, is to track those people. Begin by creating
another scaffold, to generate the Person resource:

ruby script/generate scaffold Person first_name:string last_name:string ➥

biography:text

As you saw with movies, this command will create the scaffolding, complete with
first_name, last_name, and biography fields. Again, you’ll also want to tweak the files that
were generated. Start by deleting the file app/views/layouts/people.html.erb, since you want
the application layout to apply throughout the site. After that, you’ll need to add some valida-
tions to the generated model, as in Listing 3-15.

Listing 3-15. Adding validations to app/models/person.rb

class Person < ActiveRecord::Base
validates_presence_of :first_name, :last_name

end

And just as you did for movies, you’ll also want to restrict the management functionality
to MovieList administrators, adding the code shown in Listing 3-16.

CHAPTER 3 ■ DEVELOPING A SERVER50

9945CH03.qxd 4/7/08 11:11 AM Page 50

Listing 3-16. Adding the administrator filter to app/controllers/people_controller.rb

class PeopleController < ApplicationController
before_filter :require_admin, :except => [:index, :show]

...
end

Run rake db:migrate, and you’re all set to log in with your administrator account and add
people to the system—if only there were a way to get to the appropriate page. Of course, you
could just type in http://localhost:3000/people, but you added navigation to the application
layout to get around just this problem. Open up that file, then, and make the changes shown
in Listing 3-17.

Listing 3-17. Updating the navigation links in app/views/layouts/application.html.erb

...

<div id="header">
MovieList

<ul id="navigation">
<%= link_to 'movies', movies_path %>
<%= link_to 'people', people_path %>
<% unless logged_in? %>
<%= link_to 'log in', new_session_path %>

<% else %>
<% if current_user.administrator? %>
<%= link_to 'users', users_path %>

<% end %>
<%= link_to 'log out', session_path, :method => :delete %>

<% end %>

</div>

...

In addition to adding the link to the people listing page, these changes also make sure
that various functions are visible only to users who can take advantage of them. If you’re
logged out, for instance, you’ll see a login link in the navigation. If you’re logged in as an
administrator, on the other hand, you’ll see both a link to the users listing page and a link to
log out—where a nonadministrator will see only the logout link. After creating a few people in
the system, then, the PeopleController#index page might look something like Figure 3-4.

CHAPTER 3 ■ DEVELOPING A SERVER 51

9945CH03.qxd 4/7/08 11:11 AM Page 51

http://localhost:3000/people

Figure 3-4. The person listing page

Once you’ve got the ability to manage people, you can start associating them with movies.
This will be a many-to-many association, since any one person can participate in many
movies, and a movie has many people associated with it. Many-to-many relationships in Rails
come in two flavors: has_and_belongs_to_many, and has_many :through. The former is suitable
for bare-bones join tables, while the latter allows for full join models; in my experience, the
latter is usually the way to go, since there is almost always some data (or the possibility of such
data in the future) associated with the relationship that you want to keep track of, even if it’s
just the creation timestamp. Full join models allow for options that would be much more diffi-
cult using simple join tables and so are usually a better option.

In this particular case, join models are even more clearly required, since you’ll want to
track a role (actor, writer, director, best boy, key grip, etc.) for each movie-person association.
With that in mind, then, you can create the join model. This command generates the Role
model:

ruby script/generate model Role movie_id:integer person_id:integer name:string

(You don’t need a scaffold or a controller because roles will be entirely managed and dis-
played in the existing infrastructure.) Run the migration (with rake db:migrate, of course) to
generate the new table, and you’ll be ready to modify the generated model file to record the
associations, as shown in Listing 3-18.

CHAPTER 3 ■ DEVELOPING A SERVER52

9945CH03.qxd 4/7/08 11:11 AM Page 52

Listing 3-18. Adding associations and validations to app/models/role.rb

class Role < ActiveRecord::Base
belongs_to :movie
belongs_to :person
validates_presence_of :movie_id, :person_id, :name

end

In addition, you’ll have to add the relationships to the Movie and Person models, as shown in
Listings 3-19 and 3-20.

Listing 3-19. Adding associations to app/models/movie.rb

class Movie < ActiveRecord::Base
has_many :roles, :dependent => :destroy
has_many :people, :through => :roles

validates_presence_of :title
...

end

Listing 3-20. Adding associations to app/models/person.rb

class Person < ActiveRecord::Base
has_many :roles, :dependent => :destroy
has_many :movies, :through => :roles

validates_presence_of :first_name, :last_name
...
end

After completing all of the association code, you can move on to update the controllers
and views so that the roles can be displayed and managed. With these changes completed,
you're ready to add the view and controller code to expose individuals and their roles for a
given movie (Listing 3-21).

Listing 3-21. Updating app/views/movies/edit.html.erb to display and manage associated people

...

<p>
People

<% @movie.roles.each do |role| %>
<%= check_box_tag "movie_deleted_roles_#{role.id}", role.id, false, {
:name => 'movie[deleted_roles][]'

} %>
<%= h role %>

CHAPTER 3 ■ DEVELOPING A SERVER 53

9945CH03.qxd 4/7/08 11:11 AM Page 53

mailto:@movie.roles.each

<% end %>
</p>

<p>
Add New People

<% (1..3).each do |i| %>
<%= select_tag 'movie_new_role_person_id', options_for_select(@people), {
:name => "movie[new_role][#{i}][person_id]"

} %>
<%= text_field_tag 'movie_new_role_name', '', {
:name => "movie[new_role][#{i}][name]"

} %>

<% end %>

</p>

...

Here, you’re displaying any existing people associated with a movie being edited, and
you’re allowing any of those associations to be deleted (via the movie[deleted_roles] check-
boxes). In addition, you’re displaying three sets of forms, allowing you to pick from the people
already known in the system and associate them with the movie under a given role (such as
“actor”).

■Tip If you wanted to allow administrators to assign roles while creating a movie, you could also add these
fields to app/views/movies/new.html.erb—or, more properly, you could extract both forms into a single par-
tial and render it in each view.

You may notice something a little odd in this view. The people who are already associated
with a movie are displayed with this code: <%= h role %>. In general, however, displaying an
ActiveRecord object in that manner yields something like #<Role:0x2439ffc>, instead of the
more understandable name and role you’d like to see here. This magic is made possible by
defining a custom to_s method in your Role model, as in Listing 3-22.

Listing 3-22. Defining to_s in app/models/role.rb

class Role < ActiveRecord::Base
...

def to_s
[person.full_name, name].join(' - ')

end
end

This new method concatenates the name of the role (the “actor” bit) with the relevant
person’s full name, which is defined in the Person model, with the code added in Listing 3-23.

CHAPTER 3 ■ DEVELOPING A SERVER54

9945CH03.qxd 4/7/08 11:11 AM Page 54

Listing 3-23. Adding a convenience method to app/models/person.rb

class Person < ActiveRecord::Base
...

def full_name
[first_name, last_name].join(' ')

end
end

Taken together, these methods turn <%= h role %> into “Akira Kurosawa - director.”
Those, however, are not the only adjustments needed to make this view work properly.

You also need an @people array from the controller to help populate the movie[new_role]
fields, as in Listing 3-24.

Listing 3-24. Setting @people in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
...

GET /movies/1/edit
def edit
@movie = Movie.find(params[:id])
@people = Person.find(:all, :order => 'last_name, first_name').map do |p|
["#{p.last_name}, #{p.first_name}", p.id]

end
end

...
end

That’s only half the work, however—you still have to handle the creation and destruction
of roles. That, however, takes place in the Movie model itself, where the contents of the
movie[new_role] and movie[deleted_roles] fields are passed in via params[:movie] in the
update action, added in Listing 3-25.

Listing 3-25. Updating app/models/movie.rb to manage roles

class Movie < ActiveRecord::Base
#...

def new_role=(values)
values.each do |i, hash|
unless hash[:name].blank?
roles.create(:person_id => hash[:person_id], :name => hash[:name])

end
end

end

CHAPTER 3 ■ DEVELOPING A SERVER 55

9945CH03.qxd 4/7/08 11:11 AM Page 55

def deleted_roles=(values)
roles.find(*values).each(&:destroy)

end
end

The new_role method here accepts a set of hashes, and for each one creates a new Role for
the movie (assuming the name of the role has been provided). The deleted_roles method, on
the other hand, accepts an array of IDs; any roles for the movie that correspond to those IDs
are then destroyed.

That takes care of the role management functionality; the only thing remaining is the
public display of the people associated with a given movie. For that, you need to update a few
templates, as in Listing 3-26.

Listing 3-26. Markup added to app/views/movies/new.html.erb, app/views/movies/edit.html.erb,
and app/views/movies/show.html.erb

...

People
<% @movie.roles.each do |role| -%>

<%= link_to h(role.person.full_name), role.person %> - <%= role.name %>

<% end -%>

...

And with that, administrators can manage the association of people with movies, and every-
one can see the results, as illustrated in Figure 3-5.

Figure 3-5. Displaying people on the movie detail page

Adding Interests
The specifications called for users to be able to add specific movies as an interest, so the next
step is to add that functionality.

CHAPTER 3 ■ DEVELOPING A SERVER56

9945CH03.qxd 4/7/08 11:11 AM Page 56

mailto:@movie.roles.each

You won’t need the full slate of RESTful actions for this—just index, create, and destroy,
as you’ll see shortly—so instead of using the full scaffold, try the resource generator, For the
Interest resource, the command looks like this:

ruby script/generate resource Interest user_id:integer movie_id:integer

This command results in many of the same files that the scaffold generator produces, but
it leaves the controller (and the resource’s view directory) blank. Run the migration (again,
with rake db:migrate) and you’re set to go in and define the relationships and validations for
your new Interest model; add the changes shown in Listing 3-27.

Listing 3-27. Adding associations and validations to app/models/interest.rb

class Interest < ActiveRecord::Base
belongs_to :user
belongs_to :movie

validates_presence_of :user_id, :movie_id
end

Interests belong to users, so you’ll also need to define the association from that side—and
while you’re at it, you might as well add the movies association available through interests;
Listing 3-28 shows the updates.

Listing 3-28. Adding associations to app/models/user.rb

class User < ActiveRecord::Base
has_many :interests, :dependent => :destroy
has_many :movies, :through => :interests

...
end

Similarly, you can define the relationships now available to the Movie model as shown in
Listing 3-29.

Listing 3-29. Adding associations to app/models/movie.rb

class Movie < ActiveRecord::Base
has_many :interests, :dependent => :destroy
has_many :users, :through => :interests

...
end

With all of that done, you’re finished updating the model layer for the new interest
resource, and it’s on to the controllers and views.

At this point, it’s time to think about how users will be managing their interests. Returning
to our prototypical user Gwen, she’ll want to add interests while looking at a specific movie.
She’ll also want to be able to view all of her recorded interests at once, and remove them at

CHAPTER 3 ■ DEVELOPING A SERVER 57

9945CH03.qxd 4/7/08 11:11 AM Page 57

will—those two actions, however, could be combined on a single page. You’re left, then, with
three actions: index, create, and destroy. Since you used the resource generator earlier, you
don’t have to delete all the scaffolded code for the other RESTful actions. Instead, open up
your InterestsController and add the code highlighted in Listing 3-30.

Listing 3-30. Adding actions to app/controllers/interests_controller.rb

class InterestsController < ApplicationController
before_filter :login_required

def index
@interests = current_user.interests

end

def create
current_user.interests.create(params[:interest])
flash[:notice] = 'You have added an interest in the specified movie'

redirect_to interests_path
end

def destroy
interest = current_user.interests.find(params[:id])
interest.destroy

redirect_to interests_path
end

end

Each of these actions requires an active login session, and scopes its activities to the
logged-in user. Index, obviously, displays a list of the current user’s interests; create adds a
new interest and redirects to the index; destroy removes a current interest and redirects to the
index. The only view necessary here is index.html.erb—and using the scaffold-generated
index view for movies as a basic template, that file ends up looking like Listing 3-31.

Listing 3-31. Generated app/views/interests/index.html.erb

<h1>Listing interests</h1>

<table>
<tr>
<th>Movie</th>

</tr>

<% @interests.each do |interest| %>
<tr>
<td><%=h interest.movie.title %></td>
<td><%= link_to 'Destroy', interest, :confirm => 'Are you sure?', {

CHAPTER 3 ■ DEVELOPING A SERVER58

9945CH03.qxd 4/7/08 11:11 AM Page 58

mailto:@interests.each

:method => :delete
} %></td>

</tr>
<% end %>
</table>

<%= link_to 'New interest', new_interest_path %>

Of course, this view is meaningless without the ability to add an interest, so the next step
is to update the movie show page with a form, as shown in Listing 3-32.

Listing 3-32. Adding the interest creation form to app/views/movies/show.html.erb

...

<% if logged_in? %>
<% unless current_user.interested_in?(@movie) %>
<% form_for current_user.interests.build(:movie => @movie) do |f| %>
<%= f.hidden_field :movie_id %>
<%= content_tag :button, 'Add this as an interest', :type => 'submit' %>

<% end %>
<% else %>
<p>You have added this movie as an interest</p>

<% end %>
<% end %>

This heavily nested code checks to see if the current user is logged in; if so, and if the cur-
rent user is not already interested in the given movie, the system will display a form button for
the user to add it as a new interest, as shown in Figure 3-6. If the user is interested in the
movie, she’ll just see a message to that effect—and if the user isn’t even logged in, she won’t
see anything.

Figure 3-6. The movie detail page, including the “Add this as an interest” button

CHAPTER 3 ■ DEVELOPING A SERVER 59

9945CH03.qxd 4/7/08 11:11 AM Page 59

The only thing left to do here is to add the interested_in? method to the User model,
as shown in Listing 3-33, since it controls whether the form or the confirmation message is
displayed.

Listing 3-33. Adding interested_in? to app/models/user.rb

class User < ActiveRecord::Base
...

def interested_in?(movie)
interests.detect {|interest| interest.movie_id == movie.id}

end

protected
...

end

This method will iterate over a user’s interests and return the first one where the provided
movie is found—or, if no match is found, it will return nil.

And with that, your MovieList users can manage their interests!

Adding Releases
The only model left to generate is the Release—the date when a movie is made available in
some format—it could be in a theater, or on DVD, or in some other medium. For this version
of MovieList, you’ll be managing theater and DVD releases, but it would be relatively straight-
forward to add Internet broadcasts or other types. For releases, you’ll need most of the
RESTful actions, so start with the scaffold; the release scaffold generator looks like this:

ruby script/generate scaffold Release movie_id:integer format:string ➥

released_on:date

Delete the auto-generated layout (app/views/layouts/releases.html.erb) and run the
migration to create the releases table (rake db:migrate, your old friend). After the table is cre-
ated, you can define the appropriate relationship in your movie model, as in Listing 3-34.

Listing 3-34. Adding an association to app/models/movie.rb

class Movie < ActiveRecord::Base
has_many :releases, :dependent => :destroy

...
end

In your newly generated Release model, you can add the movie relationship as well as the
required validations (Listing 3-35).

CHAPTER 3 ■ DEVELOPING A SERVER60

9945CH03.qxd 4/7/08 11:11 AM Page 60

Listing 3-35. Adding an association and validations to app/models/release.rb

class Release < ActiveRecord::Base
belongs_to :movie

validates_presence_of :movie_id, :format, :released_on
end

In the controller, you’ve got some work to do. First, you’ll want to restrict release manage-
ment (like user, person, and movie management before) to administrators only—though
anyone should be able to view the complete list. Since you’ll need to select movies when
creating or editing a release, you’ll also need to add code to make sure that information is
available to the views. Listing 3-36 shows the update.

Listing 3-36. Updating app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
before_filter :require_admin, :except => [:index]

...

GET /releases/new
GET /releases/new.xml
def new
@movies = Movie.find(:all, :order => 'title').map {|m| [m.title, m.id]}
@release = Release.new

respond_to do |format|
format.html # new.html.erb
format.xml { render :xml => @release }

end
end

GET /releases/1/edit
def edit
@movies = Movie.find(:all, :order => 'title').map {|m| [m.title, m.id]}
@release = Release.find(params[:id])

end

...
end

Of course, adding the code to the controller leads to updating the autogenerated views to
make use of them in your new and edit forms (which, to keep your code DRY, you may want to
extract into a partial); Listing 3-37 shows the changes.

CHAPTER 3 ■ DEVELOPING A SERVER 61

9945CH03.qxd 4/7/08 11:11 AM Page 61

Listing 3-37. Code added to app/views/releases/new.html.erb and app/views/releases/edit.html.erb

...

<% form_for @release do |f| %>
<p>
Movie

<%= f.select :movie_id, @movies %>

</p>

...

That takes care of creating and editing releases, but you still need to display them. For
that, you’ll have to update the movie detail view, as in Listing 3-38.

Listing 3-38. Displaying releases in app/views/movies/show.html.erb

...

<p>
Rating:
<%=h @movie.rating %>

</p>

<p>
Releases:
<% @movie.releases.each do |release| %>

<%= h release %>

<% end %>
</p>

...

Notice that this code uses the same convention as the role display did—it relies on a cus-
tom to_s method in the release model. Listing 3-39, then, shows that method.

Listing 3-39. Adding the to_s method to app/models/release.rb

class Release < ActiveRecord::Base
...

def to_s
[self.format, released_on.to_s(:short)].join(' - ')

end
end

With that, each movie will display its releases as “format - date” on its detail page. The
final thing to do is add releases to the application navigation (and while you’re there, add
interests, as well); Listing 3-40 shows the code updates.

CHAPTER 3 ■ DEVELOPING A SERVER62

9945CH03.qxd 4/7/08 11:11 AM Page 62

mailto:@movie.rating
mailto:@movie.releases.each

Listing 3-40. Adding more navigation links to app/views/layouts/application.html.erb

...

<div id="header">
MovieList

<ul id="navigation">
<%= link_to 'movies', movies_path %>
<%= link_to 'releases', releases_path %>
<%= link_to 'people', people_path %>
<% unless logged_in? %>
<%= link_to 'log in', new_session_path %>

<% else %>
<%= link_to 'interests', interests_path %>
<% if current_user.administrator? %>
<%= link_to 'users', users_path %>

<% end %>
<%= link_to 'log out', session_path, :method => :delete %>

<% end %>

</div>

...

As illustrated in Figure 3-7, the end result of all of this is that MovieList users can move
between the various sections of the site and view the releases for a given movie.

Figure 3-7. The movie detail page, showing release listings and the expanded navigation options

CHAPTER 3 ■ DEVELOPING A SERVER 63

9945CH03.qxd 4/7/08 11:11 AM Page 63

■Note There is another approach you could take with releases, but it would complicate the application
(perhaps unnecessarily). Since every release belongs to a movie, you could treat them as nested resources—
to create a new release for the movie with ID 1, with this approach, you would POST to /movies/1/
releases, instead of to /releases (with a movie_id parameter of 1). In this particular case, there isn’t
much difference—but as you’ll see later in the chapter, nesting resources can actually make your applica-
tion more comprehensible.

Adding Notifications
The last resource to add is the notification—this is the link between a user and the release of a
movie she is interested in. The only action the system will allow for notifications is index—a
simple list of all the releases a given user cares about. For that, then, the resource generator
would suffice—but since you don’t even need an ActiveRecord model to back up the Notifica-
tion resource, you can actually use the controller generator:

ruby script/generate controller Notifications index

The controller generator does not provide many of the files produced by the scaffold (or
even resource) generator; basically, it just gives you a controller, a helper, a functional test,
and views for whatever actions you specify in the command. In this case, then, there are just a
couple of files to update. First, you need to add an entry to the routes file (since the controller
generator doesn’t do that for you), as shown in Listing 3-41.

Listing 3-41. Adding the notifications resource declaration to config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :notifications
...

end

Even though you’ll only be using the index action, it’s quicker to declare the route using
map.resources instead of explicitly, as you saw in the last chapter. Once you have the route,
you can add the view, as in Listing 3-42.

Listing 3-42. Completed app/views/notifications/index.html.erb

<h1>Listing notifications</h1>

<table>
<tr>
<th>Movie</th>
<th>Format</th>
<th>Released on</th>

</tr>

CHAPTER 3 ■ DEVELOPING A SERVER64

9945CH03.qxd 4/7/08 11:11 AM Page 64

<% @releases.each do |release| %>
<tr>
<td><%=h release.movie.title %></td>
<td><%=h release.format %></td>
<td><%=h release.released_on %></td>

</tr>
<% end %>
</table>

Notice that there are no administration links on the view—no “create new notification”
or “edit,” for instance; since notifications are bound directly to releases, such links are
unnecessary.

In the controller, the only changes you need to make are to restrict the index action to
logged-in users, and retrieve the releases in which the current user is interested; Listing 3-43
shows the updates.

Listing 3-43. Adding the login filter and index action to app/controllers/
notifications_controller.rb

class NotificationsController < ApplicationController
before_filter :login_required

def index
@releases = current_user.releases

end
end

And after that, you have to add a new releases method to the User model, to pick out just
those releases in which a given user has an interest (Listing 3-44).

Listing 3-44. Adding the releases method to app/models/user.rb

class User < ActiveRecord::Base
...

def releases
movie_ids = movies.map(&:id)
Release.find(:all,
:include => :movie,
:conditions => ["movie_id IN (?)", movie_ids],
:order => 'released_on DESC')

end

protected
...

end

CHAPTER 3 ■ DEVELOPING A SERVER 65

9945CH03.qxd 4/7/08 11:11 AM Page 65

mailto:@releases.each

The overall effect of this code is to provide a dashboard for logged-in users where they can
see all upcoming releases for their interests. You still need to provide a link to access this dash-
board, however; for that, you can update the navigation in the MovieList application layout, as
shown in Listing 3-45.

Listing 3-45. Adding a notifications link to the navigation in app/views/layouts/
application.html.erb

...

<div id="header">
MovieList

<ul id="navigation">
<%= link_to 'movies', movies_path %>
<%= link_to 'releases', releases_path %>
<%= link_to 'people', people_path %>
<% unless logged_in? %>
<%= link_to 'log in', new_session_path %>

<% else %>
<%= link_to 'interests', interests_path %>
<%= link_to 'notifications', notifications_path %>
<% if current_user.administrator? %>
<%= link_to 'users', users_path %>

<% end %>
<%= link_to 'log out', session_path, :method => :delete %>

<% end %>

</div>

...

That dashboard, once accessed, then looks like Figure 3-8.

Figure 3-8. The notifications listing page

CHAPTER 3 ■ DEVELOPING A SERVER66

9945CH03.qxd 4/7/08 11:11 AM Page 66

And with this, the basic system is complete. There are several potential additions, how-
ever, that can make the MovieList application more compelling and useful—and in some
cases, make your later work developing clients for it somewhat easier.

Enhancing MovieList
There are three basic areas in which you’ll be upgrading the MovieList application in this
section. First, you’ll be revisiting the relationships between some of your resources—and
exploring some of the more advanced possibilities in Rails 2’s routing. After that, you’ll be
adding some quick and easy search functionality for movies and people, to make it easier for
your users to find what they’re interested in. Finally, you’ll add some vitality to the interface by
allowing administrators to upload images for movies and people—for instance, movie posters
or actors’ head shots.

The Singleton User
The first new work will mainly affect your routing file. As the site currently stands, the interests
and notifications controllers are available only to logged-in users. Of course, that approach
makes sense. Having such a well-defined relationship between resources, however, the lack of
any hint of that relationship in your routes can be a flag that you’re missing something.

The basic concern is that both the interests and notifications controller presume a single-
ton user resource as a parent. In your routes, though, there is no link between map.resources
:users, map.resources :interests, and map.resources :notifications. The obvious solution
is to nest :interests and :notifications under :users; that, however, would be wrong. This
nesting would result in URLs like /users/1/interests, when all the nested controllers need is
/user/interests. The actual solution, then, is to add the code shown in Listing 3-46.

Listing 3-46. Adding the resource associations to config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resource :user, :has_many => [:interests, :notifications]
map.resources :users
map.resources :releases
map.resources :people
map.resources :movies
map.resource :session

map.root :controller => 'movies', :action => 'index'
end

In other words, you declare both a singleton resource and a standard resource for the
UsersController. You have to be careful when doing this, however, because if you add the
singleton mapping after the standard mapping the routes will conflict with each other.

With this code, then, you’ve accurately mirrored the relationship between the current
user (of which, like an authenticated session, there can only be one of at a time) and her
interests and notifications. By removing the standard resource mappings for interests and
notifications, however, you’ve also introduced some problems into your application. In

CHAPTER 3 ■ DEVELOPING A SERVER 67

9945CH03.qxd 4/7/08 11:11 AM Page 67

particular, all of the interest and notification paths are now incorrect, so you’ll have to go
through and correct them.

Actually, that’s a bit misleading. There’s only one reference to the notification path, in
point of fact, and that’s in the application navigation. You’ll need to update it, then, as shown
in Listing 3-47.

Listing 3-47. Updating the navigation links in app/views/layouts/application.html.erb

...

<div id="header">
MovieList

<ul id="navigation">
<%= link_to 'movies', movies_path %>
<%= link_to 'releases', releases_path %>
<%= link_to 'people', people_path %>
<% unless logged_in? %>
<%= link_to 'log in', new_session_path %>

<% else %>
<%= link_to 'interests', user_interests_path %>
<%= link_to 'notifications', user_notifications_path %>
<% if current_user.administrator? %>
<%= link_to 'users', users_path %>

<% end %>
<%= link_to 'log out', session_path, :method => :delete %>

<% end %>

</div>

...

There are a few more references to interests, however. You’ll have to update the destroy
link on the interests index, as in Listing 3-48.

Listing 3-48. Updating the interest removal link in app/views/interests/index.html.erb

<h1>Listing interests</h1>

<table>
<tr>
<th>Movie</th>

</tr>

<% @interests.each do |interest| %>
<tr>
<td><%=h interest.movie.title %></td>
<td><%= link_to 'Destroy', user_interest_path(interest),

:confirm => 'Are you sure?', :method => :delete %></td>

CHAPTER 3 ■ DEVELOPING A SERVER68

9945CH03.qxd 4/7/08 11:11 AM Page 68

mailto:@interests.each

</tr>
<% end %>
</table>

You’ll also need to update the redirects in the interests controller, as in Listing 3-49.

Listing 3-49. Updating redirects in app/controllers/interests_controller.rb

class InterestsController < ApplicationController
...

def create
current_user.interests.create(params[:interest])
flash[:notice] = 'You have added an interest in the specified movie'

redirect_to user_interests_path
end

def destroy
interest = current_user.interests.find(params[:id])
interest.destroy

redirect_to user_interests_path
end

end

The least obvious update, however, is on the add interest form, from the movie show
page. At present, MovieList is using the form_for shortcut, in which the system automatically
determines the correct destination URL based on the variable passed in. This automatic
process, however, doesn’t work with nested resources, so you must explicitly set the URL
instead, as in Listing 3-50.

Listing 3-50. Updating the form tag in app/views/movies/show.html.erb

...

<% if logged_in? %>
<% unless current_user.interested_in?(@movie) %>
<% form_for current_user.interests.build(:movie => @movie),

:url => user_interests_path do |f| %>
<%= f.hidden_field :movie_id %>
<%= content_tag :button, 'Add this as an interest', :type => 'submit' %>

<% end %>
<% else %>
<p>You have added this movie as an interest</p>

<% end %>
<% end %>

...

CHAPTER 3 ■ DEVELOPING A SERVER 69

9945CH03.qxd 4/7/08 11:11 AM Page 69

And with that, you have reset the system to handle interests and notifications as nested
resources under a singleton user, as they should be.

Searching the Application
While the original specification for the system omitted any mention of searching for movies
and people, the more you use the application the more you’ll realize that it’s a necessary com-
ponent (at least as the site is currently designed, with no categorization or tagging). In fact,
searching will be an essential feature for at least some of the clients you’ll be building in later
chapters, so it makes sense to at least make an initial effort toward it now.

To keep things simple, you’ll just be adding a simple search based on the LIKE keyword in
MySQL. The first step in this is to add a search form to the movie index page, as in Listing 3-51.

Listing 3-51. Creating a search form in app/views/movies/index.html.erb

<h1>Listing movies</h1>

<% form_tag movies_path, :method => :get do %>
Find a movie: <%= text_field_tag :query %>
<% end %>

...

This form simply submits a single query parameter (via GET, which is important) to
/movies. Since the request uses GET, it will be sent to the MoviesController#index action,
where it can be processed with the code shown in Listing 3-52.

Listing 3-52. Handling searches in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
...

GET /movies
GET /movies.xml
def index
unless params[:query].blank?
query = ['CONCAT(title, description) LIKE ?', "%#{params[:query]}%"]

end
@movies = Movie.find(:all, :conditions => query)

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @movies }

end
end

...
end

CHAPTER 3 ■ DEVELOPING A SERVER70

9945CH03.qxd 4/7/08 11:11 AM Page 70

This addition to the index action results in an additional parameter sent to the Movie.find
call when a query is present—specifically, it looks for the query in the concatenated title and
description fields throughout the movies table. If no query is provided, then :conditions is set
to nil, and the Movie.find call operates just as it used to. No further updates are needed; the
index template just renders the movies that it receives, regardless of whether they represent
the entire table or a filtered portion of it.

Similar code can be used to add search to the people listing. For the view, the changes are
as shown in Listing 3-53, and for the controller they are as shown in Listing 3-54.

Listing 3-53. Creating a search form in app/views/people/index.html.erb

<h1>Listing people</h1>

<% form_tag people_path, :method => :get do %>
Find a person: <%= text_field_tag :query %>
<% end %>

...

Listing 3-54. Handling searches in app/controllers/people_controller.rb

class PeopleController < ApplicationController
...

GET /people
GET /people.xml
def index
unless params[:query].blank?
query = [
'CONCAT(first_name, last_name, biography) LIKE ?',
"%#{params[:query]}%"

]
end
@people = Person.find(:all,:conditions => query)

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @people }

end
end

...
end

The only difference here is that you’re concatenating the first name, last name, and biog-
raphy of the people in the database before searching, instead of just the title and description
of the movies—but that is insignificant, as the code otherwise works just the same.

CHAPTER 3 ■ DEVELOPING A SERVER 71

9945CH03.qxd 4/7/08 11:11 AM Page 71

One reason all of this is so easy is that you’re just doing single-resource search. Remember
from earlier in the book that REST is about resources and representations; when you’re
searching within a single resource type, all you’re doing is filtering the overall list (incidentally,
that’s why these requests use GET—they aren’t changing anything on the server). If, on the
other hand, MovieList needed a single search field that returned both movies and people,
you’d have to redesign this solution, and in the process most likely add an entirely new search
(or search result) resource.

Adding Images
The final development you’ll be doing on MovieList (in this chapter, at least) is the addition of
images to movies and people. Adding movie posters and head shots, for instance, to the listing
and detail pages can both help users stay engaged with the site (plain text is, after all, pretty
boring) and make it more usable by giving more hooks for the user to remember a given film
or person.

To add this functionality, you’ll first need to install one of the many file upload plugins. I
typically use attachment_fu, by (once again) Rick Olson, as it is both customizable and easy to
use. To install it, run the following from the command line:

ruby script/plugin install ➥

http://svn.techno-weenie.net/projects/plugins/attachment_fu

Once you’ve installed the plugin, you’ll need to generate a new model to represent the
images; furthermore, it makes sense to have this new model (call it Image, to be unsubtle)
relate to both movies and people polymorphically. The generator command for the Image
model looks like this:

ruby script/generate model Image record_id:integer record_type:string ➥

filename:string content_type:string size:integer height:integer width:integer

Go ahead and run rake db:migrate to add the images table to the database, and you’re
ready to update the models. Start by adding the polymorphic relationship and attachment
declarations to the image model, as shown in Listing 3-55.

Listing 3-55. Adding an association and attachment_fu-specific code to app/models/image.rb

class Image < ActiveRecord::Base
belongs_to :record, :polymorphic => true

has_attachment :content_type => :image,
:storage => :file_system,
:path_prefix => 'public/records'

validates_as_attachment
end

The code here sets up a polymorphic association called record, which you’ll be using
shortly to link movies, people, and images together. The has_attachment declaration comes
from attachment_fu, and allows you to specify various aspects of the image—in this case,
you’re requiring that any file uploaded for this model be an image, be stored on the file system,

CHAPTER 3 ■ DEVELOPING A SERVER72

9945CH03.qxd 4/7/08 11:11 AM Page 72

http://svn.techno-weenie.net/projects/plugins/attachment_fu

and be placed into a subdirectory of public/records. There are many more options, which
you can investigate by looking in vendor/plugins/attachment_fu/README. Finally, the
validates_as_attachment call also comes from attachment_fu, and ensures that whatever
files are uploaded for this model meet any restrictions made in the has_attachment call.

The next step is to add the appropriate code to the Movie and Person models to support
images. Since this code is identical between the two files, however, it makes sense to pull it
into a module that is then included in each file. Listings 3-56 and 3-57 show the include state-
ments, and Listing 3-58 shows the module.

Listing 3-56. Including the new module in app/models/movie.rb

class Movie < ActiveRecord::Base
include Imageable
...

end

Listing 3-57. Including the new module in app/models/person.rb

class Person < ActiveRecord::Base
include Imageable
...

end

Listing 3-58. Completed lib/imageable.rb

module Imageable
def self.included(base)
base.class_eval do
has_one :image, :dependent => :destroy, :as => :record

end
end

def uploaded_data=(data)
unless data.blank?
image.destroy if image
self.reload
create_image :uploaded_data => data

end
end

end

When this module is included, it automatically runs the has_one declaration in the con-
text of the including class—so it is just as if that has_one :image line were written directly in
the movie and person model files. The Imageable module also adds a setter method for
uploaded_data, which accepts an uploaded file and replaces any existing image for the current
model object with that data. This is used in the form uploads, as shown in Listing 3-59.

CHAPTER 3 ■ DEVELOPING A SERVER 73

9945CH03.qxd 4/7/08 11:11 AM Page 73

Listing 3-59. Adding the image upload form in app/views/movies/edit.html.erb

...

<% form_for @movie, :html => {:multipart => true} do |f| %>
...

<p>
Image

<%= f.file_field :uploaded_data %>

</p>

...
<% end %>

The two changes to this form (which should be replicated on the movie creation and per-
son creation and edit forms, as well) are the :html => {:multipart => true} argument for
form_for, and the image file_field, which makes use of the uploaded_data setter you added
in the Imageable module. The former sets the encoding of the form to allow file uploads, while
the latter accepts the file to be uploaded.

The last piece of all of this, of course, is the display of the uploaded images. For that, you
use another method defined in attachment_fu, as you can see in Listing 3-60’s update to the
movie index view.

Listing 3-60. Displaying associated images in app/views/movies/index.html.erb

...

<table>
<tr>
<th> </th>
<th>Title</th>
...

</tr>

<% @movies.each do |movie| %>
<tr>
<td><%= image_tag movie.image.public_filename if movie.image %></td>
<td><%= h movie.title %></td>
...

</tr>
<% end %>

...

The public_filename method retrieves the publicly accessible path to an uploaded image
in a format suitable for the image_tag helper—so if a given movie has an image, the index view
displays it in the table with the rest of the movie’s data (Figure 3-9).

CHAPTER 3 ■ DEVELOPING A SERVER74

9945CH03.qxd 4/7/08 11:11 AM Page 74

mailto:@movies.each

Figure 3-9. The new movie listing page, with images

The code to display the images on the movie show page and person index and show pages
is exactly the same; attachment_fu and the module approach used here give a uniform inter-
face to this functionality.

Further Projects
With each practical chapter, I will wrap up the project by discussing some further work that
could be done to improve the product or explore some new functionality. For this chapter,
there are several potential such projects. MovieList as it is currently built, for instance, is a
standard web application. While you’ll be making it more Web 2.0-like in the following chap-
ters by opening it up to various clients, it is certainly not Web 2.0-like at all in its user interface.
One possible direction for more work, then, is to employ Ajax judiciously to improve the user
experience—perhaps by moving the creation forms inline with the listing pages, or by having
the destroy links work in-place instead of reloading the page.

Another option would be to upgrade the notification resource to a full-fledged Active-
Record model. This would allow the system to “cache” notifications instead of having to
determine them on the fly, and would also allow for a (possibly) superior user experience—
you might consider adding an after_create hook into the notification lifecycle that sends an
email to a user when one of her interests is going to have a new release, for instance.

More critically, you would be very well served in spending some time with the criminally
underserved aspect of testing for the application. I’ve completely avoided the issue of testing

CHAPTER 3 ■ DEVELOPING A SERVER 75

9945CH03.qxd 4/7/08 11:11 AM Page 75

in this chapter, but it is crucial to keep your projects tested—especially when you’re going to
be significantly exercising your code later, as you will in later chapters. A good test suite makes
you much more productive over the long term, as it lets you diagnose problems faster and add
new features with more confidence. In addition, Rails makes it so easy to test your code—
generating stubs and providing helpers—that you’re doing both yourself and everyone who
comes after you a disservice by not testing.

The final direction I want to mention is wholly superficial (especially when compared to
the practice of testing). You’re going to be looking at the MovieList application for quite some
time, after all, so it may be rewarding to spend some time making it a little more attractive and
usable. This is easily accomplished with CSS and a little Ruby work, as you can see in Figures
3-10 and 3-11. The biggest difference between this code and what you’ve just written is the
addition of the will_paginate plugin (which you can install with ruby script/plugin install
svn://errtheblog.com/svn/plugins/will_paginate) and some CSS declarations.

Figure 3-10. A cleaner movie index page

Figure 3-11. A movie detail page

CHAPTER 3 ■ DEVELOPING A SERVER76

9945CH03.qxd 4/7/08 11:11 AM Page 76

svn://errtheblog.com/svn/plugins/will_paginate

You can download the complete MovieList application (including these styles) from the
Book Extras section of the book’s website, at http://www.apress.com/book/view/1590599942.

Summary
Despite the amount of code you've seen, this has been a relatively brief overview of develop-
ing a particular RESTful application—a great deal of planning, testing, and other work has
gone undescribed here. Nevertheless, you now have a working sample application suitable for
sharing with the world—and that is indeed the next step. In the upcoming chapters, you'll be
building a series of widgets and clients for MovieList. To get ready, play around a bit with the
code you've written so far; familiarize yourself with how it works. You're about to see it in a
whole new light.

CHAPTER 3 ■ DEVELOPING A SERVER 77

9945CH03.qxd 4/7/08 11:11 AM Page 77

http://www.apress.com/book/view/1590599942

9945CH03.qxd 4/7/08 11:11 AM Page 78

Your First Clients: JavaScript
and JSON

The preceding chapters have each served a different purpose: grounding you in the philo-
sophy of RESTful system design, showing you the aspects of Rails that help you apply that
philosophy, or leading you through the development of a functioning RESTful application. In
this chapter, you’ll begin your hands-on exploration of the virtues of an open, RESTful appli-
cation by building JavaScript clients. You’ll start by creating a simple, read-only widget to
display information from MovieList, and then you’ll move on to a more complicated client
capable of both displaying and updating information. While these projects are simple, they
suggest many of the techniques you’ll be using in the more complex clients in the following
chapters—so without further ado, on to the code!

The Widget Approach
The easiest way to get data from one web application to another is probably the simple
JavaScript widget. These were first made possible when browser makers added support for the
scripting language, and they were enhanced with the addition of support for the Document
Object Model (DOM). Widgets are simply scripts embedded on a web page; when the page is
loaded, the script calls out to a remote server to retrieve some data. Once the data is received,
the script then inserts it into the page—either pushing it into an existing container or writing
it directly into the page.

This is a powerful approach, allowing an application to request information from one or
more remote servers and incorporate it directly into the pages that end users see. There is a
significant limitation, however: these widgets are basically read-only. While there are various
techniques you can use to achieve some limited interactivity with scripts of this sort, once the
script has loaded, continued interaction with the data source is much more difficult.

Despite this problem, widgets are still a good first step toward accessing data from an
open application. They are extremely easy to set up and can serve to familiarize you with
issues you will see again later.

Planning
When building any client—from a simple JavaScript widget to a full-fledged ActiveResource
Rails application—you should start by determining what data and functionality you want to

79

C H A P T E R 4

9945CH04.qxd 3/31/08 11:05 AM Page 79

expose through it; when your server is RESTful, you can reframe that decision to address the
resources and methods you want to allow the client to access.

Many factors may influence your decision, but two stand out: the nature of the technol-
ogy used to build the client, and the sites on which the client will appear.

In our example, the major technical limitation at play is that these sorts of widgets are
effectively read-only, unable to manipulate the data on the server. This means that of the stan-
dard RESTful actions, you’ll only be able to provide index and show—no create, update, or
delete.

As for the sites on which your MovieList widgets might appear, the most probable are
general movie information sites (such as IMDB or Rotten Tomatoes) and the personal blog
sites of people who love film. Because most of the host sites will already display abundant
movie information, it doesn’t make much sense to use the widget to display that. Instead, the
most useful role for the widget would seem to be as an easy way to display upcoming releases.
Specifically, you can easily build a widget that will show a comprehensive list of upcoming
movie releases—or a list of only those upcoming releases in which a given MovieList user is
interested. The widget, then, can become a way in which movie lovers can share their interests
with visitors to their blogs.

Now that you have some idea of what you’re going to build, you can take a few moments
to check that the data and functionality (that is, the resources and methods) you’ll be exposing
are already available within your server’s infrastructure. In general, you should be careful
when building clients that don’t map cleanly onto your existing RESTful interface, since they
will require extra development effort on the server side. For the general-purpose widget, this
is not a concern—it is essentially another view of the ReleasesController#index action. The
user-specific widget, however, has no corresponding action on the MovieList application—
unless you’re willing to limit it to a user with an active MovieList session—so there’ll be some
work to get it running when you reach that point.

All Upcoming Releases
Once you know what functionality you’ll be providing through the widgets, you can update
the server application to support the plan. For the general-purpose version, you won’t need to
add any business logic; instead, you’ll just need to create a new view and add code to the con-
troller to ensure that the appropriate view is returned for a widget request.

On the view side, it’s generally best to keep the markup simple and semantically correct.
In this case, the widget will be providing a list of movies and release dates—so a standard
ordered list should suffice (you could also make the argument that a definition list is most
appropriate, but that’s a topic for another book). Instead of creating this index view of new
releases in HTML, however, you need to build it in JavaScript. Listing 4-1 shows the code.

Listing 4-1. Listing releases in app/views/releases/index.js.erb

var markup = '<ol id="movielist-releases">';

<% @releases.each do |release| %>
markup += '<%= h release.released_on.strftime('%m/%d/%Y') %> - ';
markup += '<%= h release.movie.title %>';

<% end %>

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON80

9945CH04.qxd 3/31/08 11:05 AM Page 80

mailto:@releases.each

markup += '';

document.write(markup);

Notice first that the filename for this new view is index.js.erb—as you saw back in
Chapter 2, the “js” indicates that this view is JavaScript, while the “erb” ending triggers stan-
dard ERb processing—meaning that you can embed Ruby here just as you would on a
standard Rails template. When this file is processed and sent back to the browser, then, it is
executed as JavaScript, building a string representing an ordered list of releases and writing
that out to the page.

With the view completed, you just need to make sure that any requests for the widget
return this file instead of the more normal index.html.erb. Remembering Chapter 2 again, the
filename should serve as a clue to the method you’ll be using: if you can force the widget to
request the index of releases via the JavaScript format, the application will automatically use
your new view instead of the HTML one. The solution, then, is obviously respond_to, with the
line added in Listing 4-2.

Listing 4-2. Updating app/controllers/releases_controller.rb to return the JavaScript view

class ReleasesController < ApplicationController
...
def index
@releases = Release.paginate(:all, :page => params[:page])

respond_to do |format|
format.html # index.html.erb
format.js
format.xml { render :xml => @releases }

end
end

...
end

The only addition here is a format.js declaration within the respond_to block, which—
since there is no block for it (unlike for format.xml)—will force the application to render your
new index.js.erb view whenever a JavaScript-formatted request comes in.

