

What readers are saying about FXRuby

Learning a GUI framework should be easy, but it’s usually hard.

Reading this book, I realized by contrast that the reason it’s usually

hard is that it’s no fun. Lyle’s results-oriented approach to teaching

makes learning FXRuby fun, and therefore easy. This book is a moti-

vating, well-written tutorial about getting things done in one of Ruby’s

most established widget toolkits from its most authoritative source.

Chad Fowler

CTO, InfoEther

Founding Co-director, Ruby Central

FXRuby is a rich, mature GUI toolkit that Lyle has maintained and

documented very well for years. With the addition of this excellent

book, this toolkit becomes only that much more usable.

Hal Fulton

Author, The Ruby Way

I was paid to develop a GUI app using Ruby back in 2003, and I

quickly settled on FOX/FXRuby as the right toolkit because of the

exceptional quality of the bindings and the high level of support Lyle

provided. My only regret? That I didn’t have this book! With it open on

your desk and the online references loaded in your browser, nothing

should be stopping you from building an amazing desktop application

using Ruby.

Nathaniel Talbott

Founder and Developer, Terralien, Inc.

Lyle’s deep knowledge of FXRuby ensures that this engaging book will

prepare you to make cross-platform GUIs in very little time at all.

Austin Ziegler

Software Designer and Developer

FXRuby: Create Lean and Mean GUIs with Ruby is a well-written

text straight from the horse’s mouth: a book about FXRuby from the

author of FXRuby. You can’t get better than that, unless, of course,

the library wrote the book itself.

Jeremy McAnally

Developer/technical writer, ENTP

This book is an excellent introduction to FXRuby programming. Lyle

does a good job of getting you started with the basics and moving on

to more advanced topics at just the right pace.

Daniel Berger

Software Engineer, Qwest, Inc.

FXRuby
Create Lean and Mean GUIs with Ruby

Lyle Johnson

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Lyle Johnson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-07-7

ISBN-13: 978-1-934356-07-4

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

First printing, March 2008

http://www.pragprog.com

Contents
Foreword 10

Acknowledgments 12

1 Introduction 13

1.1 What’s in This Book? . 13

1.2 Who Is This Book For? 14

1.3 How to Read This Book 14

1.4 Where to Get Help . 15

1.5 A Word About Versions 18

I Building an FXRuby Application 19

2 Getting Started with FXRuby 20

2.1 Installing FXRuby . 23

2.2 Instant Gratification . 25

3 The Picture Book Application 31

3.1 What Picture Book Does 31

3.2 Application Data . 33

3.3 Let’s Code . 35

4 Take 1: Display a Single Photo 36

4.1 Get Something Running 36

4.2 Create the View . 37

4.3 Construct an Image from a File 40

5 Take 2: Display an Entire Album 43

5.1 Add Album View . 44

5.2 Display Images as Thumbnails 47

5.3 Import Photos from Files 50

5.4 Dynamically Reconfigure the Album View 55

5.5 Make the Album View Scrollable 58

CONTENTS 8

6 Take 3: Manage Multiple Albums 62

6.1 Create the Album List View 62

6.2 Use a Split View . 65

6.3 Switch Between Albums 67

6.4 Add New Albums . 70

6.5 Serialize the Album List with YAML 72

6.6 So, What Now? . 76

II FXRuby Fundamentals 78

7 FXRuby Under the Hood 79

7.1 Event-Driven Programming 80

7.2 Mouse and Keyboard Events 85

7.3 Timers, Chores, Signals, and Input Events 87

7.4 Syncing the User Interface with the Application Data . 91

7.5 Using Data Targets for GUI Update 92

7.6 Responsive Applications with Delayed Layout and Repaint 93

7.7 Client-Side vs. Server-Side Objects 95

7.8 How Windows Work . 98

8 Building Simple Widgets 100

8.1 Creating Labels and Buttons 101

8.2 Editing String Data with Text Fields 111

8.3 Providing Hints with Tooltips and the Status Bar 113

9 Sorting Data with List and Table Widgets 115

9.1 Displaying Simple Lists with FXList 115

9.2 Good Things Come in Small Packages: FXComboBox

and FXListBox . 118

9.3 Branching Out with Tree Lists 121

9.4 Displaying Tabular Data with FXTable 126

10 Editing Text with the Text Widget 133

10.1 Adding and Removing Text 134

10.2 Navigating Through Text 136

10.3 Searching in Text . 137

10.4 Applying Styles to Text 139

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=8

CONTENTS 9

11 Creating Visually Rich User Interfaces 142

11.1 Using Custom Fonts . 143

11.2 Pointing the Way with Cursors 146

11.3 Creating and Displaying Images 149

11.4 Manipulating Image Data 151

11.5 Creating and Displaying Icons 155

11.6 One More Thing . 158

12 Managing Layouts 159

12.1 Understanding the Packing Model 160

12.2 Arranging Widgets in Rows and Columns with a Matrix

Layout . 172

12.3 Dynamically Resizing Layouts with a Splitter Layout . . 176

12.4 Managing Large Content with Scrolling Windows 178

12.5 Organizing Windows with Tabbed Notebooks 179

12.6 Strategies for Using Different Layout Managers Together 181

13 Advanced Menu Management 187

13.1 Creating Cascading and Scrolling Menus 187

13.2 Adding Separators, Radio Buttons, and Check Buttons

to Menus . 190

13.3 Adding Toolbars to an Application 192

13.4 Creating Floating Menu Bars and Toolbars 193

14 Providing Support with Dialog Boxes 196

14.1 Selecting Files with the File Dialog Box 197

14.2 Selecting a Directory with the Directory Dialog Box . . . 198

14.3 Choosing Colors with the Color Dialog Box 200

14.4 Selecting Fonts with the Font Dialog Box 201

14.5 Alerting the User with Message Boxes 203

14.6 Creating Custom Dialog Boxes 204

14.7 Looking Ahead . 209

Bibliography 211

Index 212

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=9

Foreword
The FOX Toolkit is a library for designing user interfaces and has been

under development for more than ten years. FOX got its start as my

hobby project, called Free Objects for X (FOX), because my initial target

environment was the X Window system.

One of the early FOX adopters was CFD Research Corporation, where

Lyle and I worked. The user interface developers at the company were

pleasantly surprised with the concise coding needed to lay out their

interfaces, having been used to Motif, where placing a single button

would often require a dozen lines of code. The same task would often

require only a single line of code in FOX. Bolstered by this success,

the FOX library rapidly went through a number of changes; the library

got ported to Microsoft Windows, and support for 3D programming was

added. All the key ingredients were in place to transfer the company’s

GUI applications to the FOX platform.

FOX has now reached a point where developers can write code and be

reasonably confident that it will compile and run on numerous plat-

forms, from PCs running Windows to “big-box” Unix machines from

Sun and IBM. FOX continues to grow. In the past few years, the focus

has been on internationalization and localization, as well as multipro-

cessing support.

The FOX Toolkit is written in C++, and until other language bindings

became available, you had to program in C++ to use FOX. Now, with

the creation of the FXRuby library, the capabilities of the FOX Toolkit

have become available in the Ruby programming language.

In this book, you’ll learn how to build FOX-based graphical user inter-

faces within Ruby. In Part I, you’ll write your first small FXRuby appli-

cation, starting with detailed instructions on how to get FXRuby exten-

sions installed in your Ruby programming environment. You’ll work

through several iterations toward a functional application that illus-

trates many critical features of FXRuby programs.

FOREWORD 11

In Part II, the book goes into more detail on event-driven programming

and how to connect the user interface to useful executable Ruby code.

Moving on to the available controls and widgets, you’ll learn how to use

layout managers to place your user interface elements (this is a par-

ticularly useful chapter, because automatic layout is a foreign concept

even to many seasoned Windows programmers).

After you’ve read this book, you’ll be able to design great user interfaces

for your Ruby programs!

Jeroen van der Zijp (Principal FOX Toolkit Developer)

January 2008

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=11

Acknowledgments
I’ve been wanting to write a book about FXRuby development for a long

time. When I decided I was finally ready to do that, I knew I wanted to

work with the Pragmatic Programmers to make it happen. Many thanks

to Dave and Andy for giving me this opportunity.

Obviously, FXRuby would not exist were it not for the FOX Toolkit. I’d

like to thank my friend and former co-worker Jeroen van der Zijp for

letting me play a small part in FOX’s development over the years and

for all that I’ve learned from him in the process.

This book could easily have run off the rails if it weren’t for the hard

work and dedication of my editor, Susannah Davidson Pfalzer. Susan-

nah, thanks so much for your attention to detail and your expert guid-

ance as we worked through all of those revisions. The result is so much

better than it would have been without your help.

One of the realities of working on a book like this for months at a

time is that you get way too close to the text to be objective about it,

and you become unable to spot its flaws. For that reason, I owe many

thanks to the book’s reviewers: Dan Berger, Joey Gibson, Chris Hulan,

Sander Jansen, Chris Johnson, Joel VanderWerf, and Austin Ziegler.

Their comments and suggestions were invaluable. Thanks are likewise

due to the numerous beta book readers who took the time to point out

problems with the early releases of the book.

Finally, thanks to my wife, Denise, for her support and encouragement

and for putting up with a frequently distracted husband over the past

nine months. We are so going to the beach now that this is done.

Lyle Johnson

January 30, 2008

lyle@lylejohnson.name

Chapter 1

Introduction
FXRuby is a library for developing powerful and sophisticated cross-

platform graphical user interfaces (GUIs) for your Ruby applications.

It’s based on the FOX Toolkit, a popular open source C++ library devel-

oped by Jeroen van der Zijp. What that means for you as an application

developer is that you’re able to write code in the Ruby programming

language that you already know and love, while at the same time tak-

ing advantage of the performance and functionality of a fully featured,

highly optimized C++ toolkit.

Although FOX doesn’t have the same level of name recognition as some

other GUI toolkits, it has been available since 1997 and is still under

continuous development. FXRuby has been under development since

late 2000, and the first public release was in January 2001. I’ve been

the lead developer during that entire time, with a number of community

volunteers contributing patches along the way. It’s a tricky proposition

to guess the size of the user community for an open source project, but

according to the RubyForge statistics there have been close to 45,000

downloads of FXRuby since the project was moved there (and almost

18,000 before that, when it was hosted at SourceForge). Questions

posted to the FXRuby users mailing list are often answered by myself,

Jeroen van der Zijp (the developer of FOX), or one of the other longtime

members of the FXRuby community.

1.1 What’s in This Book?

The purpose of this book is to give you a head start on developing GUI

applications with Ruby and FXRuby through a combination of tutorial

exercises and focused technical information.

WHO IS THIS BOOK FOR? 14

This isn’t a comprehensive book on FXRuby programming, and it’s not

a reference manual.1 A nearly complete reference manual is available,

and it’s included with the standard FXRuby distribution. What this

book will do is get you over the initial conceptual hurdles and equip

you with the practical information that you need to build your own

applications.

1.2 Who Is This Book For?

This book is for software developers who want to learn how to develop

GUI applications using the Ruby programming language. If you’re new

to Ruby programming in general, you should understand that while

we’ll highlight certain Ruby programming techniques along the way,

this book isn’t intended to teach you how to program in Ruby. You don’t

need to be a Ruby guru, but it is important that you’re comfortable with

programming in Ruby, and object-oriented programming concepts in

general, before diving in.

Having said that, it’s not necessary for you to have any prior experience

with GUI programming to read this book. As new topics are introduced,

we’ll take the time to explain how they fit into the bigger picture and

how they might relate to things you’ve encountered in other contexts.

If you do have some previous experience with GUI application devel-

opment, you’ll be able to use this book to quickly identify similarities

and differences between this and other GUI toolkits that you’ve used in

the past. Regardless of your experience level, this book will provide a

means for you to get over the initial “hump” and learn the fundamen-

tals that you need to understand so that you can move on to developing

powerful user interfaces for your applications.

1.3 How to Read This Book

The first part of this book starts with installation instructions and then

moves on to an extended example, in which we incrementally build up

a full-fledged FXRuby application. This is the place to start if you’re

looking to get a feel for FXRuby programming. In fact, most folks seem

to enjoy building the application along with the book.

1. Let’s face it, you don’t have time to read a book that long, what with all of those books

about Rails that you haven’t gotten around to reading yet.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=14

WHERE TO GET HELP 15

If you don’t want to do all of that typing, you can cheat and download

the source code (a compressed tar archive or a zip file).2

In the second part of the book, we’ll revisit some of the topics that

we covered while developing the example application, and we’ll go into

more detail about why things work the way they do. We’ll also cover

some additional topics that wouldn’t have fit neatly into the example

application but that are still important for you to be familiar with.

Along the way, you’ll see various conventions we’ve adopted.

Live Code

Most of the code snippets we show come from full-length, running

examples that you can download. To help you find your way, if a

code listing can be found in the download, there’ll be a bar above

the snippet (just like the one here):

Download hello.rb

require 'fox16'

app = Fox::FXApp.new

main = Fox::FXMainWindow.new(app, "Hello, World!",

:width => 200, :height => 100)

app.create

main.show(Fox::PLACEMENT_SCREEN)

app.run

This contains the path to the code within the download. If you

are reading the PDF version of this book and your PDF viewer

supports hyperlinks, you can click the bar, and the code should

appear in a browser window. Some browsers (such as Safari) will

mistakenly try to interpret some of the templates as HTML. If this

happens, view the source of the page to see the real source code.

1.4 Where to Get Help

The best places to get help on FXRuby (other than this book, of course)

are the mailing lists and the various sources of online documentation.

Mailing Lists

Two different mailing lists are dedicated to FXRuby. The announce-

ments list is a very low-traffic list that’s primarily used to notify users

2. http://www.pragprog.com/titles/fxruby has the links for the downloads.

http://media.pragprog.com/titles/fxruby/code/hello.rb
http://www.pragprog.com/titles/fxruby
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=15

WHERE TO GET HELP 16

of new releases of FXRuby, while the users list is a higher-traffic list

where general discussion of FXRuby programming issues takes place.

You can find instructions on how to subscribe to these lists, as well as

the mailing list archives, at the RubyForge project page for FXRuby.3

In addition to the FXRuby lists, you may find it valuable to subscribe to

the regular FOX users mailing list. Many of the issues you’ll encounter

when developing FXRuby applications are the same as those faced by

developers working with the FOX library for C++ GUI applications. For

instructions on how to subscribe to the FOX users mailing list and for

archives of that list, see the SourceForge project page for FOX.4

Online Documentation

Despite rumors to the contrary, there is actually a good deal of online

documentation for both FOX and FXRuby, if you know where to look

for it.

FOX Documentation Page

The Documentation page at the FOX website has a number of articles

with in-depth information on topics such as layout managers, icons

and images, fonts, and drag and drop.5 These articles tend to have

more hard-core technical details and are of course aimed at users of

the C++ library, so they aren’t necessarily appropriate for beginning

users of FXRuby. Once you’ve finished this book, however, you may

want to turn to these articles to obtain a deeper understanding of some

of the mechanics of FOX programming.

FOX Community Wiki

The FOX Community6 is a wiki written by and for FOX developers. It

features an extended FAQ list, and it’s a great source of tutorials and

other kinds of documentation. A lot of the sample code is geared toward

C++ developers who use FOX in their applications, but most of the

information there is also relevant to FXRuby application development.

3. http://rubyforge.org/mail/?group_id=300

4. http://sourceforge.net/mail/?group_id=3372

5. http://www.fox-toolkit.org/doc.html

6. http://www.fox-toolkit.net/

http://rubyforge.org/mail/?group_id=300
http://sourceforge.net/mail/?group_id=3372
http://www.fox-toolkit.org/doc.html
http://www.fox-toolkit.net/
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=16

WHERE TO GET HELP 17

FXRuby User’s Guide

The FXRuby User’s Guide7 is really a hodgepodge of information about

FXRuby, but it does provide fairly comprehensive information on how to

install FXRuby. It also provides tutorials on working with the clipboard

and how to integrate drag and drop into your FXRuby applications.

API Documentation

As you (probably) knew before you bought this book, it’s not a refer-

ence manual. The API documentation for FXRuby is fairly comprehen-

sive and freely available, so there’s no point in trying to duplicate that

material here. To view the latest and most accurate API documentation,

point your web browser to the copy hosted at the FXRuby website.8 If

you installed FXRuby via RubyGems, you should have a local copy of

the documentation as well. To view the HTML documentation that RDoc

generated when you installed the gem, first start the gem server:

$ gem_server

[2007-05-09 17:18:04] INFO WEBrick 1.3.1

[2007-05-09 17:18:04] INFO ruby 1.8.6 (2007-03-13) [i686-darwin8.8.1]

[2007-05-09 17:18:04] INFO WEBrick::HTTPServer#start: pid=427 port=8808

Now, point your web browser to http://localhost:8808/. Scroll through the

listing of installed gems until you find the entry for FXRuby, and then

click the [rdoc] link to view the documentation.

Another nifty trick you can use to look up information about an FXRuby

class or one of its methods is to ask the ri command-line tool:

$ ri Fox::FXCheckButton#checked?

------------------------------------ Fox::FXCheckButton#checked?

checked?()

--

Return +true+ if this check button is in the checked state.

The ri command is awfully convenient and is of course usable for any

Ruby libraries that you’ve installed, including the core and standard

library classes and methods. If you installed FXRuby using RubyGems,

it should have automatically generated and installed the ri documenta-

tion for FXRuby at that time. If you installed FXRuby directly from the

source tarball, or via some other means, you may need to generate and

install the ri documentation yourself before you can successfully use

the ri command to look up the FXRuby documentation.

7. http://www.fxruby.org/doc/book.html

8. http://www.fxruby.org/doc/api/

http://localhost:8808/
http://www.fxruby.org/doc/book.html
http://www.fxruby.org/doc/api/
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=17

A WORD ABOUT VERSIONS 18

Regardless, if for some reason ri isn’t properly installed on your system,

do yourself a favor and get it working!

1.5 A Word About Versions

The discussion and examples in this book are based on FXRuby 1.6,

the current release at the time this book was written.

Generally speaking, it’s in your best interest to use the latest available

versions of FOX and FXRuby, because those versions will have the lat-

est bug fixes and enhancements. Note, however, that the major version

number for a given FXRuby release indicates the major version number

of the FOX release that it’s compatible with; for example, FXRuby 1.6

is intended for use with FOX 1.6. This is important because the latest

release of FOX is often tagged as an unstable or “development” release,

and those versions aren’t guaranteed to work with the latest release of

FXRuby.

Now that we’ve got that squared away, let’s get started!

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=18

Part I

Building an FXRuby Application

Chapter 2

Getting Started with FXRuby
This chapter is your jump start to FXRuby application development.

We’ll spend a few pages looking at FXRuby and how it works with FOX

before moving on to instructions for installing FXRuby on several of the

most popular operating systems. We’ll wrap up the chapter by building

a simple “Hello, World!” application so you can learn how FXRuby appli-

cations are typically structured and verify that the software is properly

installed.

FXRuby is packaged as an extension module for Ruby. That means

that it’s a C++ library that the Ruby interpreter loads at runtime, intro-

ducing a bunch of new Ruby classes and constants in the process.

Figure 2.1, on the following page, illustrates the relationship between

your application code (written in Ruby), the FXRuby extension, the

FOX library, and the operating system. From the application devel-

oper’s perspective, FXRuby looks like any other “pure Ruby” library

that you might use; the difference is that this library’s source code isn’t

actually written in Ruby.1 FXRuby exposes all the functionality of the

FOX library, but it’s more than just a simple “wrapper” around the API.

FXRuby takes advantage of Ruby language features and uses them to

provide an even higher-level interface to FOX. For example, it’s some-

what tedious to write all the C++ code required to map user interface

events to executable code in traditional FOX applications. In FXRuby,

you’re able to connect a Ruby block directly to a widget with just a few

lines of code.

1. Actually, a good bit of FXRuby is written in Ruby, but that doesn’t change how you

use it.

CHAPTER 2. GETTING STARTED WITH FXRUBY 21

Operating System

Your Application

FXRuby

FOX

Figure 2.1: Relationship between the operating system, FOX, FXRuby,

and your Ruby application

When I first started working on FXRuby, there weren’t a lot of options

in terms of cross-platform GUI development for Ruby, other than the

built-in support for Tk. Today, the situation is quite different. If you’re

looking for a cross-platform GUI, there are mature and well-supported

Ruby bindings for GTK+ and Qt, and bindings for other popular GUIs

such as wxWidgets and FLTK are under development. Given such a

wide selection, it’s pretty common for someone to post a question to the

Ruby-Talk mailing list asking which GUI is The Best One™.

Just like the questions of which is the best editor, operating system, or

programming language, the question of which GUI is the “best” depends

on what you’re looking for. Instead of trying to talk you out of any

particular choice, I encourage you to at least experiment with all the

options that you think might be appropriate for your needs. You’ll want

to keep in mind a few major points as you try to decide, however.

For starters, there are a lot of things that you can do with FOX and

FXRuby. If you want to put together a simple GUI front-end for a

command-line tool, FXRuby certainly fits the bill. Since FOX provides

support for all the standard kinds of user interface elements like labels,

buttons, and text fields, it’s also a great choice for developing straight-

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=21

CHAPTER 2. GETTING STARTED WITH FXRUBY 22

forward forms-based GUIs. It’s FOX’s advanced functionality that really

sets it apart from some of its competitors, however. FOX’s extensive

support for the display and manipulation of image data makes it ideal

for developing visually rich user interfaces, and thanks to its sophisti-

cated support for OpenGL, FOX has also become a popular choice for

applications that require 3-D visualization functionality.

Another characteristic that’s important to consider is whether a GUI

uses lightweight or heavyweight widgets, as well as which of those you

prefer. FOX uses lightweight (or non-native) widgets. What this means Some people use the

terms “native” and

“non-native” widgets to

describe this difference,

but they’re talking about

the same basic issue.

is that a FOX-based application relies on only the very basic capabilities

of the platform that it’s running on to create the user interface, instead

of providing wrapper classes and methods around existing widgets. This

approach has several advantages:

• Since FOX defines the behavior of the widgets that it creates,

rather than relying on the native widgets’ behaviors, that behavior

is consistent across platforms.

• Since FOX draws it own widgets, your application will look the

same regardless of which platform it’s running on.2

• Since FOX was designed from the start to be highly object-oriented

and extensible, you have a lot more flexibility in terms of subclass-

ing existing FOX widgets to create your own application-specific

widgets. A good deal of this flexibility is lost when you’re using a

GUI library that is a wrapper around some other legacy toolkit.

• Since FOX reduces the number of layers of code that you must go

through, FOX-based applications tend to be more performant and

responsive.

Last, but not least, is the question of how a particular GUI library is

licensed. For example, some GUI libraries require you to purchase a

commercial development license if you want to use them to develop

proprietary (closed-source) applications. FOX and FXRuby are both

licensed under the relatively permissive Lesser GNU Public License

(LGPL),3 which permits the use of those libraries in both free and pro-

prietary (commercial) software applications.

Now, let’s get started by installing FXRuby and then using it to develop

a simple “Hello, World!” program.

2. Some people consider this a disadvantage of using lightweight widgets.
3. http://www.gnu.org/licenses/lgpl.html

http://www.gnu.org/licenses/lgpl.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=22

INSTALLING FXRUBY 23

2.1 Installing FXRuby

Installing FXRuby is a bit more challenging than installing other Ruby

libraries, because it’s written in C++ and must therefore be compiled

into a shared library that the Ruby interpreter can load at runtime. It’s

further complicated by the fact that there are several dependencies to

account for, including the FOX library on which FXRuby is based, as

well as the third-party libraries that provide support for various image

file formats.

The good news is that if you’re installing FXRuby on Windows or Mac

OS X, the installation is pretty painless. If you’re installing FXRuby on

Linux, you’ll have a little more work to do, but the steps are pretty easy

to follow, and you can count on support from the FOX and FXRuby

community for any installation problems that may arise.

The following sections provide some basic instructions on how to get

FXRuby installed on the most common operating systems. For some of

the more exceptional situations, we’ll defer to the online documentation

for FOX and FXRuby, which has the most complete and up-to-date

information on installation issues:

• For comprehensive instructions on installing the FOX library, see

the installation instructions at the FOX website.4

• For comprehensive instructions on installing FXRuby, see the in-

structions in the FXRuby User’s Guide.5

Installing on Windows

If you used the One-Click Installer for Ruby on Windows,6 you should

already have a version of FXRuby installed. However, since the version

of FXRuby that’s included with the one-click installer sometimes lags

behind the latest released version, you should attempt an update using

the gemupdate command:

C:\> gem update fxruby

If you’ve installed Ruby by some other means, you’re going to need to

compile both FOX and FXRuby by hand. If you’re using a Unix-like

environment for Windows, such as Cygwin or MinGW, you should be

able to follow the instructions in Section 2.1, Installing on Linux, on the

4. http://www.fox-toolkit.org/install.html

5. http://www.fxruby.org/doc/build.html

6. http://rubyinstaller.rubyforge.org/wiki/wiki.pl

http://www.fox-toolkit.org/install.html
http://www.fxruby.org/doc/build.html
http://rubyinstaller.rubyforge.org/wiki/wiki.pl
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=23

INSTALLING FXRUBY 24

next page, to complete this task. If you’re using Microsoft’s (or some

other vendor’s) development tools, your best bet is to refer to the online

documentation mentioned at the beginning of this chapter.

Installing on Mac OS X

The easiest way to install FOX and FXRuby on Mac OS X is to use

MacPorts:7

$ sudo port install rb-fxruby

If you’d prefer to install FXRuby via some other means, such as the

source gem, you should at least consider using MacPorts to install its

dependencies (such as FOX and the libraries for manipulating JPEG,

PNG, and TIFF images).

If you’re unable to install the software via MacPorts, you can always

just build it using the installation process described in Section 2.1,

Installing on Linux.

Installing on Linux

Getting FOX and FXRuby working on Linux can be a time-consuming

process. You may get lucky: some of the more recent Linux distribu-

tions include packages for FOX and/or FXRuby. When that’s the case,

I strongly recommend you use those packages to avoid some of the

inevitable headaches associated with tracking down dependencies and

building those by hand. For example, if you’re running Ubuntu Linux8

and have enabled the “universe” component of the Ubuntu software

repository, you should be able to install FOX directly from the libfox-1.6-

dev package:

$ sudo apt-get install libfox-1.6-dev

Since Ubuntu Linux doesn’t provide a package for FXRuby, you’ll need

to install it from the gem, as described later in this section.

If you’re using a Linux distribution that doesn’t yet include FOX or

FXRuby as a standard installation package, you’ll need to look for third-

party packages or (worst case) build them from the source code. In that

case, first download the distribution for the latest release in the FOX

1.6 series from the FOX downloads site.9

7. http://www.macports.org/

8. http://www.ubuntu.com/

9. http://www.fox-toolkit.org/download.html

http://www.macports.org/
http://www.ubuntu.com/
http://www.fox-toolkit.org/download.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=24

INSTANT GRATIFICATION 25

The distribution will have a filename like fox-1.6.29.tar.gz. Use the tar

command to unpack the distribution:

$ tar xzf fox-1.6.29.tar.gz

This action will create a directory named fox-1.6.29. Change to that direc-

tory and then use the standard configure, make, make install sequence to

build and install FOX:

$ cd fox-1.6.29

$./configure

«output of "configure" command»

$ make

«output of "make" command»

$ sudo make install

«output of "make install" command»

Now that you’ve built and installed FOX, you’re ready to install FXRuby.

The most straightforward method is to use the gem install command to

fetch the gem from the remote gem repository hosted at RubyForge:

$ sudo gem install fxruby --remote

Bulk updating Gem source index for: http://gems.rubyforge.org

Building native extensions. This could take a while...

As the message indicates, this process can take some time to complete.

2.2 Instant Gratification

Now that you have FXRuby installed and working on your development

system, we’ll move on to the fun part. We’ll start with a simple FXRuby

application in this section to get your feet wet, and then we’ll move on

to a more complicated example in the following chapters that will teach

you a lot about how to structure real-world FXRuby applications.

“Hello, World!”

In the time-honored tradition of programming books throughout his-

tory, we’ll start out with the FXRuby version of “Hello, World!” Let’s

begin with the absolute bare minimum and make sure that it works.

Create a new file in your editor of choice, and write the first line of your

very first FXRuby program:

Download hello.rb

require 'fox16'

http://media.pragprog.com/titles/fxruby/code/hello.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=25

INSTANT GRATIFICATION 26

Setting Up the RubyGems Environment

If you’ve installed FXRuby using RubyGems, the example pro-
grams in this book may not work properly unless you’ve told
Ruby to automatically load the RubyGems runtime and use the
libraries stored in the RubyGems repository. There’s a discussion
of the various options in the RubyGems Users Guide at http://

rubygems.org/read/chapter/3; I personally prefer to set the RUBY-

OPT environment variable as described in that discussion.

Note that if you’re running Ruby 1.9.0 or later, the RubyGems
runtime is fully integrated with the Ruby interpreter, so these
sorts of precautions aren’t necessary.

Feels good already, doesn’t it? This imports the Fox module and all of

its contents into the Ruby interpreter. The feature name (the string you

pass to require()) is “fox16” because we want to use FXRuby version 1.6,

and not one of the earlier versions.

Now, it’s only a one-line program so far, but humor me: save this file as

hello.rb, and go ahead and try to run it now:

$ ruby hello.rb

If Ruby churns for a few seconds and then quietly returns to the com-

mand prompt, you’re good to go. That’s all that the program should

do if FXRuby is installed correctly. If, on the other hand, you see one

or more error messages, stop right there and figure out what’s wrong,

because nothing past this point matters if you don’t have a working

installation.10 One common problem that crops up at runtime has to

do with the setup of the RubyGems environment; see the sidebar on

the current page for more information on that issue.

10. As mentioned in the previous chapter, there are some useful hints in the FXRuby

User’s Guide about things that sometimes go wrong when you install FXRuby, especially

when you’re building it from the source code. See http://www.fxruby.org/doc/build.html for

more details.

http://rubygems.org/read/chapter/3
http://rubygems.org/read/chapter/3
http://www.fxruby.org/doc/build.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=26

INSTANT GRATIFICATION 27

Next, construct an instance of the FXApp class, which is defined in the

Fox module:

Download hello.rb

app = Fox::FXApp.new

FXApp is short for “application.” The application object is responsible for

the event loop, as well as a lot of work behind the scenes in an FXRuby

program. It’s the glue that holds everything together. For now, though,

it’s enough to know that every FXRuby program that you write will need

to construct an FXApp object.

The example application needs a main window, so let’s add one of those

next:

Download hello.rb

main = Fox::FXMainWindow.new(app, "Hello, World!",

:width => 200, :height => 100)

Now you see one of the many uses for the FXApp object. By passing it

in as the first argument to FXMainWindow.new(), you’re saying that your

application (and not some other application) is responsible for the main

window. The second argument is the main window’s title and will be

displayed in the window’s title bar. You also specify the initial width

and height of the main window, in pixels. There’s more that you could

specify about the main window, but for now this will do.

Next, add a call to the create() method. This ensures that all the server-

side resources for your application get created. We’ll discuss this in

more detail later. For now, just know that this is another one of those

things that you’ll need to do in any FXRuby application:

Download hello.rb

app.create

Next, call show() on the main window with PLACEMENT_SCREEN to ensure

that it’s visible when the program starts running:

Download hello.rb

main.show(Fox::PLACEMENT_SCREEN)

The PLACEMENT_SCREEN placement hint is just a request that the window

be centered on the screen when it’s first shown.11

11. The API documentation for the FXTopWindow class (the base class for FXMainWindow)

lists some of the other placement hints that you can pass in to the show() method.

http://media.pragprog.com/titles/fxruby/code/hello.rb
http://media.pragprog.com/titles/fxruby/code/hello.rb
http://media.pragprog.com/titles/fxruby/code/hello.rb
http://media.pragprog.com/titles/fxruby/code/hello.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=27

INSTANT GRATIFICATION 28

Figure 2.2: “Hello, World!” on Windows

Finally, call run() on the FXApp object to kick off the main application

loop. Your complete program should look like this:

Download hello.rb

require 'fox16'

app = Fox::FXApp.new

main = Fox::FXMainWindow.new(app, "Hello, World!",

:width => 200, :height => 100)

app.create

main.show(Fox::PLACEMENT_SCREEN)

app.run

Now you can run the program as you would any typical Ruby program:

$ ruby hello.rb

Your result should look something like the window shown in Figure 2.2,

which is a screenshot of the program running in Windows.

Idiomatic FXRuby Programs

If I were going to write a new FXRuby program from scratch, that’s not

quite how I’d set it up. There are a few idioms that are fairly common

in FXRuby programs, and all the rest of the examples that you’ll see

in this book follow those. The first is that it’s common to include the

Fox module in Ruby’s global namespace so that you don’t have to use

the fully qualified names for FXRuby classes and constants throughout

your program.

http://media.pragprog.com/titles/fxruby/code/hello.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=28

INSTANT GRATIFICATION 29

With this change, hello.rb becomes a bit easier to read:

Download hello2.rb

require 'fox16'

include Fox

app = FXApp.new

main = FXMainWindow.new(app, "Hello, World!",

:width => 200, :height => 100)

app.create

main.show(PLACEMENT_SCREEN)

app.run

Generally speaking, this practice could lead to clashes between names

defined in the Fox module and names defined in other modules, but in

practice I’ve never seen this cause problems.

Another change you can make is to rethink the application’s main win-

dow as a subclass of FXMainWindow:

Download hello3.rb

require 'fox16'

include Fox

class HelloWindow < FXMainWindow

def initialize(app)

super(app, "Hello, World!", :width => 200, :height => 100)

end

def create

super

show(PLACEMENT_SCREEN)

end

end

app = FXApp.new

HelloWindow.new(app)

app.create

app.run

Take a minute or two to compare this iteration to the previous one, and

make sure you understand the changes. Note that everything that has

to do with our customization of the main window has been moved into

the HelloWindow subclass, including the fact that it calls show() on itself

after it has been created.

http://media.pragprog.com/titles/fxruby/code/hello2.rb
http://media.pragprog.com/titles/fxruby/code/hello3.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=29

INSTANT GRATIFICATION 30

This introductory program is so trivial that it’s overkill to take this step,

but as we’ll see in subsequent example programs, it becomes conve-

nient to focus the application control inside a custom main window

class like this.

As a final modification, move the FXApp and HelloWindow construction

into a start-up block:

Download hello4.rb

require 'fox16'

include Fox

class HelloWindow < FXMainWindow

def initialize(app)

super(app, "Hello, World!", :width => 200, :height => 100)

end

def create

super

show(PLACEMENT_SCREEN)

end

end

if __FILE__ == $0

FXApp.new do |app|

HelloWindow.new(app)

app.create

app.run

end

end

I also took advantage of this step to show how the block form of the

FXApp constructor works. This is something you can do with any FX-

Ruby class, when you want to do some additional initialization. None of

these refactorings has changed the basic operation of the program, but

they serve to demonstrate a typical structure for FXRuby programs.

It may not feel like it, but we’ve covered a lot of ground in this chapter.

We installed FXRuby and ensured that it’s working properly. We also

developed a simple but functional program to become familiar with the

basic pattern that every FXRuby application will follow. In the process

of a few refactorings, we saw that the classes that FXRuby provides can

be subclassed and customized just like any other Ruby class. Now that

we’ve gotten our feet wet, we’re ready to take on the development of a

much more complicated project that we’ll be building over the next few

chapters.

http://media.pragprog.com/titles/fxruby/code/hello4.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=30

Chapter 3

The Picture Book Application
Now that you’ve installed FXRuby and gotten an initial test program

working, it’s time to move on to something more challenging. For the

next few chapters, we’re going to be developing a photo library manager

application, Picture Book, using FXRuby.

One of the more difficult tasks in writing this book was deciding on

a sample application that I could use to demonstrate FXRuby devel-

opment. I am not a big fan of reinventing the wheel, and needless to

say, there are plenty of fine photo album applications available already.

