Four Days

compiled by John McCreesh

SOME RIGHTS RESERVED

Table of Contents

B 0L 074 L0 o T« P PN 1
Day 1 0n RailS..cccciiiiiiiiiiiiiiiiiiiiiiiiiriieirieeeenssssssssssssssssssssssreerttttteeeeeessttssssssssssssssssssssssssssssrnnne 3
The “To D0 LiSt” aPPHCALION....cucuiiiieiiiicictciici ettt 3
Running the Rails SCIIPL......oiiiiiiiiiiiii s 3
Adding the Application to the Web Server. ..o s 3
Defining the Application in the hosts file.........ocoiiiiiiiiiiii s 3
Defining the Application in the Apache Configuration file.......cceeueeceeirereriiiriercrcrcreereeeeeenseeenne 3
SWItChING tO fASECI.c.vuiviuiiiniiiiiii s 3
Checking that Rails 1S WOTKINZ.ccuriueuiueiiieiriiecencicciecie ettt eese s ese s sseae s sae s 4
VErSions OF RaAlS.....ccuieiieiieiiciecriceee ettt e sttt 4
Setting Up the DAtaDASE.......c.oveiiiiic e e 4
Creating the Cate@OTies TaDIE ..ot e 4
MYSQL AEINITION ..ttt et s st s eee st et astse e s et senesesesessasesesessaneasaon 4

DAA MOAEL ...t 5
SCATLOLA. ... 5
ENhancing the MOAEL.......ciiiiiieiccc ettt 6
Creating Data Validation RUIES.........coeuiviiiiiicici s s 6
Day 2 00 RailS....uuiiiiiiiiiiiiiniiicitieccreciee et a s s aa e e b s e s sbae s e s aa e e s nnes 9
The Generated Scaffold COde. ... 9
The CONLIONET ...ttt 9
TRE VIEW oottt ettt ettt n e 10
LLAYOUL .ttt ene 11
TEMIPIALE..c..eiieiii R 11
PALTIAL.o s 12

The Rendered View for the “NEW” ACHOM. vu.c.vcueeciricirierrieiieireereetseee e seaessese s ssesessesessesesesessesennes 13
Analysing the View for the LiSt” CtON. ... 13
Tailoring the Generated SCAffOld COde.....uuimmiiiiicineieeeeee ettt ettt ssaees 15
The CONLOIET ...ttt ettt s et nens 15
THE VIEW oottt bbb bbbt 15
Displaying Flash MeESSAgES.......coviriiiiiiiiiiiiiiiiiiiiiisis sttt 15
Sharing Variables between the Template and LayOuL........ccovcuecuricuricciricirienrieineeireeireenseenseeesseee e nnees 16
Tidying up the Edit and New SCLEENS.. ..o 17

Day 3 00 RailS..cciiiiiiiiiiiiiiiiiiieccce e a e e e e e aaaa e 19
THE TLEMS” TADLE....cvuiviiieiiieicicicteect ettt ettt ettt sttt ea s eacsneaen 19
MySQL table defINtiON.....cucviieiiieeeieecieicireeir ettt 19
THE MOEL..eiiiiieice ettt sttt 19
Validating Links between TabLes. ..o nsesenaes 20
Validating USEL INPUL...c.cuierieiieiiciieieieieitieeietseieeeie ettt ettt et sstessesenasenaes 20

The INOLES” TADIE. ...ttt naees 20
MySQL table defINtION. ...cucviieieieeeieecieicirectseet ettt 20
THE MOEL...viiiii et 20
Using a Model to maintain Referential INte@rity......coceeureecurecirierrieirieirierieireeeseieeseeeseseseseesese e esesensees 21

MOLE SCATLOLAING. ..ot 21
MOTE ON VIBWS.ouviiiiiiiiiiiiici ittt 21
Creating a Layout for the APPLHCAtION.......ccvvcuiieiiiiiiiiiiiiicieii s ssaes 21
The “TO DO LISE SCLEEM...ucuiiiiiticireeeciciecte ettt sttt saen s 22
Purging completed “To Dos’ by clicking 0N an 1C0MN........cccviiiiiiiiii e 23
Changing the Sort Order by clicking on the Column Headings........ccocccuviueuniueuniieiniieniieencivencinincieeeeeenneans 24
AQdING @ HEIPET ..o s 24

Using Javascript Navigation Buttons........cccis s 25
Formatting a Table with a Partial...........cccccoviiiiiiiii s 25
Formatting based on Data VAlUES.........cocuviiiiiiiiiiiiiiiiiiiceee e ssaeses 26
Handling Missing Values ifl @ LLOOKUP....c..ceuiueriireiieeciricirecireceeeeiese e seeessesesesessesessesessesessesessesenns 26

THE INEW TO D07 SCLEEN ottt ettt ettt et ettt s e et e st e st e st esae et esasesaeensesssesesssesssessesntessssnsesnsessesnsens 26

Creating a Drop-down List for a Date Field.........cooooiiiiiiiiiiennes 27

Trapping EXCeptions il RUDY ..o ssese e ese e seeaesenaes 27
Creating a Drop-down List from a Lookup Table.......ccccccviiiiiiiiiiicccncses 28
Creating a Drop-down List from a List Of CONSTANTS.....c.cueviueriueerireeereereteneteeeteeesemseseeseseeseseesesseseseesesseans 28
Creating @ CheckbOX ... 28
FINISHING TOUCHES ..ecvniiiaiiciicc e e st eee 28
Tailoring the StYIESNEEt. ..o s 28
The ‘Edit TO DO’ SCLEEM....ccoviiiiiiiiieeircte ettt sttt eaes 29
Day 4 00 RailS..iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinceeecnnssssssssssssssssrr e e et et s e s e s s ssssssssssssssssssssrrrrraraaaaaaeee 31
THE INOTES” SCLEEMSeuvuirrcurriarieetiaetiaestaestaeataess e s taesstaess e s sae e ta et s et a e eas e ese s e s s saesesae st s et eaeseaeseaenseaenseanas 31
Linking ‘Notes’ to the BEdit TO DO .ottt sssese e s seessseeas 31
The Edit NOLES™ SCLEEM....cuciiuiiecirieciriecie et e eas 32
The NeW INOLE” SCIEEM.....uiiiiiiiiiiiiii bbb bbb 32
Saving and retrieving Data using Session Variables........coeieiiiiniriniiriniiriicicesicnsienseesseesseesseeenseens 33
Changing the ‘Cate@OTies” SCLEENS.cuvmieuieiieirieeireieereteeie ettt ettt sae st ea et ese s e eae s eaesseaesseaessnaes 33
Navigation through the SYSTEML. ... eae e 34
Setting the Home Page for the APPLCAtION......c.ovcuiueiiieiiircirciecic e nseseens 35
Downloading a Copy of this APPHCAtION. ..o 35
AN ALY et ettt 35
Appendix — afterthoUGhts.....ciuiiiiiiiiiiiiiire e a e 37
MUIEPLE UPAALES.....vuveiniiniiiniieiiieiece sttt esaees 37
VICW .ottt e 37
CONLOIIET ...ttt R R a R 38
User INterface CONSIACTAIONS.cucuiiiuiieriiiiicieiieicie ettt 39

N1 IR oY ST e (03 o YT 39

Introduction

There have been many extravagant claims made about Rails. For example, an atticle in OnLLAMP.com' claimed
that “you could develop a web application at least ten times faster with Rails than you could with a typical Java
framework...” The article then went on to show how to install Rails and Ruby on a PC and build a working
‘scaffold’ application with virtually no coding.

While this is impressive, ‘real’ web developers know that this is smoke and mirrors. ‘Real” applications aren’t as
simple as that. What'’s actually going on beneath the surface? How hard is it to go on and build ‘real’
applications?

This is where life gets a little tricky. Rails is well documented on-line — in fact, possibly too well documented for
beginners, with over 30,000 words of on-line documentation in the format of a reference manual. What’s
missing is a roadmap (railmap?) pointing to the key pages that you need to know to get up and running in Rails
development.

This document sets out to fill that gap. It assumes you’ve got Ruby and Rails up on a PC (if you haven’t got this
far, go back and follow Curt’s article). This takes you to the end of ‘Day 1 on Rails’.

‘Day 2 on Rails’ starts getting behind the smoke and mirrors. It takes you through the ‘scaffold’ code. New
features are highlighted in bold, explained in the text, and followed by a reference to either Rails or Ruby
documentation where you can learn more.

‘Day 3 on Rails’ takes the scaffold and starts to build something recognisable as a ‘real’ application. All the time,
you are building up your tool box of Rails goodies. Most important of all, you should also be feeling comfortable
with the on-line documentation so you can continue your explorations by yourself.

‘Day 4 on Rails’ adds in another table and deals with some of the complexities of maintaining relational integrity.
At the end, you’ll have a working application, enough tools to get you started, and the knowledge of where to
look for more help.

Ten times faster? after four days on Rails, judge for yourself!
Documentation: this document contains highlighted references, either to:

» Documentation — the Rails documentation at http://api.rubyonrails.com (this documentation is also installed
on your PC as part of your gems installation in a location like C: \Program
Files\ruby\lib\ruby\gems\n.n\doc\actionpack-n.n.n\rdoc\index.html)

 Ruby Documentation — “Programming Ruby - The Pragmatic Programmer's Guide” available online and for
download at http://www.ruby-doc.org/docs/ruby-doc-bundle/ProgrammingRuby/index.html

Acknowledgements: many thanks to the helpful people on the the irc channel® and the mailing list’. The on-
line archives record their invaluable assistance as I clawed my way up the Rails and Ruby leaning curves.

Version: 2.3 using version 0.12.1 of Rails — see http://rails.homelinux.org for latest version and to download a
copy of the ToDo code. Document written and pdf file generated with OpenOffice.org "Writer'.

Copyright: this work is copyright ©2005 John McCreesh jpmcc@users.sourceforge.net and is licensed under
the Creative Commons Attribution-INonCommercial-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses /by-nc-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott
Way, Stanford, California 94305, USA.