To test this, create the HTML page shown in Listing 4-3, in your application’s public
directory.

Listing 4-3. Testing the widget in public/general_widget.html

<html>
<head><title>Test Widget</title></head>

<body>
<h1>Widget Test</h1>

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 81

9945CH04.qxd 3/31/08 11:05 AM Page 81

<script type="text/javascript" src="/releases.js"></script>
</body>
</html>

■Note In general, you should reference your server via an absolute path in your widget code—for exam-
ple, http://localhost:3000/releases.js instead of the relative path /releases.js. Since the
examples in this chapter are run out of your application’s public directory, however, this is not needed.

You should now be able to visit http://localhost:3000/general_widget to see a display
like Figure 4-1.

Figure 4-1. Testing the JavaScript widget

There are several problems with this as a list of upcoming releases, however. First and
most obviously, many of the releases shown took place in the past (the page was accessed on
February 1st, 2008). Second, there is no apparent order to the dates display—ideally, the
widget would show them in descending date order. In addition to those noticeable issues,
though, there is also a hidden problem. If you look at the MovieList logs for this request, you’ll
see that each movie was loaded in a separate call to the database. For such a small dataset, this
isn’t too limiting; if you were working with a much larger list, however, that inefficiency would
quickly become painful.

The resolution of each of these issues lies in the controller, so open it up and make the
changes shown in Listing 4-4.

Listing 4-4. Updating app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
...

def index
respond_to do |format|
format.html {
paginate_releases

}
format.js {
@releases = Release.find(:all,

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON82

9945CH04.qxd 3/31/08 11:05 AM Page 82

http://localhost:3000/releases.js
http://localhost:3000/general_widget
mailto:@releases=Release.find(:all

:include => :movie,
:order => 'released_on DESC',
:conditions => ['released_on >= ?', Date.today]

)
}
format.xml {
paginate_releases
render :xml => @releases

}
end

end

...

private
def paginate_releases
@releases = Release.paginate(:all, :page => params[:page])

end
end

With these updates, the widget response uses an entirely different query to get its
release list—instead of paginating over the entire set of releases as the HTML view does, the
JavaScript view gets a list of upcoming releases sorted by descending release date. Further-
more, the query also loads each release’s related movie record in the initial call to the
database, so the multiplication of queries in the earlier version of the widget is avoided.
Figure 4-2 shows the result of these updates.

Figure 4-2. The revised widget test

The general-purpose widget, then, works. The next step is to get the user-specific version
up and running—and for that, you’ll have to do a little more work.

Releases for a User
The specific-user version of the widget requires you to add something new to MovieList itself.
At present, a user can view the upcoming releases she is interested in by browsing to /user/
notifications; you set this up in the previous chapter by creating a singleton user resource
that has_many notifications nested within it.

To get to the point where any user’s notifications are visible, you need to make a URL like
/users/[user_id]/notifications work—and for that, you need to go back to your routes, as
shown in Listing 4-5.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 83

9945CH04.qxd 3/31/08 11:05 AM Page 83

Listing 4-5. Adding routes by hand to config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resource :session
map.resource :user, :has_many => [:interests, :notifications]
map.connect 'user/:user_id/notifications', ➥

:controller => 'notifications', :action => 'index'
map.connect 'user/:user_id/notifications.:format', ➥

:controller => 'notifications', :action => 'index'

...
end

These new routes allows you to access the NotificationsController#index action both
through the user singleton resource and through a custom, unnamed route with a user_id
parameter—with or without a format specified.

■Caution This custom route looks much like the result of nesting notifications under the standard user
resource, with

map.resources :users, :has_many => :notifications

If you try this, though, your routes will throw an exception, since both nestings will attempt to register
the same named routes.

Of course, the route comprises only part of the required changes. You also need to update
the notifications controller to behave appropriately when it’s accessed through the new
method, as shown in Listing 4-6.

Listing 4-6. Updating app/controllers/notifications_controller.rb for JavaScript access

class NotificationsController < ApplicationController
before_filter :require_login_or_user

def index
@releases = @user.releases(true)
respond_to do |format|
format.html
format.js { render :template => 'releases/index' }

end
end

private
def require_login_or_user
if params[:user_id]
@user = User.find_by_id(params[:user_id])

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON84

9945CH04.qxd 3/31/08 11:05 AM Page 84

mailto:@user.releases

elsif logged_in?
@user = current_user

else
access_denied

end
end

end

Most of this controller is new; first, the require_login filter has been replaced to permit
public access to the index action—though if you aren’t logged in, you will have to specify a
user_id (that’s taken care of by the conditional in the require_login_or_user method). The
instance variable @user will be set based on whether you pass in a user_id parameter or are
logged in, and it will be used to retrieve the release list for eventual display. There’s also a new
respond_to block that sends HTML responses to app/views/notifications/index.html.erb;
JavaScript requests, however, get app/views/releases/index.js.erb, instead.

The only other change here is the value true being passed to @user.releases, which
means you’ll have to update your user model, too (Listing 4-7).

Listing 4-7. Updating the releases method in app/models/user.rb

class User < ActiveRecord::Base
def releases(upcoming_only = false)
movie_ids = movies.map(&:id)
if upcoming_only
conditions = [
"released_on >= ? AND movie_id IN (?)",
Date.today,
movie_ids

]
else
conditions = [
"movie_id IN (?)",
movie_ids

]
end

Release.find(:all,
:include => :movie,
:conditions => conditions,
:order => 'released_on DESC')

end

…
end

Here, you’re changing the conditions on the query based on the parameter passed into
the releases method. If you pass in true, the system will only pull back upcoming releases; if
you send false instead, it will return all releases.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 85

9945CH04.qxd 3/31/08 11:05 AM Page 85

mailto:@user.releases

All of this together enables you to access the upcoming releases for a given user’s interests
either through the web interface (at /users/[user_id]/notifications) or via JavaScript, just as
you did for the general-purpose widget before. To see this in action, create another file in your
public folder, as shown in Listing 4-8.

Listing 4-8. Testing the user-specific widget in public/user_widget.html

<html>
<head><title>Test User Widget</title></head>

<body>
<h1>User Widget Test</h1>
<script type="text/javascript" src=" /users/1/notifications.js">
</script>
</body>
</html>

And that (assuming you have a user with the ID 1) should result in something like the
page shown in Figure 4-3.

Figure 4-3. The user-specific widget

That just about does it for the widgets. As I said earlier, these sorts of projects are easy;
to distribute them, you just embed the script tags from general_widget.html and
user_widget.html in whatever pages you’d like to have the data—it’s that simple.

Nothing this easy is ever perfect, however—and indeed, there are some noticeable prob-
lems with the widget approach, as we’ll see.

Widget Problems
The most significant problem you’ll see with this approach is accessibility; the widgets depend
entirely on JavaScript to function, and so they will not work if a user without JavaScript visits
the page. There is a wide range of reasons people browse without JavaScript—some by choice,
others by necessity. If your audience has a significant number of non-JavaScript users, you
may want to reconsider using widgets for any necessary information.

Beyond the accessibility concerns, however, there are other potential problems. In partic-
ular, some issues may arise because your widgets are injecting markup into a page over which
you may have little or no control. This means that the markup you send may end up rendering
in a way that you never expected. For instance, the page on which your widget lives might
have a stylesheet that already has declarations related to the ordered list markup you created
earlier, resulting in something like Figure 4-4.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON86

9945CH04.qxd 3/31/08 11:05 AM Page 86

Figure 4-4. CSS conflicts with the widget approach

This is an extreme example, of course; in most cases, having your widget inherit the local
styles for the pages on which it appears is a benefit, since they will help it to match the look
and feel of its surroundings. If you tend to complicate your markup, however, you run a very
real risk of conflict.

The best way to minimize these potential difficulties is to keep your widget’s markup as
simple as possible. In the widgets you just built, you’re injecting a simple ordered list. If by
some chance even that simple markup breaks a page, keeping to the basics will make it easier
to fix for the developers on the receiving side—and you can make it even easier for them by
providing appropriate IDs (such as movielist-releases on the OL tag), which they can use to
create custom CSS rules to handle your widget’s markup directly.

Aside from the layout issues that may come up, you might also see more general styling
problems. In general, you have two main means of specifying the styles your widget uses: first,
you can send them inline, as in Listing 4-9.

Listing 4-9. Setting inline styles in app/views/releases/index.js.erb

var markup = '<ul id="movielist-releases" style="font-size:14px;">';

<% @releases.each do |release| %>
markup += '<li style="color:blue;font-weight: bold;">';
markup += '<%= h release.released_on.to_s(:short) %> - ';
markup += '<%= h release.movie.title %>';

<% end %>

markup += '';

document.write(markup);

Alternatively, you can include a stylesheet reference with the markup your widget gener-
ates, as in Listing 4-10.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 87

9945CH04.qxd 3/31/08 11:05 AM Page 87

mailto:@releases.each

Listing 4-10. Specifying a stylesheet in app/views/releases/index.js.erb

var markup = '<link href="[stylesheet URL]" media="screen" ';
markup += 'rel="stylesheet" type="text/css" />';
markup += '<ul id="movielist-releases">';

<% @releases.each do |release| %>
markup += '<%= h release.released_on.to_s(:short) %> - ';
markup += '<%= h release.movie.title %>';

<% end %>

markup += '';

document.write(markup);

Both approaches, however, have problems. Either may conflict with or interact unpre-
dictably with the local styles defined on the surrounding page, and the stylesheet approach in
particular may override styles outside the scope of the widget. If you have the option, you’re
generally better off sending as little style information with the widget as possible, relying
instead on the receiving developer to style the output as she likes.

The widget approach, then, has both advantages and disadvantages. It is easy to set up
and to distribute, requiring very little effort on the end developer’s part to get running, but it
has some noticeable shortcomings in accessibility and interactivity. Widgets are not the only
option available with JavaScript, however, as you’ll see in the next section.

A JSON Client
I’ve mentioned briefly that you can provide some interactivity through a widget; in general,
however, widgets are best for providing read-only views into your data. When you want to give
end users the ability to manipulate that data, you need to turn elsewhere. JavaScript (which is,
after all, the J in Ajax) does provide other capabilities for that sort of project. In this section,
you’ll be building an Ajax client to interact with MovieList, and you’ll be using JSON to pass
data between the server and the client.

JSON stands for JavaScript Object Notation; it provides a simple, human-readable
representation for structured data, including objects. Over the last few years, it has gained
prominence as an alternative to XML for transferring data between applications. As you’ll see
shortly, JSON is built into Rails, making it an excellent choice for the JavaScript client you’ll be
building shortly.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON88

9945CH04.qxd 3/31/08 11:05 AM Page 88

mailto:@releases.each

MORE ABOUT JSON

JSON provides the standard data types:

• null

• boolean

• numeric

• string

• array

• object

Objects in JSON are simply key/value pairs enclosed in curly braces. The following is a possible JSON
representation of a movie object from MovieList:

{
"id": 18,
"title": "Rashomon",
"description": "Rashomon (Rashÿmon) is a 1951 Japanese film…",
"rating": "",
"releases": [
{
"format": "theater",
"released_on": "Wed, Dec 26 1951"

}
]

}

Since JSON is a subset of JavaScript, this representation is valid JavaScript code. As a result, you can
instantiate a native JavaScript object by simply passing it through eval, and once you have decoded the
objects you can manipulate them however you like. Of course, eval can be a security concern, but there are
ways to avoid problems—the JSON library available at http://www.json.org/json2.js, for instance,
includes a safer alternative in the parseJSON method.

In addition, JSON is a valid subset of YAML, making it a simple matter for many programming languages
(including Ruby) to translate JSON-formatted strings into native objects. ActiveSupport::JSON holds the key
methods for working with JSON in Rails, including #to_json and #from_json.

Planning
The planning phase for the JSON client is a bit more open that it was for the widgets. The
client, after all, allows for interactions that weren’t possible with the read-only scripts. For
instance, you can actually update, send data to, and manipulate data on the server. It may not
make sense to allow full administrative privileges through the client—no adding or updating
movie records—but it would certainly be feasible to allow users to manage their interests.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 89

9945CH04.qxd 3/31/08 11:05 AM Page 89

http://www.json.org/json2.js

What’s more, with interest management in particular the general security issues are minimized;
if you recall, interests (as notifications were before you tweaked them in the previous project)
are scoped to the current user via the user singleton resource. This means that any user
accessing the client will be unable to affect anything outside of her own interests—and she
won’t even be able to do that unless she has an active MovieList session. Of course, this means
that you’ll have to handle unauthenticated users accessing the client, but that will come up
later.

Interest management as it currently stands consists of the index, create, and destroy
actions. Basically, you can view your interests, add a new one, or remove an existing one.
Those functions map to the following URIs and HTTP request methods:

• GET /user/interests to list a user’s interests

• POST /user/interests to add a new interest

• DELETE /user/interests/[interest_id] to remove an interest

This framework can be reused directly for the client you’ll be building, and (as in the main
web interface) you won’t need separate new, edit, or update actions—there’s no sensible way to
update an interest, after all, and you can incorporate the new interest form into the index
view.

Implementation
At first glance, creating the JSON interface may be intimidating. Upon a closer look, however,
it turns out that the JSON API is very similar to the XML API automatically generated by the
scaffolding, so you can use that as a basic template. Of course, you built the interests function-
ality by hand back in Chapter 3, so there isn’t any scaffolded code in that part of the
application currently—but it’s easy enough to generalize the necessary work from those
sections that you did generate via scaffolding.

The first step is to update the InterestsController#index action to handle JSON requests.
Just as with the widget, you do this by adding a respond_to block, as shown in Listing 4-11.

Listing 4-11. Updating app/views/controllers/interests_controller.rb for the JSON client

class InterestsController < ApplicationController
...

def index
@interests = current_user.interests
@interest = Interest.new

respond_to do |format|
format.html
format.json { render :json => @interests }

end
end

...
end

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON90

9945CH04.qxd 3/31/08 11:05 AM Page 90

This is fairly standard code, exactly parallel to what you might see for the XML API in your
movies controller; the only exception is the render :json call. Basically, render :json returns
a JSON representation of the Ruby object that it is given. In this case, the application calls
@interests.to_json implicitly, returning a JSON string containing an array of Interest objects,
each with all its attributes. (You get the same behavior in the generated scaffold code with
render :xml.)

As you saw in Chapter 2, Rails 2 allows you to add custom response formats if you need to;
luckily, however, Rails already knows the JSON format and maps it to text/x-json. This means
that you’re done updating the MovieList code—there’s no need to create a view, since you’re
rendering a JSON string from the action. The next step, then, is to look at the client. The first
thing to do is build a simple page (Listing 4-12) so that you can test your code.

Listing 4-12. Creating public/json_client.html

<html>
<head>
<title>JSON Client</title>
<script type="text/javascript" src="/javascripts/prototype.js"></script>
<script type="text/javascript">
// JSON processing will go here
</script>
</head>
<body>

<div id="target">
nothing yet!
</div>

</body>
</html>

Notice that this page includes the Prototype JavaScript library. Prototype itself isn’t
required; you could do everything here with straight JavaScript, or with another library like
jQuery—but given the library’s familiarity to Rails developers and the helper methods it
includes for working with JSON, it is a good choice to make the examples cleaner and clearer.
In addition, you have easy access to it by running your client from within your Rails applica-
tion.

Now that you have a test page, you can add the code to retrieve your MovieList interests.
Start by creating a new Ajax request and capturing the JSON it returns. Then, you can instanti-
ate JavaScript objects and build whatever markup you (as the client developer) deem
appropriate, as shown in Listing 4-13.

Listing 4-13. Requesting data in public/json_client.html

...
<script type="text/javascript">
// JSON processing will go here
new Ajax.Request('/user/interests.json', {

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 91

9945CH04.qxd 3/31/08 11:05 AM Page 91

mailto:@interests.to_json

method:'get',
onSuccess: function(data){
var interests = data.responseText.evalJSON();
var markup = '';
interests.each(function(interest) {
markup += '' + interest.movie_title + '';

})
markup += '';
$('target').update(markup)

}
});
</script>
</body>
</html>

Notice that this code doesn’t use eval directly. The evalJSON() method is built into Proto-
type, and it provides some small measure of security beyond that of eval directly (much like
the parseJSON method in the library mentioned earlier)—in particular, you can call it with the
argument true (e.g., evalJSON(true)) to detect and defuse potentially dangerous code.

If you’re following along with the code and try this out, you may be confused when
nothing happens. It turns out that interest.movie_title doesn’t actually work yet. Remember
that render :json calls #to_json behind the scenes, translating ActiveRecord objects into
JSON-formatted strings. By default, however, #to_json only includes attributes in the resulting
string—and in this case, we need the output of a method (movie_title). Luckily, it’s a quick fix.
First we add the method to the interest model, in Listing 4-14.

Listing 4-14. Adding a convenience method to app/models/interest.rb

class Interest < ActiveRecord::Base
…

def movie_title
movie.title

end
end

Then we update the controller so that the results of that method are included in the JSON
string, in Listing 4-15.

Listing 4-15. Updating app/views/controllers/interests_controller.rb

class InterestsController < ApplicationController
...

def index
@interests = current_user.interests

respond_to do |format|
format.html

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON92

9945CH04.qxd 3/31/08 11:05 AM Page 92

format.json { render :json => @interests.to_json(
:methods => [:movie_title]

) }
end

end

...
end

Here, the implicit call to #to_json has been abandoned in favor of an explicit call with a
customized options hash, through which you can specify the attributes and methods you
want serialized (check the Rails documentation for the full suite of options). With this change,
the JSON client as written works—or at least, the index view does, as illustrated in Figure 4.5.

Figure 4-5.The JSON client in action

Unauthenticated Users
At this point, however, you may encounter another problem. Remember that the interests
controller scopes all of its actions to the current user. This means that your JSON client will
only work if the user visiting the client has already logged in to MovieList. This by itself isn’t
an issue (actually, it serves as an extra security check—preventing just anyone from editing a
MovieList user’s interests), but it does mean that you need to write some code to handle the
case where someone who isn’t logged in visits the client.

In the web interface for MovieList, unauthenticated users who visit the Interests-
Controller#index action hit the login_required filter and are redirected to the login page.
When the request comes in via Ajax, however, they don’t get redirected. Instead, such visitors
get a somewhat obscure HTTP status code: 406 Not Acceptable.

There are two general approaches to handling this error. The first is to ignore it; you can
set the initial contents of the target div to a message suitable for the condition, such as “Please
log in at MovieList to continue.” When the client receives a 406 error, the target div will retain
its default contents, and the specified message will remain in place unless an authenticated
user visits.

The alternative (and more responsible) approach is to make use of one of the more inter-
esting features of Prototype: status code-specific callback functions. With both Ajax.Request
and Ajax.Updater, you can specify callback functions for any HTTP status code you wish. Most
relevant for this case, you can specify the callback for 406 responses, as shown in Listing 4-16.

Listing 4-16. Handling unauthenticated users in public/json_client.html

...
<script type="text/javascript">
// JSON processing will go here
new Ajax.Request('/user/interests.json', {

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 93

9945CH04.qxd 3/31/08 11:05 AM Page 93

mailto:@interests.to_json

method:'get',
onSuccess: function(data){
var interests = data.responseText.evalJSON();
var markup = '';
interests.each(function(interest) {
markup += '' + interest.movie_title + '';

})
markup += '';
$('target').update(markup)

},
on406: function(data){
$('target').update('Please log in at MovieList to continue');

}
});
</script>
</body>
</html>

This code simply displays the specified error message when a 406 is returned from
MovieList, but in a more elaborate client application you could easily use that callback to
present a login form, or to handle the situation in some other way. This technique also allows
you to distinguish between users who haven’t logged in to MovieList and those who have
JavaScript turned off; the latter will always see the default contents of the target div, so you
can put a message specific to them in it on page load.

If you aren’t using Prototype, you can handle this error by registering a callback function
with the more general onFailure event—it is less specific than Prototype’s status code call-
backs, but it works perfectly well for this purpose.

Adding an Interest
At this point, the JSON client is still little better than the earlier widgets you built. With the
basic technique familiar, however, you can now start adding some interactivity. The first man-
agement function to build is the ability to create a new interest. For that, you need a form on
the client page. You could add the form dynamically—by injecting it into the page when the
user clicks a link, for instance—but in the interest of keeping things at least somewhat simple,
the code shown in Listing 4-17 adds it as a persistent feature of the interest listing.

Listing 4-17. Updating public/json_client.html with the new form

...
<script type="text/javascript">
// JSON processing will go here
new Ajax.Request('/interests.json', {
method:'get',
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

},

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON94

9945CH04.qxd 3/31/08 11:05 AM Page 94

on406: function(data){
$('target').update('Please log in at MovieList to continue');

}
});

function submitForm() {
new Ajax.Request('/user/interests.json', {
asynchronous: true,
evalScripts: true,
parameters: Form.serialize('interest-form'),
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

}
});

}

function displayInterestList(interests) {
var markup = '';
interests.each(function(interest) {
markup += '' + interest.movie_title + '';

})
markup += '';

markup += '<form method="post" id="interest-form" ';
markup += 'onsubmit="submitForm(); return false;" ';
markup += 'action="/user/interests.json">';
markup += 'Add a Movie: ';
markup += '<input type="text" name="interest[movie_title]" />';
markup += '<input type="submit" value="Save" />';
markup += '</form>';

$('target').update(markup)
}
</script>
</body>
</html>

Figure 4-6 shows the display this code produces on the page in which it is embedded.

Figure 4-6. The JSON client with the interest creation form

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 95

9945CH04.qxd 3/31/08 11:05 AM Page 95

At the point, then, anything you enter in the form is submitted via Ajax to your MovieList
application; the server then replies with the updated list of interests and redisplays them just
as it did for the index action—in fact, the display is identical, so the script in Listing 4-17 has
been refactored to use a single displayInterestListing method.

With that, the client is complete; the MovieList code, however, is not yet set up to handle
interest creations via Ajax. The next step, then, is to go back to the controller (Listing 4-18).

Listing 4-18. Updating create to accept JSON requests in app/controllers/interests_controller.rb

class InterestsController < ApplicationController
...

def create
current_user.interests.create(params[:interest])
flash[:notice] = 'You have added an interest in the specified movie'

respond_to do |format|
format.html { redirect_to user_interests_path }
format.json { render({
:json => current_user.interests.reload.to_json(
:methods => [:movie_title]

)
}) }

end
end

...
end

The only difference between this and the index action code is the addition of reload to
current_user.interests—this is necessary to ensure that the list returned to the client is
updated with the newly added interest. As it stands, however, this still doesn’t quite work. Note
that the client form here submits a field named interest[movie_title]—to use that value
while creating an interest, you need to add a new method to the interest model (Listing 4-19).

Listing 4-19. Adding a convenience method to app/models/interest.rb

class Interest < ActiveRecord::Base
...

def movie_title=(title)
self.movie = Movie.find_by_title(title)

end
end

And with that, you can easily create new interests via the client, as illustrated in Figure 4-7.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON96

9945CH04.qxd 3/31/08 11:05 AM Page 96

Figure 4-7.Creating an interest via the JSON client

Error Handling
Of course, the movie title field in the client form is a free-form text field, making it possible for
users to type in anything as an interest. This means that you have to deal with entry errors
(misspellings, etc.) and with users attempting to add interests in movies that aren’t yet in the
system. The appropriate response (short of adding such movies on the fly) is to display some
message when such errors occur, and for that you’ll need to modify both the server and the
client, to catch the error and display the message.

■Note There is an easy way to cut down on the number of errors generated by this field; you could add
autocompletion to it, so that when users start to type in a movie’s title, the system automatically looks up
titles that match the text entered and allows the user to select from among them. The autocompletion helper
that was built into Rails previously, however, has been extracted to a plugin in Rails 2; you can install it from
http://dev.rubyonrails.org/browser/plugins/auto_complete.

In your controller, the easiest thing to do is to check whether the interest record was suc-
cessfully saved by the create attempt, as highlighted in Listing 4-20.

Listing 4-20. Returning different status codes in app/controllers/interests_controller.rb

class InterestsController < ApplicationController
...

def create
interest = current_user.interests.create(params[:interest])

respond_to do |format|
format.html { redirect_to user_interests_path }
format.json {
status_code = interest.new_record? ? 422 : 201
render :json => current_user.interests.reload.to_json(
:methods => [:movie_title]

), :status => status_code }
end

end

...
end

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 97

9945CH04.qxd 3/31/08 11:05 AM Page 97

http://dev.rubyonrails.org/browser/plugins/auto_complete

With this update, MovieList will send the HTTP status code 201 (“created”) if the interest
was created successfully, or 422 (“unprocessable entry”) if the creation failed. Your client is
already set up to handle the 201—it just has to redisplay the interest list and form; all that
remains, then, is to update it to correctly handle 422, as in Listing 4-21.

Listing 4-21. Handling creation failures in public/json_client.html

<script type="text/javascript">
// ...

function submitForm() {
new Ajax.Request('/user/interests.json', {
asynchronous: true,
evalScripts: true,
parameters: Form.serialize('interest-form'),
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

},
on422: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests,
"The movie title you entered was not found. ➥

Please try again.");
}

});
}

function displayInterestList(interests, message) {
var markup = '';
interests.each(function(interest) {
markup += '' + interest.movie_title + '';

})
markup += '';

if (message) {
markup += '<p>' + message + '</p>';

}

markup += '<form method="post" id="interest-form" ';
markup += 'onsubmit="submitForm(); return false;" ';
markup += 'action="/user/interests.json">';
markup += 'Add a Movie: ';
markup += '<input type="text" name="interest[movie_title]" />';
markup += '<input type="submit" value="Save" />';
markup += '</form>';

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON98

9945CH04.qxd 3/31/08 11:05 AM Page 98

$('target').update(markup)
}
</script>

Figure 4-8 shows the result of this modification; a title that cannot be used to create an
interest will generate a message on the interest list, allowing users to try again (if, for instance,
they misspelled the title).

Figure 4-8. A failed attempt to create an interest

And with that, this JSON client is at least usable—you can view your MovieList interests
and add to them. Of course, if you play around with this long enough, you’ll eventually want to
remove some of the interests (did you really want to be notified any time one of those Keanu
Reeves movies is rereleased on DVD?). The natural next step, then, is to add the ability to
remove interests through the client.

Removing an Interest
Like adding an interest, deleting an interest will require changes both to the server and the
client. Starting with the controller again, the server needs to return the list of interests after an
interest is removed. Listing 4-22 shows the code.

Listing 4-22. Handling JSON deletion requests in app/controllers/interests_controller.rb

class InterestsController < ApplicationController
...

def destroy
interest = current_user.interests.find(params[:id])
interest.destroy if interest

respond_to do |format|
format.html { redirect_to user_interests_path }
format.json {
render :json => current_user.interests.reload.to_json(
:methods => [:movie_title]

)
}

end
end

end

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 99

9945CH04.qxd 3/31/08 11:05 AM Page 99

This works just like the final version of the create action—when a JSON request comes in,
the specified interest is removed, and the system returns a JSON-formatted string of the cur-
rent user’s remaining interests.

The next step is to add a mechanism to access this action from the client. In keeping with
the traditional scaffolding, the code in Listing 4-23 will add links that submit Ajax requests to
delete the associated records.

Listing 4-23. Adding delete functionality to public/json_client.html

<script type="text/javascript">
// ...

function removeInterest(id) {
new Ajax.Request('/user/interests/' + id + '.json', {
method: 'post',
asynchronous: true,
evalScripts: true,
parameters: '_method=delete',
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

}
});

}

function displayInterestList(interests, message) {
var markup = '';
interests.each(function(interest) {
markup += '' + interest.movie_title;
markup += ' <a href="#" onclick="removeInterest(' + interest.id;
markup += ');return false;">remove';

})
markup += '';

if (message) {
markup += '<p>' + message + '</p>';

}

markup += '<form method="post" id="interest-form" ';
markup += 'onsubmit="submitForm(); return false;" ';
markup += 'action="/user/interests.json">';
markup += 'Add a Movie: ';
markup += '<input type="text" name="interest[movie_title]" />';
markup += '<input type="submit" value="Save" />';
markup += '</form>';

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON100

9945CH04.qxd 3/31/08 11:05 AM Page 100

$('target').update(markup)
}
</script>

There are a couple of things to note about this code. First, the removal link gets the ID of
the interest object—as you saw in the planning section, the delete link has to submit to the
URI /user/interests/[interest_id]. The HTTP method being used is also important; the
Ajax request itself is being POSTed to the server, but look carefully at the parameters. The client
is sending _method=delete, which (as you saw in Chapter 2) leads the MovieList to treat the
request as if it came in as a DELETE. This combination of URI and request method routes the
request to the appropriate InterestsController#destroy action; without either piece, this
routing would fail. As it stands, however, it works—try it out on the client you’ve been working
with, and finally get rid of that interest in Ishtar you’ve been hiding.

It is, of course, possible for a delete to fail, and you could write error-handling code to add
a message to the page if that happened; the code would look much like that used in the create
action. This is a fairly rare occurrence, however, and the code doesn’t serve any additional
instructional purpose at this point, so I’ll skip it. Even without that error handling, though,
your JSON client now fulfills the goals set out during planning. You can use it to view your
MovieList interests, add new ones, and remove old ones. The completed JavaScript code for
the JSON client can be seen in Listing 4-24.

Listing 4-24. The completed public/json_index.html

<html>
<head>
<title>JSON Client</title>
<script type="text/javascript" src="/javascripts/prototype.js"></script>
<script type="text/javascript">
// JSON processing will go here
new Ajax.Request('/user/interests.json', {
method:'get',
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

},
on406: function(data){
$('target').update('Please log in at MovieList to continue');

}
});

function submitForm() {
new Ajax.Request('/user/interests.json', {
asynchronous: true,
evalScripts: true,
parameters: Form.serialize('interest-form'),
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 101

9945CH04.qxd 3/31/08 11:05 AM Page 101

},
on422: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests,
"The movie title you entered was not found. Please try again.");

}
});

}

function removeInterest(id) {
new Ajax.Request('/user/interests/' + id + '.json', {
method: 'post',
asynchronous: true,
evalScripts: true,
parameters: '_method=delete',
onSuccess: function(data){
var interests = data.responseText.evalJSON();
displayInterestList(interests);

}
});

}

function displayInterestList(interests, message) {
var markup = '';
interests.each(function(interest) {
markup += '' + interest.movie_title;
markup += ' <a href="#" onclick="removeInterest(' + interest.id;
markup += ');return false;">remove';

})
markup += '';

if (message) {
markup += '<p>' + message + '</p>';

}

markup += '<form method="post" id="interest-form" ';
markup += 'onsubmit="submitForm(); return false;" ';
markup += 'action="/user/interests.json">';
markup += 'Add a Movie: ';
markup += '<input type="text" name="interest[movie_title]" />';
markup += '<input type="submit" value="Save" />';
markup += '</form>';

$('target').update(markup)
}
</script>
</head>
<body>

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON102

9945CH04.qxd 3/31/08 11:05 AM Page 102

<div id="target">
nothing yet!

</div>

</body>
</html>

Testing
The last thing to discuss in this chapter is a topic that has been missing (perhaps glaringly so)
from these projects so far: testing. In general, you won’t see many tests in the projects in this
book (though you will, of course, see them in the downloadable application code); the testing
techniques used are relatively common and are easy to pick up; in many cases, you can do so
simply by reading through the tests generated by Rails 2’s scaffolding. There is at least one
aspect of testing for the widgets and client in this chapter, however, that isn’t covered in the
generated code. The autogenerated tests are noticeably lacking anything dealing with alter-
nate formats; the generated XML API, for instance, is entirely untested.

Given that you’ve just written a fair amount of code to deal with a couple of new formats
(js and json), it makes sense to see what some of the tests for those formats should look like.
Listing 4-25, then, is an excerpt from the InterestsControllerTest class.

Listing 4-25. Testing formatted requests in test/functional/interests_controller_test.rb

class InterestsControllerTest < Test::Unit::TestCase
...

def test_json_index_should_return_json_string
user = User.find(1)
user.interests.delete_all
movie = Movie.find(1)
user.interests.create(:movie => movie)

get :index, {:format => 'json'}, {:user => 1}
raw = @response.body
decoded = ActiveSupport::JSON.decode(@response.body)

assert raw.is_a?(String)
assert decoded.is_a?(Array)
assert decoded.first.has_key?('movie_id')
assert_equal 1, decoded.first['movie_id']

end
end

This test case passes when a request to GET /interests for the user ID 1 returns a JSON
string that contains an array of hashes, each of which describes an Interest object. In this par-
ticular case, the resulting array has a single member, and the interest it represents is the Movie
object with ID 1.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 103

9945CH04.qxd 3/31/08 11:05 AM Page 103

mailto:@response.body
mailto:decode(@response.body

The most important thing to note in this is that you can test your respond_to code by
passing a :format parameter to your get/post/put/delete method—and make sure you spec-
ify the format as a string, not as a symbol, or it won’t be recognized.

Further Projects
As I mentioned in the last chapter, each of these project chapters will end with suggestions for
potential further development. With these JavaScript widgets and clients, you have a multi-
tude of possibilities to build on the things you’ve done.

For instance, you’ve already seen an example of how the JSON client can avoid some of
the accessibility problems that the JavaScript widget had (by showing a default message when
JavaScript is disabled). You could take the time to enhance the widget to use JSON, reaping
the accessibility benefit and potentially avoiding many of the styling and layout issues—this
approach requires significantly more work on the part of the client developer, since she has
to integrate raw JavaScript objects into her page, but it is more effective in the long run and
allows for better error-handling and presentation.

Given your experience with the JSON client, it should be simple to see how this revised
widget would work. First, you’d delete the index.js.erb view. Then, you would replace the
format.js block in the controller with a block for format.json, as in Listing 4-26.

Listing 4-26. Updating the JavaScript widget to use JSON in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
...
def index
@releases = params[:user_id] ?
User.find(params[:user_id]).releases.find_upcoming :
Release.find_upcoming

respond_to do |format|
format.html # index.html.erb
format.json { render :json => ➥

@releases.to_json(:include => :movie) }
format.xml { render :xml => @releases }

end
end
...

end

Finally, you’d have to change how you distributed the widget. Instead of embedding a
simple script tag on the page, client developers would have to customize callback functions
to generate the appropriate markup for their sites, as in Listing 4-27.

Listing 4-27. The JSON widget, in public/json_release_widget.html

<script type="text/javascript" src="javascripts/prototype.js"></script>
<script type="text/javascript">
new Ajax.Request('/releases.json', {

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON104

9945CH04.qxd 3/31/08 11:05 AM Page 104

mailto:@releases.to_json(:include

method:'get',
onSuccess: function(data){
var releases = data.responseText.evalJSON();

var markup = '';
releases.each(function(release) {
markup += '' + release.released_on;
markup += ' - ' + release.movie.title + '';

})
markup += '';

document.write(markup);
}

});
</script>

Similarly, you could revise the user-specific version of the widget by changing the URL
from releases.json to users/[user id]/notifications.json, leaving everything else the
same.

You could also spend some time expanding the functionality of the JSON client itself. A
good first step, for instance, would be to generate a login form in the 406 error handling code,
allowing unauthenticated users to log in directly from the client. You might also add notifica-
tions to the display, or movies and their releases—really, the sky’s the limit. The JSON client is
as flexible as MovieList itself is.

Summary
In this chapter you’ve built your first MovieList clients—from a couple of simple, read-only
widgets to an interactive tool through which you can fully manage your MovieList interests
from a third-party site. These clients, though, are limited; they run entirely in the browser. In
the next chapter, you’ll be building a client meant to live on another server, in a language that
is (to say the least) dissimilar to Ruby: PHP. When you’re ready to tackle that, read on.

CHAPTER 4 ■ YOUR FIRST CLIENTS: JAVASCRIPT AND JSON 105

9945CH04.qxd 3/31/08 11:05 AM Page 105

9945CH04.qxd 3/31/08 11:05 AM Page 106

See You on the Server Side:
PHP

In the previous chapter, you built several JavaScript clients to pull data from your MovieList
application. The projects in this chapter move away from the strictly client-side world of
JavaScript, allowing you to explore some of the possibilities of accessing your application from
another server-side language. For these projects, you’ll use PHP, and you’ll build your clients
on top of the module framework provided by Squidoo (www.squidoo.com).

About Squidoo
Squidoo was launched in 2005 as a place for people to share their expertise on any given
topic. It is similar in some respects to Wikipedia, though unlike Wikipedia it allows (and even
encourages) multiple articles for each topic. If you disagree with someone’s take on, say, the
Australian rugby team, you can create your own “lens” on the subject, adding content, links,
and more to focus attention on the aspects you think are most important. Squidoo allows any-
one to join and become a “lensmaster,” which means that there is a huge variety of content on
the site. You can see a hint of this in the featured lenses on the home page, in Figure 5-1.

Lenses are the core of Squidoo; lensmasters build these pages using tools provided by the
framework. Any given lens is made up of a number of modules, each of which serves a differ-
ent purpose or provides some different content. If you had a skiing lens, for instance, you
might include a link list module with links to your favorite ski forecast sites, a text module
where you would share your skiing stories, and an affiliate module where you would list your
favorite ski products (and through which visitors to your lens could purchase those products).
Lenses come in a number of different styles, reflecting different subject matter. Figure 5-2, for
instance, is a “standard” lens.

107

C H A P T E R 5

9945CH05.qxd 3/31/08 1:17 PM Page 107

http://www.squidoo.com

Figure 5-1. The Squidoo home page

Figure 5-2. A Squidoo lens devoted to the films of Akira Kurosawa

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP108

9945CH05.qxd 3/31/08 1:17 PM Page 108

As you can see from the “What’s Here” section on the left, this lens includes a list of films,
links relating to Akira Kurosawa, a module with videos (drawn from YouTube), and links
through which you can purchase Kurosawa DVDs and Books. Figure 5-3 is another style of
lens within the Squidoo (or in this case SquidWho) brand.

Figure 5-3. A Squidoo lens devoted to the actor Toshiro Mifune

On this lens, you can see the Amazon module in action—it displays product images and
links to purchase them. These modules can be populated in two ways—either by selecting
specific products to feature or by submitting a set of keywords to Amazon and retrieving the
most relevant results. With either approach, however, the actual images and links are pulled
back through Amazon’s web services API—and that illustrates the promise of the platform.

Squidoo was designed as an open platform, for both content creators (lensmasters) and
the people who support them by building modules. Anyone can create a new module for the
platform, allowing thousands of lensmasters to add some new type of content (like eBay auc-
tions) or functionality (like a guestbook) to their lenses and exposing some new piece of
functionality or data to a multitude of lensmasters. Squidoo’s developers have, through deci-
sions at every level, made it easy. The module framework itself is easy to learn and simple to
develop for, and there are numerous resources and forums to help people get started. Com-
pleted modules are submitted to Squidoo’s staff for review, and the best are made available to
all lensmasters.

This process makes Squidoo an excellent platform for building a MovieList client; it is,
after all, designed to be a part of the open Web, aggregating information from across the Inter-
net to provide the best possible user experience.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 109

9945CH05.qxd 3/31/08 1:17 PM Page 109

Getting Started
Now that you know more about Squidoo and its lenses, you can decide how best to integrate
the functionality and data from your MovieList application. It’s best to start small, so you’ll
begin by replicating some of the functionality of our JavaScript widgets from the last chapter.
In particular, you’ll be building an upcoming releases module, which would fit easily into a
lens about local entertainment or movies in general. Once you’ve completed the simple mod-
ule, you can move on to more advanced ones—accepting more input from the lensmaster to
present a more customized display and eventually even getting closer to a real PHP client by
adding comments to MovieList itself from a Squidoo lens. Before you get to all of that, how-
ever, there’s some work to be done just to make this development possible.

Prerequisites
Unlike the previous chapter, this project may actually require you to tweak your development
environment. PHP is a distinct language, after all, and it has somewhat different needs than
does Ruby—in particular, you may need to install a new web server (like Apache or Lighttpd)
to run the module you’ll be building. You’ll also need to make sure you have PHP 5.1; while
you can develop your modules with PHP 4, the project in this chapter requires functionality
not available until 5 or later. Furthermore, Squidoo itself runs on 5.1, so you’ll be less likely to
encounter problems after submitting the module if you stick to the later version from the
beginning.

■Tip If you’re on Mac OS X, you can use the instructions at http://www.simplisticcomplexity.com/
2008/02/01/put-your-php-on-port-3000-with-lighttpd to get running with a minimum of fuss.
When I was setting up this project, though, I ran Lighttpd on port 3001 so that I could keep the main
MovieList application available on port 3000. You can also find helpful information at http://www.php.
net/ and http://us.php.net/manual/en/faq.installation.php.

Once your server is set up and processing PHP scripts, start up MovieList on port 3000
and create the page shown in Listing 5-1 (in this and the following examples, I’m assuming
that PHP is being served from a Squidoo directory outside your Rails application).

Listing 5-1. Testing PHP with squidoo/test.php

<?php
$result = file_get_contents('http://localhost:3000/movies.xml');
print_r($result);
?>

Open your test page in a browser, and you should see a page like Figure 5-4.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP110

9945CH05.qxd 3/31/08 1:17 PM Page 110

http://www.simplisticcomplexity.com
http://www.php
http://us.php.net/manual/en/faq.installation.php
http://localhost:3000/movies.xml

Figure 5-4. Output of the test.php script

If you then view the source code on this page, you should see an XML representation of
the movies in your sample application, as in Listing 5-2.

Listing 5-2. Output from the Test Page

<?xml version="1.0" encoding="UTF-8"?>
<movies type="array">
<movie>
<created-at type="datetime">2008-01-27T16:45:17-05:00</created-at>
<description>The Hidden Fortress (Japanese: Kakushi toride ...</description>
<id type="integer">17</id>
<rating></rating>
<title>The Hidden Fortress</title>
<updated-at type="datetime">2008-01-30T21:36:22-05:00</updated-at>

</movie>
...

</movies>

If that works, then you’re almost ready to go—PHP and Rails are working in parallel, and
you can access MovieList from your PHP scripts. The next step is to download the Squidoo
Module Development Kit (MDK) to build your new module.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 111

9945CH05.qxd 3/31/08 1:17 PM Page 111

All about Squidoo Modules
Browse to the Squidoo Developers page at http://www.squidoo.com/developers. (Incidentally,
this page is itself a lens—each content block on this page is a module, from the chunks of texts
to the lists of books on Amazon and the “Most wanted” new module voting widget.) Download
the MDK from the “Here’s everything you need” module, unzip it into the document root of
your PHP-enabled web server (which I set to squidoo, as I mentioned earlier), and browse to
http://localhost:3001/index.php (or whatever URL you need to use for your server). If every-
thing is working properly, you should see a page like Figure 5-5.

Figure 5-5. The MDK starting page

From this page, you can open the documentation (distributed with the MDK as a PDF),
and you can also examine the two sample modules included in the MDK. Both of these are
relevant to the code you’ll be writing shortly—one lets you add job searches (from http://www.
indeed.com/) to a lens, while the other adds Flickr photos.

The MDK itself simulates a very small part of the Squidoo lensbuilder; normally, you’d
have a page full of metadata and modules with Edit links, but here you are given only a single
block to focus on. To build your module, you’ll edit two files that show up inside this block. To
see how this works, click the Edit link on the right side of the page, and you should see some-
thing like Figure 5-6.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP112

9945CH05.qxd 3/31/08 1:17 PM Page 112

http://www.squidoo.com/developers
http://localhost:3001/index.php
http://www

Figure 5-6. The MDK edit module template

This is the default edit view provided with the MDK. As you build your module, most of
the template will remain the same (all modules in Squidoo can accept a title, subtitle, and
description); your changes will appear in place of the “Add the content…” line you see here.
This is only half of the module system, however.