The purpose of this exercise is not so much to achieve world domina-

tion by building the best-ever photos application but instead to learn

how to use the tools that FXRuby provides to build a more complex GUI

application.1

3.1 What Picture Book Does

As noted in the introduction to this chapter, we’re aiming for an appli-

cation that will touch on a lot of the kinds of features that you’d want

to incorporate into your own applications, while keeping the overall

scope of the application in check. One of the most important things

you’ll learn as we work through this exercise is how to combine FOX’s

powerful layout managers, such as FXMatrix, FXSplitter, and FXSwitcher,

to create complex layouts. You’ll also get comfortable with subclassing

built-in widgets, such as FXList and FXImageFrame, to create customized,

application-specific views. Along the way, you’ll pick up tricks for using

1. We’ll get back to the whole world domination thing later if there’s time.

WHAT PICTURE BOOK DOES 32

Menu Bar

Album 1

Album 2

Album 3

...

Figure 3.1: User interface concept for Picture Book application

FOX’s image manipulation and display capabilities. By the time you’ve

completed the application, you’ll have a lot better sense of the kinds of

details and decisions that go into FXRuby application development.

But first things first. Let’s make some decisions about the basic func-

tionality of the Picture Book application. We’re looking for a program

that will let us organize a bunch of existing digital photos stored on

disk into one or more named albums. I’m imagining a user interface

like the mocked-up version that appears in Figure 3.1. When the pro-

gram starts up, you should see a list of the existing albums along the

left side of the main window, and if you select one of those albums, the

pane on the right side should display all the photos in that album.

Let’s stipulate that the user should be able to create new albums and

add photos to those albums. We’ll pass on some more advanced fea-

tures such as photo editing and sharing, although my hope is that by

the time you’ve finished reading this book, you’ll have some ideas about

how to implement those kinds of features as well.

One decision that we’ll need to make has to do with how the photos

are stored. One option is to leave the imported photos where they are

and just keep references to their locations on disk. An advantage of

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=32

APPLICATION DATA 33

this approach is that you can store your photo albums on devices that

may not always be present, such as external hard drives or DVDs. A

different option is to actually make copies of the imported photos and

stash those copies away in a location known only by the application.

The latter option (making copies of the imported photos) introduces

some complexity that, regardless of whether it is a better or worse

choice, doesn’t really tell us much about FXRuby application devel-

opment. So, we’ll go with the simpler choice and just keep up with the

paths to existing photo files on disk.

3.2 Application Data

Now that we’ve sketched out some of the preliminary requirements for

the application, we need to consider what kinds of data structures we’re

talking about. We’re going to (loosely) adopt a Model-View-Controller2

(MVC) style of architecture for the Picture Book application, which

simply means the domain-specific data (namely, photos, albums, and

album lists) are represented by one set of classes while the user inter-

face elements (the photo, album, and album list views) are represented

by a different set of classes. This approach solves a number of prob-

lems that software developers run into when the application data and

user interface are too tightly coupled. We’ll be using a slightly modi-

fied version of the traditional MVC pattern, in that the user interface

components will handle both the view and controller aspects of the

architecture.

We’ll introduce the model classes (the M in MVC) here, since they’re

fairly straightforward and they won’t change much during the develop-

ment of the application. We’ll talk more about the view classes starting

in the next chapter; they are more complicated, and as you will see,

they will change a good bit as we develop successive iterations of the

application.

Let’s start by looking at a single photo. We know that it will need to

hold a reference to a file on disk, so we should store the path to that

file. There may be more that we want to say about a photo later, but

let’s just go with that for now.

2. See http://en.wikipedia.org/wiki/Model-view-controller for more information on the MVC

architectural pattern.

http://en.wikipedia.org/wiki/Model-view-controller
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=33

APPLICATION DATA 34

Download picturebook_a/photo.rb

class Photo

attr_reader :path

def initialize(path)

@path = path

end

end

What do we want to say about an album? It should have a title, such

as “Beach Vacation 2007,” and should hold a collection of photos. It’s a

safe bet that we’ll need methods to add a photo to an album and iterate

over the photos in an album. We may need to say more about it later,

but here’s a first cut at the Album class:

Download picturebook_b/album.rb

class Album

attr_reader :title

def initialize(title)

@title = title

@photos = []

end

def add_photo(photo)

@photos << photo

end

def each_photo

@photos.each { |photo| yield photo }

end

end

Finally, we need a class for managing the list of albums. Following our

pattern for the Photo and Album classes, we’re going to start out with

a really basic AlbumList class and then add to it as needed. Our initial

implementation has methods for adding and removing albums, as well

as iterating over the albums in the list:

Download picturebook_e/album_list.rb

class AlbumList

def initialize

@albums = []

end

http://media.pragprog.com/titles/fxruby/code/picturebook_a/photo.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_b/album.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_list.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=34

LET’S CODE 35

def add_album(album)

@albums << album

end

def remove_album(album)

@albums.delete(album)

end

def each_album

@albums.each { |album| yield album }

end

end

Now that we’ve developed preliminary implementations of the three

model classes, we can move on to building the user interface itself.

Note that it’s not necessary to fully specify the model’s classes before

you begin developing the user interface, especially if you’re adopting an

iterative approach as we are for this application.

3.3 Let’s Code

Now that we have a basic idea of what we want the program to do

and what kinds of data we’re going to use as a model, you’re probably

itching to get to work on the first iteration of the user interface. We now

face the question of how to get started. What comes next?

There is no one right answer to this question. Over time, as you become

more and more familiar with FXRuby application development, you’ll

gain the confidence and skill you need to be able to dive into a new

application from scratch and quickly build up its functionality, if that’s

how you prefer to work. Personally, however, I like to start with the

simplest possible solution and then build on that toward the final goal.

For that reason, we’ll start by building a version of Picture Book that

does just one thing: display a single photo.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=35

Chapter 4

Take 1: Display a Single Photo
We’re going to start developing the Picture Book application as simply

as possible so that we can quickly get something working and see some

results. The first task, then, is to display a single photo. To do that,

we’re going to create our first view class, PhotoView, as a subclass of an

existing FXRuby widget. We’ll learn what sorts of issues are involved

in making sure that view classes are properly initialized and located in

the correct spot in the main window. We’ll also get an introduction to

FOX’s image display capabilities by way of the FXJPGImage class.

4.1 Get Something Running

By the end of the “Hello, World!” exercise in Chapter 1, we had estab-

lished what a basic FXRuby application looks like, so let’s create a

similar structure for the Picture Book application. Fire up your edi-

tor, and define a PictureBook class as a subclass of FXMainWindow. Your

code should resemble the following:

Download picturebook_a1/picturebook.rb

require 'fox16'

include Fox

class PictureBook < FXMainWindow

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

end

def create

super

show(PLACEMENT_SCREEN)

end

end

http://media.pragprog.com/titles/fxruby/code/picturebook_a1/picturebook.rb

CREATE THE VIEW 37

if __FILE__ == $0

FXApp.new do |app|

PictureBook.new(app)

app.create

app.run

end

end

Save this file as picturebook.rb, and then run it to make sure that every-

thing is working so far:

$ ruby picturebook.rb

You should see an empty main window, with the application name,

Picture Book, in the title bar. Even though we don’t expect the program

to do much of interest at this point, it provides us with some confidence

that our working environment is set up properly. Now let’s move on to

something a little more interesting.

4.2 Create the View

Now that the main window is in place, the next order of business is

to build the view for a single photo. We’re going to learn how to create

a custom view class as a subclass of one of FXRuby’s built-in widgets

and see how to place that widget inside the main window.

There are a number of different widgets in the FXRuby library that are

capable of displaying images, but for this exercise we’ll use FXImage-

Frame. The FXImageFrame widget is a simple widget whose sole purpose

is to display an FXImage object. It doesn’t really have any behavior other

than that. Your initial instinct might be to use an image frame directly

as the view, but as we’ll see shortly, subclassing FXImageFrame provides

us with a bit more flexibility in terms of providing application-specific

functionality.

Create a new document in your editor, and set up the definition for the

PhotoView class:

Download picturebook_a2/photo_view.rb

class PhotoView < FXImageFrame

def initialize(p, photo)

We'll add code here soon...

end

end

Take a look at the initialize() method for PhotoView. Since PhotoView is

a subclass of FXImageFrame, the very first thing we need to do inside

PhotoView’s initialize() method is call the base class initialize() method.

http://media.pragprog.com/titles/fxruby/code/picturebook_a2/photo_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=37

CREATE THE VIEW 38

Our initialize() method for the PhotoView class will use super() to invoke

the FXImageFrame implementation of initialize(). This is an important step

to remember whenever you subclass an FXRuby class to customize it:

be sure to invoke the base class initialize() method from your overridden

version. Some programming languages, like C++ and Java, will auto-

matically invoke a default base class constructor for you; Ruby is not

one of those languages!

Now, if you inspect the API documentation for the FXImageFrame class,1

you’ll see that the first two arguments for its initialize() method are

required arguments—there are no default values for them. The first

argument is the parent (container) widget for the image frame, and the

second is a reference to the image that it displays. For now, don’t worry

about all the other arguments that we could pass to initialize(); we’ll just

accept their default values.

By convention, the first argument to a widget’s initialize() method is the

parent widget, so let’s make the first argument to our initialize() for

PhotoView its parent. That way, we can just pass that first argument

through to super() as is. And since the purpose of PhotoView is to dis-

play a photo, we’d really like to pass in a Photo instance as the second

argument for initialize(). We can’t pass this along as the second argu-

ment to super(), though, because the FXImageFrame class doesn’t know

anything about our Photo class. In fact, according to the API documen-

tation, the FXImageFrame.new() method is expecting an FXImage object

instead. So, how do we get our hands on one of those FXImage objects?

Slow it down, there, sister. As it turns out, we can just pass in nil for

the image frame’s image. The only consequence of this decision is that

the image frame won’t have anything to display. We will correct that

problem in the next iteration. For now, modify the initialize() method for

PhotoView so that it looks like this:

Download picturebook_a2/photo_view.rb

class PhotoView < FXImageFrame

def initialize(p, photo)

super(p, nil)

end

end

Now we need to tie this back in to our main window. Return to pic-

turebook.rb, modify the initialize() method for PictureBook to create a Photo

object corresponding to some photo that you have lying around, and

1. http://www.fxruby.org/doc/api/classes/Fox/FXImageFrame.html

http://media.pragprog.com/titles/fxruby/code/picturebook_a2/photo_view.rb
http://www.fxruby.org/doc/api/classes/Fox/FXImageFrame.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=38

CREATE THE VIEW 39

then add a PhotoView for that photo. I’m using shoe.jpg, which is a pic-

ture of the shoe that my niece left behind the last time she visited us,

but any JPEG that you have handy should work. Your initialize() method

for PictureBook should look something like this:

Download picturebook_a2/picturebook.rb

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

photo = Photo.new("shoe.jpg")

photo_view = PhotoView.new(self, photo)

end

By passing in self as the first argument in the call to PhotoView.new,

we’re saying that the PictureBook object (our application’s main window)

is the parent for the PhotoView.

Don’t forget to add the necessary require() statements at the top of the

program so that Ruby can see the definitions of the Photo and PhotoView

classes. The entire listing should look like this:

Download picturebook_a2/picturebook.rb

require 'fox16'

include Fox

require 'photo'

require 'photo_view'

class PictureBook < FXMainWindow

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

photo = Photo.new("shoe.jpg")

photo_view = PhotoView.new(self, photo)

end

def create

super

show(PLACEMENT_SCREEN)

end

end

if __FILE__ == $0

FXApp.new do |app|

PictureBook.new(app)

app.create

app.run

end

end

http://media.pragprog.com/titles/fxruby/code/picturebook_a2/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_a2/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=39

CONSTRUCT AN IMAGE FROM A FILE 40

Run the program and see how things look so far:

$ ruby picturebook.rb

You will still see what appears to be an empty main window; that’s

because the image frame doesn’t yet have an FXImage to display. It’s

time to correct that problem.

4.3 Construct an Image from a File

FXRuby provides support for displaying many different kinds of image

data, including all the major formats, such as BMP, GIF, JPEG, PNG,

and TIFF. We’ll discuss this functionality in more detail in Chapter 11,

Creating Visually Rich User Interfaces, on page 142. For now, we’re

going to learn how to use FXRuby’s built-in FXJPGImage class to con-

struct an onscreen image directly from a JPEG file on disk and then

assign that image to an instance of our PhotoView class.

An image is represented by an instance of the FXImage class or, more

commonly, one of its subclasses, such as FXJPGImage. Let’s write some

code to load the image data from a file on disk and then build an

FXJPGImage object from it. Return in your editor to the PhotoView class,

and add the following method:

Download picturebook_a/photo_view.rb

def load_image(path)

File.open(path, "rb") do |io|

self.image = FXJPGImage.new(app, io.read)

end

end

The first line of load_image() uses the “transaction” form of open() to

ensure that the file is closed properly when we’re done with it. We pass

in path as the first argument to open(); this is just a string containing

the path to a file on disk, something like shoe.jpg. The second argument

to open() tells it that we’re opening the file for read and that the file

contains binary data. On some operating systems, you can safely leave

out the b specifier and the file will load properly, but on other operating

systems (namely, Windows) I’ve run into problems when I omitted it. To

be safe, always use both r and b when you’re dealing with image files.

Inside the block, we read the contents of the file and construct an

FXJPGImage instance from them. FXJPGImage is a subclass of FXImage

that knows how to display a JPEG image.

http://media.pragprog.com/titles/fxruby/code/picturebook_a/photo_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=40

CONSTRUCT AN IMAGE FROM A FILE 41

So, our load_image() method opens a named JPEG file, reads its con-

tents, and constructs an FXJPGImage object corresponding to the photo.

Obviously, if path refers to a GIF or some other kind of image file, this

is going to fail. To keep things simple, our program is going to restrict

itself to displaying JPEG images only, but for some ideas on how to

expand this and support other image types, see Chapter 11, Creating

Visually Rich User Interfaces, on page 142.

Careful reader that you are, you may be wondering about that app

parameter that we are passing in as the first argument to FXJPGImage.()

new(). Elsewhere in our program we’re constructing an FXApp object

and passing that into the PictureBook.new() method when we construct

the main window, but how does this instance method way down in the

PhotoView class know about all of that?

It turns out that every class representing an FXRuby widget inherits an

instance method named app() that returns a reference to the applica-

tion object. For historical reasons, it’s still necessary to pass a reference

to the application object into some methods (such as FXJPGImage.new()),

even though in practice you can construct only one FXApp instance per

FXRuby application.

Now take a closer look at the middle part of load_image(), where we

actually construct the FXJPGImage object. We’re assigning the newly cre-

ated object to self.image. What does self mean in this context, assuming

that load_image() is an instance method for the PhotoView class? That’s

right, self is just a reference to the PhotoView object. Now, our PhotoView

class doesn’t define an attribute named image, but its base class does.

So, this is how we tell the photo view which image it should display.

Before we forget, let’s add a call to load_image() from the photo view’s

initialize() method. Your PhotoView class should now look like this:

Download picturebook_a/photo_view.rb

class PhotoView < FXImageFrame

def initialize(p, photo)

super(p, nil)

load_image(photo.path)

end

def load_image(path)

File.open(path, "rb") do |io|

self.image = FXJPGImage.new(app, io.read)

end

end

end

http://media.pragprog.com/titles/fxruby/code/picturebook_a/photo_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=41

CONSTRUCT AN IMAGE FROM A FILE 42

Figure 4.1: Picture Book, displaying a single image

Finally, we should be able to see something really interesting. Run the

program and see what happens:

$ ruby picturebook.rb

Figure 4.1 shows what it looks like running under Windows. Note that

if your photo of choice is too large to fit inside the window, you’re going

to see only the upper-left portion of it. Don’t worry, we’re going to fix

that soon!

We’ve made some good progress in this chapter. Picture Book is all

about displaying photos, and so with just a little bit of code, we already

have the core functionality of the application in place. We’ve seen that

built-in widgets like FXImageFrame can be subclassed like any other

Ruby class to provide custom behavior. We’ve also learned how to use

the FXJPGImage class to construct an in-memory representation of a

JPEG photo on disk, in one line of code. There’s still plenty of work to

do, of course, because we’re able to display only one photo, and we’ve

hard-coded the path to that photo. In the next chapter, we’ll take some

steps to improve on that situation.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=42

Chapter 5

Take 2: Display an Entire Album
Maybe you don’t get out much, and you really just have that one spe-

cial photo you’re interested in seeing. If so, congratulations! You’re fin-

ished and can move on to developing some other FXRuby application.

If you’re not quite that discriminating, however, you probably have a

much larger library of photos to deal with. The next order of business,

then, is to upgrade Picture Book so that we can display an entire album

full of photos.

We eased our way into FXRuby development in the previous chapter,

but now it’s time to pick up the pace. We’re going to cover a lot of

ground in this chapter and learn a great deal about some key FXRuby

concepts. For example, an understanding of how layout managers work

together in constructing the user interface is critical if you want to

develop anything other than trivial user interfaces with FXRuby. We’ll

get an introduction to layout managers when we learn how to use the

FXMatrix and FXScrollWindow layout managers to tackle some layout chal-

lenges in Picture Book. In the previous chapter, we saw how easily we

could construct an image object from a file and then display it onscreen.

In this chapter, we’re learn a little bit more about FOX’s image manip-

ulation capabilities when we create thumbnails of the album’s photos.

We’re also going to learn how to add to our application a menu bar with

pull-down menus and how to implement the actions associated with

those menu commands. By the time you’ve completed this upgrade to

Picture Book, you’ll have a much better feel for how serious FXRuby

applications are built.

ADD ALBUM VIEW 44

5.1 Add Album View

FOX provides a number of special-purpose widgets known as layout

managers. The purpose of a layout manager is to automatically arrange

the sizes and placement of its child windows, according to some layout

policy that is unique to that layout manager. We’ll discuss several of

these layout managers in more detail in Chapter 12, Managing Layouts,

on page 159. In this section, we’ll get an introduction to the FXMatrix

layout manager.

To display all the photos in an album, we need some kind of view class

that’s capable of managing a number of PhotoView instances. There are

a lot of ways we could do this. For this example we’ll use the FXMatrix lay-

out manager, which lays out its child windows in rows and columns.1

So, our AlbumView class is derived from FXMatrix:

Download picturebook_b/album_view.rb

class AlbumView < FXMatrix

attr_reader :album

def initialize(p, album)

super(p, :opts => LAYOUT_FILL)

@album = album

end

end

The first argument to initialize() is the parent widget for the album view,

and the second argument is a reference to an Album object. As we

learned in the previous chapter, we need to be sure to call the base

class initialize() method whenever we subclass a widget from FXRuby.

Taking a look at the documentation for the FXMatrix class,2 the only

required argument for the base class initialize() method is the parent

widget, so at the least we need to be sure to pass that argument into

the call to super(). We’ll also pass in the LAYOUT_FILL layout hint, which

tells the matrix to be greedy and stretch to take up as much room as it

can. Otherwise, it will just take up as much room as it needs.

Next, we want to iterate over all the photos in the album and add them

to the view. Add the following line of code to the end of the initialize()

method for the AlbumView class:

1. We discuss the FXMatrix layout manager in detail in Section 12.2, Arranging Widgets

in Rows and Columns with a Matrix Layout, on page 172.
2. http://www.fxruby.org/doc/api/classes/Fox/FXMatrix.html

http://media.pragprog.com/titles/fxruby/code/picturebook_b/album_view.rb
http://www.fxruby.org/doc/api/classes/Fox/FXMatrix.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=44

ADD ALBUM VIEW 45

Download picturebook_b/album_view.rb

@album.each_photo { |photo| add_photo(photo) }

The add_photo() method for the AlbumView class looks like this:

Download picturebook_b/album_view.rb

def add_photo(photo)

PhotoView.new(self, photo)

end

Note that when we construct a PhotoView object, we’re again passing

in self as the first argument to PhotoView.new. This time, though, self

doesn’t refer to the main window, does it? No, now we’re creating these

photo views as children of the AlbumView window.

Speaking of that, we need to modify the initialize() method for PictureBook

so that it creates an Album and an AlbumView, instead of a PhotoView:

Download picturebook_b/picturebook.rb

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

@album = Album.new("My Photos")

@album.add_photo(Photo.new("shoe.jpg"))

@album.add_photo(Photo.new("oscar.jpg"))

@album_view = AlbumView.new(self, @album)

end

Don’t forget to add the necessary require statements to album_view.rb

and picturebook.rb so that the definitions of the Album, AlbumView, Photo,

and PhotoView classes are visible. Here’s what your copy of album_view.rb

should look like now:

Download picturebook_b/album_view.rb

require 'photo_view'

class AlbumView < FXMatrix

attr_reader :album

def initialize(p, album)

super(p, :opts => LAYOUT_FILL)

@album = album

@album.each_photo { |photo| add_photo(photo) }

end

def add_photo(photo)

PhotoView.new(self, photo)

end

end

http://media.pragprog.com/titles/fxruby/code/picturebook_b/album_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_b/album_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_b/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_b/album_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=45

ADD ALBUM VIEW 46

And here’s the updated version of picturebook.rb:

Download picturebook_b/picturebook.rb

require 'fox16'

include Fox

require 'album'

require 'album_view'

require 'photo'

class PictureBook < FXMainWindow

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

@album = Album.new("My Photos")

@album.add_photo(Photo.new("shoe.jpg"))

@album.add_photo(Photo.new("oscar.jpg"))

@album_view = AlbumView.new(self, @album)

end

def create

super

show(PLACEMENT_SCREEN)

end

end

if __FILE__ == $0

FXApp.new do |app|

PictureBook.new(app)

app.create

app.run

end

end

Run the program and see how things look so far:

$ ruby picturebook.rb

Figure 5.1, on the next page, shows what it looks like running on my

machine, but it looks like there’s a problem. Depending on the sizes

of the photos you’re trying to display, you may see it too. As the total

size of the album increases, we’re running out of space to display the

photos, and some of them are being partially (or completely) clipped.

Manually resizing the window may allow you to see a little more than

you can by default, but that’s obviously not going to work in general.

We’re going to make a couple of changes to address this problem, and

the first is to scale down the sizes of the images a bit.

http://media.pragprog.com/titles/fxruby/code/picturebook_b/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=46

DISPLAY IMAGES AS THUMBNAILS 47

Figure 5.1: Picture Book, displaying an album

5.2 Display Images as Thumbnails

In addition to simply displaying images, FOX provides support for a

number of different image manipulation effects. In this section, we’ll

learn how to use the scale() method from the FXImage API to scale down

the size of our imported photos.

The FXJPGImage class that we’re using to represent JPEG images is a

subclass of FXImage, and FXImage provides a number of really useful

APIs for manipulating images. To tackle the problem at hand, we’ll use

the image’s scale() method to shrink the image from its natural size

so that it fits more comfortably in the album view. Since the PhotoView

class is responsible for displaying the photo, all of the changes for this

iteration will be isolated to that class.

We want the resulting image to fit inside a given bounding box, while

maintaining its original aspect ratio. For the time being, let’s assume

that the dimensions of the bounding box are fixed and are defined by

the class constants MAX_WIDTH and MAX_HEIGHT:

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=47

DISPLAY IMAGES AS THUMBNAILS 48

Download picturebook_b/photo_view.rb

MAX_WIDTH = 200

MAX_HEIGHT = 200

The scaled-down width of the image thumbnail will be the lesser of its

original width or MAX_WIDTH. Similarly, the scaled-down height of the

thumbnail will be the lesser of its original height or MAX_HEIGHT. Let’s

add some helper methods to compute the scaled width and height of

the thumbnail:

Download picturebook_b/photo_view.rb

def scaled_width(width)

[width, MAX_WIDTH].min

end

def scaled_height(height)

[height, MAX_HEIGHT].min

end

Now we can write the code that actually performs the scaling. Let’s call

it scale_to_thumbnail():

Download picturebook_b/photo_view.rb

def scale_to_thumbnail

aspect_ratio = image.width.to_f/image.height

if image.width > image.height

image.scale(

scaled_width(image.width),

scaled_width(image.width)/aspect_ratio,

1

)

else

image.scale(

aspect_ratio*scaled_height(image.height),

scaled_height(image.height),

1

)

end

end

The aspect ratio is simply the ratio of the image’s width to its height,

but we need to consider two cases. If the image is wider than it is tall,

then we want to scale down the image’s width so that it fits inside the

bounding box and then adjust the height accordingly. On the other

hand, if the image is taller than it is wide, it’s the image height that is

the important dimension.

http://media.pragprog.com/titles/fxruby/code/picturebook_b/photo_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_b/photo_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_b/photo_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=48

DISPLAY IMAGES AS THUMBNAILS 49

Finally, we can add a call to our new scale_to_thumbnail() method at

the end of load_image(). So that you can see all these changes in con-

text, here’s the complete listing for our new-and-improved version of

PhotoView:

Download picturebook_b/photo_view.rb

class PhotoView < FXImageFrame

MAX_WIDTH = 200

MAX_HEIGHT = 200

def initialize(p, photo)

super(p, nil)

load_image(photo.path)

end

def load_image(path)

File.open(path, "rb") do |io|

self.image = FXJPGImage.new(app, io.read)

scale_to_thumbnail

end

end

def scaled_width(width)

[width, MAX_WIDTH].min

end

def scaled_height(height)

[height, MAX_HEIGHT].min

end

def scale_to_thumbnail

aspect_ratio = image.width.to_f/image.height

if image.width > image.height

image.scale(

scaled_width(image.width),

scaled_width(image.width)/aspect_ratio,

1

)

else

image.scale(

aspect_ratio*scaled_height(image.height),

scaled_height(image.height),

1

)

end

end

end

http://media.pragprog.com/titles/fxruby/code/picturebook_b/photo_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=49

IMPORT PHOTOS FROM FILES 50

Figure 5.2: Displaying images as thumbnails

If you run the program now, you should be able to see both photos, at

approximately the same size. Figure 5.2 shows what the top part of the

main window looks like when the program is running under Windows.

This looks so much better that it’s a shame we have only two photos to

show off. We know, of course, that we could programmatically add even

more photos by constructing additional Photo objects and adding them

to the album, but that’s not really an ideal solution. What we need to

do is give the user some means of selecting JPEG files from disk and

building up the album interactively. Let’s add that functionality next.

5.3 Import Photos from Files

So far, we’ve been manually constructing an Album and adding Photo

objects to it. This obviously isn’t going to work moving forward; we need

to be able to display a file selection dialog box, pick one or more photo

files, and create an album from that list. In this iteration, we’ll learn

about how the FXMenuBar, FXMenuPane, FXMenuTitle, and FXMenuCom-

mand classes can work together to outfit an application with a menu

bar with pull-down menus. We’ll see how to use the connect() method

to connect widgets such as FXMenuCommand buttons to blocks of Ruby

code. Finally, to provide the user with a means to select the files that

she wants to import into the album, we’ll display an FXFileDialog dialog

box and then retrieve the names of the selected files from it.

When Picture Book’s users start looking for a command to import pho-

tos, the first place they’ll want to look will be the File menu. We don’t

have one of those yet, so let’s add one now. To keep the initialize()

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=50

IMPORT PHOTOS FROM FILES 51

method for the PictureBook class as clean as possible, let’s put all the

code related to constructing the menu bar in a new instance method

named add_menu_bar(). The first thing that this method needs to do is

construct an FXMenuBar instance, as a child of the main window:

Download picturebook_c/picturebook.rb

def add_menu_bar

menu_bar = FXMenuBar.new(self, LAYOUT_SIDE_TOP|LAYOUT_FILL_X)

end

Since you’re an old pro at this point, you’ve already taken a look at

the API documentation for the FXMenuBar class by this point and seen

that there are actually two overloads for the initialize() method.3 We’ll

use the version that constructs a “nonfloatable” menu bar, and it has

two required arguments: the parent window (no surprise there) and

an options value. As an old pro, you also already know that the self

that we’re passing in as the menu bar’s parent refers to the PictureBook

window, since this is an instance method for the PictureBook class. The

LAYOUT_SIDE_TOP and LAYOUT_FILL_X layout hints tell FXRuby to place the

menu bar at the top of the main window’s content area and to stretch

it as wide as possible.

Next, we construct an FXMenuPane window, as a child of the FXMenuBar:

Download picturebook_c/picturebook.rb

file_menu = FXMenuPane.new(self)

The menu pane will hold all the commands for the File menu. A menu

pane is a kind of pop-up window, which means that it makes only brief

appearances in public. When it’s summoned, it “pops up.” You interact

with it by choosing a menu command, and then it “pops down” again.

You summon a menu pane by clicking the FXMenuTitle widget associated

with that menu pane.

Download picturebook_c/picturebook.rb

FXMenuTitle.new(menu_bar, "File", :popupMenu => file_menu)

This one is a little tricky. The FXMenuTitle is a child of the FXMenuBar,

but it also needs to know which menu pane it should display when it

is activated, so we pass that in as the :popupMenu argument. Now we

have a menu bar, as well as a File menu, so it’s time to add our first

command:

3. Ruby doesn’t actually support overloaded methods per se, at least not in the same

sense that some other programming languages implement overloaded methods. Ruby

does allow methods to inspect the types of incoming arguments, however, and this is how

FXRuby mimics the overloaded methods found in the standard FOX API.

http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=51

IMPORT PHOTOS FROM FILES 52

Download picturebook_c/picturebook.rb

import_cmd = FXMenuCommand.new(file_menu, "Import...")

import_cmd.connect(SEL_COMMAND) do

...

end

We create the FXMenuCommand object as a child of the menu pane. By

calling connect() on import_cmd, we’re associating a block of Ruby code

with that command. When the user selects the Import... command from

the File menu, we want to display a file selection dialog box. To make

that happen, here’s what should go inside the connect() block:

Download picturebook_c/picturebook.rb

dialog = FXFileDialog.new(self, "Import Photos")

dialog.selectMode = SELECTFILE_MULTIPLE

dialog.patternList = ["JPEG Images (*.jpg, *.jpeg)"]

if dialog.execute != 0

import_photos(dialog.filenames)

end

We start by constructing an FXFileDialog as a child of the main win-

dow, with the helpful title Import Photos. Next, we set the file selection

mode for this dialog box to SELECTFILE_MULTIPLE, which means the user is

allowed to pick any number of existing files for import. We also set the

pattern list for the dialog box so that it will display only those filenames

that end with the .jpg or .jpeg extension, since these are the only files

we’re interested in seeing anyway. Finally, we call execute() to display

the dialog box and wait for the user to select some files.

The execute() method for a dialog box returns a completion code of

either 0 or 1, depending on whether the user clicked Cancel to dis-

miss the dialog box or OK to accept the selected files. If the user clicked

Cancel, we don’t really need to do anything else for this command. Oth-

erwise, we want to call the as-yet nonexistent import_photos() method to

import the selected photos into our album. Let’s add that method to the

PictureBook class now:

Download picturebook_c/picturebook.rb

def import_photos(filenames)

filenames.each do |filename|

photo = Photo.new(filename)

@album.add_photo(photo)

@album_view.add_photo(photo)

end

@album_view.create

end

http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=52

IMPORT PHOTOS FROM FILES 53

The import_photos() method iterates over the filenames collected from

the FXFileDialog and adds a new photo to the AlbumView for each of

them. Note that since importing photos is now the preferred way to

get new ones into the album, you can remove those hard-coded calls to

add_photo() that we had in the initialize() method.

If you’re paying close attention, you may have noticed that call to the

album view’s create() method at the tail end of import_photos(). I hope

you noticed it, because as you’ll discover if you leave it out, you won’t

be able to see any of the newly imported photos unless it’s there.

We’ve run into the create() method before, back in the first chapter

when we were building our “Hello, World!” application. At that time, we

noted that calling create() ensures that all the server-side resources

for the application get created, and for now we’ll leave it at that and

kick that can a little farther down the street. We’re going to talk about

this topic in great detail later, in Section 7.7, Client-Side vs. Server-Side

Objects, on page 95.

But back to the task at hand. As long as we’re here, why don’t we add an

Exit command to the File menu? Add these lines to the add_menu_bar()

method, right after the code that sets up the Import... command:

Download picturebook_c/picturebook.rb

exit_cmd = FXMenuCommand.new(file_menu, "Exit")

exit_cmd.connect(SEL_COMMAND) do

exit

end

To complete this iteration, all we need to add is a call to add_menu_bar()

from the initialize() method. Your PictureBook class should look like this:

Download picturebook_c/picturebook.rb

require 'fox16'

include Fox

require 'album'

require 'album_view'

require 'photo'

class PictureBook < FXMainWindow

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

add_menu_bar

@album = Album.new("My Photos")

@album_view = AlbumView.new(self, @album)

end

http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_c/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=53

IMPORT PHOTOS FROM FILES 54

def add_menu_bar

menu_bar = FXMenuBar.new(self, LAYOUT_SIDE_TOP|LAYOUT_FILL_X)

file_menu = FXMenuPane.new(self)

FXMenuTitle.new(menu_bar, "File", :popupMenu => file_menu)

import_cmd = FXMenuCommand.new(file_menu, "Import...")

import_cmd.connect(SEL_COMMAND) do

dialog = FXFileDialog.new(self, "Import Photos")

dialog.selectMode = SELECTFILE_MULTIPLE

dialog.patternList = ["JPEG Images (*.jpg, *.jpeg)"]

if dialog.execute != 0

import_photos(dialog.filenames)

end

end

exit_cmd = FXMenuCommand.new(file_menu, "Exit")

exit_cmd.connect(SEL_COMMAND) do

exit

end

end

def import_photos(filenames)

filenames.each do |filename|

photo = Photo.new(filename)

@album.add_photo(photo)

@album_view.add_photo(photo)

end

@album_view.create

end

def create

super

show(PLACEMENT_SCREEN)

end

end

if __FILE__ == $0

FXApp.new do |app|

PictureBook.new(app)

app.create

app.run

end

end

Run the program at this point to see whether things are looking correct

so far. The album view should be empty when the program starts, but

you should be able to use the Import... command from the File menu to

choose some photos and add them to the album. Figure 5.3, on the fol-

lowing page, shows what the program looks like running on Windows,

after I imported a few photos into my album.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=54

DYNAMICALLY RECONFIGURE THE ALBUM VIEW 55

Figure 5.3: Now with menus

If you take a close look at the rightmost edge of the window, you’ll see

that the last photo is clipped. It’s not really even the last photo that I

imported; it’s just that the others are completely offscreen! It looks like

our newfound freedom to add as many photos as we want has caused

us to once again run out of room. We need to make a little change to

the AlbumView class to work around this problem.

5.4 Dynamically Reconfigure the Album View

The default configuration for the FXMatrix layout manager that we’re

using as the basis for our AlbumView class isn’t quite working for us: it’s

simply placing all the photos on a single row, one right after the other.

We’d prefer that it place as many photos as will comfortably fit on a

row and then use additional rows as needed to display the remaining

photos. To do that, we need to make a couple of changes.

The first change we need to make has to do with the overall layout algo-

rithm used by the FXMatrix layout manager. A matrix can be configured

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=55

DYNAMICALLY RECONFIGURE THE ALBUM VIEW 56

to lay out its children either with a fixed number of rows (the default

behavior) or with a fixed number of columns. Since we want to fix the

number of columns and let the number of rows vary, we need to pass in

the MATRIX_BY_COLUMNS option to the list of construction options for the

album view. Our modified version of initialize() for the AlbumView class

looks like this:

Download picturebook_d/album_view.rb

def initialize(p, album)

super(p, :opts => LAYOUT_FILL|MATRIX_BY_COLUMNS)

@album = album

@album.each_photo { |photo| add_photo(photo) }

end

Next, we need to determine how many columns the matrix should dis-

play. The problem is that the number depends on how much space

we have to work with and how many columns’ worth of photos we can

make fit. For example, if the album view window were 800 pixels wide

and the photos were each 200 pixels wide, we could fit about four pho-

tos on each row. However, if the window were resized so it became

narrower or wider, we’d need to reconsider.

To account for the fact that our desired number of columns depends

on the current width of the album view, we’ll override the album view’s

layout() method. Whenever the amount of screen “real estate” allocated

to a particular window changes, FOX ensures that that window’s lay-

out() method is called so that it can update the positions and sizes of

its child windows.4 We’re going to take advantage of this to recalculate

the number of columns for the matrix before it performs the layout.

Add the following method to the AlbumView class:

Download picturebook_d/album_view.rb

def layout

self.numColumns = [width/PhotoView::MAX_WIDTH, 1].max

super

end

The second line of our overridden version of layout() uses super to invoke

the base class version of layout(). As usual, that’s a step we don’t want

to overlook. But let’s focus on the first line, which is where we actually

assign the number of columns.