1 Rolling with Ruby on Rails, Curt Hibbs 20-Jan2005 http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html

2 irc://irc.freenode.org/rubvonrails
3 http://lists.rubyontails.org/mailman /listinfo /rails

Page 1

http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.htm
http://creativecommons.org/licenses/by-nc-sa/2.0/
mailto:jpmcc@users.sourceforge.net?subject=Four Days on Rails
http://www.openoffice.org/
http://rails.homelinux.org/
http://lists.rubyonrails.org/mailman/listinfo/rails
file:///C:/TEMP/OldToDo/doc/irc://irc.freenode.org/rubyonrails
http://www.ruby-doc.org/docs/ruby-doc-bundle/ProgrammingRuby/index.html
http://api.rubyonrails.com/

Day 1 on Rails
The ‘To Do List’ application

This document follows the building of a simple “To Do List” application — the sort of thing you have on your
PDA, with a list of items, grouped into categories, with optional notes (for a sneak preview of what it will look
like, see Lllustration 5: The “To Do List’ Screen on page 23).

Running the Rails script

This example is on my MS-Windows PC. My web stuff is at c: \www\webroot, which I label as drive w: to cut
down on typing:

C:\> subst w: c:\www\webroot
C:\> w:

W:\> rails ToDo

W:\> cd ToDo

W:\ToDo>

Running rails ToDo creates a new directory ToDo\ and populates it with a series of files and subdirectories, the
most important of which are as follows:

app
contains the core of the application, split between model, view, controller, and
‘helper’ subdirectories

config
contains the database.yml file which provides details of the database to used with
the application

log
application specific logs. Note: development.log keeps a trace of every action Rails
performs - very useful for error tracking, but does need regular purging!

public

the directory available for Apache, which includes images, javascripts, and
stylesheets subdirectories

Adding the Application to the Web Server

As I'm running everything (Apache2, MySQL, etc) on a single development PC, the next two steps give a
friendly name for the application in my browser.

Defining the Application in the hosts file

C:\winnt\system32\drivers\etc\hosts (excerpt)
127.0.0.1 todo

Defining the Application in the Apache Configuration file
Apache2\conf\httpd.conf

<VirtualHost *>
ServerName todo
DocumentRoot /www/webroot/ToDo/public
<Directory /www/webroot/ToDo/public/>
Options ExecCGI FollowSymLinks
AllowOverride all
Allow from all
Order allow,deny
</Directory>
</VirtualHost>

Switching to fastcgi

Unless you are patient (or have a powerful PC) you should enable fastcgi for this application

Page 3

public\.htaccess

For better performance replace the dispatcher with the fastcgi one
RewriteRule 7~ (.*)$ dispatch.fcgi [QSA,L]

Checking that Rails is working

The site should now be visible in your browser as http://todo/ (you should see the Congratulations,
you've put Ruby on Rails! page in your browser).

Versions of Rails

By the time you read this document, Rails will probably have moved on several versions. If you intend to work
through this document, check the versions installed on your PC:
| W:\ToDo>gem list --local

If they are different from the versions listed below, then I would strongly advise you to download the versions
used in ‘Four Days’; e.g:
| W:\ToDo>gem install rails --version 0.12.1

This won’t break anything; Ruby’s gems library is designed to handle multiple versions. You can then force Rails
to use the ‘Four Days’ versions with the “To Do List” application by specifying:

config\environment.rb (excerpt)

Require Rails libraries.
require 'rubygems'

require gem 'activesupport', '= 1.0.4"'
require gem 'activerecord', '= 1.10.1"'
require gem 'actionpack', '= 1.8.1'"'
require gem 'actionmailer', '= 0.9.

ll
require gem 'actionwebservice', '= 0.7.1'
require gem 'rails', '= 0.12.1'

The reason using the same versions is quite simple. ‘Four Days’ uses a lot of code generated automatically by
Rails. As Rails develops, so does this code — unfortunately, this document doesn’t (until I get round to producing
a new version!). So, make life easy for yourself, and keep to the same versions as used in ‘Four Days’. Once
you’ve finished working through ‘Four Days’, by all means go onto the latest and greatest Rails versions and see
what improvements the Rails developers have come up with.

Setting up the Database

I’'ve set up a new database called ‘todos’ in MySQL. Connection to the database is specified in the
config\database.yml file

config\database.yml (excerpt

development:
adapter: mysgl
database: todos
host: localhost
username: foo
password: bar

Creating the Categories Table

The categories table is used in the examples that follow. It’s simply a list of categories that will be used to
group items in our To Do list.

MySQL definition

Categories table

CREATE TABLE “categories’ (
"id® smallint (5) unsigned NOT NULL auto increment,

Page 4

‘category’ varchar (20) NOT NULL default '',
‘created on’ timestamp (14) NOT NULL,
‘updated on’ timestamp (14) NOT NULL,
PRIMARY KEY (tid°),
UNIQUE KEY ‘category key (category’)

) TYPE=MyISAM COMMENT='List of categories';

Some hints and gotchas for table and field naming:

+ underscores in field names will be changed to spaces by Rails for ‘human friendly’ names
+ beware mixed case in field names — some parts of the Rails code have case sensitivities

+ every table should have a primary key called ‘id” - in MySQL it’s easiest to have this as numeric
auto_increment
+ links to other tables should follow the same ‘_id’ naming convention

+ Rails will automatically maintain fields called created at/created on or updated at/updated on, so it’s
a good idea to add them in

Documentation: ActiveRecord::Timestamp

+ Useful tip: if you are building a multi-user system (not relevant here), Rails will also do optimistic locking if
you add a field called lock version (integer default 0).All you need to remember is to include
lock version as a hidden field on your update forms.

Documentation: ActiveRecord::Locking

Data Model

Generate an empty file:

W:\ToDo>ruby script/generate model category
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/category.rb
create test/unit/category test.rb
create test/fixtures/categories.yml

W:\ToDo>
which creates an empty category.rb, and two test files category controller test.rb and
categories.yml. We’ll make some entries in the data model in a minute — leave it empty just now.

Scaffold

The controller is at the heart of a Rails application.

Running the generate controller script

W:\ToDo>ruby script/generate controller category
exists app/controllers/
exists app/helpers/
create app/views/category
exists test/functional/
create app/controllers/category controller.rb
create test/functional/category controller test.rb
create app/helpers/category helper.rb

W:\ToDo>

which creates two files and two empty directories:

app\controllers\category controller.rb
app\helpers\category helper.rb
app\views\categories

app\views\layouts

If you haven’t already seen the model / scaffold trick in operation in a beginnet’s tutotial like Ro/ing with Ruby on
Rails, try it now and amazed yourself how a whole web app can be written in one line of code:

Page 5

app\controllers\category controller.rb

class CategoryController < ApplicationController

scaffold
end

Documentation: ActionController::Scaffolding

:category

Point your browser at http://todo/category and marvel at how clever it is :-)

Listing categories

Cateqory Created on
Mon Jun 06 15: 5644 GMT

Daylight Tirme 2005

fMon Jun 06 15 57:00 GMT
Daylight Time 2005
Tue Jun 14 093402 GMT
Daylight Time 2005
Tue Jun 14 09:34: 34 GMT
Daylight Tirme 2005

Home & Family

Business

Rails
documentation

Cammunity
Council

Mews category

Updated on
YWed Jun 15 17:09:59 GMT .
. . Sh Edit Dest
Daylight Tirme 2005 o BHR RSty

YWed Jun 15 17:10:15 GMT .
.) Show Edit Destro
Daylight Time 2005 ¥

Tue Jun 14 093402 GMT .
) . Show Edit Destro
Daylight Time 2005 ¥

Tue Jun 14 09:34: 34 GMT .
. . Sh Edit Dest
Daylight Tirme 2005 Eo SER estioy

Tlustration 1: Scaffold 'List' screen

To find out how clever it is not, try adding the same new category twice. Rails will collapse with a messy error
message ‘ActiveRecord::StatementInvalid in Category#create’. You can fix this by adding validation into the

Model.

Enhancing the Model

The Model is where all the data-related rules are stored, including data validation and relational integrity. This
means you can define a rule once, and Rails will automatically apply them wherever the data is accessed.

Creating Data Validation Rules

Rails gives you a lot of error handling for free (almost). To demonstrate this, add some validation rules to the

empty category model:
a models\category.rb

class Category < ActiveRecord: :Base
validates_length of :category,
validates_uniqueness of :category,
end

These entries will give automatic checking that:

:within => 1..20
:message => "already exists"

+ validates length of: the field is not blank and not too long
* validates uniqueness of: duplicate values are trapped. I don’t like the default Rails error message - ‘xxx
has already been taken’-so I provide my own. This is a general feature of Rails — try the defaults first;

if you don’t like anything, overwrite it.
Documentation: ActiveRecord::1 alidations::ClassMethods

Page 6

To try this out, now try to insert a duplicate record again. This time, Rails handles the error rather than crashing
- see below. The style is a bit in your face — it's not the most subtle of user interfaces. However, what do you

expect for free?

New category

1 error prohibited this category from being saved

There were problems with the following fields:

m Category already exists

Category

Created on

Updated an

Create |

Back

Illustration 2: Capturing data errors

Page 7

Day 2 on Rails

To progress beyond this point, we need to see what’s happening behind the scenes. During day 2, we will work
systematically through the scaffold code generated by Rails, deciphering what it all means. With the scaffold
action, Rails generates all the code it needs dynamically. By running scatfold as a seript, we can get all the code
written to disk where we can investigate it and then start tailoring it to our requirements.

Running the generate scaffold script

W:\ToDo>ruby script/generate scaffold category
dependency model

exists app/models/

exists test/unit/

exists test/fixtures/
skip app/models/category.rb
skip test/unit/category test.rb
skip test/fixtures/categories.yml

exists app/controllers/

exists app/helpers/

create app/views/categories

exists test/functional/

create app/controllers/categories controller.rb
create test/functional/categories controller test.rb
create app/helpers/categories helper.rb

create app/views/layouts/categories.rhtml
create public/stylesheets/scaffold.css

create app/views/categories/list.rhtml

create app/views/categories/show.rhtml

create app/views/categories/new.rhtml

create app/views/categories/edit.rhtml

create app/views/categories/ form.rhtml

W:\ToDo>

This script generates a range of files needed to create a complete application, including a controller, views,
layouts, and even a style sheet.