Modules in Squidoo are composed of two pieces: a form (which accepts input from the
lensmaster) and a view (which processes that input and generates markup that is displayed on
the lens). When a lensmaster enters data on a module form, her entries are saved to a data-
base; when the module view is loaded, that data is then retrieved from the database and used
to construct the markup that is sent to the end user (the generated markup is also cached to
improve performance and to reduce load on external servers).

From the edit module form, then, clicking the Save button will display the default module
view template, shown in Figure 5-7.

Experiment with the MDK a bit, and be sure to read through the included PDF documen-
tation to see how things work. Once you’re comfortable with the form and the view, move on
to the next section.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 113

9945CH05.qxd 3/31/08 1:17 PM Page 113

Figure 5-7. The MDK module view template

A Simple Example
To get you into the PHP frame of mind, you’ll be starting simply. The first module you’re going
to build will replicate some of the functionality of the JavaScript widgets you created in Chap-
ter 4. This module will display a list of upcoming theatrical releases—suitable for a lens about
upcoming movies or local entertainment.

To keep you from getting too bored, however, your module will also allow the lensmaster
to limit the number of releases returned—which means you’ll have to update code in both the
MovieList application and the MDK. Before worrying about MovieList, however, start by creat-
ing the module form.

The only thing you need from a lensmaster for this module is the number of upcoming
releases she wants to display, so the form (Listing 5-3) is simple.

Listing 5-3. Creating the Basic Form in squidoo/form.php

<div id="limitForm">
<h2>How many releases would you like to show?</h2>
<input type="text" class="textfield"

value="<?php echo $module->details['limit']; ?>"
name="modules[id][details][limit]"
id="modules_id_details_limit" />

</div>

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP114

9945CH05.qxd 3/31/08 1:17 PM Page 114

Ignoring the snippet of PHP for a moment, this markup adds a text field to the module
edit form, as shown in Figure 5-8.

Figure 5-8. Updated edit module form

If you now enter a value in the new field and hit Save, the MDK will record your entry in
squidoo/data/module.txt—if you look in that file, you’ll see a serialized representation of the
module you just saved.

■Caution If you got an error when you saved the module, and you don’t see mdk/data/module.txt, make
sure that the mdk/module directory is writable by the web server—otherwise, the MDK won’t be able to
save your entries from the module form.

Of course, even once you have the form working and saving to module.txt, you aren’t
seeing anything new on the view. As shown in Listing 5-4, the view can get a bit complicated,
though, so go ahead and use the example modules as a template.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 115

9945CH05.qxd 3/31/08 1:17 PM Page 115

Listing 5-4. Creating the Basic Display in squidoo/view.php

<?php
if (is_array($this->attributes) && array_key_exists('details', $this->attributes) &&

is_array($this->attributes['details']) &&
array_key_exists('limit', $this->attributes['details'])) {

$limit = $this->attributes['details']['limit'];
$url = 'http://localhost:3000/releases.xml?limit=' . urlencode($limit);
$result = $this->rest_connect($url);

if ($result) {
$data = @simplexml_load_string($result);

if ($data->release) {
print "<dl>";
foreach ($data->release as $release) {
print "<dt>";
print "movie_id ."'>";
print $release->movie->title . "</dt>";
print "<dd>" . $release->format . ' - ' . $release->released_on . "</dd>";

}
print "</dl>";

} else {
print "Sorry, no upcoming releases were found.<!-- refresh me -->";

}
} else {
print "Sorry, we couldn't connect to MovieList. Please try again later.";

}
} else {
print "Sorry, there was a problem loading releases from MovieList. ";
print "Please try again later.";

}
?>

There’s a lot going on here—especially if you’re not very familiar with PHP—but it’s
pretty easy to understand once you dig through it. The core of the view lies in the call to
rest_connect, which is provided by Squidoo (it’s defined in mdk/lib/module.php) and is
essentially just a wrapper around PHP’s file_get_contents method—which you used in your
test script back at the beginning of the chapter. You should recognize the URL that is being
loaded: http://localhost:3000/releases.xml?limit=[the input from the form] is your
MovieList application’s release listing page, requested via XML.

The code then processes the string it retrieves through @simplexml_load_string (the @
suppresses errors in the translation) and instantiates a SimpleXML object ($data) that can be
further manipulated. The releases stored in $data are then iterated over and inserted into a
<dl> for display. The rest of the code is meant to handle errors—from ensuring that the mod-
ule details are present and in a suitable form to ensuring that the REST call returned the
expected data.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP116

9945CH05.qxd 3/31/08 1:17 PM Page 116

http://localhost:3000/releases.xml?limit=
http://localhost:3000/movies
http://localhost:3000/releases.xml?limit=

If you now return to the MDK and edit your form, you should see the results of your new
view, as in Figure 5-9.

Figure 5-9. Output of the simple module

There are obviously several problems with this code; first, you’re not seeing any movie
titles or release dates. Also, the number of releases is independent of the number you entered
on the form (though whether you notice this or not depends on what you entered). To fix these
issues, you’ll need to edit MovieList itself, as highlighted in Listing 5-5.

Listing 5-5. Supporting the Basic Module by Updating app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
before_filter :require_admin, :except => :index

GET /releases
GET /releases.xml
def index
respond_to do |format|
format.html {
paginate_releases

}
format.js {
upcoming_releases

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 117

9945CH05.qxd 3/31/08 1:17 PM Page 117

}
format.xml {
upcoming_releases
render :xml => @releases.to_xml(:dasherize => false, :include => :movie)

}
end

end

...

private
def upcoming_releases
limit = params[:limit] || nil
@releases = Release.find(:all,
:include => :movie,
:limit => limit,
:order => 'released_on DESC',
:conditions => ['released_on >= ?', Date.today]

)
end

def paginate_releases
@releases = Release.paginate(:all, :page => params[:page], :include => :movie)

end
end

The first major change is that the JavaScript and XML response blocks are now using the
same new method: upcoming_releases. This method is almost identical to the code that used
to live within the JavaScript block, with the addition of a limit variable; if a limit parameter is
found, it will be used to limit the result set.

The other significant difference is related to the information that was missing from the
view, which is addressed by making the respond_to block for the XML format much more pow-
erful. The scaffold-generated XML API looks like this: render :xml => @releases. This relies
on an implicit call to ActiveRecord::Base#to_xml (in this case, on the releases collection). The
problem here is that the implicit call prevents you from specifying a number of settings that
change the output.

For instance, by default associations are not included in XML serialization. You can
change that by passing an :include parameter to the method, however, as the code in
Listing 5-5 illustrates. That change ensures that the associated movie record for each release
will be included in the action’s output.

■Tip You can also pass :except to the to_xml method, which allows you to exclude individual fields from
the serialization. Interestingly, :except is recursive; if you were to say :except => :id in this code, both
the release ID and its associated movie’s ID would disappear from the output.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP118

9945CH05.qxd 3/31/08 1:17 PM Page 118

mailto:@releases.to_xml(:dasherize

If you looked at the XML being returned from MovieList before you updated the con-
troller, you would have seen the problem with the release dates. By default, to_xml translates
underscores in attribute names to dashes—which means that your released_on dates are
being serialized as <released-on type="date">1954-04-26</released-on>. Your PHP code isn’t
set up to recognize a released-on element, though; instead, it wants released_on. This setting
can be changed by adding :dasherize => false to the method call.

With these changes, the module works properly, as you can see in Figure 5-10.

Figure 5-10. The updated module view

A More Complex Module
With the simple module working, it’s time to tackle a slightly more complicated project. For
this one, you’ll be allowing more customization to the upcoming release list than you have
before. In all your previous work, you’ve been displaying theatrical releases only; here, how-
ever, you’ll let the lensmaster specify the type of release she wants to display. In addition,
you’ll be allowing her to control how far in advance she wants to look for releases, as well.
This module, then, could be very useful on a television or DVD lens.

The general principles are the same as they were for the previous project; first, you add
a couple of fields on the module form to capture the lensmaster’s preferences, as shown in
Listing 5-6.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 119

9945CH05.qxd 3/31/08 1:17 PM Page 119

Listing 5-6. Creating a More Complex Form in squidoo/form.php

<div id="formatForm">
<h2>What format would you like to show?</h2>
<select
name="modules[id][details][release_format]"
id="modules_id_details_release_format" />

<?php
$formats = array('dvd', 'theater', 'tv');
foreach ($formats as $format) {
echo '<option value="' . $format . '"';
if ($format == $module->details['release_format']) {
echo ' selected="selected"';

}
echo '>' . $format . '</option>';

}
?>
</select>

</div>

<div id="timeForm">
<h2>How far in the future would you like to show releases?</h2>
<select name="modules[id][details][time]" id="modules_id_details_time" />

<?php
$times = array('1 week', '1 month', '3 months');
foreach ($times as $time) {
echo '<option value="' . $time . '"';
if ($time == $module->details['time']) {
echo ' selected="selected"';

}
echo '>' . $time . '</option>';

}
?>
</select>

</div>

Instead of adding new text fields to the form, you’re using drop-down menus to constrain
the lensmaster to a set of predetermined values. Of course, with the appropriate instructional
text, you might allow the end user to enter anything they like—but, as you’ll see later in the
chapter, unexpected data can result in problems.

The fields to be added, however, still need to be accounted for in the module view, as
shown in Listing 5-7.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP120

9945CH05.qxd 3/31/08 1:17 PM Page 120

Listing 5-7. Adding to squidoo/view.php to Support the More Complex Form

<?php
if (is_array($this->attributes) && array_key_exists('details', $this->attributes) &&

is_array($this->attributes['details']) &&
array_key_exists('time', $this->attributes['details'])) {

$release_format = $this->attributes['details']['release_format'];
$time = $this->attributes['details']['time'];
$url = 'http://localhost:3000/releases.xml?release_format=';
$url .= urlencode($release_format) . '&time=' . urlencode($time);

$result = $this->rest_connect($url);

if ($result) {
$data = @simplexml_load_string($result);

if ($data->release) {
print "<dl>";
foreach ($data->release as $release) {
print "<dt>";
print "movie_id ."'>";
print $release->movie->title . "</dt>";
print "<dd>" . $release->released_on . "</dd>";

}
print "</dl>";

} else {
print "Sorry, no upcoming releases were found.<!-- refresh me -->";

}
} else {
print "Sorry, we couldn't connect to MovieList. Please try again later.";

}
} else {
print "Sorry, there was a problem loading releases from MovieList. ";
print "Please try again later.";

}
?>

With the exception of the URL passed to rest_connect, this view is almost unchanged from
that in the earlier module; you’re just sending a different set of parameters via the query
string. MovieList, however, is not yet set up to receive and process those parameters, so you’ll
need to update it as well, as shown in Listing 5-8.

Listing 5-8. Handling the New Parameters in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
...

private
def upcoming_releases

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 121

9945CH05.qxd 3/31/08 1:17 PM Page 121

http://localhost:3000/releases.xml?release_format=
http://localhost:3000/movies

limit = params[:limit] || nil
rel_format = params[:release_format] || 'theater'
raw_time = params[:time] || '1 month'
time = eval("#{raw_time.sub(/ /, '.')}.from_now")

@releases = Release.find(:all,
:include => :movie,
:limit => limit,
:order => 'released_on DESC',
:conditions => ['format = ? AND released_on BETWEEN ? AND ?',
rel_format,
Date.today,
time

]
)

end

...
end

The only changes here are the addition of the release_format and time parameter pro-
cessing, much like the limit processing added in the previous project. The only unusual bit is
the code that handles the time parameter, translating it from the English “1 month,” or “2
weeks” to the Ruby expressions 1.month.from_now or 2.weeks.from_now. The resulting expres-
sion is then evaluated to give a Ruby datetime suitable for use later in the Release.find call.

At this point, however, you may want to refactor this method into the Release model; one
of the standard patterns for best-practice Rails development is “Skinny Controller/Fat Model,”
where the majority of your business logic (like the upcoming_releases method here) lives in
your model. Under this view, your controllers should be as lean as possible, since the main
danger is always to put too much in them. This refactoring produces the updated controller
shown in Listing 5-9 and the corresponding updates to the model shown in Listing 5-10.

Listing 5-9. Moving Business Logic out of app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
before_filter :require_admin, :except => :index

GET /releases
GET /releases.xml
def index
respond_to do |format|
format.html {
paginate_releases

}
format.js {
@releases = Release.upcoming(params)

}
format.xml {

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP122

9945CH05.qxd 3/31/08 1:17 PM Page 122

mailto:@releases=Release.upcoming

@releases = Release.upcoming(params)
render :xml => @releases.to_xml(:dasherize => false, :include => :movie)

}
end

end

...
end

Listing 5-10. Adding Business Logic to app/models/release.rb

class Release < Activclass Release < ActiveRecord::Base
...

def self.upcoming(params)
limit = params[:limit] || nil
rel_format = params[:release_format] || 'theater'
raw_time = params[:time] || '1 month'
time = eval("#{raw_time.sub(/ /, '.')}.from_now")
Release.find(:all,
:include => :movie,
:limit => limit,
:order => 'released_on DESC',
:conditions => ['format = ? AND released_on BETWEEN ? AND ?',
rel_format,
Date.today,
time

]
)

end
end

The end result of all this is a single find call that returns all (or a given number of)
releases in a specified format (or theatrical releases, if no format is specified) occurring
between today and a specified date (or one month from today, if no date is given). The releases
returned from that call are then passed back to the controller, which then sends them via XML
to the module view to process and display.

Injection Flaws
Most web developers have heard of SQL injection, in which a malicious end user submits a
carefully constructed chunk of input through a form that, when processed through the data-
base, has an unexpected effect (say, deleting your users table). Rails 2 does an exceptional job
of protecting you against such attacks behind the scenes, but (unfortunately) there are other
types of injection risks that are not so easily avoided—in particular, HTML injections.

This sort of attack has become much easier with the advent of web developer tools, such
as Firebug and the Web Developer Toolbar (both available on Firefox). Both of these add-ons
allow end users to edit the markup of any page they visit, including adding data to a form they

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 123

9945CH05.qxd 3/31/08 1:17 PM Page 123

mailto:@releases.to_xml(:dasherize

are about to submit. This would not be as worrisome on the first module you built, as the limit
field there is already free-form. (The main issue there is one of usability—someone might
enter the word “five” instead of the number and fail to understand why they get an error
instead of the five upcoming releases they expected.) On the more complex module, however,
someone might happily use HTML injection to attempt to display a new release format, or to
try to retrieve all releases up to fifteen years in the future or a month in the past—in other
words, to completely subvert the intent of the form.

The solution to this problem, of course, is to validate the data coming in from the user.
You can perform the validation at any of three levels: (far-)client-side (on the browser, with
JavaScript), (near-)client-side (on the module view, in this case), or server-side (in the
MovieList application itself). Generally, you get a better user experience the closer you do the
validation to the end user, but when the exploits are coming from people manipulating the
browser, the JavaScript solution is itself insecure. The next best option, then, is to perform the
validation on the module view.

First, the simpler module. All you need to do here is check that the limit provided is in fact
a number and is greater than zero, as highlighted in Listing 5-11.

Listing 5-11. Validating Limits in squidoo/view.php

<?php
if (is_array($this->attributes) && array_key_exists('details', $this->attributes) &&

is_array($this->attributes['details']) &&
array_key_exists('limit', $this->attributes['details'])) {

$limit = $this->attributes['details']['limit'];
if (is_numeric($limit) && $limit > 0) {
$url = 'http://localhost:3000/releases.xml?limit=' . urlencode($limit);
$result = $this->rest_connect($url);

if ($result) {
$data = @simplexml_load_string($result);

if ($data->release) {
print "<dl>";
foreach ($data->release as $release) {
print "<dt>";
print "movie_id ."'>";
print $release->movie->title . "</dt>";
print "<dd>" . $release->format . ' - ' . $release->released_on . "</dd>";

}
print "</dl>";

} else {
print "Sorry, no upcoming releases were found.<!-- refresh me -->";

}
} else {
print "Sorry, we couldn't connect to MovieList. Please try again later.";

}
} else {
print "Sorry, but the limit you entered was invalid. ";

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP124

9945CH05.qxd 3/31/08 1:17 PM Page 124

http://localhost:3000/releases.xml?limit=
http://localhost:3000/movies

print "Please try a number greater than zero.";
}

} else {
print "Sorry, there was a problem loading releases from MovieList. ";
print "Please try again later.";

}
?>

Obviously, this is easy—just check that the limit is valid and display an error message if
not. The situation is a bit more complicated for the second module, but only because you have
to check two attributes instead of one (Listing 5-12).

Listing 5-12. Validating Dates in squidoo/view.php

<?php
if (is_array($this->attributes) && array_key_exists('details', $this->attributes) &&

is_array($this->attributes['details']) &&
array_key_exists('limit', $this->attributes['details'])) {

$release_format = $this->attributes['details']['release_format'];
$time = $this->attributes['details']['time'];

$valid_formats = ['dvd', 'theater', 'tv'];
$valid_times = ['1 week', '1 month', '3 months'];

if (in_array($release_format, $valid_formats) && in_array($time, $valid_times)) {
$url = 'http://localhost:3000/releases.xml?release_format=';
$url .= urlencode($release_format) . '&time=' . urlencode($time)

$result = $this->rest_connect($url);

if ($result) {
$data = @simplexml_load_string($result);

if ($data->release) {
print "<dl>";
foreach ($data->release as $release) {
print "<dt>";
print "movie_id ."'>";
print $release->movie->title . "</dt>";
print "<dd>" . $release->released_on . "</dd>";

}
print "</dl>";

} else {
print "Sorry, no upcoming releases were found.<!-- refresh me -->";

}
} else {
print "Sorry, we couldn't connect to MovieList. Please try again later.";

}

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 125

9945CH05.qxd 3/31/08 1:17 PM Page 125

http://localhost:3000/releases.xml?release_format=
http://localhost:3000/movies

} else {
$message = 'Sorry, but there was a problem with your request:';
if (!in_array($release_format, $valid_releases)) {
$message .= '
';
$message .= 'Please check that you are specifying a valid release format';

}
if (!in_array($time, $valid_times)) {
$message .= '
Please check that you are specifying a valid time';

}
}

} else {
print "Sorry, there was a problem loading releases from MovieList. ";
print "Please try again later.";

}
?>

With these updates to the view, end users will be unable to pass unspecified formats and
times through to MovieList—instead, they’ll get caught on the view, and their attempted input
will produce an error message until they stick to the options allowed by the form.

Providing Interactivity
Up to this point, the modules you’ve built have been (like your earlier JavaScript widgets)
read-only. For this next project, though, you’ll be doing something a little more interesting—
you’ll be developing a module that focuses on a specific movie and lets lens visitors comment
on it.

MovieList updates
Commenting is entirely new functionality for your sample application, so it will require
substantially more updates there than the previous modules have. To start, you’ll need a
Comment model and controller. For this, it’s easiest to use the scaffold generator:

./script/generate scaffold Comment movie_id:integer user_id:integer text:text

The scaffolding generator, as you saw in the earlier chapters, produces a model (and
associated test), a migration, a controller (and associated test, helper, and views), and a
map.resources line in routes.rb. You’ll need to customize much of this for the module, how-
ever, starting with the routing directive. Remove the map.resources :comments line added to
routes.rb by the generator and make the change shown in Listing 5-13.

Listing 5-13. Nesting Comments in config/routes.rb

ActionController::Routing::Routes.draw do |map|
...
map.resources :movies, :has_many => :comments
...

end

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP126

9945CH05.qxd 3/31/08 1:17 PM Page 126

That line tells your application that comments are nested under movies. This nesting also
needs to be recorded in the models, so go ahead and update the Movie (Listing 5-14) and User
(Listing 5-15) model files.

Listing 5-14. Adding the Comment Association to app/models/movie.rb

class Movie < ActiveRecord::Base
has_many :comments, :dependent => :destroy
...

end

Listing 5-15. Adding the Comment Association to app/models/user.rb

class User < ActiveRecord::Base
has_many :comments, :dependent => :destroy
...

end

You’ll also need to add the associations to the autogenerated Comment model file
(Listing 5-16).

Listing 5-16. Adding Associations to app/models/comment.rb

class Comment < ActiveRecord::Base
belongs_to :movie
belongs_to :user

end

■Note You won’t be making use of the user-comment association with this module, but it’s a simple mat-
ter to add it; as long as you don’t require each comment to be associated with a user, you can allow people
to add authenticated comments via the MovieList site and anonymous comments via Squidoo modules.

Go ahead and use rake db:migrate to add the comments table to your database, and
you’re done with the back end. Of course, you still need somewhere to display the comments;
the movie detail page seems like an appropriate place. And while you’re there, you can add a
form to create a new comment for the movie, too (Listing 5-17).

Listing 5-17. Adding Comments to app/views/movies/show.html.erb

<div id="details">
<%= admin_link_to 'Edit', edit_movie_path(@movie) %>

<%= image_tag @movie.image.public_filename if @movie.image %>

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 127

9945CH05.qxd 3/31/08 1:17 PM Page 127

mailto:@movie.image.public_filename
mailto:@movie.image

<h1><%= h @movie.title %></h1>
<h3 class="rating"><%= h @movie.rating %></h3>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% if logged_in? %>
<% unless current_user.interested_in?(@movie) %>
<% form_for current_user.interests.build(:movie => @movie),

:url => user_interests_path do |f| %>
<%= f.hidden_field :movie_id %>
<%= content_tag :button, 'Add this as an interest', :type => 'submit' %>

<% end %>
<% else %>
<p>You have added this movie as an interest</p>

<% end %>
<% end %>

<% unless @movie.releases.empty? %>
<div class="module">
Releases:
<% @movie.releases.each do |release| %>

<%= h release %>

<% end %>
</div>

<% end %>

<% unless @movie.roles.empty? %>
<div class="module">
People:
<% @movie.roles.each do |role| %>

<%= link_to h(role.person.full_name), role.person %> -
<%= role.name %>

<% end %>
</div>

<% end %>
</div>

<div id="comments">
<h2>Comments</h2>
<%= 'No one has commented on this movie' if @movie.comments.empty? %>

<%= @movie.comments.map { |comment|

content_tag :li, h(comment.text)
}.join("\n") %>

</p>

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP128

9945CH05.qxd 3/31/08 1:17 PM Page 128

mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?
mailto:@movie.releases.empty?
mailto:@movie.releases.each
mailto:@movie.roles.empty?
mailto:@movie.roles.each
mailto:@movie.comments.empty?
mailto:@movie.comments.map

<% form_for @movie.comments.build, {
:url => movie_comments_path(@movie),
:id => 'comment-form'

} do |f| %>
<%= f.text_area :text, :rows => 5 %>

<%= submit_tag 'Add Your Comment' %>

<% end %>
</div>

These additions to the view provide a placeholder message (“No one has commented on
this movie”) if there are no comments and an unordered list of any comments that have been
submitted. There’s also a form for new comments—and all of that, along with some minor
additions to the stylesheet, produces something like Figure 5-11.

Figure 5-11. The movie detail page with the new comment functionality

If you try to add a new comment at this point, however, the site will throw an exception—
remember that you made comments a nested resource under movies (which you can see in
the action for the new comment form, movie_comments_path(@movie)), but scaffolded code is
meant to be accessed directly. As a result, you have to make some changes to the
CommentsController, as highlighted in Listing 5-18.

Listing 5-18. Updating app/controllers/comments_controller.rb

class CommentsController < ApplicationController
before_filter :authorize_admin, :only => [:destroy]
before_filter :load_movie

GET /comments
GET /comments.xml
def index
@comments = @movie.comments.find(:all)

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 129

9945CH05.qxd 3/31/08 1:17 PM Page 129

mailto:@movie.comments.build
mailto:@movie.comments.find(:all

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @comments }

end
end

GET /comments/new
GET /comments/new.xml
def new
@comment = @movie.comments.build

respond_to do |format|
format.html # new.html.erb
format.xml { render :xml => @comment }

end
end

POST /comments
POST /comments.xml
def create
@comment = @movie.comments.build(params[:comment])

respond_to do |format|
if @comment.save
flash[:notice] = 'Comment was successfully created.'
format.html { redirect_to(movie_path(@movie)) }
format.xml { render :xml => @comment,
:status => :created,
:location => @comment

}
else
format.html { render :action => "new" }
format.xml { render :xml => @comment.errors,
:status => :unprocessable_entity

}
end

end
end

DELETE /comments/1
DELETE /comments/1.xml
def destroy
@comment = @movie.comments.find(params[:id])
@comment.destroy

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP130

9945CH05.qxd 3/31/08 1:17 PM Page 130

mailto:@movie.comments.build
mailto:@movie.comments.build
mailto:@comment.save
mailto:@comment.errors
mailto:@movie.comments.find
mailto:@comment.destroy

respond_to do |format|
format.html { redirect_to(movie_comments_path(@movie)) }
format.xml { head :ok }

end
end

private
def load_movie
@movie = Movie.find(params[:movie_id])

end
end

The changes here consist of removing a set of actions that aren’t needed (show, edit, and
update), adding an administrator filter for the destroy action, adding a load_movie filter to
handle the incoming movie_id parameter, and scoping all the comment find calls to the
loaded movie. The only other changes involve the redirects after creation and destruction; in
the former case, users are redirected to the movie on which they’ve commented, while in the
latter, administrators are redirected to the comment index action.

As for the views, you can delete the new.html.erb, edit.html.erb, and show.html.erb files—
the new comment form is embedded in the movie detail page, as you saw in Listing 5.18, while
the other two actions aren’t needed at all. The index view, however, needs to be modified
slightly, as highlighted in Listing 5.19.

Listing 5-19. Updating a Link Helper in app/views/comments/index.html.erb

<h1>Listing comments</h1>

<table>
<tr>
<th>Movie</th>
<th>User</th>
<th>Text</th>
<th> </th>

</tr>

<% for comment in @comments %>
<tr>
<td><%=h comment.movie.title %></td>
<td><%=h comment.user_id %></td>
<td><%=h comment.text %></td>
<td><%= link_to 'Destroy', movie_comment_path(comment.movie), {
:confirm => 'Are you sure?', :method => :delete

} %></td>
</tr>

<% end %>
</table>

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 131

9945CH05.qxd 3/31/08 1:17 PM Page 131

The significant changes here include removing the Show and Edit links and changing the
Destroy link to submit to the nested comment path—and those changes complete the basic
skeleton needed to create and manage comments on the MovieList side. With all of that in
place, users can view and create comments from movie detail pages, and administrators can
delete any inappropriate comments from the comment index page.

The next step, then, is to work on the Squidoo side, creating the module. You’ll certainly
have to tweak aspects of the Rails code you just worked on, but you can do that as the need
arises.

Reading the Comments
You’ll need to start by building the form, just as you did for the earlier modules. The general
idea of the module is that the lensmaster will specify a film, so you’ll have to provide some
mechanism for that. Relying on the lensmasters to know the ID that MovieList assigns to a
given film, however, is a bad idea. Instead, you can let them type in a movie title (of course,
you’re opening the module to the possibility of bad data via typos and the like, but you can
minimize the impact of such errors with appropriate messaging). To prevent overloading an
individual lens, you should also allow lensmasters to limit the number of comments they
display for their chosen movie. Those two requirements, then, result in the form shown in
Listing 5-20.

Listing 5-20. Adding Comment Functionality to squidoo/form.php

<div id="formatForm">
<h2>What movie would you like to display?</h2>
<input type="text" class="textfield"

value="<?php echo $module->details['title']; ?>"
name="modules[id][details][title]"
id="modules_id_details_title" />

</div>

<div id="limitForm">
<h2>How many comments would you like to show?</h2>
<input type="text" class="textfield"

value="<?php echo $module->details['limit']; ?>"
name="modules[id][details][limit]"
id="modules_id_details_limit" />

</div>

With that complete, you can turn to the view. Putting aside the need to add a comment
form to the module for the moment, the view (Listing 5-21) looks very similar to those from
the previous projects.

Listing 5-21. Displaying Comments in squidoo/view.php

<?php
if (is_array($this->attributes) && array_key_exists('details', $this->attributes) &&

is_array($this->attributes['details']) &&

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP132

9945CH05.qxd 3/31/08 1:17 PM Page 132

array_key_exists('title', $this->attributes['details'])) {
$title = $this->attributes['details']['title'];
$limit = $this->attributes['details']['limit'];

$url = 'http://localhost:3000/comments.xml?title=';
$url .= urlencode($title) . '&limit=' . urlencode($limit);
$result = $this->rest_connect($url);

if ($result) {
$data = @simplexml_load_string($result);

print 'Comments about ' . $title . '';

if ($data->comment) {
print "";
foreach ($data->comment as $comment) {
print "" . $comment->text . "";

}
print "";

} else {
print "Sorry, no comments were found.<!-- refresh me -->";

}
} else {
print "Sorry, we couldn't connect to MovieList. Please try again later.";

}
} else {
print "Sorry, there was a problem loading comments from MovieList. ";
print "Please try again later.";

}
?>

The similarities are obvious—lots of error handling surrounds a REST call passing the
entered data to MovieList. Given the controller code you wrote earlier, though, you should
notice a problem: your application doesn’t know how to handle the parameters being
passed in.

The first step here is to break the nesting between comments and movies. Since you don’t
know in advance what movie is being requested (you have to look at the title for that), you
need to be able to submit to /comments directly. Thus, you have to add a directive back to
routes.rb (Listing 5-22).

Listing 5-22. Adding a Top-Level Comments Resource to config/routes.rb

ActionController::Routing::Routes.draw do |map|
...
map.resources :movies, :has_many => :comments
map.resources :comments
...

end

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 133

9945CH05.qxd 3/31/08 1:17 PM Page 133

http://localhost:3000/comments.xml?title=

With that done, you can return to the CommentsController. The module submits a title and
a limit to the index action, so you need to update that action to retrieve a movie based on ID
(which it already does) or title, as shown in Listing 5-23.

Listing 5-23. Handling the New Access Method in app/controllers/comments_controller.rb

class CommentsController < ApplicationController
before_filter :authorize_admin, :only => [:destroy]
before_filter :load_movie

GET /comments
GET /comments.xml
def index
@comments = @movie.comments.find(:all,

:limit => params[:limit],
:order => 'created_at DESC'

)

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @comments }

end
end

...

private
def load_movie
@movie = if params[:movie_id]
Movie.find(params[:movie_id])

elsif params[:title]
Movie.find_by_title(params[:title])

end
end

end

Once you’ve found the correct movie, you can pull back its comments (ordered by most
recent first and limited to the number requested, if any such limit is present). With that, the
first cut of the module is done—you’re still rendering the comment feed directly via XML, with
no need to add any extra options as you did with the earlier modules. And indeed, when you
save the form, you’ll see any comments entered for the specified movie, as in Figure 5-12.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP134

9945CH05.qxd 3/31/08 1:17 PM Page 134

mailto:@movie.comments.find(:all

Figure 5-12. Reading comments in the module

Writing Comments
The next step in building the module is to add the ability to submit comments from the mod-
ule itself. The basic idea is easy enough—you just need to create a form. To build that form,
however, you need to know the ID of the movie you’ll be creating comments for—and to get
that, you’ll need to modify the XML returned from the CommentsController, as shown in
Listing 5-24.

Listing 5-24. Updating the XML Returned from app/controllers/comments_controller.rb

class CommentsController < ApplicationController
...

GET /comments
GET /comments.xml
def index
@comments = @movie.comments.find(:all,
:limit => params[:limit],
:order => 'created_at DESC'

)

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 135

9945CH05.qxd 3/31/08 1:17 PM Page 135

mailto:@movie.comments.find(:all

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @movie.to_xml(
:include => :comments

) }
end

end

...
end

With that, the view you’ve already created will receive both a top-level movie object and
the comments already created for it. Adding the movie object to the returned XML allows you
to extract the movie ID as needed to build your form. If you try this in the MDK, however,
you’ll notice a problem. Where before the comments returned from the REST call were limited
(as specified in the module form) and ordered by date posted, with this change both the limit
and the ordering have been lost.

If you think about it, the reason should be obvious—whereas before the controller was
rendering :xml => @comments (which were loaded with both the order and the limit), it is now
returning the comments as they exist under the movie object. Unfortunately, you can’t render
both @movie and @comments, as I attempt to do in Listing 5-25.

Listing 5-25. This Doesn’t Work

format.xml { render :xml => @movie.to_xml(
:include => @comments

) }

There is, however, a solution. So far, you’ve seen several of the options that
ActiveRecord::Base#to_xml accepts: :include, :except, and :dasherize. One of the other
options you can pass to it can resolve this particular issue. The :procs option allows you to
specify a proc or block that will run within the XML builder and (potentially) insert more
data into the stream. In this case, you can use it as demonstrated in Listing 5-26.

Listing 5-26. Returning Comments via a proc in app/controllers/comments_controller.rb

class CommentsController < ApplicationController
before_filter :authorize_admin, :only => [:destroy]

GET /comments
GET /comments.xml
def index
@comments = @movie.comments.find(:all,

:limit => params[:limit],
:order => 'created_at DESC'

)
recent_comments = lambda do |options|
options[:builder] << @comments.to_xml(:skip_instruct => true)

end

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP136

9945CH05.qxd 3/31/08 1:17 PM Page 136

mailto:@movie.to_xml
mailto:@movie.to_xml
mailto:@movie.comments.find(:all
mailto:@comments.to_xml(:skip_instruct=

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @movie.to_xml(
:procs => [recent_comments]

) }
end

end

...
end

Instead of including the movie’s comments directly, the :procs array runs the recent_
comments proc within the movie context. Since recent_comments was declared when @comments
had the records that you wanted to include in the output XML, you can just append it to the
XML builder (making sure to suppress the XML declaration with :skip_instruct), and it
shows up correctly in the output stream.

With that fixed, you can now return to the module view to add the new comment form, as
highlighted in Listing 5-27.

Listing 5-27. Displaying the Comment Form in squidoo/view.php

<?php
if (is_array($this->attributes) && array_key_exists('details', $this->attributes) &&

is_array($this->attributes['details']) &&
array_key_exists('title', $this->attributes['details'])) {

$title = $this->attributes['details']['title'];
$limit = $this->attributes['details']['limit'];

$result = $this->rest_connect('http://localhost:3000/comments.xml?title=' . ➥

urlencode($title) . '&limit=' . $limit);

if ($result) {
$data = @simplexml_load_string($result);

print 'Comments about ' . $data->title . '';
if ($data->comments) {
print "";
foreach ($data->comments->comment as $comment) {
print "" . $comment->text . "";

}
print "";

} else {
print "Sorry, no comments were found.<!-- refresh me -->";

}

$submit_url = 'http://localhost:3000/movies/' . $data->id . '/comments.xml';

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 137

9945CH05.qxd 3/31/08 1:17 PM Page 137

mailto:@movie.to_xml
http://localhost:3000/comments.xml?title=
http://localhost:3000/movies

print "<p>Add a Comment</p>";
print "<form method='post' action='" . $submit_url . "' ";
print "onsubmit=\"new Ajax.Request('" . $submit_url . "', ";
print "{asynchronous:true, evalScripts:true, ";
print "parameters:Form.serialize(this)}); return false;\"";
print ">";
print "<textarea name='comment[text]' id='comment_text'></textarea>";
print "
<input type='submit' value='Save Comment' />";
print "</form>";

} else {
print "Sorry, we couldn't connect to MovieList. Please try again later.";

}
} else {
print "Sorry, there was a problem loading comments from MovieList. ";
print "Please try again later.";

}
?>

When a user hits a lens with this module, she can enter a comment in the form provided;
upon submitting the form, an Ajax request is sent to MovieList to add the new comment.
Thanks to the controller code you’ve already seen, the comment is created, and then it is
returned in XML to the lens.

Before writing the code to handle the returned XML, though, take a moment to check this
out in the MDK. Nothing’s changed on the module form since you first saved it, and the com-
ment form on the view looks good (Figure 5-13)—but when you try to submit it, nothing
happens. What’s going on?

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP138

9945CH05.qxd 3/31/08 1:17 PM Page 138

Figure 5-13. The module view with comment form

Ajax Troubles
The problem lies not in the form, but in Ajax itself. One of the security features inherent in
Ajax prevents a web page from making requests to other servers. This is a great feature from a
security standpoint, but it makes your job much more difficult in circumstances like this.

In this case, the best you can do is submit the form normally (without Ajax) to MovieList.
After the comment is created, you can then redirect the user back to the lens. Assuming the
Internet latency is minimal, she might not even notice the redirection.

To make the switch, just delete the lines in Listing 5-28 from your view.

Listing 5-28. Lines to Delete from squidoo/view.php

print "onsubmit=\"new Ajax.Request('" . $submit_url . "', ";
print "{asynchronous:true, evalScripts:true, ";
print "parameters:Form.serialize(this)}); return false;\"";

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 139

9945CH05.qxd 3/31/08 1:17 PM Page 139

You will also need to update the create action in CommentsController to redirect the user
back to the lens, as shown in Listing 5-29.

Listing 5-29. Adding Redirects to app/controllers/comments_controller.rb

class CommentsController < ApplicationController
...

def create
@comment = @movie.comments.build(params[:comment])
respond_to do |format|
if @comment.save
flash[:notice] = 'Comment was successfully created.'
format.html { redirect_to(movie_path(@movie)) }
format.xml { redirect_to :back }

else
format.html { render :action => "new" }
format.xml { redirect_to :back }

end
end

end

...
end

While these changes result in the loss of some information (in particular, the errors from a
failed attempt), you could not have used that data in the module anyway, given the con-
straints of Ajax.

And with that issue resolved, the module is complete—try it out in the MDK, and you’ll
see that you can add comments as you will. Of course, you could add still more features (some
sort of error handling, for instance, would be essential given the free-form title field).

Cross-Site Request Forgery
At this point, it may be helpful to discuss a security feature built into Rails 2. It’s called
RequestForgeryProtection, and it is intended to help you avoid cross-site request forgery
attacks. These attacks rely on servers indiscriminately accepting well-formed requests regard-
less of where they come from—just as MovieList does (as is illustrated in this last project).

Imagine you log into your banking website and do some business. Instead of logging out,
you then go to another, less secure website—say, Digg. You find something interesting and
click on it. What you don’t know is that the “interesting article” you’re now reading has a hid-
den <iframe> on the page that has submitted a form to your bank, transferring $1,000 from
you to someone else.

This is possible because anyone can create a form that submits to any page on the Web; a
hacker can easily create a form to transfer funds from one account (yours) to another (his).
The main drawback of such forms is that they’re generally pretty obvious—people don’t often
go around clicking transfer-fund forms when they’re on random web sites. With a CSRF attack,

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP140

9945CH05.qxd 3/31/08 1:17 PM Page 140

mailto:@movie.comments.build
mailto:@comment.save

however, hackers can get you to “click” that form without you even knowing—once you load
the page, JavaScript can be used to submit the form. If you haven’t logged out of your banking
web site, then when the submission comes in it includes your authentication cookies, and it
looks like a perfectly valid transfer request.

There aren’t yet any foolproof means of combating this sort of attack, but the protection
included in Rails 2 is vastly better than nothing. You can activate it by uncommenting the line
protect_from_forgery ... in your application.rb. Once that line is active, every form and
Ajax request your application generates will also include a random string of characters. After
you uncomment the line, browse to an edit page within your application and view the source
code; you’ll see something like Listing 5-30.

Listing 5-30. A CSRF Key

<input type="hidden" name="authenticity_token" ➥

value="785d7b3f32e6d2abe0deb730dd2a81899fa750f2" />

If a request comes in without that key, it will be treated as if it were a CSRF attack and will
throw an error.

If you were to turn on RequestForgeryProtection in MovieList, the module you just built
would again fail—the problem is that the comment form in the module view has no way to
acquire the authenticity token it would need to pass your application’s CSRF protection. In
general, this is a good thing, but it might be taken to imply that you can’t have a full-featured
client and still take advantage of Rails’s built-in CSRF security. This should not be the case,
obviously, and is something that the community is still working on.

Further Projects
The Squidoo modules you’ve built are not full-featured PHP clients for your MovieList appli-
cation. The ease of development that the module platform provides also constrains the
functionality that can be built; nevertheless, they have provided the foundation you would
need to build an actual client. From using PHP’s built-in methods (file_get_contents and
simplexml_load_string, for instance), to the mechanisms of error handling, you could easily
put the practices illustrated here to work in a more complete application.

The biggest benefit of these module projects, however, is to reinforce how easy it is to
build interfaces into a RESTful system. The most challenging aspect here was to parse the
returned XML—and that’s more an indictment of XML than of REST. You can avoid much of
that pain by changing the output format to, say, JSON.

If you’d like to continue developing more complex clients in PHP, you could try expanding
the commenting model a bit further. For instance, you might display the last ten movies that
have received comments on a home page, with a search box to find additional films. You could
then allow comments on any of those movies individually.

You might also consider allowing users to rate movies; for that, you’d need to add an addi-
tional model (or extend the comment model to include a rating). Other than that, however,
the process should be nearly identical to what you went through in adding commenting itself.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP 141

9945CH05.qxd 3/31/08 1:17 PM Page 141

Summary
By now, you’ve built several widgets, modules, and clients to provide a new window into your
MovieList application. You’ve used JavaScript and PHP, and you’ve continued to build new fea-
tures onto your sample site. In the next chapter, you’ll be taking a slightly different approach.
It’s all Rails (hurray!), but instead of building new clients you’ll be building new views within
the MovieList framework itself. Next stop: a MovieList iPhone interface.

CHAPTER 5 ■ SEE YOU ON THE SERVER SIDE: PHP142

9945CH05.qxd 3/31/08 1:17 PM Page 142

An Apple a Day: The iPhone

Up to this point, you’ve been building clients to allow other sites to access the data and func-
tionality of your MovieList application. With this chapter, however, you’ll be moving in a
slightly different direction; instead of building client applications meant to be accessed from a
web browser, you’ll be building a MovieList interface meant to be accessed from a new client
device: the Apple iPhone.

The iPhone presents a distinct set of opportunities and challenges for web developers;
it boasts a modified version of the Safari web browser that, unlike most previous mobile
browsers, uses the same rendering engine as the desktop version. This means that the iPhone
provides one of the most complete views of the Internet of any mobile device. Most of the
standard technologies that you use to develop your sites are available almost unchanged from
their more standard incarnations, including Ajax and CSS. The major exceptions to this are
browser plugins and extensions—Flash, for instance, and related elements. Aside from those,
however, the iPhone browsing experience is remarkably close to that of a desktop browser.

There are, however, some constraints unique to the iPhone interface, stemming from
both the hardware and the software available on the device. The available viewing area is
much smaller than the standard desktop browser, for instance, and several types of user inter-
action (switching orientation and zooming, for instance) are unavailable or act differently
than on the desktop. Any attempt to build an iPhone interface for an existing site must
account for these differences to some extent.

The good news, however, is that you already have a firm foundation for the upcoming
projects. By building MovieList RESTfully, you’ve created a modular framework where it’s a rel-
atively simple matter to switch out the view layer for something appropriate to the current
device. Furthermore, by using Rails 2, you have access to several techniques that make this
process even easier.

Device Considerations
The key to building an iPhone interface is understanding the various constraints imposed by
the platform. The most obvious of these differences are the smaller viewport and the pointer
(which, being a fingertip, is much larger than the mouse pointer, and is correspondingly less
precise). Pages that respect these and other differences are easier and more pleasant to use.

With this understanding, you can classify any web site into one of three categories. First,
there are the vast majority of sites that do nothing to optimize the interface for the iPhone
browser. This is a reasonable choice for many site owners, as the development time and effort
to customize the markup sent to the end browser can in some cases be considerable. Happily

143

C H A P T E R 6

9945CH06.qxd 3/31/08 1:43 PM Page 143

for those situations, the iPhone does a remarkably good job of rendering these sites well (with
the exceptions already noted). For instance, Figure 6-1 shows how the iPhone renders http://
americanbrittanyrescue.org/—a standard web site.