4. We’ll talk more about how layout managers work in Chapter 12, Managing Layouts,

on page 159.

http://media.pragprog.com/titles/fxruby/code/picturebook_d/album_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_d/album_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=56

DYNAMICALLY RECONFIGURE THE ALBUM VIEW 57

Starting with the expression on the right side of the assignment, width

refers to the width of the album view window in pixels. It may look

like we’re referring to a variable, but we’re actually calling a method on

the FXMatrix class that returns the window’s width. If you look for the

width() method in the API documentation, you’ll find that it’s actually

defined way up in the FXWindow class, from which FXMatrix and many

other FXRuby classes are derived.

The PhotoView::MAX_WIDTH reference lets us know the maximum possi-

ble width of a photo. Remember, the child windows for the album view

are just PhotoView instances. We divide the total width by the maxi-

mum possible width of a photo and assign the result to the matrix’s

numColumns attribute.5

Finally, on the off chance that the user shrinks the album view window

so that it’s actually narrower than PhotoView::MAX_WIDTH, we need to

protect ourselves from setting the number of columns to zero. If we

build a two-element array containing the number 1 and our calculation

for numColumns, we can then call the array’s max() method as shown

here to return the larger of the two values. This will ensure that we end

up with at least one column.

Let’s see whether our work has paid off. If you run the application

and import a bunch of photos, you should now see that when a row

in the album view gets too “full,” a new row is added. Figure 5.4, on

the following page, shows what the program looks like running on my

machine, with several photos in place. You should also be able to resize

the main window, to make it narrower or wider, and see that the num-

ber of columns in the album view changes dynamically depending on

how much space is available.

Unfortunately, this change solves only part of our problem. Before we

made this change, the photos that didn’t fit inside the album view were

spilling off the right edge of the window. Now, if you import too many

photos, you’ll see that the ones that don’t fit start spilling off the bottom

edge of the window. To address this problem, we need to enlist the help

of yet another layout manager.

5. Again, although I refer to numColumns as an attribute, we’re really just calling an

FXMatrix instance method named numColumns=().

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=57

MAKE THE ALBUM VIEW SCROLLABLE 58

Figure 5.4: Making the album resizable

5.5 Make the Album View Scrollable

We got an introduction to FOX’s layout managers when we decided to

use the FXMatrix layout manager as the basis for our AlbumView class.

In this section, we’ll take a look at another layout manager, the FXScroll-

Window, and see how to use it to solve our latest layout dilemma.

Sometimes, the content that you want to display inside a window is

simply too large to fit inside the viewable area for that window. For

example, many digital cameras are now capable of taking photographs

of such high resolution that they can’t be displayed in their true dimen-

sions on a typical computer monitor. When that’s the case, you have at

least a couple of options. One option is to somehow scale down the

dimensions of the content so that it fits inside the window. If the con-

tent doesn’t really lend itself to scaling, however, or if you’re afraid that

scaling down will cause you to lose some of the finer details of the con-

tent, another option is to place the content inside a scrolling window.

FOX provides for this latter option by way of the FXScrollArea and FXScroll-

Window classes. FXScrollWindow is a subclass of FXScrollArea, and in most

cases it’s the class that you’ll want to use when you need to provide

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=58

MAKE THE ALBUM VIEW SCROLLABLE 59

scrollable content windows in your applications. To apply this tech-

nique to the Picture Book application, we’re going to begin by modifying

our AlbumView class to make it a subclass of FXScrollWindow:

Download picturebook_e/album_view.rb

class AlbumView < FXScrollWindow

...

end

The next set of changes that we need to make involves the initialize()

method for AlbumView. A quick check of the API documentation for

FXScrollWindow6 reveals that its initialize() method has only one required

argument, and as was the case for the initialize() method for FXMatrix, that

argument is the parent window. We’re going to make one little change

to how we invoke the base class initialize() method, however. In addition

to the parent window, we’re going to pass in the LAYOUT_FILL layout hint

as one of our construction options:

Download picturebook_e/album_view.rb

def initialize(p, album)

super(p, :opts => LAYOUT_FILL)

...

end

You’ll learn all about layout managers and layout hints in Chapter 12,

Managing Layouts, on page 159. For now, it’s enough to know that this

layout hint tells FXRuby that we’d like the album view to stretch in the

horizontal and vertical directions in order to take up as much room as

possible.

Now that we’ve initialized the base class part of the album view, we

need to say what it is that we will be scrolling. An FXScrollWindow has a

single child window that is designated as its content window. For our

application, the FXMatrix instance is that content that we want to make

scrollable. So, the album view is now an FXScrollWindow, which contains

an FXMatrix, which in turn contains a bunch of PhotoView instances:

Download picturebook_e/album_view.rb

def initialize(p, album)

super(p, :opts => LAYOUT_FILL)

@album = album

FXMatrix.new(self, :opts => LAYOUT_FILL|MATRIX_BY_COLUMNS)

@album.each_photo { |photo| add_photo(photo) }

end

6. http://www.fxruby.org/doc/api/classes/Fox/FXScrollWindow.html

http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_view.rb
http://www.fxruby.org/doc/api/classes/Fox/FXScrollWindow.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=59

MAKE THE ALBUM VIEW SCROLLABLE 60

Figure 5.5: Making the album scrollable

Take a good look at this, and make sure you understand what’s going

on before you read ahead. What does it mean, for example, on the third

line when we pass in self as the argument to FXMatrix.new? What does

self refer to in this context? Are you beginning to understand what it

means for one window, like an FXMatrix window, to be a child window of

another window, like an FXScrollWindow?

The final changes to the AlbumView class for this iteration take place in

the add_photo() and layout() methods. First, here’s what the new and

improved version of add_photo() looks like:

Download picturebook_e/album_view.rb

def add_photo(photo)

PhotoView.new(contentWindow, photo)

end

The difference between this version of add_photo() and the previous ver-

sion is subtle. Instead of passing in self to PhotoView.new, we’re passing

in the result of the scroll window’s contentWindow() method. As I men-

tioned earlier, the content window for an FXScrollWindow is just the first

(and only) child window that you add to it—in this case, the FXMatrix

widget. So, we’re still constructing our PhotoView objects as children of

the FXMatrix object, even though it’s not as obvious as it was before.

http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=60

MAKE THE ALBUM VIEW SCROLLABLE 61

We need to make a similar change to the layout() method, since self no

longer refers to the matrix widget but rather the scroll window. Here’s

what the new version of layout() looks like:

Download picturebook_e/album_view.rb

def layout

contentWindow.numColumns = [width/PhotoView::MAX_WIDTH, 1].max

super

end

After you’ve made all of the modifications to the AlbumView class, it

should look something like this:

Download picturebook_e/album_view.rb

require 'photo_view'

class AlbumView < FXScrollWindow

attr_reader :album

def initialize(p, album)

super(p, :opts => LAYOUT_FILL)

@album = album

FXMatrix.new(self, :opts => LAYOUT_FILL|MATRIX_BY_COLUMNS)

@album.each_photo { |photo| add_photo(photo) }

end

def layout

contentWindow.numColumns = [width/PhotoView::MAX_WIDTH, 1].max

super

end

def add_photo(photo)

PhotoView.new(contentWindow, photo)

end

end

Now when you rerun the application, you should see a vertical scroll bar

appear on the right side of the window whenever the album contains

more photos than can be displayed onscreen. It should look something

like Figure 5.5, on the preceding page. Here, I’ve scrolled the album

down a bit so that I can see some of the additional photos in my album.

We’ve made a lot of progress in this chapter. We’ve taken our program

from a pretty rudimentary single-image viewer to an application that’s

able to load any number of photos from disk and display them as

thumbnails in a scrollable window. We’re still restricted to dumping

all our photos into the same album, however, and there are a number

of other issues that we need to address, so let’s press on.

http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_e/album_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=61

Chapter 6

Take 3: Manage Multiple Albums
We’ve made some really good progress over the past few chapters in

building up the foundation for the Picture Book application. By the

time you finish this chapter, you may feel like we’ve torn up all of our

previous work and started over from scratch. That won’t quite be the

case, but we will need to make some serious structural changes to the

application in order to keep track of multiple photo albums.

We’ll begin by creating a view that will allow us to display a listing of the

names of the albums in the album list and that will allow the user to

switch back and forth between albums to view the photos they contain.

Along the way, we’ll make a number of other changes as we continue to

push toward providing useful functionality.

As in the previous chapters, we’re going to continue to build on our

knowledge of FXRuby development as we extend the application. We’ll

begin by getting an introduction to the FXList widget when we use it

as the basis of our AlbumListView class. When we encounter some new

layout challenges, we’re going to turn to the FXSplitter and FXSwitcher

layout managers for help. We’ll use an FXInputDialog as a dead simple

way to collect information from the user. Perhaps most important, we’ll

get an introduction to FOX’s powerful GUI update mechanism when we

use it to automatically update the album view’s contents whenever the

user selects a new album from the list. So, let’s get back to work.

6.1 Create the Album List View

The first order of business is to think about the view for the album list

and how we might implement that. In this section, we’ll learn how to

use the FXList widget to display lists of items from which the user can

select.

CREATE THE ALBUM LIST VIEW 63

If you’ll let your mind wander back to the notional user interface that’s

pictured in Figure 3.1, on page 32, you’ll recall that we’re looking for

a simple listing of the album names to appear on the left side of the

window. As you’ll read later, in Chapter 9, Sorting Data with List and

Table Widgets, on page 115, FXRuby provides a number of kinds of

widgets for dealing with listlike data, so we have plenty of options to

choose from. Let’s go with the most obvious choice, which is the basic

FXList widget.

Create a new AlbumListView class as a subclass of FXList, and give it an

initialize() method that accepts arguments for the parent window, some

construction options, and an AlbumList instance:

Download picturebook_f/album_list_view.rb

class AlbumListView < FXList

attr_reader :album_list

def initialize(p, opts, album_list)

super(p, :opts => opts)

@album_list = album_list

end

end

Now we want to hop over to the PictureBook class, which implements the

main window, and add some code to its initialize() method to construct

an AlbumListView as a child of the main window. Note that since the

main window already has a couple of child windows—the album view

and the menu bar—this list view will be a “sibling” to those windows.

Here’s what the modified version of initialize() should look like:

Download picturebook_f/picturebook.rb

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

add_menu_bar

@album = Album.new("My Photos")

@album_list = AlbumList.new

@album_list.add_album(@album)

@album_list_view = AlbumListView.new(self,

LAYOUT_FILL_Y|LAYOUT_SIDE_LEFT, @album_list)

@album_view = AlbumView.new(self, @album)

end

http://media.pragprog.com/titles/fxruby/code/picturebook_f/album_list_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_f/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=63

CREATE THE ALBUM LIST VIEW 64

Figure 6.1: After adding list view

Don’t forget to add the necessary require statements to import the defi-

nitions for the AlbumList and AlbumListView classes:

Download picturebook_f/picturebook.rb

require 'album'

require 'album_list'

require 'album_list_view'

require 'album_view'

require 'photo'

Now let’s run the program and see how it looks. Figure 6.1 shows what

the top part of the main window looks like when the program is running

under Windows. Clearly, something has changed, but is that white strip

along the left side of the window supposed to be a list?

Part of the problem is that our list doesn’t actually have anything in it

yet. First, we’ll add a helper method for AlbumListView that appends a

new list item for a given album:

Download picturebook_f/album_list_view.rb

def add_album(album)

appendItem(album.title)

end

Now, let’s add some code to the initialize() method for AlbumListView so

that it iterates over all the albums in the album list and adds each of

them:

Download picturebook_f/album_list_view.rb

@album_list.each_album do |album|

add_album(album)

end

http://media.pragprog.com/titles/fxruby/code/picturebook_f/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_f/album_list_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_f/album_list_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=64

USE A SPLIT VIEW 65

Figure 6.2: Barely wide enough

Now run the program again. This time, the name of our single album

(creatively named “My Photos”) should appear in the list. The problem

now (as shown in Figure 6.2) is that the list is just barely wide enough

to display the entire album name. In fact, depending on the size of the

default font that FOX selects on your computer, the list may be too

narrow to display the album’s name, or it may be disproportionately

wide. The point is that you can’t really make any assumptions about

the default width of an empty list.

FOX does provide options for setting a fixed widget width, so we could

just pick some arbitrary width for the album list, and that would take

care of the problem—for now. Looking ahead, though, we might add

some albums with even longer names, which would then require us to

change the fixed width value for the list again. We could perhaps make

it so that the list dynamically resizes itself, becoming just wide enough

to hold the widest list item’s text, but that seems likely to become a

visual distraction. What we need is a layout that will allow the user to

dynamically resize the width of the list according to her own prefer-

ences. To do that, we’re going to use a splitter.

6.2 Use a Split View

FXSplitter is a layout manager that you can use to display user-resizable

windows. The FXSplitter is a special kind of layout manager that manages

two child windows. When it’s configured as a horizontal splitter, the two

child windows are side by side; when it’s a vertical splitter, one child

window is on top, and the other is on the bottom. We’re going to use

the horizontal flavor of FXSplitter.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=65

USE A SPLIT VIEW 66

PictureBook
(Main Window)

FXMenuBar FXSplitter

AlbumListView AlbumView

Figure 6.3: Layout hierarchy

Here’s the plan: we’re going to create a splitter window as a child of the

main window and then make the album list view and the album view

children of the splitter. Since the nesting of these windows is starting

to get deep, take a look at Figure 6.3 to see what’s taking place.

First, create the splitter as a child of the main window:

Download picturebook_g/picturebook.rb

splitter = FXSplitter.new(self,

:opts => SPLITTER_HORIZONTAL|LAYOUT_FILL)

Next, make the album list view and album view windows children of the

splitter:

Download picturebook_g/picturebook.rb

@album_list_view = AlbumListView.new(splitter,

LAYOUT_FILL, @album_list)

@album_view = AlbumView.new(splitter, @album)

Note that it’s no longer necessary to specify the LAYOUT_SIDE_LEFT hint

on the album list view. Since we’re adding the album list view first, it’s

automatically assigned to the left side of the split, and the album view

is assigned to the right side.

http://media.pragprog.com/titles/fxruby/code/picturebook_g/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_g/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=66

SWITCH BETWEEN ALBUMS 67

Here’s what the initialize() method for the PictureBook class looks like after

this set of changes:

Download picturebook_g/picturebook.rb

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

add_menu_bar

@album = Album.new("My Photos")

@album_list = AlbumList.new

@album_list.add_album(@album)

splitter = FXSplitter.new(self,

:opts => SPLITTER_HORIZONTAL|LAYOUT_FILL)

@album_list_view = AlbumListView.new(splitter,

LAYOUT_FILL, @album_list)

@album_view = AlbumView.new(splitter, @album)

end

Now when you run the program, if the mouse is on the edge between

the list and the album view, the mouse cursor should change its shape

to a set of vertical lines with arrows pointing outward. When the mouse

cursor is this shape, you can press the left mouse button to “grab” the

splitter, drag it left and right to resize the split, and then release the

mouse button.

6.3 Switch Between Albums

By now you should be getting pretty comfortable with the notion of lay-

out managers and how to use them to solve different kinds of layout

problems. We learned about the FXMatrix layout manager when we cre-

ated the album view, and in the previous section we learned how to use

an FXSplitter to manage windows that may need to be resized by the user.

In this section, we’re going to learn about yet another layout manager,

FXSwitcher.

When the user selects a new album from the album list, we want the

album view to update itself so that it shows the photos from the newly

selected album. One way to do this would be to first remove all the

PhotoView instances associated with the previously selected album and

then repopulate the AlbumView using the photos from the newly selected

album. This could certainly work; FOX is very efficient in terms of creat-

ing and destroying windows, and it’s likely that the user wouldn’t notice

much of a delay for switching back and forth between albums that con-

tained a relatively small number of photos. It’s not a very resource-

friendly solution, however, and for larger albums the time required to

http://media.pragprog.com/titles/fxruby/code/picturebook_g/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=67

SWITCH BETWEEN ALBUMS 68

reload all the image files and then create FXJPGImage objects for them

would be too great.

A better solution is to construct one AlbumView instance for every album

in the library and then use FOX’s FXSwitcher layout manager to quickly

switch back and forth between those album views. A switcher can con-

tain any number of child windows, but it displays only one of them at

a time. One way to think of it is as a deck of cards, where only the

topmost card is visible.1

We’re going to change our layout once again so that the right pane of the

FXSplitter contains an FXSwitcher. Then we’ll make the AlbumView window

a child of FXSwitcher. Figure 6.4, on the following page, shows the revised

parent-child hierarchy. The first step is to create the switcher as a child

of the splitter, where it will take over the spot previously held by the

album view:

Download picturebook_h/picturebook.rb

@switcher = FXSwitcher.new(splitter, :opts => LAYOUT_FILL)

Now modify the first argument in the call to AlbumView.new to make the

switcher the new parent of the album view:

Download picturebook_h/picturebook.rb

AlbumView.new(@switcher, @album)

Note that we no longer need to keep a reference to the single AlbumView

instance in @album_view. If we are going to be dealing with multiple

albums, we really need to start thinking in terms of operations on the

current album’s view. In fact, let’s code up a little convenience function

that asks the album list for the index of the currently selected album

and then returns the switcher child with the same index:

Download picturebook_h/picturebook.rb

def current_album_view

@switcher.childAtIndex(@switcher.current)

end

We can then piggyback off this to provide a current_album() method:

Download picturebook_h/picturebook.rb

def current_album

current_album_view.album

end

1. If you’ve ever used Java’s Swing toolkit, you’ll recognize this as FOX’s equivalent of

the CardLayout layout manager.

http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=68

SWITCH BETWEEN ALBUMS 69

PictureBook
(Main Window)

FXMenuBar FXSplitter

AlbumListView FXSwitcher

Album Views

Figure 6.4: Using a switcher

While we’re at it, modify the import_photos() method to ensure that it

always imports photos into the currently selected album:

Download picturebook_h/picturebook.rb

def import_photos(filenames)

filenames.each do |filename|

photo = Photo.new(filename)

current_album.add_photo(photo)

current_album_view.add_photo(photo)

end

current_album_view.create

end

We sure have been going to a lot of effort to make it possible to view

multiple photo albums. What do you say we finally get around to actu-

ally adding another album or two to the collection?

http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=69

ADD NEW ALBUMS 70

6.4 Add New Albums

In the previous chapter, you learned how to use one kind of dialog

box, the FXFileDialog, to provide the user with an interface to the file

system for selecting files. In this section, we’ll learn how to use the

FXInputDialog to collect a different sort of input from the user. We’ll also

get an introduction to FOX’s GUI update mechanism, a powerful and

useful way to keep the user interface in sync with the overall application

state.

Until this point, we’ve been dealing with only a single album, even

though we’ve been making a lot of changes to the code to accommo-

date multiple albums. Let’s head into the home stretch by adding a

new command to the File menu. Find your way to the add_menu_bar()

method, and set up the scaffolding for the New Album... command. You

know how:

Download picturebook_h/picturebook.rb

new_album_command = FXMenuCommand.new(file_menu, "New Album...")

new_album_command.connect(SEL_COMMAND) do

...

end

All we need to do is prompt the user for the name of the new album,

create a new album by that name, and add it to the album list and the

album list view. To get the name, we’re going to use the FXInputDialog

class:

Download picturebook_h/picturebook.rb

album_title =

FXInputDialog.getString("My Album", self, "New Album", "Name:")

If the user clicks the Cancel button, the getString() method will return

nil. Otherwise, getString() will return the new album’s title, and we can

use that to carry out the rest of the command:

Download picturebook_h/picturebook.rb

if album_title

album = Album.new(album_title)

@album_list.add_album(album)

@album_list_view.add_album(album)

AlbumView.new(@switcher, album)

end

http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=70

ADD NEW ALBUMS 71

The final product should look like this:

Download picturebook_h/picturebook.rb

new_album_command = FXMenuCommand.new(file_menu, "New Album...")

new_album_command.connect(SEL_COMMAND) do

album_title =

FXInputDialog.getString("My Album", self, "New Album", "Name:")

if album_title

album = Album.new(album_title)

@album_list.add_album(album)

@album_list_view.add_album(album)

AlbumView.new(@switcher, album)

end

end

If you run the program at this point and try adding an album, you

should see the new album’s name show up in the album list. If you

then click that item in the list, you might expect to see a fresh, empty

album show up in the album view. If that’s what you do and that’s what

you’re expecting, well, you’re going to be disappointed. That’s because

we haven’t told the switcher that you’ve selected a new item from the

album list—so far, there’s no connection there.

In many GUI toolkits, the way you’d address this problem is to go back

to the album list widget and write some code that reacts to the new list

selection by updating the switcher. You could do it that way in FXRuby,

too, but I’m going to show you a slightly different approach. We will

instead use FOX’s GUI update mechanism to let the switcher update

itself based on the list selection.

Jump back up to the initialize() method for PictureBook, and add this

block after the switcher creation:

Download picturebook_h/picturebook.rb

@switcher.connect(SEL_UPDATE) do

@switcher.current = @album_list_view.currentItem

end

By defining a SEL_UPDATE handler for the switcher, we’re telling FOX

how to update the state of the switcher whenever the state of the appli-

cation changes. The currently shown switcher item should reflect the

currently selected list item. This update handler is called for us auto-

matically. We’ll talk about the GUI update mechanism in more detail

in Section 7.4, Syncing the User Interface with the Application Data, on

page 91.

http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_h/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=71

SERIALIZE THE ALBUM LIST WITH YAML 72

Now we should have everything wired up properly. Let’s do a little

experiment. Start the program, and import a set of photos into the ini-

tial album. Now, add a new album to the list, and select that album.

The switcher should properly update itself and show you the new (and

empty) album. Import some photos into this album, and then confirm

that you can switch back and forth between the two. If you really feel

like going crazy, add another album or two. Maybe invite the neighbors

over to watch.

6.5 Serialize the Album List with YAML

In this final step, we’ll learn how to use Ruby’s YAML Ain’t Markup

Language (YAML) library to save the application data to a file and then

read that data back in when the program starts. Although this doesn’t

directly have much to do with FXRuby development, we’ll see that we

do need to make some changes to the application code to ensure that

the user interface is updated properly after new album data is loaded.

If you’ve been running the application along the way, you’ve probably

picked up on an annoyance. Every time the program starts, you’re pre-

sented with a blank slate, and you have to re-create the albums and

reimport your photos. We clearly need to make some provisions for per-

sisting the album list to disk when the program exits and then reloading

those albums when the program starts back up.

We could do this in several ways. If you’re coming from a Java program-

ming background, your first instinct may be to devise an XML schema

that describes the relationships between the album list, the albums,

and the photos contained therein. XML wouldn’t be the worst choice

you could make, and it is a well understood, human-readable way to

store structured data. Ruby’s standard library even includes REXML,

a great module for reading and writing XML documents. Despite its

popularity, however, XML is not always the best solution for every data

storage problem.

Another option is to store the information in a relational database. Once

again, Ruby provides excellent support for working with databases if

that makes sense for your application, but it feels like a pretty heavy-

weight solution for our current needs. Ruby’s standard library provides

support for two lightweight serialization schemes, by way of the Mar-

shal and YAML modules.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=72

SERIALIZE THE ALBUM LIST WITH YAML 73

I’m not a big fan of data that’s not human readable, and since Ruby’s

Marshal module stores its data in a proprietary binary format, we’ll

use a YAML file as our persistent store for the Picture Book application

data.

First, the easy part. Let’s write some code to save the contents of the

album list to a file. The store_album_list() method creates a file named

picturebook.yml and uses the YAML.dump method to write out the album

list data:

Download picturebook_i/picturebook.rb

def store_album_list

File.open("picturebook.yml", "w") do |io|

io.write(YAML.dump(@album_list))

end

end

We want this to happen when the user selects the Exit command from

the File menu, so let us modify the exit handler to add a call to store_()

album_list() before the call to exit():

Download picturebook_i/picturebook.rb

exit_cmd.connect(SEL_COMMAND) do

store_album_list

exit

end

Now, the tricky part. Obviously, the key thing we need to do is try to

load the saved album list file, if it exists. If it doesn’t exist, we’ll fall

back on our default behavior to this point and construct a new album

list with one album in it:

Download picturebook_i/picturebook.rb

begin

@album_list = YAML.load_file("picturebook.yml")

rescue

@album_list = AlbumList.new

@album_list.add_album(Album.new("My Photos"))

end

Don’t forget to add a require statement at the top of picturebook.rb to

import the YAML library:

Download picturebook_i/picturebook.rb

require 'yaml'

http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=73

SERIALIZE THE ALBUM LIST WITH YAML 74

Let’s factor the code related to populating the AlbumListView from the

album list’s contents out into an accessor method:

Download picturebook_i/album_list_view.rb

def album_list=(albums)

@album_list = albums

@album_list.each_album do |album|

add_album(album)

end

end

Whenever a new AlbumList instance is assigned to the AlbumListView, this

code will call add_album() for each album in the list. Now that this

accessor method is in place, we don’t really need to pass the album

list into the list view’s initialize() method, so let’s remove that parameter

from the argument list:

Download picturebook_i/album_list_view.rb

def initialize(p, opts)

super(p, :opts => opts)

end

We also need to modify the line in PictureBook where we actually con-

struct the AlbumListView and ensure that we no longer pass in the album

list to AlbumListView.new():

Download picturebook_i/picturebook.rb

@album_list_view = AlbumListView.new(splitter, LAYOUT_FILL)

Don’t forget to actually assign the album list to the view, though. Oth-

erwise, we’ll never actually see the contents of our albums:

Download picturebook_i/picturebook.rb

@album_list_view.album_list = @album_list

Now add a line to the add_album() method to create a new AlbumView at

the same time we’re adding the list item:

Download picturebook_i/album_list_view.rb

def add_album(album)

appendItem(album.title)

AlbumView.new(@switcher, album)

end

http://media.pragprog.com/titles/fxruby/code/picturebook_i/album_list_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/album_list_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/album_list_view.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=74

SERIALIZE THE ALBUM LIST WITH YAML 75

For this to work, we need a way to let the AlbumListView know about the

switcher:

Download picturebook_i/album_list_view.rb

def switcher=(sw)

@switcher = sw

end

Here’s what the new-and-improved version of AlbumListView looks like:

Download picturebook_i/album_list_view.rb

class AlbumListView < FXList

attr_accessor :album_list

def initialize(p, opts)

super(p, :opts => opts)

end

def album_list=(albums)

@album_list = albums

@album_list.each_album do |album|

add_album(album)

end

end

def switcher=(sw)

@switcher = sw

end

def add_album(album)

appendItem(album.title)

AlbumView.new(@switcher, album)

end

end

The last little pair of changes takes place in the initialize() method for

PictureBook. First, we set the switcher for the album list view:

Download picturebook_i/picturebook.rb

@album_list_view.switcher = @switcher

Finally, since assigning the album list to the album list view triggers

a call to add_album() for each album in the list and since our updated

version of add_album() creates an AlbumView corresponding to the newly

added album, we can (and should) remove the line from PictureBook’s

initialize() method that constructed a default AlbumView object.

http://media.pragprog.com/titles/fxruby/code/picturebook_i/album_list_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/album_list_view.rb
http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=75

SO, WHAT NOW? 76

Since the ordering of these lines in initialize() is important, here’s what

the final version of the initialize() method should look like:

Download picturebook_i/picturebook.rb

def initialize(app)

super(app, "Picture Book", :width => 600, :height => 400)

add_menu_bar

begin

@album_list = YAML.load_file("picturebook.yml")

rescue

@album_list = AlbumList.new

@album_list.add_album(Album.new("My Photos"))

end

splitter = FXSplitter.new(self,

:opts => SPLITTER_HORIZONTAL|LAYOUT_FILL)

@album_list_view = AlbumListView.new(splitter, LAYOUT_FILL)

@switcher = FXSwitcher.new(splitter, :opts => LAYOUT_FILL)

@switcher.connect(SEL_UPDATE) do

@switcher.current = @album_list_view.currentItem

end

@album_list_view.switcher = @switcher

@album_list_view.album_list = @album_list

end

At this point, you should be able to use Picture Book to create albums

and add photos to them without fear that all your work will be lost when

you exit the program. This is where we’re going to draw the line and stop

working on Picture Book, but before we move on to other topics, let’s

take a minute to think about some additional enhancements that you

might want to make after you’ve finished the book.

6.6 So, What Now?

Over the past three chapters, we’ve managed to substantially extend

the functionality of Picture Book with relatively few changes to the code

base. As you become more and more comfortable with FXRuby devel-

opment, you’re going to find that it’s a really flexible toolkit for building

up applications in this fashion.

The purpose of this exercise wasn’t so much to build a real-world appli-

cation as it was to give you a taste of what it’s like to develop applica-

tions with FXRuby and to introduce you to a lot of the techniques that

you will use in your own projects. Having said that, you could make a

number of enhancements to Picture Book.

http://media.pragprog.com/titles/fxruby/code/picturebook_i/picturebook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=76

SO, WHAT NOW? 77

For example, Picture Book currently supports only the import and dis-

play of JPEG images. In Chapter 11, Creating Visually Rich User Inter-

faces, on page 142, we’ll go into more detail about the various image

formats that FOX supports. Armed with that knowledge, you should be

able to extend Picture Book so that most any kind of image data could

be imported and displayed. You may also get some ideas about other

kinds of image manipulations that you’d like for your version of Picture

Book to support, such as cropping and rotating images.

Another limitation of Picture Book in its current form is that the size of

the image thumbnails is hard-coded to 200 pixels square. In Chapter 8,

Building Simple Widgets, on page 100, you’ll get an introduction to some

of the other kinds of widgets that you can build into the user interface

to get user input. You may decide that you want to use some of these

tools to allow the user to edit the thumbnail sizes, the photo or album

names, or some other kinds of application data.

Or consider the album list. Our organizational structure for that list

is a little inflexible, in that we can’t group together similar albums in

folders—it’s all one big flat list. In Chapter 9, Sorting Data with List

and Table Widgets, on page 115, we’ll look at (among other things) the

FXTreeList widget, which you could use to present a more deeply nested

sort of album list.

You’re not going to learn about every nook and cranny of FOX and

FXRuby from this book, but by the time you finish reading, you’ll have

a solid enough foundation to go out and investigate some of the even

more advanced features that the toolkit has to offer. As you work your

way through the rest of the book, and beyond, I hope you’ll be inspired

to return to Picture Book as a kind of test bed for trying the new things

that you learn about GUI development with FXRuby.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=77

Part II

FXRuby Fundamentals

Chapter 7

FXRuby Under the Hood
Now that we’ve worked our way through the creation of an entire appli-

cation from start to finish, it’s time to dig a bit deeper into how FXRuby

actually gets things done. Although you can certainly get by with a

superficial understanding of the FXRuby library, taking the time to

learn how FXRuby works under the hood can help you write more flex-

ible, maintainable, and efficient applications.

While we were building the Picture Book application, we learned how

to use the connect() method to associate a few user actions, such as

mouse clicks, with blocks of Ruby code. That functionality is built on

top of a powerful event-driven messaging system, and in this chapter

we’ll learn more about how to take advantage of that system to handle

a number of kinds of application events. FOX uses that same event

system as the basis of its automatic GUI update mechanism in order

to keep your user interface in sync with the application data. We’ll take

a closer look at how this works with a variety of FXRuby widgets, as

well as how to use data targets as a higher-level alternative to dealing

directly with the GUI update engine.

FOX’s creator takes great pride in FOX being one of the fastest and

most resource-friendly GUI toolkits around, and although it’s not crit-

ical to understand all the optimizations that FOX uses to achieve its

performance, we’ll explore some of the most significant ones. One way

that FOX ensures that your applications remain quick and responsive

is by actually delaying the layout calculations and subsequent repaint-

ing of the user interface. FOX also makes a much more explicit dis-

tinction between the client-side and server-side representations of user

interface objects than other GUI toolkits do, so we’ll learn how man-

aging those different representations helps you keep your application’s

resource use at a minimum.

EVENT -DRIVEN PROGRAMMING 80

Sender Target
sends message to

Figure 7.1: Objects send messages to other objects

By the end of this chapter, you’ll have a much more in-depth under-

standing of how FXRuby works under the hood, and you’ll have the

strong foundation that you need to tackle the rest of this book.

7.1 Event-Driven Programming

A lot of the scripts and programs that you write in Ruby follow a fairly

predictable path. A typical program might open a file, read in some

data, perform computations on that data, and report its results. The

program might contain some conditional logic that causes it to branch

off and do different things depending on the input data, but you can

count on it to do things in an orderly fashion.

FXRuby programs are event-driven and behave somewhat differently.

After some initialization, an FXRuby program enters what’s known as

the event loop: the program waits for an event to occur, it responds

to that event, and then it resumes waiting for the next event. Most

often it’s the user who generates an event, whether it’s by clicking a

mouse button, by typing some text in a text field, or by doing some

other action. Other times, it’s the operating system or the windowing

system that generates an event, such as by raising a signal. Other GUI

toolkits implement event-driven programming in a variety of ways, but

FXRuby models an event as one object, the sender, sending a message

to another object, the target (see Figure 7.1).

Message Types, Identifiers, and Data

Every message that’s sent from one FXRuby object to another consists

of a message type, a message identifier, and some message data. The

message type is a constant whose name begins with SEL_. You’ve already

seen a number of examples of these, most notably the SEL_COMMAND

message type.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=80

EVENT -DRIVEN PROGRAMMING 81

The message identifier is also a constant, and it’s used by the target

(the receiver of the message) to distinguish between different incom-

ing messages of the same type. For example, if the target expects to

receive SEL_CHANGED messages from two different senders, it might rely

on the senders using two different message identifier values when they

send their messages. Along the same lines, if the target wants to imple-

ment different behaviors for the same message type, it might require a

number of message identifiers. For example, when the FXTextField widget

receives a SEL_COMMAND message with an identifier of ID_CURSOR_HOME,

it moves the cursor to the beginning of the line, but when it receives a

SEL_COMMAND message with an identifier of ID_CURSOR_END, it moves

the cursor to the end of the line.

Finally, the message data is just an object that provides some additional

context for the message. For example, when an FXText object sends a

SEL_INSERTED message to its target, it sends along an FXTextChange object

that indicates what text was inserted and where it was inserted.

You can use the API documentation to identify which message types a

particular widget sends to its target, as well as the message data for

those messages. For example, Figure 7.2, on the following page, shows

part of the documentation for the FXTable class.1 Note that under the

“Events” heading, there’s a table listing the message types and impor-

tant information for every message that an FXTable sends to its target.

There’s similar information in the API documentation for every FXRuby

widget.

Messages and Targets

Given that this is how FOX’s target-message system works, what do we

need to do in our application code so that it actually does something

in response to these messages? Suppose that your application incorpo-

rates a table widget, and you want to know when the user clicks one of

the cells in that table so that you can display some additional details

about the data in that cell. You’d start by consulting the API docu-

mentation for the FXTable class to see what kinds of messages it sends

when the user clicks a table cell. As it turns out, there are a number

of candidates (including SEL_COMMAND, SEL_CLICKED, and SEL_SELECTED)

that sound like they would fit the bill.

1. You can view this page online at http://www.fxruby.org/doc/api/classes/Fox/FXTable.html.

http://www.fxruby.org/doc/api/classes/Fox/FXTable.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=81

EVENT -DRIVEN PROGRAMMING 82

Figure 7.2: API documentation for FXTable

This isn’t an accident. Even though a single action (like clicking a

table cell) may lead to many kinds of messages being fired off, dif-

ferent semantics are associated with each message type. For exam-

ple, a SEL_SELECTED message has to do with a new cell being selected,

whether that selection happens interactively as the result of a mouse

click or programmatically as a result of a call to the table’s selectRange()

method. The difference between SEL_CLICKED and SEL_COMMAND is even

subtler. The table will send a SEL_CLICKED message if the user clicks

anywhere on the table, but it will follow that up with a SEL_COMMAND

message only if the click was actually inside a table cell.

For this example, the SEL_COMMAND message is the most suitable can-

didate. That’s also not an accident. In most cases, the most useful mes-

sage that a widget sends to its target is its SEL_COMMAND message. The

specific meaning of SEL_COMMAND is of course different for different

kinds of widgets, but you can always think of it as having to do with

the primary function of that widget (such as pushing a button or enter-

ing text in a text field).