Note the slightly bizarre naming convention — we've moved from the singular to the plural, so to use the new
code you need to point your browser at http://todo/categories. In fact, to avoid confusion, it’s best to
delete app\controllers\category controller.rb etcin case you run it accidentally.

The Generated Scaffold Code

The Controller

Let’s look at the code behind the controller. The controller is where the programming logic for the application
lies. It interacts with the user using views, and with the database through models. You should be able to read the
controller and see how the application hangs together.

The controller produced by the generate scaffold script is listed below:

\app\controllers\categories controller.rb

class CategoriesController < ApplicationController
def index
list
render_action 'list'
end

def list
@category pages, (@categories = paginate :category, :per page => 10
end

def show
@category = Category.find(@params[:id])
end

def new

Page 9

@category = Category.new
end

def create
@category = Category.new (@params|[:category])
if Qcategory.save

flash['notice'] = 'Category was successfully created.'
redirect to :action => 'list'
else
render action 'new'
end
end
def edit
@category = Category.find(@params|[:id])
end
def update

@category = Category.find(@params[:id])
if @category.update_attributes (Cparams|[:category])

flash['notice'] = 'Category was successfully updated.'
redirect to :action => 'show', :id => Qcategory

else
render action 'edit'

end

end

def destroy
Category.find(@params[:1id]) .destroy
redirect to :action => 'list'
end
end

When the user of a Rails application selects an action — e.g. ‘Show’ - the controller will execute any code in the
appropriate section — ‘def show’ - and then by default will render a template of the same name - ‘show. rthml’.
This default behaviour can be overwritten:

* render_ template allows you to render a different template — e.g. the index action will run the code for
list’ - ‘def 1ist’, and will then render 1ist.rhtml rather than index.rhtml (which doesn’t exist)

* redirect_to goes one stage further, and uses an external ‘302 moved” HTTP response to loop back into the
controller — e.g. the destroy action doesn’t need to render a template. After performing its main purpose
(destroying a category), it simply takes the user to the 1ist action.

Documentation: ActionController::Base

The controller uses ActiveRecord methods such as find, find all, new, save, update attributes, and
destroy to move data to and from the database tables. Note that vou do not have to write any SQL. statements,
but if you want to see what SQL Rails is using, it’s all written to the development. log file.

Documentation: ActiveRecord::Base

Notice how one logical activity from the user’s perspective may require two passes through the controller: for
example, updating a record in the table. When the user selects ‘Edit’, the controller extracts the record they
want to edit from the model, and then renders the edit.view. When the user has finished editing, the edit view
invokes the update action, which updates the model and then invokes the show action.

The View

Views are where the user interface are defined. Rails can render the final HTML page presented to the user from
three components:

Page 10

Layout Template Partial

in app\views\layouts\ in app\views\<controller>\ in app\views\<controller>\
default: application.rhtml default: <action>.rhtml default <partial>.rhtml

of <controller>.rhtml

+ A Layout provides common code used by all actions, typically the start and end of the HTML sent to the
browser.

+ A Template provides code specific to an action, e.g. ‘List’ code, ‘Edit’ code, etc.

+ A Partial provides common code - ‘subroutines’ - which can be used in used in multiple actions — e.g. code
used to lay out tables for a form.

Layout

Rails Naming conventions: if there is a template in app\views\layouts\ with the same name as the current
controller then it will be automatically set as that controller’s layout unless explicitly told otherwise.

A layout with the name application.rhtml of application.rxml will be set as the default controller if there
is no layout with the same name as the current controller, and there is no layout explicitly assigned.

The layout generated by the scaffold script looks like this:
app\views\layouts\categories.rhtml

<html>

<head>
<title>Categories: <%= controller.action name %></title>
<%= stylesheet_ link tag 'scaffold' %>

</head>

<body>

<%= @content for layout %>

</body>
</html>

This is mostly HTML, plus a few bits of Ruby code embedded within <% %> tags. This layout will be called by
the rendering process regardless of the action being run. It contains the standard HTML tags — the
<html><head>...</head><body>...</body></html> that will appear on every page.

The Ruby bits in bold are translated into HTML during the Rails rendering process as follows:

¢ action name is an ActionController method which returns the name of the action the controller is
processing (e.g. ‘List’) - this puts an appropriate title on the page, depending on the action being run.

Documentation: ActionController::Base

* stylesheet link tagis a Rails helper - a lazy way of generating code. There are a lot of these ‘helpers’
within Rails. This one simply generates the following HTML: <1ink
href="/stylesheets/scaffold.css" media="screen" rel="Stylesheet" type="text/css" />

Documentation: ActionView::Helpers::AssefTagHelper

* content for layout is the key to what happens next. It allows a single standard layout to have dynamic
content inserted at rendering time based on the action being performed (e.g. ‘edit’, ‘new’, ‘list’). This dynamic
content comes from a Template with the same name — see below.

Documentation: ActionController::Layout::ClassMethods.

Template

Rails naming convention: templates are held in app\views\categories\ ‘action’ .rhtml.

Page 11

The new.rhtml created by the scaffold script is given below:

app\views\categories\new.rhtml

<hl>New category</hl>

<%

start form tag :action => 'create' %>
<%= render partial "form" %>
<%= submit_tag "Create" %>

<%= end form tag %>

<%= link to 'Back', :action => 'list' %>

* start form tagisa Rails helper to start an HTML form — here it generates <form
action="/categories/create" method="post">

+ submit_tag by itself would generate <input name="submit" type="submit" value="Save changes"

/>, but the “Create” parameter overwrites the default “Save changes” with “Create”
* end form tag just outputs </form>, which is not the most useful Rails helper ever written :-) but it
provides a satisfying end to the block of code

Documentation: Action) ew::Helpers::Form TagHelper

* render partial will invoke a Partial form.rhtml - see the next section.

Documentation: Actionl iew::Partials

* link_to simply creates a link — the most fundamental part of HTML... Back

Documentation: ActionV iew::Helpers::UrlHelper

Partial
Rails naming convention: a partial foo’ will go in a file app\views\ ‘action’\ foo.rhtml (note the initial

underscore).

The scaffold uses the same code to process both the ‘edit’ and ‘new’ actions, so it puts the code into a partial,
invoked by the render partial method.

app\views\categories\ form.rhtml

<%= error_ messages_for 'category' %>
<!--[form:category]-->

<p><label for="category category">Category</label>

<%= text field 'category', 'category' %></p>

<p><label for="category created on">Created on</label>

</p>

<p><label for="category updated on">Updated on</label>

</p>

<!--[eoform:category]-—>

* error messages_for returns a string with marked-up text for any error messages produced by a previous
attempt to submit the form. If one or more errors is detected, the HTML looks like this:

<div class="errorExplanation" id="errorExplanation">
<h2>n errors prohibited this xxx from being saved</h2>
<p>There were problems with the following fields:</p>

field 1 error message 1</1i>
... ...</1li>
field n error message n

</div>

We saw this in action on Day 1 - ustration 2: Capturing data errors on page 7. Note: the css tags match

Page 12

corresponding statements in the stylesheet created by the generate scaffold script.
Documentation: ActionV iew::Helpers::ActiveRecordHelper

* text fieldisa Rails Helper which generate this HTML: <input id="category category"
name="category[category]" size="30" type="text" value="" /> The first parameter is the table
name; the second is the field name.

Documentation: Action iew::Helpers::FormHelper

Note a little bug in Rails — it knows not to create input fields for the reserved field names created_on and
updated_on, but it still generates labels for them.

The Rendered View for the “New” action

We’re now in a position to look at the code that’s returned to the browser in response to the “New” action, and
see where it’s all come from. The Layout supplies the bold text; the Template the Regular text; and the Partial
the Ttalic text:

a views\categories\new.rhtml

<html>
<head>
<title>Categories: new</title>
<link href="/stylesheets/scaffold.css" media="screen" rel="Stylesheet"
type="text/css" />
</head>
<body>

<hl1>New category</hl>

<form action="/categories/create" method="post">

<!--[form:category]-->

<p><label for="category category">Category</label>

<input id="category category" name="category[category]" size="30" type="text" value=""

/></p>

<p><label for="category created on">Created on</label>

</p>

<p><label for="category updated on">Updated on</label>

</p>

<!--[eoform:category]-->

<input name="submit" type="submit" value="Create" />
</form>

Back

</body>
</html>

Analysing the View for the ‘List’ action

The ‘Edit’ and ‘Show’ views are similar to the ‘New’ view. ‘List’ contains a few new tricks. Remember how the
controller ran the following piece of code before going off to render the ‘List’” template:
| @category pages, (@categories = paginate :category, :per page => 10 |

paginate populates the @categories instance variable with sorted records from the Categories table, :per page
records at a time, and contains all the logic for next page / previous page etc. navigation. @category pages is a
Paginator instance. How these are used in the template is explained at the end of the following section.

