

Flexible Rails

Flexible Rails
FLEX 3 ON RAILS 2

PETER ARMSTRONG

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

Copyright © 2006-2007 by Peter Armstrong
Version 2007-12-29

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanical means, including information storage and retrieval systems, without permission in
writing from Peter Armstrong, except by a reviewer who may quote brief passages in a review.

Rails, Ruby on Rails, and the Rails logo are trademarks of David Heinemeier Hansson. Flash,
Flex, and Flex Builder are trademarks of Adobe Systems Incorporated. Furthermore, many of
the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peter Armstrong was aware of a
trademark claim, the designations have been printed in initial capital letters or in all capitals.

Much effort went into the preparation of this book. However, the publisher and author
assume no responsibility for errors or omissions, or for damages that may result from the use
of information (including program listings) contained herein. The opinions expressed within
are solely the personal opinions of Peter Armstrong.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Manning Publications Co. Copyeditor: Tiffany Taylor
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-50-9
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07

 For Caroline and Evan

brief contents
PART 1 GETTING STARTED ... 1

1 ■ Why are we here? Where are we going? 3
2 ■ Hello World 14
3 ■ Getting started 52

PART 2 BUILDING THE APPLICATION..................................... 103

4 ■ Creating the main Flex UI 105
5 ■ Expanding the Rails code, RESTfully 118
6 ■ Flex on Rails 186
7 ■ Validation 261

PART 3 REFACTORING.. 293

8 ■ Refactoring to Cairngorm 295
9 ■ Holding state on the client properly 369

PART 4 FINISHING UP... 419

10 ■ Finishing the application 421
11 ■ Refactoring to RubyAMF 468
12 ■ Rails on AIR (Adobe Integrated Runtime) 512
vii

contents
foreword xvii
preface xix
acknowledgments xxii
about this book xxiv
about the cover illustration xxxi

PART 1 GETTING STARTED... 1

1 Why are we here? Where are we going? 3
1.1 Overview of the features and strengths of Flex 3

 and Rails 2 5
Overview of Flex 3 5 ■ Overview of Rails 2 5 ■ Overview
of using Flex 3 and Rails 2 together 7

1.2 Flash 9? Are you kidding me? 8
1.3 History 9
1.4 A preview of the book 12
1.5 Summary 13
ix

x CONTENTS
2 Hello World 14
2.1 Installing everything 16

Installing Ruby 16 ■ Installing Rails 17 ■ Installing
MySQL 18 ■ Installing Flex 18 ■ Installing a text editor or IDE
(SDK users only) 21 ■ Creating the Rails project 22 ■ How to
read the rest of this iteration 24

2.2 Windows or Mac OS X + Flex Builder 3 25
Creating the Flex project 25 ■ “Hello World” from
Flex 26 ■ “Hello World” from Rails 28 ■ “Hello World” from
Flex and Rails 31

2.3 Windows + Flex SDK 32
Creating the Aptana RadRails project 32 ■ “Hello World” from
Flex 34 ■ “Hello World” from Rails 38 ■ “Hello World” from
Flex and Rails 41

2.4 Mac OS X (or Linux) + Flex SDK 43
Creating the TextMate project (or launch Emacs or vi) 43 ■ “Hello
World” from Flex 43 ■ “Hello World” from Rails 46 ■ “Hello
World” from Flex and Rails 49

2.5 Summary 51

3 Getting started 52
3.1 If you’re starting here 53
3.2 Freezing the Rails version 55
3.3 Disabling browser navigation integration 56
3.4 Adding login functionality to Rails 57

Installing and running restful_authentication 58 ■ Editing and
running the CreateUsers migration, and checking the
result 59 ■ Adding RESTful routes 62 ■ Modifying the
includes and before_filter as instructed by the
comments 63 ■ Testing account creation from
HTML 67 ■ Testing login from HTML 69

3.5 Adding login functionality to Flex 69
“Hello World,” this time with meaning! 69 ■ Binding? What
the…? 71 ■ This MXML looks strange 72 ■ Flex 3 documentation?
Where? 73 ■ Stubbing out an account-creation and login UI in
Flex 74 ■ Making account create and login functional 80

CONTENTS xi
3.6 Adding data to the test fixtures 95
3.7 Checking the tests 98
3.8 Configuring Flex Builder to run and debug pomodo 99
3.9 Summary 101

PART 2 BUILDING THE APPLICATION 103

4 Creating the main Flex UI 105
4.1 Requirements 106
4.2 Design 106
4.3 Code 108
4.4 Summary 117

5 Expanding the Rails code, RESTfully 118
5.1 A brief note about REST 119

Disclaimer: doing REST wrong 119 ■ What is
REST? 120 ■ Why use a RESTful approach? 122

5.2 Calling the user by name 123
Adding a primitive debug console to Flex 124 ■ The case
of the missing first name 128 ■ Fixing to_xml
temporarily 130 ■ Fixing to_xml permanently 132

5.3 Creating the new resources (including migrations,
 models, and controllers) 135

Creating the Task, Project, and Location resources 135
Adding the associations to the model 137 ■ A tour of the
TasksController 142 ■ Understanding how routing works to
set the requested format 146 ■ Making the UsersController and
SessionsController RESTful 149 ■ Editing and running the
migrations 153 ■ Ad hoc testing with the HTML views 157

5.4 Security 161
Ensuring destructive actions are done by POST 162 ■ Requiring
login 162 ■ Access control 165

5.5 Expanding our fixtures and keeping our tests passing 178
5.6 Summary 185

xii CONTENTS
6 Flex on Rails 186
6.1 Setup 187
6.2 Listing tasks in Flex 187

Should we use to_xml with :include? 192

6.3 Creating tasks in Flex 195
6.4 Creating and listing projects and locations in Flex 200
6.5 Making the Projects and Locations ComboBoxes work in

the TaskCreateBox 208
Refactoring the list data location 208 ■ Making the
projects and locations show up 214 ■ Using a ComboBox
prompt 217 ■ Adding a None object to the ComboBox
dataProvider 219 ■ Saving the project and
location choices 222

6.6 About that None project and location 225
6.7 Updating and deleting tasks, projects, and locations 228

Adding update_xml and destroy_xml methods to the Rails
controllers 228 ■ Getting ComboBox itemRenderers to work
in the TasksListBox 231 ■ Adding Delete buttons 243
Adding Completed CheckBoxes to the TasksListBox 245
Editing the task name and notes in the TasksListBox 248
Adding Delete buttons and Completed check boxes
to the ProjectsListBox and LocationsListBox 251

6.8 Keeping our tests passing 259
6.9 Summary 259

6.10 Exercises for the reader 259

7 Validation 261
7.1 Revisiting the HTML account signup screen 262
7.2 Rails and Flex validation—should you stay DRY? 266
7.3 Understanding Rails validation, and building custom

 XML for errors 267
7.4 A Quick look at validation in Flex 3 274
7.5 Integrating Rails validation with Flex 3 validation 276
7.6 Flex validators revisited 284
7.7 Keeping our tests passing 290

CONTENTS xiii
7.8 Summary 290
7.9 Exercises for the reader 291

PART 3 REFACTORING ... 293

8 Refactoring to Cairngorm 295
8.1 Background and setup 296

Cairngorm history 297 ■ Do you need to use
Cairngorm? 298 ■ Downloading Cairngorm
2.2.1 299 ■ Importing the Cairngorm sources into Flex
Builder 299 ■ Getting and running the
ModifiedCairngormStore 300 ■ Adding Cairngorm to
pomodo 302 ■ Creating the standard directories 303

8.2 Cairngorm event sequence overview 304
8.3 Creating com.pomodo.model.

 PomodoModelLocator 305
8.4 Creating com.pomodo.control.* 309

EventNames.as 309 ■ PomodoController.as 310

8.5 Adding CairngormUtils and ServiceUtils
to com.pomodo.util.* 312

CairngormUtils.as 312 ■ ServiceUtils.as 313

8.6 Creating com.pomodo.command.* 315
CreateTaskCommand.as 315 ■ CreateProject-
Command.as 316 ■ CreateLocationCommand.as 318
CreateSessionCommand.as 318 ■ CreateUser-
Command.as 320 ■ UpdateTaskCommand.as 321
UpdateProjectCommand.as 322 ■ UpdateLocation-
Command.as 324 ■ DestroyTaskCommand.as 325
DestroyProjectCommand.as 326 ■ DestroyLocation-
Command.as 327 ■ ListTasksCommand.as 328
ListProjectsCommand.as 329
ListLocationsCommand.as 330

8.7 Creating com.pomodo.business.* 331
TaskDelegate.as 331 ■ ProjectDelegate.as 332
LocationDelegate.as 334 ■ UserDelegate.as 335
SessionDelegate.as 336

xiv CONTENTS
8.8 Deleting the com.pomodo.events package 336
8.9 Modifying the com.pomodo.components.* 337

TaskCreateBox.mxml 337 ■ ProjectCreateBox.mxml 339
LocationCreateBox.mxml 340 ■ TasksListBox.mxml 342
ProjectsListBox.mxml 347 ■ LocationsListBox.mxml 350
AccountCreateBox.mxml 352 ■ LoginBox.mxml 354
MainBox.mxml 355 ■ SplashBox.mxml 358

8.10 Modifying Pomodo.mxml 359
8.11 Running pomodo 361
8.12 HTTPService Gotchas 362
8.13 Summary 368
8.14 Exercise for the reader 368

9 Holding state on the client properly 369
9.1 Refactoring, samurai coder style 370
9.2 Creating the model classes 371

Task.as 371 ■ Project.as 374 ■ Location.as 376
User.as 378

9.3 Modifying the PomodoModelLocator 380
9.4 Modifying ServiceUtils 385
9.5 Modifying the business delegates 386

TaskDelegate.as 387 ■ ProjectDelegate.as 388
LocationDelegate.as 390 ■ SessionDelegate.as 391
UserDelegate.as 391

9.6 Modifying the commands 392
CreateSessionCommand.as 392 ■ CreateUserCommand.as 393
DestroyTaskCommand.as 394 ■ ListLocationsCommand.as 395
ListProjectsCommand.as 396 ■ ListTasksCommand.as 396
UpdateLocationCommand.as 397 ■ UpdateProject-
Command.as 397 ■ UpdateTaskCommand.as 398

9.7 Modifying the components 399
MainBox.mxml 399 ■ TaskCreateBox.mxml 400 ■ ProjectCreate-
Box.mxml 401 ■ LocationCreateBox.mxml 402 ■ AccountCreate-
Box.mxml 402 ■ TasksListBox.mxml 404 ■ ProjectsListBox 412
LocationsListBox.mxml 415

9.8 Summary 417

CONTENTS xv
PART 4 FINISHING UP .. 419

10 Finishing the application 421
10.1 Notely 422
10.2 Better security with attr_accessible 436
10.3 GTD semantics, including the Next Action concept

 and :dependent 439
10.4 Filtering tasks 447
10.5 The CommandShell 453
10.6 Logging out 454
10.7 Marketing! 457
10.8 Deleting users 460
10.9 Exercises for the reader 467

11 Refactoring to RubyAMF 468
11.1 Warning: biased author 469
11.2 Hello RubyAMF 471
11.3 Refactoring to RubyAMF, fast-forwarded 476

Modifying rubyamf_config.rb 477 ■ Modifying the Rails
controllers 481 ■ Creating Services.mxml and modifying
Pomodo.mxml 492 ■ Creating the value objects 494
Modifying the model objects to produce value objects 496
Modifying the business delegates 500 ■ Modifying the
PomodoModelLocator 505 ■ Modifying the commands 508

11.4 Summary 511

12 Rails on AIR (Adobe Integrated Runtime) 512
12.1 Converting pomodo to an AIR application 513

Deleting the old project 513 ■ Creating the new
project 513 ■ Getting it running 517

12.2 Refactoring event triggering 523
12.3 Online/Offline support 528
12.4 Summary 537

xvi CONTENTS
12.5 Exercises for the reader 537
12.6 Conclusion 537

appendix A How to use Subversion with Flex + Rails 539

appendix B Handwaving at omitted topics 543

index 547

foreword
It was early in 2006 when I was discussing my fanaticism for the emerging frame-
work Ruby On Rails down at the pub with friends. I mentioned to Mike Jones, a
career Flash developer, that I thought Ruby On Rails would be great for integrat-
ing with his new favorite plaything, the Adobe Flex 2 beta. Here were two technol-
ogies born of the desire to make cool things easier to build. It was a match made
in heaven, and I knew someone would do it soon.

 In April and May of that year, I wrote a two-part tutorial on my blog liverail.net
and also delivered a presentation at the London Flash Platform User Group,
developing a RIA CRUD interface in Flex with a Ruby On Rails backend.

 This was only the start of a wave of people marrying the two technologies that
were gaining traction in the development community, from Flash/Flex developers
with their first forays into backend development to seasoned Ruby programmers
who would never have dreamed of developing anything on Flash, scared off by
“The Timeline.” Since my initial blog posts, several people have taken to Flex and
Rails with a lot of passion, developing integration software, launching startups, and
posting blogs—none more so than Peter, who was dedicated/passionate/foolish
enough to believe there was a whole book on the subject waiting to be written.

 Time has proven him right, and Peter has run with the concept and seen it
grow in strength, with new start-ups in Flex and Rails launched every month. Peter
has continually delivered Flexible Rails, keeping up to date with Flex 3 and Rails 2
and working with Cairngorm (the Flex MVC framework), and he’s at the cutting
edge with RubyAMF. Peter’s book delivers tutorial after tutorial, leading us
xvii

xviii FOREWORD
through the complete lifecycle of his phantom RIA startup pomodo from database
to desktop with Adobe AIR.

 If you are looking to develop your next RIA startup, internal data-warehousing
client, or just something a bit different, this book will be your cup of tea.

 STUART ECCLES
 TECHNICAL DIRECTOR AND CO-FOUNDER

 MADE BY MANY LTD., U.K.

preface
On January 31, 2006, after over a year and a half of working with Flex and more than
six months of playing with Rails (building toy apps, reading Agile Web Development
with Rails, and so on), I finally realized that for many applications Rails was the per-
fect server-side technology to complement Flex—and on the flip side, that Flex
offered capabilities that were either difficult, impossible, buggy, or merely annoying
to do with JavaScript/AJAX/DHTML on the client side (especially if, like me, you’re
not a JavaScript guru like Thomas Fuchs). Despite the productivity of Rails, at the
end of the day we’re still dealing with the joys of HTML, JavaScript, CSS, and browser
compatibility issues.

 So, I did what I always do whenever I have a Really Great Idea: I registered a
domain name. I wanted a name that would be good for promoting a possible book
about using Flex and Rails together, so the natural choice was flexiblerails.com. I
also got flexiblerails.net and .org because I was so sure how good an idea this was.
By January 2006, the massive success of Agile Web Development with Rails had put dollar
signs in the heads not only of publishers but also of many in the Rails community
who had blogs. After all, writing a book couldn’t be much harder than writing a few
blog posts, right?

 I then did what I typically do whenever I have a Really Great Idea: nothing.
 Between the demands of my job and my two-year-old son, I was too busy, too

tired, and so forth. Besides, I had a lot of Really Great Ideas (and domain names
to go with them), and I wasn’t acting on any of them.

 So, time passed.
xix

xx PREFACE
 Then, it was announced that the Flex 2 SDK would be free (as in beer), and I
thought again: Yep, Flex and Rails will be perfect together, especially because
Flex 2 will be so much better than Flex 1.5.

 Again: nothing. I’m too busy; I’m too tired; I’d rather play Civ 4; the list went on.
 Then, Flex 2 went through its beta cycles and was released, with Flex Builder

costing only $499, half of what had been expected.
 Again: nothing.
 Then, in July 2006, I stumbled upon an excellent tutorial by Stuart Eccles on

liverail.net which had been written on April 16, 2006, about using Flex and Rails
together, and then upon another one (written on the same day!) on Christophe
Coenraets’ blog, and I realized that I wasn’t alone in thinking this really was a
Really Great Idea—and that if I was ever going to write anything about it, I’d bet-
ter get off my butt and do it now.

NOTE The ironic thing was that the liverail.net tutorial rails application was
called (you guessed it) flexiblerails. For me, this was truly the “get off your
butt and do something, you moron” moment: The first really good tutorial
about Flex and Rails together used the same name for its example application that
I had registered as a domain name months earlier! (If anyone cares: I regis-
tered flexiblerails.com on January 31, 2006. Stuart Eccles published
part 1 of his excellent tutorial on April 16, 2006, and I had missed seeing
it until July 2006!) If I hadn’t loved my domain name so much, I would
have named this book something else, so as not to cause confusion
between this book and the tutorial on his blog. I hope that this chronol-
ogy is a sufficient acknowledgment of—and even an homage to—his
tutorial: This book would not exist if his tutorial hadn’t motivated me to
finally do what I had already thought of doing.

I released the first Alpha Version of this book in self-published form in Septem-
ber 2006. It was buggy and had terrible formatting for the code samples. Despite
this, I got amazing feedback from many readers, which led to a much better
book as a result. Over the year that followed, I released numerous revised Alpha
and then Beta versions, adding iterations, updating Rails versions, rewriting the
entire book, and so on. Throughout this process, my readers were remarkably
helpful and patient, even though the roadmap for the book kept changing
almost monthly.

 As the book got better and more popular, publishers became interested. Man-
ning approached me and we worked out a contract that ensured I could keep all
of my promises to my existing readers while working with Manning to revise the
book. During this time, Flex 3 went to Beta 2, and Rails 2 went to pre-release sta-
tus. So, I rewrote the book again, this time using Flex 3 and Rails 2. The book

PREFACE xxi
doesn’t use all the new features, but it does use some of them, the RESTful URLs
are correct, and so on. During the author review process, I did yet another pass
through the code, re-creating all the code samples by following along with my
own book, using Release Candidate 1 of Rails 2 (1.99.0). Then, just after the book
went into typesetting, Rails 2 final (2.0.1) was released. So, during typesetting, I
did yet another pass through the book, following along again using Rails 2.0.1. So,
while the text of the book refers to Rails 1.99.0, rest assured that it has been tested
with both Rails 1.99.0 and Rails 2.0.1.

 This book has been part of my life for almost two years, consuming countless eve-
nings and weekends. My sincere hope is that it will be an enjoyable read for you, and
that you can build something great using the code written in it as the foundation.

acknowledgments
First and foremost, I never would have finished this book without the infinite
patience and support of my wife Caroline. Thank you.

 I have had very supportive friends as well. Thomas Yip gave me much appreci-
ated early encouragement and very insightful, extensive feedback on the first ver-
sion. Steven Baker introduced me to many people within the Rails community who
saw the potential when my toy Flex + Rails app was little more than Hello World.
Len and Mike Epp have been great friends throughout; thanks especially to Len for
his hospitality when I was working on this book from his flat in London. Finally, an
enormous thank you to Dima Berastau for convincing me that my book was done,
when I still thought that I should delay it for another 3–6 months to add 200–300
more pages to it.

 Next, thanks to my father: In late summer 2006, he took time during a visit to
read the first 200-page version and contributed numerous helpful grammar sug-
gestions. Most interestingly, I think he finally really understood what I do for a living.

 I won’t thank any readers by name, because I would need to name the hun-
dreds of readers who helped me with feedback and encouragement when this
book existed in self-published form.

 An enormous thank-you to Christopher Bailey for jumping in at the last
minute to do the technical proofreading for the book—and to not only do it, but
to do it extremely well. Chris runs Cobalt Edge LLC (cobaltedge.com), a software
development and consulting company. He is V.P. of Engineering at Bring Light
(bringlight.com), an online social network inspiring a new generation of philan-
thropy. Chris also contributes to Building Web Apps (buildingwebapps.com), a
xxii

ACKNOWLEDGMENTS xxiii
great resource for increasing your web development knowledge. Chris lives with
his wife, and two children, in Eugene, OR.

 Thanks to Adam Springer, Tim Steele, Matt Wyman, and Steve Byrne. Thanks
also to Ross Ladell, Cary Newfeldt, Brad Sokol, Justin Damer, Hao Vuong, Joel
Greensite, and Darrell Snow.

 Thanks to the following people at Adobe: Mike Potter, Ryan Stewart, Duane
Nickull and Suzanne Nguyen.

 Thanks to the peer reviewers, who provided invaluable feedback on the book
shortly before it went into production: Erik Hatcher, Arne Pfeilsticker, Louis F.
Springer, Brent Schooley, Christopher Bailey, Mike Tian-Jian Jiang, Robert Demp-
sey, Christophe Bun, Paul Fernando Larini, and Jeremy Anderson

 Thanks to the many people at Manning:
 First, thanks to Mike Stephens for approaching me in the first place, and for

enabling me to meet my commitments to my existing readers. Also, thanks for his
patience with me: Shortly after he acquired what he thought was a “finished”
book, I decided that I needed to miss the deadline in order to rewrite the book to
use Flex 3 and Rails 2 and to add a RubyAMF chapter. The book is much better for
it, so thanks for taking the gamble.

 Next, thanks to my editor Douglas Pundick, who got the pleasure of working
with me when I was at my most clueless about how “real” books are put together,
and for dealing with me cheerfully as I attempted to rewrite the book from half
the Starbucks locations in London and various hotels in Italy.

 Thanks to publisher Marjan Bace for his support of an unorthodox book that
had a very unorthodox origin. Thanks very much to project editor Mary Piergies,
who handled the schedule changes and the production effort that spanned the
Christmas holiday season with grace. Next, an enormous thank-you to my copyed-
itor Tiffany Taylor: You’re Manning’s secret weapon! (I could go on and on, but
that would be verbose, so I’ll edit out for you.) Another enormous thank-you to my
proofreader, Maureen Spencer—this quote from one of her emails sums up her
dedication: “I finished my read of Chapter 11 during the Caroling.” Thank you so
much for your efforts in the proofreading and your cheerfulness as this book
impacted your Christmas and New Year holidays.

 Finally, an apology to my son Evan: Daddy finally finished his book! I’m sorry it
took so long.

about this book
Many technical books I’ve bought are like Disneyland: They seem promising, but
they’re expensive, the examples are Mickey Mouse, they take forever, and I end
up disappointed.

 This is not one of those books.
 In Flexible Rails, we’ll build a real application—well, as close to a real applica-

tion as you can get in a book. As we go, I’ll explain the concepts introduced by the
code, as well as explain the code itself. The code is all MIT-licensed, so you can
take whatever you want from it and use it as the basis of whatever Web 2.0 startup
you’re dreaming of, without owing me (or Manning) a penny. (If you do make
millions, I won’t say no to unsolicited gifts, of course!)

Roadmap

Like many applications developed iteratively, this book contains four parts:

1 Getting started

2 Building the application

3 Refactoring

4 Finishing up

In part 1, “Getting started,” we’ll do the necessary setup work that will let us get to
the fun stuff in the rest of the book. We’ll install everything, do a Flex and Rails
version of “Hello World,” and then get user creation and login working in Rails
and hook up the Flex UI to it. This part contains three iterations:
xxiv

ABOUT THIS BOOK xxv
■ Iteration 1 “Why are we here? Where are we going?”—This iteration provides the
motivation for the book, an understanding of the history of Flex and Rails
and how they fit together, and an overview of the book.

■ Iteration 2 “Hello World”—This iteration contains three separate sets of
instructions (Windows or Mac OS X + Flex Builder 3, Windows + Flex SDK,
and Mac OS X + Flex SDK) for installing everything we need and getting
“Hello World” running.

■ Iteration 3 “Getting started”—In this iteration, we’ll set up MySQL and then
add account-creation and login functionality to our Rails application, using
the restful_authentication plugin. We then hook up the Flex UI to use the
Rails account creation and login functionality.

In part 2, “Building the application,” we’ll do a deep dive using Flex with Rails. By
the end of it, we’ll have mastered the basics of using Flex with Rails. This part con-
tains four iterations:

■ Iteration 4 “Creating the main Flex UI”—In this iteration, we’ll build a stubbed-
out UI for the main part of the Flex application.

■ Iteration 5 “Expanding the Rails code, RESTfully”—Next, we’ll add new Rails
models and controllers for the tasks, projects, and locations—as well as the
migrations needed to create their database tables. We also introduce REST
in this iteration. Finally, we’ll address some basic security concerns that
need to be considered at the outset.

■ Iteration 6 “Flex on Rails”—In this iteration, we’ll hook up most of the main
Flex UI we’ll build in iteration 4 to the Rails controllers we’ll build in
iteration 5.

■ Iteration 7 “Validation”—We’ll add full validation support on the Rails side
and the Flex side to the account-creation process.

At this point, we’ll be ready to think about higher-level topics, which we’ll do in
part 3, “Refactoring.” This part includes two iterations:

■ Iteration 8 “Refactoring to Cairngorm”—We’ll refactor the code we wrote in
part 2 to use Cairngorm, an application framework for Flex.

■ Iteration 9 “Holding state on the client properly”—We’ll refactor the code again,
this time to add a proper object model instead of just using XML on the client.

At the end of this part, we’ll have a much better understanding of design in Flex and
of the options available to us for data exchange between Flex and Rails. Doing the
refactoring to decouple the object model from its method of transport (currently
XML) will enable us to consider using an alternate method of transport.

xxvi ABOUT THIS BOOK
 In the final part, “Finishing up,” we’ll finish the application, refactor it to use
RubyAMF, and extend it to run on the Adobe Integrated Runtime (AIR).

 This part contains three iterations:

■ Iteration 10 “Finishing the application”—In this iteration, we’ll build the
remaining features in pomodo.

■ Iteration 11 “Refactoring to RubyAMF”—We’ll refactor pomodo to use
RubyAMF instead of XML for sending data between Flex and Rails. Because
AMF is a binary protocol and XML is text (and verbose text at that), this has
the potential to lead to substantial performance improvements.

■ Iteration 12 “Rails on AIR (Adobe Integrated Runtime)”—In this last iteration of
the book, we’ll convert the code to run on AIR and modify the Notely feature
that we’ll build in this iteration to take advantage of AIR-specific features. This
won’t be a complete tutorial introduction to AIR; instead, it will give you a taste
of one of the exciting ways to take your Flex + Rails applications beyond the
traditional web application model.

The overall approach of this book is “Flex and Rails Immersion”—instead of get-
ting bogged down in theory and boring you with contrived examples, we’ll build a
real application together and learn everything as we go. Also, I don’t pretend that
the book exists in isolation: I reference many excellent resources, including not
only the relevant books but also numerous blog posts. One of the hallmarks of the
Rails community in particular is the number of prolific bloggers—most people in
the Rails community learn from these blogs, so the honest thing to do is to pro-
vide a brief explanation in the book and reference them for the full explanation,
instead of paraphrasing them.

What the book doesn’t compete with

This book is intended to be an informative, interesting, useful, and occasionally
mildly entertaining tutorial for software developers, regardless of how much Flex,
Ruby, or Rails experience they have. This book is not attempting to provide a full
Ruby, Rails, Flex, or ActionScript 3 tutorial—each of those topics needs an entire
book. Luckily, they already have excellent books:

■ Ruby—Programming Ruby, 2nd ed.; The Ruby Way, 2nd ed.
■ Rails—Agile Web Development with Rails, 2nd ed.
■ Ruby and Rails—Ruby for Rails, 1st ed.
■ Flex 3—Flex 3 Developer’s Guide (a free 1,435-page PDF from Adobe)
■ ActionScript 3—Programming ActionScript 3.0 (a free 576-page PDF from Adobe)

ABOUT THIS BOOK xxvii
This book does not compete with any of these books—it assumes that you either
have them (or the knowledge contained in them) or are willing to buy them.
(The Flex and ActionScript 3 PDFs are free.) If you’re going to do any serious
work with Rails, you should buy the second edition of Programming Ruby (the first
edition is free but outdated), the second edition of Agile Web Development with Rails
(AWDwR), and/or the first edition of Ruby for Rails.

 What this book will try to do is provide enough information and external refer-
ences that someone with no Flex, Ruby, or Rails experience can follow along and
find help when necessary, but not so much that it would become annoying to some-
one who already understands all the basics of either Rails or Flex. My assumption
is that most readers are coming from one camp (a Rails developer wanting to learn
Flex as an alternative to AJAX or a Flex developer looking for a server-side technol-
ogy other than Java). That said, if you have no Flex or Rails experience, but you
have web or desktop UI software-development experience, you should be able to
follow along with this book: Many readers have done exactly this.

A note about the iterations

All the code in the book is available for download from http://www.
flexiblerails.com/code-samples as well as from the publisher’s website at http://
www.manning.com/armstrong or http://www.manning.com/FlexibleRails. The
download is one big zip file that contains a separate folder for each completed
iteration in the book, except iteration 1, for which there is no code. This way,
you can start at any iteration and follow along by using the directory from the
previous iteration. Or, if you don’t like typing, you can load each completed iter-
ation as you read.

 Because I’m lazy (in the good programmer way), they aren’t all separate
projects—they’re copies of the same project at various stages. I recommend creat-
ing a staging-area folder called current and having Flex Builder point at it. This
way, if you want to start at the end of any given iteration, you can delete your cur-
rent folder and copy that iteration in place of the current one. When you
relaunch Flex Builder, all it sees is that a bunch of files have changed—the project
is the same. If you’re using the Flex Framework SDK, this doesn’t apply to you.

 Finally, note that this procedure has no correspondence to anything you would
do when actually coding. For real development, use Subversion (or Git) and have
it ignore the public\bin directory you’ll be creating for the Flex output. See
appendix A for details on using Subversion with Flex and Rails. If you’re using
Git, you don’t need a tutorial.

http://www.flexiblerails.com/code-samples
http://www.manning.com/armstrong

xxviii ABOUT THIS BOOK
Which Flex?

The short answer is: Flex 3.
 The longer answer is that much of the book was originally written using

Flex 2, and that the code was updated to Flex 3 Beta 2 before the most recent
rewrite. So, the code in the book was all produced using Flex 3 Beta 2. During
the typesetting process, the Flex code was tested with Flex 3 Beta 3. This had no
effect except in iteration 12 (“Rails on AIR”): Flex 3 Beta 3 renamed Shell.
shell to NativeApplication.nativeApplication, so the iteration 12 code was
updated accordingly. All the Flex code—except for iteration 12, which uses AIR—
will work in Flex 2 and Flex 3.

Which Rails?

The short answer is: Rails 2.
 The slightly longer answer is that the most recent rewrite of this book was done

using the first release candidate of Rails 2, whose gem version is 1.99.0. Rails 2
final, whose gem version is 2.0.1, was released when the book was already in
typesetting. So, during typesetting, I updated my Rails to 2.0.1 and did another
full pass through the book, following along using Rails 2.0.1. So, while the text
of the book refers to Rails 1.99.0, rest assured that it has been tested with both
Rails 1.99.0 and Rails 2.0.1. The code that is available for download from http://
www.flexiblerails.com/code-samples, as well as from the publisher’s website, uses
Rails 1.99.0. (Because I followed along with Rails 2.0.1, I could have released this
code as well. However, its format wouldn’t have matched—copying and pasting
from a PDF removes the formatting—so I didn’t do this.)

 The really long answer is that I have rewritten this book more than twice: I started
writing the early iterations when Rails was at version 1.1. The iterations were origi-
nally shorter, and there were more than 20 of them. (It turns out that this is an
unmaintainable nightmare for this style of book, since bugfixes must be ported for-
ward.) So, in May 2007 I completely rewrote the book, dramatically reducing the num-
ber of iterations and updating the code to Rails 1.2. In summer 2007, I made an
agreement to publish the book with Manning. However, Rails 2 went to preview
release shortly afterward, so the book would have been outdated before it was off
the press. So, in October 2007 I completely rewrote the book again, updating the version
of Rails to the preview release of Rails 2 (gem version 1.2.3.7707). Then,
in November and December 2007 during the Author Review phase of the book
I updated the book to be based on the first release candidate of Rails (gem ver-
sion 1.99.0), by following along from the beginning. Finally, during typesetting I
ensured that the code worked with Rails 2 final (gem version 2.0.1), by following
along again from the beginning.

ABOUT THIS BOOK xxix
 Writing is indeed rewriting, especially when the topic is as fast-moving as the
combination of Flex and Rails.

Understanding the code examples

For readability, I’ll show the source code of a file with new or modified lines of
code in bold italics and lines of code that should be deleted shown in
strikethrough. I’ll often omit unchanged portions of a file, using an ellipsis (...)
to take the place of the unchanged code. If a large section of code is being
deleted, I’ll often use an ellipsis inside the code being deleted (because showing
tons of strikethrough code is a waste of paper). If you’re pasting code from the
code samples into your code, make sure you omit or delete any lines shown in
strikethrough. Furthermore, note that the book uses 64-column code. This results
in some purely format-related modifications to generated Rails code in order to
make it fit nicely within 64 columns. These changes may not be shown as modified
or explained, because that would be tedious. Finally, note that sometimes it isn’t
possible to get code to fit nicely in 64 columns—Rails code is often written in a
way that favors long lines, and inline event-handling in MXML code lends itself to
longer lines too. In these cases, the code will just auto-wrap, and a continuation
symbol will be shown.

 A complete code zip file is available for download from http://www.
flexiblerails.com/code-samples, as well as from the publisher’s website.

Author Online

Purchase of Flexible Rails includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
FlexibleRails or http://www.manning.com/armstrong. This page provides infor-
mation on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions,
lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

http://www.flexiblerails.com/code-samples
http://www.manning.com/FlexibleRails

xxx ABOUT THIS BOOK
About the author

Peter Armstrong has been a Flex developer since July 2004 (since Flex 1.0) and he
has been tracking Ruby on Rails since mid-2005 (since before Rails 1.0). Before
switching to Flex, he spent five years as a Java Swing developer, with a brief stint as
a PHP developer during the dotcom bubble in 2000. As someone with a heavy Swing
background, Peter initially found Flex appealing because it felt very familiar—
more like Swing development than web development. After more than five years of
working with Java, Ruby and Ruby on Rails felt like a breath of fresh air.

 Peter is the organizer of The Vancouver Ruby/Rails Meetup Group (http://
ruby.meetup.com/112/). He has spoken about using Flex with Rails at the Van-
couver Flash/Flex Meetup Group, at a RailsConf 2007 BOF, at the Vancouver RIA
Developer Camp, at Rails to Italy 2007 and at VanDev.

 The author’s website for this book is at http://www.flexiblerails.com. The blog
for this book is at http://www.flexiblerails.com/blog. Peter’s personal blog is at
http://www.peterarmstrong.com. Peter’s consulting company, focused on Flex
and Rails development, training, and workshops, is http://www.ruboss.com.

 Peter lives with his wife Caroline and his son Evan in the Vancouver, British
Columbia area. When he’s not coding, writing, reading, or being a husband and
dad, Peter likes to snowboard and play computer games. If it wasn’t for Desktop
Tower Defense, Slashdot, and reddit, this book would have been done a month
earlier—if not more!

http://ruby.meetup.com/112/

about the cover illustration
The figure on the cover of Flexible Rails is called “Jeune Bourbonnaise” or a young
woman from Bourbonnais, a historical region and former province of central
France in the Massif Central. The illustration is taken from a French travel book,
Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure
was a relatively new phenomenon at the time and travel guides such as this one
were popular, introducing both the tourist as well as the armchair traveler to the
inhabitants of other regions of the world, as well as to the uniforms and costumes
of French soldiers, civil servants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.
xxxi

Part 1

Getting started

In this part, we’ll do the necessary setup work to get to the fun stuff in the
rest of the book. We’ll install everything, do a Flex and Rails version of
“Hello World,” and then get user creation and login working in Rails and
hook up the Flex UI to it.

 This part contains three iterations:
■ Iteration 1: “Why are we here? Where are we going?”—This iteration pro-

vides the motivation for the book, an understanding of the history of
Flex and Rails and how they fit together, and an overview of the book.

■ Iteration 2: “Hello World”—This iteration contains three separate sets of
instructions (Windows or Mac OS X + Flex Builder 3, Windows + Flex
SDK, and Mac OS X + Flex SDK) for installing everything we need and
getting “Hello World” running. You only need to read the section that
applies to you.

■ Iteration 3: “Getting started”—In this iteration, we’ll set up MySQL and
add account creation and login functionality to our Rails application,
using the restful_authentication plugin. We’ll then hook up the Flex
UI to use the Rails account creation and login functionality. Finally,
we’ll set up the most minimal of tests. At the end of this iteration, we’ll
have a good starting point for any Flex + Rails application.

Why are we here?
Where are we going?

HTML sucks all the joy out of programming for me
HTML+CSS, that is
—Jamis Buck, Signal vs. Noise [Fly on the Wall], July 17, 2007
1

I’m so glad I don’t have to do the design work for our apps
I’m trying to design a simple form
and I’m hating life
It’s seriously making me want to not work on this anymore
…
html makes it so easy to write forms that look like crap
and SO HARD to write forms that look nice
that’s so backwards
 —Jamis Buck,
Signal vs. Noise [Fly on the Wall], July 17, 20071

1 http://www.37signals.com/svn/posts/495-fly-on-the-wall-paying-attention-to-users-mow-the-lawn-vs-
cut-the-grass-chowder-html-forms.
3

4 ITERATION 1

Why are we here? Where are we going?
There is a lot of hype these days around Flex and Rails. I’ll try my hand at it for a
few paragraphs, too.

 Ruby on Rails, or just Rails for short, has been revolutionizing web application
development since its introduction in 2004. Nowadays, it seems that a new “Web 2.0”
company that uses Rails is spawned every 10 seconds.

 Flex is a sexy framework that lets us write code that feels more like coding a
desktop application—except it runs inside the Flash player! Because it targets the
Flash player, we can build new Rich Internet Applications (RIAs) without worrying
about browser compatibility nonsense, JavaScript, CSS, and so on.

NOTE The preferred term now seems to be rich Internet applications. I don’t pre-
fer it, though, because rIa isn’t a good-looking acronym. As a curmudg-
eonly form of protest (I’m an old-school Flex developer—I used to code
Flex 1.0 while walking uphill both ways in the snow…), I’m going to call
them Rich Internet Applications in the book. Also, the full capitalization
of Rich Internet Applications may be coming back into fashion, in
response to a Microsoft evangelist having attempted to make RIA stand
for “Rich Interactive Applications”—so I’m shouting “get off my lawn” in
an avant-garde way, I guess.

Because Flex 3 targets one platform (Flash 9), we don’t have to worry about plat-
form compatibility issues. The Write Once, Run Anywhere (WORA) dream that
client-side Java programmers had—before it turned into “write once, debug
everywhere”—can finally be realized, but with Flex. Flex achieves what previous
technologies such as Java applets failed miserably in attempting: applications
that feel like desktop applications, but which run inside any modern web
browser on Windows and Mac.

NOTE Write Once, Run Anywhere was essentially realized on the server side but
not on the client side. On the client side, AWT was terrible, and Swing
doesn’t look like any of the platforms it runs on. SWT is an excellent alter-
native to Swing, because it gives us native widgets. However, SWT can’t be
used in an applet yet, so we can’t run it in a web browser. It’s just useful
for building applications like Eclipse—and like Flex Builder 3, which is
built on top of the Eclipse Rich Client Platform (RCP).

But here’s a little-known secret, which this book is the first book to cover: Flex and
Rails work amazingly well together!

 We can use Flex 3 and Rails 2 to build RIAs today that look and feel more like
Web 3.0 than many of the “me too [point oh]” Web 2.0 sites we see copying each
other today. This book will show you how to get started doing exactly this.

 In this iteration, we’ll get an overview of Flex and Rails, their history, and how
they can be used together.

Overview of the features and strengths of Flex 3 and Rails 2 5
1.1 Overview of the features and strengths
of Flex 3 and Rails 2

Now that you’re all excited, let’s take a deep breath and get an overview of both
platforms. This section will present a high-level overview of both and then show
how they can be combined. Don’t worry if you don’t understand a particular point
here; it will be explained later.

1.1.1 Overview of Flex 3

In Flex 3, we write code in MXML (XML files with a .mxml extension; M for Macro-
media) and ActionScript (text files with a .as extension) files and compile them
into a SWF file, which runs in the Flash player. This SWF is referenced by an HTML
file, so that when a user with a modern web browser loads the HTML file, it plays
the Flash movie (prompting the user to download Flash 9 if it’s not present). The
SWF contained in the web page can interact with the web page it’s contained in
and with the server it was sent from.

 Even if you’ve never created a Flash movie in your life, don’t consider yourself
a designer, and wouldn’t recognize the Timeline if you tripped over it, you can
use Flex to create attractive applications that run in the Flash player. Flex develop-
ment is easily learned by any intermediate-level developer with either web or desk-
top UI (such as Windows Forms or Java Swing) programming experience.

1.1.2 Overview of Rails 2

Figure 1.1 shows how Rails provides a standard three-tier architecture (presenta-
tion tier, model tier, persistence tier) as well as a Model-View-Controller (MVC)
architecture. As the diagram shows, Rails takes care of everything between the
web server and the database.

Iterations
In this book, the chapters are called iterations. I’ve done this because we’ll de-
velop an application iteratively throughout the book—it has nothing specific to do
with Flex or Rails. (That said, both Flex and Rails lend themselves to an iterative
style of development.) Each iteration advances the state of the application fur-
ther. You can start following along with the book at the beginning of any iteration,
using the code from the end of the previous iteration.

This chapter has no code—it’s just an introduction. I’m calling it “iteration 1”
instead of “introduction” as a cunning way of getting you to read it, because
many people skip introductions and dive right into chapter 1. I love it when a plan
comes together!

6 ITERATION 1

Why are we here? Where are we going?
The typical sequence is as follows:

1 A user visits a particular URL in their web browser (makes an HTTP request).

2 This request goes over the Internet to the web server in which Rails is run-
ning (such as WEBrick, lighttpd, Mongrel, or Apache).

3 That web server passes the request to the routing code in Rails, specifi-
cally ActionController::Routing::Routes. These routes are defined in
config\routes.rb. The default route turns HTTP requests into method calls
on controllers.

4 The controller (such as TasksController) method (such as index) is
called. It communicates with various ActiveRecord models (which are per-
sisted to and retrieved from a database of our choosing). The controller
method then can do one of the following things:

Figure 1.1
Rails provides a standard three-tier
architecture (presentation tier, model tier,
persistence tier) as well as a Model-View-
Controller architecture.

Overview of the features and strengths of Flex 3 and Rails 2 7
■ Set some instance variables and allow a view template (a specially named
.html.erb file, for example) to be used to produce HTML, XML, or Java-
Script, which is sent to the browser. This is the job of Action View.
Together, Action View and Action Controller form Action Pack.

■ Bypass the view mechanism and do rendering directly via a call to the
render method. This method can produce plain text (render :text =>
"foo"), XML (render :xml => @task), and so on.

1.1.3 Overview of using Flex 3 and Rails 2 together
Figure 1.22 shows how Flex and Rails can be used together.

2 The diagram “Fig 7. The complete MVC Architecture for a Thin-Client Web Application” at http://
www.uidesign.net/Articles/Papers/UsingMVCPatterninWebInter.html inspired the design of my block
diagrams.

Figure 1.2
How we can use Flex and Rails together

8 ITERATION 1

Why are we here? Where are we going?
1.2 Flash 9? Are you kidding me?

The reference to Flash 9 earlier may have set off alarm bells in your head: “Isn’t
Flash 9 somewhat new? How many people will be able to run my app?” Table 1.1
should put this concern in perspective3.

As of June 2007, Flash 9 has over 90% market penetration in “mature markets” (US,
Canada, UK, Germany, France, and Japan). Furthermore, note that Flash 8 has
achieved 98% market penetration in less than two years—which is extremely good.

 Despite how productive Flex 3 and Rails 2 are for development, it will still take
you some time to build your killer app. And in that time, our target market is get-
ting larger by the day. (If you haven’t accomplished much in a given day, you can
still feel good that you grew your target market.)

 Finally, note that most of your early adopters will be, well, early adopter types.
These are the TechCrunch reading, Digg/del.icio.us/reddit using types. These
people will have Flash 9 or won’t mind getting it.

 One more thing: If you work in an enterprise environment, the adoption per-
centages for different Flash versions among consumers today are much less of a
concern than if you’re trying to develop a consumer-facing product. As long as
your IT department allows the Flash player to be installed, you can mandate that
users upgrade their Flash Player versions when they first use your app. The instal-
lation and upgrade process is extremely smooth, which is a major reason why you
see Flash used everywhere today, whereas Java applets are little more than a histor-
ical curiosity.

Table 1.1 Worldwide ubiquity of Adobe Flash Player by version—June 2007

Flash Player 7
(released September 2003)

Flash Player 8
(released August 2005)

Flash Player 9
(released June 2006)

Mature markets 99.3% 98.5% 90.3%

US/Canada 99.4% 98.7% 90.5%

Europe 99.1% 98.2% 90.5%

3 This is taken from a much more complete set of tables at http://www.adobe.com/products/
player_census/flashplayer/version_penetration.html.

http://www.adobe.com/products/player_census/flashplayer/version_penetration.html

History 9
NOTE You might think this is a significant hurdle (and it may be one in your
case), but note that AJAX apps have their own security issues because of
cross-site scripting, and so on—IT departments sometimes have issues
with JavaScript as well. At least with Flex 3, it’s a binary decision: If our
user has or can get Flash 9, you’re good to go. With AJAX, it’s a question
of IE 6, IE 7, Firefox 1.0, Firefox 1.5, Safari, Opera, JavaScript enabling,
ad infinitum (definitely doable, but by no means as simple).

Speaking of history, it’s nice to know a bit of the history of Flex and Rails, to see
how they have evolved over the last few years. This is useful because it helps us
understand why no one was thinking about using Flex with Rails in 2004, why a
few people started thinking about it in 2006, and why many people are thinking of
the combination now.

1.3 History

In 2004, two frameworks were released that have gone on to dominate web and RIA
development: Macromedia Flex in March 2004 and Ruby on Rails in July 2004. The
two frameworks initially couldn’t have seemed more different.

 Ruby on Rails was a free, Open Source, web application framework that
strongly appealed to web developers who were frustrated either with PHP or with
J2EE. IDEs were spurned, and a fairly obscure Macintosh-only text editor called
TextMate was hailed as the greatest achievement of Western civilization. (Emacs
and vi were for old people, presumably.) In many blog postings, the enterprise
was portrayed as something evil to be ignored, changed, or destroyed. XML was to
be avoided at all costs: In Agile Web Development with Rails (Dave Thomas et al, Prag-
matic Bookshelf, 2006), reason #10 of “Dave’s Top 10 Reasons To Like Rails” is
“No XML!” The claim was often made that we could write an entire web applica-
tion in Rails in fewer lines of code (LOC) than the amount of code just in the XML
configuration files of a web application built with EJBs.

NOTE For an example of an article highlighting the reduced LOC, see http://
rewrite.rickbradley.com/pages/moving_to_rails/.

Regarding XML, Ruby 1.8 (which Rails runs on) does have support for XML, but
Rails prefers to use YAML for its configuration files. (YAML, which stands for YAML
Ain’t Markup Language, is a “straightforward machine parsable data serialization
format designed for human readability and interaction with scripting languages”:
www.yaml.org.) The phrase “No XML!” can be rephrased more accurately but less
catchily as “No XML configuration files everywhere, and no XML needed to define
our database schema.”

http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/

10 ITERATION 1

Why are we here? Where are we going?
 Macromedia Flex 1.0 and 1.5 (which both used ActionScript 2.0) were server
products that ran in a J2EE application server that compiled MXML files and
ActionScript files into Flash applications (SWFs). Typically, MXML files were used
to lay out GUI components, which were developed in either MXML or Action-
Script. Flex 1.0 and 1.5 were priced at enterprise levels: about $15,000 USD per
CPU for the server product.4 Because the server side of a Flex application was typi-
cally J2EE, a lot of XML configuration files were typically needed along with XML
for the database mapping.

 MXML files can, and typically do, contain ActionScript in inline <mx:Script>
blocks. MXML files are transformed into ActionScript before being compiled into
a SWF along with the ActionScript files, so the “what should be done in Action-
Script and what should be done in MXML” line was always blurry. A large project
typically has lots of both kinds of files. To summarize, table 1.2 shows what the two
frameworks looked like in their early days.

In the more than three years since Rails’ release, a lot has changed. Rails has
become one of the most influential frameworks in web application development.
It seems that every day, some new Web 2.0 app is released that is built on it. This is
partly due to the marketing prowess of David Heinemeier Hansson (DHH to his
followers) and 37signals, but also to a large extent due to the productivity advan-
tages in faster development time and reduced lines of code to maintain that Rails
provides. Rails has also vastly improved its support for XML: ActiveRecord now has
a to_xml method that we’ll use a lot in this book.

 In the past three years, Flex has also progressed rapidly for an enterprise-class
product, as shown in table 1.3.

 Flex 3 has better performance and download sizes (due to the framework
cache) than Flex 2. Furthermore, Flex 2 has vastly better performance (in some

4 This wasn’t competing with PHP; it was competing with Laszlo, which also was a very expensive product
that let you write GUI code in XML that got compiled to a SWF.

Table 1.2 Flex 1.0 and Rails 1.0 compared

Flex 1.0 Rails 1.0

Cost Expensive! Free

Code is Proprietary Open source

XML is Everywhere Considered evil

IDE Flex Builder (based on Dreamweaver) None

History 11
case, up to ten times faster) than Flex 1.0 and 1.5, as well as better XML handling
and an updated version of ActionScript. Another advantage of Flex 2 over Flex 1.0
and 1.5 is cost savings: Whereas Flex 1.0 and 1.5 are expensive server products,
Flex 2 and Flex 3 can be used in their Flex Framework SDK versions with a com-
mand-line compiler without paying Adobe a penny. Flex 3 also features a further
cost savings for IDE users: Flex Builder 3 Standard Edition is half the price of Flex
Builder 2. (Of course, if you want the new profiler, you’re still paying a nontrivial
sum to get the Professional Edition.)

 In April 2007, Adobe announced the open sourcing of the Flex 3 framework
under the Mozilla Public License (MPL). This is huge news in the world of RIA
development.

NOTE Although the Flex framework has been open sourced, the Flash player is
not open source. This, of course, prompts the typical reaction among the
more vocal free software advocates. My position is that the open sourcing
of Flex is big news and that the choice of the MPL (as opposed to, say, the
GPL) is a huge step by Adobe in ensuring the commercial adoption of Flex.

That said, even though the Flex framework is free and is being open sourced, if
you’re using Windows or Mac you may want to buy Flex Builder 3. It will sell5 for
$249 USD (Standard Edition) or $699 USD (Professional Edition, which will
include the charting components, profiler, and so on).

NOTE Adobe also sells a server-side product called Live Cycle Data Services (for-
merly Flex Data Services), which has a restricted free version for smaller
deployments. It won’t be covered in this book.

Table 1.3 Flex version history

Date Flex version ActionScript version

March 2004 1.0 2.0

October 2004 1.5 2.0

June 2006 2.0 3.0

October 2007 3.0 Beta 2 3.0

5 http://www.onflex.org/ted/2007/10/flex-3-beta-2-lower-price-flex-builder.php.

12 ITERATION 1

Why are we here? Where are we going?
Table 1.4 shows what the two frameworks look like now.

Flex 3 is much more similar to Flex 2 than Flex 2 is to Flex 1.5. If it wasn’t for the
addition of the Adobe Integrated Runtime (AIR) which we’ll introduce in itera-
tion 12, Flex 3 probably should have been called Flex 2.5. (The code in this book
was originally written in Flex 2; it compiled and ran in Flex 3 unchanged.)

 Now that we understand how Flex and Rails have evolved and where they are
today, let’s look at what we’ll accomplish in this book.

1.4 A preview of the book

The project we’ll create throughout this book is called pomodo. Why pomodo?
Because it’s a stupid, meaningless name, and a prominent feature of Web 2.0 is
meaningless names, often with missing vowls. (It also features rounded corners
and gradient fills,6 which we will use, too.) Pomodo will be a variation on a To Do
list application.

 What will be different about pomodo? For one, its UI will be in Flex, so we can
create a cool-looking To Do list with little effort. Second, it will be a Getting Things
Done (GTD) style To Do list, meaning that tasks will be organized into projects and
will have locations. In addition, pomodo will use the concept of a Next Action,
which is essentially the next task in each project that has nothing blocking it.

 Why a To Do list application? There are two reasons. First, because of
37signals’ Ta-da List, Basecamp, and Backpack products, the Rails community
used to seem a bit obsessed with To Do lists: In the early days of Rails, they were
often the “one step beyond Hello World” application built in many fine tutorials

Table 1.4 Flex 3 and Rails 2 compared

Flex 3.0 Rails 2.0

Cost Free Free

Code is Open Source Open Source

XML is Everywhere Ambivalent; it’s still avoided in configuration files, but
XML output is included by default in RESTful controllers

IDE Flex Builder 3 ($249 Standard Edi-
tion, $699 Professional Edition)

Free (Aptana RadRails, Eclipse with the RDT plug-in,
NetBeans) and commercial offerings

6 It turns out that Stuart Eccles makes this same joke in his presentation to the London Flash Plat-
form User Group: http://www.lfpug.com/ruby-on-rails-for-the-flex-developer-22062006-stuart-eccles/
#more-11.

Summary 13
online. Second, and more seriously, since the application is a GTD-style To Do list
application, it will have enough features to demonstrate a significant subset of
Flex and Rails features, but still be small enough and with a simple enough
domain to be fully understood while learning the frameworks and how they inter-
act. I could have created something (say, a cool-looking chess game) that better
showed off the eye-candy features of Flex. However, I decided this wouldn’t have
been as useful: Most of us are (unfortunately) building applications that look
more like To Do lists than games. Also, since this is a book about how Flex and
Rails can be used together, the pure eye-candy features are superfluous.

1.5 Summary

Flex and Rails fit together well and have evolved to be a better fit because of Flex
going Open Source. We can develop with Flex Builder using either Windows or
OS X, or with the Flex SDK using Windows, OS X, or Linux.

GTD
David Allen’s Getting Things Done (Penguin, 2002) is a great book about time
management. If you haven’t read it already, buy it and read it. Briefly, it involves
going to Staples and spending $500 on office supplies and a big filing cabinet (I
did this), writing down everything in your brain (a la the main character in the film
Memento, who had to always remind himself, “Remember Sammy Jenkins”), and
using lots of folders (43 of them—hence the name of the popular website
www.43folders.com) to run your life. The elegance and efficacy of the approach,
combined with the paper cuts and environmental devastation caused by using so
much paper, has inspired countless programmers (myself included) to write their
own GTD-style application or to abuse an existing tool (such as a wiki, outlining
tool, Outlook, or Gmail) to make it work in a GTD style. The problem with GTD as
presented in David Allen’s book is that it assumes our world revolves around pa-
per (and, quaintly, that we have a secretary). This may be true for the executives
who go to his seminars, but it’s not true for software developers.

Hello World
Hello World
 —Brian Kernighan
14

Installing everything 15
Let’s get coding! Until I get “Hello World” running in a language, I can’t start
learning much. Because we’re focusing on using Flex with Rails, we have three
“Hello World” versions to do: Flex only, Rails only, and the combination in which
Flex talks to Rails.

Installing everything First you need to install the software you’ll need to follow along with the rest of
the book. The goal of this book is to save you time in getting up to speed using Flex
and Rails together. As such, I don’t want to say “install everything” and leave you to
your own devices figuring out what to install. But I don’t know whether you’re using
Windows, OS X, or Linux, and whether you want to use Flex Builder (on Windows
or OS X only) or the Flex SDK. So that you get a book that is as tailored to your needs
as possible, this iteration has four sections—but you only need to read two of them:

■ Everyone should read section 2.1: “Installing Everything.”
■ If you have a Windows PC or a Mac and want to use Flex Builder 3, read

section 2.2: “Windows or Mac OS X + Flex Builder 3.”
■ If you have a Windows PC and want to use the Flex 3 SDK, read section 2.3:

“Windows + Flex SDK.”
■ If you have a Mac or a Linux PC and want to use the Flex 3 SDK, read sec-

tion 2.4: “Mac OS X (or Linux) + Flex SDK.”

The rest of the book from iteration 3 onward is written as though you’re using
Flex Builder 3 on Windows. I have to assume something, because I don’t want to
write three books.

NOTE Most people prefer IDEs; whether that is a good or bad thing is irrele-
vant—it’s just a fact. (In the typical corporate environment, how many
typical Java developers use Eclipse or IDEA versus how many use Emacs or
vi exclusively?) Also, I took a reader poll, and Windows users slightly out-
numbered Mac users.

Q. Should I use Flex Builder 3 or the Flex 3 Framework SDK?

A. The SDK is free, and using it is fairly straightforward. However, using it isn’t
as easy as using Flex Builder 3. Flex Builder 3 is built on top of Eclipse and is
available in standalone form or as an Eclipse plug-in. The standalone version will
cost $249 for the Standard Edition (and $699 for the Professional Edition).There
will presumably be a 30-day trial version for Windows and Mac, so you can deter-
mine if it’s worth it without spending any money. (I bought Flex Builder 2 for $499
of my own money, so you’re getting a deal on Flex Builder 3 Standard.) As I write
this, Flex Builder 3 is in Beta 2, so you can download the time-limited Beta for free.

16 ITERATION 2

Hello World
Although most of the book is written as though you’re following along using Flex
Builder, compiling on the command line is straightforward.

2.1 Installing everything

In this section, we’ll install the software required to follow along with the rest of
the book. You need a Windows PC to which you have administrator access or a
Mac running OS X, because you must install MySQL, Ruby, Rails, and either Flex
Builder 3 or the Flex SDK on it. To use all that happily, at least 512 MB of RAM is
required, with 1 GB or higher preferred. (I started writing this book on an old
desktop PC with 512 MB of RAM, so it can be done.)

2.1.1 Installing Ruby

The first thing we’ll do is install Ruby.

Installing Ruby on Windows
Install Ruby by downloading the latest one-click Ruby installer from http://
rubyforge.org/frs/?group_id=167. This book uses Ruby 1.8.5. Make sure you
find the Path variable in System Variables and add c:\ruby\bin; (or wherever_
you_put_ruby\bin;) to the beginning of the Path. More detailed instructions are
available in many fine tutorials online, such as http://allaboutruby.wordpress.
com/2006/01/09/installing-rails-on-windows-step-by-step-tutorial/.

Installing Ruby on Mac OS X
You need a PowerPC or Intel Mac running a recent version of OS X (Tiger or
Leopard). The best explanations about how to install Ruby (as well as Rails,
MySQL, and Mongrel or lighttpd) are found at the following tutorials:

■ http://hivelogic.com/articles/2005/12/01/
ruby_rails_lighttpd_mysql_tiger

■ http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx

I’ve followed both of these tutorials on different Macs running OS X Tiger, and
they both work. I’d normally be embarrassed to say “Go to this blog; it will tell
you,” but there is nothing I can say here that isn’t said better there. Even Agile Web
Development with Rails (AWDwR), the bible of Rails development, delegates its expla-
nation of how to install Ruby and Rails on Mac OS X to this blog post.

 OS X Leopard has recently been released and is easier to work with for Ruby:
Ruby is included by default (and is not broken, unlike on Tiger), and Mongrel
and Rails are also included. (You will still need to update your Rails to Rails 2,
however, as shown in the next step.)

http://allaboutruby.wordpress.com/2006/01/09/installing-rails-on-windows-step-by-step-
http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger

Installing everything 17
 If you have no success using the instructions at the Hivelogic site, another
approach is James Duncan Davidson’s approach (http://duncandavidson.com/
archives/164). Yet another approach is to use Locomotive (http://locomo-
tive.raaum.org/), which bundles everything you need together into one easy-to-
install package. You can also see the fine tutorial at http://developer.apple.com/
tools/rubyonrails.html.

2.1.2 Installing Rails
The final version of Rails 2 has recently been released. You can follow along using
the most recently released version of Rails 2 by typing gem install rails in a Win-
dows Command Prompt or sudo gem install rails in an OS X Terminal window.
Note that running gem install rails may fail with the following error:
“OpenURI::HTTPError: 404 Not Found reading http://gems.rubyforge.org/gems/
actionpack-2.0.1.gem”. If this happens, just run it again (a few times if necessary)
until it works.

 While this book has been tested with Rails 2.0.1, if you want to follow along
with the version of Rails 2 that was used during the copy-edit process, use the first
Release Candidate (gem version 1.99.0).

 To install the first Release Candidate version (1.99.0) of Rails 2.0, run the
following command at a Command Prompt:

C:\peter\flexiblerails>

 ➥gem install rails -v 1.99.0 –source

 ➥http://gems.rubyonrails.org --include-dependencies
Successfully installed rails-1.99.0
Successfully installed activesupport-1.99.0
...
Installing RDoc documentation for activeresource-1.99.0...

WARNING Under no circumstances should you try to follow along using Rails 1.2.x:
It won’t work.

To confirm that you have the correct version of Rails 2, run gem list at a Com-
mand Prompt/Terminal window. The rails gem should list version 2.0.1 or
1.99.0 and any other earlier versions you have installed. For example, here’s a
slightly reformatted version of what gem list tells me for the rails gem:

...
rails (2.0.1, 1.99.0, 1.2.5, 1.2.3.7707, 1.2.3, 1.2.2, 1.2.1)
...

http://developer.apple.com/tools/rubyonrails.html
http://gems.rubyforge.org/gems/actionpack-2.0.1.gem

18 ITERATION 2

Hello World
2.1.3 Installing MySQL

Install MySQL 5 by going to http://mysql.com/downloads/mysql/5.0.html and
downloading and running the appropriate installer.

If you’re on Windows, you may choose to install the latest version of SQLyog, a GUI
client for MySQL that has a free version, from http://www.webyog.com/sqlyog/
download_sqlyogfree.html. On OS X, you may choose to install CocoaMySQL from
http://cocoamysql.sourceforge.net/. This is an optional step—if you prefer the
command-line MySQL tools or some other MySQL GUI tool, feel free to skip it.

2.1.4 Installing Flex

In this step, we’ll install either Flex Builder 3 (which includes the Flex SDK) or the
standalone Flex SDK. Depending on whether you’re using Flex Builder 3 or the
Flex SDK, please follow along with the appropriate subsection.

Note about Rails versions
I began writing this book when Rails was at version 1.1. I revised it to update
it to Rails 1.2, and then I rewrote it to use Rails 2. When I was rewriting the
book to use Rails 2, I used the first Preview Release of Rails 2 (rails gem ver-
sion 1.2.3.7707). I then updated my Rails version to the first Release Candi-
date of Rails 2 (gem version 1.99.0) during the copy-editing phase of the
book. Then, during typesetting, I updated my Rails version to 2.0.1. Following
along with either Rails 1.99.0 or 2.0.1 will work.

Q. But I don’t want to use MySQL! I want to use PostgreSQL/Oracle/DB2/SQLite!

A. That’s fine. One of the main components of Rails is ActiveRecord, which sup-
ports many databases. For this book, we’ll assume MySQL. Any other supported
database should work, but you may have to deal with subtle differences. Note
that Rails 2 has moved some database adapters (everything other than MySQL,
PostgreSQL, and SQLite) out of the core Rails distribution. To install adapters for
Oracle, SQL Server, and so on, see http://ryandaigle.com/articles/2007/9/30/
what-s-new-in-edge-rails-your-db-adapter-may-have-left-the-building for the appro-
priate command.

http://cocoamysql.sourceforge.net/
http://cocoamysql.sourceforge.net/
http://cocoamysql.sourceforge.net/
http://cocoamysql.sourceforge.net/
http://ryandaigle.com/articles/2007/9/30/what-s-new-in-edge-rails-your-db-adapter-may-have-left-the-building
http://www.webyog.com/sqlyog/download_sqlyogfree.html

Installing everything 19
Installing Flex Builder 3 on Windows or OS X
Download and install Flex Builder 3 standalone. As I write this, Flex Builder 3 is in
Beta 2 and can be downloaded from http://labs.adobe.com/technologies/flex/
flexbuilder3/. In Q1 2008, it should be out of Beta and probably available for
download from http://www.adobe.com/products/flex/downloads/. When run-
ning the Flex Builder 3 installer, choose to install Flash 9 for Firefox (if you have
it, which you should) and either IE or Safari depending on your platform. Install
JSEclipse, but don’t install the Cold Fusion extensions, because Rails will be used
instead of Cold Fusion or a Java application server.

 At this point, it’s tempting to try to install the Ruby Development Tools (RDT)
or RadRails inside Flex Builder 3. After all, Flex Builder 3 is built on top of Eclipse
Rich Client Platform (RCP), which is a subset of the Eclipse Platform. I have done
this in the past: I got a version of RDT (0.8.1.609062100PRD) working inside
of Flex Builder 2. With Flex Builder 3, this was a bit trickier: I could not get
any version of RDT working inside Flex Builder 3 Beta 2. However, when Flex
Builder 3 Beta 3 was released I got RDT version 0.9.1.200711131528NGT installed
in it and working. Briefly, the instructions to do this are as follows: In Flex
Builder 3 Beta 3, go to Help > Software Updates > Find and Install... Then, choose
“Search for new features to install” and click Next. Click the “New Remote Site...”
button to add a new remote site to download updates from. Set its name to RDT
and its URL to http://updatesite.rubypeople.org/release. Click Finish. In the
“Select the features to install” dialog, ensure you expand the RDT feature and
deselect the “Ruby Mylyn Connector Feature”—this feature does not install
correctly, which causes the install to fail if you leave it selected. Only the core RDT
feature is required. Finally, click Finish to install RDT. When the install is done,
you will be prompted to restart Flex Builder; click yes to do so.

 If you really want syntax highlighting for Ruby and if you can’t get RDT installed
into your version of Flex Builder 3, you can download and install an IDE such as
Aptana (with RadRails), Code Gear’s 3rdRail, NetBeans or IDEA. Also, if you’re
using a Mac, you can configure TextMate to edit your Ruby code and set it up as
an external editor from within Flex Builder (by leaving the *.rb file association
unset). If you download the Aptana IDE, then be sure you install RadRails accord-
ing to the instructions at http://www.aptana.com/download_rails_rdt.php. Hav-
ing done this, you can then run both Aptana and Flex Builder 3 at the same time.
(Note that if you do this, you may have issues with overlapping projects.)

Skip ahead to section 2.1.6: “Creating the Rails project.”

http://www.adobe.com/products/flex/flexbuilder/
http://www.adobe.com/products/flex/flexbuilder/
http://www.adobe.com/products/flex/flexbuilder/
http://labs.adobe.com/technologies/flex/flexbuilder3/

20 ITERATION 2

Hello World
Installing the Flex SDK on Windows, OS X, or Linux
Before we install the Flex SDK, we need to install Flash 9 by going to http://
www.adobe.com/shockwave/download/download.cgi?P1_Prod_Version=Shock-
waveFlash. (If you’re using Linux, you can download a Beta of Flash Player 9 from
http://labs.adobe.com/technologies/flashplayer9/.) After following the instruc-
tions, go to http://www.macromedia.com/software/flash/about/ to confirm that
you have version 9 of the Flash Player installed.

 Next, install the Flex 3 SDK. As I write this, Flex 3 is in Beta 2, which is available
for download from http://labs.adobe.com/technologies/flex/sdk/flex3sdk.html.
Select the license agreement check box about halfway down the page, and then click
the Download Flex 3 SDK 3 Beta 2 for All Platforms (ZIP, 68.6 MB) link under Latest
Milestone: Flex 3 SDK Beta 2. We’ll download a file named flex3sdk_b2_100107.zip.

Windows instructions:
Move the file to c:\ , and (assuming you have WinZip installed) unzip it by right-
clicking it and choosing WinZip > Extract to Folder C:\flex3sdk_b2_100107. Open
a Command Prompt in the samples directory, and run the build-samples script.
This takes forever, so go grab a coffee when it’s running:

C:\flex3sdk_b2_100107\samples\explorer>build.bat
Loading configuration file C:\flex3sdk_b2_100107\frameworks\flex-config.xml
This beta will expire on Thu Jan 31 00:00:00 PST 2008.
(...lots of output skipped...)

To play around with the Flex samples, open the samples explorer HTML file. For
me, this is file:///C:/flex3sdk_b2_100107/samples/explorer/explorer.html.

OS X (or Linux) instructions:
Move the file to the home directory. Create a directory called flex3sdk, move the
flex3sdk_b2_100107.zip file into it, and then unzip it using the unzip command:

/Users/peterarmstrong > mkdir flex3sdk
/Users/peterarmstrong > mv flex3sdk_b2_100107.zip flex3sdk
/Users/peterarmstrong > cd flex3sdk
/Users/peterarmstrong/flex3sdk > unzip flex3sdk_b2_100107.zip
 (...lots of output skipped...)

We need to add the flex3sdk/bin directory to our path so mxmlc will work. To do
so, we add lines similar to the following to the .bash_profile file in our home
directory:

Skip ahead to section 2.1.5: “Installing a text editor or IDE (SDK users only).”

Installing everything 21
export FLEX_HOME=/Users/peterarmstrong/flex3sdk
export PATH=$PATH:/$FLEX_HOME/bin

TIP The .bash_profile file doesn’t appear in Finder, but it appears in Text-
Mate’s File > Open dialog (or in Dired mode in Emacs, and so on). To
see the hidden files in a directory, do ls -lag in a Terminal window.

Close the Terminal, open a new one (a low-tech way to refresh the path), and run
the following commands to check that mxmlc is present and correct:

/Users/peterarmstrong > mxmlc -version
Version 3.0 build 183453
/Users/peterarmstrong > mxmlc -help
Adobe Flex Compiler (mxmlc)
Version 3.0 build 183453
Copyright (c) 2004-2006 Adobe Systems, Inc. All rights reserved.
...

To make the samples and bin directories executable, cd to the samples directory,
and run the build-samples script. The build-samples script takes forever (on
my G4 Mac Mini anyway), so go grab a coffee when it’s running:

/Users/peterarmstrong/flex3sdk > chmod –R 755 samples
/Users/peterarmstrong/flex3sdk > chmod –R 755 bin
/Users/peterarmstrong/flex3sdk > cd samples/explorer
/Users/peterarmstrong/flex3sdk/samples/explorer >
./build.sh
(...lots of output skipped...)

To play around, open the samples explorer HTML file. For me, this is file:///
Users/peterarmstrong/flex3sdk/samples/explorer/explorer.html.

2.1.5 Installing a text editor or IDE (SDK users only)

If we installed the Flex SDK, we don’t have Flex Builder—so we need to pick some
other text editor or IDE to use. Chances are you already have a favorite IDE or text
editor. There are many good text editors (Emacs, TextMate, vi) and IDEs (Code
Gear’s 3rdRail, NetBeans, IDEA, and Aptana + RadRails) to choose from. In this
iteration, we’ll install Aptana with RadRails for Windows users and TextMate for
OS X users.

Windows users: installing Aptana with RadRails
This section uses Aptana (with RadRails) because it’s free. RadRails includes
Ruby syntax highlighting via the RDT plug-in and many other features, such as
AIR support. You can download Aptana RadRails from http://www.aptana.com/
download_rails_rdt.php. Download the standalone version by choosing Down-
load Aptana IDE (Win).

http://www.aptana.com/download_rails_rdt.php

22 ITERATION 2

Hello World
 Install Aptana by running the installer, choosing Custom Install, and choos-
ing to install Sun JRE 1.6.0 as well. I chose to not use any file associations,
because any Eclipse-based product takes a while to start and I don’t like doing
that accidentally.

 When the install is done, launch Aptana. When we first launch Aptana, we’re
prompted for a workspace. I chose C:\peter\aptana_workspace (creating a new
folder there). This doesn’t really matter, because we’ll ignore the default for
pomodo, but be sure to select the Use This as the Default and Do Not Ask Again
check box so Aptana doesn’t ask you on startup every time. We’ll install the Rad-
Rails plug-in into Aptana later in this iteration, so don’t try to figure it out now.

OS X users: installing TextMate
If you wish to go the text-editor route, and you don’t already have a favorite text
editor, I recommend TextMate. If you haven’t installed TextMate and wish to try
it, you can download a trial from http://macromates.com/. If you’re a die-hard
Emacs user, I recommend Aquamacs (http://aquamacs.org/) on OS X. If you’re a
vi user (or a Linux user), you don’t need my advice.

 Because many Mac-using Rails developers use TextMate, I will too for this
iteration. If you want the screenshots to look like what you’re doing, then install
TextMate.

2.1.6 Creating the Rails project

Now it’s time to have some fun: We’ll create a Rails project. Regardless of whether
we’re using Flex Builder 3 or the Flex SDK, this step is the same; there are separate
instructions for Windows and OS X / Linux.

IMPORTANT In Rails 2.0.2 and above the default database is SQLite; in Rails 2.0.1 and
below it is MySQL. If you are using Rails 2.0.2 or above, you will need to
say “rails -d mysql pomodo” in the following commands; if you are using
Rails 2.0.1 or below you can just say “rails pomodo”. Since this book is
using MySQL, I have modified the commands below to say “rails -d mysql
pomodo” (since chances are you are following along using Rails 2.0.2 or
above)—even though when I last ran these commands I was using Rails
2.0.1 and it was not necessary to do so.

Windows version
Without further ado, let’s create the project. (By now you should have a shortcut
to Command Prompt in your Quick Launch bar, because you’ll be using lots of
Command Prompts when doing Rails development.) Open a Command Prompt
in the directory you’ll be creating the project in (I used c:\peter\flexiblerails), and
enter the following commands:

Installing everything 23
C:\peter\flexiblerails>mkdir current
C:\peter\flexiblerails>cd current
C:\peter\flexiblerails\current>rails -d mysql pomodo
 (...lots of output skipped...)
C:\peter\flexiblerails\current>cd pomodo
C:\peter\flexiblerails\current\pomodo>ruby script\server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options

TIP I recommend setting your shortcut to Command Prompt to start in your
equivalent of c:\peter\flexiblerails\current\pomodo. Right-click the short-
cut, choose Properties, and modify the Start In directory in the Shortcut
tab. This will save you a lot of time.

Check to see if we’re up and running. Point the web browser at http://
localhost:3000/. We should see the screen shown in figure 2.1.

Congratulations: We’re on Rails! Leave this Command Prompt window open with
WEBrick running.

OS X version
Without further ado, let’s create the project. (By now you should have the Ter-
minal application on your Dock, because you’ll be using lots of Terminal win-
dows when doing Rails development.) Open a Terminal window, and enter the

Figure 2.1
We’re on Rails!

24 ITERATION 2

Hello World
following commands. You create a flexiblerails directory and inside that a cur-
rent directory. You then run the rails pomodo command to create our applica-
tion, and start WEBrick with ruby script/server:

/Users/peterarmstrong > mkdir flexiblerails
/Users/peterarmstrong > cd flexiblerails
/Users/peterarmstrong/flexiblerails > mkdir current
/Users/peterarmstrong/flexiblerails > cd current
/Users/peterarmstrong/flexiblerails/current > rails -d mysql pomodo
(...lots of output skipped...)
/Users/peterarmstrong/flexiblerails/current > cd pomodo
/Users/peterarmstrong/flexiblerails/current/pomodo >
ruby script/server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options

To check that we’re up and running, point the web browser to http://
localhost:3000/. We should see the screen shown in figure 2.2.

Congratulations: We’re on Rails! Leave this Terminal window open with WEBrick
(or Mongrel if you followed the Hivelogic instructions) running.

2.1.7 How to read the rest of this iteration

Please follow along with the rest of this iteration reading only the section that
applies to you:

Figure 2.2
We’re on Rails!

Windows or Mac OS X + Flex Builder 3 25
■ If you’re using Flex Builder 3 with either a Windows PC or a Mac, read sec-
tion 2.2: “Windows or Mac OS X + Flex Builder 3.”

■ If you’re using the Flex Framework SDK with a Windows PC, read section 2.3:
“Windows + Flex SDK.”

■ If you’re using the Flex Framework SDK with a Mac or a Linux PC, read sec-
tion 2.4: “Mac OS X (or Linux) + Flex SDK.”

2.2 Windows or Mac OS X + Flex Builder 3

Welcome, fellow Flex Builder 3 users! You get to follow along with the entire book
written specifically for you.

2.2.1 Creating the Flex project

Now, let’s do some preparation and then get our project into Flex Builder 3 and cre-
ate a proper “Hello World.” Open a new Command Prompt (aren’t you glad you
made that shortcut?) in the pomodo directory, and enter the following commands:

C:\peter\flexiblerails\current\pomodo>mkdir app\flex

C:\peter\flexiblerails\current\pomodo>mkdir public\bin

Next, in Flex Builder, choose File > New >
Flex Project. Give the project the name
pomodo, uncheck the Use Default Location
check box, and click Browse to browse to the
location where you ran the rails pomodo
command and then into the pomodo direc-
tory that was created by the rails pomodo
command (for me, this is C:\peter\flexible-
rails\current\pomodo). Leave Application
Type set to Web Application (Runs in Flash
Player), and leave Application Server Type
set to None. The dialog now looks like the
one shown in figure 2.3.

 Click Next. We’re taken to the dialog
where we set the compiled Flex application
location (the output folder). For me, this is
public\bin, as shown in figure 2.4. The bin
folder is arbitrarily named, but it’s essential that it be underneath the public
folder because that is what Rails makes publicly available to visitors to our site.

Figure 2.3 New Flex Project Wizard, step 1

26 ITERATION 2

Hello World
Click Next. We’re taken to the dialog panel where we set build paths. Set Main
Source Folder to app\flex. This app\flex location is also arbitrary, but I like it
because Rails keeps folders under app private—and we don’t want our Flex code
public, just as we don’t want our Rails code public. Finally, rename pomodo.mxml
to Pomodo.mxml.

NOTE We rename pomodo.mxml to Pomodo.mxml in the New Flex Project dia-
log to conform to ActionScript class-naming conventions, which include
using TitleCase for classes. (An MXML file is a class—specifically, a sub-
class of its root node.)

With these changes made, the dialog
should look like figure 2.5.

 Click Finish. The new pomodo
project is loaded, and a file called
Pomodo. mxml is created in the
app\flex folder and opened. Before we
add to it, go to the Project menu and
uncheck the Build Automatically menu
item. We don’t want to have Flex
Builder doing a rebuild every time we
save—this gets annoying in a hurry.

2.2.2 “Hello World” from Flex

Next, to add a button B with a “hello
world!” label, modify the Pomodo.
mxml file so it looks like listing 2.1.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"

Listing 2.1 app\flex\Pomodo.mxml

Figure 2.4
New Flex Project Wizard, step 2

Figure 2.5 New Flex Project Wizard, step 3

Windows or Mac OS X + Flex Builder 3 27
 layout="absolute">
 <mx:Button label="hello world!"/>
</mx:Application>

Save the Pomodo.mxml file, and then choose the Project > Build All menu item
or click the Build All toolbar button (this button only shows up if we’ve
unchecked Project > Build Automatically): .

 The project is built. Switch back to our web browser, and go to http://
localhost:3000/bin/Pomodo.html. We see the screen shown in figure 2.6.

We now have our first running Flex 3 application!

NOTE If you don’t see a running application, chances are you didn’t save
Pomodo.mxml. We need to save our files before doing a build—Flex
Builder 3 doesn’t do this for us by default. Note that we can choose File >
Save All to save all modified files. This command is Ctrl+Shift+S with the
Default key bindings (or Ctrl+X, S with the Emacs key bindings enabled).

B

Code width
I’m modifying much of the Rails-generated code to be 64-column code, because
I need to fit the code and the cueball annotations within 68 columns. Because
these diffs would be extremely distracting, I’m not using the bold italic font for them.

Instead, I’ll modify the code first and pretend the 64-column code is what the
generator produced. Then, we’ll make changes and show those changes with the
bold italic font for additions and strikethrough font for deletions. If you’re follow-
ing along running all the commands yourself, you can either make your code
match the book by making the appropriate changes or just be grateful that you
have more than 64 columns to work with. (“[64 columns] should be enough for
anybody,” anyone? At least it’s proof that you don’t need 200 column lines to
write Ruby code: The Rails source code seems to have been written by people
determined to use every pixel of their 30-inch monitors—it’s very wide.)

Figure 2.6
“Hello World” from Flex

28 ITERATION 2

Hello World
You may have noticed that I pulled a fast one: Where did the Pomodo.html file come
from? The short answer is that Flex Builder created it for us. We’ll look into it later;
for now, just know that it’s a wrapper that loads the Pomodo.swf file that our
Pomodo.mxml file gets compiled into. Note also that although we picked public\bin
as our output folder, the URL starts with bin; this is because public is the root.

2.2.3 “Hello World” from Rails

Now, let’s switch gears and do a “Hello World” in Rails before we move on to hav-
ing Flex talk to Rails. First we need to set the *.rb, *.bat, and *.log file associations
in Flex Builder to use the built-in Text Editor. Choose Window > Preferences, and
expand the General / Editors / File Associations node of the tree on the left. Add
a new content type of *.rb, and add an associated editor called Text Editor. Once
we’ve done this, the associated editors pane will show “Text Editor (default)”
when the *.rb file type is selected in the file types list. This is shown in figure 2.7.

 Follow the same process to associate *.bat and *.log with the Text Editor.
 Now, even though we aren’t going to be using the database, we need to config-

ure it. This wasn’t true in Rails 1.x, but it’s true in Rails 2. We’ll start by creating a
tiny batch file and a small SQL script to create a new database. In Flex Builder,

Figure 2.7 Setting the *.rb file association

Windows or Mac OS X + Flex Builder 3 29
right-click the root pomodo folder in the Navigator, and choose New > File. Name
the new file newdb.bat, and set its contents as shown in listing 2.2.

TIP If you’re on OS X, create a similar shell script—but don’t include call:
This is Windows-only. (Just say rake db:migrate.)

mysql -h localhost -u root -p <db\create.sql
call rake db:migrate

This batch file connects to MySQL, prompting for the root password, and runs the
db\create.sql SQL script we’ll create next. Then, it calls rake db:migrate to
run the migrations we’ll create.

 (Don’t run this batch file yet; we haven’t defined any migrations or created the
create.sql script.) Now, create a file called create.sql in the db folder with the con-
tents shown in listing 2.3 (change YourPasswordHere to some top-secret password).

drop database if exists pomodo_development;
create database pomodo_development;
drop database if exists pomodo_test;
create database pomodo_test;
drop database if exists pomodo_production;
create database pomodo_production;
GRANT ALL PRIVILEGES ON pomodo_development.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON pomodo_test.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON pomodo_production.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;

NOTE In Rails 2 there is an improved way to do this: use the new rake db:drop
and rake db:create targets. (I learned about these targets after the book
was already in typesetting.)

Next, edit the config\database.yml file to use the connection information for the
pomodo user (see listing 2.4).

MySQL (default setup). Versions 4.1 and 5.0 are recommended.
#
Install the MySQL driver:
gem install mysql
On MacOS X:

Listing 2.2 newdb.bat

Listing 2.3 db\create.sql

Listing 2.4 config\database.yml

30 ITERATION 2

Hello World
sudo gem install mysql -- --with-mysql-dir=/usr/local/mysql
On Windows:
gem install mysql
Choose the win32 build.
Install MySQL and put its /bin directory on your path.
#
And be sure to use new-style password hashing:
http://dev.mysql.com/doc/refman/5.0/en/old-client.html
development:
 adapter: mysql
 encoding: utf8
 database: pomodo_development
 username: pomodo
 password: YourPasswordHere
 host: localhost

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
test:
 adapter: mysql
 encoding: utf8
 database: pomodo_test
 username: pomodo
 password: YourPasswordHere
 host: localhost

production:
 adapter: mysql
 encoding: utf8
 database: pomodo_production
 username: pomodo
 password: YourPasswordHere
 host: localhost

We replace the username of root with pomodo and set the password (change
YourPasswordHere to your password) for the development B, test C, and pro-
duction D databases.

 Now, we’ll run the create script, even though we haven’t defined any database
migrations yet. Stop your server, and run newdb.bat:

c:\peter\flexiblerails\current\pomodo>newdb.bat

c:\peter\flexiblerails\current\pomodo>
mysql -h localhost -u root -p 0<db\create.sql
Enter password: *******

c:\peter\flexiblerails\current\pomodo>call rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.

B

C

D

Windows or Mac OS X + Flex Builder 3 31
(in c:/peter/flexiblerails/current/pomodo)

c:\peter\flexiblerails\current\pomodo>

Note that we didn’t enter the MySQL root user’s password in the newdb.bat file, so
we were prompted for it because we specified the -p option.

 Next, create a file called hello_controller.rb in app\controllers, and set its con-
tents as shown in listing 2.5.

class HelloController < ApplicationController
 def sayhello
 render :text => "hello world!"
 end
end

This code creates a class called HelloController that extends ApplicationCon-
troller. It has one method, sayhello, which renders the string “hello world!” to
the browser as text with the render :text => "hello world!" call.

 Start the server again:

c:\peter\flexiblerails\current\pomodo>ruby script\server

Back in our web browser, go to the
following URL: http://localhost:3000/
hello/sayhello. We see something like
figure 2.8.

 A typical Rails tutorial would now
explain how views work with control-
lers, we’d add a view .html.erb, and so
on. But we’re not interested in normal Rails views, except for occasional debug-
ging purposes, so we’ll skip all that—it’s covered better in AWDwR.

2.2.4 “Hello World” from Flex and Rails
Now, let’s do something interesting. (Finally!) Go back to Pomodo.mxml, and
modify it to look like listing 2.6.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 width="100%"
 height="100%">

Listing 2.5 app\controllers\hello_controller.rb

Listing 2.6 app\flex\Pomodo.mxml

Figure 2.8 “Hello World” from Rails

32 ITERATION 2

Hello World
 <mx:HTTPService
 id="helloSvc"
 url="/hello/sayhello"
 method="POST"/>
 <mx:Button label="call hello service"
 click="helloSvc.send()"/>
 <mx:TextInput text="{helloSvc.lastResult}"/>
</mx:Application>

Let’s see what this does. Build the
project (by choosing Project > Build
All or clicking the toolbar button),
and reload http://localhost:3000/
bin/Pomodo.html in the browser. We
see something like figure 2.9.

 Admire the gradient fill: The ven-
ture capitalists should come knock-
ing any minute! Let’s see if it works.
Click the Call Hello Service button,
and the result should be something
like figure 2.10.

 We did it! Business Week will make
us a paper millionaire in no time. We
can close our Series A or Angel
round, have a drink, and then start
the next iteration. Don’t worry: Soon we’ll start talking about why the code does
what it does. If I started explaining it now, it wouldn’t be “Hello World.”

2.3 Windows + Flex SDK

This is the Way of the Frugal Developer—we didn’t pay for Flex Builder, and our lap-
top or desktop probably costs much less than a shiny Mac Book Pro would have.

2.3.1 Creating the Aptana RadRails project

Let’s do some preparation and then get our project into Aptana RadRails and cre-
ate a proper “Hello World.” It’s a good idea to modify the Command Prompt
shortcut to start in the pomodo directory by right-clicking it and choosing Proper-
ties. This will save us a few seconds many times as we work through this book.

Proceed to Iteration 3.

Figure 2.9 Pomodo, the one-button version

Figure 2.10 Hello Web 2.0 millions!

Windows + Flex SDK 33
First, however, we need to configure Aptana to install RadRails. (Yes, as of 12
December 2007, even though we downloaded the RadRails version of Aptana, it
isn’t installed out of the box.) When we launch Aptana, the Aptana Start Page is
shown. Scroll down the Plug-ins panel, and click the Install button for Aptana
RadRails, as shown in figure 2.11.

 We’re prompted with a dialog where we can choose the features to install.
Select the Aptana RadRails feature, and click Next. Accept the terms of the
license agreements for Aptana RadRails and Ruby Development Tools, and click
Next. Finally, click Finish to install RadRails and RDT. When we’re warned about
installing an unsigned feature, choose Install All. When the install finishes, click
Yes to restart the Aptana IDE. (Aptana is built on Eclipse, and Eclipse likes to
restart itself after it adds a feature.) Close the Aptana Start Page.

 Now, choose File > New > Rails Project. We’re taken to the New Rails Project
Wizard page. Deselect the Generate Rails Application Skeleton and Create a
WEBrick Server options.

NOTE Yes, we could leave these options selected and skip the command-line
stuff to create the project, but I wanted this iteration to be useful to peo-
ple using text editors instead of RadRails. I certainly didn’t want to have
to write four versions of iteration 2!

Set the Project Name to pomodo. Next, deselect the Use Default Location check
box, and click Browse. Navigate to the pomodo project directory, which for me is

Figure 2.11
The Aptana
IDE, showing the
Aptana Start Page

34 ITERATION 2

Hello World
C:\peter\flexiblerails\current\pomodo. When we’re finished, the dialog should
look like figure 2.12.

 Click Finish, and our project will be created.

2.3.2 “Hello World” from Flex

Open a Command Prompt in the pomodo directory, and enter the following com-
mands shown in boldface:

C:\peter\flexiblerails\current\pomodo>mkdir app\flex

C:\peter\flexiblerails\current\pomodo>mkdir public\bin

The app\flex location is where we’re putting all our Flex code, and the public\bin
location is where the compiled output goes. The app\flex location is somewhat
arbitrary, but I like it because Rails keeps folders under app private (and we don’t
want our Flex code public, just as we don’t want our Rails code public). The pub-
lic\bin folder is also arbitrarily named, but it’s essential that the bin folder be
underneath the public folder because that is what Rails makes publicly available
to visitors to our site.

 Next, switch back to Aptana and show the Rails Navigator, choosing Window >
Show View > Rails Navigator if it’s not shown. Right-click the pomodo folder at the
top, or click in the Rails Navigator and press F5 to refresh the view. Expand the
app directory, right-click the flex directory, and choose New > File. Enter the File
Name Pomodo.mxml, and click Finish. Set the file’s contents to be as shown in list-
ing 2.7.

Figure 2.12
RadRails project options

Windows + Flex SDK 35
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Button label="hello world!"/>
</mx:Application>

This creates a new mx:Application (the top-level component of a Flex app is
always mx:Application) containing a button that displays the text “hello world!”
Choose File > Save.

 Now, let’s set about compiling the Flex application.

TIP The best resource for how to use the compilers is Building and Deploying
Flex Applications, a 260-page (as of Flex 3, Beta 2) PDF
(flex3_buildanddeploy.pdf). You can download it from http://
www.adobe.com/support/documentation/en/flex/. Pay close attention
to the chapter “Using the Flex Compilers.”

First, we need to configure our environment variables to have the FLEX_HOME vari-
able set. Also, I like to put that in my PATH (so that I can run mxmlc without speci-
fying its full path).

 Choose Start > Settings > Control Panel
> System. Choose the Advanced tab, and
click the Environment Variables button. In
the System Variables section, click the New
button. Add a new system variable with the
path to the Flex SDK, as shown in figure 2.13.

 Click OK. Next, we add %FLEX_HOME%\
bin to the beginning of our path (see fig-
ure 2.14).

 Click OK, click OK to close the Environ-
ment Variables dialog, and click OK to
close the System Properties.

 Now that we’ve done this, launch a new
Command Prompt (because our environ-
ment variables aren’t refreshed in the
already-opened ones), and run the follow-
ing commands to check that mxmlc is
present and correct:

Listing 2.7 app\flex\Pomodo.mxml

Figure 2.13 Setting FLEX_HOME

Figure 2.14 Adding FLEX_HOME to the path

http://www.adobe.com/support/documentation/en/flex/
http://www.adobe.com/support/documentation/en/flex/

36 ITERATION 2

Hello World
c:\peter\flexiblerails\current\pomodo>mxmlc -version
Version 3.0 build 183453

c:\peter\flexiblerails\current\pomodo>mxmlc -help
Adobe Flex Compiler (mxmlc)
Version 3.0 build 183453
Copyright (c) 2004-2006 Adobe Systems, Inc. All rights reserved.
...

Next, we’ll compile Pomodo.mxml:

C:\peter\flexiblerails\current\pomodo >cd app\flex
C:\peter\flexiblerails\current\pomodo\app\flex>mxmlc Pomodo.mxml
Loading configuration file C:\flex3sdk_b2_100107\frameworks\flex-config.xml
This beta will expire on Thu Jan 31 00:00:00 PST 2008.
C:\peter\flexiblerails\current\pomodo\app\flex\Pomodo.swf (142854 bytes)

C:\peter\flexiblerails\current\pomodo\app\flex>

We now have a Pomodo.swf file, which contains our compiled Flex application.
Move the Pomodo.swf file into pomodo\public\bin, and see if we can load it directly:

C:\peter\flexiblerails\current\pomodo\app\flex>
move Pomodo.swf ..\..\public\bin

Now, load http://localhost:3000/bin/
Pomodo.swf in a browser. Depending
on our browser configuration, it may
work and load the Pomodo applica-
tion, or we may get something like fig-
ure 2.15.

 That’s not what we wanted!
 It turns out that we need an HTML

wrapper file. (Even if Pomodo.swf did
load in our browser, many of our users
may get the dialog in figure 2.15. So,
we need a wrapper anyway.) The HTML
wrapper file is best described in the
“Creating a simple wrapper” section of Building and Deploying Flex Applications. We’ll
just do what we’re supposed to do and leave the why for that PDF. Create a file called
Pomodo.html inside app\flex, and put in it the code1 shown in listing 2.8.

NOTE Don’t add line breaks inside the codebase and pluginspage attribute
values.

1 This code is a simplified copy-paste-modify of the code from Building and Deploying Flex Applications.

Figure 2.15 Um, that’s not a Flex app…

Windows + Flex SDK 37
<html>
<body>
<script src="mysource.js"></script>
<noscript>
<object id='pomodo'
 classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'
 codebase='http://download.macromedia.com/pub/shockwave/cabs/

 ➥flash/swflash.cab#version=9,0,0,0'
 height='100%' width='100%'>
<param name='src' value='Pomodo.swf'/>
<embed name='Pomodo'
 pluginspage='http://www.macromedia.com/shockwave/download/

 ➥index.cgi?P1_Prod_Version=ShockwaveFlash'
 src='Pomodo.swf' height='100%' width='100%'/>
</object>
</noscript>
</body>
</html>

Similarly, create a new file called mysource.js in app\flex. Set its contents as shown
in listing 2.9.

document.write("<object id='Pomodo' classid='clsid:D27CDB6E-AE6D-11c

 ➥f-96B8-444553540000' codebase='http://download.macromedia.com/pu

 ➥b/shockwave/cabs/flash/swflash.cab#version=9,0,0,0' height='100%

 ➥' width='100%'>");
document.write("<param name='src' value='Pomodo.swf'/>");
document.write("<embed name='pomodo' src='Pomodo.swf' pluginspage='h

 ➥ttp://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Ve

 ➥rsion=ShockwaveFlash' height='100%' width='100%'/>");
document.write("</object>");

NOTE Each of these document.write calls is one line only—this file is four lines
long, not nine, and each line begins with document.write.

Next, copy both these files to pomodo\public\bin:

C:\peter\flexiblerails\current\pomodo\app\flex>
copy Pomodo.html ..\..\public\bin
 1 file(s) copied.

C:\peter\flexiblerails\current\pomodo\app\flex>

Listing 2.8 app\flex\Pomodo.html

Listing 2.9 app\flex\mysource.js

38 ITERATION 2

Hello World
copy mysource.js ..\..\public\bin
 1 file(s) copied.

C:\peter\flexiblerails\current\pomodo\app\flex>

Try loading http://localhost:3000/bin/Pomodo.html. Note that although we
picked public\bin as our output folder, the URL starts with bin; this is because pub-
lic is the root.

NOTE If you get a blank screen, chances are you messed up the copy-paste of
the document.write calls.

We should see the screen shown in fig-
ure 2.16.

 We now have a running Flex 3 appli-
cation built using the Flex 3 SDK!

2.3.3 “Hello World” from Rails

Now, let’s switch gears and do a
“Hello World” in Rails before we
move on to having Flex talk to Rails. First, however, we need to set the *.bat and
*.log file associations in Aptana to use the built-in text editor. Choose Window >
Preferences, and expand the General / Editors / File Associations node of the
tree on the left. Add a new content type called *.bat, and add an Associated Editor
called Text Editor. After we do this, the Associated Editors pane shows Text Editor
(Default) when the *.bat file type is selected in the File Types list. Next, do the
same for *.log.

 Even though we won’t be using the database, we need to configure it. This
wasn’t true in Rails 1.x, but it’s true in Rails 2. We’ll start by creating a tiny batch
file and a small SQL script to create a new database. In Aptana, right-click the root
pomodo folder in the Navigator, and choose New > File. Name the batch file
newdb.bat, and set its contents as shown in listing 2.10.

mysql -h localhost -u root -p <db\create.sql
call rake db:migrate

This connects to MySQL, prompting for the root password, and then runs the
db\create.sql SQL script we’ll create next. Then, it calls rake db:migrate to
run the migrations we’ll create.

 (Don’t run this batch file yet; we haven’t defined any migrations or created
the create.sql script.) Now, create a file called create.sql in the db folder with

Listing 2.10 newdb.bat

Figure 2.16 “Hello World” from Flex

Windows + Flex SDK 39
the contents shown in listing 2.11 (change YourPasswordHere to some top-
secret password).

drop database if exists pomodo_development;
create database pomodo_development;
drop database if exists pomodo_test;
create database pomodo_test;
drop database if exists pomodo_production;
create database pomodo_production;
GRANT ALL PRIVILEGES ON pomodo_development.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON pomodo_test.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON pomodo_production.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;

NOTE In Rails 2 there is an improved way to do this: use the new rake db:drop
and rake db:create targets. (I learned about these targets after the book
was already in typesetting.)

Next, edit the config\database.yml file to use the connection information for the
pomodo user (see listing 2.12).

MySQL (default setup). Versions 4.1 and 5.0 are recommended.
#
Install the MySQL driver:
gem install mysql
On MacOS X:
sudo gem install mysql -- --with-mysql-dir=/usr/local/mysql
On Windows:
gem install mysql
Choose the win32 build.
Install MySQL and put its /bin directory on your path.
#
And be sure to use new-style password hashing:
http://dev.mysql.com/doc/refman/5.0/en/old-client.html
development:
 adapter: mysql
 encoding: utf8
 database: pomodo_development
 username: pomodo
 password: YourPasswordHere
 host: localhost

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.

Listing 2.11 db\create.sql

Listing 2.12 config\database.yml

B

40 ITERATION 2

Hello World
Do not set this db to the same as development or production.
test:
 adapter: mysql
 encoding: utf8
 database: pomodo_test
 username: pomodo
 password: YourPasswordHere
 host: localhost

production:
 adapter: mysql
 encoding: utf8
 database: pomodo_production
 username: pomodo
 password: YourPasswordHere
 host: localhost

We replace the username of root with pomodo and set the password (change
YourPasswordHere to your password) for the development B, test C, and pro-
duction D databases.

 Now we’ll run the create script, even though we haven’t defined any database
migrations yet. Stop the server, and run newdb.bat:

c:\peter\flexiblerails\current\pomodo>newdb.bat

c:\peter\flexiblerails\current\pomodo>
mysql -h localhost -u root -p 0<db\create.sql
Enter password: *******

c:\peter\flexiblerails\current\pomodo>call rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)

c:\peter\flexiblerails\current\pomodo>

Note that we didn’t enter the root password in the newdb.bat file, so we’re
prompted for it because we specified the -p option.

 Next, create a file called hello_controller.rb in app\controllers, and set its con-
tents as shown in listing 2.13.

class HelloController < ApplicationController
 def sayhello
 render :text => "hello world!"
 end
end

Listing 2.13 app\controllers\hello_controller.rb

C

D

Windows + Flex SDK 41
This creates a class called HelloController that extends ApplicationControl-
ler. It has one method, sayhello, which renders the string “hello world!” to the
browser as text with the render :text => "hello world!" call.

 Start the server again:

c:\peter\flexiblerails\current\pomodo>ruby script\server

Next, in our web browser, we go to the following URL: http://localhost:3000/
hello/sayhello. We see something like figure 2.17.

 The typical Rails tutorial would now explain how views work with controllers,
and we would go about adding a view .html.erb file, and so on. However, we’re not
that interested in normal Rails views, except for occasional debugging purposes.
So, we’ll skip all that—it’s covered better in AWDwR.

2.3.4 “Hello World” from Flex and Rails

Now, let’s do something interesting. (Finally!) Go back to Pomodo.mxml, and
modify it to look like listing 2.14.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 width="100%"
 height="100%">
 <mx:HTTPService
 id="helloSvc"
 url="/hello/sayhello"
 method="POST"/>
 <mx:Button label="call hello service"
 click="helloSvc.send()"/>
 <mx:TextInput text="{helloSvc.lastResult}"/>
</mx:Application>

Listing 2.14 app\flex\Pomodo.mxml

Figure 2.17
“Hello World” from Rails

42 ITERATION 2

Hello World
Let’s see what this does. Save the file, open a new Command Prompt in app\flex,
recompile, and move the SWF:

C:\peter\flexiblerails\current\pomodo\app\flex>mxmlc Pomodo.mxml
Loading configuration file C:\flex3sdk_b2_100107\frameworks\
flex-config.xml
This beta will expire on Thu Jan 31 00:00:00 PST 2008.
C:\peter\flexiblerails\current\pomodo\app\flex\Pomodo.swf
(217919 bytes)

C:\peter\flexiblerails\current\pomodo\app\flex>
move Pomodo.swf ..\..\public\bin
Overwrite C:\peter\flexiblerails\current\pomodo\public\bin\
Pomodo.swf? (Yes/No/All): y

C:\peter\flexiblerails\current\pomodo\app\flex>

Go to http;//localhost:3000/bin/Pomodo.html. You should see what is shown in
figure 2.18; if you don’t, hold down the Ctrl key and click reload.

Admire the gradient fill: The venture capitalists should come knocking any
minute! Let’s see if it works. Click the Call Hello Service button (see figure 2.19).

 We did it! Business Week will make us paper millionaires in no time. We can
close our Series A or Angel round, have a drink, and then start the next iteration.

Figure 2.18
Pomodo: the one-button version

Figure 2.19
Hello Web 2.0 millions!

Mac OS X (or Linux) + Flex SDK 43
Don’t worry: Soon we’ll start talking about why the code does what it does. If I
started explaining it now, it wouldn’t be “Hello World.”

 You should now be able to follow along with the iterations in the book, because
the mxmlc Pomodo.mxml command will automatically bring in dependent files.

2.4 Mac OS X (or Linux) + Flex SDK

Welcome, fellow Mac users! We don’t just have shiny computers, we also have
TextMate: the Preferred Text Editor of the Leaders of the Rails Community. (Peo-
ple who think really different and don’t like TextMate can use Aquamacs, vi, or
whatever text editor they wish. Linux users, this includes you: you can follow
along with this iteration, adapting it for your configuration as necessary.)

2.4.1 Creating the TextMate project (or launch Emacs or vi)

If you’re using Emacs or vi, launch that now, and navigate to the flexiblerails/
current directory. These instructions assume TextMate—I have to assume
something.

 Launch TextMate, and choose File > New Project. Drag the flexiblerails/cur-
rent/pomodo folder from the Finder onto the Drag Files And Folders Here sec-
tion. (Or just drag it onto the TextMate icon in the dock instead of doing all that.)
Choose File > Save Project to save the pomodo project. (Save it in the flexible-
rails/current/pomodo folder.) Name the project file pomodo (the extension will
automatically be .tmproj).