Now that we’ve settled on SEL_COMMAND as the table message that we’d

like to handle, we need to tell the FXTable object which object is its

message target and what message identifier it should use when it sends

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=82

EVENT -DRIVEN PROGRAMMING 83

messages to that target. One way to do this is to specify the target and

message identifier when you construct the table:

table = FXTable.new(p,

:target => target_object, :selector => message_identifier, ...)

You can also assign (or change) the target and message identifier after

you construct the table, using the target and selector attributes:

table.target = target_object

table.selector = message_identifier

Being the clever reader that you are, you’ve probably picked up on the

fact that (for historical reasons) the attribute that you use to read or

set the message identifier is named selector. Trust me, it’s really just

the message identifier.

Now, at this point in the conversation, I could go into a lot of ugly detail

about how to set up the message map that tells the target object which

of its methods to invoke when it receives a message for a particular

message type and identifier. The brave souls who toughed it out during

the early years of FXRuby’s development had to go through that pro-

cess, and folks who use the FOX library for their C++ GUI applications

still have to do so. The good news is that, for the most part, FXRuby

users don’t have to deal with FOX-style message maps anymore.2

Connecting Messages to Code

The connect() method provides a straightforward way to connect mes-

sages sent from a widget to a chunk of code that handles them. Under

the hood, the connect() method creates an target object and message

identifier and then assigns those to the message sender, so we’re not

fundamentally altering how FOX’s event-driven programming model

works. But what this means for you as an application programmer is

that handling the SEL_COMMAND message from a table takes just a few

lines of code:

table.connect(SEL_COMMAND) do |sender, selector, data|

Handle a click inside a table cell

end

In this example, we’re just passing a single argument to connect(), and

it’s the message type that we’re interested in handling. There’s a vari-

ation on this that I’ll cover in a moment, but this is the most com-

mon form. We “connect” the SEL_COMMAND message from the table to

2. For the morbidly curious, this topic is covered in more detail in the FXRuby User’s

Guide at http://www.fxruby.org/doc/events.html.

http://www.fxruby.org/doc/events.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=83

EVENT -DRIVEN PROGRAMMING 84

a Ruby block that expects three arguments. The names that you use

for these arguments inside the block are of course up to you, as long

as you keep their meanings straight. The first argument, which we’ve

given the name sender, is a reference to the object that sent the mes-

sage (the table). The second argument, selector, is a value that combines

the message type and identifier (more on this in a moment). The third

argument, data, is a reference to the message data.

According to the API documentation for the FXTable class, the mes-

sage data associated with the SEL_COMMAND message is an FXTablePos

instance indicating the current cell. From this, we can extract the row

and column number of the cell that was clicked:

table.connect(SEL_COMMAND) do |sender, selector, data|

puts "User clicked cell at row: #{data.row}, column: #{data.col}"

end

There’s a slightly different way to call connect(), and it’s useful when

you want to use the same handler code for multiple widgets or when you

just want to break the handler code out into its own method. This vari-

ation involves passing a Method instance (or some other kind of callable

object, like a Proc instance) as the second argument to connect():

def table_cell_clicked(sender, selector, data)

puts "User clicked cell at row: #{data.row}, column: #{data.col}"

end

table.connect(SEL_COMMAND, method(:table_cell_clicked))

These two forms are functionally equivalent, and the choice between

them is mostly a matter of preference. I do recommend that you break

the handler code out into a separate method if it is more than a handful

of lines long, primarily to keep your code readable.

Finally, I mentioned earlier that the second argument to a handler is

a value that combines the message type and identifier. You can extract

the message type from this value using the FXSELTYPE() method, and you

can extract the identifier using the FXSELID() method:

table.connect(SEL_COMMAND) do |sender, selector, data|

puts "The message type is: #{FXSELTYPE(selector)}"

puts "and the message identifier is #{FXSELID(selector)}"

end

In practice, this information isn’t all that useful, because you usually

know which message type you’re handling. It could be useful, however,

if you’re using the same method to handle messages from more than

one object.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=84

MOUSE AND KEYBOARD EVENTS 85

7.2 Mouse and Keyboard Events

Depending on the complexity of the application that you’re trying to

build, you may not have to deal with low-level mouse and keyboard

events directly. For example, you’ve already seen that FOX will synthe-

size mouse button clicks into SEL_COMMAND and other types of mes-

sages from widgets to their targets. Nevertheless, there are some occa-

sions when you really do need to get at the basic mouse and keyboard

event data, and we’ll take a look at how to do that in this section.

Handling Mouse Events

Most of the time, FOX sends mouse-related messages to the window

that the mouse cursor is pointing at.3 When the left mouse button

goes down, FOX will send a SEL_LEFTBUTTONPRESS message to that win-

dow, and when the left mouse button is released, FOX will send it

a corresponding SEL_LEFTBUTTONRELEASE message. If you’re using a two

or three-button mouse, there are corresponding SEL_MIDDLEBUTTONPRESS,

SEL_MIDDLEBUTTONRELEASE, SEL_RIGHTBUTTONPRESS, as well as SEL_

RIGHTBUTTONRELEASE messages, and if your mouse has a scroll wheel,

FOX will send a SEL_MOUSEWHEEL message when the wheel is scrolled

up or down.

The message data associated with mouse and keyboard events (and a

number of other message types) is an FXEvent object. Usually, the only

thing that you want to know about button press and release messages

is that they occurred, so the associated message data isn’t important.

However, for some applications you may also want to know exactly

where the mouse cursor was pointing when the mouse button was

pressed (or released). In those cases, you can inspect the values of the

win_x and win_y attributes of the message data, which will tell you the x

and y coordinates in the local coordinate system for the window where

the event occurred.

my_window.connect(SEL_LEFTBUTTONPRESS) do |sender, sel, event|

p "Button pressed at coordinates (#{event.win_x}, #{event.win_y})"

end

Alternately, you can look at the root_x and root_y attributes to learn the

root window coordinates for the event.

3. I say “most of the time” because under some circumstances (such as drag-and-drop

operations) some other window can temporarily “grab” the mouse and intercept all the

mouse-related messages, regardless of which window the mouse cursor is pointing at.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=85

MOUSE AND KEYBOARD EVENTS 86

When the mouse moves, you’ll get a SEL_MOTION message. As was the

case for the button press and release events, the message data will

indicate the current position of the mouse cursor (where the mouse

has moved to). FOX also keeps track of the previous mouse position, in

the last_x and last_y attributes. Note that the last_x and last_y values are

in window coordinates, not root coordinates.

Handling Keyboard Events

In the previous section, we talked about how mouse-related messages

are sent to the window that the mouse cursor is pointing at. Along the

same lines, keyboard-related messages are always sent to the window

that currently holds the keyboard focus.

When the user presses a key on the keyboard (that is, when the key

goes down), FOX will send a SEL_KEYPRESS message to the object that

currently has the focus. When they release the key, FOX will send a

SEL_KEYRELEASE message. In both cases, the data sent with the message

is an FXEvent instance that includes information about which keys were

pressed when the message was generated. The FXEvent attributes that

you’ll be most concerned with are the code and state attributes (and, to

a lesser extent, the text attribute).

The event code tells you which key was pressed (or released). Its value

will correspond to one of the symbolic constants listed in the API docu-

mentation for the Fox module.4 The names of these constants all begin

with the prefix KEY_, and in most cases the key code constant will have

a sensible name. For example, when you press the a key, the event

code will be equal to KEY_a. For some more obscure cases, you may

have to do a little bit of “reverse engineering” to figure out which key

code FOX is sending you, such as by printing out its numeric value and

then looking up the constant name in the documentation.

The event state tells you which (if any) modifier keys were pressed at the

time the event was generated. You can test this by logically ANDing the

event state with the modifier flags listed in Figure 7.3, on the next page.

For example, the following code sets the value of shift_check.checkState

to true if the Shift key was pressed when the event was generated:

Download keyboard.rb

self.connect(SEL_KEYPRESS) do |sender, sel, event|

shift_check.checkState = (event.state & SHIFTMASK) != 0

end

4. Available online at http://www.fxruby.org/doc/api/classes/Fox.html

http://media.pragprog.com/titles/fxruby/code/keyboard.rb
http://www.fxruby.org/doc/api/classes/Fox.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=86

TIMERS, CHORES, SIGNALS, AND INPUT EVENTS 87

Modifier Flag Meaning

ALTMASK Alt key is pressed

CAPSLOCKMASK Caps Lock key is pressed

CONTROLMASK Ctrl key is pressed

METAMASK Meta key is pressed

NUMLOCKMASK NumLock key is pressed

SCROLLOCKMASK ScrollLock key is pressed

SHIFTMASK Shift key is pressed

Figure 7.3: Keypress modifier flags

We’ll revisit the issue of keyboard-related events later, in Section 8.1,

Getting Pushy with Buttons, on page 104, when we look at how to define

accelerators and hotkeys for widgets.

7.3 Timers, Chores, Signals, and Input Events

Mouse and keyboard events are always generated by the user directly

interacting with the application. However, a number of other kinds of

events can occur in an FXRuby application, and the following sections

describe how you can deal with those in your applications.

Scheduling Tasks with Timeout Events

When you register a timeout event with the application, you’re asking

FOX to send a message to your application at some point in the future.

For example, suppose you’d like to add a timed backup capability to

your application and automatically save the user’s work every five min-

utes:

app.addTimeout(5*60*1000) do

invoke the "save" operation

end

The first argument to addTimeout() is the amount of time, in millisec-

onds, that FOX should wait before triggering the timeout event. The

code shown previously doesn’t do quite what we want, though, because

a timeout event is a one-shot deal; once it has fired, FOX forgets about

the original request.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=87

TIMERS, CHORES, SIGNALS, AND INPUT EVENTS 88

To get the timeout to occur every five minutes, we need to pass in the

:repeat parameter:

app.addTimeout(5*60*1000, :repeat => true) do

invoke the "save" operation, then re-register the timeout

end

If you’d prefer to move the timeout-handling code out of the block and Note that when you use

an instance method as

the timeout handler, the

method signature must

include the three

standard dummy

arguments, as shown in

this example.

into a method, you can instead pass in a Method object as the second

argument to addTimeout():

def save_data(sender, sel, data)

...

end

app.addTimeout(5*60*1000, method(:save_data), :repeat => true)

The addTimeout() method returns a value that’s useful only if you need

to determine whether a timeout event is still pending, find out how

much time is left before the timeout occurs, or cancel the timeout event

before it has fired:

timeout = app.addTimeout(5*60*1000, :repeat => true) do

invoke the "save" operation, then re-register the timeout

end

Elsewhere in the application code

if app.hasTimeout?(timeout) && app.remainingTimeout(timeout) < 30000

app.removeTimeout(timeout)

end

This code says that if the previously registered timeout is still active

and there are less than thirty seconds remaining before that timeout

fires again, the application should unregister that timeout.

Doing Chores in Idle Time

Another way to ask FOX to call back to your application at some point in

the future is to register a chore. When you’re working with an interactive

application like the ones you’ll build with FXRuby, the computer tends

to have a lot of time to kill while it’s waiting for you to make your next

move. Instead of letting that time go to waste, you can tell FOX to use

that idle time to take care of various application-specific maintenance

tasks that aren’t really time-sensitive. Unlike timeout events, which are

handled at specific times, chores are handled as soon as FOX’s event

queue becomes empty:

app.addChore do

take out the trash as soon as we get a chance

end

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=88

TIMERS, CHORES, SIGNALS, AND INPUT EVENTS 89

Other than that important difference, chores behave very much like

timeout events. A chore is handled only once and then discarded, un-

less you pass in the :repeat parameter to addChore(). You can use the

hasChore?() method to determine whether a chore is still waiting to be

handled and use the removeChore() to unregister a previously registered

chore before it gets handled. Of course, there is no equivalent for the

remainingTimeout() method, because even FOX doesn’t know in advance

when it will have idle time to handle a chore.

Be careful about using repeating chores. Your application will typically

have a lot more idle time than you might expect, and that’s a good

thing. When your application takes a break, that allows your computer

to devote some of its time to other applications that are running along-

side your GUI. If you schedule a chore that repeats over and over, how-

ever, your application will start to eat up CPU time, and both its per-

formance and the performance of other running applications will suffer

as a result.

Handling Operating System Signals

The operating system sends a signal to an application when it needs to

report some kind of exceptional situation. For example, if you’ve ever

written a C/C++ program that tried to dereference a NULL pointer, you’ve

probably encountered the dreaded “segmentation violation” (SIGSEGV)

signal.

You can register a signal handler with your application to intercept

these signals and do some processing in response to them. For exam-

ple, most operating systems respond to Ctrl + C by sending the SIGINT

signal to the application. By default, the process that your applica-

tion is running in will be terminated when it receives this signal. To

ensure that your application does any necessary cleanup before it’s

terminated, you could install a signal handler for that signal:

app.addSignal("SIGINT") do

save the user's work, then exit the application

end

The first argument to addSignal() is a string indicating the name of the

signal that you want to catch.5 The signal names are the standard

POSIX signal names and are the same ones supported by Ruby’s trap()

method.

5. You can also use the actual signal number (an integer), but that’s a bad idea since

the signal numbers can vary from platform to platform. It’s better to just use the name.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=89

TIMERS, CHORES, SIGNALS, AND INPUT EVENTS 90

Speaking of the trap() method, you might be wondering whether it’s

appropriate to use addSignal() or trap() when you need to respond to

a particular signal being raised. It turns out that you can use either

one, and it’s really just a matter of preference. Note that if you register

more than one signal handler for the same signal, the most recently

registered handler is the one that will be used:

app.addSignal("SIGINT") do

this handler for SIGINT is registered first...

end

Signal.trap("SIGINT") do

... but this one replaces it.

end

Reacting to I/O with Input Events

We’ll wrap up this section by looking at how your FXRuby application

can handle input events. You’d want to use this feature to deal with

inputs from places other than the GUI itself, namely, pipes or sockets.

If your application needs to react to data being written on a pipe, you

could set up a timer or chore to periodically check that pipe for new

data, but that’s a pretty inefficient way to work. The better approach

is to take advantage of operating system mechanisms for responding to

those changes, and the addInput() method provides a convenient inter-

face for doing that.

You can add an input handler using the addInput() method:

@pipe = IO.popen("tail -f /var/log/system.log")

app.addInput(@pipe, INPUT_WRITE) do

respond to new data in the I/O stream

data = @pipe.read_nonblock(256)

end

To respond to more than one kind of event for a given source, pass

in some combination of the mode flags INPUT_READ, INPUT_WRITE, and

INPUT_EXCEPT as the second argument to addInput(). This complicates

the processing a little bit, since you now need to determine which mes-

sage type was sent (SEL_IO_READ, SEL_IO_WRITE, or SEL_IO_EXCEPT):

app.addInput(@pipe, INPUT_WRITE|INPUT_EXCEPT) do |sender, sel, data|

case FXSELTYPE(sel)

when SEL_IO_WRITE:

something was written to the file

when SEL_IO_EXCEPT:

an exception has occurred

end

end

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=90

SYNCING THE USER INTERFACE WITH THE APPLICATION DATA 91

Until now, we’ve focused on the messages that FOX sends to your appli-

cation when something happens. In most cases, that “something” is an

action that the user takes, such as moving the mouse cursor or tapping

the spacebar. In some special circumstances, it’s a higher-level sort of

event, such as a timer expiring or some data getting written to a file

that you’re watching.

In the next few sections, we’ll look at a very different and powerful

application of this target and message-based system, and that’s FOX’s

automatic GUI updating mechanism.

7.4 Syncing the User Interface with the Application Data

FOX’s automatic GUI updating mechanism is one of its most powerful

features, but it’s also one of the trickier concepts to learn for devel-

opers who are new to FOX. Many other GUI toolkits, such as Java’s

Swing toolkit, apply what’s known as the Observer pattern to keep the

user interface (aka the view) in sync with the model data.6 With this

approach, a user interface event triggers a message from a widget to

the model so that the model can update its value. Likewise, a change to

the model data triggers a message back to the observers (views) so that

they can be synced to the model.

We’ve already discussed how you can use the connect() method to han-

dle messages from widgets and thus change the model data:

Download buttonexample.rb

activate_button = FXButton.new(p, "Activate Launch Sequence",

:opts => BUTTON_NORMAL|LAYOUT_CENTER_X)

activate_button.connect(SEL_COMMAND) do |sender, sel, data|

@controller.activate_launch_sequence

end

FOX takes a different approach, however, when it comes to updating the

GUI in response to changes in the model. Instead of the model object

sending a message to the view objects, telling them that a change has

occurred, the application periodically sends a special message of type

SEL_UPDATE to every widget, telling it to update its state. A GUI object can

register its interest in receiving update requests from the application

by calling its connect() method and passing in the SEL_UPDATE message

type.

6. See the description of Observer in Design Patterns [GHJV95] for more details.

http://media.pragprog.com/titles/fxruby/code/buttonexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=91

USING DATA TARGETS FOR GUI UPDATE 92

In the following example, the cancel_button enables or disables itself

according to the current model state:

Download buttonexample.rb

cancel_button.connect(SEL_UPDATE) do |sender, sel, data|

sender.enabled = @controller.launch_sequence_activated?

end

Another typical use of GUI update is to show or hide a widget depending

on the application state:

encrypt_drives_button.connect(SEL_UPDATE) do |sender, sel, data|

sender.visible = @edition.ultimate?

end

If you’re interested in a different approach to the task of keeping the

user interface and model data in sync, you may want to check out Joel

VanderWerf’s FoxTails library.7 With FoxTails, you can identify certain

model attributes as “observable” and then directly associate them with

widgets. When you interact with the widget, it automatically updates

the value of the attribute, and vice versa. This can be an extremely

convenient alternative to the process of setting up SEL_COMMAND and

SEL_UPDATE handlers for widgets that primary deal with simple data val-

ues. But while we’re on that subject, let me tell you about data targets.

7.5 Using Data Targets for GUI Update

In the previous section, we learned how to keep the GUI view in sync

with the model data by handling the SEL_UPDATE message. A common

application of this is to keep the setting for a specific widget, such as

a text field, in sync with a specific attribute in the model, such as a

username. This certainly isn’t difficult to do. We know how to handle

the SEL_COMMAND message from an FXTextField to update the model data

whenever the user types a new value into the widget:

user_name_textfield.connect(SEL_COMMAND) do |sender, sel, data|

@user_name = sender.text # the FXTextField is the sender

end

Likewise, we know how to handle the SEL_UPDATE message to update the

widget’s setting whenever the model data changes:

user_name_textfield.connect(SEL_UPDATE) do |sender, sel, data|

sender.text = @user_name

end

7. http://redshift.sourceforge.net/foxtails/

http://media.pragprog.com/titles/fxruby/code/buttonexample.rb
http://redshift.sourceforge.net/foxtails/
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=92

RESPONSIVE APPLICATIONS WITH DELAYED LAYOUT AND REPAINT 93

When we consider this example in isolation, it doesn’t seem like such

a big deal. But what if the username is displayed in multiple locations

on the user interface? To keep things consistent, you’d need to write

SEL_UPDATE handlers for every widget whose appearance depends on the

value of that piece of model data. Generally speaking, when you’re deal-

ing with large amounts of model data that may be used in more than

one place in the GUI, maintaining all the source code required to keep

the model and view in sync can quickly get out of hand.

The FXDataTarget class provides a straightforward solution to this prob-

lem. A data target is a special kind of object that keeps up with some

bit of data (like the username) and knows how to do the right thing

in response to certain message types such as SEL_COMMAND and

SEL_UPDATE:

@user_name = FXDataTarget.new("Rollie")

user_name_textfield = FXTextField.new(p, 20,

:target => @user_name, :selector => FXDataTarget::ID_VALUE, ...)

Note that we can associate @user_name with a number of widgets in the

user interface, if that makes sense. If you change the setting for the

username in one of those widgets, all the other widgets connected to

the data target will be updated. Likewise, if you change the value of

@user_name.value, all of the widgets’ settings will be updated to reflect

the new value.

We’ll see more concrete examples of how to use FXDataTarget in Chap-

ter 8, Building Simple Widgets, on page 100. Before we do that, though,

we’re going to switch gears a bit and take a closer look at some of the

optimizations that FOX uses to make it one of the fastest and most

resource-friendly GUI toolkits on the block.

7.6 Responsive Applications with Delayed Layout and Repaint

FOX implements a number of optimizations intended to keep your user

interface as responsive as possible. In this section we’ll take a closer

look at two of those optimizations: delayed layout and delayed repaint.

Delayed Layout

Layout is the process of making sure that all the widgets in your user

interface are placed in the proper locations and at the proper sizes.8

FOX uses a technique called delayed layout to efficiently recalculate

8. We’ll get into the details of the policies used by different layout managers to accom-

plish this in Chapter 12, Managing Layouts, on page 159.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=93

RESPONSIVE APPLICATIONS WITH DELAYED LAYOUT AND REPAINT 94

the layout of the user interface in response to changes. When you

call recalc() on a window, that window’s layout is marked as “dirty,”

meaning that it needs to be updated, but nothing is done immediately.

Instead, that call to recalc() percolates all the way up the hierarchy

to that window’s shell window, marking all the intermediate windows

along the way as dirty. The shell then registers a layout chore with

the application to perform the actual layout later whenever there is

idle time.

Most of the operations that you’d reasonably expect to mark the lay-

out as dirty will call recalc() for you. For example, if you set the text

for an FXLabel to some new string, the label will call recalc() on itself.

If you change the frame style for an FXButton from FRAME_RAISED to

FRAME_SUNKEN, the button will call recalc() on itself. One notable excep-

tion to this rule has to do with adding new child windows to a parent

window. In this situation, the parent window’s layout isn’t marked as

dirty, so it’s your job to call recalc() on the parent to ensure that the

window layout is properly updated:

Download dynamic.rb

FXLabel.new(contents, "Dynamically Added Field")

FXTextField.new(contents, 20)

contents.create # create server-side resources

contents.recalc # mark parent layout as dirty

Since FOX uses a chore to carry out this delayed layout, that means

it will happen only after all the other pending events have been dealt

with. Usually this isn’t a problem, but sometimes you just can’t wait

that long, and you need to get the layout updated right away. In that

situation, you can call layout() to immediately reconcile the layout, but

be sure to make the call to the topmost widget in the hierarchy.

Delayed Repaint

A closely related subject to delayed layout is delayed repaint. Just as

constant recalculation of the user interface layout can become compu-

tationally expensive, repeated repainting of small sections of the screen

can become very expensive. To perform repainting most efficiently, FOX

queues up repaint events until there’s idle time in your application.

You can call update() on a window to mark it as dirty and in need

of a repaint, much as you’d call recalc() on a window whose layout

has changed. If you call repaint() on a window, all the pending repaint

events for that window are processed immediately. Likewise, if you call

repaint() on the application object, all the pending repaints for all win-

dows are processed immediately.

http://media.pragprog.com/titles/fxruby/code/dynamic.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=94

CLIENT -SIDE VS. SERVER-SIDE OBJECTS 95

Delayed layout and repainting are especially nice optimizations because

for the most part, you don’t really have to do much in your applications

to take advantage of them. Another important optimization that FOX

employs is its explicit distinction between what it calls the client-side

and server-side representations of user interface objects. You’ll have to

do a bit more work in your code to properly use this feature, so we’ll

discuss that in detail next.

7.7 Client-Side vs. Server-Side Objects

One of the important things to understand about FXRuby is how wid-

gets and other user interface objects are constructed and created. When

people in the know talk about client-side objects and server-side re-

sources in FOX and FXRuby, they’re referring to the separation between

the “client” space—that is, the objects that you instantiate in your pro-

grams, which are allocated on the heap—and the “server” space—the

resources that are allocated in the X server (or in Windows GDI) cor-

responding to those objects. The terminology may be a little confusing, To make this picture

even more complicated,

the Ruby binding adds

another object—a Ruby

instance—that is linked

to the C++ object. Luckily

for you, FXRuby handles

this linkage

automatically, and for

the most part, you don’t

have to worry about it.

since we usually use the terms client and server to talk about the archi-

tecture of network-based applications.

Figure 7.4, on the next page, illustrates the life cycle of the client-side

objects and their server-side resources. When you call create() on an

object, the server-side resource for that client-side object is created.

Calling destroy() on an object destroys its server-side peer but otherwise

has no effect on the client-side object. The detach() method is a sort of

compromise between these two; it breaks the connection between the

client-side object and server-side resource but doesn’t actually destroy

the latter.

So, how does this two-step construction and creation process affect you

as an application programmer? Well, you’ve already seen some evidence

of it in the very first program we wrote:

Download hello.rb

require 'fox16'

app = Fox::FXApp.new

main = Fox::FXMainWindow.new(app, "Hello, World!",

:width => 200, :height => 100)

app.create

main.show(Fox::PLACEMENT_SCREEN)

app.run

http://media.pragprog.com/titles/fxruby/code/hello.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=95

CLIENT -SIDE VS. SERVER-SIDE OBJECTS 96

client-side
object

server-side
resource

client-side
object

server-side
resource

client-side
object

create()

detach()

destroy()

poof!

Figure 7.4: The create, detach, and destroy life cycle

When we call create() on the FXApp object, the application then walks

through the entire collection of widgets, calling create() on each of them

and creating server-side windows for them. Up until this point, the

FXMainWindow object that you constructed on the previous line didn’t

have a server-side peer. It’s worth noting that this discussion applies

not only to windows but to all kinds of user interface objects, including

icons, images, and fonts—they all go through this same construction

and creation process.

If your program constructed all its user interface objects up front, that

initial call to create() would be the only one you’d need. In practice,

though, you’ll be writing programs that construct new widgets on the

fly in response to various events. For example, every time you display

a new dialog box in your program, you’ll be constructing (and creating)

a bunch of new widgets. If you’re writing a program that loads and dis-

plays image data of any kind, you’ll be constructing and creating FXIm-

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=96

CLIENT -SIDE VS. SERVER-SIDE OBJECTS 97

age objects. FXRuby makes it easy and inexpensive (computationally

speaking) to do all of this, so you don’t need to worry about precon-

structing your entire application. What you do need to do, however, is

remember to call create() on these objects that you construct dynami-

cally, once the program is up and running.

I can’t emphasize that last point enough. The number-one source of

errors in FXRuby programs that I’ve seen (including my own) is failing

to call create() on dynamically constructed user interface objects. The

best-case scenario is that the user interface won’t look like you expected

it to look. Consider the following example:

Add a row to the contact information form for providing

an alternate e-mail address.

add_button.connect(SEL_COMMAND) do

FXLabel.new(@contact_info, "Alternate e-mail address: ")

FXTextField.new(@contact_info, 20)

end

In this code snippet, we’re trying to add a new field to a form when the

user clicks add_button. This code will run, but we’ll never see that new

field on the screen because there’s no server-side window for it:

Add a row to the contact information form for providing

an alternate e-mail address.

add_button.connect(SEL_COMMAND) do

FXLabel.new(@contact_info, "Alternate e-mail address: ")

FXTextField.new(@contact_info, 20)

@contact_info.create # create dynamically constructed widgets

end

Adding a call to create() on the parent window solves this problem.

The parent will walk through all of its child windows and call create()

on them. Note that it doesn’t hurt to call create() on an object that’s

already been created. FXRuby will recognize that the object already has

a server-side resource associated with it and will move on to the next

object.

The worst-case scenario is that your program crashes because, for

example, some bit of code deep in the bowels of the FOX library tried

to draw a font that did not have a server-side font resource associated

with it:

Change the font for this label

new_font = FXFont.new(app, "helvetica", 14)

label.font = new_font

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=97

HOW WINDOWS WORK 98

Without a call to create() for new_font, this program will crash spec-

tacularly at some point after you assign the font to the label. I say

“some point after” because that point is a little unpredictable—it doesn’t

become a problem until FXRuby actually needs to redraw that label and

access its font. As in the previous example, adding a call to create(),

either for the label or for the font itself, will take care of the problem.

Before we wrap up this chapter, there’s one more topic to discuss, and

that’s the basic functionality that all FXRuby widgets (or windows) have

in common.

7.8 How Windows Work

Before we begin looking at the specifics of various widgets in the next

chapter, we need to talk about something that all FXRuby widgets have

in common, namely, that every FXRuby widget class is a descendant of

the FXWindow base class. If you check out the API documentation page

for the FXWindow class, you’ll quickly discover that it’s a very compli-

cated class, with a huge number of attributes of methods. I’m obviously

not going to try to cover all of them in this section, but we’ll hit some of

the highlights.

FXRuby makes a distinction between parent windows and child win-

dows. In this case, we’re not talking about the class hierarchy, where

we might observe that the FXLabel class is the parent of the FXButton

class. The relationship that we’re describing here has to do with the

containment of windows inside other windows: all the child windows for

a given parent window will be displayed within the parent’s boundaries.

You can see this terminology reflected in the names of a number of

FXWindow methods and attributes. For example, the parent attribute for

a window returns a reference to its parent, while the children() method

for a window returns an array of references to its child windows.

FXRuby also makes a distinction between the desktop (or root) window,

top-level (or shell) windows, and other kinds of windows. Shell windows

are direct children of the root window, and they’re always instances of

FXShell or one of its subclasses. So, for example, your application’s main

window (an instance of FXMainWindow) is a shell window, as are any

dialog boxes that your application displays.

Occasionally, you’ll have to deal with window coordinate systems. In

Section 7.2, Handling Mouse Events, on page 85, we talked about how

the event data for mouse-related messages includes information about

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=98

HOW WINDOWS WORK 99

where on the screen the event occurred, in both window-local coor-

dinates and root window coordinates. Unlike the cartesian coordinate

systems you learned about in your high-school math classes, these

coordinate systems start with (0, 0) in the upper-left corner of the win-

dow. The x coordinate increases as you move to the right, and the y

coordinate increases as you move downward.

The translateCoordinatesFrom() and translateCoordinatesTo() methods can

be used to convert back and forth between differing windows’ coordi-

nate systems. Suppose, for example, that you are dealing with a SEL_

MOTION event that occurred inside window A, but we’d like to know the

mouse cursor’s location in terms of window B’s coordinate system:

window_a.connect(SEL_MOTION) do |sender, selector, event|

b_x, b_y =

sender.translateCoordinatesTo(window_b, event.win_x, event.win_y)

end

Because the event occurred inside window A, the event.win_x and event.

win_y values are in terms of A’s coordinate system. The call to translate-

CoordinatesTo() returns an array containing the coordinates in window

B’s coordinate system.

We’ve covered a lot of heavy material in this chapter, and it’s mate-

rial that you’ll want to revisit as you begin writing your own applica-

tions. Although it’s possible to get lucky and hack your way through

the development of an FXRuby application, understanding why things

work the way that they do has a number of advantages. By understand-

ing how FOX’s event-driven programming model is implemented, you

can write much more tightly integrated applications that require fewer

lines of housekeeping code to tie widgets back to the data they repre-

sent. Knowing how the delayed layout and repaint algorithms operate,

and recognizing those times when you need to write code to interface

with them, will help you avoid some of the pitfalls that less experienced

developers run into. Recognizing the distinction between the client-side

and server-side representations of FOX objects, and especially under-

standing when it’s necessary to call create() on a newly instantiated

object, is a key skill for developing bug-free FXRuby applications.

With this foundation in place, we’re ready to move on to learning more

about the standard widgets, such as labels, buttons, and text fields,

that most every FXRuby application will use.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=99

Chapter 8

Building Simple Widgets
Widgets are the building blocks of GUI applications. They are special-

purpose objects that are displayed onscreen and can be manipulated to

allow communication between users and software. If you’re like most

people, a majority of the computer software that you work with on a

daily basis incorporates some kind of graphical user interface, so work-

ing with widgets is second-nature to you even if you don’t consciously

think of it in those terms. When you click a drop-down menu in your

word processor and choose a command from that menu, you’re inter-

acting with the application through widgets. When you grab the scroll

bar on the right side of the document pane and drag it up and down

to scroll back and forth through the document, you’re again using a

widget to interact with the software.

In his book About Face [Coo95], Alan Cooper talks about the four basic

types of widgets, as evaluated in terms of users’ goals:

• Imperative widgets, which are used to initiate a function

• Selection widgets, used to select options or data

• Entry widgets, used to enter data

• Display widgets, used to directly manipulate the program visually

Some widgets can of course meet combinations of these goals. Fig-

ure 8.1, on the next page is a list of the widgets we’ll cover in this chap-

ter, along with advice about when to use them. We don’t have enough

space in this book to describe all the widgets provided by FXRuby, but

if you study some of the most commonly used widgets, you’ll pick up on

the terminology and naming conventions that are used throughout the

library. After you finish reading this chapter and the next few chapters,

you will have the skills you need to integrate other more specialized

widgets into your application with no problem.

CREATING LABELS AND BUTTONS 101

Widget Class What’s It For?

FXLabel Use a label to display text, with an optional icon, for

decorative or informative purposes.

FXButton Use a button as a “pushable” interface to an impera-

tive command.

FXRadioButton Use a group of radio buttons when you need the user

to select one from many possible options.

FXCheckButton Use a check button to allow the user to select or dese-

lect an option.

FXTextField Use a text field to allow the user to edit a single line of

text.

FXToolTip Use a tooltip to display a temporary, informative mes-

sage about the purpose of some other widget.

FXStatusBar Use a status bar to display detailed, context-sensitive

help about the purpose of some other widget or the

state of the application.

Figure 8.1: Simple Widgets

8.1 Creating Labels and Buttons

I don’t think I’ve ever developed a GUI application that didn’t have at

least a few labels and buttons. They’re easy to understand and simple

to use, so this seems like a good place to start.

Displaying Text with Labels

We can use an FXLabel widget to display a message on a user interface. It

can be simple, such as a title string for a feature in the user interface, or

more complicated, such as a set of instructions for some task. The label

text can consist of one or more lines, separated by newline characters,

and the label can optionally display an icon. Technically speaking, the

text for a label is optional too, and it’s possible to display a “label”

widget that has only an icon, but this practice is more common for

button widgets (which we’ll cover in the next section).

By default, the label text is centered (both horizontally and vertically)

inside the label’s bounding box. However, the label supports a number

of different justification options that we can use to specify how the

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=101

CREATING LABELS AND BUTTONS 102

Figure 8.2: Label displaying left-justified text

Figure 8.3: Label displaying bottom- and right-justified text

label’s text is aligned. For example, to left-justify the label text, pass in

the JUSTIFY_LEFT option to the FXLabel constructor.

Download labelexample1.rb

label = FXLabel.new(self, "Left-justified text", :opts => JUSTIFY_LEFT)

Figure 8.2 shows how this label’s text is displayed left-justified. You can

also modify the text justification for a label by setting its justify attribute.

Download labelexample2.rb

label.justify = JUSTIFY_RIGHT|JUSTIFY_BOTTOM

Figure 8.3 shows the label text, justified against the right and bottom

sides of the label’s bounding box. For a listing of the text justification

options, see the API documentation for the FXLabel class.

By default, a label is drawn without any kind of frame around it. The

frame style can be changed by passing in a combination of frame-style

flags to the FXLabel constructor. For example, to create a label with a

solid line around its border, use the FRAME_LINE frame style.

Download labelexample3.rb

line_frame = FXLabel.new(p, "Line Frame", :opts => FRAME_LINE)

http://media.pragprog.com/titles/fxruby/code/labelexample1.rb
http://media.pragprog.com/titles/fxruby/code/labelexample2.rb
http://media.pragprog.com/titles/fxruby/code/labelexample3.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=102

CREATING LABELS AND BUTTONS 103

Figure 8.4: Labels displaying the various frame styles

You can also change the frame style by setting the label’s frameStyle

attribute after it has been created. In this example, we’re giving the

label a sunken frame.

Download labelexample3.rb

sunken_framed_label = FXLabel.new(p, "Sunken Frame")

sunken_framed_label.frameStyle = FRAME_SUNKEN

Figure 8.4 shows examples of labels with all the supported frame styles.

For a complete listing of the available frame styles, see the API docu-

mentation for the FXWindow class.1

As I mentioned earlier, you can also include an icon with a label. For

example, you can construct an icon from a GIF format file and then

pass it in as an argument to the FXLabel constructor.