Figure 6-1. A standard site viewed on the iPhone

The next category contains sites that have been optimized for the iPhone to a greater or
lesser extent. Sites in this category generate CSS and markup specifically for the iPhone, and
they may either attempt to detect the iPhone browser automatically or be available at a dis-
tinct URL. Figure 6-2 is an example of this—it is the iPhone interface for Facebook, available
at http://iphone.facebook.com.

Finally, there are iPhone web applications—web sites that, through a combination of
JavaScript, CSS, and markup, strive to emulate the look and feel of native iPhone software. On
these sites, pages slide in quickly, lists look just like your Contacts, and you can click on phone
numbers to initiate a call. These sites integrate as tightly as possible with the platform and
attempt to minimize any disruption in the user experience as you move from the native soft-
ware to the site. Figure 6-3 shows Movies.app, which uses the iUI toolkit (about which you’ll
see more later in the chapter) to provide a native-feeling interface.

■Note In March 2008, the release of the iPhone SDK made possible a fourth category: native iPhone
applications. These are outside the scope of this book, but if you’re interested, the project is basically just
building a client for your web application in Objective C. You can get the SDK at http://developers.
apple.com/iphone/.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE144

9945CH06.qxd 3/31/08 1:43 PM Page 144

http://americanbrittanyrescue.org/%E2%80%94a
http://americanbrittanyrescue.org/%E2%80%94a
http://iphone.facebook.com
http://developers

Figure 6-2. A site optimized for the iPhone Figure 6-3. An iPhone web application

iPhone applications work best when they address a single, clearly defined need. The
Weather application, for instance, just tells you the weather forecast for one or more locations;
the Stocks application just returns stock quotes. Many web sites, however, have a broader set
of goals. Even MovieList does several different things—from serving as an archive and calen-
dar of movie releases to providing a directory with notifications for user interests. Given that,
it usually makes sense to start building your iPhone interface by optimizing an existing site.
While optimizing, you can simplify the scope of the application—and once you’re finished,
you can then work on turning it into an iPhone web application. In this chapter, then, you’ll
start by building an optimized interface for MovieList. Once you’ve completed that, you’ll use
the iUI toolkit to create an iPhone web application version of the site.

Interface Constraints
Apple is a design-oriented company, and it has a history of providing interface guidelines to
developers, the better to create consistent user experiences across their products. The iPhone
is no exception to this tradition; Apple has published a set of human interface guidelines for
iPhone development, which you can read or download at http://developer.apple.com/
documentation/iPhone/Conceptual/iPhoneHIG/Introduction/chapter_1_section_1.html.

By reading through the HCI (human-computer interface) guidelines, you can learn any
number of useful facts and tips about designing interfaces for the iPhone. This is the docu-
ment that tells you the size of the viewport (the viewable area is 320✕356 when the iPhone is
in portrait orientation; it is 480✕208 when in landscape mode) and shows you how to take
advantage of the built-in software that deals with displaying web pages that aren’t optimized.

Take the viewport, for instance. Most web pages today are closer to 980 pixels wide than
to the 320 or 480 pixels available to the device. To compensate for this, Safari on the iPhone

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 145

9945CH06.qxd 3/31/08 1:43 PM Page 145

http://developer.apple.com

automatically tries to scale any web page it renders to fit the viewport. For some web pages,
this will result in all the content being compressed even smaller than the available space,
making them unreadable and unusable without zooming, as you can see in Figure 6-4.

Figure 6-4. A standard web site that does not adapt well to the iPhone browser’s constraints

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE146

9945CH06.qxd 3/31/08 1:43 PM Page 146

Luckily, this behavior can be overridden, as you’ll see later in the chapter.
Similarly, the dimensions of the viewport change dramatically when a user edits a form.

Unlike a desktop environment with a hardware keyboard, the iPhone has to use a significant
portion of its display to show the touch keyboard. As a result, the viewable region drops from
356 pixels tall to 140 pixels (when in portrait mode), or from 208 pixels to 28 pixels (in land-
scape mode). Obviously, this can have a dramatic effect on the user—labels and help text, for
instance, may be hidden by the keyboard—and unfortunately, this behavior cannot be
avoided.

These sorts of issues are described throughout the guidelines, and while you’ll see several
of them as you progress through the projects in this chapter, I highly recommend you look
more closely at the document itself.

Data Concerns
In addition to considering the interface constraints, you also need to pay attention to data.
Mobile devices typically (though not always) have slower Internet connections than do desk-
top machines—and though the gap is narrowing, it can still cause frustration for the end user.
In fact, one of the consistent complaints about the iPhone has been its reliance upon the
existing data network, and while your iPhone users can use wireless access points, they are
often likely to be out of range of an available hotspot. As such, you have a responsibility to
make your site as responsive as possible.

Luckily, however, this is not as absolute a requirement as it might initially seem. A number
of studies have shown that the impression of speedy performance is as valuable as the actual
performance itself—in other words, if your site feels fast, your users will be nearly as happy as
they would be if it actually were fast.

The key to creating the impression of responsiveness is to stay aware of the data you send
to the device. Instead of passing along huge, usually unnecessary datasets, send only the data
that users actually want. While you might send a content- and image-heavy movie detail page,
complete with every user’s comments, to a desktop browser, you can produce a superior expe-
rience on a mobile device by sending a more limited set of data—say the title, description, and
rating—initially; then you load the comments via Ajax or on a separate page only if the user
wants to read them. Similarly, you can limit the number of records returned on a listing page
to speed its loading, by paginating long lists or eliminating items that won’t be of interest to
most users (if, for instance, they represent old data).

Another technique for making users think your application is fast is to streamline access
to the most commonly requested information. Instead of forcing mobile users to browse to
find a given movie, for instance, you can keep them happy by giving them access to search—
with which they’re one query away from the item they want, as opposed to (potentially) many
screens of alphabetical listings.

Planning
With all of that in mind, you can now begin planning for the projects you’ll be working on in
this chapter. As you’ve already seen, the first is the development of a MovieList interface opti-
mized for the iPhone. In the course of building this, you’ll revisit much of the functionality
you’ve already built—from movies and people to interests and releases. Much of this will be
simple; in some cases, in fact, it will be as easy as renaming a file. For other actions, however,

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 147

9945CH06.qxd 3/31/08 1:43 PM Page 147

you’ll be drastically changing the information transmitted to the end user (the better to create
the impression of responsiveness).

In general, however, the changes you’ll make will be to better serve the needs of the
mobile user. A desktop user may be interested in a large amount of general information; with
MovieList, a user might want to see all of the upcoming releases in the next month or year.
Mobile users, however, typically have much more direct and immediate interests. Instead of
caring about the releases six months from now, such a user might be interested only in the
releases from the last few days, or in the information for a single movie.

A New Interface
This project will be made much easier by using several of the new features in Rails 2—custom
MIME types, respond_to, and format-specific views—but it will still require you to make some
decisions, keeping in mind Apple’s guidelines and your own development environment.

Infrastructure Decisions
The first step is to decide how you want users to access the optimized version of your applica-
tion. You have two basic options: provide a distinct URL for the iPhone version (for instance,
using a subdomain like iphone.movielist.com), or automatically send the optimized content
to any iPhone request.

Both approaches have advantages and disadvantages. The subdomain option, for
instance, is easy to test even without an iPhone (since you can hit the site from any browser
just by going to the appropriate URL) but can be more difficult to set up for newer system
administrators. The second approach—essentially, browser detection—is easy to set up but
more difficult to test without an actual iPhone, as you have to fool your application into think-
ing that requests are coming in from the mobile browser instead of, say, your desktop copy of
Firefox. The browser detection approach may less reliable in both the short and long term, as
well—potentially excluding devices that might benefit from the iPhone interface (like the iPod
Touch), and requiring upkeep to continue working over time.

Either option can be the right way to go, given particular circumstances. With that in
mind, then, it makes sense to see how to use both options, as you’ll do later in this section.

■Note Interestingly, Apple itself recommends against the browser detection scheme, suggesting instead
that you provide links between the normal and optimized versions of your site that you display only to iPhone
users (with browser detection being the determining factor in showing the link). Once you’ve learned about
both approaches, though, this is a relatively simple matter, so I won’t go into detail about it in this chapter.

Design
Before setting up the infrastructure, however, you should take a few moments to decide
exactly what data and functionality you want to expose for each screen in the application. In
the interest of demonstrating the widest range of possibilities, these are the actions you’ll be
making available through the iPhone interface:

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE148

9945CH06.qxd 3/31/08 1:43 PM Page 148

• MoviesController#index

• MoviesController#show

• PeopleController#index

• PeopleController#show

• SessionsController#new

• SessionsController#create

• InterestsController#create

• InterestsController#index

• InterestsController#destroy

• ReleasesController#index

• NotificationsController#index

By providing these actions, you’ll have given iPhone users the ability to view both movies
and people along with their details, log in to the site, add an interest for a given movie, view
and remove their interests, and view upcoming releases (both across the entire system and
within their interests).

Taking each action individually, you can also now decide what data to display. For the
movie listing page, for instance, you can remove the management links and the movie
images—you won’t be able to manage any data through the iPhone UI, and the images will
just make the page feel less responsive. On the movie detail page, you can eliminate the edit
link and the comments, for much the same reason. You could always make the comments
available through an Ajax call or a separate page load, however, if your mobile users end up
needing them. The actions for people are nearly identical to those for movies, so you can also
eliminate management links and images (the latter from the listing page, of course).

The login form remains unchanged, though you may have to adjust styles given the differ-
ences in form display mentioned in the Apple guidelines and earlier in the chapter (you need
fields big enough for a finger to select, but small enough to be usable when the keyboard
reduces the viewport size). Figure 6-2, the login form to Facebook’s iPhone interface shown
earlier, is a good example of how best to accommodate the constraints of the device—fields
are larger (making them more easily selectable) and can easily fit within the smaller viewport
when being edited.

Other than those things, you won’t have to change much—the login action, interest cre-
ation, and interest destruction aren’t affected by the iPhone interface, since they don’t send
any markup to the browser. The interest and release (and notification) listing pages are also
relatively unaffected by the new interface, since they both already display only the essential
data.

Setup
The last step before getting into the actual build is to set up the environment so that iPhones
can access the appropriate site. As you saw earlier, you can either use a distinct URL (like a

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 149

9945CH06.qxd 3/31/08 1:43 PM Page 149

subdomain) for this, or use browser detection to send the appropriate content to the mobile
device automatically.

Creating a Mobile-Specific Subdomain
For the subdomain approach, you’ll be setting up iphone.localhost—which means that you’ll
be able to access the iPhone interface at iphone.localhost:3000 (assuming you’re running
your application server on the default port). First, update your /etc/hosts file to point iphone.
localhost to 127.0.0.1 (if you’re on Windows, you should be able to find it at C:\WINDOWS\
system32\drives\etc\hosts). This will route requests coming to iphone.localhost to your local
machine instead of sending them out into the Internet.

■Note You may have to clear your DNS cache to get this change to take effect. The command to do this
differs based on your platform. On Windows, for instance, you run ipconfig /flushdns from the com-
mand line, while on OS X, it’s lookupd –flushcache. If you’re running Linux, check your platform’s
documentation.

Once you’ve added the new entry to your hosts file, update your ApplicationController
as shown in Listing 6-1.

Listing 6-1. Handling the Subdomain Approach in app/controllers/application.rb

class ApplicationController < ActionController::Base
before_filter :detect_iphone_request

...

protected
def detect_iphone_request
request.format = :iphone if iphone_request?

end

def iphone_request?
request.subdomains.first == 'iphone'

end

...
end

With this in place, any request to MovieList is first processed through the detect_iphone_
request method. If the request URI has iphone as the first subdomain (like iphone.localhost,
or iphone.is.the.best.com), then the request is interpreted as if it came from an iPhone, and
it can be handled appropriately through the rest of the application.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE150

9945CH06.qxd 3/31/08 1:43 PM Page 150

Browser Detection for the iPhone
The code needed to implement browser detection for the iPhone is very similar. Instead of
relying upon the subdomain from the user’s request, however, browser detection looks at
the User-Agent string. Mobile Safari on the iPhone currently sends the User-Agent string
Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1A543 Safari/419.3. From that, you might assume that you could just
look for “iPhone” to ensure that you’re interpreting requests properly—but unfortunately, you
would be unfairly eliminating other platforms that could also benefit from the iPhone inter-
face. The iPod Touch, for instance, uses an extremely similar version of Safari and by all rights
should be treated the same. Its User-Agent string, however, is Mozilla/5.0 (iPod; U; CPU
like Mac OS X; en) AppleWebKit/420.1 (KHTML, like Gecko) Version/3.0 Mobile/3A100a
Safari/419.3. If you just look for “iPhone,” then, you’d be barring other users from a benefit
they might rightfully expect. Such specific browser detection would also exclude many future
devices Apple or other manufacturers might produce.

A better approach is to rely upon more constant features of the User-Agent string. Instead
of keying on “iPhone,” for instance, you could have the application look for some combination
of “Mobile” and “Safari.” To implement this, change your ApplicationController to the code
shown in Listing 6-2.

Listing 6-2. Detecting the User-Agent in app/controllers/application.rb

class ApplicationController < ActionController::Base
before_filter :detect_iphone_request

...

protected
def detect_iphone_request
request.format = :iphone if iphone_request?

end

def iphone_request?
request.env["HTTP_USER_AGENT"] &&
request.env["HTTP_USER_AGENT"][/(Mobile\/.+Safari)/]

end

...
end

And with that, any request with an iPhone-like User-Agent string can be handled differ-
ently than regular browser requests. As you’ll see in the example screens later in this chapter,
this is the method I chose when working through the project—and in fact, when you’re devel-
oping with an actual iPhone, it’s a little easier and more reliable than is the subdomain
approach.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 151

9945CH06.qxd 3/31/08 1:43 PM Page 151

Format and MIME Type
Regardless of the access method you prefer, there is still one more step to set up your sample
application to respond to iPhone requests with the appropriate interface. The modifications
to ApplicationController in Listing 6-2 set request.format to :iphone when some conditions
are met, but Rails (even Rails 2) doesn’t recognize :iphone as a valid format by default.

To remedy this, open up the config/initializers/mime_types.rb file and make the change
shown in Listing 6-3.

Listing 6-3. Registering the iphone MIME Type in config/initializers/mime_types.rb

Be sure to restart your server when you modify this file.

Add new mime types for use in respond_to blocks:
Mime::Type.register "text/richtext", :rtf
Mime::Type.register_alias "text/html", :iphone

Prior to Rails 2, this code was found in config/environment.rb, but it was moved to keep
application configuration more compartmentalized. Notice that the only change you’re mak-
ing here is to uncomment the last line, which already sets up the :iphone format—it’s provided
as an example with every Rails application, but it’s also just what you need here. By uncom-
menting that line, you allow your application to respond_to the :iphone format with text/html
content, just as if it were a real MIME type of its own.

TESTING WITHOUT AN IPHONE

At this point, you may be itching to see if your access code (be it a subdomain or browser detection)
and your custom :iphone format work. Unfortunately, however, not all of us have iPhones that we can fire
up at a moment’s notice to check things out. Luckily, there are alternatives.

The first, best option for Mac OS X users is the iPhone SDK, which includes an iPhone simulator with
which you can test your applications. Unfortunately, the SDK may not be a viable option for some; the down-
load alone is 2.1 GB, and it can be too complicated for developers who haven’t worked with Xcode utilities
before.

Another option for OS X users is iPhoney, a free iPhone “canvas,” from http://www.marketcircle.
com/iphoney. iPhoney isn’t a simulator; instead, it’s more like a size-constrained desktop browser. You can
use it to check how your site looks in portrait and landscape modes, and you can zoom out or in to some
extent; you can also set it to use the iPhone User-Agent string, to test your browser detection code.

If you’re not on a Mac, you can still simulate an iPhone environment using the Firefox web browser. With
extensions such as the web developer toolbar, you can specify an exact size for your viewport, simulating the
limitations of the iPhone screen. Firefox also allows you to set a specific User-Agent string, although the
process is a bit involved. First, type about:config into the address bar. When you see the list of settings,
right-click on the page and choose New ➤ String. Name it general.useragent.override, and assign it
the value Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML,
like Gecko) Version/3.0 Mobile/1A543 Safari/419.3. Once you save that, you’ll be sending the
iPhone User-Agent string with every request from your browser.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE152

9945CH06.qxd 3/31/08 1:43 PM Page 152

http://www.marketcircle

Firefox, iPhoney, and related simulations (including sites like http://www.testiphone.com/) suffice
for some iPhone work, but neither is acceptable if you’re doing heavy development. Neither behaves exactly
like the Mobile Safari browser; they ignore certain tags and attributes that control the iPhone’s behaviors, and
they don’t include many of the user interactions that make iPhone development so challenging. Nevertheless,
they are helpful in the absence of the SDK or a real iPhone.

As you proceed through the chapter, I’ll point out cases in which your testing may be less than satisfac-
tory on either of these options.

Development
With the setup complete and MovieList ready to respond (via subdomain or browser detec-
tion) to iPhone requests, you can now get to work building the optimized interface. Following
the list already made up, it makes sense to start with the movie listing page, controlled by
MoviesController#index. The first step is to add the :iphone format to the respond_to block,
as shown in Listing 6-4.

Listing 6-4. Adding the iphone Format to the index Action in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
before_filter :require_admin, :except => [:index, :show]

GET /movies
GET /movies.xml
def index
unless params[:query].blank?
query = ['CONCAT(title, description) LIKE ?', "%#{params[:query]}%"]

end
@movies = Movie.paginate(:all, :page => params[:page], :conditions => query)

respond_to do |format|
format.html # index.html.erb
format.iphone # index.iphone.erb
format.xml { render :xml => @movies }

end
end

...
end

This change allows MovieList to look for an iPhone-specific layout and view when a
request comes in to /movies. The next step, then, is to create that view. Start by copying the
contents of app/views/movies/index.html.erb into a new file, and then simplify it to reduce
the amount of information sent downstream, as shown in Listing 6-5.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 153

9945CH06.qxd 3/31/08 1:43 PM Page 153

http://www.testiphone.com

Listing 6-5. Adding the iPhone-Specific View in app/views/movies/index.iphone.erb

<h1>Listing movies</h1>

<% form_tag movies_path, :method => :get do %>
Find a movie: <%= text_field_tag :query %>
<% end %>

<ul id="listing">
<% @movies.each do |movie| %>

<h2><%= link_to h(movie.title), movie %></h2>
<p class="rating"><%= h movie.rating %></p>

<% end%>

<br class="clear" />

<%= will_paginate %>

The view as it currently stands is a little bare, however, so go ahead and create an iPhone-
specific layout, too (again using the primary HTML layout as a template), as shown in
Listing 6-6.

Listing 6-6. Adding the iPhone-Specific Layout in app/views/layouts/application.iphone.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<meta id="viewport" name="viewport"
content="width=device.width; initial-scale=1.0"/>

<title>MovieList: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'iphone' %>

</head>
<body>

<div id="header">
MovieList

<ul id="navigation">
<%= link_to 'movies', movies_path %>
<%= link_to 'releases', releases_path %>
<%= link_to 'people', people_path %>

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE154

9945CH06.qxd 3/31/08 1:43 PM Page 154

mailto:@movies.each
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

<% unless logged_in? %>
<%= link_to 'log in', new_session_path %>

<% else %>
<%= link_to 'interests', user_interests_path %>
<%= link_to 'notifications', user_notifications_path %>
<%= link_to 'log out', session_path, :method => :delete %>

<% end %>

</div>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

There are only two significant changes between application.html.erb and this file. The
first is the presence of a new meta tag, named viewport. This tag is used by Mobile Safari to
set how a web page is displayed on the device; from it, you can control a number of different
settings:

• The width of the page (width)

• The initial zoom of the page (initial-scale)

• Whether users can zoom in or out (user-scalable)

• The maximum zoom (maximum-scale)

• The minimum zoom (minimum-scale)

Proper settings in the viewport meta tag help you ensure that the first visit to your appli-
cation is as usable as possible—so instead of a user seeing your site compressed into a fraction
of the available space, she sees it at a sensible level of zoom and can increase or decrease it as
needed.

■Caution This is one of the situations in which iPhoney and Firefox fail as iPhone simulators. Neither
understands the viewport meta tag or its settings.

The second difference between the HTML and iPhone layouts is the addition of an iphone
stylesheet. The iPhone-specific stylesheet allows you to specify CSS tailored to the iPhone
interface, with which you can override the styles defined in the scaffold stylesheet, as shown
in Listing 6-7.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 155

9945CH06.qxd 3/31/08 1:43 PM Page 155

Listing 6-7. Creating a Custom Stylesheet in public/stylesheets/iphone.css

ul#listing li {
float: none;
padding: 5px 0;
width: 100%;

}

With that, you’re done with the movie listing page—you can load it in your iPhone (or
your simulator, as the case may be) and you should see something like Figure 6-5.

Figure 6-5. The iPhone-optimized movie listing page

At this point, however, you’ve only just begun; if you click on a movie title, you get a blank
screen instead of the movie detail page. Happily, however, this page is just as easy to update
as was the first. Again, start by adding the :iphone directive to the respond_to block, as in
Listing 6-8.

Listing 6-8. Adding the iphone Format to the Show Action in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
...

GET /movies/1
GET /movies/1.xml
def show
@movie = Movie.find(params[:id])

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE156

9945CH06.qxd 3/31/08 1:43 PM Page 156

respond_to do |format|
format.html # show.html.erb
format.iphone # show.iphone.erb
format.xml { render :xml => @movie }

end
end

...
end

Then create the iPhone-specific view file—in this case, show.iphone.erb. Here, you’ll want
to get rid of the comments, the add comment form, and the add interest form (though you’ll
be adding that last piece back in later, when you start to handle logged-in users in this inter-
face). Those changes will help keep the page as small and responsive as possible, as you can
see in Listing 6-9.

Listing 6-9. Creating the iPhone-Specific Movie Detail View in app/views/movies/show.iphone.erb

<div id="details">
<%= image_tag @movie.image.public_filename if @movie.image %>

<h1><%= h @movie.title %></h1>
<h3 class="rating"><%= h @movie.rating %></h3>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% unless @movie.releases.empty? %>
<div class="module">
Releases:
<% @movie.releases.each do |release| %>

<%= h release %>

<% end %>
</div>

<% end %>

<% unless @movie.roles.empty? %>
<div class="module">
People:
<% @movie.roles.each do |role| %>

<%= link_to h(role.person.full_name), role.person %> -
<%= role.name %>

<% end %>
</div>

<% end %>
</div>

You’ll also need to add some more styles to override those from the main HTML interface
(Listing 6-10).

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 157

9945CH06.qxd 3/31/08 1:43 PM Page 157

mailto:@movie.image.public_filename
mailto:@movie.image
mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?
mailto:@movie.releases.empty?
mailto:@movie.releases.each
mailto:@movie.roles.empty?
mailto:@movie.roles.each

Listing 6-10. Adding to public/stylesheets/iphone.css

/** more... **/

div#details {
float: none;
margin: 0;
width: 100%;

}

And that’s all there is to it—you’re now able to view movie listings and details for any film
in your application, all through the iPhone. You can see an example of the new detail page in
Figure 6-6.

Figure 6-6. The iPhone version of the movie detail page

Next we need to tackle the listing and detail pages for people. The process here is virtually
identical to that for the movies—starting with the controller (Listing 6-11).

Listing 6-11. Handling the iphone Format in app/controllers/people_controller.rb

class PeopleController < ApplicationController
before_filter :require_admin, :except => [:index, :show]

GET /people
GET /people.xml
def index
unless params[:query].blank?

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE158

9945CH06.qxd 3/31/08 1:43 PM Page 158

query = [
'CONCAT(first_name, last_name, biography) LIKE ?',
"%#{params[:query]}%"

]
end
@people = Person.paginate(:all, :page => params[:page], :conditions => query)
respond_to do |format|
format.html # index.html.erb
format.iphone # index.iphone.erb
format.xml { render :xml => @people }

end
end

GET /people/1
GET /people/1.xml
def show
@person = Person.find(params[:id])

respond_to do |format|
format.html # show.html.erb
format.iphone # index.iphone.erb
format.xml { render :xml => @person }

end
end

...
end

In the new iPhone index view (Listing 6-12), you’ll want to remove both the image and the
management links.

Listing 6-12. The iPhone-Specific People Listing View in app/views/people/index.iphone.erb

<h1>Listing people</h1>

<% form_tag people_path, :method => :get do %>
Find a person: <%= text_field_tag :query %>

<% end %>

<ul id="listing">
<% @people.each do |person| %>

<h2><%= link_to h(person.full_name), person %></h2>

<% end%>

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 159

9945CH06.qxd 3/31/08 1:43 PM Page 159

mailto:@people.each

<br class="clear" />

<%= will_paginate %>
</table>

This results in something like Figure 6-7.

Figure 6-7. The iPhone version of the people listing page

For the detail page, however, you can take a different approach. You actually don’t need to
create a new view for every page in the iPhone interface—if the content is similar enough, you
can get by with a single file for both the HTML and iPhone views. In the case of the person
detail page, the only difference is the presence or absence of the edit link, so it makes sense to
combine the two.

As it currently stands, however, the “show” view specifies that it is for the HTML inter-
face—it’s called show.html.erb. You can get both formats to use it, though, by renaming it to
show.erb. By changing the name, you’re creating a view that can be rendered for any request
that doesn’t have a more specific view file (that is, if you had both show.erb and
show.iphone.erb, the latter would be rendered for an iPhone request and the former for an
HTML request).

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE160

9945CH06.qxd 3/31/08 1:43 PM Page 160

Of course, you still need to take care of that one content difference (the iPhone view
shouldn’t have an edit link on it). Open up your newly renamed view and make the change
shown in Listing 6-13.

Listing 6-13. Customizing app/views/people/show.erb for Multiple Formats

<div id="details">
<%= admin_link_to 'Edit', edit_person_path(@person), :class => 'html' %>

<%= image_tag @person.image.public_filename if @person.image %>

<h1><%= h @person.full_name %></h1>

<%= simple_format h(@person.biography) unless @person.biography.blank? %>

<% unless @person.roles.empty? %>
<div class="module">
Movies:
<% @person.roles.each do |role| %>

<%= link_to h(role.movie.title), role.movie %> -
<%= role.name %>

<% end %>
</div>

<% end %>
</div>

Then add the rule shown in Listing 6-14 to your iPhone-specific stylesheet.

Listing 6-14. Hiding non-iPhone Content with public/stylesheets/iphone.css

/** more ... **/

.html {
display: none;

}

This rule specifies that any element with the class name html will, in the iPhone interface,
be hidden from view. In the case of the person detail page, this means that the edit link won’t
show up on the iPhone page, as you can see in Figure 6-8.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 161

9945CH06.qxd 3/31/08 1:43 PM Page 161

mailto:@person.image.public_filename
mailto:@person.image
mailto:@person.full_name
mailto:h(@person.biography
mailto:@person.biography.blank?
mailto:@person.roles.empty?
mailto:@person.roles.each

Figure 6-8. The iPhone-optimized person detail page

Given this technique, you may think that the duplication of the movie and people listing
views is unnecessary. If that’s the case, and your views are such that you can’t reuse them just
by removing the specific format tag from the filename (as you did with the person detail view,
show.erb), you may also be able to extract the duplicated portion of each view into a partial
view. In the case of the person detail page, that might result in something like Listing 6-15.

Listing 6-15. Extracting Common Content to app/views/people/_detail.erb

<%= image_tag @person.image.public_filename if @person.image %>

<h1><%= h @person.full_name %></h1>

<%= simple_format h(@person.biography) unless @person.biography.blank? %>

<% unless @person.roles.empty? %>
<div class="module">
Movies:
<% @person.roles.each do |role| %>

<%= link_to h(role.movie.title), role.movie %> -
<%= role.name %>

<% end %>
</div>

<% end %>

With the partial created, you can then render it separately from each view (Listings 6-16
and 6-17).

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE162

9945CH06.qxd 3/31/08 1:43 PM Page 162

mailto:@person.image.public_filename
mailto:@person.image
mailto:@person.full_name
mailto:h(@person.biography
mailto:@person.biography.blank?
mailto:@person.roles.empty?
mailto:@person.roles.each

Listing 6-16. Rendering the Partial in app/views/people/show.html.erb

<div id="details">
<%= admin_link_to 'Edit', edit_person_path(@person), :class => 'html' %>
<%= render :partial => 'people/detail', :locals => {:person => @person} %>

</div>

Listing 6-17. Rendering the Partial in app/views/people/show.iphone.erb

<div id="details">
<%= render :partial => 'people/detail', :locals => {:person => @person} %>
</div>

Notice that even with this approach, the filename for the partial view is unformatted (it’s
_detail.erb, instead of _detail.html.erb); if you specify a format in the name of the partial, it
won’t be found when you try to render it from a different format’s view.

With both movies and people out of the way, you can move on to the more interactive
parts of the interface: namely, the user side. The first step of that is the login form, rendered
from SessionsController#new. When you look at the code here, you’ll notice something inter-
esting—the sample application used the restful_authentication plugin for login and user
management, which means that those portions of the code look noticeably different than the
scaffolded and hand-built sections. These differences are artifacts of restful_authentication’s
(and Rails’s) history—the plugin itself was released long before Rails 2, and as a result it shows
a mixed set of traits from earlier versions of Rails and from the RESTful practices that it helped
to standardize.

In particular, the SessionsController#new action looks dated in that it doesn’t have a
respond_to block. This means that you’ll have to add that block, as shown in Listing 6-18.

Listing 6-18. Adding the respond_to block to app/controllers/sessions_controller.rb

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
render new.rhtml
def new
respond_to do |format|
format.html # new.html.erb
format.iphone # new.iphone.erb

end
end

...
end

You’ll also need to create the new form—or rename the existing template to serve for both
HTML and iPhone requests. In fact, there are no real differences between the views needed
here, so the latter approach is perfectly fine. Renaming the template, in fact, produces the
view in Figure 6-9.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 163

9945CH06.qxd 3/31/08 1:43 PM Page 163

Figure 6-9. The MovieList login screen on the iPhone

Beyond what you’ve done so far, however, there are several iPhone-specific form options
that you may want to take advantage of (if not on the login form, then on forms in other
iPhone interfaces you may develop). For instance, you can control the default typing correc-
tion behavior in a form on the iPhone by use of the autocorrect and autocapitalize
attributes, each of which defaults to off but can be set with a simple autocorrect="on".

You can also dramatically alter the appearance of form controls with some CSS rules that
aren’t available in other browsers. For instance, you can control the rounded corners on a text
field by setting a value for -webkit-border-radius, as in Listing 6-19.

Listing 6-19. Using WebKit-Specific Declarations in public/stylesheets/iphone.css

/** more ... */

#login, #password {
-webkit-border-radius: 10px;

}

That rule, when applied to the login form, produces the display shown in Figure 6-10.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE164

9945CH06.qxd 3/31/08 1:43 PM Page 164

Figure 6-10. iPhone login form with rounded input elements

Furthermore, the iPhone may also attempt to determine the data type for a form field
automatically. When you go to enter text in a standard input element, the iPhone will generally
give you the alphabetic keyboard (as in Figure 6-11) and allow you to switch to an alternative.
If the input’s name includes “zip,” however, the default keyboard is numeric (Figure 6-12),
allowing you to enter a US zip code more easily. Similarly, if the input element is named
“phone,” “cellular,” or “mobile,” the default keyboard is replaced by a dialing interface
(Figure 6-13). Obviously, these behaviors can help to create a better user experience for
visitors to your site.

Figure 6-11. The alphabetical keyboard

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 165

9945CH06.qxd 3/31/08 1:43 PM Page 165

Figure 6-12. The numeric keyboard Figure 6-13. The dialing keyboard

■Caution All of these features (autocorrect, iPhone-specific styles, and the various keyboards) are ignored
by iPhoney and Firefox. If you find yourself with the need to use them, you’ll have to look for another way to
test (unless, of course, you have an actual iPhone or the SDK).

Getting back to the MovieList application itself, you are now able to log in. The major ben-
efit to being able to log in is interest management, so the next step is to make sure that you are
able to create and manage your MovieList interests via the iPhone interface. For this, you need
to add the interest form back to the movie detail page; it turns out that you can reuse the form
from movies/show.html.erb; Listing 6-20 shows the code.

Listing 6-20. Adding the Interest Form to app/views/movies/show.iphone.erb

<div id="details">
<%= image_tag @movie.image.public_filename if @movie.image %>

<h1><%= h @movie.title %></h1>
<h3 class="rating"><%= h @movie.rating %></h3>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% if logged_in? %>
<% unless current_user.interested_in?(@movie) %>
<% form_for current_user.interests.build(:movie => @movie),

:url => user_interests_path do |f| %>
<%= f.hidden_field :movie_id %>
<%= content_tag :button, 'Add this as an interest', :type => 'submit' %>

<% end %>
<% else %>
<p>You have added this movie as an interest</p>

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE166

9945CH06.qxd 3/31/08 1:43 PM Page 166

mailto:@movie.image.public_filename
mailto:@movie.image
mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?

<% end %>
<% end %>

<% unless @movie.releases.empty? %>
<div class="module">
Releases:
<% @movie.releases.each do |release| %>

<%= h release %>

<% end %>
</div>

<% end %>

<% unless @movie.roles.empty? %>
<div class="module">
People:
<% @movie.roles.each do |role| %>

<%= link_to h(role.person.full_name), role.person %> -
<%= role.name %>

<% end %>
</div>

<% end %>
</div>

This results in the view shown in Figure 6-14.

Figure 6-14. The movie detail page with interest form

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 167

9945CH06.qxd 3/31/08 1:43 PM Page 167

mailto:@movie.releases.empty?
mailto:@movie.releases.each
mailto:@movie.roles.empty?
mailto:@movie.roles.each

Upon submitting the form, the user is sent to InterestsController#create, so the next
step is to ensure that the create action can respond_to the :iphone format correctly. Luckily,
this is an easy update—after adding an interest, you just want to redirect the user to their
interest listing page, so you can use the same code as the format.html directive (since it does
the same thing). Of course, you’ll still need to handle the display in the index action, so go
ahead and add the code for both of those now, as shown in Listing 6-21.

Listing 6-21. Adding the iphone Format to app/controllers/interests_controller.rb

class InterestsController < ApplicationController
before_filter :login_required

def index
@interests = current_user.interests

respond_to do |format|
format.html
format.iphone
format.json { render :json => @interests.to_json(
:methods => [:movie_title]

) }
end

end

def create
interest = current_user.interests.create(params[:interest])
flash[:notice] = 'You have added an interest in the specified movie'

respond_to do |format|
format.html { redirect_to user_interests_path }
format.iphone { redirect_to user_interests_path }
format.json {
status_code = interest.new_record? ? 422 : 201
render :json => current_user.interests.reload.to_json(
:methods => [:movie_title]

), :status => status_code }
end

end

...
end

Since you’ll be showing exactly the same view for both the HTML- and iPhone-formatted
requests, you can just rename the index file so that it handles both. If you recall, that file looks
like Listing 6-22.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE168

9945CH06.qxd 3/31/08 1:43 PM Page 168

mailto:@interests.to_json

Listing 6-22. Reusing app/views/interests/index.erb for Both HTML and iPhone Requests

<h1>Listing interests</h1>

<table>
<tr>
<th>Name</th>

</tr>

<% for interest in @interests %>
<tr>
<td><%=h interest.interested.display_name %></td>
<td><%= link_to 'Destroy', user_interest_path(interest),
:confirm => 'Are you sure?', :method => :delete %></td>

</tr>
<% end %>
</table>

This provides a basic listing, as shown in Figure 6-15.

Figure 6-15. The interest listing page in the iPhone UI

At this point, then, a user can add new interests via the iPhone and view her current list;
on the listing page, each interest has an associated Destroy link, so you should go ahead and
handle that as well. Back in the controller, add the appropriate directive to the respond_to
block, as in Listing 6-23.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 169

9945CH06.qxd 3/31/08 1:43 PM Page 169

Listing 6-23. Adding a Redirect to app/controllers/interests_controller.rb

class InterestsController < ApplicationController
...

def destroy
interest = current_user.interests.find(params[:id])
interest.destroy if interest

respond_to do |format|
format.html { redirect_to interests_url }
format.iphone { redirect_to user_interests_path }
format.json {
render :json => current_user.interests.reload.to_json(
:methods => [:movie_title]

)
}

end
end

end

Just as in the index action, you’re just following the lead of the HTML directive—and with
that, you’ve made the entire interests functionality available in the iPhone interface.

The last pieces of existing functionality to expose are the release and notification listings.
To add these to the iPhone interface, you just need to rename the views and add the appropri-
ate respond_to block in each controller. First, in ReleasesController, make the changes shown
in Listing 6-24.

Listing 6-24. Handling iPhone Requests in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
before_filter :require_admin, :except => :index

GET /releases
GET /releases.xml
def index
respond_to do |format|
format.html {
paginate_releases

}
format.iphone {
paginate_releases

}
format.js {
@releases = Release.upcoming(params)

}
format.xml {
@releases = Release.upcoming(params)

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE170

9945CH06.qxd 3/31/08 1:43 PM Page 170

mailto:@releases=Release.upcoming
mailto:@releases=Release.upcoming

render :xml => @releases.to_xml(:dasherize => false, :include => :movie)
}

end
end

...
end

Listing 6-25 shows the similar update to NotificationsController.

Listing 6-25. Handling iPhone Requests in app/controllers/notifications_controller.rb

class NotificationsController < ApplicationController
before_filter :require_login_or_user

def index
@releases = @user.releases(true)
respond_to do |format|
format.html
format.iphone
format.js { render :template => 'releases/index' }

end
end

...
end

In both cases, you’re showing almost exactly the same data for both the HTML and
iPhone requests, so you can use the single-view approach (renaming the view to index.erb).
For the iPhone, however, you will want to hide the management links from the release listing
(as you did for the movie and people listings), so you’ll need to modify the markup slightly to
leverage the custom CSS you’ve already written, as in Listing 6-26.

Listing 6-26. Hiding Administrator Links in app/views/releases/index.erb

<h1>Listing releases</h1>

<% @releases.group_by(&:released_on).each do |date, releases| %>
<h2>Releases for <%= h date %></h2>
<ul class="releases">
<% releases.each do |release| %>
<h3><%= link_to h(release.movie.title), release.movie %></h3>
<p><%= h release.format %></p>
<%= admin_link_to 'edit', edit_release_path(release), :class => 'html' %>
<%= admin_link_to 'destroy', release,
:confirm => 'Are you sure?', :method => :delete, :class => 'html' %>

<% end %>

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 171

9945CH06.qxd 3/31/08 1:43 PM Page 171

mailto:@releases.to_xml(:dasherize
mailto:@user.releases
mailto:@releases.group_by(&:released_on).each

<% end %>

<%= will_paginate %>

<%= admin_link_to 'New release', new_release_path, :class => 'html' %>

Just as you did on the movie detail page, you’ve added :class => 'html' to the links that
should be hidden from the iPhone interface. The final result of all this appears in Figure 6-16.

■Note Of course, it is possible to get around those CSS rules hiding the management links. It’s not easy
with an unmodified iPhone (on which it’s a challenge to view a page’s source code, or to turn off CSS), but it
is possible. For the MovieList application this isn’t a pressing concern, because the management actions are
protected by administrator-only filters. Furthermore, even if an iPhone user could see the links, she wouldn’t
be able to use them very effectively, since the various actions they link to (edit, for instance) typically don’t
respond to iPhone-formatted requests.

Figure 6-16. The release listing page as seen on the iPhone

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE172

9945CH06.qxd 3/31/08 1:43 PM Page 172

iUI and iPhone Web Applications
With all of that, you’ve created an optimized version of the MovieList application suitable for
use on iPhones everywhere. You may still be feeling a hint of unease, however—while your site
is indeed optimized for the iPhone, it just doesn’t feel native. Remedying that could take a lot
of time, but this next project will start you on the path.

In this section, you’ll be updating the movie listing and detail pages to feel like an iPhone
web application—with interactions as native as you can currently get them on a web page.
(Of course, you could build a completely native application with the iPhone SDK, but as men-
tioned earlier that is outside the scope of this book.) To accomplish this, you’ll be using the
iUI framework mentioned earlier in the chapter. Start out by downloading the most current
version of it from http://code.google.com/p/iui/wiki/Introduction (the examples in this
section were written with version 0.13).

Once you have the archive file download, unzip it and take a look in the iui folder; you
should see a number of images, CSS files, and JavaScript files. Go ahead and copy those to the
appropriate subfolders under public, and add references to the CSS and JavaScript files in
your iPhone layout, as in Listing 6-27.

Listing 6-27. Including the iUI Framework in app/views/layouts/application.iphone.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<meta id="viewport" name="viewport"
content="width=device.width; initial-scale=1.0"/>

<title>MovieList: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'iui' %>
<%= javascript_include_tag 'iui' %>

</head>
<body>

<%= yield %>

</body>
</html>

■Caution After moving the files around, you’ll have to go into iui.css and update the various image paths;
it should be as simple as changing url(foo.png), for instance, to url(/images/foo.png) wherever you
see it.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 173

9945CH06.qxd 3/31/08 1:43 PM Page 173

http://code.google.com/p/iui/wiki/Introduction
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

If you were to look at your site on an iPhone now, you’d just see a blank page. The next
step, then, is to get the movie listings to show up correctly. For that, you’ll have to edit the
view, as in Listing 6-28.

Listing 6-28. The iUI-Enhanced app/views/movies/index.iphone.erb

<div class="toolbar">
<h1 id="pageTitle">MovieList</h1>
<%= link_to 'back', '#', :id => 'backButton', :class => 'button' %>
<%= link_to 'Search', '#searchForm', :class => 'button' %>

</div>

<ul title="Movies" selected="true">
<% @movies.each do |movie| %>

<%= link_to h(movie.title), movie %>

<% end %>

<% form_tag movies_path, :method => :get,
:id => 'searchForm', :class => 'dialog' do %>

<fieldset>
<h1>Find a Movie</h1>
<%= link_to 'Cancel', '#', :class => 'button leftButton', :type => 'cancel' %>
<%= link_to 'Submit', '#', :class => 'button blueButton', :type => 'submit' %>
<label for="query">Movie Title</label>
<%= text_field_tag :query %>

</fieldset>
<% end %>

And with that simple change, you’ve got the beginnings of an iPhone web application.
Figure 6-17, for instance, shows the basic movie listing page.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE174

9945CH06.qxd 3/31/08 1:43 PM Page 174

mailto:@movies.each

Figure 6-17. The iUI-enabled movie listing page

Notice that the search form doesn’t show up automatically; in fact, it’s hidden on the page
and is revealed when you click the Search button, as shown in Figure 6-18.

Figure 6-18. The iUI-enabled movie search form

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 175

9945CH06.qxd 3/31/08 1:43 PM Page 175

Even without any further updates, you can see (by looking at an unaltered movie detail
page, like the one in Figure 6-19) how the iUI framework makes things easier.

Figure 6-19. The movie detail page in the iUI interface

First, the movie detail smoothly slides into place from the right, like an iPhone native
application. You’ll also see a virtual Back button in the upper left, which takes you back to the
movie listing page. That button is populated automatically by the iUI framework when you
use the appropriate structure for your views. Obviously, you could refine the styling on this
page, but in general it works without any further changes.

As you can see, then, the iUI framework makes it as easy as possible to get something
close to the feel of an iPhone-native application. It uses Ajax and CSS to simulate the standard
interactions made possible by the iPhone, and (when used appropriately) it can provide a sig-
nificant boost to the usability of your site.

Further Projects
This chapter opens up a slew of new possibilities. You might, for instance, be interested in
expanding the iPhone interface to provide even more of the functionality from the desktop
experience—adding in the ability to manage users, movies, people, and releases over the
iPhone. This would be an easy project, with the only difficulties coming in making sure that
the various forms were as usable as possible in the smaller viewport. The main challenge here
would be dealing with the large chunks of text that administrators can manage for movies and
people.