2.4.2 “Hello World” from Flex

Open a new Terminal window, and create the following directories:

/Users/peterarmstrong/flexiblerails/current/pomodo > mkdir app/flex
/Users/peterarmstrong/flexiblerails/current/pomodo >
mkdir public/bin

This app/flex location is somewhat arbitrary, but I like it because Rails keeps fold-
ers under app private (and we don’t want our Flex code public, just as we don’t
want our Rails code public). The public/bin folder is also arbitrarily named, but
it’s essential that the bin folder be underneath the public folder because that is
what Rails makes publicly available to visitors to our site.

 In the app/flex directory, create a file called Pomodo.mxml, and set its con-
tents as shown in listing 2.15.

Proceed to Iteration 3.

44 ITERATION 2

Hello World
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Button label="hello world!"/>
</mx:Application>

This creates a new mx:Application (the top-level component of a Flex app is
always mx:Application) containing a button that displays the text “hello world!”

 Now, let’s set about compiling the Pomodo.mxml Flex application.

TIP The best resource for how to use the compilers is Building and Deploying
Flex Applications, a 260-page (as of Flex 3, Beta 2) PDF (flex3_
buildanddeploy.pdf). You can download it from http://www.adobe.
com/support/documentation/en/flex/. Pay close attention to the
chapter “Using the Flex Compilers.”

Compile Pomodo.mxml:

/Users/peterarmstrong/flexiblerails/current/pomodo > cd app/flex
/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex >
mxmlc Pomodo.mxml
Loading configuration file /Users/peterarmstrong/flex3sdk/

 ➥frameworks/flex-config.xml
This beta will expire on Thu Jan 31 00:00:00 PST 2008.
/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex/

 ➥Pomodo.swf (142697 bytes)
/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex > ls
Pomodo.mxml Pomodo.swf

Hooray! We now have a Pomodo.swf file, which contains our compiled Flex appli-
cation. Let’s move the Pomodo.swf file into pomodo/public/bin and see if we can
load it directly:

/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex >
mv Pomodo.swf ../../public/bin/

Load http://localhost:3000/bin/Pomodo.swf
in a browser. Depending on our browser con-
figuration, it may work and load the pomodo
application, or we may get something like fig-
ure 2.20.

 That’s not what we wanted!
 It turns out that we need an HTML wrapper

file. (Even if Pomodo.swf loaded in our browser,

Listing 2.15 app/flex/Pomodo.mxml

Figure 2.20 Um, that’s not a Flex app…

http://www.adobe.com/support/documentation/en/

Mac OS X (or Linux) + Flex SDK 45
many of our users may get the dialog in figure 2.22, on page 49. So, we need a wrap-
per anyway.) The HTML wrapper file is best described in the “Creating a simple
wrapper” section of Building and Deploying Flex Applications. We’ll just do what we’re
supposed to do and leave the why for that PDF. Create a file called Pomodo.html
inside app/flex, and put in it the code2 from listing 2.16.

NOTE Don’t add line breaks inside the codebase and pluginspage attribute
values.

<html>
<body>
<script src="mysource.js"></script>
<noscript>
<object id='pomodo'
 classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'
 codebase='http://download.macromedia.com/pub/shockwave/cabs/

 ➥flash/swflash.cab#version=9,0,0,0'
 height='100%' width='100%'>
<param name='src' value='Pomodo.swf'/>
<embed name='Pomodo'
 pluginspage='http://www.macromedia.com/shockwave/download/

 ➥index.cgi?P1_Prod_Version=ShockwaveFlash'
 src='Pomodo.swf' height='100%' width='100%'/>
</object>
</noscript>
</body>
</html>

Similarly, create a new file called mysource.js in pomodo/app/flex. Set its con-
tents as shown in listing 2.17.

document.write("<object id='Pomodo' classid='clsid:D27CDB6E-AE6D-11c

 ➥f-96B8-444553540000' codebase='http://download.macromedia.com/pu

 ➥b/shockwave/cabs/flash/swflash.cab#version=9,0,0,0' height='100%

 ➥' width='100%'>");
document.write("<param name='src' value='Pomodo.swf'/>");
document.write("<embed name='pomodo' src='Pomodo.swf' pluginspage='h

 ➥ttp://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Ve

 ➥rsion=ShockwaveFlash' height='100%' width='100%'/>");
document.write("</object>");

2 This code is a simplified copy-paste-modify of the code from Building and Deploying Flex Applications.

Listing 2.16 app\flex\Pomodo.html

Listing 2.17 app\flex\mysource.js

46 ITERATION 2

Hello World
NOTE Each of these document.write calls is one line only—this file is four lines
long, not nine, and each line begins with document.write.

Next, copy both these files to pomodo\public\bin:

/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex >
cp Pomodo.html ../../public/bin/
/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex >
cp mysource.js ../../public/bin/

Try loading http://localhost:3000/bin/Pomodo.html. Note that although we
picked public/bin as our output folder, the URL starts with bin. This is because
public is the root.

NOTE If you get a blank screen, chances are you messed up the copy-paste of
the document.write calls.

We see the screen shown in figure 2.21.
 We now have a running Flex 3 application on OS X!

2.4.3 “Hello World” from Rails
Now, let’s switch gears and do a “Hello World” in Rails, before we move on to hav-
ing Flex talk to Rails.

 Even though we aren’t going to use the database, we need to configure it. This
wasn’t true in Rails 1.x, but it’s true in Rails 2. We’ll start by creating a tiny shell script
and a small SQL script to create a new database. Create a file called newdb.sh in the
current/pomodo directory, and set its contents as shown in listing 2.18.

#!/bin/sh
mysql -h localhost -u root -p <db/create.sql
rake db:migrate

This shell script connects to MySQL, prompting for the root password, and runs the
db\create.sql SQL script we’ll create next. Then, it calls rake db:migrate to run the
migrations we’ll create. Save the file, and make it executable (chmod 755 newdb.sh).

Listing 2.18 newdb.sh

Figure 2.21
“Hello World” from Flex

Mac OS X (or Linux) + Flex SDK 47
 (Don’t run this script yet; we haven’t defined any migrations or created the cre-
ate.sql script.) Now, create a file called create.sql in the db folder, with the contents
shown in listing 2.19 (change YourPasswordHere to some top-secret password).

drop database if exists pomodo_development;
create database pomodo_development;
drop database if exists pomodo_test;
create database pomodo_test;
drop database if exists pomodo_production;
create database pomodo_production;
GRANT ALL PRIVILEGES ON pomodo_development.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON pomodo_test.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON pomodo_production.* TO 'pomodo'@'localhost'
 IDENTIFIED BY 'YourPasswordHere' WITH GRANT OPTION;

NOTE In Rails 2 there is an improved way to do this: use the new rake db:drop
and rake db:create targets. (I learned about these targets after the book
was already in typesetting.)

Next, edit the config\database.yml file to use the connection information for the
pomodo user (see listing 2.20).

MySQL (default setup). Versions 4.1 and 5.0 are recommended.
#
Install the MySQL driver:
gem install mysql
On MacOS X:
sudo gem install mysql -- --with-mysql-dir=/usr/local/mysql
On Windows:
gem install mysql
Choose the win32 build.
Install MySQL and put its /bin directory on your path.
#
And be sure to use new-style password hashing:
http://dev.mysql.com/doc/refman/5.0/en/old-client.html
development:
 adapter: mysql
 encoding: utf8
 database: pomodo_development
 username: pomodo
 password: YourPasswordHere
 host: localhost

Listing 2.19 db/create.sql

Listing 2.20 config\database.yml

B

48 ITERATION 2

Hello World
Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
test:
 adapter: mysql
 encoding: utf8
 database: pomodo_test
 username: pomodo
 password: YourPasswordHere
 host: localhost

production:
 adapter: mysql
 encoding: utf8
 database: pomodo_production
 username: pomodo
 password: YourPasswordHere
 host: localhost

We replace the username of root with pomodo and set the password (change
YourPasswordHere to your password) for the development B, test C, and pro-
duction D databases.

 Now we’ll run the create script, even though we haven’t defined any database
migrations yet. Stop the server, and run newdb.sh:

/Users/peterarmstrong/flexiblerails/current/pomodo > ./newdb.sh
Enter password:
/usr/bin/rake:17:Warning: require_gem is obsolete. Use gem instead.
(in /Users/peterarmstrong/flexiblerails/current/pomodo)
/Users/peterarmstrong/flexiblerails/current/pomodo >

Note that we didn’t enter the root password in the newdb.sh file, so we’re
prompted for it because we specified the -p option.

 Next, create a file called hello_controller.rb in app/controllers, and set its con-
tents as shown in listing 2.21.

class HelloController < ApplicationController
 def sayhello
 render :text => "hello world!"
 end
end

Listing 2.21 app/controllers/hello_controller.rb

C

D

Mac OS X (or Linux) + Flex SDK 49
This creates a class called HelloController that extends ApplicationController.
It has one method, sayhello, which renders the string “hello world!” to the browser
as text with the render :text => "hello world!" call.

 Start the server again:

/Users/peterarmstrong/flexiblerails/current/pomodo > ruby script/server

In our web browser, we go to the following URL: http://localhost:3000/hello/
sayhello. We see something like figure 2.22.

 The typical Rails tutorial would now explain how views work with controllers,
and we would go about adding a view .html.erb file, and so on. However, we’re not
that interested in normal Rails views, except for occasional debugging purposes.
So, we’ll skip all that—it’s covered better in AWDwR.

2.4.4 “Hello World” from Flex and Rails

Now, let’s do something interesting. (Finally!) Go back to Pomodo.mxml, and
modify it to look like listing 2.22.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 width="100%"
 height="100%">
 <mx:HTTPService
 id="helloSvc"
 url="/hello/sayhello"
 method="POST"/>
 <mx:Button label="call hello service"
 click="helloSvc.send()"/>
 <mx:TextInput text="{helloSvc.lastResult}"/>
</mx:Application>

Listing 2.22 app/flex/Pomodo.mxml

Figure 2.22 “Hello World” from Rails

50 ITERATION 2

Hello World
Save the file, then recompile and move the swf:

/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex >
mxmlc Pomodo.mxml
Loading configuration file /Users/peterarmstrong/flex3sdk/

 ➥frameworks/flex-config.xml
This beta will expire on Thu Jan 31 00:00:00 PST 2008.
/Users/peterarmstrong/flexiblerails/current/pomodo/app/

 ➥flex/Pomodo.swf (217912 bytes)
/Users/peterarmstrong/flexiblerails/current/pomodo/app/flex >
mv Pomodo.swf ../../public/bin/

Next, we reload http://localhost:3000/bin/Pomodo.html in our browser (see fig-
ure 2.23).

Admire the gradient fill: The venture capitalists should come knocking any
minute! Let’s see if it works. Click the Call Hello Service button (see figure 2.24).

Figure 2.23 Pomodo: the one-button version

Figure 2.24 Hello Web 2.0 millions!

Summary 51
We did it! Business Week will make us paper millionaires in no time. We can close
our Series A or Angel round, have a drink, and then start the next iteration. Don’t
worry: Soon we’ll start talking about why the code does what it does. If I started
explaining now, it wouldn’t be “Hello World.”

 We should now be able to follow along with the iterations in the book, because
the mxmlc Pomodo.mxml command will automatically bring in dependent files.

2.5 Summary

It’s easy to get up and running creating Flex and Rails applications, and almost as
easy to start having Flex talking to Rails. Although sending text back and forth
doesn’t seem that interesting, it’s the foundation for the many interesting things
we’ll do later. We’ll soon switch to sending XML, but XML is just specially format-
ted text—so understanding the basics is important.

 In the next iteration, in addition to sending XML, we’ll set up MySQL, and add
account create and login functionality to our pomodo Rails application using the
restful_authentication plug-in. We’ll then hook up the Flex UI to use the Rails
account create and login functionality. At the end of the next iteration, we’ll have
an excellent starting point for any Flex + Rails application—especially the one
we’re building in this book.

Getting started
Perhaps one day this too will be pleasant to remember.
 —Virgil
52

If you’re starting here 53
In this iteration, we’ll start making some real headway in our application. By the
end of it, we’ll have a good starting point for any Flex + Rails application, and the
pomodo application in particular. We’ll start by freezing Rails and then installing
and running restful_authentication, and then creating and running the
migration to create users. Next, we’ll switch to the Flex side and get user creation
and login functional. Finally, we’ll ensure that the minimal test suite passes.

 This iteration is a bit of a long, hard slog—hence the opening quote. Please
rest assured that the book gets a lot more fun after this iteration is over.

3.1 If you’re starting here

If you’re starting here and wish to follow along, copy the appropriate folder of
source code for iteration 2 (either iteration02_flexbuilder_windows, iteration02_
sdk_mac or iteration02_sdk_windows) from the code zip file, paste it where you
want to work, and rename it to current. If you’re using Flex Builder, edit the
.project file with a text editor to rename the project from iteration02 to pomodo,
as shown in listing 3.1.

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
 <name>pomodo</name>
 <comment></comment>
...
</projectDescription>

Listing 3.1 .project file

Note
The folders in the code zip file show the code at the end of each iteration. You
can start at any iteration from 3–12 in this book by beginning with the code in
the folder from the previous iteration; if you aren’t interested in following along
with the early stuff but want to follow along starting with iteration 9, you should
read iterations 1–8 and then start iteration 9 with the code from the
iteration08 folder. You would rename the project from iteration08 to pomodo
and import it using the same procedure as is shown next.

If you’ve been following along, skip to section 3.2.

54 ITERATION 3

Getting started
Next, choose File > Import > Other, and select General / Existing Projects into
Workspace (see figure 3.1).

Click Next. We see the Import Projects dialog shown in figure 3.2. Click Browse,
browse to the location of the new current\pomodo directory, and click OK. The

Note
We aren't choosing File > Import > Flex Project because in FlexBuilder 3 Beta 2
and below that assumes there is an exported projectzip file to import. In Flex
Builder 3 Beta 3 (and presumably above) it works: you can specify a project folder
to import from.

Figure 3.1
Importing an existing project (not a
zipped export) into Flex Builder (step 1)

Figure 3.2
Importing pomodo into Flex Builder

Freezing the Rails version 55
root directory will be set and the pomodo project selected. Don’t choose “Copy
projects into workspace”—we’re happy with the project where it is. The dialog
should look like figure 3.2.

 Click Finish.

Before we plow ahead adding new features, we’re going to do two small things:
freeze the Rails version and disable browser navigation integration.

3.2 Freezing the Rails version

NOTE This section is optional. You can follow along with the book (except for
the part where I tell you to read source code in vendor\rails) just fine
even if you skip this section. So, if you have problems following along,
please skip ahead to section 3.3. This section also requires that you have
Subversion installed and working from the command line. To check,
type svn --version at a command prompt: you should see a version of svn
listed, something like “svn, version 1.4.2”. If you need help installing Sub-
version see appendix A.

Q. Why do I need to rename the project in the .project file if I’m starting with a
project from the code zip file I downloaded from http://www.flexiblerails.com/
code-samples? Shouldn’t the project be called pomodo?

A. When I was writing this book, I needed to maintain all the iterations in order
to fix bugs in them (yes, my code sometimes has bugs too). So, when I finished
an iteration, I copied the current folder to a folder named after the iteration (such
as iteration03) and then edited the .project file to rename the project from pomodo
to the name of the iteration (again, such as iteration03). This allowed me to have
all the iterations open in Flex Builder at once as separate projects. It did mean,
however, that the code in the zip file has these projects named iteration03,
iteration04, and so on instead of pomodo. That is why if you want to start at a
given iteration and have your project still be called pomodo you need to rename
the project in the .project file. Finally, note that for iteration 2 only, I created three
folders of source code: iteration02_flexbuilder_windows, iteration02_sdk_mac
and iteration02_sdk_windows. (The rest of the iteration folders are taken from
the Flex Builder and Windows combination.)

http://www.flexiblerails.com/code-samples

56 ITERATION 3

Getting started
Freezing the Rails version will ensure that if we want to load any of iterations 3–12
at a later date (and if Rails has substantially changed in the meantime), the Rails
code will still work. Also, it’s a good thing to do because it will let us look through
the Rails source code. Recall that in section 2.1.2 you chose to install either the
latest and greatest version of Rails 2 or to install the release candidate version
(1.99.0, also known as RC1) of Rails 2 that was used during the copy edit of the
book. In this section, you are choosing to freeze to a specific version of Rails. To
freeze to the release candidate version RC1, run the following command from
inside the pomodo directory:

c:\peter\flexiblerails\current\pomodo>
rake rails:freeze:edge TAG=rel_2-0-0_RC1
...tons of output omitted...

To freeze to the 2.0 release of Rails, run the following command from inside the
pomodo directory:

c:\peter\flexiblerails\current\pomodo>
rake rails:freeze:edge TAG=rel_2-0-1
...tons of output omitted...

This creates a rails directory containing all the Rails source code in the vendor
directory. Our application will use the version of Rails 2 in this directory instead of
whatever versions are installed as gems.

 Note that it’s also a good idea to freeze your Rails version if you’ll be deploying
in an environment (such as shared hosting) where you can’t control the Rails ver-
sion installed. Actually, it’s a good idea before deploying, period.

3.3 Disabling browser navigation integration

We’ll do one other thing to ensure that the experience of following along with the
code is as pleasant as possible: disabling the browser navigation integration. Flex 3
has the ability to integrate with the browser navigation so that actions like the user
clicking the Back button have an effect in your application. Although this is prom-
ising, it makes following along a pain—reloading the application when there is a
bunch of extra stuff in the URL can cause annoying side effects. We’ll turn off this
feature for the purposes of this book.

NOTE SDK users, you can skip this section—this only affects Flex Builder users.
(You can use this feature, but you need to add it yourself instead of need-
ing to turn it off.)

Adding login functionality to Rails 57
Right-click the pomodo project in the
Flex Navigator, and choose the Flex
Compiler option. Deselect the Enable
Integration with Browser Navigation
check box in the HTML Wrapper sec-
tion, as shown in figure 3.3.

 Click OK. We’re prompted with the
warning shown in figure 3.4.

 Click OK.
 Now that we finally have everything

set up correctly, let’s start building
something.

3.4 Adding login
functionality to Rails

Because we’re building a multi-user GTD-style To-Do list application in the book,
we’ll need to add login functionality at some point. So, we’re going to cheat a bit.
Later in the book, in iteration 5, we’ll refactor all the Rails code we’re about to
write to a more RESTful style. Because we know this, we’ll use the RESTful style of
authentication now, without me explaining REST. That way, when it’s time to
explain REST, I’ll explain the login code that we’ve already been using and then
refactor the existing Rails code to the RESTful style. If we used a different login
generator, we would have wanted to either refactor its output or throw it away and
do what we’re about to do.

In addition to installing and running the restful_authentication generator, we’ll
also edit our Rails code to get the generated code working with the HTML views.
Yes, even though this is a book about using Flex with Rails, HTML still has its place
for scaffolding and ad-hoc testing of controllers.

Rails Engines and reusability
The inability to reuse generator output is one of the motivations behind Rails En-
gines (http://rails-engines.org/). Unfortunately, Rails Engines are controversial
in the Rails community and as such are beyond the scope of this book. However,
it would be dishonest to talk about reuse and not mention them. My recommen-
dation is that once you understand Rails well enough to think about design in it,
go to the Rails Engines link and think for yourself.

Figure 3.3 Disabling browser navigation
integration in the HTML wrapper

Figure 3.4 HTML wrapper overwriting files warning

mailto:lvb@pomodo.com
mailto:lvb@pomodo.com

58 ITERATION 3

Getting started
3.4.1 Installing and running restful_authentication

We’ll begin by installing Rick Olson’s restful_authentication plugin.

TIP This plugin is also used by Geoffrey Grosenbach (Mr. “Topfunky”) in
his “PeepCode RESTful Rails” screencast (http://peepcode.com/
articles/2006/10/08/restful-rails). I found this screencast to be a useful
companion to the discussions of REST in Agile Web Development
with Rails (AWDwR) and in DHH’s “Discovering a world of Resources
on Rails” RailsConf 2006 keynote (http://media.rubyonrails.org/
presentations/worldofresources.pdf). The “PeepCode RESTful Rails”
screencast is an hour and a half long, but it’s much more enjoyable
than many movies. I recommend buying and watching it before read-
ing iteration 5.

Let’s install the restful_authentication plugin.1 Run the following command, and
note all the files that are created (and read the usage message):

c:\peter\flexiblerails\current\pomodo>
ruby script\plugin install -r 3072 http://svn.techno-
 ➥weenie.net/projects/plugins/restful_authentication/
+ ./README
+ ./Rakefile
+ ./generators/authenticated/USAGE
...output omitted...
c:\peter\flexiblerails\current\pomodo>

Make sure you read the usage message, which is output by the installer to the com-
mand line. This command installs the 2007-12-12 version of the restful_
authentication generator into pomodo\vendor\plugins\restful_authentication.
(We're using a specific version of the generator to ensure that the code it generates
matches the book.)

 Next, let’s use the restful_authentication generator. We aren’t going to specify
--include-activation, because email confirmation of account creation is—
along with all of ActionMailer—beyond the scope of the book. Note that because
I am assuming Windows, I will say ruby instead of ./ to run the scripts:

NOTE Mac OS X and Linux users: from here on, the book is written assuming
Windows—I have to assume something. Make sure you use / instead
of \, and on OS X if a command doesn’t work then try sudo in front
of it. (In reality, if you’re following along using Flex Builder, not much
is different.)

1 http://peepcode.com/articles/2006/10/08/restful-rails at 04:54 in the screencast (peepcode-003-
rest.mov).

Adding login functionality to Rails 59
c:\peter\flexiblerails\current\pomodo>
ruby script\generate authenticated user sessions
...output omitted...

Running this generator creates a bunch of new files and directories, as well as a
migration2 (db\migrate\001_create_users.rb). It’s always a good idea to read all
the code that a generator creates for you, as we’ll soon see.

3.4.2 Editing and running the CreateUsers migration,
and checking the result

We’ll edit the migration now to add first and last names; see listing 3.2.

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table "users", :force => true do |t|
 t.column :login, :string
 t.column :email, :string
 t.column :first_name, :string, :limit => 80
 t.column :last_name, :string, :limit => 80
 t.column :crypted_password, :string, :limit => 40
 t.column :salt, :string, :limit => 40
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :remember_token, :string
 t.column :remember_token_expires_at, :datetime
 end
 end

 def self.down
 drop_table "users"
 end
end

The restful_authentication generator creates an ActiveRecord::Migration sub-
class called CreateUsers, whose up method creates the users table in a database-
agnostic way and whose down method drops the users table in a database-agnostic
way. All this code is added for us by running the generator; all we need to do is to
add columns for the first B and last C names. We limit the length in both cases
to 80 characters.

2 Migrations are explained extremely well at the following blog post: http://glu.ttono.us/articles/2005/
10/27/the-joy-of-migrations.

Listing 3.2 db\migrate\001_create_users.rb

B
C

http://glu.ttono.us/articles/2005/10/27/the-joy-of-migrations

60 ITERATION 3

Getting started
 Switch to the Command Prompt where your WEBrick server is running, and
kill it using Ctrl-C. Because we recently changed the database configuration in
config\database.yml, we’ll need to stop and start our server. For now, we stop it;
we’ll start it again later.

 Next, now that we’ve edited the migration that creates a users table, let’s run
the newdb.bat script to re-create the databases and run the migration:

c:\peter\flexiblerails\current\pomodo>newdb.bat

c:\peter\flexiblerails\current\pomodo>
mysql -h localhost -u root -p 0<db\create.sql
Enter password: *******

c:\peter\flexiblerails\current\pomodo>call rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)
== 1 CreateUsers: migrating

===
-- create_table("users", {:force=>true})
 -> 0.2500s
== 1 CreateUsers: migrated (0.2500s)

==

c:\peter\flexiblerails\current\pomodo>

Confirm that the databases were created and the users table was created:

c:\peter\flexiblerails\current\pomodo>mysql -u root -p
Enter password: *******
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6 to server version: 5.0.24-community-nt

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| pomodo_development |
| pomodo_production |
| pomodo_test |
| test |
+--------------------+
6 rows in set (0.00 sec)

mysql>

Adding login functionality to Rails 61
So far, so good. Let’s check that the pomodo_development database looks good:

mysql> use pomodo_development;
Database changed
mysql> show tables;
+------------------------------+
| Tables_in_pomodo_development |
+------------------------------+
| schema_info |
| users |
+------------------------------+
2 rows in set (0.00 sec)

mysql> describe users;
+---------------------------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+---------------------------+--------------+------+-----+---------+
id	int(11)	NO	PRI	NULL
login	varchar(255)	YES		NULL
email	varchar(255)	YES		NULL
first_name	varchar(80)	YES		NULL
last_name	varchar(80)	YES		NULL
crypted_password	varchar(40)	YES		NULL
salt	varchar(40)	YES		NULL
created_at	datetime	YES		NULL
updated_at	datetime	YES		NULL
remember_token	varchar(255)	YES		NULL
remember_token_expires_at	datetime	YES		NULL
+---------------------------+--------------+------+-----+---------+
11 rows in set (0.01 sec)

mysql> select * from users;
Empty set (0.00 sec)

Looks good. Note that the “Extra” column isn’t shown here for space consider-
ations; all it shows is that the id column is auto_increment. Also note the
first_name and last_name fields that we added. Furthermore, note that running
the migration added an id field, which is the primary key—even though we didn’t
specify one in the migration. This was done because one of the principles of Rails
is convention over configuration—and one of its conventions (which makes your life
easier in Rails if you follow it) is to have a primary key called id.

 But what is that schema_info table?
 The short answer is that it was created by running the migration, and it has

one field called version that stores the version of the database schema we’re using:

62 ITERATION 3

Getting started
mysql> describe schema_info;
+---------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
| version | int(11) | YES | | NULL | |
+---------+---------+------+-----+---------+-------+
1 row in set (0.01 sec)

mysql> select * from schema_info;
+---------+
| version |
+---------+
| 1 |
+---------+
1 row in set (0.00 sec)

mysql>

Currently, the version is 1. This lets the migration script know what version the
database schema is currently at when you migrate to a different version.

 Before we proceed, we should edit the User model to make the new
first_name and last_name attributes mass-assignable from the params hash. (If
that didn’t make sense, don’t worry—we’ll cover it later.) Edit the User model as
shown in listing 3.3.

...
 # prevents a user from submitting a crafted form that bypasses
 # activation
 # anything else you want your user to change should be added
 # here.
 attr_accessible :login, :email, :password,
 :password_confirmation, :first_name, :last_name
...

We add the new first_name and last_name attributes B to the same magic-
sounding attr_accessible call as the other attributes. (The attribute names start
with colons at the front because they’re Symbols; this too will be explained later.)

 Next, we’ll edit config\routes.rb to add the RESTful routes, as we were
instructed to do by the generator.

3.4.3 Adding RESTful routes

Grab the code from the instructions that were output to the command line by the
generator, and paste it in as shown in listing 3.4.

Listing 3.3 app\models\user.rb

B

Adding login functionality to Rails 63
ActionController::Routing::Routes.draw do |map|
 # The priority is based upon order of creation:
 # first created -> highest priority.
...
 # Sample resource route (maps HTTP verbs to controller actions
 # automatically):
 # map.resources :products
 map.resources :users
 map.resource :session

 map.signup '/signup', :controller => 'users',
 :action => 'new'
 map.login '/login', :controller => 'sessions',
 :action => 'new'
 map.logout '/logout', :controller => 'sessions',
 :action => 'destroy'

 # Sample resource route with options:
 # map.resources :products,
 # :member => { :short => :get, :toggle => :post },
 # :collection => { :sold => :get }
...
end

The brief explanation of this is as follows: We’re setting up RESTful resources for
users B and the session C and adding some special routes to give pretty URLs
for signup D, login E, and logout F. Routing is complicated, and not some-
thing you learn in chapter 3 of a book—well, not this book, anyway!

 Save the file. That’s it for the routes for now. When looking through the files the
generator produced for us (always do this!), we saw some instructions in the Users-
Controller and SessionsController that we need to follow. We’ll do that now.

3.4.4 Modifying the includes and before_filter
as instructed by the comments

First, we edit the SessionsController, as shown in listing 3.5.

 # This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
 # Be sure to include AuthenticationSystem in
 # Application Controller instead
 include AuthenticatedSystem

Listing 3.4 config\routes.rb

Listing 3.5 app\controllers\sessions_controller.rb

User
resource

B

Session resourceC

Special signup URLD

Special login URLE

Special logout URLF

Deleted includeB

64 ITERATION 3

Getting started
 # render new.rhtml
 def new
 end
...unchanged code omitted...
end

We delete B the AuthenticatedSystem include.
 Next, we edit the UsersController, as shown in listing 3.6.

class UsersController < ApplicationController
 # Be sure to include AuthenticationSystem in Application
 # Controller instead
 include AuthenticatedSystem

 # render new.rhtml
 def new
 end

 def create
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 redirect_back_or_default('/')
 flash[:notice] = "Thanks for signing up!"
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 end

end

We delete B the AuthenticatedSystem include here also.
 Next, we add the include which we just deleted to the ApplicationControl-

ler, as shown in listing 3.7.

Filters added to this controller apply to all controllers in
the application. Likewise, all the methods added will be
available for all controllers.

class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time
 include AuthenticatedSystem

Listing 3.6 app\controllers\users_controller.rb

Listing 3.7 app\controllers\application.rb

Deleted includeB

B

Adding login functionality to Rails 65
 # See ActionController::RequestForgeryProtection for details
 # Uncomment the :secret if you're not using the cookie session
 # store
 # TODO - this will be uncommented once we explain sessions
 # in iteration 5.
 # protect_from_forgery
 # :secret => 'dd92c128b5358a710545b5e755694d57'
end

By adding the include AuthenticatedSystem here B, we ensure that all control-
lers will include it by default (because they all extend ApplicationController).
Furthermore, we temporarily comment out the protect_from_forgery call C until
iteration 5, because I don’t want to talk about CSRF attacks before having
explained what a session is. Also note that your :secret will be different than this
one—otherwise it wouldn’t be much of a :secret.

 Continuing, we need to do as we’re told by our test code (and per Geoffrey
Grosenbach’s screencast3) and add the include AuthenticatedTestHelper line
to test\test_helper.rb (see listing 3.8 B) and remove it from UserTest (list-
ing 3.9 C), SessionsControllerTest (listing 3.10 D), and UsersController-
Test (listing 3.11 E).

ENV["RAILS_ENV"] = "test"
require File.expand_path(File.dirname(__FILE__) +
 "/../config/environment")
require 'test_help'

class Test::Unit::TestCase
 include AuthenticatedTestHelper
...

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 # Be sure to include AuthenticatedTestHelper in
 # test/test_helper.rb instead.

3 http://peepcode.com/articles/2006/10/08/restful-rails, at 07:05 in the screencast (peepcode-003-
rest.mov).

Listing 3.8 test\test_helper.rb

Listing 3.9 test\unit\user_test.rb

C

B

http://peepcode.com/articles/2006/10/08/restful-rails
http://peepcode.com/articles/2006/10/08/restful-rails

66 ITERATION 3

Getting started
 # Then, you can remove it from this and the functional test.
 include AuthenticatedTestHelper
 fixtures :users

 def test_should_create_user
...

require File.dirname(__FILE__) + '/../test_helper'
require 'sessions_controller'

Re-raise errors caught by the controller.
class SessionsController; def rescue_action(e) raise e end; end

class SessionsControllerTest < Test::Unit::TestCase
 # Be sure to include AuthenticatedTestHelper in
 # test/test_helper.rb instead
 # Then, you can remove it from this and the units test.
 include AuthenticatedTestHelper

 fixtures :users
...

require File.dirname(__FILE__) + '/../test_helper'
require 'users_controller'

Re-raise errors caught by the controller.
class UsersController; def rescue_action(e) raise e end; end

class UsersControllerTest < Test::Unit::TestCase
 # Be sure to include AuthenticatedTestHelper in
 # test/test_helper.rb instead
 # Then, you can remove it from this and the units test.
 include AuthenticatedTestHelper

 fixtures :users
...

I won’t talk much about testing in the book. However, we’ll ensure that our tests
all pass at the end of this iteration so we can pretend we’re testing.

Listing 3.10 test\functional\sessions_controller_test.rb

Listing 3.11 test\functional\users_controller_test.rb

C

D

E

Adding login functionality to Rails 67
NOTE Testing is very important. The fact that I’m relegating it to a brief section
in appendix B doesn’t reflect my opinion on the importance of testing.
Instead, it reflects my desire to make this book enjoyable to read. This isn’t
a book about testing; there are other books for that.

That’s it for following along modifying generated code. Next, we’ll test account
creation using the HTML views.

3.4.5 Testing account creation from HTML

Even though this is a book about Flex and Rails together, it’s useful to test Rails from
HTML occasionally. (It’s especially useful with tools like Firebug, in order to fake
form values, and so on.) Now, we’ll ensure that account creation and login work.

NOTE If you’ve left your server running since iteration 2, kill it with Ctrl-C. We
modified config files, so we need to restart the server.

Start your server:

c:\peter\flexiblerails\current\pomodo>ruby script\server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options

Next, open a browser window, and go to http://localhost:3000/signup. Because
we defined the following route in config\routes.rb

 map.signup '/signup', :controller => 'users',
 :action => 'new'

this will trigger the new action of the UsersController (see listing 3.12).

class UsersController < ApplicationController
 # render new.rhtml
 def new
 end
...

This action is empty, so as the comment B says, the new.rhtml file (shown in list-
ing 3.13) is rendered.

<%= error_messages_for :user %>
<% form_for :user, :url => users_path do |f| -%>
<p><label for="login">Login</label>

<%= f.text_field :login %></p>

Listing 3.12 app\controllers\users_controller.rb

Listing 3.13 app\views\users\new.rhtml

B

68 ITERATION 3

Getting started
<p><label for="email">Email</label>

<%= f.text_field :email %></p>

<p><label for="password">Password</label>

<%= f.password_field :password %></p>

<p><label for="password_confirmation">Confirm Password</label>

<%= f.password_field :password_confirmation %></p>

<p><%= submit_tag 'Sign up' %></p>
<% end -%>

We see the screen shown in figure 3.5.
 Enter ludwig for the login, lvb@pomodo.com for the email, and foooo for the

password and password confirmation.
 Click Sign Up. We’re taken to the Rails Welcome Aboard screen. This seems

strange; the reason is that we haven’t defined a default route, so the index.html
file in the public directory (the Rails Welcome Aboard screen) is shown.

 Let’s check to see if our user was created:

mysql> select id, login, email, first_name, last_name from users;
+----+--------+----------------+------------+-----------+
| id | login | email | first_name | last_name |
+----+--------+----------------+------------+-----------+
| 1 | ludwig | lvb@pomodo.com | NULL | NULL |
+----+--------+----------------+------------+-----------+
1 row in set (0.00 sec)

mysql>

Hooray!

Figure 3.5
HTML signup screen

Adding login functionality to Flex 69
3.4.6 Testing login from HTML

Let’s try logging in. Go to http://
localhost:3000/login; we see the screen
shown in figure 3.6.

 Next, let’s test that a bad login fails
correctly. If we enter bogus data (either
a wrong password for ludwig or a
nonexistent user) and click Log In, the
login screen is shown again, but the
URL changes to http://localhost:3000/
session for reasons I’ll explain later
(look in the SessionsController cre-
ate method if you’re curious); see fig-
ure 3.7.

 If we log in as ludwig with the cor-
rect password, we’re taken to the Wel-
come Aboard screen again. This gives
us enough confidence in our login sys-
tem to proceed with trying to log in
from Flex.

 We’ll do this next.

3.5 Adding login functionality to Flex

In this section, we’ll add login functionality to Flex. Before we get ahead of our-
selves, however, we should take some time to understand what exactly we did in
our “Hello World” example earlier.

3.5.1 “Hello World,” this time with meaning!

Let’s revisit Pomodo.mxml and actually understand what is going on in the code this
time. Recall that the running application currently looks as shown in figure 3.8.

Figure 3.8
Pomodo, revisited

Figure 3.6 HTML login screen

Figure 3.7 Failed HTML login

70 ITERATION 3

Getting started
The code currently looks like listing 3.14.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 width="100%"
 height="100%">
 <mx:HTTPService
 id="helloSvc"
 url="/hello/sayhello"
 method="POST"/>
 <mx:Button label="call hello service"
 click="helloSvc.send()"/>
 <mx:TextInput text="{helloSvc.lastResult}"/>
</mx:Application>

Let’s understand what this code is doing. First, look at the top-level tag: mx:Appli-
cation B. The root of a Flex application is always an Application. The mx: part
identifies the XML namespace4 that the Application component is from. We use
a vertical layout C to make the components flow vertically. Other choices are hor-
izontal (for horizontal flow) and absolute (where you specify the x,y of each top-
level container). The backgroundGradientColors D specify the start and end of
the gradient fill for the background—and what Web 2.0 era application would be
complete without a gradient fill?

 The HTTPService G makes a call to the sayhello method of the HelloCon-
troller, due to the way Rails does routing. Simplistically, in the default routing,
URLs are mapped /controller_name/action_name. The controller name is capi-
talized, and the Controller part is assumed, so /hello maps to HelloController,
and sayhello maps to the sayhello action (which is a method); url="/hello/say-
hello" I maps to the sayhello method of the HelloController class. We aren’t
passing any parameters right now; you’ll do this soon when you try to log in.

 The id of the HTTPService is helloSvc H. In MXML, the id property of a com-
ponent becomes its variable name (the MXML file is a class, and the id is the name
of a global variable inside that class). If we don’t provide an id for a component,
Flex provides one for us—but then we don’t know what it is, so we can’t refer to

Listing 3.14 app\flex\Pomodo.mxml

4 We could have said <foo:Application xmlns:foo="http://www.adobe.com/2006/mxml"
..., but that would confuse every Flex coder on the planet, because mx: is the convention.

B

C
D

E
F
G

H
I

J

1)
1!

Adding login functionality to Flex 71
the component in your code. Sometimes this is fine: We don’t need to refer to the
TextInput, so we don’t bother giving it an id. We need to give the helloSvc
HTTPService an id, though, so we can call its send method when the button’s
click event is broadcast 1) and so we can refer to the last result from this HTTPS-
ervice in the binding to the text property of the TextInput 1!. Note that we
have to specify an HTTP method of POST J because the default value of the
method property of HTTPService is GET. We’ll talk a lot more about HTTP methods
in iteration 8.

 Finally, the width E and height F of 100% specify the size of the Flex applica-
tion relative to the size of the browser window. We can also use absolute values of
pixels; for example, width="300" height="100" looks like figure 3.9 below (note
the white background of the web page that the Flex application is in).

3.5.2 Binding? What the…?

Binding is a complicated topic that can be explained simplistically in one phrase:
“It automagically copies the value of variable x into variable y whenever x
changes.” However, binding needs a much more detailed treatment to be fully
understood. See the Flex 3 Developer’s Guide in the Flex 3 Beta 2 documentation zip
file for the full treatment; here we’ll summarize it. The curly braces in
text="{helloSvc.lastResult}" (1! in listing 3.14) code indicate a binding—
that is, the value of helloSvc.lastResult should be copied into resultTI.text
whenever it changes.

NOTE Not all variables can be used as a source of a binding: To be the source,
the variable must be Bindable. This was new in Flex 2 (and is still true in
Flex 3)—in Flex 1.5 and below you could essentially use anything as the
source of a binding, but some things wouldn’t work. (Yes, I’m oversimpli-
fying—trust me, you don’t want the details. Ever.)

Anyway, binding can be done with an <mx:Binding> element as well as with the
shorter curly-brace syntax. The code in listing 3.15 is equivalent to the original
Pomodo.mxml. (Don’t make this change, though—or, if you do, revert it after test-
ing it.)

Figure 3.9
Using absolute width and
height values (width="300"
height="100") to set the
size of a Flex application

72 ITERATION 3

Getting started
<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 width="100%"
 height="100%">
 <mx:HTTPService
 id="helloSvc"
 url="/hello/sayhello"
 method="POST"/>
 <mx:Button label="call hello service"
 click="helloSvc.send()"/>
 <mx:Button label="call hello service" click="helloSvc.send()"/>
 <mx:TextInput id="resultTI"/>
 <mx:Binding source="String(helloSvc.lastResult)"
 destination="resultTI.text"/>
</mx:Application>

Note that we had to give the TextInput B an id so we could refer to it in the des-
tination property of the binding C. Also, note that we have to cast the source to
a String, whereas we don’t have to do that with the curly brace syntax.

3.5.3 This MXML looks strange

Yes, MXML looks different the first time you see it—even if you’re used to XML.
One thing to keep in mind is that setting an attribute can mean different things.
For example, consider the following Button (this is legal MXML if the other func-
tions and variables exist):

<mx:Button id="bar" label="foo"
 enabled="{someFunctionThatReturnsBoolean(someArg, someOtherArg)}"
 color="#CCDDEE" click="doSomething()"/>

A lot is going on here:

■ The Button is being created with an id of bar, instead of an automatically
assigned id.

■ The label property of the Button is being set to "foo".
■ The enabled property of the Button is being bound to the result of the

function someFunctionThatReturnsBoolean that will automatically be
called whenever either of someArg or someOtherArg changes. (This assumes
that someArg and someOtherArg are Bindable.)

Listing 3.15 app\flex\Pomodo.mxml

B

C

Adding login functionality to Flex 73
■ The color style of the Button is being set to #CCDDEE.
■ An event handler is being created to handle the click event. When that

event is dispatched, the doSomething() method will be called.

A simple attribute assignment in MXML can be a static (for example, a String) or
dynamic (such as a Binding) property setting, a style setting, or an event-handler
assignment. What is amazing is that this quickly begins to feel natural. (I’m not
sure if this is a testament to Flex, to the human mind in general, or to the mind of
the programmer in particular. Trust me: It becomes second nature.) Further-
more, the Flex API docs are good about identifying what something is (properties,
styles, and so on are grouped together).

3.5.4 Flex 3 documentation? Where?
The Flex 3 Beta 2 documentation zip file is currently available for download at
http://download.macromedia.com/pub/labs/air/air_b2_docs_flex_100107.zip.
Note that when Flex 3 is out of beta, the documentation will presumably be
moved to http://www.adobe.com/support/documentation/en/flex/. Currently
(in November 2007) this URL still has Flex 2 documentation, because that is the
most current production release of Flex.

 Download and unzip the file. It contains a wealth of well-written information
about Flex, in the form of both PDF (of course) manuals and API docs that are like
the Java API docs.

 The PDFs listing in table 3.1 are contained in the documentation zip file.

This is a total of 2,971 pages! Luckily, the documentation is also searchable from
within Flex Builder 3 via Help > Help Contents.

 The API docs are in the langref folder. Open the index.html file, and book-
mark it or set it as your homepage. (I find it helpful to have this and the Rails API
docs in tabs that automatically open when I start Firefox.)

Table 3.1 Flex documentation

File name Number of pages Document name

flex3_buildanddeploy.pdf 260 Building and Deploying Flex Applications

flex3_createextendcomponents.pdf 177 Creating and Extending Flex Components

flex3_devguide.pdf 1435 Flex 3 Developer’s Guide

flex3_usingflexbuilder.pdf 219 Using Flex Builder

programmingas3.pdf 576 Programming ActionScript 3.0

air_devappsflex.pdf 304 Developing AIR Applications with Adobe Flex

74 ITERATION 3

Getting started
Figure 3.10 shows the API docs, so you know you’re looking at what I’m referring to.
 Knowing what you know now, let’s try to create accounts and log in from Flex.

We’ll start by properly stubbing out a UI. This is going to get interesting.

3.5.5 Stubbing out an account-creation and login UI in Flex

Although it’s possible to create an entire Flex application in one MXML file, this
works only for the most trivial of applications (that is, toy examples such as the
one-button pomodo above). We’re not building a toy example in this book, how-
ever, so there’s no reason for us to start as though we are—all this leads to is a pile
of tedious refactoring, sooner rather than later.

 So, we’ll start building components from the outset. We’ll put these components
in a package called com.pomodo.components. ActionScript 3 uses the same “back-
wards domain name” convention as Java, so we’ll create a com\pomodo\components

Figure 3.10 The Flex 3 API documentation

Adding login functionality to Flex 75
directory inside app\flex. The app\flex\com\pomodo\components folder is where
we’ll store our reusable MXML and ActionScript components.

NOTE ActionScript 3 supports packages with fewer restrictions than it did in
ActionScript 2. It also supports namespaces. There are many details
about what you can and can’t do with classes, packages, and namespaces;
we’ll keep things simple and use the “one class per file” and “package in
its folder” approach because it’s the most straightforward and familiar to
Java programmers.)

 We’ll also create an assets directory in com\pomodo\assets to store images, and
so on. Create the directories in app\flex as follows:

c:\peter\flexiblerails\current\pomodo>cd app\flex

C:\peter\flexiblerails\current\pomodo\app\flex>mkdir com

C:\peter\flexiblerails\current\pomodo\app\flex>mkdir com\pomodo

C:\peter\flexiblerails\current\pomodo\app\flex>mkdir com\pomodo\assets

C:\peter\flexiblerails\current\pomodo\app\flex>mkdir com\pomodo\components

We’ll create two components: AccountCreateBox (where users create new
accounts) and LoginBox (where users log in). We’ll start with AccountCreateBox
(see listing 3.16).

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Create Account">
 <mx:Form labelWidth="150">
 <mx:FormItem required="true" label="Username">
 <mx:TextInput id="loginTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Email Address">
 <mx:TextInput id="emailTI"/>
 </mx:FormItem>
 <mx:FormItem label="First Name">
 <mx:TextInput id="firstNameTI"/>
 </mx:FormItem>
 <mx:FormItem label="Last Name">
 <mx:TextInput id="lastNameTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Password">
 <mx:TextInput id="passwordTI"
 displayAsPassword="true"/>
 </mx:FormItem>

Listing 3.16 app\flex\com\pomodo\components\AccountCreateBox.mxml

B

mx:Form: a layout toolC
Displays
red asteriskDE

F

Shows asterisks,
not textG

76 ITERATION 3

Getting started
 <mx:FormItem required="true" label="Confirm Password">
 <mx:TextInput id="confirmPasswordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="createAccountButton"
 label="Create Account"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

The root of AccountCreateBox is a VBox B, so that’s what we’re subclassing. A
VBox lays out its children vertically; hence the V. We then create a Form C, which
contains various FormItems (for example, D). Note that unlike forms in HTML,
the <mx:Form> (and <mx:FormItem>) tags are purely layout tools.

NOTE Let me emphasize this, because this is one of the most common miscon-
ceptions for developers coming to Flex from HTML: Nothing special hap-
pens because the fields are in an mx:Form. A Form is just a layout
container—it’s 100% about appearance, 0% about functionality.

These FormItems (for example, F) contain various controls, mostly mx:Text-
Inputs for login E, email, first and last name, password G, and password confir-
mation. The createAccountButton H is also inside a FormItem. This FormItem
specifies no label property, though, so it defaults to the empty string. Note that
many of the FormItems have required="true" (for example, D). This has no
effect other than to add a red asterisk (*) beside the form field.

NOTE This red asterisk is just a visual cue to the user. To make a FormItem
behave as required, you need to use validation. We’ll look at validation
soon. For now, note that the value of required has no effect on its child
components.

Finally, note the use of displayAsPassword="true" on passwordTI G and con-
firmPasswordTI. This makes the TextInput display asterisks (*) instead of show-
ing the letters typed.

 Next, create the LoginBox (listing 3.17).

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Login">
 <mx:Form labelWidth="150">
 <mx:FormItem required="true" label="Username">
 <mx:TextInput id="loginTI"/>

Listing 3.17 app\flex\com\pomodo\components\LoginBox.mxml

H

B
C

D

Adding login functionality to Flex 77
 </mx:FormItem>
 <mx:FormItem required="true" label="Password">
 <mx:TextInput id="passwordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="loginButton" label="Login"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

This is another VBox B containing a Form C, with FormItems containing a Text-
Input for login D, password E, and a login button F.

 Next, get the logo_md.png image from http://www.flexiblerails.com/files/
logo_md.png (right-click the image, and choose Save Image As), and save it to the
app\flex\com\pomodo\assets directory.

 Also, delete the hello_controller—we’re getting beyond “Hello World” now.
Finally, modify Pomodo.mxml (see listing 3.18).

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 width="100%"
 height="100%">
<mx:Script>
<![CDATA[
 [Bindable]
 private var _reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';
]]>
</mx:Script>
 <mx:Image source="com/pomodo/assets/logo_md.png" />
 <mx:Label
 text="The simple, GTD-style TODO list application."/>
 <mx:Spacer height="10"/>
 <mx:Text width="500" text="{_reviews}"/>

Listing 3.18 app\flex\Pomodo.mxml

E

F

B

C
D

E
F

G
H

I
J

1)
1!

http://www.flexiblerails.com/files/logo_md.png

78 ITERATION 3

Getting started
 <mx:Spacer height="10"/>
 <mx:Accordion width="400" height="300">
 <pom:AccountCreateBox/>
 <pom:LoginBox/>
 </mx:Accordion>
 <mx:Label text="*did not say this, but might someday!"/>
 <mx:HTTPService
 id="helloSvc"
 url="/hello/sayhello"
 method="POST"/>
 <mx:Button label="call hello service"
 click="helloSvc.send()"/>
 <mx:TextInput text="{helloSvc.lastResult}"/>
</mx:Application>

We start by adding a new XML namespace pom for our custom components in
com.pomodo.components B. We then set the horizontal and vertical alignment to
center C and top D respectively. This affects the alignment of all the compo-
nents that are directly contained in the Application.

 Next, we’re inlining E ActionScript 3 code for the first time. The <![CDATA[F
and]]> is essential inside the <mx:Script> tag (so you can type code instead of
XML), so Flex Builder adds it for you after you type <mx:Script>. Currently, there
is just a variable (var) called _reviews H which holds some static reviews as a stub
for a service call that would show reviews. This variable is the source of a data bind-
ing 1!, so we need to mark it with the [Bindable] annotation G. (If this was a real
constant instead of a stub, we would use const rather than var, and not use [Bind-
able] because constants don’t change.)

 Now, we add an mx:Image I for our spiffy logo, an mx:Label J containing
our slogan, and a couple mx:Spacers 1) 1@ around an mx:Text whose text
attribute 1! is bound to the _reviews variable containing our fake reviews H. It’s
nice to see some fake quotes from various industry luminaries, to motivate our-
selves to ship the app and as placeholders for the real (obviously gushing) quotes
that will surely start pouring in once we launch. Furthermore, in keeping with the
Web 2.0 spirit, we need a name for our fake company, as well as for our fake prod-
uct. In honor of the “me too” aspect of what we’re doing, the name we’ll use for
our company is 38noises. (Yep, always one for the cheap laugh.)

 Next, we create an Accordion 1# (always good for style points) that holds the two
custom components: pom:AccountCreateBox 1$ and pom:LoginBox 1%. Note that
in the components (B in each of the earlier listings), we set the label properties
to Create Account and Login—the label property is used by the Accordion to

1@
1#

1$
1%

1^
1&

1*
1(

Adding login functionality to Flex 79
determine the label to show on the
navigator buttons (accordion head-
ers). Finally, we add our disclaimer 1^
Label, and delete the old code 1&1*1(.

 To build, select the pomodo
project in the navigator, and choose
Project > Clean from the menu bar
(see figure 3.11).

 Leave Start a Build Immediately
selected, and click OK.

TIP We need to do a clean build here to ensure that Flex Builder detects the
logo image we added to the source tree, so that Flex Builder will copy it (and
the com\pomodo\assets path) to the public\bin directory as part of the
build. If you don’t do this, you may see a missing image instead of the logo.

Command-line users: Create the com\pomodo\assets directory tree
under public\bin, and copy the logo_md.png file there.

Now that our build is done, go to http://localhost:3000/bin/Pomodo.html (see
figure 3.12).

Figure 3.12
The splash screen

Figure 3.11 Doing a clean build in Flex Builder

80 ITERATION 3

Getting started
Not bad as far as book code goes. We have a Web 2.0–style logo with the obligatory
pastel green, a sexy Accordion for account creation and login (click the Login
accordion button to see the login form smoothly scroll into view), a gradient fill,
fake quotes, the works. Note that the Forms in the AccountCreateBox and Login-
Box both set their labelWidth properties to 150. This is done so they line up
nicely, which looks better when switching views in the Accordion. It’s the little
things like that which will get us acquired.

3.5.6 Making account create and login functional

If we are going to get acquired, I suppose we had better at least implement
account create and login from Flex. We’d like to do it RESTfully, because we’re
using the restful_authentication generator. Also, that’s what the cool kids are
doing, and we figure it should add another million or so to our valuation. Prob-
lem is, we don’t understand what the heck REST is yet. So, we’ll pass for now and refac-
tor the code later once we do know.

 We’ll start by adding methods that talk to Flex to SessionsController and
UsersController. First, SessionsController; see listing 3.19.

NOTE Listing 3.19 shows code written in a way that we would never write in
Rails: It creates a second method called create_xml instead of using
respond_to. I’m doing this because I haven’t explained REST yet; once I
do explain REST, I’ll obviously refactor this. Advanced Rails users, just
hold your nose and follow along.

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
 # render new.rhtml
 def new
 end

 # Once we explain REST in the book this will obviously be
 # refactored.
 def create_xml
 self.current_user =
 User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = {
 :value => self.current_user.remember_token,
 :expires => self.current_user.remember_token_expires_at
 }
 end

Listing 3.19 app\controllers\sessions_controller.rb

B

Adding login functionality to Flex 81
 render :xml => self.current_user.to_xml
 else
 render :text => "badlogin"
 end
 end

 def create
...

We create a new method called create_xml B in the SessionsController. It’s a
copy-paste-modify of the create method E which was created for us. (We don’t
worry about refactoring the duplicated code out into a method, because we
know we’ll be refactoring this later when we convert to REST.) Upon successful
login, we render XML of the current_user C. If the login fails, we render the
text "badlogin" D.

 Next, we edit UsersController as shown in listing 3.20.

class UsersController < ApplicationController
 # render new.rhtml
 def new
 end

 # Once we explain REST in the book this will obviously be
 # refactored.
 def create_xml
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 render :xml => @user.to_xml
 rescue ActiveRecord::RecordInvalid
 render :text => "error"
 end

 def create
...

We create a new method called create_xml B in the UsersController. Again, it’s
a copy-paste-modify of the create method E that was created for us. (Similarly,
this duplication will be refactored away when we convert to REST.) Upon success-
ful creation of a new user, we render the XML of the current_user C. If the user
creation fails, we render the text "error" D.

 Having added these create_xml methods, let’s use them from Flex. We need to
modify AccountCreateBox and LoginBox. First, AccountCreateBox; see listing 3.21.

Listing 3.20 app\controllers\users_controller.rb

C

D

E

B

C
D

E

82 ITERATION 3

Getting started
<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Create Account">
<mx:Metadata>
 [Event(name="accountCreate",
 type="com.pomodo.events.AccountCreateEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.AccountCreateEvent;

 private function createAccount():void {
 svcAccountCreate.send();
 }

 private function handleAccountCreateResult(
 event:ResultEvent):void {
 var result:Object = event.result;
 if (result == "error") {
 Alert.show("Your account was not created.",
 "Error");
 } else {
 dispatchEvent(new AccountCreateEvent(XML(result)));
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcAccountCreate"
 url="/users/create_xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleAccountCreateResult(event)">
 <mx:request>
 <user>
 <login>{loginTI.text}</login>
 <email>{emailTI.text}</email>
 <first_name>{firstNameTI.text}</first_name>
 <last_name>{lastNameTI.text}</last_name>
 <password>{passwordTI.text}</password>
 <password_confirmation>
 {confirmPasswordTI.text}
 </password_confirmation>
 </user>
 </mx:request>
 </mx:HTTPService>
 <mx:Form labelWidth="150">

Listing 3.21 app\flex\com\pomodo\components\AccountCreateBox.mxml

Declare Metadata for custom eventB

Import works
as in Java

C

D

E

F

Adding login functionality to Flex 83
 <mx:FormItem required="true" label="Username">
 <mx:TextInput id="loginTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Email Address">
 <mx:TextInput id="emailTI"/>
 </mx:FormItem>
 <mx:FormItem label="First Name">
 <mx:TextInput id="firstNameTI"/>
 </mx:FormItem>
 <mx:FormItem label="Last Name">
 <mx:TextInput id="lastNameTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Password">
 <mx:TextInput id="passwordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Confirm Password">
 <mx:TextInput id="confirmPasswordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="createAccountButton"
 label="Create Account"
 click="createAccount()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

We start at the end, modifying the createAccountButton to call a function called
createAccount G when it’s clicked. (See, we’re adding an inline event handler
for a click event and hardly thinking twice—I told you MXML becomes second
nature!) Next, we add this createAccount function D inside an <mx:Script>
block. It calls the send function of an HTTPService called svcAccountCreate F.
Doing this invokes the service with the properties that have been set on it, both
statically and via bindings.

 Let’s look at the properties of svcAccountCreate. We set its url property to
/users/create_xml, which means that calling this service invokes the newly cre-
ated create_xml method of the UsersController. We set the contentType
property to application/xml, meaning that we’re sending the request as XML.
We set the resultFormat property to e4x, meaning that the “value returned is
XML and is returned as literal XML in an ActionScript XML object, which can be
accessed using ECMAScript for XML (E4X) expressions.”5 (Basically, you use E4X6

5 http://livedocs.adobe.com/flex/2/langref/mx/rpc/http/HTTPService.html#resultFormat.
6 See the Flex documentation and also http://life.neophi.com/danielr/2006/04/flex_2_beta_2_

actionscript_3_a.html for a good introduction to E4X.

G

http://life.neophi.com/danielr/2006/04/flex_2_beta_2_actionscript_3_a.html

84 ITERATION 3

Getting started
to access the result.) We specify the HTTP method to be POST, and we specify
that the result event is handled by the handleAccountCreateResult method.
Finally, we set the request property of svcAccountCreate to an XML document
whose root is user and whose child nodes are bound from the various controls
in the form.

 What’s going on is subtle: When we call the service, we set the request prop-
erty. Because the request property is XML, we define the value of the XML as the
child of the request element. If we didn’t like that approach, we could have also
said request="{someXMLVar}" to bind the value of someXMLVar into the request.

 Once the service returns, the result triggers the handleAccountCreateResult
event handler. Inside it, we access the event.result. If it’s the text error, we show
an Alert dialog displaying a terse error message. Otherwise, we assume success, so
we dispatch a new event called AccountCreateEvent with the result, cast to XML.
The XML(result) cast is necessary because the user variable is typed in the Event.

NOTE In ActionScript 3, XML is a native type like Number and doesn’t need to
be imported.

At the top of the file, we declare some custom mx:Metadata B that declares that
we’re broadcasting an event whose name is accountCreate and whose type
is com.pomodo.events.AccountCreateEvent. Doing this lets us handle the
event nicely from the component that uses the AccountCreateBox (we’ll see
this momentarily).

 Finally, note the import statements C: These work just as they do in Java. The
asterisk (*) syntax is supported to import a package, but it isn’t recommended
because it may lead to unnecessary classes being imported, which leads to larger
SWF file sizes and slower load times. (Use it only if you’re sure you want to use
every class from a package, now and in the future.)

 Speaking of the AccountCreateEvent, let’s create it now. Create an events
directory in app\flex\com\pomodo (if you’re using Flex Builder, you can right-
click the com\pomodo folder and choose New > Folder), and add the new
AccountCreateEvent as shown in listing 3.22.

package com.pomodo.events {
 import flash.events.Event;

 public class AccountCreateEvent extends Event {
 public static const ACCOUNT_CREATE:String =
 "accountCreate";

Listing 3.22 app\flex\com\pomodo\events\AccountCreateEvent.as

B

C

Adding login functionality to Flex 85
 public var user:XML;

 public function AccountCreateEvent(user:XML) {
 super(ACCOUNT_CREATE);
 this.user = user;
 }
 }
}

This is our first ActionScript 3 class. (Well, not really: MXML is actually turned into
ActionScript. However, it’s the first one we have created ourselves.) It’s a lot sim-
pler, too: AccountCreateEvent extends flash.events.Event B, which is the base
class for all events. It defines an ACCOUNT_CREATE constant C for the name of the
Event. Note that this is the same name we declared we were broadcasting in the
Metadata in AccountCreateBox—this isn’t an accident. Next, we declare a public
var for the user and set its type to be XML D. In the constructor E, we take the
XML for the user as a parameter. We first call the superclass constructor with the
name of the Event F, and then we use the XML we received to set G the user
instance variable we defined D.

 Next, we modify the LoginBox (see listing 3.23).

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Login">
<mx:Metadata>
 [Event(name="login", type="com.pomodo.events.LoginEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.LoginEvent;

 private function login():void {
 svcAccountLogin.send(
 {login: loginTI.text, password: passwordTI.text});
 }

 private function handleAccountLoginResult(
 event:ResultEvent):void {
 var result:Object = event.result;
 if (result == "badlogin") {
 Alert.show("The username or password is wrong.",
 "Login Error");

Listing 3.23 app\flex\com\pomodo\components\LoginBox.mxml

D

E
F

G

B
C

D
E

F

G
H

I

86 ITERATION 3

Getting started
 } else {
 dispatchEvent(new LoginEvent(XML(result)));
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcAccountLogin"
 url="/sessions/create_xml"
 resultFormat="e4x"
 method="POST"
 result="handleAccountLoginResult(event)"/>
 <mx:Form labelWidth="150">
 <mx:FormItem required="true" label="Username">
 <mx:TextInput id="loginTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Password">
 <mx:TextInput id="passwordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="loginButton" label="Login"
 click="login()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

These changes are similar to what we just did with AccountCreateBox. First, we
declare some Metadata B, which declares a custom Event C of type LoginEvent
(which we’ll create momentarily). Next, we create a login D function that
invokes a svcAccountLogin HTTPService by calling its send method E. Note that
we’re passing the parameters to svcAccountLogin as an anonymous object (essen-
tially a hash) E, whose fields are defined inside the {}. This anonymous object
functions as a dictionary, like a hash in Ruby or a HashMap in Java. In Action-
Script 3, you can create anonymous objects like this. This practice was more com-
mon in ActionScript 2; in ActionScript 3, it’s recommended that you type your
objects. (The fact that curly braces are also used for bindings can be confusing to
newcomers—especially if you put anonymous objects inside bindings!)

TIP The ActionScript 3 syntax for an anonymous object is {key1: value1,
key2: value2, ...}, whereas the Ruby syntax for a hash is {key1 =>
value1, key2 => value2, ...}. Don’t forget what language you’re
coding in—because I learned ActionScript before Ruby, I tend to want to
use colons in my Ruby hashes!

J

1)
1!

1@
1#

1$

1%

Adding login functionality to Flex 87
Note that when you do svcAccountLogin.send() E, Flex translates the anonymous
object into proper HTTP POST data (you can look at what Rails receives in
log\development.log). Next, we define a function handleAccountLoginResult F
that takes a ResultEvent, gets its result property G, and shows an Alert I if it’s
"badlogin" H or dispatches a custom LoginEvent J containing the result other-
wise. We define the svcAccountLogin 1), setting its URL 1! to "/sessions/
create_xml", which means that the create_xml action of the SessionsController
will be invoked. We specify the resultFormat of "e4x" 1@ and an HTTPMethod of
POST 1#, and we hook up the result handler 1$. Note that because we don’t specify
the contentType, it defaults to "application/x-www-form-urlencoded". This is a
normal HTTP POST: key-value pairs. This is why we pass an anonymous object in the
send call E.

 Next, we create the LoginEvent (see listing 3.24).

package com.pomodo.events {
 import flash.events.Event;

 public class LoginEvent extends Event {
 public static const LOGIN:String = "login";

 public var user:XML;

 public function LoginEvent(user:XML) {
 super(LOGIN);
 this.user = user;
 }
 }
}

This is a copy-paste-modify of the AccountCreateEvent. The numbers match the
previous explanation, so there’s no need to go over this again. All we’re doing is
specifying a different event name (login).

 Now that we have defined our custom events and built the custom components
to call HTTPServices that talk to the Rails controllers, all we have left to do is to
modify Pomodo.mxml. Let’s do that now; see listing 3.25.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 layout="vertical"

Listing 3.24 app\flex\com\pomodo\events\LoginEvent.as

Listing 3.25 app\flex\Pomodo.mxml

B
C

D

E
F

G

88 ITERATION 3

Getting started
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 width="100%"
 height="100%">
<mx:Script>
<![CDATA[
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;

 [Bindable]
 private var _reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';
]]>

 private function handleAccountCreate(e:AccountCreateEvent):
 void {
 showMain();
 }

 private function handleLogin(e:LoginEvent):void {
 showMain();
 }

 private function showMain():void {
 mainStack.selectedChild = mainBox;
 }
]]>
</mx:Script>
 <mx:ViewStack id="mainStack" width="100%" height="100%">
 <mx:VBox id="splashBox" horizontalAlign="center"
 verticalAlign="middle" width="100%" height="100%">
 <mx:Image source="com/pomodo/assets/logo_md.png"/>
<mx:Label text="The simple, GTD-style TODO list application."/>
 <mx:Spacer height="10"/>
 <mx:Text width="500" text="{_reviews}"/>
 <mx:Spacer height="10"/>
 <mx:Accordion width="400" height="300">
 <pom:AccountCreateBox
 accountCreate="handleAccountCreate(event)"/>
 <pom:LoginBox login="handleLogin(event)"/>
 </mx:Accordion>
<mx:Label text="*did not say this, but might someday!"/>
 </mx:VBox>
 <pom:MainBox id="mainBox"/>
 </mx:ViewStack>
</mx:Application>

B

C

D

E

F
G

H
I

J

Adding login functionality to Flex 89
We start by importing our new events B. Next, we create functions to handle the
accountCreate H and login I events: handleAccountCreate C and handle-
Login D.

TIP If you define your events first and add the mx:Metadata annotations,
Flex Builder will autosuggest your events along with the standard Flex
events. This is a good sanity check that you’re doing things correctly.

Both of these functions call the showMain E function, which sets the selected-
Child of the new ViewStack we’re creating called mainStack F to be the main-
Box J. (We’ll create the MainBox class momentarily.) Note that we move the
various other items inside a new VBox called splashBox G. This way, when the
mainStack selectedChild switches, everything is hidden.

 Create the MainBox, which for now is a stub; see listing 3.26.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" backgroundColor="#FFFFFF">
 <mx:Label text="TODO"/>
</mx:VBox>

Let’s see if it works. Rebuild and reload. We see the same screen as before, as
shown in figure 3.13—so far, so good. Click the Login accordion button, and
enter a Username of ludwig and a Password of foooo.

Listing 3.26 app\flex\com\pomodo\components\MainBox.mxml

Figure 3.13
Filling in the login form

90 ITERATION 3

Getting started
Click the Login button. You see the screen shown in figure 3.14.
 Hooray!
 Now, let’s test account creation. Go to http://localhost:3000/bin/Pomodo.html

again, and create a new user with Username peter, Email Address
peter@pomodo.com, First Name Peter, Last Name Armstrong, and Password foooo
(see figure 3.15).

Figure 3.14
Logged in

Figure 3.15
Creating an account

Adding login functionality to Flex 91
Click Create Account. We see the same TODO screen shown in figure 3.12, on
page 79, as we did when logging in.

 Before we get too excited, however, there are a couple loose ends to tidy up.
First, the screen as shown in figure 3.12 shows the MainBox not extending the full
size of the browser—we still see about 10 pixels of our gradient fill. Now, I like gra-
dient fills as much as the next Web 2.0 developer, but before we declare this a fea-
ture, we have to admit that this isn’t what we had intended. Let’s fix this bug. Also,
while we’re at it, we should do a small refactoring and extract the splashBox stuff
into its own custom component, and make a couple of minor layout tweaks. We’ll
do this first, as shown in listing 3.27.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 horizontalAlign="center" verticalAlign="top"
 width="100%" height="100%">
<mx:Metadata>
 [Event(name="accountCreate",
 type="com.pomodo.events.AccountCreateEvent")]
 [Event(name="login", type="com.pomodo.events.LoginEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;

 [Bindable]
 private var _reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';
]]>
</mx:Script>
 <mx:VBox width="500" horizontalAlign="center">
 <mx:Image source="com/pomodo/assets/logo_md.png" />
 <mx:Label
 text="The simple, GTD-style TODO list application."/>
 <mx:Spacer height="10"/>
 <mx:Text width="100%" text="{_reviews}"/>
 <mx:Spacer height="10"/>
 <mx:Accordion width="400" height="300">
 <pom:AccountCreateBox/>
 <pom:LoginBox/>

Listing 3.27 app\flex\com\pomodo\components\SplashBox.mxml

B
C

D

E
F

92 ITERATION 3

Getting started
 </mx:Accordion>
 <mx:Label text="*did not say this, but might someday!"/>
 </mx:VBox>
</mx:VBox>

The whole file is new, but it’s basically a cut and paste from Pomodo.mxml.
Note that we also declare with Metadata B that we’re broadcasting the
accountCreate C and login D events. Also, note that we aren’t handling these
on pom:AccountCreateBox E and pom:LoginBox F. We could handle them
there, but then we’d have to dispatch some other event to be handled by
Pomodo.mxml. If we created an event such as showMain, we would lose informa-
tion (what happened: a new account or a login). This would limit our ability to
do custom things in response to these specific events.

 Next, we’ll modify Pomodo.mxml again. A little searching of the API docs indi-
cates that the spacing is probably caused by the values of paddingLeft, and so on.
We’ll modify those as well as deleting the code we moved to the SplashBox (see
listing 3.28).

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 width="100%"
 height="100%">
<mx:Script>
<![CDATA[
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;

 [Bindable]
 private var _reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';

Listing 3.28 app\flex\Pomodo.mxml

B

C

Adding login functionality to Flex 93
 private function handleAccountCreate(e:AccountCreateEvent):
 void {
 showMain();
 }

 private function handleLogin(e:LoginEvent):void {
 showMain();
 }

 private function showMain():void {
 mainStack.selectedChild = mainBox;
 }
]]>
</mx:Script>
 <mx:ViewStack id="mainStack" width="100%" height="100%">
 <mx:VBox id="splashBox" horizontalAlign="center"
 verticalAlign="middle" width="100%" height="100%">
...
 </mx:Accordion>
<mx:Label text="*did not say this, but might someday!"/>
 </mx:VBox>
 <pom:SplashBox id="splashBox"
 accountCreate="handleAccountCreate(event)"
 login="handleLogin(event)"/>
 <pom:MainBox id="mainBox"/>
 </mx:ViewStack>
</mx:Application>

We start by setting the padding attributes B. We then delete the _reviews C and
all the code in the splashBox D, replacing it with our new SplashBox E. Note
that we handle the accountCreate and login events from the SplashBox, calling
the same methods that used to be called by handling events from the Account-
CreateBox and LoginBox.

 Rebuild and reload. Go to the login form, and enter a Username of ludwig
and a password of foooo.

 Nothing happens.
 The reason is simple: We had hoped the events from the AccountCreateBox or

LoginBox would somehow magically pass through the SplashBox. It turns out that
this can be done, but you need to turn it on by modifying the events. (Swing
developers: Guess what the property is called.)

 It turns out we need to set the bubbles property of the Event to true for it to
“bubble” through the component hierarchy. As an ex-Java UI developer, I assume
this is a performance optimization. The bubbles property is the second argument
to the Event constructor. Set it now (see listing 3.29 B and listing 3.30 C).

D

E

94 ITERATION 3

Getting started
package com.pomodo.events {
 import flash.events.Event;

 public class AccountCreateEvent extends Event {
 public static const ACCOUNT_CREATE:String =
 "accountCreate";

 public var user:XML;

 public function AccountCreateEvent(user:XML) {
 super(ACCOUNT_CREATE, true);
 this.user = user;
 }
 }
}

package com.pomodo.events {
 import flash.events.Event;

 public class LoginEvent extends Event {
 public static const LOGIN:String = "login";

 public var user:XML;

 public function LoginEvent(user:XML) {
 super(LOGIN, true);
 this.user = user;
 }
 }
}

Having done this, rebuild, reload, and log in as ludwig. We see the screen shown
in figure 3.16.

Listing 3.29 app\flex\com\pomodo\events\AccountCreateEvent.as

Listing 3.30 app\flex\com\pomodo\events\LoginEvent.as

B

C

Figure 3.16
The MainBox stub

Adding data to the test fixtures 95
The login event was heard, and the MainBox is shown. There is no more gradient
fill border, so the padding attribute changes worked.

 Next, reload the app and try to log in with bogus information. We see some-
thing like figure 3.17.

 Notice how the app is grayed out and disabled behind the modal, somewhat
transparent Alert dialog. Who knew a login error could be sexy?

 Because we have just added the ability to create users and log in, we should
now add some sample data that is automatically created for us when we run
newdb.bat. This way, we won’t have to re-create the ludwig user if we decide to
start from scratch. (Also, as we add more data to the fixtures later, it will let us start
from any iteration and have a running database nicely populated, instead of try-
ing to figure out what data to put in it.)

3.6 Adding data to the test fixtures

We could use an SQL script to load sample data (and earlier versions of this book
did so), but we should be as database-agnostic as possible. This motivation naturally

Figure 3.17 An alert for bad login

96 ITERATION 3

Getting started
leads us to consider using data-only migrations (see AWDwR, p. 274, for more infor-
mation) to load test data. However, it’s considered bad practice to load anything
other than reference data this way.

NOTE See the “Data Migrations” section (p. 276) in AWDwR for an example of this
admonition: “Be warned: the only data you should load in migrations is
data that you’ll also want to see in production: lookup tables, predefined
users, and the like. Don’t load test data into your application this way.”

 What to do? Are we stuck using an SQL script?
 Fortunately not. Fixtures to the rescue!

NOTE To be honest, I’m not sure if the following approach is considered a fine
way to do things in normal development. For the purposes of developing
a book example (specifically, this book example) iteratively, however, it
works well. So, this is what I’m using for this book. I’m not claiming it
constitutes “best practice.”

Running the authenticated generator created a users.yml test fixture in test/fix-
tures. It has two users (quentin and aaron), and we’re going to add two more
(ludwig and wolfgang); see listing 3.31.

quentin:
 id: 1
 login: quentin
 email: quentin@example.com
 salt: 7e3041ebc2fc05a40c60028e2c4901a81035d3cd
 crypted_password: 00742970dc9e6319f8019fd54864d3ea740f04b1 # test
 created_at: <%= 5.days.ago.to_s :db %>

aaron:
 id: 2
 login: aaron
 email: aaron@example.com
 salt: 7e3041ebc2fc05a40c60028e2c4901a81035d3cd
 crypted_password: 00742970dc9e6319f8019fd54864d3ea740f04b1 # test
 created_at: <%= 1.days.ago.to_s :db %>

ludwig:
 id: 3
 login: ludwig
 email: lvb@pomodo.com
 first_name: Ludwig
 last_name: van Beethoven

Listing 3.31 test\fixtures\users.yml

B

Adding data to the test fixtures 97
 salt: cf1bc466e9dedd7d687e967ba37947971d44ab6e
 crypted_password: fc3f2237b0edbeab2c08eecbc7bd6ef9b2124080 # foooo
 created_at: <%= 5.days.ago.to_s :db %>

wolfgang:
 id: 4
 login: wolfgang
 email: wam@pomodo.com
 first_name: Wolfgang
 last_name: Mozart
 salt: 945da846ec9a4f29c10e21789bfb213d62f8fee5
 crypted_password: 2f6ffa90ee8a87c2121b813eb68265130f9b1410 # barrr
 created_at: <%= 1.days.ago.to_s :db %>

We base the ludwig B and wolfgang C users on the quentin and aaron users, add-
ing first_name and last_name, making their ids 3 and 4 (because those are the
next in the sequence), and setting salt and crypted_password to what we got
from mysql when we created the ludwig and wolfgang users manually. (Well, you
didn’t create a wolfgang user, but I did before doing this step.)

 Next, modify the newdb.bat file to load the test fixtures B after running the
migrations, as shown in listing 3.32.

mysql -h localhost -u root -p <db\create.sql
call rake db:migrate
call rake db:fixtures:load

Stop your server, run newdb.bat, and start your server again:

C:\peter\flexiblerails\current\pomodo>newdb.bat

C:\peter\flexiblerails\current\pomodo>
mysql -h localhost -u root -p 0<db\create.sql
Enter password: *******

C:\peter\flexiblerails\current\pomodo>call rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.
(in C:/peter/flexiblerails/current/pomodo)
== 1 CreateUsers: migrating

===
-- create_table("users", {:force=>true})
 -> 0.1090s
== 1 CreateUsers: migrated (0.1090s)

==

Listing 3.32 newdb.bat

C

B

98 ITERATION 3

Getting started
c:0:Warning: require_gem is obsolete. Use gem instead.
(in C:/peter/flexiblerails/current/pomodo)

C:\peter\flexiblerails\current\pomodo>ruby script\server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options

Next, check mysql:

mysql> select id, login, email, first_name, last_name from users;
+----+----------+---------------------+------------+---------------+
| id | login | email | first_name | last_name |
+----+----------+---------------------+------------+---------------+
1	quentin	quentin@example.com	NULL	NULL
2	aaron	aaron@example.com	NULL	NULL
3	ludwig	lvb@pomodo.com	Ludwig	van Beethoven
4	wolfgang	wam@pomodo.com	Wolfgang	Mozart
+----+----------+---------------------+------------+---------------+
4 rows in set (0.00 sec)

mysql>

Finally, log in as ludwig (or wolfgang, quentin, or aaron) to confirm that every-
thing still works.

 If you think that loading test data from the fixtures into the development data-
base is unseemly, note that when we’re playing with the app during development,
we’re really doing ad hoc testing. So, this isn’t too out of place.

 Before we stop this iteration, we’ll run the tests to ensure that we haven’t horri-
bly broken things.

3.7 Checking the tests

We need to check our tests. For example, if a test counted the number of users
created by the fixtures, we would have broken that test because we added new
users. (The restful_authentication plugin’s generator produced some tests for us;
see test\functional and test\unit for details.) Let’s run these now by running the
rake command (the default target is to run the tests, which is the same as running
rake test; run rake --tasks to see all the different tasks we can choose from):

c:\peter\flexiblerails\current\pomodo>rake
1234567890123456789012345678901234567890123456789012345678901234
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/
 ➥rake-0.7.3/lib/rake/rake_test_loader.rb"
 ➥"test/unit/user_test.rb"

Configuring Flex Builder to run and debug pomodo 99
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.7.3/lib/rake/
rake_test_loader

Started
.............
Finished in 0.953 seconds.

13 tests, 26 assertions, 0 failures, 0 errors
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/
 ➥rake-0.7.3/lib/rake/rake_test_loader.rb"
 ➥"test/functional/sessions_controller_test.rb"
 ➥"test/functional/users_controller_test.rb"
Loaded suite
 ➥c:/ruby/lib/ruby/gems/1.8/gems/rake-0.7.3/lib/rake/rake_test_loader
Started
..............
Finished in 0.875 seconds.

14 tests, 26 assertions, 0 failures, 0 errors
c:/ruby/bin/ruby -Ilib;test "c:/ruby/lib/ruby/gems/1.8/gems/
 ➥rake-0.7.3/lib/rake/rake_test_loader.rb"

c:\peter\flexiblerails\current\pomodo>

The 13 tests in unit\user_test.rb all pass, as do the 14 functional tests in test\func-
tional. This gives us confidence that we haven’t broken everything and that we can
use this completed iteration as the basis for bigger and better things.

 Before we end this iteration, two more things are useful to consider at this
point: configuring Flex Builder and setting up Subversion and Subclipse. Subver-
sion is covered in appendix A; how to configure Flex Builder to run and debug
pomodo is covered in the next subsection. If you aren’t using Flex Builder, feel
free to skip the next subsection.

3.8 Configuring Flex Builder to run and debug pomodo

It would be nice to be able to click the little green circle with the “play” triangle in
it to run pomodo. Much more important, Flex Builder 3 ships with a proper
debugger, and we should learn to use it. We’ll accomplish both of these tasks now.

Subversion and Subclipse
For real development, there is a strong chance you’ll be using Subversion—unless
you’re one of the cool kids who has switched to Git (http://git.or.cz/). How should
you set up Subversion to work with Flex and Rails? I could just say “have it ignore
the public\bin directory” and be done with it, but this is a fairly common question.
I provide a bit of guidance in appendix A; it should be helpful if you plan to use
Subversion with Flex and Rails and want a quick introduction on what to do.

100 ITERATION 3

Getting started
 First, let’s click the green play button shown in fig-
ure 3.18.

 The application will run, but the URL will be your
equivalent of file:///C:/peter/flexiblerails/current/
pomodo/public/bin/Pomodo.html. This isn’t what
we want: We want http://localhost:3000/bin/
Pomodo.html so that Rails serves up the page contain-
ing our Flex application. So, we need to configure the
run target. Click the drop-down arrow beside the Run
button, and choose Other, as shown in figure 3.19.

 We see the Run dialog. Because we just ran the
Pomodo project from the Run button, there is already
a launch configuration called Pomodo in the Flex
Application folder: It’s what has the wrong URLs. All we
need to do is edit the URLs to be http://localhost:3000/bin/Pomodo.html, and
we’re set. As shown in figure 3.20, deselect Use Defaults, and edit the URLs.

Figure 3.20 Fixing the pomodo URLs in the Flex Application section of the Run configuration dialog

Figure 3.18 The run button
under the Navigate menu

Figure 3.19 Configuring the
run targets by choosing Other

Summary 101
NOTE Flex SDK users: There is a command-line debugger called fdb. See
http://www.adobe.com/devnet/flex/articles/client_debug_08.html for
details.

Click the Apply button to save, and then click Close to close the dialog. We can
now click the Run toolbar button to run the pomodo app and the Debug toolbar
button to debug the pomodo app.

3.9 Summary

We’ve accomplished a lot in this iteration. We got login working in Rails and
hooked up the Flex UI to it. In so doing, we learned some of the basics of Rails
routing and of Flex. Furthermore, we now have a good starting point for any Flex
+ Rails application, and the pomodo application in particular. (It has flaws, how-
ever, as you’ll discover in iteration 5.)

 The next iteration, besides being a lot shorter, is really fun. In it, we’ll gather
requirements and design and build almost the entire Flex UI—in a lot less code
than you’d expect.

The code at this point is saved as the iteration03 folder.

Part 2

Building the application

In part 1, we were introduced to Flex and Rails and to using them
together. We’ve made account creation and login look nice (and work too),
but the app itself is just a big TODO. On the upside, most of what we’ve done
so far is applicable to any application we could create, so it’s nice to have
iteration03 as a starting point. Starting there is further ahead than just rails
pomodo, that’s for sure.

 In part 2, we do a deep dive using Flex with Rails. By the end of it, you’ll
have mastered the basics of using Flex with Rails. You’ll then be ready to
think about higher-level topics, which we’ll do in part 3 where we refactor
the work we’re doing in part 2 to use RESTful design and then Cairngorm.

 This part contains four iterations:
■ Iteration 4—“Creating the main Flex UI,” in which we’ll build a

stubbed-out UI for the main part of the Flex application.
■ Iteration 5—“Expanding the Rails code, RESTfully,” in which we’ll add

new Rails models and controllers for the tasks, projects, and locations
resources—as well as the migrations needed to create their database
tables. We’ll also introduce REST in this iteration, because we’re using
the now-RESTful scaffold command in Rails 2 to create these resources.
Finally, we’ll address some basic security concerns that need to be con-
sidered at the outset.

■ Iteration 6—“Flex on Rails,” in which we’ll hook up most of the main
Flex UI we’ll build in iteration 4 to the Rails controllers we’ll build in
iteration 5.

■ Iteration 7—“Validation,” in which we’ll add full validation support on
the Rails side and the Flex side to the account-creation process. This is
a nice place to cover validation because it’s a fairly self-contained section.

Creating the main Flex UI
First: every great system has a command shell. It is always
an integral part of the system. It’s been there since the system
was born. The designer of the system couldn’t imagine life
without a command shell. The command shell is a full
interface to the system: anything you can do with the system
in some other way can also be done in the command shell.

—Steve Yegge,
http://steve-yegge.blogspot.com/2007/01/pinocchio-problem.html
105

106 ITERATION 4

Creating the main Flex UI
In this iteration, we’ll create a completely stubbed-out GUI for our application, in
order to clarify our requirements. After such a long previous iteration, it will be
nice to have some fun in this one.

4.1 Requirements

We’re creating a Getting Things Done (GTD) style To Do list application. As such,
we’ll need tasks, projects to put them in, and locations where tasks will be done.
We’ll want the UI to be focused on easy entry of tasks, because GTD focuses on
entering tons of tasks. We’ll also want a place to store random notes, because GTD
is all about a Zen-like clearing of your mind of all the stuff that distracts you. Finally,
it would be nice to have a handy calendar available. For the moment, we won’t
worry about putting anything in the calendar—we’d only worry about that if we
were trying to sell our app on eBay. Although it would be fairly straightforward (if
time-consuming and painful) to build the full Outlook mess of features into
pomodo, we’re going to “Get Real” and ship something now. (The full Outlook
killer app will have to wait until the second edition of this book!) Finally, one more
requirement: a command shell. Why? I’ll defer to the earlier Steve Yegge quote.

 With these high-level requirements, we can sit down in Flex Builder and start
experimenting. Flex Builder has a Design mode for MXML files (the tab to the
right of the Source tab), which lets us drag and drop a GUI together. If you’ve ever
used a GUI builder such as the one in Visual Basic, Visual C#, or JBuilder, you
should feel right at home. You can go there now and start experimenting with
what you think the ideal design for this application would be. This book isn’t
going to teach Flex Builder, so this is left as an exercise for you. (A PDF entitled
Using Flex Builder is in the documentation zip file that I hope you downloaded in
iteration 3 in the “Flex 3 documentation? Where?” section,1 and it covers this
topic more than adequately.)

 When you’re done experimenting, move on to the next section to see what I
came up with.

4.2 Design

Figure 4.1 shows the design I chose. Chances are, you could have easily outdone me.
 This UI includes many of the typically used Flex controls. It has a TabNavigator

for the Tasks, Projects, Locations, and Notely (haha) tabs. It uses an Accordion for

1 This file is currently at http://download.macromedia.com/pub/labs/air/air_b2_docs_flex_100107.zip,
but this will change when Flex 3 is out of Beta. See iteration 3 for details.

Design 107
the New Task, New Project, and New Location boxes. It has a DataGrid for the Tasks
(and for the Projects and Locations) and a Panel for the Task details (and the
Project and Location details). It even includes the typically overstuffed Web 2.0 but-
tons. Also, note that if we widen our browser window, the UI expands accordingly.

NOTE One of the common criticisms of Flash UIs is that they’re a fixed size.
This example shows that this doesn’t have to be true. It’s obviously easier
to make a fixed-size UI than to make a UI that resizes appropriately, but
it’s not Flex’s fault that many developers are lazy. It’s certainly as easy to
build a UI that resizes nicely in Flex as it is in, say, Swing.

The UI also incorporates the notion of a Next Action, allowing a task to be the Next
Action of a project. (I’m capitalizing Next Action because it’s a GTD idea and
deserves to be capitalized.) Furthermore, we add a simple ComboBox for filtering
tasks. Next Actions is the default, because that’s what we should be focused on,
but we’ll also provide options to show all tasks or tasks in a given project or at a
given location.

Figure 4.1 The main pomodo UI

108 ITERATION 4

Creating the main Flex UI
NOTE Other common and useful controls that aren’t covered in the book
include AdvancedDataGrid and Tree. There are a lot of controls, and this
isn’t a Flex “complete reference” book. Note that the AdvancedDataGrid
could have been used with great effect for the tasks data grid—for exam-
ple, grouping the tasks by project or location. However, we can’t do every-
thing in this book, and it’s important to show the basics (such as
DataGrid) before the advanced stuff. (Also, while Tree is part of the Flex
SDK, AdvancedDataGrid costs money.)

Not bad for a first attempt, if I do say so myself. It’s fairly clean and simple, which,
thanks to 37signals, is where it’s at these days. (In fact, because at 38noises we’re
so totally about Less Features, the fact that this app doesn’t do anything at all right
now means that we have a winner! Ship it!)

4.3 Code

As you’ve probably guessed, the design in the previous section is the running code
we’ll have at the end of this iteration, not something I mocked up in Photoshop
or Fireworks. Flex is so great that it’s almost as fast, if not faster,2 to code the visual
appearance of something than it is to draw it. (Note that this is true even without
using the visual design functionality in Flex Builder, once you know Flex well
enough.) Without further ado, let’s look at the new Flex code (the Rails code is
unchanged). We’ll start with the MainBox; see listing 4.1.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" backgroundColor="#FFFFFF">
 <mx:Label text="TODO"/>
</mx:VBox>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000"
 minHeight="680"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 width="100%"
 height="100%"

2 This is true especially for me because I can’t draw—my drawings in Brain Age look like my 3 year old
did them!

Listing 4.1 app\flex\com\pomodo\components\MainBox.mxml

B

C
D

E

F

Code 109
 backgroundColor="#FFFFFF">
<mx:Script>
<![CDATA[
 [Bindable]
 public var user : XML;
]]>
</mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:VBox width="300" height="100%">
 <mx:Image source="com/pomodo/assets/logo_md.png"/>
 <mx:Label text="{'Logged in as: ' + user.login +
 ' (' + user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' + user.first_name +
 '!'}"/>
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"/>
 <pom:ProjectCreateBox id="projectCreateBox"/>
 <pom:LocationCreateBox id="locationCreateBox"/>
 </mx:Accordion>
 <mx:DateChooser id="dateChooser" width="100%"/>
 </mx:VBox>
 <mx:VBox width="100%" height="100%">
 <pom:CommandShell/>
 <mx:TabNavigator width="100%" height="100%">
 <pom:TasksListBox id="tasksTab"/>
 <pom:ProjectsListBox id="projectsTab"/>
 <pom:LocationsListBox id="locationsTab"/>
 <pom:Notely id="notelyTab"/>
 </mx:TabNavigator>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

We begin by deleting the old VBox code B and creating an HBox C. (Actually, I
renamed it, but it’s easier to show it being deleted.) We then add the XML
namespace for our components D and set the minimum width and height E. If
the control that contains the MainBox gets smaller than this, the MainBox will add
scrollbars instead of shrinking further. Next, we set some padding F because we
got rid of it in Pomodo.mxml. We add a Bindable variable for the current user G;
it’s typed as XML, because that’s what we get back from Rails.

 Next, we create an HBox H to hold a two-column layout. (There is no limit to
the number of things in an HBox or VBox—I’m calling it a two-column layout
because that’s what it is. We could have made a six-column layout.) The left col-
umn is a VBox I containing our logo J and a couple of labels welcoming the
user 1)1!. We also try to welcome the user by their first_name 1@. However, as
we’ll soon see, this doesn’t work well. Don’t worry—we’ll fix this problem soon.

G

H
I

J
1)

1!
1@

1#
1$

1%
1^

1&

1*
1(

2)
2!

2@
2#

2$

110 ITERATION 4

Creating the main Flex UI
 Now, we add an Accordion 1# with our custom TaskCreateBox 1$, Project-
CreateBox 1%, LocationCreateBox 1^, and DateChooser 1&. (That’s quite the col-
umn.) The right column is a VBox 1* containing our custom CommandShell 1(and
a TabNavigator 2) containing tabs for each of the TasksListBox 2!,
ProjectsListBox 2@, LocationsListBox 2#, and Notely 2$.

 From this code, you can tell we have a lot of custom components to create!
Before we do that, however, let’s modify Pomodo.mxml to pass the user in; see list-
ing 4.2.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 width="100%"
 height="100%">
<mx:Script>
<![CDATA[
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;

 [Bindable]
 private var _user : XML;

 private function handleAccountCreate(e:AccountCreateEvent):
 void {
 showMain();
 login(e.user);
 }

 private function handleLogin(e:LoginEvent):void {
 showMain();
 login(e.user);
 }

 private function showMain():void {
 private function login(user:XML):void {
 _user = user;
 mainStack.selectedChild = mainBox;

Listing 4.2 app\flex\Pomodo.mxml

B

C

D

E
F

Code 111
 }
]]>
</mx:Script>
 <mx:ViewStack id="mainStack" width="100%" height="100%">
 <pom:SplashBox id="splashBox"
 accountCreate="handleAccountCreate(event)"
 login="handleLogin(event)"/>
 <pom:MainBox id="mainBox" user="{_user}"/>
 </mx:ViewStack>
</mx:Application>

We begin by creating a Bindable variable called _user B. We then rename the
showMain function to login E and make it take the user XML as a parameter that
we use to set F the _user variable. We modify the call from handleAccountCre-
ate C and handleLogin D to call login with the user property of the given
event. Finally, we add the user="{_user}" G binding to actually pass the _user
into the mainBox.

 That was easy. Now, let’s create the components.
 First, the CommandShell; see listing 4.3.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%">
 <mx:Label text="pomodo:"/>
 <mx:TextInput id="cmdTI" width="100%"/>
</mx:HBox>

There’s not much to say about that. Next, the TaskCreateBox; see listing 4.4.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Task">
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Task">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"/>

Listing 4.3 app\flex\com\pomodo\components\CommandShell.mxml

Listing 4.4 app\flex\com\pomodo\components\TaskCreateBox.mxml

G

B

112 ITERATION 4

Creating the main Flex UI
 </mx:FormItem>
 <mx:FormItem label="">
 <mx:CheckBox id="nextActionCheckbox"
 label="This is the Next Action"/>
 </mx:FormItem>
 <mx:FormItem label="Location">
 <mx:ComboBox id="locationsCB" width="200"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

By now, these mx:Forms are pretty boring. Note that this one contains a couple of
ComboBoxes BD. A ComboBox is similar to an HTML select tag; it’s not interesting
at the moment because it has no dataProvider set. There is also a CheckBox C to
specify whether the task is the Next Action in a Project.

 Next, the ProjectCreateBox; see listing 4.5.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Project">
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Name">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

Having just looked at the TaskCreateBox, there is nothing interesting to say about
this one.

 Now, the LocationCreateBox; see listing 4.6.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Location">

Listing 4.5 app\flex\com\pomodo\components\ProjectCreateBox.mxml

Listing 4.6 app\flex\com\pomodo\components\LocationCreateBox.mxml

C

D

Code 113
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Name">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextInput id="notesTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

By now you’ve probably realized that copy-paste-modify is the standard way of
developing MXML. You can do complex things purely in ActionScript to try to
reduce the amount of this, but we’re trying to keep the code simple.

 Next, the TasksListBox; see listing 4.7.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
<mx:Script>
<![CDATA[
 public const NEXT_ACTIONS:int = 0;
 public const ALL_TASKS:int = 1;
 public const TASKS_IN_PROJECT:int = 2;
 public const TASKS_AT_LOCATION:int = 3;

 private const SHOW_CHOICES:Array = [
 {label:"Next Actions", data:NEXT_ACTIONS,
 hasSubChoice:false},
 {label:"All Tasks", data:ALL_TASKS,
 hasSubChoice:false},
 {label:"Tasks in Project:", data:TASKS_IN_PROJECT,
 hasSubChoice:true},
 {label:"Tasks at Location:", data:TASKS_AT_LOCATION,
 hasSubChoice:true}];

 [Bindable]
 private var _subChoices:Array;
]]>
</mx:Script>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
 <mx:Label text="Show:"/>
 <mx:ComboBox id="mainChoiceCB"
 dataProvider="{SHOW_CHOICES}"/>

Listing 4.7 app\flex\com\pomodo\components\TasksListBox.mxml

B
C

D

E

F

G
H

I

114 ITERATION 4

Creating the main Flex UI
 <mx:ComboBox id="subChoiceCB" width="100%"
 dataProvider="{_subChoices}"
 visible="{mainChoiceCB.selectedItem.hasSubChoice}"/>
 </mx:HBox>
 <mx:DataGrid id="tasksGrid" width="100%" height="100%">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"/>
 <mx:DataGridColumn headerText="Name"
 width="250"/>
 <mx:DataGridColumn headerText="Project"
 width="150"/>
 <mx:DataGridColumn headerText="Location"
 width="150"/>
 <mx:DataGridColumn headerText="Notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>
 <mx:Panel id="summaryPanel" title="Task" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"/>
 </mx:HBox>
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Project" width="50"/>
 <mx:ComboBox id="projectCB" width="200"/>
 <mx:CheckBox label="This is the Next Action"/>
 <mx:Spacer width="100%"/>
 <mx:Label text="Location"/>
 <mx:ComboBox id="locationCB"/>
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%"
 height="100%"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

This is more interesting. We’re creating an mx:VDividedBox B, which as a VBox
with adjustable dividers in between each child. (This is the two-child JSplitPane
in Swing generalized to n children—hooray for Flex!) It has a Tasks label C,

J

1)

1!
1@

1#
1$

1%

1^

1&

1*

Code 115
which is used by the TabNavigator (in MainBox) as the tab name. It contains two
children: a VBox G and a Panel 1^.

 The VBox G contains an HBox H, which contains a label and a couple of
ComboBoxes IJ. The mainChoiceCB I has its dataProvider set to the
SHOW_CHOICES Array E which is built out of anonymous Objects containing
label, data, and hasSubChoice properties. Similarly, the subChoiceCB J has its
dataProvider bound to the array of _subChoices F. The data property is set to
one of the constants we’re defining D. (Note that constants are usually static,
and these probably should be too.)

 The interesting bit of code is the binding to the visible property 1) of the
second ComboBox based on the selectedItem of the first. This lets us show the sec-
ond ComboBox only if the first ComboBox has a choice that has subchoices, as speci-
fied by a flag.

 The VBox G also contains a DataGrid 1!, which specifies its columns 1@ as an
Array of mx:DataGridColumn. Note that we have two columns with blank head-
ers—the first one will be used for a check box 1#, and the second will be used for
a Delete button 1%. Finally, note that the typical column’s name is set in the
headerText 1$.

 Other than this, it’s more of the same, with the exception of two small new
things: a TextArea 1&, which is a multiline text-input control (TextInput is single
line); and a ControlBar 1*, which is essentially a funky-looking HBox.

 Next, the ProjectsListBox, which is a copy-paste-modify of the TasksListBox;
see listing 4.8.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Projects">
 <mx:DataGrid id="projectsGrid" width="100%" height="60%">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"/>
 <mx:DataGridColumn headerText="Name" width="400"/>
 <mx:DataGridColumn headerText="Notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:Panel id="summaryPanel"
 title="Project" width="100%" height="40%"
 paddingLeft="5" paddingRight="5" paddingTop="5"
 paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"/>
 </mx:HBox>

Listing 4.8 app\flex\com\pomodo\components\ProjectsListBox.mxml

116 ITERATION 4

Creating the main Flex UI
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%"
 height="100%"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

Finally, the LocationsListBox, which is another copy-paste-modify; see listing 4.9.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Locations">
 <mx:DataGrid id="locationsGrid" width="100%" height="60%">
 <mx:columns>
 <mx:DataGridColumn headerText="Name" width="400"/>
 <mx:DataGridColumn headerText="Notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:Panel id="summaryPanel" title="Location" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"/>
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%"
 height="100%"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

Listing 4.9 app\flex\com\pomodo\components\LocationsListBox.mxml

Summary 117
NOTE These three files are so similar that we could be tempted to create a com-
ponent that handles tasks, projects, and locations. We’ll resist this tempta-
tion for now, because at the beginning of a project it’s a good idea to keep
the MXML simple—stupid, even—until the design begins to emerge.

Finally, Notely; see listing 4.10.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Notely" paddingLeft="5"
 paddingRight="5" paddingTop="5" paddingBottom="5">
 <mx:TextArea width="100%" height="100%"/>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="saveButton" label="Save" width="100%"
 height="30"/>
 <mx:Button id="revertButton" label="Revert"
 height="30"/>
 </mx:ControlBar>
</mx:VBox>

Although there is no interesting code here, we’ve made an interesting design
decision: We’re only including Save and Revert buttons. This means the user only
ever has one document, not multiple documents. I told you we were going to
keep things simple!

 Rebuild, reload, and log in as ludwig. We see the running app that showed ear-
lier in figure 4.1.

4.4 Summary

That’s it for this iteration! If you were on the fence about Flex, I hope this short iter-
ation has given you a taste of how quickly you can build elegant UIs. Note that real
Flex development isn’t all this easy; but what we just did isn’t a lie, either. This is fine
code to build on, not something that needs to be thrown away—unlike wizard-
generated code in other languages I have used. In the next iteration, we’ll make this
UI fully functional.

Listing 4.10 app\flex\com\pomodo\components\Notely.mxml

The code at this point is saved as the iteration04 folder.

Expanding the
 Rails code, RESTfully
WS-Death Star

 —David Heinemeier Hansson
118

A brief note about REST 119
In this iteration, we’ll finally learn about this RESTful stuff we’ve been talking
about, as we add new models and controllers for the tasks, projects, and locations,
along with the migrations needed to create their database tables. We’ll also
address some basic security concerns that need to be considered at the outset.

5.1 A brief note about REST
A brief note about REST Before we dive in and create the model classes and migrations for tasks, projects,

and locations, I want to give enough background about REST and how we’re using
it in this book. I’ll start with a disclaimer.

5.1.1 Disclaimer: doing REST wrong

Readers who are REST experts and/or went to Scott Raymond’s excellent “Doing
REST Right” RailsConf 2007 presentation1 may, at various points in this iteration, be
tempted to scream “What about idempotence?” “You should be returning status
codes, not just sending XML responses,” or “REST isn’t about CRUD and
respond_to, but you’re making it seem like it is!” I ask those readers to please bear
with me: Explaining REST properly would take a full book. Thankfully, an excellent
one is already available: RESTful Web Services, by Leonard Richardson and Sam Ruby
(O’Reilly Media, 2007). If you care about REST, buy that book2 and read it. You can
also read one of many good articles3 about REST online. Then, as you read this iter-
ation, you can shake your head knowingly when I oversimplify things.

1 Download the slides from http://conferences.oreillynet.com/presentations/rails2007/raymond_scott.
pdf.

2 http://www.crummy.com/writing/RESTful-Web-Services/.
3 For example, http://www.pluralsight.com/blogs/tewald/archive/2007/04/26/46984.aspx.

Status codes
(This note is for advanced Rails developers.) Although I’ll leave alone the scaffold-
generated code that produces the various abnormal (that is, everything other
than 200 OK) HTTP status codes (for example, :status => :unprocessable_
entity), the HTTP status codes don’t reliably show up inside Flash in many brows-
ers. There is hope for the future (especially with AIR), so I won’t delete the code
that produces the non-200 status codes from the Rails controllers. (Also, if you’re
using format.xml as an API for non-Flash player based clients, the status codes
may be useful.) That said, I’ll basically ignore this issue in the book and use the
body of what is produced by render :xml and render :text instead of trying to
use the status codes.

http://conferences.oreillynet.com/presentations/rails2007/raymond_scott.pdf

120 ITERATION 5

Expanding the Rails code, RESTfully
With that out of the way, let’s consider what REST is and why we should use a
RESTful approach in the first place.

5.1.2 What is REST?

Before we begin the process of converting pomodo to be RESTful, let’s take an
extremely brief look at what REST is.