Documentation: ActionController::Pagination

Page 13

The template is as follows:

app\views\categories\list.rhtml

<hl>Listing categories</hl>

<table>
<tr>
<% for column in Category.content columns %>
<th><%= column.human_name $%></th>
<% end %>
</tr>

<% for category in Qcategories %>
<tr>
<% for column in Category.content columns %>
<td><%=h category.send(column.name) $></td>
<% end %>
<td><%= link to 'Show', :action => 'show', :id => category $%$></td>
<td><%= link to 'Edit', :action => 'edit', :id => category $%$></td>
<td><%= link to 'Destroy', {:action => 'destroy', :id => category}, :confirm =>
"Are you sure?" $></td>
</tr>
<% end %>
</table>

<%= link to "Previous page", { :page => @category pages.current.previous } if
@category pages.current.previous %>

<%= link to "Next page", { :page => @Qcategory pages.current.next } if
@category pages.current.next %>

<%= link to 'New category', :action => 'new' %>

* content_ columns returns an array of column objects excluding any ‘special’ columns (the primary id, all
columns ending in “_id’ or *_count’, and columns used for single table inheritance)

Documentation: ActionController::Base

* human_name is a synonym for human_attribute name, which transforms attribute key names into a more
human format, such as ‘First name’ instead of ‘first name’

Documentation: ActiveRecord::Base

* h automatically ‘escapes’ HTML code. One of the problems with allowing users to input data which is then
displayed on the screen is that they could accidentally (or maliciously) type in code which could break the
system when it was displayed®. To guard against this, it is good practice to ‘HTML escape’ any data which has
been provided by users. This means that e.g. </table> is rendered as &1t; /tablesgt; which is harmless.
Rails makes this really simple — just add an ‘h’ as shown

* confirmis a useful optional parameter for the 1ink_to helper — it generates a Javascript pop-up box which
forces the user to confirm the Destroy before actioning the link:

Microsoft Internet Explorer |

@ Are you sure’?
Eancell

Illustration 3: Javascript pop-up

4 For example, think what would happen if a user typed in “</table>" as a Category.

Page 14

Documentation: Action iew::Helpers::UrlHelper

The paging logic takes a bit of unravelling.. Ruby can use if as a modifier: expression if boolean-
expression evaluates expression only if boolean-expressionis true. @category pages.current returns
a Page object representing the paginator’s current page

ActionController::Pagination::Paginator

and @category pages.current.previous returns a new Page object representing the page just before this
page, or nil if this is the first page

ActionController::Pagination::Paginator::Page

So, if there is a previous page to navigate to, then this construct will display a link; if there isn’t, the link is
suppressed.

The rendered code for page 7 will look like:

Previous page
Next page

Tailoring the Generated Scaffold Code

The code generated by the Scaffold script is perfectly usable ‘out of the box’, and is robust once you have added
enough validation into your data model. However, if that’s all there was to developing Rails applications, then
programmers would be out of a job, which would cleatly not be a good thing :-) So let’s do some tailoring:

The Controller

In a ‘List’ view, I would expect the records to be displayed in alphabetical order. This requires a minor change to
the controller:

app\controllers\cateqories_controller.rb (excerpt)

def list
@category pages, (@categories = paginate :category,
:per page => 10, :order by => 'category'

end

Documentation: ActionController::Pagination

In this application, the show screen is unnecessary — all the fields fit comfortably on a single row on the screen.
So, def show can disappear, and let’s go straight back to the 1ist screen after an ‘Edit™

app\controllers\ categories controller.rb (excerpt)

def update
@category = Category.find(@params[:id])
if @category.update attributes (@params|[:category])

flash['notice'] = 'Category was successfully updated.'
redirect to :action => 'list'

else
render action 'edit'

end

end

The flash message will be picked up and displayed on the next screen to be displayed — in this case, the 1ist
screen. By default, the scaffold script doesn’t display flash messages - we’ll change this in a minute — see below.

The View

Displaying Flash Messages

Rails provides a technique for passing ‘flash’ messages back to the user — e.g. an ‘Update Successful’ message
which displays on the next screen and then disappears. These can be picked up easily with a small change to the
Layout (adding it to the Layout means it will appear on any screen):

Page 15

app\views\layouts\categories.rhtml<html>

<head>
<title>Categories: <%= controller.action name %></title>
<%= stylesheet link tag 'scaffold' %>
</head>
<body>
<hl><%=@heading %$></hl>
<% if @flash["notice"] %>

<%=h (@flash["notice"] %>

<% end %>
<%= @content for layout %>
</body>
</html>

Documentation: ActionController::Flash

A simple addition to the stylesheet makes the flash message more conspicuous:

public\stylesheets\scaffold.css (excerpt)

.notice {
color: red;

}

Sharing Variables between the Template and Layout

Note that I've moved the <h1>...</h1> heading text out of the Template into the Layout so that it appears
above the flash message. As each template will have a different heading, I need to set the value of the variable
@heading in the Template. Rails is quite ok with this — Template variables are available to Layouts at rendering
time.

I’ve made this change and some formatting changes to come up with my finished template:
app\views\categories\list.rhtml

<% Qheading = "Categories" %>
<table>
<tr>
<th>Category</th>
<th>Created</th>
<th>Updated</th>
</tr>
<% for category in Qcategories %>
<tr>
<td><%=h category["category"] %></td>
<td><%= category["created on"].strftime("$I:%M %p %d-%b-%y") $></td>
<td><%= category["updated on"].strftime("$I:%M %p %d-%b-%y") $></td>

<td><%= link to 'Edit', :action => 'edit', :id => category $></td>
<td><%= link to 'Delete', {:action => 'destroy',6 :id => category},
:confirm => "Are you sure you want to delete this category?" $></td>
</tr>
<% end %>
</table>

oo

<%= link to 'New category', :action => 'new' %>
<% if Qcategory pages.page count>1 %>

<hr /> a -

Page: <%=pagination_ links (category pages %>
<hr />

<% end %>

« I don’t like the default date format, so I use a Ruby method strftime () to format the date and time fields
the way I want them.

Ruby Documentation: class Time

Page 16

* pagination_ links creates a basic HTML link bar for the given paginator

ActionView::Helpers::PaginationHelper

Tidying up the Edit and New Screens

A few changes to the Partial used by ‘New’ and ‘Edit™ use a table to improve the layout; get rid of the unwanted
created on/updated on labels; and prevent the user typing too much into the Category field:

app\views\categories\ form.rhtml

<%= error messages for 'category' %>
<table>
<tr>
<td><label for="category category">Category:</label></td>
<td><%= text field "category", "category", "size"=>20, "maxlength"=>20 $></td>
</tr>
</table>

and a few minor changes to the two templates (note in particular the use of @heading):
app\views\categories\Edit.rhtml

<% @heading = "Edit Category" %>

<%= start form tag :action => 'update', :id => Qcategory %>
<%= render partial "form" %>
<hr />
<%= submit_tag "Save" %>

<%= end form tag %>

<%= link to 'Back', :action => 'list' %>

app\views\categories\New.rhtml

<% @heading = "New Category" %>

<%= start form tag :action => 'create' %>
<%= render partial "form" %>
<hr />
<%= submit tag "Save" %>

<%= end form tag %>

<%= link to 'Back', :action => 'list' %>

That takes us to the end of Day 2. We have a working system for maintaining our Categories table, and have
started to take control of the scaffold code which Rails has generated.

Page 17

Day 3 on Rails

Now it’s time to start on the heart of the application. The Items table contains the list of “To Dos’. Every Item
may belong to one of the Categories we created on Day 2. An Item optionally may have one Note, held in a
separate table, which we will look at tomorrow. Each table has a primary key ‘id’, which is also used to record
links between the tables.

Categories Items Notes
id - | id . id
category_id
note_id

Illustration 4: Simplified Data Model

The ‘Items’ Table

MySQL table defintion

The fields in the Items table are as follows:

done - 1 means the To Do item has been completed’

priority — 1 (high priority) to 5 (low priority)

description — free text stating what is to be done

due_date — stating when it is to be done by

category_id — a link to the Category this item comes under (‘id” in the Categories table)
note_id — a link to an optional Note explaining this item (‘id” in the Notes table)
private — 1 means the To Do item is classed as ‘Private’

Items table

CREATE TABLE items (

)

id smallint (5) unsigned NOT NULL auto_increment,
done tinyint(l) unsigned NOT NULL default '0O',
priority tinyint (1) unsigned NOT NULL default '3',
description varchar (40) NOT NULL default '',

due date date default NULL,

category id smallint (5) unsigned NOT NULL default '0’,
note id smallint (5) unsigned default NULL,

private tinyint (3) unsigned NOT NULL default '0',
created on timestamp (14) NOT NULL,

updated on timestamp (14) NOT NULL,

PRIMARY KEY (id)

TYPE=MyISAM COMMENT='List of items to be done';

The Model

As before, Rails can generate an empty model file:
W:\ToDo>ruby script/generate model item

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/item.rb
create test/unit/item test.rb
create test/fixtures/items.yml

W:\ToDo>

5 MySQL doesn’t have a ‘boolean’ type, so we have to use 0/1

Page 19

which we can populate:
aj models\item.rb

class Item < ActiveRecord: :Base

belongs_to :category

validates_associated :category

validates format of :done_before type cast, :with => /[01]/, :message=>"must be 0 or
lll

validates_inclusion_of :priority, :in=>1..5, :message=>"must be between 1 (high) and
5 (low)"

validates_presence of :description

validates_length of :description, :maximum=>40

validates format of :private before type cast, :with => /[01]/, :message=>"must be 0
or 1" N - - N -
end

Validating Links between Tables

« theuse of belongs_to and validates associated links the Items table with the item_id field in the
Category table.

Documentation: ActiveRecord:: Associations::ClassMethods

Validating User Input

+ validates_presence_ of protects WOT NULL’ fields against missing user input

* validates format of uses regular expressions to check the format of user input

+ when a user types input for a numeric field, Rails will always convert it to a number — if all else fails, a zero. If
you want to check that the user has actually typed in a number, then you need to validate the input
_before type cast, which lets you access the ‘raw’ input’.

+ validates inclusion of checks user input against a range of permitted values

+ validates_length of prevents the user entering data which would be truncated when stored’.

Documentation: ActiveRecord::V alidations::ClassMethods

The ‘Notes’ table

This table contains a single free text field to hold further information for a particular To Do Item. This data
could of course have been held in a field on the Items table; however, if you do it this way you’ll learn a lot
more about Rails :-)

MySQL table defintion
Notes table

CREATE TABLE notes (
id smallint (6) NOT NULL auto increment,
more notes text NOT NULL,
created on timestamp(14) NOT NULL,
updated on timestamp (14) NOT NULL,
PRIMARY KEY (id)
) TYPE=MyISAM COMMENT='Additional optional information for to-dos';

The Model

Generate the empty model file, but it contains nothing new:
app\models\note.rb

class Note < ActiveRecord::Base
validates presence of :more notes
end

6 What might seem a more obvious alternative: validates inclusion of :done before type cast,
:in=>"0".."1", :message=>"must be between 0 and 1" — fails if the input field is left blank

7 You could combine the two rules for the Description field into one: validates length of :description,
:within => 1..40

Page 20

but we need to remember to add this link into the ITtems model:

app\models\item.rb (excerpt)

class Item < ActiveRecord: :Base
belongs to :note

Using a Model to maintain Referential Integrity

The code we are about to develop will allow a user to add one Note to any Item. But what happens when a user
deletes an Item which has an associated Note? Cleatly, we need to find a way of deleting the Note record too,
otherwise we get left with ‘orphaned’ Notes records.