Download labelexample4.rb

question_icon =

FXGIFIcon.new(app, File.open("question.gif", "rb").read)

question_label =

FXLabel.new(self, "Is it safe?", :icon => question_icon)

1. The frame style constants are associated with the FXWindow base class because a lot

of different kinds of widgets have associated frame styles, not just labels.

http://media.pragprog.com/titles/fxruby/code/labelexample3.rb
http://media.pragprog.com/titles/fxruby/code/labelexample4.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=103

CREATING LABELS AND BUTTONS 104

Figure 8.5: A label with an icon

We’ll go into more detail on the topic of how to create icons in Chap-

ter 11, Creating Visually Rich User Interfaces, on page 142. For now, it’s

enough to know that you can construct an icon object from an image

file (or some other source) and then use it as decoration for labels, but-

tons, and several other kinds of widgets.

By default, the icon will appear centered inside the label’s bounding

box, which could make the label text difficult to read unless the icon is

transparent or there’s high contrast between the icon’s colors and the

text color. The label supports a number of options that we can use to

specify how the text and icon are positioned with respect to one another.

For example, to place the icon before the text (in other words, to its left),

use the ICON_BEFORE_TEXT option.

Download labelexample4.rb

question_label.iconPosition = ICON_BEFORE_TEXT

Figure 8.5 shows how this example looks running under Windows.

Again, refer to the API documentation for the FXLabel class for a com-

plete listing of the available icon position settings.

Getting Pushy with Buttons

An FXButton is a step up from a label in the sense that it can be “pushed”

and that, when pushed, it executes some command in your program.

Like a label, a button can display a message string and an icon. Unlike

a label, a button typically has a 3-D “raised” appearance that makes it

stand out. Figure 8.6, on the next page, shows two different buttons,

one enabled and one disabled.

http://media.pragprog.com/titles/fxruby/code/labelexample4.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=104

CREATING LABELS AND BUTTONS 105

Figure 8.6: Unlike labels, buttons look “pressable.”

When a button is pressed and released, it sends a SEL_COMMAND mes-

sage to its target:

Download buttonexample.rb

activate_button = FXButton.new(p, "Activate Launch Sequence",

:opts => BUTTON_NORMAL|LAYOUT_CENTER_X)

activate_button.connect(SEL_COMMAND) do |sender, sel, data|

@controller.activate_launch_sequence

end

A button will also send a few other messages to its target, but those

messages are rarely useful in practice. If you’re interested in reading

about those, remember that you can always refer to the online API doc-

umentation for a class to learn about all the messages it sends to its

target.

You can associate accelerators and hotkeys with buttons and other

kinds of widgets. An accelerator is a combination of keystrokes that

invokes an action in your application. For example, pressing Ctrl + C

will invoke the Copy action in many applications. A hotkey is a special

kind of accelerator that is a combination of the Alt key and a letter,

such as Alt + F to open the File menu.

Hotkeys are most commonly associated with buttons, or buttonlike wid-

gets, that have an associated text string. You encode the hotkey for the

button by doing this:

Download buttonexample.rb

cancel_button = FXButton.new(p, "Ca&ncel Launch Sequence",

:opts => BUTTON_NORMAL|LAYOUT_CENTER_X)

http://media.pragprog.com/titles/fxruby/code/buttonexample.rb
http://media.pragprog.com/titles/fxruby/code/buttonexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=105

CREATING LABELS AND BUTTONS 106

In this example, the ampersand character that precedes the letter n in

the button’s label indicates that the Alt + N keystroke should trigger

this button’s command, just as if the user had clicked this button with

the mouse.

We talked in the previous chapter about how to use the automatic

GUI updating feature to update the state of the user interface widgets

depending on the application state. There’s a fairly common situation

in which you might want to use this to change the state of a button, and

it’s when you want to disable a button because the command associ-

ated with that button isn’t currently available. For example, we should

disable the Cancel Launch Sequence button if the launch sequence

hasn’t been activated. You can write a SEL_UPDATE handler to account

for this:

Download buttonexample.rb

cancel_button.connect(SEL_UPDATE) do |sender, sel, data|

sender.enabled = @controller.launch_sequence_activated?

end

Note that in this block, sender is a reference to the cancel_button widget,

since it’s the sender of the SEL_UPDATE message.

Making Choices with Radio Buttons

When you need your user to make a selection from a group of mutually

exclusive options, you should consider using a group of FXRadioButton

widgets. Radio buttons are an appropriate choice when the number

of options is fixed and reasonably small. If the number of options is

unknown until runtime, you’re probably better off using a different user

interface object such as a list or combo box that’s designed to accom-

modate an arbitrary number of items. You’ll also want to use a list-

like widget if you’re presenting the user with more than a few choices,

because a long column of radio buttons is difficult to deal with visually.

Let’s put together a short example program to demonstrate everything

you need to know when working with radio buttons. First, although it’s

not required, it’s good practice to use an FXGroupBox widget to visu-

ally group radio buttons. You can use either the FRAME_GROOVE or

FRAME_RIDGE option with the group box to affect the style of the out-

line, and you can optionally assign a title to the group box:

Download radiobuttons1.rb

groupbox = FXGroupBox.new(self, "Options",

:opts => GROUPBOX_NORMAL|FRAME_GROOVE|LAYOUT_FILL_X|LAYOUT_FILL_Y)

http://media.pragprog.com/titles/fxruby/code/buttonexample.rb
http://media.pragprog.com/titles/fxruby/code/radiobuttons1.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=106

CREATING LABELS AND BUTTONS 107

Figure 8.7: Use radio buttons for mutually exclusive choices.

Now you can add a couple of radio buttons to represent the different

options:

Download radiobuttons1.rb

@radio1 = FXRadioButton.new(groupbox, "Good Enough")

@radio2 = FXRadioButton.new(groupbox, "Perfect")

While we’re at it, let’s add an instance variable to hold the index of

the currently selected radio button and make sure that the first radio

button is checked by default:

Download radiobuttons1.rb

@choice = 0

@radio1.checkState = true

Now, since there’s still no link between the value of @choice and the

radio buttons, let’s connect each of the radio buttons to a block that

will update @choice whenever one of the radio buttons is selected:

Download radiobuttons1.rb

@radio1.connect(SEL_COMMAND) { @choice = 0 }

@radio2.connect(SEL_COMMAND) { @choice = 1 }

Figure 8.7 shows what this example looks like running on Windows.

If you run the program at this point and start selecting the two radio

buttons, you’ll observe a pretty serious problem right off the bat. It

turns out that the group box doesn’t do anything to enforce the mutual

exclusivity of the radio buttons—it’s just window dressing. To ensure

that only one of the radio buttons in a group is selected at a time, we

need to do something in our program to enforce that constraint.

http://media.pragprog.com/titles/fxruby/code/radiobuttons1.rb
http://media.pragprog.com/titles/fxruby/code/radiobuttons1.rb
http://media.pragprog.com/titles/fxruby/code/radiobuttons1.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=107

CREATING LABELS AND BUTTONS 108

A straightforward way to do this is to just connect each of the radio

buttons in the group to a block that updates the state of the radio

button based on the value of @choice:

Download radiobuttons2.rb

@radio1.connect(SEL_UPDATE) { @radio1.checkState = (@choice == 0) }

@radio2.connect(SEL_UPDATE) { @radio2.checkState = (@choice == 1) }

If you run the program again, you should find that it’s behaving much

better at this point. When you check the Perfect radio button, the Good

Enough radio button is unchecked, and vice versa. Despite this suc-

cess, we can imagine that this approach won’t scale well for a larger

number of options. The bookkeeping code required to manage the radio

buttons’ states would result in a lot of code clutter.

A more elegant way to handle this problem is to create an FXDataTarget

instance to hold the selected choice number:

Download radiobuttons3.rb

@choice = FXDataTarget.new(0)

Now we can make this data target the target object for each of the radio

buttons in the group:

Download radiobuttons3.rb

radio1 = FXRadioButton.new(groupbox, "Good Enough",

:target => @choice, :selector => FXDataTarget::ID_OPTION)

radio2 = FXRadioButton.new(groupbox, "Perfect",

:target => @choice, :selector => FXDataTarget::ID_OPTION+1)

With this change in place, we can get rid of all those calls to connect()

for the radio buttons. Although this is clearly a lot cleaner than our pre-

vious attempt, there’s a little snag. As things currently stand, we don’t

have any way of knowing when the value of @choice actually changes.

That might be a significant problem if we want to change some other

part of the GUI whenever a different choice is selected. Fortunately, an

FXDataTarget is like any other FOX object in that we can connect it to a

command handler:

Download radiobuttons3.rb

@choice.connect(SEL_COMMAND) do

puts "The newly selected value is #{@choice.value}"

end

With this final change, we get all the benefits of using an FXDataTarget

as the gatekeeper for any changes to @choice without losing any visi-

bility we might want when those changes take place. Now we’re going

http://media.pragprog.com/titles/fxruby/code/radiobuttons2.rb
http://media.pragprog.com/titles/fxruby/code/radiobuttons3.rb
http://media.pragprog.com/titles/fxruby/code/radiobuttons3.rb
http://media.pragprog.com/titles/fxruby/code/radiobuttons3.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=108

CREATING LABELS AND BUTTONS 109

to switch gears and take a look at a different technique for offering the

user choices, and that’s with the FXCheckButton widget.

Check Buttons: Yes? No? Maybe?

When you’re dealing with an application setting that can take on one

of two possible states, the FXCheckButton widget is probably your best

choice to represent that setting.

Well, let me be more specific: it’s probably your best choice when those

two possible states are opposites of each other, like an “on” or “off” set-

ting. Even though our radio button example from the previous section

offered the user only two choices, a check button wouldn’t have been an

appropriate widget since Perfect is not the opposite of Good Enough.2

Check buttons can actually be in one of three possible states. In addi-

tion to the “checked” and “unchecked” states, a check button can be in

an indeterminate, or “maybe,” state. I’ve seen this feature used in dif-

ferent ways. For example, suppose you have a check button that you’re

using to indicate whether the selected articles in a news feed have been

read. If they’ve all been read, the check button should be in the checked

state, and if none of them have been read, the check button should be

in the unchecked state. But what if some of the selected articles have

been read and others haven’t? In this situation, you might want to set

the check button state to indeterminate. When a check button is in this

state, it will appear to be checked but will also have a dimmed back-

ground (see Figure 8.8, on the next page). When the user clicks a check

button in the indeterminate state, its state will change to unchecked,

and at that point you’re back to the basic checked/unchecked toggling.

There’s no way for the user to “click” a check button back into the

indeterminate state.

The FXCheckButton class uses the values true, false, and MAYBE, respec-

tively, to represent the checked, unchecked, and indeterminate states.

You can set a check button’s state via the checkState attribute and test

its state using the checked?(), unchecked?(), and maybe?() queries:

checkbutton = FXCheckButton.new(...)

checkbutton.checkState = true

checkbutton.checked? # returns true

checkbutton.unchecked? # returns false

checkbutton.maybe? # returns false

2. They are merely enemies.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=109

CREATING LABELS AND BUTTONS 110

Figure 8.8: Check Buttons in the checked, unchecked, and maybe

states

As was the case with the FXRadioButton, it’s often convenient to connect

a check button to a data target:

Download checkbutton.rb

@titles = FXDataTarget.new(true)

@thumbnails = FXDataTarget.new(false)

@mustaches = FXDataTarget.new(MAYBE)

groupbox = FXGroupBox.new(self, "Options",

:opts => GROUPBOX_NORMAL|FRAME_GROOVE|LAYOUT_FILL)

titles_check = FXCheckButton.new(groupbox,

"Display image titles",

:target => @titles, :selector => FXDataTarget::ID_VALUE)

thumbnails_check = FXCheckButton.new(groupbox,

"Display images as thumbnails",

:target => @thumbnails, :selector => FXDataTarget::ID_VALUE)

mustaches_check = FXCheckButton.new(groupbox,

"Draw mustaches on pictures of my enemies",

:target => @mustaches, :selector => FXDataTarget::ID_VALUE)

@titles.connect(SEL_COMMAND) do

puts "The new value for 'titles' is #{@titles.value}"

end

In this program, we construct a separate FXDataTarget object for each of

the settings and then associate those data targets with the correspond-

ing check buttons. Since @mustaches is initialized to the MAYBE value,

the third check button (mustaches_check) will start in the indeterminate

state. We can also connect each of the data targets to a block of code to

be notified when their values change.

http://media.pragprog.com/titles/fxruby/code/checkbutton.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=110

EDITING STRING DATA WITH TEXT FIELDS 111

Figure 8.9: Use text fields to edit single lines of text.

The FXRadioButton and FXCheckButton widgets are all about letting the

user make selections from a fixed set of choices, and they are some

of the simplest tools that FXRuby gives you for providing that kind of

functionality. Naturally, FXRuby provides other kinds of widgets that

don’t inherently limit the user’s input to a fixed set of choices, and in

the next section we’ll take a look at one such widget, the FXTextField.

8.2 Editing String Data with Text Fields

The FXTextField widget is appropriate when you need to provide for the

input and subsequent editing of single-line text strings. Figure 8.9

shows a couple of text fields from the example program we’ll look at in

this section. For working with multiline text, you should look at Chap-

ter 10, Editing Text with the Text Widget, on page 133.

Most of the time, you’re going to want to handle the SEL_COMMAND mes-

sage from a text field. The FXTextField sends a SEL_COMMAND message to

its target when the user presses the Return (or Enter) key after typ-

ing some text in a text field. It will also send a SEL_COMMAND message

when the text field loses the keyboard focus (because the user clicked

somewhere else or pressed the Tab key to shift the focus to some other

widget).3

If you need a more fine-grained response to changes in the text field’s

contents, you should instead handle the SEL_CHANGED message. The

FXTextField widget will send a SEL_CHANGED message to its target after

every keystroke.

3. You can override this behavior by passing in the TEXTFIELD_ENTER_ONLY flag when you

construct the FXTextField.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=111

EDITING STRING DATA WITH TEXT FIELDS 112

For some applications, you’ll want to be able to limit the kinds of text

that can be entered into a text field. The FXTextField supports a few dif-

ferent modes out of the box to deal with some of the more common

cases. For example, when you’re using a text field to accept entry of a

password, it’s common practice to mask the password text using aster-

isks. You can do this by passing in the TEXTFIELD_PASSWD flag when you

construct the text field. Likewise, you can restrict the input in a text

field to integer or floating-point values using the TEXTFIELD_INTEGER and

TEXTFIELD_REAL modes.

If your application calls for some more complicated limits on the entered

text, you can handle the SEL_VERIFY message that the text field sends

to its target. This message is similar to SEL_CHANGED, but with an

important difference: the SEL_VERIFY message is sent before the tenta-

tive changes are “committed,” so to speak. For example, if we wanted to

verify that the text begins with a letter and consists of only letters and

numbers, we might do something like this:

Download textfield.rb

userid_text.connect(SEL_VERIFY) do |sender, sel, tentative|

if tentative =~ /^[a-zA-Z][a-zA-Z0-9]*$/

false

else

true

end

end

Note that if the text doesn’t match the expected pattern, the block

returns true. This seems a little counterintuitive, but it’s our way of

telling FOX that the SEL_VERIFY message has been “handled” and that no

further processing should be done. If the text matches and the block

returns false, FOX will proceed and update the text field’s contents.

Finally, as with the other widgets that we’ve talked about in this chap-

ter, you can associate a text field with a data target:

Download textfield.rb

@name_target = FXDataTarget.new("Sophia")

name_text = FXTextField.new(p, 25,

:target => @name_target, :selector => FXDataTarget::ID_VALUE)

@name_target.connect(SEL_COMMAND) do

puts "The name is #{@name_target.value}"

end

If you don’t require the SEL_VERIFY handling, this is the most convenient

way to work with a text field. As shown, you can also connect the data

http://media.pragprog.com/titles/fxruby/code/textfield.rb
http://media.pragprog.com/titles/fxruby/code/textfield.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=112

PROVIDING HINTS WITH TOOLTIPS AND THE STATUS BAR 113

target to some downstream target object if you want to be notified of

changes to the data target’s value.

We are going to wrap up this chapter by looking at how you can in-

corporate help messages via tooltips and the status bar. Although these

are both technically just another kind of display widget, not unlike

labels, they’re unusual in the sense that they always work in conjunc-

tion with other widgets to provide a kind of higher-level service for the

application.

8.3 Providing Hints with Tooltips and the Status Bar

The tooltip is a special kind of pop-up window that knows to show

itself whenever the mouse cursor rests in one particular spot for a few

seconds. The tooltip asks the widget that the mouse cursor is pointing

at what it’s tooltip text is, and the tooltip displays that text. The tooltip

will display this text for a short time, and then it will hide again; it will

also hide as soon as you move the mouse cursor to a new location.

FXRuby makes it easy to add tooltips to your application. First, you

need to create the FXToolTip object:

Download tooltipexample.rb

FXToolTip.new(app)

Note that there’s only one tooltip object for the entire application, which

may seem a little counterintuitive since you’ll see the tooltip pop up all

over the place!

Next, you need to specify the tooltip text that should be displayed

for each widget, since the default tooltip text for a widget is empty.4

For FXButton widgets and other widgets derived from FXButton, you can

embed the tooltip text directly in the button label when you construct

the button:

Download tooltipexample.rb

upload_button = FXButton.new(self, "Upload\tUpload Files")

Note that the tooltip text is separated from the button’s label by a tab

character.

4. You aren’t required to specify tooltip text for widgets that don’t need it. The tooltip is

smart enough not to show itself when it has no text to display.

http://media.pragprog.com/titles/fxruby/code/tooltipexample.rb
http://media.pragprog.com/titles/fxruby/code/tooltipexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=113

PROVIDING HINTS WITH TOOLTIPS AND THE STATUS BAR 114

Many other widgets that don’t have a label associated with them also

allow you to set their tooltip text, using the tipText attribute:

Download tooltipexample.rb

dial = FXDial.new(self, :opts => DIAL_HORIZONTAL)

dial.range = 0..11

dial.tipText = "Volume"

Like the tooltip, the FXStatusBar widget is capable of displaying a context-

sensitive help message about a widget when the mouse cursor hovers

over that widget. Unlike the tooltip, the status bar is a permanent fix-

ture on your application’s main window—it doesn’t just pop up briefly

and then disappear again like a tooltip. Traditionally, the status bar is

placed along the bottom edge of the main window and stretched to the

full width of the main window, but that’s not required if your applica-

tion has some other layout needs.

For FXButton widgets and other widgets derived from FXButton, you can

specify the help message for a widget directly in the button’s label:

Download tooltipexample.rb

download_button = FXButton.new(self,

"Download\tDownload Files\tStart Downloading Files in the Background")

Note that the status line help text is separated from the tooltip text by

a second tab character. You can use the helpText attribute to specify the

status line help text for widgets that don’t have a label associated with

them.

Download tooltipexample.rb

dial.helpText = "This one goes to eleven"

The widgets that we’ve looked at in this chapter are among the simplest

widgets that FXRuby has to offer, and they primarily deal with setting

and displaying single values. In the next chapter, we’ll kick it up a notch

and see what tools FXRuby provides for working with lists of values.

http://media.pragprog.com/titles/fxruby/code/tooltipexample.rb
http://media.pragprog.com/titles/fxruby/code/tooltipexample.rb
http://media.pragprog.com/titles/fxruby/code/tooltipexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=114

Chapter 9

Sorting Data
with List and Table Widgets

The simple widgets we learned about in the previous chapter primarily

deal with a single value (if they have any real “value” associated with

them at all). FXRuby also provides a number of more complicated wid-

gets for dealing with collections of values. Figure 9.1, on the following

page, lists the widgets that we’ll be looking at in this chapter, along with

brief descriptions of when you’d want to consider using them in your

applications. We’ll begin by looking at the FXList.

9.1 Displaying Simple Lists with FXList

The FXList widget displays a list of items, where each item has an asso-

ciated text string and an optional icon. If the list contains more items

than it can display, it will grow a vertical scroll bar to allow you to scroll

up or down in the list.

By default, an FXList is empty. You can add items to the end of a list

using the appendItem() method:

Download listexample.rb

groceries = FXList.new(self,

:opts => LIST_EXTENDEDSELECT|LAYOUT_FILL)

groceries.appendItem("Milk")

groceries.appendItem("Eggs")

groceries.appendItem("Bacon (Chunky)")

http://media.pragprog.com/titles/fxruby/code/listexample.rb

DISPLAYING SIMPLE LISTS WITH FXLIST 116

Widget Class What’s It For?

FXList Use FXList to display an always-visible, flat list of items

and allow the user to select one or more items from it.

FXListBox Use FXListBox to display a drop-down, flat list of items

and allow the user to select a single item from it.

FXComboBox Use FXComboBox to display a drop-down, flat list of

items and allow the user to select a single item from

it. Unlike FXListBox, the FXComboBox is editable.

FXTreeList Use FXTreeList to display a list of hierarchically struc-

tured items and allow the user to select one or more

items from it.

FXTable Use FXTable to display a collection of items in tabular

form and allow the user to select one or more items

from it.

Figure 9.1: List Widgets

You can of course also prepend an item to the beginning of the list,

insert an item at a specific position in the list, or remove an item from

the list (using the prependItem(), insertItem(), or removeItem() method,

respectively):

Download listexample.rb

groceries.prependItem("Bread")

groceries.insertItem(2, "Peanut Butter")

groceries.removeItem(3)

Making Selections in Lists

FXRuby maintains several attributes having to do with the current

selection in a list. The current item is simply the last list item that you

clicked, and it’s the item that currently has the keyboard focus. If there

is no current item, the currentItem for a list is -1; otherwise, it’s the inte-

ger index of the current item. When the current item changes, the FXList

sends both a SEL_CHANGED message and a SEL_COMMAND message to

the list widget’s target:

groceries.connect(SEL_COMMAND) do |sender, sel, index|

puts "The new current item is #{sender.currentItem}"

end

http://media.pragprog.com/titles/fxruby/code/listexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=116

DISPLAYING SIMPLE LISTS WITH FXLIST 117

Figure 9.2: FXList in action

The list sends a number of other interesting messages to its target

when, for example, the user double-clicks a list item. For a complete

listing of all the messages that FXList sends to its target, check the API

documentation.

The selection mode for an FXList sets the policy for how many items can The FXList also provides

the less frequently used

LIST_SINGLESELECT,

LIST_AUTOSELECT, and

LIST_MULTIPLESELECT

selection modes.

be selected at the same time and how you go about changing the selec-

tion. One selection mode that you’ll use often is the LIST_BROWSESELECT

mode. In this mode, there’s always exactly one list item selected, and it’s

the last one you clicked. The other commonly used list selection mode is

the LIST_EXTENDEDSELECT mode. In this mode, any number of items can be

selected. Ctrl +clicking an item toggles its selected state, and holding

down the Shift key while clicking items extends the current selection

to include all the intermediate items.

So Which Items Are Selected?

When the list is configured in the LIST_SINGLESELECT, LIST_BROWSESELECT,

or LIST_AUTOSELECT mode, you can safely assume that the currentItem

is the currently selected item. When the list is configured in either

LIST_EXTENDEDSELECT or LIST_MULTIPLESELECT mode, however, you need to

check each list item individually to find out whether it’s selected.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=117

GOOD THINGS COME IN SMALL PACKAGES: FXCOMBOBOX AND FXLISTBOX 118

One way to do this is to iterate over all the item indices:

selected_indices = []

0.upto(list.numItems-1) do |index|

selected_indices << index if list.itemSelected?(index)

end

A different approach is to iterate over the FXListItem instances them-

selves, testing their selected?() states:

Download listexample.rb

selected_items = []

groceries.each { |item| selected_items << item if item.selected? }

As you might expect, the FXList and FXListItem classes provide a number

of additional methods having to do with the behavior and appearance

of a list. For all the gory details, see the API documentation for these

classes.

Depending on the number of items in the list and the available “real

estate” in your user interface, an FXList might not be the best choice for

displaying a collection of data. If you need to display a long list of items

but have only a small amount of space to work with, a combo box or

list box might work better. We’ll take a look at those widgets next.

9.2 Good Things Come in Small Packages: FXComboBox and

FXListBox

The FXComboBox and FXListBox widgets are both variations on the FXList

widget. Both of these widgets look like a combination of an FXTextField

and an FXArrowButton. When you click the arrow button, the text field

expands to display the entire list of items. After you select an item from

the list, the list “pops” back down to assume its original appearance.

Like FXList, they can both be used to display a flat list of items from

which the user can select an item. Unlike FXList, they allow you to select

only one item at a time from the list.

There are no hard-and-fast rules about when it’s preferable to use a

regular FXList as opposed to an FXComboBox or FXListBox. Obviously, if you

need for the user to be able to pick more than one item, you’d want to

go with the FXList. On the other hand, if a single selection is appropriate

and if you don’t have enough room in the user interface to display a

list, a combo box or list box is a nice, compact way to hide the list’s

contents away when they aren’t needed.

http://media.pragprog.com/titles/fxruby/code/listexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=118

GOOD THINGS COME IN SMALL PACKAGES: FXCOMBOBOX AND FXLISTBOX 119

Figure 9.3: Separated at birth? FXComboBox and FXListBox

My personal philosophy is that if a list is going to contain more than

a handful of items, I’ll use a combo box or list box instead of a plain

old list. The differences between combo boxes and list boxes are subtle,

however, and depending on how you use them, they’re pretty inter-

changeable. I mean, can you tell the difference between the two in Fig-

ure 9.3? Neither can I. Basically, if all you need is to be able to select an

item from a list, you should use the FXListBox. If you want to be able to

type in a text string as an alternative to the existing list items and even

see that item added to the list of items, you should use FXComboBox.

Like FXList, both of these widgets provide prependItem(), appendItem(),

insertItem(), and removeItem() methods for altering the contents of the

list:

Download comboboxexample.rb

states = FXListBox.new(matrix,

:opts => LISTBOX_NORMAL|FRAME_SUNKEN|FRAME_THICK|LAYOUT_FILL_X)

$state_names.each { |name| states.appendItem(name) }

One item can be selected at any time, and the currentItem attribute indi-

cates the index of that item (or -1 if there is no current item).

http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=119

GOOD THINGS COME IN SMALL PACKAGES: FXCOMBOBOX AND FXLISTBOX 120

Since the FXComboBox can be edited, there are a few additional issues

we need to address for that widget. One issue has to do with whether

text that the user types into the combo box’s text field should be added

to the list of items.

By default, the combo box uses the COMBOBOX_NO_REPLACE option,

which means the list’s contents remain the same regardless of what

the user types into the text field:

Download comboboxexample.rb

accounts = FXComboBox.new(matrix, 20,

:opts => COMBOBOX_NO_REPLACE|FRAME_SUNKEN|FRAME_THICK|LAYOUT_FILL_X)

When you are using an editable FXComboBox, you can’t necessarily

depend on the currentItem to lead you to the user’s input, since they

may have typed some new text into the text field. For that reason, you

should instead inspect the value of the combo box’s text attribute to

determine its current value:

Download comboboxexample.rb

accounts.connect(SEL_COMMAND) do |sender, sel, data|

assign_expense_account(sender.text)

end

Note that the data the combo box sends along with the SEL_COMMAND

message is in fact equal to the value of its text attribute, so for this

example you could’ve just passed in data directly to the assign_expense_

account() method.

If you’d like for the strings that the user types into the text field to be

added to the combo box’s list, you have several choices as to where

those new items are placed in the list:

• Use the COMBOBOX_INSERT_FIRST option to insert the new item at

the beginning of the list.

• Use the COMBOBOX_INSERT_LAST option to insert the new item at the

end of the list.

• Use the COMBOBOX_INSERT_BEFORE option to insert the new item

before the current item.

• Use the COMBOBOX_INSERT_AFTER option to insert the new item after

the current item.

In my experience, the COMBOBOX_INSERT_BEFORE and COMBOBOX_INSERT_

AFTER options are a bit confusing, from a user’s perspective, and I usu-

ally just stick with the COMBOBOX_INSERT_FIRST option. Note that the

http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=120

BRANCHING OUT WITH TREE LISTS 121

FXComboBox doesn’t have a built-in option to automatically maintain

the sort order of the items, but you can work around this by calling

sortItems() on the combo box during the SEL_COMMAND handler:

Download comboboxexample.rb

categories.connect(SEL_COMMAND) do |sender, sel, data|

assign_expense_category(sender.text)

sender.sortItems

end

The call to sortItems() won’t disturb the text entered in the text field, but

if you click the arrow button to pop the list pane down, you will see that

the newly added item appears at the correct position in the sorted list.

The widgets we’ve looked at so far in this chapter all deal with flat lists

of items. FXRuby also provides support for dealing with hierarchically

structured data by way of the FXTreeList widget, and we’ll discuss it next.

9.3 Branching Out with Tree Lists

The FXTreeList widget is so named because you can imagine the data that

it manages as treelike, starting from a root and reaching out in various

directions, with branches leading to other branches. Unlike the FXList,

FXComboBox, and FXListBox, which all deal with flat lists of things, the

FXTreeList is designed for use with hierarchically structured data.

Although we use the word tree to describe this list’s data and appear-

ance, you should note that it’s not exactly like the classic tree data

structure that you may have studied in your computer science classes.

One especially confusing point is that the standard documentation for

the FXTreeList class uses the term root item to refer to any one of the

topmost visible items in the tree. From a strict computer-science point

of view, the actual root of the tree never appears onscreen, and we can

refer to it only indirectly by using the FXTreeList API.

Once you get used to the terminology that FXRuby uses to talk about

the FXTreeList class, however, you’ll find that it’s easy to use in practice.

You can modify the content of the tree list using the familiar prepen-

dItem(), insertItem(), appendItem(), and removeItem() methods, although

the calling conventions are slightly different because of the hierarchical

nature of the list. The first argument for the prependItem() and appen-

dItem() methods is a reference to the parent item for the item that you’re

adding.

http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=121

BRANCHING OUT WITH TREE LISTS 122

If it’s a top-level item, pass in nil as the first argument:

Download treelistexample.rb

treelist = FXTreeList.new(treelist_frame,

:opts => TREELIST_NORMAL|TREELIST_SHOWS_LINES| \

TREELIST_SHOWS_BOXES|TREELIST_ROOT_BOXES|LAYOUT_FILL)

artist_1 = treelist.appendItem(nil, "Alison Kraus")

album_1_2 = treelist.appendItem(artist_1, "Forget About It")

track_1_2_3 = treelist.appendItem(album_1_2, "Ghost in this House")

track_1_2_2 = treelist.prependItem(album_1_2, "Maybe")

track_1_2_1 = treelist.insertItem(track_1_2_2, album_1_2, "Stay")

album_1_1 =

treelist.prependItem(artist_1, "Every Time You Say Goodbye")

There are three options that you can use to control how the connections

between parent and child items in the tree list are displayed. If the TREEL-

IST_SHOWS_LINES option is selected, the tree list will draw a faint dotted

line from a parent item to each of its child items. If TREELIST_SHOWS_BOXES

is selected, the tree list will display a small box to the left of any tree

item that has one or more child items; if that tree item is expanded, the

box will contain a dash, and if the tree item is collapsed, it will con-

tain a plus sign. Now, for some reason, the TREELIST_SHOWS_BOXES option

applies only to items nested somewhere below the top-level items. If

you also want to see the boxes next to top-level items (and remem-

bering that FOX calls these the root-level items), you must also pass in

the TREELIST_ROOT_BOXES option. Note that the TREELIST_ROOT_BOXES option

has no effect unless TREELIST_SHOWS_BOXES is also enabled.

Having said all that, I usually pass in all three options, as shown in

the sample code. I’ve never found a good reason to omit any of them.

Figure 9.4, on the following page, will give you an idea of what the tree

list looks like in this case.

Keeping Track of the Selection

FXTreeList supports the same kinds of selection modes that FXList does,

and they work in the same ways, so the things you’ve already learned

about them apply here as well. The currentItem attribute still tells you

the last item that was clicked, although in this case it’s a reference to

an FXTreeItem object instead of an integer index.

Determining which items are selected in a tree list can be tricky, how-

ever, when the selection mode allows for multiple selected items. The

most straightforward way to do this, in my experience, is to track the

selected items in an Array (or some other container) and then use the

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=122

BRANCHING OUT WITH TREE LISTS 123

Figure 9.4: A sample FXTreeList

SEL_SELECTED and SEL_DESELECTED messages from the FXTreeList to update

the array:

Download treelistexample.rb

selected_items = []

treelist.connect(SEL_SELECTED) do |sender, sel, item|

selected_items << item unless selected_items.include? item

end

treelist.connect(SEL_DESELECTED) do |sender, sel, item|

selected_items.delete(item)

end

This technique works well for any size tree list because it’s inexpensive,

computationally speaking. If you know that the tree list isn’t going to

hold all that many items, however, you may find that simply travers-

ing the tree every time the current item changes, and recording which

items are selected, is fast enough for your purposes. Just catch the

SEL_COMMAND message from the FXTreeList:

Download treelistexample.rb

treelist.connect(SEL_COMMAND) do |sender, sel, current|

selected_items = []

treelist.each { |child| add_selected_items(child, selected_items) }

end

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=123

BRANCHING OUT WITH TREE LISTS 124

Here’s the add_selected_items(), which traverses the tree in a recursive

fashion to see which items are selected:

Download treelistexample.rb

def add_selected_items(item, selected_items)

selected_items << item if item.selected?

item.each { |child| add_selected_items(child, selected_items) }

end

Now before we end this chapter, we’ll see a super-secret bonus trick

about associating a right-click pop-up menu with an FXTreeList.

Creating Context Menus for Tree Items

Users have gotten used to the idea of being able to right-click an object

in the user interface to display a context-sensitive pop-up menu for

that object. You can do this with almost any kind of object in FXRuby,

but it sure seems to come up a lot when developers decide to add an

FXTreeList to their application. For that reason, I’m going to treat you

to a little recipe for how to add one of these right-click pop-up menus

to a tree list, bearing in mind that a very similar technique could be

applied to other widgets. I’m going to skim over the details about the

different parts of the menu itself, but we’ll cover that in depth later, in

Chapter 13, Advanced Menu Management, on page 187.

The first step is to catch the SEL_RIGHTBUTTONRELEASE message that the

FXTreeList forwards to its target. If the mouse moved in between the time

the button went down (the SEL_RIGHTBUTTONPRESS event) and came back

up, the call to moved?() will return true, and in that case we’ll disregard

the event. Otherwise, we can use the window coordinates reported in

the event data to determine which tree item (if any) was hit:

Download treelistexample.rb

treelist.connect(SEL_RIGHTBUTTONRELEASE) do |sender, sel, event|

unless event.moved?

item = sender.getItemAt(event.win_x, event.win_y)

unless item.nil?

...

end

end

end

The getItemAt() method will return nil if there is no tree item at the spec-

ified coordinates. Otherwise, it will return a reference to that FXTreeItem.

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=124

BRANCHING OUT WITH TREE LISTS 125

The next step is to construct an FXMenuPane and add one or more menu

commands to it:

Download treelistexample.rb

treelist.connect(SEL_RIGHTBUTTONRELEASE) do |sender, sel, event|

unless event.moved?

item = sender.getItemAt(event.win_x, event.win_y)

unless item.nil?

FXMenuPane.new(self) do |menu_pane|

play = FXMenuCommand.new(menu_pane, "Play Song")

play.connect(SEL_COMMAND) { play_song_for(item) }

info = FXMenuCommand.new(menu_pane, "Get Info")

info.connect(SEL_COMMAND) { display_info_for(item) }

...

end

end

end

end

Finally, create the menu pane, call popup() on it to display it onscreen,

and then start a nested run loop focused on that menu pane:

Download treelistexample.rb

treelist.connect(SEL_RIGHTBUTTONRELEASE) do |sender, sel, event|

unless event.moved?

item = sender.getItemAt(event.win_x, event.win_y)

unless item.nil?

FXMenuPane.new(self) do |menu_pane|

play = FXMenuCommand.new(menu_pane, "Play Song")

play.connect(SEL_COMMAND) { play_song_for(item) }

info = FXMenuCommand.new(menu_pane, "Get Info")

info.connect(SEL_COMMAND) { display_info_for(item) }

menu_pane.create

menu_pane.popup(nil, event.root_x, event.root_y)

app.runModalWhileShown(menu_pane)

end

end

end

end

As soon as the user clicks one of the menu commands or clicks out-

side the pop-up menu, the menu pane will be hidden and the applica-

tion will fall back out of the event loop started by the call to runModal-

WhileShown(). Figure 9.5, on the following page, shows what the pop-up

menu looks like when I right-click one of the songs in the list. This is

an easy bit of code to add to an application, and when used properly, it

can really enhance the program’s usability.