 REST (Representational State Transfer) is a way of building web services that
focuses on simplicity and an architecture style that is “of the web.” This can be
described as a Resource Oriented Architecture (ROA); see RESTful Web Services for
details. As you can probably infer from its $20-word full title, REST grew out of a
PhD thesis—Roy Fielding’s, to be precise. However, unlike most PhD theses, it has
grown into something revolutionary. DHH puts it like this, in typical DHH style,4 in
the foreword to RESTful Web Services:

A renaissance of HTTP appreciation is building and, under the banner of REST,
shows a credible alternative to what the merchants of complexity are trying to ram
down everyone’s throats; a simple set of principles that every day [sic] developers
can use to connect applications in a style native to the Web.

In sum, REST is the anointed good-guy side of the eternal struggle pitting good
versus evil, us against them, Apple versus Microsoft, the rebels versus the evil
empire. Put on your jeans and turtleneck and meet me at the barricades—after
you finish reading this iteration, of course.

4 Visualize DHH ordering a sandwich: “This panini is a revolution of simplicity in the complexity of
baguettes and croissants that the merchants of pastry are trying to ram down everyone’s throats.”

Status codes (continued)

This isn’t as “pure” as returning status codes only, but it works. We can hope
this situation improves with future browser and Flash player releases, but until
then this is the pragmatic thing to do. (The situation should currently be better
with AIR, but because this isn’t a book about AIR I’m not going to get into that—
even in the final iteration that ports pomodo to AIR.) If you’re interested in an
advanced discussion, see http://www.atnan.com/2007/6/11/can-as3-do-rest-
or-not for details. An in-depth discussion of browser compatibility issues doesn’t
belong here, because this information is always in flux and is of interest only if
you’re a REST purist determined to use status codes. If this is you, you’re already
a pretty advanced developer, so see the aforementioned link and follow your
nose from there.

A brief note about REST 121
 On a more serious note, table 5.1 explains everything you could possibly need
to know about REST.

Fine, so it doesn’t explain everything. Also, as REST gurus such as Scott Raymond will
remind you, this table isn’t about REST at all, but about the way that Rails implements
REST. Heck, even that sentence is wrong: Rails doesn’t implement REST—it pro-
vides some conventions that you can use along with HTTP to build an app in the
RESTful style. (Argh, if I continue like this I’m never going to write anything.)

 Although it doesn’t explain everything, the table does show the seven standard
controller methods, some sample URL paths, and so on. The purpose of what
these methods all do and the pretend and actual HTTP methods that trigger them
will become clear as we start using them.

 Before we dive in to the tasks, projects, and locations, let’s think back to the
UsersController and the SessionsController and why we have two of them (as
opposed to, say, a controller called Accountcontroller that handled account cre-
ation and login). Think about what those controllers do: The act of creating a
user is done by the create method in the UsersController, whereas the act of
logging in is done by the create method in the SessionsController. The create

Table 5.1 The seven standard RESTful controller methodsa

Method
Sample URL

paths
Pretend HTTP

method
Actual HTTP

method
Corresponding
CRUD method

Corresponding
SQL method

1 index /tasks
/tasks.xml

GET GET READ SELECT

2 show /tasks/1
/tasks/1.xml

GET GET READ SELECT

3 new /tasks/new
/tasks/new.xml

GET GET - -

4 edit /tasks/1/edit GET GET READ SELECT

5 create /tasks
/tasks.xml

POST POST CREATE INSERT

6 update /tasks/1
/tasks/1.xml

PUT POST UPDATE UPDATE

7 destroy /tasks/1
/tasks/1.xml

DELETE POST DELETE DELETE

a. This table is inspired by DHH’s “Discovering a world of Resources on Rails” (slide 7), as well as the table on p. 410 of
AWDwR 2nd ed. and the tables in Geoffrey Grosenbach’s REST cheat sheet.

122 ITERATION 5

Expanding the Rails code, RESTfully
method is one of the standard seven methods used in a RESTful design, as shown
in row 5 of table 5.1. This is one consequence of RESTful design: We end up with
more controllers (nouns) and fewer actions (verbs) in each of them.

 The best way to start learning RESTful design in Rails is to look at one of the
outputs of the scaffold generator—it will have all seven of the methods for us to
examine. We’ll do that momentarily. First, let’s consider why we should use a
RESTful approach.

5.1.3 Why use a RESTful approach?

This seems like a simple enough question, but it’s fairly deep.
 The short answer is, “because DHH says so”—this is how you’re supposed to

design things in Rails 2. This is reinforced by the fact that the scaffolding works
this way now, and if the Rails core team is pushing REST all the way into the scaf-
folding, then even newbies are supposed to use it. The reason is that using a REST-
ful design helps us organize our controllers better, forces us to think harder about
our domain, and gives us a nice API for free.

 The long answer to the question was provided by DHH in his RailsConf 2006
keynote presentation “Discovering a world of Resources on Rails.” The
slides for the presentation are at http://media.rubyonrails.org/presentations/
worldofresources.pdf, and a video of the presentation is at http://www.scribeme-
dia.org/2006/07/09/dhh/. If you haven’t seen that presentation, I strongly
urge you to stop reading right now and watch the video while following along
with the slides. This will take about an hour, but it’s time well spent.

 REST is also discussed extensively in Chapter 20 of Agile Web Development with
Rails, 2nd ed. (AWDwR). Unless you’re already a RESTful Rails guru who is just read-
ing this book for the Flex stuff, I strongly encourage you to read that section of
AWDwR right now, buying the book if you haven’t already. This book will be a lot
more understandable if you do so.

 Finally, I recommend that you buy and watch the “PeepCode RESTful Rails”
screencast from http://peepcode.com/articles/2006/10/08/restful-rails. This
screencast greatly helped me learn how REST was used in Rails. Also note that
Geoffrey Grosenbach has a free REST cheat sheet available at http://
topfunky.com/clients/peepcode/REST-cheatsheet.pdf. Doing all this will take a
while; I’ll wait. When you’re well RESTed (sorry, I’ll try to stop now), we’ll dive in
and use the now-RESTful scaffold command to create the new resources.

 Now that I’ve spent a couple of pages talking about/around REST, we’re about
ready to create some RESTful resources. Before we do that, however, we have one
small mystery to solve.

http://media.rubyonrails.org/presentations/worldofresources.pdf
http://www.scribemedia.org/2006/07/09/dhh/

Calling the user by name 123
5.2 Calling the user by name
Calling the user by name We’re trying to be polite in MainBox.mxml and say

 <mx:Label text="{'Welcome back ' + user.first_name +
 '!'}"/>

However, this produced “Welcome back !” in figure 4.1 in the previous iteration—
the first_name isn’t showing up! We’re confident this isn’t due to bad data,
because we created the ludwig user in a test fixture that is run by newdb.bat. As a
sanity check, let’s run newdb.bat, check in MySQL to confirm that the data is all
present and correct, and then start the server and look at the UI again.

 Stop the server, and run the newdb.bat script:

c:\peter\flexiblerails\current\pomodo>newdb.bat

c:\peter\flexiblerails\current\pomodo>
mysql -h localhost -u root -p 0<db\create.sql
Enter password: *******

c:\peter\flexiblerails\current\pomodo>call rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)
== 1 CreateUsers: migrating

===
-- create_table("users", {:force=>true})
 -> 0.1250s
== 1 CreateUsers: migrated (0.1250s)

==

c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)

Let’s see if the user info made it into the database. Connect to MySQL, and check:

mysql> select id, login, email, first_name, last_name from users;
+----+----------+---------------------+------------+---------------+
| id | login | email | first_name | last_name |
+----+----------+---------------------+------------+---------------+
1	quentin	quentin@example.com	NULL	NULL
2	aaron	aaron@example.com	NULL	NULL
3	ludwig	lvb@pomodo.com	Ludwig	van Beethoven
4	wolfgang	wam@pomodo.com	Wolfgang	Mozart
+----+----------+---------------------+------------+---------------+
4 rows in set (0.00 sec)

The good news is that the first_name made it into the database from the fixture
that is run by newdb.bat.

124 ITERATION 5

Expanding the Rails code, RESTfully
 Next, start the server:

c:\peter\flexiblerails\current\pomodo>ruby script\server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with

--help for options

Finally, log in as ludwig. The MainBox
appears, but as shown in figure 5.1, we’re still
not greeting Ludwig by his first name.

 There’s a bug somewhere—we’re just
not sure if it’s on the Flex side or the Rails
side.

5.2.1 Adding a primitive debug console to Flex

It would help us understand what was going on is if we had a quick and dirty way of
debugging from within our running Flex application. On the Rails side, we have
script\console and also the log file in log\development.log, but it would be nice to
have something to help us from within Flex. (We have the Flex Builder debugger
[or fdb for SDK users], but something simpler may be handy.) Lots of the data is
XML, so it would be useful to have a TextArea we could dump it to. Let’s build that
now. We’ll put a bit of effort into building a good debug console (or at least a good
API to it), because this will end up saving us a ton of time in the long run.

NOTE The Flex Builder debugger is good enough that the debug console
approach is a lot less necessary than it would have been with previous
Flex versions. But it’s still useful, especially if you’re using the SDK and
don’t want to use fdb. It’s also a security blanket for me, after having
spent so much time writing Flex 1.0 and 1.5 code.

We’d like the ability to call a static utility function somewhere and have a debug
message added to an Array of debug messages. These debug messages should be
timestamped so we can see when they happened, and so on.

 We’ll start by defining a class for debug messages. Create the folder
app\flex\com\pomodo\util, and create a new file called DebugMessage.as in it. Set
its contents as shown in listing 5.1.

package com.pomodo.util {
 public class DebugMessage {
 [Bindable]
 public var time:Date;

Listing 5.1 app\flex\com\pomodo\util\DebugMessage.as

B

Figure 5.1 Our not-so-polite application

Calling the user by name 125
 [Bindable]
 public var message:String;

 public function DebugMessage(message:String) {
 time = new Date();
 this.message = message;
 }

 public function toString():String {
 return "[" + time + "] " + message;
 }
 }
}

This class has public Bindable properties for the time B and message C. The time
is set to a new Date D in the constructor, which has the effect of creating a time-
stamp because the default constructor for Date sets its time to the system time. The
message that is passed in to the constructor is also stored E. The toString() func-
tion F works the same way as it does in Java and as to_s does in Ruby, returning a
String to display for the object. We display the time (which uses the toString() of
Date to do this) in square brackets G, followed by the message.

 Next, we’ll create the DebugPanel; see listing 5.2.

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:mx="http://www.adobe.com/2006/mxml"
 title="Debug Console" width="100%" height="200">
<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import com.pomodo.util.DebugMessage;

 [Bindable]
 private var _messages:ArrayCollection;

 public function addMessage(msg:DebugMessage):void {
 if (_messages == null) {
 _messages = new ArrayCollection();
 }
 _messages.addItem(msg);
 updateMessages();
 }

 private function clearMessages():void {
 _messages.source.splice(0);
 updateMessages();
 }

Listing 5.2 app\flex\com\pomodo\components\DebugPanel.mxml

C

D
E

F
G

B

C

D
E

F

G

126 ITERATION 5

Expanding the Rails code, RESTfully
 private function updateMessages():void {
 //(This is somewhat inefficient since we're processing
 //the entire Array every time.)
 debugTA.text = _messages.source.join("\n");
 }
]]>
</mx:Script>
 <mx:TextArea id="debugTA" width="100%" height="100%"/>
 <mx:Button label="clear" click="clearMessages()"/>
</mx:Panel>

The addMessage function C adds D a DebugMessage to the _messages Array-
Collection B, creating it if necessary. It then calls E updateMessages(). The
clearMessages function F clears the Array inside the _messages Array-
Collection (splice(0) starts at the beginning and deletes all elements of the
Array). As the comment says, the way that updateMessages G works is inefficient.
However, we don’t care at the moment because it’s just debug code. If it becomes
a problem, we can deal with it later.

 Finally, we’ll modify Pomodo.mxml; see listing 5.3.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 width="100%"
 height="100%">
<mx:Script>
<![CDATA[
 import com.pomodo.components.DebugPanel;
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;
 import com.pomodo.util.DebugMessage;

 [Bindable]
 private var _user : XML;

 public static function debug(str:String):void {
 application.debugPanel.addMessage(

Listing 5.3 app\flex\Pomodo.mxml

Add import

B

Calling the user by name 127
 new DebugMessage(str));
 }

 private function handleAccountCreate(e:AccountCreateEvent):
 void {
 login(e.user);
 }

 private function handleLogin(e:LoginEvent):void {
 login(e.user);
 }

 private function login(user:XML):void {
 _user = user;
 debug("user = " + user);
 mainStack.selectedChild = mainBox;
 }
]]>
</mx:Script>
 <mx:VDividedBox width="100%" height="100%">
 <mx:ViewStack id="mainStack" width="100%" height="100%">
 <pom:SplashBox id="splashBox"
 accountCreate="handleAccountCreate(event)"
 login="handleLogin(event)"/>
 <pom:MainBox id="mainBox" user="{_user}"/>
 </mx:ViewStack>
 <pom:DebugPanel id="debugPanel" width="100%"
 height="0%"/>
 </mx:VDividedBox>
</mx:Application>

We create a public static debug function B that gets the debugPanel via the appli-
cation static variable that Pomodo inherits from its Application base class. We
then call the addMessage() function C of the DebugPanel, passing it a new
DebugMessage that we’ve constructed with the string we were provided. We call
this new debug function in the login function D. (Outside of Pomodo, we’ll call
this function with Pomodo.debug(); here, we can just call debug().) Next, we wrap
a VDividedBox E around our existing mainStack. We add the DebugPanel to it F
and set its height to 0%. This means it will start off hidden at the bottom, until we
drag the divider up to see it.

NOTE Having a debug console permanently available is cheesy. However, it’s
simple to explain, so that’s what I’m doing. Before we deploy the applica-
tion in production, we’ll obviously need to comment out the DebugPanel
and the body of the debug function, as well as remove the VDividedBox
that wraps the ViewStack.

C

D

E

F

128 ITERATION 5

Expanding the Rails code, RESTfully
5.2.2 The case of the missing first name

Now that we’ve built our debug console, let’s see it in action. Rebuild and reload
the app, and log in as ludwig. Next, drag the divider up from the bottom of the
window to show the debug console (see figure 5.2).

 Hmmm. The debug console shows the <user> as having a child of <first-name>
(with the correct name, Ludwig). However, we were expecting <first_name>!

 Clearly this is a bug, but is the bug in Flex or Rails? More specifically: The XML
is wrong, but is Flex or Rails mangling it?

NOTE We could say user.child('first-name') in the MainBox, and it would
work. (Try it.) But we can’t say user.first-name, because Flex will
think we’re subtracting some variable called name from user.first.
We’re stubborn, and we like the sexy E4X (ECMAScript for XML) syntax
(such as user.first_name), so we’re not going to give in and use
user.child('first-name'). Besides, not knowing where the hyphen
came from is unsettling. (Another workaround would be to not have
underscores in our table column names. However, this smells like accept-
ing defeat too easily—and by this point, this is making us mad.) Also, try-
ing to figure this out should be instructive.

Figure 5.2 The debug console showing the user XML

Calling the user by name 129
Let’s fire up script\console and do some investigating on the Rails side. Running
script\console runs the interactive Ruby debugger, irb, but in the environment of
our running Rails app. We know that the id of ludwig is 3, so we can use that to do
a find:

c:\peter\flexiblerails\current\pomodo>ruby script\console
Loading development environment (Rails 2.0.1)
>> ludwig = User.find(3)
=> #<User id: 3, login: "ludwig", email: "lvb@pomodo.com",
first_name: "Ludwig", last_name: "van Beethoven",
crypted_password: "fc3f2237b0edbeab2c08eecbc7bd6ef9b2124080",
salt: "cf1bc466e9dedd7d687e967ba37947971d44ab6e",
created_at: "2007-10-11 05:11:32", updated_at: nil,
remember_token: nil, remember_token_expires_at: nil>
>>

(Leave script\console open.) All the attributes look present and correct. Specifi-
cally, first_name is correctly set to "Ludwig" B. We also know that the act of logging
in is the act of creating a new session and that the SessionsController#
create_xml method is used; see listing 5.4.

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
...
 def create_xml
 self.current_user =
 User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = {
 :value => self.current_user.remember_token,
 :expires => self.current_user.remember_token_expires_at
 }
 end
 render :xml => self.current_user.to_xml
 else
 render :text => "badlogin"
 end
 end
...

After a successful login, we send self.current_user.to_xml B to the client.
 Because we’re logging in as ludwig, let’s see what calling to_xml looks like for

him. Back to script\console we go:

Listing 5.4 app\controllers\sessions_controller.rb

Tested with
Rails 2.0.1

first_name
is Ludwig

B

B

130 ITERATION 5

Expanding the Rails code, RESTfully
>> ludwig.to_xml
=> "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<user>\n

 ➥<created-at type=\"datetime\">2007-10-11T05:11:32+01:00

 ➥</created-at>\n

 ➥<crypted-password>fc3f2237b0edbeab2c08eecbc7bd6ef9b2124080

 ➥</crypted-password>\n <email>lvb@pomodo.com</email>\n

 ➥<first-name>Ludwig</first-name>\n <id type=\"integer\">3

 ➥</id>\n <last-name>van Beethoven</last-name>\n <login>

 ➥ludwig</login>\n <remember-token></remember-token>\n

 ➥<remember-token-expires-at type=\"datetime\">

 ➥</remember-token-expire\s-at>\n
 ➥<salt>cf1bc466e9dedd7d687e967ba37947971d44ab6e</salt>\n

 ➥<updated-at type=\"datetime\"></updated-at>\n</user>\n"
>>

Looking at the output, we see (B) the following:

<first-name>Ludwig</first-name>

Aha! It’s Rails’ fault after all! The attribute (as we saw earlier) is first_name, but
to_xml is giving us first-name. Where did first-name come from?

 The answer turns out to be: from the really5 stupid default behavior of the to_xml
method. By default, it calls a method called dasherize to convert underscores to
hyphens. This is an egregious violation of the Principle of Least Astonishment:

The Principle of Least Astonishment states that the result of performing some
operation should be obvious, consistent, and predictable, based upon the name of
the operation and other clues.

—http://c2.com/cgi/wiki?PrincipleOfLeastAstonishment

5.2.3 Fixing to_xml temporarily
Fortunately, Rails 1.2 added the ability to turn off this “feature” for an individual
method call by passing :dasherize => false to the to_xml method. Let’s see
what happens for ludwig if we call to_xml with :dasherize => false. Back to
script\console we go:

>> ludwig.to_xml(:dasherize => false)
=> "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<user>\n

 ➥<created_at type=\"datetime\">2007-10-11T05:11:32+01:00

 ➥</created_at>\n
 ➥<crypted_password>fc3f2237b0edbeab2c08eecbc7bd6ef9b2124080

 ➥</crypted_password>\n <email>lvb@pomodo.com</email>\n
 ➥<first_name>Ludwig</first_name>\n <id type=\"integer\">3

 ➥</id>\n <last_name>van Beethoven</last_name>\n <login>

 ➥ludwig</login>\n <remember_token></remember_token>\n
 ➥<remember_token_expires_at type=\"datetime\">

5 Really, really, really, really, REALLY.

B

B

Calling the user by name 131
 ➥</remember_token_expires_at>\n
 ➥<salt>cf1bc466e9dedd7d687e967ba37947971d44ab6e</salt>\n

 ➥<updated_at type=\"datetime\"></updated_at>\n</user>\n"
>>

Looking at the output, we see that this produces the following B:

<first_name>Ludwig</first_name>

Good. Let’s check whether applying this fix to our create_xml method fixes
login. Modify the SessionsController as shown in listing 5.5.

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
...
 # Once we explain REST in the book this will obviously be
 # refactored.
 def create_xml
 self.current_user =
 User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = {
 :value => self.current_user.remember_token,
 :expires => self.current_user.remember_token_expires_at
 }
 end
 render :xml => self.current_user.to_xml(
 :dasherize => false)
 else
 render :text => "badlogin"
 end
 end
...
end

Reload (we don’t need to rebuild,
because we only changed Rails code),
and log in as ludwig. We see the
screen shown in figure 5.3.

 It worked!
 We could fix the create_xml

method in the UsersController too.
However, this is really infuriating.
We’ll be using to_xml all the time from

Listing 5.5 app\controllers\sessions_controller.rb

Using :dasherize
=> false

Figure 5.3 Welcome back, not broken by dasherize

132 ITERATION 5

Expanding the Rails code, RESTfully
Rails, and there is no good reason for dasherize to be on by default. We want a more
permanent solution.

5.2.4 Fixing to_xml permanently

In Ruby, if we don’t like something, we can always change it. That’s what we’ll do
here.

NOTE One great thing about Ruby that is slightly unsettling if you have a Java
background is that you can open a class or module definition anywhere
and add or override methods. This sounds like it would create absolute
chaos, but the upside is that because you aren’t treated like a child, you
can do things you need to do without having to beg the all-powerful
library author to please make a change for you. (“Dear DHH, please
change your framework to make it play better with Flex….”) As someone
with years of Java experience, there have been a few times when I’ve
cursed the author of a given class for making a certain method say pack-
age private or making a certain class final. In Ruby, you’re not treated
like an idiot.

Open the ApplicationController. We’re going to override some of Rails’ default
behavior. Specifically, we’ll override a few methods to force6 the value of :dasher-
ize to be false, instead of the default value of true or any value explicitly passed
in; see listing 5.6.

module ActiveSupport #:nodoc:
 module CoreExtensions #:nodoc:
 module Hash #:nodoc:
 module Conversions
 # We force :dasherize to be false, since we never want
 # it true. Thanks very much to the reader on the
 # flexiblerails Google Group who suggested this better
 # approach.
 unless method_defined? :old_to_xml
 alias_method :old_to_xml, :to_xml
 def to_xml(options = {})
 options.merge!(:dasherize => false)
 old_to_xml(options)
 end
 end
 end
 end

6 Thanks very much to the reader on the flexiblerails Google Group who suggested this approach.

Listing 5.6 app\controllers\application.rb

B

C
D

E
F

G

Calling the user by name 133
 module Array #:nodoc:
 module Conversions
 # We force :dasherize to be false, since we never want
 # it to be true.
 unless method_defined? :old_to_xml
 alias_method :old_to_xml, :to_xml
 def to_xml(options = {})
 options.merge!(:dasherize => false)
 old_to_xml(options)
 end
 end
 end
 end
 end
end
module ActiveRecord #:nodoc:
 module Serialization
 # We force :dasherize to be false, since we never want it to
 # be true.
 unless method_defined? :old_to_xml
 alias_method :old_to_xml, :to_xml
 def to_xml(options = {})
 options.merge!(:dasherize => false)
 old_to_xml(options)
 end
 end
 end
end

Filters added to this controller apply to all controllers in
the application. Likewise, all the methods added will be
available for all controllers.

class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time
 include AuthenticatedSystem

 # See ActionController::RequestForgeryProtection for details
 # Uncomment the :secret if you're not using the cookie session
 # store
 # TODO - this will be uncommented once we explain sessions
 # in iteration 5.
 # protect_from_forgery
 # :secret => 'dd92c128b5358a710545b5e755694d57'
end

We start by overriding to_xml for the ActiveSupport::CoreExtensions::Hash::
Conversions module B. We don’t want to alias the method twice (or we’ll get

H

I

134 ITERATION 5

Expanding the Rails code, RESTfully
stack overflows—try it without this guard to see), so we proceed unless
method_defined? :old_to_xml C.7 (I like code that reads like English.) If we
haven’t already defined :old_to_xml, we first call alias_method D to make a
copy of the to_xml method called old_to_xml. We then override to_xml E, tak-
ing the same options Hash as to_xml. We don’t bother changing the default of
:dasherize in the options Hash, because this wouldn’t have the desired effect if a
caller explicitly set :dasherize => true. Next, we call options.merge! to force
:dasherize to be false F. This works because the Hash merge! method causes
entries in the Hash parameter to clobber entries with the same key in the Hash
whose merge! method is being called. Finally, with :dasherize properly forced to
be false (and any other options preserved intact), we call old_to_xml G to invoke
the original to_xml method we overrode.

 We do the same steps for the ActiveSupport::CoreExtensions::Array::
Conversions module H and the ActiveRecord::Serialization module I.

NOTE If you’re using Rails 1.2.x or below in some other project, you need to
replace ActiveRecord::Serialization with ActiveRecord::Xml-
Serialization.

With this done, we can go back to SessionsController and remove :dasherize
=> false (see listing 5.7, B and C).

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
...
 # Once we explain REST in the book this will obviously be
 # refactored.
 def create_xml
 self.current_user =
 User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = {
 :value => self.current_user.remember_token,
 :expires => self.current_user.remember_token_expires_at
 }
 end
 render :xml => self.current_user.to_xml(

7 The unless method_defined? guard approach is taken from a thread from 2006-01-13 on
rails@lists.rubyonrails.org. Thanks very much to the person who posted a helpful explanation. (I had
tried things like unless ((defined? :old_to_xml) == "method") with no success.)

Listing 5.7 app\controllers\sessions_controller.rb

B

Creating the new resources 135
(including migrations, models, and controllers)
 :dasherize => false)
 render :xml => self.current_user.to_xml
 else
 render :text => "badlogin"
 end
 end
...
end

Reload (we don’t need to rebuild, because we only changed Rails code), and log
in as ludwig. We see the “Welcome back Ludwig!” greeting, and looking at the
XML shows the first_name, last_name, and so on, unmangled. We can also
reload and create a new user to see that the XML is unmangled for new users too.

 Now that we’ve fixed the to_xml methods, we can go ahead and create our
data model for tasks, projects, and locations. This is typically done by using some-
thing called scaffolding. Note that as of Rails 2, the non-RESTful scaffold com-
mand has been replaced by what used to be called scaffold_resource: What we
used to invoke with scaffold_resource is now invoked with scaffold. So, as of
Rails 2, there is no escaping REST, because there is no non-RESTful scaffold.

5.3 Creating the new resources
(including migrations, models, and controllers)

Creating the new resources(including migrations, models, and controllers)Now that we’ve done some thinking about what we want pomodo to be, we’ve
arrived at the beginnings of a data model. We’ve said “We’ll need tasks, projects to
put them in, and locations where tasks will be performed.”

5.3.1 Creating the Task, Project, and Location resources

 Let’s do some code generation. Note that we don’t need to create a user
model, because we already have one. We do, however, need to create new Task,
Project, and Location resources. We’ll use the now-RESTful scaffold command
(formerly known as scaffold_resource) to generate new RESTful models, con-
trollers, and so on for the tasks, projects, and locations. To see a description of the
scaffold command’s usage, stop your server and run the following command:

c:\peter\flexiblerails\current\pomodo>
ruby script\generate scaffold
Usage: script/generate scaffold ModelName [field:type,

 ➥field:type]
...read the full description on the command line...
Examples:
 `./script/generate scaffold post` # no attributes, view will

C

136 ITERATION 5

Expanding the Rails code, RESTfully
 ➥be anemic
 `./script/generate scaffold post title:string body:text

 ➥published:boolean`
 `./script/generate scaffold purchase order_id:integer

 ➥amount:decimal`

c:\peter\flexiblerails\current\pomodo>

Run the commands shown in listing 5.8, noting that we’re including every field in
the model so that we get nice scaffolded views.

c:\peter\flexiblerails\current\pomodo>
ruby script\generate scaffold Task user_id:integer

 ➥project_id:integer location_id:integer name:string

 ➥notes:text next_action:boolean completed:boolean
 exists app/models/
...
 create db/migrate/002_create_tasks.rb
 create app/controllers/tasks_controller.rb
 create test/functional/tasks_controller_test.rb
 create app/helpers/tasks_helper.rb
 route map.resources :tasks

c:\peter\flexiblerails\current\pomodo>
ruby script\generate scaffold Project user_id:integer

 ➥name:string notes:text completed:boolean
 exists app/models/
...
 create db/migrate/003_create_projects.rb
 create app/controllers/projects_controller.rb
 create test/functional/projects_controller_test.rb
 create app/helpers/projects_helper.rb
 route map.resources :projects

c:\peter\flexiblerails\current\pomodo>
ruby script\generate scaffold Location user_id:integer

 ➥name:string notes:text
 exists app/models/
...
 create db/migrate/004_create_locations.rb
 create app/controllers/locations_controller.rb
 create test/functional/locations_controller_test.rb
 create app/helpers/locations_helper.rb
 route map.resources :locations

c:\peter\flexiblerails\current\pomodo>

Listing 5.8 Commands

Creating the new resources 137
(including migrations, models, and controllers)
Running these commands creates a ton of new files in the controllers, helpers,
and models directories, as well as new subdirectories in the views directory. Let’s
see what the new models look like; see listing 5.9.

class Task < ActiveRecord::Base
end

class Project < ActiveRecord::Base
end

class Location < ActiveRecord::Base
end

Not much there right now (B, ha ha) is there? Because these models extend
(with <) ActiveRecord::Base, they can be mapped to the equivalent database
tables. Because we also created the controllers and views with the script\gener-
ate scaffold command and ensured that we specified all the fields, we can use a
prebuilt web interface to Create, Read, Update, and Delete (CRUD) them.

5.3.2 Adding the associations to the model

Recall that we said “we’ll need tasks, projects to put them in, and locations where
tasks will be performed.” We8 could restate these requirements artificially as fol-
lows: A user has many tasks. A user has many projects. A task belongs to a user. A
task belongs to a project. A task belongs to a location. A project belongs to a user.
A project has many tasks.

 These requirements can be expressed as the following Rails code, which we’ll
edit now. We start by editing the Task class (listing 5.10), Project class (listing 5.11),
and Location class (listing 5.12).

Listing 5.9 app\models\task.rb, app\models\project.rb, app\models\location.rb

8 http://api.rubyonrails.com/files/vendor/rails/activerecord/README.html.

B

What’s Active Record?
Active Record is an object-relational mapping (ORM) pattern described by Martin
Fowler as follows: “An object that wraps a row in a database table or view, en-
capsulates the database access, and adds domain logic on that data.”8 If you’re
new to Rails and Active Record, I strongly recommend taking a break and reading
chapters 17–19 of AWDwR.

138 ITERATION 5

Expanding the Rails code, RESTfully
class Task < ActiveRecord::Base
 belongs_to :user
 belongs_to :location
 belongs_to :project
end

Users B, locations C, and projects D all have many tasks, so the task “belongs to”
each of them.

class Project < ActiveRecord::Base
 belongs_to :user
 has_many :tasks
end

A project has many tasks C and a user has many projects, so the project “belongs
to” a user B.

class Location < ActiveRecord::Base
 belongs_to :user
 has_many :tasks
end

A location has many tasks C and a user has many locations, so the location
“belongs to” a user B.

 Next, we add three associations to the User class, as shown in listing 5.13. We’ll
take a brief tour of the rest of the code to learn some Ruby and Rails basics as we go.

require 'digest/sha1'
class User < ActiveRecord::Base
 has_many :tasks
 has_many :projects
 has_many :locations

 # Virtual attribute for the unencrypted password
 attr_accessor :password

Listing 5.10 app\models\task.rb

Listing 5.11 app\models\project.rb

Listing 5.12 app\models\location.rb

Listing 5.13 app\models\user.rb

B
C

D

B
C

B
C

B
C
D

Creating the new resources 139
(including migrations, models, and controllers)
 validates_presence_of :login, :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation,
 :if => :password_required?
 validates_length_of :password, :within => 4..40,
 :if => :password_required?
 validates_confirmation_of :password,
 :if => :password_required?
 validates_length_of :login, :within => 3..40
 validates_length_of :email, :within => 3..100
 validates_uniqueness_of :login, :email,
 :case_sensitive => false
 before_save :encrypt_password

 # prevents a user from submitting a crafted form that bypasses
 # activation
 # anything else you want your user to change should be added
 # here.
 attr_accessible :login, :email, :password,
 :password_confirmation

 # Authenticates a user by their login name and unencrypted
 # password. Returns the user or nil.
 def self.authenticate(login, password)
 u = find_by_login(login) # need to get the salt
 u && u.authenticated?(password) ? u : nil
 end

 # Encrypts some data with the salt.
 def self.encrypt(password, salt)
 Digest::SHA1.hexdigest("--#{salt}--#{password}--")
 end

 # Encrypts the password with the user salt
 def encrypt(password)
 self.class.encrypt(password, salt)
 end

 def authenticated?(password)
 crypted_password == encrypt(password)
 end

 def remember_token?
 remember_token_expires_at &&
 Time.now.utc < remember_token_expires_at
 end

 # These create and unset the fields required for remembering
 # users between browser closes

Class
methodE

Class
method

F

Instance
method

G

H

140 ITERATION 5

Expanding the Rails code, RESTfully
 def remember_me
 remember_me_for 2.weeks
 end

 def remember_me_for(time)
 remember_me_until time.from_now.utc
 end

 def remember_me_until(time)
 self.remember_token_expires_at = time
 self.remember_token =
 encrypt("#{email}--#{remember_token_expires_at}")
 save(false)
 end

 def forget_me
 self.remember_token_expires_at = nil
 self.remember_token = nil
 save(false)
 end

 protected
 # before filter
 def encrypt_password
 return if password.blank?
 self.salt = Digest::SHA1.hexdigest(

 ➥"--#{Time.now.to_s}--#{login}--") if new_record?
 self.crypted_password = encrypt(password)
 end

 def password_required?
 crypted_password.blank? || !password.blank?
 end

end

We start by adding has_many :tasks B, has_many :projects C, and has_many
:locations D method calls to add the associations. These calls add a ton of
methods to the User class—see section 18.3 of AWDwR for details. These methods
reflect the association between the tables. For example, the User has_many
:tasks, and the Task belongs_to the :user. So, the tables are named users and
tasks (plural), and the model classes are named User and Task. In the tables, the
tasks table has a column called user_id, which points at the row of the users table
for the user whom this task “belongs to.” (See the explanation and diagrams in
section 18.2 of AWDwR for details.) Note that although the user_id column in the
tasks table is a foreign key that references the users table, Rails doesn’t require us

I

J

1)

Creating the new resources 141
(including migrations, models, and controllers)
to define the foreign key constraint in our database. Even though we’re not both-
ering to do so, you should. (Do as I say, not as I do.)

 The authenticate method E is defined with self., meaning that it’s a class
method. A class method is similar to a static method in Java and other languages:
It isn’t associated with a specific instance of the given class. (In Ruby, it’s a method
of the class object.) We call it by saying User.authenticate(somelogin, some-
password) rather than creating a specific User (say someuser) and calling
someuser.authenticate(somelogin, somepassword).

 Note that although we can’t overload methods in Ruby by a different number
of arguments, we can create a class method F and an instance method G that
have the same name. This is possible because they’re methods of different objects.
(This is explained well in Ruby for Rails—I’m not just plugging that because it’s
also a Manning book; I mean it.)

 The authenticated? H method ends with a question mark, which is part of the
name. (It has no effect other than to make the code more readable: “Call this
method to ask a question and get the answer.”) The remember_me_for 2.weeks I
line is beautiful. It uses the weeks method, which was added to the Ruby Fixnum class
by Active Support. If you try this in irb, it won’t work (because irb uses just Ruby, not
Ruby as enhanced by Rails); you need to use ruby script\console for it to work:

c:\peter\flexiblerails\current\pomodo>irb
irb(main):001:0> 2.class
=> Fixnum
irb(main):002:0> 2.weeks
NoMethodError: undefined method `weeks' for 2:Fixnum
 from (irb):2
irb(main):003:0> exit

c:\peter\flexiblerails\current\pomodo>ruby script\console
Loading development environment.
>> 2.weeks
=> 1209600
>>

There are 1209600 (60*60*24*14) seconds in two weeks. Now you know.
 The protected statement J changes the access control for subsequent meth-

ods to protected (callable by instances of the class and its subclasses only). Note
that the protected statement is a method call, because in Ruby class definitions
are executable code. The encrypt_password method 1) is a protected instance
method that is used to encrypt a given password. It’s specified as a before_save
filter. We’ll discuss filters and validation methods later.

 Although we’re considering what is added by Active Support, note that it also
adds dasherize:

142 ITERATION 5

Expanding the Rails code, RESTfully
c:\peter\flexiblerails\current\pomodo>irb
irb(main):001:0> "bad_idea".dasherize
NoMethodError: undefined method `dasherize' for "bad_idea":String
 from (irb):1
irb(main):002:0> exit

c:\peter\flexiblerails\current\pomodo>ruby script\console
Loading development environment (Rails 1.2.3)
>> "bad_idea".dasherize
=> "bad-idea"
>> exit

c:\peter\flexiblerails\current\pomodo>

Specifically, it’s added by the Inflector::Inflections class, as shown in list-
ing 5.14.

NOTE See chapter 15 of AWDwR for the various extensions to the core Ruby
classes made by Active Support.

require 'singleton'
...
module Inflector
...
 class Inflections
 include Singleton
...
 # Replaces underscores with dashes in the string.
 #
 # Example
 # "puni_puni" #=> "puni-puni"
 def dasherize(underscored_word)
 underscored_word.gsub(/_/, '-')
 end
...
end

require File.dirname(__FILE__) + '/inflections'

5.3.3 A tour of the TasksController

The script\generate scaffold command created more code in the controllers
and views than in the models. In order to demystify it, we’ll look at the code that
was created for the TasksController (the code for the ProjectsController and

Listing 5.14 vendor\rails\activesupport\lib\active_support\inflector.rb

Creating the new resources 143
(including migrations, models, and controllers)
LocationsController is essentially the same). This code, shown in listing 5.15, is
the basis for table 5.1; after you’ve read this code, that table will make more sense.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = Task.find(:all)

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 end
 end

 # GET /tasks/1
 # GET /tasks/1.xml
 def show
 @task = Task.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @task }
 end
 end

 # GET /tasks/new
 # GET /tasks/new.xml
 def new
 @task = Task.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @task }
 end
 end

 # GET /tasks/1/edit
 def edit
 @task = Task.find(params[:id])
 end

 # POST /tasks
 # POST /tasks.xml
 def create
 @task = Task.new(params[:task])

 respond_to do |format|

Listing 5.15 app\controllers\tasks_controller.rb

All controllers extend
ApplicationControllerBRender HTML or XML

based on format
C

D

E

F

G

144 ITERATION 5

Expanding the Rails code, RESTfully
 if @task.save
 flash[:notice] = 'Task was successfully created.'
 format.html { redirect_to(@task) }
 format.xml { render :xml => @task, :status => :created,
 :location => @task }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 end

 # PUT /tasks/1
 # PUT /tasks/1.xml
 def update
 @task = Task.find(params[:id])

 respond_to do |format|
 if @task.update_attributes(params[:task])
 flash[:notice] = 'Task was successfully updated.'
 format.html { redirect_to(@task) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 end

 # DELETE /tasks/1
 # DELETE /tasks/1.xml
 def destroy
 @task = Task.find(params[:id])
 @task.destroy

 respond_to do |format|
 format.html { redirect_to(tasks_url) }
 format.xml { head :ok }
 end
 end
end

First, note that all controllers extend ApplicationController B. Next, we see
that scaffold gives us a lot, creating the seven standard Rails methods—index C,
show D, new E, edit F, create G, update H, and destroy I—that are used by

H

I

Creating the new resources 145
(including migrations, models, and controllers)
RESTful controllers. These are the only methods we should have in a RESTful con-
troller: If you think you’re special and need more, well, as Scott Raymond9 quoted
Fight Club, “You are not a special or unique snowflake.” If you think you’re unique,
try adding a noun—if we had rolled our own UsersController with create and
login methods, the refactoring would have been to add a noun (session), thus
having a SessionsController and a UsersController, both with the standard
create method. The restful_authentication generator skipped this step for us.

 Note that each method has a comment showing the URL + fake HTTP request
combination that triggers it. For example, the index method C (which is trig-
gered by a GET to /tasks or /tasks.xml) finds all the tasks and stores them in
@tasks. Then, inside the respond_to block, it checks if the requested format was
html (and renders index.html.erb if it was) or xml (and renders @tasks, which is
syntactic sugar for @tasks.to_xml).

 Keep in mind that the automatically generated code in the controller and
views that is created by the scaffold command is just that: scaffolding to help us
get going. There’s nothing magical about it. The first thing we typically do is start
modifying and deleting methods generated by the scaffold command. Develop-
ers who have had bad experiences with tools such as Visual Blub++10 generating
hundreds of lines of unintelligible code that had to be left alone or everything
would explode may be predisposed to think of scaffolding as something suspi-
cious. Once you realize it’s just a way to get past the programming equivalent of
writer’s block, you’ll be a lot happier. (If only there was a script\generate scaffold
for books!)

 At this point, if you want to scan through the .html.erb templates (so named
because they’re processed by ERb, Embedded Ruby) in app\views\tasks, feel free
to do so. These scaffolded views (and the similar ones in app\views\projects and
app\views\locations) are useful for testing. Because we’re using Flex instead of
Action View, we’ll leave explanations of how Action View works to other books
(such as AWDwR). If you have to output HTML, Rails has you covered, with Action
View for HTML and RJS templates for JavaScript.

 Looking back at our running UI, we realize we’ve forgotten the poor Notely
tab. We’ll continue to ignore it for now, because it would be boring and because
we want to minimize the amount of code that is dragged through the refactorings
we’ll do. We’ll revisit it later.

9 http://conferences.oreillynet.com/presentations/rails2007/raymond_scott.pdf, slide 30.
10 If you haven’t read http://www.cabochon.com/~stevey/blog-rants/bob-paradox.html and http://

www.cabochon.com/~stevey/blog-rants/tour-de-babel.html yet, do it as a reward at the end of this iter-
ation. Steve Yegge’s blog is one of the highlights of the Ruby community.

146 ITERATION 5

Expanding the Rails code, RESTfully
5.3.4 Understanding how routing works to set the requested format

Earlier, I glossed over something that is fairly deep: I said the respond_to block is
used to check if the requested format was html (and renders index.html.erb if it
was) or xml (and renders @tasks, which is syntactic sugar for @tasks.to_xml).
But how does the client set the requested format, and how is this configured in
Rails? To answer that, we need to look at routing. I’ve been ignoring routing up to
now; it’s time to change that. Before we proceed, let’s get rid of the Welcome
Aboard screen: delete the public\index.html file now. (It overrides the default route,
and I’ve been welcomed aboard enough.)

 Next, we’ll examine and modify the routes.rb file, adding the default route.
When you log in from HTML, the best thing to see would be a list of tasks. We’ll
modify config\routes.rb; see listing 5.16.

ActionController::Routing::Routes.draw do |map|
 map.resources :locations

 map.resources :projects

 map.resources :tasks

 # The priority is based upon order of creation:
 # first created -> highest priority.

 # Sample of regular route:
 # map.connect 'products/:id', :controller => 'catalog',
 # :action => 'view'
 # Keep in mind you can assign values other than :controller
 # and :action

 # Sample of named route:
 # map.purchase 'products/:id/purchase',
 # :controller => 'catalog', :action => 'purchase'
 # This route can be invoked with
 # purchase_url(:id => product.id)

 # Sample resource route (maps HTTP verbs to controller actions
 # automatically):
 # map.resources :products
 map.resources :tasks
 map.resources :projects
 map.resources :locations
 map.resources :users
 map.resource :session

 map.signup '/signup', :controller => 'users',
 :action => 'new'

Listing 5.16 config\routes.rb

Keep new resource-
based routes together

B

Keep new resource-
based routes together

C

D
E

Creating the new resources 147
(including migrations, models, and controllers)
 map.login '/login', :controller => 'sessions',
 :action => 'new'
 map.logout '/logout', :controller => 'sessions',
 :action => 'destroy'

 # Sample resource route with options:
 # map.resources :products,
 # :member => { :short => :get, :toggle => :post },
 # :collection => { :sold => :get }

 # Sample resource route with sub-resources:
 # map.resources :products,
 # :has_many => [:comments, :sales],
 # :has_one => :seller

 # Sample resource route within a namespace:
 # map.namespace :admin do |admin|
 # # Directs /admin/products/* to Admin::ProductsController
 # # (app/controllers/admin/products_controller.rb)
 # admin.resources :products
 # end

 # You can have the root of your site routed with map.root --
 # just remember to delete public/index.html.
 # map.root :controller => "welcome"
 map.root :controller => "tasks"

 # See how all your routes lay out with "rake routes"

 # Install the default routes as the lowest priority.
 map.connect ':controller/:action/:id'
 map.connect ':controller/:action/:id.:format'
end

Note that we’ve set up (well, the restful_authentication generator did) a spe-
cial set of routes for the users and sessions resources with the map.resources
:users D (note the plural form) and map.resource :session E (note the sin-
gular form) calls.

NOTE For an explanation of plural vs. singular resources, see http://api.
rubyonrails.org/classes/ActionController/Resources.html. Note that the
new Rails 2.0 convention is to use plural resources by default; see http://
weblog.rubyonrails.org/2007/9/30/rails-2-0-0-preview-release for more
information. Also, note that if you use restful_authentication with
Rails 1.2.x in some other project, you will need to specify the controller
name with map.resource :session, :controller => 'sessions'.
See the restful_authentication README file in vendor\plugins\restful_
authentication for details.

F index action of Tasks-
Controller is default

G

H

I

http://api.rubyonrails.org/classes/ActionController/Resources.html

148 ITERATION 5

Expanding the Rails code, RESTfully
So that we can keep track of the routes when looking at routes.rb, we move B the
new resource-based routes down to be with the other ones C. (I reordered them,
but that is just because I think of them in that order—the priority change doesn’t
matter to us.)

 We also uncomment the default route (map.root) F to make the root of the
site be the index action of the TasksController G—the index action is the
default action, so we don’t need to specify it. (Part of the learning curve of Rails is
getting to know all the defaults.)

 Next, we see that the lowest-priority route I is :controller/:action/
:id.:format, which will extract the format (after the .) into something (the
:format) the respond_to block processes. (The respond_to block’s parameter is
also a variable named format, because that makes it clear what it’s responding to.)

 Finally, we’re advised by a helpful comment H that as of Rails 2 we can do rake
routes to see how the routes are laid out. Let’s do that now, in listing 5.17.

NOTE The rake routes command produces extremely wide output, nicely
lined up in columns. It looks great on the command line, but doesn’t
translate well to 64-column book code. Please see at the output on the
command line before reading the explanation.

c:\peter\flexiblerails\current\pomodo>rake routes
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)
tasks GET /tasks {:action=>"index", :controller=>"tasks"}
formatted_tasks GET /tasks.:format {:action=>"index",

 ➥:controller=>"tasks"}
POST /tasks {:action=>"create", :controller=>"tasks"}
POST /tasks.:format {:action=>"create", :controller=>"tasks"}
...
POST /users {:action=>"create", :controller=>"users"}
POST /users.:format {:action=>"create", :controller=>"users"}
...
POST /session {:action=>"create", :controller=>"sessions"}
POST /session.:format {:action=>"create",

 ➥:controller=>"sessions"}
...
/:controller/:action/:id
/:controller/:action/:id.:format

c:\peter\flexiblerails\current\pomodo>

Listing 5.17 Commands

B

C

D
E

F
G

H

Creating the new resources 149
(including migrations, models, and controllers)
The Task, Project, and Location resources that we created with the scaffold
command are all displayed B. (Note that I omitted most of them in the output.)
Note that they all use the plural form. The routes are in highest-to-lowest priority,
so you see that the :controller/:action/:id.:format route H is the lowest pri-
ority. Above that, other routes match URLs that look like /users.:format E and
/session.:format G. There are also routes that match URLs with no format
specified after an extension, such as /users D and /session F; these routes
ensure that the appropriate default actions are called. Also, note that the lines
show different (pretend) HTTP methods that are paired with the URL format to
produce what is used to determine the match: a GET to /tasks B matches the
index action, whereas a POST to /tasks matches the create actionC.

NOTE You can also use HTTP headers to set the requested format; but using the
file extension is easier to do from Flex, so I’ll focus on it and ignore the
HTTP headers approach. Just know that the HTTP headers approach exists.

5.3.5 Making the UsersController and SessionsController RESTful

Now that we’ve seen how the TasksController generated by the scaffold com-
mand uses the same methods to handle requests that want HTML and XML
responses, and now that we understand how routing works to specify the desired
:format, we can go back and modify the UsersController and Sessions-
Controller to use this technique and then modify our Flex code to use the
updated controllers.

 First, we modify the UsersController, as shown in listing 5.18.

class UsersController < ApplicationController
 # GET /users/new
 # GET /users/new.xml
 # render new.rhtml
 def new
 end

 # Once we explain REST in the book this will obviously be
 # refactored.
 def create_xml
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 render :xml => @user.to_xml
 rescue ActiveRecord::RecordInvalid
 render :text => "error"
 end

Listing 5.18 app\controllers\users_controller.rb

Add URL + HTTP method
comment for documentation

B

150 ITERATION 5

Expanding the Rails code, RESTfully
 # POST /users
 # POST /users.xml
 def create
 cookies.delete :auth_token
 # protects against session fixation attacks, wreaks havoc
 # wreaks request forgery protection.
 # uncomment at your own risk
 # reset_session
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 redirect_back_or_default('/')
 flash[:notice] = "Thanks for signing up!"
 respond_to do |format|
 format.html do
 redirect_back_or_default('/')
 flash[:notice] = "Thanks for signing up!"
 end
 format.xml { render :xml => @user.to_xml }
 end
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 respond_to do |format|
 format.html { render :action => 'new' }
 format.xml { render :text => "error" }
 end
 end

end

Inside the create C method, we create respond_to blocks for the normal D and
exceptional E conditions. We move code that was in the create method into the
format.html blocks, and we move the code from the old create_xml method B
into the format.xml blocks. We then delete the create_xml method. Note the two
types of block syntax: the multiline do ... end and the single-line { ... }.

 Next, we make essentially the same changes to the SessionsController, as
shown in listing 5.19.

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
 # GET /session/new
 # GET /session/new.xml
 # render new.rhtml
 def new
 end

Listing 5.19 app\controllers\sessions_controller.rb

Add URL + HTTP method
comment for documentation

C

D

E

Add URL + HTTP method
comment for documentation

Creating the new resources 151
(including migrations, models, and controllers)
 # Once we explain REST in the book this will obviously be
 # refactored.
 def create_xml
 self.current_user =
 User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = {
 :value => self.current_user.remember_token,
 :expires => self.current_user.remember_token_expires_at
 }
 end
 render :xml => self.current_user.to_xml
 else
 render :text => "badlogin"
 end
 end

 # POST /session
 # POST /session.xml
 def create
 self.current_user =
 User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = {
 :value => self.current_user.remember_token ,
 :expires =>
 self.current_user.remember_token_expires_at }
 end
 redirect_back_or_default('/')
 flash[:notice] = "Logged in successfully"
 respond_to do |format|
 format.html do
 redirect_back_or_default('/')
 flash[:notice] = "Logged in successfully"
 end
 format.xml { render :xml => self.current_user.to_xml }
 end
 else
 render :action => 'new'
 respond_to do |format|
 format.html { render :action => 'new' }
 format.xml { render :text => "badlogin" }
 end
 end
 end

B

Add URL + HTTP method
comment for documentation

C

D

152 ITERATION 5

Expanding the Rails code, RESTfully
 # DELETE /session
 # DELETE /session.xml
 def destroy
 self.current_user.forget_me if logged_in?
 cookies.delete :auth_token
 reset_session
 flash[:notice] = "You have been logged out."
 redirect_back_or_default('/')
 end
end

Again, we create two respond_to blocks CD inside create, move the old code
from create inside the format.html sections, and move the code from
create_xml inside the format.xml sections. We then delete the create_xml
method B. Note that we haven’t bothered to implement logout from Flex yet, so
we haven’t modified destroy. We’ll add logout functionality later.

 Having made these changes, we need to update the Flex code to point at the
create methods instead of the create_xml methods. Looking back at the rake
routes command, we see that the client code is simple: To get back XML, all we
need to do is set the format that the client wants to be XML by specifying a .xml
extension when doing a POST to /users.xml (E in listing 5.17) or to /session.xml
(G in listing 5.17). (Now you see why I showed the routes when I did rake
routes earlier.)

 We start by modifying the AccountCreateBox, as shown in Listing 5.20.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Create Account">
...
 <mx:HTTPService
 id="svcAccountCreate"
 url="/users/create_xml"
 url="/users.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleAccountCreateResult(event)">
...
 </mx:HTTPService>
...
</mx:VBox>

Listing 5.20 app\flex\com\pomodo\components\AccountCreateBox.mxml

Add URL + HTTP method
comment for documentation

B
C

Creating the new resources 153
(including migrations, models, and controllers)
We change the URL from /users/create_xml B to just /users.xml C.
 Next, we modify the LoginBox, as shown in Listing 5.21.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Login">
...
 <mx:HTTPService
 id="svcAccountLogin"
 url="/sessions/create_xml"
 url="/session.xml"
 resultFormat="e4x"
 method="POST"
 result="handleAccountLoginResult(event)"/>
...
</mx:VBox>

We change the URL from /sessions/create_xml B to just /session.xml C.

IMPORTANT The URL is /session.xml, not /sessions.xml, since the routes.rb defines
the route for them as the singular map.resource :session, not the plu-
ral map.resources :sessions.

Rebuild, reload, and log in as ludwig. It still works!

5.3.6 Editing and running the migrations

Now, let’s edit and then run the new migrations we’ve created by running the
scaffold command. It does an excellent job, but it’s not psychic. Specifically, we
need to manually add restrictions like :default => 0, :null => false, and
:limit => 100. We’ll edit the CreateTasks migration first, as shown in listing 5.22.

class CreateTasks < ActiveRecord::Migration
 def self.up
 create_table :tasks do |t|
 t.integer :user_id, :default => 0, :null => false
 t.integer :project_id
 t.integer :location_id
 t.string :name, :limit => 100, :default => "",
 :null => false
 t.text :notes
 t.boolean :next_action, :null => false, :default => false
 t.boolean :completed, :null => false, :default => false

Listing 5.21 app\flex\com\pomodo\components\LoginBox.mxml

Listing 5.22 db\migrate\002_create_tasks.rb

B
C

Extend
ActiveRecord::MigrationBCreate tasks tableC

D
E

F

G

H
I

154 ITERATION 5

Expanding the Rails code, RESTfully
 t.timestamps
 end
 end

 def self.down
 drop_table :tasks
 end
end

The CreateTasks class extends ActiveRecord::Migration B, as all migrations
do. The up method C creates a new tasks table with the create_table method
call D, which takes a block that does the work; the down method 1) deletes it with
the drop_table 1! call. In the up method, we specify the data types of each new
column, such as integer E, string G, text H, and boolean I. These are then
mapped to the equivalent database data types: for example, boolean becomes a
tinyint(1) in MySQL. Also note that the :project_id F and :location_id columns
serve the purpose of foreign keys to the projects and locations tables—but to have
foreign keys, we need to add them ourselves. The timestamps J call adds two col-
umns: created_at and updated_at, which Rails treats specially, ensuring that
they’re automatically set. This is often a good thing to have, so we’ll leave them
there even though they won’t be needed in this book.

 Next, we make similar modifications to the CreateProjects and Create-
Locations migrations (see listings 5.23 and 5.24).

class CreateProjects < ActiveRecord::Migration
 def self.up
 create_table :projects do |t|
 t.integer :user_id, :default => 0, :null => false
 t.string :name, :limit => 100, :default => "",
 :null => false
 t.text :notes
 t.boolean :completed, :null => false, :default => false

 t.timestamps
 end
 end

 def self.down
 drop_table :projects
 end
end

Listing 5.23 db\migrate\003_create_projects.rb

J

Drop tasks
table

1)

1!

Creating the new resources 155
(including migrations, models, and controllers)
class CreateLocations < ActiveRecord::Migration
 def self.up
 create_table :locations do |t|
 t.integer :user_id, :default => 0, :null => false
 t.string :name, :limit => 100, :default => "",
 :null => false
 t.text :notes

 t.timestamps
 end
 end

 def self.down
 drop_table :locations
 end
end

At this point, we’d normally run the new migrations with rake db:migrate, and
you’re welcome to do this if you choose. For the purposes of this book, however,
we’ll run the newdb.bat script, which starts over, deletes the database, creates a new
one, and then runs rake db:migrate and rake db:fixtures:load. This way, I hope
to reduce the number of issues that occur if you’re reading the book but only fol-
lowing along with some iterations—the newdb.bat script ensures we’re on the same
page. (If you want to follow along later in the iterations, please run newdb.bat.)

c:\peter\flexiblerails\current\pomodo>newdb.bat

c:\peter\flexiblerails\current\pomodo>
mysql -h localhost -u root -p 0<db\create.sql
Enter password: *******
c:\peter\flexiblerails\current\pomodo>call rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)
== 1 CreateUsers: migrating ====================================
-- create_table("users", {:force=>true})
 -> 0.1250s
== 1 CreateUsers: migrated (0.1250s)

==

== 2 CreateTasks: migrating ====================================
-- create_table(:tasks)
 -> 0.1250s
== 2 CreateTasks: migrated (0.1250s)

==

== 3 CreateProjects: migrating =================================

Listing 5.24 db\migrate\004_create_locations.rb

Create
tasks table

Create
projects table

156 ITERATION 5

Expanding the Rails code, RESTfully
-- create_table(:projects)
 -> 0.1870s
== 3 CreateProjects: migrated (0.1870s)

=======================================

== 4 CreateLocations: migrating ================================
-- create_table(:locations)
 -> 0.1250s
== 4 CreateLocations: migrated (0.1250s)

======================================

c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)

c:\peter\flexiblerails\current\pomodo>

Next, open a Command Prompt, run the mysql client, and connect to
pomodo_development. We’ll confirm that the migrations had the desired effect.
Note that for space considerations, I’m omitting the Extra column; all it shows is
that the id field is auto_increment:

mysql> describe tasks;
+-------------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+-------------+--------------+------+-----+---------+
id	int(11)	NO	PRI	NULL
user_id	int(11)	NO		0
project_id	int(11)	YES		NULL
location_id	int(11)	YES		NULL
name	varchar(100)	NO		
notes	text	YES		NULL
next_action	tinyint(1)	NO		0
completed	tinyint(1)	NO		0
created_at	datetime	YES		NULL
updated_at	datetime	YES		NULL
+-------------+--------------+------+-----+---------+
10 rows in set (0.13 sec)

mysql> describe projects;
+------------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+------------+--------------+------+-----+---------+
id	int(11)	NO	PRI	NULL
user_id	int(11)	NO		0
name	varchar(100)	NO		
notes	text	YES		NULL
completed	tinyint(1)	NO		0
created_at	datetime	YES		NULL
updated_at	datetime	YES		NULL
+------------+--------------+------+-----+---------+

Create
locations table

Creating the new resources 157
(including migrations, models, and controllers)
7 rows in set (0.02 sec)

mysql> describe locations;
+------------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+------------+--------------+------+-----+---------+
id	int(11)	NO	PRI	NULL
user_id	int(11)	NO		0
name	varchar(100)	NO		
notes	text	YES		NULL
created_at	datetime	YES		NULL
updated_at	datetime	YES		NULL
+------------+--------------+------+-----+---------+
6 rows in set (0.02 sec)

5.3.7 Ad hoc testing with the HTML views

Next, let’s quickly play with the HTML
views that were created by the scaf-
fold command, to do some ad hoc
testing. Start your server, and go to
http://localhost:3000/tasks to trigger
the index action; we see the screen
shown in figure 5.4.

 Hey, wait a second, where did these
tasks come from?

 Oh yeah, that’s right: newdb.bat
runs rake db:fixtures:load. It’s a good guess that creating the new Task,
Project, and Location resources created new fixtures. Looking in test\fixtures,
we see that yes, that’s what happened. For example, the tasks fixture is shown in
listing 5.25.

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
one:
 id: 1
 user_id: 1
 project_id: 1
 location_id: 1
 name: MyString
 notes: MyText
 next_action: false
 completed: false
 created_at: 2007-10-19 12:26:25
 updated_at: 2007-10-19 12:26:25
two:

Listing 5.25 test\fixtures\tasks.yml

First task,
called one

created_at and
updated_at
timestamps set
automatically

Figure 5.4 Listing tasks with the scaffold-
created HTML views

158 ITERATION 5

Expanding the Rails code, RESTfully
 id: 2
 user_id: 1
 project_id: 1
 location_id: 1
 name: MyString
 notes: MyText
 next_action: false
 completed: false
 created_at: 2007-10-19 12:26:25
 updated_at: 2007-10-19 12:26:25

Let’s add a new location and a new task.
Go to http://localhost:3000/locations;
we see the screen shown in figure 5.5.

 Click the New Location link to be
taken to http://localhost:3000/loca-
tions/new, and fill out the form as shown
in figure 5.6.

 Click the Create button to create
the new location; we see the screen
shown in figure 5.7.

Figure 5.6 Listing locations with
the scaffold-created HTML views

Figure 5.5 Listing locations with the scaffold-
created HTML views

Creating the new resources 159
(including migrations, models, and controllers)
Checking in MySQL, we see it was created and has an id of 3:

mysql> select id, user_id, name, notes, created_at from locations;
+----+---------+----------+----------+---------------------+
| id | user_id | name | notes | created_at |
+----+---------+----------+----------+---------------------+
1	1	MyString	MyText	2007-10-19 12:27:11
2	1	MyString	MyText	2007-10-19 12:27:11
3	3	Vivoli	Florence	2007-10-20 20:25:50
+----+---------+----------+----------+---------------------+
3 rows in set (0.00 sec)

mysql>

Next, go to http://localhost:3000/tasks/new, and fill in the New Task form as
shown in figure 5.8.

Figure 5.7 Showing the new location
with the scaffold-created HTML
views

Figure 5.8
Creating a new task with the scaffold-created
HTML views

http://localhost:3000/tasks/new
http://localhost:3000/tasks/new
http://localhost:3000/tasks/new
http://localhost:3000/tasks/new

160 ITERATION 5

Expanding the Rails code, RESTfully
After we click the Create button, we see the screen shown in figure 5.9.
 Checking in the database shows the new Task is stored, along with the tasks

created by the fixtures:
mysql> select * from tasks\G
*************************** 1. row ***************************
 id: 1
 user_id: 1
 project_id: 1
location_id: 1
 name: MyString
 notes: MyText
next_action: 0
 completed: 0
 created_at: 2007-10-19 12:26:25
 updated_at: 2007-10-19 12:26:25
*************************** 2. row ***************************
 id: 2
 user_id: 1
 project_id: 1
location_id: 1
 name: MyString
 notes: MyText
next_action: 0
 completed: 0
 created_at: 2007-10-19 12:26:25
 updated_at: 2007-10-19 12:26:25
*************************** 3. row ***************************
 id: 3
 user_id: 3
 project_id: NULL
location_id: 3

Figure 5.9
Newly created task with the
scaffold-created HTML views

B
C

Security 161
 name: eat gelato
 notes: yummy
next_action: 0
 completed: 0
 created_at: 2007-10-20 20:29:28
 updated_at: 2007-10-20 20:29:28
3 rows in set (0.00 sec)

Note that the project_id B is NULL because we didn’t set it, whereas the
location_id C is 3. Also, note that the created_at and updated_at timestamps D
are set to the time the task was created.

NOTE Don’t worry that you see all the tasks, and so on, when you play with the
UI. We’ll fix this later in this iteration.

That’s enough playing with the HTML views. We won’t see them much more in the
book—after all, this is a book about using Flex and Rails together, not about using
or modifying the scaffold-created HTML views. We’ve seen enough to expect
that they should work and to have a vague sense of how the RESTful routing
works. We also have a strong motivation to read the resources—it is a world of
resources after all—listed earlier in the iteration.

5.4 Security
Security Now that we’ve created the models, controllers, and some scaffolded views, we’re

almost ready to hook up the new controllers to our Flex GUI. Before we do this,
however, we need to examine the security of the controllers. Because controller
actions are just public methods, we need to protect them somehow so that people
can’t maliciously view, edit, or delete each other’s tasks, projects, locations, or user
accounts by messing with the predictable Rails URLs. Security through obscurity
doesn’t work.

 In short, we need to do four things:

■ Ensure destructive actions are done by POST
■ Ensure everything (except creating a new account and logging in) can only

be done by a logged-in user
■ Ensure that logged-in users can only modify things (tasks, projects, loca-

tions) that belong to them
■ Protect against Cross-Site Request Forgery (CSRF) attacks

All of these are necessary for our app to be secure. Implementing them is what
we’ll do next.

D

162 ITERATION 5

Expanding the Rails code, RESTfully
NOTE I’m not claiming these things (A) are sufficient for the app to be secure,
just that (B) they’re necessary. (B implies A; A doesn’t imply B.) Security is
a complex topic that I can’t cover fully in this book.

5.4.1 Ensuring destructive actions are done by POST

The good news is that because we’re using 100% RESTful resources, we get this for
free! The reason why is that the routing does its matching based on the pretend
HTTP method + URL combination, and all the destructive actions with the REST-
ful routing scheme use a pretend HTTP method of POST, PUT, or DELETE. (As you’ll
see later, these all are POST, hence the “pretend HTTP method.”) For non-RESTful
controllers (which used to be all there was), we have to do stuff like this:

 verify :method => :post, :only => [:destroy, :create, :update],
 :redirect_to => { :action => :list }

This restricts the destroy, create, and update methods to using POST. We allow
the index, list, show, new, and edit methods to use GET. (Note that edit doesn’t
really edit, it just gets something in a format suitable for editing. Think of it as
similar to the show action.)

 Note that there are two choices for restricting access: :only and :except. The
:only approach is risky, because if we add new methods that are destructive, we
need to remember to add them to the :only Array.

5.4.2 Requiring login

Besides creating the new models, we’ve created new controllers for tasks (Tasks-
Controller), projects (ProjectsController), and locations (LocationsCon-
troller). Because they all extend the ApplicationController, they all include
AuthenticatedSystem. However, we currently don’t use this in any way—which
means there is no security, and all the actions are exposed. For example, we can
go to http://localhost:3000/logout to log out and then to http://localhost:3000/
tasks/list (or http://localhost:3000, now that we’ve set up the default route) to
get a task list without being logged in. (Because we got rid of the index.html file,
we’re taken to the default route after logout, so this vulnerability is blatantly obvi-
ous.) We can then edit and delete these tasks, and so on. Not cool.

 The solution is to add before_filter :login_required to the controllers. The
login_required method is part of the AuthenticatedSystem module, which is
mixed into the Application (more on the notion of a mixin soon); see listing 5.26.

module AuthenticatedSystem
 protected

Listing 5.26 lib\authenticated_system.rb

Security 163
...
 # Filter method to enforce a login requirement.
 #
 # To require logins for all actions, use this in your
 # controllers:
 #
 # before_filter :login_required
 #
 # To require logins for specific actions, use this in your
 # controllers:
 #
 # before_filter :login_required, :only => [:edit, :update]
 #
 # To skip this in a subclassed controller:
 #
 # skip_before_filter :login_required
 #
 def login_required
 authorized? || access_denied
 end
...
end

As the comment says, we specify before_filter :login_required B in our con-
trollers to require login for all actions, and we can say skip_before_filter
:login_required C to turn this off. Because it’s so important not to get this
wrong, we’ll add before_filter :login_required (B in listing 5.27) to the
ApplicationController (which all controllers extend) instead of to individual
subclasses. Then, if we’re forgetful and create a new controller without specifying
the before_filter, it will be secure by default. This is shown in listing 5.27.

...
Filters added to this controller apply to all controllers in
the application. Likewise, all the methods added will be
available for all controllers.

class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time
 include AuthenticatedSystem
 before_filter :login_required

 # See ActionController::RequestForgeryProtection for details
 # Uncomment the :secret if you're not using the cookie session
 # store
 # TODO - this will be uncommented once we explain sessions
 # in iteration 5.

Listing 5.27 app\controllers\application.rb

B

C

B

164 ITERATION 5

Expanding the Rails code, RESTfully
 # protect_from_forgery
 # :secret => 'dd92c128b5358a710545b5e755694d57'
end

That was easy.
 Next, we need to turn this off in the UsersController and SessionsControl-

ler, or we won’t be able to log in: the login action requires a login, so we’ll be
redirected to the login—repeatedly! See figure 5.10.

Start with the SessionsController; see listing 5.28.

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
 skip_before_filter :login_required

 # GET /session/new
 # GET /session/new.xml
 def new
...

We skip the login_required before_filter B for all actions. If we wanted to skip
it only for some particular action foo, we’d say skip_before_filter :login_
required, :only => :foo.

 Next, the UsersController; see listing 5.29.

class UsersController < ApplicationController
 skip_before_filter :login_required

Listing 5.28 app\controllers\sessions_controller.rb

Listing 5.29 app\controllers\users_controller.rb

Figure 5.10
Luckily for our poor server, Firefox
is smart enough to catch infinite
redirection.

B

Security 165
 # GET /users/new
 # GET /users/new.xml
 def new
...

Same skip, different controller. We
can confirm that this works by going
to http://localhost:3000/login and
logging in.

5.4.3 Access control

Next on our security checklist is ensur-
ing that logged-in users can only modify
things (such as tasks, projects, and loca-
tions) that belong to them. Just ensur-
ing a user is logged in is not good
enough—we don’t want users viewing,
modifying, and deleting each other’s
stuff.

 To see the problem, all we need to
do is log in as ludwig. The task list
shows the tasks of all the users—the
User column has ids of 1 and 3, as
shown in figure 5.11.

 Click the New Task link, and enter a
new task with the Name “drink espresso”
(a much needed task this far into the
iteration!), as shown in figure 5.12.

 Click Create. We see figure 5.13.
 Note that we didn’t set the user, let-

ting it default to 0, and the task was still
created! This is obviously something
we need to prevent. We shouldn’t let
the user set the id in the first place—we
should only create tasks belonging to
the current user. For example, we can
currently create the task shown in fig-
ure 5.14.

Figure 5.11 Tasks list showing tasks of all users

Figure 5.12 A new task for Ludwig (HTML)

Figure 5.13 Tasks list showing task belonging to
no user

166 ITERATION 5

Expanding the Rails code, RESTfully
 Click Create, and the task is created. Next, go
to http://localhost:3000/tasks again; the result
appears in figure 5.15.

 Observe how the task list shows the new task
not belonging to ludwig as well as the new task
belonging to nobody, neither of which we should
have been able to create.

 Note that the solution isn’t “remove the id field
from the form”: We’d still need to be wary of the
user maliciously modifiying the form submission
(for example, using Firebug). We need to fix this
issue properly—and right now, as part of the secu-
rity fixes. This vulnerability exists in the Tasks-
Controller as well as in the ProjectsController
and LocationsController (try it).

 We’ll start by modifying the TasksController; see listing 5.30.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = Task.find(:all)
 @tasks = current_user.tasks

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 end
 end
...We are doing more modifications, continued below...

Listing 5.30 app\controllers\tasks_controller.rb

Figure 5.15
Task list showing all tasks

B

C
D

Figure 5.14 Creating a task that
doesn’t belong to the current user

Security 167
We start by replacing the Task.find(:all) C with current_user.tasks D. But
right now this looks like magic: Where did current_user.tasks come from?
Heck, where did current_user come from? Before we can proceed to fix the
TasksController, we should figure this out.

Understanding current_user, current_user.tasks, and sessions
As we know, the TasksController (along with all the controllers) extends Appli-
cationController (B in listing 5.30). The ApplicationController class extends
ActionController::Base and also includes the AuthenticatedSystem module
(this include is how we added the login functionality), as shown in listing 5.31.

...
class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time
 include AuthenticatedSystem
...

Including a module is Ruby’s way of using the mixin approach to get the benefits
of multiple inheritance without the gotchas of multiple inheritance. The methods
in the module become “mixed in” to the class. Because ApplicationController
includes AuthenticatedSystem B, it gets all of its methods. And because all our
controllers extend ApplicationController, they all inherit those methods. We
should look at the AuthenticatedSystem module, shown in listing 5.32, to see
what they’re getting.

module AuthenticatedSystem
 protected
...
 def logged_in?
 current_user != :false
 end

 # Accesses the current user from the session. Set it to
 # :false if login fails so that future calls do not hit the
 # database.
 def current_user
 @current_user ||= (login_from_session ||

 ➥login_from_basic_auth || login_from_cookie || :false)
 end

 # Store the given user in the session.

Listing 5.31 app\controllers\application.rb

Listing 5.32 lib\authenticated_system.rb

B

B
C

168 ITERATION 5

Expanding the Rails code, RESTfully
 def current_user=(new_user)
 session[:user] = (new_user.nil? || new_user.is_a?(Symbol))

 ➥ ? nil : new_user.id
 @current_user = new_user
 end
...

The AuthenticatedSystem module has a current_user method B that returns the
@current_user C from the session and a current_user= method D that stores the
current user in the session. (The method_name= syntax in Ruby is how setter meth-
ods are written.) This method uses something called session[:user] E, which is
the session.

 We haven’t encountered the session until now—what is it? Rails, being a web
application framework, includes session management, which it manages for us
when we’re working with Rails normally. It does so by automatically populating
the session (which is retrieved with the session method call—we can often11 omit
parentheses from method calls in Ruby) with various properties that we can set in
it. The session is essentially a dictionary, mapping keys to values. We can add new
key/value pairs to it, and they will be there for us12 on the next requests when
Rails loads the session.

 Calling current_user gets us the @current_user, which turns out to be an
instance of the User class. But where did the tasks in current_user.tasks come
from? Looking at the code for the User model, no tasks method is visible;
instead, we see listing 5.33.

require 'digest/sha1'
class User < ActiveRecord::Base
 has_many :tasks
 has_many :projects
 has_many :locations
...

Where did tasks come from? The answer is that the has_many :tasks method
call B in the User model creates a bunch of methods in the User class.

NOTE For the complete list of methods added, see p. 335–336 of AWDwR.

11 To learn the details, see Programming Ruby or Ruby for Rails.
12 The values we put in the session are subject to restrictions; see section 21.2 of AWDwR for details.

Listing 5.33 app\models\user.rb

D
E

B

Security 169
One of these methods is tasks, which returns the tasks associated with this user.

TIP This is explained well in the article “Association Proxies,” which is the basis
for the approach I’m taking: http://www.therailsway.com/2007/3/26/
association-proxies-are-your-friend. Go read it now; I’ll wait. (It’s also
explained on p. 336 of AWDwR. Read that, too.)

Essentially, current_user.tasks does a find, which is constrained by the associa-
tion proxies to return only tasks that belong to the current_user.

 Now that we understand better what is going on, where were we? Oh yes: We
were modifying the TasksController.

Modifying the TasksController to use association proxies
Let’s examine the whole file now, with all the changes we’re making. Listing 5.34
shows the code.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = Task.find(:all)
 @tasks = current_user.tasks

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 end
 end

 # GET /tasks/1
 # GET /tasks/1.xml
 def show
 @task = Task.find(params[:id])
 @task = current_user.tasks.find(params[:id])
 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @task }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # GET /tasks/new
 # GET /tasks/new.xml
 def new
 @task = Task.new

Listing 5.34 app\controllers\tasks_controller.rb

B

C
D

E

F

http://www.therailsway.com/2007/3/26/association-proxies-are-your-friend

170 ITERATION 5

Expanding the Rails code, RESTfully
 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @task }
 end
 end

 # GET /tasks/1/edit
 def edit
 @task = Task.find(params[:id])
 @task = current_user.tasks.find(params[:id])
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # POST /tasks
 # POST /tasks.xml
 def create
 @task = Task.new(params[:task])

 respond_to do |format|
 if @task.save
 flash[:notice] = 'Task was successfully created.'
 format.html { redirect_to(@task) }
 format.xml { render :xml => @task, :status => :created,
 :location => @task }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 @task = current_user.tasks.build(params[:task])
 respond_to do |format|
 if @task.save
 format.html do
 flash[:notice] = 'Task was successfully created.'
 redirect_to(@task)
 end
 format.xml { render :xml => @task, :status => :created,
 :location => @task }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 end

 # PUT /tasks/1
 # PUT /tasks/1.xml
 def update

G

H

I

J

Security 171
 @task = Task.find(params[:id])
 @task = current_user.tasks.find(params[:id])

 respond_to do |format|
 if @task.update_attributes(params[:task])
 flash[:notice] = 'Task was successfully updated.'
 format.html { redirect_to(@task) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /tasks/1
 # DELETE /tasks/1.xml
 def destroy
 @task = Task.find(params[:id])
 @task = current_user.tasks.find(params[:id])
 @task.destroy

 respond_to do |format|
 format.html { redirect_to(tasks_url) }
 format.xml { head :ok }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 private
 def prevent_access(e)
 logger.info "TasksController#prevent_access: #{e}"
 respond_to do |format|
 format.html { redirect_to(tasks_url) }
 format.xml { render :text => "error" }
 end
 end
end

We explained B–D earlier. Continuing with show, we replace the Task.find E
with current_user.tasks.find, which uses the association proxies to return only
tasks that belong to the current_user, as I’ve explained. Although this seems com-
plex, it makes our life simpler: If we do our find() calls on the association of the
thing that has many of them (in our case, the current_user) instead of calling the

1)

1!

1@

1#

1$

172 ITERATION 5

Expanding the Rails code, RESTfully
static method of the class (such as Task.find(...)), we can’t screw up and let users
have access to stuff they shouldn’t have.

 Suppose a malicious user is hacking, and they’ve modified the id (say, with
Firebug). What will happen? Simple: an ActiveRecord::RecordNotFound excep-
tion will be raised, which we handle with a rescue F statement (the Ruby version
of catch in ActionScript 3 and Java).

NOTE Active Record throws an exception when a find with a specific id
matches nothing, because it considers that to be exceptional. Finding by
other criteria returns an empty result. (See the “To Raise, or Not to
Raise?” sidebar on p. 298 of AWDwR to learn why.)

After we catch rescue the exception, we call a new private method called
prevent_access 1$. This method logs the exception with the logger.info call
(because we’re presumably interested if a user is hacking) and does a respond_to
block that does a redirect if the requested format is HTML and renders “error” if
the requested format is XML. (No, “error” is not XML. But it works, and if the user
is hacking, then there is no reasonable error to show. Besides, creating nice XML
error messages is boring reading.) This rescue-and-call-prevent_access approach
is so useful, we use it throughout H1!1#. Note that redirecting the user with no
indication that we know what they’re up to is a good approach. If someone is
hacking, we don’t want to help them.

 Continuing, we use the identical current_user.tasks approach in the edit G,
create I, update 1), and destroy 1@ methods.

 Note that we move the flash[:notice] (this “flash” has nothing to do with
Flash; it’s essentially a hash for passing state between requests) inside the for-
mat.html J—this is a hack that is needed when dealing with HTML; we don’t
need it when sending responses to Flex, so there’s no reason to build it.

 Having made these changes, let’s reload http://localhost:3000/tasks (if you’ve
been following along, you’re already logged in as ludwig; if not, log in as ludwig
first). We see figure 5.16.

Figure 5.16
Ludwig’s task list

Security 173
That’s better! The only task that belongs to ludwig is to eat gelato, so that’s all
that shows up. (If anyone deserves some gelato right now, we do.) You can play
with the tasks, creating new ones, logging in as different users, and so on. When
you’re satisfied that it works, we’ll move on and make the same changes to
projects and locations.

Fixing the ProjectsController and LocationsController
We’ll make changes that are essentially identical to those we made to the Tasks-
Controller, so no explanation is needed. Because all the changes have been
explained and shown in diff form when discussing TasksController, I’ll just show
the resulting files for the ProjectsController and LocationsController. (It’s
easier to appreciate the code without the deleted code cluttering up the listing,
and it’s also easier for you to copy and paste from this way.)

TIP Literally, the way I made these changes, and the way I recommend you
make these changes, is to copy the content of the tasks_controller.rb file,
paste it into projects_controller.rb, and then do a case-sensitive Edit >
Find/Replace, replacing Task with Project and task with project. When
you’re done, make the equivalent changes in locations_controller.rb. If
you’re cautious, save copies of the files beforehand and use a diff tool
like WinMerge to compare the code to the previous code to ensure that
you didn’t make any mistakes.

First, the ProjectsController; see listing 5.35.

class ProjectsController < ApplicationController
 # GET /projects
 # GET /projects.xml
 def index
 @projects = current_user.projects

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @projects }
 end
 end

 # GET /projects/1
 # GET /projects/1.xml
 def show
 @project = current_user.projects.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb

Listing 5.35 app\controllers\projects_controller.rb

174 ITERATION 5

Expanding the Rails code, RESTfully
 format.xml { render :xml => @project }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # GET /projects/new
 # GET /projects/new.xml
 def new
 @project = Project.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @project }
 end
 end

 # GET /projects/1/edit
 def edit
 @project = current_user.projects.find(params[:id])
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # POST /projects
 # POST /projects.xml
 def create
 @project = current_user.projects.build(params[:project])
 respond_to do |format|
 if @project.save
 format.html do
 flash[:notice] = 'Project was successfully created.'
 redirect_to(@project)
 end
 format.xml { render :xml => @project,
 :status => :created, :location => @project }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @project.errors,
 :status => :unprocessable_entity }
 end
 end
 end

 # PUT /projects/1
 # PUT /projects/1.xml
 def update
 @project = current_user.projects.find(params[:id])

 respond_to do |format|
 if @project.update_attributes(params[:project])

Security 175
 flash[:notice] = 'Project was successfully updated.'
 format.html { redirect_to(@project) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @project.errors,
 :status => :unprocessable_entity }
 end
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /projects/1
 # DELETE /projects/1.xml
 def destroy
 @project = current_user.projects.find(params[:id])
 @project.destroy

 respond_to do |format|
 format.html { redirect_to(projects_url) }
 format.xml { head :ok }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 private
 def prevent_access(e)
 logger.info "ProjectsController#prevent_access: #{e}"
 respond_to do |format|
 format.html { redirect_to(projects_url) }
 format.xml { render :text => "error" }
 end
 end
end

Next, the LocationsController; see listing 5.36.

class LocationsController < ApplicationController
 # GET /locations
 # GET /locations.xml
 def index
 @locations = current_user.locations

 respond_to do |format|
 format.html # index.html.erb

Listing 5.36 app\controllers\locations_controller.rb

176 ITERATION 5

Expanding the Rails code, RESTfully
 format.xml { render :xml => @locations }
 end
 end

 # GET /locations/1
 # GET /locations/1.xml
 def show
 @location = current_user.locations.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @location }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # GET /locations/new
 # GET /locations/new.xml
 def new
 @location = Location.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @location }
 end
 end

 # GET /locations/1/edit
 def edit
 @location = current_user.locations.find(params[:id])
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # POST /locations
 # POST /locations.xml
 def create
 @location = current_user.locations.build(params[:location])
 respond_to do |format|
 if @location.save
 format.html do
 flash[:notice] = 'Location was successfully created.'
 redirect_to(@location)
 end
 format.xml { render :xml => @location,
 :status => :created, :location => @location }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @location.errors,
 :status => :unprocessable_entity }

Security 177
 end
 end
 end

 # PUT /locations/1
 # PUT /locations/1.xml
 def update
 @location = current_user.locations.find(params[:id])

 respond_to do |format|
 if @location.update_attributes(params[:location])
 flash[:notice] = 'Location was successfully updated.'
 format.html { redirect_to(@location) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @location.errors,
 :status => :unprocessable_entity }
 end
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /locations/1
 # DELETE /locations/1.xml
 def destroy
 @location = current_user.locations.find(params[:id])
 @location.destroy

 respond_to do |format|
 format.html { redirect_to(locations_url) }
 format.xml { head :ok }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 private
 def prevent_access(e)
 logger.info "LocationsController#prevent_access: #{e}"
 respond_to do |format|
 format.html { redirect_to(locations_url) }
 format.xml { render :text => "error" }
 end
 end
end

178 ITERATION 5

Expanding the Rails code, RESTfully
There is no change in either of these two controllers that we didn’t do to the
TasksController. This works the same way for both the ProjectsController and
LocationsController because the User model has has_many calls for :tasks,
:projects, and :locations. and LocationsController.

Protecting against CSRF attacks
Thankfully, this is done for us in ApplicationController; all we need to do now
is uncomment it, as shown in listing 5.37.

...
class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time
 include AuthenticatedSystem
 before_filter :login_required

 # See ActionController::RequestForgeryProtection for details
 # Uncomment the :secret if you're not using the cookie session
 # store
 # TODO - this will be uncommented once we explain sessions
 # in iteration 5.
 protect_from_forgery
 # :secret => 'dd92c128b5358a710545b5e755694d57'
end

We delete the obsolete comment and uncomment the protect_from_
forgery B call. Perhaps surprisingly, we don’t need to do anything special here
for use by Flex. Please consult the Rails online documentation about CSRF
attacks (especially http://weblog.rubyonrails.org/2007/9/30/rails-2-0-0-preview-
release and http://ryandaigle.com/articles/2007/9/24/what-s-new-in-edge-rails-
better-cross-site-request-forging-prevention).

 Before we declare this iteration a success, we need to expand our fixtures and
make the new tests pass. (We should also add tests, but we won’t because testing
isn’t the focus of the book.)

5.5 Expanding our fixtures and keeping our tests passing
Expanding our fixtures and keeping our tests passingWe want to add some decent test data to the tasks, projects, and locations fixtures.

This way, we’ll be able to load it in when we run newdb.bat at the beginning of a
given iteration. That will give us a consistent starting point so it’s easy to follow
along with the book.

Listing 5.37 app\controllers\application.rb

B

http://weblog.rubyonrails.org/2007/9/30/rails-2-0-0-preview-release

Expanding our fixtures and keeping our tests passing 179
 We’ll start with locations.yml; see listing 5.38.

Read about fixtures at http://ar.rubyonrails.org/

 ➥classes/Fixtures.html
one:
 id: 1
 user_id: 1
 name: MyString
 notes: MyText
 created_at: 2007-10-19 12:27:11
 updated_at: 2007-10-19 12:27:11
two:
 id: 2
 user_id: 1
 name: MyString
 notes: MyText
 created_at: 2007-10-19 12:27:11
 updated_at: 2007-10-19 12:27:11

#ludwig's locations

ludwig_home:
 id: 1
 user_id: 3
 name: Home

ludwig_opera_house:
 id: 2
 user_id: 3
 name: Opera House

#wolfgang's locations

wolfgang_home:
 id: 3
 user_id: 4
 name: Home

wolfgang_opera_house:
 id: 4
 user_id: 4
 name: Opera House

We remove the scaffold-created locations (because we’ll be testing with ludwig)
and add new locations for ludwig and wolfgang. (As defined in users.yml, 3 is lud-
wig’s id and 4 is wolfgang’s id.)

Listing 5.38 test\fixtures\locations.yml

180 ITERATION 5

Expanding the Rails code, RESTfully
 Next, projects.yml; see listing 5.39.

Read about fixtures at http://ar.rubyonrails.org/

 ➥classes/Fixtures.html
one:
 id: 1
 user_id: 1
 name: MyString
 notes: MyText
 completed: false
 created_at: 2007-10-19 12:26:51
 updated_at: 2007-10-19 12:26:51
two:
 id: 2
 user_id: 1
 name: MyString
 notes: MyText
 completed: false
 created_at: 2007-10-19 12:26:51
 updated_at: 2007-10-19 12:26:51

#ludwig's projects

ludwig_project_one:
 id: 1
 user_id: 3
 name: Music
 notes: I don't need any notes; I'm Beethoven!

ludwig_project_two:
 id: 2
 user_id: 3
 name: Health
 notes: Figure out what's wrong with mine!

#wolfgang's projects

wolfgang_project_one:
 id: 3
 user_id: 4
 name: Music
 notes: All my music is good copy; I don't take notes either!!

wolfgang_project_two:
 id: 4
 user_id: 4
 name: Fashion
 notes: Set the wig trend...

Listing 5.39 test\fixtures\projects.yml

Expanding our fixtures and keeping our tests passing 181
Similarly, we remove the scaffold-created projects (because we’ll be testing with
ludwig) and add new projects for ludwig and wolfgang.

 Finally, having defined the projects and locations in YAML, we know what their
ids will be. Now we can define the tasks and have them belong to appropriate
projects and locations; see listing 5.40.

Read about fixtures at http://ar.rubyonrails.org/

 ➥classes/Fixtures.html
one:
 id: 1
 user_id: 1
 project_id: 1
 location_id: 1
 name: MyString
 notes: MyText
 next_action: false
 completed: false
 created_at: 2007-10-19 12:26:25
 updated_at: 2007-10-19 12:26:25
two:
 id: 2
 user_id: 1
 project_id: 1
 location_id: 1
 name: MyString
 notes: MyText
 next_action: false
 completed: false
 created_at: 2007-10-19 12:26:25
 updated_at: 2007-10-19 12:26:25

#ludwig's tasks

ludwig_task_one:
 id: 1
 user_id: 3
 project_id: 1
 location_id: 1
 name: Finish eighth symphony
 notes: Done. Yay!
 next_action: false
 completed: true

ludwig_task_two:
 id: 2
 user_id: 3
 project_id: 1
 location_id: 1
 name: Finish ninth symphony

Listing 5.40 test\fixtures\tasks.yml

182 ITERATION 5

Expanding the Rails code, RESTfully
 notes: Ode to beer maybe? Ode to cheese?
 next_action: true
 completed: false

ludwig_task_three:
 id: 3
 user_id: 3
 project_id: 2
 name: Buy a new hearing aid
 notes: This is driving me crazy
 next_action: false
 completed: false

ludwig_task_four:
 id: 4
 user_id: 3
 name: Go to Bed, Bad and Beyond for some new dishes
 notes: These lead steins are so 1700s
 next_action: false
 completed: false

#wolfgang's tasks

wolfgang_task_one:
 id: 5
 user_id: 4
 project_id: 4
 name: Get a wig
 notes: Every composer needs a wig
 next_action: false
 completed: true

wolfgang_task_two:
 id: 6
 user_id: 4
 project_id: 3
 location_id: 3
 name: Finish Opera
 notes: The Engagement of Figaro? The Divorce of Figaro?
 next_action: true
 completed: false

wolfgang_task_three:
 id: 7
 user_id: 4
 project_id: 4
 name: Get a new wig
 notes: This one makes me look silly
 next_action: false
 completed: false

Expanding our fixtures and keeping our tests passing 183
We create tasks for ludwig and wolfgang.
 Having done all this, we have a consistent basis from which to start subsequent

iterations by running newdb.bat, because this drops our database, re-creates it,
runs all our migrations, and then loads all our fixtures including these new ones.

 Run newdb.bat to ensure this works, and then run the tests with rake. The
result is shown in listing 5.41.

c:\peter\flexiblerails\current\pomodo>newdb.bat
...
c:\peter\flexiblerails\current\pomodo>rake
...
Started
................
Finished in 1.047 seconds.

16 tests, 29 assertions, 0 failures, 0 errors
...
Started
FFFFFFFFFFFFFF.........FFFFFFF.....
Finished in 2.062 seconds.
...
35 tests, 50 assertions, 21 failures, 0 errors
...
Errors running test:functionals!

c:\peter\flexiblerails\current\pomodo>

Ruh roh! B
 Looking at the trace in the Command Prompt window, we see a ton of errors.

Thankfully, it’s pretty clear what happened: We updated our fixtures and didn’t
update the tests. And because we’ve added the before_filter :login_required,
our tests need to simulate logging in. We’ll fix both of these issues now, and that
should make our tests pass.

 We’ll start with the LocationsControllerTest; see listing 5.42.

...
class LocationsControllerTest < Test::Unit::TestCase
 fixtures :users

 def setup
 @controller = LocationsController.new

Listing 5.41 Output

Listing 5.42 test\functional\locations_controller_test.rb

B

B

184 ITERATION 5

Expanding the Rails code, RESTfully
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 login_as :ludwig
 end
...

We load the :users fixtures B so we can login_as :ludwig C. That’s it. Next, we
make identical changes to the ProjectsControllerTest and TasksController-
Test (see listings 5.43 and 5.44).

 Note that in Rails 2 RC1 (gem version 1.99.0) these tests extend Test::
Unit::TestCase by default; in Rails 2 final (2.0.1) they extend Action-
Controller::TestCase by default. If you are using Rails 2.0.1 or higher you need
to replace ActionController::TestCase with Test::Unit::TestCase and to you
need to add the entire setup method—not just the login_as :ludwig line--for all
three classes. As such, I’m formatting all this code in bold italic, even though with
Rails 1.99.0 much of it will be generated for you.

...
class ProjectsControllerTest < Test::Unit::TestCase
 fixtures :users

 def setup
 @controller = ProjectsController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 login_as :ludwig
 end
...

...
class TasksControllerTest < Test::Unit::TestCase
 fixtures :users

 def setup
 @controller = TasksController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 login as :ludwig
 end
...

Listing 5.43 test\functional\projects_controller_test.rb

Listing 5.44 test\functional\tasks_controller_test.rb

C

Summary 185
With these changes made, let’s run our tests again:

c:\peter\flexiblerails\current\pomodo>rake
Started
................
Finished in 0.953 seconds.

16 tests, 29 assertions, 0 failures, 0 errors
Started
...................................
Finished in 2.016 seconds.

35 tests, 65 assertions, 0 failures, 0 errors
...
c:\peter\flexiblerails\current\pomodo>

That was easy!

5.6 Summary
Summary We now have a decent, reasonably secure foundation to build on. We can call the

user by name; we have a debug console; heck, we’ve even fixed to_xml. Beyond
that, we dove fairly deep into Rails, learning about REST, creating RESTful Task,
Project, and Location resources; and we learned routing. We even got a handle
on security, which is made easier by using the RESTful approach and the associa-
tion proxies. Finally, we expanded fixtures so we don’t have to manually enter test
data for ad hoc testing.

 In the next iteration, we’ll hook up our Flex UI to our new tasks, projects, and
locations controllers. This will be fun. Take a break, grab an espresso (and some
gelato, if you wish) and start fresh in the next iteration.

The code at this point is saved as the iteration05 folder.

Flex on Rails
Greg Knauss1

Web 2.0, proper noun
The name given to the social and technical sophistication and
maturity that mark the—Oh, screw it. Money! Money money money!
Money! The money’s back! Ha ha! Money!

—Greg Knauss, “The Devil’s Dictionary” (2.0),1

 http://www.eod.com/devil/archive/web_20.html

1 This is a reference to The Devil’s Dictionary by Ambrose Bierce, which is great reading too.
186

Listing tasks in Flex 187
In this fairly substantial iteration, we’ll finally hook up most of the main Flex UI to
the Rails controllers, including the new TasksController, ProjectsController,
and LocationsController. Given the work we’ve done on the account creation
and login panels, you may think it’s just going to be a matter of defining a bunch
of HTTPServices and hooking them up. If so, you’re essentially right. But the
details matter, of course.

 Let’s dive in.

6.1 Setup
Setup If you didn’t run newdb.bat at the end of the last iteration, run it now. Doing so

ensures that the tasks, projects, and locations we defined in the fixtures at the end
of the previous iteration are loaded:

c:\peter\flexiblerails\current\pomodo>newdb.bat
...

Next, we start our server with ruby script\server, go to http://localhost:3000,
and log in as ludwig (his password is foooo, as specified in users.yml). We see the
screen shown in figure 6.1.

6.2 Listing tasks in Flex
Listing tasks in Flex If we then go to http://localhost:3000/bin/Pomodo.html and log in as ludwig,

the tasks list looks like figure 6.2.
 Our first task will be to get ludwig’s tasks to show up in the Tasks DataGrid. To

begin with, we won’t worry about making the ComboBox that filters them have any
effect—we’ll just show the user’s tasks. We’ll also only display the project_id and
location_id of the tasks for now.

Figure 6.1 Ludwig’s tasks, created in fixtures (HTML)

http://localhost:3000/bin/Pomodo.html
http://localhost:3000/
http://localhost:3000/

188 ITERATION 6

Flex on Rails
I have some great news: The RESTful scaffold command has already done a lot of
the work for us, as shown in listing 6.1.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = current_user.tasks

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 end
 end
...

To get a list of tasks nicely formatted in XML for use by Flex, all we need to do is
send a GET to /tasks.xml B. The render :xml => @tasks syntax C is syntactic
sugar for render :xml => @tasks.to_xml. (Rails has come a long way regarding
XML, from hatred of it to syntactic sugar for it.) There is prebuilt support for XML
in the other actions in the TasksController as well, which we can use with some
or no modification. (Who knew DHH loved Flex2so much?)

Listing 6.1 app\controllers\tasks_controller.rb

Figure 6.2 No tasks yet in Flex

B

C

Who knew?
I sure didn’t! See http://www.37signals.com/svn/posts/487-what-if-i-actually-
like-html-css-and-javascript for the background, and scroll down in the com-
ments to see your humble author attempt to persuade DHH he is mistaken. (I
like challenges.)

Listing tasks in Flex 189
Note one subtlety here: Because we’re rendering XML, we don’t need to set
instance variables like @tasks in the Rails controllers. We only need to set
instance variables if we’re having rendering done by a view template that depends
on them. Having less code is a good thing, so I often leave the instance variables
where they are instead of moving them inside the format.html block and creating
local variables for use in the format.xml block. Also note that if we use Builder to
produce XML (more on that later), we need instance variables.

 Next, we modify the TasksListBox, as shown in listing 6.2.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks"
 creationComplete="listTasks()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;

 public const NEXT_ACTIONS:int = 0;
 public const ALL_TASKS:int = 1;
 public const TASKS_IN_PROJECT:int = 2;
 public const TASKS_AT_LOCATION:int = 3;

 private const SHOW_CHOICES:Array = [
 {label:"Next Actions", data:NEXT_ACTIONS,
 hasSubChoice:false},
 {label:"All Tasks", data:ALL_TASKS,
 hasSubChoice:false},

2 Speaking of wars of words: Sorry, Scott Barnes, it’s Rich Internet Application, not Rich Interactive Application.
(If you’re bored, see http://blog.digitalbackcountry.com/?p=1080 vs. http://blogs.msdn.com/
msmossyblog/archive/2007/10/10/why-i-choose-to-use-interactive-not-internet-in-ria.aspx for details,
and http://www.25hoursaday.com/weblog/2007/10/20/IfYouFightTheWebYouWillLose.aspx for
Dare Obsanjo’s amusing follow-up.)

Listing 6.2 app\flex\com\pomodo\components\TasksListBox.mxml

Who knew? (continued)

The ironic thing about this is that even though DHH isn’t a fan of Flex, one of the
most significant effects of the improved—and now standard—support of REST in
Rails is to make support for Rich Internet2 Applications almost work right out of
the box! (Maybe Rails 3 will fix to_xml and come with scaffolded Flex views?)

Add creation-
Complete
handler

B

Add import

http://blogs.msdn.com/msmossyblog/archive/2007/10/10/why-i-choose-to-use-interactive-not-internet-in-ria.aspx

190 ITERATION 6

Flex on Rails
 {label:"Tasks in Project:", data:TASKS_IN_PROJECT,
 hasSubChoice:true},
 {label:"Tasks at Location:", data:TASKS_AT_LOCATION,
 hasSubChoice:true}];

 [Bindable]
 private var _subChoices:Array;

 public function listTasks():void {
 svcTasksList.send();
 }

 private function handleTasksListResult(event:ResultEvent):
 void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("TasksListBox#handleTasksListResult:\n" +
 resultXML.toString());
 }
]]>
</mx:Script>
 <mx:HTTPService id="svcTasksList" url="/tasks.xml"
 resultFormat="e4x"
 result="handleTasksListResult(event)"/>
 <mx:XMLListCollection id="tasksXLC"
 source="{XMLList(svcTasksList.lastResult.children())}"/>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
 <mx:Label text="Show:"/>
 <mx:ComboBox id="mainChoiceCB"
 dataProvider="{SHOW_CHOICES}"/>
 <mx:ComboBox id="subChoiceCB" width="100%"
 dataProvider="{_subChoices}"
 visible="{mainChoiceCB.selectedItem.hasSubChoice}"/>
 </mx:HBox>
 <mx:DataGrid id="tasksGrid" width="100%" height="100%"
 dataProvider="{tasksXLC}">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"
 dataField="completed"/>
 <mx:DataGridColumn headerText="Name" width="300"
 dataField="name"/>
 <mx:DataGridColumn headerText="Project"
 width="150" dataField="project_id"/>
 <mx:DataGridColumn headerText="Location"
 width="150" dataField="location_id"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>

Call HTTPService
send method

C

Handle HTTPService
result

D

svcTasksList HTTPService
to invoke /tasks.xml

E

Set tasksXLC source
using lastResult of
svcTasksList

F

GtasksGrid
dataProvider

is tasksXLC

H

Set
dataField

properties

Listing tasks in Flex 191
 </mx:DataGrid>
 </mx:VBox>
...
</mx:VDividedBox>

We start by defining an HTTPService svcTasksList E, which does a GET to
/tasks.xml (thus triggering the index action of the TasksController) and specifies
a resultFormat of e4x so the result of the service can be handled with the new E4X
XML API. We then take the lastResult F of this service, which is an XML
document, get its children (which is an XMLList of the tasks), and make this be the
source of an XMLListCollection called tasksXLC F. We do this with a binding to
the source attribute.

 We have to call this listTasks function C from somewhere, in order to have it
call the service and get the results. The logical place to do so for now is in a cre-
ationComplete event handler B, because that event gets broadcast when the
TasksListBox is created.

 We set the dataProvider of the tasksGrid to be the tasksXLC G XMLList-
Collection we just finished populating. We also modify the DataGridColumns H
to have their dataField properties set to the data field in the XML they’re for.

 Finally, we add a result handler to the svcTasksList G, which calls a
handleTasksListResult D function. We do this so that we can extract the
event.result XML and output it to our debug console. Note that we didn’t need
to import Pomodo in order to call Pomodo.debug D—it’s our Application, so we
get it for free.

 Let’s see what this does. Rebuild, reload, and log in as ludwig. We see a nice
tasks list, as shown in figure 6.3.

 Furthermore, we can open the debug console to see the XML we got back for
the tasks (scroll past the XML for the ludwig user); see listing 6.3.

Figure 6.3 Task list in Flex!

192 ITERATION 6

Flex on Rails
[Sun Oct 21 11:47:16 GMT+0200 2007]
 ➥TasksListBox#handleTasksListResult:
<tasks type="array">
 <task>
 <completed type="boolean">true</completed>
 <created_at type="datetime"/>
 <id type="integer">1</id>
 <location_id type="integer">1</location_id>
 <name>Finish eighth symphony</name>
 <next_action type="boolean">false</next_action>
 <notes>Done. Yay!</notes>
 <project_id type="integer">1</project_id>
 <updated_at type="datetime"/>
 <user_id type="integer">3</user_id>
 </task>
...

We’re currently just displaying the project_id and location_id, but we’ll soon
do more.

6.2.1 Should we use to_xml with :include?

If you have experience with to_xml, you may be wondering why we didn’t do the
following3 (shown in listing 6.4) in the previous section, to list the projects and
locations.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = current_user.tasks

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 format.xml { render :xml => @tasks.to_xml(
 :include => [:project, :location]) }
 end
 end
...

Listing 6.3 Output

3 Thanks to Jason Tuttle of Studio 1H (http://www.studio1h.com) for help with this section.

Listing 6.4 app\controllers\tasks_controller.rb

B
C

Listing tasks in Flex 193
Making this change BC would make the to_xml bring the Project and the
Location that the Task belongs_to come along in the XML as child elements of
the tasks. If you try it (make this change, reload, and log in as ludwig), you’ll get
something like the output shown in listing 6.5 in your debug console.