In the Model / View / Controller way of doing things, this code belongs in the Model. Why? well, you’ll see
later that we can delete Item records by clicking on a Dustbin icon on the “To Do’ screen, but we can also delete
them by clicking on Purge completed items. By putting the code into the Model, it will be run regardless of
where the delete action comes from.

a models\item.rb (excerpt)

def before destroy
unless note id.nil?
Note.find(note id).destroy
end
end

This reads: before you delete an Item record, find the record in Notes whose id equals the value of Note_id in
the Item record you are about to delete, and delete it first. Unless there isn’t one :-)

Similarly, if a record is deleted from the Notes table, then any reference to it in the Items table needs to be
erased:

a models\note.rb (excerpt)

def before destroy
Item.find by note id(id) .update attribute('note id', NIL)
end
end

Documentation: ActiveRecord::Callbacks

More Scaffolding

Let’s generate some morte scaffold code. We’ll do this for both the Items table and the Notes table. We aren’t
ready to work on Notes as yet, but having the scaffold in place means we can refer to Notes in today’s coding
without generating lots of errors. Just like building a house — scaffolding allows you to build one wall at a time
without everything crashing around your ears.

W:\ToDo>ruby script/generate scaffold Item
[snip]

W:\ToDo>ruby script/generate scaffold Note
[snip]

W:\ToDo>

[{P% 2]

Note: as we tailored the stylesheet yesterday, teply “n” to the “overwrite public/stylesheets/scaffold.css? [Ynaq]”
prompt.

More on Views

Creating a Layout for the Application

By now, it is becoming obvious that all my templates will have the same first few lines of code, so it makes sense
to move this common code into an application-wide layout. Delete all the app\views\layouts*.rhtml files,

Page 21

and replace with a common application.rhtml.

app\views\layouts\application.rhtml

<html>
<head>
<title><%= @heading %></title>
<%= stylesheet link tag 'todo' %>
<script language="JavaScript">
<!-- Begin
function setFocus () {
if (document.forms.length > 0) {
var field = document.forms[0];
for (i = 0; 1 < field.length; i++) {

if ((field.elements[i].type == "text") || (field.elements[i].type == "textarea")
|| (field.elements[i].type.toString() .charAt (0) == "s")) {
document.forms[0] .elements[i].focus () ;
break;

}

}
// End -->
</script>
</head>
<body OnLoad="setFocus () ">
<hl><%=@heading %$></hl>
<% if @flash["notice"] %>

<%=h @flash["notice"] %>

<% end %>
<%= @content for layout %>
</body>
</html>

The @heading set in the Template is now used for the <title> as well as <h1>. I’'ve renamed the
public/stylesheets/scaffold.css to todo.css for tidiness, and also generally played with colours, table
borders, to give a prettier layout. I've also added in a little Javascript to automatically position the cursor in the
first input field in the browser ready for the user to start typing.

The ‘To Do List’ screen

What I'm trying to achieve is a look based on a PalmPilot or similar PDA desktop. The end product is shown in
Ilustration 5: The ‘To Do List’ Screen®.

Some points:

+ clicking on the ‘tick’ (#) column heading will putge all the completed items (those marked with a tick)

+ the display can be sorted by clicking on the ‘Pri’, ‘Description’, ‘Due Date’, and ‘Category’ column headings
+ the 0/1 values for ‘Done’ are converted into a little ‘tick’ icon

+ items past their due date are coloured red and shown in bold

+ the presence of an associated note is shown by ‘note’ icon

« the 0/1 values for ‘Private’ are converted into a padlock symbol

+ individual items can be edited or deleted by clicking on the icons on the right of the screen

+ the display has a nice ‘stripey’ effect

+ new items can be added by clicking on the ‘New To Do...” button at the bottom of the screen

+ there’s a button link to the ‘Categories’ stuff from day 2

8 It’s amazing what a few lines in a stylesheet can do to change the appearance of a screen, plus of course a collection of
icons...

Page 22

To Do List

I VIL&JID%WWW IIDWD&EII&E@W ILEJLEJ

| v | 3 |<:td:>TESt escape</td= |I]4fl]ﬁfl]5 |Rail5 documentation | El | A E
| v | 1 |E'.u1,r roses & chocolates | 14/06,/05 |H|:|me & Farmily | B | = E
| | 3 |Start next section of documentation ‘ 17/06/05 ‘Rails documentation | | Ei IE
| | 5 |ﬂ\dd new category button ‘ 19/06/05 ‘Unﬁled | | Ei E
| | 5 |allow 1-click updating | 19/06/05 |Rails documentation | | Ei E
| | 1 |M|:|nthlﬁ,r report for newspaper | 20/06/05 |C|:|mmunit}r Council | | E
| | 1 |F'|:|5t minutes on wehsite ‘ 21/06/05 ‘Cummunity Council | | A E
| | 5 |Get guaotes for painting house ‘ 21/06/05 ‘Hn:ume B Family | | Ei E
[[3 |pook Holiday | 28/06/05 |[Home & Family e @
| | 3 |E'.u1,r new Lottery Ticket ‘ 12/07/05 ‘E-usiness | | 2 ([IE

| """" few ToBia. | Categories..

Page: 12

Ilustration 5: The “To Do List’ Screen

The template used to achieve this is built up as follows:

a views\items\list.rhtml

<% @heading = "To Do List" %>
<%= start form tag :action => 'new' %>
<table>

<tr>

<th><%= link to_image "done", {:action => "purge completed"}, :confirm => "Are you
sure you want to permanently delete all completed To Dos?" $></th>

<th><%= link to image "priority", {:action => "list by priority"}, "alt" => "Sort
by Priority" %></th>

<th><%= link to image "description", {:action => "list by description"}, "alt" =>
"Sort by Description" $%></th>

<th><%= link to image "due date", {:action => "list"}, "alt" => "Sort by Due Date"
$></th> - B

<th><%= link to image "category", {:action => "list by category"}, "alt" => "Sort
by Category" %></th>

<th><%= show_image "note" %></th>

<th><%= show_image "private" %></th>

<th>é </th>

<th>é </th>

</tr>
<%= render collection of partials "list stripes", @items %>
</table>
<hr />
<%= submit tag "New To Do..." %>
<%= submit tag "Categories...", {:type => 'button', :onClick=>"parent.location='" +
url for(:controller => 'categories', :action => 'list') + "'" } %>
<%= end form tag %>
<%= "Page: " + pagination links(@item pages, :params => { :action => (@params["action"]
[

"index" }) + "<hr />" if @item pages.page count>1 %>

Purging completed ‘To Dos’ by clicking on an icon

Clickable images are created by link to image, which by default expects to find an image in pub/images with
a .png suffix; clicking on the image will run the specified method.

Adding in the :confirm parameter generates a javascript pop-up dialogue box as before.

Documentation: ActionView::Helpers::UrlHelper

Page 23

Clicking ‘OK’ will invokes the purge completed method. This new purge completed method needs to be
defined in the controller:

app\controllers\items controller.rb (excerpt)

def purge completed
Item.destroy all "done = 1"
redirect to :action => 'list'
end

Item.destroy all deletes all the records in the Items table where the value of the field done is 1, and then
reruns the 1ist action.

Documentation: ActiveRecord::Base

Changing the Sort Order by clicking on the Column Headings

Clicking on the Pri icon invokes a 1ist by priority method. This new list by priority method needs to
be defined in the controller:

app\controllers\items controller.rb (excerpt)

def list
@item pages, Qitems = paginate :item,
:per page => 10, :order by => 'due date,priority’
end

def list by priority
@item pages, Qitems = paginate :item,
:per page => 10, :order by => 'priority,due date'
render action 'list'
end

We’ve specified a sort order for the default 1ist method, and created a new 1ist by priority method’. Note
also that we need to explicitly render _action 'list',as by default Rails would try to render a template called
list by priority (which doesn’t exist :-)

Adding a Helper

The headings for the Note and Private columns are images, but are not clickable. I decided to write a little
method show image (name) to just show the image:

app\helpers\ application helper.rb

module ApplicationHelper
def self.append features (controller)
controller.ancestors.include? (ActionController: :Base) °?
controller.add template helper (self) : super
end

def show image (src)

img options = { "src" => src.include?("/") ? src : "/images/#{src}" }
img options["src"] = img options["src"] + ".png" unless
img options["src"].include?(".")
img options["border"] = "0O"
tag("img", img options)
end

end

Once this helper has been linked in by the controller:
app\controllers\application.rb

class ApplicationController < ActionController::Base
helper :Application
end

9 1list by descriptionand list by category are similar and are left as an easy exercise for the reader.
However, if you get stuck with 1ist by category, see S#/ to be done on page 39

Page 24

it is available for all the templates in the application.
Documentation: ActionView::Helpers

Using Javascript Navigation Buttons

onClick is a standard Javascript technique for handling button actions such as navigating to a new web page.
However, Rails goes to great lengths to rewrite pretty URLs, so we need to ask Rails for the correct URL to use.
Given a controller and an action, url for will return the URL.

Documentation: ActionController::Base

Formatting a Table with a Partial

I wanted to create a nice stripey effect for the list of items. Partials provide the solution; they can either be
invoked by the render partial method

<% for item in @items %>
<%= render partial "list stripes", item %>
<% end %>

or by the more economical render collection of partials:
render collection of partials "list stripes", @items

Documentation: ActionV iew::Partials

Rails also passes a sequential number 1ist stripes counter to the Partial. This is the key to formatting
alternate rows in the table with either a light grey background or a dark grey background. One way is simply to
test whether the counter is odd or even: if odd, use light gray; if even, use dark gray.