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE176

9945CH06.qxd 3/31/08 1:43 PM Page 176

The obvious project, however, is to expand the iUI-enabled version of the site. At some
point, however, the conventions of the iUI framework and of your RESTful application may
diverge—at which time you may decide to create an entirely separate application (backed by
the same database) for your iPhone users. If this is the route you choose, then you may also
get some benefit from the ActiveResource projects in the next chapter.

You might also consider adding some entirely new functionality that matches up with the
needs of mobile users. For instance, you could integrate with native iPhone software to pro-
vide maps to nearby theaters and video stores. Whatever you decide to do, it should be
apparent that the iPhone provides a wide array of potential avenues for future development.

Summary
If you’ve been working through the chapters in order (as opposed to just skipping around to
interesting topics), then by now you’ve built MovieList clients in both JavaScript and PHP.
You’ve also built what amounts to a completely new interface just for iPhone users. All of these
have been relatively small steps—minor additions to your basic Rails application. The next
step up, however, is a bit bigger.

In the next chapter, you’ll build another client for your application. This time, though, it’ll
be in Rails, so you’ll get to take advantage of even more features in Rails 2 (like ActiveResource).
Even more exciting, though, is the platform. Just as you did in this chapter, you’ll be building
on a dynamic, rapidly growing platform: Facebook.

Just as with the iPhone, the Facebook platform comes with a set of constraints; along with
those constraints, however, you get access to a great deal of data that can make your applica-
tion more compelling for its users. Without further ado, then: MovieList on Facebook!

CHAPTER 6 ■ AN APPLE A DAY: THE IPHONE 177

9945CH06.qxd 3/31/08 1:43 PM Page 177

9945CH06.qxd 3/31/08 1:43 PM Page 178

With a Little Help from Your
Friends: Facebook

Facebook currently has more than 60 million active users and is growing at an amazing rate.
This growth has been motivated in part by the addition of the Facebook application platform—
allowing independent sites to live within the Facebook interface and enjoy some measure of
access to the social graph of Facebook users. These applications, like HousingMaps (which I
talked about back in Chapter 1) have opened up a whole new world of development and busi-
ness opportunities—for developers, it exposes a huge set of extremely interesting and useful
data (Facebook users’ friend networks, most prominently), and for businesspeople, it grants
access to tens of millions of potential customers through a built-in viral distribution channel.

Some Facebook applications have seen millions of users within the first few days or weeks
of launching—traffic growth that is almost unheard of outside this particular platform. Of
course, the majority of applications get far fewer users, making this a classic example of a
“long tail” phenomenon (see http://radar.oreilly.com/archives/2007/10/facebook_long_
tail_report.html for more information on this).

Even if you’re not one of the lucky few to register huge numbers of new customers
through your Facebook application, there are still substantial benefits. (And as we’ll see in
the next chapter, such massive amounts of traffic come with their own problems.)

In this chapter, you’ll be building a couple of new projects for the Facebook platform,
both tying into your existing MovieList application. As you’ll see shortly, these projects will
require some hard thinking about what features make most sense for Facebook users and
about how the data available from Facebook can make MovieList more generally valuable.

Planning the Facebook Application
You’ve built a fair amount of functionality over the last several chapters. As your sample appli-
cation currently stands, MovieList users can do all of the following:

• View movies

• View people involved in movies

• Add movies as interests

• View all upcoming releases

• View only those upcoming releases in which they have an interest 179

C H A P T E R 7

9945CH07.qxd 4/1/08 2:49 PM Page 179

http://radar.oreilly.com/archives/2007/10/facebook_long_

• Search for movies

• Comment on movies

Of these functions, some are more valuable within a social networking context than others.
Most prominently, it makes sense to show a user her friends’ interests (and vice versa), so
you’ll be focusing on that in the following projects. Basically, then, you’ll be building applica-
tions that allow you to search for movies, view their details, and add them as interests. You will
be also be able to track the upcoming releases for those interests, and you’ll be able to see
both interests and releases for any of your friends who are also using the application.

There are a number of different points of interaction available to a Facebook developer:

• The About page, which describes the application for people who have not yet
installed it

• The sidebar link, which appears in the navigation on the user profile once the applica-
tion is installed

• The application home page, which should be compelling enough to encourage repeat
visits from application users

• The profile box, which appears on the user’s profile and displays the most recent
updates and status from the application

• The news feed, where recent actions within the application can appear as stories

• The application interface itself

There are other potential interactions between an application and Facebook users, but
these form the core of what you’ll be working with in this chapter. For more information on
the others (and on developing for the Facebook platform in general), check out http://
developers.facebook.com/.

Initial Setup
Now that you know the basics of what you’ll be building, it’s time to get started. The first step
for any Facebook developer is to create a Facebook account; every Facebook application is
tied to one or more developer accounts, so if you don’t yet have one, browse over to http://
www.facebook.com and register now.

Once you’ve registered and logged in, go to http://www.facebook.com/developers. This is
the screen that every Facebook user sees when they go to add a new application. Here, you
can control the amount of access a new application has to your information, and you can
browse to the application’s About page. For now, go ahead and click the Add Developer button
on this page—that will add the Developer application to your profile, after which you’ll be
redirected to your My Applications page.

Once you add the Developer application, you’ll see a new “Developer” link in the left-
hand navigation. At any point, you can click that link to visit the Developer home page (shown
in Figure 7-1), which provides a forum, recent news from the Facebook platform development
team, and more.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK180

9945CH07.qxd 4/1/08 2:49 PM Page 180

http://developers.facebook.com
http://developers.facebook.com
http://www.facebook.com
http://www.facebook.com
http://www.facebook.com/developers

Figure 7-1. The Facebook Developer home page

From the Developer home page, you can also get started with your new application—just
click the Set Up New Application button. This opens up the new application form, which starts
out looking pretty simple. Don’t be fooled, though—it’ll get a lot more complicated before
you’re done.

Start by entering an application name. I chose bds-movielist-test, to keep things clear,
but you can choose anything you like (as long as it’s less than 50 characters long). Go ahead
and agree to the Facebook terms of service, as well—and make sure you take time to read
them; there’s a lot of important information in there about what you can and can’t do as a
Facebook developer. I’ll discuss a few of the items in the terms as the chapter progresses, but
it’s always better to read it for yourself.

Now, click the Optional Fields header. This opens up a whole new set of fields for you to
fill out, as you can see in Figure 7-2.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 181

9945CH07.qxd 4/1/08 2:49 PM Page 181

Figure 7-2. The first set of optional fields for creating a Facebook application

These fields include

• Developer Contact E-mail: This is the address to which any problems or updates regard-
ing your application will be sent. It defaults to the email address you used for your
Facebook account.

• User Support E-mail: This is the address to which any user feedback will be sent.

• Callback URL: This is the first point at which your application integrates with Facebook.
When a user visits your application, she will be redirected to Facebook to log in; after
that login, she will then be redirected to this URL. For now, set this to http://
localhost:3000/.

• Canvas Page URL: The URL at which your application will live, as seen by its Facebook
users. Enter something similar to your application’s name, remembering that it must be
unique across the complete set of Facebook applications—for my application, I used
bds-movielist-test again. Under this field, you also have the option to specify the
method with which your application will be rendered: in an iframe, or with FBML
(Facebook Markup Language). For now, set this to iframe—but see the sidebar for
more information on the differences between the two choices.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK182

9945CH07.qxd 4/1/08 2:49 PM Page 182

http://localhost:3000
http://localhost:3000

FBML VS. IFRAME

Facebook applications come in two main flavors: those that are served entirely from an external server via an
inline frame (iframe) and those that are rendered through Facebook’s own servers and use FBML. The differ-
ence between the two is roughly comparable to the difference you saw in Chapter 6 between a site that has
been optimized for the iPhone and an iPhone web application. In other words, one approach works pretty well
(the iframe or the optimized web site), while the other can be used to create pages that appear to be native
to the platform.

Beyond that (rather superficial) distinction, there are a number of differences between creating an
iframe application and an FBML one. You’ll see many of these as you work through the two projects in this
chapter (one for each approach), but the high-level overview includes such things as

• iframe applications are easier to develop locally, as FBML applications must be hosted somewhere that
Facebook’s servers can access.

• FBML applications can make use of FBML tags (unsurprisingly), making it easier and faster to generate
certain sorts of content.

• Sessions work differently between FBML and iframe applications, which can result in unforeseen
problems.

• Because all requests to your server from an FBML application come through Facebook’s servers, they
look somewhat different than similar requests might coming in through an iframe application. In partic-
ular, Facebook requests are always POSTs, which means that the standard Rails 2 RESTful routing
doesn’t work properly.

• Mobile Integration: If your application will use SMS, you can check this box to make it
easier.

• Application Type: This option allows you to specify whether you’re building a web site
or a desktop application. Unfortunately, desktop applications are outside the scope of
this book, but they’re a fascinating topic in and of themselves.

• IP Addresses of Servers Making Requests: If you like, you can whitelist one or more
servers for your application. Assuming you do so, any requests from a server not on this
list will be rejected outright. Leave this empty for now, unless you plan on developing
your application on a server that will issue requests to Facebook from a static IP.

• Can your application be added on Facebook? The intent of this choice is clear; if you set
it to No, your application cannot be added by a Facebook user. Since you’ll want to add
it to your account to see it working, go ahead and change this to Yes. If you ever need to
take down your application for maintenance, you can change this to No to prevent
additional, new users. Also, note that setting this to Yes opens up yet another set of
fields on the form.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 183

9945CH07.qxd 4/1/08 2:49 PM Page 183

• TOS URL: If your application has its own terms of service, you can enter the URL for
them here. Facebook will make sure that new users accept them prior to adding the
application.

• Developers: Here you can add one or more of your Facebook friends as developers on
the application. Anyone named here will be given permission to edit and update the
application.

That does it for the original set of optional fields. Those that remain appeared when you
chose to allow Facebook users to add your application. Here’s the rundown for these fields:

• Who can add your application to their Facebook account? Go ahead and check Users
and select All Pages. These selections allow anyone with a Facebook account or a Face-
book page to add your application to their account.

• Post-Add URL: Once a user adds your application, she will be redirected to this URL.
Normally, it makes sense to use your application home page here—so go ahead and
enter the same URL you used for the Canvas Page URL earlier (in my case, that’s
http://apps.facebook.com/bds-movielist-test/).

• Application Description: This description appears on the page users see when they go to
add your application, so make it appealing.

• Post-Remove URL: When users remove your application (not that they’d ever do that, of
course), Facebook will POST information to this URL. You can use this to do any cleanup
that might be required—deleting a user account, for instance. For the projects you’ll be
building in this chapter, you won’t need to do anything of that sort, so leave this blank
for now.

• Default FBML: When users add your application, you can add a box to their profile.
Until your application explicitly sets the contents of that box, it will include whatever
you put in this field. Note that you can use FBML tags here (even if you’re creating an
iframe application), an option that gives you access to a number of useful features.
Leave it blank for now—but you’ll come back to it later.

• Default Action FBML: Similarly, anything you enter here will show up in the actions sec-
tion of a user’s profile. Leave it blank, as well.

• Default Profile Box Column: This setting controls which part of the user’s profile
includes the box for your application. You’ll be presenting a fair amount of data in the
profile box, so choose Wide here.

• Developer Mode: If you check this, only those Facebook users you have identified (in the
previous section) as developers for the application will be able to add it. Check this now
to keep your testing private.

• Side Nav URL: The URL you enter here will be accessible to your application’s users
from their side navigation links. Enter your Canvas Page URL here again (again, for me
this was http://apps.facebook.com/bds-movielist-test/).

• Privacy URL: A URL entered here will allow users to manage their privacy settings for
your application. You won’t be building that page in either of the projects in this chap-
ter, so leave it blank for now.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK184

9945CH07.qxd 4/1/08 2:49 PM Page 184

http://apps.facebook.com/bds-movielist-test
http://apps.facebook.com/bds-movielist-test

• Help URL: Similarly, a URL here will be available to your application’s users when they
need help. Leave it empty for now, as well.

• Private Installation: By default, your application can create news stories and entries in
your mini-feed whenever a user adds it. If you check this box, those items will be sup-
pressed, cutting down substantially on the noise your application generates (especially
if it becomes very popular). In the early stages of your application launch, however, it
may be helpful for users to see when their friends are adding it, so leave it unchecked
for now.

• Attachments: These two fields are used when your application creates attachments on
wall posts or FB messages. The first (Attachment Action) is the label in the dropdown
for users to select your app as an attachment source, while the second (Callback URL)
is the URL from which attachment content can be retrieved. We’re not doing anything
with attachments for this application, so leave them blank.

Whew! That takes care of this form. Double-check your entries and submit it. . . and that’s
all there is to it (and don’t worry about making mistakes—you can change these settings at any
time). The system should create your new application and redirect you to your My Applica-
tions page, where you’ll see your new application along with management options and
application-specific information (like your API key), as shown in Figure 7-3.

Figure 7-3. The Facebook My Applications page after creating your new application

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 185

9945CH07.qxd 4/1/08 2:49 PM Page 185

Note that this page also provides you with quick access to support for your new Facebook
application—from a complete sample application to links to the documentation. Of course,
the samples are in PHP and Java, but you can’t have everything, right?

FBML and iframe Applications
So far, you haven’t had to do anything to accommodate the differences between an iframe
application and an FBML application. Shortly, that will change—but before you get to that
point, there are a few more things you can do that will not change between the two. These are
the About page for your application and the default FBML for your application users’ profiles.

The About Page
The About page is to your Facebook application as your home page is to your normal web
site—it’s the page that prospective users will visit to learn more about your application when
they’re deciding whether or not to add it, so it needs to be as appealing as possible. To this
end, you can edit various parts of the page. From My Applications, click the Edit About Page
link for your new application. You’ll then see a menu (shown in Figure 7-4) allowing you to
manage the various parts of your About page—from the image displayed to the discussion
boards and reviews.

Figure 7-4. Editing the sections of the About page

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK186

9945CH07.qxd 4/1/08 2:49 PM Page 186

Once on the menu page, click the Edit link for the Application Information section, where
you’ll see something like Figure 7-5.

Figure 7-5. Editing your application’s information

There are two steps to editing this page; the first (Application Info) allows you to change
the following information:

• Application Name: Here, you can change the name of your application (just as you
might change it on the edit settings page).

• Description of Application: This description is separate from the one you created with
your application, but it should be no less compelling.

• Category: You can choose up to two categories for your application from this list; these
help users find it in the Facebook application directory once you release it to the public.

• Developer Information: With this choice, you can specify who is responsible for the
application. If you are developing it as a company (taking advantage of those business
opportunities I mentioned in the introduction), you can enter your company’s name,
URL, and description here. If you’re developing without a company behind you, on the
other hand, you can display the individual developers who created the application,
along with a general description of the group.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 187

9945CH07.qxd 4/1/08 2:49 PM Page 187

Once you’ve filled out this first step to your satisfaction, click Submit; you will then be
able to upload an image to display on the About page. This is a good way to differentiate your
application from competitors—a great image can be surprisingly effective, so choose carefully.

Regardless of whether you upload an image or not, you should be able to see the results of
your edits by returning to the My Applications page and clicking View About Page for your
application, where you’ll see something like Figure 7-6.

Figure 7-6. An example MovieList About page (photo from http://www.flickr.com/photos/
dpade1337/501213870/)

Notice that there are a number of sections that you saw on the Edit Application page:
Discussion Board, Reviews, and Wall. These enable users to interact with each other around
your application—take a look at Causes (at http://apps.facebook.com/causes—click the More
Information about Causes link) and you’ll see how useful they can be.

The Causes application also shows how some sections (which you aren’t able to edit)
work: About this Application statistics (so potential users can see how popular your applica-
tion is), Fans, and Friends Who Have Added this Application. This last module is especially
helpful to prospective users, since people are more likely to join in if their friends have already
done so. You can see this in Figure 7-7.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK188

9945CH07.qxd 4/1/08 2:49 PM Page 188

http://www.flickr.com/photos
http://apps.facebook.com/causes%E2%80%94click

Figure 7-7. The About page for the Causes application

Default FBML for the Profile Box
The second piece that’s common to the the iframe and FBML applications you’ll be working
on is back in the Edit Settings (or Create an Application) form—it’s the Default FBML field. As I
mentioned earlier, when a user adds your application, a box for it will be added to her profile.
Generally, this box will display recent updates and information from the application, but
when it is first added you may want to show something specific.

As the name implies, you can use FBML here, which means that this view can be fairly
intricate. In particular, you can use the FBML visibility tags (fb:visible-to-owner,
fb:visible-to-user, fb:visible-to-friends, fb:visible-to-app-users, fb:visible-to-
added-app-users, and fb:visible-to-connection) to specify differing content for different
people (for more information on these and the other FBML tags, look at http://wiki.
developers.facebook.com/index.php/FBML). For now, keep this simple by showing a special
message just for the user who has added the application (Listing 7-1). Later on, you might
want to provide a different (recruiting, for instance) message to her friends, or something else.

Listing 7-1. Default FBML Entry to Display a Message to the Application User

<fb:visible-to-owner>
You haven't added any interests yet!
</fb:visible-to-owner>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 189

9945CH07.qxd 4/1/08 2:49 PM Page 189

http://wiki

Project 1: The iframe Application
With the shared setup complete, it’s finally time to start the first project: MovieList in an
iframe. As I mentioned earlier, iframe applications require much less customization than do
FBML applications, so this will be a relatively simple effort. The first step will be to get a copy
of the MovieList application running within the iframe, after which you’ll go back in and add
in features to take advantage of the data Facebook provides.

Setup
For this project, you’ll be supporting Facebook users within the existing MovieList code. Given
the next project, however, it could get confusing if you modify your main application code, so
start out by copying your existing version of the site into a new folder. For me, this was a sim-
ple cp –R movielist movielist-iframe (if you’re using source control, this would be a good
time to branch your code). You’ll be working with this copy for a while, so you should also go
ahead and stop the application server running the old site, if it’s still up.

Now go back to the Developer home page in Facebook and click your application’s name.
That will take you to the About page you set up earlier—and from there, you can finally add
the application to your profile.

After you click the Add Application button, you’ll be taken to a confirmation screen like
the one in Figure 7-8.

Figure 7-8. The Add Application screen

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK190

9945CH07.qxd 4/1/08 2:49 PM Page 190

On this page, any user adding your application can specify the level of access it will have
to her profile—she can prohibit an application from displaying anything at all in the profile or
news feed and even keep it from knowing anything about her. Since this is your own applica-
tion, go ahead and leave all the boxes checked, and hit the Add [your application name]
button—after which, Facebook redirects you to . . . your application home page! You can see
mine in Figure 7-9.

Figure 7-9. The MovieList application home page

This should look very familiar, since it’s just the movie listing page from MovieList framed
by the Facebook interface. From here, you can browse around and do anything you might
want to do in the main MovieList application—you can even log in and manage your interests
or (if you’re an admin) the movies and releases themselves. Also, if you return to your main
Facebook profile, you should now see the box for your application.

Of course, at this point the application isn’t very Facebook-like. In particular, the applica-
tion doesn’t yet take advantage of any of the data that Facebook makes available. The whole
point of providing a Facebook application is to locate your features within the context of a
huge social network, after all, so what you have so far is merely a starting point.

Socialization
The next step, then, is to integrate as much of that social information as is practical (and as
makes sense). This means that you’ll have to familiarize yourself with the Facebook API. For
more on the API, you can visit http://wiki.developers.facebook.com/index.php/API—but be

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 191

9945CH07.qxd 4/1/08 2:50 PM Page 191

http://wiki.developers.facebook.com/index.php/API%E2%80%94but

aware that the features Facebook provides do change over time, so it’s also a good idea to keep
up to date by following the news on the Developer home page.

Unfortunately, the only official client libraries for the Facebook API are in PHP (both PHP
4 and PHP 5) and Java. The Facebook team has taken full advantage of the community out-
sourcing phenomenon I discussed back in the first chapter, however, with the result that there
are a huge number of unofficial client libraries in various languages—including Ruby—as well
as unofficial versions of the PHP and Java libraries. You can see the full list at http://wiki.
developers.facebook.com/index.php/Main_Page.

There are two major Ruby libraries for the Facebook API: RFacebook and Facebooker. For
the projects in this chapter, you’ll be using RFacebook—it hews closer to the Facebook API,
which can help you get a better feel for what is possible. The sidebar describes both libraries
briefly, but if you pursue Facebook application development, it will definitely be worth your
time to investigate them in more detail.

RFACEBOOK VS. FACEBOOKER

When writing a wrapper for an existing API in a given language, you can take either of two basic approaches:
attempt to port the API as faithfully as possible or try to rephrase the API in such a way that it looks and feels
like the destination language.

This is the essential difference between the RFacebook and Facebooker libraries. The former is the
older of the two and was the result of an explicit port of the PHP API officially supported by Facebook. As a
result, the code you write when working RFacebook feels a lot like PHP. For instance:

fbsession.friends_get.uid_list

This is clearly not Ruby-like. Contrast that with nearly equivalent code from Facebooker:

session.user.friends!

This, on the other hand, is Ruby-like. It’s more readable, for one, just as Ruby tends to be more readable
than PHP. It also uses Ruby-specific syntax, in that ! is a valid character in Ruby method names.

There are other, sometimes significant differences between the two libraries. RFacebook makes heavy
use of method_missing to support its low-level interaction with the Facebook API. While this means that
you can use the Facebook API documentation directly to discover much of what you can do with the library,
some developers may prefer the more explicit approach of Facebooker.

Facebooker, as of the writing of this chapter, has not yet had an official release (though you can down-
load it from Rubyforge). RFacebook, on the other hand, currently stands at version 0.9.8—of course, there is
some doubt over whether RFacebook will continue to be maintained, so it may be best to re-evaluate the sit-
uation whenever you launch a new Facebook project in Ruby.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK192

9945CH07.qxd 4/1/08 2:50 PM Page 192

http://wiki

Since you’ll be using RFacebook on this application, you’re going to need to set it up. First,
install the gem and the plugin, by running these commands:

gem install rfacebook
./script/plugin install ➥

svn://rubyforge.org/var/svn/rfacebook/trunk/rfacebook/plugins/rfacebook

With the plugin, your application will expect to find a configuration file holding all the infor-
mation it needs to integrate with Facebook; to generate a stub of this file, run rake
facebook:setup, which yields the code shown in Listing 7-2.

Listing 7-2. The Autogenerated config/facebook.yml

development:
key: YOUR_API_KEY_HERE
secret: YOUR_API_SECRET_HERE
canvas_path: /yourAppName/
callback_path: /path/to/your/callback/
tunnel:
username: yourLoginName
host: www.yourexternaldomain.com
port: 1234
local_port: 5678

test:
key: YOUR_API_KEY_HERE
secret: YOUR_API_SECRET_HERE
canvas_path: /yourAppName/
callback_path: /path/to/your/callback/
tunnel:
username: yourLoginName
host: www.yourexternaldomain.com
port: 1234
local_port: 5678

production:
key: YOUR_API_KEY_HERE
secret: YOUR_API_SECRET_HERE
canvas_path: /yourAppName/
callback_path: /path/to/your/callback/
tunnel:
username: yourLoginName
host: www.yourexternaldomain.com
port: 1234
local_port: 5678

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 193

9945CH07.qxd 4/1/08 2:50 PM Page 193

svn://rubyforge.org/var/svn/rfacebook/trunk/rfacebook/plugins/rfacebook
http://www.yourexternaldomain.com
http://www.yourexternaldomain.com
http://www.yourexternaldomain.com

REDUCING DUPLICATION IN YAML

There’s (obviously) a lot of duplication in Listing 7-2. You could easily avoid most of that by using named
anchors and merge keys in your YAML, like so:

common: &common
key: YOUR_API_KEY_HERE
secret: YOUR_API_SECRET_HERE
canvas_path: /yourAppName/
callback_path: /path/to/your/callback/
tunnel:
username: yourLoginName
host: www.yourexternaldomain.com
port: 1234
local_port: 5678

development:
<<: *common

test:
<<: *common

production:
<<: *common

Of course, you’d want to extract anything that might differ between environments—but for the pur-
poses of this project, the DRY version should work perfectly well.

After the file has been created, fill out the key and secret fields with your API key and
Secret, which you can see on the My Applications page (note that you’ll have a different API
key for each application you create). The value for canvas_path should be the path that you
entered on your application’s settings page—the part after http://apps.facebook.com. For
callback_path, just use a single slash (/), since you want Facebook users to come to your
application’s root when they load the page. For now, you can ignore the tunnel information;
you’ll deal with that in the next project.

With RFacebook installed and configured, you now have access to all sorts of functionality
and data related to the Facebook users who visit your application. To get a hint of what will be
available, open up your log files (I use tail -f) and refresh the front page of your application
in Facebook. You should see something like Listing 7-3, though not so readable.

Listing 7-3. Sample Request in log/development.log

Processing MoviesController#index ...
...
Parameters: {"fb_sig_time"=>"xx.xx",
"fb_sig_in_iframe"=>"1",

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK194

9945CH07.qxd 4/1/08 2:50 PM Page 194

http://www.yourexternaldomain.com
http://apps.facebook.com

"fb_sig"=>"xxx",
"installed"=>"1",
"action"=>"index",
"fb_sig_session_key"=>"xxx",
"auth_token"=>"xxx",
"controller"=>"releases",
"fb_sig_expires"=>"0",
"fb_sig_added"=>"1",
"fb_sig_api_key"=>"xxx",
"fb_sig_profile_update_time"=>"xxx",
"fb_sig_user"=>"xxx"}

...

All of those fb_sig parameters are added to your request by Facebook and represent vari-
ous pieces of data that you can access (through the RFacebook library, or by hand if you’re
feeling brave) and employ to provide more value to your users. Most notably, fb_sig_in_iframe
indicates that your application is running within an iframe, as opposed to in FBML;
fb_sig_added signifies that the current user has added your application; and fb_sig_user is
the Facebook user ID for the current user. With these, you can easily control who sees what in
your application.

Facebook Users
Now that you can tell Facebook users apart, however, you have a decision to make. You can
either allow Facebook users to access MovieList in parallel with regular web users, or you can
make it exclusively a Facebook application. For this project, you’ll be doing the former—but
with this approach, you need to provide some way for users who have already registered with
the main MovieList site to link their existing account to their Facebook identity.

The easiest way to do this is to force any Facebook users to log in to the application when
they want to use the interest-tracking features; at that point, you can then capture their Face-
book ID and save it alongside their existing user record for future reference.

■Caution Be very careful about what data from Facebook you store for more than 24 hours. The platform
terms of service are very strict, as you can see at http://developers.facebook.com/documentation.
php?v=1.0&doc=misc. You can, however, store Facebook user IDs with your local accounts if necessary,
and for the purposes of this chapter that’s all you’ll need.

First, you need to have a place to store the ID. For that, generate a new migration; here’s
the command to do that:

./script/generate migration AddFacebookIdToUserModel

Next, you’ll need to update the migration with the new column, as shown in Listing 7-4.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 195

9945CH07.qxd 4/1/08 2:50 PM Page 195

http://developers.facebook.com/documentation

Listing 7-4. Updating db/migrate/010_add_facebook_id_to_user_model.rb

class AddFacebookIdToUserModel < ActiveRecord::Migration
def self.up
add_column :users, :facebook_id, :integer, :null => true

execute("ALTER TABLE users MODIFY facebook_id BIGINT") # MySQL-specific
end

def self.down
remove_column :users, :facebook_id

end
end

The only new thing here is the execute statement; a standard MySQL INT field is 4 bytes,
which allows signed values up to 2,147,483,647. At the rate Facebook is adding new users
(both real and testing), however, it makes sense to bump up the field to the 8-byte BIGINT,
which permits signed values up to 9,223,372,036,854,775,807. If you’re using a database other
than MySQL, you’ll most likely need to do something similar (using bigint in PostgreSQL, for
instance). One notable exception to this requirement is SQLite3, which automatically expands
INTEGER columns up to 8 bytes when necessary.

With that done, go ahead and run rake db:migrate to update your database. Next, of
course, you need to populate the field. Listing 7-5 shows the code to do that.

Listing 7-5. Setting facebook_id in app/controllers/sessions_controller.rb

class SessionsController < ApplicationController
...

def create
self.current_user = User.authenticate(params[:login], params[:password])
if logged_in?
self.current_user.update_attribute(:facebook_id, fbsession.session_user_id)
if params[:remember_me] == "1"
self.current_user.remember_me
cookies[:auth_token] = {
:value => self.current_user.remember_token,
:expires => self.current_user.remember_token_expires_at

}
end
redirect_back_or_default('/')
flash[:notice] = "Logged in successfully"

else
render :action => 'new'

end
end

...
end

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK196

9945CH07.qxd 4/1/08 2:50 PM Page 196

In this code, fbsession is provided by the RFacebook plugin; it allows you to access the
Facebook session for the current user, which it knows about from the fb_sig parameters that I
pointed out earlier. Basically, when an RFacebook-enabled application is hit within the Face-
book interface, those fb_sig parameters are processed and stored in the local user session.
When you need to pull out some Facebook-specific information, then, it’s as easy as retrieving
it from the fbsession object. In this case, you’re just pulling out the Facebook user ID from the
session and storing it in the database—so that once users log in, their accounts are linked.

There is, however, a problem. It turns out that the RFacebook plugin expects to be used in
a Facebook-user-only environment—the documentation and tutorials all recommend you
add a before_filter called require_facebook_login to your application filter, redirecting any-
one who visits your site outside of the Facebook interface to Facebook to log in. Since you’re
allowing users both within and outside of the Facebook platform, you need to tweak your
application controller a bit, as shown in Listing 7-6.

Listing 7-6. Checking for Facebook Sessions in app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
before_filter :load_facebook_session
before_filter :detect_iphone_request
include AuthenticatedSystem

helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details
Uncomment the :secret if you're not using the cookie session store
protect_from_forgery # :secret => '51c6473c18afddc1f930646e39d01b86'

protected
def detect_iphone_request
request.format = :iphone if iphone_request?

end

def iphone_request?
request.env["HTTP_USER_AGENT"] &&
request.env["HTTP_USER_AGENT"][/(Mobile\/.+Safari)/]

end

def require_admin
access_denied unless logged_in? && current_user.administrator?

end

def load_facebook_session
fbsession.ready?
true

end
end

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 197

9945CH07.qxd 4/1/08 2:50 PM Page 197

The load_facebook_session method prepares your application to handle Facebook users
(via the fbsession.ready? method, provided by the RFacebook plugin), while the explicit true
it returns guarantees that non-Facebook users can access the site, too.

Incidentally, you may also want to add code that will automatically log a Facebook user in
to MovieList once their accounts are linked—this will keep them from having to log in multi-
ple times when using the Facebook application. Luckily, it’s easy to do—just add the code
shown in Listing 7-7, again to your application controller.

Listing 7-7. /app/controllers/application.rb

class ApplicationController < ActionController::Base
...

def load_facebook_session
if fbsession.ready?
facebook_id = fbsession.session_user_id
self.current_user = User.find_by_facebook_id(facebook_id) || :false

end
true

end
end

That’s all well and good, but you still haven’t really used any of the data from Facebook—
all you’ve got are local MovieList accounts linked to Facebook accounts. The next step, then, is
to pull back information about the current user’s friends and their activity on MovieList.

Friends
To test this work, start with the movie detail page (MoviesController#show). The idea will be to
show, for a given movie, any of your friends who have it as an interest. Basically, you’ll be
checking the accounts on MovieList that have an interest in the movie against your friends’
Facebook IDs. Listing 7-8 shows the added code.

Listing 7-8. Retrieving Facebook Friends in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
...

def show
@movie = Movie.find(params[:id])

respond_to do |format|
format.html do
if fbsession.ready?
friend_uids = fbsession.friends_get.uid_list
shared_interests = @movie.interests.find(:all,
:include => :user,
:conditions => ['users.facebook_id IN (?)', friend_uids])

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK198

9945CH07.qxd 4/1/08 2:50 PM Page 198

mailto:@movie.interests.find(:all

unless shared_interests.empty?
@friends = fbsession.users_getInfo(
:uids => shared_interests.map { |int| int.user.facebook_id },
:fields => ['first_name', 'last_name', 'pic_square']

)
end

end
end
format.iphone
format.xml { render :xml => @movie }

end
end

...
end

This code first retrieves your friends’ Facebook IDs (with fbsession.friends_get.
uid_list) and then finds all the interests for users who fall within that set of IDs. Finally, the
system makes another call back to Facebook to grab the names and profile images for all the
users who matched up. With that information in hand, you can then display those friends
back on the movie detail page, as shown in Listing 7-9.

Listing 7-9. Displaying Facebook Friends in app/views/movies/show.html.erb

<div id="details">
<%= admin_link_to 'Edit', edit_movie_path(@movie) %>

<%= image_tag @movie.image.public_filename if @movie.image %>

<h1><%= h @movie.title %></h1>
<h3 class="rating"><%= h @movie.rating %></h3>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% if logged_in? %>
<% unless current_user.interested_in?(@movie) %>
<% form_for current_user.interests.build(:movie => @movie),

:url => user_interests_path do |f| %>
<%= f.hidden_field :movie_id %>
<%= content_tag :button, 'Add this as an interest', :type => 'submit' %>

<% end %>
<% else %>
<p>You have added this movie as an interest</p>

<% end %>
<% end %>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 199

9945CH07.qxd 4/1/08 2:50 PM Page 199

mailto:@movie.image.public_filename
mailto:@movie.image
mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?

<% unless @movie.releases.empty? %>
<div class="module">
Releases:
<% @movie.releases.each do |release| %>

<%= h release %>

<% end %>
</div>

<% end %>

<% unless @movie.roles.empty? %>
<div class="module">
People:
<% @movie.roles.each do |role| %>

<%= link_to h(role.person.full_name), role.person %> -
<%= role.name %>

<% end %>
</div>

<% end %>
</div>

<div id="comments">
<h2>Friends</h2>
<% if @friends %>

<% @friends.user_list.each do |friend| %>

<%= image_tag friend.pic_square %>
<%= "#{friend.first_name} #{friend.last_name}" %>

<% end %>

<% elsif fbsession.ready? %>
<p>
None of your friends are interested in this film... yet.
Be the first to add it!

</p>
<% end %>

<h2>Comments</h2>
<%= 'No one has commented on this movie' if @movie.comments.empty? %>

<%= @movie.comments.map { |comment|

content_tag :li, h(comment.text)
}.join("\n") %>

</p>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK200

9945CH07.qxd 4/1/08 2:50 PM Page 200

mailto:@movie.releases.empty?
mailto:@movie.releases.each
mailto:@movie.roles.empty?
mailto:@movie.roles.each
mailto:@friends.user_list.each
mailto:@movie.comments.empty?
mailto:@movie.comments.map

<% form_for @movie.comments.build, {
:url => movie_comments_path(@movie),
:id => 'comment-form'

} do |f| %>
<%= f.text_area :text, :rows => 5 %>

<%= submit_tag 'Add Your Comment' %>

<% end %>
</div>

At this point, you may have realized that you don’t really have a way to see this in action—
given the way in which you set up the new application, your friends can’t add it to their
Facebook profiles even if you wanted them to. You could, of course, make some of them devel-
opers on the application, at which point they could add it and you could see the friends list in
all its glory. Alternatively, you could also engage in a little bit of a hack.

Add the following line to your movie detail page:

<%= fbsession.friends_get.uid_list.inspect %>

When you then load that page in the Facebook interface, you’ll see an array of all your
friends’ Facebook IDs. At this point, you can drop into the database (or use my preferred
method, script/console) to add test interests. Say you have a movie with ID 17, and your
friends’ Facebook IDs include 123456789 and 234567890. With script/console, then, you could
run the following commands:

> m = Movie.find(17)

> u = User.create :login => 'fbtest1', :email => 'fbtest1@example.com',
> :password => 'testing', :password_confirmation => 'testing'
> u.update_attribute :facebook_id, 123456789
> m.interests.create :user => u

And with that, you’ve got a brand-new Facebook-linked account with an interest in movie
#17 to see when you test out your application, as in Figure 7-10.

Also, if you’re wondering, you can’t assign :facebook_id in the main User.create state-
ments because it’s not on the attr_accessible list for the User model—if you wanted to
condense that step, you’d have to update that line of the model file.

It’s time now to turn back to the application home page—the page that users first see
when they come to the application. The Facebook platform guidelines for the home page rec-
ommend that it “aggregate friend data to create a page worth coming back to quite often.”
Currently, it’s just the movie listing page, which doesn’t really do that. What’s more, it’s not
exactly clear how that particular page could be modified to show data on your friends.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 201

9945CH07.qxd 4/1/08 2:50 PM Page 201

mailto:@movie.comments.build
mailto:fbtest1@example.com

Figure 7-10. The MovieList detail page with Facebook friends included

What very well might be more compelling would be a friend-enhanced view of the
upcoming releases page, where you could see all of the upcoming releases with information
on your interests and your friends’ interests. To do this, the first step is to reset the root path
for the application, as in Listing 7-10.

Listing 7-10. Changing the root route in config/routes.rb

ActionController::Routing::Routes.draw do |map|
...

map.root :controller => 'releases', :action => 'index'
end

If you reload your application within the Facebook interface now, you should see the
upcoming releases page instead of the movie listing. The next step, then, is to update the
releases listing view to include the friend information.

For this, though, it may not make sense to just update the existing view file; it’s very possi-
ble that the release listing page with friend information will look and behave differently than
the same page without that information—and since this version of the application supports
both Facebook and non-Facebook users, it may be easier just to create a new file for the Face-
book view and leave the existing one for the non-Facebook display. To that end, go ahead and
copy the existing view to app/views/releases/fb_index.html.erb. Before customizing it for the

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK202

9945CH07.qxd 4/1/08 2:50 PM Page 202

friend data, though, update the releases controller as shown in Listing 7-11 to render it when
appropriate.

Listing 7-11. Handling Facebook Requests in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
...

def index
respond_to do |format|
format.html do
if fbsession.ready?
load friend data
render :template => 'releases/fb_index'

else
paginate_releases
render

end
end
format.iphone {
paginate_releases

}
format.js {
@releases = Release.upcoming(params)

}
format.xml {
@releases = Release.upcoming(params)
render :xml => @releases.to_xml(:dasherize => false, :include => :movie)

}
end

end

...
end

Notice the placeholder comment load friend data—you’ll be returning to that section of
the code shortly. For now, however, turn your attention to the new fb_index.html.erb view you
just created. The idea is to show upcoming releases you’re interested in, those your friends are
interested in, and any remaining ones. As you can see in Listing 7-12, it’s easy enough.

Listing 7-12. The Facebook-specific app/views/releases/fb_index.html.erb

<h1>Upcoming Releases</h1>

<% unless @releases.empty? %>
<% unless @own_releases.empty? %>
<h2>Releases for your interests</h2>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 203

9945CH07.qxd 4/1/08 2:50 PM Page 203

mailto:@releases=Release.upcoming
mailto:@releases=Release.upcoming
mailto:@releases.to_xml(:dasherize
mailto:@releases.empty?
mailto:@own_releases.empty?

<% @own_releases.each do |release| %>

<%= link_to h(release.movie.title), release.movie %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% else %>
<p>There are no upcoming releases for your interests</p>
<% end %>

<% unless @friend_releases.empty? %>
<h2>Releases for your friends' interests</h2>

<% @friend_releases.each do |release| %>

<%= link_to h(release.movie.title), release.movie %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% else %>
<p>There are no upcoming releases for your friends' interests</p>
<% end %>

<% unless @other_releases.empty? %>
<h2>Other releases</h2>

<% @other_releases.each do |release| %>

<%= link_to h(release.movie.title), release.movie %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% else %>
<p>There are no other upcoming releases</p>
<% end %>

<% else %>
<p>There are no upcoming releases</p>
<% end %>

This code, then, specifies a sort of interface for the view—it expects four instance vari-
ables from the controller: @releases, @own_releases, @friend_releases, and @other_releases.
Returning to the controller, you need to instantiate those four variables and make sure they
get the correct data; Listing 7-13 shows the revised code.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK204

9945CH07.qxd 4/1/08 2:50 PM Page 204

mailto:@own_releases.each
mailto:@friend_releases.empty?
mailto:@friend_releases.each
mailto:@other_releases.empty?
mailto:@other_releases.each

Listing 7-13. Setting Up the Appropriate Variables in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
#...

def index
respond_to do |format|
format.html do
if fbsession.ready?
@releases = Release.upcoming(:time => '3 months')
@own_releases = []
@friend_releases = []
@other_releases = @releases

if current_user != :false
friend_uids = fbsession.friends_get.uid_list
friends = User.find(:all,
:conditions => ['users.facebook_id IN (?)', friend_uids]

)

releases = @releases.dup
@own_releases = current_user.releases(true)

@friend_releases = Release.upcoming({
:time => '3 months',
:ids => friends.map(&:id)

}).reject { |r| @own_releases.include?(r) }

@other_releases = releases.reject { |r|
@own_releases.include?(r) || @friend_releases.include?(r)

}
end

render :template => 'releases/fb_index'
else
paginate_releases
render

end
end
format.iphone {
paginate_releases

}
format.js {
@releases = Release.upcoming(params)

}
format.xml {
@releases = Release.upcoming(params)

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 205

9945CH07.qxd 4/1/08 2:50 PM Page 205

mailto:@releases.dup
mailto:@own_releases.include?
mailto:@own_releases.include?
mailto:@friend_releases.include?
mailto:@releases=Release.upcoming
mailto:@releases=Release.upcoming

render :xml => @releases.to_xml(:dasherize => false, :include => :movie)
}

end
end

...
end

You can see what replaced that placeholder comment—there’s a fair amount of code
here, so take it chunk by chunk. First, the controller initializes the variables (@releases,
@own_releases, @friend_releases, and @other_releases). The next block of code runs only if a
logged-in user is recognized; first, the system retrieves the Facebook IDs for the user’s friends,
which are then translated into those friends’ local user IDs. Then, upcoming releases based on
the user’s interests are pulled back, followed by releases for the user’s friends interests (remov-
ing any already in the user’s own interests, to prevent duplication). Finally, both the user’s own
releases and her friends’ releases are removed from the overall list, leaving only those that had
no interested users in the @other_releases variable.

The only other change required to get this to work is in the Release model, where you’ll
have to add code to accept user IDs in the upcoming method. Listing 7-14 shows the updated
version.

Listing 7-14. Scoping Releases by User in app/models/release.rb

class Release < ActiveRecord::Base
...

def self.upcoming(params)
limit = params[:limit] || nil
rel_format = params[:release_format] || 'theater'
raw_time = params[:time] || '1 month'
time = eval("#{raw_time.sub(/ /, '.')}.from_now")
ids = params.delete(:ids) || nil

conditions = if ids
[
"interests.user_id IN (?) AND releases.format = ?
AND releases.released_on BETWEEN ? AND ?",

ids, rel_format, Date.today, time
]

else
[
'format = ? AND released_on BETWEEN ? AND ?',
rel_format, Date.today, time

]
end

Release.find(:all,

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK206

9945CH07.qxd 4/1/08 2:50 PM Page 206

mailto:@releases.to_xml(:dasherize

:include => {:movie => :interests},
:limit => limit,
:order => 'released_on DESC',
:conditions => conditions

)
end

end

Here, you’re adding another table to the join (interests, joining to movies), and—when an
array of user IDs is passed in to the method via the params hash—you’re adding a clause to the
conditions to limit the results to releases for movies in which the specified users have an inter-
est. The end result of all of that is Figure 7-11, a single page on which you can see upcoming
releases that you and your friends have expressed an interest in.