[Mon Oct 22 00:03:51 GMT+0200 2007]
TasksListBox#handleTasksListResult:
<tasks type="array">
 <task>
 <completed type="boolean">true</completed>
 <created_at type="datetime"/>
 <id type="integer">1</id>
 <location_id type="integer">1</location_id>
 <name>Finish eighth symphony</name>
 <next_action type="boolean">false</next_action>
 <notes>Done. Yay!</notes>
 <project_id type="integer">1</project_id>
 <updated_at type="datetime"/>
 <user_id type="integer">3</user_id>
 <project>
 <completed type="boolean">false</completed>
 <created_at type="datetime"/>
 <id type="integer">1</id>
 <name>Music</name>
 <notes>I don't need any notes; I'm Beethoven!</notes>
 <updated_at type="datetime"/>
 <user_id type="integer">3</user_id>
 </project>
 <location>
 <created_at type="datetime"/>
 <id type="integer">1</id>
 <name>Home</name>
 <notes/>
 <updated_at type="datetime"/>
 <user_id type="integer">3</user_id>
 </location>
 </task>
...the rest of ludwig's tasks are also shown with children here...
</tasks>

You can see the projects B and locations C that the tasks belong to coming along
as child elements.

 This would let us easily display the names of the projects and locations that the
tasks belong to. Should we do this?

Listing 6.5 Output

B

C

194 ITERATION 6

Flex on Rails
 Not in this case: Because we’re also going to display projects and locations in
their own DataGrids, we need to have the full lists of projects and locations any-
way. It makes sense to do as much work as possible in Flex as opposed to in Rails.
This isn’t because we prefer writing Flex code—coding in Ruby is lots of fun—but
because it makes sense to put as much burden as possible on the client instead of
on the server.

 Also, there would be another potential drawback: Not only would we be making
the server do more work (making the response time slower), we would also poten-
tially be sending a lot more data back from the server (making the response time
slower still). (Say the user had 8 projects, 4 locations, and 400 tasks—do you want
to send the project and location 400 times as child elements of the 400 tasks?)

 As the author of this book, I have another advantage: I can see the future! (Well,
the future of the book, anyway.) I plan to use ComboBoxes in the taskGrid to
change the projects and locations. We’ll need to have all the projects and loca-
tions at our disposal before we display the taskGrid in the future (because the
projects and locations will be used as the dataProviders for those ComboBoxes).

 In this case, it’s in our best interest to keep the XML coming back from Rails via
to_xml as small and simple as possible. This way of thinking is much more like that
of someone writing a Java Swing application (or an AJAX app that is JavaScript-
heavy) that talks to a server rather than that of someone writing a traditional web
app, where the client is fairly stupid and the server does many tasks that should be
done on the client.

 The important lesson here is: Don’t port your thinking about how to build tra-
ditional Rails views to Flex. Flex is different and can do more for you.

TIP Don’t think of MXML files as .html.erb templates—MXML is just a conve-
nient way of writing ActionScript 3 code.

Because we’re not going to use this approach, please revert the code as shown in
listing 6.6.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = current_user.tasks

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 format.xml { render :xml => @tasks.to_xml(

Listing 6.6 app\controllers\tasks_controller.rb

Creating tasks in Flex 195
 :include => [:project, :location]) }
 end
 end
...

6.3 Creating tasks in Flex
Creating tasks in Flex Let’s now start making real headway on the app by creating tasks from the Flex UI.

For our first attempt, we won’t set the location or project of a Task yet; we’ll just
try to get the name and notes saved.

 We already have a create method, shown in listing 6.7; let’s try to use it as-is.

class TasksController < ApplicationController
...
 # POST /tasks
 # POST /tasks.xml
 def create
 @task = current_user.tasks.build(params[:task])
 respond_to do |format|
 if @task.save
 format.html do
 flash[:notice] = 'Task was successfully created.'
 redirect_to(@task)
 end
 format.xml { render :xml => @task, :status => :created,
 :location => @task }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 end
...
end

We’re already using the association proxies4 in the create method to call the
build method E of the current_user’s tasks association (which was created by
the has_many :tasks method call in the User class) to create an instance B of
the Task class, which has the user_id properly set to the id of the current_user.

Listing 6.7 app\controllers\tasks_controller.rb

4 This is based on http://www.therailsway.com/2007/3/26/association-proxies-are-your-friend. See that
article as well as AWDwR (p. 312) for more information about save! vs. save and build! vs. build.

B

C

D

E

196 ITERATION 6

Flex on Rails
We then attempt to save the new Task C. If we succeed, we render the XML D of
the new @task (implicitly calling to_xml), setting the :status and :location
(more about those soon) as well. If we failed, we render the XML E of the new
@task’s errors, setting the :status also.

 We need to modify the Flex code to trigger the create action. We’ll start by
creating a new event to dispatch when the Task is created. Because we’ve created
an AccountCreateEvent for new user accounts, you’re probably thinking that
we’ll create a TaskCreateEvent. We could do this. However, we’ll be doing a lot of
things with tasks (as well as projects, locations, and so on). If we continue with this
approach, we’ll have an explosion of Events. This feels like it violates the Don’t
Repeat Yourself (DRY) principle championed in The Pragmatic Programmer and
adhered to closely in Rails.

 What do we do? Two approaches come to mind:

■ Have events for each action (such as index and create), and add a parame-
ter that specifies what the object attached to the event is (such as Task and
Project)

■ Have events for each type (such as Task and Project), and add a parameter
that explains the action (such as index and create)

Somewhat arbitrarily, we’ll go with the second option. Why? Primarily because it
lets us have variables named task instead of thing on the event. This is arbitrary,
but it seems straightforward and promising, so that’s what we’ll do.

 Right-click the LoginEvent.as file in the events folder, and choose Copy. Next,
right-click the events folder and choose paste. Name the file TaskEvent.as, and set
its contents to be as shown in listing 6.8.

package com.pomodo.events {
 import flash.events.Event;

 public class TaskEvent extends Event {
 public static const TASK_CREATE:String = "taskCreate";

 public var task:XML;

 public function TaskEvent(type:String, task:XML) {
 super(type);
 this.task = task;
 }
 }
}

Listing 6.8 app\flex\com\pomodo\events\TaskEvent.as

B
C

D

E

Creating tasks in Flex 197
We’re creating a TaskEvent class B for all Task events. This constant
TASK_CREATE C is used by classes that use the TaskEvent. It exists to catch typos at
compile time. The task XML variable D stores whatever task is associated with the
event. The constructor E for the new TaskEvent assigns the passed-in task to the
task property. It also sets the type property to the passed-in type by passing it to
the superclass constructor in the super(type) call.

 Next, modify the TaskCreateBox as shown in listing 6.9.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Task">
<mx:Metadata>
 [Event(name="taskCreate", type="com.pomodo.events.TaskEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.TaskEvent;

 private function handleTaskCreateResult(event:ResultEvent):
 void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("TaskCreateBox#handleTaskCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new TaskEvent(TaskEvent.TASK_CREATE,
 resultXML));
 }

 private function doTaskCreate():void {
 svcTasksCreate.send();
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksCreate"
 url="/tasks.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleTaskCreateResult(event)">
 <mx:request>
 <task>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </task>
 </mx:request>
 </mx:HTTPService>

Listing 6.9 app\flex\com\pomodo\components\TaskCreateBox.mxml

B
C

D

E

F
G

H

I
J

1)
1!

1@
1#

1$
1%

1^
1&

198 ITERATION 6

Flex on Rails
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Task">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="">
 <mx:CheckBox id="nextActionCheckbox"
 label="This is the Next Action"/>
 </mx:FormItem>
 <mx:FormItem label="Location">
 <mx:ComboBox id="locationsCB" width="200"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doTaskCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

We start by defining an HTTPService svcTasksCreate 1) that does a POST to the
/tasks.xml 1! URL (thus triggering the create method and ensuring the
respond_to format is xml) with a contentType of application/xml 1@ so it can
send XML data. It specifies a resultFormat of e4x 1# so the result of the service
can be handled with the new E4X XML API. The XML data we’re sending is con-
structed dynamically when the send() function is called. We set the value of the
request property 1$ by specifying the XML for the task 1% and binding to the
name 1^ and notes 1& properties.

 We modify the Submit button to call a new doTaskCreate function I, which
calls the send function J of the svcTasksCreate service when the click event of
the Submit button is handled 1*.

 The handleTaskCreateResult function E casts the event.result to XML
(because that’s what it is) and stores it in the resultXML F local variable. We then
call Pomodo.debug G to output the XML text to the debug console, and we dis-
patch H the new TaskEvent whose type is TaskEvent.TASK_CREATE and whose
task is the resultXML.

 Finally, we add the imports D of ResultEvent and our new TaskEvent and
also declare some Metadata B for the new TaskEvent we’re broadcasting, whose
name is taskCreate C. This Event metadata declares that the component broad-
casts this event, so that other components can handle it by name in MXML.

1*

Creating tasks in Flex 199
 We have one more thing to do to tie this all together. We need to handle the
taskCreate event in the MainBox and act accordingly in order to refresh the task
list. Thankfully this is trivial, as shown in listing 6.10.

...
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"
 taskCreate="tasksTab.listTasks()"/>
 <pom:ProjectCreateBox id="projectCreateBox"/>
...

We modify the taskCreateBox to handle the taskCreate event and call
tasksTab.listTasks() B. This triggers a call to svcTasksList.send() in the
TasksListBox, which gets us the updated list of tasks.

With this last change made, rebuild, reload, and log in as ludwig. We can now cre-
ate a new task (the name and notes). Add eat dinner for the task and yummy for
the notes (see figure 6.4), and click Submit.

 The new task is created and shows up in the tasks DataGrid.

Listing 6.10 app\flex\com\pomodo\components\MainBox.mxml

B

Q. Isn’t this less efficient than maintaining an Array on the client and adding the
new task to it?

A. Yes. However, it’s simpler. Also, if we end up having multiple users adding
and removing from the same task list at a later date, we would have to deal with
that on the client. Although this book hopes to provide code that’s as useful as
possible, this still is book code—and this isn’t a book about caching. We’ll just
sidestep the problem for now by calling the service every time.

Figure 6.4 Creating a task from Flex

200 ITERATION 6

Flex on Rails
6.4 Creating and listing projects and locations in Flex
Creating and listing projects and locations in FlexNow that we can add tasks with a name and notes, we’ll add the ability to list and to

create projects and locations. This will involve a lot of copying-pasting-modifying of
code we’ve already seen for tasks, so we’ll keep the explanations brief.

 On the Rails side, the ProjectsController and LocationsController already
have create methods that can send XML when that is the requested format, so
there is nothing to do there. We’ll start by modifying the ProjectsListBox and the
LocationsListBox to display the projects and locations. First the ProjectsList-
Box; see listing 6.11.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Projects"
 creationComplete="listProjects()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;

 public function listProjects():void {
 svcProjectsList.send();
 }

 private function handleProjectsListResult(
 event:ResultEvent):void {
 var resultXML:XML = XML(event.result);
 Pomodo.debug(
 "ProjectsListBox#handleProjectsListResult:\n" +
 resultXML.toString());
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcProjectsList"
 url="/projects.xml"
 resultFormat="e4x"
 result="handleProjectsListResult(event)"/>
 <mx:XMLListCollection id="projectsXLC"
 source="{XMLList(svcProjectsList.lastResult.children())}"/>

 <mx:DataGrid id="projectsGrid" width="100%" height="60%"
 dataProvider="{projectsXLC}">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"
 dataField="completed"/>
 <mx:DataGridColumn headerText="Name" width="400"

Listing 6.11 app\flex\com\pomodo\components\ProjectsListBox.mxml

B

C

D

E

F

G

H

Creating and listing projects and locations in Flex 201
 dataField="name"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>
 </mx:DataGrid>
...
</mx:VDividedBox>

We start by creating a svcProjectsList E HTTPService whose url is /projects.xml,
meaning that it invokes the action in the ProjectsController with a desired format
of xml. This svcProjectsList has its send function called by the listProjects
function C, which is called in response to the creationComplete event B being dis-
patched by the ProjectsListBox. When the service returns, the result event is dis-
patched and the handleProjectsListResult D function is invoked. This function
outputs debug information. We create a projectsXLC XMLListCollection F
whose source is the last result from the svcProjectsList service. We then bind the
dataProvider of the projectsGrid G to this XMLListCollection. Finally, we mod-
ify the columns to set the dataField property H.

 Next, we make the equivalent changes to the LocationsListBox; see listing 6.12.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Locations"
 creationComplete="listLocations()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;

 public function listLocations():void {
 svcLocationsList.send();
 }

 private function handleLocationsListResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug(
 "LocationsListBox#handleLocationsListResult:\n"
 + resultXML.toString());
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcLocationsList"

Listing 6.12 app\flex\com\pomodo\components\LocationsListBox.mxml

202 ITERATION 6

Flex on Rails
 url="/locations.xml"
 resultFormat="e4x"
 result="handleLocationsListResult(event)"/>
 <mx:XMLListCollection id="locationsXLC"
 source="{XMLList(svcLocationsList.lastResult.children())}"/>

 <mx:DataGrid id="locationsGrid" width="100%" height="60%"
 dataProvider="{locationsXLC}">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"
 dataField="completed"/>
 <mx:DataGridColumn headerText="Name" width="400"
 dataField="name"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>
 </mx:DataGrid>
...
</mx:VDividedBox>

At this point, we can optionally rebuild, reload, and log in as ludwig to check that
the list functionality works.

 Having made these changes, we press on and add the create functionality for
projects and locations. We know that once we create projects and locations, we’ll
want to dispatch the appropriate events. Just as we created a TaskEvent, we’ll cre-
ate a ProjectEvent and a LocationEvent. These events will literally be a copy-
paste-modify of the TaskEvent. First the ProjectEvent; see listing 6.13.

package com.pomodo.events {
 import flash.events.Event;

 public class ProjectEvent extends Event {
 public static const PROJECT_CREATE:String =
 "projectCreate";

 public var project:XML;

 public function ProjectEvent(type:String, project:XML) {
 super(type);
 this.project = project;
 }
 }
}

Listing 6.13 app\flex\com\pomodo\events\ProjectEvent.as

Creating and listing projects and locations in Flex 203
Next, the LocationEvent; see listing 6.14.

package com.pomodo.events {
 import flash.events.Event;

 public class LocationEvent extends Event {
 public static const LOCATION_CREATE:String =
 "locationCreate";

 public var location:XML;

 public function LocationEvent(type:String,
 location:XML) {
 super(type);
 this.location = location;
 }
 }
}

Having created these events, we’ll now modify the ProjectCreateBox and Loca-
tionCreateBox to make the appropriate service calls and dispatch them when
successful. This is a copy-paste-modify of what we did in the TaskCreateBox, so the
explanation will be shorter. First, the ProjectCreateBox; see listing 6.15.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Project">
<mx:Metadata>
 [Event(name="projectCreate",
 type="com.pomodo.events.ProjectEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.ProjectEvent;

 private function handleProjectCreateResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug(
 "ProjectCreateBox#handleProjectCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new ProjectEvent(

Listing 6.14 app\flex\com\pomodo\events\LocationEvent.as

Listing 6.15 app\flex\com\pomodo\components\ProjectCreateBox.mxml

B

C

204 ITERATION 6

Flex on Rails
 ProjectEvent.PROJECT_CREATE, resultXML));
 }

 private function doProjectCreate():void {
 svcProjectsCreate.send();
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcProjectsCreate"
 url="/projects.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleProjectCreateResult(event)">
 <mx:request>
 <project>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </project>
 </mx:request>
 </mx:HTTPService>

 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Name">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doProjectCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

We start by defining an HTTPService svcProjectsCreate E, which sends XML
to the create method (and requests XML from it with the .xml extension) in the
ProjectsController. This service is called when the doProjectCreate function
is called D, which includes when the Submit button is clicked F. When this ser-
vice returns, the handleProjectCreateResult function C is called, which out-
puts some debug information and then dispatches a new ProjectEvent of type
ProjectEvent.PROJECT_CREATE. Finally, we add some Metadata B declaring
this, so we can handle it.

D

E

F

Creating and listing projects and locations in Flex 205
 Next, we make the equivalent changes to the LocationCreateBox; see list-
ing 6.16.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Location">
<mx:Metadata>
 [Event(name="locationCreate",
 type="com.pomodo.events.LocationEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.LocationEvent;

 private function handleLocationCreateResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug(
 "LocationCreateBox#handleLocationCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new LocationEvent(
 LocationEvent.LOCATION_CREATE, resultXML));
 }

 private function doLocationCreate():void {
 svcLocationsCreate.send();
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcLocationsCreate"
 url="/locations.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleLocationCreateResult(event)">
 <mx:request>
 <location>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </location>
 </mx:request>
 </mx:HTTPService>

 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Name">

Listing 6.16 app\flex\com\pomodo\components\LocationCreateBox.mxml

206 ITERATION 6

Flex on Rails
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextInput id="notesTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doLocationCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

Similar to what we did with tasks, we need to handle the projectCreate and
locationCreate events in the MainBox and act accordingly to refresh the project
and location lists, respectively. This is similarly easy, as shown in listing 6.17.

...
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"
 taskCreate="tasksTab.listTasks()"/>
 <pom:ProjectCreateBox id="projectCreateBox"
 projectCreate="projectsTab.listProjects()"/>
 <pom:LocationCreateBox id="locationCreateBox"
 locationCreate="locationsTab.listLocations()"/>
 </mx:Accordion>
...

We modify the projectCreateBox and the locationCreateBox to handle the
projectCreate B and locationCreate C events, and we call the projects-
Tab.listProjects B and locationsTab.listLocations C functions respec-
tively to trigger the update.

 That’s it! Rebuild, reload, and log in as ludwig. We see the Projects grid, as
shown in figure 6.5.

Listing 6.17 app\flex\com\pomodo\components\MainBox.mxml

B

C

Figure 6.5
The populated
Projects grid in Flex

Creating and listing projects and locations in Flex 207
We also see the Locations grid; see figure 6.6.

We can create new projects; see figure 6.7.

We can also create new locations; see figure 6.8.

Hooray! (It sure would be nice to be in Baden-Baden right now. Instead, we’ll
keep pressing forward, hooking up our Flex UI, with Baden-Baden as step 4 after
“3. Profit!!!”).

Figure 6.6
The populated
Locations grid in Flex

Figure 6.7 New project updating the Projects grid

Figure 6.8 New location updating the Locations grid

208 ITERATION 6

Flex on Rails
6.5 Making the Projects and Locations
ComboBoxes work in the TaskCreateBox

Making the Projects and Locations ComboBoxeswork in the TaskCreateBox Now that we have the ability to create projects and locations, we’ll finally add the
ability to set which Project and Location a Task belongs_to. Not all Tasks
belong to a Location or Project—for example, eating dinner has neither. It’s
definitely legal for a Task to have no Project or Location.

 First we’ll get the existing projects and locations to show up in the ComboBoxes
in the new task form. As usual, we won’t worry about making the UI work until it
looks like we want it to.

 Examining the code, we realize we’ve gotten ourselves into a pickle: The
TasksListBox knows the list of Tasks, the ProjectsListBox knows the list of
Projects, and the LocationsListBox knows the list of Locations. However, there
is currently no (clean) way for the TaskCreateBox to get at the list of Projects
and Locations—and it needs these, so it can show them in the ComboBoxes.

 What should we do?
 We could create public properties on the various ___ListBox classes, so that

other components could bind to their data. However, this seems like it would be a
mess, with little bits of data everywhere. We’ll do a little refactoring, where we pull
the data from the ___ListBox classes into the MainBox and pass it into the various
___CreateBox and ___ListBox classes that need it.

NOTE We’ll refactor the code to use Cairngorm later, which uses an even more
centralized approach.

Let’s do the refactoring quickly and then proceed with getting the projects and
locations to show up.

6.5.1 Refactoring the list data location

We’ll cut and paste code from the three ListBox classes into the MainBox. Some-
what arbitrarily, we’ll start with the MainBox. If you’re following along, copy and
paste this from the other classes; see listing 6.18.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000"
 minHeight="680"
 paddingLeft="5"
 paddingRight="5"

Listing 6.18 app\flex\com\pomodo\components\MainBox.mxml

Making the Projects and Locations ComboBoxes 209
work in the TaskCreateBox
 paddingTop="5"
 paddingBottom="5"
 width="100%"
 height="100%"
 backgroundColor="#FFFFFF"
 creationComplete="handleCreationComplete()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;

 [Bindable]
 public var user : XML;

 public function listTasks():void {
 svcTasksList.send();
 }

 private function handleTasksListResult(event:ResultEvent):
 void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("MainBox#handleTasksListResult:\n" +
 resultXML.toString());
 }

 public function listProjects():void {
 svcProjectsList.send();
 }

 private function handleProjectsListResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("MainBox#handleProjectsListResult:\n" +
 resultXML.toString());
 }

 public function listLocations():void {
 svcLocationsList.send();
 }

 private function handleLocationsListResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("MainBox#handleLocationsListResult:\n" +
 resultXML.toString());
 }

 private function handleCreationComplete():void {
 listTasks();
 listProjects();
 listLocations();
 }

B

C

D

E

F

G

H

I

J

210 ITERATION 6

Flex on Rails
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksList"
 url="/tasks.xml"
 resultFormat="e4x"
 result="handleTasksListResult(event)"/>
 <mx:XMLListCollection id="tasksXLC"
 source="{XMLList(svcTasksList.lastResult.children())}"/>

 <mx:HTTPService
 id="svcProjectsList"
 url="/projects.xml"
 resultFormat="e4x"
 result="handleProjectsListResult(event)"/>
 <mx:XMLListCollection id="projectsXLC"
 source="{XMLList(svcProjectsList.lastResult.children())}"/>

 <mx:HTTPService
 id="svcLocationsList"
 url="/locations.xml"
 resultFormat="e4x"
 result="handleLocationsListResult(event)"/>
 <mx:XMLListCollection id="locationsXLC"
 source="{XMLList(svcLocationsList.lastResult.children())}"/>

 <mx:HBox width="100%" height="100%">
 <mx:VBox width="300" height="100%">
 <mx:Image source="com/pomodo/assets/logo_md.png"/>
 <mx:Label text="{'Logged in as: ' + user.login +
 ' (' + user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' + user.first_name +
 '!'}"/>
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"
 taskCreate="listTasks()"/>
 <pom:ProjectCreateBox id="projectCreateBox"
 projectCreate="listProjects()"/>
 <pom:LocationCreateBox id="locationCreateBox"
 locationCreate="listLocations()"/>
 </mx:Accordion>
 <mx:DateChooser id="dateChooser" width="100%"/>
 </mx:VBox>
 <mx:VBox width="100%" height="100%">
 <pom:CommandShell/>
 <mx:TabNavigator width="100%" height="100%">
 <pom:TasksListBox id="tasksTab"
 tasksXLC="{tasksXLC}"/>
 <pom:ProjectsListBox id="projectsTab"
 projectsXLC="{projectsXLC}"/>
 <pom:LocationsListBox id="locationsTab"

1)

1!

1@

1#

1$

1%

1^

1&

1*

1(

2)

Making the Projects and Locations ComboBoxes 211
work in the TaskCreateBox
 locationsXLC="{locationsXLC}"/>
 <pom:Notely id="notelyTab"/>
 </mx:TabNavigator>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

We start by cutting and pasting the various HTTPServices 1)1@1$ and the
XMLListCollections 1!1#1% from the TasksListBox, ProjectsListBox, and
LocationsListBox. We pass these XMLListCollections via data binding into the
TasksListBox 1(, ProjectsListBox 2), and LocationsListBox 2!. (We’ll create
Bindable public variables with the same name in these classes momentarily.) We
also modify the taskCreate 1^, projectCreate 1&, and locationCreate 1* event
handlers to call the listTasks D, listProjects F, and listLocations H func-
tions that have been moved to this component. These functions call the send
function of the various HTTPServices. The result handlers EGI have also been
moved to the MainBox. We also add a creationComplete handler B that calls the
handleCreationComplete function J, which has been newly created to call all
three of the list functions when the MainBox is created. (This is cleaner: We’re
handling one creationComplete event, not three.) Finally, we add an import C.

 Next, we modify the three ListBox classes. We’ll start with the TasksListBox;
see listing 6.19.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
 creationComplete="listTasks()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public const NEXT_ACTIONS:int = 0;
...
 [Bindable]
 private var _subChoices:Array;

 public function listTasks():void {
 svcTasksList.send();
 }

 private function handleTasksListResult(event:ResultEvent):
 void {

Listing 6.19 app\flex\com\pomodo\components\TasksListBox.mxml

2!

B

C
D

E

F

212 ITERATION 6

Flex on Rails
 var resultXML: XML = XML(event.result);
 Pomodo.debug("TasksListBox#handleTasksListResult:\n" +
 resultXML.toString());
 }
 [Bindable]
 public var tasksXLC:XMLListCollection;
]]>
</mx:Script>
 <mx:HTTPService id="svcTasksList" url="/tasks.xml"
 resultFormat="e4x"
 result="handleTasksListResult(event)"/>
 <mx:XMLListCollection id="tasksXLC"
 source="{XMLList(svcTasksList.lastResult.children())}"/>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
...
</mx:VDividedBox>

We add an import D and add a public Bindable property G for the tasksXLC
that is being passed in from the MainBox. (We choose this name because it’s the
same name as the tasksXLC that we used to create in MXML; thus, we don’t need
to modify the dataProvider binding.) We then delete the creationComplete
handler B, the ResultEvent import C, the listTasks E and handleTasksList-
Result F functions, the svcTasksList HTTPService H, and the tasksXLC I
XMLListCollection. (The use of the public var instead of the mx:XMLList-
Collection is a style preference—we could have left the mx:XMLListCollection
and gotten rid of its source property setting.)

 Next, we’ll make essentially the same changes to the ProjectsListBox; see list-
ing 6.20.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Projects">
 creationComplete="listProjects()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 [Bindable]
 public var projectsXLC:XMLListCollection;
 public function listProjects():void {
 svcProjectsList.send();

Listing 6.20 app\flex\com\pomodo\components\ProjectsListBox.mxml

G

H

I

B

C
D

E
F

Making the Projects and Locations ComboBoxes 213
work in the TaskCreateBox
 }

 private function handleProjectsListResult(
 event:ResultEvent):void {
 var resultXML:XML = XML(event.result);
 Pomodo.debug(
 "ProjectsListBox#handleProjectsListResult:\n" +
 resultXML.toString());
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcProjectsList"
 url="/projects.xml"
 resultFormat="e4x"
 result="handleProjectsListResult(event)"/>
 <mx:XMLListCollection id="projectsXLC"
 source="{XMLList(svcProjectsList.lastResult.children())}"/>
 <mx:DataGrid id="projectsGrid" width="100%" height="60%"
 dataProvider="{projectsXLC}">
 <mx:columns>
...
 </mx:columns>
 </mx:DataGrid>
...
</mx:VDividedBox>

We add an import D and add a public Bindable property E for the projectsXLC
that is being passed in from the MainBox. We then delete the creationComplete
handler B, the ResultEvent import C, the listProjects F and handle-
ProjectsListResult G functions, the svcProjectsList HTTPService H, and
the projectsXLC I XMLListCollection.

 Finally, we make essentially the same changes to the LocationsListBox; see
listing 6.21.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Locations">
 creationComplete="listLocations()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 [Bindable]

Listing 6.21 app\flex\com\pomodo\components\LocationsListBox.mxml

G

H

I

214 ITERATION 6

Flex on Rails
 public var locationsXLC:XMLListCollection;
 public function listLocations():void {
 svcLocationsList.send();
 }

 private function handleLocationsListResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug(
 "LocationsListBox#handleLocationsListResult:\n"
 + resultXML.toString());
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcLocationsList"
 url="/locations.xml"
 resultFormat="e4x"
 result="handleLocationsListResult(event)"/>
 <mx:XMLListCollection id="locationsXLC"
 source="{XMLList(svcLocationsList.lastResult.children())}"/>
 <mx:DataGrid id="locationsGrid" width="100%" height="60%"
 dataProvider="{locationsXLC}">
 <mx:columns>
...
 </mx:columns>
 </mx:DataGrid>
...
</mx:VDividedBox>

Having made these changes, rebuild, reload, and log in as ludwig. Nothing
appears to have changed, which is always good in a refactoring. (The debug mes-
sages will say MainBox, but that doesn’t count.)

6.5.2 Making the projects and locations show up

Let’s get the projects and locations to show up in the ComboBoxes. This is easier
than the refactoring we just did. Essentially, all we need to do is to copy and paste
the projectsXLC and locationsXLC from the ProjectsListBox and Locations-
ListBox into the TaskCreateBox and then hook up the bindings. Let’s start with
the TaskCreateBox; see listing 6.22.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Task">

Listing 6.22 app\flex\com\pomodo\components\TaskCreateBox.mxml

Making the Projects and Locations ComboBoxes 215
work in the TaskCreateBox
<mx:Metadata>
 [Event(name="taskCreate", type="com.pomodo.events.TaskEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.TaskEvent;

 [Bindable]
 public var projectsXLC:XMLListCollection;

 [Bindable]
 public var locationsXLC:XMLListCollection;

 private function handleTaskCreateResult(event:ResultEvent):
 void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("TaskCreateBox#handleTaskCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new TaskEvent(TaskEvent.TASK_CREATE,
 resultXML));
 }

 private function doTaskCreate():void {
 svcTasksCreate.send();
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksCreate"
 url="/tasks.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleTaskCreateResult(event)">
 <mx:request>
 <task>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </task>
 </mx:request>
 </mx:HTTPService>

 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Task">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>

B

C

D

216 ITERATION 6

Flex on Rails
 </mx:FormItem>
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"
 labelField="name" dataProvider="{projectsXLC}"/>
 </mx:FormItem>
 <mx:FormItem label="">
 <mx:CheckBox id="nextActionCheckbox"
 label="This is the Next Action"/>
 </mx:FormItem>
 <mx:FormItem label="Location">
 <mx:ComboBox id="locationsCB" width="200"
 labelField="name"
 dataProvider="{locationsXLC}"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doTaskCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

We start by importing XMLListCollection B and pasting the projectsXLC C
and locationsXLC D variable definitions into the TaskCreateBox. We then set
the dataProvider of the projectsCB E and locationsCB F accordingly, ensur-
ing in both cases that we set the labelField to the name property. (If we don’t do
this, we get the full XML shown in the ComboBox drop-down—try it to see.)

 Next, we need to set these variables in bindings (B and C in listing 6.23) from
MainBox; see listing 6.23.

...
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"
 taskCreate="listTasks()"
 projectsXLC="{projectsXLC}"
 locationsXLC="{locationsXLC}"/>
 <pom:ProjectCreateBox id="projectCreateBox"
...

That’s it! Rebuild, reload, and log in as ludwig. We see the screen shown in fig-
ure 6.9.

 We have our projects and locations ComboBoxes populated with the projects
and locations in their respective DataGrids. Let’s see if they update live: Switch to

Listing 6.23 app\flex\com\pomodo\components\MainBox.mxml

E

F

B
C

Making the Projects and Locations ComboBoxes 217
work in the TaskCreateBox
the New Project view, and add a project whose name is Take a Vacation and
whose notes are Snowboarding! (I’m sure Beethoven would have loved snow-
boarding.) Click Submit, and click the Projects tab to see the new Take a Vacation
project added. Next, switch back to the New Task VBox in the Accordion, and con-
firm that the new Take a Vacation project appears in the Project ComboBox drop-
down. (We can confirm that adding a new location shows up right away in both
places also.)

6.5.3 Using a ComboBox prompt

Before we get too full of ourselves, we have to remember that these ComboBoxes
don’t currently do anything. Also, note that there is no way to select “no project”
or “no location.” Let’s fix this problem. Our first idea is to use the prompt prop-
erty, which was added to ComboBox in Flex 2 and remains in Flex 3. According to
the API docs for ComboBox:

A prompt is a String that is displayed in the TextInput portion of the ComboBox
when selectedIndex = -1. It’s usually a String like “Select one...”. If there is no
prompt, the ComboBox control sets selectedIndex to 0 and displays the first item in
the dataProvider.

Modify the projectsCB in the TaskCreateBox as follows to add a prompt (B in
listing 6.24).

Figure 6.9 The populated project and location ComboBoxes

218 ITERATION 6

Flex on Rails
...
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"
 labelField="name" dataProvider="{projectsXLC}"
 prompt="- None -"/>
 </mx:FormItem>
...

Rebuild, reload, and log in as ludwig. We see the result shown in figure 6.10.
 This looks like a winner. But let’s test it to see if there are any issues. Choose

Take a Vacation from the Project ComboBox. Next, we change our mind and
decide that we have too much work to take a vacation (typical). Try to change
back to None by selecting it from the drop-down list. As shown in figure 6.11, it’s
not there!
Once the prompt disappears when we choose an item in the ComboBox, we can’t
get the prompt back.

 The prompt isn’t going to work. Modify the projectsCB in the TaskCreateBox
to remove the prompt (see listing 6.25 B).

...
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"
 labelField="name" dataProvider="{projectsXLC}"/>
 </mx:FormItem>
...

Listing 6.24 app\flex\com\pomodo\components\TaskCreateBox.mxml

Listing 6.25 app\flex\com\pomodo\components\TaskCreateBox.mxml

B

Figure 6.10
The None prompt Figure 6.11 The missing None prompt

B

Making the Projects and Locations ComboBoxes 219
work in the TaskCreateBox
With this done, we can turn our attention to adding a None object to the Combo-
Box dataProvider.

6.5.4 Adding a None object to the ComboBox dataProvider

What we need is a placeholder in the beginning of the list of projects for None.
This isn’t currently in the XML data coming from Rails, but it’s a UI need. We
need to modify the dataProvider of the ComboBox to have a None object at the
front. However, we don’t want this None object to show up in the Projects Data-
Grid—we can’t add it to the projectsXLC itself, or it would show up in both
places. Also note that we need to also create a None object for locations.

 Let’s do this now for both projects and locations, by modifying what the Main-
Box passes in to the TaskCreateBox; see listing 6.26.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
...
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 [Bindable]
 public var user : XML;

 [Bindable]
 private var _projectsAndNoneXLC:XMLListCollection;

 [Bindable]
 private var _locationsAndNoneXLC:XMLListCollection;

 public static const NO_PROJECT_XML:XML =
 <project>
 <name>- None -</name>
 <id type="integer">0</id>
 </project>

 public static const NO_LOCATION_XML:XML =
 <location>
 <name>- None -</name>
 <id type="integer">0</id>
 </location>

 public function listTasks():void {
 svcTasksList.send();
 }

Listing 6.26 app\flex\com\pomodo\components\MainBox.mxml

B

C

D

E

F

220 ITERATION 6

Flex on Rails
 ...
 private function handleCreationComplete():void {
 listTasks();
 listProjects();
 listLocations();
 }

 private function getProjectsAndNone(projectsXL:XMLList):
 XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(projectsXL.copy());
 retval.addItemAt(NO_PROJECT_XML, 0);
 return retval;
 }

 private function getLocationsAndNone(locationsXL:XMLList):
 XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(locationsXL.copy());
 retval.addItemAt(NO_LOCATION_XML, 0);
 return retval;
 }
]]>
</mx:Script>
...
 <mx:HTTPService
 id="svcProjectsList"
 url="/projects.xml"
 resultFormat="e4x"
 result="handleProjectsListResult(event)"/>
 <mx:XMLListCollection id="projectsXLC"
 source="{XMLList(svcProjectsList.lastResult.children())}"/>
 <mx:Binding
 source="{getProjectsAndNone(projectsXLC.source)}"
 destination="_projectsAndNoneXLC"/>

 <mx:HTTPService
 id="svcLocationsList"
 url="/locations.xml"
 resultFormat="e4x"
 result="handleLocationsListResult(event)"/>
 <mx:XMLListCollection id="locationsXLC"
 source="{XMLList(svcLocationsList.lastResult.children())}"/>
 <mx:Binding
 source="{getLocationsAndNone(locationsXLC.source)}"
 destination="_locationsAndNoneXLC"/>

 <mx:HBox width="100%" height="100%">
 <mx:VBox width="300" height="100%">
 <mx:Image source="com/pomodo/assets/logo_md.png"/>
 <mx:Label text="{'Logged in as: ' + user.login +

G

H

I

J

Making the Projects and Locations ComboBoxes 221
work in the TaskCreateBox
 ' (' + user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' + user.first_name +
 '!'}"/>
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"
 taskCreate="listTasks()"
 projectsXLC="{projectsXLC}"
 locationsXLC="{locationsXLC}"/>
 projectsXLC="{_projectsAndNoneXLC}"
 locationsXLC="{_locationsAndNoneXLC}"/>
 <pom:ProjectCreateBox id="projectCreateBox"
 projectCreate="listProjects()"/>
 <pom:LocationCreateBox id="locationCreateBox"
 locationCreate="listLocations()"/>
 </mx:Accordion>
 <mx:DateChooser id="dateChooser" width="100%"/>
 </mx:VBox>
 <mx:VBox width="100%" height="100%">
...
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

We import XMLListCollection B and then create two XMLListCollections:
_projectsAndNoneXLC to hold the user’s projects and the None object C and
_locationsAndNoneXLC D to do the same for locations. Next, we create two
XML constants that represent what None looks like for a Project E and for a
Location F. Because the projectsCB ComboBox has labelField="name", this
attribute is provided because it will be displayed. An id of 0 is provided, because
that is obviously illegal (ids of legitimate projects start at 1). This same logic applies
to the None Location F. We also create a method getProjectsAndNone G that
takes an XMLList and return an XMLListCollection that contains the
noProjectXML at the beginning, followed by a copy of the projectsXL XMLList
that was passed in. We add a similar method called getLocationsAndNone H for
Locations. Next, we create an mx:Binding I to populate our new
_projectsAndNoneXLC with the result of calling getProjectsAndNone on the
source property of the projectsXLC XMLListCollection, which is an XMLList.
This is why getProjectsAndNone takes an XMLList as its parameter, not an
XMLListCollection. Now, we create an equivalent mx:Binding to populate the
new _locationsAndNoneXLC J XMLListCollection. Finally, we bind these new
XMLListCollections into the projectsXLC 1) and locationsXLC 1! properties of
the taskCreateBox.

1)
1!

222 ITERATION 6

Flex on Rails
 Let’s see if that works. Rebuild, reload, and log in as ludwig. Note that, as
before, the projectsCB ComboBox starts out as None. However, this time None is
in the drop-down list. We can select a different project such as Take a Vacation in
the drop-down list and then select None again. This also works for the locations-
CB ComboBox.

6.5.5 Saving the project and location choices

Before we get too smug, we should keep in mind that the project and location
combo boxes still don’t have any effect: Regardless of what we choose in them, a
new task is saved with no project and location. We need to make the choice get
saved and loaded. This is what we’ll accomplish here.

 First, let’s look in the database to clarify exactly what we mean by “no project
and location.” We recently created an “eat dinner” task; let’s see what it looks like,
in listing 6.27.

mysql> select * from tasks where name = "eat dinner"\G
*************************** 1. row ***************************
 id: 8
 user_id: 3
 project_id: NULL
location_id: NULL
 name: eat dinner
 notes: yummy
next_action: 0
 completed: 0
 created_at: 2007-10-22 01:06:10
 updated_at: 2007-10-22 01:06:10
1 row in set (0.01 sec)

The project_id B and location_id C are NULL (unlike those of the tasks such
as “Finish ninth symphony” that we created in the fixtures). Let’s try modifying
the TaskCreateBox in the simplest way we can imagine; see listing 6.28.

...
 <mx:HTTPService
 id="svcTasksCreate"
 url="/tasks.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"

Listing 6.27 Commands

Listing 6.28 app\flex\com\pomodo\components\TaskCreateBox.mxml

B
C

Making the Projects and Locations ComboBoxes 223
work in the TaskCreateBox
 result="handleTaskCreateResult(event)">
 <mx:request>
 <task>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
<project_id>{XML(projectsCB.selectedItem).id}</project_id>
<location_id>{XML(locationsCB.selectedItem).id}</location_id>
 </task>
 </mx:request>
 </mx:HTTPService>
...

We bind the project_id B and location_id C to the id of the selectedItem of
the projectsCB B and locationsCB C. Rebuild, reload, and log in as ludwig.
Enter the Task have a coffee with Notes this iteration is taking forever
in the Take a Vacation project at the Spa location. Click Submit (see figure 6.12).

 Maybe in some future version of Flex it will work; in Flex 3 Beta 2, however, it
doesn’t. Let’s work around that by setting instance variables and binding to them
in the XML; see listing 6.29.

...
 [Bindable]
 public var locationsXLC:XMLListCollection;

 [Bindable]
 private var _selectedProjectId:int;

 [Bindable]
 private var _selectedLocationId:int;

Listing 6.29 app\flex\com\pomodo\components\TaskCreateBox.mxml

B
C

Figure 6.12
Well, Flex didn’t
like that binding.

B

C

224 ITERATION 6

Flex on Rails
 private function handleTaskCreateResult(event:ResultEvent):
 void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("TaskCreateBox#handleTaskCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new TaskEvent(TaskEvent.TASK_CREATE,
 resultXML));
 }

 private function doTaskCreate():void {
 _selectedProjectId = XML(projectsCB.selectedItem).id;
 _selectedLocationId = XML(locationsCB.selectedItem).id;
 svcTasksCreate.send();
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksCreate"
 url="/tasks.xml"
 contentType="application/xml"
 resultFormat="e4x"
 method="POST"
 result="handleTaskCreateResult(event)">
 <mx:request>
 <task>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 <project_id>{_selectedProjectId}</project_id>
 <location_id>{_selectedLocationId}</location_id>
 </task>
 </mx:request>
 </mx:HTTPService>

 <mx:Form width="100%" height="100%">
...
 </mx:Form>
</mx:VBox>

We create two variables for the selected project B and location C ids and set
their values DE based on the id attribute of the selectedItem of the ComboBoxes
right before calling svcTasksCreate.send(). This way, the id of the selected-
Item is bound to the project_id F and location_id G properties of the task
in the request. Once again, rebuild, reload, and log in as ludwig. Enter the Task
have a coffee with Notes this iteration is taking forever in the Take a
Vacation project at the Spa location. Click Submit; see figure 6.13.

D
E

F
G

About that None project and location 225
The “have a coffee” task is created, with the Project and Location ids set to the
ids of the Take a Vacation project and the Spa location, respectively.

6.6 About that None project and location
About that None project and location If you were paying close attention, you may have noticed that I pulled a fast one in

the last section: We submit the new tasks without doing anything special (in Flex
or in Rails) if the task has a None project or location. To see the result of this
more clearly, log in as ludwig and add a new Task “drink another coffee” with
Notes “very necessary”, and leave the Project and Location with None selected.

 You’ll see the screen shown in figure 6.14.

Figure 6.13 A Much Deserved Vacation Indeed!

Figure 6.14 Drinking coffee with a project and location of 0

226 ITERATION 6

Flex on Rails
Looking in MySQL, we see the the results shown in listing 6.30.

mysql> select * from tasks where name = "drink another coffee"\G
*************************** 1. row ***************************
 id: 10
 user_id: 3
 project_id: 0
location_id: 0
 name: drink another coffee
 notes: very necessary
next_action: 0
 completed: 0
 created_at: 2007-10-22 05:52:03
 updated_at: 2007-10-22 05:52:03
1 row in set (0.00 sec)

mysql> select * from tasks where id=4\G
*************************** 1. row ***************************
 id: 4
 user_id: 3
 project_id: NULL
location_id: NULL
 name: Go to Bed, Bad and Beyond for some new dishes
 notes: These lead steins are so 1700s
next_action: 0
 completed: 0
 created_at: NULL
 updated_at: NULL
1 row in set (0.00 sec)

mysql>

The new task “drink another coffee” has 0 for its project_id B and
location_id, whereas the “Go to Bed, Bad and Beyond for some new dishes”
(yeah, I thought that was funny when I wrote it, but I’m sick of it now too) task has
a project_id C and location_id of NULL.

 Although we don’t want to have to write special-case code to handle “no
project” or “no location,” it means that currently there can be two separate ver-
sions of “no project” for a task: NULL or 0 in the project_id column. This is Very
Bad (and Beyond).

NOTE It’s Even Worse if you care about things like foreign keys: It won’t work.
(No project has an id of 0.) We can’t let the project_id be set to 0 in
the database.

Listing 6.30 Commands

B

C

About that None project and location 227
What to do?
 We could try sending null from Flex. However, this path leads to madness:

How do you differentiate between the null of “not updating” and the null of “no
project” when using update_attributes in Rails?

 Another thing we could do is to use the Null Object pattern and create a
project and a location for None. Each user would have their own None project
and location. In effect, all tasks would have a project and location, but some
would have the None ones. This would solve some problems but create others:
We’d have to filter them out of the list of projects and locations, prevent them
from being deleted, and so on.

 We do want to be able to pass 0 instead of null/nil from Flex to Rails as the
project_id and location_id of a task with no project and location. (It’s debat-
able whether Rails should pass nil or 0; we’ll stick with nil for now.) We also know
that we should be saving NULL in the database instead of 0.

 We could solve this lots of ways. I’ll choose to use the before_save callback in
the Task model; see listing 6.31.

class Task < ActiveRecord::Base
 belongs_to :user
 belongs_to :location
 belongs_to :project

 def before_save
 self.project_id = nil if self.project_id == 0
 self.location_id = nil if self.location_id == 0
 end
end

We define the before_save B method, which is a callback5 method that Active
Record ensures gets called before saving. In it, we set the project_id C and
location_id D to nil if either of them are 0.

 With this change made, create a new Task called drink espresso with Notes
very necessary, leaving Project and Location as None. The Project and Location
columns will be correctly blank, instead of 0. Checking in MySQL, we see that our
before_save method worked (see listing 6.32).

Listing 6.31 app\models\task.rb

5 See section 19.2, “Callbacks,” in AWDwR for details.

B
C

D

228 ITERATION 6

Flex on Rails
mysql> select * from tasks where name = "drink espresso"\G
*************************** 1. row ***************************
 id: 11
 user_id: 3
 project_id: NULL
location_id: NULL
 name: drink espresso
 notes: very necessary
next_action: 0
 completed: 0
 created_at: 2007-10-22 06:08:38
 updated_at: 2007-10-22 06:08:38
1 row in set (0.00 sec)

The project_id B and location_id C are NULL. Now we’re getting somewhere.

6.7 Updating and deleting tasks, projects, and locations
Updating and deleting tasks, projects, and locationsNow that we’ve gotten New Task, New Project, and New Location working; it’s

time to take a big step and get update and delete working.

We’ll start by modifying the Rails controllers.

6.7.1 Adding update_xml and destroy_xml
methods to the Rails controllers

The first thing we’ll do is modify the update and destroy methods in the Rails con-
trollers. Although the new RESTful scaffold command created methods for us,
what they return when XML format is requested is too idealistic for use with Flex.
(Translation: Status codes don’t work in Flash 9, so we send XML for everything.)

 We’ll start with the TasksController; see listing 6.33.

Listing 6.32 Commands

B
C

Q. What about the Next Action check box? Are you going to ignore it?

A. For now, yes. We’ll implement it later. (I’m also ignoring the “pomodo:” com-
mand shell at the top of the screen, but that will be ignored for a lot longer. The
grand ambition I had earlier is starting to be tempered by the reality of implement-
ing [and explaining] everything.)

Updating and deleting tasks, projects, and locations 229
...
 # PUT /tasks/1
 # PUT /tasks/1.xml
 def update
 @task = current_user.tasks.find(params[:id])

 respond_to do |format|
 if @task.update_attributes(params[:task])
 flash[:notice] = 'Task was successfully updated.'
 format.html { redirect_to(@task) }
 format.xml { head :ok }
 format.xml { render :xml => @task }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /tasks/1
 # DELETE /tasks/1.xml
 def destroy
 @task = current_user.tasks.find(params[:id])
 @task.destroy

 respond_to do |format|
 format.html { redirect_to(tasks_url) }
 format.xml { head :ok }
 format.xml { render :xml => @task }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end
...

We’re updating the create C and destroy E methods to render :xml => @task
instead of call head :ok BD to send an OK HTTP header.

 Next, we’ll make the same changes to the ProjectsController; see listing 6.34.

...
 # PUT /projects/1
 # PUT /projects/1.xml

Listing 6.33 app\controllers\tasks_controller.rb

Listing 6.34 app\controllers\projects_controller.rb

B
C

D
E

230 ITERATION 6

Flex on Rails
 def update
 @project = current_user.projects.find(params[:id])

 respond_to do |format|
 if @project.update_attributes(params[:project])
 flash[:notice] = 'Project was successfully updated.'
 format.html { redirect_to(@project) }
 format.xml { head :ok }
 format.xml { render :xml => @project }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @project.errors,
 :status => :unprocessable_entity }
 end
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /projects/1
 # DELETE /projects/1.xml
 def destroy
 @project = current_user.projects.find(params[:id])
 @project.destroy

 respond_to do |format|
 format.html { redirect_to(projects_url) }
 format.xml { head :ok }
 format.xml { render :xml => @project }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end
...

Finally, make the same changes to the LocationsController; see listing 6.35.

...
 # PUT /locations/1
 # PUT /locations/1.xml
 def update
 @location = current_user.locations.find(params[:id])

 respond_to do |format|
 if @location.update_attributes(params[:location])
 flash[:notice] = 'Location was successfully updated.'
 format.html { redirect_to(@location) }
 format.xml { head :ok }

Listing 6.35 app\controllers\locations_controller.rb

Updating and deleting tasks, projects, and locations 231
 format.xml { render :xml => @location }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @location.errors,
 :status => :unprocessable_entity }
 end
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /locations/1
 # DELETE /locations/1.xml
 def destroy
 @location = current_user.locations.find(params[:id])
 @location.destroy

 respond_to do |format|
 format.html { redirect_to(locations_url) }
 format.xml { head :ok }
 format.xml { render :xml => @location }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end
...

So far, so good.

6.7.2 Getting ComboBox itemRenderers to work in the TasksListBox

Next, we’ll add the necessary code to the MainBox and the TasksListBox to imple-
ment ComboBox itemRenderers6 in the TasksListBox. (Using a custom item-
Renderer lets you customize what is shown in a DataGrid cell, beyond just
changing the text with a function.)

WARNING This section contains much trickier Flex code than you’ve seen before.
Ensure you’re well-caffeinated, and then proceed. (If this code seems
opaque, don’t despair: The rest of the Flex code in the book is easier
than this.)

6 See http://www.visualconcepts.ca/blog/index.cfm/2006/6/22/ComoboBox-RendererEditor-for-20
for a useful article about ComboBox renderers and editors in Flex 2. (It helped me understand them
better.)

232 ITERATION 6

Flex on Rails
We’ll start with the MainBox, because we need to do some setup work there; see
listing 6.36.

...
<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000"
 minHeight="680"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 width="100%"
 height="100%"
 backgroundColor="#FFFFFF"
 creationComplete="handleCreationComplete()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.ArrayCollection;
 import mx.collections.IViewCursor;
 import mx.collections.XMLListCollection;

 [Bindable]
 public var user : XML;

 [Bindable]
 private var _gotProjects : Boolean;

 [Bindable]
 private var _gotLocations : Boolean;

 [Bindable]
 private var _projectsAndNoneXLC:XMLListCollection;

 [Bindable]
 private var _locationsAndNoneXLC:XMLListCollection;

 [Bindable]
 private var _projectIdMap:Object;

 [Bindable]
 private var _locationIdMap:Object;
...
 public function listProjects():void {
 svcProjectsList.send();
 }

Listing 6.36 app\flex\com\pomodo\components\MainBox.mxml

Add
imports

B

Flag to check
for projects

C

Flag to check
for locations

D

Map project id (key)
to project (value)

E

Map location id (key)
to project (value)

F

Updating and deleting tasks, projects, and locations 233

 private function handleProjectsListResult(
 event:ResultEvent):void {
 _gotProjects = true;
 var resultXML: XML = XML(event.result);
 Pomodo.debug("MainBox#handleProjectsListResult:\n" +
 resultXML.toString());
 updateProjectIdMap();
 }

 public function listLocations():void {
 svcLocationsList.send();
 }

 private function handleLocationsListResult(
 event:ResultEvent):void {
 _gotLocations = true;
 var resultXML: XML = XML(event.result);
 Pomodo.debug("MainBox#handleLocationsListResult:\n" +
 resultXML.toString());
 updateLocationIdMap();
 }

 private function handleCreationComplete():void {
 listTasks();
 _gotProjects = false;
 _gotLocations = false;
 listProjects();
 listLocations();
 }

 private function getProjectsAndNone(projectsXL:XMLList):
 XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(projectsXL.copy());
 retval.addItemAt(NO_PROJECT_XML, 0);
 return retval;
 }

 private function getLocationsAndNone(locationsXL:XMLList):
 XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(locationsXL.copy());
 retval.addItemAt(NO_LOCATION_XML, 0);
 return retval;
 }

 private function updateProjectIdMap():void {
 _projectIdMap = {};
 _projectIdMap[0] = NO_PROJECT_XML;
 var projectsCursor:IViewCursor =

Set project
flag

G

H
Rebuild
_projectIdMap

Set location
flag

I

J
Rebuild
_locationIdMap

1@

1!
…initialize

flags to false.

1)

Delete manual
listTasks call
and…

Rebuild
_projectIdMap

1#

1$
1%

234 ITERATION 6

Flex on Rails
 projectsXLC.createCursor();
 while (!projectsCursor.afterLast) {
 var project:XML = XML(projectsCursor.current);
 _projectIdMap[project.id] = project;
 projectsCursor.moveNext();
 }
 listTasksIfMapsPresent();
 }

 private function updateLocationIdMap():void {
 _locationIdMap = {};
 _locationIdMap[0] = NO_LOCATION_XML;
 var locationsCursor:IViewCursor =
 locationsXLC.createCursor();
 while (!locationsCursor.afterLast) {
 var location:XML = XML(locationsCursor.current);
 _locationIdMap[location.id] = location;
 locationsCursor.moveNext();
 }
 listTasksIfMapsPresent();
 }

 private function listTasksIfMapsPresent():void {
 if (_gotProjects && _gotLocations) {
 listTasks();
 }
 }
]]>
</mx:Script>
...
 <mx:HBox width="100%" height="100%">
...
 <mx:VBox width="100%" height="100%">
 <pom:CommandShell/>
 <mx:TabNavigator width="100%" height="100%">
 <pom:TasksListBox id="tasksTab"
 tasksXLC="{tasksXLC}"
 projectIdMap="{_projectIdMap}"
 locationIdMap="{_locationIdMap}"
 projectsAndNone="{_projectsAndNoneXLC}"
 locationsAndNone="{_locationsAndNoneXLC}"/>
 <pom:ProjectsListBox id="projectsTab"
 projectsXLC="{projectsXLC}"/>
 <pom:LocationsListBox id="locationsTab"
 locationsXLC="{locationsXLC}"/>
 <pom:Notely id="notelyTab"/>
 </mx:TabNavigator>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

1^
1&

1*
1(

2)

2!

Rebuild
_locationIdMap

2@

2#
2$

2%

Call listTasks()
only if both
maps populated

2^

2&
2*

2(
3)

Updating and deleting tasks, projects, and locations 235
We start by adding a couple of imports B. Next, we add two flags that we’ll use to
check whether we’ve retrieved the projects C and locations D. We add two
Objects that function as associative arrays (hashes): _projectIdMap E and
_locationIdMap F. These will map the id of a project to its project and the id
of a location to its location. This will be useful, as we’ll soon see.

 Next, in the handleProjectsListResult function, we set _gotProjects to
true G and call the updateProjectIdMap H function. Similarly, in the handle-
LocationsListResult function, we set _gotLocations to true I and call the
updateLocationIdMap J function.

 In the handleCreationComplete function 1), we delete the call to listTasks
and set the _gotProjects 1! and _gotLocations 1@ flags to false. We don’t call
listTasks until we have the projects and locations returned and the maps popu-
lated. (This is because we’ll be using these maps in the ComboBox itemRenderers
we’ll create shortly—if the tasks come back too soon, the ComboBox rendering
won’t happen correctly, and we’d need to call listTasks again anyway.)

Next, we create the updateProjectIdMap 1# function. It creates a new Object 1$
(the {} syntax is equivalent to saying new Object();). It then adds the
NO_PROJECT_XML to the Object 1% with a key of 0.

NOTE Remember: This is a hash, not an array. Just because we’re using num-
bers as keys doesn’t make them array indices.

Now, we loop over the elements of the projectsXLC. This is done by getting an
IViewCursor on the projectsXLC 1^ and iterating over it 1&. Each current 1* ele-
ment is retrieved and cast to XML, and an entry in the _projectIdMap is created
for it 1(. The cursor is then advanced 2). After the loop is done, we call list-
TasksIfMapsPresent 2!.

 The updateLocationIdMap function 2@ is essentially the same as the
updateProjectIdMap function, but for locations.

 The listTasksIfMapsPresent 2# function checks whether we have
_gotProjects and _gotLocations 2$. If so, it calls listTasks 2%.

Q. Why create two flags? Why not just check whether _projectIdMap and
_locationIdMap are empty?

A. The reason is that they may well be empty. A new user may conceivably have
no projects or locations. (We may have default ones, but we may not. Regardless,
we shouldn’t write code that brittle.) I thought it was cleaner to use flags.

236 ITERATION 6

Flex on Rails
 Finally, we modify the tasksTab 2^ to set its projectIdMap 2&, location-
IdMap 2*, projectsAndNone 2(, and locationsAndNone 3) properties (which
we’ll create momentarily) via bindings.

 Phew.
 Now for the TasksListBox. It’s long, so we’ll break the code into two parts with

explanation in the middle; see listing 6.37.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
<mx:Script>
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.components.MainBox;
 import com.pomodo.events.TaskEvent;

 public const NEXT_ACTIONS:int = 0;
 public const ALL_TASKS:int = 1;
 public const TASKS_IN_PROJECT:int = 2;
 public const TASKS_AT_LOCATION:int = 3;

 private const SHOW_CHOICES:Array = [
 {label:"Next Actions", data:NEXT_ACTIONS,
 hasSubChoice:false},
 {label:"All Tasks", data:ALL_TASKS,
 hasSubChoice:false},
 {label:"Tasks in Project:", data:TASKS_IN_PROJECT,
 hasSubChoice:true},
 {label:"Tasks at Location:", data:TASKS_AT_LOCATION,
 hasSubChoice:true}];

 [Bindable]
 private var _subChoices:Array;

 [Bindable]
 public var tasksXLC:XMLListCollection;

 [Bindable]
 public var projectIdMap:Object;

 [Bindable]
 public var locationIdMap:Object;

 [Bindable]
 public var projectsAndNone:XMLListCollection;

Listing 6.37 app\flex\com\pomodo\components\TasksListBox.mxml

Add imports,
including importing
MainBox to use its
constants

B

C

D

Updating and deleting tasks, projects, and locations 237
 [Bindable]
 public var locationsAndNone:XMLListCollection;

 public function getProject(project_id:int):XML {
 if (projectIdMap == null) {
 return MainBox.NO_PROJECT_XML;
 }
 return projectIdMap[project_id];
 }

 public function getLocation(location_id:int):XML {
 if (locationIdMap == null) {
 return MainBox.NO_LOCATION_XML;
 }
 return locationIdMap[location_id];
 }

 public function updateTaskProject(task:XML, project:XML):
 void {
 if (task.project_id != project.id) {
 var params:Object = new Object();
 params['task[project_id]'] = project.id;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/" + task.id + ".xml";
 svcTasksUpdate.send(params);
 }
 }

 public function updateTaskLocation(task:XML, location:XML):
 void {
 if (task.location_id != location.id) {
 var params:Object = new Object();
 params['task[location_id]'] = location.id;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/" + task.id + ".xml";
 svcTasksUpdate.send(params);
 }
 }

 private function handleTasksUpdateResult(event:ResultEvent):
 void {
 var newTask:XML = XML(event.result);
 for (var i:int = 0; i < tasksXLC.length; i++) {
 var ithTask:XML = XML(tasksXLC.getItemAt(i));
 if (ithTask.id == newTask.id) {
 tasksXLC.setItemAt(newTask, i);
 break;
 }
 }
 }

E

F

G

H

I
J

1)
1!

1@
1#

1$

1%

1^

238 ITERATION 6

Flex on Rails
]]>
</mx:Script>
...continues below...

We start by adding some imports. Note that we need to import MainBox to use its
constants. This is a bit cheesy, because TasksListBox shouldn’t know about Main-
Box. (This will be addressed when we refactor to Cairngorm.) Next, we add Bind-
able variables for projectIdMap B, locationIdMap C, projectsAndNone D and
locationsAndNone E, all of which are passed in from MainBox. (Yes, this is also
cheesy and will be addressed when we refactor to Cairngorm.)

 We then create a getProject F function that takes a project_id and returns
the XML for the project. It ensures that the projectIdMap is non-null and returns
projectIdMap[project_id]. (It also exists to help us get around warnings in
binding expressions. The same [] syntax is used for Array access and map access,
so the compiler is trying to be nice and can get confused sometimes.) Similarly,
we create a getLocation G function that takes a location_id and returns the
XML for the location.

 Next, we create an updateTaskProject H method to update the project that a
task is in. It ensures that the project is in fact different I by comparing the
project_id. If so, it creates a params Object to use as an associative array J and
then sets two keys in it:

■ task[project_id] 1)—This is the project id attribute we’re updating.
■ _method 1! to "PUT"—this is necessary because we can’t send a PUT but

instead send a POST and provide the _method parameter as a hack that Rails
is wired to look for, as explained in the previous iteration.

It also sets the url of the svcTasksUpdate 1@ to a dynamically set URL that will be
formed by doing a String concatenation of "/tasks/" + task.id + ".xml" 1@,
thus triggering the update action (requesting a :format of xml) in the Tasks-
Controller for the task with the id specified in the URL. The updateTaskProject
method then calls svcTasksUpdate 1#.

 Setting the task[project_id] may seem weird, but realize that we’re going to
end up triggering update_attributes with params[:task] in the update method
of the TasksController. The update method created by scaffold generically
updates any attributes of the task it’s given, so we might as well use it from Flex.
(Thanks again to Stuart Eccles, who took this approach before REST support in
Rails existed.)

 Next, we take the same approach in updateTaskLocation 1$.

Updating and deleting tasks, projects, and locations 239
 We then create the handleTasksUpdateResult function 1%, which is invoked
when the svcTasksUpdate service (in listing 6.38) returns. When a Task is
updated, we want to replace the element of the tasksXLC XMLListCollection
with the new XML for the Task. It casts the newTask to XML and then does a stu-
pid for loop 1^, checking the id of each task to find the one that matches. (I tried
to use an IViewCursor, but doing that doesn’t give us a nice way to get the index,
because we’re abstracted from that—because I needed the index to set the item, I
used a for loop. Oh well.) When a match is found, we replace it and break.

 Continuing, we encounter the Flex equivalent of the red pill, as shown in list-
ing 6.38.

...continued from above...
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleTasksUpdateResult(event)"/>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
 <mx:Label text="Show:"/>
 <mx:ComboBox id="mainChoiceCB"
 dataProvider="{SHOW_CHOICES}"/>
 <mx:ComboBox id="subChoiceCB" width="100%"
 dataProvider="{_subChoices}"
 visible="{mainChoiceCB.selectedItem.hasSubChoice}"/>
 </mx:HBox>
 <mx:DataGrid id="tasksGrid" width="100%" height="100%"
 dataProvider="{tasksXLC}">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"
 dataField="completed"/>
 <mx:DataGridColumn headerText="Name" width="300"
 dataField="name"/>

 <mx:DataGridColumn headerText="Project" width="150"

 dataField="project_id"/>
 <mx:DataGridColumn
 headerText="Project"
 dataField="project_id"
 width="150"
 editable="false"
 sortable="false">
 <mx:itemRenderer>
 <mx:Component>

Listing 6.38 app\flex\com\pomodo\components\TasksListBox.mxml

1&
1*

1(

2)

2!

2@
2#

240 ITERATION 6

Flex on Rails
<mx:ComboBox
 width="150"
 labelField="name"
 dataProvider="{outerDocument.projectsAndNone}"
 selectedItem="{outerDocument.getProject(data.project_id)}"
 dataChange="handleDataChange(XML(data))"
 change="outerDocument.updateTaskProject(XML(data),
 ➥ XML(selectedItem))">
 <mx:Script>
 <![CDATA[
 private function handleDataChange(data:XML):void {
 if (data != null) {
 selectedItem =
 outerDocument.getProject(data.project_id);
 } else {
 selectedItem = MainBox.NO_PROJECT_XML;
 }
 }
]]>
 </mx:Script>
</mx:ComboBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Location"
 width="150"
 dataField="location_id"/>
 <mx:DataGridColumn
 headerText="Location"
 dataField="location_id"
 width="150"
 editable="false"
 sortable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:ComboBox
 width="150"
 labelField="name"
 dataProvider="{outerDocument.locationsAndNone}"
 selectedItem="{outerDocument.getLocation(data.location_id)}"
 dataChange="handleDataChange(XML(data))"
 change="outerDocument.updateTaskLocation(XML(data),
 ➥ XML(selectedItem))">
 <mx:Script>
 <![CDATA[
 private function handleDataChange(data:XML):void {
 if (data != null) {
 selectedItem =
 outerDocument.getLocation(data.location_id);
 } else {
 selectedItem = MainBox.NO_LOCATION_XML;

2$
2%

2^
2&

2*
2(

3)

3!
3@

3#
3$

3%

3^

3&

Updating and deleting tasks, projects, and locations 241
 }
 }
]]>
 </mx:Script>
</mx:ComboBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="60"/>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>
 <mx:Panel id="summaryPanel" title="Task" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
...
 </mx:Panel>
</mx:VDividedBox>

We start innocently enough, declaring an mx:HTTPService 1& with an id of
svcTasksUpdate 1*. It will do a POST 1(that will, as we saw earlier, masquerade as
a PUT to the dynamically set URL that will look like "/tasks/{id}.xml", thus trig-
gering the update action (requesting a :format of xml) in the TasksController
for the task with the id in the URL.

 Next, we have some fun. We delete the old definition of the Project column 2)
and replace it with a new one 2!. (Hey hey you you I don’t like your Project column!)
Inside it, we declare an mx:itemRenderer 2@ that contains an interesting bit of
MXML syntax that was introduced in Flex 2: <mx:Component> 2#. The mx:Component
defines a new scope in the MXML file. (It’s like an MXML document inside an MXML
document.) Inside the mx:Component, we create an mx:ComboBox 2$: This is in effect
the root element of our nested MXML component.

NOTE Just so this point doesn’t get glossed over: An MXML file defines a sub-
class of its root element. The root element of the TasksListBox is a
VDividedBox, so that is what we’re subclassing. Inside this subclass, we
use (by composition) various classes such as mx:DataGrid, and so on.
Inside one of the DataGridColumns of the DataGrid, we needed a cus-
tom itemRenderer that was a ComboBox. So, we created a subclass of
mx:ComboBox inline in our MXML inside the mx:Component element.
This custom MXML component is like a normal MXML component: It
can have an mx:Script block, local variables and functions, even
import statements.

242 ITERATION 6

Flex on Rails
Continuing, we set the width 2% and labelField 2^. Next, we bind the data-
Provider 2& of our nested ComboBox to outerDocument.projectsAndNone.

TIP The outerDocument variable is the reference that the nested MXML com-
ponent has to its parent MXML component. Through this reference, we
can access public properties, call public functions, and so forth.

Now, we bind the selectedItem to the outerDocument.getProject
(data.project_id) 2*, which shows us calling a function of the outerDocument
and binding to the result. Whenever the data.project_id changes, we’ll call this
function. This is how we respond to changes in data to select the appropriate ele-
ment. Next, we hook up the dataChange event to a handleDataChange 3# func-
tion. This has a purpose similar to that of the selectedItem binding 2(: It keeps
the ComboBox current. We then handle the change event, which is broadcast
when the user clicks the ComboBox and makes a selection. We call the outer-
Document.updateTaskProject(XML(data), XML(selectedItem)) 3) in order to
update the project of the selected task to the selectedItem of the ComboBox.

NOTE This is what the somewhat magical data property is: the row that is being
rendered. (We’re defining an itemRenderer, remember.) Because our
rows are Tasks, that’s what the data is: the XML of a Task.

Next, we create a nested <mx:Script> 3! block, complete with its own
<![CDATA[3@ block (trippy, isn’t it?). We define the handleDataChange 3# func-
tion, which takes the XML data (which is a task) and sets the selectedItem to
the project_id of the task 3% if it’s non-null 3$ and to Main-
Box.NO_PROJECT_XML if it’s null 3^. This is how we respond appropriately to the
null projects coming from Rails.

 Finally, we do the same thing 3& for Locations. (You didn’t think I was going to
add cueball numbers for all those lines, did you?)

 Phew.
 Rebuild, reload, and log in as ludwig. The Tasks grid looks like figure 6.15.

Figure 6.15
The most
beautiful
ComboBoxes
we’ve ever seen

Updating and deleting tasks, projects, and locations 243
We can select them, and the changes take effect with immediate service calls, and
so on. Hooray!

 Thankfully, that was the trickiest Flex code we’ll write in the book.

6.7.3 Adding Delete buttons

With that out of the way, we’ll add Delete buttons for the tasks next. This will be
extremely easy in comparison—but the fact that it will be easy shows how far we’ve
come; see listing 6.39.

...
 private function handleTasksUpdateResult(event:ResultEvent):
 void {
 var newTask:XML = XML(event.result);
 for (var i:int = 0; i < tasksXLC.length; i++) {
 var ithTask:XML = XML(tasksXLC.getItemAt(i));
 if (ithTask.id == newTask.id) {
 tasksXLC.setItemAt(newTask, i);
 break;
 }
 }
 }

 public function deleteTask(task:XML):void {
 svcTasksDestroy.url = "/tasks/" + task.id + ".xml";
 svcTasksDestroy.send({_method:"DELETE"});
 }

 private function handleTasksDestroyResult(
 event:ResultEvent):void {
 if (event.result == "error") {
 Alert.show("The task was not successfully deleted.",
 "Error");
 } else {
 var deleteTask:XML = XML(event.result);
 var deleteId:int = deleteTask.id;
 for (var i:int = 0; i < tasksXLC.length; i++) {
 var ithTask:XML = XML(tasksXLC.getItemAt(i));
 if (ithTask.id == deleteId) {
 tasksXLC.removeItemAt(i);
 break;
 }
 }
 }
 }
]]>
</mx:Script>
 <mx:HTTPService

Listing 6.39 app\flex\com\pomodo\components\TasksListBox.mxml

B
C

D

E

F

G
H

I
J

244 ITERATION 6

Flex on Rails
 id="svcTasksUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleTasksUpdateResult(event)"/>
 <mx:HTTPService
 id="svcTasksDestroy"
 resultFormat="e4x"
 method="POST"
 result="handleTasksDestroyResult(event)"/>
 <mx:VBox width="100%" height="60%">
...
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="70"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
 <mx:Button label="delete"
 click="outerDocument.deleteTask(XML(data))"/>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>
 <mx:Panel id="summaryPanel" title="Task" width="100%"
...

We start by creating the deleteTask function, which invokes B the send func-
tion D of svcTasksDestroy 1) to delete the given task. Note that to do this we
need to fake an HTTP DELETE by sending a POST and setting a _method:
"DELETE" parameter C (for variety, I used the anonymous object syntax). Also
note that we specify which task we’re deleting by including its id in the URL C.

 Next, we create the handleTasksDestroyResult E function, which displays
an Alert F in case of an error and which deletes the task from the XMLList-
Collection on success. To do this, we cast the event.result to XML (because
it’s the Task XML) G and extract its id H to search for. Now, we loop through
the tasksXLC I, getting each task J and comparing its id with the id we’re
searching for. If we find a match, we remove that task and break, because there
can be only one task with that id. This causes the tasksGrid to automatically
update, because its dataProvider is bound to the tasksXLC.

 Next, we create the svcTasksDestroy 1). Note that its method is POST and that
we don’t specify a URL because we’ll be setting it dynamically.

1)

1!

1@
1#

1$

Updating and deleting tasks, projects, and locations 245
Finally, we modify the dataGridColumn with the empty headerText 1! to contain
an itemRenderer 1@. The itemRenderer defines an inline mx:Component 1#,
which is a Button 1$ with the label “delete” and a click handler that calls the
deleteTask function of the outerDocument. We also modify the column width to
70 pixels 1! from 60, to be wide enough to show the “delete” label of the button.

 Trivial!
 With that done, rebuild, reload, and log in as ludwig. We see the screen shown

in figure 6.16.
 Click the Delete buttons for any tasks you want to delete. They all work as

expected.

6.7.4 Adding Completed CheckBoxes to the TasksListBox

Next, we’ll add a custom itemRenderer to the TasksListBox to create a CheckBox
that indicates whether a task is completed. This is basically more of the same,
except we’ll need to add a utility function first.

 Create a new file called XMLUtils.as in app\flex\com\pomodo\util, and set its
content as shown in listing 6.40.

package com.pomodo.util {
 public class XMLUtils {
 public static function xmlListToBoolean(
 xmlList:XMLList):Boolean {
 return xmlList.toString() == "true";
 }
 }
}

Listing 6.40 app\flex\com\pomodo\util\XMLUtils.as

Figure 6.16 Task delete buttons

B

246 ITERATION 6

Flex on Rails
The xmlListToBoolean function B converts an XMLList into a Boolean. It does
this by checking whether its toString is "true". As the comment says, this is nec-
essary because Boolean("false") is true.

 Next, we modify the TasksListBox yet again; see listing 6.41.

...
 public function getLocation(location_id:int):XML {
 if (locationIdMap == null) {
 return MainBox.NO_LOCATION_XML;
 }
 return locationIdMap[location_id];
 }

 public function updateTaskCompleted(task:XML,
 completed:Boolean):void {
 var params:Object = new Object();
 params['task[completed]'] = completed;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/" + task.id + ".xml";
 svcTasksUpdate.send(params);
 }
...
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleTasksUpdateResult(event)"/>
...
 <mx:VBox width="100%" height="60%">
...
 <mx:DataGrid id="tasksGrid" width="100%" height="100%"
 dataProvider="{tasksXLC}">
 <mx:columns>
 <mx:DataGridColumn headerText="" width="25"
 dataField="completed"/>
 <mx:DataGridColumn
 headerText=""
 width="25"
 dataField="completed"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:HBox width="25" paddingLeft="5">
 <mx:Script>
 <![CDATA[
 import com.pomodo.util.XMLUtils;

 private function updateCompleted():void {

Listing 6.41 app\flex\com\pomodo\components\TasksListBox.mxml

B

C

D

E
F

G

H

Updating and deleting tasks, projects, and locations 247
 outerDocument.updateTaskCompleted(
 XML(data),
 !XMLUtils.xmlListToBoolean(data.completed));
 }
]]>
 </mx:Script>
 <mx:CheckBox
 selected="{XMLUtils.xmlListToBoolean(data.completed)}"
 click="updateCompleted()"/>
</mx:HBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Name" width="300"
 dataField="name"/>
...

We start by creating the updateTaskCompleted function B, which calls
svcTasksUpdate just like the ComboBox itemRenderers do. Next, we delete the old
DataGridColumn definition C and replace it with a new one D. It contains yet
another itemRenderer E, which defines yet another Component F. This time, we
import our new XMLUtils class G and create an updateCompleted H function
that calls outerDocument.updateTaskCompleted I with the XML(data) J of the
task and the toggled Boolean value of the completed property 1). Finally, we cre-
ate the CheckBox 1!, bind its selected property to the result of XMLUtils.
xmlListToBoolean(data.completed), and add the updateCompleted function as
a click event hander.

 Positively boring by now, isn’t it?
 Rebuild, reload, and (say it with me) log in as ludwig. We see check boxes

beside the task names. Uncheck “Finish eighth symphony,” and check “Buy a new
hearing aid.”7 The Tasks grid will look like figure 6.17.

7 If any Beethoven fans think I’m being cruel: I love Beethoven. I’ve had his nine symphonies on repeat
in iTunes for much of the writing of this book. That is a long time.

I
J

1)

1!

Figure 6.17 Check boxes in the TasksListBox

248 ITERATION 6

Flex on Rails
6.7.5 Editing the task name and notes in the TasksListBox

The TasksListBox contains a tasksGrid mx:DataGrid and also a summaryPanel
mx:Panel. Where should we edit the task name and notes? Both places? It turns
out that the tasksGrid isn’t a good place to edit the name and notes of a task. We
could do it, but there would be some controversial decisions to make that would
seem like bugs to some users, regardless of which option we chose. For example,
should tabbing out of a field be an edit? How about pressing the Enter key? What
about the Escape key? How about clicking somewhere else in the application?

 We could implement all this and make decisions about each of these choices,
but we wouldn’t learn anything more about using Flex with Rails. (I did it: Trust
me, it wasn’t worthwhile.) All we’d do is kill a few trees, real or virtual. So we
won’t. Instead, we’ll implement editing of the task name and notes (as well as
everything else in a task, minus the Next Action concept we’ll continue ignoring
for now) in the summaryPanel at the bottom.

 Once again, we modify the TasksListBox; see listing 6.42.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
<mx:Script>
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.components.MainBox;
 import com.pomodo.events.TaskEvent;
 import com.pomodo.util.XMLUtils;

 public const NEXT_ACTIONS:int = 0;
...
 public function getLocation(location_id:int):XML {
 if (locationIdMap == null) {
 return MainBox.NO_LOCATION_XML;
 }
 return locationIdMap[location_id];
 }

 public function updateSelectedTaskFromSummaryPanel():void {
 var selectedTask:XML = XML(tasksGrid.selectedItem);
 var params:Object = new Object();
 params['task[name]'] = nameTI.text;
 params['task[project_id]'] = projectCB.selectedItem.id;
 params['task[location_id]'] =
 locationCB.selectedItem.id;

Listing 6.42 app\flex\com\pomodo\components\TasksListBox.mxml

B

C

Updating and deleting tasks, projects, and locations 249
 params['task[completed]'] = completedCB.selected;
 params['task[notes]'] = notesTI.text;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/"+ selectedTask.id +".xml";
 svcTasksUpdate.send(params);
 }
...
]]>
</mx:Script>
...
 <mx:Panel id="summaryPanel" title="Task" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"
 text="{tasksGrid.selectedItem.name}"/>
 <mx:CheckBox id="completedCB" label="Completed"
 selected="{XMLUtils.xmlListToBoolean(
 ➥tasksGrid.selectedItem.completed)}"
 />
 </mx:HBox>
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Project" width="50"/>
 <mx:ComboBox id="projectCB" width="200"
 labelField="name"
 dataProvider="{projectsAndNone}"
selectedItem="{getProject(tasksGrid.selectedItem.project_id)}"
 />
 <mx:CheckBox label="This is the Next Action"/>
 <mx:Spacer width="100%"/>
 <mx:Label text="Location"/>
 <mx:ComboBox id="locationCB" width="200"
 labelField="name"
 dataProvider="{locationsAndNone}"
selectedItem="{getLocation(tasksGrid.selectedItem.location_id)}"
 />
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%" height="100%"
 text="{tasksGrid.selectedItem.notes}"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"
 click="updateSelectedTaskFromSummaryPanel()"
 enabled="{tasksGrid.selectedItem != null}"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"
 click="deleteTask(XML(tasksGrid.selectedItem))"

D
E

F

G

H

I

J

250 ITERATION 6

Flex on Rails
 enabled="{tasksGrid.selectedItem != null}"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

We start by importing XMLUtils B. This is interesting, for once: We already
imported XMLUtils in a nested mx:Component, but we still need to import it if we
want to use it in the outer MXML component. Next, we create an updateSelected-
TaskFromSummaryPanel C function, which updates all the properties of the
selected task in the tasksGrid (using the same RESTful approach) with the values
of the controls in the summaryPanel.

 Now, we hook up all the controls in the summary panel. We bind the text prop-
erty of the nameTI to tasksGrid.selectedItem.name D. And we add a CheckBox
control called completedCB and bind it to the result of calling XMLUtils.xmlList-
ToBoolean(tasksGrid.selectedItem.completed) E.

Figure 6.18 The summaryPanel, implemented

Updating and deleting tasks, projects, and locations 251
Next, we bind the dataProvider and selectedItem properties of the projectCB
F and locationCB G to the correct properties. (These are found by looking at
how we did the ComboBox itemRenderers—yet another thing that is easy after I
threw you into the deep end with them.)

 We bind the text property of the notesTI to tasksGrid.selected-
Item.notes H. Finally, we implement click handlers and enabled bindings for
the Update I and Delete J buttons. The enabled bindings ensure that the but-
tons aren’t enabled if we have no selectedItem; the click handlers call the
appropriate functions, which trigger service calls.

 Rebuild, reload, and log in as ludwig. We see the screen shown in figure 6.18.
 Experiment with the summaryPanel. Note that nothing takes effect until we

click Update. This is by design.
 This is starting to look cool!

6.7.6 Adding Delete buttons and Completed check
boxes to the ProjectsListBox and LocationsListBox

We have one more thing to do before we call this iteration finished: We need to
implement the Delete buttons, Completed check boxes, and summaryPanels of
the ProjectsListBox and LocationsListBox.

 First, we add support for update and delete to the ProjectEvent and Loca-
tionEvent. (We didn’t need to add these for tasks because we handled them
internally in the TasksListBox—with projects and locations, however, we need to
notify the outside world of what is happening, so we must add these to the events.)
This is really easy; all we need to do is add new type codes for update and delete.

 First, the ProjectEvent; see listing 6.43.

...
 public class ProjectEvent extends Event {
 public static const PROJECT_CREATE:String = "projectCreate";

 public static const PROJECT_UPDATE:String =
 "projectUpdate";

 public static const PROJECT_DELETE:String =
 "projectDelete";
...

Next, the LocationEvent; see listing 6.44.

Listing 6.43 app\flex\com\pomodo\events\ProjectEvent.as

252 ITERATION 6

Flex on Rails
...
 public class LocationEvent extends Event {
 public static const LOCATION_CREATE:String =
 "locationCreate";

 public static const LOCATION_UPDATE:String =
 "locationUpdate";

 public static const LOCATION_DELETE:String =
 "locationDelete";
...

Next, we’ll modify the ProjectsListBox; see listing 6.45.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Projects">
<mx:Metadata>
 [Event(name="projectUpdate",
 type="com.pomodo.events.ProjectEvent")]
 [Event(name="projectDelete",
 type="com.pomodo.events.ProjectEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.ProjectEvent;
 import com.pomodo.util.XMLUtils;

 [Bindable]
 public var projectsXLC:XMLListCollection;

 public function updateSelectedProjectFromSummaryPanel():
 void {
 var selectedProject:XML =
 XML(projectsGrid.selectedItem);
 var params:Object = new Object();
 params['project[name]'] = nameTI.text;
 params['project[completed]'] = completedCB.selected;
 params['project[notes]'] = notesTI.text;
 params['_method'] = "PUT";
 svcProjectsUpdate.url =
 "/projects/" + selectedProject.id + ".xml";

Listing 6.44 app\flex\com\pomodo\events\LocationEvent.as

Listing 6.45 app\flex\com\pomodo\components\ProjectsListBox.mxml

B

C

D

E

Updating and deleting tasks, projects, and locations 253
 svcProjectsUpdate.send(params);
 }

 public function updateProjectCompleted(project:XML,
 completed:Boolean):void {
 var params:Object = new Object();
 params['project[completed]'] = completed;
 params['_method'] = "PUT";
 svcProjectsUpdate.url =
 "/projects/" + project.id + ".xml";
 svcProjectsUpdate.send(params);
 }

 public function deleteProject(data:Object):void {
 svcProjectsDestroy.url =
 "/projects/" + data.id + ".xml";
 svcProjectsDestroy.send({_method:"DELETE"});
 }

 private function handleProjectsUpdateResult(
 event:ResultEvent):void {
 dispatchEvent(new ProjectEvent(
 ProjectEvent.PROJECT_UPDATE, XML(event.result)));
 }

 private function handleProjectsDestroyResult(
 event:ResultEvent):void {
 if (event.result == "error") {
 Alert.show(
 "The project was not successfully deleted.",
 "Error");
 } else {
 dispatchEvent(new ProjectEvent(
 ProjectEvent.PROJECT_DELETE,
 XML(event.result)));
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcProjectsUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleProjectsUpdateResult(event)"/>
 <mx:HTTPService
 id="svcProjectsDestroy"
 resultFormat="e4x"
 method="POST"
 result="handleProjectsDestroyResult(event)"/>
 <mx:DataGrid id="projectsGrid" width="100%" height="60%"
 dataProvider="{projectsXLC}">

F

G

H

I

J

1)

254 ITERATION 6

Flex on Rails
 <mx:columns>
 <mx:DataGridColumn
 headerText=""
 width="25"
 dataField="completed"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:HBox width="25" paddingLeft="5">
 <mx:Script>
 <![CDATA[
 import com.pomodo.util.XMLUtils;

 private function updateCompleted():void {
 outerDocument.updateProjectCompleted(
 XML(data),
 !XMLUtils.xmlListToBoolean(data.completed));
 }
]]>
 </mx:Script>
 <mx:CheckBox
 selected="{XMLUtils.xmlListToBoolean(data.completed)}"
 click="updateCompleted()"/>
</mx:HBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Name" width="400"
 dataField="name"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="70"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
 <mx:Button label="delete"
 click="outerDocument.deleteProject(XML(data))"/>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>
 <mx:Panel id="summaryPanel"
 title="Project" width="100%" height="40%"
 paddingLeft="5" paddingRight="5" paddingTop="5"
 paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"
 text="{projectsGrid.selectedItem.name}"/>
 <mx:CheckBox id="completedCB" label="Completed"
selected="{XMLUtils.xmlListToBoolean(

1!

1@
1#

1$

1%

1^

1&

1*

1(

Updating and deleting tasks, projects, and locations 255
 ➥projectsGrid.selectedItem.completed)}"/>
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%" height="100%"
 text="{projectsGrid.selectedItem.notes}"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"
 click="updateSelectedProjectFromSummaryPanel()"
 enabled="{projectsGrid.selectedItem != null}"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"
 click="deleteProject(XML(projectsGrid.selectedItem))"
 enabled="{projectsGrid.selectedItem != null}"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

First, we add Metadata B for the projectUpdate and projectDelete events.
Next, we add some imports CD. We add the updateSelectedProjectFrom-
SummaryPanel E function, which updates the project based on the values of the
controls in the summaryPanel. Now, we add functions to update F and delete G
a project, by calling the appropriate services J1). We also add handlers HI for
their results, both of which dispatch ProjectEvents indicating what happened
(PROJECT_UPDATE, PROJECT_DELETE). We modify the DataGridColumn with no
title 1! to contain an itemRenderer 1@ that has a Component 1# that is an HBox
containing a CheckBox 1% whose selected property is bound the same way it is in
the TasksListBox. (We use the HBox to align the CheckBox nicely. Yes, this is
cheesy.) This Component contains an updateCompleted function 1$, which is
called when the CheckBox is clicked.

 Next, we modify the other DataGridColumn with no header text 1^ to contain
an itemRenderer containing a Component that is a Button, specifically a Delete
button 1&.

 Finally, we hook up the summaryPanel 1*–2@), just as we did with the Tasks-
ListBox.

 Now we’ll modify the LocationsListBox; see listing 6.46. This is so similar that
I won’t explain it, except to note that we’re deleting a column (B below) that was
created accidentally. (I regret having decided that Locations would exist, to be
honest! For the rest of the book, we’ll skimp on the explanations about the Loca-
tion code—all the concepts that apply to Locations apply equally to Projects.)

2)

2!

2@

256 ITERATION 6

Flex on Rails
<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Locations">
<mx:Metadata>
 [Event(name="locationUpdate",
 type="com.pomodo.events.LocationEvent")]
 [Event(name="locationDelete",
 type="com.pomodo.events.LocationEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.LocationEvent;
 import com.pomodo.util.XMLUtils;

 [Bindable]
 public var locationsXLC:XMLListCollection;

 public function updateSelectedLocationFromSummaryPanel():
 void {
 var selectedLocation:XML =
 XML(locationsGrid.selectedItem);
 var params:Object = new Object();
 params['location[name]'] = nameTI.text;
 params['location[notes]'] = notesTI.text;
 params['_method'] = "PUT";
 svcLocationsUpdate.url =
 "/locations/" + selectedLocation.id + ".xml";
 svcLocationsUpdate.send(params);
 }

 public function deleteLocation(data:Object):void {
 svcLocationsDestroy.url =
 "/locations/" + data.id + ".xml";
 svcLocationsDestroy.send({_method:"DELETE"});
 }

 private function handleLocationsUpdateResult(
 event:ResultEvent):void {
 dispatchEvent(new LocationEvent(
 LocationEvent.LOCATION_UPDATE, XML(event.result)));
 }

 private function handleLocationsDestroyResult(
 event:ResultEvent):void {
 if (event.result == "error") {
 Alert.show(

Listing 6.46 app\flex\com\pomodo\components\LocationsListBox.mxml

Updating and deleting tasks, projects, and locations 257
 "The location was not successfully deleted.",
 "Error");
 } else {
 dispatchEvent(new LocationEvent(
 LocationEvent.LOCATION_DELETE,
 XML(event.result)));
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcLocationsUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleLocationsUpdateResult(event)"/>
 <mx:HTTPService
 id="svcLocationsDestroy"
 resultFormat="e4x"
 method="POST"
 result="handleLocationsDestroyResult(event)"/>
 <mx:DataGrid id="locationsGrid" width="100%" height="60%"
 dataProvider="{locationsXLC}">
 <mx:columns>

 <mx:DataGridColumn headerText="" width="25"

 dataField="completed"/>
 <mx:DataGridColumn headerText="Name" width="400"
 dataField="name"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="70"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
 <mx:Button label="delete"
 click="outerDocument.deleteLocation(XML(data))"/>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>
 <mx:Panel id="summaryPanel" title="Location" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"
 text="{locationsGrid.selectedItem.name}"/>
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>

B

258 ITERATION 6

Flex on Rails
 <mx:TextArea id="notesTI" width="100%" height="100%"
 text="{locationsGrid.selectedItem.notes}"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"
 click="updateSelectedLocationFromSummaryPanel()"
 enabled="{locationsGrid.selectedItem != null}"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"
 click="deleteLocation(XML(locationsGrid.selectedItem))"
 enabled="{locationsGrid.selectedItem != null}"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

Finally, we modify the MainBox to handle the new events that are being broadcast;
see listing 6.47.

...
 <mx:TabNavigator width="100%" height="100%">
 <pom:TasksListBox id="tasksTab"
 tasksXLC="{tasksXLC}"
 projectIdMap="{_projectIdMap}"
 locationIdMap="{_locationIdMap}"
 projectsAndNone="{_projectsAndNoneXLC}"
 locationsAndNone="{_locationsAndNoneXLC}"/>
 <pom:ProjectsListBox id="projectsTab"
 projectsXLC="{projectsXLC}"
 projectUpdate="listProjects()"
 projectDelete="listProjects()"/>
 <pom:LocationsListBox id="locationsTab"
 locationsXLC="{locationsXLC}"
 locationUpdate="listLocations()"
 locationDelete="listLocations()"/>
 <pom:Notely id="notelyTab"/>
 </mx:TabNavigator>
...

We handle the various update BD and delete CE events and call the list-
Projects BC and listLocations DE functions in response. This triggers the
projectsXLC and/or locationsXLC to be re-created, which will refresh the appro-
priate DataGrid. This works, but it causes a minor annoyance (see the exercises at
the end of the iteration).

Listing 6.47 app\flex\com\pomodo\components\MainBox.mxml

B
C

D
E

Keeping our tests passing 259
 That’s it! Really. Rebuild, reload, and log in as ludwig. We can now update and
delete projects and locations as well as tasks.

6.8 Keeping our tests passing
Keeping our tests passing Finally, let’s run the tests again; see listing 6.48.

c:\peter\flexiblerails\current\pomodo>rake
...
Started
................
Finished in 2.203 seconds.

16 tests, 29 assertions, 0 failures, 0 errors
...
Started
...................................
Finished in 2.344 seconds.

35 tests, 65 assertions, 0 failures, 0 errors

c:\peter\flexiblerails\current\pomodo>

Everything still works. We’re finally done with this iteration!

6.9 Summary

In hooking up most of the main Flex UI to the TasksController, Projects-
Controller, and LocationsController, you’ve seen a substantial example of how
Flex and Rails can be used together using HTTPService. Next, in the final itera-
tion of this part of the book, we’ll cover everybody’s favorite topic: Validation.

6.10 Exercises for the reader

1 Refactor the various summaryPanel components out into their own compo-
nents, passing the selectedItem into them. What are the tradeoffs of doing
this?

2 Make the summaryPanel trigger service calls “live,” as opposed to using an
Update button.

Listing 6.1 Output

The code at this point is saved as the iteration06 folder.

260 ITERATION 6

Flex on Rails
3 Updating the completed state of project in the projectsGrid has an unfor-
tunate consequence for the summaryPanel. Why? How would you fix it?

4 Implement the Next Action concept, Notely, the pomodo command shell,
and filtering tasks with the Show ComboBox. (My version of this is done in
iteration 10.)

Validation
Make it idiot-proof, and someone will make a better idiot.

—Unknown
261

262 ITERATION 7

Validation
Adding error-checking and -handling to a GUI application (desktop or web) is
something that is usually an afterthought and a horribly tedious chore. Most pro-
grammers hate the task, but we have to do it: We can’t just pop up a dialog saying
“O NOES!!”—much as we’d like to—if the user does anything wrong. And no mat-
ter how simple and elegant we make our applications, two forces are against us:

■ In the Real World, services go down (server crashes, database issues, and so
on).

■ The world is full of, um, less sophisticated users.

Worse yet, even advanced UI frameworks have historically provided basically noth-
ing as far as a standard validation framework. Like it or not, “has great error mes-
sages” hasn’t been considered a major selling point of an app. So, we were left
cobbling together our own, usually as an afterthought.

 Fortunately, both Flex and Rails are different than the norm in this respect:
For both Flex and Rails, validation is an integral part of the framework. This is
good, because doing something wrong is an integral part of how users will use
our applications.

 The built-in Flex validation support is nice looking. When I first saw validation
in action in Flex 1.0, my reaction was essentially “ooh, shiny.” The controls have
red borders, and red error callouts (tooltips) appear by the fields. However, there
are some major deficiencies with validators in Flex 1.x: We can’t assign ids to
them, and we can’t bind to their properties. This can be the source of much frus-
tration, because it greatly limits their reusability. The good news is that Flex 2
fixed these problems (and they are still fixed in Flex 3): Validators can have ids,
and we can bind to their properties.

 The bottom line is this: We can use the built-in validation support in Flex and
Rails to create user-friendly applications that deal with error conditions in a much
better way than is the norm today.

 In this iteration, we’ll add full validation support on the Rails side and the Flex
side to the account-creation process. This is a good place to do this because it’s a
fairly self-contained section, and because the current error-handling there is terri-
ble. (Also, I don’t know about you, but I’m sick of looking at the Tasks grid!)

7.1 Revisiting the HTML account signup screen
Revisiting the HTML account signup screenWe’ll start by revisiting the account signup screen. First, stop the server, run

newdb.bat, and start the server. Next, go to http://localhost:3000/signup and try
to add a new user with a Login of ludwig, an Email of blah, a Password of foo,
and a Confirm Password of bar (see figure 7.1).

http://localhost:3000/account/signup
http://localhost:3000/account/signup
http://localhost:3000/account/signup

Revisiting the HTML account signup screen 263
Let’s take a quick look at the code that accomplishes all this, starting with the cre-
ate action of the UsersController, which is what is invoked when the form in
app\views\users\new.rhtml is submitted; see listing 7.1.

class UsersController < ApplicationController
 skip_before_filter :login_required

 # GET /users/new
 # GET /users/new.xml
 # render new.rhtml
 def new
 end

 # POST /users
 # POST /users.xml
 def create
 cookies.delete :auth_token
 # protects against session fixation attacks, wreaks havoc
 # wreaks request forgery protection.
 # uncomment at your own risk
 # reset_session

Listing 7.1 app\controllers\users_controller.rb

Figure 7.1
Validation errors in Rails

B

C

264 ITERATION 7

Validation
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 respond_to do |format|
 format.html do
 redirect_back_or_default('/')
 flash[:notice] = "Thanks for signing up!"
 end
 format.xml { render :xml => @user.to_xml }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => 'new' }
 format.xml { render :text => "error" }
 end
 end

end

The create method C constructs a new User out of the params D and stores it in
@user. It then calls @user.save! E, which will throw a RecordInvalid exception G
if the save fails (because the save! method was called instead of the save method,
which returns false). In normal operation, we use a respond_to block F; we also
use a respond_to block in the rescue H. In that respond_to block, when HTML
is the requested format, we render :action => 'new' I to render the new.rhtml
file B; when XML is the requested format, we render the text "error" J.

 We still don’t know how those error messages got produced or displayed. Let’s
look at the new.rhtml file, because that’s what is being rendered. (The new con-
vention in Rails 2 is to name .rhtml files .html.erb; I assume this will be done
inside the restful_authentication generator at some point. When this is done,
the file to look at will presumably be new.html.erb.) Anyway, look at new.rhtml;
see listing 7.2.

<%= error_messages_for :user %>
<% form_for :user, :url => users_path do |f| -%>
<p><label for="login">Login</label>

<%= f.text_field :login %></p>

<p><label for="email">Email</label>

<%= f.text_field :email %></p>

<p><label for="password">Password</label>

<%= f.password_field :password %></p>

Listing 7.2 app\views\users\new.rhtml

D
E

F

G
H

I
J

B

Revisiting the HTML account signup screen 265
<p><label for="password_confirmation">Confirm Password</label>

<%= f.password_field :password_confirmation %></p>

<p><%= submit_tag 'Sign up' %></p>
<% end -%>

The <%= error_messages_for :user %> function call B inserts the error messages
for the user (wherever they came from) into the output of the new.rhtml file. Note
that this new.rhtml file is the same view that is used to render the normal non-error
state of the new user form—in that case, there are no errors to show.

 But where did the error messages for the user come from? Let’s look at the
User model; see listing 7.3.

require 'digest/sha1'
class User < ActiveRecord::Base
 has_many :tasks
 has_many :projects
 has_many :locations

 # Virtual attribute for the unencrypted password
 attr_accessor :password

 validates_presence_of :login, :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation,
 :if => :password_required?
 validates_length_of :password, :within => 4..40,
 :if => :password_required?
 validates_confirmation_of :password,
 :if => :password_required?
 validates_length_of :login, :within => 3..40
 validates_length_of :email, :within => 3..100
 validates_uniqueness_of :login, :email,
 :case_sensitive => false
 before_save :encrypt_password
...
end

Eight validation method calls (B–I) are used in the User class. These methods
(validates_length_of, validates_presence_of, and so on) are class methods
known as validation helpers. Calling them configures the Active Record model class
to do specific validations before saving.

Listing 7.3 app\models\user.rb

B
C

D

E

F

G
H

I

266 ITERATION 7

Validation
NOTE There are methods called validate, validate_on_create, and
validate_on_update that we can implement in a class that extends
ActiveRecord::Base; however, the helpers are so, well, helpful that we
can develop productively using validations in Rails for a while without
knowing they exist. Now that you do know, see the “Validation”
section (19.1) of AWDwR for complete details of all the Rails validation
helpers and the validate, validate_on_create, and validate_
on_update methods.

When we tried to sign up with a Login of ludwig, a Password of foo, and a Confirm
Password of bar, we failed the validates_length_of :password E validation, the
validates_uniqueness_of :login I validation, and the validates_ confirma-
tion_of :password F validation.

 We’ve failed the validation; what happens next?
 First, all the errors from the validations are added to the errors (Active-

Record::Errors) associated with the User model. Then, as we mentioned earlier,
because we’ve failed the validation, the @user.save! call (d in UsersControl-
ler) won’t throw a RecordInvalid error. We end up in the rescue clause (F in
UsersController), and the new.rhtml template is rendered because of the ren-
der :action => 'new' in the UsersController.

 That’s the quick tour of normal Rails validation. For the lengthy tour, see sec-
tion 19.1 of AWDwR.

7.2 Rails and Flex validation—should you stay DRY?
Rails and Flex validation—should you stay DRY?We’re interested in how Rails validation integrates with Flex validation. So, we’ll

build the mechanism to hook up the Rails errors with Flex. We’re also interested
in purely client-side Flex validation, but even though this is easier, we’ll consider it
after we’ve done the harder task of integrating Rails validation.

 The reason for this ordering is instructive: If we do our job in the purely client-
side Flex validations, we can prevent many errors from happening on the server
side (because we won’t submit the erroneous data). However, because on the
server we can never trust the client, we need to do the same validations on the
server anyway. We hope they will all be redundant, but we do need to do them.

 If you’re coming from the Rails side, you may be wondering: Does this violate
the Don’t Repeat Yourself (DRY) principle that’s so important in Rails? Yes, it
does. Sorry about that.

 If you want to stay totally DRY, you can do no validation on the client other than
reporting the Rails validation errors. This is less work, but it’s less user-friendly
because you aren’t detecting errors as early as possible. It’s probably better to let

Understanding Rails validation, 267
and building custom XML for errors
users know as soon as possible about bad form inputs, so they can be spared the
dreaded “fill out form > submit > fix errors > submit > fix more errors > submit >
oh, more errors, forget it, I give up!” process.

 If you’re trying to detect and indicate errors as early as possible, some of the
validations you can do are purely client side (for example, your email address has
no @ sign), and some can involve calls to the server.

 We’ll use both of these. Let’s get coding.

7.3 Understanding Rails validation,
and building custom XML for errors

Understanding Rails validation,and building custom XML for errors Let’s start by going to http://local-
host:3000/bin/Pomodo.html and trying
to create a user with Username ludwig,
Email foo, Password foo, and Confirm
Password bar (see figure 7.2).

 That’s unfortunate. We don’t indicate
the errors with the password being too
short or not matching its confirmation.
Also, we don’t highlight the errors coming
back from Rails. Worse yet, we don’t even
have any errors coming back from Rails—
the rescue ActiveRecord::RecordInvalid in the create method of the Users-
Controller currently does render :text => "error" in its format.xml block.

 Let’s see if we can fix that. We think about it for a minute and decide that we
want to do is send XML of the errors over to Flex. It worked well for users, tasks,
projects, and so on—it should work for errors too. Let’s look at what the to_xml of
the errors looks like; see listing 7.4.

.
class UsersController < ApplicationController
...
 def create
 @user = User.new(params[:user])
 @user.save!
...
 rescue ActiveRecord::RecordInvalid
 logger.info "user errors: #{@user.errors.to_xml}"
 respond_to do |format|
 format.html { render :action => 'new' }

Listing 7.4 app\controllers\users_controller.rb

B

Figure 7.2 Not the most meaningful error in
the world

268 ITERATION 7

Validation
 format.xml { render :text => "error" }
 end
 end
end

We add a debug message B before the respond_to block. Next, click Create
Account in Flex to once again attempt to create a user with Username ludwig,
Email foo, Password foo, and Confirm Password bar (we don’t need to rebuild,
because this is just a Rails change). Looking at development.log, we see the result
shown in listing 7.5.

Processing UsersController#create (for 127.0.0.1
 ➥at 2007-10-23 07:03:21) [POST]
...
user errors: <?xml version="1.0" encoding="UTF-8"?>
<errors>
 <error>Login has already been taken</error>
 <error>Password is too short (minimum is 4 characters)</error>
 <error>Password doesn't match confirmation</error>
</errors>
Completed in 0.06300 (15 reqs/sec) | Rendering: 0.00000 (0%) |
 ➥DB: 0.01500 (23%) | 200 OK [http://localhost/users.xml]

We see the user errors, which are listed in an XML document with a root of
<errors> and three <error> elements. Surely we’re all set.