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=125

DISPLAYING TABULAR DATA WITH FXTABLE 126

Figure 9.5: Adding a context menu for the tree list

So, now we have options for dealing with both flat lists of data as well

as nested lists of data. Next up, we’re going to take a look at one more

of the widgets that FXRuby provides for dealing with collections of data,

and that’s the FXTable widget.

9.4 Displaying Tabular Data with FXTable

The FXTable widget is one of the more complicated widgets in the FOX

Toolkit, and it’s one that has evolved pretty significantly since it was

originally introduced. Newcomers sometimes confuse the FXTable widget

with the FXMatrix layout manager, which you can use to lay out a bunch

of widgets in rows and columns.1 The FXTable does lay out its contents

in rows and columns, but it’s not a layout manager per se; in some

other toolkits, you may have heard this kind of a widget referred to as

a grid widget or spreadsheet widget.

Storing Data in a Table

Our study of FXTable begins with a look at how to create a table and add

some data to it. In this section we’re going to learn a little bit about how

1. We used the FXMatrix layout manager while building the Picture Book application, and

we’ll discuss it in more detail in Section 12.2, Arranging Widgets in Rows and Columns

with a Matrix Layout, on page 172.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=126

DISPLAYING TABULAR DATA WITH FXTABLE 127

the table actually manages its data internally. We’ll see that the table’s

sparse storage scheme makes it very efficient, and we’ll also learn how

to define items that can span multiple table cells.

Like the list widgets we looked at in the previous chapter, tables are

empty by default. The most efficient way to fill up a table is to use the

setTableSize() method:

Download tableexample1.rb

table = FXTable.new(self, :opts => LAYOUT_FILL)

table.setTableSize(10, 10)

An important thing to recognize about setTableSize(), and all of the meth-

ods that alter the size of the table, is that FXTable makes a distinction

between empty cells and those that have some content (or data) asso-

ciated with them. Both kinds of cells take up space onscreen when the

table is drawn, but internally, FXTable allocates storage (in the form of

FXTableItem objects) only for those cells that actually have content. This

makes the table very efficient in terms of memory use, and it means

you can store pretty large tables with very little penalty.

You should also understand that the setTableSize() method is a destruc-

tive method. Whether you’re initializing the table size or simply resiz-

ing it to make it bigger or smaller, setTableSize() begins by destroying

all the existing table items. So if your table already contains some

data and you just want to grow it by a few rows or columns, calling

setTableSize() is not the way to do it. Instead, use some combination

of the appendRows(), appendColumns(), insertRows(), and insertColumns()

methods.2

A spanning item is one that takes up more that one position in the

table. You can create a spanning item by simply passing in the same

item to setItem() for several adjacent rows and columns:

Download tableexample1.rb

table.setItemText(2, 1, "This is a spanning item")

table.setItemJustify(2, 1, FXTableItem::CENTER_X)

spanning_item = table.getItem(2, 1)

table.setItem(2, 2, spanning_item)

table.setItem(2, 3, spanning_item)

table.setItem(3, 1, spanning_item)

table.setItem(3, 2, spanning_item)

table.setItem(3, 3, spanning_item)

2. There aren’t any methods to prepend rows or columns to a table, but you can use

insertRows() or insertColumns(), passing in a value of zero for the starting row or column.

http://media.pragprog.com/titles/fxruby/code/tableexample1.rb
http://media.pragprog.com/titles/fxruby/code/tableexample1.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=127

DISPLAYING TABULAR DATA WITH FXTABLE 128

Figure 9.6: Table with a spanning item

In this example, the item at position (2, 1) spans a 3-by-2 block of cells

in the table. When this part of the table is drawn, none of the interior

grid lines will be drawn. Figure 9.6 shows what the table looks like for

this spanning item.

Modifying the Table Display Options

So far we’ve talked about how you can add to or modify the table data.

An equally important topic is the display of that data and more specifi-

cally the amount of control the user has over the table’s appearance.

By default, both horizontal and vertical grid lines are displayed so that

the borders of individual table cells are clearly delineated.3 If you’d like

to turn off the display of grid lines, set either or both of the horizontal-

GridShown and verticalGridShown attributes to false:

table.horizontalGridShown = false

All the cells in a row have the same height, and all the cells in a column

have the same width. However, different rows can have different row

heights, and different columns can have different column widths. By

default, the user can’t change any of those sizes. You can always change

the row heights and column widths programmatically, using methods

such as setRowHeight() and setColumnWidth(), but to allow the user to

interactively resize them, you must enable either the TABLE_ROW_SIZABLE

flag, the TABLE_COL_SIZABLE flag, or both:

table.tableStyle |= TABLE_COL_SIZABLE

3. As we’ve already mentioned, the interior grid lines for spanning table items are never

drawn.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=128

DISPLAYING TABULAR DATA WITH FXTABLE 129

When one or both of these options is enabled, the user can click the

separator between two items in the row (or column) header and drag it

from side to side to resize the neighboring rows (or columns).

Speaking of those row and column headers, you can also manipulate

their contents to provide (for example) titles for the table columns:

Download tableexample2.rb

table.setColumnText(0, "Ruby 1.8.6")

table.setColumnText(1, "Ruby 1.9")

table.setColumnText(2, "JRuby")

table.setColumnText(3, "Rubinius")

If you want to turn off the display of the row header (a pretty com-

mon request), first change its mode to LAYOUT_FIX_WIDTH, and then set

its width to zero pixels. You can do the same for the column header

by setting the columnHeaderMode to LAYOUT_FIX_HEIGHT and the column-

HeaderHeight to zero:

Download tableexample1.rb

table.rowHeaderMode = LAYOUT_FIX_WIDTH

table.rowHeaderWidth = 0

table.columnHeaderMode = LAYOUT_FIX_HEIGHT

table.columnHeaderHeight = 0

The table shown in Figure 9.6, on the previous page, has both its row

and column headers hidden.

You also have some degree of control over the display of individual table

items. Each table item has an associated text string and icon. You can

change these values using the setItemText() and setItemIcon() methods.

Download tableexample2.rb

table.setItemText(5, 3, "Timeout")

table.setItemIcon(5, 3, stopwatch_icon)

table.setItemJustify(5, 3, FXTableItem::CENTER_X)

table.setItemIconPosition(5, 3, FXTableItem::BEFORE)

The table shown in Figure 9.7, on the following page, includes a number

of items with the text right-justified (the default) as well as others with

centered text and icons.

Finally, the user can edit the contents of a table cell by double-clicking

that cell, typing some new text, and pressing the Enter key. You can

disable this feature by setting the editable attribute to false:

table.editable = false

http://media.pragprog.com/titles/fxruby/code/tableexample2.rb
http://media.pragprog.com/titles/fxruby/code/tableexample1.rb
http://media.pragprog.com/titles/fxruby/code/tableexample2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=129

DISPLAYING TABULAR DATA WITH FXTABLE 130

Figure 9.7: Table items with icons

So far we’ve been focusing on the display aspects of the FXTable: how

to put data inside it and how to change its appearance. Like the other

widgets we’ve looked at in this chapter, however, the table is also useful

as an input mechanism. To wrap up this section, we’re going to take a

look at how users can make selections in tables.

Managing the Table Selection

The table is somewhat less flexible than the list widgets in terms of its

selection model. It supports only one selection mode, and in that mode

you can select either a single cell or a contiguous block of cells. You

can’t, for example, select one cell in the upper-left corner and another

cell in the lower-right corner, without also selecting all the cells in

between.

When you click in a cell to begin building up a selection, that cell

becomes the anchor cell. The anchorRow and anchorColumn attributes

for the table contain the row and column indices of the anchor item,

assuming that there is one. If you then hold down the Shift key and

click somewhere else in the table, the selection will be extended from

the anchor cell to the cell in which you clicked. As was the case with

the list widgets, the current item (identified by the currentRow and cur-

rentColumn attributes) is just the last cell you clicked.

It’s important to recognize that the selection doesn’t “grow” to include

both the previously selected cells and the newly selected cells, unless

they all happen to lie on the same side of the anchor. In other words, the

selection in a table always pivots around the anchor cell. This may be

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=130

DISPLAYING TABULAR DATA WITH FXTABLE 131

a little counterintuitive at first (it was to me, anyway). The selStartRow,

selEndRow, selStartColumn, and selEndColumn attributes will always con-

tain the starting and ending row and column indices for the entire

selection, when there is one. Note that because of how the table’s selec-

tion model works, one of those endpoints—either (selStartRow, selStartCol-

umn) or (selEndRow, selEndColumn)—will be the anchor cell.

When the user clicks a row heading, all the cells in that row will become

selected. Likewise, when the user clicks a column heading, all the cells

in that column become selected. You can disable this behavior by set-

ting either or both of the TABLE_NO_ROWSELECT and TABLE_NO_COLSELECT

options:

Disable row and column selections

table.tableStyle |= TABLE_NO_ROWSELECT|TABLE_NO_COLSELECT

The table sends a SEL_COMMAND message when you click a table item,

and the message data is an FXTablePos instance. An FXTablePos is just

simple data object with row and col accessor methods for reading the

row and column of the selected table item.

You can, of course, programmatically modify the selection, although

you normally rely on the user to perform those actions interactively.

Try as you might, FXTable won’t let you trick it into making a selection

that violates its selection model. For example, the following code will

result in only one cell—the one at (5, 5)—being selected:

table.selectItem(0, 0)

table.selectItem(5, 5)

To select a range of cells, use the selectRange() method:

Select all of the cells between (0, 0) and (5, 5), inclusively

table.selectRange(0, 0, 5, 5)

As was the case for the FXTreeList, the easiest way to keep up with which

table items are selected is to store them in an Array whose contents are

updated in response to SEL_SELECTED and SEL_DESELECTED messages:

Download tableexample2.rb

selected_items = []

table.connect(SEL_SELECTED) do |sender, sel, pos|

item = sender.getItem(pos.row, pos.col)

selected_items << item unless selected_items.include? item

end

table.connect(SEL_DESELECTED) do |sender, sel, pos|

selected_items.delete(sender.getItem(pos.row, pos.col))

end

http://media.pragprog.com/titles/fxruby/code/tableexample2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=131

DISPLAYING TABULAR DATA WITH FXTABLE 132

This concludes our look at the widgets that FXRuby provides for dealing

with collections of data, but there are a number of other, similar widgets

in the library that you may want to take a look at as well. For example,

the FXTable widget uses a pair of FXHeader widgets internally to display

its row and column headings, but you can pull that widget out and use

it by itself. The FXFoldingList is a sort of cross between an FXTreeList and

an FXHeader that allows you to associate multiple columns of data with

each item in a tree list. An FXIconList is used by the file dialog box to

provide several different kinds of views on a list of files, but you can

also repurpose it to display other kinds of lists. You will find docu-

mentation for each of these widgets in the FXRuby API documentation,

and the standard FXRuby source distribution includes examples for

each of them.

Next, we’re going to shift gears and take a look at another one of FOX’s

more complicated widgets, the FXText widget, which you can use to edit

large text documents.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=132

Chapter 10

Editing Text with the Text Widget
In Chapter 8, Building Simple Widgets, on page 100, we learned how

to use the FXTextField widget when we need to get text input from the

user. An FXTextField is an appropriate choice when you’re dealing with

short, single-line strings, such as form data or filenames. It’s clearly

not a one-size-fits-all solution, however. In this chapter, we’ll look at

how to use the FXText widget, which you can use to display and edit

multiline text documents. FXText is one of the more complicated widgets

in the FOX library, and although it has a number of similarities with

FXTextField, at first glance its API is a little overwhelming. You’ll get a

basic introduction to the FXText widget in this chapter, but you should

be sure to look up its API documentation to learn about some of its

more advanced features as well.

First, the good news. If you simply need a fully featured text-editing

component to stick somewhere in your application, you don’t have to

do much more than construct an FXText widget, optionally initialize its

value to some default text, and then ask it for its contents at some later

time using its text attribute:

Download text.rb

text = FXText.new(text_frame, :opts => TEXT_WORDWRAP|LAYOUT_FILL)

text.text = "By default, the text buffer is empty."

Out of the box, FXText offers almost all functionality you’d expect from

a text-editing component. Figure 10.1, on the following page, shows

a partial listing of the key bindings that FXText recognizes. For all the

keystrokes that move the cursor, you can hold down the Shift key to

select the text between where the cursor is located and where it’s going.

http://media.pragprog.com/titles/fxruby/code/text.rb

ADDING AND REMOVING TEXT 134

Keystroke Action

Left , Right , Up , or Down Moves left, right, up or down

Ctrl + Left or Ctrl + Right Moves to end of previous word or begin-

ning of next word

Ctrl + Up or Ctrl + Down Scrolls up or down one line, leaving cur-

sor in place

Home Moves to beginning of line

Ctrl + Home Moves to beginning of document

End Moves to end of line

Ctrl - End Moves to end of document

PgUp Pages up

PgDn Pages down

Insert Toggles overstrike mode

Ctrl + Insert or Ctrl + C Copies selection to clipboard

Shift + Insert or Ctrl + V Pastes clipboard contents

Ctrl + A Selects all text

Shift + Delete or Ctrl + X Cuts selected text

Figure 10.1: Some keystrokes that FXText understands

Because of its inherent capability to format large bodies of text, FXText is

also useful for simply displaying text in many circumstances. To make

the FXText read-only, just set editable to false:

text.editable = false

If you want to use FXText in a more sophisticated way, you’ll need to dig

into its API a bit. Let’s do that now, starting with the APIs for adding

and removing text from the text buffer.

10.1 Adding and Removing Text

When you’re using the FXTextField widget, there’s only one way to pro-

grammatically change its value, and that’s by assigning a new value to

its text attribute. This is reasonable since, by definition, you’re working

with a relatively short string and it takes very little overhead to just

replace the whole thing in one shot. It’s a different story when you’re

working with the FXText widget, however. FXText is optimized for working

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=134

ADDING AND REMOVING TEXT 135

with very large bodies of text, and as a result, it provides a number of

methods for modifying that text.

By default, the text buffer for an FXText widget is empty. You can ini-

tialize its value by assigning a string to its text attribute, but that’s just

about the only time you’ll want to do that. The problem is that when

you assign the text using the text attribute, the FXText widget assumes

that it needs to recalculate a number of metrics that it uses internally,

such as the positions of all the line starts. This is a computationally

expensive operation. When you have a choice, you should instead use

one of the other methods that FXText provides. For example, to append

some text to the end of the buffer, use the appendText() method:

text.appendText(additional_text)

The appendText() method accepts an optional second argument, which

defaults to false:

Download text.rb

text.appendText(additional_text, true) # notify target of change

If you pass a value of true as the optional second argument to append-

Text(), FXRuby will send SEL_INSERTED and SEL_CHANGED messages to the

text widget’s target after the text has been modified:1

Download text.rb

text.connect(SEL_INSERTED) do |sender, sel, change|

puts "The string #{change.ins} was inserted at position #{change.pos}"

end

The message data for SEL_INSERTED message is an FXTextChange instance,

which includes information about text that is inserted (or replaced or

removed) from an FXText widget’s text buffer. Use insertText() to insert a

string at a specific position in the text buffer:

Download text.rb

text.insertText(pos, inserted_text)

You can replace one chunk of text with another using replaceText():

Download text.rb

text.replaceText(pos, amount, replacement_text)

1. All the methods we’ll discuss in this section accept this optional true parameter as

a final argument. See the API documentation for FXText for more details about which

messages get sent to the text widget’s target as a result.

http://media.pragprog.com/titles/fxruby/code/text.rb
http://media.pragprog.com/titles/fxruby/code/text.rb
http://media.pragprog.com/titles/fxruby/code/text.rb
http://media.pragprog.com/titles/fxruby/code/text.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=135

NAVIGATING THROUGH TEXT 136

Note that the chunk of text that you’re replacing may be shorter or

longer than the replacement string; that’s why you have to specify how

many characters you want to replace.

Finally, you can remove a chunk of text using removeText():

Download text.rb

text.removeText(pos, amount)

So far we’ve glossed over the fact that for user-editable text like that

supported by FXText, we may not be able to assume very much about

the positions of strings required for the insertText(), replaceText(), and

removeText methods’ arguments. In the next section, we’ll look at some

of the methods that FXText provides for determining where we are in the

text buffer and how we get to where we want to go.

10.2 Navigating Through Text

The methods we discussed in the previous section assume that you

already know the position at which you want to add, replace, or remove

some text. You can always read the value of the cursorPos attribute to

determine the current cursor position, but sometimes you need to find

some position relative to that (or some place completely different, for

that matter).

Let’s start at the lowest level. If you want to find the position of the

previous character (relative to a known position in the text buffer), you

can use the dec() method. Likewise, to find the position of the following

character, use the inc() method:

previous_character_pos = text.dec(text.cursorPos)

Why, you may ask, can’t we just subtract or add 1 to the current posi-

tion to find the character at an adjacent position? If you try this, there

is in fact a very good chance that it will work just fine. The reason that

you want to be careful about this is that FXText (and every other FOX

widget that displays or otherwise deals with string values) assumes

that it’s working with UTF-8 encoded Unicode strings. Now, a lot of

smart people have written a lot of words about the Unicode standard

and the UTF-8 encoding for Unicode, so we’re not going to get into that

here. Suffice it to say that a given character—or code point, in Uni-

code parlance—may be represented by more than one byte in the text

buffer. So, to accurately find your way from one position to the next,

you should always use the inc() and dec() methods.

http://media.pragprog.com/titles/fxruby/code/text.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=136

SEARCHING IN TEXT 137

You can use the wordStart() and wordEnd() methods to determine the

position for the beginning or ending of a word that occupies a particular

position in the text. For example, to determine the starting position of

the current word, use something like this:

current_word_start_pos = text.wordStart(text.cursorPos)

You can use the leftWord() and rightWord() methods to find the position

for the end of the previous word or the beginning of the next word:

next_word_start_pos = text.rightWord(text.cursorPos)

Along the same lines, you can find the position for the beginning or end

of a line using the lineStart() and lineEnd() methods:

current_line_start_pos = text.lineStart(text.cursorPos)

There are even methods to determine the starting positions of previ-

ous, or following, lines in the text. Note that there’s a subtle distinction

between “lines” of text and “rows” of text. A line of text (sometimes

referred to as a logical line) doesn’t end until you reach a newline char-

acter in the text buffer, even if the text gets wrapped over several rows

onscreen when it’s displayed. If you’ve turned off the word wrapping

option for FXText, it will always be the case that the line start and row

start relative to a given position will be equal, as will the line end and

row end relative to that position.

It’s important to be familiar with the methods we’ve discussed in this

section, but they address only one aspect of navigating through the

text. It may be the case that you’re not so much concerned about the

current position and how to navigate from that starting point but rather

that you’re concerned with finding other locations in the text. We’ll take

a look at that aspect of navigation next.

10.3 Searching in Text

So far we’ve talked about how to find your way around in the text,

relative to a known position in the text buffer. You can use the findText()

method to search for a specific string in the text buffer. By default,

findText() will return a pair of arrays that tells you where it found the

first occurrence of the search string:

Download findtext.rb

text.text =

"Now is the time for all good men " +

"to come to the aid of their country."

first, last = text.findText("the") # returns [7], [10]

http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=137

SEARCHING IN TEXT 138

The first array contains the starting position(s) of all the matches that

findText() found. The second array contains the ending position(s), plus

1. That’s why the value of last in the previous example is [10] and not [9].

If findText() doesn’t find any matches, both return values will be nil:

Download findtext.rb

first, last = text.findText("women") # returns nil, nil

By default, findText() starts its search from the beginning of the text

buffer and looks for an exact match of your search string. You can

modify the starting position for the search by specifying a value for the

:start parameter:

Download findtext.rb

first, last = text.findText("the", :start => 20) # returns [44], [47]

You can also modify the search options, for example, to perform a case-

insensitive search or to search backward from a starting position:

Download findtext.rb

first, last = text.findText("ThE", :start => 20,

:flags => SEARCH_BACKWARD|SEARCH_IGNORECASE) # returns [7], [10]

For more complicated searches, you can use FOX’s built-in regular

expression engine, FXRex.2 For example, to find the first four-letter

word in the text, we could use a search like this:

Download findtext.rb

first, last = text.findText("\\w{4}",

:flags => SEARCH_REGEX) # returns [11], [15]

If the regular expression contains capturing groups (delimited by paren-

theses), the arrays returned by findText() will contain the starting and

ending positions for each of those groups:

Download findtext.rb

first, last = text.findText("the (\\w+ (\\w+)) (\\w+)",

:flags => SEARCH_REGEX) # returns [7, 11, 16, 20], [23, 19, 19, 23]

This last example is trickier than the others we’ve looked at, so let’s

break it down. For starters, the first group is just the entire matching

expression, and that’s what the first elements of the first and last arrays

refer to here. The matched expression, “the time for all,” starts at posi-

tion 7 and ends at 23. Now, moving from left to right, the next group

2. For a detailed discussion of FXRex, see the documentation at

http://www.fox-toolkit.org/rex.html.

http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://www.fox-toolkit.org/rex.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=138

APPLYING STYLES TO TEXT 139

matched the subexpression “time for,” which starts at 11 and ends at

19. The next group matches “for,” which starts at 16 and ends at 19.

Finally, the last group matches “all,” which starts at 20 and ends at 23.

FOX’s regular expression engine is very powerful, but in some cases the

syntax may not be identical to that for Ruby’s standard regular expres-

sions. You may find it easier to just extract the text from an FXText widget

and then search it using a more familiar Ruby-style regular expression:

Download findtext.rb

if text.text =~ /the (\w+ (\w+)) (\w+)/

group0, group1, group2, group3 = $~[0], $~[1], $~[2], $~[3]

end

The only penalty you pay in this case is that, under the hood, FXRuby

creates a new String object that contains the contents of the text buffer

whenever you read the value of the text attribute. Depending on the size

of the text buffer and how often you need to perform a match, this cost

may not be all that prohibitive.

10.4 Applying Styles to Text

A serious shortcoming of FOX and FXRuby is the lack of a widget that

can display HTML or rich text. The FXText widget is definitely not that

kind of widget, although it provides some minimal support for “styled”

text.

The first step is to enable support for styled text by setting the styled

attribute to true:

Download styledtext.rb

text.styled = true

The next step is define one or more styles to be applied to the text. We

do this by first constructing an FXHiliteStyle instance and then setting

its attributes. The default new() method for the FXHiliteStyle class isn’t all

that useful, since it can’t initialize the various style colors to reasonable

values for an arbitrary FXText widget. It’s better to use the from_text()

method, which initializes the FXHiliteStyle instance with the current color

scheme for the FXText widget that you pass in:

Download styledtext.rb

style1 = FXHiliteStyle.from_text(text)

http://media.pragprog.com/titles/fxruby/code/findtext.rb
http://media.pragprog.com/titles/fxruby/code/styledtext.rb
http://media.pragprog.com/titles/fxruby/code/styledtext.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=139

APPLYING STYLES TO TEXT 140

Figure 10.2: Displaying styled text in a text widget

Now modify one or more attributes for this style setting. Suppose you

want to display some text highlighted with a yellow background, with

some other text bold and in red:

Download styledtext.rb

style1 = FXHiliteStyle.from_text(text)

style1.normalBackColor = "yellow"

style2 = FXHiliteStyle.from_text(text)

style2.normalForeColor = "red"

style2.style = FXText::STYLE_BOLD

Next, we need to tell our FXText widget to use this style array:

Download styledtext.rb

text.hiliteStyles = [style1, style2]

Finally, use the changeStyle() method to set the style for a specified

block of text to a particular style in the style array. Since the first two

arguments to changeStyle() are the starting position and length of the

text to be styled, we’ll use findText() to locate the string of interest:

Download styledtext.rb

first, last = text.findText("yellow background")

start_pos = first[0]

length = last[0] - first[0]

text.changeStyle(start_pos, length, 1)

The last argument to changeStyle() is the style index. Note that the

“zeroth” style index is reserved for the text widget’s default style. That

is, when you pass in zero as the last argument to changeStyle(), the

text will be displayed using the normal, nonstyled color scheme. Since

we’re passing in 1 as the style index in this example, FXText will use

the yellow-background style to display the phrase “yellow background.”

Figure 10.2 shows what this example looks like running under

Windows.

http://media.pragprog.com/titles/fxruby/code/styledtext.rb
http://media.pragprog.com/titles/fxruby/code/styledtext.rb
http://media.pragprog.com/titles/fxruby/code/styledtext.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=140

APPLYING STYLES TO TEXT 141

We’ve spent the previous few chapters talking about some of the widgets

that you can use to take care of the user interface basics. Although dis-

playing information and collecting input from users certainly addresses

the functional requirements of most applications, that’s not enough to

produce the sort of visually rich and aesthetically pleasing application

that folks have gotten used to creating. In the next chapter, we’ll shift

gears a bit and look at some of the tools that FXRuby provides for

dressing up GUIs and making them all shiny.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=141

Chapter 11

Creating Visually Rich
User Interfaces

So far we’ve focused on the basics of assembling widgets into a cohesive

user interface and how to handle the interaction between the appli-

cation and its users. If that were all that was required to create an

application that people would enjoy working with, there wouldn’t be

much more for us to talk about. The fact of the matter is that users

have gotten used to working with applications that go beyond the basic

functional requirements and incorporate various elements that create

visual interest.

Fortunately for us, FXRuby provides a number of features for creat-

ing visually rich user interfaces. In the process of building the Picture

Book application, we’ve already learned that FXRuby provides extensive

support for displaying images. In Chapter 8, Building Simple Widgets,

on page 100, we got a brief introduction to a different sort of graph-

ical object when we learned how to construct icons and use them to

decorate labels, buttons, and other kinds of widgets. Although most of

the code we’ve written so far uses the default application font, FXRuby

provides access to all your installed system fonts so that you can use

different typefaces throughout your application, when that’s an appro-

priate thing to do. You can also change the shape of the mouse cursor

in certain circumstances to provide the user with a visual cue about the

state of the application or the kind of operation that they’re performing.

In this chapter, we’ll investigate all these features and see how you can

use them effectively in your own applications.

USING CUSTOM FONTS 143

The user interface objects that we’re talking about in this chapter are

special because, unlike widgets, fonts, cursors, images, and icons are

shared resources. When you construct a widget like an FXButton, that

widget occupies exactly one location in the widget hierarchy. Another

way to look at it is that the button has exactly one parent window. In

contrast to this, a shared resource can be associated with many other

user interface objects. For example, when you construct the applica-

tion object, it constructs a default FXFont object that is used by all the

widgets in your application.

The important thing to take away from this is that it’s not necessary to

construct multiple instances of these kinds of objects if they all have the

same characteristics. For example, suppose that instead of the default

application font that you see throughout your application, you want

to construct a custom font using the Geneva typeface, for use with

a particular FXLabel widget. You would first construct the new FXFont

object, and if necessary, call create() on it:

geneva_font = FXFont.new(app, "Geneva", 10)

geneva_font.create

my_special_label.font = geneva_font

Then you’d assign it to the label.

my_special_label.font = geneva_font

Now suppose you want to use that same Geneva font, in the same point

size, in an FXText widget elsewhere in your application. You could con-

struct a new FXFont object with exactly the same properties as the label’s

font, but this would be a waste of resources. The better choice is to sim-

ply assign geneva_font as the FXText widget’s font.

my_special_text.font = geneva_font

With that introduction out of the way, let’s take a look at our first

shared resource, FXFont.

11.1 Using Custom Fonts

Depending on which dictionary you consult, you may think that font

refers to either an entire family of sizes and styles for a particular type-

face or that it refers to a specific size and style from that family.1 For

1. You may also read that a font is a “receptacle in a church for the water used in

baptism.” We’re not referring to that particular kind of font.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=143

USING CUSTOM FONTS 144

FXRuby’s purposes, an FXFont object corresponds to the second defi-

nition. If you need to display the same typeface in two different point

sizes, for example, you’re going to need to construct two different FXFont

objects.

There are three methods for constructing FXFont objects. All of them

give you some way to specify your desired font characteristics, such

as the typeface name, point size, and weight. FOX will then use those

parameters to identify the available system font that best matches what

you want. The font constructor you’ll probably use most often involves

passing in a number of parameters to specify the desired font charac-

teristics. For example, you could use the following code to request a

14-point font using the italicized flavor of the Arial typeface:

Download fonts.rb

label1 =

FXLabel.new(self, "This label uses a 14 point Arial italic font.")

label1.font = FXFont.new(app, "Arial", 14, :slant => FXFont::Italic)

Another method for constructing a font involves passing in a string

containing the font description. You’ll want to consult the API docu-

mentation for the FXFont class for the exact format of this string, but

here’s an example of how to request a 12-point Times bold font:

Download fonts.rb

label2 =

FXLabel.new(self, "This label uses a 12 point Times bold font.")

label2.font = FXFont.new(app, "Times,120,bold")

The third method for constructing a font involves passing in an FXFont-

Desc object. An FXFontDesc is just a data object with attributes that

correspond to the arguments that you’d pass into the first form of the

FXFont.new() method that we looked at (for example, the font name, point

size, and so on). In practice, you usually won’t construct an FXFontDesc

object directly. In many cases, you’ll obtain one from an FXFontDialog

(which we’ll cover in Chapter 14, Providing Support with Dialog Boxes,

on page 196). A more direct way to get your hands on an FXFontDesc

object is to use the listFonts() method.

The listFonts() method returns a list of all the available fonts that match

the criteria you specify. This is a powerful and platform-independent

method for choosing a font, since it doesn’t require you to explicitly

identify all the font characteristics.

http://media.pragprog.com/titles/fxruby/code/fonts.rb
http://media.pragprog.com/titles/fxruby/code/fonts.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=144

USING CUSTOM FONTS 145

Figure 11.1: Examples of custom fonts

In this example, we’re asking for a list of all the straight (nonitalics)

fixed-width fonts and then just choosing the first one:

Download fonts.rb

label3 = FXLabel.new(self, "This label should use a fixed-width font.")

fonts = FXFont.listFonts("", :slant => FXFont::Straight,

:hints => FXFont::Fixed)

label3.font = FXFont.new(app, fonts.first)

If we want to be a little pickier, we can look for the smallest fixed-width

font that’s size 2 points (20 decipoints) or larger:

Download fonts.rb

label4 = FXLabel.new(self,

"This label should use a very small fixed-width font!")

fonts = FXFont.listFonts("", :slant => FXFont::Straight,

:hints => FXFont::Fixed)

sorted_by_size = fonts.sort { |a, b| a.size <=> b.size }

label4.font = FXFont.new(app, sorted_by_size.find { |f| f.size > 20 })

Figure 11.1 shows some of the fonts generated by this example under

Windows. Note that in this case, the fixed-width font with the smallest

point size (shown on the last line) is actually wider than the previous

fixed-width font that we selected (and which is shown on the next-to-

last line). This is not an error; a font’s point size is a relative measure

that is usually based on the distance from the top of the tallest ascender

to the bottom of the lowest descender.2

As is also the case with web design, you should be conservative about

the number and kinds of fonts you use in your applications to ensure

that they’ll work well on a variety of platforms and on monitors running

2. See http://nwalsh.com/comp.fonts/FAQ/cf_8.htm for a good, brief discussion of how to

interpret the point size of a font.

http://media.pragprog.com/titles/fxruby/code/fonts.rb
http://media.pragprog.com/titles/fxruby/code/fonts.rb
http://nwalsh.com/comp.fonts/FAQ/cf_8.htm
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=145

POINTING THE WAY WITH CURSORS 146

at different display resolutions. Consider using listFonts() to increase

your odds of finding the appropriate font that meets your application’s

needs.

Another opportunity you have for sprucing up your application’s look is

the use of custom mouse cursors to provide visual cues about a change

in the application’s state or the operation that the user is performing.

Let’s take a look at how FXRuby uses cursors next.

11.2 Pointing the Way with Cursors

The shape of the cursor is just one of those things you usually don’t

think about. For a lot of the GUI applications that you’ll write, you’ll

stick with the default cursor provided by FOX. For some applications,

however, it’s useful to change the shape of the cursor during certain

operations to provide a visual cue to the user about what’s happening.

For example, when I drag a file from one folder to another in the Win-

dows Explorer for the purpose of moving it, the cursor shows a little

“plus” sign off to the side of the regular arrow cursor, but when I hold

down the Alt key while dragging a file, the cursor changes its shape to

indicate that I’ll be creating a link to the original file.

You can change the shape of the cursor for a particular window by

assigning an FXCursor instance to its defaultCursor attribute. Whenever

the mouse pointer enters that window, the cursor’s shape will change

to whatever shape you’ve specified. The FXApp class provides a num-

ber of built-in “default” cursors that you can (and should) use when

you need to change the cursor’s appearance. In the following example,

the cursor’s shape will change to the built-in DEF_HAND_CURSOR shape

whenever the user mouses over the label:

Download cursors.rb

box = FXLabel.new(frame, "Gimme Five!",

:width => 40, :height => 40,

:opts => LAYOUT_CENTER_X, :padding => 40)

box.defaultCursor = app.getDefaultCursor(DEF_HAND_CURSOR)

Figure 11.2, on the next page, shows what the DEF_HAND_CURSOR shape

looks like. If none of the built-in cursors meets your needs, you can

always construct your own custom cursors. The easiest way to do this

is to use the FXGIFCursor subclass, which can construct a cursor from a

GIF image.3

3. There’s also an FXCURCursor class for constructing cursors from CUR files.

http://media.pragprog.com/titles/fxruby/code/cursors.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=146

POINTING THE WAY WITH CURSORS 147

Figure 11.2: Talk to the hand (cursor)

Download cursors.rb

box = FXLabel.new(frame,

"Who's a Programmer's Best Friend?",

:width => 40, :height => 40,

:opts => LAYOUT_CENTER_X, :padding => 40)

custom_cursor = FXGIFCursor.new(app,

File.open("rubycursor.gif", "rb").read)

custom_cursor.create

box.defaultCursor = custom_cursor

Figure 11.3, on the following page, shows what this custom cursor

shape looks like, when the cursor is inside the lower box. Note that

the size of the GIF image should be 32-by-32 pixels or less; this is

because of a limitation on the size of cursors in Windows. Also note

that FOX distinguishes between the default cursor for a window and

the drag cursor for a window. The cursor changes to the drag cursor

whenever the window is grabbed (which usually happens as a result of

http://media.pragprog.com/titles/fxruby/code/cursors.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=147

POINTING THE WAY WITH CURSORS 148

Figure 11.3: Using a GIF image for a custom cursor shape

the user holding down the mouse button and dragging the mouse). If

you change the default cursor for a window, you’ll likely want to change

the drag cursor for that window as well, using the dragCursor attribute.

There’s a special case that comes up often enough for FXRuby to pro-

vide a pair of helper methods for it. When your application is doing

something time-consuming, such as loading a large file or performing a

complicated calculation, you usually want to change the cursor shape

to the “busy” cursor (which looks like a wristwatch). You can use the

beginWaitCursor() and endWaitCursor() methods to temporarily switch the

cursor from its current shape to the busy cursor and back again:4

app.beginWaitCursor # save current shape and switch to busy cursor

... perform time-consuming operation ...

app.endWaitCursor # revert to previous cursor shape

4. FOX calls it the “wait” cursor, I like to call it the “busy” cursor. Deal with it.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=148

CREATING AND DISPLAYING IMAGES 149

You can also use the transactional form of beginWaitCursor(), which will

automatically call endWaitCursor() when the block exits:

Download busy.rb

open_button = FXButton.new(self, "Open File")

open_button.connect(SEL_COMMAND) do

app.beginWaitCursor do

open_file # this may take awhile...

end

end

It’s important to note that, in this example, the user won’t be able to

do anything else with the program while it’s busy opening the file. You

need to be really careful with this. If the task that you’re performing

is going to take a long time but can be done in the background, you

should consider performing that task in a separate thread so that your

program remains responsive during that time.

Considering the work you did in building the Picture Book application,

you already have a lot of experience working with images. In the next

couple of sections, we’ll review that information and learn a few new

tricks in the process.