Figure 7-11. The friend-enhanced release listing page

That just about does it for the iframe application—the only work left is to clean up the
display a bit and add the code that updates users’ profiles when they take action within the
application. At this point, however, you may have begun to realize that there are noticeable
problems with the iframe approach.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 207

9945CH07.qxd 4/1/08 2:50 PM Page 207

Potential Issues
Facebook iframe applications, as you’ve probably realized by this point, have a number of
shortcomings that can make them inconvenient to work with. For instance, if you go to reload
a page, Facebook will return you to the application home page. This makes testing individual
views that much more difficult. There is, however, a workaround; since you’ve set the applica-
tion to be accessible both through Facebook and on its own, you can log in to Facebook and
hit the application itself directly. Once you’ve logged in, the session cookies from Facebook
will be preserved and you can continue using the site outside of the platform.

This dual-access approach is itself a problem, however. In addition to making your appli-
cation code more complicated (and therefore more bug-prone), allowing both Facebook and
non-Facebook users complicates the underlying logic. Facebook users might reasonably
expect to be able to use the application without having to create a separate account, for
instance—and if you add that functionality, you’re almost guaranteed to let in false or invalid
data for your user table.

More importantly, however, there are known issues with this approach stemming from
session management. When you run a Rails application inside an iframe on another site, you
sometimes experience odd behavior with sessions disappearing or conflicting with one
another—and while RFacebook attempts to handle many of those issues for you, some people
have still experienced problems.

Finally, iframe applications just look less polished than the alternative. Just as you saw
with the iPhone, the difference between a site that works within the platform and one that is
explicitly built for the platform can be huge. The top Facebook applications are all built on
FBML, to better take advantage of the full functionality of the platform.

Your next project, then, will avoid all of these issues. You’ll be building a completely new
application—one that functions as a client to your original MovieList site. Unlike the previous
clients you’ve built, however, this one won’t be written in JavaScript or PHP. You’ll build it in
Rails and FBML, instead.

Project 2: The FBML Application
As I discussed earlier, FBML applications can be made to feel much more like a part of Face-
book than most iframe applications do. When you choose to distribute your application via
FBML, your server sends its markup through Facebook’s servers, which process it (and any
special FBML tags that you use) and render the final markup within the platform interface.
This means, among other things, that each page load actually is a full page load, unlike with
an application in an iframe. This means your users will be free to reload the page wherever in
the site they might be, an improvement over your earlier iframe project. FBML applications
also avoid the session problems you see with iframe applications, since there are no compet-
ing hosts to complicate session cookies.

There are new difficulties associated with FBML applications, however, and you’ll see
these (and the solutions for them) as you proceed through this project. Before getting into
that, however, you’ve got some more setup to do.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK208

9945CH07.qxd 4/1/08 2:50 PM Page 208

Setup
As in the last project, you’ll be creating a new application for this one. This time, however,
you’ll be building a client for MovieList, instead of modifying the existing application. To get
started, create a new Rails project locally (I called mine fbml-movielist).

Once that’s done, use the generator to create the resources:

./script/generate resource Interest facebook_id:integer movie_id:integer

./script/generate resource Movie --skip-migration

./script/generate resource Release --skip-migration

Create your database (using rake db:create). Before you run your interest migration,
however, update it to the code shown in Listing 7-15.

Listing 7-15. Updating the Generated db/migrate/001_create_interests.rb

class CreateInterests < ActiveRecord::Migration
def self.up
create_table :interests do |t|
t.integer :facebook_id, :null => false
t.integer :movie_id, :null => false

t.timestamps
end

execute("ALTER TABLE interests MODIFY facebook_id BIGINT") # MySQL-specific

end

def self.down
drop_table :interests

end

end

Now run the migration with rake db:migrate. At this point, you may be wondering why
you skipped the migrations for the movie and release models. The answer lies in the particular
approach you’ll be taking while building this client application: you’re going to use Active-
Resource.

ActiveResource
As I discussed back in Chapter 2, ActiveResource is a library distributed with Rails that
attempts to make interacting with resources over the Web easier and more like interacting
with database resources (à la ActiveRecord). To use it, you just declare your model to be a sub-
class of ActiveResource::Base instead of ActiveRecord::Base, and specify the site where the
resources are found. In this application, then, you should make the model changes shown in
Listings 7-16 and 7-17.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 209

9945CH07.qxd 4/1/08 2:50 PM Page 209

Listing 7-16. Updating app/models/movie.rb to Use ActiveResource

class Movie < ActiveResource::Base
self.site = 'http://localhost:3000'

end

Listing 7-17. Updating app/models/release.rb to Use ActiveResource

class Release < ActiveResource::Base
self.site = 'http://localhost:3000'

end

At this point, it would be a good idea to stop the application server for your previous proj-
ect (the iframe version of MovieList, assuming it’s still running) and start the server for your
original MovieList application (the one you copied the iframe version from) on port 3000. To
check that it’s working, add the code shown in Listing 7-18 to your MoviesController (in the
newest, FBML version of MovieList).

Listing 7-18. Adding the Basic Actions to app/controllers/movies_controller.rb

class MoviesController < ApplicationController
def index
@movies = Movie.find(:all)

end

def show
@movie = Movie.find(params[:id])

end
end

Also add the new view file shown in Listing 7-19.

Listing 7-19. The Bare-bones app/views/movies/index.html.erb

<h1>Listing movies</h1>

<% @movies.each do |movie| %>
<%= link_to h(movie.title), movie %>
<% end %>

Then fire up the server for the newest copy of MovieList at a new port (say, 4000—the
command is script/server -d -p 4000) and browse to http://localhost:4000/movies. If all is
well, you should see a list of the movies that exist in your original MovieList application, like
Figure 7-12.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK210

9945CH07.qxd 4/1/08 2:50 PM Page 210

http://localhost:3000
http://localhost:3000
mailto:@movies.each
http://localhost:4000/movies

Figure 7-12. The movie listing for your ActiveResource-powered MovieList

Furthermore, if you look at the logs for your original site, you should see an entry like
Listing 7-20.

Listing 7-20. A Sample Request in log/development.log

...

Processing MoviesController#index (for 127.0.0.1 at 2008-02-22 19:08:12) [GET]
Session ID: 6b15fb991a9cece72ffefb546a71252e
Parameters: {"format"=>"xml", "action"=>"index", "controller"=>"movies"}
SQL (0.000874) SHOW TABLES
Movie Columns (0.003030) SHOW FIELDS FROM `movies`
Movie Load (0.001324) SELECT * FROM `movies` LIMIT 0, 6
SQL (0.000456) SELECT count(*) AS count_all FROM `movies`

Completed in 0.03785 (26 reqs/sec) | Rendering: 0.01435 (37%) | ➥

DB: 0.00568 (15%) | 200 OK [http://localhost/movies.xml]

This is a request sent from your new application back to your original site—and notice, it
requested movies.xml. ActiveResource consumes XML interfaces by default (though this can
be changed by declaring a different format in the client class). It turns out, then, that the scaf-
folding you left in place (and the respond_to code you’ve added since) can be used in ways you
never expected.

To complete the basic framework of the client, go ahead and add the code necessary to
retrieve and view upcoming releases for a film—but don’t worry about interests and filtering
those releases for a given user yet. You’ll be getting to that soon enough.

First, update the ReleasesController (much as you did for the MoviesController earlier),
as in Listing 7-21.

Listing 7-21. Adding the index Action to app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
def index
@releases = Release.find(:all)

end
end

Next, add a view for the release index action (Listing 7-22).

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 211

9945CH07.qxd 4/1/08 2:50 PM Page 211

http://localhost/movies.xml

Listing 7-22. The Release Listing View in app/views/releases/index.html.erb

<h1>Listing releases</h1>

<% @releases.each do |release| %>

<%= link_to h(release.movie.title), movie_path(release.movie_id) %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

And finally, add the movie detail view—complete with a list of the current movie’s releases
(Listing 7-23).

Listing 7-23. The Movie Detail View in app/views/movies/show.html.erb

<h1><%= h @movie.title %></h1>

<%= image_tag @movie.image.public_filename if @movie.image %>

<p>Rating: <%= h @movie.rating %></p>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% unless @movie.releases.empty? %>

<% @movie.releases.each do |release| %>

<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% end %>

<%= link_to 'Back to movie listing', movies_path %>

If you tried to view this page now, however, you’d get an exception—it seems that your
Movie object doesn’t have a releases method yet. Remedy that by updating the model, as in
Listing 7-24.

Listing 7-24. Defining the releases Method in app/models/movie.rb

class Movie < ActiveResource::Base
self.site = 'http://localhost:3000'

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK212

9945CH07.qxd 4/1/08 2:50 PM Page 212

mailto:@releases.each
mailto:@movie.title
mailto:@movie.image.public_filename
mailto:@movie.image
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?
mailto:@movie.releases.empty?
mailto:@movie.releases.each
http://localhost:3000

def releases
Release.find(:all, :params => {:movie_id => id})

end
end

Notice that instead of just adding a has_many :releases to the Movie model, you’ve just
defined a releases method directly. As it happens, has_many and its relatives are all Active-
Record methods and can’t currently be used in an ActiveResource model, so you have to work
around that limitation. If you browse to a movie page in your new client application while
watching the logs, you may notice another problem, depending on the data in your data-
base—the releases shown for a particular movie aren’t, in fact, limited to those for that movie.
In fact, the main MovieList application is returning all upcoming releases regardless of which
movie they are associated with.

A quick look into the logs (Listing 7-25) explains this.

Listing 7-25. Viewing the Requests for Movies and Releases in log/development.log

...
Processing ReleasesController#index (for 127.0.0.1 at 2008-02-22 19:19:55) [GET]
Session ID: 261bbd140b9eed5953ea308339411c56
Parameters: {"format"=>"xml", "movie_id"=>"17", "action"=>"index", ...
SQL (0.001022) SHOW TABLES
Movie Columns (0.003130) SHOW FIELDS FROM `movies`
Release Columns (0.002593) SHOW FIELDS FROM `releases`
Release Load Including Associations (0.001319) SELECT ...

Completed in 0.08660 (11 reqs/sec) | Rendering: 0.00010 (0%) | ➥

DB: 0.00806 (9%) | 200 OK [http://localhost/releases.xml?movie_id=1]

Notice that the client is issuing a request to releases.xml?movie_id=1—but you don’t have
code in ReleasesController to handle a movie ID. In the original MovieList code, the scoping
is handled by has_many; since that isn’t available here, you’ll need to find a workaround. Back
in the original MovieList application, then, add the code shown in Listing 7-26.

Listing 7-26. Handling the ActiveResource Request in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
...

def index
respond_to do |format|
format.html {
paginate_releases

}
format.iphone {
paginate_releases

}
format.js {
@releases = Release.upcoming(params)

}

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 213

9945CH07.qxd 4/1/08 2:50 PM Page 213

http://localhost/releases.xml?movie_id=1
mailto:@releases=Release.upcoming

format.xml {
finder = if params[:movie_id]
Movie.find(params[:movie_id]).releases

else
Release

end
@releases = finder.upcoming(params.merge({:time => '3 months'}))
render :xml => @releases.to_xml(:dasherize => false, :include => :movie)

}
end

end

...
end

Here, the movie_id parameter is detected and, if present, used to replace the Release class
with a specific Movie object. If you pass in a movie_id, then, you’ll just get upcoming releases
scoped to that film. And if you go back to the movie detail page in your client now, you’ll see
the correct release list (just like Figure 7-13).

Figure 7-13. Movie detail page with correct upcoming releases

With all of this code in place, you can now proceed to put the client application on Face-
book, which is no small task in itself, as you’ll soon see.

Facebook Integration
Luckily, you can reuse some of the work of the previous project here (if you don’t mind aban-
doning it, that is—if you want to keep it around, you can always create a new application on
Facebook for this step). Log into your Facebook account and go to the Developer home page.
On the right side of the page, click See My Apps to return to the My Applications page. Once
there, choose the Edit Settings link, and you’re back on the (expansive) settings form for your
MovieList application. Go ahead and change the FBML/iframe setting to FBML and save the
form; then, after a few minutes (to allow the change to propagate over all the Facebook
servers), go back to your application home page—what was working is now throwing an error,
as you can see in Figure 7-14.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK214

9945CH07.qxd 4/1/08 2:50 PM Page 214

mailto:@releases.to_xml(:dasherize

Figure 7-14. The MovieList application, failing

Local FBML Development
Remember that one of the differences between FBML and iframe applications is that the con-
tent in the latter sort is sent directly from the server to the iframe, while content in the former
is processed through Facebook’s servers first. This means that your local development sites
(living on localhost) aren’t accessible as FBML applications—Facebook can’t see into your
local network.

There are two main ways around this problem. The first is to put a development copy of
your application on a server that Facebook can see, and use that as the source for your FBML
application. This approach is problematic, however—developing locally and having to deploy
just to see the changes is painful at the best of times (though it is certainly good practice for
your eventual move to a production environment).

The alternative, happily, is much more convenient. If you look back at the facebook.yml
file you generated in the earlier project, you’ll see a set of attributes for a “tunnel” key. These
are the configuration settings for an SSH tunnel, through which a local site (like your develop-
ment project) can be exposed to the Internet at large. To see how this works, you’ll need two
things: the RFacebook plugin installed on the current project and a server somewhere that
allows SSH tunneling (this may be a problem on some shared hosts, but it should be fine if you
have a VPS).

Assuming you have a server, go ahead and install the plugin and generate the configura-
tion file just as you did before, running these commands at the command line:

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 215

9945CH07.qxd 4/1/08 2:50 PM Page 215

./script/plugin install ➥

svn://rubyforge.org/var/svn/rfacebook/plugins/rfacebook
rake facebook:setup

If you like, you can simply copy the modified configuration file from your previous pro-
ject’s config folder. Once that’s done, open up the facebook.yml file and edit it to match
Listing 7-27 (this is the DRY version, obviously—you can keep the repetition if you prefer).

Listing 7-27. Updating config/facebook.yml for SSH Tunneling

common: &common
key: [your API key]
secret: [your API secret]
canvas_path: [your application name]
callback_path: /
tunnel:
username: [ssh login]
host: [your external domain]
port: 1234
local_port: 4000

development:
<<: *common

test:
<<: *common

production:
<<: *common

For the tunnel settings, you have to specify an SSH login you can use to open a connec-
tion to the external server you want to use for the tunnel. The port variable is the port on the
external server that will forward requests to your local application, which should be running
on the local_port variable. The only restrictions on these settings are that your SSH login
needs to use the appropriate key to open a connection without a password request, and you
need to make sure that the port on the remote server isn’t already in use.

Once you’ve customized the tunnel settings, you can test it out by running rake
facebook:tunnel:start. If all is well, you’ll see something like the following:

==
Tunneling [external domain]:1234 to 0.0.0.0:4000

...
==

The output will include instructions to help you fix any issues you might run into with the
tunnel (involving edits to /etc/ssh/sshd_config on the external server and ~/.ssh/config
locally) if you have problems with the tunnel. To verify that it’s working correctly, you can

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK216

9945CH07.qxd 4/1/08 2:50 PM Page 216

svn://rubyforge.org/var/svn/rfacebook/plugins/rfacebook

browse to http://[external domain]:1234, where you should see exactly the same screen that
you’d see at http://localhost:4000.

Once you’ve got the SSH tunnel running, go back to the Edit Settings form for your appli-
cation and enter http://[external domain]:1234/ in the Callback URL field; then revisit your
application’s home page.

There are a couple of things that could go wrong at this point. If you see some text about a
404 error, chances are you still have the Ruby on Rails “Getting Started” page at public/
index.html—delete that and make sure you declare a route for the root path, as in Listing 7-28.

Listing 7-28. Declaring the Root Route in config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :interests
map.resources :releases
map.resources :movies

map.root :controller => 'releases', :action => 'index'
end

If you see a 422 error (the status code for “unprocessable entity”), then it’s likely that you
haven’t restarted your client’s application server since installing the RFacebook plugin. If
restarting doesn’t help, you may be on a dodgy version of Rails 2 (version 2.0.1 in particular
seemed to cause this issue), so you may try up- or downgrading and see if that fixes the
problem.

Both of those errors will be displayed in raw, unstyled text. If, on the other hand, you get
a page that says “RFacebook environment information,” you’ve accessed the RFacebook
debug panel. This is a feature of the plugin that can be very helpful in solving problems
with your application—though hopefully you won’t have much call to use it. At this point
in your application’s lifecycle, the most likely reason you’d be seeing the panel now is an
ActionController::InvalidAuthenticityToken exception—for instance, Figure 7-15.

There are two things contributing to this exception. The first is that you are using Rails 2’s
built-in cross-site request forgery protection. You can verify this by looking in your application
controller, where you should see code like that in Listing 7-29.

Listing 7-29. The Default Contents of app/controllers/application.rb

...

class ApplicationController < ActionController::Base
helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details
Uncomment the :secret if you're not using the cookie session store
protect_from_forgery # :secret => 'ce3f31e64a9ee4ba3f296f4c524be7d9'

end

This feature ensures that any POST requests that come into your application get processed
only if they include an authenticity token, which is automatically added to forms that the site
itself generates.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 217

9945CH07.qxd 4/1/08 2:50 PM Page 217

http://localhost:4000

Figure 7-15. The RFacebook debug panel

At this point, you may wonder why you’d see the exception here, since the root URL that
Facebook should be accessing (/releases) maps to a GET request. This is the second factor:
when you have an FBML application, all requests from Facebook to your server are POSTs. This
means that the standard RESTful routing practices (including using map.resources) break—
instead of this particular request going to ReleasesController#index, for instance, your
application is attempting to process it as a form submission, which would normally go to
ReleasesController#create. Even before the request can work its way to that (nonexistent)
action, however, it is getting caught by the aforementioned request forgery protection. Since
the request is interpreted as a form submission, your application is looking for the authentic-
ity token that request_forgery_protection requires. Of course, the token can’t be found, so
you end up with this exception.

The easiest way to deal with the first of these two problems is simply to comment out the
request_forgery_protection line in your application controller; this isn’t the best approach,
but it will work for our purposes.

Routing
Even when you do that, however, you’re left with the POST request and routing issue. There are
several plugins available that attempt to work around this issue while preserving your RESTful
routing, but they are still, for the most part, immature—and Facebook’s side of the problem is
still somewhat changeable. The most reliable method of circumventing the problem, then, is
to return to explicitly naming your routes and avoid requiring specific request methods for

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK218

9945CH07.qxd 4/1/08 2:50 PM Page 218

them. Given the current state of your client application, this approach yields the code shown
in Listing 7-30.

Listing 7-30. Creating Routes by Hand in config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.releases 'releases', :controller => 'releases', :action => 'index'

map.with_options :controller => 'movies' do |m|
m.movies 'movies', :action => 'index'
m.movie 'movies/:id', :action => 'show'

end

map.resources :interests

map.root :controller => 'releases', :action => 'index'
end

The map.resources :interests line is commented out for now because you haven’t yet
worked on any of that functionality in the client. With those changes complete, you should
now be able to refresh your application home page and see the upcoming release listing as
normal, as in Figure 7-16.

Figure 7-16. The FBML MovieList application, working at last!

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 219

9945CH07.qxd 4/1/08 2:50 PM Page 219

The Relative URL Root
The release listing page appears to be working properly, but if you click a movie’s title you may
get a somewhat surprising error. In particular, it may look like your application has suddenly
changed into someone else’s. The key is in the URL. Your application, remember, lives at
http://apps.facebook.com/something/. If you look at the URL now, though, it’s probably
closer to http://apps.facebook.com/movies/14. The substitution of “movies” for your applica-
tion’s URL is the problem.

The issue is that a Rails application expects to live at the root of its domain. Any links gen-
erated by Rails, then, codify that expectation—so your movie links push you to a (most likely
nonexistent) page in the “movies” Facebook application. The solution is to add a single line to
your configuration, as in Listing 7-31.

Listing 7-31. Setting an Option in config/environment.rb

...
Rails::Initializer.run do |config|
...

end

ActionController::AbstractRequest.relative_url_root = "/your_app_path"

This change will force the links your application generates to include the prefix and will
allow your system to handle the prefix automatically when it appears in a request. Don’t forget
to restart your client application’s server when you’ve updated the file.

FBML
With all of that taken care of, you can finally browse your client application (such as it is) in
the Facebook interface. Of course, at this point it looks no better than the iframe version did—
so the next step is to add the FBML that will turn it from a generic site into something much
closer to the native Facebook look.

The first thing to do is add a layout to surround the content. Since you originally gener-
ated resources, and not scaffolds, you don’t yet have an existing layout file to edit, so start by
creating a new application.html.erb and add the markup shown in Listing 7-32.

Listing 7-32. Creating the FBML Layout in app/views/layouts/application.html.erb

<fb:dashboard>
<fb:header decoration="add_border" icon="false" />

</fb:dashboard>
<fb:tabs>
<fb:tab_item href="<%= movies_path %>" title="Movies"></fb:tab_item>
<fb:tab_item href="<%= releases_path %>" title="Releases"></fb:tab_item>

</fb:tabs>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK220

9945CH07.qxd 4/1/08 2:50 PM Page 220

http://apps.facebook.com/something
http://apps.facebook.com/movies/14

<% if flash[:notice] -%>
<fb:success message="<%= h flash[:notice] %>" />

<% end -%>

<%= yield %>

This layout adds a recognizable application header (with the <fb:dashboard> and
<fb:header> tags) and tab bar (with the <fb:tabs> and <fb:tab_item> tags) for navigating
between the movie and release listing pages. Any notices set by the application will appear in
a Facebook-style notice, as well, thanks to the <fb:success> tag. You can see the result of this
in Figure 7-17.

Figure 7-17. Release listing in the new FBML layout

The tags used here are just a few of those available in the full FBML set; you can see the
rest of them at http://wiki.developers.facebook.com/index.php/FBML.

Once the layout is satisfactory, you should update the views with some appropriate
markup. For the most part, this will consist of adding a header in place of the h1 tag and
inserting some padding around the content. The release listing page, for instance, becomes
the code shown in Listing 7-33.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 221

9945CH07.qxd 4/1/08 2:50 PM Page 221

http://wiki.developers.facebook.com/index.php/FBML

Listing 7-33. Listing Releases in app/views/releases/index.html.erb

<fb:header decoration="add_border" icon="false">Upcoming Releases</fb:header>

<div style="padding: 1em;">
<ul style="margin: 0 1em;padding: 0;">
<% @releases.each do |release| %>

<%= link_to h(release.movie.title), movie_path(release.movie_id) %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

</div>

Similarly, the movie listing page turns into the code in Listing 7-34.

Listing 7-34. Listing Movies in app/views/movies/index.html.erb

<fb:header decoration="add_border" icon="false">Movies</fb:header>

<div style="padding: 1em;">
<ul style="margin: 0 1em;padding: 0;">
<% @movies.each do |movie| %>
<%= link_to h(movie.title), movie %>

<% end %>

</div>

The changes to the movie detail page are also easy, as you can see in Listing 7-35.

Listing 7-35. The Movie Detail Page in /app/views/movies/show.html.erb

<fb:header decoration="add_border" icon="false"><%= h @movie.title %></fb:header>

<div style="padding: 1em;">
<p>Rating: <%= h @movie.rating %></p>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% unless @movie.releases.empty? %>
Upcoming Releases:
<ul style="margin: 0 1em;padding: 0;">
<% @movie.releases.each do |release| %>

<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK222

9945CH07.qxd 4/1/08 2:50 PM Page 222

mailto:@releases.each
mailto:@movies.each
mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?
mailto:@movie.releases.empty?
mailto:@movie.releases.each

<% end %>

</div>

And with that, your application is looking a bit better, as you can see in Figure 7-18.

Figure 7-18. The (somewhat) styled movie detail page

Adding Interactivity
By now, you’ve got a reasonably nice-looking FBML application, but it remains almost useless
to the Facebook community. The only thing of interest it does at this point is display upcom-
ing releases. The next step, then, is to add back in some of the interactivity that you removed
in creating the client application. First up will be interests.

Before you can add that, however, you need to be assured that the only people accessing
your application are in fact Facebook users. To do that, you just have to add a single
before_filter to your application controller, as shown in Listing 7-36.

Listing 7-36. Requiring a Facebook Session in app/controllers/application.rb

Filters added to this controller apply to all controllers in the application.
Likewise, all the methods added will be available for all controllers.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 223

9945CH07.qxd 4/1/08 2:50 PM Page 223

class ApplicationController < ActionController::Base
before_filter :require_facebook_login
helper :all # include all helpers, all the time

...
end

The require_facebook_login method is provided by the RFacebook plugin and will redi-
rect anyone who lacks a current Facebook session to the Facebook login page whenever they
try to visit your application, be it directly on Facebook (at http://apps.facebook.com/
your_application) or at the public-facing server hosting it (for this project, http://your.
external.server:1234/your_application).

Once you have the filter in place, you can proceed to add back in all the code needed to
manage MovieList interests. To start, you need some new routes—and remember, you have to
define them explicitly (unless you’re using one of the plugins I mentioned briefly before), as in
Listing 7-37.

Listing 7-37. Adding Interest Routes to config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.releases 'releases', :controller => 'releases', :action => 'index'

map.with_options :controller => 'movies' do |m|
m.movies 'movies', :action => 'index'
m.movie 'movies/:id', :action => 'show'

end

map.with_options :controller => 'interests' do |i|
i.create_interest 'movies/:movie_id/interests', :action => 'create'
i.destroy_interest 'interests/:id/destroy', :action => 'destroy'

end

map.root :controller => 'releases', :action => 'index'
end

You’ll also need to add code to the movie detail view and movies controller, so that users
can add or remove an interest for a given film. First, Listing 7-38 shows the view changes.

Listing 7-38. Adding Interests to the Movie Detail Page in app/views/movies/show.html.erb

<fb:header decoration="add_border" icon="false"><%= h @movie.title %></fb:header>

<div style="padding: 1em;">
<p>Rating: <%= h @movie.rating %></p>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% unless @movie.releases.empty? %>
Upcoming Releases:

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK224

9945CH07.qxd 4/1/08 2:50 PM Page 224

http://apps.facebook.com
http://your
mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?
mailto:@movie.releases.empty?

<ul style="margin: 0 1em;padding: 0;">
<% @movie.releases.each do |release| %>

<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% end %>

<p>
<% unless @interest %>
<%= link_to 'Add this movie as an interest',
create_interest_path(@movie.id) %>

<% else %>
<%= link_to 'Remove this movie as an interest',
destroy_interest_path(@interest) %>

<% end %>
</p>

</div>

Listing 7-39 shows the changes to the controller.

Listing 7-39. Retrieving Interests in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
def index
@movies = Movie.find(:all)

end

def show
@movie = Movie.find(params[:id])
@interest = Interest.find_by_movie_id_and_facebook_id(
@movie.id,
fbsession.session_user_id

)
end

end

And, of course, you’ll have to add the appropriate code to InterestsController
(Listing 7-40).

Listing 7-40. Adding Management Actions to app/controllers/interests_controller.rb

class InterestsController < ApplicationController
def create
movie_id = params[:movie_id]
Interest.create({
:movie_id => movie_id,

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 225

9945CH07.qxd 4/1/08 2:50 PM Page 225

mailto:@movie.releases.each
mailto:path(@movie.id
mailto:@movie.id

:facebook_id => fbsession.session_user_id
})
flash[:notice] = 'You have registered your interest in this movie'

redirect_to movie_path(movie_id)
end

def destroy
interest = Interest.find(params[:id])
movie_id = interest.movie_id
interest.destroy
flash[:notice] = 'You have removed your interest in this movie'

redirect_to movie_path(movie_id)
end

end

With all of this code completed, you can now go through the site and add or remove your
interests in various movies, as you can see in Figure 7-19.

Figure 7-19. After adding a movie as an interest

The next step is to rebuild some of the friend-based functionality from your earlier iframe
project. In particular, it still makes sense to display your friends who have an interest in a

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK226

9945CH07.qxd 4/1/08 2:50 PM Page 226

given film. With the new application, however, the display is easier (and more flexible, given
the available FBML tags) than it was before. First, you pull back the Facebook users interested
in the current film, as shown in Listing 7-41.

Listing 7-41. Retrieving Interested Friends in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
def index
@movies = Movie.find(:all)

end

def show
@movie = Movie.find(params[:id])
@interest = Interest.find_by_movie_id_and_facebook_id(
@movie.id,
fbsession.session_user_id

)
@interested_friends = Interest.find(:all,
:conditions => ["movie_id = ? AND facebook_id IN (?)",
@movie.id,
fbsession.friends_get.uid_list
]
)
end

end

Then, you display them on the movie detail page, as shown in Listing 7-42.

Listing 7-42. Displaying Friends in app/views/movies/show.html.erb

<fb:header decoration="add_border" icon="false"><%= h @movie.title %></fb:header>

<div style="padding: 1em;">
<p>Rating: <%= h @movie.rating %></p>

<%= simple_format h(@movie.description) unless @movie.description.blank? %>

<% unless @movie.releases.empty? %>
Upcoming Releases:
<ul style="margin: 0 1em;padding: 0;">
<% @movie.releases.each do |release| %>

<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% end %>

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 227

9945CH07.qxd 4/1/08 2:50 PM Page 227

mailto:@movie.id
mailto:@movie.id
mailto:@movie.title
mailto:@movie.rating
mailto:h(@movie.description
mailto:@movie.description.blank?
mailto:@movie.releases.empty?
mailto:@movie.releases.each

<p>
<% unless @interest %>
<%= link_to 'Add this movie as an interest',
create_interest_path(@movie.id) %>

<% else %>
<%= link_to 'Remove this movie as an interest',
destroy_interest_path(@interest) %>

<% end %>
</p>

<% unless @interested_friends.empty? %>
<h3>Friends interested in this movie</h3>
<ul style="margin: 0 1em;padding: 0; list-style-type: none">
<% @interested_friends.each do |friend| %>
<li style="float: left; padding: 5px 5px 0 0;">
<fb:profile-pic uid="<%= friend.facebook_id %>" size="square" />

<% end %>

<br style="clear:left;" />

<% end %>
</div>

And with that, you’ve got Figure 7-20.

Figure 7-20. The movie detail page with friends

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK228

9945CH07.qxd 4/1/08 2:50 PM Page 228

mailto:path(@movie.id
mailto:@interested_friends.empty?
mailto:@interested_friends.each

That takes care of the individual movie detail pages, but you still need to separate the
upcoming releases listing by your interests, your friends’ interests, and the rest of the releases.
For that, you need to completely rewrite the release index view, as shown in Listing 7-43.

Listing 7-43. Rewriting app/views/releases/index.html.erb to Display Releases Grouped by
Interests

<fb:header decoration="add_border" icon="false">Upcoming Releases</fb:header>

<div style="padding: 1em;">
<% unless @releases.empty? %>
<% unless @own_releases.empty? %>
<fb:header decoration="no_padding" icon="false">
Releases for your interests

</fb:header>
<ul style="margin: 0 1em 1em;padding: 0;">
<% @own_releases.each do |release| %>

<%= link_to h(release.movie.title), movie_path(release.movie_id) %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% else %>
<p>There are no upcoming releases for your interests</p>

<% end %>

<% unless @friend_releases.empty? %>
<fb:header decoration="no_padding" icon="false">
Releases for your friends' interests

</fb:header>
<ul style="margin: 0 1em 1em;padding: 0;">
<% @friend_releases.each do |release| %>

<%= link_to h(release.movie.title), movie_path(release.movie_id) %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% else %>
<p>There are no upcoming releases for your friends' interests</p>

<% end %>

<% unless @other_releases.empty? %>
<fb:header decoration="no_padding" icon="false">
Other releases

</fb:header>
<ul style="margin: 0 1em 1em;padding: 0;">

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 229

9945CH07.qxd 4/1/08 2:50 PM Page 229

mailto:@releases.empty?
mailto:@own_releases.empty?
mailto:@own_releases.each
mailto:@friend_releases.empty?
mailto:@friend_releases.each
mailto:@other_releases.empty?

<% @other_releases.each do |release| %>

<%= link_to h(release.movie.title), movie_path(release.movie_id) %> -
<%= h release.format %> on <%= release.released_on.to_s(:short) %>

<% end %>

<% else %>
<p>There are no other upcoming releases</p>

<% end %>
<% else %>
<p>There are no upcoming releases</p>

<% end %>
</div>

And to support the view, you’ll also need to add a large amount of code to the controller,
as shown in Listing 7-44.

Listing 7-44. Grouping Releases in app/controllers/releases_controller.rb

class ReleasesController < ApplicationController
def index
@releases = Release.find(:all)

own_interests = Interest.find_all_by_facebook_id(
fbsession.session_user_id

).map(&:movie_id)

friend_interests = Interest.find(:all,
:conditions => [
"facebook_id IN (?)",
fbsession.friends_get.uid_list

]
).map(&:movie_id)

@own_releases = @releases.select { |release|
own_interests.include?(release.movie_id)

}

all_friend_releases = @releases.select { |release|
friend_interests.include?(release.movie_id)

}
@friend_releases = all_friend_releases.reject { |r|
@own_releases.include?(r)

}

@other_releases = @releases.dup.reject! { |r|
@own_releases.include?(r) || @friend_releases.include?(r)

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK230

9945CH07.qxd 4/1/08 2:50 PM Page 230

mailto:@other_releases.each
mailto:@releases.select
mailto:@releases.select
mailto:@own_releases.include?
mailto:@releases.dup.reject
mailto:@own_releases.include?
mailto:@friend_releases.include?

}
end
end

Though it looks somewhat different from the analogous code in the iframe project, this
action does basically the same thing. First, it retrieves a list of all upcoming releases. It then
sorts those into the releases that you (as the user) are interested in, those that your friends are
interested in, and any that are left. Figure 7-21 shows the final result.

Figure 7-21. The styled and sorted release listing page

Updating the Profile
Throughout all of this work—since you first set up your application and added it to your Face-
book account, in fact—the application box on your profile has been sitting there with the
single sentence “You haven’t added any interests yet!” It’s finally time to learn how to update
that.

There are two sorts of content that would make sense to display in the profile. The first is
the user’s interests, since these change relatively rarely, and it’s easy to trigger an event like a
profile update when they do change. The other is the upcoming releases a user is interested
in. That would be trickier, since most changes in that list are caused by time instead of
identifiable user actions. You could, of course, set up a cron job or something similar to man-
age time-sensitive updates like a release list, but for this project you’ll be adding the interests
only.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 231

9945CH07.qxd 4/1/08 2:50 PM Page 231

The general idea is to display all a user’s interests and link from each one to the relevant
movie. Listing 7-45 shows the view (complete with FBML tags, including some you haven’t yet
seen).

Listing 7-45. Content for the Facebook User Profile in app/views/interests/_profile.html.erb

<fb:visible-to-user uid="<%= uid %>">
<fb:subtitle>You have <%= pluralize(movies.size, 'interest') %></fb:subtitle>

</fb:visible-to-user>

<% unless movies.empty? %>

<% movies.each do |movie| %>
<%= link_to h(movie.title), ➥

"http://apps.facebook.com#{movie_path(movie)}" %>
<% end %>

<% else %>
<p>You have not selected any interests</p>
<% end %>

<p><%= link_to 'View more movies and upcoming releases at MovieList',
"http://apps.facebook.com#{root_path}" %></p>

The new tags here are <fb:visible-to-user>, which displays its contents only to the Face-
book user whose user ID is specified, and <fb:subtitle>, which provides a distinct style for its
contents, as you’ll see shortly.

Listing 7-46 shows the updated InterestsController, with a new private update_profile
method, called whenever your interests change (that is, when you add or remove one).

Listing 7-46. Ensuring that the User Profile Is Updated in app/controllers/interests_controller.rb

class InterestsController < ApplicationController
def create
movie_id = params[:movie_id]
Interest.create({
:movie_id => movie_id,
:facebook_id => fbsession.session_user_id

})
update_profile

flash[:notice] = 'You have registered your interest in this movie'
redirect_to movie_path(movie_id)

end

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK232

9945CH07.qxd 4/1/08 2:50 PM Page 232

http://apps.facebook.com#
http://apps.facebook.com#

def destroy
interest = Interest.find(params[:id])
movie_id = interest.movie_id
interest.destroy
update_profile

flash[:notice] = 'You have removed your interest in this movie'
redirect_to movie_path(movie_id)

end

private
def update_profile
interests = Interest.find_all_by_facebook_id(
fbsession.session_user_id

).map(&:movie_id)
movies = Movie.find(:all).select { |movie|
interests.include?(movie.id)

}

markup = render_to_string({
:partial => 'interests/profile',
:locals => {
:uid => fbsession.session_user_id,
:movies => movies

}
})

fbsession.profile_setFBML({
:markup => markup,
:uid => fbsession.session_user_id

})
end

end

When an interest is created or destroyed, then, the update_profile method runs and
retrieves the updated interest list for the current user. It then renders the partial view you just
created (_profile.html.erb) with those movies and calls fbsession.profile_setFBML to update
the user’s profile box with its new contents. All of this results in what you see in Figure 7-22.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 233

9945CH07.qxd 4/1/08 2:50 PM Page 233

Figure 7-22. The updating MovieList profile box

And with that, you’ve got a functional, FBML-based version of MovieList on the Facebook
platform.

Further Projects
Of course, there’s still a lot of room for improvement and further development. To start with,
you could change the profile box to show upcoming releases and set up the cron job that I
mentioned earlier to keep it up to date. You could also work on creating an invitations page, so
that people who add the application can send invitations to their friends (be careful with this,
though—applications on the Facebook platform are limited to a specific number of notifica-
tions sent per day).

You might also spend some time adding back the features that were lost in the translation
from standalone to Facebook application—interests in people, comments, search, and the
like. Alternatively, you could look at adding other features commonly found on social net-
works, like ratings. Really, the sky’s the limit. You now have the tools to build any reasonable
feature set and distribute it on Facebook.

Of course, there is still another realm you could explore: ActiveResource. You’ve only
touched on its capabilities with the FBML application, and there’s a wide range of possibilities
with it that you would be well served to investigate. Even more interestingly, ActiveResource is

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK234

9945CH07.qxd 4/1/08 2:50 PM Page 234

probably the least mature part of the Rails 2 framework and so provides many opportunities
to get involved with the community—working out how things should work and patching them
to work that way.

Summary
The Facebook application platform presents a huge opportunity for rapid growth, and you
now have the tools to take advantage of that. With that growth, however, comes obstacles.
From malicious agents out to spoil things that benefit others to the everyday problems of
scale, you’ll be faced with challenge after challenge. In the next chapter, you’ll learn more
about these issues and potential solutions.

CHAPTER 7 ■ WITH A L ITTLE HELP FROM YOUR FRIENDS: FACEBOOK 235

9945CH07.qxd 4/1/08 2:50 PM Page 235

9945CH07.qxd 4/1/08 2:50 PM Page 236

Dealing with Success

We all want our web applications to be successful; often, that means we want them to
become popular, with more and more traffic. When our applications succeed in this way, how-
ever, they run into two problems fairly quickly. First, there is too much of a good thing when it
comes to traffic—scaling is something that should be thought about throughout the develop-
ment process, for both gradual increases in traffic and “catastrophic” ones, such as those
stemming from being featured on Digg or Slashdot.

In addition to the “happy” problem of scaling, however, popular sites also attract more
and more bad actors—people who want to attack, hack, abuse, and deface your application
just when it is becoming most valuable to your users.

Unfortunately, these problems are not limited to “closed” web applications. In fact, they
are to some extent magnified when you expose an API or begin building clients—instead of
having a single gateway for traffic, you have multiplied the number of access points (in some
cases greatly). In addition, by providing an API you may have given hints to potential attackers
about how best to approach and abuse your system.

In this chapter, you’ll see a variety of both simple and complicated strategies for dealing
with these problems. In addition to these, though, you should be aware of general security and
scaling concerns, which you can do in part by keeping up with the most current news. There
are a number of useful resources for this:

• The Open Web Application Security Project (http://www.owasp.org/index.php/
Main_Page): A wiki containing all sorts of valuable security information and tools,
including a Top 10 list of web application vulnerabilities and WebGoat, a J2EE applica-
tion designed from the ground-up to be insecure (and to teach about security issues
by example).

• The Web Application Security Consortium (http://www.webappsec.org/): A similar
resource, with articles, statistics, and more.

• The Web Security Mailing List (http://www.webappsec.org/lists/websecurity/):
A mailing list for all sorts of security issues.

Note that this chapter does not attempt to be a definitive guide to scaling and security for
your application—both of those topics are complex enough to merit books of their own, in
much more depth than they will receive here. Nevertheless, you will see some starting points
here, after which you will be more ready to evaluate and implement the strategies you’ll find
in other places.

237

C H A P T E R 8

9945CH08.qxd 4/1/08 2:56 PM Page 237

http://www.owasp.org/index.php/Main_Page):
http://www.owasp.org/index.php/Main_Page):
http://www.webappsec.org/):
http://www.webappsec.org/lists/websecurity/):

Scaling Your Application
First, the happy problem: scaling. Your web application will always require a certain level of
resources; Rails apps require more server hardware than do PHP or Perl applications, for
instance, and if you do a lot of image manipulation or work with huge data sets in memory,
your application will require even more from your hosting provider.

Traffic generally grows gradually, by word of mouth and other standard channels. When
that’s the case, you can scale at a measured pace, adding hardware and modifying your appli-
cation to support your increasing user base as needed. Even when you get to a relatively large
size, however, you can still see sudden surges in traffic—“catastrophic” traffic events like being
featured on Slashdot or the front page of Digg can result in an order of magnitude more traffic
than you normally see (graphs of the traffic spikes from these events are readily available
online). Ideally, your application will be able to survive, if not thrive on, both the gradual
increase in traffic and these spikes. Even if you can’t devote resources to scaling initially—and
you don’t really have to, since gradual growth is by far the more common scenario—you
should at least have a plan in place for scaling later.

Regardless of whether you’re talking about catastrophic or gradual scaling and about
standalone or open web applications, there is a standard set of strategies available. First, you
should plan and build your application in such a way that it can scale. Once you’ve done that
and you’re starting to feel the pain of growth, you can begin serving as much content statically
as is possible. If you need to, you can also optimize your code for performance, though that
may come with some hidden costs down the road. Finally, you can almost always add hard-
ware to help with the load, but even that may require some redesign of your system architec-
ture. With open applications, however, you also have access to another approach: you can
limit the access of clients to your main application on a case-by-case basis. Each of these
techniques is discussed in the following sections.

Planning to Scale
No one sets out to create a site or application that will be difficult to scale later on. If you don’t
explicitly keep the need to scale in mind, however, that is often the result. While it is always
possible to change things later to support higher traffic, it’s much easier to plan for it early on,
the better to avoid the many potential downfalls before they bite you.

This is especially important when you’re building an open application like MovieList,
where you’ll be getting traffic from many different sources. Take Twitter, for instance—Biz
Stone (one of the co-founders of the site) has gone on record saying that they get at least ten
times the traffic from their API as they do through the site itself (see his interview at http://
readwritetalk.com/2007/09/05/biz-stone-co-founder-twitter/), with the applications
Twitterrific (shown in Figure 8-1) and Snitter as common examples.

CHAPTER 8 ■ DEALING WITH SUCCESS238

9945CH08.qxd 4/1/08 2:56 PM Page 238

http://readwritetalk.com/2007/09/05/biz-stone-co-founder-twitter
http://readwritetalk.com/2007/09/05/biz-stone-co-founder-twitter

Figure 8-1. Twitterrific, a Mac client for twitter.com

Following Best Practices
In general, you should stick to best practices for overall performance while developing your
applications. You can find discussions of these in all sorts of places, with some of the more
popular ones including these:

• The Rails Way (http://www.therailsway.com/): This site is run by Jamis Buck and
Michael Koziarski, two of the Rails core team. It is fairly low-traffic but has a number
of helpful examples of what not to do (and how to fix it when you’ve done something
wrong).

There are also any number of other blogs; you can use a Rails blog aggregator like Ruby
Corner (http://www.rubycorner.com/) to keep track of the latest news in the field.

• Ruby on Rails: Talk (http://groups.google.com/group/rubyonrails-talk): This is the
central Rails discussion list, where veterans and new users congregate to discuss issues.
It gets thousands of messages a month, at all levels of expertise.