The completed Partial is as follows:

app\views\items\ list stripes.rhtml

<tr class="<%= list_stripes_counter.modulo(2) .nonzero? *? "dk gray" : "lt gray" %>">
<td style="text-align: center"><%= list stripes["done"] == 1 ?
show_image ("done_ico.gif") : " " $></td>

<td style="text-align: center"><%= list stripes["priority"] $></td>

<td><%=h list stripes["description"] %></td>
<% if list stripes["due date"].nil? %>

<td> </td>
% else %>

<%= list stripes["due_date"] < Date.today ? '<td class="past due" style="text-

align: center">' : '<td style="text-align: center">' %><%=
list stripes["due date"].strftime ("%d/%m/%y") %$></td>
<% end %>

<td><%=h list_stripes.category ? list stripes.category["category"] : "Unfiled"
$></td>

<td><%= list stripes["note id"].nil? ? " " : show image ("note ico.gif")
$></td> N N - -

<td><%= list stripes["private"] == 1 ? show image ("private ico.gif") : " "
$></td>

<td><%= link to image("edit", { :controller => 'items',6 :action => "edit", :id =>
list stripes.id }) %></td>
<td><%= link to image ("delete", { :controller => 'items',6 :action => "destroy",
:id => list stripes.id }, :confirm => "Are you sure you want to delete this item?")
&></td> B
</tr>

A little bit of Ruby is used to test if the counter is odd or even and render either class="dk_gray” ot
class="1t gray”:
list stripes counter.modulo(2) .nonzero? ? "dk gray" : "1t gray"

the code as far as the first question mark asks: is #he remainder when you divide list_stripes_counter by 2 nongero?

Ruby Documentation: class Numeric

The remainder of the line is actually a cryptic #f #hen else expression which sacrifices readability for brevity: 7 #he

Page 25

expression before the question mark is true, return the value before the colon; else return the value after the colon.

Ruby Documentation: Expressions

The two tags dk_gray and 1t _gray are then defined in the stylesheet:

public\stylesheets\ToDo.css (excerpt)

.1t gray { background-color: #e7e7e7; }
.dk _gray { background-color: #dé6d7d6; }

Note: the same #f #hen else construct is used to display the ‘tick’icon if 1ist stripes["done"]equals 1,
otherwise display an HTML blank space character:

list stripes["done"] == 1 ? show image("done ico") : " "

Formatting based on Data Values

It’s also easy to highlight specific data items — for example, dates in the past.
list _stripes["due_date"] < Date.today ? '<td class="past due">' : '<td>'
Again, this needs a matching .past_due stylesheet entry.

Handling Missing Values in a Lookup

We want the system to be able to cope with the situation where the user deletes a Category which is in use by To
Do items. In this case, the Category should be displayed as ‘Unfiled’:

list stripes.category ? list stripes.category["category"] : 'Unfiled'

OK. if you’ve followed this so far, you should have a “To Do List’ screen looking something like Illustration 5
The To Do List’ Screen on page 23.
The ‘New To Do’ Screen

Turning next to what happens when the ‘New To Do..” button is pressed. Again, there are few new tricks
lurking in the code.

New To Do

Description: |
Date due: |[2005 = |2 =] |23 =]
Cateqory: || Home and Family j
Priority: ||3j

|Priuate? ||_

|Cnmp|ete? ||_

Savel Cancel |

Tlustration 6 New "To Do' screen

The template is minimal:
app\views\items\new.rhtml

<% @heading = "New To Do" %>
<%= error _messages_for 'item' %>
<%= start form tag :action => 'create' %>

Page 26

<table>
<%= render partial "form" %>

</table>

<hr />
<%= submit tag "Save" %>
<%= submit tag "Cancel", {:type => 'button', :onClick=>"parent.location='" + url for (
taction => 'list') + "'" } $>

<%= end form tag %>

and the real work is done in the partial, where it can be shared with the ‘Edit’ action:

app\views\items\ form.rhtml

<tr>
<td>Description: </td>
<td><%= text field "item", "description", "size" => 40, "maxlength" => 40
$></td> B
</tr>
<tr>

<td>Date due: </td>
<td><%= date_select "item", "due date", :use month numbers => true $></td>
</tr>
<tr>
<td>Category: </td>
<td><select id="item category id" name="item[category id]">
<%= options_from collection_ for select (categories, "id", "category",
@item.category id %>
</select>
</td>
</tr>
<tr>
<td>Priority: </td>
<% @item.priority = 3 %>
<td><%= select "item","priority",I[1,2,3,4,5] $></td>
</tr>
<tr>
<td>Private? </td>
<td><%= check_box "item", "private" %></td>
</tr>
<tr>
<td>Complete? </td>
<td><%= check box "item", "done" $></td>
</tr> B

Creating a Drop-down List for a Date Field

date_select generates a rudimentary drop-down menu for date input:
| date_select "item", "due_ date", :use month numbers => true

Documentation: Actiondew::Helpers::DateHelper

Trapping Exceptions in Ruby

Unfortunately, date select quite happily accepts dates like 31* February. Rails then dies when it tries to save
this ‘date’ to the database. One workround is to trap this failed save using rescue, a Ruby exception handling
method

app\controllers\items_controller.rb (excerpt)

def create
begin
@item = Item.new (@params|[:item])
if @item.save

flash['notice'] = 'Item was successfully created.'
redirect to :action => 'list by priority’
else

@categories = Category.find all
render action 'new' B
end
rescue
flash['notice'] = 'Item could not be saved.'

Page 27

redirect to :action => 'new'
end
end

Ruby Documentation: Exceptions, Catch, and Throw

Creating a Drop-down List from a Lookup Table

This is another example of Rails solving an everyday coding problem in an extremely economical way. In this
example:
options from collection for select @Qcategories, "id", "category", (@item.category id

options from collection for select reads all the records in categories and renders them as <option
value=" [value of id]”>[value of category]</option>fThClfcordthatnunches@itemﬁcategoryfid
will be tagged as ‘selected’. As is this wasn’t enough, the code even html_escapes the data for you. Neat.

Documentation: Action iew::Helpers::FormOptionsHelper

Note that data driven drop down boxes have to get their data from somewhere — which means an addition to the
controller:

app\controllers\items_controller .rb (excerpt)

def new
@categories = Category.find all
@item = Item.new

end

def edit
@categories = Category.find all
@item = Item.find(@params[:id])
end

Creating a Drop-down List from a List of Constants

This is a simpler version of the previous scenario. Hard-coding lists of values into selection boxes isn’t always a
good idea — it’s easier to change data in tables than edit values in code. However, there are cases where it’s a
perfectly valid approach, so in Rails you do:

select "item","priority",I[1,2,3,4,5]

Note also how to set a default value in the previous line of code.

Documentation: ActionV iew::Helpers::FormOptionsHelper

Creating a Checkbox

Another regular requirement; another helper in Rails:
check box "item","private"

Documentation: ActionView::Helpers::FormHelper

Finishing Touches

Tailoring the Stylesheet

At this point, the “To Do List’ screen should work, and so should the New To Do’ button. To produce the
screens shown here, I also made the following changes to the stylesheet:

public\stylesheets\ToDo.css

body { background-color: #cé6c3c6; color: #333; }

.notice {
color: red;
background-color: white;

}

Page 28

hl {
font-family: verdana, arial, helvetica, sans-serif;

font-size: l4pt;
font-weight: bold;
}
table {

background-color:#e7e7e7;

border: outset 1lpx;
border-collapse: separate;
border-spacing: 1lpx;

}

td { border: inset 1lpx; }
.notice {

color: red;

background-color: white;
}
.1t gray { background-color: #e7e7e7; }
.dk_gray { background-color: #d6d7d6; }
.hightlight gray { background-color: #4a9284; }
.past_due { color: red }

The ‘Edit To Do’ Screen

The rest of Day 3 is taken up building the ‘Edit To Do’ screen, which is very similar to the ‘New To Do’. I used
to get really annoyed with college text books which stated: #bis is left as an easy exercise for the reader, so now it’s great

to be able to do the same to you'’.

Which takes us to the end of Day 3 — and the application now looks nothing like a Rails scaffold, but under the
surface, we’re still using a whole range of Rails tools to make development easy.

10 But unlike my college text book authors, I do reveal the answers on Day 4 :-) - see app\views\items\edit.rbtml on page 31

Page 29

Day 4 on Rails

The ‘Notes’ screens

Linking ‘Notes’ to the ‘Edit To Do’

Although the Notes scaffold code gives the full CRUD facilities, we don’t want the user to invoke any of this
directly. Instead, if an Item has no associated Note, we want to be able to create one by clicking on a Notes icon
on the Edit To Do screen:

Edit To Do

|Desc:riptiun: ||Add new categaory button

Date due: |[2005 =] [2 =] [13 =]

|Caten_:|urv: ||TDDD Application j |5%

|Priurity: ||5j

|Priuate? ||_

|Cump|ete? ||_ N

|Nutes: |N|:|ne {| B
\‘h—rl'

Update | Cancel |

Ilustration 7: Creating a New Note from the ‘Edit To Do’
screen

If a Note already exists, we want to edit or delete it by clicking on the appropriate icon on the Edit To Do
screen:

Edit To Do

‘Descriptiun: iIEIuy roses & chocolates

pate due: 2005 7 [2 =] [11 5]

‘Categurv: || Haorne & Farmily j ||ﬁ|

‘Priuritv: ||1 j

‘Priuate? |I_

‘Cumplete? |I7 ———n,

‘Nutes: |Ha\.fe to be Thorntans! (@][m])
i —rr

pdate | Cancel |

Hlustration 8 Editing or Deleting an existing Note

First of all, let’s look at the code for the ‘Edit To Do’ screen. Note how the Notes buttons change according to
whether a Note already exists, and how control is transferred to the Notes controller:

app\views\items\edit.rhtml

<% @heading = "Edit To Do" %>

<%= error_messages_for 'item' %>

<%= start form tag :action => 'update', :id => Qitem %>
<table>

<%= render partial "form" %>

Page 31

<tr>

<td>Notes: </td>
<% if @item.note_id.nil? %>

<td>None</td>

<td><%= link to image "note", :controller => "notes", :action => "new", :id =>
@item.id %></td>
<% else %>

<td><%=h Q@item.note.more notes %$></td>

<td><%= link to image "edit button", :controller => "notes", :action => "edit",
:id => Qitem.note id %$></td>
<td><%= link to image "delete button", {:controller => "notes", :action =>