11.3 Creating and Displaying Images

The easiest way to get started working with FXImage objects is to use one

of the format-specific subclasses such as FXJPGImage to construct an

image directly from some image data. For example, you can construct

an image from a JPEG format file in one line of code:

Download image.rb

birdsnest_image =

FXJPGImage.new(app, File.open("birdsnest.jpg", "rb").read)

FOX doesn’t much care where you get the image data from. If the data is

online somewhere, you can just as easily use Ruby’s standard open-uri

library to grab it:

Download image.rb

require 'open-uri'

oscar_image =

FXJPGImage.new(app, open("http://tinyurl.com/35o8yy").read)

http://media.pragprog.com/titles/fxruby/code/busy.rb
http://media.pragprog.com/titles/fxruby/code/image.rb
http://media.pragprog.com/titles/fxruby/code/image.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=149

CREATING AND DISPLAYING IMAGES 150

Image File Format Class Name

Windows Bitmap (BMP) FXBMPImage

Graphics Interchange Format (GIF) FXGIFImage

Joint Photographic Experts Group (JPEG) FXJPGImage

Portable Network Graphics (PNG) FXPNGImage

Tagged Image File Format (TIFF) FXTIFImage

Figure 11.4: FXImage subclasses

There are subclasses of FXImage for many popular image file formats.

See Figure 11.4 for a listing of the most commonly used file types and

the corresponding class names.5

Once you have a reference to an FXImage object, there are a number of

ways you can use it. The FXImageFrame class is a subclass of FXFrame

whose sole purpose is to display an image:

Download image.rb

FXImageFrame.new(tab_book, birdsnest_image,

:opts => FRAME_RAISED|FRAME_THICK|LAYOUT_FILL)

The FXImageFrame widget isn’t all that sophisticated. If you run the sam-

ple application and resize the window to make it smaller, you’ll see that

the image doesn’t shrink to fit the window’s new size; it just gets clipped

around its edges. When you’re displaying an image of unknown size,

you might be better off using an FXImageView widget, which displays

the image inside a scrolling window:

Download image.rb

FXImageView.new(tabbook_page, oscar_image, :opts => LAYOUT_FILL)

A third use for images is to draw them into device contexts for more

general-purpose drawing applications. I’m not going to cover that topic

here, but you can check out the dctest.rb example program in the stan-

dard FXRuby distribution to see how this works.

In addition to the basic capability for loading and displaying images,

FOX provides a number of APIs for manipulating and transforming

images. Let’s take a look at those features next.

5. FOX also provides support for a number of other, more obscure image file formats.

http://media.pragprog.com/titles/fxruby/code/image.rb
http://media.pragprog.com/titles/fxruby/code/image.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=150

MANIPULATING IMAGE DATA 151

11.4 Manipulating Image Data

In some circumstances, you may need to make minor modifications to

image data. We tackled this in Chapter 5, Take 2: Display an Entire

Album, on page 43, when we used the scale() method to shrink the

original images so that we could see more of them at the same time.

The FXImage class provides several additional APIs that support the

manipulation and transformation of image data, but they take a little

extra effort in terms of setup.

For starters, by default the FXImage throws away its copy of the original

image data once it has created the server-side representation. If you

need to manipulate the source image data only before you call create()

on the image, this default behavior doesn’t present a problem. If, on

the other hand, you want to be able to manipulate the image data after

that initial call to create(), you need to tell FXImage to hold on to its

copy of the original image data (what people in the know refer to as the

client-side pixel buffer) by passing in the IMAGE_KEEP option when you

construct the image:

Download cropimage1.rb

@image = FXJPGImage.new(app,

File.open("birdsnest.jpg", "rb").read,

:opts => IMAGE_KEEP)

Now you can call one or more of the image manipulation APIs to alter

the image’s client-side copy of the pixel buffer. For example, you can

use the crop() method to eliminate portions of the original image. Fig-

ure 11.5, on the next page shows a sample image with all of its original

content. Let’s see what it looks like after cropping away everything but

the upper quadrant of the image.

Download cropimage1.rb

@image.crop(0, 0, 0.5*@image.width, 0.5*@image.height)

The first two arguments to crop() are the coordinates for the upper-left

corner of the region that you want to keep, and the third and fourth

arguments are the width and height of that region. Figure 11.6, on

page 153, shows what’s left of the image after it has been cropped. As

expected, the image is one fourth of its original size and contains only

the upper-left quadrant’s worth of the original image.

The way that crop() actually works is that it resizes the image to the

new width and height, copies over the part of the original image that

you want to keep, and then fills in any gaps with a fill color (which

http://media.pragprog.com/titles/fxruby/code/cropimage1.rb
http://media.pragprog.com/titles/fxruby/code/cropimage1.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=151

MANIPULATING IMAGE DATA 152

Figure 11.5: Original image before cropping

by default is black). In most cases, you’ll use crop() as we did in the

previous example to retain some region that is a subset of the original

image, but crop() is flexible enough to let you do some unusual things.

For example, consider this call to crop() for the same original image:

Download cropimage2.rb

@image.crop(0.5*@image.width, 0.5*@image.height,

@image.width, @image.height)

In this example, we’re using the center of the image as the upper-left

corner of the crop region, which seems reasonable, but we’re also say-

ing that the size of the new image should have the same width and

height as the original image. Figure 11.7, on page 154, shows the result

of this call to crop(). Note that the new parts, which weren’t present in

the original image, are filled in with black.

http://media.pragprog.com/titles/fxruby/code/cropimage2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=152

MANIPULATING IMAGE DATA 153

Figure 11.6: Resulting image after cropping

Let’s consider a different image manipulation technique. You can create

a mirror image of the current image using the mirror() method:

Download mirrorimage.rb

@image.mirror(false, true)

The first argument to mirror() indicates whether the image should be

mirrored in the horizontal direction (that is, flipped from left to right).

The second argument indicates whether the image should be vertically

mirrored. In this example, we’re mirroring the image only in the vertical

direction. Figure 11.8, on page 155, shows what the photo of the bird’s

nest looks like when it has been mirrored vertically.6

We previously noted that if you want to be able to manipulate the client-

side pixel buffer after the image is created, you need to be sure to

pass in the IMAGE_KEEP option when you construct the image. It’s also

6. No birds were harmed in the development of this example program.

http://media.pragprog.com/titles/fxruby/code/mirrorimage.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=153

MANIPULATING IMAGE DATA 154

Figure 11.7: Cropping gone bad

important to note that when you subsequently manipulate the image

data, you need to tell FOX to update the server-side representation of

the image by calling the image’s render() method. Many of the image

manipulation APIs, including scale(), crop(), and mirror(), automatically

call render() for you after they’ve finished rearranging the pixels. Other

APIs, such as blend() and gradient(), don’t, and it’s up to you to call

render() on the image after using those APIs.7

In addition to scaling, cropping, and mirroring images, FOX provides

APIs for rotating, shearing, fading, and blending images; see the FXIm-

age API documentation for more details. This is a pretty useful set of

tools, but for anything more sophisticated you’re probably better off

using an auxiliary library such as Tim Hunter’s popular RMagick.8

7. The API documentation for the image manipulation methods indicates which ones

automatically rerender the image and which ones do not.
8. http://rmagick.rubyforge.org/

http://rmagick.rubyforge.org/
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=154

CREATING AND DISPLAYING ICONS 155

Figure 11.8: A mirror image

So far we’ve really been considering only one aspect of how to use

bitmapped image data to enhance the appearance of our applications.

In the next section, we’ll look at how to use images as icons to provide

smaller decorative touches to labels, buttons, and other widgets.

11.5 Creating and Displaying Icons

The main difference between images and icons is that some parts of

icons are treated as transparent. You define a transparency color for

an icon, and then when FOX draws that icon, the stuff underneath the

pixels of that color shows through. Icons are also usually smaller in

size than your average image, but in all but a few situations there’s

no real constraint on an icon’s size. Another important difference is

that icons can be used in a lot more places than a plain old image.

You’ve already seen how you can use icons as decorations for labels,

buttons, and various kinds of list items. In Chapter 13, Advanced Menu

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=155

CREATING AND DISPLAYING ICONS 156

Figure 11.9: Guessing the transparency color for BMP icons

Management, on page 187, you’ll see that you can also associate them

with menu items.

As was the case with images, the easiest way to get started using icons

is to construct one from some image data by using one of the subclasses

of FXIcon. For example, you can construct an icon from a GIF file in a

single line:

Download icons.rb

gif_icon = FXGIFIcon.new(app, File.open("fxruby.gif", "rb").read)

The only tricky part of constructing an icon is that most image file

formats (other than GIF) don’t inherently support the notion of a single

transparency color. For example, the BMP file format doesn’t address

transparency at all. When you want to construct an icon from a BMP

image, you must at least give FOX a hint about which color is the right

one. The easiest way to do this is using the IMAGE_ALPHAGUESS option:

Download icons2.rb

r_icon = FXBMPIcon.new(app,

File.open("Rasl.bmp", "rb").read,

:opts => IMAGE_ALPHAGUESS)

Figure 11.9 shows an example of the IMAGE_ALPHAGUESS option in ac-

tion. When you specify the IMAGE_ALPHAGUESS option, FOX will guess

the transparency color based on the colors of the four corners of the

image. And this is usually a pretty good guess; for this example, all four

corners of the original BMP images were white, so it correctly guessed

that the white regions should be made transparent.

http://media.pragprog.com/titles/fxruby/code/icons.rb
http://media.pragprog.com/titles/fxruby/code/icons2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=156

CREATING AND DISPLAYING ICONS 157

Figure 11.10: Fixing the transparency color for BMP icons

If the IMAGE_ALPHAGUESS algorithm doesn’t in fact make the right guess,

you can explicitly specify which color value should be transparent by

passing in that value and the IMAGE_ALPHACOLOR option:

Download icons3.rb

red_transp = FXBMPIcon.new(app,

File.open("shapes.bmp", "rb").read,

:opts => IMAGE_ALPHACOLOR)

red_transp.transparentColor = FXRGB(255, 0, 0)

Figure 11.10 shows three different results for the transparency color

of the same BMP icon. The first result, on the left, shows what we get

if we don’t say anything about the transparency color: the image is

simply drawn opaque, with no transparent regions. The middle result

shows what we get if we use the IMAGE_ALPHAGUESS option: since all four

corners of the image are white, that’s assumed to be the transparency

color. The third result, on the right, shows what we get when we specify

the IMAGE_ALPHACOLOR option and a transparency color of red (as in

the previous code excerpt).

At the other end of the spectrum is the PNG file format, which includes

an alpha channel for specifying the degree of transparency for each

individual pixel. Pixels can be completely opaque, completely transpar-

ent, or somewhere in between. FOX renders these kinds of icons by

assuming that any pixel that’s not completely transparent (and thus

has a nonzero alpha value) should be visible. The downside of this is

that you can’t display partially transparent regions in icons, but the

upside is that you’re not restricted to a single transparency color as

you are with most of the other file formats.

http://media.pragprog.com/titles/fxruby/code/icons3.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=157

ONE MORE THING 158

11.6 One More Thing

We discussed this point way back in Section 7.7, Client-Side vs. Server-

Side Objects, on page 95, but it bears repeating. If you construct an

image or icon dynamically, after the program is up and running, be sure

to call create() on it to link it with a server-side resource. Otherwise,

your program will crash spectacularly. This problem comes up in a

number of different situations, but one where it’s especially prevalent

is in conjunction with adding new items to a list at runtime.

Suppose that you have an FXListBox widget to which items are added at

runtime. The list box contains a list of usernames, and each entry in

the list has an associated icon that indicates the user’s status:

def add_user(user_name, status)

status_icon = make_status_icon(status)

status_icon.create

users_listbox.appendItem(user_name, status_icon)

end

In this excerpt from our hypothetical program, the application can

invoke the add_user() method to add a new user with a given status

on the fly. Before adding the list item, we call the make_status_icon()

method to construct a new FXIcon instance that graphically indicates

the user’s status. The key here is to then call create() on the icon object

before we associate it with a list item. Note that our implementation

of make_status_icon() could cache the icon objects if that makes sense.

There’s no harm in calling create() on an already-created resource, but

you definitely want to ensure that the resource has been created before

it’s ever used.

Constructing a GUI application isn’t just about putting all the widgets

in the right places and wiring them together. The gratuitous use of

colorful icons and fancy fonts is certainly no remedy for poorly designed

user interaction, but with the appropriate (and I hope tasteful) use of

custom fonts, cursors, images, and icons, you can enhance your user

interfaces to make them more visually pleasing to the end users. As

more and more users come to expect visually rich user interfaces, the

“curb appeal” of the application is a factor that you shouldn’t disregard.

Speaking of putting all the widgets in the right places, it’s now time

for us to take a closer look at how you can use layout managers to

place and size the widgets in a user interface. Let’s do that in the next

chapter.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=158

Chapter 12

Managing Layouts
Layout managers are objects that are responsible for arranging the

positions and sizes of other widgets. On its surface, this may sound like

a pretty simple assignment, and it’s certainly true that in well-designed

user interfaces, an application’s users won’t really be aware of the role

that layout managers play. From an application developer’s point of

view, however, layout managers provide you with a lot of flexibility in

terms of how your user interface is organized.

Fundamentally, layout managers give you ways to express not only how

individual widgets’ sizes and positions are determined but also how

groups of widgets are sized and positioned relative to each other. They

give you the tools to make everything fit, just the way you want them

to work. For those cases where things won’t (or shouldn’t) all fit on

the same screen at the same time, layout managers provide you with

options for conditionally displaying different parts of the user interface

at different times. For example, some special-purpose layout managers

allow you to swap different parts of the application in and out, while

others allow you to scroll different portions of a window in and out of

view.

Layout managers also help you address some less obvious problems.

For example, one of the trickier aspects of creating cross-platform appli-

cations is that some resources, such as fonts, can be changed on the

fly. These sorts of changes can have a potentially significant impact

on the arrangement of the parts of the user interface that display text

using those fonts. Layout managers can help you minimize the impact

of those changes.

UNDERSTANDING THE PACKING MODEL 160

In this chapter, we will start by looking at the packing model, the funda-

mental layout algorithm that powers many of FOX’s most heavily used

layout managers. The FXPacker is a pretty complicated layout manager,

and although we’ll use it in our initial discussion of the packing model,

in practice you won’t use FXPacker directly all that often. Instead, you’ll

use one of its subclasses, such as FXHorizontalFrame or FXVerticalFrame.

We’ll take a look at those as well and then continue our discussion

of layout basics by examining how to create more complicated layouts

by nesting layout managers inside each another, how to create fixed

layouts (and why you shouldn’t), and how to modify the padding and

spacing inside layout managers to get just the right look.

Once we have a handle on the fundamentals, we’ll turn our attention to

some of the more special-purpose layout managers. We already encoun-

tered some of these layout managers, such as FXMatrix, FXScrollWindow,

and FXSplitter, when we were building the Picture Book application. We’ll

take a closer look at those layout managers and touch on some of the

finer points involved in using them.

We’ll also examine the FXTabBook layout manager, which you can use to

create tabbed notebook-style views. We’ll wrap up the chapter with a

more general look at how to solve some more common layout problems

using FOX’s layout managers.

12.1 Understanding the Packing Model

Are you familiar with the videogame Tetris? The object of Tetris is to

maneuver a series of falling geometric shapes so that they will fit into a

container. While one of these shapes is falling, you can rotate it or shift

it from side to side until you find the best fit for it. Well, the FXPacker

layout manager works something like that (although I hope it’s less

stressful).

When you first construct an FXPacker window, it’s like an empty box.

The first child widget that you add to the packer will be packed against

one of its four sides.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=160

UNDERSTANDING THE PACKING MODEL 161

You specify which side you want to pack against by passing in one of

LAYOUT_SIDE_TOP, LAYOUT_SIDE_RIGHT, LAYOUT_SIDE_BOTTOM, or LAYOUT_SIDE_

LEFT as a layout hint:1

Download packer1.rb

packer = FXPacker.new(self, :opts => LAYOUT_FILL)

child1 = FXButton.new(packer, "First",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM)

Here, we’ve specified that the first child widget, a button, should be

packed along the bottom side of the packer. By default, the packer is

going to align that button with its left side. We can override that behav-

ior so that the button is instead centered between the packer’s left and

right sides:

Download packer2.rb

child1 = FXButton.new(packer, "First",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_CENTER_X)

If we want the button to be aligned with the packer’s right side, we can

replace LAYOUT_CENTER_X with LAYOUT_RIGHT:

Download packer3.rb

child1 = FXButton.new(packer, "First",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_RIGHT)

So far, the packer is just sizing the button to its default width and

height. We can request that the button be stretched horizontally to

make it as wide as possible:

Download packer4.rb

child1 = FXButton.new(packer, "First",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_FILL_X)

Note that I’ve left out the hint about how to align the button, since the

LAYOUT_FILL_X hint makes that irrelevant.

Now, what if we want to pack two buttons against the bottom side of

the packer? It seems like we ought to be able to write code like this:

Download packer5.rb

packer = FXPacker.new(self, :opts => LAYOUT_FILL)

child1 = FXButton.new(packer, "Bottom-Right",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_RIGHT)

child2 = FXButton.new(packer, "Bottom-Left",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_LEFT)

1. If you don’t explicitly specify the side, it defaults to LAYOUT_SIDE_TOP.

http://media.pragprog.com/titles/fxruby/code/packer1.rb
http://media.pragprog.com/titles/fxruby/code/packer2.rb
http://media.pragprog.com/titles/fxruby/code/packer3.rb
http://media.pragprog.com/titles/fxruby/code/packer4.rb
http://media.pragprog.com/titles/fxruby/code/packer5.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=161

UNDERSTANDING THE PACKING MODEL 162

Figure 12.1: Not quite what we expected?

The LAYOUT_SIDE_BOTTOM hint tells the packer that we want both but-

tons packed against the bottom side. We specify LAYOUT_RIGHT on the

first button and LAYOUT_LEFT on the second. We know that the button’s

default size is small enough for both of them to fit, right? So, what

happens when you run this example?

With that kind of a setup, you just knew that it wasn’t going to work,

right? Figure 12.1 shows what it looks like running under Windows, but

the layout is not quite what we expected. The first button is correctly

packed against the packer’s bottom edge and aligned with the packer’s

right side. The second button is correctly aligned with the packer’s left

side, but it’s sitting on top of this invisible shelf, just above the first

button. The deal with the packer is that once you pack a widget against

a side of the remaining space (aka the “cavity”), it takes up that entire

side of the cavity. This is true even if you aren’t using LAYOUT_FILL_X or

LAYOUT_FILL_Y.

Let’s add a few more widgets, packed against other sides of the cavity,

to see how they are placed as the packer begins to fill up:

Download packer6.rb

packer = FXPacker.new(self, :opts => LAYOUT_FILL)

child1 = FXButton.new(packer, "Bottom-Right",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_RIGHT)

child2 = FXButton.new(packer, "Bottom-Left",

:opts => BUTTON_NORMAL|LAYOUT_SIDE_BOTTOM|LAYOUT_LEFT)

child3 = FXLabel.new(packer, "Top",

:opts => FRAME_GROOVE|LAYOUT_SIDE_TOP|LAYOUT_FILL_X)

child4 = FXLabel.new(packer, "Left-Center",

:opts => FRAME_GROOVE|LAYOUT_SIDE_LEFT|LAYOUT_CENTER_Y)

http://media.pragprog.com/titles/fxruby/code/packer6.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=162

UNDERSTANDING THE PACKING MODEL 163

Figure 12.2: After adding more widgets

Figure 12.2 shows what this looks like running under Windows. It may

help to understand what has happened by looking at Figure 12.3, on

the next page. The dashed lines indicate the spaces occupied by each of

the child widgets that have been placed in the packer. Note that by the

time we added the fourth child widget (the “Left-Center” label) a good bit

of the vertical space in the cavity had been eaten up by the previously

added widgets.

But let’s not forget our earlier goal of placing buttons in the lower-left

and lower-right corners of the packer. How do we achieve that kind

of layout? For any kind of nontrivial layout, you’re going to end up

nesting layout managers inside each another. And that leads us into

a discussion of the next set of layout managers, the horizontal and

vertical frames.

Creating Simple Layouts with Horizontal and Vertical Frames

The FXHorizontalFrame and FXVerticalFrame layout managers are sub-

classes of FXPacker that place some additional constraints on the packer

model that we’ve been talking about. As you might guess from their

names, the horizontal frame arranges its children horizontally, and the

vertical frame arranges its children vertically.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=163

UNDERSTANDING THE PACKING MODEL 164�
op

Bottom-Right

Bottom-Left

Left-
Center

Figure 12.3: What’s going on behind the scenes

By default, the horizontal frame will just lay out its children from left

to right, using their default sizes:

Download hframe1.rb

hframe = FXHorizontalFrame.new(self)

child1 = FXButton.new(hframe, "First")

child2 = FXButton.new(hframe, "Second")

child3 = FXButton.new(hframe, "Third")

As was the case with the FXPacker, you can be more specific about which

side the child widget should be aligned with:

Download hframe2.rb

hframe = FXHorizontalFrame.new(self)

child1 =

FXButton.new(hframe, "Right", :opts => BUTTON_NORMAL|LAYOUT_RIGHT)

child2 =

FXButton.new(hframe, "Left", :opts => BUTTON_NORMAL|LAYOUT_LEFT)

Note that we’re using LAYOUT_LEFT and LAYOUT_RIGHT, not LAYOUT_SIDE_LEFT

and LAYOUT_SIDE_RIGHT. The thing to remember is that the packing hints

(such as LAYOUT_SIDE_LEFT and LAYOUT_SIDE_RIGHT) are considered by only

the FXPacker layout manager.

http://media.pragprog.com/titles/fxruby/code/hframe1.rb
http://media.pragprog.com/titles/fxruby/code/hframe2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=164

UNDERSTANDING THE PACKING MODEL 165

Figure 12.4: Vertical frame with uniform heights

You can specify the PACK_UNIFORM_HEIGHT packing hint to force all the

widgets in a frame to assume the same height:

Download vframe1.rb

vframe = FXVerticalFrame.new(self, :opts => PACK_UNIFORM_HEIGHT)

child1 = FXButton.new(vframe, "This is a short button")

child2 = FXButton.new(vframe, "This one is a\nlittle taller")

child3 = FXButton.new(vframe, "This button is\nthree lines\ntall")

Note that the PACK_UNIFORM_HEIGHT hint is specified for the frame, not

for the individual buttons. When you run this example, you’ll see that

all three buttons have been sized to the height of the tallest widget (the

third button). Figure 12.4 shows what this looks like under Windows.

You can also request that the widgets have uniform width.

Download vframe2.rb

vframe = FXVerticalFrame.new(self,

:opts => PACK_UNIFORM_WIDTH|PACK_UNIFORM_HEIGHT)

child1 = FXButton.new(vframe, "This is a short button")

child2 = FXButton.new(vframe, "This one is a\nlittle taller")

child3 = FXButton.new(vframe, "This button is\nthree lines\ntall")

Figure 12.5, on the next page, shows what this looks like under Win-

dows. Note that each of the buttons is now as wide as the widest widget

(the first button).

http://media.pragprog.com/titles/fxruby/code/vframe1.rb
http://media.pragprog.com/titles/fxruby/code/vframe2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=165

UNDERSTANDING THE PACKING MODEL 166

Figure 12.5: Vertical frame with uniform widths and heights

An understanding of how the packing model works and how to use

FXHorizontalFrame and FXVerticalFrame to create simple layouts is essen-

tial knowledge for any FXRuby developer, but you’ll begin to realize the

real power of layout managers when you learn how to nest layout man-

agers inside one another to create more complex layouts. Let’s take a

look at how to do that next.

Nesting Layout Managers Inside Each Other

Let’s revisit the example we looked at in an earlier section, when we

tried to figure out how to pack two buttons along the bottom side of

a packer. To achieve that layout, we’ll put the two buttons inside a

horizontal frame and then put that horizontal frame inside the packer:

Download hframe3.rb

packer = FXPacker.new(self, :opts => LAYOUT_FILL)

hframe = FXHorizontalFrame.new(packer, :opts => LAYOUT_SIDE_BOTTOM)

child1 = FXButton.new(hframe, "Bottom-Right",

:opts => BUTTON_NORMAL|LAYOUT_RIGHT)

child2 = FXButton.new(hframe, "Bottom-Left",

:opts => BUTTON_NORMAL|LAYOUT_LEFT)

Before you run this example, take a look at the code and make sure

you understand how the horizontal frame is nested inside the packer.

http://media.pragprog.com/titles/fxruby/code/hframe3.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=166

UNDERSTANDING THE PACKING MODEL 167

Figure 12.6: Packer with nested horizontal frame

Figure 12.6, on the following page shows what this example looks like

running under Windows.

This is pretty close. The buttons are now on the same level, but instead

of being in opposite corners, they’re right next to each other (and butted

up against the left side). The problem has to do with the layout hints

that we specified for the horizontal frame. Since we didn’t ask for the

horizontal frame to stretch, it has been sized just large enough to hold

the two buttons that it contains; and since we didn’t specify which side

to align it with, it chose the default alignment of LAYOUT_LEFT. Let’s fix

that by specifying the LAYOUT_FILL_X hint for the horizontal frame:

Download hframe4.rb

packer = FXPacker.new(self, :opts => LAYOUT_FILL)

hframe = FXHorizontalFrame.new(packer,

:opts => LAYOUT_SIDE_BOTTOM|LAYOUT_FILL_X)

child1 = FXButton.new(hframe, "Bottom-Right",

:opts => BUTTON_NORMAL|LAYOUT_RIGHT)

child2 = FXButton.new(hframe, "Bottom-Left",

:opts => BUTTON_NORMAL|LAYOUT_LEFT)

Figure 12.7, on the next page, shows the final result. Obviously, this

is a pretty basic example of nesting layout managers inside each other,

but it gives you a taste of how we’ll solve some more complicated layout

problems. We’ll revisit this in more detail in Section 12.6, Strategies for

http://media.pragprog.com/titles/fxruby/code/hframe4.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=167

UNDERSTANDING THE PACKING MODEL 168

Figure 12.7: Packer with nested horizontal frame

Using Different Layout Managers Together, on page 181.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=168

UNDERSTANDING THE PACKING MODEL 169

So far, we’ve been discussing how to achieve various layouts without

making any explicit references to the sizes or positions of the widgets

being laid out. FOX also supports fixed layouts, where you explicitly

specify the positions and/or sizes of the widgets, and we’ll take a look

at how that works next.

Creating Fixed Layouts

You can, of course, bypass the layout managers altogether and just

use fixed layouts. With this approach, you can specify the position of a

widget explicitly instead of letting the layout manager figure it out.

Download fixedlayout.rb

@fixed_pos_button = FXButton.new(self, "Fixed Position",

:opts => BUTTON_NORMAL|LAYOUT_FIX_X|LAYOUT_FIX_Y,

:x => 20, :y => 20)

When you run this example, try resizing the main window. Thanks to

the LAYOUT_FIX_X and LAYOUT_FIX_Y layout hints, you’ll see that the button

stays in the same position, relative to the upper-left corner of the main

window, regardless of what you do. If you resize the window so that

it’s too short (or narrow) to display the button, the button will just be

clipped.

You can also fix the size of a widget, using the LAYOUT_FIX_WIDTH and

LAYOUT_FIX_HEIGHT layout hints:

Download fixedlayout.rb

@fixed_size_label = FXLabel.new(self, "Fixed Size Label",

:opts => (LAYOUT_CENTER_X|LAYOUT_CENTER_Y|

LAYOUT_FIX_WIDTH|LAYOUT_FIX_HEIGHT),

:width => 120, :height => 40)

It’s not an all-or-nothing proposition, by the way. If you just want to fix

the x position of the widget but leave the other parameters up to the

layout manager, just pass in the LAYOUT_FIX_X flag and a value for the x

attribute. If you are going to specify all four parameters (x, y, width, and

height), you can pass in the more compact LAYOUT_EXPLICIT hint instead:

FXLabel.new(self, "Fixed Position and Size",

:opts => LAYOUT_EXPLICIT,

:x => 20, :y => 20,

:width => 120, :height => 40)

This has the same effect as passing in the LAYOUT_FIX_X, LAYOUT_FIX_Y,

LAYOUT_FIX_WIDTH, and LAYOUT_FIX_HEIGHT layout hints.

http://media.pragprog.com/titles/fxruby/code/fixedlayout.rb
http://media.pragprog.com/titles/fxruby/code/fixedlayout.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=169

UNDERSTANDING THE PACKING MODEL 170

Now, forget everything I just told you, because fixed layouts are almost

never the best solution.

The problem with fixed layouts is that they decrease the portability

of your user interface to runtime environments with different display

characteristics. That label that looks fine with a fixed width of 120 pix-

els on your system might look gigantic on a system where the user

substitutes a smaller font than the one you used. Worse, if the user’s

font is larger than the one you tested with, some of the widget’s label

string might be truncated and unreadable. To see this in action, run

the example program, and try increasing or decreasing the font size

using the spinner widget at the bottom of the screen.

A similar problem has to do with the display size. If you’re develop-

ing and running the application in full-screen mode on a 1024-by-768

monitor and you’re using a fixed layout, deploying to a system run-

ning at a different screen resolution will almost certainly be disastrous.

Unless you’re using some kind of element that always needs to be the

same size—say, a fixed-size image or icon—you should avoid using fixed

layouts in your applications.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=170

UNDERSTANDING THE PACKING MODEL 171

padTop

padBottom

vSpacing

padLeft

hSpacing

padRight

Figure 12.8: Padding and spacing

Adding Finishing Touches with Padding and Spacing

By now you may have noticed that when we pack widgets against a

given side of the packer (or whatever layout manager we’re using), they

aren’t exactly flush with that surface. So far, there has always been a

little bit of breathing room between the widget and the container that

it’s in. There’s also spacing between adjacent child widgets in a con-

tainer. Obviously, FOX is applying some reasonable defaults to ensure

that the layout looks good, and in many cases that’s not something

you’ll want to mess with. In some cases, though, you need to tighten

up those gaps between widgets, and for that reason we’re going to take

a quick look at the padding and spacing parameters.

Figure 12.8 illustrates how the padding and spacing values are used

during layout. The padding for a widget is the amount of space it

reserves for itself around its edges. The default padding for most wid-

gets is 2 pixels on each side, but you can change that value for any

or all sides. For example, if you want a widget to be flush against the

upper-left corner of its parent, you’d want to specify zero padding on

the left and top sides, but you might leave the bottom and right padding

values at their default settings. You can specify the padding values for

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=171

UNDERSTANDING THE PACKING MODEL 172

a widget at construction time, using some combination of the :padLeft,

:padRight, :padTop, and :padBottom keys:

spinner = FXSpinner.new(self, 4,

:opts => SPIN_NORMAL|LAYOUT_SIDE_TOP|LAYOUT_LEFT,

:padLeft => 0, :padTop => 0)

It’s pretty common to want to set the padding on all four sides to zero

so that there’s no internal padding. For those situations, you can just

specify the :padding:

spinner = FXSpinner.new(self, 4,

:opts => SPIN_NORMAL|LAYOUT_SIDE_TOP|LAYOUT_LEFT,

:padding => 0)

You can also change the padding for a widget after it has been con-

structed, using the padLeft, padRight, padTop, and padBottom attributes:

spinner = FXSpinner.new(self, 4,

:opts => SPIN_NORMAL|LAYOUT_SIDE_TOP|LAYOUT_LEFT)

spinner.padLeft = 0

spinner.padTop = 0

The horizontal and vertical spacing parameters for a layout manager

dictate how much room it will leave between adjacent child widgets as

it positions them. You can specify these values using the :hSpacing and

:vSpacing keys at construction time:

groupbox = FXGroupBox.new(self, "No horizontal or vertical spacing",

:hSpacing => 0, :vSpacing => 0)

Note that since spacing is considered only in between adjacent widgets,

the spacing values aren’t used for widgets along the sides of the layout

manager. For example, the left edge of the leftmost widget in a horizon-

tal frame will be offset only by its internal padding (more specifically,

its padLeft value).

As was the case with padding, you can also change the spacing values

for a container after it has been constructed:

groupbox = FXGroupBox.new(self, "No horizontal or vertical spacing")

groupbox.hSpacing = 0

groupbox.vSpacing = 0

It can be a little tricky to get the hang of padding and spacing values

and how they interact with each other. The main thing to remember

is that you specify spacing on the layout manager (the container) and

padding on the child widgets. Since all layout managers can themselves

be children of other layout managers, that means you can also specify

the padding for layout managers.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=172

ARRANGING WIDGETS IN ROWS AND COLUMNS WITH A MATRIX LAYOUT 173

Now that we’ve covered all the basics of working with layout managers,

we’ll turn our attention to some of the more special-purpose layout

managers that FOX provides. We’ll start with the FXMatrix layout man-

ager, which we previously encountered when we were building the Pic-

ture Book application.

12.2 Arranging Widgets in Rows and Columns with a Matrix

Layout

The FXMatrix layout manager lays out its child widgets in rows and

columns. Some other toolkits refer to this kind of layout as a “grid” lay-

out. It’s especially useful for laying out forms, with a column of labels

on one side and a column of text fields (or other kinds of widgets) on the

other. Note that if you want to display tabular data along the lines of a

spreadsheet, you’re probably better off using the FXTable widget, which

we’ll look at in Section 9.4, Displaying Tabular Data with FXTable, on

page 126.

A matrix can be configured with either a fixed number of rows (MATRIX_

BY_ROWS) or a fixed number of columns (MATRIX_BY_COLUMNS), and the

second argument for FXMatrix.new is that desired number of rows (or

columns).

Download matrix.rb

matrix = FXMatrix.new(self, 3, :opts => MATRIX_BY_ROWS|LAYOUT_FILL)

You add child widgets to a matrix just as you would any other lay-

out manager, by passing in a reference to the matrix as the parent

for each child widget. Where the matrix actually places those widgets

when it lays them out may surprise you, however. Figure 12.9, on the

next page, illustrates the layout for an FXMatrix widget configured as

MATRIX_BY_ROWS with three rows. The first child widget you add becomes

the first widget in the first row of the matrix (no surprise there). The sec-

ond widget you add becomes the first widget in the second row of the

matrix. This pattern continues until you’ve filled up the first column

of the matrix (by adding the first element of each row), and then you

start over again with the second column. If the matrix is configured as

MATRIX_BY_COLUMNS, you’ll instead be filling up a row at a time.

Making the FXMatrix behave properly in response to resizing can be a

little tricky sometimes. We need to understand how the layout hints

for the matrix’s child widgets affect the overall layout of the matrix.

http://media.pragprog.com/titles/fxruby/code/matrix.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=173

ARRANGING WIDGETS IN ROWS AND COLUMNS WITH A MATRIX LAYOUT 174

1 4 7 10

2

3

5

6

8

9

11

12

Figure 12.9: Layout order for a matrix with three rows

Within a particular cell of a matrix, the usual layout hints work as

expected. If you’ve specified LAYOUT_FILL_X for a child widget, that widget

will stretch horizontally to fill up the entire width of the matrix cell

that it’s in. Likewise, if you specify LAYOUT_CENTER_Y, that child will be

centered vertically. The part that’s up in the air is how much of its total

space the FXMatrix will allocate to that particular cell.

First, the good news. All things being equal, FXMatrix will allocate enough

space to each cell to ensure that the child widget at that location “fits.”

But what if the matrix has room to spare? Your first guess might be that

if you simply specify LAYOUT_FILL_X and/or LAYOUT_FILL_Y for the matrix

itself, all of its contents will stretch accordingly. Well, that would be a

good guess, but you’d be wrong.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=174

ARRANGING WIDGETS IN ROWS AND COLUMNS WITH A MATRIX LAYOUT 175

Figure 12.10: Matrix without LAYOUT_FILL_COLUMN

Consider this simple matrix, with nine child widgets arranged in three

columns:

Download matrix2.rb

matrix = FXMatrix.new(self, 3, :opts => MATRIX_BY_COLUMNS|LAYOUT_FILL)

FXLabel.new(matrix, "Lyle Johnson",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_X)

FXLabel.new(matrix, "Madison", :opts => JUSTIFY_LEFT|FRAME_LINE)

FXLabel.new(matrix, "AL", :opts => FRAME_LINE)

FXLabel.new(matrix, "Homer Simpson",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_X)

FXLabel.new(matrix, "Springfield", :opts => JUSTIFY_LEFT|FRAME_LINE)

FXLabel.new(matrix, "CT", :opts => FRAME_LINE)

FXLabel.new(matrix, "Bob Smith",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_X)

FXLabel.new(matrix, "Walla Walla", :opts => JUSTIFY_LEFT|FRAME_LINE)

FXLabel.new(matrix, "WA", :opts => FRAME_LINE)

I’ve added the FRAME_LINE frame style for each of the labels so that

you can more clearly see the boundaries of each of those widgets. Fig-

ure 12.10 shows what the example looks like running under Windows.