• #rubyonrails (at irc.freenode.net): This is the general Rails IRC support channel,
available on irc.freenode.net. As on the Ruby on Rails Talk mailing list, you can ask
questions about how best to design something freely here.

CHAPTER 8 ■ DEALING WITH SUCCESS 239

9945CH08.qxd 4/1/08 2:56 PM Page 239

http://www.therailsway.com/):
http://www.rubycorner.com
http://groups.google.com/group/rubyonrails-talk):

There are a couple of things to keep in mind even before you check those resources, how-
ever. The database is often a major contributor to performance problems, for instance, so
make sure you know how best to make use of it with proper normalization and indexes. If
these concepts are new to you, then you should take a look at one of the many books on data-
base design—for instance, Beginning MySQL Database Design and Optimization: From Novice
to Professional, by Chad Russell and Jon Stephens (Apress, 2004).

■Tip One change that is often overlooked in improving database performance is denormalization. If you
have some information that you use often and is costly to calculate, it can make sense to break your normal-
ization scheme by storing multiple or cached copies of it in the database.

Rails actually includes a simple version of this, with its magic x_count columns—if you define a
release_count column in the movie table (where a movie has_many :releases), for instance, the num-
ber of releases for a given movie will automatically be cached in the movie’s record. This is in effect
denormalizing some of the data you’re storing, making it possible to find the number of releases without
having to issue another query to the database server.

Besides implementing proper database design, you can often keep track of problems in
your application code by watching your logs. If you click through your server application
while watching the development log, for instance, you’ll often see things like the following:

Processing UsersController#create (for 127.0.0.1 at 2007-10-31 17:27:12) [POST]
...
Redirected to http://localhost:3000/
Completed in 0.15690 (6 reqs/sec) | DB: 0.12190 (77%) | ➥

302 Found [http://localhost/users]

In this request to /users, the application is processing only six requests per second, and it
spends the vast bulk of that time interacting with the database. If most of your site’s actions
take this long—especially if they’re not database-bound—you may want to investigate further
by doing some benchmarking to find the bottleneck.

Benchmarking can be an intimidating subject, especially for those of us who don’t have a
background in server administration. Luckily, there are tools that make it easier; httperf
(http://www.hpl.hp.com/research/linux/httperf/), for instance, is a well-known command-
line utility for load testing applications in a technology-agnostic way.

A Warning About ActiveResource
One area to pay particular attention to while building your service and its clients is Active-
Resource. As you may have noticed in the previous chapter, if you’re not careful it can be very
easy to forget that ActiveResource is not an ActiveRecord replacement. In particular, code that
might be perfectly reasonable when dealing with ActiveRecord can become a major perform-
ance sink with ActiveResource.

Take a has_many relationship, for instance. With ActiveRecord, you can easily call
movie.releases in a controller or view to get the releases for a given movie record. If you don’t
plan ahead with ActiveResource, though, you may end up calling out to your source site

CHAPTER 8 ■ DEALING WITH SUCCESS240

9945CH08.qxd 4/1/08 2:56 PM Page 240

http://localhost:3000
http://localhost/users
http://www.hpl.hp.com/research/linux/httperf

twice—once to /movies/:id.xml to get the movie and again to /movies/:id/releases.xml (or
something similar) to get the releases. Even worse, you might then make additional calls back
to the source site for each release, depending on how you’re using the collection in your code.
Just as you would with ActiveRecord, then, you should always keep an eye out for problem
areas like that while you’re developing your application—and again, the easiest way to do that
is to watch the logs. In this case, however, you should keep an eye on the logs for the server
application while you click through the client, where you’ll see when you’re issuing too many
calls.

ActiveResource is immature compared to the rest of Rails; it’s still undergoing changes
and clarifications, and its future is still a little vague (for instance, some common functionality
was recently extracted from both ActiveResource and ActiveRecord, implying that it might
eventually become more of a drop-in replacement). So if you plan to use ActiveResource to
any significant degree, you should keep up to date on new developments by watching the
Subversion commit messages at http://dev.rubyonrails.org/timeline, the #rails-contrib
channel at irc.freenode.net, and the Ruby on Rails: Core mailing list at http://groups.
google.com/group/rubyonrails-core.

Caching Static Content
Beyond the general practice of writing good code and profiling your app to find and fix prob-
lem areas, you can also gain substantial benefits from caching your site’s data. Rails offers
several forms of caching, all of which are worth investigating. In this chapter, however, I’ll only
talk about page and fragment caching, as they are the easiest to grasp and can both provide
significant benefits.

Page Caching
Page caching is basically the practice of saving a fully rendered page to the file system. Any
page that doesn’t change very often is a candidate for this—if, for instance, you don’t need to
update the movie listing page in your sample application very often, you could set it up to be
cached by adding a declaration like that in Listing 8-1 to your controller.

Listing 8-1. Caching the index Action in app/controllers/movies_controller.rb

class MoviesController < ApplicationController
caches_page :index
...

end

Any action named in a caches_page declaration will be processed and rendered normally
the first time it is requested. The markup that is generated from that first request, however, is
then saved directly to the file system in a subdirectory within the public folder. It is named
according to the controller and action (though you can modify this pattern in environment.rb)
and is returned for any subsequent requests to that URI.

The important thing to note is that those later requests bypass your Rails application
entirely, due to the URL rewriting rules that Rails applications normally run under. When a
request comes in, the web server (Apache, Nginx, and so on) typically looks for a file with the
specified URI in the public folder. If it finds such a file, the server then returns it instead of

CHAPTER 8 ■ DEALING WITH SUCCESS 241

9945CH08.qxd 4/1/08 2:56 PM Page 241

http://dev.rubyonrails.org/timeline
http://groups

routing the request through the application code. (Incidentally, this is why you have to delete
public/index.html to get a map.root call in your routes file to work—if index.html exists, it will
automatically be found by these same rewrite rules, and your application will never see the
request.)

The big benefit here is that your front-end web server can typically serve static files signif-
icantly faster than your Rails application can generate and serve dynamic files—Nginx, for
instance, has been benchmarked at 250+ requests per second, which comes out to be over
20 million per day. If you have relatively static content, then, page caching is clearly a way to
increase the scalability of your site. Furthermore, there’s nothing intrinsic to the practice that
prohibits you from using this technique for responses to API calls as well as to normal HTML
requests: Rails can cache XML and JSON responses just as easily as it can HTML ones.

Fragment Caching
There is a fairly common scenario where you can’t use page caching, however—when your
pages include dynamic data or should only be displayed in particular circumstances. Once a
page is cached, it is available at its URI regardless of any limits, and it will retain whatever
markup it had when first generated until it is expired and recached.

Rails, however, provides other solutions for these situations. Action caching, for instance,
lets you cache a response to a request and provide it only after new requests make their way
through your application (hitting any appropriate authorization filters, for instance). More
interesting for our purposes, however, is fragment caching, which enables you to cache indi-
vidual pieces of a page for later, easier retrieval. In MovieList, for instance, we might want to
cache the releases and people for a movie on a show page, while leaving the interest form
dynamic, as shown in Listing 8-2.

Listing 8-2. Fragment Caching in /app/views/movies/show.html.erb

<div id="details">
...

<% if logged_in? %>
<% unless current_user.interested_in?(@movie) %>
<% form_for current_user.interests.build(:movie => @movie),

:url => user_interests_path do |f| %>
<%= f.hidden_field :movie_id %>
<%= content_tag :button, 'Add this as an interest',

:type => 'submit' %>
<% end %>

<% else %>
<p>You have added this movie as an interest</p>

<% end %>
<% end %>

<% cache do %>
<% unless @movie.releases.empty? %>
<div class="module">
Releases:

CHAPTER 8 ■ DEALING WITH SUCCESS242

9945CH08.qxd 4/1/08 2:56 PM Page 242

mailto:@movie.releases.empty?

<% @movie.releases.each do |release| %>

<%= h release %>

<% end %>
</div>

<% end %>

<% unless @movie.roles.empty? %>
<div class="module">
People:
<% @movie.roles.each do |role| %>

<%= link_to h(role.person.full_name), role.person %> -
<%= role.name %>

<% end %>
</div>

<% end %>
<% end %>

</div>

...

When the URI /movies/1 is next hit, any associated releases and people for that movie will
be created and cached (by default, fragment caches are stored in memory, but you can change
this to use alternative stores—the file system, for instance), and they will be pulled back auto-
matically on subsequent requests to the same URI. Obviously, that isn’t a huge benefit in this
case, as it only saves a couple of database queries—but it can come in quite handy if you use it
to cache expensive queries or generated markup. And again, these cached fragments work just
as well when the request is not HTML—such as when it comes in from one of the clients
you’ve built in the previous chapters.

Optimizing Code
In some situations, following best practices and adding caching where possible still won’t be
enough. The next step is to dig deeper and explicitly optimize your code for better perform-
ance. With this approach, however, there is an important tradeoff between performance and
some of the other virtues of well-written code. In particular, when you’re squeezing every last
bit of speed out of your Ruby code, you can easily sacrifice maintainability.

A simple example of this involves Symbol#to_proc. Rails adds this method in Active-
Support; and it allows you to transform a symbol into a simple block in certain contexts, as in
the following example:

<%= movie.tags.map(&:name).join(', ') %>

This line takes all of the tags that have been assigned to a movie, iterates over them to build an
array of the names of those tags, joins those names with a comma, and outputs them to the
view. It’s both readable and maintainable, once you have a little experience with the language,
but it’s slow. In fact, Symbol#to_proc is the slowest way Ruby currently provides for accomplish-
ing this task; from a performance standpoint, you’re much better off with the more explicit
literal block form in this example:

CHAPTER 8 ■ DEALING WITH SUCCESS 243

9945CH08.qxd 4/1/08 2:56 PM Page 243

mailto:@movie.releases.each
mailto:@movie.roles.empty?
mailto:@movie.roles.each

<%= movie.tags.map {|tag| tag.name}.join(', ') %>

But while that is indeed faster, it’s also less readable; there’s repetition and extra punctuation
obscuring the core idea of the code.

■Note This particular example holds only for Ruby 1.8, where Symbol#to_proc is defined in Active-
Support; in Ruby 1.9, the method has been moved into the core language and is significantly faster.

This example, though, is only the tip of the iceberg. Some Rails developers, for instance,
avoid using ActiveRecord in their production applications—relying on it in development
mode, scraping the generated queries from the development log, and calling the database
directly from production code to eliminate the overhead of creating unnecessary ActiveRecord
objects. This can result in some significant speed increases, but it makes the initial develop-
ment and deployment much more difficult, and the production code itself is vastly more
difficult to maintain.

The ultimate in speed-over-maintainability, however, is lower-level programming. With
the standard Ruby interpreter, you can (if you so choose) drop down into C to write function-
ality that you then access in your Rails application. This is the fastest you can go, but it
obviously has an extreme impact on the maintainability of your application—no longer can
you bring in just any Rails developer off the street to work on it.

With all of that in mind, the key to optimizing your code, then, is to follow a two-step
process. First, you must benchmark your application. See where it slows down, and investigate
those parts of the code thoroughly. Once you’ve done that, you have to make a decision: are
the benefits you could achieve from optimizing in one way or another worth the cost that
you’ll incur in later maintenance of the code? If so, then you have a range of options to
explore—from using alternative methods to achieve the same goal (as in the Symbol#to_proc
and ActiveRecord examples earlier), all the way down to writing C extensions to implement
the functionality.

Adding Hardware
The last approach to scaling available to most web applications is also the most expensive
(unless you factor in increased maintenance costs from having to keep C modules up to date):
you can always throw more hardware at a problem. Whether it’s adding a second (or third, or
fourth) database server for read-only access, or adding more web and application servers with
a load balancer, more hardware can clearly help you serve more requests per second.

Of course, new hardware can introduce new problems, as well. If you originally designed
your application for a single database, you’ll have to change things to get it working with a
master-slave setup (though there are plugins that help with this; for instance, Masochism
[http://ar-code.svn.engineyard.com/plugins/masochism/] and Magic-Multi Connections
[http://magicmodels.rubyforge.org/magic_multi_connections/], among others). Similarly, if
you use the file store for sessions (as was the default prior to Rails 2), you have to consider how
session data will be propagated across servers (or how you’ll keep users linked to a single
machine, which can be difficult for some load balancers).

CHAPTER 8 ■ DEALING WITH SUCCESS244

9945CH08.qxd 4/1/08 2:56 PM Page 244

http://ar-code.svn.engineyard.com/plugins/masochism
http://magicmodels.rubyforge.org/magic_multi_connections

Basically, the idea is to make sure you know how you’re going to scale your hardware and
make the necessary design decisions at the start to support that. This is especially important if
you’re thinking about scaling a standard web application (as opposed to the open, service-
providing site you’ve worked on in previous chapters), since it’s pretty much the last option
you have—but with the sorts of things you’ve been building in this book, you have one more
avenue to explore.

Throttling Access
Just like Twitter, your site may find that the vast majority of its traffic will come through your
API. If that’s the case, and you have individuals flooding your server with requests, you might
consider handling the traffic by throttling API access. Essentially, this means that you allow
each user of your API some number of access attempts—hourly, daily, or over a longer time
period—and once that threshold is met, you shut off their access until the next period of time
begins. Obviously, this can be painful for high-volume users, but it is an established strategy,
and you can always override the limits if you need to allow unfettered access to a specific indi-
vidual.

The basic idea with this approach is that you need to be able to identify your API’s users in
order to measure their usage properly. Typically, this is done by providing each user an API key
that they must then submit with their requests. When a request comes in, its key is checked
against an activity log, and if it still has allotted resources the request goes through. This is
how Google’s APIs, Facebook, and Flickr work, for instance.

An alternative to distinct keys is to reuse the already existing login credentials instead, as
Twitter does. This works well if your application (like Twitter) is based primarily on your users—
if you want to support multiple clients per user, however, you should probably go the API key
route. You can develop any number of Flickr mashups, for instance, each with its own API key
(as shown in Figure 8-2). If you’re developing Twitter mashups, however, you would do well to
turn off your Twitterrific client lest you run up against the 70-requests-per-hour limit before
you expect to (since Twitterrific uses your standard login credentials just as your mashup
does).

■Tip OAuth (http://oauth.net/) provides still another alternative for server and client developers. As
the OAuth site says, “… OAuth attempts to provide a standard way for developers to offer their services via
an API without forcing their users to expose their passwords (and other credentials).” OAuth hasn’t gained
much traction yet, but it should see more adoption over time, and it’s certainly worthy of a close look.

CHAPTER 8 ■ DEALING WITH SUCCESS 245

9945CH08.qxd 4/1/08 2:56 PM Page 245

http://oauth.net

Figure 8-2. A Flickr page showing their use of API keys

To get up and running with API keys in MovieList, start by creating a new model for both
the keys and their usage information. (If you prefer per-user keys, you could just add a column
to the user table; for this example, however, you’ll be creating the more flexible version.) The
following commands will create the files you’ll need:

./script/generate scaffold api_key user_id:integer identifier:string

./script/generate model key_access key_id:integer used_at:datetime

Obviously, you could store more information in the ApiKey model—details about the
application a user expects to employ it on, for instance. This is the bare minimum, though,
and it will suffice for this example.

Once that’s complete, update your database with rake db:migrate, and you’re ready to
add the new associations. First, update the User model as shown in Listing 8-3.

Listing 8-3. Adding the Association in app/models/user.rb

class User < ActiveRecord::Base
has_many :api_keys, :dependent => :destroy
…

end

CHAPTER 8 ■ DEALING WITH SUCCESS246

9945CH08.qxd 4/1/08 2:56 PM Page 246

Next, update the ApiKey model to reflect its associations with User and KeyAccess, as well
as the necessary validations and a method to generate a unique key string. The edited file is
shown in Listing 8-4.

Listing 8-4. Updating app/models/api_key.rb

require 'digest/sha1'
class ApiKey < ActiveRecord::Base
before_validation_on_create :generate_identifier

belongs_to :user
has_many :key_accesses, :dependent => :destroy

validates_presence_of :user_id, :identifier
validates_uniqueness_of :identifier

private
def generate_identifier
seed = "#{ApiKeyself.class.count}--#{self.user_id}--#{Time.now.to_i}"
self.identifier = Digest::SHA1.hexdigest(seed)

end
end

Similarly, you’ll need to update the KeyAccess model to record its association with ApiKey,
as in Listing 8-5.

Listing 8-5. Completed app/models/key_access.rb

class KeyAccess < ActiveRecord::Base
belongs_to :api_key

end

With the model layer completed, you can now turn to the front end. First, you need to
make sure that your users can get to their API keys, reviewing them and managing them as
necessary. For that, you need to tweak your routes by deleting the generator-added
map.resources :api_keys line and updating the file as shown in Listing 8-6.

Listing 8-6. Nesting the api_keys Resource Under users in config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :comments
map.resource :session
map.resource :user, ➥

:has_many => [:interests, :notifications, :api_keys]
…

end

CHAPTER 8 ■ DEALING WITH SUCCESS 247

9945CH08.qxd 4/1/08 2:56 PM Page 247

This declaration will help to scope the system’s keys to specific users, but to make it work
you’ll also have to update the scaffolded controller and views. To start with, you’ll need to add
a couple of before filters to the controller—one to require logins and another to load a User
model from params[:user_id] (since that’s what you get from the :has_many declaration in
your routes file). While you’re there, you might as well remove the edit and update actions,
since they’re essentially meaningless with the keys as simple as they are. You can see the
edited file in Listing 8-7.

Listing 8-7. Completed app/controllers/api_keys_controller.rb

class ApiKeysController < ApplicationController
before_filter :login_required
before_filter :find_api_key_user

GET /api_keys
GET /api_keys.xml
def index
@api_keys = @user.api_keys.find(:all)

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @api_keys }

end
end

GET /api_keys/1
GET /api_keys/1.xml
def show
@api_key = @user.api_keys.find(params[:id])

respond_to do |format|
format.html # show.html.erb
format.xml { render :xml => @api_key }

end
end

GET /api_keys/new
GET /api_keys/new.xml
def new
@api_key = @user.api_keys.build

respond_to do |format|
format.html # new.html.erb
format.xml { render :xml => @api_key }

end
end

CHAPTER 8 ■ DEALING WITH SUCCESS248

9945CH08.qxd 4/1/08 2:56 PM Page 248

mailto:@user.api_keys.find(:all
mailto:@user.api_keys.find
mailto:@user.api_keys.build

POST /api_keys
POST /api_keys.xml
def create
@api_key = @user.api_keys.build(params[:api_key])

respond_to do |format|
if @api_key.save
flash[:notice] = 'ApiKey was successfully created.'
format.html { redirect_to(user_api_keys_path(@user)) }
format.xml { render :xml => @api_key, :status => :created, ➥

:location => @api_key }
else
format.html { render :action => "new" }
format.xml { render :xml => @api_key.errors, ➥

:status => :unprocessable_entity }
end

end
end

DELETE /api_keys/1
DELETE /api_keys/1.xml
def destroy
@api_key = @user.api_keys.find(params[:id])
@api_key.destroy

respond_to do |format|
format.html { redirect_to(user_api_keys_path(@user)) }
format.xml { head :ok }

end
end

private
def find_api_key_user
@user = User.find(params[:user_id])

end
end

In the views, you’ll need to update all the routes to use the correct naming pattern (for
example, user_api_keys_path instead of just api_keys_path), and be sure to pass current_user
to each in addition to whatever other arguments it has, as you can see in Listings 8-8, 8-9,
and 8-10.

Listing 8-8. Updating app/views/api_keys/index.html.erb

<h1>Listing api_keys</h1>

<table>
<tr>

CHAPTER 8 ■ DEALING WITH SUCCESS 249

9945CH08.qxd 4/1/08 2:56 PM Page 249

mailto:@user.api_keys.build
mailto:@api_key.save
mailto:@api_key.errors
mailto:@user.api_keys.find
mailto:@api_key.destroy

<th>User</th>
<th>Identifier</th>

</tr>

<% for api_key in @api_keys %>
<tr>
<td><%=h api_key.user_id %></td>
<td><%=h api_key.identifier %></td>
<td><%= link_to 'Show', user_api_key_path(current_user) %></td>
<td><%= link_to 'Destroy', user_api_key_path(current_user),

:confirm => 'Are you sure?', :method => :delete %></td>
</tr>

<% end %>
</table>

<%= link_to 'New api_key', new_user_api_key_path(current_user) %>

Listing 8-9. Updating app/views/api_keys/new.html.erb

<h1>New api_key</h1>

<%= error_messages_for :api_key %>

<% form_for @api_key, :url => user_api_keys_path(current_user) do |f| %>
<p>
<%= f.submit "Create Your Key" %>

</p>
<% end %>

<%= link_to 'Back', user_api_keys_path(current_user) %>

Listing 8-10. Updating app/views/api_keys/show.html.erb

<p>
User:
<%=h @api_key.user_id %>

</p>

<p>
Identifier:
<%=h @api_key.identifier %>

</p>

<%= link_to 'Back', user_api_keys_path(current_user) %>

CHAPTER 8 ■ DEALING WITH SUCCESS250

9945CH08.qxd 4/1/08 2:56 PM Page 250

mailto:@api_key.user_id
mailto:@api_key.identifier

And with that, the scaffolding around API keys is complete. Users can now create new
keys as needed, and they can delete keys they are no longer using.

The next step, of course, is to make the keys actually useful. The easiest way to do this is to
add an application-wide before filter as shown in Listing 8-11.

Listing 8-11. Validating API Keys in app/controllers/application.rb

class ApplicationController < ActionController::Base
before_filter :validate_api_key

...

protected
def validate_api_key
if request.format == 'application/xml'
key = ApiKey.find_by_identifier(params[:api_key])
return false unless (key && key.available?)
key.record_usage

end
true

end

...
end

This filter will run on any request; if the request is for XML (which means it is an attempt
to hit the MovieList API), the system will then look for an API key corresponding to an identi-
fier that should be passed in with the request. If no key can be found, or if the key is not
“available” (more on that in a moment), the request will fail and you can handle it however
you wish (typically, by returning a status code of 403 Forbidden). If the request succeeds, the
system records the usage of the key and continues normally.

Those available? and record_usage methods are still unimplemented, however, so you’ll
need to add them to the ApiKey model, as in Listing 8-12.

Listing 8-12. Handling Throttling in app/models/api_key.rb

class ApiKey < ActiveRecord::Base
THRESHOLD = 50 # allow fifty uses per day per key
...

def available?
uses = self.key_accesses.count(:id,
:conditions => [
'used_at BETWEEN ? AND ?',
Date.today.beginning_of_day,
Date.today.end_of_day

]
)

CHAPTER 8 ■ DEALING WITH SUCCESS 251

9945CH08.qxd 4/1/08 2:56 PM Page 251

allowed = uses < THRESHOLD
end

def record_usage
self.key_accesses.create

end

...
end

The available? method validates that the given key has been used less than some speci-
fied (THRESHOLD) number of times for the given day, You could of course change this to be per
hour or per week by adjusting the count clause.

The record_usage method is just a convenient way of logging the usage of the key. If you
wished to be more lenient, you could record only one use per session instead of one per
request—the best idea here is to see how frequently your users run up against their limit in
normal, acceptable usage and adjust accordingly.

The Bad Problems
All of that is well and good for the happy case in which your primary problem is making sure
your content gets to everyone who wants it. Unfortunately, that is not always your biggest
concern. There always seems to be a set of people who want to spoil things for others—
whether to make themselves feel more secure or confident, or just out of an innate meanness
of spirit. At some point, you’re bound to come into contact with these people—and if left
unchecked, they can do a great deal to make your service less valuable to others.

Luckily, there are some general strategies for dealing with bad actors of this sort. These
involve monitoring your application (so that you can recognize attacks before they become
effective), identifying users (so that you can recognize who they are), authorizing attempts to
access privileged data and functionality (to help keep them from accessing—and damaging—
information that should be off-limits), and various other techniques for dealing with full-scale
attacks.

Monitoring Your Site
The first step in stopping a problem is finding out about it. To that end, you should have some
sort of monitoring system in place to identify users and their activities. That way, you’ll know
when various events happen, as well as who is responsible for them. If you have a user whose
account is compromised, for instance, you may be able to track down the guilty party by
checking the login times and activities of the account.

Rails provides a number of features that make logging like this possible, and there are var-
ious plugins that add even more functionality. You can create an Audit model, for instance, to
record changes to other ActiveRecord models.

CHAPTER 8 ■ DEALING WITH SUCCESS252

9945CH08.qxd 4/1/08 2:56 PM Page 252

To do this for MovieList, you start by generating a new model:

./script/generate model Audit record_id:integer record_type:string event:string

You then set up the appropriate polymorphic relationships between your new Audit
model and those you wish to observe, as in Listings 8-13 and 8-14.

Listing 8-13. Adding Audits to app/models/user.rb

class User < ActiveRecord::Base
has_many :audits, :as => :record, :dependent => :destroy
...

end

Listing 8-14. Adding the Polymorphic Association to apps/models/audit.rb

class Audit < ActiveRecord::Base
belongs_to :record, :polymorphic => true

end

With those relationships in place, you can log registrations by adding a simple
after_create filter to your User model, as you can see in Listing 8-15.

Listing 8-15. Logging User Creation in apps/models/user.rb

class User < ActiveRecord::Base
after_create :log_registration
...

private
def log_registration
self.audits.create :event => 'registration'

end
end

There are two options for adding audit functionality to multiple models. You can either
extract it into a module (much as image functionality for movies and people is handled by
the Imageable module) or create an ActiveRecord observer. Since you’ve already worked with
the former approach, I’ll show you the observer method now. Start by running the observer
generator:

./script/generate observer Auditor

The files created by this command make it a simple matter to track lifecycle events across
multiple models. First, you tell the observer which models it should watch and you add the
logging, as in Listing 8-16.

CHAPTER 8 ■ DEALING WITH SUCCESS 253

9945CH08.qxd 4/1/08 2:56 PM Page 253

Listing 8-16. Completed app/models/auditor_observer.rb

class AuditorObserver < ActiveRecord::Observer
observe :user, :movie, :release

def after_create
self.audits.create :event => 'created'

end
end

■Caution If you set the observer to watch the User model like this example, you’ll also need to revert the
changes you made to the User model. If you leave the log_registration method and after_create call-
back in place, the system will log each user creation twice.

Note that each of the models your observer is watching needs the same has_many declara-
tion you added to the User model earlier. Once you’ve edited the observer and made sure your
associations are properly defined, you activate the observer in your environment file, as in
Listing 8-17.

Listing 8-17. Turning On the Observer in config/environment.rb

...

Rails::Initializer.run do |config|
...

Activate observers that should always be running
config.active_record.observers = :auditor

...
end

And with that, you’ll get a new audit record whenever a User, Movie, or Release is created
(once you restart the application, of course).

Even with the observer approach, however, you aren’t limited to tracking changes to
ActiveRecord models. You can also track events like logins and logouts, as you can see from
Listing 8-18.

Listing 8-18. Using the Audit Model in apps/controllers/sessions_controller.rb

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
...

def create
self.current_user = User.authenticate(params[:login], params[:password])

CHAPTER 8 ■ DEALING WITH SUCCESS254

9945CH08.qxd 4/1/08 2:56 PM Page 254

if logged_in?
self.current_user.audits.create :event => 'login'
if params[:remember_me] == "1"
self.current_user.remember_me
cookies[:auth_token] = {
:value => self.current_user.remember_token ,
:expires => self.current_user.remember_token_expires_at

}
end
redirect_back_or_default('/')
flash[:notice] = "Logged in successfully"

else
render :action => 'new'

end
end

def destroy
self.current_user.forget_me if logged_in?
self.current_user.audits.create :event => 'logout'
cookies.delete :auth_token
reset_session
flash[:notice] = "You have been logged out."
redirect_back_or_default('/')

end
end

This approach also allows you to record events that are entirely disconnected from a
model. You could, for instance, create an audit record whenever you receive an XML request
for a given page—the movies index page, for example, shows this in Listing 8-19.

Listing 8-19. Auditing XML Requests in apps/controllers/movies_controller.rb

class MoviesController < ApplicationController
before_filter :require_admin, :except => [:index, :show]

GET /movies
GET /movies.xml
def index
unless params[:query].blank?
query = ['CONCAT(title, description) LIKE ?', "%#{params[:query]}%"]

end
@movies = Movie.paginate(:all, :page => params[:page], :conditions => query)

respond_to do |format|
format.html # index.html.erb
format.iphone # index.iphone.erb
format.xml {
Audit.create :event => 'XML request for MoviesController#index'

CHAPTER 8 ■ DEALING WITH SUCCESS 255

9945CH08.qxd 4/1/08 2:56 PM Page 255

render :xml => @movies
}

end
end

...
end

Or, if you wanted to add XML request logging across the entire application, you could add
a before filter to the ApplicationController, as shown in Listing 8-20.

Listing 8-20. Logging All XML Requests in app/controllers/application.rb

class ApplicationController < ActionController::Base
before_filter :log_xml_request

...

protected
def log_xml_request
if request.format == 'application/xml'
Audit.create :event => ➥

"XML request for #{params[:controller]}##{params[:action]}"
end

end

...
end

You could also record any parameters sent to the action by expanding the event column
(or adding an entirely new column), as well. Obviously, this is a tremendously flexible tactic;
it’s able to track both changes to specific records and general events within the system. This is
the sort of flexibility that improves your ability to detect and respond to malicious users.

Of course, even with this setup, you may still be missing some events—in particular, dele-
tions. Tracking those, however, is easy with the acts_as_paranoid plugin. You can install the
plugin with the following command:

./script/plugin install http://ar-paranoid.rubyforge.org/

Acts_as_paranoid overrides standard ActiveRecord methods to prevent permanent
destruction of database records. “Paranoid” models still have a destroy method, but calling it
actually results in the setting of a deleted_at column in the database. Calling find on a “para-
noid” model automatically excludes records that have deleted_at timestamps, so from the
perspective of your application they are truly gone. If you find the need to retrieve them,
though, you can still inspect “deleted” records by looking in the database directly.

CHAPTER 8 ■ DEALING WITH SUCCESS256

9945CH08.qxd 4/1/08 2:56 PM Page 256

http://ar-paranoid.rubyforge.org

■Caution If you use acts_as_paranoid on a column with a UNIQUE index constraint, you may run into
problems—even after you “delete” a record through the application, you won’t be able to create a new
record with the deleted username, for instance.

All of this monitoring and logging is useless unless reviewed, however, so make sure that
you regularly look through the events you’ve recorded—and when you look at your logs, be on
the watch for any suspicious patterns. Some incursions will be obvious (if the user’s profile is
updated to include something offensive, for instance), but the more dangerous attacks are
those that are harder to notice.

Identity and Authorization
Proper monitoring depends on being able to identify your users, however, and at this point
security measures begin to overlap with scalability. Remember the final option for scaling your
server application: throttling. The implementation of that approach requires that the system
be able to uniquely identify a user (via a key or login credentials). If you already have that in
place, then you’re already able to identify users. In addition to making it possible to enforce
limits on their usage, you can also use such keys to hold people accountable for inappropriate
uses of your service.

In addition, once you know the identity of a given visitor, you can also control what they
see. You’ve already done this on the web side with the login_required and require_admin
filters; those force users to log in (or log in with an administrator account) to access certain
actions. You can do the same thing on the API side, by restricting the actions allowed to spe-
cific keys or users, as you may have gathered from the code you wrote in the earlier section.

Other Tactics
There are a number of other attacks and vulnerabilities to be aware of. These are some of them
(along with strategies for dealing with them):

• Denial of service (DoS) attacks: Where malicious users attempt to overwhelm your
servers with a flood of meaningless traffic, keeping legitimate users from being able to
access the site. These can be mitigated by the ability to scale, depending on how they
are carried out. You may also be able to take action at the hardware level—banning IPs
known to be malicious before requests get to your server, for instance.

• Injection attacks: In which malicious users craft input to your forms intended to manip-
ulate the underlying data. These were mentioned in Chapter 5, in the context of the
PHP form you built for your Squidoo module. The solution presented there was specific
to the module problem, but Rails provides some built-in tools that help defend against
these assaults.

For SQL injections, you are best protected by consistently using the ActiveRecord meth-
ods, instead of creating your SQL by hand. When you need to add a WHERE clause to a
FIND call, for instance, you can automatically escape values that might be dangerous by
using ActiveRecord’s parameters:

CHAPTER 8 ■ DEALING WITH SUCCESS 257

9945CH08.qxd 4/1/08 2:56 PM Page 257

User.find(:all, :conditions => {:login => 'toshiro'})
User.find(:all, :conditions => ['login = ?', 'kurosawa'])

The best defense against form injection for a Rails application is twofold. First, make
sure your validations are defined correctly (to prevent injections from saving invalid
data). Second, use the attr_accessible macro to define the attributes that should be
editable via mass assignment. With that in place, your users will only be able to edit the
fields you want them to.

• XSS (cross-site scripting): A vulnerability in which JavaScript can be injected into your
site, through user-generated content, for instance. This is the bane of many a web site;
there are many resources for how best to defend against this type of attack, but you can
make a good start by using the h helper and other filters for any content coming from a
user—the white_list plugin is also helpful, as is the SafeERb project.

• CSRF (cross-site request forgery): A vulnerability in which your application’s session data
is hijacked by another site, which then issues requests to you as if it were your (vali-
dated) user. This is a much trickier type of attack; it is mitigated to some extent by Rails
2’s built-in request forgery protection, but that functionality is not foolproof, and (as we
saw in the last chapter) it can be difficult to use in a non-RESTful context. At the very
least, you should review the length of your sessions and reduce it if you can (this is the
approach that banks take).

Finally, the mere fact that you expose an API for your site may give potential attackers
more information with which to plan their assault. Fortunately, however, using REST may help
minimize this risk a bit—since RESTful APIs are so constrained, there is less risk of exposing
the internal workings of your site. Contrast that with some SOAP APIs, which include all sorts
of calls more specific to the implementation of the functionality, as I discussed back in
Chapter 1.

Summary
Providing an API for a wealth of clients to use your application is a great way to improve your
site, but it is not without problems. In fact, when you open up your application you’re not only
subject to the scaling and security pains of any web site, but you also magnify them and intro-
duce potential new issues.

As Twitter has seen, open APIs can result in traffic increases far beyond what a site might
otherwise receive, which in turn brings all sorts of scaling issues. Popular sites also attract bad
actors of all sorts, intent on gaining some advantage or ruining others’ experience. Luckily,
there are a variety of strategies to meet these challenges, ranging from careful planning before
development to last-minute fixes you can make as a slashdotting or DoS attack first starts to
overwhelm your servers.

Of course, if all of this is too much for you, there is an environment in which these issues
are much less common: the enterprise. REST, along with the applications built in accord with
it, promise to be a valuable addition to the enterprise developer’s toolkit, as you’ll see in the
next and final chapter.

CHAPTER 8 ■ DEALING WITH SUCCESS258

9945CH08.qxd 4/1/08 2:56 PM Page 258

REST in the Enterprise

The projects in this book so far have all been concerned with the public Internet—with inte-
grating MovieList functionality with other sites, all of which are accessible to anyone with a
connection to the Web. In addition to the public Internet, however, there is also an entirely dif-
ferent world in which REST is playing an increasingly important role: the enterprise. Behind
corporate firewalls, complex systems interact constantly; in this chapter, you’ll see something
of how the needs of these “private internets” differ from those of the open Web and how REST
(and Rails) can help meet those needs.

What Is the Enterprise?
In any discussion of the enterprise, the first question asked is always about the meaning of
the word. All too often, people talk about “enterprise” this and “enterprise” that without any
grounded sense of what they mean, using it for anything from a complex application space
with dozens (or more) distinct, interacting software systems, to a mere synonym for “big.”

In this chapter, “enterprise” will be used to refer to the sort of software written for and
used at the largest, most complex levels of business—the systems that IBM, GE, and the like
use for accounting, shipping, content management, and other high-level tasks. These appli-
cations are often tightly integrated and usually complicated, they sometimes reflect the
corporate organization in which they are used, and—unfortunately—they have a tendency
to be difficult to work with, maintain, and extend.

The enterprise often lives behind a corporate firewall, and (like the organizations in
which it is used) it maintains a comprehensive set of permissions and roles for its users. Other
than that, however, it looks surprisingly like the open Web—although like most centralized (in
this case, typically by the corporation’s IT department) large systems, it is much more conser-
vative in adopting new technologies and processes than is its public counterpart. For our
purposes, this conservatism is most evident in the interactions between the various applica-
tions within the enterprise, which often use XML-RPC and SOAP for web services. The delay in
adopting new approaches is not mere preference, however—the needs of the enterprise are
indeed different from those of many other software contexts, and often technologies need to
mature to a greater or lesser extent before they can fully meet those needs. It is no surprise,
then, that REST and Rails have not yet seen high levels of adoption, as neither was originally
developed specifically for the enterprise.

259

C H A P T E R 9

9945CH09.qxd 4/1/08 4:01 PM Page 259

Problems with REST
As I discussed back in Chapter 1, the principles of RESTful design were inspired by the early
Web—which is about as different from the enterprise as you can get. The Web was begun as an
entirely open environment, and it was much simpler than anything in the enterprise today.
As a result of that openness, REST lacks mature security features, which the enterprise today
almost universally wants and needs. In contrast, SOAP and the WS-* technologies have
comprehensive security standards and protocols, reassuring the enterprise architects and
managers that their data will be seen and used by only those who should be able to see and
use it.

The other major problem with REST is more circumstantial; it is newer and has not yet
seen a major push into the enterprise context. As a result, the other parts of the landscape—
development tools and the applications they create, for instance—include little or no support
for it. SOAP and the alternatives, however, are baked right in; with the push of a button, you
can generate a WSDL file for your application or the code needed to consume a given service
based on its WSDL file.

As you’ll see later in the chapter, however, these problems are outweighed in at least some
cases by the benefits that RESTful design brings—often, the very benefits that you saw back in
Chapter 1 (simplicity, and so on). In other cases, the utility of REST depends on its continued
development (such as adding support to it for both existing and emerging security standards).

Problems with Rails
The enterprise has also been slow to adopt the Rails framework. Again, there are a couple of
main reasons for this—one substantive and one more contingent. The (potentially) substan-
tive reason has been argued across the Internet and can be summed up by the slogan “Rails
doesn’t scale.” Enterprise applications are (almost by definition) larger than the majority of
sites on the public Internet, and they may require performance beyond what a framework like
Rails is thought to be able to provide.

The problem is more complicated than that, however—Rails’ ability to scale (or its lack
thereof) is still being explored. Large sites like Twitter are pushing the envelope, and the area
is under active development by people around the world. It remains to be seen whether Rails’
current scalability is in fact a necessary barrier to its use in the enterprise—and even if it can’t
scale up to the highest levels required (or can’t do so efficiently), it may still be of use in more
constrained contexts.

The second issue with the penetration of Rails in the enterprise arena is the same as the
second problem for REST: it is new. Enterprises have been built on (at various times) software
written in C, C++, COBOL, and Java.

More recently, the .NET Framework has made inroads. In large part, these moves have
been driven by enterprise software vendors—Microsoft made C# a player in the enterprise
simply by virtue of supporting it in Visual Studio. Rails, to date, has not enjoyed such privi-
leged access.

That, however, is changing. Projects like JRuby and IronRuby are already opening possi-
bilities for deploying Rails applications in existing Java and .NET environments and are
removing a major obstacle to the adoption of Rails more broadly.

CHAPTER 9 ■ REST IN THE ENTERPRISE260

9945CH09.qxd 4/1/08 4:01 PM Page 260

Why REST?
Given the problems I’ve just outlined with REST and Rails in the enterprise, why should we
even worry about their adoption? The answer to this question lies in the benefits that you’ve
seen in previous chapters.

Integration with REST
Take REST, for example. The enterprise is built in no small part on XML-RPC and SOAP, using
them to tie together complicated systems. This approach, however, is far from simple. These
web service approaches are, as you saw back in Chapter 1, somewhat closely tied to the imple-
mentations of the systems they serve—which means that you’re doing almost as much work in
integrating them as you would in integrating the underlying systems in the first place. With
REST, on the other hand, the various systems each expose a predictable, discoverable, uniform
interface—making it much easier to connect even complex systems.

The principles of REST also allow developers to decompose systems into more reusable
parts, by focusing on distinct collections of resources instead of historically determined sets of
functionality. It is much easier to extract a RESTful authentication system into its own applica-
tion for reuse across an organization than it is to split off part of a SOAP interface, for instance.
As a result, RESTful applications can also perform better and be more scalable than can com-
parable systems using more common technologies.

Examples of Integration
I briefly mentioned the possibility of providing a RESTful interface to an authentication sys-
tem; that, however, is just one possibility. RESTful systems can provide measurable benefits in
many area of the enterprise. Take searching, for instance; often, searches across the subsys-
tems within an enterprise work terribly. Since each application is usually developed
independently, the web service interfaces for searching can differ wildly from one to the next.

With REST, on the other hand, there are a number of approaches that can make search
functions more useful. From the very beginning, search interfaces will be more uniform—with
the approach discussed in previous chapters, search is just a GET operation to an index of
resources with some set of filtering parameters. Keeping that the same for all subsystems, as
illustrated in Figure 9-1, the search application need only know which URIs to access and
what parameters are available—and if the systems are truly RESTful, we should be able to dis-
cover the parameter lists by accessing the unfiltered resource indexes in the first place.

Figure 9-1. A proposed set of RESTful wrappers around existing web services

CHAPTER 9 ■ REST IN THE ENTERPRISE 261

9945CH09.qxd 4/1/08 4:01 PM Page 261

A second option that is easier to implement with REST than it is for alternative web serv-
ice frameworks is a centralized search index. In this scenario, each subsystem calls out to the
search application when information needs to be indexed or updated. If the search applica-
tion itself provides a RESTful interface, as in Figure 9-2, this process becomes simple
regardless of the information being tracked.

Figure 9-2. A single RESTful wrapper around a cross-functional service

With either of these approaches, REST provides a much simpler infrastructure than does
SOAP or XML-RPC. Even with REST, however, this can still be a substantial undertaking. The
first option entails the creation of many distinct RESTful APIs, while the latter requires that
each subsystem be capable of calling out to the search API to index its records.

Other possibilities may be less intensive—you could convert a single subsystem to a
RESTful interface at a time, for instance, while leaving the other applications in the system
unchanged (except, of course, for their integration points with the updated application), as
illustrated in Figure 9-3. One benefit of this approach is that you can more easily expose the
functionality of each subsystem to a wider environment as they are updated. Say you put a
RESTful API onto the Staff Directory, for instance—then within the firewall you can reap the
benefits of accessing contact information more easily, and you could also expose it more
easily to the public Internet (with some additional safeguards, most likely).

Figure 9-3. Exposing a RESTful interface directly to the Internet

CHAPTER 9 ■ REST IN THE ENTERPRISE262

9945CH09.qxd 4/1/08 4:01 PM Page 262

Scalability
The nature of RESTful systems allows them to scale more easily than alternative architectures.
Statelessness, for instance, means that large, multiple-server applications need not attempt to
require that subsequent requests always go to the same machine. For load balancing, then, a
simple round-robin approach can suffice where for a less RESTful system a more complex bal-
ancing act might be required to ensure continuity of session data.

Introducing Rails
That’s all well and good for REST—but what about Rails? What role can Rails as a framework
play in the enterprise? Again, the benefits for the enterprise are similar to those seen in the
open Web—Rails applications are easier to build and maintain than are many of the alterna-
tives. They become even more appealing when REST is added to the mix, since with
ActiveResource the integration of distinct Rails applications becomes much simpler (as
you saw in Chapter 7).

PLATFORM CONCERNS

As I briefly touched on earlier, one of the obstacles holding Rails back from the enterprise is the requirement
that it run on a new (to most enterprises) platform. For organizations used to .NET and Java applications, the
requirement of an entirely new server devoted to running Ruby can be quite a burden—and the technical
skills to support it may be in short supply.