"destroy", :id => Qitem.note id }, :confirm => "Are you sure you want to delete this
note?" $></td>
<% end %>

</tr>
</table>
<hr />
<%= submit tag "Save" %>
<%= submit tag "Cancel", {:type => 'button', :onClick=>"parent.location='" + url for (
craction => 'list') + "'" } &>

<%= end form tag %>

The ‘Edit Notes’ Screen

Editing an existing Note is pretty straightforward. This is the Template:
app\views\notes\edit.rhtml

<% @heading = "Edit Note" %>
<%= start form tag :action => 'update', :id => @note %>
<%= render partial "form" %>

<%= submit tag "Save" %>
<%= submit tag "Cancel", {:type => 'button', :onClick=>"parent.location='" +
url for(:controller => 'items', :action => 'list') + "'" } %>

<%= end form tag %>

and its matching Partial:

app\views\notes\ form.rhtml

<table>
<tr>
<td><label for="note more notes">More notes</label></td>
<td><%= text area 'note', 'more notes' $></td>
</tr>
</table>

Once the update or destroy of the Notes table is complete, we want to return to the “To Do List’ screen:
p Y plete,

app\controllers\notes_controller.rb (excerpt)

def update
@note = Note.find (Q@params[:id])
if @note.update attributes (@params[:note])

flash['notice'] = 'Note was successfully updated.'
redirect to :controller => 'items',6 :action => 'list'
else
render action 'edit'
end

end

def destroy
Note.find (@params[:1id]) .destroy
redirect to :controller => 'items',6 :action => 'list'
end
Remember that the referential integrity rules we have already created will ensure that when a Note is deleted, any

references to it in Items will be removed too (see Using a Model to maintain Referential Integrity on page 21).

The ‘New Note’ Screen

Create is a bit more tricky. What we want to do is:

Page 32

« store the new note in the Notes table
+ find the id of the newly created record in the Notes table
« record this id back in the notes_id field of the associated record in the Items table

Session variables provide a useful way of persisting data between screens — we can use them here to store the 1d
of the record in the Notes table.

Documentation: ActionController::Base

Saving and retrieving Data using Session Variables

First of all, when we go off to create the new Notes record, we pass the id of the Item we are editing:

app\views\items\edit.rhtml (excerpt)

<td><%= link to image "note", :controller => "notes", :action => "new", :id =>
Qitem.id &%></td>

The new method in the Notes controller stores this away in a session variable:

app\controllers \notes_controller .rb (excerpt)

def new
@session[:item_id] = @params[:id]
@note = Note.new

end

The ‘New Notes’ template has no surprises:

app\views\notes\new.rhtml

<% @heading = "New Note" %>

<%= start form tag :action => 'create' %>

<%= render partial "form" %>

<%= submit tag "Save" %>

<%= submit tag "Cancel", {:type => 'button', :onClick=>"parent.location='" + url for(
:controller => 'items', :action => 'list') + "'" } $>

<%= end form tag %>

The create method retrieves the session variable again and uses it to find the record in the Items table. It then
updates the note_id in the Item table with the id of the record it has just created in the Note table, and returns
to the Items controller again:

app\controllers\notes controller.rb (excerpt)

def create
@note = Note.new (@params]|[:note])
if @note.save
flash['notice'] = 'Note was successfully created.'
@item = Item.find(@session[:item_ id])
@item.update attribute(:note_id, @note.id)
redirect to :controller => 'items', :action => 'list'
else
render action 'new'
end
end

Changing the ‘Categories’ Screens

There isn’t a great deal left to do on the system now, other than tidy up the templates created in earlier days so
they have the same style of navigation buttons:

app\views\categories\list.rhtml

<% @heading = "Categories" %>
<form action="/categories/new" method="post">
<table>
<tr>
<th>Category</th>

Page 33

<th>Created</th>

<th>Updated</th>
</tr>
<% for category in @categories %>
<tr>

<td><%=h category["category"] %></td>
<td><%= category["created on"].strftime ("$I:%M %p %$d-%b-%y") $></td>
<td><%= category["updated on"].strftime ("$I:%M %p %$d-%b-%y") $></td>

<td><%= link to image 'edit', { :action => 'edit', :id => category.id } %></td>
<td><%= link to image 'delete', { :action => 'destroy', :id => category.id },
:confirm => 'Are you sure you want to delete this category?' $></td>
</tr>
<% end %>
</table>
<hr />
<input type="submit" value="New Category..." />

<input type="button" value="To Dos" onClick="parent.location='<%= url for(
:controller => 'items', :action => 'list') %>'">
</form>

app\views\categories\new.rhtml

<% @heading = "Add new Category" %>
<%= error messages for 'category' %>
<%= start form tag :action => 'create' %>

<%= render partial "form" %>

<hr />

<input type="submit" value="Save" />

<input type="button" value="Cancel" onClick="parent.location='<%= url for(:action
=> 'list') &>'"> a
<%= end form tag %>

app\views\categories\edit.rhtml

<% @heading = "Rename Category" %>
<%= error messages for 'category' %>
<%= start form tag :action => 'update',6 :id => @category %>
%= render partial "form" %>

<hr />

<input type="submit" value="Update" />

<input type="button" value="Cancel" onClick="parent.location='<%= url for(:action
=> 'list') %>'"> a

%= end form tag %>

Navigation through the system

The final navigation paths through the application are shown below. Any redundant scaffold code — e.g the
show.rhtml files — can be simply deleted. That’s the beauty of scaffold code — it didn’t cost you any effort to
code it in the first place, and once it’s served its purpose, just get rid of it.

Page 34

New

ToDo
New
Category
1 New
Note
List
Categories
i Edit
. Note
ToDo
Edit
Category

Illustration 9 Navigation paths through the Application

Setting the Home Page for the Application

As a final step, we need to kill the default "Welcome to Rails' screen if the user points their browser to
http://todo. There are two steps:
+ Add the home page definition to the Routes file:

config\routes.rb (excerpt)

map.connect '', :controller => 'items'
* rename public\index.html public\index.html.orig

Downloading a Copy of this Application

If youd like a copy of the “To Do’ application to play with, there’s a link on http://rails.homelinux.org. You’ll
need to

+ use Rails to set up the directory structure (see Running the Rails script on page 3)
+ download the todo_app.zip file into the newly created ToDo directory

+ unzip the files unzip -o todo_app.zip

* rename public\index.html public\index.html.orig

+ if you want to use the sample database, mysql -uroot -p < db/ToDo.sql

and finally

I hope you found this document useful — I’'m always happy to receive feedback, good or bad, to
jpmcc@users.sourceforge.net.

Happy coding with Rails!

Page 35

mailto:jpmcc@users.sourceforge.net?subject=Feedback on Four Days on Rails
http://rails.homelinux.org/

Appendix — afterthoughts

After writing ‘Four Days’, I got a huge amount of feedback which greatly helped improve the quality of the
document. One question did crop up repeatedly - “how do you update more than one record from the same
screen” - so here’s an appendix covering this most Frequently Asked Question. It isn’t the easiest Rails concept
to grasp, and it’s an area I would expect to see more “Helpers” appearing in the future.

Multiple Updates

In the screenshot below, the user can tick/untick multiple “To Dos” using the checkboxes in the extreme left
hand column, and then press “Save” to store the results in the database.

To Do List

Lv_| LPi_] [Desciption | | buedate | | Categom NIERER

| I~ | 3 |q:td:>Test escape</tds |I]4,.r'l]ﬁ,.fl]5 |Rai|5 documentation ‘ B ‘ Ei
| I | 1 |E-u~,f roses & chocolates | 14/06,/05 |H|:|me 8 Family ‘ E] ‘ & (=
| r | 3 |Start next section of documentation | 17/06/058 |Rai|5 documentation ‘ ‘ [A]
| I_ | g |ﬁdd new category button | 19/06,/05 |Unﬁ|ed ‘ ‘
| r | 5 |ﬁ|luw 1-click updating | 19/06,/05 |Rai|5 documentation ‘ ‘
| r | 1 |Mn:unth|5,f report far newspaper | 20/06/05 |C|:|mmunit3.f Council ‘ ‘ Ei
| r | 1 |F‘DSt minutes on wehsite | 21/06/08 |C|:|mmunit3.f Council ‘ ‘ Ei
| r | 5 |Get quotes for painting house | 21/06/05 |H|:|me 2 Family ‘ ‘
| | 2 |Pook Holiday | 28/06/05 |Home & Family E
| r | 3 |E.u1,r new Lottery Ticket | 12/07/05 |E.u5in955 ‘ ‘ =

Mew ToDo... Categories...

Page: 12

Illustration 10: Multiple Updates
View

Rails supports multiple updates with another naming convention, which is to append the id of the record you
are editing to the name within square brackets [|. This enables you to pick out a particular record from multiple
records on the screen.

Let’s work backwards from the HTML we are trying to generate. This is what it looks like for a record with id =
6:
<td style="text-align: center">

<input type="checkbox" id="item done" name="item[6] [done]" value="1" checked />

<input name="item[6] [done]" type="hidden" value="0" />
</td>

(“checked” is omitted if the checkbox is not checked)

One way to generate this code is:

app\view\items\ list stripes.rhtm (excerpt)

<td style="text-align: center">
<%=check box tag("item["+list stripes.id.to s+"][done]","1",list stripes["done"]==1)
>

o

Page 37

<%=hidden field tag("item["+list stripes.id.to_s+"] [done]","0") %>
</tad>

'Thepaﬂnne&xsfbrcheck_box_tagarename, value = "1", checked = false, options = {};

fbrhidden_field_tagname, value = nil, options = {}

Documentation: ActionView::Helpers::Forn'TagHelper

Plus of coutse we now need a Save button:

app\views\items\list.rhtml (excerpt)

<% @heading = "To Do List" %>

<%= start form tag :action => 'updater' 3>

<table>

</table>

<hr />

<%= submit_ tag "Save" %>

<%= submit tag "New To Do...", {:type => 'button', :onClick=>"parent.location='" +
url for(:controller => 'items',6 :action => 'new') + "'" } %>

<%= submit tag "Categories...", {:type => 'button', :onClick=>"parent.location='" +
url for(:controller => 'categories', :action => 'list') + "'" } >

<%= end form tag %>

<%= "Page: " + pagination links(@item pages, :params => { :action => (@params["action"]
|| "index" }) + "<hr />" if @itemﬁpaggs.pageicount>l %>

Controller

What gets returned to the controller when you press the ‘Save’ button is the following hash:

params: {
:controller=>"items",

citem=> {
"6"=>{ "donell=>"0"} ,
etc...