 Wait a minute—this is bad. Looking at the contents of each <error> element,
we realize something unfortunate: There is no way to associate the error with the
field (such as login or password) that it’s for. Even if we sent the errors to the Flex
client using @user.errors.to_xml, we wouldn’t be able to attach them to the cor-
rect fields. That’s pretty useless. It looks like we need to write our own method to
get the XML we want for the errors.

 Let’s call this method to_xml_full.
 Before we proceed, let’s define what we want the XML to look like—require-

ments are a good thing. Our goal is to produce XML that looks like this if we try to
create a duplicate ludwig user with a password of foo and a password confirmation
of bar:

<?xml version="1.0" encoding="UTF-8"?>
<errors>
 <error message="Password doesn't match confirmation"
 field="password"/>

Listing 7.5 Output (log\development.log)

Understanding Rails validation, 269
and building custom XML for errors
 <error
 message="Password is too short (minimum is 4 characters)"
 field="password"/>
 <error message="Login has already been taken" field="login"/>
</errors>

Each <error> will have a field attribute that defines the field the error is for.
 In thinking about how to build to_xml_full, we decide to use one of the

handiest approaches in writing slightly more advanced Rails code: looking at the
source code of Rails. We’ll do that now.

NOTE The best way to start figuring out what to look for is to look at the API
docs at http://api.rubyonrails.com. Once you’ve done that, reading
through the source code is a good thing to do. Having the source code
for Rails in vendor\rails makes this a lot easier—and ensures that you’re
looking at the code you’re actually using!

We’ll start by looking at the ActiveRecord::Errors class; see listing 7.6.

module ActiveRecord
...
 # Active Record validation is reported to and from this
 ➥object, which is used by Base#save to
 # determine whether the object in a valid state to be saved.
 ➥See usage example in Validations.
 class Errors
 include Enumerable

 def initialize(base) # :nodoc:
 @base, @errors = base, {}
 end
...
 # Returns all the full error messages in an array.
...
 def full_messages
 full_messages = []

 @errors.each_key do |attr|
 @errors[attr].each do |msg|
 next if msg.nil?

 if attr == "base"
 full_messages << msg
 else
 full_messages << @base.class.human_attribute_name(
 ➥attr) + " " + msg

Listing 7.6 vendor\rails\activerecord\lib\active_record\validations.rb

B

C

D
E

F

G

H

270 ITERATION 7

Validation
 end
 end
 end
 full_messages
 end
...
 def to_xml(options={})
 options[:root] ||= "errors"
 options[:indent] ||= 2
 options[:builder] ||= Builder::XmlMarkup.new(
 ➥:indent => options[:indent])

 options[:builder].instruct! unless options.delete(
 ➥:skip_instruct)
 options[:builder].errors do |e|
 full_messages.each { |msg| e.error(msg) }
 end
 end
...
 end
end

The to_xml method does a bunch of stuff with something called Builder::Xml-
Markup I and then calls J a method called full_messages C. Let’s look at
how that method is implemented—it may give us some clues for how we could
build our to_xml_full method. We see that it uses a variable called @errors,
which is a Hash B inside the Errors class. It calls the block for each key in the
Hash by calling the each_key D method (http://www.ruby-doc.org/core/
classes/Hash.html#M000673) with an associated block. The keys are passed in as
the attr parameter E and used to look up the Array of error messages for that
attr by saying @errors[attr]. This Array has its each method called with an
associated block, meaning that each element in the array is passed to the block
as the msg parameter. If the message is nil F, it’s skipped. If not, the attr is
checked. If it’s "base" G, then the message doesn’t belong to a specific field, so
it’s appended. If it isn’t "base", then it belongs to a field. That field name is for-
matted nicely by calling @base.class.human_attribute_ name H on the attr
and then appending a space and the message.

 Now that we understand better how full_messages works, we have a better
idea of how we can implement our method. Without further ado, let’s modify the
application.rb file to add the to_xml_full method to the ActiveRecord::Errors
class; see listing 7.7. This is the trickiest Ruby code we’ve seen so far; it will all be
explained afterward.

I

J

Understanding Rails validation, 271
and building custom XML for errors
...
module ActiveRecord #:nodoc:
 module Serialization
 # We force :dasherize to be false, since we never want it to
 # be true.
 unless method_defined? :old_to_xml
 alias_method :old_to_xml, :to_xml
 def to_xml(options = {})
 options.merge!(:dasherize => false)
 old_to_xml(options)
 end
 end
 end
end
module ActiveRecord #:nodoc:
 class Errors #:nodoc:
 def to_xml_full(options={})
 options[:root] ||= "errors"
 options[:indent] ||= 2
 options[:builder] ||=
 Builder::XmlMarkup.new(:indent => options[:indent])
 options[:builder].instruct! unless
 options.delete(:skip_instruct)
 options[:builder].errors do |e|
 # The @errors instance variable is a Hash inside the
 # Errors class
 @errors.each_key do |attr|
 @errors[attr].each do |msg|
 next if msg.nil?
 if attr == "base"
 options[:builder].error("message"=>msg)
 else
 fullmsg = @base.class.human_attribute_name(attr) +
 " " + msg
 options[:builder].error(
 "field"=>attr, "message"=>fullmsg)
 end
 end
 end
 end
 end
 end
end

Filters added to this controller apply to all controllers in
the application. Likewise, all the methods added will be
available for all controllers.
...

Listing 7.7 app\controllers\application.rb

B
C

D

E

F

G

H
I

J
1)

1!
1@

1#

1$

272 ITERATION 7

Validation
What we’re doing here is opening up the definition of the Errors class C inside
the ActiveRecord module B and adding the to_xml_full method D we wish it
came with.

 Note how similar this method is to the full_messages method we examined
earlier. In this method, we create a new Builder::XmlMarkup object E with the
indentation option passed in.

 We add the XML processing instruction <?xml version="1.0" encod-
ing="UTF-8"?> unless the :skip_instruct option was passed in F. We then cre-
ate the root element <errors> by calling a method (errors) that does not exist G.
We pass this nonexistent method a block G (do |e| ... end), and inside the
block we append each of the error messages by calling another nonexistent
method (error) 1!.

 We use the @errors Hash H each_key method to pass each key to a block that
gets the Array of error messages for that key I and passes each of them to another
block. Inside the block, we skip empty messages J. If the attr is "base" 1) we add
an error element for the message with no field 1!, otherwise 1@ we build a full mes-
sage called fullmsg 1# and create an error element 1$ with a field attribute of attr
and a message attribute of fullmsg.

 If you read all that without flinching, congratulations: You’ve already taken the
red pill. Furthermore, understanding this is the key to understanding Builder.
From the Builder documentation on XmlMarkup:

All (well, almost all) methods sent to an XmlMarkup object will be translated to
the equivalent XML markup. Any method with a block will be treated as an XML
markup tag with nested markup in the block.

—http://api.rubyonrails.org/classes/Builder/XmlMarkup.html

Essentially, we’re calling methods that don’t exist (like errors), and the
Builder::XmlMarkup class is smart enough to handle this and produce an XML
structure as a result.

 Whoa.
 If you’re a Java programmer, the “duck typing” of Ruby may have been liberat-

ing, scary, or both—but the idea of calling methods that aren’t there probably
seems like total voodoo. How could it possibly work?

 The answer is that in Ruby, a method call is implemented as message passing
to an object. (See Programming Ruby for the details.) If you try to call a method on
an object and it isn’t there, Ruby invokes that object’s method_missing method.
An inspection of the Builder documentation1 shows that this is how Builder

1 For more information about Builder, see http://builder.rubyforge.org/, http://www.myersds.com/
notebook/2006/05/11/how_to_generate_rss_feeds_with_rails, and http://clarkware.com/cgi/
blosxom/2005/07/12.

http://www.myersds.com/notebook/2006/05/11/how_to_generate_rss_feeds_with_rails
http://clarkware/cgi/blosxom/2005/07/12

Understanding Rails validation, 273
and building custom XML for errors
works: See the description and source code of method_missing at http://
builder.rubyforge.org/classes/Builder/XmlBase.html#M000007 for the details.
The method_missing method takes the block it’s passed and uses it to create
child XML elements. We can build an entire XML structure by calling a bunch of
nonexistent methods.

 If you’re new to Ruby, understanding the power of blocks will put a smile on
your face—if not now, then when you read a better explanation of them. If it
hasn’t yet, read Programming Ruby.

 Enough chit-chat—let’s test. Go back to the UsersController, and add a
logger.info statement (listing 7.8 B) that calls the new to_xml_full method.

class UsersController < ApplicationController
...
 def create
...
 rescue ActiveRecord::RecordInvalid
 logger.info "user errors: #{@user.errors.to_xml}"
 logger.info "user errors full: #{@user.errors.to_xml_full}"
 respond_to do |format|
 format.html { render :action => 'new' }
 format.xml { render :text => "error" }
 end
 end
end

Save the file, and stop and start our server (because we modified application.rb).
Go back to the browser window, which should still be at http://localhost:3000/
bin/Pomodo.html, and click Create Account again to try to create a user with
Username ludwig, Email blah, Password foo, and Confirm Password bar. We get
the same error dialog as before; let’s see what’s in development.log (listing 7.9).

Processing UsersController#create (for 127.0.0.1 at
 ➥2007-10-24 06:58:38) [POST]
...
user errors: <?xml version="1.0" encoding="UTF-8"?>
<errors>
 <error>Login has already been taken</error>
 <error>Password is too short (minimum is 4 characters)</error>/
 <error>Password doesn't match confirmation</error>
</errors>

Listing 7.8 app\controllers\users_controller.rb

Listing 7.9 log\development.log

B

B

274 ITERATION 7

Validation
user errors full: <?xml version="1.0" encoding="UTF-8"?>
<errors>
 <error message="Login has already been taken" field="login"/>
 <error
 message="Password is too short (minimum is 4 characters)"
 field="password"/>
 <error message="Password doesn't match confirmation"
 field="password"/>
</errors>
...

After the not-so-useful to_xml output B, we have the to_xml_full output C.
Each error DEF has the field it belongs to as an attribute.

 Hooray, it worked!
 Now it’s time to send these errors to Flex and display them on the fields.

Before we do that, however, we need to take a basic look at Flex 3 validation.

7.4 A Quick look at validation in Flex 3
A Quick look at validation in Flex 2 We’ve been discussing Flex 3 validation without showing any examples of it. To fix

this, we’ll add a Validator for the email address in the form. Modify the
AccountCreateBox as shown in listing 7.10.

...
 </mx:HTTPService>
 <mx:EmailValidator id="emailValidator" source="{emailTI}"
 property="text"/>
 <mx:Form labelWidth="150">
 <mx:FormItem required="true" label="Username">
 <mx:TextInput id="loginTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Email Address">
 <mx:TextInput id="emailTI"/>
 </mx:FormItem>
...

We’re creating an EmailValidator called, inventively, emailValidator B, whose
source is the emailTI TextInput C. The property we’ll validate is the text prop-
erty. Rebuild and reload. The Create Account form will look unchanged. Next,
click inside the newAccountEmailTI, and then press the Tab key to transfer focus
to the next TextInput (newAccountFirstNameTI). We see the first change, a red

Listing 7.10 app\flex\com\pomodo\components\AccountCreateBox.mxml

C

D

E

F

B

C

A Quick look at validation in Flex 2 275
highlight (see figure 7.3, but note
that red won’t show up in the book
very well).

 If we mouse over the Email
Address field, we see that it’s high-
lighted in red with an error tooltip
(see figure 7.4).

 By default, Validators such as
EmailValidator have required=
"true".

 Next, enter the name ludwig in the
Email Address, Tab out, and mouse
over the field again (see figure 7.5).

 Now that’s cool: The EmailVali-
dator checked that we had an @ sign
in our email address, and it com-
plained that we didn’t. Flex was also
smart enough to realize that there
wasn’t enough room in my browser to
fit the full tooltip, so it moved it
above the field.

 Let’s go back in the field, enter an
@ sign, and Tab out (see figure 7.6).

 Cool. Now, enter ludwig@pomodo.
com (see figure 7.7).

 The validation error is cleared,
and the field looks normal again.

 We’ll use more standard Flex vali-
dators soon, as well as building a
custom validator for the password
confirmation. For a detailed tour of
Flex validators, read chapter 46,
“Validating Data,” of the Flex 3 Devel-
oper’s Guide.

NOTE All this work was done without talking to the server once! The more work
we do on the client, the easier it is on our poor servers.

Now, it’s time to have some fun: We’ll integrate the errors from Rails with Flex 3.

Figure 7.3 Red validation highlight

Figure 7.4 Red validation error callout

Figure 7.5 Validation error for incorrect email
address

Figure 7.6 More email validation

Figure 7.7 Validation error cleared

276 ITERATION 7

Validation
7.5 Integrating Rails validation with Flex 3 validation
Integrating Rails validation with Flex 2 validationRather than retrace my steps in how this was developed, I’ll present the end result

and explain the code. We’ll start by modifying the create_xml method of Users-
Controller; see listing 7.11.

...
 # POST /users
 # POST /users.xml
 def create
 @user = User.new(params[:user])
 @user.save!
...
 rescue ActiveRecord::RecordInvalid
 logger.info "user errors: #{@user.errors.to_xml}"
 logger.info "user errors full: #{@user.errors.to_xml_full}"
 respond_to do |format|
 format.html { render :action => 'new' }
 format.xml { render :text => "error" }
 format.xml do
 unless @user.errors.empty?
 render :xml => @user.errors.to_xml_full
 else
 render :text => "error"
 end
 end
 end
 end
end

If the @user.save! fails, we end up rescuing ActiveRecord::RecordInvalid. First,
we delete the old logging code B. Then, we modify the format.xml block C—we’ll
leave the format.html unmodified. We change the syntax from the single-line con-
vention of { ... } to the multiline convention of do ... end. Inside the block, we
check whether the @user.errors (which is an ActiveRecord::Errors) is empty D.
If it’s non-empty, we render as XML the result of calling the new to_xml_full
method that we added to ActiveRecord::Errors E. If it’s empty, something truly
bizarre has happened (an error with no errors), so we render "error" F and ignore
it. (If this was a real application, we would, of course, log the error.)

 Next, we’ll create two new files on the Flex side: ServerErrors (to store the
errors from Rails in) and ServerErrorValidator (a custom validator that displays
the errors from Rails). First, ServerErrors; see listing 7.12.

Listing 7.11 app\controllers\users_controller.rb

B

C
D

E

F

Integrating Rails validation with Flex 2 validation 277
package com.pomodo.validators {
 import mx.validators.Validator;
 import mx.validators.ValidationResult;

 public class ServerErrors {
 public static const BASE:String = ":base";

 /**
 * The errors on specific fields (base errors are on the
 * BASE). The keys are the field Strings; the values are
 * Arrays of errors.
 */
 private var _allErrors:Object;

 public function ServerErrors(errorsXML:XML) {
 _allErrors = {};
 for each (var error:XML in errorsXML.error) {
 var field:String = error.@field;
 if (field == null || field == "") {
 field = BASE;
 }
 if (_allErrors[field] == null) {
 _allErrors[field] =
 [createValidationResult(error.@message)];
 } else {
 var fieldErrors:Array = _allErrors[field];
 fieldErrors.push(
 createValidationResult(error.@message));
 }
 }
 }

 /**
 * Return an Array of the errors (just Strings) for the
 * field, an empty Array if none.
 */
 public function getErrorsForField(field:String):Array {
 return _allErrors[field] == null ?
 [] : _allErrors[field];
 }

 private function createValidationResult(message:String):
 ValidationResult {
 return new ValidationResult(
 true,
 "",
 "SERVER_VALIDATION_ERROR",

Listing 7.12 app\flex\com\pomodo\validators\ServerErrors.as

B

C

D
E

F

G

H

I

J

1)

278 ITERATION 7

Validation
 message);
 }
 }
}

The ServerErrors class encapsulates the task of converting the errors we get
from Rails into something we want to use in Flex. We anticipate doing this all
over the place, so it’s certainly functionality that should not be tied to a specific
visual component.

 Essentially, we want to provide a String name of a field and get back all the
errors for that field. This is what the getErrorsForField function I does. It
checks the _allErrors map C for the field in question and returns the Array
that is stored for that field (an empty Array if none).

NOTE Returning an empty Array or a “null object” instead of null is often a good
thing to do in Flex, because otherwise we’re putting the null-checking bur-
den on whomever uses your class. This is true in many languages, but it’s
more true in Flex because so much is event-driven and asynchronous: In
many cases, the data may not be there yet.

In the ServerErrors constructor, we iterate over the errorsXML XML with a for
each loop D. For each error in the errorsXML, we get its field attribute E with
the slightly weird errors.@field syntax (@ is for attribute). If the field attribute
is missing, we set it to the BASE field F, which is a const String key B we’re using
to store errors that aren’t for a specific field in the map. (We could use a separate
variable if we were being super-paranoid about a name collision.)

 Next, we check the _allErrors[field]. If it’s null, then this the first error for
that field, so we create a new Array containing a ValidationResult that has this
error.@message (the message attribute) as its message property G. If it’s non-null,
then we already have one or more messages in an Array, so we push a new Vali-
dationResult with the message property set to the error.@message onto it H. Both
these functions use a new utility function called createValidationResult J,
which returns a new ValidationResult 1) containing the message 1!. We create
this array of ValidationResults instead of Strings, because the ServerError-
Validator that we’ll create next needs to return an Array of ValidationResults
from its doValidation method.

 Next, we’ll create the ServerErrorValidator. Its job is to show these Server-
Errors on a field; see listing 7.13.

1!

Integrating Rails validation with Flex 2 validation 279
package com.pomodo.validators {
 import com.pomodo.validators.ServerErrors;
 import mx.validators.Validator;
 import mx.validators.ValidationResult;

 public class ServerErrorValidator extends Validator {
 /**
 * These are the ServerErrors that apply specifically to
 * this ServerErrorValidator.
 */
 private var _serverErrors:ServerErrors;

 /**
 * The field of the ServerErrors we are interested in.
 */
 public var field:String;

 /**
 * The ServerErrors we are interested in.
 */
 public function set serverErrors(
 pServerErrors:ServerErrors):void {
 _serverErrors = pServerErrors;
 validate();
 }

 public function ServerErrorValidator() {
 field = ServerErrors.BASE;//default to being on BASE
 _serverErrors = null;
 super();
 }

 override protected function doValidation(value:Object):
 Array {
 return _serverErrors.getErrorsForField(field);
 }
 }
}

The ServerErrorValidator extends Validator B. It stores a given ServerErrors
object in a private variable _serverErrors C, and it stores the name of the field in
the ServerErrors that it’s interested in in a public variable called field D. The field
defaults to the ServerErrors.BASE G. When the serverErrors are set E,
the inherited validate function F is called. This triggers the doValidation func-
tion H, which returns the result of calling the getErrorsForField function I in

Listing 7.13 app\flex\com\pomodo\validators\ServerErrorValidator.as

B

C

D

E

F

G

H

I

280 ITERATION 7

Validation
the _serverErrors. (Note that this currently has the limitation of showing only one
error message at a time in the callout.)

 Next, we’ll make some modifications to the AccountCreateBox to integrate the
ServerErrors and ServerErrorValidator; see listing 7.14.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cpv="com.pomodo.validators.*"
 width="100%" height="100%" label="Create Account">
<mx:Metadata>
 [Event(name="accountCreate",
 type="com.pomodo.events.AccountCreateEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.events.ValidationResultEvent;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.validators.ServerErrors;

 [Bindable]
 private var _serverErrors:ServerErrors;

 private function createAccount():void {
 svcAccountCreate.send();
 }

 private function handleAccountCreateResult(
 event:ResultEvent):void {
 Pomodo.debug(
 "AccountCreateBox#handleAccountCreateResult");
 var result:Object = event.result;
 if (result == "error") {
 Alert.show("Your account was not created.",
 "Error");
 } else {
 dispatchEvent(new AccountCreateEvent(XML(result)));
 var resultXML:XML = XML(result);
 Pomodo.debug(resultXML.toXMLString());
 if (resultXML.name().localName == "errors") {
 Alert.show(
 "Please correct the validation errors " +
 "highlighted on the form.",
 "Account Not Created");
 _serverErrors = new ServerErrors(resultXML);
 } else {
 dispatchEvent(

Listing 7.14 app\flex\com\pomodo\components\AccountCreateBox.mxml

B
C

D

E

F

G
H

I
J

1)

1!

Integrating Rails validation with Flex 2 validation 281
 new AccountCreateEvent(XML(result)));
 }
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcAccountCreate"
...
 </mx:HTTPService>
 <mx:EmailValidator id="emailValidator" source="{emailTI}"
 property="text"/>
 <cpv:ServerErrorValidator
 id="loginSV"
 field="login"
 listener="{loginTI}"
 serverErrors="{_serverErrors}"/>
 <cpv:ServerErrorValidator
 id="emailSV"
 field="email"
 listener="{emailTI}"
 serverErrors="{_serverErrors}"/>
 <cpv:ServerErrorValidator
 id="passwordSV"
 field="password"
 listener="{passwordTI}"
 serverErrors="{_serverErrors}"/>
 <cpv:ServerErrorValidator
 id="passwordConfirmationSV"
 field="password_confirmation"
 listener="{confirmPasswordTI}"
 serverErrors="{_serverErrors}"/>
 <mx:Form labelWidth="150">
...
 </mx:Form>
</mx:VBox>

We add an XML namespace cpv for our com.pomodo.validators B. I like to keep
all my xmlns declarations together, so I moved the width attribute C. We also add
some imports D and create a _serverErrors variable for ServerErrors E.

 Next, we modify the handleAccountCreateResult function. We output a
debug message F and then delete the old code G. Then, we cast the result to
XML (it will always be XML since we’re using a resultFormat of e4x) and store it
in a resultXML variable H and debug that variable I. The resultXML could
either be the XML for the new user or the XML for the errors. To distinguish
between them, we check the resultXML.name().localname J. It’s a good idea to

1@

1#

1$

1%

282 ITERATION 7

Validation
use the localname (assuming we’re calling our own service) to avoid having to
check and compare namespaces. If the localName is "errors", the XML is for
errors, so we pop up an Alert dialog 1) and then create a new ServerErrors
object out of the resultXML and assign it to the _serverErrors 1!. This triggers
all the bindings in the various ServerErrorValidators 1@–1%, which all have
their serverErrors property bound to the _serverErrors variable. Each Server-
ErrorValidator is for a different TextInput and specifies a different field (of the
errors from Rails) that it’s interested in and a different listener (Flex component)
that cares about the validation errors.

 That’s it. It’s fairly straightforward, given how impressive and usable the end
result is.

 Save, rebuild, reload, and try to create an account with Username ludwig,
Email lvb@pomodo.com, Password foo, and Confirm Password bar (see figure 7.8).

Figure 7.8 Alert dialog above validation errors

Integrating Rails validation with Flex 2 validation 283
Click OK, and drag the Debug Console up to see the error messages as XML (see
figure 7.9).

 Mouse over the different fields on the Create Account panel to see the various
error messages returned from Rails correctly associated with their fields. For
example, the login error is shown in figure 7.10.

NOTE Validating the uniqueness of an email address is probably a privacy viola-
tion of the person owning that email address: It confirms to a random
stranger that this email address uses your site. Think before you do this.
(I’d never thought of this until I saw an article online, but I can’t remem-
ber or find where. If you’re the originator of this idea: thank you.)

Note that the Password field will show only one error in the callout, not both of
them.

Figure 7.9 Debug console showing error messages as XML

Figure 7.10
Debug console showing
error messages as XML

Clearing server errors
Currently, validation errors in the various ServerErrorsValidators will only
clear the next time the _serverErrors variable is set (because the Server-
ErrorValidator class displays the _serverErrors). In our case, this is the
next time the handleAccountCreateResult function gets called.

284 ITERATION 7

Validation
7.6 Flex validators revisited
Flex validators revisited Now that we have the Rails errors displaying in Flex, let’s add more validators to

the Flex side so we can prevent these errors from happening. This way, there’s less
load on the server and a more responsive UI.

 While we’re at it, we’ll add a Terms of Service button that shows an alert dis-
playing the terms of service. We’ll also add an “I agree to the terms of service”
check box and logic to ensure that it’s checked before the Create Account button
can be clicked.

 We’ll start by creating a PasswordConfirmationValidator that will ensure that
the password confirmation matches the password (see listing 7.15).

package com.pomodo.validators {
 import mx.validators.Validator;
 import mx.validators.ValidationResult;

 public class PasswordConfirmationValidator
 extends Validator {
 /**
 * The password being compared to the confirmation.
 */
 public var password:String;

 public function PasswordConfirmationValidator() {
 super();
 }

 override protected function doValidation(
 passwordConfirmation:Object):Array
 {
 //We call base class doValidation() to get the
 //required logic.
 var results:Array =

Listing 7.15 app\flex\com\pomodo\validators\PasswordConfirmationValidator.as

Clearing server errors (continued)

The TextInputs remain highlighted in red with the error callouts on mouse-
over even after you’ve modified their contents, and they remain this way until
we submit the form again.

It’s debatable whether this should be considered a bug or feature; if you
think it’s a bug, you can explicitly handle change events on the various Text-
Inputs that have ServerErrorsValidators associated with them.

B

C

D

Flex validators revisited 285
 super.doValidation(passwordConfirmation);

 // Compare password and passwordConfirmation fields.
 if (password != passwordConfirmation) {
 results.push(
 new ValidationResult(
 true,
 "password_confirmation",
 "passwordDoesNotMatchConfirmation",
 "The password does not match the confirmation."));
 }
 return results;
 }
 }
}

This Validator is straightforward. Its doValidation function C takes a password-
Confirmation Object (a String, we hope). It calls super.doValidation(pass-
wordConfirmation) D to trigger the logic that adds a validation error if the field
is required and the passwordConfirmation is empty. Because we want to compare
the passwordConfirmation to a password, we create a public variable called pass-
word B that we can compare this password to. (It doesn’t need to be [Bindable],
because we’re checking it explicitly in a function, not in response to it changing.)
Then, in doValidation, we do a comparison E; if the passwordConfirmation isn’t
equal to the password, we push an error (ValidationResult) F onto the results
array. Finally, we return the results G.

 Next, we’ll modify the AccountCreateBox to take advantage of our new client-
side validation functionality; see listing 7.16.

...
 import mx.controls.Alert;
 import mx.events.ValidationResultEvent;
 import mx.rpc.events.ResultEvent;
 import mx.validators.Validator;
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.validators.ServerErrors;

 [Bindable]
 private var _serverErrors:ServerErrors;

 private function createAccount():void {
 svcAccountCreate.send();
 }

Listing 7.16 app\flex\com\pomodo\components\AccountCreateBox.mxml

E

F

G

B

C

286 ITERATION 7

Validation
 private function handleAccountCreateResult(
 event:ResultEvent):void {
...
 }

 private function validateAndSubmit():void {
 var results:Array = Validator.validateAll([
 usernameValidator,
 emailValidator,
 passwordValidator,
 passwordConfirmationValidator]);
 if (results.length > 0) {
 Alert.show("Please correct the validation errors " +
 "highlighted on the form.",
 "Account Not Created");
 return;
 }
 svcAccountCreate.send();
 }

 private function showTOS():void {
 Alert.show(
 "The first rule of pomodo is: Don't talk about " +
 "pomodo. The second rule of pomodo is: Don't " +
 "talk about pomodo.", "Terms of Service");
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcAccountCreate"
...
 </mx:HTTPService>
 <mx:EmailValidator id="emailValidator" source="{emailTI}"
 property="text"/>
 <mx:StringValidator
 id="usernameValidator"
 source="{loginTI}"
 property="text"
 required="true"
 maxLength="80"/>
 <mx:StringValidator
 id="passwordValidator"
 source="{passwordTI}"
 property="text"
 required="true"
 minLength="4"
 maxLength="40"/>
 <cpv:PasswordConfirmationValidator
 id="passwordConfirmationValidator"
 password="{passwordTI.text}"
 source="{confirmPasswordTI}"

D
E

F
G

H

I

J

1)

1!

1@

Flex validators revisited 287
 property="text"
 required="true"/>
 <cpv:ServerErrorValidator
 id="loginSV"
 field="login"
 listener="{loginTI}"
 serverErrors="{_serverErrors}"/>
...
 <mx:Form labelWidth="150">
...
 <mx:FormItem required="true" label="Confirm Password">
 <mx:TextInput id="confirmPasswordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:LinkButton label="Terms of Service"
 click="showTOS()"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:CheckBox id="tosCB"
 label="I agree to the terms of service"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="createAccountButton"
 label="Create Account"
 toolTip="{tosCB.selected ? '' :
 ➥'You must accept the terms of service.'}"
 enabled="{tosCB.selected}"
 click="validateAndSubmit()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

We start by adding an import B. Next, we delete the createAccount function C,
because it’s being replaced by the validateAndSubmit D function. Inside vali-
dateAndSubmit, we call Validator.validateAll E with an Array of the different
client-side validators we have (we don’t include the ServerErrorValidators,
because those are only used to display errors from Rails). If any of these validators
returns an error, it will be included in the results Array returned by validateAll,
so we can test whether that Array’s length F is greater than 0 to see if there was
an error. If so, we pop up an alert dialog G telling the user to fix the errors, and
we return H without doing the service call; if it’s false, we do the service call, which
attempts to create the new account I. At this point, the Rails validations run and
come back to the client with errors if there were any errors on the Rails side. If
there were Rails validation errors, they’re shown by the ServerErrorValidators
for the fields they are associated with.

1#

1$

1%

1^
1&

288 ITERATION 7

Validation
NOTE The really neat thing is this: In both cases, an alert dialog is popped up
with the same title and error message. There is no distinction to the user
whether it’s a client error or a server error—it’s all just validation. And
the error highlighting and callouts make finding and fixing the errors so
easy that users will be less inclined to give up and leave.

Next, we create the showTOS function J, which shows a cheesy alert box.
 Next, we create three new Validators: a standard mx:StringValidator for the

username 1), another mx:StringValidator for the password 1!, and our custom
cpv:PasswordConfirmationValidator 1@ for the password confirmation. Note
that the String validator can enforce minimum length, maximum length, and so
on. We bind the password property of our PasswordConfirmationValidator to
the text property of the newAccountPasswordTI. (Hooray for Flex 3! We can’t do
this in Flex 1.5.)

 Now, we create a LinkButton to show the terms of service 1# by calling showTOS
on click. We then create a CheckBox that asks the user to accept the terms of
service 1$. We modify the createAccountButton definition, binding its enabled
property 1^ to the tosCB.selected value, in order to disable the Create Account
button if the tosCB isn’t selected. We also bind the toolTip property 1% to an expres-
sion that evaluates to the empty string if the tosCB is selected and to a stern order
to accept the terms of service if the tosCB isn’t selected. This will make our lawyers
happy. We also modify the button to call 1& our new validateAndSubmit function.

Q. Why did we include code to enable/disable the Create Account button as part
of an iteration on validation?

A. This is subtle: Flex validation is so good that many programmers fall into the
trap of thinking it should be used to do everything. For example, we want to show
a validation error on the terms of service check box if it isn’t checked and the
user clicks the Create Account button.
That sounds like a fine idea—but it’s not.

Validation errors are an unfortunate occurrence, regardless of how good they
look. If our legal department tells us that a user isn’t allowed to create an ac-
count until they check a check box saying they’ve “read” some terms of service,
then rather than telling the user “Bad user! No cookie!” if they don’t check the
check box before clicking the button, it would presumably be much better to pre-
vent them from clicking the button in the first place until they’ve checked the
check box. To prevent them from getting confused about why the button is dis-
abled, we add the helpful tooltip.

Note also that if our legal department told us to, we could prevent the “I
agree” check box from being clickable until the Terms of Service link was clicked.
It would just be another flag and another tooltip.

Flex validators revisited 289
...
 <mx:Spacer height="10"/>
 <mx:Accordion width="440" height="330">
 <pom:AccountCreateBox/>
...

One more thing: We need to modify the
SplashBox to accommodate our bigger
AccountCreateBox; see listing 7.17.

 That’s it.
 Enough talk; let’s run the app. Save,

rebuild, and reload; see figure 7.11.
 Note that the Create Account but-

ton is disabled.
 Try to create an account with User-

name ludwig, Password foo, Confirm
Password bar. We have to check the “I
agree” check box (see figure 7.12).

 Note that the Username field isn’t
highlighted in error, because we
haven’t yet made a service call. If we
mouse over the Password field, we see a
validation error that was added by the
StringValidator (see figure 7.13).

 If we mouse over the Confirm Pass-
word field, we see the validation error
added by our custom PasswordConfir-
mationValidator (see figure 7.14).

 Play with the form a bit. Note how the
Create Account button disables itself
and shows the tooltip if we uncheck the
check box (see figure 7.15).

 That’s it!

Listing 7.17 app\flex\com\pomodo\components\SplashBox.mxml

Figure 7.11 A TOS and a Disabled Create
Account Button

Figure 7.12 Client-side validation galore

Figure 7.13 StringValidator in action

290 ITERATION 7

Validation
7.7 Keeping our tests passing
Keeping our tests passing Finally, let’s run the tests again; see listing 7.18.

c:\peter\flexiblerails\current\pomodo>rake
...
Started
................
Finished in 1.109 seconds.

16 tests, 29 assertions, 0 failures, 0 errors
...
Started
...................................
Finished in 2.234 seconds.

35 tests, 65 assertions, 0 failures, 0 errors
...

c:\peter\flexiblerails\current\pomodo>

Everything still works. Hooray!

7.8 Summary
Summary Both Flex and Rails feature validation support as an integral part of the frame-

work. This is good, because doing something wrong is an integral part of how users
will use your application. The great thing is that integrating this validation sup-
port is easy. With little effort, you can use the built-in validation support in Flex
and Rails to create user-friendly applications that deal with error conditions in a
much better way than is the norm today.

Listing 7.18 Output

Figure 7.14 PasswordConfirmation-
Validator in action Figure 7.15 Happy lawyers!

The code at this point is saved as the iteration07 folder.

Exercises for the reader 291
 Note too that Flex has formatters that can massage user input into a form that
is acceptable. Read the “Formatting Data” chapter in the Flex 3 Developer’s Guide
for details. The interactions between formatters, validators, bindings, and so on
can be complex if we’re not careful. For now, I’d just like to warn you to think
carefully about how much you should modify and validate user input—don’t
make your users frustrated and angry while ostensibly trying to help them.

 The “where should validation live” question is interesting. Rails puts all its vali-
dation in the model, which is a good choice. However, it leads to some things that
are odd. For example, there is no password_confirmation field in the users table,
so what is password_confirmation doing in the model? And what are some of the
special-case helper methods like validates_confirmation_of doing in the User
model? Is this polluting the User model with constructs that don’t belong there,
merely to make HTML form validation easier? Because Flex has its own validation
framework and can validate that a password confirmation field matches the pass-
word field before Rails is even involved, should we remove the password-confirma-
tion stuff from the Rails side entirely? And if we’re going to do this, why wouldn’t
we do the equivalent thing with JavaScript when we’re using standard Rails? Oh,
but the user might have disabled JavaScript, and so forth. This is a good argument
to have—preferably with beer involved.

 We could go on and on about validation, but we’re rapidly hitting the point of
diminishing returns. We’ve come a long way in this iteration, and the experience
we’ve gained from it should be applicable however we want to use validation in
the future. There won’t be any more validation in the book.

7.9 Exercises for the reader
Exercises for the reader

1 Hook up the Create Account button to be disabled when any validator has
failed. When would you need to re-enable it?

2 Note how the PasswordConfirmationValidator is smart enough to update
itself when the password confirmation changes, but not smart enough to
update itself if we change the password field and click somewhere other
than in the Confirm Password field. How would you fix this? (Hint: public
function set.)

3 Build a custom validator that validates the username against usernames in the
database by calling a method on the Rails side that returns whether a given
username exists. How should that validator be triggered: whenever the user
types, or only when the username field loses focus? Is this validator infallible?

292 ITERATION 7

Validation
4 Implement support for multiple server errors in validation error callouts.

5 (This is also an exercise for the author!) Should we make a standard Flexi-
ble Rails plugin instead of “monkeypatching” application.rb, which pro-
vides the following extensions to Rails for better interoperability with Flex
(and other rich clients):

■ A to_xml_full method (or a parameter to the to_xml method instead)
for ActiveRecord::Errors to include the field attribute

■ A way to turn off dasherize in Hash, Array, and Serialization

Part 3

Refactoring

Now that we’ve made substantial progress in our application, we’ve
added enough code that the design issues are starting to become apparent.
First, we notice that we have lots of data and behavior, but we aren’t follow-
ing a centralized approach—everything feels a little scattered. We’ll address
this by refactoring the code to use the Cairngorm framework, which is an
application framework for Flex.

 Next, we’ll address the issue that there is no object model on the client,
just a bunch of XML. We’ll address this by doing a refactoring in which we
add an object model.

 This part includes two iterations:

■ Iteration 8—“Refactoring to Cairngorm”
■ Iteration 9—“Holding state on the client properly”

At the end of it, we’ll have a much better understanding of design in Flex and
of the options available to us for data exchange between Flex and Rails. Doing
the refactoring to decouple the object model from its method of transport
(currently XML) will enable us to consider using an alternate method of trans-
port. Two more efficient choices we could use are JSON and RubyAMF.

 In the next and final part, we’ll first finish the application and then refac-
tor again (to RubyAMF) because it uses the binary AMF protocol and thus has
the most promise of efficiency improvements. Then, as an encore, we’ll con-
vert the application to being an AIR application.

Refactoring to Cairngorm
—Steven Webster1

First, resist the opportunity to scatter state all over your
application as strings, numbers, Booleans, and all manner of
other primitive objects.

 —Steven Webster1

1http://www.adobe.com/devnet/flex/articles/cairngorm_pt2_print.html.
295

296 ITERATION 8

Refactoring to Cairngorm
In this iteration, we’ll refactor the Flex code to use Cairngorm with HTTPService.
We’ll use Cairngorm in a slightly nonstandard way, to be slightly less verbose and
more aligned with the design preferences of Rails. (This book won’t attempt to
explain “How to Use Cairngorm in the Standard Way.” (Of course, there’s not
really a “standard way” any more, now that Cairngorm has been split into Cairn-
gorm and Cairngorm Enterprise.) To learn the standard way of using Cairngorm,
see the Cairngorm documentation.)

 Note that Cairngorm is tough to explain in both an iterative and enjoyable fash-
ion, because it has so many moving parts that work together. Furthermore, we’re
going to use some utility classes to make our use of Cairngorm less verbose. Rather
than do the refactoring in this iteration iteratively, I’ll present the finished result of
the refactoring and explain the code all at once. As you see more and more of the
code, you’ll see how it all fits together—so don’t worry if why we’re doing something
isn’t 100% apparent at the time: By the end of the iteration, it will be.

 Above all, keep in mind that Cairngorm is a Model-View-Controller (MVC)
framework. As we create the various files, think about where they fit in the MVC
pattern.

8.1 Background and setup

One of the biggest problems with Flex is that it makes writing code almost too
easy.2 How can this be a problem?

 Well, it’s possible to get a lot done without giving any thought to your applica-
tion’s design (earlier versions of this book demonstrated this by building a lot of
functionality in one file: Pomodo.mxml. However, the process of refactoring it was
tedious reading, so I dropped it). This can be dangerous: If other people (such as
your client or marketing department) see a prototype running, they may get con-
fused into thinking you have a fully functional app instead of an elaborate mock-up.

NOTE There is a fairly famous “Napkin Look & Feel” (http://napkin-
laf.sourceforge.net/) for Java Swing, which is a pluggable look and feel
that replaces the default (ugly) Metal, ahem, Java look and feel with a
look and feel that makes the UI look like it was drawn on the back of a

2 I forget where I first saw this argument made about programming in general. A Google search turned
up the following articles, which are good reads: http://butunclebob.com/ArticleS.MichaelFeathers.
IsProgrammingTooEasy and http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html.

http://napkinlaf.sourceforge.net/
http://napkinlaf.sourceforge.net/
http://napkinlaf.sourceforge.net/

Background and setup 297
napkin. The idea is to make the UI look like the mock-up that it is, so
no one gets the wrong impression. There is a recent project to create a
Napkin Skin in Flex (http://onreflexion.blogspot.com/2007/01/nap-
kin-skins-in-flex_24.html) to achieve the same effect.

Another problem is that if we develop iteratively without any refactoring (or think-
ing), we can end up with Rube Goldberg-like contraptions in our MXML:

…this variable gets set, which triggers this binding, which updates this model
element, which in turn updates this model element, which triggers this function,
which dispatches this event, which…

Because, once again, Flex is so easy, it’s possible to have somewhat working code
even with a terrible muddle like this. Then one morning we go to add a small
feature, get bogged down, and upon taking a fresh look at the code, realize it’s
just a mess!

 There are many solutions to this problem. One fairly popular solution is Cairn-
gorm.

8.1.1 Cairngorm history

Cairngorm was created by Steven Webster and Alistair McLeod, the two cofounders
of a consulting firm called iteration::two, which was based in Scotland. They were
acquired by Macromedia, which was then acquired by Adobe. (Steven and Alistair
are famous in Flex circles for having written the definitive book on Flex 1.0, Devel-
oping Rich Clients with Macromedia Flex.)

 Cairngorm is described by its authors as a microarchitecture: an architectural
framework, or collection of design patterns. Essentially, just as Rails embodies
many of DHH’s opinions about how to write Ruby web applications (convention
over configuration, DRY, and so on), Cairngorm embodies many of Steven Web-
ster’s and Alistair McLeod’s opinions about how to write Flex applications.
Because their book helped many developers (myself included) to learn Flex,
these opinions have a lot of clout. And because Steven and Alistair are now at
Adobe (and Cairngorm is at Adobe Labs), Cairngorm has gained even more
mindshare3 among Flex developers because of its somewhat “official” status.

3 See http://jessewarden.com/2007/01/cairngorm-vs-joe-berkovitzs-mvcs.html for a comparison of
Cairngorm and MVCS. Another alternative framework to consider is PureMVC: http://puremvc.org/.

http://onreflexion.blogspot.com/2007/01/napkin-skins-in-flex_24.html
http://onreflexion.blogspot.com/2007/01/napkin-skins-in-flex_24.html

298 ITERATION 8

Refactoring to Cairngorm
8.1.2 Do you need to use Cairngorm?

No.
 Steven Webster wrote a blog post entitled “Why I think you shouldn’t use

Cairngorm,”4 which lists some prerequisites for using Cairngorm. Essentially,
Cairngorm can be overkill for small, single-developer applications, and it can be
confusing if you’ve never built a complete Flex application before. (We’re up for
the challenge, though.)

 If, at the end of this iteration, you decide that you don’t like Cairngorm—per-
haps, as a Rails developer, it feels too much like Java for your tastes—don’t worry:
You can develop complete, innovative Flex applications without using Cairngorm.

 That said, Cairngorm can make it easier to build larger Flex applications in a
consistent way. Although you can roll your own framework, any developer new to
your team will have to learn that framework—whereas there is a decent chance
that they will already have been exposed to Cairngorm. Even if they don’t know
Cairngorm, they can learn it from its documentation—so this is less documenta-
tion for you to write and fewer emails and instant messages for you to answer.
(This is good.)

 Unfortunately, the Cairngorm documentation is sparse and outdated. The site
http://www.cairngormdocs.org/ is devoted to collecting links to Cairngorm docu-
mentation and examples. In terms of tutorial documentation, the best starting
place is the six-part article series that Steven Webster wrote for the Flex Developer
Center. Part 1 is at http://www.adobe.com/devnet/flex/articles/cairngorm_pt1_
print.html, and each part links to the next one. The articles develop an application
called CairngormStore, which is a simple online store. These articles are rather out-
dated: At the time of this writing, Cairngorm is at version 2.2.1; the articles refer to
version 0.99. However, they are a good way to learn the theory of Cairngorm, even
if many of the details have changed.

 I’m going to assume that if you’re interested in using Cairngorm, you’ve read
these articles or will read them, as well as other good5 articles you find. As such, I
won’t duplicate their content. This book won’t include a 5–10 page “theory of
Cairngorm” section. Instead, in this iteration we’ll learn Cairngorm by doing,
refactoring pomodo to using Cairngorm 2.2.1 with Rails via HTTPService.

 Let’s dive in and learn Cairngorm.

4 http://weblogs.macromedia.com/swebster/archives/2006/08/why_i_think_you.cfm.
5 http://weblogs.macromedia.com/auhlmann/archives/2006/06/cairngorm_sampl.cfm and http://

weblogs.macromedia.com/auhlmann/archives/2007/02/creating_a_popu.cfm.

http://www.cairngormdocs.org/

Background and setup 299
8.1.3 Downloading Cairngorm 2.2.1

We’ll start by downloading Cairngorm 2.2.1. It’s currently found at the following
URL: http://labs.adobe.com/wiki/index.php/Cairngorm:Cairngorm2.2.1:Down-
load. Download the binary, source, and documentation zip files from the three
separate links.

NOTE Download Cairngorm 2.2.1, not Cairngorm Enterprise 2.2.1. (Cairngorm
Enterprise is for LiveCycle Data Services.)

Unzip these files into their own folders. It doesn’t matter where we put them, but
the book assumes that we put them in the parent directory of the current direc-
tory (I use c:\peter\flexiblerails\current\pomodo for my development, so I down-
loaded the files to c:\peter\flexiblerails and unzipped them there).

8.1.4 Importing the Cairngorm sources into Flex Builder

Next, we’ll import the Cairngorm project into Flex Builder so that we can easily
browse it. (The zip file includes a Flex Builder .project file.) In Flex Builder,
choose File > Import > Other. We see the dialog shown in figure 8.1.

 Choose Existing Projects into Workspace, and click Next. In the Import dialog,
browse to the Cairngorm2_2_1-src directory that was created when we unzipped the
Cairngorm 2.2.1 sources. We know we found it when we see the Cairngorm project
show up selected in the Projects list (see figure 8.2).

Figure 8.2 Importing Cairngorm sourcesFigure 8.1 Import dialog

300 ITERATION 8

Refactoring to Cairngorm
Click Finish to import the project. We’re
warned that an old version of Flex
Builder was used to create this project.
Leave Use Default SDK selected, and
click OK. We see the dialog shown in fig-
ure 8.3.

 Once the project is imported, we can
expand it and open the ReleaseNotes.txt
file. We can also browse the source code,
starting by expanding the com folder.

 There isn’t much code, so you
should read it all at some point.

8.1.5 Getting and running the ModifiedCairngormStore

NOTE This subsection is optional. It’s here because the ModifiedCairngorm-
Store is a really good resource to start learning about Cairngorm.

Next, we’ll download the ModifiedCairngormStore from Chen Bekor’s blog at
http://ntier.wordpress.com/2006/12/02/modified-cairngorm-store-uploaded/.
Click on The File link (http://ntier.wordpress.com/files/2006/12/modified-
cairngormstore.doc). After downloading, change the file extension to .zip from
.doc, and unzip the zip file. Inside the ModifiedCairngormStore directory is a
readme.txt file that contains simple instructions for getting the ModifiedCairn-
gormStore running.

 Because we’re using Flex 3, we need to replace the Cairngorm.swc the Modi-
fiedCairngormStore uses with the Cairngorm 2.2.1 swc. For me, this meant copy-
ing C:\peter\flexiblerails\Cairngorm2_2_1-bin\bin\Cairngorm.swc and pasting it
into C:\peter\flexiblerails\modifiedcairngormstore\ModifiedCairngormStore\lib,
replacing the 300+K file with this approximately 11K file. (The smaller file size is
due to the fact that there is no longer a dependency on Flex Data Services (now
LiveCycle Data Services) in the non-Enterprise version of Cairngorm.

 Next, import the ModifiedCairngormStore into Flex Builder, using the same
dialogs as the Cairngorm sources (the root directory I selected was C:\peter\flexi-
blerails\modifiedcairngormstore\ModifiedCairngormStore). Then, do a clean
build and run the Main.mxml application. We see the screen shown in figure 8.4.

 Play with the application a bit, selecting products, adding them to the cart,
switching views, and checking out.

 The ModifiedCairngormStore is the CairngormStore application that Steven
Webster developed in his six-part article series, with a couple changes: It’s

Figure 8.3 Choosing SDK for Cairngorm

Background and setup 301
updated to Flex 2 (and works in Flex 3) and Cairngorm 2.1 (and works with
Cairngorm 2.2.1, as we just showed), and the LiveCycle Data Services calls are
stubbed out with mocks. This way, we don’t need to install LiveCycle Data Services
and compile Java code to play with the CairngormStore. This fits our needs per-
fectly—we’re using Rails instead of LiveCycle Data Services and Java, after all. This
still lets us read and play with the code in conjunction with reading the articles.
And because the code is current and the articles are outdated, this lets us see how
Cairngorm has changed from version 0.99 to version 2.1.

 Over the course of this iteration, pomodo will somewhat resemble the Modi-
fiedCairngormStore, because they will both be Cairngorm applications—so if you
want a sneak preview of where we’re going, look at the ModifiedCairngormStore
now. Also, note that ModifiedCairngormStore adheres closer to the standard way
of using Cairngorm than we will.

Figure 8.4 The ModifiedCairngormStore

302 ITERATION 8

Refactoring to Cairngorm
8.1.6 Adding Cairngorm to pomodo

Now that we’ve downloaded Cairngorm and played with an application that uses it,
let’s add Cairngorm to pomodo. We’ll start by adding the Cairngorm SWC into the
pomodo project. Create a directory called lib inside pomodo\app\flex, and paste the
approximately 11K Cairngorm.swc file from the Cairngorm bin directory (for me,
this was C:\peter\flexiblerails\Cairngorm2_2_1-bin\ bin) into it. (We can also build
Cairngorm from source, if we downloaded it ourselves. If you’re doing this, you
don’t need my help: Do that, and then either paste the SWC or make the pomodo
project depend on the Cairngorm one.)

 Next, right-click the pomodo project in the Navigator, and choose Properties.
Choose the Flex Build Path and the Library Path tab. Click the Add SWC button to
add the Cairngorm SWC to our library path. (We’ll browse to the location of the
Cairngorm.swc file inside our pomodo\app\flex\lib directory in our filesystem.)
Once we do this, the dialog should look like figure 8.5.

 Click OK. We see the dialog shown in figure 8.6, which shows the Cairngorm
SWC added to the Library path.

 Click OK. The Cairngorm classes now
show up in Flex Builder. For example,
open Pomodo.mxml, and type the follow-
ing: import com.adobe.cairngorm. When
we type the last period, we see a tooltip
showing the Cairngorm classes. This con-
vinces us that Flex Builder knows about
them, so we have a reasonable expectation

Exercise for the ambitious reader
Modify the ModifiedCairngormStore to talk to a Rails backend instead of the mocks.

Start by copying and pasting the ModifiedCairngormStore directory, renaming
it RailsCairngormStore.

Next, modify the .project file to rename the <name> element inside the <pro-
jectDescription> to be RailsCairngormStore instead of ModifiedCairngorm-
Store. Then, import the RailsCairngormStore project into Flex Builder and go from
there. You’ll need to create a new Rails application with the rails command,
and so on.

Figure 8.5 The Cairngorm.swc path (using
UNIX path, even on Windows)

Background and setup 303
of being able to compile and run once we start depending on Cairngorm. Now,
close Pomodo.mxml without saving.

8.1.7 Creating the standard directories

The last setup task we’ll do is to create most of the standard directories that are used
in Cairngorm applications inside pomodo. Inside the app\flex\com\pomodo direc-
tory, create the following directories: business,6command, control, and model.

Figure 8.6 Cairngorm added to Flex Builder 3

Q. Didn’t you forgot the event and vo packages?

A. No, I didn’t forget them—I’m omitting them. We aren’t going to create custom
event subclasses of CairngormEvent—instead, we’ll go against the officially
recommended Cairngorm convention and dispatch plain CairngormEvents ev-
ery time.

304 ITERATION 8

Refactoring to Cairngorm
8.2 Cairngorm event sequence overview

Before we begin, I’ll present a brief overview of the typical sequence of events in
how we’ll use Cairngorm. It refers to a bunch of classes we haven’t created yet but
should help you understand what follows. (If it doesn’t make sense now, don’t
worry—the goal isn’t for it to completely make sense, but for it to make future sec-
tions make more sense when you read them):

1 A component (for example, TaskCreateBox) calls CairngormUtils.dis-
patchEvent with an event type specified in EventNames (which is a bunch of
String constants).

2 Because of the PomodoController having called addCommand with that event
type from EventNames, a command (for example, com.pomodo.command.
CreateTaskCommand) has its execute method called.

3 This command creates a new business delegate (for example, com.

pomodo.business.TaskDelegate), which contains functions related to a
given Rails controller. It passes itself in as the IResponder so that when the

6 Cairngorm uses the term Value Object instead of the term Data Transfer Object (DTO) or Transfer Object (TO)
because it was conceived before those terms became popular. See http://www.adobe.com/devnet/
flex/articles/cairngorm_pt2_print.html for details.

Q. Didn’t you forgot the event and vo packages? (continued)

A. We’ll set the data property to an anonymous object containing whatever we
need. To me, the reduction in the amount of code is preferable to more type safety
(especially on a smaller project such as this). On a larger project with lots of de-
velopers, the balance may be different.

Regarding creating a vo package for Value Objects,6 we’ll be using a proper
object model in the next iteration—but as you’ll see, we’ll store those classes in
the model folder. Adding an object model is something that should be done sep-
arately, especially if we want to do it properly. (We’ll do this in the next iteration.
Earlier versions of this book did this right away, but in a half-baked kind of way:
The tasks had project_id and location_id instead of project and location ref-
erences, and the projects and locations had no references to their tasks. I think
it’s more instructive and more in the spirit of refactoring to use XML in the first
pass, because that’s what we were using beforehand. We can—and do—refactor
again afterward.)

http://www.adobe.com/devnet/flex/articles/cairngorm_pt2_print.html

Creating com.pomodo.model.PomodoModelLocator 305
business delegate is done, the command’s result or fault function will be
invoked. Note that each Delegate corresponds to a Rails controller.

4 In typical Cairngorm applications, the business delegate retrieves services
from a Services.mxml file and uses them. We don’t do this. Instead, our
business delegates themselves delegate all their work (a very businesslike
thing to do) to the ServiceUtils.send() public static method. This
method invokes a RESTful URL (with a _method of "PUT" or "DELETE" if nec-
essary) that invokes the appropriate Rails controller action. It also attaches
the responder to the service call, so that its result or fault handler will be
triggered accordingly.

5 When the service call returns, the result or fault handler of the command is
invoked accordingly. It does what it needs to do, such as making a state
change in the PomodoModelLocator, dispatching another CairngormEvent
with CairngormUtils.dispatchEvent, and so on.

That’s about as much explanation up front as is useful. Let’s see some code.

8.3 Creating com.pomodo.model.PomodoModelLocator

Let’s start by creating the PomodoModelLocator, shown in listing 8.1. A standard
Cairngorm application has one ModelLocator, which is a “single place where the
application state is held.”7 This listing contains a lot of code; but much of it is cut
and pasted from MainBox.mxml, so we can be selective in our explanation. Keep
in mind that we’re grabbing the state from all over the app and putting it here.
The app will then bind to the variables in this file directly. This will save us from
passing around a bunch of variables.

package com.pomodo.model {
 import com.adobe.cairngorm.model.IModelLocator;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.XMLUtils;
 import com.pomodo.validators.ServerErrors;

 import mx.collections.ArrayCollection;
 import mx.collections.ICollectionView;
 import mx.collections.IViewCursor;

7 http://www.adobe.com/devnet/flex/articles/cairngorm_pt2_print.html.

Listing 8.1 app\flex\com\pomodo\model\PomodoModelLocator.as

306 ITERATION 8

Refactoring to Cairngorm
 import mx.collections.XMLListCollection;

 [Bindable]
 public class PomodoModelLocator implements IModelLocator {
 public static const NO_PROJECT_XML:XML =
 <project>
 <name>- None -</name>
 <id type="integer">0</id>
 </project>;

 public static const NO_LOCATION_XML:XML =
 <location>
 <name>- None -</name>
 <id type="integer">0</id>
 </location>;

 public static const VIEWING_SPLASH_SCREEN:int = 0;
 public static const VIEWING_MAIN_APP:int = 1;

 public var user:XML;

 public var tasksXLC:XMLListCollection;

 public var projectIdMap:Object;

 public var locationIdMap:Object;

 public var projectsAndNoneXLC:XMLListCollection;

 public var locationsAndNoneXLC:XMLListCollection;

 public var accountCreateErrors:ServerErrors;

 public var workflowState:int = VIEWING_SPLASH_SCREEN;

 public var reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';

 public function get projectsXLC():XMLListCollection {
 return _projectsXLC;
 }

 public function set projectsXLC(setValue:
 XMLListCollection):void {
 _projectsXLC = setValue;
 projectsAndNoneXLC =
 getProjectsAndNone(_projectsXLC.source);

B
C

D

E

F

Creating com.pomodo.model.PomodoModelLocator 307
 _gotProjects = true;
 projectIdMap = {};
 projectIdMap[0] = NO_PROJECT_XML;
 var projectsCursor:IViewCursor =
 projectsXLC.createCursor();
 while (!projectsCursor.afterLast) {
 var project:XML = XML(projectsCursor.current);
 projectIdMap[project.id] = project;
 projectsCursor.moveNext();
 }
 listTasksIfMapsPresent();
 }

 public function get locationsXLC():XMLListCollection {
 return _locationsXLC;
 }

 public function set locationsXLC(
 setValue:XMLListCollection):void
 {
 _locationsXLC = setValue;
 locationsAndNoneXLC =
 getLocationsAndNone(locationsXLC.source);
 _gotLocations = true;
 locationIdMap = {};
 locationIdMap[0] = NO_LOCATION_XML;
 var locationsCursor:IViewCursor =
 locationsXLC.createCursor();
 while (!locationsCursor.afterLast) {
 var location:XML = XML(locationsCursor.current);
 locationIdMap[location.id] = location;
 locationsCursor.moveNext();
 }
 listTasksIfMapsPresent();
 }

 public function getProject(project_id:int):XML {
 if (projectIdMap == null) return null;
 return projectIdMap[project_id];
 }

 public function getLocation(location_id:int):XML {
 if (locationIdMap == null) return null;
 return locationIdMap[location_id];
 }

 private var _gotProjects:Boolean;

 private var _gotLocations:Boolean;

 private var _projectsAndNoneXLC:XMLListCollection;

G

H

I

J

1)

308 ITERATION 8

Refactoring to Cairngorm
 private var _locationsAndNoneXLC:XMLListCollection;

 private var _projectsXLC:XMLListCollection;

 private var _locationsXLC:XMLListCollection;

 private function getProjectsAndNone(projectsXL:XMLList):
 XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(projectsXL.copy());
 retval.addItemAt(NO_PROJECT_XML, 0);
 return retval;
 }

 private function getLocationsAndNone(
 locationsXL:XMLList):XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(locationsXL.copy());
 retval.addItemAt(NO_LOCATION_XML, 0);
 return retval;
 }

 private function listTasksIfMapsPresent():void {
 if (_gotProjects && _gotLocations) {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_TASKS);
 }
 }

 private static var modelLocator:PomodoModelLocator;

 public static function getInstance():PomodoModelLocator{
 if (modelLocator == null) {
 modelLocator = new PomodoModelLocator();
 }
 return modelLocator;
 }

 public function PomodoModelLocator() {
 if (modelLocator != null) {
 throw new Error(
"Only one PomodoModelLocator instance may be instantiated.");
 }
 _gotProjects = false;
 _gotLocations = false;
 _projectsXLC = null;
 _locationsXLC = null;
 }
 }
}

1!
1@

1#

1$

1%

1^

Creating com.pomodo.control.* 309
The [Bindable] annotation B on the class means that every public variable is
bindable. Note that PomodoModelLocator implements com.adobe.cairn-
gorm.model.IModelLocator C. IModelLocator is a marker interface: It has no
methods. (It does, however, have a comment explaining that classes implement-
ing it should be Singletons.) The PomodoModelLocator is a Singleton, so it creates
a static modelLocator 1$ that is retrieved with the getInstance function 1%. Note
that the Singleton pattern in ActionScript 3 is implemented in a cheesy way 1^,
because constructors can’t be private.

 We create a new variable called workflowState, which is an int E. The work-
flowState stores the state that the app is in. (Hazy memories of learning about
Discrete Finite Automata float around the author’s head.) For now, there are two
states D: VIEWING_SPLASH_SCREEN (the initial state) and VIEWING_MAIN_APP (the
state the app is in when a user logs in or a new user is created).

 We create setters for projectsXLC F and locationsXLC H. Both of these cre-
ate their respective map between project/location ids and the projects/locations
and then call GI listTasksIfMapsPresent 1!, which checks two flags 1@ to see
if both the projects and locations have been retrieved, and if so dispatches an
event 1# to trigger the listing of tasks. (We’ll look at CairngormUtils later, along
with the classes that do the commands and service calls.)

NOTE If working with XML and maps instead of an object model makes you
cringe, note that you can build an object model instead—and we’ll do so
in the next iteration.

We also move the getProject J and getLocation 1) utility functions.

8.4 Creating com.pomodo.control.*

Next, we create the control package. It will contain two files: EventNames and
PomodoController.

8.4.1 EventNames.as

First, we create EventNames.as; see listing 8.2. This isn’t a standard Cairngorm
class; instead, it’s particular to our “no CairngormEvent subclasses” approach.

package com.pomodo.control {
 public final class EventNames {
 public static const CREATE_LOCATION:String =
 "createLocation";
 public static const CREATE_PROJECT:String =

Listing 8.2 app\flex\com\pomodo\control\EventNames.as

310 ITERATION 8

Refactoring to Cairngorm
 "createProject";
 public static const CREATE_SESSION:String =
 "createSession";
 public static const CREATE_TASK:String = "createTask";
 public static const CREATE_USER:String = "createUser";

 public static const DESTROY_LOCATION:String =
 "destroyLocation";
 public static const DESTROY_PROJECT:String =
 "destroyProject";
 public static const DESTROY_TASK:String = "destroyTask";

 public static const LIST_LOCATIONS:String =
 "listLocations";
 public static const LIST_PROJECTS:String =
 "listProjects";
 public static const LIST_TASKS:String = "listTasks";

 public static const UPDATE_LOCATION:String =
 "updateLocation";
 public static const UPDATE_PROJECT:String =
 "updateProject";
 public static const UPDATE_TASK:String = "updateTask";
 }
}

This class lists all the event names, defining constants for each name. This ensures
that we won’t let a typo give us strange runtime behavior. I prefer this to using
Strings everywhere for another reason, too: It makes it easier to check that we
aren’t using an event name that is already being used.

NOTE We can pass Strings around without using constants—it’s a question of
“how much do you hate verbosity” versus “how much do you value safety”.
If we’re totally concerned about safety, we create custom events for each
event; if we totally hate verbosity, we skip this file. This approach is my
compromise.

These event names will be associated with commands, as we’ll see later.

8.4.2 PomodoController.as

Next, we create PomodoController, which extends FrontController; see list-
ing 8.3. A standard Cairngorm application has one FrontController subclass,
whose responsibility is to hook up the event names with the commands (which
we’ll see later). Typically, these event names come from the custom event sub-
classes; in our case, they come from EventNames.

Creating com.pomodo.control.* 311
package com.pomodo.control {
 import com.adobe.cairngorm.control.FrontController;
 import com.pomodo.control.EventNames;
 import com.pomodo.command.*;

 public class PomodoController extends FrontController {
 public function PomodoController() {
 initializeCommands();
 }

 private function initializeCommands():void {
 addCommand(EventNames.CREATE_LOCATION,
 CreateLocationCommand);
 addCommand(EventNames.CREATE_PROJECT,
 CreateProjectCommand);
 addCommand(EventNames.CREATE_SESSION,
 CreateSessionCommand);
 addCommand(EventNames.CREATE_TASK,
 CreateTaskCommand);
 addCommand(EventNames.CREATE_USER,
 CreateUserCommand);

 addCommand(EventNames.DESTROY_LOCATION,
 DestroyLocationCommand);
 addCommand(EventNames.DESTROY_PROJECT,
 DestroyProjectCommand);
 addCommand(EventNames.DESTROY_TASK,
 DestroyTaskCommand);

 addCommand(EventNames.LIST_LOCATIONS,
 ListLocationsCommand);
 addCommand(EventNames.LIST_PROJECTS,
 ListProjectsCommand);
 addCommand(EventNames.LIST_TASKS,
 ListTasksCommand);

 addCommand(EventNames.UPDATE_LOCATION,
 UpdateLocationCommand);
 addCommand(EventNames.UPDATE_PROJECT,
 UpdateProjectCommand);
 addCommand(EventNames.UPDATE_TASK,
 UpdateTaskCommand);
 }
 }
}

Listing 8.3 app\flex\com\pomodo\control\PomodoController.as

B
C

D

312 ITERATION 8

Refactoring to Cairngorm
We import EventNames B and all the commands C. (This is one case where the
.* import syntax is appropriate: We’ll always need all the commands.) Finally, we
call the inherited addCommand method D for each name + command combina-
tion. We’ll see the commands soon.

8.5 Adding CairngormUtils and ServiceUtils
to com.pomodo.util.*

Next, we’ll add two nonstandard classes that will simplify (without oversimplify-
ing) how we use Cairngorm: CairngormUtils and ServiceUtils.

8.5.1 CairngormUtils.as

First, we’ll create the CairngormUtils class; see listing 8.4. It isn’t as necessary
now as it used to be (because CairngormEvent now has a dispatch() method, but
it still saves some typing, so we’ll do it).

package com.pomodo.util {
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.adobe.cairngorm.control.CairngormEventDispatcher;

 public class CairngormUtils {
 public static function dispatchEvent(
 eventName:String, data:Object = null):void
 {
 var event : CairngormEvent =
 new CairngormEvent(eventName);
 event.data = data;
 event.dispatch();
 }
 }
}

This class defines one public static function, dispatchEvent B. It takes C a
required eventName parameter and an optional data parameter that defaults to
null if omitted. It creates a new CairngormEvent D with the type set to the
eventName. It then sets E the untyped data property to the data provided (or
null if omitted). Finally, it calls the event’s dispatch method F, a relatively new
addition to Cairngorm that does the work of getting the shared instance of the
CairngormEventDispatcher for us.

 We’re going to use this method a lot.

Listing 8.4 app\flex\com\pomodo\util\CairngormUtils.as

B
C

D
E

F

Adding CairngormUtils and ServiceUtils to com.pomodo.util.* 313
8.5.2 ServiceUtils.as

Next, we create a nonstandard file called ServiceUtils, which contains one
public static method called send. This method takes a bunch of parameters, all
of which (except the URL) have sensible default values. (This is in line with the
“convention over configuration” principle of Rails.) It then creates a disposable
HTTPService, for use by this one call, properly configured with the URL and the
various defaults.

NOTE This method lets us avoid using the standard Cairngorm approach of
using a Services.mxml file that defines all the services. That approach is
problematic when we use HTTPService with Rails, because hardly any
properties of a given HTTPService remain constant between service invo-
cations. Worse, if we don’t explicitly set the properties to the values we
want (even those where we want the default value), we can have unex-
pected behavior because the properties that a previous use of the HTTP-
Service set will remain set that way. For example, we can have the wrong
contentType, resultFormat, and so on if we (or some maintenance
programmer) are careless. The disposable HTTPService approach we
use here is a lot less bug-prone.

Without further ado, let’s look at the code; see listing 8.5.

package com.pomodo.util {
 import mx.rpc.IResponder;
 import mx.rpc.AsyncToken;
 import mx.rpc.http.HTTPService;

 public class ServiceUtils {
 public static function send(
 url:String,
 responder:IResponder = null,
 request:Object = null,
 sendXML:Boolean = false,
 resultFormat:String = "e4x",
 method:String = null,
 useProxy:Boolean = false):void
 {
 var service:HTTPService = new HTTPService();
 service.url = url;
 service.request = request;
 service.contentType = sendXML ? "application/xml" :
 "application/x-www-form-urlencoded";
 service.resultFormat = resultFormat;
 if (method == null) {

Listing 8.5 app\flex\com\pomodo\util\ServiceUtils.as

B
C

D
E

F
G

H

I

314 ITERATION 8

Refactoring to Cairngorm
 service.method = (request == null) ?
 "GET" : "POST";
 } else {
 service.method = method;
 }
 service.useProxy = useProxy;
 var call:AsyncToken = service.send();
 if (responder != null) {
 call.addResponder(responder);
 }
 }
 }
}

The send method is currently hard-coded to use HTTPService, but this could be
refactored later if necessary. The parameters are as shown in table 8.1.

Table 8.1 Parameters to the ServiceUtils.send function

Parameter Type Default Description

B url String N/A This is the URL of the HTTPService. The url spec-
ifies the controller and action, regardless of whether
RESTful controllers are being used.

C responder IResponder null The delegate (such as the TaskDelegate) stores a
reference to a responder, and the commands (such
as the CreateTaskCommand) pass themselves to
the delegate when creating it. The delegates call this
method and pass it the_responder. If, for some
strange reason, a responder isn’t needed for a service
call, this parameter can be omitted and no responder
will be added.

D request Object null This is the HTTPService request object. It’s typed
as Object so it can be anything (XML, an anony-
mous object created using {} syntax, and so on).

E sendXML Boolean false This is a flag that sets the contentType to applica-
tion/xml if true or to application/x-www-form-urlen-
coded if false.

F resultFormat String "e4x" The result format is usually e4x, a nice way to handle
XML.

J

1)

1!

1@

Creating com.pomodo.command.* 315
Because most of the parameters have sensible default values, the typical call is
short. (Hooray for convention over configuration!)

 In the method, a new HTTPService called service is created I every time the
method is called. The parameter values are set on the service, and then the ser-
vice.send() call is made 1!. The responder is added to the AsyncToken returned
by the send() call 1@ so the responder methods can be invoked.

8.6 Creating com.pomodo.command.*

Next, we’ll create all the commands.

8.6.1 CreateTaskCommand.as

First, the CreateTaskCommand; see listing 8.6.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class CreateTaskCommand implements ICommand,
 IResponder {
 public function CreateTaskCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TaskDelegate = new TaskDelegate(this);

G method String null This is the HTTP method of the HTTPService. If no
method is specified, then it defaults to a GET if the

request is null J or to a POST if the request is non-

null 1). Convention over configuration!

H useProxy Boolean false This is always false in this book.

Listing 8.6 app\flex\com\pomodo\command\CreateTaskCommand.as

Table 8.1 Parameters to the ServiceUtils.send function (continued)

Parameter Type Default Description

B

C
D

316 ITERATION 8

Refactoring to Cairngorm
 delegate.createTask(event.data);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(EventNames.LIST_TASKS);
 }

 public function fault(event:Object):void {
 Pomodo.debug("CreateTaskCommand#fault: " + event);
 }
 }
}

The CreateTaskCommand, like all the commands, implements the com.adobe.
cairngorm.commands.ICommand and mx.rpc.IResponder interfaces B. The ICom-
mand interface specifies exactly one function:

function execute(event : CairngormEvent) : void;

As its comment states, the execute function is called by the FrontController
(the PomodoController in our case) to execute the command.

 Whereas the ICommand interface is Cairngorm-specific, the IResponder inter-
face is part of standard Flex. It specifies two methods: fault (for error return)
and result (for successful return).

 Back to the CreateTaskCommand. In its execute method C, it creates a new
TaskDelegate D, passing itself as the responder in the this parameter to the
constructor. Next, it calls its createTask method E with the event.data, which is
the task XML.

NOTE The commands pass themselves to the Delegates as the IResponders, so
that the Delegates can then call the result or fault functions accordingly.

Upon a successful return F that is invoked by the Delegate, it uses our Cairngorm-
Utils class to dispatch G a CairngormEvent whose type is EventNames.
LIST_TASKS. This causes the ListTasksCommand to be executed, because we associ-
ated it with addCommand earlier.

 If a fault happens H, we write a debug message I. Proper error handling
makes for boring reading.

8.6.2 CreateProjectCommand.as

Next, we create the CreateProjectCommand as a copy-paste-modify of Create-
TaskCommand; see listing 8.7.

E

F
G

H
I

Creating com.pomodo.command.* 317
package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.ProjectDelegate;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class CreateProjectCommand implements ICommand,
 IResponder {
 public function CreateProjectCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:ProjectDelegate =
 new ProjectDelegate(this);
 delegate.createProject(event.data);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 }

 public function fault(event:Object):void {
 Pomodo.debug("CreateProjectCommand#fault: " +
 event);
 }
 }
}

The CreateProjectCommand is, like all the commands, an ICommand and an IRe-
sponder B. In its execute method C, it creates a new ProjectDelegate D and
calls its createProject method E with the event.data, which is the project XML.

 Upon a successful return F, it uses our CairngormUtils class to dispatch G a
CairngormEvent whose type is EventNames.LIST_PROJECTS. This will cause the
ListProjectsCommand to be executed, because we associated them with add-
Command in the PomodoController section earlier.

 If a fault happens H, we write a debug message I.
 (Just as the code is a copy-paste-modify, so is the explanation.)

Listing 8.7 app\flex\com\pomodo\command\CreateProjectCommand.as

B

C
D

E

F

G

H

I

318 ITERATION 8

Refactoring to Cairngorm
8.6.3 CreateLocationCommand.as

Next, we create the CreateLocationCommand as a copy-paste-modify of Create-
TaskCommand; see listing 8.8.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.LocationDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class CreateLocationCommand implements ICommand,
 IResponder {
 public function CreateLocationCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:LocationDelegate =
 new LocationDelegate(this);
 delegate.createLocation(event.data);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_LOCATIONS);
 }

 public function fault(event:Object):void {
 Pomodo.debug("CreateLocationCommand#fault: " +
 event);
 }
 }
}

8.6.4 CreateSessionCommand.as

The CreateSessionCommand is used to log in. I called it CreateSessionCommand
instead of LoginCommand so that the Flex side uses the same terminology as the
Rails side; see listing 8.9.

Listing 8.8 app\flex\com\pomodo\command\CreateLocationCommand.as

Creating com.pomodo.command.* 319
package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.SessionDelegate;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.model.PomodoModelLocator;

 import mx.controls.Alert;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class CreateSessionCommand implements ICommand,
 IResponder {
 public function CreateSessionCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:SessionDelegate =
 new SessionDelegate(this);
 delegate.createSession(event.data.login,
 event.data.password);
 }

 public function result(event:Object):void {
 var result:Object = event.result;
 if (event.result == "badlogin") {
 Alert.show("Login failed.");
 } else {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.user = XML(event.result);
 model.workflowState =
 PomodoModelLocator.VIEWING_MAIN_APP;
 }
 }

 public function fault(event:Object):void {
 Pomodo.debug("CreateSessionCommand#fault: " +
 event);
 Alert.show("Login Failed", "Error");
 }
 }
}

Listing 8.9 app\flex\com\pomodo\command\CreateSessionCommand.as

B
C

D

E

F

G

H
I

J

320 ITERATION 8

Refactoring to Cairngorm
The execute B method creates a new SessionDelegate C and calls its create-
Session method D with the login and password stored in the event data property
(which is an anonymous Object that functions as a hash).

 Upon a successful (by successful, I mean “non-fault”) result E, the Create-
SessionCommand shows an alert if a badlogin happened F. If a good login hap-
pened (or at least a non-badlogin), the shared PomodoModelLocator instance is
retrieved G and stored in the model variable. The event.result is then cast to
XML and stored in the model.user variable H. Next, the workflowState is set I,
which triggers the MainBox to show (as we’ll see later).

 Finally, we show an alert if a fault J happens.

8.6.5 CreateUserCommand.as

The CreateUserCommand creates a new user account; see listing 8.10.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.UserDelegate;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.validators.ServerErrors;

 import mx.controls.Alert;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class CreateUserCommand implements ICommand,
 IResponder {
 public function CreateUserCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:UserDelegate = new UserDelegate(this);
 delegate.createUser(event.data);
 }

 public function result(event:Object):void {
 var result:Object = event.result;
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (result == "error") {
 Alert.show(
"There was an error creating your account. Please try again later.",
"Account Not Created");
 } else {

Listing 8.10 app\flex\com\pomodo\command\CreateUserCommand.as

B
C

D

E

F

Creating com.pomodo.command.* 321
 var resultXML:XML = XML(result);
 if (resultXML.name().localName == "errors") {
 Alert.show(
"Please correct the validation errors highlighted on the form.",
"Account Not Created");
 model.accountCreateErrors =
 new ServerErrors(resultXML);
 } else {
 model.user = resultXML;
 model.workflowState =
 PomodoModelLocator.VIEWING_MAIN_APP;
 }
 }
 }

 public function fault(event:Object):void {
 Pomodo.debug("CreateUserCommand#fault: " + event);
 Alert.show("Account Not Created", "Error");
 }
 }
}

The CreateUserCommand execute method B starts typically, creating a new User-
Delegate C and calling its createUser method D.

 Upon successful return E, it checks whether the result is “error” F and, if
so, it shows an Alert. If it’s not “error”, the result is cast to XML (since we’re
using e4x this is safe) G. If this XML is a bunch of errors H, we show an Alert
and do the tedious error handling; if it’s not a bunch of errors I we assume it’s
a new user J, assign it to the model.user property J, and set the workflow-
State 1), which triggers the MainBox to show (as we’ll see later).

8.6.6 UpdateTaskCommand.as

Now that we’re done with creation, it’s on to update. First, UpdateTaskCommand;
see listing 8.11.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.model.PomodoModelLocator;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

Listing 8.11 app\flex\com\pomodo\command\UpdateTaskCommand.as

G
H

I
J

1)

322 ITERATION 8

Refactoring to Cairngorm

 public class UpdateTaskCommand implements ICommand,
 IResponder {
 public function UpdateTaskCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TaskDelegate = new TaskDelegate(this);
 delegate.updateTask(
 event.data.taskID,
 event.data.keys,
 event.data.values);
 }

 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 var newTask:XML = XML(event.result);
 for (var i:int = 0; i < model.tasksXLC.length; i++)
 {
 var ithTask:XML =
 XML(model.tasksXLC.getItemAt(i));
 if (ithTask.id == newTask.id) {
 model.tasksXLC.setItemAt(newTask, i);
 break;
 }
 }
 }

 public function fault(event:Object):void {
 Pomodo.debug("UpdateTaskCommand#fault: " + event);
 }
 }
}

The execute function creates a new TaskDelegate B and calls its updateTask C
function. (The source of the taskID, keys, and values will be explained more
later.) The result D handler gets the shared PomodoModelLocator E and casts the
event.result to XML and stores it in a local newTask variable F. It then searches
through the tasksXLC XMLListCollection G in the model, looking for the task
with the same id we updated. When it finds the task (I say when, not if, because
we’re being lax about error-handling here too), it replaces that item in the
tasksXLC with the updated item H.

8.6.7 UpdateProjectCommand.as

Next, the UpdateProjectCommand; see listing 8.12.

B
C

D

E

F
G

H

Creating com.pomodo.command.* 323
package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.ProjectDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class UpdateProjectCommand implements ICommand,
 IResponder {
 public function UpdateProjectCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:ProjectDelegate =
 new ProjectDelegate(this);
 delegate.updateProject(
 event.data.projectID,
 event.data.keys,
 event.data.values);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 }

 public function fault(event:Object):void {
 Pomodo.debug("UpdateProjectCommand#fault: " +
 event);
 }
 }
}

The execute function creates a new ProjectDelegate B and calls its
updateProject C function. (The source of the projectID, keys, and values will
be explained more later.) The result D handler dispatches an event using our
handy CairngormUtils class that causes projects to be listed. This is simpler but
lower performance than what we did for tasks.

Listing 8.12 app\flex\com\pomodo\command\UpdateProjectCommand.as

B

C

D

324 ITERATION 8

Refactoring to Cairngorm
8.6.8 UpdateLocationCommand.as
Next, the UpdateLocationCommand; see listing 8.13.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.LocationDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class UpdateLocationCommand implements ICommand,
 IResponder {
 public function UpdateLocationCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:LocationDelegate =
 new LocationDelegate(this);
 delegate.updateLocation(
 event.data.locationID,
 event.data.keys,
 event.data.values);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_LOCATIONS);
 }

 public function fault(event:Object):void {
 Pomodo.debug("UpdateLocationCommand#fault: " +
 event);
 }
 }
}

(This code is obviously a copy-paste-modify of UpdateProjectCommand.) The exe-
cute function creates a new LocationDelegate B and calls its updateLocation C
function. (The source of the locationID, keys, and values will be explained more
later.) The result D handler dispatches an event using our handy CairngormUtils
class that causes locations to be listed.

Listing 8.13 app\flex\com\pomodo\command\UpdateLocationCommand.as

B
C

D

Creating com.pomodo.command.* 325
8.6.9 DestroyTaskCommand.as

Now that update is done, on to destroy; see listing 8.14.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 import mx.controls.Alert;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class DestroyTaskCommand implements ICommand,
 IResponder {
 public function DestroyTaskCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TaskDelegate = new TaskDelegate(this);
 delegate.destroyTask(event.data);
 }

 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (event.result == "error") {
 Alert.show(
 "The task was not successfully deleted.",
 "Error");
 } else {
 var deletedTask:XML = XML(event.result);
 var deletedTaskId:int = deletedTask.id;
 for (var i:int = 0; i < model.tasksXLC.length;
 i++)
 {
 var ithTask:XML =
 XML(model.tasksXLC.getItemAt(i));
 if (ithTask.id == deletedTaskId) {
 model.tasksXLC.removeItemAt(i);
 break;
 }
 }
 }

Listing 8.14 app\flex\com\pomodo\command\DestroyTaskCommand.as

B
C

D

E

326 ITERATION 8

Refactoring to Cairngorm
 }

 public function fault(event:Object):void {
 Pomodo.debug("DestroyTaskCommand#fault: " + event);
 Alert.show("The task was not successfully deleted.",
 "Error");
 }
 }
}

The DestroyTaskCommand execute method B creates a new TaskDelegate C
and calls its destroyTask method D. Upon successful return E, it loops through
the tasksXLC in the model until it finds the task XML with the matching id and
removes it.

8.6.10 DestroyProjectCommand.as

Next, we destroy a project; see listing 8.15.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.ProjectDelegate;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class DestroyProjectCommand implements ICommand,
 IResponder {
 public function DestroyProjectCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:ProjectDelegate =
 new ProjectDelegate(this);
 delegate.destroyProject(event.data);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 }

Listing 8.15 app\flex\com\pomodo\command\DestroyProjectCommand.as

B
C

D

E

Creating com.pomodo.command.* 327

 public function fault(event:Object):void {
 Pomodo.debug("DestroyProjectCommand#fault: " +
 event);
 }
 }
}

The DestroyProjectCommand execute method B creates a new ProjectDele-
gate C and calls its destroyProject method D. Upon successful return E, it dis-
patches an event E using our handy CairngormUtils class that causes projects to
be listed. This is simpler but lower performance than what we did for tasks.

8.6.11 DestroyLocationCommand.as

Next, we destroy a location the same way as a project; see listing 8.16.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.LocationDelegate;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class DestroyLocationCommand implements ICommand,
 IResponder {
 public function DestroyLocationCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:LocationDelegate =
 new LocationDelegate(this);
 delegate.destroyLocation(event.data);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.LIST_LOCATIONS);
 }

 public function fault(event:Object):void {
 Pomodo.debug("DestroyLocationCommand#fault: " +

Listing 8.16 app\flex\com\pomodo\command\DestroyLocationCommand.as

328 ITERATION 8

Refactoring to Cairngorm
 event);
 }
 }
}

8.6.12 ListTasksCommand.as

Now, on to listing tasks; see listing 8.17.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.model.PomodoModelLocator;

 import mx.controls.Alert;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public class ListTasksCommand implements ICommand,
 IResponder {
 public function ListTasksCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TaskDelegate = new TaskDelegate(this);
 delegate.listTasks();
 }

 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.tasksXLC = new XMLListCollection(
 XMLList(event.result.children()));
 }

 public function fault(event:Object):void {
 Pomodo.debug("ListTasksCommand#fault: " + event);
 Alert.show("Tasks could not be retrieved!");
 }
 }
}

Listing 8.17 app\flex\com\pomodo\command\ListTasksCommand.as

B

C

Creating com.pomodo.command.* 329
The execute function B constructs a new TaskDelegate and calls its listTasks
function. The successful result handler extracts the XMLList we get, builds an
XMLListCollection out of it, and assigns it to model.tasksXLC C.

8.6.13 ListProjectsCommand.as

Next, we list projects in essentially the same way as tasks, calling the listProjects
function of a ProjectDelegate B and assigning the projectsXLC C in the model
as a result; see listing 8.18.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.ProjectDelegate;
 import com.pomodo.model.PomodoModelLocator;

 import mx.controls.Alert;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public class ListProjectsCommand implements ICommand,
 IResponder {
 public function ListProjectsCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:ProjectDelegate =
 new ProjectDelegate(this);
 delegate.listProjects();
 }

 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.projectsXLC = new XMLListCollection(
 XMLList(event.result.children()));
 }

 public function fault(event:Object):void {
 Pomodo.debug("ListProjectsCommand#fault: " + event);
 Alert.show("Projects could not be retrieved!");
 }
 }
}

Listing 8.18 app\flex\com\pomodo\command\ListProjectsCommand.as

B

C

330 ITERATION 8

Refactoring to Cairngorm
8.6.14 ListLocationsCommand.as

The ListLocationsCommand is a copy-paste-modify as well; see listing 8.18.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.LocationDelegate;
 import com.pomodo.model.PomodoModelLocator;

 import mx.controls.Alert;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public class ListLocationsCommand implements ICommand,
 IResponder {
 public function ListLocationsCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:LocationDelegate =
 new LocationDelegate(this);
 delegate.listLocations();
 }

 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.locationsXLC = new XMLListCollection(
 XMLList(event.result.children()));
 }

 public function fault(event:Object):void {
 Pomodo.debug("ListLocationsCommand#fault: " + event);
 Alert.show("Locations could not be retrieved!");
 }
 }
}

Phew.

Listing 8.19 app\flex\com\pomodo\command\ListLocationsCommand.as

Creating com.pomodo.business.* 331
8.7 Creating com.pomodo.business.*

In this section, we’ll create the business delegates that we’ve been using in the
commands. (It’s possible to use services in the commands, but standard Cairn-
gorm practice is to create business delegates—and we’ve been defying enough
conventions that we may as well stick with this one because [theoretically, anyway]
it promotes code reuse.)

 This is the section that will start to tie together the work done in the previous
sections. If the previous sections have left you wondering why we’re doing all this,
it should start to become clear momentarily (and should fully become clear when
we modify the components).

8.7.1 TaskDelegate.as

The TaskDelegate contains the functions that do the real work for tasks; see list-
ing 8.20. They do this by invoking ServiceUtils.send, which is the real work-
horse of our modified Cairngorm design.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;

 public class TaskDelegate {
 private var _responder:IResponder;

 public function TaskDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function listTasks():void {
 ServiceUtils.send("/tasks.xml", _responder);
 }

 public function createTask(task:XML):void {
 ServiceUtils.send("/tasks.xml", _responder, task,
 true);
 }

 public function updateTask(taskID:int, keys:Array,
 values:Array):void
 {
 var params:Object = new Object();
 for (var i:int = 0; i < keys.length; i++) {
 params['task[' + keys[i] +']'] = values[i];
 }

Listing 8.20 app\flex\com\pomodo\business\TaskDelegate.as

B

C
D

E
F

G

H

I

J
1)
1!

332 ITERATION 8

Refactoring to Cairngorm
 params['_method'] = "PUT";
 ServiceUtils.send(
 "/tasks/" + taskID + ".xml",
 _responder,
 params);
 }

 public function destroyTask(taskID:int):void {
 ServiceUtils.send(
 "/tasks/" + taskID + ".xml",
 _responder,
 {_method: "DELETE"});
 }
 }
}

The TaskDelegate contains an IResponder B called _responder, which is a
parameter to its constructor C and is stored there D. This _responder is what-
ever Command is using the Delegate. Specifically, it’s the following:

■ The CreateTaskCommand that constructs a TaskDelegate and calls its cre-
ateTask function G

■ The UpdateTaskCommand that constructs a TaskDelegate and calls its
updateTask function I

■ The DestroyTaskCommand that constructs a TaskDelegate and calls its
destroyTask function 1&

■ The ListTasksCommand that constructs a TaskDelegate and calls its list-
Tasks function E

Note that the _responder is passed to all these calls 1%2), so that ServiceUtils
can add it as a responder to the service call. Also, note the use of an anonymous
Object J, which will serve as an update object by having specially constructed
keys 1! created for each key 1).

 Note that all four of these functions specify FH1$1() RESTful URLs as param-
eters to the ServiceUtils.send() 1#1* method. Also note that the _method
parameter can be set to PUT 1@ or DELETE 2! in the params 1^.

TIP Now might be a good time to re-read the ServiceUtils class, if its pur-
pose wasn’t totally clear the first time.

8.7.2 ProjectDelegate.as

The ProjectDelegate, a copy-paste-modify of TaskDelegate, contains the func-
tions that do the real work for projects; see listing 8.21.

1@
1#

1$
1%

1^

1&
1*

1(
2)

2!

Creating com.pomodo.business.* 333
package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;

 public class ProjectDelegate {
 private var _responder:IResponder;

 public function ProjectDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function listProjects():void {
 ServiceUtils.send("/projects.xml", _responder);
 }

 public function createProject(project:XML):void {
 ServiceUtils.send("/projects.xml", _responder,
 project, true);
 }

 public function updateProject(
 projectID:int,
 keys: Array,
 values: Array):void
 {
 var params:Object = new Object();
 for (var i:int = 0; i < keys.length; i++) {
 params['project[' + keys[i] +']'] = values[i];
 }
 params['_method'] = "PUT";
 ServiceUtils.send(
 "/projects/" + projectID + ".xml",
 _responder,
 params);
 }

 public function destroyProject(projectID:int):void {
 ServiceUtils.send(
 "/projects/" + projectID + ".xml",
 _responder,
 {_method: "DELETE"});
 }
 }
}

It sets C the _responder B (which is the command that invoked it), and uses
ServiceUtils to list D, create E, update F, and destroy G projects. Note

Listing 8.21 app\flex\com\pomodo\business\ProjectDelegate.as

B

C

D

E

F

G

334 ITERATION 8

Refactoring to Cairngorm
that the _responder is passed to all these calls, so that ServiceUtils can add it as
a responder to the service call. This _responder is whatever Command is using the
Delegate. Specifically, it’s the following:

■ The CreateProjectCommand that constructs a ProjectDelegate and calls its
createProject function E

■ The UpdateProjectCommand that constructs a ProjectDelegate and calls its
updateProject function F

■ The DestroyProjectCommand that constructs a ProjectDelegate and calls
its destroyProject function G

■ The ListProjectsCommand that constructs a ProjectDelegate and calls its
listProjects function E

8.7.3 LocationDelegate.as

Next, we create the LocationDelegate, also a copy-paste-modify of TaskDelegate;
see listing 8.22. It contains the functions that do the real work for locations.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;

 public class LocationDelegate {
 private var _responder:IResponder;

 public function LocationDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function listLocations():void {
 ServiceUtils.send("/locations.xml", _responder);
 }

 public function createLocation(location:XML):void {
 ServiceUtils.send("/locations.xml", _responder,
 location, true);
 }

 public function updateLocation(
 locationID: int,
 keys: Array,
 values: Array):void
 {
 var params:Object = new Object();

Listing 8.22 app\flex\com\pomodo\business\LocationDelegate.as

Creating com.pomodo.business.* 335
 for (var i:int = 0; i < keys.length; i++) {
 params['location[' + keys[i] +']'] = values[i];
 }
 params['_method'] = "PUT";
 ServiceUtils.send(
 "/locations/" + locationID + ".xml",
 _responder,
 params);
 }

 public function destroyLocation(locationID:int):void {
 ServiceUtils.send(
 "/locations/" + locationID + ".xml",
 _responder,
 {_method: "DELETE"});
 }
 }
}

You can look up the equivalent sections to see how it’s used.

8.7.4 UserDelegate.as

Next, we create the UserDelegate, which contains the function that creates a new
user; see listing 8.23.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;

 public class UserDelegate {
 private var _responder:IResponder;

 public function UserDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function createUser(user:XML):void {
 ServiceUtils.send("/users.xml", _responder, user,
 true);
 }
 }
}

Listing 8.23 app\flex\com\pomodo\business\UserDelegate.as

B

C

336 ITERATION 8

Refactoring to Cairngorm
The createUser function B calls ServiceUtils.send C with the RESTful /
users.xml URL, the _responder we stored, the user XML passed in, and true for
the value of sendXML.

8.7.5 SessionDelegate.as

Next, we create the SessionDelegate, which contains the function that creates a
new session (logs the user in); see listing 8.24.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;

 public class SessionDelegate {
 private var _responder:IResponder;

 public function SessionDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function createSession(login:String,
 password:String):void {
 ServiceUtils.send(
 "/session.xml",
 _responder,
 {login: login, password: password});
 }
 }
}

The createSession function B calls ServiceUtils.send C with the RESTful /
session.xml URL D, the _responder E we stored, and an anonymous Object con-
taining the login and password F. It doesn’t specify sendXML, so it defaults to
false.

8.8 Deleting the com.pomodo.events package

Delete the com.pomodo.events package. Components will no longer dispatch
these events, instead using Cairngorm. If we have Project > Build Automatically
selected, we’ll get a lot of errors. So, we may want to deselect it. (Or, leave it
selected, and see the errors slowly disappear as we proceed through the rest of
this iteration.)

Listing 8.24 app\flex\com\pomodo\business\SessionDelegate.as

B

C
D

E
F

Modifying the com.pomodo.components.* 337
8.9 Modifying the com.pomodo.components.*

Next, we’ll modify the components to use all this infrastructure we just created.
Essentially, we’re doing the following with all the components:

■ Deleting all the state, because this has been moved to the PomodoModel-
Locator

■ Deleting the mx:Metadata, because we no longer broadcast events from the
components that way (instead using Cairngorm)

■ Deleting all the mx:HTTPServices, because we use the Cairngorm-
Utils.dispatchEvent function instead to trigger ServiceUtils (see sec-
tion 8.2 for how this all fits together)

8.9.1 TaskCreateBox.mxml
We start with the TaskCreateBox; see listing 8.25.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Task">
<mx:Metadata>
 [Event(name="taskCreate", type="com.pomodo.events.TaskEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.TaskEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 [Bindable]
 public var projectsXLC:XMLListCollection;
...
 private function handleTaskCreateResult(event:ResultEvent):
 void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug("TaskCreateBox#handleTaskCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new TaskEvent(TaskEvent.TASK_CREATE,
 resultXML));
 }

 private function doTaskCreate():void {

Listing 8.25 app\flex\com\pomodo\components\TaskCreateBox.mxml

B

C

D

E

F

338 ITERATION 8

Refactoring to Cairngorm
 _selectedProjectId = XML(projectsCB.selectedItem).id;
 _selectedLocationId = XML(locationsCB.selectedItem).id;
 svcTasksCreate.send();
 var projectID: int = XML(projectsCB.selectedItem).id;
 var locationID: int = XML(locationsCB.selectedItem).id;
 var task : XML =
 <task>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 <project_id>{projectID}</project_id>
 <location_id>{locationID}</location_id>
 </task>;
 CairngormUtils.dispatchEvent(EventNames.CREATE_TASK,
 task);
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksCreate"
 url="/tasks.xml"
...
 </mx:request>
 </mx:HTTPService>
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Task">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"
 labelField="name"
 dataProvider="{_model.projectsAndNoneXLC}"/>
 </mx:FormItem>
 <mx:FormItem label="">
 <mx:CheckBox id="nextActionCheckbox"
 label="This is the Next Action"/>
 </mx:FormItem>
 <mx:FormItem label="Location">
 <mx:ComboBox id="locationsCB" width="200"
 labelField="name"
 dataProvider="{_model.locationsAndNoneXLC}"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doTaskCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

G

H
I

J
1)

1!
1@

1#
1$

1%

1^

1&

1*

Modifying the com.pomodo.components.* 339
This is fairly straightforward. Because we no longer dispatch the taskCreate
TaskEvent, we delete the Metadata B. We then delete C and add D imports.
Next, we get a reference to our shared instance of the PomodoModelLocator E
and store it in a _model instance variable.

 We then delete a bunch F of instance variables that have been moved to
the PomodoModelLocator or that have become local variables inside doTask-
Create HI. Inside doTaskCreate, we delete the old code G, set the local vari-
ables, and then build a task XML variable J using the incredibly sexy XML syn-
tax (1)–1$) that includes bindings inside inline XML inside ActionScript. We
then call CairngormUtils.dispatchEvent 1% with EventNames.CREATE_TASK
and the new task XML.

 Next, we delete the old svcTasksCreate HTTPService 1^. Finally, we modify
the dataProviders 1&1* to use the _model.

8.9.2 ProjectCreateBox.mxml

As is one of the themes of the book, once we figure out what to do with tasks, the
projects and locations are easy; see listing 8.26.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Project">
<mx:Metadata>
 [Event(name="projectCreate",
 type="com.pomodo.events.ProjectEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.ProjectEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 private function handleProjectCreateResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug(
 "ProjectCreateBox#handleProjectCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new ProjectEvent(
 ProjectEvent.PROJECT_CREATE, resultXML));
 }
 private function doProjectCreate():void {
 svcProjectsCreate.send();
 var project:XML =

Listing 8.26 app\flex\com\pomodo\components\ProjectCreateBox.mxml

B

C

D

E

F
G

340 ITERATION 8

Refactoring to Cairngorm
 <project>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </project>;
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_PROJECT, project);
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcProjectsCreate"
...
 </mx:request>
 </mx:HTTPService>
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Name">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doProjectCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

Because we no longer dispatch the projectCreate ProjectEvent, we delete the
Metadata B. We then delete C and add D imports. We delete the handle-
ProjectCreateResult handler E. Inside doProjectCreate, we delete the call to
svcProjectsCreate.send F and instead build a project XML variable G using
the new XML syntax H-J. We then call CairngormUtils.dispatchEvent 1) with
EventNames.CREATE_PROJECT and the new project XML. Finally, we delete the old
svcProjectsCreate HTTPService 1!.

8.9.3 LocationCreateBox.mxml

Next, we do essentially the same thing to the LocationCreateBox; see listing 8.27.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Location">
<mx:Metadata>
 [Event(name="locationCreate",

Listing 8.27 app\flex\com\pomodo\components\LocationCreateBox.mxml

H
I

J

1)

1!

Modifying the com.pomodo.components.* 341
 type="com.pomodo.events.LocationEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.LocationEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 private function handleLocationCreateResult(
 event:ResultEvent):void {
 var resultXML: XML = XML(event.result);
 Pomodo.debug(
 "LocationCreateBox#handleLocationCreateResult:\n" +
 resultXML.toString());
 dispatchEvent(new LocationEvent(
 LocationEvent.LOCATION_CREATE, resultXML));
 }
 private function doLocationCreate():void {
 svcLocationsCreate.send();
 var location:XML =
 <location>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </location>;
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_LOCATION, location);
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcLocationsCreate"
 url="/locations.xml"
...
 </mx:request>
 </mx:HTTPService>
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Name">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextInput id="notesTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doLocationCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

342 ITERATION 8

Refactoring to Cairngorm
Having finished with the creation boxes, let’s move on to the list boxes.