Luckily for Ruby and Rails advocates, however, this situation is being dealt with. There are currently
several projects underway to get Ruby running on different platforms, including Java with JRuby and .NET
with IronRuby. JRuby in particular has made great strides in breadth of support and in performance, and it is
being deployed in a number of large organizations even now.

These projects form a foothold for Ruby and Rails in the enterprise, and their progress should be closely
monitored. You can follow the progress of IronRuby at http://www.ironruby.net/ and JRuby at
http://www.jruby.org/.

The easiest way to start with Rails in the enterprise is probably to use it as a wrapper
around an existing application. You start with one of the existing systems, complete with its
more complex web services API based on SOAP or XML-RPC. You can then create a small Rails
application to wrap that API with a RESTful interface, resulting in something like the scheme
shown in Figure 9-4.

CHAPTER 9 ■ REST IN THE ENTERPRISE 263

9945CH09.qxd 4/1/08 4:01 PM Page 263

http://www.ironruby.net
http://www.jruby.org

Figure 9-4. Wrapping an existing service with a Rails application

With this sort of structure, you can gain many of the benefits of a RESTful API while mini-
mizing changes to your existing applications—the only work you have to do apart from
creating the Rails application is update the unwrapped systems’ integration points to use
RESTful calls instead of the older ones.

In the interest of keeping things simple, I won’t show you code extracted from an actual
enterprise application (the configuration for a real Java XML-RPC service alone could double
the size of this book). Instead, I’ll reuse the ActionWebService example from Chapter 2. In case
you don’t remember, it consisted of the files shown in Listings 9-1 and 9-2.

Listing 9-1. ActionWebService API Code in app/apis/movie_api.rb

class MovieApi < ActionWebService::API::Base
api_method :find_movies, :returns => [[Movie]]
api_method :find_movie, :expects => [:int], :returns => [Movie]

end

Listing 9-2. Controller to Handle Web Service Requests, in app/controllers/movie_controller.rb

class MovieController < ApplicationController
wsdl_service_name 'Movie'

def find_movies
Movie.find(:all)

end

def find_movie(id)
Movie.find(id)

end
end

As you probably recall, this code creates a basic SOAP interface for an application; with it,
you can request a URI like /find_movies and get back a set of serialized Movie objects. This
also provides an autogenerated WSDL file describing the service, which should look some-
thing like Listing 9-3.

CHAPTER 9 ■ REST IN THE ENTERPRISE264

9945CH09.qxd 4/1/08 4:01 PM Page 264

Listing 9-3. ActionWebService-Generated WSDL File

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Movie" xmlns:typens="urn:ActionWebService" ➥

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ➥

xmlns:xsd="http://www.w3.org/2001/XMLSchema" ➥

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ➥

targetNamespace="urn:ActionWebService" ➥

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" ➥

xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" ➥

targetNamespace="urn:ActionWebService">
<xsd:complexType name="MovieArray">
<xsd:complexContent>
<xsd:restriction base="soapenc:Array">
<xsd:attribute wsdl:arrayType="typens:Movie[]" ➥

ref="soapenc:arrayType"/>
</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="Movie">
<xsd:all>
<xsd:element name="id" type="xsd:int"/>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="rating" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

</xsd:schema>
</types>
<message name="FindMovies">
</message>
<message name="FindMoviesResponse">
<part name="return" type="typens:MovieArray"/>

</message>
<message name="FindMovie">
<part name="param0" type="xsd:int"/>

</message>
<message name="FindMovieResponse">
<part name="return" type="typens:Movie"/>

</message>
<portType name="MovieMoviePort">
<operation name="FindMovies">
<input message="typens:FindMovies"/>

CHAPTER 9 ■ REST IN THE ENTERPRISE 265

9945CH09.qxd 4/1/08 4:01 PM Page 265

http://schemas.xmlsoap.org/wsdl
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/wsdl
http://www.w3.org/2001/XMLSchema

<output message="typens:FindMoviesResponse"/>
</operation>

<operation name="FindMovie">
<input message="typens:FindMovie"/>
<output message="typens:FindMovieResponse"/>

</operation>
</portType>
<binding name="MovieMovieBinding" type="typens:MovieMoviePort">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" ➥

style="rpc"/>
<operation name="FindMovies">
<soap:operation soapAction="/movie/api/FindMovies"/>

<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ➥

namespace="urn:ActionWebService" use="encoded"/>
</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ➥

namespace="urn:ActionWebService" use="encoded"/>
</output>

</operation>
<operation name="FindMovie">
<soap:operation soapAction="/movie/api/FindMovie"/>

<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ➥

namespace="urn:ActionWebService" use="encoded"/>
</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" ➥

namespace="urn:ActionWebService" use="encoded"/>
</output>

</operation>
</binding>
<service name="MovieService">

<port name="MovieMoviePort" binding="typens:MovieMovieBinding">
<soap:address location="http://localhost:3001/movie/api"/>

</port>
</service>

</definitions>

To wrap this web service in a more RESTful interface, you’ll need to create an entirely new
Rails application. Start with the following command:

rails movie_wrapper

CHAPTER 9 ■ REST IN THE ENTERPRISE266

9945CH09.qxd 4/1/08 4:01 PM Page 266

http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/encoding
http://localhost:3001/movie/api

Next, generate a new controller with the necessary actions:

./script/generate controller Movies index show

Add the resource declaration to your routing file, as shown in Listing 9-4.

Listing 9-4. Adding the Movie Route to config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :movies

...
end

There are two reasons to generate a controller instead of scaffolding here: first, the only
actions you’re interested in are index and show, so creating the full set of seven would be
overkill. Second, you don’t actually need the ActiveRecord model that the scaffolding genera-
tor produces in this case. Since this is just a wrapper application, all of the actual model-
specific code will live in the wrapped application, not here.

The next step is to add the code to access the original interface from the new wrapper
application. First, you’ll need to install the soap4r gem:

sudo gem install soap4r

This gem provides a useful set of functionality for interacting with SOAP web services—and it
is much easier to use within a Rails 2 application than is the old ActionWebService compo-
nent. Once you have it installed, open up MoviesController and add the code shown in
Listing 9-5.

Listing 9-5. Updating app/controllers/movies_controller.rb

require 'rubygems'
require 'soap/wsdlDriver'

class MoviesController < ApplicationController
before_filter :create_rpc_driver

def index
movies = @rpc_driver.findMovies
render :text => movies.inspect

end

def show
movie = @rpc_driver.findMovie(params[:id])
render :text => movie.inspect

end

private
def create_rpc_driver
wsdl = "http://localhost:3001/movie/service.wsdl"

CHAPTER 9 ■ REST IN THE ENTERPRISE 267

9945CH09.qxd 4/1/08 4:01 PM Page 267

mailto:@rpc_driver.findMovies
mailto:@rpc_driver.findMovie
http://localhost:3001/movie/service.wsdl

@rpc_driver = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver
end

end

Obviously, most of this is new, so I’ll go through it piece by piece. First, you’re including
one part of the soap4r gem: the WSDL driver. This allows you to generate a SOAP client on-
the-fly, simply by providing the URL for a WSDL file, as you can see in the create_rpc_driver
method. In the body of the controller, you’re using a before_filter to create the appropriate
SOAP client before each method (of course, in a production system, you’d want to cache this—
there’s no need to hit the remote WSDL file every time). Within the index and show actions
themselves, you’re then using the generated client to retrieve the list of movies or an individ-
ual movie as appropriate. Here, you’re just displaying the contents of the returned data (with
render :text => ...inspect), but it would be a simple matter to use a respond_to block to
return HTML or XML as required.

If you try this, you’ll notice that the results come back in an unfamiliar form:

[#<SOAP::Mapping::Object:0x111279e {}id=1 {}name="Sanjuro" {}rating=nil ➥

{}description=nil>]

You can, however, access the attributes of these objects directly—for instance, if the pre-
ceding object were stored in a variable called @movie, the following would be true:

@movie.name == 'Sanjuro'

Depending on your application, then, you may need to instantiate other objects from the
returned SOAP::Mapping::Objects. Apart from that, it’s a simple matter to get the benefits of a
RESTful interface even if you’re working with a SOAP service; similarly, you can handle XML-
RPC services with the xmlrpc4r gem, though it doesn’t include the automated WSDL client
generation that makes soap4r such an excellent option. Either way, there are few technical
limitations preventing you from integrating REST (and, as a corollary, Rails) into an existing
enterprise that uses web services.

Summary
Despite some obstacles, REST will continue to make inroads into the enterprise—and this is
only to be expected. The enterprise is, in many ways, a parallel version of the public Internet;
while individual systems may be larger or more complicated in one or the other, both contexts
have needs to provide better functionality, to integrate systems, and to get things done more
quickly and efficiently. It is no surprise, then, that as REST gains traction in the public Inter-
net, it will eventually also gain traction within the enterprise.

Similarly, Rails has a role to play, as well. With its unparalleled support for REST and the
ease of development it allows, Rails is bound to show up in increasing numbers in enterprise
organizations—and this will accelerate as JRuby and its cousins mature. All in all, the future is
bright for the simplification of the enterprise integration landscape.

CHAPTER 9 ■ REST IN THE ENTERPRISE268

9945CH09.qxd 4/1/08 4:01 PM Page 268

mailto:@movie.name

■Numbers and symbols
422 error, 217
@people array, populating

movie[new_role] fields with, 55

■A
About page, for Facebook application,

186–188
action caching, in Rails, 242
ActionWebService, 19–21
ActionWebService API code, 264–266
ActiveResource

FBML application project, 209–214
handling request in

releases_controller.rb, 213
updating app/models/movie.rb to

use, 209
updating app/models/release.rb to

use, 210
warning about, 240–241

ActiveResource gem, 34
acts_as_paranoid plugin

installing, 256
tracking deletions with, 256–257

Add Application screen, iframe
MovieList application, 190

“Add this as an interest” button, 59
administrator filter, adding to

application, 49–50
administrator links, hiding, 171–172
administrators

adding code to manage users, 46–48
adding to movie resource, 45–50

Ajax
resolving troubles with, 139–140
building client, 88–104

alphabetical keyboard, iPhone, 165
Amazon Light, web site address, 5
API keys

Flickr page showing use of, 245
getting up and running with, 246–252
validating, 251

ApiKey model, updating model, 247
api_keys resource, nesting under users,

247–248
app/apis directory, 19
app/apis/movie_api.rb

ActionWebService API code in, 264
autogenerated by web service

generator, 20
app/controllers/application.rb

adding administrator filter to, 49–50
updating for restful_authentication,

40
app/controllers/interests_controller.rb

adding actions to, 57
handling JSON deletion requests in,

99–100
returning status codes in, 97–98
updating create to accept JSON

requests in, 96
updating redirects in, 69

app/controllers/movies_controller.rb,
handling searches in, 70–71

app/controllers/movie_controller.rb,
autogenerated, 20

app/controllers/people_controller.rb
adding administrator filter to, 50–51
handling searches in, 71

app/controllers/posts_controller.rb,
Respond_to block in, 30

Index

269

9945Index.qxd 4/7/08 12:08 PM Page 269

app/controllers/releases_controller.rb
restricting release management with,

61
updating, 81–83, 104

app/models/comment.rb, adding
associations to, 127

app/models/image.rb, adding
association and attachment_fu
code to, 72–73

app/models/interest.rb
adding associations and validations

to, 57
adding convenience method to,

92, 96
app/models/movie.rb

adding associations to, 57, 60
adding Comment association to, 127
including new images module in, 73
updated with validations, 43
updating app/models/movie.rb to

manage, 55–56
app/models/person.rb

adding validations to, 50
including new images module in, 73

app/models/release.rb, adding to_s
method to, 62

app/models/user.rb
adding associations to, 57
adding audits to, 253
adding Comment association to, 127
adding interested_in? method to, 60
updating releases method in, 85

app/views/controllers/interests_
controller.rb, updating, 90–93

app/views/interests/index.html.erb
generated, 58–59
updating interest removal link in,

68–69
app/views/layouts/application.html.erb

adding navigation links to, 62–63
updating navigation links in, 68

app/views/movies/edit.html.erb,
adding image upload form in,
73–74

app/views/movies/index.html.erb
adding new view file with, 210
displaying associated images in, 74

app/views/movies/index.iphone.erb,
iUI-enhanced version of,
174–175

app/views/movies/show.html.erb
adding interest creation form to,

59–60
displaying releases in, 62
updating the form tag in, 69–70

app/views/notifications/index.html.erb,
completed, 64–65

app/views/people/index.html.erb,
creating a search form in, 71

app/views/people/show.html.erb,
rendering partial view in, 162

app/views/people/show.iphone.erb,
rendering partial view in, 163

app/views/people/_detail.erb,
extracting common content to,
162

app/views/releases/edit.html.erb,
updating, 61–62

app/views/releases/index.js.erb
listing releases in, 80–81
setting inline styles in, 87
specifying a stylesheet in, 87–88

app/views/releases/new.html.erb,
updating, 61–62

app/views/users/index.html.erb, with
fields removed, 48–49

Apple, iPhone development guidelines,
145–147

Apple iPhone. See iPhone
application code, watching logs to catch

problems, 240
Application Description field, Facebook

application, 184
application header, tags for adding, 221
Application Information section, editing

About page’s, 186–188
application name, length limitation for,

181

■INDEX270

9945Index.qxd 4/7/08 12:08 PM Page 270

Application Type field, Facebook
application, 183

application.iphone.erb
adding iPhone-specific layout in, 154
vs. application.html.erb, 155–156
including iUI framework in, 173–174

ApplicationController
adding administrator filter to, 49–50
adding before filter to, 256
detecting User-Agent in, 151
handling subdomain approach in,

150
application_controller.rb, checking for

Facebook sessions in, 197–198
apps/models/audit.rb, adding

polymorphic association to, 253
apps/models/user.rb, logging user

creation in, 253
Attachments fields, Facebook

application, 185
attachment_fu, file upload plugin, 72
audit functionality, adding to multiple

models, 253–254
Audit model

creating new, 252–256
tracking logins and logouts in,

254–255
autocapitalize attribute, setting for

iPhone, 164
autocompletion, adding plugin for

MovieList field, 97–105
autocorrect attribute, setting for iPhone,

164
available? method, adding to ApiKey

model, 251–252

■B
before_filter

adding, 197
adding to application controller,

223–224, 256
for protecting actions, 49

Beginning MySQL Database Design and
Optimization, by Chad Russell
and Jon Stephens, 240

benchmarking, application code, 240
best practices, for application

development, 239–240
browser detection scheme, pros and

cons of using, 148
Buck, Jamis, The Rails Way run by, 239

■C
caching, static content, 241–243
Callback URL field, Facebook

application, 182
callback_path, 194
Can your application be added on

Facebook field, 183
Canvas Page URL field, Facebook

application, 182
canvas_path value, entering into

settings page, 194
Causes link, web site address, 188
ChicagoCrime, web site address, 6
code, optimizing, 243–244
code-on-demand, 14
comment form

displaying in squidoo/view.php,
137–138

module view with, 138
Comment model and controller,

creating for MovieList updates,
126–132

Comment model file, adding
associations to, 127

comments
adding comment resource to

config/routes.rb, 133–134
adding reading functionality to,

132–134
adding to app/views/movies/

show.html.erb, 127
displaying in squidoo/form.php,

132–133

■INDEX 271

9945Index.qxd 4/7/08 12:08 PM Page 271

nesting in config/routes.rb, 126–127
reading in the module, 134
writing, 135–138

comments table, adding to database,
127

CommentsController
adding redirects to, 140
handling new access method in, 134
updating, 129–131
updating XML returned from,

135–136
community outsourcing

examples of, 1–3
the cost of openness, 4–9
unexpected consequences of, 3–4

config/database.yml, sample file, 38–39
config/facebook.yml, autogenerated,

193
config/initializers, mime_types.rb file

in, 30
config/initializers/mime_types.rb,

registering new formats in, 30
config/routes.rb

adding interest routes to, 224
adding movie route to, 267
adding notifications resource

declaration to, 64
adding resource associations to,

67–68
adding routes by hand to, 83–84
adding top-level comment resource

to, 133–134
changing root route in, 201–202
nesting comments in, 126–127
updating, 23, 25, 27

config/routes.rb, nesting api_keys
resource in, 247–248

Craigslist, 2
creation failures, handling in

public/json_client.html, 98–99
cross-site request forgery (CSRF), 140

attacks, 258
CSRF attack. See

RequestForgeryProtection

■D
data, performance concerns with

iPhone, 147
data types, standard provided by JSON,

89
Default Action FBML field, Facebook

application, 184
Default FBML field, Facebook

application, 184
Default Profile Box Column field,

Facebook application, 184
del.icio.us, 1
deletion requests, handling JSON,

99–100
Denial of Service (DoS) attacks, 257
denormalization, improving database

performance with, 240
destroy action, adding administrator

filter for, 129
detect_iphone_request method, 150
Developer Contact E-Mail field,

Facebook application, 182
Developer home page. See Facebook

Developer home page
Developer Mode field, Facebook

application, 184
dialing keyboard, iPhone, 165
Digg, effect of being featured on, 238
display, creating basic in

squidoo/view.php, 115–116
DNS cache, clearing, 150
DRY (don’t repeat yourself) philosophy,

22
dynamic scaffolding, provided by

ActionWebService, 21

■E
edit module form, adding text field to,

114–115
enterprise

integration with RESTful systems,
261–262

what it is, 259–260

■INDEX272

9945Index.qxd 4/7/08 12:08 PM Page 272

error handling, for JSON clients, 97–99
evalJSON() method, 92
execute statement, 196

■F
Facebook

creating an account, 180
iPhone interface for, 144
official/unofficial client libraries for,

192
web site address for API, 191

Facebook application
adding user ID, 195
basic functionality of, 179–180
changing, 187
choosing categories for, 187
initial setup, 180–186
naming, 181
optional fields for creating, 181–184
planning, 179–180
points of interaction for developers,

180
retrieving friends in, 198–207
rundown on optional fields, 184–186
specifying developer information, 187
tied to developer accounts, 180
viewing updated About page for, 188

Facebook Developer home page, 180
Facebook iframe applications, possible

issues with, 208
Facebook Markup Language. See FBML

(Facebook Markup Language)
Facebook platform, web site address,

180
Facebook user profile, updating,

231–234
Facebooker, 192
FBML (Facebook Markup Language)

default for Profile Box, 189
vs. iframe, 183
iframe applications and, 186–189
visibilty tags, 189

FBML application project, 208–214
ActiveResource, 209–214
adding FBML to, 220–223
adding interactivity to, 223–231
creating, 209
displaying friends in, 227–229
Facebook integration, 214–223
further projects for, 234–235
installing RFacebook plugin, 215–218
local FBML development, 215–218
rebuilding friend-based functionality,

226–229
relative URL root, 220
routing, 218–219
setup, 209–214
updating the profile, 231–234

FBML layout
creating, 220–223
release listing in new, 221

FBML tags, web site address, 189, 221
fbsession.friends_get.uid_list, retrieving

Facebook IDs with, 199
fbsession.ready? method, 198
fb_index.html.erb view, showing

upcoming releases with, 203–204
fb_sig parameters, 195
Ficlets, web site address, 6
Fielding, Roy, 12
file_get_contents method, 116
Firefox browser, simulating iPhone

environment with, 152
Flappr, web site address, 3
Flickr, 1
Flickrvision, web site address, 7
form injection, for Rails applications,

258
form tag, updating, 69–70
format and MIME type, iPhone, 152
format.html directive, redirecting user

with, 168
formats

naming of, 30–31
registering new, 30

■INDEX 273

9945Index.qxd 4/7/08 12:08 PM Page 273

formatted routes, 30–31
forms, creating in Squidoo, 114–119
form_for helper, enhanced, 31
fragment caching, 242–243
functional tests, helpers for, 31–32

■G
Google API, opening to Internet at

large, 2
Google Maps, 1–3

■H
hardware, adding for scaling web

applications, 244–245
HCI (human-computer interface)

guidelines, Apple’s, 145–147
Heinemeier Hansson, David, 22
Help URL field, Facebook application,

185
helpers, 31–32
HousingMaps

as example of community
outsourcing, 1–3

web site address, 2, 5
HTTP

request methods, 13
REST and, 15
route reliance on verbs, 29–30
status codes, 98

httperf tool, for load testing
applications, 240

■I
identity and authorization, 257
iframe vs. FBML, 183
iframe application project, 190–208

Facebook users, 195–198
potential issues with, 208
retrieving Facebook friends in,

198–207
setup, 190–191
socialization, 191–195

Image model, generator command for,
72

image upload form, adding, 73–74
Imageable module, code for, 73
images, adding to MovieList

application, 72–75
images table, adding to database, 72–73
index action

adding to releases_controller.rb, 211
restricting to logged-in users, 65

index view, updating link helper in, 131
index.iphone.erb, adding iPhone-

specific view in, 153–154
infrastructure, creating for MovieList,

38–39
injection attacks, 257–258
integration, examples of, 261–262
interest creation failures, handling,

98–99
interest creation form

adding, 59–60
updating json_client with, 94–96

interest form, adding, 166–168
interest listing page

in iPhone UI, 169
redirecting user to, 168

interest management, for JSON clients,
90

interest removal link, updating, 68–69
Interest resource, adding associations

and validations to, 57
interest routes, adding to

config/routes.rb, 224
interested_in? method, adding to

app/models/user.rb, 60–59
interests

adding movies as, 56–60
adding to app/views/layouts/

application.html.erb, 62–63
management of for JSON client,

89–90
interests/index.erb, reusing for HTML

and iPhone requests, 168–169

■INDEX274

9945Index.qxd 4/7/08 12:08 PM Page 274

InterestsController, adding actions to,
57–58

InterestsController#index action,
updating to handle JSON
requests, 90–91

interests_controller.rb
adding a redirect to, 169–170
adding iPhone format to, 168
adding management actions to,

225–226
Internet, brief history of web services,

9–12
IP Addresses of Servers Making

Requests field, Facebook
application, 183

iPhone
alphabetical keyboard, 165
browser detection for, 151
building MovieList interface for,

143–177
data download speed concerns with,

147
dialing keyboard, 165
further projects for, 176–177
interface constraints, 145–147
MovieList login screen on, 164
numeric keyboard, 165
registering mime type for, 152
removing links in index view, 159–160
simulating environment with Firefox

browser, 152
testing interface without, 152–153
User-Agent string, 151
user side application, 163

iPhone format
adding to respond_to block, 153
adding to show action in

movies_controller, 156–157
setting up, 152

iPhone interface
actions needed for, 148–149
browser detection for, 151
creating mobile-specific subdomain,

150

design of, 148–149
development, 153–172
device considerations, 143–145
for Facebook, 144
format and MIME type, 152
infrastructure decisions, 148
planning, 147–148
setup, 149–152
testing without iPhone, 152–153

iPhone login form, with rounded input
elements, 164

iPhone SDK, simulator for testing
applications, 152

iPhone stylesheet, creating custom,
155–156

iPhone web applications, Movies.app,
144

iphone.localhost, setting up, 150
iPhoney, testing iPhone applications

with, 152
iPod Touch, User-Agent string, 151
IronRuby, web site address, 263
iUI framework

including in application.iphone.erb,
173–174

iPhone web applications and,
173–176

web site address, 173

■J
JavaScript clients

building, 79
the widget approach, 79–105

JavaScript Object Notation (JSON).
See JSON (JavaScript Object
Notation); JSON client

JavaScript view, updating
releases_controller to return, 81

JavaScript widgets
getting data between web

applications with, 79–88
referencing server in, 82

■INDEX 275

9945Index.qxd 4/7/08 12:08 PM Page 275

resolving issues with displaying
upcoming releases, 82–83

testing, 81–82
updating to use JSON, 104

JRuby, web site address, 263
JSON (JavaScript Object Notation)

creating and implementing interface,
90–93

data types provided by, 89
library web site address, 89
updating create to accept requests, 96

JSON client
adding an interest, 94–96
adding convenience method to, 92
code to retrieve MovieList interests,

91–92
creating a simple page for testing, 91
error handling, 97–99
further projects for, 104–105
handling of unauthenticated users,

93–94
passing data to server with, 88–104
planning, 89–90
removing an interest, 99–103
testing formatted requests in,

103–104
updating InterestsController#index

action for, 90–91
updating the controller, 92–93

JSON in Rails, working with, 89
JSON widget, in public/json_release_

widget.html, 104–105

■K
key field, filling out for application, 194
KeyAccess model, updating, 247
Koziarski, Michael, The Rails Way run

by, 239

■L
label tag, associating input fields with

names with, 48
layered system constraint, 14

lenses, as core of Squidoo, 107–109
lib/imageable.rb, completed, 73
link helper, updating in index view, 131
link_to helper, enhanced, 31
load_facebook_session method, 198
load_movie filter, adding to handle

movie_id parameter, 129
log/development.log

sample request in, 194–195, 211
viewing requests for movies and

releases in, 213
logging, user creation in

apps/models/user.rb, 253
login filter and index action, adding to

notifications controller, 65
“long tail” phenomenon, web site

address, 179

■M
macros, REST-related to routing, 23–29
Magic-Multi Connections, web site

address, 244
many-to-many relationships, in Rails,

52
map.namespace macro, using, 27–28
map.resource macro, using, 25
map.resources macro, using, 23–24
Masochism plugin, web site address,

244
MDK. See Squidoo Module

Development Kit (MDK)
MDK edit module template, 113
MDK starting page, 112
method option, helper methods to

handle, 31
migration, generating new, 195
mime_types.rb file, in

config/initializers, 30
Mobile Integration field, Facebook

application, 183
Mobile Safari, on iPhone, 151
mobile-specific subdomain, creating for

iPhone, 150

■INDEX276

9945Index.qxd 4/7/08 12:08 PM Page 276

module form, creating in Squidoo,
114–119

modules
building, 112–113
output of simple PHP, 117
providing interactivity, 126–140
supporting basic by updating

releases_controller.rb, 117–119
updated view, 119

Movie and User model files, adding
Comment association to, 127

movie detail page
adding interests to, 224–225
displaying friends on, 199–201
in iUI interface, 176
in movies/show.html.erb, 222–223
iPhone version of, 158
retrieving Facebook friends in,

198–207
showing release listings and

navigation options, 63
with correct upcoming releases, 214

movie detail view, in
movies/show.html.erb, 212

movie listing page
iPhone optimized, 156
iUI-enabled, 174
listing movies in, 222
new with images, 74–75

movie management functions,
protecting, 50

Movie model
adding associations to, 57
adding relationships to, 53
including new images module in, 73

movie resource
adding administrators, 45–50
adding column to database user

table, 45–46
adding global navigation to, 43–44
adding navigation links to, 44
declaring mapping in

config/routes.rb, 43
generated migration for, 42

generated movie listing page, 43
scaffolding generator command for,

42
setting up foundation for, 42–44
simplifying files for, 43–44
updating generated model file, 43

movie search form, iUI-enabled, 175
movie[deleted_role] field, 55
movie[new_role] field, 55
MovieList

adding administrator to, 45–50
adding people to, 50–56
authenticating users, 39
building a client for, 209–214
building Ajax client to interact with,

88–104
creating the infrastructure, 38–39
introducing, 37–38
movie listing for ActiveResource

powered, 211
updating navigation links, 51–52

MovieList About page example, web site
address, 188

MovieList administrators, adding
administrator filter to, 50–51

MovieList application
adding images to, 72–75
adding notifications to navigation in,

66–67
automatically logging Facebook user

into, 198
building interface for iPhone,

143–177
creating Audit model for, 252–256
enhancing, 67–75
further projects for, 75–77
in an iframe, 190–208
integrating social information in,

191–195
listing releases in, 80–83
monitoring, 252–257
planning to scale, 238–241
searching, 70–72
setup in iframe, 190–191

■INDEX 277

9945Index.qxd 4/7/08 12:08 PM Page 277

specific-user version of movie
releases, 83–86

updates, 126–132
URL for release listing page, 116
web site address for complete code,

77
MovieList interests, creating and

managing, 166–172
MovieList login screen, on iPhone, 164
MovieList widgets, sites they may

appear on, 80
movies

adding as interests, 56–60
associating people with, 52–53
updating view and controller code,

53–54
movies detail page, displaying people

on, 56
movies/show.html.erb, fragment

caching in, 242–243
MoviesController, adding basic actions

to, 210
MoviesController#index, starting movie

listing page controlled by, 153
movies_controller.rb

adding iPhone format to show action
in, 156–157

auditing XML requests in, 255–256
caching index action in, 241–242
retrieving interests in, 225
updating, 267–268

movies_url, 24
movie[new_role] fields, populating, 55
movie_api.rb, example of completed, 21
movie_controller.rb

example of completed, 21
handling web service requests in, 264

Musiclovr, web site address, 7
My Applications page, 180

after creating new application, 185

■N
namespace routes, 27–28
navigation links

adding to app/views/layouts/
application.html.erb, 62–63

adding to movie resource, 44
updating in app/views/layouts/

application.html.erb, 68
nested resource routes, 26
Nginx web server, 242
Notification resource, adding, 64–67
notifications

adding, 64–67
updating controller for JavaScript

access, 84–85
notifications listing page, adding

notifications to navigation in,
66–67

NotificationsController, handling
iPhone requests in, 171

NotificationsController#index action,
accessing, 83–84

numeric keyboard, iPhone, 165

■O
OAuth, web site address, 245
objects, example in JSON, 89
observer, turning on, 254
observer generator, running, 253
Olson, Rick

simply_restful plugin by, 21
attachment_fu plugin by, 72

Open Web Application Security Project,
web site address, 237

■P
page caching, 241–242
parseJSON method, 89
people listing, adding search to, 71
people listing page, iPhone version of,

160

■INDEX278

9945Index.qxd 4/7/08 12:08 PM Page 278

people/show.erb, customizing for
multiple formats, 160–161

people_controller.rb, handling iPhone
format in, 158–159

person detail page, iPhone optimized,
161

Person model
adding convenience method to, 54
adding relationships to, 53
including new images module in, 73

Person resource, creating scaffolding
for, 50

PHP
building simple example, 114–119
testing with squidoo/test.php, 110

placeholder message, for movie detail
page, 129

polymorphic association, adding, 253
Popurls, web site address, 8
Post-Add URL field, Facebook

application, 184
Post-Remove URL field, Facebook

application, 184
Privacy URL field, Facebook

application, 184
Private Installation field, Facebook

application, 185
private internets, REST and Rails

meeting needs of, 259–268
procs option, returning comments via,

136–137
profile, updating, 231–234
Profile Box, default FBML for, 189
protect_from_forgery ...,

uncommenting in
application.rb, 141

Prototype JavaScript Library, in
public/json_client.html, 91

public/json_client.html
adding delete functionality to,

100–101
completed code for, 101–103
creating to test your code, 91
handling creation failures in, 98–99

handling unauthenticated users in,
92–94

requesting data in, 91–92
updating with new interest form,

94–96
public/json_release_widget.html, JSON

widget in, 104–105
public/stylesheets/iphone.css

adding more styles to, 157–158
hiding non-iPhone content with,

161–162
using WebKit-specific declarations in,

164
public/user_widget.html, testing user-

specific widget in, 86

■R
Rademacher, Paul, HousingMaps

created by, 1
Rail application

creating new controller, 267
creating new movie_wrapper, 266

Rails
developer education about, 22
introducing, 263–268
platform concerns, 263
problems with, 260
REST and, 261–263

Rails 2
new resource generator for, 33
routing related features supporting

REST, 23
session management in, 34

Rails applications
building, 16–17
wrapping existing service with,

263–264
Rails blog aggregator, Ruby Corner as,

239
#rails-contrib channel, web site address,

241
Rails IRC support channel, web site

address, 239

■INDEX 279

9945Index.qxd 4/7/08 12:08 PM Page 279

rake db
adding comments table to database

with, 127
running migration with, 209
running to update database, 196–197

rake routes, 24
recent_comments proc, 137
record_usage method, adding to ApiKey

model, 251–252
redirects, updating, 69
release index view, rewriting, 229–230
release listing page, 221–222
release listing view, in

releases/index.html.erb, 211–212
Release model

adding association and validations to,
60–61

restricting release management in, 61
scoping releases by user in, 206–207

release scaffold generator, 60
releases

adding to MovieList, 60–63
displaying, 62
listing upcoming, 80–81

releases listing view, updating to include
friend information, 202–203

releases method
adding to User model, 65–66
defining in models/movie.rb, 212–213

releases/index.erb, hiding administrator
links in, 171–172

ReleasesController, handling iPhone
requests in, 170–171

releases_controller.rb
adding index action to, 211
grouping releases in, 230–231
handling ActiveResources request in,

213
setting up variables in, 204–206

render :json call, 91
request forgery,

cross-site attacks, 140
protection, 217–218

RequestForgeryProtection, in Rails 2,
140

require_admin method, 49
require_login filter, 85
resource associations, adding, 67–68
resources

nesting routing, 26–27
uniform interface and, 14–15
for web application news, 237

respond_to block
adding iphone format to, 153
adding to sessions_controller.rb, 163
in app/controllers/

posts_controller.rb, 30
REST (Representational State Transfer)

basics of, 12–15
benefits of, 15–17
HTTP and, 15
in the enterprise, 259–268
integration, 22–35, 261
problems with, 260
Rails and, 19–35, 261–263
reasons to use, 1–17
the rise of, 21–22

REST in Rails, future of, 35
RESTful application

adding movies to, 42–44
adding resources to, 41–67
developing a server for, 37–77
developing in Rails, 16–17

RESTful interface, exposing directly to
the internet, 262

RESTful Rails applications, integration,
22–35

RESTful resource identification, 14
RESTful routes, hand-coded, 28–29
RESTful systems

building, 15–16
constraints, 13–14
examples of integration with

enterprise, 261–262
scalability of, 263

RESTful uniform interface, resource
manipulation, 14

■INDEX280

9945Index.qxd 4/7/08 12:08 PM Page 280

RESTful web services, 12
RESTful wrappers

around a cross-functional service,
262

proposed set of around web services,
261

restful_authentication
default login page provided by, 41
installing plugin, 40
MovieList users, 39
updating, 40

Retrievr, web site address, 3
RFacebook

vs. Facebooker, 192
installing, 215–218
Ruby library for Facebook, 192
setting up for iframe application,

193–195
RFacebook debug panel, 217
Role model

adding associations and validations
to, 52–53

defining custom to_s method in, 54
generating, 52

root route
changing, 201–202
declaring, 217

routes
creating by hand, 218–219
updating for restful_authentication,

40
updating to use correct naming

patterns, 249–251
routes.rb, setting up named routes in,

23–24
routing

formatted routes, 30–31
hand-coding, 28–29
issues, 218–219
namespace routes, 27–28
nesting resources, 26–27
RESTful Rails applications, 22–29

simulating PUT and DELETE
methods, 29–30

singleton resource routes, 25
standard resource routes, 23

Ruby Corner, as Rails blog aggregator,
239

Ruby libraries, for Facebook API, 192
Ruby on Rails, 19

web site address, 239, 241
#rubyonrails, Rails IRC support channel,

239
Russell, Chad, 240

■S
scaffold controller, updating, 248–249
scaffold generator

for Comment model and controller,
126

output of, 32–33
scaffolding

debate over, 33
updated to follow RESTful principles,

32–33
search form, creating, 70–71
searches, handling, 70–71
secret field, filling out for application,

194
server, developing, 37–77
Service Oriented Architecture Protocol

(SOAP). See SOAP
Service-Oriented Architecture (SOA),

SOAP implementation of, 12
session management, in Rails 2, 34
SessionsController#new action, 163
sessions_controller.rb, adding

respond_to block to, 163
Set Up New Application button, on

Facebook Developer home page,
181

show template, updating for movie, 56
show.iphone.erb, creating, 157
Side Nav URL field, Facebook

application, 184

■INDEX 281

9945Index.qxd 4/7/08 12:08 PM Page 281

simply_restful plugin
by Rick Olson, 21
simulating PUT and DELETE

methods with, 29–30
singleton user, 67–70
skip_instruct, 137
Slashdot, effect of being featured on,

238
Snitter, 238
SOAP, 9

emergence of specification for, 11–12
implementation of SOA, 12

soap4r gem, installing, 267
SQL injection attacks, 257
Squidoo

Developers page web site address,
112

getting started, 110–113
home page, 107
module form and view, 113
module framework provided by, 107
prerequisites, 110–111
web site address, 107

Squidoo lens
Amazon module in, 109
devoted to actor Toshiro Mifune, 109
devoted to Akira Kurosawa films, 107

Squidoo Module Development Kit
(MDK)

downloading, 111–112
edit module template, 112–113
sample modules, 112

Squidoo modules, further projects for,
141

squidoo/form.php
adding comment functionality to,

132–134
creating, 114
creating complex module in, 119–126
displaying comments in, 132–133

squidoo/view.php
creating basic display in, 115–116
deleting lines to fix Ajax troubles,

139–140

displaying comment form in, 137–138
SSH tunneling

testing setting, 216–217
updating config/facebook.yml for,

216
status codes, returning, 97–98
Stephens, Jon, 240
Stone, Biz, co-founder of Twitter, 238
Subversion commit messages, web site

address, 241
Symbol#to_proc, adding to

ActiveSupport, 243–244

■T
tab bar, tags for adding, 221
test page, output from, 111
test/functional/interests_controller_test

.rb, testing formatted requests in,
103–104

test/functional/movie_api_test.rb,
autogenerated, 20

test.php script, output of, 110
testing, formatted request in JSON

client, 103–104
throttling, API access, 245–252
TOS URL field, Facebook application,

184
to_s method

adding, 54, 62
defining in app/models/role.rb, 54

Twitter, 1
co-founder Biz Stone, 238

Twitterrific, Mac client for twitter.com,
238

Twittervision, web site address, 8

■U
unauthenticated users, handling, 92–94
URL root, relative, 220
user administration, adding code to

manage users, 46–48

■INDEX282

9945Index.qxd 4/7/08 12:08 PM Page 282

User model
hiding attributes, 48–49
updating, 246–247

User Support E-Mail field, Facebook
application, 182

User-Agent string, iPhone, 151
users, adding associations to, 57
users_controller.rb, deleting lines from,

40

■V
validations, adding to app/models/

person.rb, 50
viewport meta tag, 155
views, updating, 249–251

■W
WDSL file, ActionWebService-

generated, 264
Web 2.0, argument for openness, 1
Web Application Security Consortium,

web site address, 237
web applications, general security and

scaling concerns, 237–258
Web Security Mailing List, web site

address, 237
web service generator

of ActionWebService, 19–21
output of, 19–20

web services, a brief history of, 9–12
web site, standard viewed on iPhone,

144
web site address

Amazon Light, 5
Apple human interface guidelines for

iPhone, 145
Biz Stone interview about Twitter, 238
ChicagoCrime, 6
display testing JavaScript widget, 82
downloading iUI framework, 173
Facebook developers, 180
Facebook platform information, 180

Facebook terms of service, 195
FBML tag information, 189
Ficlets, 6
Flappr, 3
Flickrvision, 7
HousingMaps, 2, 5
httperf command line utility, 240
JSON library, 89
list of Facebook unofficial client

libraries, 192
“long tail” phenomenon information,

179
MovieList application code, 77
Magic-Multi Connections, 244
Masochism plugin, 244
Musiclovr, 7
OAuth, 245
Open Web Application Security

Project, The, 237
Popurls, 8
#rails-contrib channel, 241
Rails Way, The, 239
registering for Facebook account, 180
Retrievr, 3
Ruby Corner, 239
Squidoo, 107
Squidoo Developers page, 112
Subversion commit messages, 241
Twittervision, 8
Web Application Security

Consortium, The, 237
Web Security Mailing List, The, 237
Wikimapia, 9

web site applications
attacks and vulnerabilities, 257–258
handling bad problems with, 252–258

-webkit-border-radius, setting value for,
164

white_list plugin, for XSS attacks, 258
Who can add your application to their

Facebook account? field,
Facebook application, 184

■INDEX 283

9945Index.qxd 4/7/08 12:08 PM Page 283

widgets. See also JavaScript widgets
CSS conflicts with, 86–87
general-purpose version, 80–83
planning, 79–80
problems with, 86
setting inline styles for, 87
specific-user version, 83–86
specifying a stylesheet in, 87–88

Wikimapia, web site address, 9
Winer, Dave, XML-RPC release by, 10
WSDL (Web Services Description

Language), 11

■XYZ
XML requests, auditing in

movies_controller.rb, 255–256
XML-RPC, 9–11
XSS (cross-site scripting) attacks, 258
YAML, reducing duplication in, 194

■INDEX284

9945Index.qxd 4/7/08 12:08 PM Page 284

	Practical REST on Rails 2 Projects
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Why REST?
	The Argument for Openness
	Community Outsourcing
	Unexpected Consequences
	The Cost of Openness

	A Brief Historical Interlude
	XML-RPC
	SOAP
	REST

	The Basics of REST
	Constraints
	Resources and the Uniform Interface
	REST and HTTP

	The Benefits of REST
	Building Clients
	Building Servers
	Building for the Future
	Building Rails Applications

	Summary

	REST in Rails
	ActionWebService
	The Rise of REST
	Integration
	Routing
	Using map.resources
	Using map.resource
	Nesting Resources
	Using map.namespace
	Doing It Yourself

	The Forgotten Methods: PUT and DELETE
	Formats
	Helpers
	Scaffolding
	ActiveResource
	Sessions

	The Future
	Summary

	Developing a Server
	Introducing MovieList
	Creating the Infrastructure
	Authenticating Users
	Adding Resources to the Application
	Adding Movies
	Adding Administrators
	Adding People
	Adding Interests
	Adding Releases
	Adding Notifications

	Enhancing MovieList
	The Singleton User
	Searching the Application
	Adding Images

	Further Projects
	Summary

	Your First Clients: JavaScript and JSON
	The Widget Approach
	Planning
	All Upcoming Releases
	Releases for a User
	Widget Problems

	A JSON Client
	Planning
	Implementation
	Unauthenticated Users
	Adding an Interest
	Error Handling
	Removing an Interest

	Testing
	Further Projects

	Summary

	See You on the Server Side: PHP
	About Squidoo
	Getting Started
	Prerequisites
	All about Squidoo Modules

	A Simple Example
	A More Complex Module
	Injection Flaws

	Providing Interactivity
	MovieList updates
	Reading the Comments
	Writing Comments
	Ajax Troubles
	Cross-Site Request Forgery

	Further Projects
	Summary

	An Apple a Day: The iPhone
	Device Considerations
	Interface Constraints
	Data Concerns

	Planning
	A New Interface
	Infrastructure Decisions
	Design
	Setup
	Creating a Mobile-Specific Subdomain
	Browser Detection for the iPhone
	Format and MIME Type

	Development

	iUI and iPhone Web Applications
	Further Projects
	Summary

	With a Little Help from Your Friends: Facebook
	Planning the Facebook Application
	Initial Setup
	FBML and iframe Applications
	The About Page
	Default FBML for the Profile Box

	Project 1: The iframe Application
	Setup
	Socialization
	Facebook Users
	Friends

	Potential Issues

	Project 2: The FBML Application
	Setup
	ActiveResource

	Facebook Integration
	Local FBML Development
	Routing
	The Relative URL Root
	FBML

	Adding Interactivity
	Updating the Profile

	Further Projects
	Summary

	Dealing with Success
	Scaling Your Application
	Planning to Scale
	Following Best Practices
	A Warning About ActiveResource

	Caching Static Content
	Page Caching
	Fragment Caching

	Optimizing Code
	Adding Hardware
	Throttling Access

	The Bad Problems
	Monitoring Your Site
	Identity and Authorization
	Other Tactics

	Summary

	REST in the Enterprise
	What Is the Enterprise?
	Problems with REST
	Problems with Rails

	Why REST?
	Integration with REST
	Examples of Integration
	Scalability

	Introducing Rails
	Summary

	Index