"5"=>{"done":>"l"}
by

raction=>"updater"

We’re interested in the :item bit. For example, the bold line means “the record with id = 6 has the value of the
done field set to 0”. From here, it’s a fairly easy job to update the Items table:

app\controller\items controller (excerpt)

def updater
@params[:item].each { |item id, attr|
item = Item.find(item id)
item.update attribute (:done,attr[:done])
}
redirect to :action => 'list'
end

each puts “6” into the variable item id, and “done” => “0” into attr.

Ruby Documentation: class Array

This code works, but if you watch what is happening in development. log, you'll see that Rails is retrieving and
updating every record, whether it’s changed or not. Not only is this creating unnecessary database updates, but it
also means that updated_on also gets changed, which isn’t really what we want. Much better to only update if
‘done’ has changed, but this means some coding :~(

a'op\controller\items_controller (excerpt)

def updater
@params[:item] .each { |item id, contents|
item = Item.find(item id)
if item.done != contents[:done].to i

Page 38

item.update attribute (:done,contents[:done])
end

1
redirect to :action => 'list'
end

Note that we need to convert the string done to an integer using to_i so we can compare like with like. This is
the kind of gotcha you can easily miss — it’s worth checking development.log from time to time to make sure
Rails is doing what you expect.

User Interface considerations

This code works, and could be applied to make any field on the screen editable (another easy exercise for the
reader :-). It does raise some interesting questions about what the user would expect. What if the user changes
some check boxes, and then presses “New To Do...”; or re-sorts the display, without pressing “Save”? Should the
system always “Save” before doing any other action? More easy exercises for the reader...

Still to be done

On page 24 1 left 1ist by category as an easy exercise for the reader. It proved to be less easy than it looked
—in fact, 'm still looking for an elegant ‘Rails’ way to sort by a field in a lookup table. I ended up with this rather
horrible code:

a'op\controller\items_controller (excerpt)

def list by category
@item pages = Paginator.new self, Item.count, 10, @params|['page']
@items = Item.find by sqgl 'SELECT i.*, c.category FROM categories c, items i ' +
'WHERE (c.id = i.category id) '+
'ORDER BY c.category ' +
'LIMIT 10 ' +
"OFFSET #{@item pages.current.to sql[1l]}"
render action 'list'
end

If anyone has a better solution, please let me know. I leave this code as a reassuring example that if all else fails,
Rails will not leave you stuck but will allow you to resort to ‘old-fashioned’ coding!

Enjoy coding with Rails!

Page 39

Index of Rails and Ruby Terms used in this Document

A

ACHON,__NAMIE..eeiviieiieiestieteetesteestesteseeestessesaeessesasesseeaenns 11
B

DEfOre_tYPE_CASt..vivrireecerencrricireeiseeteeesreeetseserseaennenes 20
DElONGS_ T0..evuieiriecinieciircieieeeieeeeeeie e 20
C

CHECK D OXtiutiiieeeeeeeeeeeeeee ettt e e saeeeneeaes 28
CheCk_DOX_tag....vcuiciiciiciicieciceeceeneeneieeeaenne 38
CONTITIM oottt er e enens 14, 23
CONEENT_ COIUMIIS. ceiiviiitieeteeeeeieteeeereeeeeeeeeeereessveeseessaeeas 14
content_for_layoUul. ... cicrcernncneereneecrerneeeerenene 11
CLEALEA ALuueureeiereeeeeeeeeeeereeeeeeeeeteeeeeseeeseesaeseessesseeseessesaees 5
CLEALEA_Ofutinviirieeieceeereeeeeeeeeeeeeteereertesteesesstesaeesnesaeenne 5,13
CUTTEI euveureurererereeesesesesesessessessessessessessessessessessereeseeses 15
D

AALE_SELECT.cuveeieeeeieeeeeeeee ettt e ereeeesreeeveseesaeens 27
dESLIOY ... 10
destroy_alli..ciccerrcecree e 24
developmentog.......cccviviviiviiniiiin, 3,10, 39
E

end_fOrm_tag.....couvirieiiiniiiiiiiniecc e 12
errOr_MeSSAZES_fOT.. oo 12
F

FIN. ettt 10
FINA. ALttt ettt eees 10
FIaSH. ottt 15
H

ettt ettt et etens 14
REIPEL ...t 11
hidden_field_tag......ccooeeureverreerrecrrecrneeineenneeneenneiennes 38
HTML €5€ape.....coviiiviiiiciriicsicec s 14
human_ attribute NaMe...oceeeeeeeeeeeeeeeeeeeeeeeeeee e 14
RUMAN DAMIC.ccviieieeeieeeeeeeeeeeeeeetee e st et s eerenas 14
I

Ittt e be e 5
L

Layout. .o 11
TR B0ttt ettt ettt e ete st e e s e s esreeaes 12
Lk to_1Mage.....ccovevviecinieciiiiiciciceeenaes 23
LOCK VEISION . tuteetteeeeeteeeeeeeeeeeeeere et e e ereeereseeereesneenes 5
N

TECW e uteettereeteetteeseesteesteeseeseesteesseseeasassenseessanssensesssenssensenses 10
(0]
options_from_collection_for_select.......ccoevuerrucunence. 28
P
PAZINALE .ot 13
pagination_HNKs.......ccceiiciiniiciniccnccecnnne 17
Partialec.ccuieeeiereiereeereeceeeee e 11
PLEVIOUS ...ttt 15
R
LEAILECE £0uuveeneeeeeeeeeeteeeeeeeeteeeeeeeeteeeeeeeeseesuesseesseseesneens 10
Referential INtegrity.......ocvieuvicmnicuniemnicnnicrieeeneeens 21
render_collection_of_partials.......c..cccveecureveuricnnicennnnes 25
render_partial........ccoieieiniiniiniieeeeees 12, 25
render_temPlate.......ccveuniceriemniieireeneeee s 10
TESCUE eeurereereereereereereereesesseesesseesesseesessessessessessessessessensensenes 27
S
SAVEC.uuvreereeereessreeiseeesseesseeassessseeeseeesseseseessssesssessesessessaseenns 10
SELEC ettt ettt ettt 28
S€SSION VATIADIE. ... 33
StArt_fOrM_tAZ. .cviiiiiiriciciciceeieee e 12
STETEIMIE vttt ettt ene 16
stylesheet_linK_tag.......ccccvcuviciviinicnicnicniciccn, 11
SUDIMUE_TAG . vuvevmivermreenniuensrieneientieessiensesensesensesesesensesensees 12
T
TemPlate......coicciiiiiccrr s 11
teXt_fIEld.uicuieriericricieeceeeeeceeeeeee e 13
U
UPdate_attribDULE....cveveeceeeecrrecrrecireecree e 38
update_attribULes......ccvveeuecrrecireeirecireeree e 10
UPAALEA_ALeceuernrrnreencieeneireeeireeiree e ese e esees 5
UPdated_OMN. .. 5,13
LD O ettt et et e e et ae e e eeenaes 25
A%
validates_aSSOCIAtE. ...ccvevverieeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeens 20
validates_format._ Of ..oceeveeeeeeeeeeieeeeeeeeeeeeeeeeee e 20
validates_Inclusion. Of ..cceoeeceeeeeeeeeeeeeeeeeeeeeeeereeeeeeeens 20
validates_length_ of ..o 6, 20
validates_presence_of.......coecireceiriccunecnnicnnicenenns 20
validates_uniqueness_of........cccoevvnivinivininiinicnninnn. 6
EACKH ettt ettt 38

Page 41

	Introduction
	Day 1 on Rails
	The ‘To Do List’ application
	Running the Rails script
	Adding the Application to the Web Server
	Defining the Application in the hosts file
	Defining the Application in the Apache Configuration file
	Switching to fastcgi
	Checking that Rails is working
	Versions of Rails

	Setting up the Database
	Creating the Categories Table
	MySQL definition
	Data Model

	Scaffold
	Enhancing the Model
	Creating Data Validation Rules

	Day 2 on Rails
	The Generated Scaffold Code
	The Controller
	The View
	Layout
	Template
	Partial
	The Rendered View for the “New” action
	Analysing the View for the ‘List’ action

	Tailoring the Generated Scaffold Code
	The Controller
	The View
	Displaying Flash Messages
	Sharing Variables between the Template and Layout
	Tidying up the Edit and New Screens

	Day 3 on Rails
	The ‘Items’ Table
	MySQL table defintion
	The Model
	Validating Links between Tables
	Validating User Input

	The ‘Notes’ table
	MySQL table defintion
	The Model
	Using a Model to maintain Referential Integrity

	More Scaffolding
	More on Views
	Creating a Layout for the Application
	The ‘To Do List’ screen
	Purging completed ‘To Dos’ by clicking on an icon
	Changing the Sort Order by clicking on the Column Headings
	Adding a Helper
	Using Javascript Navigation Buttons
	Formatting a Table with a Partial
	Formatting based on Data Values
	Handling Missing Values in a Lookup

	The ‘New To Do’ Screen
	Creating a Drop-down List for a Date Field
	Trapping Exceptions in Ruby
	Creating a Drop-down List from a Lookup Table
	Creating a Drop-down List from a List of Constants
	Creating a Checkbox

	Finishing Touches
	Tailoring the Stylesheet
	The ‘Edit To Do’ Screen

	Day 4 on Rails
	The ‘Notes’ screens
	Linking ‘Notes’ to the ‘Edit To Do’
	The ‘Edit Notes’ Screen
	The ‘New Note’ Screen
	Saving and retrieving Data using Session Variables

	Changing the ‘Categories’ Screens
	Navigation through the system
	Setting the Home Page for the Application

	Downloading a Copy of this Application
	and finally

	Appendix – afterthoughts
	Multiple Updates
	View
	Controller
	User Interface considerations

	Still to be done