8.9.4 TasksListBox.mxml

Next, the TasksListBox. This code is really long but also really straightforward
(so it can all be explained inline); see listing 8.28.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
<mx:Script>
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.components.MainBox;
 import com.pomodo.events.TaskEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.XMLUtils;

 public const NEXT_ACTIONS:int = 0;
 public const ALL_TASKS:int = 1;
 public const TASKS_IN_PROJECT:int = 2;
 public const TASKS_AT_LOCATION:int = 3;

 [Bindable]
 public var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private const SHOW_CHOICES:Array = [
 {label:"Next Actions", data:NEXT_ACTIONS,
 hasSubChoice:false},
 {label:"All Tasks", data:ALL_TASKS,
 hasSubChoice:false},
 {label:"Tasks in Project:", data:TASKS_IN_PROJECT,
 hasSubChoice:true},
 {label:"Tasks at Location:", data:TASKS_AT_LOCATION,
 hasSubChoice:true}];

 [Bindable]
 private var _subChoices:Array;

 [Bindable]
 public var tasksXLC:XMLListCollection;
...
 public function getLocation(location_id:int):XML {

Listing 8.28 app\flex\com\pomodo\components\TasksListBox.mxml

Delete import

Add
imports

Reference to shared
PomodoModelLocator

Delete state and functions
moved to PomodoModelLocator

Modifying the com.pomodo.components.* 343
 if (locationIdMap == null) {
 return MainBox.NO_LOCATION_XML;
 }
 return locationIdMap[location_id];
 }
 public function updateSelectedTaskFromSummaryPanel():void {
 var selectedTask:XML = XML(tasksGrid.selectedItem);
 var params:Object = new Object();
 params['task[name]'] = nameTI.text;
...
 svcTasksUpdate.url = "/tasks/"+ selectedTask.id +".xml";
 svcTasksUpdate.send(params);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_TASK,
 { taskID: selectedTask.id,
 keys: ["name", "project_id", "location_id",
 "completed", "notes"],
 values: [nameTI.text,
 projectCB.selectedItem.id,
 locationCB.selectedItem.id,
 completedCB.selected,
 notesTI.text]
 }
);
 }

 public function updateTaskCompleted(task:XML,
 completed:Boolean):void {
 var params:Object = new Object();
 params['task[completed]'] = completed;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/" + task.id + ".xml";
 svcTasksUpdate.send(params);
 updateTaskProperty(task, "completed", completed);
 }

 public function updateTaskProject(task:XML, project:XML):
 void {
 if (task.project_id != project.id) {
 var params:Object = new Object();
 params['task[project_id]'] = project.id;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/" + task.id + ".xml";
 svcTasksUpdate.send(params);
 updateTaskProperty(task, "project_id", project.id);
 }
 }

 public function updateTaskLocation(task:XML, location:XML):
 void {
 if (task.location_id != location.id) {

Remove old code

Call new CairngormUtils.
dispatchEvent function

values Array containing
values to update

keys Array
containing

names of
properties
to update

taskID
with id of
selectedTask

Use new
utility function

Use new
utility

344 ITERATION 8

Refactoring to Cairngorm
 var params:Object = new Object();
 params['task[location_id]'] = location.id;
 params['_method'] = "PUT";
 svcTasksUpdate.url = "/tasks/" + task.id + ".xml";
 svcTasksUpdate.send(params);
 updateTaskProperty(task, "location_id",
 location.id);
 }
 }

 private function handleTasksUpdateResult(event:ResultEvent):
 void {
...
 }

 private function updateTaskProperty(task:XML, key:String,
 value:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_TASK,
 { taskID: task.id, keys: [key], values: [value] }
);
 }

 public function deleteTask(task:XML):void {
 svcTasksDestroy.url = "/tasks/" + task.id + ".xml";
 svcTasksDestroy.send({_method:"DELETE"});
 CairngormUtils.dispatchEvent(EventNames.DESTROY_TASK,
 task.id);
 }
 private function handleTasksDestroyResult(
 event:ResultEvent):void {
...
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcTasksUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleTasksUpdateResult(event)"/>
 <mx:HTTPService
 id="svcTasksDestroy"
 resultFormat="e4x"
 method="POST"
 result="handleTasksDestroyResult(event)"/>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
 <mx:Label text="Show:"/>
 <mx:ComboBox id="mainChoiceCB"
 dataProvider="{SHOW_CHOICES}"/>
 <mx:ComboBox id="subChoiceCB" width="100%"

Use new utility
function

Utility function to encapsulate
approach for key/value pairfunction

Use
CairngormUtils

Delete
services

Modifying the com.pomodo.components.* 345
 dataProvider="{_subChoices}"
 visible="{mainChoiceCB.selectedItem.hasSubChoice}"/>
 </mx:HBox>
 <mx:DataGrid id="tasksGrid" width="100%" height="100%"
 dataProvider="{tasksXLC}">
 dataProvider="{model.tasksXLC}">
 <mx:columns>
...
 <mx:DataGridColumn
 headerText="Project"
 dataField="project_id"
 width="150"
 editable="false"
 sortable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:ComboBox
 width="150"
 labelField="name"
 dataProvider="{outerDocument.projectsAndNone}"
 selectedItem="{outerDocument.getProject(data.project_id)}"
 dataProvider="{outerDocument.model.projectsAndNoneXLC}"
 selectedItem="{outerDocument.model.getProject(data.project_id)}"
 dataChange="handleDataChange(XML(data))"
 change="outerDocument.updateTaskProject(XML(data), XML(selectedItem))">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.PomodoModelLocator;

 private function handleDataChange(data:XML):void {
 if (data != null) {
 selectedItem =
 outerDocument.getProject(data.project_id);
 outerDocument.model.getProject(
 data.project_id);
 } else {
 selectedItem = MainBox.NO_PROJECT_XML;
 selectedItem =
 PomodoModelLocator.NO_PROJECT_XML;
 }
 }
]]>
 </mx:Script>
</mx:ComboBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn
 headerText="Location"
 dataField="location_id"
 width="150"

Modify dataProvider
of tasksGrid to be
tasksXLC from shared
PomodoModelLocator

Reference
 shared

PomodoModelLocator

Reference shared
PomodoModelLocator

346 ITERATION 8

Refactoring to Cairngorm
 editable="false"
 sortable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:ComboBox
 width="150"
 labelField="name"
 dataProvider="{outerDocument.locationsAndNone}"
 selectedItem="{outerDocument.getLocation(data.location_id)}"
 dataProvider="{outerDocument.model.locationsAndNoneXLC}"
 selectedItem="{outerDocument.model.getLocation(data.location_id)}"
 dataChange="handleDataChange(XML(data))"
 change="outerDocument.updateTaskLocation(XML(data),

XML(selectedItem))">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.PomodoModelLocator;

 private function handleDataChange(data:XML):void {
 if (data != null) {
 selectedItem =
 outerDocument.getLocation(data.location_id);
 selectedItem = outerDocument.model.getLocation(
 data.location_id);
 } else {
 selectedItem = MainBox.NO_LOCATION_XML;
 selectedItem =
 PomodoModelLocator.NO_LOCATION_XML;
 }
 }
]]>
 </mx:Script>
</mx:ComboBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
...
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>
 <mx:Panel id="summaryPanel" title="Task" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
...
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Project" width="50"/>
 <mx:ComboBox id="projectCB" width="200"
 labelField="name"
 dataProvider="{projectsAndNone}"
selectedItem="{getProject(tasksGrid.selectedItem.project_id)}"

Reference shared
PomodoModelLocator

Modifying the com.pomodo.components.* 347
 dataProvider="{model.projectsAndNoneXLC}"
selectedItem="{model.getProject(tasksGrid.selectedItem.project_id)}"
 />
 <mx:CheckBox label="This is the Next Action"/>
 <mx:Spacer width="100%"/>
 <mx:Label text="Location"/>
 <mx:ComboBox id="locationCB" width="200"
 labelField="name"
 dataProvider="{locationsAndNone}"
selectedItem="{getLocation(tasksGrid.selectedItem.location_id)}"
 dataProvider="{model.locationsAndNoneXLC}"
selectedItem="{model.getLocation(tasksGrid.selectedItem.location_id)}"
 />
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%" height="100%"
 text="{tasksGrid.selectedItem.notes}"/>
 </mx:HBox>
...
 </mx:Panel>
</mx:VDividedBox>

Next, we make similar—but, fortunately, fewer—changes to ProjectsListBox
and LocationsListBox.

8.9.5 ProjectsListBox.mxml
We start with the ProjectsListBox; see listing 8.29.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Projects">
<mx:Metadata>
 [Event(name="projectUpdate",
 type="com.pomodo.events.ProjectEvent")]
 [Event(name="projectDelete",
 type="com.pomodo.events.ProjectEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.ProjectEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

Listing 8.29 app\flex\com\pomodo\components\ProjectsListBox.mxml

Reference shared
PomodoModelLocator

Delete Metadata

Delete imports

Add imports

348 ITERATION 8

Refactoring to Cairngorm
 import com.pomodo.util.XMLUtils;

 [Bindable]
 public var projectsXLC:XMLListCollection;
 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 public function updateSelectedProjectFromSummaryPanel():
 void {
 var selectedProject:XML =
 XML(projectsGrid.selectedItem);
 var params:Object = new Object();
 params['project[name]'] = nameTI.text;
 params['project[completed]'] = completedCB.selected;
 params['project[notes]'] = notesTI.text;
 params['_method'] = "PUT";
 svcProjectsUpdate.url =
 "/projects/" + selectedProject.id + ".xml";
 svcProjectsUpdate.send(params);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_PROJECT,
 { projectID: selectedProject.id,
 keys: ["name", "completed", "notes"],
 values: [nameTI.text, completedCB.selected,
 notesTI.text]
 }
);
 }

 public function updateProjectCompleted(project:XML,
 completed:Boolean):void {
 var params:Object = new Object();
 params['project[completed]'] = completed;
 params['_method'] = "PUT";
 svcProjectsUpdate.url =
 "/projects/" + project.id + ".xml";
 svcProjectsUpdate.send(params);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_PROJECT,
 { projectID: project.id,
 keys: ["completed"],
 values: [completedCB.selected]
 }
);
 }

 public function deleteProject(data:Object):void {
 svcProjectsDestroy.url =
 "/projects/" + data.id + ".xml";
 svcProjectsDestroy.send({_method:"DELETE"});
 CairngormUtils.dispatchEvent(EventNames.DESTROY_PROJECT,

Remove state

Reference to shared
PomodoModelLocator

Use CairngormUtils
instead of local HTTPService

Modifying the com.pomodo.components.* 349
 data.id);
 }

 private function handleProjectsUpdateResult(
 event:ResultEvent):void {
 dispatchEvent(new ProjectEvent(
 ProjectEvent.PROJECT_UPDATE, XML(event.result)));
 }

 private function handleProjectsDestroyResult(
 event:ResultEvent):void {
 if (event.result == "error") {
 Alert.show(
 "The project was not successfully deleted.",
 "Error");
 } else {
 dispatchEvent(new ProjectEvent(
 ProjectEvent.PROJECT_DELETE,
 XML(event.result)));
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcProjectsUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleProjectsUpdateResult(event)"/>
 <mx:HTTPService
 id="svcProjectsDestroy"
 resultFormat="e4x"
 method="POST"
 result="handleProjectsDestroyResult(event)"/>
 <mx:DataGrid id="projectsGrid" width="100%" height="60%"
 dataProvider="{projectsXLC}">
 dataProvider="{_model.projectsXLC}">
 <mx:columns>
...
 </mx:columns>
 </mx:DataGrid>
...
</mx:VDividedBox>

Note that throughout this example, we’re passing complex anonymous Objects
containing Arrays of keys and values to CairngormUtils. If this makes you
uncomfortable, you can create a hierarchy of typed events.

Delete
HTTPService result
handler functions

Delete
HTTPServices

Use shared
PomodoModelLocator

350 ITERATION 8

Refactoring to Cairngorm
8.9.6 LocationsListBox.mxml

We now make essentially the same changes to the LocationsListBox; see list-
ing 8.30.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Locations">
<mx:Metadata>
 [Event(name="locationUpdate",
 type="com.pomodo.events.LocationEvent")]
 [Event(name="locationDelete",
 type="com.pomodo.events.LocationEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.LocationEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.XMLUtils;

 [Bindable]
 public var locationsXLC:XMLListCollection;
 [Bindable]
 private var _model : PomodoModelLocator =
 PomodoModelLocator.getInstance();

 public function updateSelectedLocationFromSummaryPanel():
 void {
 var selectedLocation:XML =
 XML(locationsGrid.selectedItem);
 var params:Object = new Object();
 params['location[name]'] = nameTI.text;
 params['location[notes]'] = notesTI.text;
 params['_method'] = "PUT";
 svcLocationsUpdate.url =
 "/locations/" + selectedLocation.id + ".xml";
 svcLocationsUpdate.send(params);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_LOCATION,
 {
 locationID: selectedLocation.id,
 keys: ["name", "notes"],
 values: [nameTI.text, notesTI.text]
 }

Listing 8.30 app\flex\com\pomodo\components\LocationsListBox.mxml

Delete Metadata

Delete imports

Add imports

Remove state

Reference to shared
PomodoModelLocator

Use CairngormUtils instead
of local HTTPService

Modifying the com.pomodo.components.* 351
);
 }

 public function deleteLocation(data:Object):void {
 svcLocationsDestroy.url =
 "/locations/" + data.id + ".xml";
 svcLocationsDestroy.send({_method:"DELETE"});
 CairngormUtils.dispatchEvent(
 EventNames.DESTROY_LOCATION, data.id);
 }

 private function handleLocationsUpdateResult(
 event:ResultEvent):void {
 dispatchEvent(new LocationEvent(
 LocationEvent.LOCATION_UPDATE, XML(event.result)));
 }

 private function handleLocationsDestroyResult(
 event:ResultEvent):void {
 if (event.result == "error") {
 Alert.show(
 "The location was not successfully deleted.",
 "Error");
 } else {
 dispatchEvent(new LocationEvent(
 LocationEvent.LOCATION_DELETE,
 XML(event.result)));
 }
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcLocationsUpdate"
 resultFormat="e4x"
 method="POST"
 result="handleLocationsUpdateResult(event)"/>
 <mx:HTTPService
 id="svcLocationsDestroy"
 resultFormat="e4x"
 method="POST"
 result="handleLocationsDestroyResult(event)"/>
 <mx:DataGrid id="locationsGrid" width="100%" height="60%"
 dataProvider="{locationsXLC}">
 dataProvider="{_model.locationsXLC}">
 <mx:columns>
...
 </mx:columns>
 </mx:DataGrid>
...
</mx:VDividedBox>

Use
CairngormUtils
instead of local
HTTPService

Delete HTTPService
result handler functions

Delete
HTTPServices

Use shared
PomodoModelLocator

352 ITERATION 8

Refactoring to Cairngorm
8.9.7 AccountCreateBox.mxml

Not much longer now! Next, we modify the AccountCreateBox; see listing 8.31.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cpv="com.pomodo.validators.*"
 width="100%" height="100%" label="Create Account">
<mx:Metadata>
 [Event(name="accountCreate",
 type="com.pomodo.events.AccountCreateEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.events.ValidationResultEvent;
 import mx.rpc.events.ResultEvent;
 import mx.validators.Validator;
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.validators.ServerErrors;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 [Bindable]
 private var _serverErrors:ServerErrors;

 private function handleAccountCreateResult(
 event:ResultEvent):void {
...
 }

 private function validateAndSubmit():void {
 var results:Array = Validator.validateAll([
 usernameValidator,
 emailValidator,
 passwordValidator,
 passwordConfirmationValidator]);
 if (results.length > 0) {
 Alert.show("Please correct the validation errors " +
 "highlighted on the form.",
 "Account Not Created");
 return;
 }
 svcAccountCreate.send();
 var user: XML =

Listing 8.31 app\flex\com\pomodo\components\AccountCreateBox.mxml

Build local XML variable and
pass to CairngormUtils.send()
call

B

Modifying the com.pomodo.components.* 353
 <user>
 <login>{loginTI.text}</login>
 <email>{emailTI.text}</email>
 <first_name>{firstNameTI.text}</first_name>
 <last_name>{lastNameTI.text}</last_name>
 <password>{passwordTI.text}</password>
<password_confirmation>{confirmPasswordTI.text}
 ➥</password_confirmation>
 </user>
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_USER, user);
 }

 private function showTOS():void {
 Alert.show(
 "The first rule of pomodo is: Don't talk about " +
 "pomodo. The second rule of pomodo is: Don't " +
 "talk about pomodo.", "Terms of Service");
 }
]]>
</mx:Script>
 <mx:HTTPService
 id="svcAccountCreate"
...
 </mx:HTTPService>
 <mx:EmailValidator id="emailValidator" source="{emailTI}"
 property="text"/>
...
 <cpv:ServerErrorValidator
 id="loginSV"
 field="login"
 listener="{loginTI}"
 serverErrors="{_serverErrors}"/>
 serverErrors="{_model.accountCreateErrors}"/>
 <cpv:ServerErrorValidator
 id="emailSV"
 field="email"
 listener="{emailTI}"
 serverErrors="{_serverErrors}"/>
 serverErrors="{_model.accountCreateErrors}"/>
 <cpv:ServerErrorValidator
 id="passwordSV"
 field="password"
 listener="{passwordTI}"
 serverErrors="{_serverErrors}"/>
 serverErrors="{_model.accountCreateErrors}"/>
 <cpv:ServerErrorValidator
 id="passwordConfirmationSV"
 field="password_confirmation"
 listener="{confirmPasswordTI}"
 serverErrors="{_serverErrors}"/>

C

354 ITERATION 8

Refactoring to Cairngorm
 serverErrors="{_model.accountCreateErrors}"/>
 <mx:Form labelWidth="150">
...
 </mx:Form>
</mx:VBox>

Note that we’re once again using an XML variable inside ActionScript B popu-
lated with bindings before calling CairngormUtils.send(). Also note that the
ServerErrorValidators now use the accountCreateErrors from the Pomodo-
ModelLocator C.

8.9.8 LoginBox.mxml

Next, the LoginBox; see listing 8.32.

<?xml version="1.0" encoding="utf-8"?>
<mx:Metadata>

 [Event(name="login", type="com.pomodo.events.LoginEvent")]
</mx:Metadata>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%"
 height="100%" label="Login">
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.rpc.events.ResultEvent;
 import com.pomodo.events.LoginEvent;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 private function login():void {
 svcAccountLogin.send(
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_SESSION,
 {login: loginTI.text, password: passwordTI.text});
 }

 private function handleAccountLoginResult(
 event:ResultEvent):void {
 var result:Object = event.result;
 if (result == "badlogin") {
 Alert.show("The username or password is wrong.",
 "Login Error");
 } else {
 dispatchEvent(new LoginEvent(XML(result)));
 }
 }

Listing 8.32 app\flex\com\pomodo\components\LoginBox.mxml

B

Modifying the com.pomodo.components.* 355
]]>
</mx:Script>
 <mx:HTTPService
 id="svcAccountLogin"
 url="/session.xml"
 resultFormat="e4x"
 method="POST"
 result="handleAccountLoginResult(event)"/>
 <mx:Form labelWidth="150">
 <mx:FormItem required="true" label="Username">
 <mx:TextInput id="loginTI"/>
 </mx:FormItem>
 <mx:FormItem required="true" label="Password">
 <mx:TextInput id="passwordTI"
 displayAsPassword="true"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="loginButton" label="Login"
 click="login()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

By now this is downright tedious. Again, we convert to using CairngormUtils B—
note that we pass it the identical anonymous object.

8.9.9 MainBox.mxml

Next, the MainBox; see listing 8.33.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000"
 minHeight="680"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 width="100%"
 height="100%"
 backgroundColor="#FFFFFF"
 creationComplete="handleCreationComplete()">
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.collections.ArrayCollection;

Listing 8.33 app\flex\com\pomodo\components\MainBox.mxml

356 ITERATION 8

Refactoring to Cairngorm
 import mx.collections.IViewCursor;
 import mx.collections.XMLListCollection;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]
 public var user : XML;

 [Bindable]
 private var _gotProjects : Boolean;
...
 private function handleLocationsListResult(
 event:ResultEvent):void {
 _gotLocations = true;
 var resultXML: XML = XML(event.result);
 Pomodo.debug("MainBox#handleLocationsListResult:\n" +
 resultXML.toString());
 updateLocationIdMap();
 }

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function handleCreationComplete():void {
 _gotProjects = false;
 _gotLocations = false;
 listProjects();
 listLocations();
 CairngormUtils.dispatchEvent(EventNames.LIST_PROJECTS);
 CairngormUtils.dispatchEvent(EventNames.LIST_LOCATIONS);
 }

 private function getProjectsAndNone(projectsXL:XMLList):
 XMLListCollection {
 var retval:XMLListCollection =
 new XMLListCollection(projectsXL.copy());
 retval.addItemAt(NO_PROJECT_XML, 0);
 return retval;
 }
...
 private function listTasksIfMapsPresent():void {
 if (_gotProjects && _gotLocations) {
 listTasks();
 }
 }
]]>
</mx:Script>
 <mx:HTTPService

Add/remove
imports

State stored here moved
to PomodoModelLocator

Reference to shared
PomodoModelLocator

No longer set flags
 and call local methods;

dispatch Cairngorm events

Delete HTTPServices
and XMLListCollections

Modifying the com.pomodo.components.* 357
 id="svcTasksList"
 url="/tasks.xml"
 resultFormat="e4x"
 result="handleTasksListResult(event)"/>
...
 <mx:Binding
 source="{getLocationsAndNone(locationsXLC.source)}"
 destination="_locationsAndNoneXLC"/>

 <mx:HBox width="100%" height="100%">
 <mx:VBox width="300" height="100%">
 <mx:Image source="com/pomodo/assets/logo_md.png"/>
 <mx:Label text="{'Logged in as: ' + user.login +
 ' (' + user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' + user.first_name +
 '!'}"/>
 <mx:Label text="{'Logged in as: ' +
 _model.user.login +
 ' (' + _model.user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' +
 _model.user.first_name + '!'}"/>
 <mx:Accordion width="100%" height="350">
 <pom:TaskCreateBox id="taskCreateBox"
 taskCreate="listTasks()"
 projectsXLC="{_projectsAndNoneXLC}"
 locationsXLC="{_locationsAndNoneXLC}"/>
 <pom:ProjectCreateBox id="projectCreateBox"
 projectCreate="listProjects()"/>
 <pom:LocationCreateBox id="locationCreateBox"
 locationCreate="listLocations()"/>
 <pom:TaskCreateBox id="taskCreateBox"/>
 <pom:ProjectCreateBox id="projectCreateBox"/>
 <pom:LocationCreateBox id="locationCreateBox"/>
 </mx:Accordion>
 <mx:DateChooser id="dateChooser" width="100%"/>
 </mx:VBox>
 <mx:VBox width="100%" height="100%">
 <pom:CommandShell/>
 <mx:TabNavigator width="100%" height="100%">
 <pom:TasksListBox id="tasksTab"
 tasksXLC="{tasksXLC}"
 projectIdMap="{_projectIdMap}"
 locationIdMap="{_locationIdMap}"
 projectsAndNone="{_projectsAndNoneXLC}"
 locationsAndNone="{_locationsAndNoneXLC}"/>
 <pom:ProjectsListBox id="projectsTab"
 projectsXLC="{projectsXLC}"
 projectUpdate="listProjects()"
 projectDelete="listProjects()"/>
 <pom:LocationsListBox id="locationsTab"
 locationsXLC="{locationsXLC}"

Use state stored in
PomodoModelLocator

No need
to handle
custom
events
and call
functions

358 ITERATION 8

Refactoring to Cairngorm
 locationUpdate="listLocations()"
 locationDelete="listLocations()"/>
 <pom:TasksListBox id="tasksTab"/>
 <pom:ProjectsListBox id="projectsTab"/>
 <pom:LocationsListBox id="locationsTab"/>
 <pom:Notely id="notelyTab"/>
 </mx:TabNavigator>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

Hooray for strikethrough! Note that we don’t need to dispatch Event-
Names.LIST_TASKS in handleCreationComplete(). In the PomodoModelLocator,
we create setters for projectsXLC and locationsXLC that create their respective
map between project/location ids and the projects/locations and then call list-
TasksIfMapsPresent, which checks two flags to see if both the projects and loca-
tions have been retrieved, and if so dispatches an event to trigger the listing of
tasks. Also note how much simpler the use of the custom pom: components is,
without the need to handle custom events and call custom functions. This is one
of the key benefits of Cairngorm: We don’t need to pass state around everywhere
via bindings.

8.9.10 SplashBox.mxml

Next, the SplashBox; see listing 8.34.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 horizontalAlign="center" verticalAlign="top"
 width="100%" height="100%">
<mx:Metadata>
 [Event(name="accountCreate",
 type="com.pomodo.events.AccountCreateEvent")]
 [Event(name="login", type="com.pomodo.events.LoginEvent")]
</mx:Metadata>
<mx:Script>
<![CDATA[
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]
 private var _reviews:String =

Listing 8.34 app\flex\com\pomodo\components\SplashBox.mxml

No need to pass
in local state to
be copied via
bindings

Remove custom Metadata

Change imports

Modifying Pomodo.mxml 359
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';
 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
]]>
</mx:Script>
 <mx:VBox width="500" horizontalAlign="center">
 <mx:Image source="com/pomodo/assets/logo_md.png" />
 <mx:Label
 text="The simple, GTD-style TODO list application."/>
 <mx:Spacer height="10"/>
 <mx:Text width="100%" text="{_reviews}"/>
 <mx:Text width="100%" text="{_model.reviews}"/>
 <mx:Spacer height="10"/>
 <mx:Accordion width="440" height="330">
 <pom:AccountCreateBox/>
 <pom:LoginBox/>
 </mx:Accordion>
 <mx:Label text="*did not say this, but might someday!"/>
 </mx:VBox>
</mx:VBox>

8.10 Modifying Pomodo.mxml

Finally (I mean it!), we modify Pomodo.mxml; see listing 8.35.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 xmlns:control="com.pomodo.control.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 width="100%"
 height="100%">
<mx:Script>

Listing 8.35 app\flex\Pomodo.mxml

Use shared
PomodoModelLocator
that includes stubbed-
out reviews

Bind to
 reviews in shared

PomodoModelLocator
(no local var needed)

Import control
package containing
PomodoController

360 ITERATION 8

Refactoring to Cairngorm
<![CDATA[
 import mx.core.Container;
 import com.pomodo.components.DebugPanel;
 import com.pomodo.events.AccountCreateEvent;
 import com.pomodo.events.LoginEvent;
 import com.pomodo.util.DebugMessage;
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]
 private var _user : XML;

 [Bindable]
 private var _model : PomodoModelLocator =
 PomodoModelLocator.getInstance();

 public static function debug(str:String):void {
 application.debugPanel.addMessage(
 new DebugMessage(str));
 }

 private function controlViewToShow(workflowState:int):
 Container {
 if (workflowState ==
 PomodoModelLocator.VIEWING_SPLASH_SCREEN) {
 return splashBox;
 } else if (workflowState ==
 PomodoModelLocator.VIEWING_MAIN_APP) {
 return mainBox;
 } else {
 return splashBox;
 }
 }
 private function handleAccountCreate(e:AccountCreateEvent):
 void {
 login(e.user);
 }

 private function handleLogin(e:LoginEvent):void {
 login(e.user);
 }

 private function login(user:XML):void {
 _user = user;
 debug("user = " + user);
 mainStack.selectedChild = mainBox;
 }
]]>
</mx:Script>
 <!--
 the FrontController, containing Commands specific to this app
 -->

Add/remove imports

Remove local state (_user
is now_model.user)

Reference to shared
PomodoModelLocator

Return what should
be selectedChild of

mainStack based on
workflowState

B

C

D

E
Remove local

 functions and handlers

Running pomodo 361
 <control:PomodoController id="controller" />

 <mx:VDividedBox width="100%" height="100%">
 <mx:ViewStack id="mainStack" width="100%" height="100%">
 <pom:SplashBox id="splashBox"
 accountCreate="handleAccountCreate(event)"
 login="handleLogin(event)"/>
 <pom:MainBox id="mainBox" user="{_user}"/>
 <mx:ViewStack id="mainStack" width="100%" height="100%"
selectedChild="{controlViewToShow(_model.workflowState)}">
 <pom:SplashBox id="splashBox"/>
 <pom:MainBox id="mainBox"/>
 </mx:ViewStack>
 <pom:DebugPanel id="debugPanel" width="100%"
 height="0%"/>
 </mx:VDividedBox>
</mx:Application>

The controlViewToShow function B is automatically invoked as part of a bind-
ing F that controls the selectedChild of the mainStack. This function checks
the workflowState in the _model. If it’s PomodoModelLocator.VIEWING_
SPLASH_SCREEN C or an error E, we return the splashBox G; otherwise, if it’s
PomodoModelLocator.VIEWING_MAIN_APP D, we return mainBox H.

 Note how much simpler the code for the SplashBox and MainBox is, compared
to the old code.

 And that’s it—really!

8.11 Running pomodo

Rebuild, reload, and log in as ludwig. Our login was done via Cairngorm! Because
everything works exactly as before (as it should when refactoring), no screenshot
is required. Finally, run the tests again and confirm that everything still works.

That’s it for this iteration!
 Well, almost. As a bonus, we’ll consider some HTTPService gotchas. These

aren’t Cairngorm-specific, but I didn’t put this in iteration 5 because I didn’t want
to make iteration 5 overwhelming. (Furthermore, it’s easier to test them now
because of our utility methods.)

FrontController

F
G

H

The code at this point is saved as the iteration08 folder.

362 ITERATION 8

Refactoring to Cairngorm
8.12 HTTPService Gotchas

We’ve seen that the HTTPService class has a method parameter. Some idiosyncra-
sies surround this parameter, and they vary based on the contentType of the
HTTPService. These are summarized in table 8.2.

The interesting rows in the table are the mismatches (rows 1, 4, and 8). Basically, if
we POST nothing, Rails sees a GET. This is true whether we have a contentType of
application/xml (row 4) or application/x-www-form-urlencoded (row 8). If we
send a GET with a contentType of application/xml and actual content in the
service.request (row 1), Rails sees a POST. The rest of the table is pretty much what
we’d expect.

 If you want to verify this for yourself, or to at least see this shown with code, you’re
in luck. You don’t need to follow along with any of the code next (and if you do fol-
low along, you need to reset your code back to this point when you’re done). The
code is shown so you can follow along, if you’re not sick of this iteration yet.

 Table 8.2 is illustrated in more detail in the following tables, which show the
Rails development.log after sending a request to /tasks.xml with various modified
forms of the createTask method in TaskDelegate. The createTask method is
being modified to explicitly set all parameters of a new HTTPService so the detail
of what is being done isn’t obscured (as it would be somewhat if we used Service-
Utils.send()).

Table 8.2 HTTPService: WYSINAWYG (What You Send Is Not Always What You Get)

service.method service.contentType service.request Rails sees match?

1 GET application/xml some non-null XML POST N

2 POST application/xml some non-null XML POST Y

3 GET application/xml not set GET Y

4 POST application/xml not set GET N

5 GET application/x-www-form-
urlencoded

{foo:"bar"} GET Y

6 POST application/x-www-form-
urlencoded

{foo:"bar"} POST Y

7 GET application/x-www-form-
urlencoded

not set GET Y

8 POST application/x-www-form-
urlencoded

not set GET N

HTTPService Gotchas 363
 In all the following code listings, you need to add the imports B C and delete
the previous ServiceUtils.send() call D as shown in listing 8.36.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;
 import mx.rpc.AsyncToken;
 import mx.rpc.http.HTTPService;

 public class TaskDelegate {
...
 public function createTask(task : XML) : void {
 ServiceUtils.send("/tasks.xml", _responder, task, true);
...

These diffs aren’t shown in the following two tables, because seeing them eight
times would be repetitive. Note that each row in the table is a different version of
the createTask function, with the diffs against the original code. The rest of the
TaskDelegate class is unchanged, except for the modifications in table 8.3.

 We start by showing the code that demonstrates the first four rows (with a con-
tentType of application/xml) see table 8.3.

Listing 8.36 app\flex\com\pomodo\business\TaskDelegate.as

Table 8.3 Example code that uses a contentType of application/xml

app\flex\com\pomodo\business\TaskDelegate.as log\development.log

public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();

 service.url = "/tasks.xml";
 service.contentType = "application/xml";
 service.resultFormat = "e4x";
 service.method = "GET";

 service.request = task;

 var call:AsyncToken = service.send();

 call.addResponder(_responder);
}

Processing
TasksController#create
(for 127.0.0.1 at 2007-
08-18 15:31:50) [POST]
 Session ID:
25291760fadb8215775f44774
e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"create",
"task"=>{"name"=>"foo",
"project_id"=>"0",
"notes"=>"using a GET
method and a task of
foo",
"location_id"=>"0"},
"controller"=>"tasks"}
...

B
C

D

B

C

D

364 ITERATION 8

Refactoring to Cairngorm
public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();

 service.url = "/tasks.xml";
 service.contentType = "application/xml";
 service.resultFormat = "e4x";
 service.method = "POST";

 service.request = task;

 var call:AsyncToken = service.send();

 call.addResponder(_responder);
}

Processing TasksControl-
ler#create (for 127.0.0.1
at 2007-08-18 15:45:43)
[POST]
 Session ID:
25291760fadb8215775f44774
e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"create",
"task"=>{"name"=>"foo",
"project_id"=>"0",
"notes"=>"using a POST
method and a task of
foo",
"location_id"=>"0"},
"controller"=>"tasks"}
...

public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();

 service.url = "/tasks.xml";
 service.contentType = "application/xml";
 service.resultFormat = "e4x";
 service.method = "GET";

 var call:AsyncToken = service.send();

 call.addResponder(_responder);
}

Processing TasksControl-
ler#index (for 127.0.0.1
at 2007-08-18 15:50:36)
[GET]
 Session ID:
25291760fadb8215775f44774
e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"index", "con-
troller"=>"tasks"}
...

public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();

 service.url = "/tasks.xml";
 service.contentType = "application/xml";
 service.resultFormat = "e4x";
 service.method = "POST";

 var call:AsyncToken = service.send();

 call.addResponder(_responder);
}

Processing TasksControl-
ler#index (for 127.0.0.1
at 2007-08-18 15:49:01)
[GET]
 Session ID:
25291760fadb8215775f44774
e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"index", "con-
troller"=>"tasks"}
...

Table 8.3 Example code that uses a contentType of application/xml (continued)

app\flex\com\pomodo\business\TaskDelegate.as log\development.log

E

F

G

H

I

J

1)

HTTPService Gotchas 365
We see that when using a contentType of application/xml, if we set the ser-
vice.request to the task D G, it doesn’t matter whether the service.method is
set to a GET C or a POST F: In both cases, Rails sees a POST BE. (The request it’s
processing is logged in square brackets: [POST].) Similarly, when using a con-
tentType of application/xml, if we leave the service.request unset, it doesn’t
matter whether the service.method is set to a GET I or a POST 1): In both cases,
Rails sees a GET HJ.

 Next, we show the code that demonstrates the last four rows (with a content-
Type of application/x-www-form-urlencoded); see table 8.4.

Table 8.4 Example code that uses a contentType of application/x-www-form-urlencoded

app\flex\com\pomodo\business\TaskDelegate.as)

public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();
 service.url = "/tasks.xml";
 service.contentType = "application/x-www-form-
urlencoded";
 service.resultFormat = "e4x";

 service.method = "GET";

 service.request = {foo:"bar"};
 var call:AsyncToken = service.send();
 call.addResponder(_responder);
}

Processing TasksCon-
troller#index (for
127.0.0.1 at 2007-08-
18 16:40:34) [GET]

 Session ID:
25291760fadb8215775f4477
4e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"index",
"foo"=>"bar", "control-
ler"=>"tasks"}
...
Completed in 0.09400 (10
reqs/sec) | Rendering:
0.00000 (0%) | DB:
0.01600 (17%) | 200 OK
[http://localhost/
tasks.xml?foo=bar]
...

B

C

366 ITERATION 8

Refactoring to Cairngorm
public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();

 service.url = "/tasks.xml";
 service.contentType = "application/x-www-form-
urlencoded";
 service.resultFormat = "e4x";

 service.method = "POST";

 service.request = {foo:"bar"};
 var call:AsyncToken = service.send();
 call.addResponder(_responder);
}

Processing TasksCon-
troller#create (for
127.0.0.1 at 2007-08-
18 16:32:13) [POST]

 Session ID:
25291760fadb8215775f4477
4e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"create",
"foo"=>"bar", "control-
ler"=>"tasks"}
...
Completed in 0.23400 (4
reqs/sec) | Rendering:
0.00000 (0%) | DB:
0.07800 (33%) | 200 OK
[http://localhost/
tasks.xml]
...

public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();

 service.url = "/tasks.xml";
 service.contentType = "application/x-www-form-
urlencoded";

 service.resultFormat = "e4x";
 service.method = "GET";
 var call:AsyncToken = service.send();
 call.addResponder(_responder);
}

Processing TasksCon-
troller#index (for
127.0.0.1 at 2007-08-
18 16:44:55) [GET]
 Session ID:
25291760fadb8215775f44
774e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"index",
"controller"=>"tasks"}
...
Completed in 0.07800
(12 reqs/sec) | Ren-
dering: 0.00000 (0%) |
DB: 0.03100 (39%) |
200 OK [http://local-
host/tasks.xml]

...

Table 8.4 Example code that uses a contentType of application/x-www-form-urlencoded (continued)

app\flex\com\pomodo\business\TaskDelegate.as)

D

E

F

G

HTTPService Gotchas 367
We see that if we set the service.request to {foo:"bar"} C E, the ser-
vice.method is what Rails sees B D. However, if we leave the service.request
unset, it doesn’t matter whether the service.method is set to a GET G or a POST I:
In both cases, Rails sees a GET FH.

 Now that we understand this, restore the TaskDelegate class to its state before
we did all this (B in listing 8.37).

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.util.ServiceUtils;
 import mx.rpc.AsyncToken;
 import mx.rpc.http.HTTPService;

 public class TaskDelegate {
...
 public function createTask(task : XML) : void {
 ServiceUtils.send("/tasks.xml", _responder, task,
 true);
 }
...

public function createTask(task : XML) : void {

 var service:HTTPService = new HTTPService();
 service.url = "/tasks.xml";
 service.contentType = "application/x-www-form-
urlencoded";

 service.resultFormat = "e4x";
 service.method = "POST";
 var call:AsyncToken = service.send();
 call.addResponder(_responder);
}

Processing TasksCon-
troller#index (for
127.0.0.1 at 2007-08-
18 16:46:09) [GET]
 Session ID:
25291760fadb8215775f44
774e1bb868
 Parameters: {"for-
mat"=>"xml",
"action"=>"index",
"controller"=>"tasks"}

...
Completed in 0.07800 (12
reqs/sec) | Rendering:
0.00000 (0%) | DB:
0.01500 (19%) | 200 OK
[http://localhost/
tasks.xml]

Listing 8.37 app\flex\com\pomodo\business\TaskDelegate.as

Table 8.4 Example code that uses a contentType of application/x-www-form-urlencoded (continued)

app\flex\com\pomodo\business\TaskDelegate.as)

H

I

B

368 ITERATION 8

Refactoring to Cairngorm
8.13 Summary

In refactoring the Flex code to use Cairngorm with HTTPService (albeit in a
slightly nonstandard way), we’ve seen one way to structure large Flex applications.
If Cairngorm doesn’t appeal to you, you don’t have to use it: You can create large
Flex applications without it.

 If you’re a seasoned Rails developer, you may dislike Cairngorm because it
reminds you too much of enterprise Java development. I understand this: I did a
presentation about using Flex with Rails at Rails to Italy 2007, and afterward one
experienced developer told me I was convincing until I started showing Cairn-
gorm code! If this describes you, feel free to ignore Cairngorm and use either a
different framework or none at all.

8.14 Exercise for the reader

■ [Advanced] Extend the command mechanism to have the notion of undo-
able commands to function as edits (both simple and compound). Would
creating an IUndoableCommand interface be a good idea? Look at the Java
Swing API docs for ideas. How would this integrate with Rails?

Holding state
 on the client properly
—Steven Webster1

One key shift in mindset when you move from the development of web
applications to rich Internet applications is that the client is stateful….

If you have been building desktop or rich-client applications with
technologies such as Swing or AWT, for instance, you’ll shrug your
shoulders right now because all of this will sound all too familiar—
it is.

 —Steven Webster1

1 http://www.adobe.com/devnet/flex/articles/cairngorm_pt2_print.html.
369

370 ITERATION 9

Holding state on the client properly
If you’ve spent any time building Flex applications with Cairngorm, or with any
desktop UI framework such as Java Swing or Windows Forms, the thought of stor-
ing the data on the client as just XML (regardless of how cool the E4X way of deal-
ing with XML is) is unsettling. Surely we should be creating and using a proper
object model on the Flex side.

 Furthermore, right now all the Flex code is tightly coupled to the fact that
we’re sending and receiving XML. However, what if we wanted to use JSON or
YAML to send data to and from Rails—or even AMF (using RubyAMF or WebORB)?
This should be a straightforward change, but as the code stands currently we
would essentially need to do a massive refactoring of most of the Flex code. Obvi-
ously this is unacceptable.

 Yes, we should probably be creating and using a proper object model on the
Flex side. Not only will this result in better code, it will also decouple us from
using XML.

NOTE For extremely small applications, an object model may be overkill: using
XML may be just fine. As this iteration shows, you can always refactor to
an object model later.

This is what we’ll do in this iteration.

9.1 Refactoring, samurai coder style

We’ll do this refactoring all at once. I called this approach “refactoring, fast-
forwarded” earlier in the book. Whereas that implies a normal refactoring—albeit
speeded up—it’s more fitting to describe the type of refactoring we’re doing as
samurai coder style, because it brings to mind a “Kill Bill sequence of large-scale dis-
memberment”2. This refactoring wasn’t done in neat, unit-tested pieces: I figured
out what the object model should be, created the model objects, modified the
PomodoModelLocator, and then dealt with the consequences in the rest of the
codebase. Once the code compiled, I tested the features. No, I’m not claiming
that this is a “best practice.” It’s not. However, I’m not selling a methodology, I’m
selling a book that retraces my steps, however imperfect.

2 http://www.opencurly.com/dev/confessions-of-a-samurai-coder. (I used to enjoy this style of refactor-
ing a lot more when I was younger, more foolish and energetic, and not a parent.) If you have experi-
ence with this kind of refactoring, either successful or failed (presumably both), you’ll probably find
the article amusing.

Creating the model classes 371
9.2 Creating the model classes

We’ll start by creating classes on the Flex side for User, Task, Project, and Loca-
tion. Where should these classes go? We have the com.pomodo.model package;
this holds the PomodoModelLocator, so it seems like a good spot. This corresponds
to the business objects3 in Cairngorm. However, Cairngorm also has the notion of
value object (and an IValueObject marker interface) for the objects that are used
to transfer data back and forth between Flex and the server. These value objects
go in a vo package, which for us would be com.pomodo.vo. Should they go there?

NOTE As discussed in the previous iteration, Cairngorm uses the term value
object instead of data transfer object (DTO) or transfer object (TO) because it
was conceived before those terms became popular.

It’s tough to say. We’re sending XML, not value objects, back and forth. We don’t
have any true value objects. And we’ll add stuff to the model objects that doesn’t
belong in a value object.

 It doesn’t seem correct to call these objects value objects—they’re model
objects. As such, they will go in the com.pomodo.model package.

9.2.1 Task.as

We’ll start by creating the Task model; see listing 9.1.

package com.pomodo.model {
 import com.pomodo.util.XMLUtils;

 public class Task {
 public static const UNSAVED_ID:int = 0;

 [Bindable]
 public var id:int;

 [Bindable]
 public var name:String;

 [Bindable]
 public var notes:String;

 [Bindable]

3 See http://weblogs.macromedia.com/auhlmann/archives/2006/06/cairngorm_sampl.cfm for a good
discussion of business objects in Cairngorm.

Listing 9.6 app\flex\com\pomodo\model\Task.as

B

C

http://weblogs.macromedia.com/auhlmann/archives/2006/06/cairngorm_sampl.cfm
http://weblogs.macromedia.com/auhlmann/archives/2006/06/cairngorm_sampl.cfm
http://weblogs.macromedia.com/auhlmann/archives/2006/06/cairngorm_sampl.cfm
http://weblogs.macromedia.com/auhlmann/archives/2006/06/cairngorm_sampl.cfm

372 ITERATION 9

Holding state on the client properly
 public var project:Project;

 [Bindable]
 public var location:Location;

 [Bindable]
 public var nextAction:Boolean;

 [Bindable]
 public var completed:Boolean;

 public function Task(
 name:String = "",
 notes:String = "",
 project:Project = null,
 location:Location = null,
 nextAction:Boolean = false,
 completed:Boolean = false,
 id:int = UNSAVED_ID)
 {
 this.name = name;
 this.notes = notes;
 if (project == null) {
 project = Project.NONE;
 }
 project.addTask(this);
 if (location == null) {
 location = Location.NONE;
 }
 location.addTask(this);
 this.nextAction = nextAction;
 this.completed = completed;
 this.id = id;
 }

 public function toUpdateObject():Object {
 var obj:Object = new Object();
 obj["task[name]"] = name;
 obj["task[project_id]"] = project.id;
 obj["task[location_id]"] = location.id;
 obj["task[next_action]"] = nextAction;
 obj["task[completed]"] = completed;
 obj["task[notes]"] = notes;
 return obj;
 }

 public function toXML():XML {
 var retval:XML =
 <task>
 <name>{name}</name>
 <notes>{notes}</notes>

D

E

F

G

H

I
J

1)

Creating the model classes 373
 <project_id>{project.id}</project_id>
 <location_id>{location.id}</location_id>
 <next_action>{nextAction}</next_action>
 <completed>{completed}</completed>
 </task>;
 return retval;
 }

 public static function fromXML(taskXML:XML):Task {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 return new Task(
 taskXML.name,
 taskXML.notes,
 model.getProject(taskXML.project_id),
 model.getLocation(taskXML.location_id),
 XMLUtils.xmlListToBoolean(taskXML.next_action),
 XMLUtils.xmlListToBoolean(taskXML.completed),
 taskXML.id);
 }
 }
}

We begin by creating a static constant for an unsaved Task B id. We then create a
bunch C of Bindable public vars for the various properties of a Task. Next, we
define a constructor D that takes all the properties of a Task as parameters, but
which has default values for all of them. This is the most flexible way of doing
things (and this book is all about being flexible). Note that the default value for
the id is the UNSAVED_ID E.

 A few things are subtle about how we’ll use the model objects. First, Rails will
never care about the id in a task, project, or location XML we send it. (For Rails to
use that id would be inviting security holes. Also, we’ll use the id of the task,
project, or location as part of the RESTful update URL.) However, on the Flex
side, it’s nice to have ids in the Task, Project, and Location, as we’ll see.

 Next, if the project F or location G is null, we default it to Project.NONE or
Location.NONE. This is a good use of the Null Object pattern:4 We want to use Tasks
on the Flex side without adding a lot of annoying special-case code to check if
(task.project == null) all the time. This accomplishes that goal. Now, we create
a method called toUpdateObject H. This is subtle: Recall that we can’t send PUT or
DELETE requests. So, we fake them using a _method parameter that we set to PUT
or DELETE. But this only works in a normal application/x-www-form-urlencoded
POST—that is, if we send XML, we can’t use this hack. We can’t do a PUT or DELETE

4 If you haven’t read Martin Fowler’s Refactoring, read it.

1!
1@

1#
1$

1%
1^

1&
1*

1(

374 ITERATION 9

Holding state on the client properly
with XML data. As such, we need a way to send an object’s values as form parameters.
That’s what this cheesy method does. The nice thing is that all this hacking is encap-
sulated now, instead of sprinkled throughout the code. Also, note that we can use
the project.id I and location.id J without worrying about them being null—
hooray for the Null Object pattern.

 One obvious refactoring would be to not use public vars for the project and
location, but instead to use set functions that checked whether a project or
location was being set to null and used the null object instead.

 Next, we create a toXML function 1) that can marshal a Task into XML. We’re
including the project_id 1! and location_id 1@ in the XML, because this is how
Rails stores the Task. (Note again that we can use project.id and location.id
with impunity.)

 We create a static fromXML function 1# that unmarshals XML into a Task. (It’s
static so we can say Task.fromXML to produce a new Task: We don’t have a Task
instance when calling it; we’re trying to create one.) It uses the shared Pomo-
doModelLocator instance 1$ to set the project 1% and location 1^.

NOTE We’re going to rely on the fact that we’ll get the lists of Projects and
Locations first, and only get the list of Tasks once the Projects and
Locations have come back. We could have also used a mechanism that
stores the project_id and location_id in the Task and used the
shared PomodoModelLocator to look up the Project or Location in a
get method (and that stored the id of the Project or Location in a set
method). I chose the approach I did because it seemed simpler to have
objects refer to other objects via proper references, rather than needing
to use hashes for everything.

Next, we use the XMLUtils.xmlListToBoolean method to get proper Boolean val-
ues for the next_action 1& and completed 1* parameters. (We’re not using the
next_action yet, but we’ll add support for it where it’s straightforward to do so,
so that when we do hook it up we’re halfway there.) Finally, we pass in the id from
the XML 1(.

9.2.2 Project.as

Next, we’ll create the Project model; see listing 9.2. This is similar to what we did
for the Task model.

package com.pomodo.model {
 import mx.collections.ArrayCollection;
 import com.pomodo.util.XMLUtils;

Listing 9.6 app\flex\com\pomodo\model\Project.as

Creating the model classes 375
 public class Project {
 public static const UNSAVED_ID:int = 0;
 public static const NONE_ID:int = 0;

 public static const NONE: Project =
 new Project("- None - ", "", false, NONE_ID);

 public function Project(
 name:String = "",
 notes:String = "",
 completed:Boolean = false,
 id:int = UNSAVED_ID)
 {
 this.name = name;
 this.notes = notes;
 this.completed = completed;
 this.id = id;
 tasks = new ArrayCollection([]);
 }

 [Bindable]
 public var id: int;

 [Bindable]
 public var name:String;

 [Bindable]
 public var notes:String;

 [Bindable]
 public var completed: Boolean;

 [Bindable]
 public var tasks: ArrayCollection;

 public function addTask(task:Task):void {
 task.project = this;
 tasks.addItem(task);
 }

 public function removeTask(task:Task):void {
 if (task.project == this) {
 for (var i:int = 0; i < tasks.length; i++) {
 if (tasks[i].id == task.id) {
 tasks.removeItemAt(i);
 task.project = null;
 break;
 }
 }
 }
 }

B

C

D

E

F
G
H

I
J

1)
1!

1@
1#

376 ITERATION 9

Holding state on the client properly
 public function toUpdateObject():Object {
 var obj:Object = new Object();
 obj["project[name]"] = name;
 obj["project[notes]"] = notes;
 obj["project[completed]"] = completed;
 return obj;
 }

 public function toXML():XML {
 var retval:XML =
 <project>
 <name>{name}</name>
 <notes>{notes}</notes>
 <completed>{completed}</completed>
 </project>;
 return retval;
 }

 public static function fromXML(proj:XML):Project {
 return new Project(
 proj.name,
 proj.notes,
 XMLUtils.xmlListToBoolean(proj.completed),
 proj.id);
 }
 }
}

We’re creating a null object for “no project,” so we create a NONE_ID const of 0 B
and then a NONE Project C with "- None -" as its name and NONE_ID for its id.

 Inside the Project constructor, we create D a new ArrayCollection E for
the Tasks this Project will contain. We then add an addTask F method that sets
the Project of the Task G to this and adds the Task to the tasks ArrayCollec-
tion H. Similarly, the removeTask I method takes a Task as a parameter and
checks that the Task’s Project is the current Project J; if so, the method iter-
ates 1), looking for the task with the matching id 1!, and, when it finds it,
removes it from the tasks ArrayCollection 1@ and sets its project to null 1#.

 Finally, we create toUpdateObject 1$, toXML 1%, and fromXML 1^ methods,
which are extremely similar to those of the Task class. Note that we don’t marshal
the tasks ArrayCollection—this isn’t about sending an object graph to Rails,
it’s about sending exactly what Rails was already expecting. (This is a refactoring
on the Flex side only: The Rails code is unchanged.)

9.2.3 Location.as

Next, we’ll create the Location model; see listing 9.3. There is nothing new here;
it’s a copy-paste-modify of the Task or Project class.

1$

1%

1^

Creating the model classes 377
package com.pomodo.model {
 import mx.collections.ArrayCollection;

 public class Location {
 public static const UNSAVED_ID:int = 0;
 public static const NONE_ID:int = 0;

 public static const NONE: Location =
 new Location("- None - ", "", NONE_ID);

 public function Location(
 name:String = "",
 notes:String = "",
 id:int = UNSAVED_ID)
 {
 this.name = name;
 this.notes = notes;
 this.id = id;
 tasks = new ArrayCollection([]);
 }

 [Bindable]
 public var id: int;

 [Bindable]
 public var name:String;

 [Bindable]
 public var notes:String;

 [Bindable]
 public var tasks: ArrayCollection;

 public function addTask(task:Task):void {
 task.location = this;
 tasks.addItem(task);
 }

 public function removeTask(task:Task):void {
 if (task.location == this) {
 for (var i:int = 0; i < tasks.length; i++) {
 if (tasks[i].id == task.id) {
 tasks.removeItemAt(i);
 task.location = null;
 break;
 }
 }
 }
 }

Listing 9.6 app\flex\com\pomodo\model\Location.as

378 ITERATION 9

Holding state on the client properly
 public function toUpdateObject():Object {
 var obj:Object = new Object();
 obj["location[name]"] = name;
 obj["location[notes]"] = notes;
 return obj;
 }

 public function toXML():XML {
 var retval:XML =
 <location>
 <name>{name}</name>
 <notes>{notes}</notes>
 </location>;
 return retval;
 }

 public static function fromXML(loc:XML):Location {
 return new Location(loc.name, loc.notes, loc.id);
 }
 }
}

NOTE Because we’re further along in the book and your knowledge of Flex and
Rails has grown, I’ll be skipping redundant explanations that will proba-
bly only bore you. I’ll only number the lines I’ll explain.

9.2.4 User.as

Finally, we’ll create the User model; see listing 9.4.

package com.pomodo.model {
 public class User {
 [Bindable]
 public var login:String;

 [Bindable]
 public var email:String;

 [Bindable]
 public var firstName:String;

 [Bindable]
 public var lastName:String;

 [Bindable]
 public var notes:String;

 [Bindable]

Listing 9.6 app\flex\com\pomodo\model\User.as

Creating the model classes 379
 public var password:String;

 public function User(
 login:String = "",
 email:String = "",
 firstName:String = "",
 lastName:String = "",
 notes:String = "",
 password:String = "")
 {
 this.login = login;
 this.email = email;
 this.firstName = firstName;
 this.lastName = lastName;
 this.notes = notes;
 this.password = password;
 }

 public function toXML():XML {
 var retval:XML =
 <user>
 <login>{login}</login>
 <email>{email}</email>
 <first_name>{firstName}</first_name>
 <last_name>{lastName}</last_name>
 <notes>{notes}</notes>
 <password>{password}</password>
 <password_confirmation>{password}</password_confirmation>
 </user>;
 return retval;
 }

 public static function fromXML(userXML:XML):User {
 var user:User = new User();
 user.login = userXML.login;
 user.email = userXML.email;
 user.firstName = userXML.first_name;
 user.lastName = userXML.last_name;
 user.notes = userXML.notes;
 //no password comes back
 return user;
 }
 }
}

The one thing to note here is that the User model has a password property B
that is essentially one-way: It’s used to create the User by setting the password C
and password_confirmation D in the toXML method. Because no password
comes back from Rails E, we don’t set it in fromXML.

B

C
D

E

380 ITERATION 9

Holding state on the client properly
9.3 Modifying the PomodoModelLocator

Next, we’ll modify the PomodoModelLocator. This is all straightforward; there’s a
lot of it, as shown in listing 9.5.

package com.pomodo.model {
 import com.adobe.cairngorm.model.IModelLocator;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.XMLUtils;
 import com.pomodo.validators.ServerErrors;

 import mx.collections.ArrayCollection;
 import mx.collections.ICollectionView;
 import mx.collections.IViewCursor;
 import mx.collections.XMLListCollection;
 import mx.collections.ListCollectionView;
 import mx.formatters.CurrencyFormatter;

 [Bindable]
 public class PomodoModelLocator implements IModelLocator {
 public static const NO_PROJECT_XML:XML =
 <project>
 <name>- None -</name>
 <id type="integer">0</id>
 </project>;

 public static const NO_LOCATION_XML:XML =
 <location>
 <name>- None -</name>
 <id type="integer">0</id>
 </location>;

 public static const VIEWING_SPLASH_SCREEN:int = 0;
 public static const VIEWING_MAIN_APP:int = 1;

 public var user:User;
 public var user:XML;

 public var tasks:ListCollectionView;
 public var tasksXLC:XMLListCollection;

 public var projects:ListCollectionView;

 public var locations:ListCollectionView;

 public var projectsAndNone:ListCollectionView;

Listing 9.5 app\flex\com\pomodo\model\PomodoModelLocator.as

Remove import

Remove imports

Add import

NO_PROJECT_XML and
NO_LOCATION_XML
replaced by
Project.NONE and
Location.NONE

Make user variable
User, not XML

Replace tasksXLC
XMLListCollection
with tasks
ListCollectionView

B

Store
Projects

Store Locations

Store Projects
and Project.NONE

Modifying the PomodoModelLocator 381
 public var locationsAndNone:ListCollectionView;

 public var projectIDMap:Object;

 public var locationIDMap:Object;

 public var projectsAndNoneXLC:XMLListCollection;

 public var locationsAndNoneXLC:XMLListCollection;

 public var accountCreateErrors:ServerErrors;

 public var workflowState:int = VIEWING_SPLASH_SCREEN;

 public var reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';

 public function updateTask(task:Task):void {
 for (var i:int = 0; i < tasks.length; i++) {
 var ithTask:Task = Task(tasks.getItemAt(i));
 if (ithTask.id == task.id) {
 tasks.setItemAt(task, i);
 break;
 }
 }
 }

 public function removeTask(task:Task):void {
 for (var i:int = 0; i < tasks.length; i++) {
 var ithTask:Task = Task(tasks.getItemAt(i));
 if (ithTask.id == task.id) {
 ithTask.project.removeTask(ithTask);
 ithTask.location.removeTask(ithTask);
 tasks.removeItemAt(i);
 break;
 }
 }
 }

 public function setTasks(list:XMLList):void {
 var tasksArray:Array = [];
 var item:XML;
 for each (item in list) {
 var task:Task = Task.fromXML(item);
 tasksArray.push(task);
 }
 tasks = new ArrayCollection(tasksArray);
 }

Store
Locations and
Location.NONERename for

better style

Delete old
XMLList-
Collections

Find and
replace
task with
matching id

Find and
remove
task with
matching id

New Task for
each XML item
in XMLList

static Task.fromXML
method, used to
unmarshal XML
into Task

382 ITERATION 9

Holding state on the client properly
 public function setProjects(list:XMLList):void {
 projectIDMap = {};
 projectIDMap[0] = Project.NONE;
 var projectsArray:Array = [];
 var item:XML;
 for each (item in list) {
 var project:Project = Project.fromXML(item);
 projectsArray.push(project);
 projectIDMap[project.id] = project;
 }
 projects = new ArrayCollection(projectsArray);
 var projectsAndNoneArray:Array =
 projectsArray.slice(0);
 projectsAndNoneArray.splice(0, 0, Project.NONE);
 projectsAndNone =
 new ArrayCollection(projectsAndNoneArray);
 _gotProjects = true;
 listTasksIfMapsPresent();
 }

 public function setLocations(list:XMLList):void {
 locationIDMap = {};
 locationIDMap[0] = Location.NONE;
 var locationsArray:Array = [];
 var item:XML;
 for each (item in list) {
 var location:Location = Location.fromXML(item);
 locationsArray.push(location);
 locationIDMap[location.id] = location;
 }
 locations = new ArrayCollection(locationsArray);
 var locationsAndNoneArray:Array =
 locationsArray.slice(0);
 locationsAndNoneArray.splice(0, 0, Location.NONE);
 locationsAndNone =
 new ArrayCollection(locationsAndNoneArray);
 _gotLocations = true;
 listTasksIfMapsPresent();
 }

 public function get projectsXLC():XMLListCollection {
 return _projectsXLC;
 }

 public function set projectsXLC(setValue:
 XMLListCollection):void {
...
 }

 public function get locationsXLC():XMLListCollection {

Construct
based on
temporary
projectsAnd-
NoneArray

Add
Project.NONE to
projectIDMap

Copy Array
with slice(0)
call

C

Similar to
projectsXLC
set method

Add
Project.NONE

 to beginning of
projectsAndNone

Array

Operates like
setProjects
method

Modifying the PomodoModelLocator 383
 return _locationsXLC;
 }

 public function set locationsXLC(
 setValue:XMLListCollection):void
 {
...
 }

 public function getProject(projectID:int):Project {
 if (projectIDMap == null) return null;
 return projectIDMap[projectID];
 }
 public function getProject(project_id:int):XML {
 if (projectIdMap == null) return null;
 return projectIdMap[project_id];
 }

 public function getLocation(locationID:int):Location {
 if (locationIDMap == null) return null;
 return locationIDMap[locationID];
 }
 public function getLocation(location_id:int):XML {
 if (locationIdMap == null) return null;
 return locationIdMap[location_id];
 }

 private var _gotProjects:Boolean;

 private var _gotLocations:Boolean;

 private var _projectsAndNoneXLC:XMLListCollection;

 private var _locationsAndNoneXLC:XMLListCollection;

 private var _projectsXLC:XMLListCollection;

 private var _locationsXLC:XMLListCollection;

 private function getProjectsAndNone(projectsXL:XMLList):
 XMLListCollection {
...
 }

 private function getLocationsAndNone(
 locationsXL:XMLList):XMLListCollection {
...
 }

 private function listTasksIfMapsPresent():void {
 if (_gotProjects && _gotLocations) {

Return Project
instead of XML

Return Location
instead of XML

Delete
obsolete
code

384 ITERATION 9

Holding state on the client properly
 CairngormUtils.dispatchEvent(
 EventNames.LIST_TASKS);
 }
 }

 private static var modelLocator:PomodoModelLocator;

 public static function getInstance():PomodoModelLocator{
 if (modelLocator == null) {
 modelLocator = new PomodoModelLocator();
 }
 return modelLocator;
 }

 public function PomodoModelLocator() {
 if (modelLocator != null) {
 throw new Error(
"Only one PomodoModelLocator instance may be instantiated.");
 }
 _gotProjects = false;
 _gotLocations = false;
 _projectsXLC = null;
 _locationsXLC = null;
 }
 }
}

We replace the tasksXLC XMLListCollection with a tasks ListCollection-
View B. ListCollectionView is the base class of ArrayCollection, which is
what the tasks will be. ListCollectionView implements ICollectionView
and IList.

Delete
obsolete
code

Q. Shouldn’t you make the tasks thing be an interface instead of a class? Isn’t
programming to interfaces more flexible than programming to classes? Did you
fail Polymorphism 101?

A. In an ideal world, yes, I would make the tasks thing be an interface type. How-
ever, ListCollectionView implements two interfaces (ICollectionView and
IList). If I made it an ICollectionView, I couldn’t pass it to something that
took an IList, and vice versa. Also, there are IList and ICollectionView meth-
ods I want to call. Given the way the Flex 3 class hierarchy is, using List-
CollectionView is more flexible. (If there was an IListCollectionView
interface, I would have used that.)

Modifying ServiceUtils 385
Note also that I’ve learned my lesson and removed the type suffix from my collec-
tions. If I had called the tasksXLC XMLListCollection tasks, I would have had
less work to do. I’m calling the tasks ListCollectionView tasks instead of
tasksLCV, so that if I change its type again I’ll potentially have less work to do.

 The slice(0) call C is the way we copy an Array. The slightly convoluted way
that the projectsAndNone ArrayCollection is initialized (all at once, as opposed
to basing it on a copy of the projectsArray and then using addItem to add the
Project.NONE to the beginning) is done for an obscure reason: This Array-
Collection is being used as the dataProvider to the Project ComboBox in the
TaskCreateBox. If we create the ArrayCollection based on an Array and then
do addItem to add an element to the beginning, that item is added correctly.
However, it isn’t the default selected item in the ComboBox—that item is the item
that was the first element in the Array that we used to do the initial population of
the ArrayCollection, which is now at index 1. We want the default project to be
"- None -", so we do this to do it all at once. (If that didn’t make any sense, run
the app at the end of this iteration and experiment using addItem instead.)

 Now that we have a proper object model, we’ll make the supporting changes
to take advantage of this improved infrastructure. We’ll start by modifying the
ServiceUtils class, then the business delegates that use it, then the commands
that use the business delegates, and finally the components that use the commands.

9.4 Modifying ServiceUtils

The ServiceUtils class has served us well, but it’s time to make it even more use-
ful. Having to explicitly do stuff like params['_method'] = "PUT"; in the delegate
classes is lame. Surely this should be wrapped in ServiceUtils.

 We’ll do that here, plus a little more. We’ll also reorder the parameters, so the
HTTP method (real or hacked) comes sooner; see listing 9.6.

package com.pomodo.util {
 import mx.rpc.IResponder;
 import mx.rpc.AsyncToken;
 import mx.rpc.http.HTTPService;

 public class ServiceUtils {
 public static function send(
 url:String,
 responder:IResponder = null,
 method:String = null,
 request:Object = null,
 sendXML:Boolean = false,

Listing 9.6 app\flex\com\pomodo\util\ServiceUtils.as

B

386 ITERATION 9

Holding state on the client properly
 resultFormat:String = "e4x",
 useProxy:Boolean = false):void
 {
 var service:HTTPService = new HTTPService();
 service.url = url;
 service.request = request;
 service.contentType = sendXML ? "application/xml" :
 "application/x-www-form-urlencoded";
 service.resultFormat = resultFormat;
 if (method == null) {
 service.method = (request == null) ?
 "GET" : "POST";
 } else if ((method == "PUT") ||
 (method == "DELETE")) {
 service.method = "POST";
 if (request == null) {
 request = new Object();
 }
 request["_method"] = method;
 } else {
 service.method = method;
 }
 service.request = request;
 service.useProxy = useProxy;
 var call:AsyncToken = service.send();
 if (responder != null) {
 call.addResponder(responder);
 }
 }
 }
}

We start by reordering the parameters B. Next, we move the service.request
assignment lower CI because we’re potentially constructing the request dynam-
ically G. We adding a check to see whether the method is PUT or DELETE D; and if
so, we set the service method to "POST" E and construct a new request G if the
request was null F. We then set the request _method field H to the "PUT" or
"DELETE" that the user specified.

 Note that we don’t currently prevent ourselves from mistakenly trying to send
XML with a PUT or DELETE. This would be a useful enhancement.

9.5 Modifying the business delegates

Now that we’ve finished with the model and the ServiceUtils, let’s move one
step up the food chain to the classes that use ServiceUtils: the business dele-
gates. These changes are easy: All we’re doing is modifying the business delegates

C

D
E

F
G

H

I

Modifying the business delegates 387
to take our new model classes as parameters (instead of XML) and to call the mod-
ified ServiceUtils.send method.

9.5.1 TaskDelegate.as

We’ll start with TaskDelegate; see listing 9.7.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.model.Task;
 import com.pomodo.util.ServiceUtils;

 public class TaskDelegate {
 private var _responder:IResponder;

 public function TaskDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function listTasks():void {
 ServiceUtils.send("/tasks.xml", _responder);
 }

 public function createTask(task:XML):void {
 ServiceUtils.send("/tasks.xml", _responder, task,
 true);
 public function createTask(task:Task):void {
 ServiceUtils.send("/tasks.xml", _responder, "POST",
 task.toXML(), true);
 }

 public function updateTask(taskID:int, keys:Array,
 values:Array):void
 {
 var params:Object = new Object();
 for (var i:int = 0; i < keys.length; i++) {
 params['task[' + keys[i] +']'] = values[i];
 }
 params['_method'] = "PUT";
 ServiceUtils.send(
 "/tasks/" + taskID + ".xml",
 _responder,
 params);
 public function updateTask(task:Task):void {
 ServiceUtils.send(
 "/tasks/" + task.id + ".xml", _responder, "PUT",
 task.toUpdateObject(), false);
 }

Listing 9.7 app\flex\com\pomodo\business\TaskDelegate.as

Add
import

Modify
createTask B

Modify
updateTask

C

388 ITERATION 9

Holding state on the client properly
 public function destroyTask(taskID:int):void {
 ServiceUtils.send(
 "/tasks/" + taskID + ".xml",
 _responder,
 {_method: "DELETE"});
 public function destroyTask(task:Task):void {
 ServiceUtils.send(
 "/tasks/" + task.id + ".xml",
 _responder,
 "DELETE");
 }
 }
}

We modify the TaskDelegate createTask method B to call ServiceUtils.send
with the same URL and _responder, but with the method explicitly set to "POST",
which is a consequence of having moved it earlier: We need to specify it more
often. We also pass task.toXML() instead of just the task, which had been XML
beforehand. Then, we specify true for the sendXML parameter.

 Next, we modify the updateTask C method to only take one parameter, the
Task, instead of three ugly parameters. This is better, even if it means that we’ll
sometimes be doing redundant updates of some Task attributes—the code is
much cleaner. We call ServiceUtils.send with the same URL, but this time the id
comes from the task that was passed in. We use the same _responder, but we then
do different things: We specify the method of "PUT" and call task.toUpdate-
Object to generate the somewhat cheesy form parameters we need (recall that we
can’t send XML with the hacked PUT _method). Finally, we specify false for the
sendXML parameter.

 Finally, we modify the destroyTask D, calling ServiceUtils.send with a URL
formed from the Task id, the same _responder, and a "DELETE" method instead
of a hacked-up object to post as parameters. It’s nice to keep the hacking inside
ServiceUtils.

 Next, we’ll modify the ProjectDelegate.

9.5.2 ProjectDelegate.as

We make changes to the ProjectDelegate that are similar to those we made to
the TaskDelegate; see listing 9.8.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.model.Project;

Listing 9.6 app\flex\com\pomodo\business\ProjectDelegate.as

Modify
destroyTask

D

B

Modifying the business delegates 389
 import com.pomodo.util.ServiceUtils;

 public class ProjectDelegate {
 private var _responder:IResponder;

 public function ProjectDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function listProjects():void {
 ServiceUtils.send("/projects.xml", _responder);
 }

 public function createProject(project:XML):void {
 ServiceUtils.send("/projects.xml", _responder,
 project, true);
 public function createProject(project:Project):void {
 ServiceUtils.send("/projects.xml", _responder,
 "POST", project.toXML(), true);
 }

 public function updateProject(
 projectID:int,
 keys: Array,
 values: Array):void
 {
 var params:Object = new Object();
 for (var i:int = 0; i < keys.length; i++) {
 params['project[' + keys[i] +']'] = values[i];
 }
 params['_method'] = "PUT";
 ServiceUtils.send(
 "/projects/" + projectID + ".xml",
 _responder,
 params);
 public function updateProject(project:Project):void {
 ServiceUtils.send(
 "/projects/" + project.id + ".xml",
 _responder, "PUT", project.toUpdateObject(),
 false);
 }

 public function destroyProject(projectID:int):void {
 ServiceUtils.send(
 "/projects/" + projectID + ".xml",
 _responder,
 {_method: "DELETE"});
 public function destroyProject(project:Project):void {
 ServiceUtils.send(
 "/projects/" + project.id + ".xml",

C

D

E

390 ITERATION 9

Holding state on the client properly
 _responder, "DELETE");
 }
 }
}

This is more of the same. We add an import B and modify the createProject C,
updateProject D, and destroyProject E to use the new ServiceUtils.send
method and the Project class that is now passed in.

 Next, we’ll modify the LocationDelegate.

9.5.3 LocationDelegate.as

The changes we make to the LocationDelegate are similar to those we made to
the ProjectDelegate; see listing 9.9.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.model.Location;
 import com.pomodo.util.ServiceUtils;

 public class LocationDelegate {
 private var _responder:IResponder;

 public function LocationDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function listLocations():void {
 ServiceUtils.send("/locations.xml", _responder);
 }

 public function createLocation(location:XML):void {
 ServiceUtils.send("/locations.xml", _responder,
 location, true);
 public function createLocation(location:Location):void {
 ServiceUtils.send("/locations.xml", _responder,
 "POST", location.toXML(), true);
 }

 public function updateLocation(
 locationID: int,
 keys: Array,
 values: Array):void
 {

Listing 9.6 app\flex\com\pomodo\business\LocationDelegate.as

Add import

Modify
createLocation

Modifying the business delegates 391
 var params:Object = new Object();
 for (var i:int = 0; i < keys.length; i++) {
 params['location[' + keys[i] +']'] = values[i];
 }
 params['_method'] = "PUT";
 ServiceUtils.send(
 "/locations/" + locationID + ".xml",
 _responder,
 params);
 public function updateLocation(location:Location):void {
 ServiceUtils.send(
 "/locations/" + location.id + ".xml",
 _responder, "PUT", location.toUpdateObject(),
 false);
 }

 public function destroyLocation(locationID:int):void {
 ServiceUtils.send(
 "/locations/" + locationID + ".xml",
 _responder,
 {_method: "DELETE"});
 public function destroyLocation(location:Location):void {
 ServiceUtils.send(
 "/locations/" + location.id + ".xml",
 _responder, "DELETE");
 }
 }
}

9.5.4 SessionDelegate.as

Next, we modify the SessionDelegate to specify a method of POST; see listing 9.10.

...
 public function createSession(login:String,
 password:String):void {
 ServiceUtils.send(
 "/session.xml",
 _responder,
 "POST",
 {login: login, password: password});
 }
...

9.5.5 UserDelegate.as

Finally, we modify the UserDelegate; see listing 9.11.

Listing 9.6 app\flex\com\pomodo\business\SessionDelegate.as

Modify
updateLocation

Modify destroyLocation

392 ITERATION 9

Holding state on the client properly
package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.model.User;
 import com.pomodo.util.ServiceUtils;

 public class UserDelegate {
 private var _responder:IResponder;

 public function UserDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function createUser(user:XML):void {
 ServiceUtils.send("/users.xml", _responder, user,
 true);
 public function createUser(user:User):void {
 ServiceUtils.send("/users.xml", _responder, "POST",
 user.toXML(), true);
 }
 }
}

We add an import B and modify the createUser C function to take a User as the
parameter (again, a big improvement) and to call the new ServiceUtils.send
method with a method of "POST" and the toXML() of the User passed in.

 That’s it for the business delegates. If you thought that was easy, it gets easier.

9.6 Modifying the commands

Next, we’ll modify the commands that use the business delegates. This will be trivial.

9.6.1 CreateSessionCommand.as

First, we modify the CreateSessionCommand; see listing 9.12.

package com.pomodo.command {
...
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.User;

 import mx.controls.Alert;
...
 public class CreateSessionCommand implements ICommand,
 IResponder {

Listing 9.6 app\flex\com\pomodo\business\UserDelegate.as

Listing 9.12 app\flex\com\pomodo\command\CreateSessionCommand.as

B

C

B

Modifying the commands 393
...
 public function result(event:Object):void {
 var result:Object = event.result;
 if (event.result == "badlogin") {
 Alert.show("Login failed.");
 } else {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.user = XML(event.result);
 model.user = User.fromXML(XML(event.result));
 model.workflowState =
 PomodoModelLocator.VIEWING_MAIN_APP;
 }
 }
...
}

All we’re doing here is adding an import B and setting the model.user (which is
now a User) with the result of calling User.fromXML C.

9.6.2 CreateUserCommand.as

Next, we modify the CreateUserCommand; see listing 9.13.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.UserDelegate;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.User;
 import com.pomodo.validators.ServerErrors;
...
 public class CreateUserCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var result:Object = event.result;
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (result is XML) {
 var resultXML:XML = XML(result);
 if (resultXML.name().localName == "errors") {
...
 } else {
 model.user = resultXML;
 model.user = User.fromXML(resultXML);
 model.workflowState =

Listing 9.6 app\flex\com\pomodo\command\CreateUserCommand.as

C

B

C

394 ITERATION 9

Holding state on the client properly
 PomodoModelLocator.VIEWING_MAIN_APP;
 }
 } else {
...

We add an import B and set the model.user with the result of calling
User.fromXML C instead of using the XML.

9.6.3 DestroyTaskCommand.as

Next, we modify DestroyTaskCommand; see listing 9.14.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Task;
 import com.pomodo.util.CairngormUtils;
...
 public class DestroyTaskCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (event.result == "error") {
 Alert.show(
 "The task was not successfully deleted.",
 "Error");
 } else {
 var deletedTask:XML = XML(event.result);
 var deletedTaskId:int = deletedTask.id;
 for (var i:int = 0; i < model.tasksXLC.length;
 i++)
 {
 var ithTask:XML =
 XML(model.tasksXLC.getItemAt(i));
 if (ithTask.id == deletedTaskId) {
 model.tasksXLC.removeItemAt(i);
 break;
 }
 }
 model.removeTask(
 Task.fromXML(XML(event.result)));

Listing 9.6 app\flex\com\pomodo\command\DestroyTaskCommand.as

B

C

D

Modifying the commands 395
 }
 }
...
}

Here we add an import B, delete a bunch of code C, and instead call the
removeTask D method that we created to do this for us in PomodoModelLocator
with a new Task that we construct from the XML we received. Yes, it’s wasteful to
construct a new Task just to delete it—however, I prefer working with Tasks to
passing ids or XML around.

 Note that we don’t need to modify the DestroyLocationCommand or the
DestroyProjectCommand—those commands pass their event.data to delegate
methods. Even though we’ll change the delegates, the commands themselves
are unchanged.

9.6.4 ListLocationsCommand.as

Next, we modify ListLocationsCommand; see listing 9.15.

package com.pomodo.command {
...
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public class ListLocationsCommand implements ICommand,
 IResponder {
 public function ListLocationsCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:LocationDelegate =
 new LocationDelegate(this);
 delegate.listLocations();
 }

 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.locationsXLC = new XMLListCollection(
 model.setLocations(
 XMLList(event.result.children()));
 }
...
}

Listing 9.6 app\flex\com\pomodo\command\ListLocationsCommand.as

B

396 ITERATION 9

Holding state on the client properly
All we’re doing here is calling model.setLocations() B in the result handler
instead of setting the model.locationsXLC.

9.6.5 ListProjectsCommand.as

Next, we modify the ListProjectsCommand; see listing 9.16.

package com.pomodo.command {
...
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public class ListProjectsCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.projectsXLC = new XMLListCollection(
 model.setProjects(
 XMLList(event.result.children()));
 }
...
}

Similarly, we’re just calling model.setProjects() B instead of assigning model.
projectsXLC.

9.6.6 ListTasksCommand.as

Next, we modify the ListTasksCommand; see listing 9.17.

package com.pomodo.command {
...
 import mx.rpc.events.ResultEvent;
 import mx.collections.XMLListCollection;

 public class ListTasksCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.tasksXLC = new XMLListCollection(

Listing 9.6 app\flex\com\pomodo\command\ListProjectsCommand.as

Listing 9.6 app\flex\com\pomodo\command\ListTasksCommand.as

B

Modifying the commands 397
 model.setTasks(
 XMLList(event.result.children()));
 }
...

We call model.setTasks() B instead of assigning model.tasksXLC.

9.6.7 UpdateLocationCommand.as

Now, we modify the UpdateLocationCommand; see listing 9.18.

...
 public function execute(event:CairngormEvent):void {
 var delegate:LocationDelegate =
 new LocationDelegate(this);
 delegate.updateLocation(
 event.data.locationID,
 event.data.keys,
 event.data.values);
 delegate.updateLocation(event.data);
 }
...

We call delegate.updateLocation()with the event.data B (which is now a
Location) instead of with the locationID, keys, and values we had been using.
This is much cleaner.

9.6.8 UpdateProjectCommand.as

Next, we modify UpdateProjectCommand; see listing 9.19.

...
 public function execute(event:CairngormEvent):void {
 var delegate:ProjectDelegate =
 new ProjectDelegate(this);
 delegate.updateProject(
 event.data.projectID,
 event.data.keys,
 event.data.values);
 delegate.updateProject(event.data);
 }
...

Listing 9.6 app\flex\com\pomodo\command\UpdateLocationCommand.as

Listing 9.6 app\flex\com\pomodo\command\UpdateProjectCommand.as

B

B

B

398 ITERATION 9

Holding state on the client properly
We call delegate.updateProject()with the event.data B (which is now a
Project) instead of with the projectID, keys, and values we had been using.

9.6.9 UpdateTaskCommand.as

Finally, we modify the UpdateTaskCommand; see listing 9.20.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Task;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class UpdateTaskCommand implements ICommand,
 IResponder {
 public function UpdateTaskCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TaskDelegate = new TaskDelegate(this);
 delegate.updateTask(
 event.data.taskID,
 event.data.keys,
 event.data.values);
 delegate.updateTask(event.data);
 }

 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 var newTask:XML = XML(event.result);
 for (var i:int = 0; i < model.tasksXLC.length; i++)
 {
 var ithTask:XML =
 XML(model.tasksXLC.getItemAt(i));
 if (ithTask.id == newTask.id) {
 model.tasksXLC.setItemAt(newTask, i);
 break;
 }
 }
 model.updateTask(Task.fromXML(XML(event.result)));
 }

Listing 9.6 app\flex\com\pomodo\command\UpdateTaskCommand.as

B

C

Modifying the components 399

 public function fault(event:Object):void {
 Pomodo.debug("UpdateTaskCommand#fault: " + event);
 }
 }
}

We modify the execute method to call updateTask B with the event.data
(which is now a Task) instead of the id, keys, and values we had been using. We
then modify the result handler to call the model.updateTask function C with a
new Task that is constructed by calling Task.fromXML() on the result XML,
instead of doing a bunch of code in this handler.

NOTE How much code should go in the commands versus in model objects or
the ModelLocator is a design decision I struggled with. I came to the
conclusion that because code in commands can’t be shared with other
commands (other than copy-paste), code that looks general should be
put somewhere else. Don’t get carried away with this, though.

9.7 Modifying the components

Finally, we’ll modify the components. Some of these changes are easy; others are
tedious. The dominant theme is that we’re abstracting ourselves from the messy
details of XML, keys, values, and so on and dealing with Tasks, Projects, and
Locations. This is much better.

9.7.1 MainBox.mxml

We’ll start with a simple change, by modifying the MainBox; see listing 9.21.

...
 <mx:Label text="{'Logged in as: ' +
 _model.user.login +
 ' (' + _model.user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' +
 _model.user.first_name + '!'}"/>
 _model.user.firstName + '!'}"/>
 <mx:Accordion width="100%" height="350">
...

The _model.user is now a User, not XML. So, we refer to the Flex-style first-
Name B variable, instead of the first_name element in XML.

Listing 9.21 app\flex\com\pomodo\components\MainBox.mxml

B

400 ITERATION 9

Holding state on the client properly
9.7.2 TaskCreateBox.mxml

Next, we modify the TaskCreateBox; see listing 9.22.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Task">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Task;
 import com.pomodo.model.Project;
 import com.pomodo.model.Location;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function doTaskCreate():void {
 var projectID: int = XML(projectsCB.selectedItem).id;
 var locationID: int = XML(locationsCB.selectedItem).id;
 var task : XML =
 <task>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 <project_id>{projectID}</project_id>
 <location_id>{locationID}</location_id>
 </task>;
 var task:Task = new Task(
 nameTI.text,
 notesTI.text,
 Project(projectsCB.selectedItem),
 Location(locationsCB.selectedItem));
 CairngormUtils.dispatchEvent(EventNames.CREATE_TASK,
 task);
 }
]]>
</mx:Script>
 <mx:Form width="100%" height="100%">
 <mx:FormItem label="Task">
 <mx:TextInput id="nameTI" width="200"/>
 </mx:FormItem>
 <mx:FormItem label="Notes">
 <mx:TextArea id="notesTI" width="200" height="100"/>
 </mx:FormItem>
 <mx:FormItem label="Project">
 <mx:ComboBox id="projectsCB" width="200"

Listing 9.6 app\flex\com\pomodo\components\TaskCreateBox.mxml

B

C

Modifying the components 401
 labelField="name"
 dataProvider="{_model.projectsAndNoneXLC}"/>
 dataProvider="{_model.projectsAndNone}"/>
 </mx:FormItem>
 <mx:FormItem label="">
 <mx:CheckBox id="nextActionCheckbox"
 label="This is the Next Action"/>
 </mx:FormItem>
 <mx:FormItem label="Location">
 <mx:ComboBox id="locationsCB" width="200"
 labelField="name"
 dataProvider="{_model.locationsAndNoneXLC}"/>
 dataProvider="{_model.locationsAndNone}"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Submit" width="160" height="30"
 click="doTaskCreate()"/>
 </mx:FormItem>
 </mx:Form>
</mx:VBox>

We add imports B and then modify the doTaskCreate C method to create a new
Task, which has a Project and Location set. Note once again that using null
objects lets us avoid special-case code. Next, we modify the dataProvider of the
ComboBoxes for the Project D and Location E to use the new ListCollection-
Views that contain Projects and Locations.

9.7.3 ProjectCreateBox.mxml

Next, we modify the ProjectCreateBox; see listing 9.23.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Project">
<mx:Script>
<![CDATA[
 import com.pomodo.model.Project;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;

 private function doProjectCreate():void {
 var project : XML =
 <project>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </project>;

Listing 9.6 app\flex\com\pomodo\components\ProjectCreateBox.mxml

D

E

402 ITERATION 9

Holding state on the client properly
 var project:Project =
 new Project(nameTI.text, notesTI.text);
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_PROJECT, project);
 }
]]>
</mx:Script>
...

All we’re doing here is creating a new Project object B instead of XML that is
sent in the dispatchEvent call.

9.7.4 LocationCreateBox.mxml

Next, we modify the LocationCreateBox; see listing 9.24.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="New Location">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Location;
 import com.pomodo.util.CairngormUtils;

 private function doLocationCreate():void {
 var location : XML =
 <location>
 <name>{nameTI.text}</name>
 <notes>{notesTI.text}</notes>
 </location>;
 var location:Location =
 new Location(nameTI.text, notesTI.text);
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_LOCATION, location);
 }
]]>
</mx:Script>
...

We construct and send a Location B instead of XML.

9.7.5 AccountCreateBox.mxml

Now, we modify the AccountCreateBox; see listing 9.25.

Listing 9.6 app\flex\com\pomodo\components\LocationCreateBox.mxml

B

B

Modifying the components 403
<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cpv="com.pomodo.validators.*"
 width="100%" height="100%" label="Create Account">
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.events.ValidationResultEvent;
 import mx.validators.Validator;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.User;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.validators.ServerErrors;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function validateAndSubmit():void {
 var results:Array = Validator.validateAll([
 usernameValidator,
 emailValidator,
 passwordValidator,
 passwordConfirmationValidator]);
 if (results.length > 0) {
 Alert.show("Please correct the validation errors " +
 "highlighted on the form.",
 "Account Not Created");
 return;
 }
 var user: XML =
 <user>
 <login>{loginTI.text}</login>
 <email>{emailTI.text}</email>
 <first_name>{firstNameTI.text}</first_name>
 <last_name>{lastNameTI.text}</last_name>
 <password>{passwordTI.text}</password>
<password_confirmation>{confirmPasswordTI.text}

 ➥</password_confirmation>
 </user>
 var user:User = new User(
 loginTI.text,
 emailTI.text,
 firstNameTI.text,
 lastNameTI.text,
 "",
 passwordTI.text);
 CairngormUtils.dispatchEvent(

Listing 9.6 app\flex\com\pomodo\components\AccountCreateBox.mxml

B

404 ITERATION 9

Holding state on the client properly
 EventNames.CREATE_USER, user);
 }
...

We construct and send a User B instead of XML.

9.7.6 TasksListBox.mxml

Now, we’ll make a ton of changes to the TasksListBox; see listing 9.26. This is the
largest change left in this iteration, so grab a coffee if you need one.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
<mx:Script>
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.controls.Alert;
 import com.pomodo.components.MainBox;
 import com.pomodo.util.XMLUtils;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Location;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Project;
 import com.pomodo.model.Task;
 import com.pomodo.util.CairngormUtils;

 public const NEXT_ACTIONS:int = 0;
 public const ALL_TASKS:int = 1;
 public const TASKS_IN_PROJECT:int = 2;
 public const TASKS_AT_LOCATION:int = 3;

 [Bindable]
 public var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private const SHOW_CHOICES:Array = [
 {label:"Next Actions", data:NEXT_ACTIONS,
 hasSubChoice:false},
 {label:"All Tasks", data:ALL_TASKS,
 hasSubChoice:false},
 {label:"Tasks in Project:", data:TASKS_IN_PROJECT,
 hasSubChoice:true},
 {label:"Tasks at Location:", data:TASKS_AT_LOCATION,
 hasSubChoice:true}];

Listing 9.6 app\flex\com\pomodo\components\TasksListBox.mxml

Remove/add
imports

B

Modifying the components 405

 [Bindable]
 private var _subChoices:Array;

 public function updateSelectedTaskFromSummaryPanel():void {
 var selectedTask:XML = XML(tasksGrid.selectedItem);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_TASK,
 { taskID: selectedTask.id,
 keys: ["name", "project_id", "location_id",
 "completed", "notes"],
 values: [nameTI.text,
 projectCB.selectedItem.id,
 locationCB.selectedItem.id,
 completedCB.selected,
 notesTI.text]
 }
);
 var task:Task = Task(tasksGrid.selectedItem);
 task.name = nameTI.text;
 task.completed = completedCheckBox.selected;
 task.project = Project(projectComboBox.selectedItem);
 task.location = Location(locationComboBox.selectedItem);
 task.notes = notesTI.text;
 updateTask(task);
 }

 public function updateTaskCompleted(task:XML,
 completed:Boolean):void {
 updateTaskProperty(task, "completed", completed);
 }
...
 private function updateTaskProperty(task:XML, key:String,
 value:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_TASK,
 { taskID: task.id, keys: [key], values: [value] }
);
 }
 public function updateTask(task:Task):void {
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_TASK, task);
 }

 public function deleteTask(task:XML):void {
 CairngormUtils.dispatchEvent(EventNames.DESTROY_TASK,
 task.id);
 }
 public function deleteTask(task:Task):void {
 CairngormUtils.dispatchEvent(EventNames.DESTROY_TASK,

Remove
obsolete code

C

Get Task, set its
properties, call
updateTask

D

Remove obsolete
methods

E

Replaces 4
separate update
methodsF

Take/dispatch Task
as event data

G

406 ITERATION 9

Holding state on the client properly
 task);
 }
]]>
</mx:Script>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
 <mx:Label text="Show:"/>
 <mx:ComboBox id="mainChoiceCB"
 <mx:ComboBox id="mainChoiceComboBox"
 dataProvider="{SHOW_CHOICES}"/>
 <mx:ComboBox id="subChoiceCB" width="100%"
 <mx:ComboBox id="subChoiceComboBox" width="100%"
 dataProvider="{_subChoices}"
 visible="{mainChoiceCB.selectedItem.hasSubChoice}"/>
 visible="{mainChoiceComboBox.selectedItem.hasSubChoice}"/>
 </mx:HBox>
 <mx:DataGrid id="tasksGrid" width="100%" height="100%"
 dataProvider="{model.tasksXLC}">
 dataProvider="{model.tasks}">

<mx:columns>
 <mx:DataGridColumn
 headerText=""
 width="25"
 dataField="completed"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:HBox width="25" paddingLeft="5">
 <mx:Script>
 <![CDATA[
 import com.pomodo.util.XMLUtils;
 import com.pomodo.model.Task;

 private function updateCompleted():void {
 outerDocument.updateTaskCompleted(
 XML(data),
 !XMLUtils.xmlListToBoolean(data.completed));
 var task:Task = Task(data);
 task.completed = !task.completed;
 outerDocument.updateTask(task);
 }
]]>
 </mx:Script>
 <mx:CheckBox
 selected="{XMLUtils.xmlListToBoolean(data.completed)}"
 <mx:CheckBox selected="{data.completed}"
 click="updateCompleted()"/>
</mx:HBox>
 </mx:Component>
 </mx:itemRenderer>

Renamed because CB
suffix was ambiguous

between CheckBox
and ComboBox

H

I Renamed
because CB
suffix was
ambiguous

Use
model.tasks
ListCollectionView1)

Use
renamed

ComboBox J

Modify
import

1!

Call
updateTask instead of
updateTaskCompleted1@

Bind to
data.completed
because data now Task1#

Modifying the components 407
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Name" width="300"
 dataField="name"/>
 <mx:DataGridColumn
 headerText="Project"
 dataField="project_id"
 dataField="project"
 width="150"
 editable="false"
 sortable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:ComboBox
 width="150"
 labelField="name"
 dataProvider="{outerDocument.model.projectsAndNoneXLC}"
 selectedItem="{outerDocument.model.getProject(
 ➥data.project_id)}"
 dataChange="handleDataChange(XML(data))"
 change="outerDocument.updateTaskProject(XML(data),
 ➥XML(selectedItem))">
 dataProvider="{outerDocument.model.projectsAndNone}"
 selectedItem="{data.project}"
 dataChange="handleDataChange(Task(data))"
 change="updateProject()">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Task;
 import com.pomodo.model.Project;

 private function updateProject():void {
 var task:Task = Task(data);
 var project:Project = Project(selectedItem);
 if (task.project != project) {
 task.project = project;
 outerDocument.updateTask(task);
 }
 }

 private function handleDataChange(data:XML):void {
 if (data != null) {
 selectedItem =
 outerDocument.model.getProject(
 data.project_id);
 } else {
 selectedItem =
 PomodoModelLocator.NO_PROJECT_XML;
 }
 }
 private function handleDataChange(task:Task):void {

dataField now
project (Project)

1$

Use new
Task data

1%

Modify
imports

1^

Update Task’s
project if different

1&

Use new
Task data

1*

408 ITERATION 9

Holding state on the client properly
 if (task != null) {
 selectedItem = task.project;
 } else {
 selectedItem = Project.NONE;
 }
 }
]]>
 </mx:Script>
</mx:ComboBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn
 headerText="Location"
 dataField="location_id"
 dataField="location"
 width="150"
 editable="false"
 sortable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:ComboBox
 width="150"
 labelField="name"
 dataProvider="{outerDocument.model.locationsAndNoneXLC}"
 selectedItem="{outerDocument.model.getLocation(
 ➥data.location_id)}"
 dataChange="handleDataChange(XML(data))"
 change="outerDocument.updateTaskLocation(XML(data),
 ➥XML(selectedItem))">
 dataProvider="{outerDocument.model.locationsAndNone}"
 selectedItem="{data.location}"
 dataChange="handleDataChange(Task(data))"
 change="updateLocation()">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Task;
 import com.pomodo.model.Location;

 private function updateLocation():void {
 var task:Task = Task(data);
 var location:Location = Location(selectedItem);
 if (task.location != location) {
 task.location = location;
 outerDocument.updateTask(task);
 }
 }

 private function handleDataChange(data:XML):void {
 if (data != null) {

dataField now
Location1(

Use new
Task data

2)

Modify
imports

2!

Update Tasks’s
location if different

2@

Modifying the components 409
 selectedItem = outerDocument.model.getLocation(
 data.location_id);
 } else {
 selectedItem =
 PomodoModelLocator.NO_LOCATION_XML;
 }
 }
 private function handleDataChange(task:Task):void {
 if (task != null) {
 selectedItem = task.location;
 } else {
 selectedItem = Location.NONE;
 }
 }
]]>
 </mx:Script>
</mx:ComboBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="70"
 editable="false">
 editable="false" dataField="name">
 <!-- arbitrary dataField -->
 <mx:itemRenderer>
 <mx:Component>
 <mx:Button label="delete"
 click="outerDocument.deleteTask(XML(data))"/>
 click="outerDocument.deleteTask(Task(data))">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.Task;
]]>
 </mx:Script>
 </mx:Button>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>
 <mx:Panel id="summaryPanel" title="Task" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"
 text="{tasksGrid.selectedItem.name}"/>

Use new
Task data

2#

Need
arbitrary
dataField
with Task
objects

2$

2%Modify Delete button
to call deleteTask with

Task data

Import Task so
we can cast 2^

410 ITERATION 9

Holding state on the client properly

ed
e
ix
ous
 <mx:CheckBox id="completedCB" label="Completed"
selected="{XMLUtils.xmlListToBoolean(tasksGrid.selectedItem.completed)}"

 />
 <mx:CheckBox id="completedCheckBox"
 label="Completed"
 selected="{tasksGrid.selectedItem.completed}"/>
 </mx:HBox>
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Project" width="50"/>
 <mx:ComboBox id="projectCB" width="200"
 <mx:ComboBox id="projectComboBox" width="200"
 labelField="name"
 dataProvider="{model.projectsAndNoneXLC}"
selectedItem="{model.getProject(tasksGrid.selectedItem.project_id)}"
 dataProvider="{model.projectsAndNone}"
 selectedItem="{tasksGrid.selectedItem.project}"
 />
 <mx:CheckBox label="This is the Next Action"/>
 <mx:Spacer width="100%"/>
 <mx:Label text="Location"/>
 <mx:ComboBox id="locationCB" width="200"
 <mx:ComboBox id="locationComboBox" width="200"
 labelField="name"
 dataProvider="{model.locationsAndNoneXLC}"
selectedItem="{model.getLocation(tasksGrid.selectedItem.location_id)}"
 dataProvider="{model.locationsAndNone}"
 selectedItem="{tasksGrid.selectedItem.location}"
 />
 </mx:HBox>
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%" height="100%"
 text="{tasksGrid.selectedItem.notes}"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 height="30"
 click="updateSelectedTaskFromSummaryPanel()"
 enabled="{tasksGrid.selectedItem != null}"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"
 click="deleteTask(XML(tasksGrid.selectedItem))"
 click="deleteTask(Task(tasksGrid.selectedItem))"
 enabled="{tasksGrid.selectedItem != null}"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

2&

2(
2*

completed
now

 Boolean

Renamed because CB
suffix ambiguous

3)
project now

Project

3!Renamed because CB
suffix ambiguous

location now
Location 3@

selectedItem
now Task 3#

Renam
becaus
CB suff
ambigu

Modifying the components 411
We start by modifying imports B. Next, we modify the updateSelectedTaskfrom-
SummaryPanel method to not dispatch an event with a taskID and Arrays of keys
and values C. Instead, we get the Task from the tasksGrid D and set its name,
completed, project, location, and notes properties. We then call updateTask
with the task. The updateTask method F calls CairngormUtils.dispatchEvent
with the Task. This method is much simpler than the methods it replaces:
updateTaskCompleted, updateTaskProject, updateTaskLocation, and update-
TaskProperty can all be deleted E. (This is because we’re updating all the prop-
erties of the Task.) Next, we modify the deleteTask G method to take a Task
instead of XML as its parameter and to dispatch the task instead of the task id as the
event data.

 We rename the ComboBoxes H–J because the CB suffix was ambiguous between
CheckBox and ComboBox. Next, we modify the tasksGrid dataProvider 1) to be the
model.tasks ListCollectionView instead of the old XMLListCollection. This
means the individual row data is no longer XML—it’s a Task. This makes for much
better code (most of the time).

 Next, we modify the various itemRenderers for the DataGridColumns. This is
still a bit messy.

 We start by modifying the completed renderer, modifying the update-
Completed method to get the Task 1! data, toggle its completed value 1@, and call
the updateTask method instead of the updateTaskCompleted method.

 Next, we modify the CheckBox to bind to data.completed 1# instead of
XMLUtils.xmlListToBoolean(data.completed). We can do this because the data
is now a Task, not XML.

 Now, we modify the dataField of the Project column to be the project 1$
(which is a Project), as opposed to the old project_id.

 Next, we modify the ComboBox itemRenderer for the Project. We delete a
bunch of code that was XML-heavy and replace it with code that uses our new Task
data 1%. We modify imports 1^ and create an updateProject method 1& that is
called whenever a change happens in the ComboBox. This method gets the Task
data and the newly selected Project. If this Project is different than the task’s
Project, the task’s project is updated and outerDocument.updateTask is called.

 We also modify the handleDataChange method 1* to use the new task data, set-
ting its selectedItem to the task.project if there is a task, or to the
Project.NONE Null Object if there isn’t one.

 We make similar changes to Location 1(–2#.
 We then update the Delete button column to have a dataField 2$, because we

need one when using Task objects (this worked with XML without one). We modify
the Delete button to call deleteTask with the Task data 2%. The fact that delete-
Task takes a Task means we need to cast the data to a Task, which means we need

412 ITERATION 9

Holding state on the client properly
to import the Task class 2^ into our component. Yes, this is unfortunate. If we didn’t
like this, we could make deleteTask take an Object and cast it to a Task inside it.

 Next, we update the summaryPanel. The big change here is that the tasks-
Grid.selectedItem is now a Task, not XML. We rename the completedCB to com-
pletedCheckBox 2&, and we don’t need to use XMLUtils.xmlListToBoolean any
more 2* because we’re dealing with a Task. Similarly, we change the projectCB 2(
to projectComboBox and make it use the tasksGrid.selectedItem.project 3).
We then make a similar change for the task location 3!3@. Finally, we update the
Delete button 3# to deal with a Task, not XML.

 Phew.

9.7.7 ProjectsListBox

Next, we modify the ProjectsListBox; see listing 9.27.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Projects">
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import com.pomodo.util.XMLUtils;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Project;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 public function updateSelectedProjectFromSummaryPanel():
 void {
 var selectedProject:XML =
 XML(projectsGrid.selectedItem);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_PROJECT,
 { projectID: selectedProject.id,
 keys: ["name", "completed", "notes"],
 values: [nameTI.text, completedCB.selected,
 notesTI.text]
 }
);
 var project:Project =
 Project(projectsGrid.selectedItem);
 project.name = nameTI.text;

Listing 9.6 app\flex\com\pomodo\components\ProjectsListBox.mxml

Remove/add
imports

Get project from
projectsGrid

Modifying the components 413
 project.completed = completedCB.selected;
 project.notes = notesTI.text;
 updateProject(project);
 }

 public function updateProjectCompleted(project:XML,
 completed:Boolean):void {
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_PROJECT,
 { projectID: project.id,
 keys: ["completed"],
 values: [completedCB.selected]
 }
);
 }
 public function updateProject(project:Project):void {
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_PROJECT, project);
 }

 public function deleteProject(data:Object):void {
 CairngormUtils.dispatchEvent(EventNames.DESTROY_PROJECT,
 data.id);
 }
 public function deleteProject(project:Project):void {
 CairngormUtils.dispatchEvent(
 EventNames.DESTROY_PROJECT, project);
 }
]]>
</mx:Script>
 <mx:DataGrid id="projectsGrid" width="100%" height="60%"
 dataProvider="{_model.projectsXLC}">
 dataProvider="{_model.projects}">
 <mx:columns>
 <mx:DataGridColumn
 headerText=""
 width="25"
 dataField="completed"
 editable="false">
 <mx:itemRenderer>
 <mx:Component>
<mx:HBox width="25" paddingLeft="5">
 <mx:Script>
 <![CDATA[
 import com.pomodo.util.XMLUtils;
 import com.pomodo.model.Project;

 private function updateCompleted():void {
 outerDocument.updateProjectCompleted(
 XML(data),
 !XMLUtils.xmlListToBoolean(data.completed));

Remove
obsolete
methods

Use simpler
approach of
updating all
properties

Take Project
instead of
XML

Use model.projects
ListCollectionView

Modify
import

414 ITERATION 9

Holding state on the client properly
 var project:Project = Project(data);
 project.completed = !project.completed;
 outerDocument.updateProject(project);
 }
]]>
 </mx:Script>
 <mx:CheckBox
 selected="{XMLUtils.xmlListToBoolean(data.completed)}"
 <mx:CheckBox selected="{data.completed}"
 click="updateCompleted()"/>
</mx:HBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn headerText="Name" width="400"
 dataField="name"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="70"
 editable="false">
 editable="false" dataField="name">
 <!-- arbitrary dataField -->
 <mx:itemRenderer>
 <mx:Component>
 <mx:Button label="delete"
 click="outerDocument.deleteProject(XML(data))"/>
 click="outerDocument.deleteProject(Project(data))">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.Project;
]]>
 </mx:Script>
 </mx:Button>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>
 <mx:Panel id="summaryPanel"
 title="Project" width="100%" height="40%"
 paddingLeft="5" paddingRight="5" paddingTop="5"
 paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"
 text="{projectsGrid.selectedItem.name}"/>
 <mx:CheckBox id="completedCB" label="Completed"
selected="{XMLUtils.xmlListToBoolean(
 ➥projectsGrid.selectedItem.completed)}"/>
 selected="{projectsGrid.selectedItem.completed}"/>
 </mx:HBox>

Get Project data, toggle
completed, call updateProject

Modify CheckBox
to bind to
data.completed

Update Delete
button column to
have dataField

Call deleteProject
and import Project

Bind
selected
property

Modifying the components 415
 <mx:HBox width="100%" height="100%">
 <mx:Label text="Notes" width="50"/>
 <mx:TextArea id="notesTI" width="100%" height="100%"
 text="{projectsGrid.selectedItem.notes}"/>
 </mx:HBox>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"
 click="updateSelectedProjectFromSummaryPanel()"
 enabled="{projectsGrid.selectedItem != null}"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"
 click="deleteProject(XML(projectsGrid.selectedItem))"
 enabled="{projectsGrid.selectedItem != null}"/>
 click="deleteProject(Project(projectsGrid.selectedItem))"
 enabled="{projectsGrid.selectedItem != null}"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

9.7.8 LocationsListBox.mxml

Finally (!), we modify the LocationsListBox; see listing 9.28.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Locations">
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.collections.XMLListCollection;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Location;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.XMLUtils;

 [Bindable]
 private var _model : PomodoModelLocator =
 PomodoModelLocator.getInstance();

 public function updateSelectedLocationFromSummaryPanel():
 void {
 var selectedLocation:XML =
 XML(locationsGrid.selectedItem);
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_LOCATION,

Listing 9.6 app\flex\com\pomodo\components\LocationsListBox.mxml

Call
deleteProject

416 ITERATION 9

Holding state on the client properly
 {
 locationID: selectedLocation.id,
 keys: ["name", "notes"],
 values: [nameTI.text, notesTI.text]
 }
);
 var location:Location =
 Location(locationsGrid.selectedItem);
 location.name = nameTI.text;
 location.notes = notesTI.text;
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_LOCATION, location);
 }

 public function deleteLocation(data:Object):void {
 CairngormUtils.dispatchEvent(
 EventNames.DESTROY_LOCATION, data.id);
 public function deleteLocation(location:Location):void {
 CairngormUtils.dispatchEvent(
 EventNames.DESTROY_LOCATION, location);
 }
]]>
</mx:Script>
 <mx:DataGrid id="locationsGrid" width="100%" height="60%"
 dataProvider="{_model.locationsXLC}">
 dataProvider="{_model.locations}">
 <mx:columns>
 <mx:DataGridColumn headerText="Name" width="400"
 dataField="name"/>
 <mx:DataGridColumn headerText="Notes"
 dataField="notes"/>
 <mx:DataGridColumn headerText="" width="70"
 editable="false">
 editable="false" dataField="name">
 <!-- arbitrary dataField -->
 <mx:itemRenderer>
 <mx:Component>
 <mx:Button label="delete"
 click="outerDocument.deleteLocation(XML(data))"/>
 click="outerDocument.deleteLocation(Location(data))">
 <mx:Script>
 <![CDATA[
 import com.pomodo.model.Location;
]]>
 </mx:Script>
 </mx:Button>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>

Summary 417
 <mx:Panel id="summaryPanel" title="Location" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
...
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="updateButton" label="Update"
 width="100%" height="30"
 click="updateSelectedLocationFromSummaryPanel()"
 enabled="{locationsGrid.selectedItem != null}"/>
 <mx:Button id="deleteButton" label="Delete"
 height="30"
 click="deleteLocation(XML(locationsGrid.selectedItem))"
 click="deleteLocation(Location(locationsGrid.selectedItem))"
 enabled="{locationsGrid.selectedItem != null}"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:VDividedBox>

There’s nothing new here that isn’t equivalent to something we’ve done with the
ProjectsListBox.

 That’s it! Rebuild, reload, and log in as ludwig or create a new user. Everything
works as before. Finally, run the tests again and confirm that everything still
works.

9.8 Summary

Now that we have a proper object model on the client side, we’re no longer tightly
coupled to the transport mechanism. Currently we’re using XML, but this will
change in the next part of the book when we refactor to using RubyAMF. First,
however, we need to finish the application.

 Hooray for samurai-coder refactoring!

The code at this point is saved as the iteration09 folder.

Part 4

Finishing up

In this final part of the book, we’ll finish the application, refactor it to use
RubyAMF, and extend it to running on the Adobe Integrated Runtime (AIR).

 First, in iteration 10, we’ll build the remaining features in pomodo. After
we finish iteration 10, we’ll have a reasonably complete application. It will be
more realistic than the applications in most books, anyway.

 In iteration 11, we’ll refactor pomodo to use RubyAMF instead of XML for
sending data between Flex and Rails. Because AMF is a binary protocol and
XML is text (and verbose text at that), this has the potential to lead to sub-
stantial performance improvements.

 In iteration 12, the last iteration of the book, we’ll convert the code to
run on AIR and modify the Notely feature that we’ll build in this iteration to
take advantage of AIR-specific features. This obviously won’t be a complete
tutorial introduction to AIR; instead, it will give you a taste of one of the
exciting ways to take your Flex + Rails applications beyond the traditional
web application model.

Finishing the application
The kids all dream of making it, whatever that means
—Arctic Monkeys
421

422 ITERATION 10

Finishing the application
In this iteration, we’ll build the remaining features in Pomodo. After we finish this
iteration, we’ll have a reasonably complete application.

10.1 Notely
Notely One thing we’ve left totally stubbed out so far is Notely. Let’s fix that now. Essen-

tially, we’ll implement Notepad in Flex. We’ll be extremely simplistic and store
one note, instead of having multiple versions and undo/redo support. Addition-
ally, we’ll add Notely using nested resources, using the new simplified RESTful
routing1 for nested resources in Rails 2.

NOTE For the “first real word processor for the web” in Flex, check out
Buzzword. The company that built it was recently acquired by Adobe
(they liked it so much, they bought the company).

All disclaimers aside, here we go. We won’t use scaffold_resource this time;
instead, we’ll do things manually for variety.

 We start by creating a new migration:

c:\peter\flexiblerails\current\pomodo>
ruby script\generate migration create_notes
 exists db/migrate
 create db/migrate/005_create_notes.rb

c:\peter\flexiblerails\current\pomodo>

Next, we edit the migration to create user_id, version, and content columns; see
listing 10.1.

class CreateNotes < ActiveRecord::Migration
 def self.up
 create_table :notes do |t|
 t.integer :user_id, :default => 0, :null => false
 t.text :content
 t.timestamps
 end
 end

 def self.down
 drop_table :notes
 end
end

1 Thanks to Ryan Daigle for explaining them well and concisely at http://ryandaigle.com/articles/2007/
5/6/what-s-new-in-edge-rails-restful-routing-updates.

Listing 10.1 db\migrate\005_create_notes.rb

B
C

D
E

http://ryandaigle.com/article/2007/5/6/what-s-new-in-edge-rails-restful-routing-updates

Notely 423
We modify create a new notes table B that has user_id C, content D, and the
created_at and updated_at columns created by timestamps E. The user_id
defaults to 0 and is non-NULL.

 Now, let’s run the migration:

c:\peter\flexiblerails\current\pomodo>rake db:migrate
c:0:Warning: require_gem is obsolete. Use gem instead.
(in c:/peter/flexiblerails/current/pomodo)
== 5 CreateNotes: migrating

===
-- create_table(:notes)
 -> 0.2970s
== 5 CreateNotes: migrated (0.2970s)

==

c:\peter\flexiblerails\current\pomodo>

Open a mysql prompt, and confirm that the migration had the desired effect; see
listing 10.2 (as always, the Extra column in the description is omitted for space
concerns, but it shows that the id table column is set to auto_increment).

mysql> describe notes;
+------------+----------+------+-----+---------+
| Field | Type | Null | Key | Default |
+------------+----------+------+-----+---------+
id	int(11)	NO	PRI	NULL
user_id	int(11)	NO		0
content	text	YES		NULL
created_at	datetime	YES		NULL
updated_at	datetime	YES		NULL
+------------+----------+------+-----+---------+
5 rows in set (0.01 sec)

The notes table has an id column as its primary key and the other columns we
specified in the migration.

 Next, let’s create the Note model; see listing 10.3.

class Note < ActiveRecord::Base
 belongs_to :user
end

Listing 10.2 Commands

Listing 10.3 app\models\note.rb

424 ITERATION 10

Finishing the application
We add the belongs_to :user line to associate the Note with the User it refer-
ences.

 Now, we modify the User model; see listing 10.4.

require 'digest/sha1'
class User < ActiveRecord::Base
 has_many :tasks
 has_many :projects
 has_many :locations
 has_one :note
...

A User has one Note.
 Next, we need to modify the routes; see listing 10.5.

ActionController::Routing::Routes.draw do |map|
...
 map.resources :tasks
 map.resources :projects
 map.resources :locations
 map.resources :users
 map.resources :users, :has_one => :note
 map.resource :session
...
end

We modify the map.resources :users call to specify that the :users :has_one
:note. This sets up the routing so the note is a nested resource, which lets us use
URLs like /users/3/note to refer to the note of the user with the id of 3.

Listing 10.4 app\models\user.rb

Listing 10.5 config\routes.rb

Shouldn’t everything be nested under the User?
As explained at http://ryandaigle.com/articles/2007/5/6/what-s-new-in-edge-
rails-restful-routing-updates, we can also add a :has_many in the map.resources.
We could have done the following:

map.resources :users, :has_one => :note, :has_many => [:tasks, :projects,
:locations]

Notely 425
Having modified the routes, we can look at them in the console with the new rake
routes command. If we scroll through its output (which is too wide to fit in a
book nicely), we can see the pretend HTTP method + URL combinations like POST
/users/:user_id/note.:format and PUT /users/:user_id/note.:format for
the new nested Note resource.

 Now that we’ve set up our routes, we need to create the NotesController and
NotesHelper. Note that these are plural names, not the singular NoteController
and NoteHelper—using plural names for all controllers regardless of nested
resources is the standard2 in Rails 2.

 We start with the NotesController; see listing 10.6.

class NotesController < ApplicationController
 # GET /users/1/note
 # GET /users/1/note.xml
 def show
 if current_user.id != params[:user_id].to_i
 prevent_access
 else
 @note = current_user.note
 respond_to do |format|
 format.xml { render :xml => @note.to_xml }
 end
 end
 end

 # PUT /users/1/note
 # PUT /users/1/note.xml
 def update
 if current_user.id != params[:user_id].to_i
 prevent_access

2 See http://weblog.rubyonrails.org/2007/9/30/rails-2-0-0-preview-release for details.

Listing 10.6 app\controllers\notes_controller.rb

Shouldn’t everything be nested under the User? (continued)

We didn’t do this, because in my limited understanding the best practices around
nested resources aren’t fully agreed on and/or widely disseminated. There is still
some art in this; see http://weblog.jamisbuck.org/2007/2/5/nesting-resources
for details, and see David Black’s Rails Routing (Digital Shortcut) if you want to
read a mini-book about routing. (I found it valuable.) The bottom line is that I may
be doing something in a less-than-ideal way—but at least by being inconsistent,
I’m not claiming to be presenting the optimal approach!

B
C

D

E
F

G

H
I

J

426 ITERATION 10

Finishing the application
 else
 @note = current_user.note
 respond_to do |format|
 if @note.update_attributes(params[:note])
 format.xml { render :xml => @note.to_xml }
 else
 format.xml { render :xml => @note.errors.to_xml_full }
 end
 end
 end
 end

 private
 def prevent_access
 respond_to do |format|
 format.xml { render :text => "error" }
 end
 end
end

Note that because we’re creating this manually, we create only the methods we
need. (Yes, this means some of the routes for the nested note resource won’t
match anything.) Also, note that we support format.xml, because I’m too lazy to
create an HTML UI for Notely.

 We start by creating a show method B that handles a GET request to the nested
routes /users/:user_id/note and /users/:user_id/note.xml. We could have cre-
ated an edit method instead (because we’re showing for editing), but I prefer the
show method because the URL for it is more straightforward and because it doesn’t
make sense to have edit without show. In the show method, we check whether the
id passed in as the :user_id in the URL (which the note is nested in) belongs to the
current_user C, and we prevent_access D1% if not. Note that we need to use
to_i C on the params[:user_id], because it is a String. If the id is that of the
current_user, we get the current_user.note and store it in @note E and have a
respond_to block F that renders the @note.to_xml G for format.xml. (Yes, hav-
ing @note is unnecessary right now, but this is a force of habit for me because pre-
sumably it would be used by an HTML view.)

 Similarly, we create an update H method that handles a PUT request (includ-
ing a faked PUT request with the _method parameter) to the nested routes /users/
:user_id/note and /users/:user_id/note.xml. This is the same URL as for show;
only the HTTP method is different. Again, we check whether the id passed in as
the :user_id in the URL (which the note is nested in) belongs to the
current_user I, and we prevent_access J if not. If the id is that of the

1)
1!

1@
1#

1$

1%

Notely 427
current_user, we get the current_user.note and store it in @note 1) and have a
respond_to block 1! that does update_attributes 1@. This is the same generic
mechanism used for tasks, projects, and locations. We know that we’re updating
the content attribute, but there’s no reason to hardcode it. We then render the
@note.to_xml 1# for format.xml or the to_xml_full on the errors 1$.

 Next, some easy stuff. We need to create the NotesHelper so Rails doesn’t com-
plain; see listing 10.7.

module NotesHelper
end

Now, we’ll add a notes.yml fixture to load some sample data for us; see listing 10.8.
Because we’re being so lazy that we’re not going to support a “new note” action, a
User will always have a Note. Users that are created in the fixtures need notes, too.

quentin:
 id: 1
 user_id: 1
 content: Quentin's notes

aaron:
 id: 2
 user_id: 2
 content: Aaron's notes

ludwig:
 id: 3
 user_id: 3
 content: Ludwig's notes

wolfgang:
 id: 4
 user_id: 4
 content: Wolfgang's notes

Finally (on the Rails side), we need to add a before_create method (B in list-
ing 10.9) to the User class, to ensure that newly created Users have an empty
Note. (This lets us make save always be an update, rather than a create or an
update.)

Listing 10.7 app\helpers\notes_helper.rb

Listing 10.8 test\fixtures\notes.yml

428 ITERATION 10

Finishing the application
require 'digest/sha1'
class User < ActiveRecord::Base
 has_many :tasks
 has_many :projects
 has_many :locations
 has_one :note

 def before_create
 self.note = Note.new
 end

 # Virtual attribute for the unencrypted password
 attr_accessor :password
...

Now, we need to make the modifications to the Flex side. This is all fairly straight-
forward.

 We start by creating a Note class; see listing 10.10.

package com.pomodo.model {
 public class Note {
 public function Note(content:String = "") {
 this.content = content;
 }

 [Bindable]
 public var content:String;

 public function toUpdateObject():Object {
 var obj:Object = new Object();
 obj["note[content]"] = content;
 return obj;
 }

 public static function fromXML(note:XML):Note {
 return new Note(note.content);
 }
 }
}

The Note class stores content B and has toUpdateObject C and fromXML D
methods. Note that we don’t have a toXML method because we don’t need it yet.

Listing 10.9 app\models\user.rb

Listing 10.10 app\flex\com\pomodo\model\Note.as

B

B

C

D

Notely 429
Also, we don’t use created_at or updated_at in the UI at the moment, so we
don’t include them.

 Next, we need to modify the PomodoModelLocator to add Note to it (B in list-
ing 10.11).

 public var user:User;

 public var note:Note;

 public var tasks:ListCollectionView;

We also need to modify the User class. I had added a notes field to it, which was
speculative and thus, unsurprisingly, wrong. We need to remove it, and add a field
for the id (which we now need, for the purposes of the nested route for the note);
see listing 10.12.

package com.pomodo.model {
 public class User {
 [Bindable]
 public var login:String;

 [Bindable]
 public var email:String;

 [Bindable]
 public var firstName:String;

 [Bindable]
 public var lastName:String;

 [Bindable]
 public var notes:String;
 [Bindable]
 public var password:String;

 [Bindable]
 public var id:int;

 public function User(
 login:String = "",
 email:String = "",
 firstName:String = "",
 lastName:String = "",
 notes:String = "",

Listing 10.11 app\flex\com\pomodo\model\PomodoModelLocator.as

Listing 10.12 app\flex\com\pomodo\User.as

B

B

C

D

430 ITERATION 10

Finishing the application
 password:String = "",
 id:int = 0)
 {
 this.login = login;
 this.email = email;
 this.firstName = firstName;
 this.lastName = lastName;
 this.notes = notes;
 this.password = password;
 this.id = id;
 }

 public function toXML():XML {
 var retval:XML =
 <user>
 <login>{login}</login>
 <email>{email}</email>
 <first_name>{firstName}</first_name>
 <notes>{notes}</notes>
 <last_name>{lastName}</last_name>
 <password>{password}</password>
 <password_confirmation>{password}</password_confirmation>
 </user>;
 return retval;
 }

 public static function fromXML(userXML:XML):User {
 var user:User = new User();
 user.login = userXML.login;
 user.email = userXML.email;
 user.firstName = userXML.first_name;
 user.lastName = userXML.last_name;
 user.notes = userXML.notes;
 return user;
 return new User(
 userXML.login,
 userXML.email,
 userXML.first_name,
 userXML.last_name,
 "",
 userXML.id);
 }
 }
}

We remove the notes field B and add the id C. Next we modify the constructor
D–G, the toXML H, and the fromXML IJ methods accordingly. Note that we’re
changing the fromXML method to use the User constructor better J as well as

E

F

G

H

I

J

Notely 431
removing the notes and adding the id, instead of letting the arguments all
default and then setting the properties.

 Next, we create the business delegate and the commands. This is tedious by
now. We start with the NoteDelegate; see listing 10.13.

TIP If you do a lot of Cairngorm work, you may want to use the Cairngorm
generator: http://code.google.com/p/cairngorm-rails-generator/. For
some documentation, see http://onrails.org/articles/2007/02/21/
cairngorm-generators.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.model.Note;
 import com.pomodo.model.User;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.ServiceUtils;

 public class NoteDelegate {
 private var _responder:IResponder;

 public function NoteDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function showNote():void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 ServiceUtils.send(
 "/users/" + model.user.id + "/note.xml",
 _responder);
 }

 public function updateNote():void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 ServiceUtils.send(
 "/users/" + model.user.id + "/note.xml",
 _responder,
 "PUT",
 model.note.toUpdateObject(),
 false);
 }
 }
}

The only thing worth noting is that the relative URLs BC use the nested route, so
it is the id of the user that is needed, not the id of the Note.

Listing 10.13 app\flex\com\pomodo\business\NoteDelegate.as

B

C

http://onrails.org/articles/2007/02/21/cairngorm-generators

432 ITERATION 10

Finishing the application
 Now for the commands, starting with the ShowNoteCommand; see listing 10.14.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.NoteDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Note;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class ShowNoteCommand implements ICommand,
 IResponder {
 public function ShowNoteCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:NoteDelegate = new NoteDelegate(this);
 delegate.showNote();
 }

 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.note = Note.fromXML(event.result);
 }

 public function fault(event:Object):void {
 }
 }
}

The execute function creates a new NoteDelegate B and calls its showNote
method C. The result function builds a new Note from the event.result D
and assigns it to the model.note.

 Next, the UpdateNoteCommand; see listing 10.15.

Listing 10.14 app\flex\com\pomodo\command\ShowNoteCommand.as

B
C

D

Notely 433
package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.NoteDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class UpdateNoteCommand implements ICommand,
 IResponder {
 public function UpdateNoteCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:NoteDelegate = new NoteDelegate(this);
 delegate.updateNote();
 }

 public function result(event:Object):void {
 }

 public function fault(event:Object):void {
 }
 }
}

The execute method creates a new NoteDelegate B and calls its updateNote
method C.

 Next, we need to hook up our two new commands. We start by adding the con-
stants (BC in listing 10.16) to EventNames.

package com.pomodo.control {
 public final class EventNames {
...
 public static const LIST_TASKS:String = "listTasks";

 public static const SHOW_NOTE:String = "showNote";

 public static const UPDATE_LOCATION:String =
 "updateLocation";

Listing 10.15 app\flex\com\pomodo\command\UpdateNoteCommand.as

Listing 10.16 app\flex\com\pomodo\control\EventNames.as

B
C

B

434 ITERATION 10

Finishing the application
 public static const UPDATE_PROJECT:String =
 "updateProject";
 public static const UPDATE_TASK:String = "updateTask";
 public static const UPDATE_NOTE:String = "updateNote";
 }
}

Next, we add the commands (BC in listing 10.17) to the PomodoController.

...
 addCommand(EventNames.UPDATE_TASK,
 UpdateTaskCommand);
 addCommand(EventNames.UPDATE_NOTE,
 UpdateNoteCommand);

 addCommand(EventNames.SHOW_NOTE, ShowNoteCommand);
 }
 }
}

Finally, we can modify the components.
 First, we need to modify the AccountCreateBox to use the updated User con-

structor; see listing 10.18.

...
 private function validateAndSubmit():void {
...
 var user:User = new User(
 loginTI.text,
 emailTI.text,
 firstNameTI.text,
 lastNameTI.text,
 "",
 passwordTI.text);
 CairngormUtils.dispatchEvent(
 EventNames.CREATE_USER, user);
 }
...

We delete the empty String B for notes.

Listing 10.17 app\flex\com\pomodo\control\PomodoController.as

Listing 10.18 app\flex\com\pomodo\components\AccountCreateBox.mxml

C

B

C

B

Notely 435
 Next, we modify the MainBox; see listing 10.19.

...
 private function handleCreationComplete():void {
 CairngormUtils.dispatchEvent(EventNames.SHOW_NOTE);
 CairngormUtils.dispatchEvent(EventNames.LIST_PROJECTS);
 CairngormUtils.dispatchEvent(EventNames.LIST_LOCATIONS);
 }
...

We need to also dispatch an event with the SHOW_NOTE name on creation-
Complete, in order to populate the Notely tab.

 Finally, we modify the Notely tab. After all the work we’ve done, it’s trivial; see
listing 10.20.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Notely" paddingLeft="5"
 paddingRight="5" paddingTop="5" paddingBottom="5">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function doSave():void {
 _model.note.content = notelyTA.text;
 CairngormUtils.dispatchEvent(EventNames.UPDATE_NOTE);
 }

 private function doRevert():void {
 notelyTA.text = _model.note.content;
 }
]]>
</mx:Script>
 <mx:TextArea width="100%" height="100%"/>
 <mx:TextArea id="notelyTA" width="100%" height="100%"
 text="{_model.note.content}"/>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="saveButton" label="Save" width="100%"
 height="30"/>

Listing 10.19 app\flex\com\pomodo\components\MainBox.mxml

Listing 10.20 app\flex\com\pomodo\components\Notely.mxml

B

C
D

E

F
G

436 ITERATION 10

Finishing the application
 height="30" click="doSave()"/>
 <mx:Button id="revertButton" label="Revert"
 height="30"/>
 height="30" click="doRevert()"/>
 </mx:ControlBar>
</mx:VBox>

We start by getting the shared PomodoModelLocator B and storing it in _model. In
the doSave method, we assign the shared _model.note.content C and then call
CairngormUtils.dispatchEvent for EventNames.UPDATE_NOTE D. The doRevert
function assigns the notelyTA.text with whatever the _model.note.content E
is—it doesn’t need to talk to the server. Next, we give the TextArea an id F and
bind its text to the _model.note.content G. Finally, we modify the saveButton H
and revertButton I to call the doSave() and doRevert() functions.

 With all this done, stop the server and run newdb.bat. (We need to load the
fixtures for the notes.) Start the server, and then rebuild, reload, and log in as lud-
wig. Switch to the Notely tab. We see the screen shown in figure 10.1.

Play with adding notes, saving, and reverting.
 Now where’s our funding round? Should we add file upload support and start

reselling Amazon S3 storage at a markup? Nah—some teenager in England (spe-
cifically, Alex MacCaw: see http://www.eribium.org/aireo/) would probably end
up doing a better job than us. (See appendix B for links to various resources on
file upload.) Instead, we’ll add more mundane features such as the Next Action
concept, filtering tasks, the command prompt, and—because we can—a couple of
effects. The end result will be to give our app some polish and make it demoable.

10.2 Better security with attr_accessible
Better security with attr_accessible If we’re going to even think about deploying this, we need to tighten up the secu-

rity. One of the ways we’ll do this is with attr_accessible.
 Rails has many methods, such as update_attributes, that conveniently allow

mass-assignment of attributes of models from hashes like the params hash. We’ve
been using this happily in our TasksController without worrying about it:

H

I

Figure 10.1
Notely, working
at last!

Better security with attr_accessible 437
...
def update
 @task = current_user.tasks.find(params[:id])

 respond_to do |format|
 if @task.update_attributes(params[:task])
...

However, there is no checking what is in the params[:task]. A user could, with-
out much effort, send a POST (with a _method of PUT) with parameters in the task
that shouldn’t be there. This could let a user create a task and then reassign it to
another user by setting the user_id (thus spamming other users), and so forth.

 This won’t do. We need to protect certain attributes from being assigned. In
Rails, there are two ways to do this: the “I’m perfect and don’t make mistakes, let’s
juggle knives” way, and the “I’m human and make mistakes (or the person main-
taining this will), let’s be paranoid” way. This could also be described as the
“almost definitely false sense of security” way and the “better chance of being
secure” way. (Note that I’m not saying insecure or secure: We can implement either
approach incorrectly.) Table 10.1 shows this in more detail.

For comparison, table 10.2 shows how restricting access to methods works.

Rails lets you choose either, and many examples unfortunately seem to advocate
the knife-juggling approach. In this section, we’ll use attr_accessible to advo-
cate the paranoid approach.

NOTE See http://somethinglearned.com/articles/2006/05/24/best-practices-
a-strong-case-for-attr_accessible-part-2 for an in-depth discussion of the
problems with attr_protected.

Table 10.1 The two different approaches to preventing mass assignment

Approach Preventing mass assignment

Knife juggling attr_protected :attr_to_omit_1, :attr_to_omit_2

Paranoia attr_accessible :attr_to_include_1, :attr_to_include_2

Table 10.2 The two different approaches to restricting access to methods

Approach Restricting access to methods

Knife juggling before_filter :authmethod, :only [:auth_method_1,
:auth_method_2]

Paranoia before_filter :authmethod, :except [:no_auth_method_1, ...]

438 ITERATION 10

Finishing the application
With all this said, we’ll basically add four lines of code—one to each of the model
classes (except the User model, which we’ll ignore). First, the Task; see listing 10.21.

class Task < ActiveRecord::Base
 attr_accessible :name, :notes, :next_action, :completed,
 :project_id, :location_id, :created_at, :updated_at

 belongs_to :user
 belongs_to :location
 belongs_to :project

 def before_save
 self.project_id = nil if self.project_id == 0
 self.location_id = nil if self.location_id == 0
 end
end

We allow all but the user_id and id attributes to be mass-assigned B.
 Next, the Project; see listing 10.22.

class Project < ActiveRecord::Base
 attr_accessible :name, :notes, :completed, :created_at,
 :updated_at

 belongs_to :user
 has_many :tasks
end

Again, we allow all but the user_id and id attributes to be mass-assigned B.
 Now, the Location; see listing 22.3.

class Location < ActiveRecord::Base
 attr_accessible :name, :notes, :created_at, :updated_at

 belongs_to :user
 has_many :tasks
end

Once again, we allow all but the user_id and id attributes to be mass-assigned B.

Listing 10.21 app\models\task.rb

Listing 10.22 app\models\project.rb

Listing 10.23 app\models\location.rb

B

B

B

GTD semantics, including the 439
Next Action concept and :dependent
 Finally, the Note; see listing 10.24.

class Note < ActiveRecord::Base
 attr_accessible :content, :created_at, :updated_at

 belongs_to :user
end

10.3 GTD semantics, including the
Next Action concept and :dependent

GTD semantics, including theNext Action concept and :dependent At the beginning of the book, we said that pomodo was going to be a Getting
Things Done (GTD) todo list application. Well, we’ve gotten a lot of things done, but
we’ve left the fundamental idea from GTD stubbed out in pomodo: the concept of
the Next Action. This is the task that must be done next in a given project, and it’s
the feature of our pomodo that we need to get done now.

 We also need to enforce GTD semantics regarding the relationship between
Tasks and Projects that we’ve omitted up to now. For example, setting a Project
to complete should set all of its Tasks to complete. Setting a Task to incomplete
should set its Project to incomplete. We’ll add these features along with the Next
Action features.

 While we’re editing the models, we also need to specify what happens with
dependent Tasks when we delete Projects and Locations, and what happens
with dependent Tasks, Projects, and Locations when we delete a User. Thinking
about this, we decide that deleting a Project should delete all of its Tasks, but
that deleting a Location should null out the location_id in a Task. Obviously,
deleting a User should delete all of their Tasks, Projects, and Locations.

 Let’s do all this now. We’ll start by modifying the Project model; see listing 10.25.

class Project < ActiveRecord::Base
 attr_accessible :name, :notes, :completed, :created_at,
 :updated_at

 belongs_to :user
 has_many :tasks
 has_many :tasks, :dependent => :delete_all
 has_one :next_action,

Listing 10.24 app\models\note.rb

Listing 10.25 app\models\project.rb

B
C

D

440 ITERATION 10

Finishing the application
 :class_name => "Task",
 :conditions => "next_action='1'"

 def save_with_gtd_rules!
 if self.completed
 transaction do
 self.tasks.update_all(:completed => true)
 if self.next_action
 self.next_action.next_action = false
 self.next_action.save!
 end
 self.save!
 end
 else
 self.save!
 end
 end
end

We start by specifying that deleting a Project should delete all of its Tasks by add-
ing :dependent => :delete_all to the has_many :tasks declaration BC. The
next action of a Project is a Task that has its next_action true in Rails, which in
MySQL is '1'; we add a has_one call D, which specifies that the next_action is a
Task E with these conditions F.

 Next, we add a save_with_gtd_rules! method G. (We use the ! at the end, to
indicate that we’re using the “throw exceptions if things don’t work!” save! meth-
ods, instead of the “return false if save didn’t work” save methods.) In this
method, we check whether the Project is completed H. If so, we open a trans-
action I and set all the tasks in the Project to completed J. Inside the trans-
action, we also check whether the Project has a next_action Task 1). If so, we
set its next_action flag to false 1! and save it 1@. Finally, we save the Project 1#
and close the transaction 1$. If the Project isn’t completed, we save it 1%. Note
that this isn’t optimal: We’ll do the transaction even if the Project’s completed
status isn’t changing. (Exercise for the reader: Optimize this to do the transac-
tion only if the Project wasn’t previously completed—that is, if it’s being set
as completed.)

NOTE If you don’t like relying on remembering to call save_with_gtd_rules!,
you can consider overriding save! using the alias_method technique
shown in iteration 5 for to_xml. Alternatively, you could use a
before_save filter to enforce the various rules. (Thanks to Chris Bailey.)

Next, we’ll modify the Location; see listing 10.26.

E
F

G
H

I
J

1)
1!

1@

1#
1$

1%

GTD semantics, including the 441
Next Action concept and :dependent
class Location < ActiveRecord::Base
 attr_accessible :name, :notes, :created_at, :updated_at

 belongs_to :user
 has_many :tasks
 has_many :tasks, :dependent => :nullify
end

We specify that deleting a Location should nullify the location_id in its Tasks by
adding :dependent => :nullify to the has_many :tasks declaration.

 Now, we’ll modify the User model; see listing 10.27.

require 'digest/sha1'
class User < ActiveRecord::Base
 has_many :tasks
 has_many :projects
 has_many :locations
 has_one :note
 has_many :tasks, :dependent => :delete_all
 has_many :projects, :dependent => :delete_all
 has_many :locations, :dependent => :delete_all
 has_one :note, :dependent => :destroy
 has_many :next_actions,
 :class_name => "Task",
 :conditions => "next_action='1'"

 def before_create
 self.note = Note.new
 end

 # Virtual attribute for the unencrypted password
 attr_accessor :password
...

We specify that deleting a User should delete all its tasks B, projects C, and
locations D with the :dependent => :delete_all option. We then specify that
deleting a User should delete the note with :dependent => :destroy E. For
has_many, :delete_all is faster than :destroy because the delete is done with
one SQL statement, and we can use it because we’re deleting everything owned by
the User and not relying on any of the callbacks that are triggered when an
ActiveRecord is deleted with :destroy. (If we needed to delete all the locations

Listing 10.26 app\models\location.rb

Listing 10.27 app\models\user.rb

B
C
D

E
F

G
H

442 ITERATION 10

Finishing the application
of a User and have their :dependent => :nullify take effect, we would use
:destroy instead of :delete_all.) Now, we add the Next Action concept to the
User. We say that a User has_many :next_actions F. Each of them is a Task G
that has its next_action true (in Rails), which in MySQL is '1' H.

 Finally (as far as the model changes go), we need to add GTD semantics to the
Task model; see listing 10.28.

class Task < ActiveRecord::Base
 attr_accessible :name, :notes, :next_action, :completed,
 :project_id, :location_id, :created_at, :updated_at

 belongs_to :user
 belongs_to :location
 belongs_to :project

 def before_save
 self.project_id = nil if self.project_id == 0
 self.location_id = nil if self.location_id == 0
 end

 def save_with_gtd_rules!
 if self.completed
 # A completed task cannot be the next_action, so one of
 # these flags has to win. Arbitrarily, we decide that the
 # completed flag takes precedence over the next_action
 # flag.
 self.next_action = false
 end
 if self.project
 prev_next_action = self.project.next_action
 next_action_changing =
 prev_next_action && (self != prev_next_action)
 project_completed_changing =
 !self.completed && self.project.completed
 if next_action_changing || project_completed_changing
 # If either of these are also changing, we need an
 # explicit transaction.
 transaction do
 if next_action_changing
 prev_next_action.next_action = false
 prev_next_action.save!
 end
 if project_completed_changing
 self.project.completed = false
 self.project.save!
 end
 self.save!

Listing 10.28 app\models\task.rb

B
C

D

E
F

G

H

I

J
1)

1!
1@

1#
1$

1%

1^

GTD semantics, including the 443
Next Action concept and :dependent
 end
 else
 self.save! # We just need to save the task.
 end
 else
 # No project, so if we're not completed we force the
 # next_action to true.
 if !self.completed
 self.next_action = true
 end
 self.save!
 end
 end
end

Again, we add a save_with_gtd_rules! method B, with the ! present because of
the use of save! rather than save. In this method, we check whether the Task is
completed C. If so, we force its next_action flag to false D. (One of the flags
needs to “win,” unless we’re going to have whiny validation. You may prefer to use
validation here.)

NOTE Unlike the scaffolding, I’m using the save! normal_case rescue
error_handling not if save normal_case else error_handling
style because Jamis Buck prefers it3 and I agree with his reasoning. (I’m
sure he’s thrilled.)

Next, we check whether the Task has a project E. If so, we get the next_action
of the project F and store it in a variable called prev_next_action to preserve our
sanity. We set a next_action_changing flag to whether this prev_next_action Task
exists and isn’t the same Task as this Task G. We also set a
project_completed_changing flag H to whether the Task isn’t completed and the
project is completed (to true if we need to force the project to be not completed
because the Task isn’t completed).

 If either of these flags are true I, we need to begin a transaction J to
update everything at once. Inside that transaction, if the next_action_changing
flag is true 1), we set the next_action flag of the prev_next_action 1! to false
and save it 1@. Still inside the transaction, if the project_completed_changing
flag is true 1#, we set the completed flag of the project 1$ to false and save it 1%.
Finally, we save the Task 1^ and close the transaction 1&.

 Otherwise, if both flags are false, we save the Task 1*.

3 http://mtnwestrubyconf2007.confreaks.com/session10.html (around minute 28).

1&

1*

1(
2)

2!

444 ITERATION 10

Finishing the application
 If there is no project, then none of this flag-setting and -checking happened:
We check whether the Task isn’t completed 1(and, if so, set its next_action flag
to true 2) because all tasks with no project are the Next Action. We then save the
Task 2!.

 Phew.

NOTE The good thing about doing all this work in the model is that our con-
trollers can be a lot smaller. Business logic like this belongs in the model,
not the controller. See Jamis Buck’s “Skinny Controller, Fat Model” arti-
cle4 for details.

Next, we need to update the TasksController and ProjectsController to call
these new save_with_gtd_rules! methods. First, the TasksController; see list-
ing 10.29.

...
 # PUT /tasks/1
 # PUT /tasks/1.xml
 def update
 @task = current_user.tasks.find(params[:id])
 @task.attributes = params[:task]
 @task.save_with_gtd_rules!

 respond_to do |format|
 if @task.update_attributes(params[:task])
 flash[:notice] = 'Task was successfully updated.'
 format.html { redirect_to(@task) }
 format.xml { render :xml => @task }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 end
 format.html do
 flash[:notice] = 'Task was successfully updated.'
 redirect_to(@task)
 end
 format.xml { render :xml => @task }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => "edit" }

4 http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model.

Listing 10.29 app\controllers\tasks_controller.rb

B
C

D

E

F

GTD semantics, including the 445
Next Action concept and :dependent
 format.xml { render :xml => @task.errors.to_xml_full }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end
...

We delete the old code inside the respond_to block, including the call to
@task.update_attributes(params[:task]) D. It’s instructive to look at the
source for the update_attributes method in ActiveRecord::Base that is in ven-
dor\rails; see listing 10.30.

...
 def update_attributes(attributes)
 self.attributes = attributes
 save
 end
...

We see that update_attributes sets self.attributes and calls save. We want to
set the attributes of the @task with the same params[:task] that was passed to
update_attributes before calling save_with_gtd_rules!, so that’s what we do
(B and C in listing 10.29). Note that our use of attr_accessible in the Task
model ensures the user can’t try anything sneaky with the user_id. If no excep-
tions were raised, we send @task to Flex E as before (the to_xml method is auto-
matically called). If a RecordInvalid is raised F, we send the @task.errors.
to_xml_full G. Note that besides using exception control flow instead of return-
code checking, we also send the to_xml_full now and don’t bother with the
HTTP status code that we’re ignoring. (Also note that the errors aren’t used in our
Flex code; using them is an exercise for the reader.)

 Next, we need to do something similar for projects. Modify the Projects-
Controller as shown in listing 10.31.

...
 # PUT /projects/1
 # PUT /projects/1.xml
 def update
 @project = current_user.projects.find(params[:id])

Listing 10.30 vendor\rails\activerecord\lib\active_record\base.rb

Listing 10.31 app\controllers\projects_controller.rb

G

446 ITERATION 10

Finishing the application
 @project.attributes = params[:project]
 @project.save_with_gtd_rules!

 respond_to do |format|
 if @project.update_attributes(params[:project])
 flash[:notice] = 'Project was successfully updated.'
 format.html { redirect_to(@project) }
 format.xml { render :xml => @project }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @project.errors,
 :status => :unprocessable_entity }
 end
 format.html do
 flash[:notice] = 'Project was successfully updated.'
 redirect_to(@project)
 end
 format.xml { render :xml => @project }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => "edit" }
 format.xml { render :xml => @project.errors.to_xml_full }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end
...

Again, we set the attributes B and call the save_with_gtd_rules! C method,
but this time it’s of a Project (@project). Next, we delete the old code D and
then render :xml either the @project (the to_xml method is automatically
called) on success E or the @project.errors.to_xml_full F on error.

 Before we finish this section, we need to make two small changes on the Flex
side: modifying the UpdateTaskCommand to list Projects and UpdateProject-
Command to list Tasks. We start with the UpdateTaskCommand; see listing 10.32.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Task;
 import com.pomodo.util.CairngormUtils;
...

Listing 10.32 app\flex\com\pomodo\command\UpdateTaskCommand.as

B
C

D

E

F

Add import

Filtering tasks 447
 public class UpdateTaskCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.updateTask(Task.fromXML(XML(event.result)));
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 }
...

We call CairngormUtils.dispatchEvent(EventNames.LIST_PROJECTS) B from
the result handler of the UpdateTaskCommand. This is a simple way of getting any
changes to the Task’s Project caused by the change to the Task—it’s by no means
the most efficient way this could be done.

 Next, we make a similar change to the UpdateProjectCommand; see listing 10.33.

package com.pomodo.command {
...
 public class UpdateProjectCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(EventNames.LIST_TASKS);
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 }
...

We already had the imports, so all we need to do is to call CairngormUtils.
dispatchEvent(EventNames.LIST_TASKS) B from the result handler of the
UpdateProjectCommand.

 That’s it. We won’t bother testing now, because we have more UI work to do.

10.4 Filtering tasks
Filtering tasks Now that we’ve implemented the Next Action concept, let’s implement the task

filtering in the task list. This is also something we’ve left stubbed out for a long
time.

Listing 10.33 app\flex\com\pomodo\command\UpdateProjectCommand.as

B

B

448 ITERATION 10

Finishing the application
 The cool thing is that the ListCollectionView already supports the notion of
filtering with a filterFunction (see the ListCollectionView API docs), so this is
easy to do: We filter the tasks according to what is selected in the combo boxes.
We also decide to add another option to show only the incomplete tasks, because
this is probably one of the most useful filters—and we’re surprised we forgot it.

 One more thing: Because the summaryPanel requires the user to click Update
before updating the data on the server, it will be helpful for us to keep the client-
side data in a legal state if we can. By this, I mean that a completed Task can’t be
the Next Action of its project. We’ll also add logic to the completedCheckBox and
nextActionCheckBox to ensure that when the user clicks one of them, the other
one is unchecked. Although we handle bogus input on the Rails side, if we can
prevent it on the client it’s a good thing to do because the UI is more intuitive.

 Modify the TasksListBox as shown in listing 10.34.

<?xml version="1.0" encoding="utf-8"?>
<mx:VDividedBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Tasks">
<mx:Script>
<![CDATA[
 import mx.collections.ListCollectionView;
 import mx.controls.Alert;
 import com.pomodo.components.MainBox;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Location;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Project;
 import com.pomodo.model.Task;
 import com.pomodo.util.CairngormUtils;

 public const NEXT_ACTIONS:int = 0;
 public const ALL_TASKS:int = 1;
 public const TASKS_IN_PROJECT:int = 2;
 public const TASKS_AT_LOCATION:int = 3;
 public static const ALL_TASKS:int = 0;
 public static const INCOMPLETE_TASKS:int = 1;
 public static const NEXT_ACTIONS:int = 2;
 public static const TASKS_IN_PROJECT:int = 3;
 public static const TASKS_AT_LOCATION:int = 4;

 [Bindable]
 public var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private const SHOW_CHOICES:Array = [
 {label:"All Tasks", data:ALL_TASKS,

Listing 10.34 app\flex\com\pomodo\components\TasksListBox.mxml

Add
import

B

Modify constants
to be static

C

Add constant for
INCOMPLETE_TASKSD

Rearrange
SHOW_CHOICES

E

Filtering tasks 449
 hasSubChoice:false},
 {label:"Incomplete Tasks", data:INCOMPLETE_TASKS,
 hasSubChoice: false},
 {label:"Next Actions", data:NEXT_ACTIONS,
 hasSubChoice:false},
 {label:"All Tasks", data:ALL_TASKS,
 hasSubChoice:false},
 {label:"Tasks in Project:", data:TASKS_IN_PROJECT,
 hasSubChoice:true},
 {label:"Tasks at Location:", data:TASKS_AT_LOCATION,
 hasSubChoice:true}];

 [Bindable]
 private var _subChoices:Array;
 private var _subChoices:ListCollectionView;

 public function updateSelectedTaskFromSummaryPanel():void {
 var task:Task = Task(tasksGrid.selectedItem);
 task.name = nameTI.text;
 task.completed = completedCheckBox.selected;
 //"next action" support is coming in iteration11
 task.project = Project(projectComboBox.selectedItem);
 task.location = Location(locationComboBox.selectedItem);
 task.notes = notesTI.text;
 task.nextAction = nextActionCheckBox.selected;
 updateTask(task);
 }

 public function updateTask(task:Task):void {
 CairngormUtils.dispatchEvent(
 EventNames.UPDATE_TASK, task);
 }

 public function deleteTask(task:Task):void {
 CairngormUtils.dispatchEvent(EventNames.DESTROY_TASK,
 task);
 }

 public function incompleteTasksFilterFunc(item:Object):
 Boolean {
 return !item.completed;
 }

 public function nextActionsFilterFunc(item:Object):Boolean {
 return item.nextAction;
 }

 public function tasksAtLocationFilterFunc(item:Object):
 Boolean {
 return item.location == subChoiceComboBox.selectedItem;
 }

Change type to
ListCollectionView

F

Set
task.nextActionG

Add 4
filter
functions

H

Use state of
subChoiceComboBox

I

450 ITERATION 10

Finishing the application
 public function tasksInProjectFilterFunc(item:Object):
 Boolean {
 return item.project == subChoiceComboBox.selectedItem;
 }

 private function updateMainChoice():void {
 switch (mainChoiceComboBox.selectedItem.data) {
 case TasksListBox.TASKS_AT_LOCATION:
 _subChoices = model.locationsAndNone;
 break;
 case TasksListBox.TASKS_IN_PROJECT:
 _subChoices = model.projectsAndNone;
 break;
 default:
 break;
 }
 updateTasksFilter();
 }

 private function updateTasksFilter():void {
 switch (mainChoiceComboBox.selectedItem.data) {
 case TasksListBox.ALL_TASKS:
 model.tasks.filterFunction = null;
 break;
 case TasksListBox.INCOMPLETE_TASKS:
 model.tasks.filterFunction =
 incompleteTasksFilterFunc;
 break;
 case TasksListBox.NEXT_ACTIONS:
 model.tasks.filterFunction =
 nextActionsFilterFunc;
 break;
 case TasksListBox.TASKS_AT_LOCATION:
 model.tasks.filterFunction =
 tasksAtLocationFilterFunc;
 break;
 case TasksListBox.TASKS_IN_PROJECT:
 model.tasks.filterFunction =
 tasksInProjectFilterFunc;
 break;
 default:
 Pomodo.debug("Unrecognized choice:" +
 mainChoiceComboBox.selectedItem.data);
 break;
 }
 model.tasks.refresh();
 }

 private function handleNextActionCheckBoxClicked():void {
 if (nextActionCheckBox.selected) {

Update _subChoices based on
mainChoiceComboBox.selectedItem.data J

1)Switch on
mainChoiceComboBox.selectedItem.data

When one is checked,
other is unchecked

1!

Filtering tasks 451
 completedCheckBox.selected = false;
 }
 }

 private function handleCompletedCheckBoxClicked():void {
 if (completedCheckBox.selected) {
 nextActionCheckBox.selected = false;
 }
 }
]]>
</mx:Script>
 <mx:VBox width="100%" height="60%">
 <mx:HBox width="100%" paddingLeft="5" paddingRight="5">
 <mx:Label text="Show:"/>
 <mx:ComboBox id="mainChoiceComboBox"
 dataProvider="{SHOW_CHOICES}"
 change="updateMainChoice()"/>
 <mx:ComboBox id="subChoiceComboBox" width="100%"
 <mx:ComboBox id="subChoiceComboBox" width="200"
 dataProvider="{_subChoices}"
 visible="{mainChoiceComboBox.selectedItem.hasSubChoice}"
 change="updateTasksFilter()"
 labelField="name"/>
 </mx:HBox>
...
 </mx:VBox>
 <mx:Panel id="summaryPanel" title="Task" width="100%"
 height="40%" paddingLeft="5" paddingRight="5"
 paddingTop="5" paddingBottom="5">
 <mx:HBox width="100%">
 <mx:Label text="Name" width="50"/>
 <mx:TextInput id="nameTI" width="100%"
 text="{tasksGrid.selectedItem.name}"/>
 <mx:CheckBox id="completedCheckBox"
 label="Completed"
 selected="{tasksGrid.selectedItem.completed}"
 click="handleCompletedCheckBoxClicked()"/>
 </mx:HBox>
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="Project" width="50"/>
 <mx:ComboBox id="projectComboBox" width="200"
 labelField="name"
 dataProvider="{model.projectsAndNone}"
 selectedItem="{tasksGrid.selectedItem.project}"
 />
 <mx:CheckBox label="This is the Next Action"/>
 <mx:CheckBox id="nextActionCheckBox"
 label="This is the Next Action"
 selected="{tasksGrid.selectedItem.nextAction}"

Handle change event to
call updateMainChoice

1@

Adjust width of
subChoiceComboBox 1#

Handle change event to
call updateTasksFilter 1$

Handle click
event to sync

CheckBoxes

1%

Bind selected property to
tasksGrid.selectedItem.nextAction 1^

452 ITERATION 10

Finishing the application
 click="handleNextActionCheckBoxClicked()"/>
 <mx:Spacer width="100%"/>
 <mx:Label text="Location"/>
 <mx:ComboBox id="locationComboBox" width="200"
 labelField="name"
 dataProvider="{model.locationsAndNone}"
 selectedItem="{tasksGrid.selectedItem.location}"
 />
 </mx:HBox>
...
 </mx:Panel>
</mx:VDividedBox>

We start by adding an import B and modifying the constants to be static C. We
also add a constant for INCOMPLETE_TASKS D. Next, we rearrange the
SHOW_CHOICES and add INCOMPLETE_TASKS to them E. We then modify F the
_subChoices to be a ListCollectionView, because that’s what it will be assigned
to from the model. We set the task.nextAction to the value of the selected
property of the nextActionCheckBox G.

 Next, we add the various filter functions H. These all check the item (which is
typed as Object but which is a Task) and return Boolean if it matches the filter
and should be shown. Note that the tasksAtLocationFilterFunc and tasksIn-
ProjectFilterFunc use the state of the subChoiceComboBox I. (Flex 1.5 devel-
opers: You don’t need to use Delegate.create any more to correct this
reference.) Now, we add an updateMainChoice J function that updates
_subChoices to be either model.locationsAndNone or model.projectsAndNone
based on the mainChoiceComboBox.selectedItem.data. (We don’t have to han-
dle the other cases, because the subChoiceComboBox will be hidden.) After the
_subChoices are updated in updateMainChoice, we call updateTasksFilter 1).
This function switches on mainChoiceComboBox.selectedItem.data and updates
model.tasks.filterFunction accordingly (or to null in the case of TasksList-
Box.ALL_TASKS) and then calls model.tasks.refresh() to update the model.
tasks ListCollectionView.

 Next, we add the handleNextActionCheckBoxClicked 1! and handleComplet-
edCheckBoxClicked functions, which ensure that when either the completed-
CheckBox or nextActionCheckBox is selected by the user, the other one is
deselected. We add these functions as click event handlers 1%1& in order for
them to be invoked after the selected property is set on user click only.

 Now, we modify the two ComboBoxes to handle their change events and to
adjust the width of the subChoiceComboBox 1@–1$. Finally, we give the This Is the
Next Action CheckBox an id of nextActionCheckBox and bind its selected prop-
erty to tasksGrid.selectedItem.nextAction 1^.

Handle click event to
sync CheckBoxes 1&

The CommandShell 453
 Rebuild, reload, and—nah, we’re so close, let’s keep going and finish this iter-
ation before testing.

10.5 The CommandShell
The CommandShell Another thing we’ve left stubbed out for now is the CommandShell; see listing 10.35.

Let’s implement that too. We’ll keep it simple and use it to create tasks for now. A
full command shell will be left as an exercise for the reader.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml" width="100%">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.model.Task;
 import com.pomodo.util.CairngormUtils;

 private function parseCommand():void {
 var cmdArray:Array = cmdTI.text.split(":");
 if (cmdArray.length < 1) return;
 var newTask:Task = new Task(
 cmdArray[0],
 (cmdArray.length > 1 ? cmdArray[1] : ""));
 CairngormUtils.dispatchEvent(EventNames.CREATE_TASK,
 newTask);
 }
]]>
</mx:Script>
 <mx:Label text="pomodo:"/>
 <mx:TextInput id="cmdTI" width="100%"
 enter="parseCommand()"/>
</mx:HBox>

This is easy: We modify cmdTI to call I the parseCommand function B when the
enter event is broadcast. In parseCommand, we split the text C of the cmdTI by the
: character, because we’re going to support a syntax of name:notes—“finish this iter-
ation:write the rest of the content”—to create a new Task whose name is “finish this
iteration” and whose notes are “write the rest of the content”. We ensure that we have
a task name: that is, that the cmdArray has at least one element in it D. If so, we create
a new Task E with the name F and optional notes G. Finally, we dispatch an event
whose name is EventNames.CREATE_TASK H and whose data is the newTask.

Listing 10.35 app\flex\com\pomodo\components\CommandShell.mxml

B
C

D
E

F
G

H

I

454 ITERATION 10

Finishing the application
 That’s it! Everything else is handled for us. One of the great things about
Cairngorm is it doesn’t matter where commands originated—we can easily
expand our application in new and unexpected ways.

10.6 Logging out
Logging out Another thing we missed was the ability to log out. Oops! Let’s add support for

that.
 What do we want to do when we log out? Because I want to promote this book,

I decided to do a bit of marketing and send the user to http://www.flexible-
rails.com when they log out. It will be instructive, too, because it will show tech-
niques we haven’t seen before.

 This will be more work than the CommandShell, because we’ll need to create a
new event name, command, and so on.

 We’ll start by creating a LoadURLCommand; see listing 10.36.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import flash.net.navigateToURL;
 import flash.net.URLRequest;

 public class LoadURLCommand implements ICommand {
 public function LoadURLCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var request:URLRequest = new URLRequest(event.data);
 try {
 navigateToURL(request, "_top");
 }
 catch (e:Error) {
 }
 }
 }
}

This is simple. The LoadURLCommand imports the navigateToURL function B. In
its execute function C, it constructs a new URLRequest D for the event.data as
the URL. It then calls navigateToURL E inside a try block that catches and
ignores any Errors. We specify "_top" E to replace the current browser window
in which the Flex application is running.

Listing 10.36 app\flex\com\pomodo\command\LoadURLCommand.as

B

C
D

E

http://www.flexiblerails.com

Logging out 455
 Next, we’ll hook up this command, starting with adding a LOAD_URL constant
in EventNames; see listing 10.37.

package com.pomodo.control {
 public final class EventNames {
...
 public static const SHOW_NOTE:String = "showNote";

 public static const LOAD_URL:String = "loadURL";
...
 }
}

Now, we’ll make an addCommand call in PomodoController; see listing 10.38.

...
 private function initializeCommands() : void {
...
 addCommand(EventNames.SHOW_NOTE, ShowNoteCommand);
 addCommand(EventNames.LOAD_URL, LoadURLCommand);
 }
 }
}

We’ll also modify the MainBox to add the UI to trigger logout; see listing 10.39.

...
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function logout():void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "/logout");
 }

Listing 10.37 app\flex\com\pomodo\control\EventNames.as

Listing 10.38 app\flex\com\pomodo\control\PomodoController.as

Listing 10.39 app\flex\com\pomodo\components\MainBox.mxml

B
C

456 ITERATION 10

Finishing the application
 private function handleCreationComplete():void {
 CairngormUtils.dispatchEvent(EventNames.SHOW_NOTE);
 CairngormUtils.dispatchEvent(EventNames.LIST_PROJECTS);
 CairngormUtils.dispatchEvent(EventNames.LIST_LOCATIONS);
 }
]]>
</mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:VBox width="300" height="100%">
...
 <mx:DateChooser id="dateChooser" width="100%"/>
 <mx:Button label="logout" width="100%"
 click="logout()"/>
 </mx:VBox>
...

We add a logout function B that calls CairngormUtils.dispatchEvent with a
LOAD_URL name and a "/logout" URL C. We then call this function from the click
handler of a logout button D.

 Finally, we modify the SessionsController; see listing 10.40.

This controller handles the login/logout function of the site.
class SessionsController < ApplicationController
...
 # DELETE /session
 # DELETE /session.xml
 def destroy
 self.current_user.forget_me if logged_in?
 cookies.delete :auth_token
 reset_session
 flash[:notice] = "You have been logged out."
 redirect_back_or_default('/')
 redirect_to "http://www.flexiblerails.com"
 end
end

We remove the flash notice B and the redirect to the site root C and instead
redirect_to http://www.flexiblerails.com D.

 Cheesy redirects? The urge to do some marketing is upon us!

Listing 10.40 app\controllers\sessions_controller.rb

D

B
C

D

Marketing! 457
10.7 Marketing!
Marketing! If we’re building a fake Web 2.0 app, we need to improve our marketing. Also, if we

want to theoretically deploy pomodo as a demo app for Flexible Rails, we need to
make it as persuasive as possible. Besides redirecting the users when they log out,
how else can we convince them to buy the book? Well, we could try adding a link
at the top of the app. While we’re at it, we’ll add a copyright notice at the bottom
and add a couple effects to make things look cool. Finally, we’ll modify the compiler
settings to output into public instead of public\bin. This way, all we have to do is
rename Pomodo.html to index.html (and delete the default route), and we’ll be
able to test the app at http://localhost:3000 instead of http://localhost:3000/bin/
Pomodo.html. Then we could deploy it at, say, http://www.pomodo.com instead of
http://www.pomodo.com/bin/Pomodo.html.

 First, we’ll modify Pomodo.mxml; see listing 10.41.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 xmlns:control="com.pomodo.control.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 width="100%"
 height="100%"
 creationCompleteEffect="fadeIn">
<mx:Script>
<![CDATA[
 import mx.core.Container;
 import com.pomodo.components.DebugPanel;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.DebugMessage;
 import com.pomodo.model.PomodoModelLocator;

 private static const COPYRIGHT:String =
 "Copyright (c) 2007, Peter Armstrong.";

 private static const MARKETING:String =
 "To learn how this app was built, click here to go " +
 "to http://www.flexiblerails.com.";

Listing 10.41 app\flex\Pomodo.mxml

B

C

D

E

458 ITERATION 10

Finishing the application

 [Bindable]
 private var _model : PomodoModelLocator =
 PomodoModelLocator.getInstance();

 public static function debug(str:String):void {
 application.debugPanel.addMessage(
 new DebugMessage(str));
 }

 private function controlViewToShow(workflowState:int):
 Container {
...
 }

 private function loadFlexibleRails():void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "http://www.flexiblerails.com");
 }
]]>
</mx:Script>
 <mx:Fade id="fadeIn" duration="500"/>
 <mx:WipeUp id="wipeUp" duration="500"/>

 <!--
 the FrontController, containing Commands specific to this app
 -->
 <control:PomodoController id="controller" />

 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
 <mx:LinkButton color="#FFFFFF"
 click="loadFlexibleRails()" label="{MARKETING}"/>
 </mx:HBox>
 <mx:Spacer height="10"/>

 <mx:VDividedBox width="100%" height="100%">
 <mx:ViewStack id="mainStack" width="100%" height="100%"
selectedChild="{controlViewToShow(_model.workflowState)}">
 <pom:SplashBox id="splashBox"/>
 <pom:MainBox id="mainBox" showEffect="wipeUp"/>
 </mx:ViewStack>
 <pom:DebugPanel id="debugPanel" width="100%"
 height="0%"/>
 </mx:VDividedBox>
 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
 <mx:Label color="#FFFFFF" text="{COPYRIGHT}"/>
 </mx:HBox>
</mx:Application>

F

G

H

I

J

Marketing! 459
We create two effects G, an mx:Fade called fadeIn and an mx:WipeUp, both of
which last 500 milliseconds. We set the creationCompleteEffect B of the
mx:Application to be the fadeIn. We then add some imports C and constants for
the copyright D and marketing E Strings. Next, we create a loadFlexibleRails
function F that dispatches the same LOAD_URL event we used to log out, but it
doesn’t log out—it goes to http://www.flexiblerails.com. (This would be useful if
we supported automatically showing the MainBox if the user was logged in, which is
straightforward to do—and is an exercise for the reader.) Next, we make some UI
changes to show our new copyright notice J and marketing link H. Note that the
mainBox now has the wipeUp effect as its showEffect I. Also note that the
mx:LinkButton J is a control we haven’t seen before in the book. It is what it says
it is: a button that looks like a link. (Of course, I’m modifying its color, so it looks
less so.)

 Next, right-click the pomodo project in the Navigator, and choose Properties
to modify the compiler settings. Change the output folder from public\bin to pub-
lic; see figure 10.2.

Figure 10.2
Updating the
output folder in
the build path

460 ITERATION 10

Finishing the application
Click OK.
 Before we test, we suddenly realize that we’ve been so focused on creating

things (tasks, projects, locations) in the course of building the application that we
haven’t paid attention to what we should do when we delete them. Furthermore,
to our horror, we realize that there is no way to delete a user at the moment—we
have no support for it in the UserController or in the UI. Oops! Clearly, we
should address these issues before declaring that we’re finished! Otherwise, we
won’t be able to demo the app on the Internet without getting angry “I can’t
delete my account” emails. This won’t do.

10.8 Deleting users
Deleting users We’ll start by creating a destroy action in the UsersController; see listing 10.42.

class UsersController < ApplicationController
 skip_before_filter :login_required, :only => [:new, :create]

 # GET /users/new
 # GET /users/new.xml
 def new
 # render new.rhtml
 end

 # POST /users
 # POST /users.xml
 def create
...
 end

 # DELETE /users/1
 # DELETE /users/1.xml
 def destroy
 if current_user.id == params[:id].to_i &&
 current_user.destroy
 cookies.delete :auth_token
 reset_session
 render :text => "success"
 else
 render :text => "error"
 end
 end
end

Listing 10.42 app\controllers\users_controller.rb

B

C
D

E
F

G

H

Deleting users 461
We start by modifying the skip_before_filter B to only skip new and create,
because we want to ensure that the user is logged in before we attempt to destroy
a user. We then create a destroy method C. We then also check D that the
current_user.id is the params[:id] (converted from a String to a Fixnum with
to_i). If the id matches, we call current_user.destroy E to delete the
current_user. We clear out the cookies and session EF using code copied from
the SessionsController and then render the text "success" G. If anything goes
wrong (for example, the ids don’t match or the destroy failed), we render the text
"error" H.

 Now, to the Flex side. We’ll create an Account tab, which will hold a Delete
Account button and nothing else. In a real application we would allow the user to
update all their details; doing this in pomodo is left as an exercise for the reader.
We’ll also add a new command (DestroyUserCommand) to do the work, modifying
the UserDelegate, and so on. By now, this should be routine.

 We’ll start with EventNames; see listing 10.43.

package com.pomodo.control {
 public final class EventNames {
...
 public static const DESTROY_TASK:String = "destroyTask";
 public static const DESTROY_USER:String = "destroyUser";
...

We add a DESTROY_USER const for "destroyUser".
 Next, we’ll modify the PomodoController to hook this DESTROY_USER event

name up to a new DestroyUserCommand; see listing 10.44.

package com.pomodo.control {
...
 public class PomodoController extends FrontController {
...
 private function initializeCommands():void {
...
 addCommand(EventNames.DESTROY_TASK,
 DestroyTaskCommand);

 addCommand(EventNames.DESTROY_USER,
 DestroyUserCommand);

...

Listing 10.43 app\flex\com\pomodo\control\EventNames.as

Listing 10.44 app\flex\com\pomodo\control\PomodoController.as

462 ITERATION 10

Finishing the application
Now, we’ll create the new DestroyUserCommand; see listing 10.45.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.UserDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.User;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 import mx.controls.Alert;
 import mx.core.Application;
 import mx.events.CloseEvent;
 import mx.rpc.IResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;

 public class DestroyUserCommand implements ICommand,
 IResponder {
 public function DestroyUserCommand() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:UserDelegate = new UserDelegate(this);
 delegate.destroyUser(event.data);
 }

 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (event.result == "success") {
 Alert.show(
 "Your account was deleted.",
 "Delete Successful",
 Alert.OK,
 Application(Application.application),
 alertClickHandler);
 } else {
 Alert.show(
 "Your account was not successfully deleted.",
 "Error");
 }
 }

 private function alertClickHandler(event:CloseEvent):

Listing 10.45 app\flex\com\pomodo\command\DestroyUserCommand.as

B
C

D

E

F
G

H

I

Deleting users 463
 void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "http://www.flexiblerails.com");
 }

 public function fault(event:Object):void {
 var faultEvent:FaultEvent = FaultEvent(event);
 Alert.show("The user was not successfully deleted.",
 "Error");
 }
 }
}

In the execute B method, we create a new UserDelegate C and call its
destroyUser method D, which we’ll add momentarily. In the result handler E,
we check whether the result is a "success" F and show an Alert G saying
the delete was successful if it was, or an Alert saying it wasn’t successful if it
wasn’t H. In the alertClickHandler I for the successful deletion Alert box
(which is triggered when the OK button of the Alert dialog is clicked, since we
attached it above G), we send the user to http://www.flexiblerails.com by dis-
patching a Cairngorm LOAD_URL J event. This has the effect of getting rid of any
application state, too.

 Next, we’ll add the destroyUser method to the UserDelegate; see listing 10.46.

package com.pomodo.business {
 import mx.rpc.IResponder;
 import com.pomodo.model.User;
 import com.pomodo.util.ServiceUtils;

 public class UserDelegate {
 private var _responder:IResponder;

 public function UserDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function createUser(user:User):void {
 ServiceUtils.send("/users.xml", _responder, "POST",
 user.toXML(), true);
 }

 public function destroyUser(user:User):void {
 ServiceUtils.send("/users/" + user.id + ".xml",
 _responder, "DELETE");
 }

Listing 10.46 app\flex\com\pomodo\business\UserDelegate.as

J

B
C

464 ITERATION 10

Finishing the application
 }
}

In the destroyUser function B, we call ServiceUtils.send C with a URL that
contains the user.id and a method of "DELETE".

 Now, we’ll create the AccountBox; see listing 10.47.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Account"
 paddingLeft="5" paddingRight="5" paddingTop="5"
 paddingBottom="5">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;
 import mx.controls.Alert;
 import mx.events.CloseEvent;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function handleDeleteAccount(event:Event):void {
 Alert.show(
 "Do you want to delete your account? This is irreversible.",
 "Delete Account",
 Alert.YES | Alert.NO,
 this,
 handleAlertClick);
 }

 private function handleAlertClick(event:CloseEvent):void {
 if (event.detail == Alert.YES) {
 CairngormUtils.dispatchEvent(
 EventNames.DESTROY_USER, _model.user);
 }
 }
]]>
</mx:Script>
 <mx:Button label="Delete Account"
 click="handleDeleteAccount(event)"/>
</mx:VBox>

Listing 10.47 app\flex\com\pomodo\components\AccountBox.mxml

B

C

D

E

Deleting users 465
We create a Delete Account button E whose click handler, handleDeleteAc-
count, shows an Alert B asking for confirmation. This Alert has a closeHandler
of handleAlertClick C specified in the constructor, which dispatches a
DESTROY_USER D named event if the user clicks Yes.

 Finally, we need to modify MainBox to add the AccountBox to it. This is trivial;
see listing 10.48.

...
 <pom:Notely id="notelyTab"/>
 <pom:AccountBox id="accountTab"/>
 </mx:TabNavigator>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

That’s it! Rebuild, and rename (or copy-paste) public\Pomodo.html to pub-
lic\index.html. (As far as I can tell, you’ll have to do this after every clean build, or
automate the process with a script.)

Next, reload and (all together now) log in as ludwig—but this time using http://
localhost:3000.

 We see the screen shown in figure 10.3 on the following page.
 Play with selecting the different Tasks view filters, entering new tasks in the

pomodo command shell, and so on. Mouse over the LinkButton at the top to see
its highlight. Try clicking Logout or the LinkButton to be taken to http://
www.flexiblerails.com. Hooray!

 We see that deleting a project deletes its tasks, whereas deleting a location sets
the location of tasks that had that location to None (which is how the UI shows a
null location).

 Finally, switch to the Account tab. We see the Delete Account button (see fig-
ure 10.4).

Listing 10.48 app\flex\com\pomodo\components\MainBox.mxml

Q. What about the default route? Shouldn’t we delete it?

A. The index.html file wins, so it doesn’t matter. You can delete it if you wish.

466 ITERATION 10

Finishing the application
Figure 10.3 The finished product

Figure 10.4 37signals doesn’t have a monopoly on simplicity.

Exercises for the Reader 467
Click the Delete Account button. The app is grayed out, and we see the alert
shown in figure 10.5.

 Click Yes to delete ludwig. (Sniff.) The delete is processed, and we’re notified
that the delete was successful (see figure 10.6).

 When we click OK, we’re whisked off to http://www.flexiblerails.com/.
 Finally, run the tests again with rake and confirm

that everything still works. We’re done!
 Well, almost. In the next iteration, we’ll refactor

pomodo to use RubyAMF for the data exchange
between Flex and Rails. Then, in the final iteration,
we’ll convert pomodo to be an AIR application and add
support for online/offline detection.

10.9 Exercises for the Reader
Exercises for the Reader

1 Fully implement the pomodo command prompt. Is support for deleting
tasks usable? How would you make it more usable?

2 Add code to automatically show the MainStack if there is already a session.

3 Add support for updating the user first name, last name, email, and so on.

Figure 10.5 Deleting Ludwig

The code at this point is saved as the iteration10 folder.

Figure 10.6 Goodbye, Ludwig.

Refactoring to RubyAMF
111000011100011110000011110101000111
 —RubyAMF
468

Warning: biased author 469
RubyAMF is an Open Source, MIT-licensed (with one exception, as explained in a
moment) Flash Remoting gateway for Ruby on Rails. It focuses on speed, and it
integrates directly with RESTful Rails controllers via render :amf. Because of this,
RubyAMF can be used as a more efficient wire format for sending information
between Flex and Rails. (Of course, any time you see a claim that something is
more efficient, you should do your own benchmarks or profiling. As such, I’m not
going to do it for you here.)

 RubyAMF also features a standalone implementation that doesn’t depend on
Rails—it’s called RubyAMF and not RailsAMF. But because this book is about Rails
in particular and not just Ruby—it’s called Flexible Rails, not Flexible Ruby—the
standalone RubyAMF is beyond the scope of the iteration.

 In this iteration, we’ll start by installing RubyAMF and doing a quick “Hello
World” test. We’ll then refactor the tasks, projects, locations, and note to be sent
between Flex and Rails via RemoteObject to RubyAMF instead of using HTTPSer-
vice and XML. (We won’t touch the login code: There’s no reason to do so, and I
want to keep this iteration as small as possible.)

 Doing the refactoring will show how RubyAMF integrates with our RESTful
controllers and how we can modify our Flex application to use RubyAMF via
RemoteObject instead of XML via HTTPService. We’ll also replace the Service-
Utils.as class with the standard Cairngorm Services.mxml class: Doing this will
bring our code more in line with standard Cairngorm, which will be instructive.
(Also, because we’re focusing on performance, it means we won’t create numer-
ous disposable RemoteObjects.)

 Before we begin, I’ll disclose my conflicts of interest up front. In so doing, I
also get to stealthily establish the claim that I’m qualified to write about RubyAMF.

11.1 Warning: biased author

In this book, I like to play the role of unbiased (but opinionated) obsever of the
technologies I’m writing about. In this iteration, however, I’m not impartial.
There are currently two AMF technologies for Ruby: RubyAMF and WebORB for
Rails. I’m not going to write about WebORB for Rails at all in this book, because I
may be biased in favor of RubyAMF. Here’s why:

■ I’ve advocated RubyAMF as the most promising AMF implementation for
Ruby in various presentations.

■ I have commit access on RubyAMF, http://code.google.com/p/rubyamf/
—although as of 2007-11-10 I’ve committed nothing.

470 ITERATION 11

Refactoring to RubyAMF
■ There is a flexiblerails branch of RubyAMF (which as of 2007-11-10 was
identical to the 1.5 release) so that readers of this book can follow along
with something which is stable.

■ A few months ago, Aaron Smith, the creator of RubyAMF, was kind enough
to write some code that refactored an older version of pomodo to talk to an
older version of RubyAMF (the standalone version, not the Rails version).
Although this codebase isn’t used in this iteration—RubyAMF has changed
a lot since then—I’ve learned from it.

■ Most important, I’ve had a number of productive email exchanges with
Aaron Smith over the past months, including two email exchanges that con-
stitute contributions to the RubyAMF project:
■ On June 20, 2007, I helped to convince Aaron to change the RubyAMF

license from the GPL back to the MIT license (which RubyAMF had previ-
ously been licensed under). (Rails is also MIT-licensed, and Ruby uses a
license which is similar to the MIT license.)

■ On June 29, 2007, I proposed the format.amf { render :amf =>
@task.to_amf } approach for integration with RESTful controllers and
helped to convince Aaron that integration with RESTful controllers was a
worthwhile feature. (Aaron subsequently implemented this, and it works
well (as you’ll soon see.) Note that we don’t need to say to_amf with
Rails 2; we can say format.amf { render :amf => @task } instead.)

In my opinion, the use of the MIT license alone will ensure that RubyAMF
becomes the dominant AMF implementation for Ruby—especially since Rails also
uses the MIT license, which means that RubyAMF and Rails are completely com-
patible. (As of 2007-11-10, WebORB for Rails was available under two licenses: the
GPL and a commercial license.) Furthermore, the RESTful controller integration
will help persuade Rails users that RubyAMF can be used as a more efficient wire
format for Rails.

Note about the RubyAMF 1.5 license
RubyAMF 1.5 (and the flexiblerails branch) is released under a slightly
modified MIT license, with one clause added: “There is one exception to the
above MIT license. WebORB may not use this code base in any of their releas-
es of WebORB for RoR.”

Nobody ever said Open Source isn’t competitive!

Hello RubyAMF 471
I’ve made contributions (however minor) to RubyAMF, and as such I’m biased in
its favor. Although I’ll strive to be impartial in this iteration, you can assume that
because of my closeness to the project, I’m biased, and adjust your expectations
accordingly.

11.2 Hello RubyAMF

We’ll start by getting the flexiblerails branch of RubyAMF, as shown in list-
ing 11.1.

c:\peter\flexiblerails\current\pomodo>ruby script\plugin install
 ➥http://rubyamf.googlecode.com/svn/branches/flexiblerails/rubyamf
+ ./CHANGELOG
+ ./LICENSE
+ ./README
+ ./app/actions.rb
+ ./app/amf.rb
+ ./app/configuration.rb
+ ./app/fault_object.rb
+ ./app/filters.rb
+ ./app/rails_gateway.rb
+ ./app/request_store.rb
+ ./exception/exception_handler.rb
+ ./exception/rubyamf_exception.rb
+ ./init.rb
+ ./install.rb
+ ./io/amf_deserializer.rb
+ ./io/amf_serializer.rb
+ ./io/read_write.rb
+ ./rails_installer_files/crossdomain.xml

Listing 11.1 Installing the flexiblerails RubyAMF branch

Note about the RubyAMF 1.5 license (continued)

The interesting thing about this clause is that it counteracts the license inequal-
ity of the GPL and the MIT license: Under the terms of the GPL, MIT + GPL code
= GPL code. (The GPL is the most viral of the Open Source licenses—GPL’d code
can incorporate MIT-licensed code and stay GPL’d, but MIT-licensed code can’t
incorporate GPL’d code without becoming GPL’d itself. Throughout human histo-
ry, this type of approach has been an easy way for an idea to spread itself.) Under
the GPL, WebORB [GPL] could have copied from RubyAMF [MIT], but RubyAMF
could not have copied from WebORB. This clause means that neither project can
copy from the other.

472 ITERATION 11

Refactoring to RubyAMF
+ ./rails_installer_files/rubyamf_config.rb
+ ./rails_installer_files/rubyamf_controller.rb
+ ./rails_installer_files/rubyamf_helper.rb
+ ./util/action_controller.rb
+ ./util/active_record.rb
+ ./util/string.rb
+ ./util/vo_helper.rb

c:\peter\flexiblerails\current\pomodo>

Next, because we’re new to RubyAMF, we’ll do a quick “Hello World” example.
After that, I’ll show the result of refactoring to RubyAMF all at once, without dwell-
ing on the basics of RubyAMF. These basics are explained extremely well at the fol-
lowing tutorial1, written by Bryan Carlson of Trailtracer (http://trailtracer.com/):
http://panscendo.com/beginners-tutorial-to-rubyamf-with-restful-rails/. As such,
I’ll keep my “Hello World” example extremely brief and explain RubyAMF as I
present the result of the refactoring.

 We don’t need to do any configuration of RubyAMF at this point—the defaults
in config\rubyamf_config.rb are good enough for “Hello World.”

 We’ll start by creating a new HelloController with a hello action; see list-
ing 11.2.

class HelloController < ApplicationController
 skip_before_filter :login_required
 def sayhello
 render :amf => "hello world"
 end
end

It doesn’t get much simpler than this: We create a HelloController that doesn’t
require login B and which has a sayhello action which renders the String
"hello world" via AMF C.

 The trick is that this doesn’t work from a normal HTTP request—try it in the
browser or on the command line with curl: You get nothing. We need to call it
using AMF—specifically, using RemoteObject, which uses AMF. From the Flex 3

1 This tutorial used to live at http://natureandtech.blogspot.com/2007/10/beginners-tutorial-to-
rubyamf-with.html. Since it was the first really good RubyAMF tutorial, you’ll see various links to that
URL online.

Listing 11.2 app\controllers\hello_controller.rb

B

C

Hello RubyAMF 473
Developer’s Guide: “RemoteObject components let you access the methods of
server-side objects, such as ColdFusion components (CFCs), Java objects, PHP
objects, and .NET objects, without configuring the objects as web services. You can
use RemoteObject components in MXML or ActionScript.”2 (Of course, it didn’t
mention Ruby—maybe the next version will.)

NOTE Flex 3 includes two RemoteObject classes: mx.rpc.remoting.Remote-
Object and mx.rpc.remoting.mxml.RemoteObject. The latter is
intended for use in MXML; what makes it confusing is that mx.rpc.remot-
ing.mxml.RemoteObject extends mx.rpc.remoting.RemoteObject.

We’ll need to create and use a RemoteObject that uses AMF to talk to RubyAMF.
The problem is, we haven’t configured AMF on the Flex side yet. Let’s fix that
now; see listing 11.3.

NOTE This file is taken directly (with permission) from Bryan Carlson’s tutorial.

<?xml version="1.0" encoding="UTF-8"?>
 <services-config>
 <services>
 <service id="rubyamf-flashremoting-service"
 class="flex.messaging.services.RemotingService"
 messageTypes="flex.messaging.messages.RemotingMessage">
 <destination id="rubyamf">
 <channels>
 <channel ref="rubyamf"/>
 </channels>
 <properties>
 <source>*</source>
 </properties>
 </destination>
 </service>
 </services>
 <channels>
 <channel-definition id="rubyamf"
 class="mx.messaging.channels.AMFChannel">
 <endpoint uri="http://localhost:3000/rubyamf/gateway"
 class="flex.messaging.endpoints.AMFEndpoint"/>
 </channel-definition>
 </channels>
 </services-config>

2 Flex 3 Developer’s Guide, Beta 2, p. 85.

Listing 11.3 app\flex\services-config.xml

B

C

D

E

474 ITERATION 11

Refactoring to RubyAMF
Explaining this type of file in depth is best left to reference documentation; all we
need to note is that we’re creating a service whose id is "rubyamf-flashremoting-
service" B and whose destination has an id of "rubyamf" C. We’re also creating
a channel whose id is "rubyamf" D and whose endpoint URI (the cool-kid way of
saying what amounts to a URL) points at the URL of the rubyamf gateway on our
local server E: http://localhost:3000/rubyamf/gateway.

 All we need to do now is write the Flex code to test this. To keep things simple,
we’ll modify Pomodo.mxml to include our “Hello World” code; see listing 11.4.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
...
 creationCompleteEffect="fadeIn">
<mx:Script>
<![CDATA[
 import mx.core.Container;
 import mx.rpc.events.ResultEvent;
 import mx.rpc.events.FaultEvent;
 import com.pomodo.components.DebugPanel;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.DebugMessage;
 import com.pomodo.model.PomodoModelLocator;
...
 private function loadFlexibleRails():void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "http://www.flexiblerails.com");
 }

 private function handleHelloResult(e:ResultEvent):void {
 Pomodo.debug("hello result:\n" + e.message);
 }

 private function handleFault(e:FaultEvent):void {
 Pomodo.debug("FAULT:\n" + e.fault.faultString);
 }
]]>
</mx:Script>
 <mx:RemoteObject id="helloRO"
 source="HelloController"
 destination="rubyamf"
 fault="handleFault(event)">
 <mx:method name="sayhello"
 result="handleHelloResult(event)"/>
 </mx:RemoteObject>

Listing 11.4 app\flex\Pomodo.mxml

Add
imports

B

C

D
E

F

G

Hello RubyAMF 475
 <mx:Fade id="fadeIn" duration="500"/>
...
 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
 <mx:LinkButton color="#FFFFFF"
 click="loadFlexibleRails()" label="{MARKETING}"/>
 </mx:HBox>
 <mx:Button label="hello" click="helloRO.sayhello.send()"/>
 <mx:Spacer height="10"/>
...
</mx:Application>

We add a RemoteObject called helloRO D, which has one mx:method whose name
is sayhello G. This method is invoked by clicking the button H whose label is hello.
We add a fault handler method called handleFault C for the entire Remote-
Object and a handleHelloResult B method for the result of the sayhello
method. Both the fault handler and the result handler call Pomodo.debug().

 Note that the source of the helloRO RemoteObject is HelloController E;
this is the name of the controller we created in Rails. We also see that the destina-
tion is rubyamf F: This refers to the id of the destination we defined in ser-
vices-config.xml earlier.

 Before we run, we need to add the argument -services "services-
config.xml" to the compiler arguments so the compiler knows to use our services;
see figure 11.1.

H

Figure 11.1
Adding the services-
config.xml to the
compiler arguments

476 ITERATION 11

Refactoring to RubyAMF
With this done, we restart our server (to pick up the RubyAMF configuration),
rebuild the Flex project, and load http://localhost:3000/Pomodo.html. We see
the pomodo application with a Hello button on it. Drag the debug console into
view, and click the Hello button; we see something like figure 11.2.

 Note that the body of the AcknowledgeMessage is "hello world", which is
what we rendered with render :amf => "hello world".

11.3 Refactoring to RubyAMF, fast-forwarded

The result of this refactoring will be presented all at once. I got it working for
tasks with a standalone tester inside pomodo and then ported the changes to
projects and locations. However, because tasks, projects, and locations are so simi-
lar, it makes sense to present them together. I’ll start by showing the
rubyamf_config.rb file, then the changes to the controllers, and then the various
changes to the Flex code. This will include replacing the ServiceUtils.as class
with the standard Cairngorm Services.mxml class: Doing this will bring our code
more in line with standard Cairngorm, which will be instructive. We’ll also violate
the Don’t Repeat Yourself (DRY) principle (I’m sorry, Dave) and create a layer of

Figure 11.2 “Hello World” from RubyAMF

Refactoring to RubyAMF, fast-forwarded 477
value object (VO) classes to marshal and unmarshal. This turns out to be simpler,
because we don’t need to worry about the logic we’ve built into our model con-
structors conflicting with the unmarshaling.

NOTE Joking aside, principles such as DRY are meant to be applied pragmati-
cally, not absolutely. Dave Thomas would be the first person to agree with
this, being a Pragmatic Programmer after all. If you find yourself twisting
into contortions to stay true to DRY, ask yourself if the contortions are
worth it. (This was one of Zed Shaw’s many points in his Rails to Italy key-
note.)

Enough talk. Let’s get coding!

11.3.1 Modifying rubyamf_config.rb

We’ll start by modifying the rubyamf_config.rb file, as shown in listing 11.5. Note
that I made a lot of changes to make it fit the page width without showing those
changes as diffs.

require 'app/configuration'
module RubyAMF
 module Configuration
 #set the service path used in all requests
 # RubyAMF::App::RequestStore.service_path =
 # File.expand_path(RAILS_ROOT) + '/app/controllers'

 # => CLASS MAPPING CONFIGURATION

 # => Global Property Ignoring
 # By putting attribute names into this array, you opt in to
 # globally ignore these properties on incoming objects.
 # If you want to ignore specific properties on certain
 # objects, use the :ignore_fields property in a
 # Class Mapping definition (see CLASS MAPPING DEFINITIONS)
 ClassMappings.ignore_fields =
 ['created_at', 'created_on', 'updated_at', 'updated_on']

 # => Case Translations
 # Most actionscript uses camelCase instead of snake_case.
 # Set ClassMappings.translate_case to true if want
 # translations to occur.
 # The translations only occur on object properties
 # An incoming property like myProperty gets turned into
 # my_property. An outgoing property like my_property gets
 # turned into myProperty.

Listing 11.5 config\rubyamf_config.rb

Ignore
because
auto-set
by Rails

478 ITERATION 11

Refactoring to RubyAMF
 ClassMappings.translate_case = true

 # => Force Active Record Ids
 # includes the id field for activerecord objects even if you
 # don't specify it when using custom attributes. This is
 # important for deserialization where ids are needed to keep
 # active record association integrity.
 ClassMappings.force_active_record_ids = true

 # => Assume Class Types
 # This tells RubyAMF to assume class type transfers. So when
 # you register a class Alias from Flash or Flex like this:
 # Flash:: fl.net.registerClassAlias('User',User)
 # Flex:: [RemoteClass(alias='User')]
 # RubyAMF will automagically convert it to a User active
 # record without you having to create a class mapping.
 # This also works with non active record class mappings. See
 # the wiki on the google code page for a downloadable
 # example.
 ClassMappings.assume_types = false

 # => Class Mapping Definitions
 # A Class Mapping definition conists of at least these two
 # properties:
 # :actionscript # The incoming ActionScript class to watch
 # # for
 # :ruby # The Ruby class to turn it into
 #
 # => Optional value object properties:
 # :type # Used to spectify the type of VO; valid
 # # options are 'active_record', 'custom',
 # #(or don't specify at all)
 # :associations # Specify which associations to read on
 # # the active record (only applies to
 # # active records)
 # :attributes # Specifically which attributes to include
 # # in the serialization
 # :ignore_fields # An array of field names you want to
 # # ignore on incoming classes
 #
 # If you are using ActiveRecord VO's you do not need to
 # specify a fully qualified class path to the model, you can
 # just define the class name; for example:
 # ClassMappings.register(:actionscript => 'vo.Person',
 # :ruby => 'Person', :type => 'active_record')
 #
 # If you are using custom VO's you would need to specify the
 # fully qualified class path to the file, for example:
 # ClassMappings.register(:actionscript => 'vo.Person',
 # :ruby => 'org.mypackage.Person')
...

Change case to use proper
coding conventions

True because using
ActiveRecord

Doing ClassMappings
manually, so false

Refactoring to RubyAMF, fast-forwarded 479
 ClassMappings.register(
 :actionscript => 'com.pomodo.vo.TaskVO',
 :ruby => 'Task',
 :type => 'active_record',
 :attributes => ["id", "name", "notes", "next_action",
 "completed", "project_id", "location_id"])
 ClassMappings.register(
 :actionscript => 'com.pomodo.vo.ProjectVO',
 :ruby => 'Project',
 :type => 'active_record',
 :attributes => ["id", "name", "notes", "completed"])
 ClassMappings.register(
 :actionscript => 'com.pomodo.vo.LocationVO',
 :ruby => 'Location',
 :type => 'active_record',
 :attributes => ["id", "name", "notes"])
 ClassMappings.register(
 :actionscript => 'com.pomodo.vo.NoteVO',
 :ruby => 'Note',
 :type => 'active_record',
 :attributes => ["content"])

 # => Class Mapping Scope (Advanced Usage)
...
 # => Check for Associations
 # Enabling this will automagically pick up eager loaded
 # association data on objects returned through RubyAMF.
 # If this is disabled, you will need to specify any
 # associations you DO want picked up in the ClassMapping
 ClassMappings.check_for_associations = false

 # => NAMED PARAMETER MAPPING CONFIGURATION

 #=> Always Put Remoting Parameters into the "params" hash
 # If set to true, arguments from Flash/Flex will come in to
 # the controllers as params[0], params[1], etc.. This is
 # especally useful if you are sending huge objects
 # from Flex into Ruby so it doesnt eat up all your output
 # window with outputting the params in the controller/action
 # header information while in dev mode.
 # Even if its set to false, if you specify specific
 # ParameterMappings, those will still get entered as the
 # param keys you specify. Likewise, you always have access
 # to the parameters from rubyamf in your controller by
 # calling rubyamf_params[0], rubyamf_params[1], etc
 # regardless of if it this is set or not.
 ParameterMappings.always_add_to_params = true

 # => Return Top Level Hash
 # For those scaffolding users out there, who want the
 # top-level object to come as a hash so scaffolding works

Map TaskVO
to/from Task

Map ProjectVO
to/from Project

Map LocationVO
to/from Location

Map NoteVO
to/from Note

Don’t want
associationsB

Want parameters
in params

480 ITERATION 11

Refactoring to RubyAMF
 # out of the box.
 ParameterMappings.scaffolding = false
...
 end
end

Basically, this file is the result of a lot of hackingexperimentation. By the time you
read this, some of the more automatic ways of using this configuration file may
work better—this is the way that worked for me. The most important setting is
ParameterMappings.scaffolding = false C, which didn’t work when true
(using Rails 1.99.0 and the flexiblerails RubyAMF branch). Also, note that we
set check_for_associations to false B, since we’re just transferring objects, not
object graphs.

 All this talk of parameter mapping is making me hungry—for some tables of
type conversions. The type conversions that are done by RubyAMF when convert-
ing between Flash and Ruby are found at http://code.google.com/p/rubyamf/
wiki/AMFTypeConversions and are shown in table 11.1.

Table 11.1 ActionScript 3 to Ruby and Ruby to ActionScript 3 conversions done by RubyAMF

ActionScript 3 …converted to Ruby …converted to ActionScript 3

undefined nil null

null nil null

false false false

true true false

Number Fixnum Number

int Integer Number

String String String

XML String (cast in your service) -

- BeautifulSoup XML

- REXML::Doc XML

Array Array Array

MixexArray Hash Object

Object Hash Object

Custom Class Ruby Class Custom Class

Currently true
is flakyC

http://code.google.com/p/rubyamf/wiki/AMFTypeConversions

Refactoring to RubyAMF, fast-forwarded 481
See the RubyAMF wiki for details.

11.3.2 Modifying the Rails controllers

Next, we need to modify the Rails controllers. We start by deleting app\control-
lers\hello_controller.rb.

 Next, we’ll modify the TasksController; see listing 11.6.

class TasksController < ApplicationController
 # GET /tasks
 # GET /tasks.xml
 def index
 @tasks = current_user.tasks

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @tasks }
 format.amf { render :amf => @tasks }
 end
 end

 # GET /tasks/1
 # GET /tasks/1.xml
 def show
 @task = current_user.tasks.find(params[:id])
 @task = current_user.tasks.find(
 is_amf ? params[0] : params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @task }
 format.amf { render :amf => @task }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # GET /tasks/new
 # GET /tasks/new.xml
 def new
 @task = Task.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @task }
 end
 end

Listing 11.6 app\controllers\tasks_controller.rb

Render tasks as
AMF—it’s that easy

params[0] instead
of in params[:id]

Render task
as AMF

482 ITERATION 11

Refactoring to RubyAMF
 # GET /tasks/1/edit
 def edit
 @task = current_user.tasks.find(params[:id])
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # POST /tasks
 # POST /tasks.xml
 def create
 @task = current_user.tasks.build(params[:task])
 if is_amf
 @task = params[0]
 @task.user_id = current_user.id
 @task.created_at = @task.updated_at = Time.now
 else
 @task = current_user.tasks.build(params[:task])
 end
 respond_to do |format|
 if @task.save
 format.html do
 flash[:notice] = 'Task was successfully created.'
 redirect_to(@task)
 end
 format.xml { render :xml => @task, :status => :created,
 :location => @task }
 format.amf { render :amf => @task }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @task.errors,
 :status => :unprocessable_entity }
 format.amf { render :amf => @task.errors }
 end
 end
 end

 # PUT /tasks/1
 # PUT /tasks/1.xml
 def update
 @task = current_user.tasks.find(params[:id])
 @task.attributes = params[:task]
 @task = current_user.tasks.find(
 is_amf ? params[0].id : params[:id])
 if is_amf
 @task.name = params[0].name
 @task.notes = params[0].notes
 @task.project_id = params[0].project_id
 @task.location_id = params[0].location_id
 @task.next_action = params[0].next_action
 @task.completed = params[0].completed
 else

Task in params[0], not
Hash in params[:task]

Render task
as AMF

Render task
errors as AMF

Task in params[0],
not id in params[:id]

B

Refactoring to RubyAMF, fast-forwarded 483
 @task.attributes = params[:task]
 end
 @task.save_with_gtd_rules!

 respond_to do |format|
 format.html do
 flash[:notice] = 'Task was successfully updated.'
 redirect_to(@task)
 end
 format.xml { render :xml => @task }
 format.amf { render :amf => @task }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => "edit" }
 format.xml { render :xml => @task.errors.to_xml_full }
 format.amf { render :amf => @task.errors }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /tasks/1
 # DELETE /tasks/1.xml
 def destroy
 @task = current_user.tasks.find(params[:id])
 @task = current_user.tasks.find(
 is_amf ? params[0] : params[:id])
 @task.destroy

 respond_to do |format|
 format.html { redirect_to(tasks_url) }
 format.xml { render :xml => @task }
 format.amf { render :amf => @task }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 private
 def prevent_access(e)
 logger.info "TasksController#prevent_access: #{e}"
 respond_to do |format|
 format.html { redirect_to(tasks_url) }
 format.xml { render :text => "error" }
 format.amf { render :amf => "error" }
 end
 end
end

C

Render task
as AMF

Render task
errors as AMF

params[0] instead
of in params[:id]

Render task
as AMF

Render String
“error” as AMF

484 ITERATION 11

Refactoring to RubyAMF
This code has only a couple of changes. First, there is a new format: format.amf.
This is set for us by RubyAMF so we can respond_to it. Next, note that the param-
eters we receive from RemoteObject method invocations come in as params[0],
params[1], and so on. These parameters are converted from ActionScript to Ruby
following the rules shown in table 11.1. Also note that when responding to Flex,
we now render :amf instead of render :xml.

NOTE Yes, the params[0], params[1] stuff is unfortunate. I hope a better way
will work in the future.

No logic anywhere ensures that the project_id and location_id refer to
projects and locations that belong to the user, so a user who wanted to hack them
could cause mischief. This needs to be prevented for both the AMF case where
they are assigned explicitly B and the XML over HTTP case where a mass assign-
ment is done C. (Exercise for the reader: Fix this.)

 Next, we make extremely similar changes to the ProjectsController; see list-
ing 11.7.

class ProjectsController < ApplicationController
 # GET /projects
 # GET /projects.xml
 def index
 @projects = current_user.projects

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @projects }
 format.amf { render :amf => @projects }
 end
 end

 # GET /projects/1
 # GET /projects/1.xml
 def show
 @project = current_user.projects.find(params[:id])
 @project = current_user.projects.find(
 is_amf ? params[0] : params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @project }
 format.amf { render :amf => @project }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)

Listing 11.7 app\controllers\projects_controller.rb

Render
projects as AMF

params[0] instead
of in params[:id]

Render project
as AMF

Refactoring to RubyAMF, fast-forwarded 485
 end

 # GET /projects/new
 # GET /projects/new.xml
 def new
 @project = Project.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @project }
 end
 end

 # GET /projects/1/edit
 def edit
 @project = current_user.projects.find(params[:id])
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # POST /projects
 # POST /projects.xml
 def create
 @project = current_user.projects.build(params[:project])
 if is_amf
 @project = params[0]
 @project.user_id = current_user.id
 @project.created_at = @project.updated_at = Time.now
 else
 @project = current_user.projects.build(params[:project])
 end

 respond_to do |format|
 if @project.save
 format.html do
 flash[:notice] = 'Project was successfully created.'
 redirect_to(@project)
 end
 format.xml { render :xml => @project,
 :status => :created, :location => @project }
 format.amf { render :amf => @project }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @project.errors,
 :status => :unprocessable_entity }
 format.amf { render :amf => @project.errors }
 end
 end
 end

 # PUT /projects/1

Project in params[0], not
Hash in params[:project]

Render project
as AMF

Render project
errors as AMF

486 ITERATION 11

Refactoring to RubyAMF
 # PUT /projects/1.xml
 def update
 @project = current_user.projects.find(params[:id])
 @project.attributes = params[:project]
 @project = current_user.projects.find(
 is_amf ? params[0].id : params[:id])
 if is_amf
 @project.name = params[0].name
 @project.notes = params[0].notes
 @project.completed = params[0].completed
 else
 @project.attributes = params[:project]
 end
 @project.save_with_gtd_rules!

 respond_to do |format|
 format.html do
 flash[:notice] = 'Project was successfully updated.'
 redirect_to(@project)
 end
 format.xml { render :xml => @project }
 format.amf { render :amf => @project }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => "edit" }
 format.xml { render :xml => @project.errors.to_xml_full }
 format.amf { render :amf => @project.errors }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /projects/1
 # DELETE /projects/1.xml
 def destroy
 @project = current_user.projects.find(params[:id])
 @project = current_user.projects.find(
 is_amf ? params[0] : params[:id])
 @project.destroy

 respond_to do |format|
 format.html { redirect_to(projects_url) }
 format.xml { render :xml => @project }
 format.amf { render :amf => @project }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 private

Project in params[0],
not id in params[:id]

Render project
as AMF

Render project
errors as AMF

params[0] instead
of params[:id]

Render project
as AMF

Refactoring to RubyAMF, fast-forwarded 487
 def prevent_access(e)
 logger.info "ProjectsController#prevent_access: #{e}"
 respond_to do |format|
 format.html { redirect_to(projects_url) }
 format.xml { render :text => "error" }
 format.amf { render :amf => "error" }
 end
 end
end

We also make similar changes to the LocationsController; see listing 11.8.

class LocationsController < ApplicationController
 # GET /locations
 # GET /locations.xml
 def index
 @locations = current_user.locations

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @locations }
 format.amf { render :amf => @locations }
 end
 end

 # GET /locations/1
 # GET /locations/1.xml
 def show
 @location = current_user.locations.find(params[:id])
 @location = current_user.locations.find(
 is_amf ? params[0] : params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @location }
 format.amf { render :amf => @location }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # GET /locations/new
 # GET /locations/new.xml
 def new
 @location = Location.new

 respond_to do |format|

Listing 11.8 app\controllers\locations_controller.rb

Render String
“error” as AMF

Render locations
as AMF

params[0] instead
of params[:id]

Render location
as AMF

488 ITERATION 11

Refactoring to RubyAMF
 format.html # new.html.erb
 format.xml { render :xml => @location }
 end
 end

 # GET /locations/1/edit
 def edit
 @location = current_user.locations.find(params[:id])
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # POST /locations
 # POST /locations.xml
 def create
 @location = current_user.locations.build(params[:location])
 if is_amf
 @location = params[0]
 @location.user_id = current_user.id
 @location.created_at = @location.updated_at = Time.now
 else
 @location = current_user.locations.build(
 params[:location])
 end

 respond_to do |format|
 if @location.save
 format.html do
 flash[:notice] = 'Location was successfully created.'
 redirect_to(@location)
 end
 format.xml { render :xml => @location,
 :status => :created, :location => @location }
 format.amf { render :amf => @location }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @location.errors,
 :status => :unprocessable_entity }
 format.amf { render :amf => @location.errors }
 end
 end
 end

 # PUT /locations/1
 # PUT /locations/1.xml
 def update
 @location = current_user.locations.find(params[:id])
 @location = current_user.locations.find(
 is_amf ? params[0].id : params[:id])
 if is_amf
 @project.name = params[0].name

Location in params[0], not
Hash in params[:location]

Render location
as AMF

Render location
errors as AMF

Location in params[0],
not id in params[:id]

Refactoring to RubyAMF, fast-forwarded 489
 @project.notes = params[0].notes
 @project.completed = params[0].completed
 else
 @location.attributes = params[:location]
 end
 @location.save!

 respond_to do |format|
 if @location.update_attributes(params[:location])
 flash[:notice] = 'Location was successfully updated.'
 format.html { redirect_to(@location) }
 format.xml { render :xml => @location }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @location.errors,
 :status => :unprocessable_entity }
 end
 format.html do
 flash[:notice] = 'Location was successfully updated.'
 redirect_to(@location)
 end
 format.xml { render :xml => @location }
 format.amf { render :amf => @location }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.html { render :action => "edit" }
 format.xml { render :xml => @location.errors.to_xml_full}
 format.amf { render :amf => @project.errors }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

 # DELETE /locations/1
 # DELETE /locations/1.xml
 def destroy
 @location = current_user.locations.find(params[:id])
 @location = current_user.locations.find(
 is_amf ? params[0] : params[:id])
 @location.destroy

 respond_to do |format|
 format.html { redirect_to(locations_url) }
 format.xml { render :xml => @location }
 format.amf { render :amf => @location }
 end
 rescue ActiveRecord::RecordNotFound => e
 prevent_access(e)
 end

B

C

Render location
as AMF

Render location
errors as AMF

params[0] instead
of params[:id]

Render location
as AMF

490 ITERATION 11

Refactoring to RubyAMF
 private
 def prevent_access(e)
 logger.info "LocationsController#prevent_access: #{e}"
 respond_to do |format|
 format.html { redirect_to(locations_url) }
 format.xml { render :text => "error" }
 format.amf { render :amf => "error" }
 end
 end
end

This is more of the same, except that we’re now using @location.save! B and
only building the flash[:notice] in the case of rendering HTML C.

 Next, the NotesController; see listing 11.9.

class NotesController < ApplicationController
 # GET /users/1/note
 # GET /users/1/note.xml
 def show
 if current_user.id != params[:user_id].to_i
 prevent_access
 else
 @note = current_user.note
 respond_to do |format|
 format.xml { render :xml => @note.to_xml }
 end
 end
 if is_amf
 render :amf => current_user.note
 else
 if current_user.id != params[:user_id].to_i
 prevent_access
 else
 @note = current_user.note
 respond_to do |format|
 format.xml { render :xml => @note }
 end
 end
 end
 end

 # PUT /users/1/note
 # PUT /users/1/note.xml
 def update
 if current_user.id != params[:user_id].to_i
 prevent_access

Listing 11.9 app\controllers\notes_controller.rb

Render String
“error” as AMF

B

C

D

Refactoring to RubyAMF, fast-forwarded 491
 else
 @note = current_user.note
 respond_to do |format|
 if @note.update_attributes(params[:note])
 format.xml { render :xml => @note.to_xml }
 else
 format.xml { render :xml => @note.errors.to_xml_full }
 end
 end
 end
 if is_amf
 @note = current_user.note
 @note.content = params[0].content
 else
 if current_user.id != params[:user_id].to_i
 prevent_access
 else
 @note = current_user.note
 @note.attributes = params[:note]
 end
 end
 @note.save!

 respond_to do |format|
 format.xml { render :xml => @note }
 format.amf { render :amf => @note }
 end
 rescue ActiveRecord::RecordInvalid
 respond_to do |format|
 format.xml { render :xml => @note.errors.to_xml_full }
 format.amf { render :amf => @note.errors }
 end
 end

 private
 def prevent_access
 respond_to do |format|
 format.xml { render :text => "error" }
 format.amf { render :amf => "error" }
 end
 end
end

This is fairly simple: We start by moving the old code B of the show method inside
the else case of an is_amf test C. If the request is_amf, we render the current
user’s note. In the update method, we refactor the code D to set the properties of
the @note, doing the right thing depending on whether the request is_amf E.

E

F

G

492 ITERATION 11

Refactoring to RubyAMF
We then call the save! method F and respond appropriately. Finally, we add sup-
port for AMF to the prevent_access method G.

11.3.3 Creating Services.mxml and modifying Pomodo.mxml

Next, we’ll create a new file called Services.mxml. (If this approach reminds you
too much of Java, you’ll understand why I created ServiceUtils earlier when we
were using HTTPService.) We’ll use this file to define our RemoteObjects, one for
each Rails controller we want to talk to; see listing 11.10.

<?xml version="1.0" encoding="utf-8"?>
<cairngorm:ServiceLocator
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cairngorm="http://www.adobe.com/2006/cairngorm">
 <mx:RemoteObject id="taskRO"
 source="TasksController"
 destination="rubyamf">
 <mx:method name="index"/>
 <mx:method name="create"/>
 <mx:method name="update"/>
 <mx:method name="destroy"/>
 </mx:RemoteObject>
 <mx:RemoteObject id="projectRO"
 source="ProjectsController"
 destination="rubyamf">
 <mx:method name="index"/>
 <mx:method name="create"/>
 <mx:method name="update"/>
 <mx:method name="destroy"/>
 </mx:RemoteObject>
 <mx:RemoteObject id="locationRO"
 source="LocationsController"
 destination="rubyamf">
 <mx:method name="index"/>
 <mx:method name="create"/>
 <mx:method name="update"/>
 <mx:method name="destroy"/>
 </mx:RemoteObject>
 <mx:RemoteObject id="noteRO"
 source="NotesController"
 destination="rubyamf">
 <mx:method name="show"/>
 <mx:method name="update"/>
 </mx:RemoteObject>
</cairngorm:ServiceLocator>

Listing 11.10 app\flex\com\pomodo\business\Services.mxml

B

C
D

E
F

G

H

I

Refactoring to RubyAMF, fast-forwarded 493
Services.mxml is a Cairngorm ServiceLocator B. If you’ve created a project for
the Cairngorm source code, the source file is com.adobe.cairngorm.business.
ServiceLocator. The ServiceLocator is a Singleton that manages HTTPServices,
WebServices, and RemoteObjects for you. The code is fairly simple, so you should
read it if you plan to use it.

 We create four RemoteObjects: a taskRO C whose source is the Tasks-
Controller D, a projectRO G, a locationRO H, and a noteRO I. All of them
have a destination of "rubyamf" (for example, E), which is the destination id we
defined in services-config.xml earlier. Finally, each RemoteObject defines each of
its methods. Note that the taskRO has no show method F, and neither do the
projectRO and locationRO. We’re not creating one because we don’t use it. (I did
use it when I was doing my standalone experiments with RubyAMF and tasks, so
I’m still showing the code in the controllers because I hope it’s useful. Strictly
speaking, I should delete that code too because I’m not using it.)

 Next, we modify Pomodo.mxml; see listing 11.11.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 xmlns:business="com.pomodo.business.*"
 xmlns:control="com.pomodo.control.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 width="100%"
 height="100%"
 creationCompleteEffect="fadeIn">
<mx:Script>
<![CDATA[
 import mx.core.Container;
 import mx.rpc.events.ResultEvent;
 import mx.rpc.events.FaultEvent;
 import com.pomodo.components.DebugPanel;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.util.DebugMessage;
 import com.pomodo.model.PomodoModelLocator;
...

Listing 11.11 app\flex\Pomodo.mxml

Create new XML namespace
for business services

Remove obsolete
imports

494 ITERATION 11

Refactoring to RubyAMF
 private function loadFlexibleRails():void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "http://www.flexiblerails.com");
 }

 private function handleHelloResult(e:ResultEvent):void {
 Pomodo.debug("hello result:\n" + e.message);
 }

 private function handleFault(e:FaultEvent):void {
 Pomodo.debug("FAULT:\n" + e.fault.faultString);
 }
]]>
</mx:Script>
 <mx:RemoteObject id="helloRO"
 source="HelloController"
 destination="rubyamf"
 fault="handleFault(event)">
 <mx:method name="sayhello"
 result="handleHelloResult(event)"/>
 </mx:RemoteObject>
 <mx:Fade id="fadeIn" duration="500"/>
 <mx:WipeUp id="wipeUp" duration="500"/>

 <business:Services id="services" />

 <control:PomodoController id="controller" />

 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
 <mx:LinkButton color="#FFFFFF"
 click="loadFlexibleRails()" label="{MARKETING}"/>
 </mx:HBox>
 <mx:Button label="hello" click="helloRO.sayhello.send()"/>
 <mx:Spacer height="10"/>
...
</mx:Application>

Because we created a new XML namespace called business, we get to create our
business services by saying business:Services B to create the ServiceLocator.
This is kind of cute, so it’s the Cairngorm convention.

11.3.4 Creating the value objects

Next, we need to create the value objects (VOs), which are extremely boring
classes with a bunch of public bindable variables. Note that we’re not going to
send object graphs: A ProjectVO won’t contain its TaskVOs. I’m doing this to keep

Remove
“hello
world”
code

Remove “hello
world” code

B

Remove “hello
world” code

Refactoring to RubyAMF, fast-forwarded 495
things simple and as close as possible to how I was using XML over HTTPService.
(This provides the most direct comparison and lets us reuse the most code.)

 First, we’ll create the TaskVO; see listing 11.12.

package com.pomodo.vo {
 [RemoteClass(alias='com.pomodo.vo.TaskVO')]
 [Bindable]
 public class TaskVO {
 public var id:int;
 public var name:String;
 public var notes:String;
 public var projectId:int;
 public var locationId:int;
 public var nextAction:Boolean;
 public var completed:Boolean;
 }
}

The RemoteClass annotation B defines the name that this class is known to
RubyAMF by (as specified in the config\rubyamf_config.rb file earlier. Note also
that we annotate the entire class C as [Bindable], to spare ourselves from anno-
tating every field.

 Next, we create the ProjectVO, LocationVO, and NoteVO classes; see listi-
ngs 11.13, 11.14, and 11.15.

package com.pomodo.vo {
 [RemoteClass(alias='com.pomodo.vo.ProjectVO')]
 [Bindable]
 public class ProjectVO {
 public var id:int;
 public var name:String;
 public var notes:String;
 public var completed:Boolean;
 }
}

package com.pomodo.vo {
 [RemoteClass(alias='com.pomodo.vo.LocationVO')]
 [Bindable]

Listing 11.12 app\flex\com\pomodo\vo\TaskVO.as

Listing 11.13 app\flex\com\pomodo\vo\ProjectVO.as

Listing 11.14 app\flex\com\pomodo\vo\LocationVO.as

B
C

496 ITERATION 11

Refactoring to RubyAMF
 public class LocationVO {
 public var id:int;
 public var name:String;
 public var notes:String;
 }
}

package com.pomodo.vo {
 [RemoteClass(alias='com.pomodo.vo.NoteVO')]
 [Bindable]
 public class NoteVO {
 public var content:String;
 }
}

That was easy.

11.3.5 Modifying the model objects to produce value objects

Now, we need to modify the model objects so they have the ability to convert them-
selves to and from the value objects. We start with the Task class; see listing 11.16.

package com.pomodo.model {
 import com.pomodo.util.XMLUtils;
 import com.pomodo.vo.TaskVO;
 public class Task {
...
 public function Task(
 name:String = "",
 notes:String = "",
 project:Project = null,
 location:Location = null,
 nextAction:Boolean = false,
 completed:Boolean = false,
 id:int = UNSAVED_ID)
 {
 this.name = name;
 this.notes = notes;
 if (project == null) {
 project = Project.NONE;
 }
 project.addTask(this);
 if (location == null) {

Listing 11.15 app\flex\com\pomodo\vo\NoteVO.as

Listing 11.16 app\flex\com\pomodo\model\Task.as

Add
import

Use separate VO class
approach to avoid issues here

Refactoring to RubyAMF, fast-forwarded 497
 location = Location.NONE;
 }
 location.addTask(this);
 this.nextAction = nextAction;
 this.completed = completed;
 this.id = id;
 }

 public function toVO():TaskVO {
 var taskVO:TaskVO = new TaskVO();
 taskVO.id = id;
 taskVO.name = name;
 taskVO.projectId = project.id;
 taskVO.locationId = location.id;
 taskVO.nextAction = nextAction;
 taskVO.completed = completed;
 taskVO.notes = notes;
 return taskVO;
 }

 public static function fromVO(taskVO:TaskVO):Task {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 return new Task(
 taskVO.name,
 taskVO.notes,
 model.getProject(taskVO.projectId),
 model.getLocation(taskVO.locationId),
 taskVO.nextAction,
 taskVO.completed,
 taskVO.id);
 }

 public function toUpdateObject():Object {
...

Next, the Project class; see listing 11.17.

package com.pomodo.model {
 import mx.collections.ArrayCollection;
 import com.pomodo.util.XMLUtils;
 import com.pomodo.vo.ProjectVO;

 public class Project {
...
 public function removeTask(task:Task):void {
...

Listing 11.17 app\flex\com\pomodo\model\Project.as

Convert Task
to TaskVO

Create new
Task from
TaskVO
(method is
static)

Add
import

498 ITERATION 11

Refactoring to RubyAMF
 }

 public function toVO():ProjectVO {
 var projectVO:ProjectVO = new ProjectVO();
 projectVO.id = id;
 projectVO.name = name;
 projectVO.notes = notes;
 projectVO.completed = completed;
 return projectVO;
 }

 public static function fromVO(projectVO:ProjectVO):
 Project {
 return new Project(
 projectVO.name,
 projectVO.notes,
 projectVO.completed,
 projectVO.id);
 }

 public function toUpdateObject():Object {
...

Now the Location class; see listing 11.18.

package com.pomodo.model {
 import mx.collections.ArrayCollection;
 import com.pomodo.vo.LocationVO;

 public class Location {
...
 public function removeTask(task:Task):void {
...
 }

 public function toVO():LocationVO {
 var locationVO:LocationVO = new LocationVO();
 locationVO.id = id;
 locationVO.name = name;
 locationVO.notes = notes;
 return locationVO;
 }

 public static function fromVO(locationVO:LocationVO):
 Location {
 return new Location(
 locationVO.name,

Listing 11.18 app\flex\com\pomodo\model\Location.as

Convert Project
to ProjectVO

Create new Project
from ProjectVO

(method is static)

Add
import

Convert Location
to LocationVO

Create new Location
from LocationVO

(method is static)

Refactoring to RubyAMF, fast-forwarded 499
 locationVO.notes,
 locationVO.id);
 }

 public function toUpdateObject():Object {
...

Finally, the Note class; see listing 11.19.

package com.pomodo.model {
 import com.pomodo.vo.NoteVO;

 public class Note {
 public function Note(content:String = "") {
 this.content = content;
 }

 [Bindable]
 public var content:String;

 public function toVO():NoteVO {
 var noteVO:NoteVO = new NoteVO();
 noteVO.content = content;
 return noteVO;
 }

 public static function fromVO(noteVO:NoteVO):Note {
 return new Note(noteVO.content);
 }

 public function toUpdateObject():Object {
 var obj:Object = new Object();
 obj["note[content]"] = content;
 return obj;
 }

 public static function fromXML(note:XML):Note {
 return new Note(note.content);
 }
 }
}

Now that we’ve created VO classes and our model classes know how to convert
themselves to and from these VO classes, we’re almost done. All we need to do is
modify the business delegates to send the new VOs over the new RemoteObjects,

Listing 11.19 app\flex\com\pomodo\model\Note.as

Add
import

Convert Note
to NoteVO

Create new Note
from Note VO

(method is static)

500 ITERATION 11

Refactoring to RubyAMF
make a small change to the PomodoModelLocator, and then modify the com-
mands that use the business delegates.

 First, we’ll modify the business delegates.

11.3.6 Modifying the business delegates

This is where all the setup work we did starts paying off. We start with the
TaskDelegate; see listing 11.20.

package com.pomodo.business {
 import com.adobe.cairngorm.business.ServiceLocator;
 import com.pomodo.model.Task;

 import mx.rpc.IResponder;
 import com.pomodo.model.Task;
 import com.pomodo.util.ServiceUtils;
 import mx.rpc.remoting.RemoteObject;

 public class TaskDelegate {
 private var _responder:IResponder;

 private var _taskRO:RemoteObject;

 public function TaskDelegate(responder:IResponder) {
 _responder = responder;
 _taskRO =
 ServiceLocator.getInstance().getRemoteObject(
 "taskRO");
 }

 public function listTasks():void {
 ServiceUtils.send("/tasks.xml", _responder);
 var call:Object = _taskRO.index.send();
 call.addResponder(_responder);
 }

 public function createTask(task:Task):void {
 ServiceUtils.send("/tasks.xml", _responder, "POST",
 task.toXML(), true);
 var call:Object = _taskRO.create.send(task.toVO());
 call.addResponder(_responder);
 }

 public function updateTask(task:Task):void {
 ServiceUtils.send(
 "/tasks/" + task.id + ".xml", _responder, "PUT",
 task.toUpdateObject(), false);
 var call:Object = _taskRO.update.send(task.toVO());

Listing 11.20 app\flex\com\pomodo\business\TaskDelegate.as

Add
import

B

C

D

E

F

Refactoring to RubyAMF, fast-forwarded 501
 call.addResponder(_responder);
 }

 public function destroyTask(task:Task):void {
 ServiceUtils.send(
 "/tasks/" + task.id + ".xml",
 _responder,
 "DELETE");
 var call:Object = _taskRO.destroy.send(task.id);
 call.addResponder(_responder);
 }
 }
}

We create a _taskRO RemoteObject variable B to store a reference to the shared
"taskRO" RemoteObject gotten from the ServiceLocator C. We then do remote
method calls on its index D, create E, update F, and destroy G methods,
passing either nothing D, the task.toVO() EF, or the task.id G. Because our
Task class can make a TaskVO, we can keep this class fairly thin.

 Next, we make essentially the same changes to the other business delegates.
First, the ProjectDelegate; see listing 11.21.

package com.pomodo.business {
 import com.adobe.cairngorm.business.ServiceLocator;
 import com.pomodo.model.Project;
 import mx.rpc.IResponder;
 import com.pomodo.model.Project;
 import com.pomodo.util.ServiceUtils;
 import mx.rpc.remoting.RemoteObject;

 public class ProjectDelegate {
 private var _responder:IResponder;

 private var _projectRO:RemoteObject;

 public function ProjectDelegate(responder:IResponder) {
 _responder = responder;
 _projectRO =
 ServiceLocator.getInstance().getRemoteObject(
 "projectRO");
 }

 public function listProjects():void {
 ServiceUtils.send("/projects.xml", _responder);
 var call:Object = _projectRO.index.send();

Listing 11.21 app\flex\com\pomodo\business\ProjectDelegate.as

G

Add
import

B

C

D

502 ITERATION 11

Refactoring to RubyAMF
 call.addResponder(_responder);
 }

 public function createProject(project:Project):void {
 ServiceUtils.send("/projects.xml", _responder,
 "POST", project.toXML(), true);
 var call:Object = _projectRO.create.send(
 project.toVO());
 call.addResponder(_responder);
 }

 public function updateProject(project:Project):void {
 ServiceUtils.send(
 "/projects/" + project.id + ".xml",
 _responder, "PUT", project.toUpdateObject(),
 false);
 var call:Object = _projectRO.update.send(
 project.toVO());
 call.addResponder(_responder);
 }

 public function destroyProject(project:Project):void {
 ServiceUtils.send(
 "/projects/" + project.id + ".xml",
 _responder, "DELETE");
 var call:Object =
 _projectRO.destroy.send(project.id);
 call.addResponder(_responder);
 }
 }
}

We create a _projectRO RemoteObject variable B to store a reference to the shared
"projectRO" RemoteObject gotten from the ServiceLocator C. We then do
remote method calls on its index D, create E, update F, and destroy G meth-
ods, passing either nothing D, the project.toVO() EF, or the project.id G.
Again, because our Project class can make a ProjectVO, we can keep this class
fairly lightweight.

 Next, LocationDelegate, which is more of the same; see listing 11.22.

package com.pomodo.business {
 import com.adobe.cairngorm.business.ServiceLocator;
 import com.pomodo.model.Location;
 import mx.rpc.IResponder;
 import com.pomodo.model.Location;
 import com.pomodo.util.ServiceUtils;

Listing 11.22 app\flex\com\pomodo\business\LocationDelegate.as

E

F

G

Refactoring to RubyAMF, fast-forwarded 503
 import mx.rpc.remoting.RemoteObject;

 public class LocationDelegate {
 private var _responder:IResponder;

 private var _locationRO:RemoteObject;

 public function LocationDelegate(responder:IResponder) {
 _responder = responder;
 _locationRO =
 ServiceLocator.getInstance().getRemoteObject(
 "locationRO");
 }

 public function listLocations():void {
 ServiceUtils.send("/locations.xml", _responder);
 var call:Object = _locationRO.index.send();
 call.addResponder(_responder);
 }

 public function createLocation(location:Location):void {
 ServiceUtils.send("/locations.xml", _responder,
 "POST", location.toXML(), true);
 var call:Object = _locationRO.create.send(
 location.toVO());
 call.addResponder(_responder);
 }

 public function updateLocation(location:Location):void {
 ServiceUtils.send(
 "/locations/" + location.id + ".xml",
 _responder, "PUT", location.toUpdateObject(),
 false);
 var call:Object = _locationRO.update.send(
 location.toVO());
 call.addResponder(_responder);
 }

 public function destroyLocation(location:Location):
 void {
 ServiceUtils.send(
 "/locations/" + location.id + ".xml",
 _responder, "DELETE");
 var call:Object =
 _locationRO.destroy.send(location.id);
 call.addResponder(_responder);
 }
 }
}

Finally, NoteDelegate, which is also more of the same; see listing 11.23.

504 ITERATION 11

Refactoring to RubyAMF
package com.pomodo.business {
 import com.adobe.cairngorm.business.ServiceLocator;
 import com.pomodo.model.Note;
 import com.pomodo.model.PomodoModelLocator;
 import mx.rpc.IResponder;
 import com.pomodo.model.Note;
 import com.pomodo.model.User;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.ServiceUtils;
 import mx.rpc.remoting.RemoteObject;

 public class NoteDelegate {
 private var _responder:IResponder;

 private var _noteRO:RemoteObject;

 public function NoteDelegate(responder:IResponder) {
 _responder = responder;
 _noteRO =
 ServiceLocator.getInstance().getRemoteObject(
 "noteRO");
 }

 public function showNote():void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 ServiceUtils.send(
 "/users/" + model.user.id + "/note.xml",
 _responder);
 var call:Object = _noteRO.show.send();
 call.addResponder(_responder);
 }

 public function updateNote():void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 ServiceUtils.send(
 "/users/" + model.user.id + "/note.xml",
 _responder,
 "PUT",
 model.note.toUpdateObject(),
 false);
 var call:Object = _noteRO.update.send(
 model.note.toVO());
 call.addResponder(_responder);
 }
 }
}

Listing 11.23 app\flex\com\pomodo\business\NoteDelegate.as

Refactoring to RubyAMF, fast-forwarded 505
That was easy.
 At this point, we’d expect to go modify the commands that use these business

delegates. We’ll do this, but first we need to modify the PomodoModelLocator.

11.3.7 Modifying the PomodoModelLocator

The PomodoModelLocator has methods called setTasks, setProjects, and set-
Locations that take an XMLList. But we’re getting an Array of VOs back from
RubyAMF, so we need similar methods to handle these. We don’t want a lot of
duplication, so we’ll refactor out the common functionality as we go. (I don’t
want to delete the XMLList-using code, because it’s nice to have both approaches
at our disposal, and because I’m trying to provide as much working code as will
fit in a book.)

 This is what we’ll do. There is a fair bit of new code, but it’s all straightforward;
see listing 11.24.

package com.pomodo.model {
 import com.adobe.cairngorm.model.IModelLocator;
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.validators.ServerErrors;
 import com.pomodo.vo.TaskVO;
 import com.pomodo.vo.ProjectVO;
 import com.pomodo.vo.LocationVO;

 import mx.collections.ArrayCollection;
 import mx.collections.ListCollectionView;

 [Bindable]
 public class PomodoModelLocator implements IModelLocator {
...
 public function removeTask(task:Task):void {
 for (var i:int = 0; i < tasks.length; i++) {
 var ithTask:Task = Task(tasks.getItemAt(i));
 if (ithTask.id == task.id) {
 ithTask.project.removeTask(ithTask);
 ithTask.location.removeTask(ithTask);
 tasks.removeItemAt(i);
 break;
 }
 }
 }

 public function setTasks(list:XMLList):void {

Listing 11.24 app\flex\com\pomodo\model\PomodoModelLocator.as

Add
imports

Rename old
setTasks method to
setTasksFromList

506 ITERATION 11

Refactoring to RubyAMF
...
 }
 public function setTasksFromVOs(taskVOs:Array):void {
 var tasksArray:Array = [];
 for each (var item:TaskVO in taskVOs) {
 tasksArray.push(Task.fromVO(item));
 }
 tasks = new ArrayCollection(tasksArray);
 }

 public function setTasksFromList(list:XMLList):void {
 var tasksArray:Array = [];
 for each (var item:XML in list) {
 tasksArray.push(Task.fromXML(item));
 }
 tasks = new ArrayCollection(tasksArray);
 }

 public function setProjects(list:XMLList):void {
...
 }
 public function setProjectsFromVOs(projectVOs:Array):
 void {
 var projectsArray:Array = [];
 for each (var item:ProjectVO in projectVOs) {
 projectsArray.push(Project.fromVO(item));
 }
 setProjects(projectsArray);
 }

 public function setProjectsFromList(list:XMLList):void {
 var projectsArray:Array = [];
 for each (var item:XML in list) {
 projectsArray.push(Project.fromXML(item));
 }
 setProjects(projectsArray);
 }

 public function setProjects(projectsArray:Array):void {
 projectIDMap = {};
 projectIDMap[0] = Project.NONE;
 for each (var project:Project in projectsArray) {
 projectIDMap[project.id] = project;
 }
 projects = new ArrayCollection(projectsArray);
 var projectsAndNoneArray:Array =
 projectsArray.slice(0);
 projectsAndNoneArray.splice(0, 0, Project.NONE);
 projectsAndNone =
 new ArrayCollection(projectsAndNoneArray);

Create new
setTasksFromVOs
method for AMF

Rename setTasks
method to

setTasksFromList

Rename old
setProjects
method to
setProjects-
FromList

Create new
setProjectsFromVOs

method for AMF

Rename
 setProjects method to

setProjectsFromList

Common
functionality factored

out into method

Refactoring to RubyAMF, fast-forwarded 507
 _gotProjects = true;
 listTasksIfMapsPresent();
 }

 public function setLocations(list:XMLList):void {
...
 }
 public function setLocationsFromVOs(locationVOs:Array):
 void {
 var locationsArray:Array = [];
 for each (var item:LocationVO in locationVOs) {
 locationsArray.push(Location.fromVO(item));
 }
 setLocations(locationsArray);
 }

 public function setLocationsFromList(list:XMLList):
 void {
 var locationsArray:Array = [];
 for each (var item:XML in list) {
 locationsArray.push(Location.fromXML(item));
 }
 setLocations(locationsArray);
 }

 public function setLocations(locationsArray:Array):
 void {
 locationIDMap = {};
 locationIDMap[0] = Location.NONE;
 for each (var location:Location in locationsArray) {
 locationIDMap[location.id] = location;
 }
 locations = new ArrayCollection(locationsArray);
 var locationsAndNoneArray:Array =
 locationsArray.slice(0);
 locationsAndNoneArray.splice(0, 0, Location.NONE);
 locationsAndNone =
 new ArrayCollection(locationsAndNoneArray);
 _gotLocations = true;
 listTasksIfMapsPresent();
 }

 public function getProject(projectID:int):Project {
 if (projectIDMap == null) return null;
 return projectIDMap[projectID];
 }
...

 All that is left is modifying the commands!

Rename old
setLocations method to

setLocationsFromList

Create new
setLocationsFromVOs

method for AMF

Rename setLocations
method to

setLocationsFromList

Common
functionality factored

out into method

508 ITERATION 11

Refactoring to RubyAMF
11.3.8 Modifying the commands

Again, this is straightforward. We’ll start with the DestroyTaskCommand; see list-
ing 11.25.

package com.pomodo.command {
...
 import com.pomodo.model.Task;
 import com.pomodo.vo.TaskVO;
 import com.pomodo.util.CairngormUtils;
...
 public class DestroyTaskCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (event.result == "error") {
 Alert.show(
 "The task was not successfully deleted.",
 "Error");
 } else {
 model.removeTask(
 Task.fromXML(XML(event.result)));
 Task.fromVO(TaskVO(event.result)));
 }
 }
...
}

Next, the ListTasksCommand; see listing 11.26.

package com.pomodo.command {
...
 public class ListTasksCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.setTasks(
 XMLList(event.result.children()));
 model.setTasksFromVOs(event.result);

Listing 11.25 app\flex\com\pomodo\command\DestroyTaskCommand.as

Listing 11.26 app\flex\com\pomodo\command\ListTasksCommand.as

Add
import

Create new Task
from TaskVO, not
XML

Set Tasks from
VOs, not XML

Refactoring to RubyAMF, fast-forwarded 509
 }
...
}

Now, the ListProjectsCommand; see listing 11.27.

package com.pomodo.command {
...
 public class ListProjectsCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.setProjects(
 XMLList(event.result.children()));
 model.setProjectsFromVOs(event.result);
 }
...
}

Next, the ListLocationsCommand; see listing 11.28.

package com.pomodo.command {
...
 public class ListLocationsCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.setLocations(
 XMLList(event.result.children()));
 model.setLocationsFromVOs(event.result);
 }
...
}

Now, the ShowNoteCommand; see listing 11.29.

Listing 11.27 app\flex\com\pomodo\command\ListProjectsCommand.as

Listing 11.28 app\flex\com\pomodo\command\ListLocationsCommand.as

Set Projects from
VOs, not XML

Set Locations from
VOs, not XML

510 ITERATION 11

Refactoring to RubyAMF
package com.pomodo.command {
...
 public class ShowNoteCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.note = Note.fromXML(event.result);
 model.note = Note.fromVO(event.result);
 }
...

Finally, the UpdateTaskCommand; see listing 11.30.

package com.pomodo.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.pomodo.business.TaskDelegate;
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.model.Task;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.vo.TaskVO;
...
 public class UpdateTaskCommand implements ICommand,
 IResponder {
...
 public function result(event:Object):void {
 var resultEvent:ResultEvent = ResultEvent(event);
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.updateTask(Task.fromXML(XML(event.result)));
 model.updateTask(Task.fromVO(TaskVO(event.result)));
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 }
...

Did I forget UpdateProjectCommand, UpdateLocationCommand, and UpdateNote-
Command? No—they’re unchanged.

Listing 11.29 app\flex\com\pomodo\command\ShowNoteCommand.as

Listing 11.30 app\flex\com\pomodo\command\UpdateTaskCommand.as

Set Note from the
VO, not XML

Add
import

Update Task by
creating Task

from VO, not XML

Summary 511
 That’s it! Run newdb.bat to recreate the ludwig user that we deleted at the end
of iteration 10, then restart your server, rebuild, reload, and log in as ludwig.
Everything works as before. Finally, run the tests again and confirm that every-
thing still works.

11.4 Summary

Now that we have a proper object model on the client side, we’re no longer tightly
coupled to the transport mechanism. This let us refactor the code to using Ruby-
AMF and keep the object model essentially unchanged (except for adding the
ability to convert to/from value objects).

 RubyAMF is a promising and fast-moving project. The fact that it’s essentially
MIT-licensed and that it plays so nicely with Rails means that I expect it to become
the dominant AMF implementation for Ruby. It has a lot of momentum behind it
at the moment.

 Using RubyAMF isn’t an all-or-nothing proposition: You can use it in perfor-
mance-critical parts of your application, if you want to minimize the amount of
code you’re writing. For example, in this iteration I didn’t feel like revisiting the
login code, so I left it using XML and HTTPService. Besides demonstrating how
lazy I’m getting, this also demonstrated that RubyAMF and HTTPService can be
used side by side.

 In the next and final iteration, we’ll revisit the pomodo application one last
time, extending it to becoming an Adobe AIR application.

The code at this point is saved as the iteration11 folder.

Rails on AIR
 (Adobe Integrated Runtime)
1

And Adobe is leaning hard on Flash, Adobe Integrated Runtime or
AIR (formerly code-named Apollo), and Flex. My money is on Adobe
simply because of those two invisible weapons, PDF and Flash.

—“Robert X. Cringely”;
 I, Cringely; The Pulpit, June 29, 20071

1 http://www.pbs.org/cringely/pulpit/2007/pulpit_20070629_002360.html.
512

Converting pomodo to an AIR application 513
In this iteration, we’ll have a bit of fun. We’ll make pomodo be a Flex 3 AIR appli-
cation, and we’ll add online/offline network detection (and change the UI
accordingly). We won’t solve any hard problems (synchronizing local and remote
data, and so on). The primary purpose of this iteration is to get you up and run-
ning with AIR and to get pomodo built and running as an AIR application in case
you want to use it as a starting point for your own AIR projects. This isn’t an
attempt to provide any kind of comprehensive AIR tutorial.

12.1 Converting pomodo to an AIR application

Flex Builder 3 already has support for AIR. In this iteration, I’ll assume you’re
using Flex Builder 3. If you’ve already been using Flex Builder 3 for the rest of the
book, you’ll create a new project out of the same files. The first thing we’ll do is
delete our existing project (but keep the files) and then create a new AIR project
in the same spot.

12.1.1 Deleting the old project

First, copy the current folder to current_flex3 if you want to play with it later (in Flex
3, but not with AIR). Next, delete the pomodo project. Right-click the pomodo
project folder in the Navigator, and choose Delete. Leave Do Not Delete Contents
selected, and click Yes (see figure 12.1).

12.1.2 Creating the new project

Choose File > New > Flex Project. Enter the Project Name pomodo, browse to the
correct location, choose Desktop Application (Runs in Adobe AIR), and leave
Application Server Type set to None. We see something like figure 12.2.

 Click Next. We’re taken to the wizard pane, where we specify the location of
the compiled Flex application. Choose public\bin as the folder. Note that if you
did a clean build in iteration 11 after setting the output folder to be public, you’ll

Figure 12.1
Deleting the pomodo project

514 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
probably need to create the bin directory inside public; switch to Windows
Explorer or a command prompt and do this first. Then browse to public\bin; we
see figure 12.3.

Figure 12.2 New Flex AIR project

Figure 12.3 Configuring the compiled Flex application location

Converting pomodo to an AIR application 515
Click Next. We’re taken to the build path dialog. Browse to app\flex for the Main
source folder. Next, rename the Main application file to Pomodo.mxml (or click
Browse to select it). Finally, enter an Application ID of com.pomodo. Pomodo. When
finished, the dialog should look like figure 12.4.

 Next, switch to the Library Path tab. Click the Add SWC button, and browse to
app/flex/lib/Cairngorm.swc (see figure 12.5).

 Click OK. The Library Path tab looks like figure 12.6.
 Click Finish. The AIR project is created, and the Flex Navigator shows a folder

icon with a red AIR icon on it.
 Next, just as in iteration 11, we also

need to add the argument -services
"services-config.xml" to the com-
piler arguments so that the compiler
knows to use our services. (We are cre-
ating a new project, after all, so these
arguments won’t have been set for us.)
Right-click on the pomodo project

Figure 12.4
Configuring the build paths

Figure 12.5 Adding Cairngorm to the library path

516 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
in the Navigator, choose the Properties menu item, switch to the Flex compiler
view, and do that now; see figure 12.7.

Figure 12.6
Adding Cairngorm
to the library path

Figure 12.7
Don’t forget to specify
your services-config.xml!

Converting pomodo to an AIR application 517
You may think this is a superfluous figure, and you’re right. However, it’s my way
of trying to ensure that you don’t just skim these instructions and miss this step—
that’s what happened to me when I updated this iteration from being based on
iteration 10 to being based on iteration 11!

12.1.3 Getting it running

We’ll make a couple of small changes before trying to run the application. First,
we’ll edit the Pomodo-app.xml file, which was generated for us when we created
the new AIR project; see listing 12.1. Yes, Rails programmers, we’re about to edit
an XML configuration file; hold your nose and follow along—in TextMate, if it
makes you feel better. (Note that this file is based on Flex 3 Beta 2; it has been
reformatted slightly in Flex 3 Beta 3. Regardless, the attributes are still there and
need to be set.)

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0.M5"
 appId="com.pomodo.Pomodo" version="1.0 Beta">
<!--
 AIR Application Descriptor File:
 Specifies parameters for identifying, installing, and
 launching AIR applications.
...
-->

 <!--
 The application name displayed by the operating system.
 (Required.)
 -->
 <name>com.pomodo.Pomodo</name>
...
 <!--
 Other settings for the initial window.
 -->
 <!-- <minimizable>true</minimizable> -->
 <!-- <maximizable>true</maximizable> -->
 <!-- <resizable>true</resizable> -->
 <width>1200</width>
 <height>900</height>
 <x>50</x>
 <y>50</y>
 <!-- <minSize>300 300</minSize> -->
 <!-- <maxSize>800 800</maxSize> -->
 </initialWindow>
...

Listing 12.1 app\flex\Pomodo-app. xml

B

C
D

E
F

518 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
Note that the name for the application that we specified in the wizard is present B
here. Next, we set the default width C and height D in pixels, as well as the default
x E and y F coordinates of the app. (If you have a smaller monitor, change the val-
ues accordingly.)

 Next, we’ll make a couple of changes to Pomodo; see listing 12.2.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
<mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 xmlns:control="com.pomodo.control.*"
 layout="vertical"
 backgroundGradientColors="[#ffffff, #c0c0c0]"
 horizontalAlign="center"
 verticalAlign="top"
 paddingLeft="0"
 paddingRight="0"
 paddingTop="0"
 paddingBottom="0"
 title="Pomodo"
 width="100%"
 height="100%"
 creationCompleteEffect="fadeIn">
...
</mx:Application>
</mx:WindowedApplication>

We start by converting the mx:Application BE to the new mx:Windowed-
Application CF component, which is what we’re supposed to use for AIR appli-
cations. Next, we add a title D for the application.

 Run newdb.bat, and start the server. Click the Run button on the toolbar. We
see the screen shown in figure 12.8.

 That’s hot!
 Switch to the Login panel, and try to log in as ludwig (see figure 12.9).
 That’s not!
 Thinking about this, we realize that we’re in a desktop application (duh), not a

web browser. So, we need to allow the user to specify the root URL of the server
they’re talking to. All the URLs that Rails uses will be relative to this root. Modify
the PomodoModelLocator as shown in listing 12.3.

Listing 12.2 app\flex\Pomodo.mxml

B
C

D

E
F

Converting pomodo to an AIR application 519
Figure 12.8 Our first AIR application

Figure 12.9
Failed login

520 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
...
 public var remoteURL:String = "http://localhost:3000";

 public var user:User;
...
 public var reviews:String =
 '"pomodo, the hot new RIA by 38noises, is taking ' +
 'over Web 2.0." --Michael Arrington*\n"I wish I\'d ' +
 'invested in 38noises instead of that other company."' +
 ' --Jeff Bezos*\n"38noises closed angel funding at a ' +
 'party in my bathroom last night." --Om Malik*';

 public function getRemoteURL(relativeURL:String):
 String {
 return remoteURL + relativeURL;
 }

 public function updateTask(task:Task):void {
...

We create a remoteURL variable B, which, like everything in PomodoModelLocator,
is Bindable. For development purposes, we’ll hardcode this URL to http://
localhost:3000 in the code. When we’re closer to production we can change this
to our domain name or leave it empty. Note that we don’t include a trailing /,
because all the Rails URLs have been using a leading / already. Next, we create a
getRemoteURL() utility function C, which returns the result of concatenating the
remoteURL base and the relativeURL D passed in.

 Now, we need some place in the UI for the user to modify this URL. Thinking
ahead a bit, we realize we’ll want to show other things, such as online/offline sta-
tus. To do so, we create a component called StatusBox; see listing 12.4.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 paddingLeft="5" paddingRight="5" backgroundColor="#FFFFFF"
 horizontalAlign="left" verticalAlign="middle"
 width="100%" height="40">
<mx:Script>
<![CDATA[
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]

Listing 12.3 app\flex\com\pomodo\model\PomodoModelLocator.as

Listing 12.4 app\flex\com\pomodo\components\StatusBox.mxml

B

C

D

Converting pomodo to an AIR application 521
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
]]>
</mx:Script>
 <mx:Label text="URL:"/>
 <mx:TextInput id="remoteURLTI" width="100%"
 text="{_model.remoteURL}"
 change="_model.remoteURL = remoteURLTI.text"/>
</mx:HBox>

This component gets the shared PomodoModelLocator B and stores it in a vari-
able called _model. Then, it binds the text property C of a TextInput called
remoteURLTI to the _model.remoteURL. Finally, it handles the change event of the
remoteURLTI D and assigns the _model.remoteURL with the remoteURLTI.text.
(No, I’m not doing this via Cairngorm. I won’t tell our architect if you don’t.)

 Now that we have a StatusBox, we need to add it to Pomodo (B in listing 12.5).

...
 <control:PomodoController id="controller" />

 <pom:StatusBox id="statusBox"/>
 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
...

Now, we need to change all the URLs we use in our entire application, throughout
all the Cairngorm commands. This is going to be a ton of work, because—oh,
wait, because we used ServiceUtils it’s trivial; see listing 12.6.

package com.pomodo.util {
 import mx.rpc.IResponder;
 import mx.rpc.AsyncToken;
 import mx.rpc.http.HTTPService;
 import com.pomodo.model.PomodoModelLocator;

 public class ServiceUtils {
 /**
 * Note: PUT and DELETE don't work with XML since the
 * _method hack workaround doesn't work.
 */

Listing 12.5 app\flex\Pomodo.mxml

Listing 12.6 app\flex\com\pomodo\util\ServiceUtils.as

B

C
D

B

B

522 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
 public static function send(
 url:String,
 relativeURL:String,
 responder:IResponder = null,
 method:String = null,
 request:Object = null,
 sendXML:Boolean = false,
 resultFormat:String = "e4x",
 useProxy:Boolean = false):void
 {
 var service:HTTPService = new HTTPService();
 service.url = url;
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 service.url = model.getRemoteURL(relativeURL);
 service.contentType = sendXML ? "application/xml" :
 "application/x-www-form-urlencoded";
...
 }
 }
}

We start by importing PomodoModelLocator B. Next, we rename the url C
parameter to relativeURL D, to be more self-documenting. We delete the
straight assignment E and instead get the shared PomodoModelLocator F and
call its getRemoteURL method G to get the remote URL to use. We then assign this
URL to the service.url G property.

NOTE This approach also would have worked even if we hadn’t refactored to
RubyAMF in iteration 11—that is, you could have started this iteration
with the iteration 10 code and just made these changes to get the applica-
tion to work.

Rebuild, run the app, and log in as ludwig. We see the screen shown in figure 12.10.

NOTE If this didn’t work for you (for example, if you get an Adobe Flash
Player 9 dialog with an exception trace starting with “TypeError: Error
#1009: Cannot access a property or method of a null object refer-
ence”), fear not: This issue will be addressed in the next section.

C
D

E
F

G

Refactoring event triggering 523
12.2 Refactoring event triggering

When I was coding this iteration, I hit a mysterious bug: When the application
loaded, I got a “TypeError: Error #1009: Cannot access a property or method of a
null object reference” exception. I figured this out and fixed it, but then when it
was time to write this iteration up, the TypeError turned out to be hard to repro-
duce. (For example, we didn’t hit it just now.) So, we will make a small modifica-
tion to ensure the bug occurs, and then we will fix it.

NOTE When I was originally coding this iteration, I had based it on the itera-
tion 10 code, not the iteration 11 code. Under these circumstances, the
bug we’re about to see also caused Windows to pop up a password dia-
log—three times! (If you skipped iteration 11, this may happen to you.)
In either case, the fixes that we will make will solve this problem too, so
this iteration will work regardless of whether you followed along with
iteration 11.

Figure 12.10 Pomodo on AIR!

524 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
We’ll start by making a seemingly innocuous change; see listing 12.7.

...
 <mx:ViewStack id="mainStack" width="100%" height="100%"
 creationPolicy="all"
selectedChild="{controlViewToShow(_model.workflowState)}">
 <pom:SplashBox id="splashBox"/>
...

All we’re doing is changing the creationPolicy of the mainStack to create all of
its components when it’s created. No big deal, right?

 Let’s check: Rebuild, run the app and login as ludwig. We see the dialog shown
in figure 12.11.

 So, if the mainStack creates all its children right away, our application is wrecked.
But why? (Exercise for the reader: close the book, switch to Flex Builder, figure out
the problem and implement a solution that works when the creationPolicy="all"
for the mainStack. If you need a hint, look at the title of this section.)

 If the mainStack creationPolicy is “all”, this means that all its children—includ-
ing the mainBox—are created right away. Looking at the code in the MainBox, we
see listing 12.8.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"

Listing 12.7 app\flex\Pomodo.mxml

Listing 12.8 app\flex\com\pomodo\components\MainBox.mxml

Figure 12.11 TypeError in Pomodo

Refactoring event triggering 525
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000"
 minHeight="680"
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 width="100%"
 height="100%"
 backgroundColor="#FFFFFF"
 creationComplete="handleCreationComplete()">
...
 private function handleCreationComplete():void {
 CairngormUtils.dispatchEvent(EventNames.SHOW_NOTE);
 CairngormUtils.dispatchEvent(EventNames.LIST_PROJECTS);
 CairngormUtils.dispatchEvent(EventNames.LIST_LOCATIONS);
 }
...

When the MainBox is created, it broadcasts the creationComplete event. This is
handled B by the handleCreationComplete() C function, which dispatches
Cairngorm events DEF that trigger the retrieving of the note (with the Show-
NoteCommand), projects (with the ListProjectsCommand) and locations (with the
ListLocationsCommand). (Look in the PomodoController to see which commands
are triggered by which EventNames constants.) Then, when the projects and loca-
tions come back, the tasks are retrieved as well (with the ListTasksCommand).
Doing a bit of experimenting, we quickly determine that the ShowNoteCommand
causes the TypeError exception, and the three List___Command commands, and
the three List___Command commands triggered the three password dialogs that
occured when I originally created this iteration based on the iteration 10 code.

 We realize that what these all have in common is that things go wrong because
the user variable in the PomodoModelLocator isn’t set. So, rather than dispatch-
ing the events in the handleCreationComplete() function in MainBox, we decide
to make the user variable a property with set/get methods, and fire off the
events in the set method. We could take other approaches, but this is the one
we’ll take because it’s fairly simple.

 We’ll start by modifying MainBox; see listing 12.9.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000"
 minHeight="680"

Listing 12.9 app\flex\com\pomodo\components\MainBox.mxml

B

C
D

E
F

526 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
 paddingLeft="5"
 paddingRight="5"
 paddingTop="5"
 paddingBottom="5"
 width="100%"
 height="100%"
 backgroundColor="#FFFFFF">
 creationComplete="handleCreationComplete()">
<mx:Script>
...
 private function logout():void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "/logout");
 }

 private function handleCreationComplete():void {
 CairngormUtils.dispatchEvent(EventNames.SHOW_NOTE);
 CairngormUtils.dispatchEvent(EventNames.LIST_PROJECTS);
 CairngormUtils.dispatchEvent(EventNames.LIST_LOCATIONS);
 }
]]>
</mx:Script>

All we’re doing is removing the creationComplete handler BC.
 Next, we modify the PomodoModelLocator; see listing 12.10.

...
 public var remoteURL:String = "http://localhost:3000";
 //for development

 public var user:User;
 private var _user:User;

 public function set user(newUser:User):void {
 if (_user != newUser) {
 _user = newUser;
 workflowState =
 PomodoModelLocator.VIEWING_MAIN_APP;
 CairngormUtils.dispatchEvent(
 EventNames.SHOW_NOTE);
 CairngormUtils.dispatchEvent(
 EventNames.LIST_PROJECTS);
 CairngormUtils.dispatchEvent(
 EventNames.LIST_LOCATIONS);
 }
 }

Listing 12.10 app\flex\com\pomodo\model\PomodoModelLocator.as

B

C

B
C

D
E

F
G

H

I

J

Refactoring event triggering 527
 public function get user():User {
 return _user;
 }

 public var note:Note;
...

We’re changing the public user variable B into a private _user variable C and
then creating a set function D. This function checks whether the newUser is dif-
ferent E and if so assigns the _user F, sets the workflowState G, and dispatches
the three events HIJ that used to be dispatched in the creationComplete han-
dler in MainBox.

 Having done this, we need to modify the CreateSessionCommand and
CreateUserCommand to get rid of the model.workflowState assignment; see
listings 12.11 and 12.12.

...
 public function result(event:Object):void {
 var result:Object = event.result;
 if (event.result == "badlogin") {
 Alert.show("Login failed.");
 } else {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.user = User.fromXML(XML(event.result));
 model.workflowState =
 PomodoModelLocator.VIEWING_MAIN_APP;
 }
 }
...

...
 public function result(event:Object):void {
 var result:Object = event.result;
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 if (result is XML) {
 var resultXML:XML = XML(result);
 if (resultXML.name().localName == "errors") {
...
 } else {

Listing 12.11 app\flex\com\pomodo\command\CreateSessionCommand.as

Listing 12.12 app\flex\com\pomodo\ command\CreateUserCommand.as

http://www.railsonair.com/

528 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
 model.user = User.fromXML(resultXML);
 model.workflowState =
 PomodoModelLocator.VIEWING_MAIN_APP;
 }
 } else {
...
 }
 }
...

That’s it. Rebuild, reload, and log in as ludwig. Everything works: We see the
screenshot shown in figure 12.10 again (or for the first time).

12.3 Online/Offline support

An in-depth discussion of the features of AIR and how AIR relates to Rails is
beyond the scope of this book—it’s a full book-length topic of its own. (Hmm,
someone should write such a book…) In Flexible Rails, we’ll content ourselves with
implementing the beginnings of online/offline support. Specifically, when we’re
offline, we’ll show Notely, so we can type notes that we can save the next time
we’re online.

 We’ll add support for detecting when the application is online or offline and
updating the look of the application accordingly, using an approach largely based
on an excellent article2 on Adobe Labs by John C. Bland II. Adapting the
approach in John’s article to implement saving to the local filesystem and syn-
chronizing with the server’s database will be left as an exercise for the reader.

 We’ll begin by adding the UI code to update pomodo when the online/offline
status changes. If we were attempting to provide full online/synchronization of
tasks, projects, locations, and so on, this would be a very tricky problem—luckily
I’m in control of my own requirements here, and that’s not one of them.

 We’ll begin by creating an OfflineMainBox, based on the current MainBox; see
listing 12.13.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 minWidth="1000" minHeight="680"
 paddingLeft="5" paddingRight="5" paddingTop="5"

2 http://labs.adobe.com/wiki/index.php/AIR:Articles:Taking_Apollo_Applications_Offline.

Listing 12.13 app\flex\com\pomodo\components\OfflineMainBox.mxml

Online/Offline support 529
 paddingBottom="5" width="100%" height="100%"
 backgroundColor="#FFFFFF">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.util.CairngormUtils;
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
]]>
</mx:Script>
 <mx:HBox width="100%" height="100%">
 <mx:VBox width="300" height="100%">
 <mx:Image source="com/pomodo/assets/logo_md.png"/>
 <mx:Label text="{'Logged in as: ' +
 _model.user.login +
 ' (' + _model.user.email + ')'}"/>
 <mx:Label text="{'Welcome back ' +
 _model.user.firstName + '!'}"/>
 <mx:Label text="Working Offline"/>
 <mx:DateChooser id="dateChooser" width="100%"/>
 </mx:VBox>
 <mx:VBox width="100%" height="100%">
 <mx:TabNavigator width="100%" height="100%">
 <pom:Notely id="notelyTab"/>
 </mx:TabNavigator>
 </mx:VBox>
 </mx:HBox>
</mx:HBox>

All we do is remove most of the components, add a Working Offline label B, and
leave only the Notely tab C in the TabNavigator. (Note, however, that using this
approach gives us more flexibility than adding a bunch of flags to the MainBox—
this way, we can totally change the layout, and so on.)

 Next, we add more shared state to the PomodoModelLocator; see listing 12.14.

...
 public var online:Boolean;

 public var onlineCheckURL:String =
 "http://www.google.com";

 public var unsavedNoteContent:String;

Listing 12.14 app\flex\com\pomodo\model\PomodoModelLocator.as

B

C

B

C

D

530 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
 public var remoteURL:String = "http://localhost:3000";

 private var _user:User;
...

We add a flag for whether we’re online B, an onlineCheckURL C, and an
unsavedNoteContent variable for the unsaved content of Notely D. The unsaved-
NoteContent variable is necessary because there will be two Notely instances, and
we want them to share the same state. The onlineCheckURL is necessary because
the remoteURL is referring to a URL on our machine—even if we’re offline, this
URL will work (and thus be a useful demo—we don’t want to have to also stop our
Rails server for it to work). In reality, all that matters is that we can talk to our
remoteURL, so this is book code/demo code.

 Next, we modify Pomodo to show a different view when it’s online or offline; see
listing 12.15.

...
 public static function debug(str:String):void {
 //application.debugPanel.addMessage(
 // new DebugMessage(str));
 }

 private function controlViewToShow(workflowState:int,
 online:Boolean):Container {
 if (workflowState ==
 PomodoModelLocator.VIEWING_SPLASH_SCREEN) {
 return splashBox;
 } else if (workflowState ==
 PomodoModelLocator.VIEWING_MAIN_APP) {
 return online ? mainBox : offlineMainBox;
 } else {
 return splashBox;
 }
 }

 private function loadFlexibleRails():void {
 CairngormUtils.dispatchEvent(EventNames.LOAD_URL,
 "http://www.flexiblerails.com");
 }
]]>
</mx:Script>
 <mx:Fade id="fadeIn" duration="500"/>
 <mx:WipeUp id="wipeUp" duration="500"/>
 <mx:WipeDown id="wipeDown" duration="500"/>

Listing 12.15 app\flex\Pomodo.mxml

B

C

D

Online/Offline support 531

 <!--
 the FrontController, containing Commands specific to this app
 -->
 <control:PomodoController id="controller" />

 <pom:StatusBox id="statusBox"/>
 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
 <mx:LinkButton color="#FFFFFF"
 click="loadFlexibleRails()" label="{MARKETING}"/>
 </mx:HBox>
 <mx:Spacer height="10"/>

 <mx:VDividedBox width="100%" height="100%">
 <mx:ViewStack id="mainStack" width="100%" height="100%"
 creationPolicy="all"
selectedChild="{controlViewToShow(_model.workflowState,
 ➥_model.online)}">
 <pom:SplashBox id="splashBox"/>
 <pom:MainBox id="mainBox" showEffect="wipeUp"/>
 <pom:OfflineMainBox id="offlineMainBox"
 showEffect="wipeDown"/>
 </mx:ViewStack>
 <pom:DebugPanel id="debugPanel" width="100%"
 height="0%"/>
 </mx:VDividedBox>
 <mx:HBox backgroundColor="#000000" width="100%" height="30"
 horizontalAlign="center" verticalAlign="middle">
 <mx:Label color="#FFFFFF" text="{COPYRIGHT}"/>
 </mx:HBox>
</mx:WindowedApplication>

We modify the controlViewToShow function B to take two parameters:
_model.workflowState and _model.online E, instead of _model.workflowState.
This causes the binding for the selectedChild of the mainStack to execute when
either the workflowState or the online status changes. Inside controlViewToShow,
we return mainBox if online and offlineMainBox if offline C. We also add a Wipe-
Down effect D and make the offlineMainBox trigger it as its showEffect F.

 Next, we modify Notely to take use the unsavedNoteContent that we’re now
storing in the PomodoModelLocator; see listing 12.16.

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="100%" height="100%" label="Notely" paddingLeft="5"

Listing 12.16 app\flex\com\pomodo\components\Notely.mxml

E

F

532 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
 paddingRight="5" paddingTop="5" paddingBottom="5">
<mx:Script>
<![CDATA[
 import com.pomodo.control.EventNames;
 import com.pomodo.model.PomodoModelLocator;
 import com.pomodo.util.CairngormUtils;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function doSave():void {
 _model.note.content = notelyTA.text;
 _model.note.content = _model.unsavedNoteContent;
 CairngormUtils.dispatchEvent(EventNames.UPDATE_NOTE);
 }

 private function doRevert():void {
 notelyTA.text = _model.note.content;
 _model.unsavedNoteContent = _model.note.content;
 }
]]>
</mx:Script>
 <mx:TextArea id="notelyTA" width="100%" height="100%"
 text="{_model.note.content}"/>
 text="{_model.unsavedNoteContent}"
 change="_model.unsavedNoteContent = notelyTA.text"/>
 <mx:ControlBar width="100%" horizontalAlign="center">
 <mx:Button id="saveButton" label="Save" width="100%"
 height="30" click="doSave()"
 enabled="{_model.online}"/>
 <mx:Button id="revertButton" label="Revert"
 height="30" click="doRevert()"/>
 </mx:ControlBar>
</mx:VBox>

We modify notelyTA to now have its text bound to _model.unsavedNote-
Content G instead of _model.note.content F and to update this _model.
unsavedNoteContent on change H. This simplifies the synchronization (it’s
completely trivial). Having done this, we modify the doSave function to update
_model.note.content based on _model.unsavedNoteContent BC, and we
modify the doRevert function to assign _model.unsavedNoteContent from
_model.note.content DE. We don’t need to assign notelyTA.text explicitly,
because it’s bound to _model.unsavedNoteContent. Finally, note that we now
enable the Save button only when online I.

B
C

D
E

F
G

H

I

Online/Offline support 533
 Next, we make a trivial change to the ShowNoteCommand; see listing 12.17.

...
 public function result(event:Object):void {
 var model:PomodoModelLocator =
 PomodoModelLocator.getInstance();
 model.note = Note.fromVO(event.result);
 model.unsavedNoteContent = model.note.content;
 }
...

We modify the command to assign model.unsavedNoteContent as well. This is
necessary for the initial loading of the content into Notely.

 Finally, we need to modify the StatusBox to tie this all together; see listing 12.18.

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:pom="com.pomodo.components.*"
 paddingLeft="5" paddingRight="5" backgroundColor="#FFFFFF"
 horizontalAlign="left" verticalAlign="middle"
 width="100%" height="40"
 creationComplete="handleCreationComplete()">
<mx:Script>
<![CDATA[
 import com.pomodo.model.PomodoModelLocator;

 [Bindable]
 private var _model:PomodoModelLocator =
 PomodoModelLocator.getInstance();

 private function handleCreationComplete():void {
 NativeApplication.nativeApplication.addEventListener
 (Event.NETWORK_CHANGE,onNetworkChange);
 checkIsOnline();
 }

 private function onNetworkChange(event:Event):void {
 checkIsOnline();
 }

 private function checkIsOnline():void {
 var request:URLRequest =
 new URLRequest(_model.onlineCheckURL);
 var requestLoader:URLLoader = new URLLoader();

Listing 12.17 app\flex\com\pomodo\command\ShowNoteCommand.as

Listing 12.18 app\flex\com\pomodo\components\StatusBox.mxml

B

C
D

E

F
G

H

I

534 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
 requestLoader.addEventListener(Event.COMPLETE,
 requestCompleteHandler);
 requestLoader.addEventListener(IOErrorEvent.IO_ERROR,
 requestErrorHandler);
 requestLoader.load(request);
 }

 private function requestErrorHandler(event:IOErrorEvent):
 void {
 _model.online = false;
 statusLabel.text = "Offline";
 statusLabel.setStyle("color", "#FF0000");
 }

 private function requestCompleteHandler(event:Event):void {
 _model.online = true;
 statusLabel.text = "Online";
 statusLabel.setStyle("color", "#00FF00");
 }
]]>
</mx:Script>
 <mx:Label text="URL:"/>
 <mx:TextInput id="remoteURLTI" width="100%"
 text="{_model.remoteURL}"
 change="_model.remoteURL = remoteURLTI.text"/>
 <mx:Label id="statusLabel"/>
</mx:HBox>

We start by attaching a creationComplete handler B handleCreation-
Complete C, which first adds the onNetworkChange function F as an Event-
Listener for the Event.NETWORK_CHANGE event D. (Note that Native-
Application.nativeApplication D used to be called Shell.shell in Flex 3
Beta 2 and below; it was renamed in Flex 3 Beta 3.)The handleCreationComplete
function then calls E checkIsOnline to do the initial online/offline check. The
onNetworkChange function F also calls G checkIsOnline to do the online/offline
check. (I’ve seen an approach that toggled, but this seems to me to be too unreli-
able: If the state gets out of sync once, it’s wrong forever.) The checkIsOnline
function H essentially pings the _model.onlineCheckURL, which is http://
www.google.com I—Google can handle the load. On a successful request, the
requestCompleteHandler 1# is called, which sets _model.online to true 1$, the
statusLabel 1& text to "Online" 1%, and the statusLabel color to green 1^. On
an unsuccessful request, the requestErrorHandler J is called, which sets
_model.online to false 1), the statusLabel text to "Offline" 1!, and the
statusLabel color to red 1@.

J

1)
1!

1@

1#
1$

1%
1^

1&

Online/Offline support 535
Ensure we’re connected to the internet, and then rebuild and reload. We see the
screen shown in figure 12.12.

 Log in as ludwig. We see the screen shown in figure 12.13.
 Next, disconnect from the Internet (unplug your ethernet cable). After a few

seconds, we see the screen shown in figure 12.14.

Figure 12.12
StatusBox
showing online

Figure 12.13 Logged in as ludwig, online

536 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
Note how the StatusBox shows the Offline status. Also, note how the UI is
swapped out (with a funky visual transition) and the OfflineMainBox (containing
just Notely) is shown. Furthermore, the Save button in Notely is disabled because
we don’t support offline saving and synchronizing.

 Enter some text in Notely, and reconnect to the Internet. After a few seconds’
delay, AIR will detect that the online status has changed, the request to Google will
be done, and pomodo will switch back to online mode, complete with all the tabs,
the ability to save, and so forth.

 Run the tests again with rake, and confirm that everything still works.

Figure 12.14 Pomodo in offline mode

The code at this point is saved as the iteration12 folder.

Conclusion 537
12.4 Summary

We’ve seen that it’s extremely easy to get up and running with AIR, getting pomodo
built and running as an AIR application and adding new features with hardly any
code.

12.5 Exercises for the reader

1 Add support for saving to the local filesystem (in a file or in the local SQLite
database) when offline, and synchronizing with Rails when online again. See
http://labs.adobe.com/wiki/index.php/AIR:Articles:Taking_Apollo_Appli-
cations_Offline#Managing_data for a great place to start. The easy thing to do
in terms of synchronizing is to adopt a rule such as “local changes clobber
remote ones” or “newer changes win.” You can use the fact that the time that
the record is saved is stored in the updated_at column of the notes table to
implement whatever policy you want. (If you’re really bored, implement a
nice GUI merge tool to merge the content of the local and remote Notely.)

2 Add support for an initially offline state (that is, there is no logged-in user,
but you want to use Notely and have it synchronize the next time you’re
online).

12.6 Conclusion

Wow. We’ve come a long way from rails pomodo. We’ve seen how Flex and Rails
can be integrated to build a next-generation rich Internet application, through
what was (I hope!) an interesting and complex enough example to show what
developing using Flex and Rails together is like. Although pomodo isn’t perfect,
it’s more realistic than the code examples in most books.

 Whether that was good or bad is left as an exercise for the reader: Please email
any thoughts—good or bad—about the book to me at peter@ruboss.com. If you
don’t mind being quoted in print and online, please say so in the email, and include
your name and, optionally, your job title and/or blog URL. Don’t worry, I won’t print
or share your email address.

 Because the code for Pomodo is all MIT-licensed, please feel free to use it as a
starting point for your own applications. Although I’ve made fun of Web 2.0 occa-
sionally throughout the book, I admire anyone who creates their own Web 2.0
startup and takes a shot at changing the world, or at least achieving fame and for-
tune. Like everyone else here, I have a few Web 2.0 startup ideas up my own

538 ITERATION 12

Rails on AIR (Adobe Integrated Runtime)
sleeve. I hope the combination of Flex and Rails is something you can use to
develop a product, get to market quickly, figure out how to scale, and either get
acquired or IPO. (This too is left as an exercise for the reader!) If it works out for
you, I won’t say no to unsolicited gifts and/or stock grants…

 It has been over a year since I started writing Flexible Rails and more than 18
months since I first had the idea. Now it’s done and has become a Manning book.
(This is fitting and satisfying to me personally, because Manning’s Swing book—
one of the best technical books I have read—was the inspiration for the number-
ing format in the extended code examples. However, when I was reading Swing I
was a young and eager developer in Silicon Valley at a BPM startup—not the old
and bitter seasoned developer I am today.)

 Furthermore, I’m going to write a book entitled Rails on AIR that takes the
Pomodo example in Flexible Rails in some interesting new directions as a full-
blown Adobe AIR application. Check http://www.railsonair.com sometime in
early 2008 for more information—I have some secret things planned...

 I can’t believe this book is actually over!

Every journey has an end;
When at the worst affairs will mend;
Dark the dawn when day is nigh;
Hustle your horse and don’t say die.

 —W. S. Gilbert, Iolanthe

How to use Subversion
 with Flex + Rails
539

540 APPENDIX A

How to use Subversion with Flex + Rails
In this appendix, we’ll install Subversion, create a new repository, import our
project into it, and configure Subversion to ignore the appropriate files. A full
discussion of Subversion is far beyond the scope of this book—see http://
svnbook.red-bean.com/ if you’re interested.

NOTE If you aren’t afraid of the command line, consider Git instead of Subver-
sion. To learn why, see Linus Torvalds’ (creator of Git and Linux) Tech
Talk at Google: http://www.youtube.com/watch?v=4XpnKHJAok8.

First, we need to have Subversion installed. Run the following commands:

c:\peter\flexiblerails\current\pomodo>svn --version
svn, version 1.4.2 (r22196)
 compiled Nov 3 2006, 16:53:07
...

c:\peter\flexiblerails\current\pomodo>svnadmin --version
svnadmin, version 1.4.2 (r22196)
 compiled Nov 3 2006, 16:53:07
...

c:\peter\flexiblerails\current\pomodo>

If you don’t get something telling you which svn version you have, go to http://
subversion.tigris.org/project_packages.html#binary-packages and download and
install the appropriate version of Subversion.

 Next, create a Subversion repository. I’ll create mine in c:\peter; you should
pick a good spot to use:

C:\peter>mkdir svnrepo

C:\peter>svnadmin create c:\peter\svnrepo

C:\peter>

Next, we import the pomodo app into subversion. The approach we’ll take is
based on the approach used to set up a new Subversion repository using the
approach in the “quick start” (http://svnbook.red-bean.com/nightly/en/
svn.intro.quickstart.html) of the book Version Control with Subversion (http://
svnbook.red-bean.com/nightly/en/index.html).

 First, stop the WEBrick server. Next, we’ll set up the standard branches, tags,
and trunk directories. We rename the pomodo directory to trunk and then create
directories for branches and tags:

../../../peter
../../../peter
../../../peter

APPENDIX A

How to use Subversion with Flex + Rails 541
C:\peter\flexiblerails\current>move pomodo trunk

C:\peter\flexiblerails\current>mkdir branches

C:\peter\flexiblerails\current>mkdir tags

Now, we import our structure into our new repository:

C:\peter\flexiblerails\current>
svn import . file:///c:/peter/svnrepo -m "new"
Adding trunk
...
Adding branches
Adding tags

Committed revision 1.

C:\peter\flexiblerails\current>

NOTE On OS X, the file:///c:/peter URL would be file:///Users/peter.

Next, we check out our new project from Subversion. Close Flex Builder before
continuing:

C:\peter\flexiblerails\current>cd ..

C:\peter\flexiblerails>move current currentbak
 1 file(s) moved.

C:\peter\flexiblerails>mkdir current

C:\peter\flexiblerails>cd current

C:\peter\flexiblerails\current>
svn co file:///c:/peter/svnrepo/trunk pomodo
A pomodo\test
A pomodo\test\unit
...
A pomodo\public\stylesheets
A pomodo\public\favicon.ico
Checked out revision 1.

C:\peter\flexiblerails\current>

Now that we have the project checked out, we’ll configure Subversion to ignore
the public\bin directory, because that is all generated code and compiled SWF
files. We’ll also configure Subversion to ignore the files that should be ignored in
all Rails applications.

/Users/peter
/Users/peter

542 APPENDIX A

How to use Subversion with Flex + Rails
 To do this, go to http://wiki.rubyonrails.org/rails/pages/HowtoUseRailsWith-
Subversion and follow along with the instructions to remove the log files and temp
files. You may also wish to ignore database.yml, as explained at that wiki page.

 Finally, we’ll install Subclipse. This is an optional step, because we can use Sub-
version entirely from the command line. Subclipse is an Eclipse plugin, and
because Flex Builder is built on top of Eclipse, it will work in Flex Builder.

 Go to http://subclipse.tigris.org/ for more general information on Subclipse.
To install Subclipse, start Flex Builder, and follow the instructions at http://
subclipse.tigris.org/install.html. (The instructions are for Eclipse, but they work
with Flex Builder.) After installing Subclipse, we see in the Navigator that
the pomodo project displays as pomodo [trunk] and the files show their ver-
sion numbers.

 To use Subclipse, right-click a file or folder in the Navigator window, and
mouse down to the Team submenu. We see a bunch of useful Subversion com-
mands. We can also choose Window > Perspective > Other and choose SVN Repos-
itory Exploring or Team Synchronizing to use other handy perspectives.

 Before we end this Appendix, helpful reader Cédric Deltheil gave the follow-
ing advice via email:

Just another thing, related to the configuration files, and more specifically to
.actionScriptProperties. It is trivial, but, if you decide to add resources
to your Flex project via the library path, this has an impact on
.actionScriptProperties. So, if you do not take care, you can promote to
the repos a version of this file that contains references to local path:

<libraryPathEntry kind="3" linkType="1" path="/Users/
Cedric/myComponent.swc"/>

I think the best way is to define a new path variable in Preferences -> General ->
Workspace -> Link resources, so as to avoid such a problem:

<libraryPathEntry kind="3" linkType="1" path=
"${MYCOMPONENT}"/>

If you’re in a team environment, this is indeed good advice.
 That’s it. You should be set up to use Subversion with Flex and Rails.

Handwaving
 at omitted topics
543

544 APPENDIX B

Handwaving at omitted topics
This appendix is my version of handwaving at important topics that aren’t covered
in the book. There are varied reasons for their omission. For example:

■ I don’t have infinite time.

■ A really good tutorial has been written, and I wouldn’t be adding much
value.

■ The topic is important but too far outside the scope of the book.

■ The topic is primarily a Flex or Rails topic, and the interaction isn’t particu-
larly interesting.

■ I don’t have anything interesting or original to say about the topic.

Regardless of the reason, important topics have been omitted from the book.
However, I would feel guilty if I didn’t at least mention them. So, here goes.

Testing

Testing is very important. How dare I relegate it to a section of an appendix? The
simple reason is this: There isn’t that much for me to say about how to test Flex
and Rails together. On the Flex side, there is FlexUnit (http://code.google.com/
p/as3flexunitlib/), a JUnit-esque testing framework. I’ve personally used it to test
public static methods, and not much else. On the Rails side, there is an extensive
focus on testing, as described in AWDwR. Specifically, look at test/unit, test/spec,
and RSpec for how to test Rails applications.

 In terms of testing the interaction between Flex and Rails, the best thing to do
is to provide inputs that mimic what Flex will provide to Rails, and then test the out-
put. We can use assert_match, assert_no_match, and assert_select. (Thanks to
the readers in the flexiblerails Google Group for the thoughtful discussion of test-
ing.) assert_select is cool, and its creator Assaf Arkin (a former coworker of mine,
when I was young and stupid) is extremely smart and prolific: buildr, scrAPI,
co.mments, and so on. See Assaf’s blog at http://labnotes.org/. Finally, Assaf is also
co-authoring a Manning book; see http://www.manning.com/mcanally/ for
details. (I would read and promote this book regardless of who was publishing it.)

Multiple-file upload with Flash,
Flex, AIR, and Rails or Merb

Another important topic, another few paragraphs. (Next: world peace.) File
upload is very tricky with Flex and Rails and also inefficient as far as Rails is con-
cerned. Lots of the new (in December 2007), cool, rich Internet applications are

http://code.google.com/p/as3flexunitlib/
http://code.google.com/p/as3flexunitlib/
http://code.google.com/p/as3flexunitlib/
http://code.google.com/p/as3flexunitlib/
http://code.google.com/p/as3flexunitlib/

APPENDIX B

Handwaving at omitted topics 545
adding file upload, typically backed by Amazon S3. For one of the most promising
examples that doesn’t rhyme with bounce, see Alex MacCaw’s Aireo (http://
www.eribium.org/blog/?p=83). For pure Rails file upload, Rick Olson (of
restful_authentication, acts_as_authenticated, Lighthouse, Mephisto, and
Beast fame) has done most of the work for us—this time with a plugin called
attachment_fu. (Yes, even the name is cool.) For the Rails side of it, read Mike
Clark’s excellent tutorial: http://clarkware.com/cgi/blosxom/2007/02/24. The
attachment_fu plugin supports :storage of :file_system, :db_file, and :s3.
Note that attachment_fu has all kinds of special support for uploading images,
generating thumbnails, and so on—see Mike Clark’s tutorial and the tutorial mes-
sages printed by installing attachment_fu for more details. (If we were going to be
completely stereotypical in this book, we’d find an excuse to add support for
uploading images and resizing them into a 40x40 pixel avatar.)

 Note that the filesystem storage defaults to using the public directory, which
essentially provides no security: Anyone who knew the secret URL would be able to
get at the file. There are solutions to store the file somewhere outside of the Rails
public directory. Be careful that you don’t trust the user input and accidentally open
up your entire filesystem, though! See one of Ben Curtis’ blog posts (http://
www.bencurtis.com/archives/2006/11/how-to-handle-uploaded-files-with-rails/)
for more information. Note that an issue with Rails file upload is that it doesn’t han-
dle multiple-file upload well—which is part of what led Ezra Zygmuntowicz to create
Merb (http://brainspl.at/articles/tag/merb):

This is one of the things that Merb was written for. Rails doesn’t allow multiple
concurrent file uploads at once without blocking an entire rails backend for each
file upload. Merb allows multiple file uploads at once.

—http://blog.vixiom.com/2007/06/29/merb-on-
air-drag-and-drop-multiple-file-upload/

Alastair Dawson at Vixiom Axioms, the blog of Vixiom Communications, wrote two
absolutely excellent tutorials (http://blog.vixiom.com/2006/09/08/multiple-file-
upload-with-flash-and-ruby-on-rails/ and http://blog.vixiom.com/2007/06/29/
merb-on-air-drag-and-drop-multiple-file-upload/) showing how to do multiple-file
upload with Flash and Rails and how to do multiple-file upload with Merb and AIR.

 File upload is also one of the examples in Programming ActionScript 3.0 (one of the
PDF documents referred to in iteration 3, section 3.5.4, “Flex 3 documentation?
Where?”), specifically the “Example: Uploading and downloading files” (p. 408)
section of the Networking and Communication chapter. If you want to get the code
for this example, go to http://www.adobe.com/go/as3examples, download and
unzip the zip file, and look in the ProgrammingAS3_Examples\FileIO folder.

http://www.adobe.com/go/as3examples
http://www.adobe.com/go/as3examples
http://www.adobe.com/go/as3examples
http://www.adobe.com/go/as3examples
http://www.adobe.com/go/as3examples
http://clarkware.com/cgi/blosxom/2007/02/24
http://clarkware.com/cgi/blosxom/2007/02/24
http://clarkware.com/cgi/blosxom/2007/02/24
http://clarkware.com/cgi/blosxom/2007/02/24
http://clarkware.com/cgi/blosxom/2007/02/24

546 APPENDIX B

Handwaving at omitted topics
WebORB

WebORB for Rails is an implementation of Flash and Flex Remoting for Ruby. The
best place to learn about WebORB for Rails is Derek Wischusen’s four-part tutorial
on using Flex with WebORB; see http://flexonrails.net/?p=31 for details. Frankly,
Derek knows WebORB better than I do, and thus his tutorial is highly recommended.

 For another good starting point, go to http://www.themidnightcoders.com/
weborb/rubyonrails/faq.htm and browse from there.

http://www.themidnightcoders.com/weborb/rubyonrails/faq.htm
http://www.themidnightcoders.com/weborb/rubyonrails/faq.htm
http://www.themidnightcoders.com/weborb/rubyonrails/faq.htm

index
Numerics

200 OK 119
3. Profit!!! 207
37signals 10, 12, 466
38noises

Less Features 108
3rdRail 19, 21

A

access control 165–178
Accordion 78, 106
account creation

testing from HTML 67–68
account signup screen 262–266
AccountBox

deleting users 464
AccountCreateBox 75, 78, 81, 152

adding client-side validation 285
adding EmailValidator 274
integrating Flex 3 and Rails validation 280
modifying 402
modifying to use Cairngorm 352
modifying to use User constructor 434

AccountCreateEvent 84
AcknowledgeMessage 476
Action Controller 7
Action Pack 7
Action View 7
ActionController::Routing::Routes 6
ActionMailer 58
ActionScript 5
Active Record

definition 137

Active Support 141
dasherize 141

ActiveRecord 6, 18
Base 445
Errors 269
Migration 59
Serialization 134

Adobe 297
Adobe Integrated Runtime (AIR) 12, 512
Adobe Labs 297
AdvancedDataGrid 108
AIR. See Adobe Integrated Runtime
Alert 95
Amazon S3 436
AMF 370
anonymous object

ActionScript 3 86
creating 86

Apache 6
Apollo 512
Application 70
application.rb

adding to_xml_full method 270
application/xml 362
application/x-www-form-urlencoded 87, 362
ApplicationController 31, 41, 49, 64, 167

protecting against CSRF attacks 178
Aptana 21

installing with RadRails 21
Aptana RadRails 33

project, creating in Windows + Flex SDK 32, 34
Aquamacs 22, 43
Arctic Monkeys 421
Arkin, Assaf 544
Array

Conversions 134
547

548 INDEX
ArrayCollection 385
Arrington, Michael 77
association

adding to model 137–142
AsyncToken 315
attachment_fu 545
attr_accessible 62

better security with 436–439
attr_protected 437
authenticated? 141
AuthenticatedSystem 64, 167
AuthenticatedTestHelper 65

B

backgroundGradientColors 70
Backpack 12
Bailey, Chris 440
Basecamp 12
.bash_profile file 20
Beast 545
Beethoven, Ludwig van 217
before_create 427
before_filter 162
Bekor, Chen 300
belongs_to 138, 140
Bezos, Jeff 77
Bindable 71, 78
binding 71–72
Black, David 425
Bland II, John C. 528
Blub 145
BPM 538
browser navigation

disabling integration with Flex 56
bubbles property 93
Buck, Jamis 443
Builder 189

understanding 272
XmlMarkup 270, 272

business
Services 494

business delegate
creating 331

Button 72
Buzzword 422

C

Cairngorm
adding to pomodo 302–303
background and setup 296–304

commands 454
documentation 298
downloading 299
event sequence overview 304
generator 431
history 297
key benefits 358
ModifiedCairngormStore 300–301
sources, importing into Flex Builder 299–300
standard directories 303
too much like Java 298
using in pomodo 296
value object 371
whether to use 298

Cairngorm Enterprise 299
CairngormStore 298
CairngormUtils 312
Carlson, Bryan 472
CDATA 78
CheckBox 112

creating 245–247
checkIsOnline 534
chmod 46
Clark, Mike 545
CocoaMySQL 18
Code Gear 19
Cold Fusion 19
com.pomodo.business.*

creating 331–336
com.pomodo.command.*

creating 315–330
com.pomodo.components.*

modifying 337
com.pomodo.control.*

creating 309–312
com.pomodo.events

deleting 336
ComboBox 107, 112

dataProvider, adding None object to 219–222
itemRenderers 231–243
making work in TaskCreateBox 208–225
prompt 217–219

CommandShell
creating 111
implementing 453

Completed check box
creating 251–259

config
database.yml 29, 47
routes.rb 62

ControlBar 115
convention over configuration 61

INDEX 549
copy-paste-modify. See MXML
create method 144, 195
create.sql 29, 38, 47
CreateLocationCommand 318
CreateLocations 154
CreateProjectCommand 316
CreateProjects 154
CreateSessionCommand 318

modifying 392
refactoring event triggering 527

CreateTaskCommand 315
CreateTasks 153
CreateUserCommand 320

modifying 393
refactoring event triggering 527

CreateUsers 59
creationPolicy 524
CRUD 119
CSRF attack 65

protecting against 178
curl 472
current_user 81, 167–169
current_user.tasks 167–169
Curtis, Ben 545

D

Daigle, Ryan 422
dasherize 130
data transfer object. See transfer object
DataGrid 107

customizing cells with itemRenderers 231
Date 125
Dawson, Alastair 545
DB2 18
DebugMessage 124
DebugPanel 125
default route 68
del.icio.us 8
Delete button

creating 243–245, 251–259
dependent

implementing 439–447
destroy method 144
destroy_xml 228–231
DestroyLocationCommand 327
DestroyProjectCommand 326
DestroyTaskCommand 325

modifying 394
refactoring to RubyAMF 508

DestroyUserCommand
deleting users 462

destructive actions
ensure done by POST 162

Developing Rich Clients with Macromedia
Flex 297

development.log 273
DHH. See Hansson, David Heinemeier
Digg 8
Discovering a world of Resources on Rails 58, 122
displayAsPassword 76
document.write 37, 46
Dont Repeat Yourself (DRY) 196

Flex validation violating 266
Duncan Davidson, James

installing Ruby 17

E

E4X (ECMAScript for XML) 83, 128
Eccles, Stuart 238
edit method 144
Emacs 21, 43
EmailValidator 274
encrypt_password 141
endpoint 474
ERb (Embedded Ruby) 145
<error> 268
error

custom XML 267–274
error_messages_for 265
<errors> 268
Event 84

bubbles 93
event triggering

refactoring 523–528
EventNames 309

adding constants 433
deleting users 461
modifying to enable logout 455

examples
installing software required to run 16–25

F

Fade 459
fdb debugger 101, 124
Fielding, Roy 120
Fight Club 145
filterFunction 448
Firefox 19
Fireworks 108
Fixnum 141

550 INDEX
fixtures 96
expanding 178–185
notes.yml 427

Flash 9 5
installing 20
market penetration 8
overview 8–9

Flash UI
fixed-size criticism unfounded 107

flash.events.Event 85
flash[:notice] 172
Flex 26–28, 31–32, 34–38, 41–46, 49–51

adding login functionality 69–95
API documentation 73
background 4
compiler arguments 515
creating projects and locations 200–207
creating tasks in 195–199
history 9–12
installing 18–21
listing tasks in 187–194
project, creating in Flex Builder 3 25–26
validation 266
validators 284–289
version history 11

Flex 1.0
compared to Rails 1.0 10

Flex 2
validation 274–275
validation, integrating with Rails

validation 276–284
Flex 3

compared to Rails 2 12
documentation 73–74
features and strengths 5–7
open sourcing of 11
overview 5

Flex 3 SDK
installing 15

Flex Builder
compiler settings 457
configuring to run pomodo 99–101
debugger 99, 124
Design mode 106
visual design functionality 108

Flex Builder 3 25
installing 15
installing on Windows or OS X 19
introduction of 11
support for AIR 513

Flex SDK
fdb debugger 101
installing on Windows, OS X, or Linux 20–21

FLEX_HOME 35
FlexUnit 544
foreign key constraint 141
Form 112

just a layout tool 76
format.amf 470
Fowler, Martin 137
FrontController 310
full_messages 270

G

gem list 17
GET 71, 365
getRemoteURL 520
Getting Real 106
Getting Things Done (GTD) 12, 106

semantics 439–447
Gilbert, W. S. 538
Git 99
Goldberg, Rube 297
GPL 471
gradient fill 32
Grosenbach, Geoffrey 58, 65, 122
GTD. See Getting Things Done
GUI

code 108–117
design 106–108
requirements 106

H

Hansson, David Heinemeier 10, 118
has_many 138, 140
Hash

Conversions 133
hash

Ruby 86
HBox 109
hello_controller.rb 31, 40, 48
HelloController 31, 41, 49, 70
Hivelogic 24
HTML wrapper file 36, 44
.html.erb 194
HTTP 229

methods 71
pretend and actual method 121
status codes 119

INDEX 551
HTTPService 70, 469
contentType 362
gotchas 361–367

human_attribute_name 270

I

ICollectionView 384
ICommand 316
id

primary key 61
IDE

installing 21–22
IDEA 19, 21
idempotence 119
IE 19
IList 384
Image 78
Import

Projects into Workspace 54
include 192–194
index 144
Inflections 142
interface

vs. class 384
Iolanthe 538
itemRenderer

custom, to create CheckBox 245–247
data property 242
using to customize DataGrid 231–243

iteration 5
IUndoableCommand 368
IViewCursor 239

J

Jamis Buck 3
Java 4
Java Swing 5, 368
JBuilder

GUI builder 106
JSEclipse 19
JSON 293, 370
JSplitPane 114
JUnit 544

K

Kernighan, Brian 14
Knauss, Greg 186
knife juggling 437

L

Label 78
labelWidth 80
Laszlo 10
Leopard 16
Library Path 302
Lighthouse 545
lighttpd 6, 16
lines of code

reducing 9
LinkButton 465
list

refactoring data location 208–214
ListCollectionView 384

filtering 448
ListLocationsCommand 330

modifying 395
refactoring to RubyAMF 509

ListProjectsCommand 329
modifying 396
refactoring to RubyAMF 509

ListTasksCommand 328
modifying 396
refactoring to RubyAMF 508

LiveCycle Data Services 300
LoadURLCommand 454
Location

choice, saving 222–225
creating 135–137, 376–378
creating and listing in Flex 200–207
improving security 438
modifying GTD semantics 440
modifying to produce value objects 498
updating and deleting 228–259

locationCreate event 206
LocationCreateBox 205

creating 112
modifying 402
modifying to use Cairngorm 340

LocationDelegate 334
modifying 390
refactoring to RubyAMF 502

LocationEvent 203
adding support for update and delete 251

locations.yml 179
LocationsController

adding update and destroy 230
fixing 173–178
refactoring to RubyAMF 487

LocationsControllerTest 183

552 INDEX
LocationsListBox
adding Delete buttons and Completed

check boxes 255
creating 116
creating and listing locations 201
modifying 415
modifying to use Cairngorm 350
refactoring list data location 213

LocationVO 495
Locomotive

installing Ruby 17
logging out

adding support for 454–456
login

adding to Flex 69–95
adding to Rails 57–69
requiring 162–165
testing from HTML 69

login_required 162
LoginBox 76, 78, 85, 153

modifying to use Cairngorm 354
LoginEvent

creating 87

M

MacCaw, Alex 436, 545
Macromedia 9, 297
MainBox 199, 206

adding None object 219
adding notes 435
creating 89
deleting users 465
GUI code 108
making ComboBox itemRenderers work in

TasksListBox 232
making projects and locations show up 216
modifying 399
modifying to enable logout 455
modifying to handle new broadcast events 258
modifying to use Cairngorm 355
refactoring event triggering 525
refactoring list data location 208

Malik, Om 77
map.resource 147
map.resources 147, 424
map.root 148
marketing

improving 457–460
mass assignment

preventing 437

McLeod, Alistair 297
Mephisto 545
Merb 545
Metadata 84, 89
Metal 296
method

class vs. instance 141
parameter to ServiceUtils 332
restricting access to 437

method_missing 272
microarchitecture 297
Migration 154

editing and running 153–156
MIT license 469
mixin 167
model class

creating 371–379
ModelLocator 305, 399
Model-View-Controller (MVC) 5, 296
ModifiedCairngormStore

getting and running 300–301
Mongrel 6, 16, 24
monkeypatching 292
Mozilla Public License 11
MPL. See Mozilla Public License
multiple inheritance

gotchas 167
MVC. See Model-View-Controller
mx

Component 241
mx:Application 35, 44
<mx:Script> 10
MXML 5

and ActionScript 10
custom component 241
vs. html.erb 194

mxmlc 35
mysource.js 37, 45
MySQL 29

installing 18

N

Napkin Look & Feel 296
nested resource 424
NetBeans 19, 21
new method 144
new.rhtml 67, 264
newdb.bat 29, 38
newdb.sh 46

INDEX 553
Next Action 12, 436
definition 107
implementing 439–447

None object 225–228
adding to ComboBox dataProvider 219–222

Note 423, 428
improving security 439
modifying to produce value objects 499

NoteDelegate 431
refactoring to RubyAMF 503

Notely 106, 422–436
creating 117
implementing online/offline support 531
tab, modifying 435

notes
editing in TasksListBox 248–251

notes.yml 427
NotesController 425

refactoring to RubyAMF 490
NotesHelper 427
NoteVO 495
Null Object pattern 373
Number 84

O

object-relational mapping 137
OfflineMainBox 528
Olson, Rick 58, 545
onlineCheckURL 530
Oracle

installing adapter for 18
ORM. See object-relational mapping
outerDocument 242
Outlook 106

P

package
backwards domain name convention 74

paddingLeft 92
ParameterMappings.scaffolding 480
paranoia 437
PasswordConfirmationValidator 284
PATH 35
Path variable 16
PeepCode 58
PeepCode RESTful Rails 122
Photoshop 108
polymorphism 384

Pomodo 126
adding StatusBox 521
implementing online/offline support 530

pomodo
converting to AIR 513–522
project introduction 12

Pomodo.mxml 31, 34, 41, 49, 70, 77
improving marketing 457
modifying to pass user in 110
modifying to use Cairngorm 359–361
refactoring to RubyAMF 493
RubyAMF hello world in 474

PomodoController 310
adding commands 434
deleting users 461
modifying to enable logout 455

PomodoModelLocator
creating 305–309
implementing online/offline support 529
modifying 380–385
modifying to add Note class 429
modifying to let user specify root URL 518
refactoring event triggering 526
refactoring to RubyAMF 505

POST 71, 365
PostgreSQL 18
Pragmatic Programmer, The 196
prevent_access 172
Principle of Least Astonishment 130
privacy

violation, validating unique email address 283
Programming Ruby 273
Project

choice, saving 222–225
creating 374–376
creating and listing in Flex 200–207
improving security 438
modifying GTD semantics 439
modifying to produce value objects 497
updating and deleting 228–259

Project resource
creating 135–137

projectCreate event 206
ProjectCreateBox 203

creating 112
modifying 401
modifying to use Cairngorm 339

ProjectDelegate 332
modifying 388–390
refactoring to RubyAMF 501

554 INDEX
ProjectEvent 202
adding support for update and delete 251

projects.yml 180
ProjectsController

adding update and destroy 229
fixing 173–178
modifying GTD semantics 445
refactoring to RubyAMF 484

ProjectsControllerTest 184
ProjectsListBox

adding Delete buttons and Completed check
boxes 252

creating 115
creating and listing projects 200
modifying 412
modifying to use Cairngorm 347
refactoring list data location 212

ProjectVO 495
protect_from_forgery 65
protected 141

R

RadRails 19, 21
Rails 28–32, 38–43, 46–51

adding login functionality 57–69
background 4
freezing version 56
history 9–12
installation tutorials 16
installing 17–18
MIT license 470
project, creating 22–24
project, creating in OS X 23–24
project, creating in Windows 22–23
rel_2-0-0_RC1 56
routing code 6
validation 266–274
validation, integrating with Flex 2

validation 276–284
Rails 1.0

compared to Flex 1.0 10
Rails 2

compared to Flex 3 12
features and strengths 5–7
overview 5–7
version, confirming 17

Rails on AIR 538
Rails Routing (Digital Shortcut) 425
Rails to Italy 368, 477
rake 98, 183

rake db:fixtures:load 155
rake db:migrate 29, 38, 46, 155
rake routes 148, 425
Raymond, Scott 119, 121
RCP 19
RDT. See Ruby Development Tools
RecordNotFound 172
red pill 272
reddit 8
refactoring

refactoring list data location 208–214
samurai-coder style 370
to RubyAMF 476–511

RemoteClass 495
RemoteObject 469, 473
remoteURL 530
render

:amf 469–470
:text 31, 41, 49

request 84
required

just a visual cue on FormItem 76
rescue 172
Resource Oriented Architecture 120
respond_to 119
REST (Representational State Transfer) 57

introduction 120–122
RESTful approach

reasons to use 122, 124–127
RESTful controllers 145
RESTful design

nouns and verbs 122
RESTful route

adding 62–63
RESTful Web Services 119
restful_authentication 53

installing and running 58–59
ResultEvent 87
RIA. See Rich Internet Application
Rich Client Platform 19
Rich Internet Application 4, 189
Richardson, Leonard 119
RJS 145
routes.rb 146, 424
routing 70

using to set requested format 146–149
RSpec 544
Ruby

installation tutorials 16
installing on Mac OS X 16

INDEX 555
Ruby (continued)
installing on Windows 16
XML support in Ruby 1.8 9

Ruby Development Tools 19
Ruby for Rails 141
Ruby on Rails. See Rails
Ruby, Sam 119
RubyAMF 370, 469

flexiblerails branch 470
Hello, World 471–476
MIT license WebORB exception 470
params[0] 484
refactoring to 476–511
RESTful controller integration 470
type conversions 480

rubyamf_config.rb 477

S

Safari 19
samurai coder 370
save_with_gtd_rules! 440
sayhello 31, 41, 49, 70
scaffold command 135–161

description 135
scaffold_resource command 135
scaffolding 135–161
schema_info 61
Script

mx: 78
security 161–185

better, with attr_accessible 436–439
security through obscurity 161
selectedChild 89
self 141
server error

clearing 283–284
ServerErrors 276
ServerErrorValidator 276, 278
ServiceLocator 493–494
-services

compiler argument 475
Services.mxml 469, 492
services-config.xml 473
ServiceUtils 313, 362

modifying 385–386
modifying URLs 521
send 331

SessionDelegate 336
modifying 391

sessions 167–169
SessionsController 63, 69, 80, 164

making RESTful 150
modifying to enable logout 456

SessionsControllerTest 65
Shaw, Zed 477
show 144
ShowNoteCommand 432

implementing online/offline support 533
refactoring to RubyAMF 509

Silicon Valley 538
Singleton 493
Skinny Controller, Fat Model 444
skip_before_filter 163
slice(0) 385
Spacer 78
SplashBox 91

modifying to hold larger
AccountCreateBox 289

modifying to use Cairngorm 358
SQL Server

installing adapter for 18
SQLite 18
SQLyog 18
StatusBox 520

implementing online/offline support 533
String 72
Subclipse 99
Subversion 99
sudo 58
summaryPanel 251
support

online/offline, implementing 528–536
SWF 5
Swing 107, 538
Symbol 62
syntactic sugar 145

T

TabNavigator 106, 115
Ta-da List 12
Task

creating 371–374
creating in Flex 195–199
editing name in TasksListBox 248–251
filtering 447–453
improving security 438
listing in Flex 187–194

556 INDEX
Task (continued)
modifying GTD semantics 442
modifying to produce value objects 496
updating and deleting 228–259

Task resource
creating 135–137

TASK_CREATE 197
taskCreate event 199
TaskCreateBox 218

adding ComboBox prompt 217
creating 111
creating tasks 197
making projects and locations show up 214
modifying 400
modifying to use Cairngorm 337
saving choices 222

TaskDelegate 331
modifying 387–388
refactoring to RubyAMF 500

TaskEvent 196–197
tasks.yml 157, 181
TasksController 142–145, 166

adding update and destroy 228
modifying GTD semantics 444
modifying to use association proxies 169–173
refactoring to RubyAMF 481

TasksControllerTest 184
TasksListBox 239, 243

adding Completed CheckBoxes 246
creating 113
editing task name and notes 248
filtering tasks 448
listing tasks 189
making ComboBox itemRenderers work in

TasksListBox 236
modifying 404
modifying to use Cairngorm 342
refactoring list data location 211

TaskVO 495
TechCrunch 8
test

checking 98–99
test data

apporaches to loading 96
test/spec 544
test/unit 544
testing

ad hoc, with HTML views 157–161
pretend 66

Text 78

text editor
installing 21–22

TextArea 115
TextInput 71, 115
TextMate 9, 19, 21–22, 43, 517

creating project 43
installing 22

Thomas, Dave 9, 477
Tiger 16
to_xml 10, 129

fixing 132–135
to_xml_full 268, 276
Topfunky 58
transfer object 371
Tree 108
TypeError 523

U

unsavedNoteContent 530–531
update 144
update_attributes 436
update_xml 228–231
UpdateLocationCommand 324

modifying 397
updateLocationIdMap 235
UpdateNoteCommand 432
UpdateProjectCommand 322

listing Tasks 447
modifying 397

UpdateTaskCommand 321
listing Projects 446
modifying 398
refactoring to RubyAMF 510

User 138, 168, 265, 424, 427
creating 378–379
deleting 460–467
modifying GTD semantics 441
modifying to add id field 429

@user.errors.to_xml 268
UserDelegate 335

deleting users 463
modifying 391

UsersController 64, 67, 81, 164, 263
adding logger.info statement 273
deleting users 460
integrating Flex 2 and Rails validation 276
making RESTful 149

UsersControllerTest 65
UserTest 65
Using Flex Builder 106

INDEX 557
V

validate 266
validate_on_create 266
validate_on_update 266
validateAll 287
validates_confirmation_of 266
validates_length_of 266
validates_uniqueness_of 266
validation

framework in UI 262
in Flex 2 274–275
in Rails 267–274
in Rails and Flex 266
Rails, integrating with Flex 2 276–284

validation helper 265
validator

Flex 284–289
value object 371, 477

creating 494–496
VBox 76, 109
VDividedBox 114
vi 21, 43
ViewStack 89
visible property 115
Visual Basic

GUI builder 106
Visual C#

GUI builder 106
Vixiom Axioms 545

W

Web 2.0 186
WebORB 370, 546

omitted from the book since I may be
biased 469

WEBrick 6, 23–24, 33
Webster, Steven 297, 369
Welcome Aboard 68
WindowedApplication 518
Windows Forms 5, 370
WipeUp 459
Wischusen, Derek 546
wizard-generated code 117
WORA. See Write Once, Run Anywhere
workflowState 320–321, 361
Write Once, Run Anywhere 4
writer’s block 145
WS-Death Star 118

X

XML
avoiding 9
casting result to XML 84
in Flex 109
namespace 70
native type in ActionScript 3 84
support in Rails 9
support in Ruby 9

XMLListCollection 385
XMLUtils 245

Y

YAML 9, 370
YAML Ain’t Markup Language 9

Yegge, Steve 105, 145

Z

Zen 106
Zygmuntowicz, Ezra 545

	Flexible Rails
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	What the book doesn’t compete with
	A note about the iterations
	Which Flex?
	Which Rails?
	Understanding the code examples
	Author Online
	About the author
	about the cover illustration
	Getting started
	Why are we here? Where are we going?
	1.1 Overview of the features and strengths of Flex 3 and Rails 2
	1.1.1 Overview of Flex 3
	1.1.2 Overview of Rails 2
	1.1.3 Overview of using Flex 3 and Rails 2 together

	1.2 Flash 9? Are you kidding me?
	1.3 History
	1.4 A preview of the book
	1.5 Summary

	Hello World
	2.1 Installing everything
	2.1.1 Installing Ruby
	2.1.2 Installing Rails
	2.1.3 Installing MySQL
	2.1.4 Installing Flex
	2.1.5 Installing a text editor or IDE (SDK users only)
	2.1.6 Creating the Rails project
	2.1.7 How to read the rest of this iteration

	2.2 Windows or Mac OS X + Flex Builder 3
	2.2.1 Creating the Flex project
	2.2.2 “Hello World” from Flex
	2.2.3 “Hello World” from Rails
	2.2.4 “Hello World” from Flex and Rails

	2.3 Windows + Flex SDK
	2.3.1 Creating the Aptana RadRails project
	2.3.2 “Hello World” from Flex
	2.3.3 “Hello World” from Rails
	2.3.4 “Hello World” from Flex and Rails

	2.4 Mac OS X (or Linux) + Flex SDK
	2.4.1 Creating the TextMate project (or launch Emacs or vi)
	2.4.2 “Hello World” from Flex
	2.4.3 “Hello World” from Rails
	2.4.4 “Hello World” from Flex and Rails

	2.5 Summary

	Getting started
	3.1 If you’re starting here
	3.2 Freezing the Rails version
	3.3 Disabling browser navigation integration
	3.4 Adding login functionality to Rails
	3.4.1 Installing and running restful_authentication
	3.4.2 Editing and running the CreateUsers migration, and checking the result
	3.4.3 Adding RESTful routes
	3.4.4 Modifying the includes and before_filter as instructed by the comments
	3.4.5 Testing account creation from HTML
	3.4.6 Testing login from HTML

	3.5 Adding login functionality to Flex
	3.5.1 “Hello World,” this time with meaning!
	3.5.2 Binding? What the…?
	3.5.3 This MXML looks strange
	3.5.4 Flex 3 documentation? Where?
	3.5.5 Stubbing out an account-creation and login UI in Flex
	3.5.6 Making account create and login functional

	3.6 Adding data to the test fixtures
	3.7 Checking the tests
	3.8 Configuring Flex Builder to run and debug pomodo
	3.9 Summary

	Building the application
	Creating the main Flex UI
	4.1 Requirements
	4.2 Design
	4.3 Code
	4.4 Summary

	Expanding the Rails code, RESTfully
	5.1 A brief note about REST
	5.1.1 Disclaimer: doing REST wrong
	5.1.2 What is REST?
	5.1.3 Why use a RESTful approach?

	5.2 Calling the user by name
	5.2.1 Adding a primitive debug console to Flex
	5.2.2 The case of the missing first name
	5.2.3 Fixing to_xml temporarily
	5.2.4 Fixing to_xml permanently

	5.3 Creating the new resources (including migrations, models, and controllers)
	5.3.1 Creating the Task, Project, and Location resources
	5.3.2 Adding the associations to the model
	5.3.3 A tour of the TasksController
	5.3.4 Understanding how routing works to set the requested format
	5.3.5 Making the UsersController and SessionsController RESTful
	5.3.6 Editing and running the migrations
	5.3.7 Ad hoc testing with the HTML views

	5.4 Security
	5.4.1 Ensuring destructive actions are done by POST
	5.4.2 Requiring login
	5.4.3 Access control

	5.5 Expanding our fixtures and keeping our tests passing
	5.6 Summary

	Flex on Rails
	6.1 Setup
	6.2 Listing tasks in Flex
	6.2.1 Should we use to_xml with :include?

	6.3 Creating tasks in Flex
	6.4 Creating and listing projects and locations in Flex
	6.5 Making the Projects and Locations ComboBoxes work in the TaskCreateBox
	6.5.1 Refactoring the list data location
	6.5.2 Making the projects and locations show up
	6.5.3 Using a ComboBox prompt
	6.5.4 Adding a None object to the ComboBox dataProvider
	6.5.5 Saving the project and location choices

	6.6 About that None project and location
	6.7 Updating and deleting tasks, projects, and locations
	6.7.1 Adding update_xml and destroy_xml methods to the Rails controllers
	6.7.2 Getting ComboBox itemRenderers to work in the TasksListBox
	6.7.3 Adding Delete buttons
	6.7.4 Adding Completed CheckBoxes to the TasksListBox
	6.7.5 Editing the task name and notes in the TasksListBox
	6.7.6 Adding Delete buttons and Completed check boxes to the ProjectsListBox and LocationsListBox

	6.8 Keeping our tests passing
	6.9 Summary
	6.10 Exercises for the reader

	Validation
	7.1 Revisiting the HTML account signup screen
	7.2 Rails and Flex validation-should you stay DRY?
	7.3 Understanding Rails validation, and building custom XML for errors
	7.4 A Quick look at validation in Flex 3
	7.5 Integrating Rails validation with Flex 3 validation
	7.6 Flex validators revisited
	7.7 Keeping our tests passing
	7.8 Summary
	7.9 Exercises for the reader

	Refactoring
	Refactoring to Cairngorm
	8.1 Background and setup
	8.1.1 Cairngorm history
	8.1.2 Do you need to use Cairngorm?
	8.1.3 Downloading Cairngorm 2.2.1
	8.1.4 Importing the Cairngorm sources into Flex Builder
	8.1.5 Getting and running the ModifiedCairngormStore
	8.1.6 Adding Cairngorm to pomodo
	8.1.7 Creating the standard directories

	8.2 Cairngorm event sequence overview
	8.3 Creating com.pomodo.model.PomodoModelLocator
	8.4 Creating com.pomodo.control.*
	8.4.1 EventNames.as
	8.4.2 PomodoController.as

	8.5 Adding CairngormUtils and ServiceUtils to com.pomodo.util.*
	8.5.1 CairngormUtils.as
	8.5.2 ServiceUtils.as

	8.6 Creating com.pomodo.command.*
	8.6.1 CreateTaskCommand.as
	8.6.2 CreateProjectCommand.as
	8.6.3 CreateLocationCommand.as
	8.6.4 CreateSessionCommand.as
	8.6.5 CreateUserCommand.as
	8.6.6 UpdateTaskCommand.as
	8.6.7 UpdateProjectCommand.as
	8.6.8 UpdateLocationCommand.as
	8.6.9 DestroyTaskCommand.as
	8.6.10 DestroyProjectCommand.as
	8.6.11 DestroyLocationCommand.as
	8.6.12 ListTasksCommand.as
	8.6.13 ListProjectsCommand.as
	8.6.14 ListLocationsCommand.as

	8.7 Creating com.pomodo.business.*
	8.7.1 TaskDelegate.as
	8.7.2 ProjectDelegate.as
	8.7.3 LocationDelegate.as
	8.7.4 UserDelegate.as
	8.7.5 SessionDelegate.as

	8.8 Deleting the com.pomodo.events package
	8.9 Modifying the com.pomodo.components.*
	8.9.1 TaskCreateBox.mxml
	8.9.2 ProjectCreateBox.mxml
	8.9.3 LocationCreateBox.mxml
	8.9.4 TasksListBox.mxml
	8.9.5 ProjectsListBox.mxml
	8.9.6 LocationsListBox.mxml
	8.9.7 AccountCreateBox.mxml
	8.9.8 LoginBox.mxml
	8.9.9 MainBox.mxml
	8.9.10 SplashBox.mxml

	8.10 Modifying Pomodo.mxml
	8.11 Running pomodo
	8.12 HTTPService Gotchas
	8.13 Summary
	8.14 Exercise for the reader

	Holding state on the client properly
	9.1 Refactoring, samurai coder style
	9.2 Creating the model classes
	9.2.1 Task.as
	9.2.2 Project.as
	9.2.3 Location.as
	9.2.4 User.as

	9.3 Modifying the PomodoModelLocator
	9.4 Modifying ServiceUtils
	9.5 Modifying the business delegates
	9.5.1 TaskDelegate.as
	9.5.2 ProjectDelegate.as
	9.5.3 LocationDelegate.as
	9.5.4 SessionDelegate.as
	9.5.5 UserDelegate.as

	9.6 Modifying the commands
	9.6.1 CreateSessionCommand.as
	9.6.2 CreateUserCommand.as
	9.6.3 DestroyTaskCommand.as
	9.6.4 ListLocationsCommand.as
	9.6.5 ListProjectsCommand.as
	9.6.6 ListTasksCommand.as
	9.6.7 UpdateLocationCommand.as
	9.6.8 UpdateProjectCommand.as
	9.6.9 UpdateTaskCommand.as

	9.7 Modifying the components
	9.7.1 MainBox.mxml
	9.7.2 TaskCreateBox.mxml
	9.7.3 ProjectCreateBox.mxml
	9.7.4 LocationCreateBox.mxml
	9.7.5 AccountCreateBox.mxml
	9.7.6 TasksListBox.mxml
	9.7.7 ProjectsListBox
	9.7.8 LocationsListBox.mxml

	9.8 Summary

	Finishing up
	Finishing the application
	10.1 Notely
	10.2 Better security with attr_accessible
	10.3 GTD semantics, including the Next Action concept and :dependent
	10.4 Filtering tasks
	10.5 The CommandShell
	10.6 Logging out
	10.7 Marketing!
	10.8 Deleting users
	10.9 Exercises for the Reader

	Refactoring to RubyAMF
	11.1 Warning: biased author
	11.2 Hello RubyAMF
	11.3 Refactoring to RubyAMF, fast-forwarded
	11.3.1 Modifying rubyamf_config.rb
	11.3.2 Modifying the Rails controllers
	11.3.3 Creating Services.mxml and modifying Pomodo.mxml
	11.3.4 Creating the value objects
	11.3.5 Modifying the model objects to produce value objects
	11.3.6 Modifying the business delegates
	11.3.7 Modifying the PomodoModelLocator
	11.3.8 Modifying the commands

	11.4 Summary

	Rails on AIR (Adobe Integrated Runtime)
	12.1 Converting pomodo to an AIR application
	12.1.1 Deleting the old project
	12.1.2 Creating the new project
	12.1.3 Getting it running

	12.2 Refactoring event triggering
	12.3 Online/Offline support
	12.4 Summary
	12.5 Exercises for the reader
	12.6 Conclusion

	appendix A: How to use Subversion with Flex + Rails
	appendix B: Handwaving at omitted topics
	Testing
	Multiple-file upload with Flash, Flex, AIR, and Rails or Merb
	WebORB

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