When you run this example, your first reaction might be to suspect that

FXRuby isn’t honoring the LAYOUT_FILL layout hint that you specified for

the FXMatrix. After all, it’s clear that the matrix hasn’t stretched to fill

up the main window, right?

Well, as it turns out, the matrix is in fact filling up the entire main

window. You can make a quick change to the code to prove this to

yourself.

http://media.pragprog.com/titles/fxruby/code/matrix2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=175

ARRANGING WIDGETS IN ROWS AND COLUMNS WITH A MATRIX LAYOUT 176

Figure 12.11: Matrix without LAYOUT_FILL_COLUMN (with red matte)

Download matrix3.rb

matte = FXPacker.new(self, :opts => LAYOUT_FILL)

matte.backColor = "red"

matrix = FXMatrix.new(matte, 3,

:opts => MATRIX_BY_COLUMNS|LAYOUT_FILL, :padding => 20)

By introducing an intermediate FXPacker with a red background and

placing the matrix inside it, we can see that the matrix really is filling

up all of the available space (see Figure 12.11). So, what gives?

The key to getting individual rows and columns of FXMatrix to stretch

and take up the slack space is to use the LAYOUT_FILL_ROW and LAY-

OUT_FILL_COLUMN layout hints. If all of the widgets in a column specify

the LAYOUT_FILL_COLUMN hint, then that column will stretch horizontally.

Download matrix4.rb

matrix = FXMatrix.new(self, 3, :opts => MATRIX_BY_COLUMNS|LAYOUT_FILL)

FXLabel.new(matrix, "Lyle Johnson",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(matrix, "Madison",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_COLUMN)

FXLabel.new(matrix, "AL", :opts => FRAME_LINE)

FXLabel.new(matrix, "Homer Simpson",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(matrix, "Springfield",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_COLUMN)

FXLabel.new(matrix, "CT", :opts => FRAME_LINE)

FXLabel.new(matrix, "Bob Smith",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(matrix, "Walla Walla",

:opts => JUSTIFY_LEFT|FRAME_LINE|LAYOUT_FILL_COLUMN)

FXLabel.new(matrix, "WA", :opts => FRAME_LINE)

http://media.pragprog.com/titles/fxruby/code/matrix3.rb
http://media.pragprog.com/titles/fxruby/code/matrix4.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=176

DYNAMICALLY RESIZING LAYOUTS WITH A SPLITTER LAYOUT 177

Figure 12.12: Matrix with LAYOUT_FILL_COLUMN on first column

Figure 12.12 shows how our example looks, when the layout hint

LAYOUT_FILL_COLUMN is specified for each of the labels in the first col-

umn. Note that if we were to forget that hint for any one of these, the

stretching would not occur. Also, if more than one column’s widgets

all have this layout hint specified, then the slack space will be divided

proportionally.

The FXMatrix layout manager is one that you won’t necessarily use in a

lot of applications, but it solves a particular problem very well, so it’s

a good one to be familiar with. In the next section, we’ll take a look at

another layout manager that we encountered while building the Picture

Book application, the FXSplitter.

12.3 Dynamically Resizing Layouts with a Splitter Layout

The layout managers we’ve talked about so far enforce layout con-

straints automatically. Assuming that you’ve specified the appropriate

layout hints, they will determine suitable sizes and locations for all

of their child widgets, without any intervention on your part. In some

cases, however, it’s useful to provide the user with tools for interactively

resizing parts of the user interface, and FXRuby offers the FXSplitter lay-

out manager for that purpose.

We got an introduction to the FXSplitter class in Chapter 6, Take 3: Man-

age Multiple Albums, on page 62 when we used it to display the album

list and album view side by side. In practice, an FXSplitter will usually

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=177

DYNAMICALLY RESIZING LAYOUTS WITH A SPLITTER LAYOUT 178

contain just two child windows, the “left” and “right” subpanels (or the

top and bottom subpanels, if it’s a vertical splitter). There’s actually no

restriction on the number of child windows in a splitter, however, and

the splitter will draw handles between each of the subpanels and allow

you to resize them accordingly.

By default, the split is from left to right; that is, the first child of the FXS-

plitter appears on the left side of the split, and the second child appears

on the right (and so on, if there are more than two children). You can

configure the split to go from top to bottom by passing in the SPLIT-

TER_VERTICAL flag:

splitter.splitterStyle |= SPLITTER_VERTICAL

You can change the space allocated to either side of a split by grabbing

the splitter handle and dragging it from side to side. While you’re drag-

ging the splitter handle, a semitransparent line will be drawn across

the window to show you where the split will be placed when you stop

dragging. When you release the splitter handle, the adjacent subpanels

are resized according to the handle’s new location.

If the splitter is configured in tracking mode, the panels on either side of

the splitter are resized dynamically, while you’re dragging the splitter:

splitter.splitterStyle |= SPLITTER_TRACKING

This is a bit more expensive, computationally speaking, since the sub-

panels’ contents are continuously laid out and redrawn.

Usually, you’ll want to set the initial sizes of the splitter’s subpanels

to some default widths (or heights) and then let the user resize them

as needed. It’s considerate to save the sizes of the subpanels to the

registry2 when the application exits and then restore them the next

time the application starts up. The best practice for doing so is to write

the size of the splitter’s first panel to the registry just before exiting the

application:

Download splitter.rb

app.reg.writeIntEntry("Settings", "splitSize", @splitter.getSplit(0))

app.exit(0)

2. We don’t cover the FOX registry in this book, but you can read more about it at

http://www.fox-toolkit.org/registry.html.

http://media.pragprog.com/titles/fxruby/code/splitter.rb
http://www.fox-toolkit.org/registry.html
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=178

MANAGING LARGE CONTENT WITH SCROLLING WINDOWS 179

Then, read the split size back in your main window’s create() method

and use it to configure the splitter, just before showing the main win-

dow:

Download splitter.rb

def create

super

@splitter.setSplit(0, app.reg.readIntEntry("Settings", "splitSize"))

show(PLACEMENT_SCREEN)

end

This example assumes that your splitter contains only two subpanels.

Obviously, if your splitter contains more than two subpanels, you’ll

want to save (and restore) the sizes of all but the last one.

Next, let’s take a look at the FXScrollWindow layout manager.

12.4 Managing Large Content with Scrolling Windows

We got an introduction to the FXScrollWindow class back in Chapter 5,

Take 2: Display an Entire Album, on page 43 when we used it as the

basis for the album view. As we learned there, FXRuby provides the

FXScrollWindow class as a sort of decorator class for other layout man-

agers. When you construct a widget as a child of a scroll window, the

scroll window takes care of displaying vertical and horizontal scroll

bars, and it ensures that the correct part of the content is visible when

the user scrolls through it.

You should add only one child window to an FXScrollWindow. Almost

always, that child window will be one of the other layout managers that

we’ve seen. Internally, the scroll window will construct some additional

child widgets (for the vertical and horizontal scroll bars), so if you were

to directly inquire about the list of child windows, you’d see more than

one. For that reason, you should take care to always refer to the scroll

window’s content area using the contentWindow attribute.

In most cases, you’ll want to just add your content to the scroll window

and then let the user decide which portion of the content they want to

view by adjusting the scroll bars. If it’s necessary to programmatically

adjust the viewport of the scroll window so that it’s showing a particular

area of interest, you can use the setPosition() method to do that, but it’s

a little tricky. The coordinates you must pass into setPosition() are the

desired x and y coordinates of the upper-left corner of the content win-

dow, relative to the upper-left corner of the viewport window. What that

http://media.pragprog.com/titles/fxruby/code/splitter.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=179

ORGANIZING WINDOWS WITH TABBED NOTEBOOKS 180

means in practice is that you’ll always be passing in negative values to

setPosition().

So, for example, if you want to adjust the content so that the part that’s

visible inside the scroll window’s viewport is the part whose upper-left

corner is at position (100, 100), you need to pass in (-100, -100) to

setPosition():

scroll_window.setPosition(-100, -100)

If you want to move the content so that it is centered within the

viewport, you need to account for the difference in sizes between the

content and the viewport. The following bit of code should work in most

circumstances:

Download scrollwindow.rb

x = 0.5*(@scroll_window.contentWindow.width -

@scroll_window.viewportWidth)

y = 0.5*(@scroll_window.contentWindow.height -

@scroll_window.viewportHeight)

@scroll_window.setPosition(-x, -y)

Now let’s take a look at the tabbed notebook layout manager.

12.5 Organizing Windows with Tabbed Notebooks

The FXTabBook layout manager is so named because it resembles a note-

book with tabbed pages. When you click one of the tabs, the page

associated with that tab is raised to the top of the stack of pages, and

although the entire row of tabs is always visible, only one page (the top

page) in the notebook is visible at a time. The FXTabBook is frequently

used in dialog boxes that allow the user to modify an application’s set-

tings; each tabbed page in the dialog box presents a different category

of settings. It also shows up in text-editing or word-processing applica-

tions, where each tabbed page displays a different document.

It’s not very difficult to add a tabbed notebook to your application. Start

by constructing an FXTabBook widget:

Download tabbook.rb

tabbook = FXTabBook.new(self, :opts => LAYOUT_FILL)

Next, add the tab items and tabbed notebook pages in pairs. A tab item

is an instance of the FXTabItem class. A tab page is usually some kind of

layout manager, but it can in fact be any kind of widget.

http://media.pragprog.com/titles/fxruby/code/scrollwindow.rb
http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=180

ORGANIZING WINDOWS WITH TABBED NOTEBOOKS 181

Figure 12.13: A preferences dialog box that uses a tabbed notebook

Download tabbook.rb

basics_tab = FXTabItem.new(tabbook, " Basics ")

basics_page = FXVerticalFrame.new(tabbook,

:opts => FRAME_RAISED|LAYOUT_FILL)

contact_tab = FXTabItem.new(tabbook, " Contact ")

contact_page = FXVerticalFrame.new(tabbook,

:opts => FRAME_RAISED|LAYOUT_FILL)

extras_tab = FXTabItem.new(tabbook, " Extras ")

extras_page = FXVerticalFrame.new(tabbook,

:opts => FRAME_RAISED|LAYOUT_FILL)

Figure 12.13 shows what this FXTabBook looks like when it’s displaying

the first tab (the Basics tab).3

If you’re merely interested in displaying tabbed pages, that’s really all

there is to it. If you want to be notified whenever the user selects a

3. The code excerpt that I’ve listed here doesn’t show all the code required to actually

build up the form that you seen in the screenshot, since that code is not directly related

to how FXTabBook works. The full source code is available online.

http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=181

STRATEGIES FOR USING DIFFERENT LAYOUT MANAGERS TOGETHER 182

new tab, however, you can catch the SEL_COMMAND message that the

FXTabBook sends to its target after the new page is displayed:

Download tabbook.rb

tabbook.connect(SEL_COMMAND) do |sender, sel, data|

puts "User selected tab number #{data}"

end

You might want to use this technique if it’s resource-intensive to display

the content associated with a particular page in a tabbed notebook. For

example, if a page is displaying some dynamically updated content,

such as a counter or an animated image, you might want to suspend

the update of that content when the user selects a different tab and

then reactivate the updates when the user navigates back to that page.

This concludes our overview of some of the more special-purpose lay-

out managers available in FXRuby. Before we wrap up this chapter,

however, we are going to tackle the more general question of how to

use all these layout managers together to solve some common layout

problems.

12.6 Strategies for Using Different Layout Managers Together

For the most part, this chapter has focused on how to use the different

layout managers in isolation. Want to lay out a group of widgets in rows

and columns? Use an FXMatrix. Is the widget too big to fit onscreen?

Consider putting it inside an FXScrollWindow. And while it’s true that

you need to get familiar with how all these layout managers work on a

stand-alone basis before you can use them at all, the real fun begins

when you start using them together to solve more complicated layout

problems.

We touched on this idea in Section 12.1, Nesting Layout Managers

Inside Each Other, on page 166, when we looked at how we could

nest an FXHorizontalFrame inside an FXPacker to achieve a layout that

would have been difficult or impossible to achieve using either of the

two layout managers by themselves. Indeed, this is one of the most

important skills you’ll learn as you begin developing your own FXRuby

applications: how to break down a complex layout into a number of

smaller, more manageable pieces and then glue those pieces together

using other layout managers.

http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=182

STRATEGIES FOR USING DIFFERENT LAYOUT MANAGERS TOGETHER 183

Figure 12.14: Mock-up of a GUI front end to a translation service

For example, if your impression is that you’re looking at things stacked

on top of other things, you probably want to use an FXVerticalFrame. Let’s

consider a relatively straightforward example for starters. Figure 12.14

is a mock-up of a program that provides a GUI front end to a translation

service.

When you look at this application’s main window, you should see five

elements stacked on top of each other. From the top, we have a label

(“Source Text”), a text area, a second label (“Translated Text”), a second

text area, and finally a row of controls. When you’re looking at things

stacked on top of other things, your mind should go to the FXVertical-

Frame. A reasonable first attempt at this layout might look something

like the following:

Download layoutexample1.rb

frame = FXVerticalFrame.new(self)

FXLabel.new(frame, "Source Text:")

source_text = FXText.new(frame)

FXLabel.new(frame, "Translated text:")

translated_text = FXText.new(frame, :opts => TEXT_READONLY)

controls = FXHorizontalFrame.new(frame)

http://media.pragprog.com/titles/fxruby/code/layoutexample1.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=183

STRATEGIES FOR USING DIFFERENT LAYOUT MANAGERS TOGETHER 184

Figure 12.15: A first attempt at the layout

The controls horizontal frame at the end holds the combo box of trans-

lation modes as well as the Translate button in the lower-right corner:

Download layoutexample1.rb

FXLabel.new(controls, "Translate from:")

translations = FXComboBox.new(controls, 15,

:opts => COMBOBOX_STATIC|FRAME_SUNKEN|FRAME_THICK)

translate_button = FXButton.new(controls, "Translate",

:opts => BUTTON_NORMAL)

Let’s run this first cut of the layout and see how it looks.

Figure 12.15 shows what this version looks like under Windows. The

most charitable thing you could say about it is that, as promised, the

widgets are stacked on top of each other as expected. Before we improve

on the look of this application, let’s talk about the next important skill

that you’ll need to master: knowing how and when to use the different

layout hints to influence how the layout managers do their jobs.

In most layouts, you’ll apply at least one of the “fill” hints (LAYOUT_FILL_X

or LAYOUT_FILL_Y) to layout managers themselves. In particular, you will

often find you want to use the LAYOUT_FILL_X layout hint for each of the

children of an FXVerticalFrame.4 Let’s do that for the child widgets of

4. Likewise, you’ll often want to use LAYOUT_FILL_Y for each of the children of an FXHorizon-

talFrame.

http://media.pragprog.com/titles/fxruby/code/layoutexample1.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=184

STRATEGIES FOR USING DIFFERENT LAYOUT MANAGERS TOGETHER 185

Figure 12.16: After adding layout hints

the vertical frame in this example. While we’re at it, let’s also set the

LAYOUT_RIGHT hint on the Translate button so that it will be packed

against the right side of the controls horizontal frame.

Download layoutexample2.rb

frame = FXVerticalFrame.new(self, :opts => LAYOUT_FILL)

FXLabel.new(frame, "Source Text:", :opts => LAYOUT_FILL_X)

source_text = FXText.new(frame, :opts => LAYOUT_FILL_X)

FXLabel.new(frame, "Translated text:", :opts => LAYOUT_FILL_X)

translated_text = FXText.new(frame, :opts => TEXT_READONLY|LAYOUT_FILL_X)

controls = FXHorizontalFrame.new(frame, :opts => LAYOUT_FILL_X)

FXLabel.new(controls, "Translate from:")

translations = FXComboBox.new(controls, 15,

:opts => COMBOBOX_STATIC|FRAME_SUNKEN|FRAME_THICK)

translate_button = FXButton.new(controls, "Translate",

:opts => BUTTON_NORMAL|LAYOUT_RIGHT)

Figure 12.16 shows what this version looks like under Windows. Al-

ready, it’s starting to look more like the final product, but there are

still a few problems. We’d like for the two text areas to grow to take

up as much space as possible, while the other widgets (the two labels,

and the row of controls along the bottom) continue to take as much

as space as they’re taking now. This behavior should hold even if we

resize the main window. If you play around with this latest version of

the example, you’ll quickly find that that’s not the case.

http://media.pragprog.com/titles/fxruby/code/layoutexample2.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=185

STRATEGIES FOR USING DIFFERENT LAYOUT MANAGERS TOGETHER 186

Let’s attempt a fix by changing the LAYOUT_FILL_X hints on the two FXText

widgets to LAYOUT_FILL (which, as you recall, includes both LAYOUT_FILL_X

and LAYOUT_FILL_Y):

Download layoutexample3.rb

frame = FXVerticalFrame.new(self, :opts => LAYOUT_FILL)

FXLabel.new(frame, "Source Text:", :opts => LAYOUT_FILL_X)

source_text = FXText.new(frame, :opts => LAYOUT_FILL)

FXLabel.new(frame, "Translated text:", :opts => LAYOUT_FILL_X)

translated_text = FXText.new(frame, :opts => TEXT_READONLY|LAYOUT_FILL)

controls = FXHorizontalFrame.new(frame, :opts => LAYOUT_FILL_X)

FXLabel.new(controls, "Translate from:")

translations = FXComboBox.new(controls, 15,

:opts => COMBOBOX_STATIC|FRAME_SUNKEN|FRAME_THICK)

translate_button = FXButton.new(controls, "Translate",

:opts => BUTTON_NORMAL|LAYOUT_RIGHT)

For one final touch, let’s nest each of the FXText widgets inside a frame

so that we can create a thick, sunken border around each of them. In

this case, it doesn’t matter whether we use a horizontal frame or vertical

frame, since each frame has only one child widget to keep up with:

Download layoutexample4.rb

source_text_frame = FXHorizontalFrame.new(frame,

:opts => FRAME_SUNKEN|FRAME_THICK|LAYOUT_FILL,

:padding => 0)

source_text = FXText.new(source_text_frame,

:opts => LAYOUT_FILL)

FXLabel.new(frame, "Translated text:", :opts => LAYOUT_FILL_X)

translated_text_frame = FXHorizontalFrame.new(frame,

:opts => FRAME_SUNKEN|FRAME_THICK|LAYOUT_FILL,

:padding => 0)

translated_text = FXText.new(translated_text_frame,

:opts => TEXT_READONLY|LAYOUT_FILL)

If you run the example at this point, the layout should finally resemble

our original concept as shown in Figure 12.14, on page 182.

That last step that we took, nesting the text areas inside additional

frames for the sole purpose of providing some decoration around them,

may strike you as wasteful. Well, don’t let it.

As you consider various options for nesting layouts inside each another,

one consideration that you should never spend too much time worrying

about is the number of widgets that you’re creating along the way. If the

solution that makes the most sense and is easiest for you to maintain

involves using a large number of horizontal and vertical frames nested

inside each other, go for it. One of the advantages of using FOX is that

http://media.pragprog.com/titles/fxruby/code/layoutexample3.rb
http://media.pragprog.com/titles/fxruby/code/layoutexample4.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=186

STRATEGIES FOR USING DIFFERENT LAYOUT MANAGERS TOGETHER 187

it’s very resource-friendly, and it’s very “cheap” to create and destroy

widgets on the fly when you need to do that.

The final thing you’ll learn about working with layout managers is that,

for almost every layout challenge you encounter, there’s more than one

way to tackle it! Creating complicated layouts in user interfaces is as

much an art as it is a science.

At the beginning of this chapter, I noted that most users aren’t really

going to be aware of the role that layout managers play in an applica-

tion’s appearance. That also goes for pull-down menus and toolbars,

which are so commonplace in GUI applications that the role they play

is often underappreciated. In the next chapter, we’re going to take a

closer look at how you can best integrate menus and toolbars into your

FXRuby applications.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=187

Chapter 13

Advanced Menu Management
It’s easy to underestimate the usefulness of well-designed menus, but

they are an important feature of any GUI application. The first stop for

new users of your application will almost always be the menu bar. For

those users, menus provide a sort of learning and discovery tool that

gives them an overview of the application’s features. Other users may

have been working with the application for some time, but they use it

so infrequently that they can’t immediately recall how to access some

of the application’s more obscure functionality. For those users, menus

provide a familiar “refresher course” in how to get things done.

Back in Chapter 5, Take 2: Display an Entire Album, on page 43, when

we extended the Picture Book application to allow for creating new

photo albums and importing photos into those albums, we got an intro-

duction to the process of adding menu bars with pull-down menus to

an FXRuby application. In this chapter, we’ll look at some of the more

advanced options for exposing an application’s functionality. We’ll begin

by looking at some alternatives to the standard menu pane that allow

us to provide cascading and scrolling menus. After that we’ll take a look

at some of the other kinds of menu items you can add to a pull-down

menu. We’ll wrap up the chapter by looking at a closely related subject,

how to add a toolbar (or toolbars) to an application.

13.1 Creating Cascading and Scrolling Menus

After working through the Picture Book example, you know the basic

steps of adding a pull-down menu to an application:

1. Construct an FXMenuBar widget as a child of the main window.

CREATING CASCADING AND SCROLLING MENUS 189

2. Construct one or more FXMenuPane widgets, owned by the main

window, for each pull-down menu you want to display. So, for

example, you might have one menu pane for the File menu and

another menu pane for the Edit menu.

3. Construct an FXMenuTitle widget as a child of the menu bar to

establish a link between the menu bar and the menu pane.

4. Add one or more FXMenuCommand widgets to the menu pane, each

of which represents an action that the user can carry out. Use the

connect() method to associate a block of Ruby code with each of

those menu commands.

There are a couple of useful variations on the standard FXMenuPane

widget that we’ve used thus far. Cascading menus are menu panes that

are nested in other menu panes. For example, suppose you already

have a File menu, with New, Open..., Save, and Save As... commands:

Download menuexample.rb

file_menu_pane = FXMenuPane.new(self)

file_new_command = FXMenuCommand.new(file_menu_pane, "New")

file_open_command = FXMenuCommand.new(file_menu_pane, "Open...")

file_save_command = FXMenuCommand.new(file_menu_pane, "Save")

file_save_as_command = FXMenuCommand.new(file_menu_pane, "Save As...")

file_menu_title = FXMenuTitle.new(menu_bar, "File",

:popupMenu => file_menu_pane)

Now you’d like to add an Export submenu, with commands like Export

as GIF, Export as PNG, and so on. Start by constructing the new menu

pane, just as you did for the File menu:

Download menuexample.rb

export_menu_pane = FXMenuPane.new(self)

export_gif_command =

FXMenuCommand.new(export_menu_pane, "Export as GIF")

export_jpeg_command =

FXMenuCommand.new(export_menu_pane, "Export as JPEG")

export_png_command =

FXMenuCommand.new(export_menu_pane, "Export as PNG")

export_tiff_command =

FXMenuCommand.new(export_menu_pane, "Export as TIFF")

Now, add an FXMenuCascade widget to the File menu pane, alongside

the existing FXMenuCommand widgets:

Download menuexample.rb

export_cascade = FXMenuCascade.new(file_menu_pane, "Export",

:popupMenu => export_menu_pane)

http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=189

CREATING CASCADING AND SCROLLING MENUS 190

Figure 13.1: A cascading menu pane

Figure 13.1 shows what this cascading menu pane looks like when it’s

expanded. As you can see, the FXMenuCascade is awfully similar to the

FXMenuTitle widget that we use to attach menus directly to the menu

bar. You can even nest another cascading menu in export_menu_pane if

you’d like, but don’t get carried away with it. Deeply nested menus are

really difficult to use, and you should use them sparingly.

Another trick that you may find useful, when you have a lot of informa-

tion to try to pack into a menu, is a scrolling menu pane. It’s especially

useful when the menu items are generated programmatically and you

don’t know in advance how many items the menu pane will contain.

Since FXScrollPane is subclassed from FXMenuPane, it can be used any-

where that a nonscrolling menu pane could be used. The first argument

to FXScrollPane.new is the owner window for the menu pane, and the sec-

ond argument is the number of visible items that should be displayed:

Download menuexample.rb

states_menu_pane = FXScrollPane.new(self, 8)

$state_names.each do |state_name|

FXMenuCommand.new(states_menu_pane, state_name)

end

states_menu_title = FXMenuTitle.new(menu_bar, "States",

:popupMenu => states_menu_pane)

http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=190

ADDING SEPARATORS, RADIO BUTTONS, AND CHECK BUTTONS TO MENUS 191

Figure 13.2: A scrolling menu pane

Figure 13.2 shows what this scrolling menu pane looks like. Note the

arrows at either end of the menu pane. If you hover the mouse cursor

over either of these arrows, the menu pane will scroll its contents up

or down. Like cascading menus, scrolling menu panes should be used

sparingly because they’re a little difficult for users to deal with.

Cascading and scrolling menus are just a couple examples of the possi-

ble variations on the standard menus that we used in the Picture Book

application. In the next section, we will take a look at some alternatives

to the standard FXMenuCommand button that we have come to know

and love.

13.2 Adding Separators, Radio Buttons, and Check Buttons to

Menus

You already know how to use an FXMenuCommand widget to provide a

user interface to an imperative command, such as Open or Save. You

can add an FXMenuSeparator widget to a menu pane to create a visual

break between groups of related commands:

FXMenuSeparator.new(menu_pane)

The FXMenuRadio and FXMenuCheck widgets give you a way to incorpo-

rate the same kinds of functionality that the FXRadioButton and FXCheck-

Button widgets provide. As you learned in Section 8.1, Making Choices

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=191

ADDING SEPARATORS, RADIO BUTTONS, AND CHECK BUTTONS TO MENUS 192

Figure 13.3: A menu with check and radio button items

with Radio Buttons, on page 106, the preferred way to ensure that the

choices for radio items remain mutually exclusive is to associate each

of them with the same FXDataTarget:

Download menuexample.rb

@size = FXDataTarget.new(1)

size_pane = FXMenuPane.new(self)

FXMenuRadio.new(size_pane, "Small",

:target => @size, :selector => FXDataTarget::ID_OPTION)

FXMenuRadio.new(size_pane, "Medium",

:target => @size, :selector => FXDataTarget::ID_OPTION+1)

FXMenuRadio.new(size_pane, "Large",

:target => @size, :selector => FXDataTarget::ID_OPTION+2)

FXMenuRadio.new(size_pane, "Jumbo",

:target => @size, :selector => FXDataTarget::ID_OPTION+3)

size_menu_title = FXMenuTitle.new(menu_bar, "Size",

:popupMenu => size_pane)

@size.connect(SEL_COMMAND) do

@size.value holds the index of the selected size

end

Here’s a similar example for an FXMenuCheck item:

Download menuexample.rb

@fit_to_screen = FXDataTarget.new(false)

FXMenuCheck.new(size_pane, "Fit Contents to Screen",

:target => @fit_to_screen, :selector => FXDataTarget::ID_VALUE)

Figure 13.3 shows a menu containing a group of FXMenuRadio buttons,

separated from a single FXMenuCheck button by an FXMenuSeparator

item.

http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=192

ADDING TOOLBARS TO AN APPLICATION 193

Pull-down menus like the kinds that we’ve been building so far are

essential for all but the simplest of GUI applications. They’re espe-

cially useful for beginners or infrequent users of an application because

they provide a sort of teaching tool for people who are learning how to

use the application. As users become more and more familiar with an

application, however, they’re going to want more direct access to com-

monly used functions, and one way to provide that immediate access is

through the use of toolbars. In the next couple of sections, we’ll learn

how to add toolbars to an FXRuby application.

13.3 Adding Toolbars to an Application

This is a short section, because there’s not a lot to say about the FXTool-

Bar widget. For the most part, you can think of it as another kind of

layout manager (and it is in fact derived from the FXPacker class).

A common use for the FXToolBar is to fill it with a number of icon-

adorned buttons (what Alan Cooper refers to as butcons) that provide

easy access to commonly used functions. These are just regular FXBut-

ton widgets, but with the proper combination of layout hints and icon

sizes, we can ensure that they’re all the same size. One piece of the

puzzle is to make sure PACK_UNIFORM_WIDTH layout hint is set on the

toolbar:

Download menuexample.rb

tool_bar = FXToolBar.new(top_dock_site, tool_bar_shell,

:opts => PACK_UNIFORM_WIDTH|FRAME_RAISED|LAYOUT_FILL_X)

You might also want to include the PACK_UNIFORM_HEIGHT option to see

what effect that has on the toolbar’s appearance. Next, you want to add

one or more FXButton widgets for the different toolbar commands:

Download menuexample.rb

new_button = FXButton.new(tool_bar,

"\tNew\tCreate new document.",

:icon => new_icon)

open_button = FXButton.new(tool_bar,

"\tOpen\tOpen document file.",

:icon => open_icon)

save_button = FXButton.new(tool_bar,

"\tSave\tSave document.",

:icon => save_icon)

save_as_button = FXButton.new(tool_bar,

"\tSave As\tSave document to another file.",

:icon => save_as_icon)

http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=193

CREATING FLOATING MENU BARS AND TOOLBARS 194

Figure 13.4: Use a toolbar for immediate access to commonly used com-

mands.

Figure 13.4 shows what this toolbar looks like, when the program is

running under Windows.

Note the format of the label string for each of the buttons. Back in Sec-

tion 8.3, Providing Hints with Tooltips and the Status Bar, on page 113,

we talked about how you can embed tab characters inside the label

string for a button to separate the button’s label from its tooltip mes-

sage and status line help message. For these buttons in the toolbar,

the label string starts out with a tab character, which means they won’t

have a label displayed on the button. For example, the first button will

display the tooltip “New” and the status line help message “Create new

document,” but the surface of the button will show only its icon.

The really significant difference between the FXToolBar and other layout

managers is that it can be configured so that the user can drag it off of

the main window so that it “floats” elsewhere onscreen. Let’s see how

that works next.

13.4 Creating Floating Menu Bars and Toolbars

So far we’ve dealt only with a stationary menu bar or toolbar. It might

get narrower or wider as you resize the main window, but it stays in the

same place. FXRuby also provides for floating menu bars and toolbars

that can be dragged away from their “docks,” positioned somewhere else

on the screen, and even reattached to the main window in some other

location. Depending on the type of application that you’re developing,

this can be an extremely useful feature to implement.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=194

CREATING FLOATING MENU BARS AND TOOLBARS 195

The FXMenuBar and FXToolBar classes are both descended from the FX-

DockBar base class. A dock bar can be docked inside a dock site, it can

be located somewhere on the surface of the main window, or it can

float away from the main window inside some other parent container

(usually, an FXToolBarShell window).

Let’s walk through a brief example to see how this works. First, we need

to construct an FXToolBarShell widget that will act as the toolbar’s home

away from home when it’s floating around:

Download menuexample.rb

tool_bar_shell = FXToolBarShell.new(self)

Next, construct one or more dock sites that provide places for the tool-

bar to land when it’s ready to come back home. It is perfectly acceptable

to designate only one dock site, but for the purposes of this example,

we’ll set up two dock sites: one along the top side of the main window,

another along the bottom:

Download menuexample.rb

top_dock_site = FXDockSite.new(self,

:opts => LAYOUT_FILL_X|LAYOUT_SIDE_TOP)

bottom_dock_site = FXDockSite.new(self,

:opts => LAYOUT_FILL_X|LAYOUT_SIDE_BOTTOM)

The user can drag the floating toolbar to either of these positions on

the main window, and it will reattach itself (dock) there. It’s impor-

tant to note that when the toolbar is floating, the dock sites will hide

themselves and allow other nearby widgets to take up that space if they

choose. Now we can construct the FXToolBar itself:

Download menuexample.rb

tool_bar = FXToolBar.new(top_dock_site, tool_bar_shell,

:opts => PACK_UNIFORM_WIDTH|FRAME_RAISED|LAYOUT_FILL_X)

The first argument to FXToolBar.new is the initial dock site, and the sec-

ond argument is the shell. Now we need to add a “grip,” a handle that

the user can grab to tear the toolbar away from the dock site:

Download menuexample.rb

FXToolBarGrip.new(tool_bar,

:target => tool_bar, :selector => FXToolBar::ID_TOOLBARGRIP,

:opts => TOOLBARGRIP_DOUBLE)

I prefer the look of the double-lined grip, but if you’d like just a single

line, pass in TOOLBARGRIP_SINGLE as the option instead. At this point,

you can add all the application-specific widgets to the toolbar. It’s not

http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://media.pragprog.com/titles/fxruby/code/menuexample.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=195

CREATING FLOATING MENU BARS AND TOOLBARS 196

Figure 13.5: Floating toolbar

strictly necessary to make the FXToolBarGrip widget the first child widget

in the FXToolBar, but it’s probably best to make it either the first or last

widget to avoid cluttering up the appearance of the tool buttons.

You’ve already seen what the toolbar looks like in the docked position,

in Figure 13.4, on page 193. Figure 13.5 shows what the toolbar looks

like after it’s been “undocked” and dragged off to the side.

Up until this point, we’ve focused on how to handle interaction with

the application’s main window, but it’s also sometimes useful to isolate

certain interactions in a separate top-level window known as a dialog

box. FXRuby provides a number of built-in standard dialog boxes, such

as the FXFileDialog that we used when we were building the Picture Book

application. You can also create custom dialog boxes for handling appli-

cation settings or other functionality. We’ll take a look at all these topics

in the next chapter.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=196

Chapter 14

Providing Support
with Dialog Boxes

So far we’ve been talking about how to use FXRuby to build up the main

window of your application’s user interface. Everything has focused on

the user’s primary interaction with the application. FXRuby also pro-

vides a different sort of top-level window known as a dialog box, and

that’s the focus of this final chapter.

A dialog box is similar to the main window in that it “floats” on the desk-

top and serves as a top-level container for a bunch of other widgets. Like

the main window, a dialog box can incorporate a title bar, a menu bar,

a status bar, and other sorts of decorations for resizing or closing the

window. Despite these similarities, you shouldn’t confuse dialog boxes

with the main program. In most cases, they are transient and remain

onscreen only for a short time while the user interacts with them, and

they always play secondary, supporting roles in an application.

You’ve already encountered one kind of dialog box in Section 5.3, Import

Photos from Files, on page 50, when we used the FXFileDialog to request

from the user the names of the photo files to import. FXRuby includes

a number of other standard dialog boxes for use in your applications.

In this chapter, we’re to take a brief tour of some of the most com-

monly used standard dialog boxes provided by FXRuby. We’ll also talk

about what’s involved in creating custom dialog boxes, for those situa-

tions where none of the standard dialog boxes fit the bill. Let’s begin by

revisiting our old friend, the FXFileDialog dialog box.

SELECTING FILES WITH THE FILE DIALOG BOX 198

Figure 14.1: Use FXFileDialog to select files.

14.1 Selecting Files with the File Dialog Box

The FXFileDialog, shown in Figure 14.1, is probably the most frequently

used of the standard dialog boxes. You can use the FXFileDialog when

you want the user to select an existing file or files (for example, during

an Open operation) or when you want ask the user for the name of a

file that you’re about to write to (for example, during a Save operation).

For example, suppose you want the user to select an existing JPEG file

on disk:

Download filedialog.rb

dialog = FXFileDialog.new(self, "Open JPEG File")

dialog.patternList = [

"All Files (*)",

"JPEG Files (*.jpg, *.jpeg)"

]

dialog.selectMode = SELECTFILE_EXISTING

if dialog.execute != 0

open_jpeg_file(dialog.filename)

end

http://media.pragprog.com/titles/fxruby/code/filedialog.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=198

SELECTING A DIRECTORY WITH THE DIRECTORY DIALOG BOX 199

When you call execute() on the FXFileDialog, it will display itself, allow the

user to select a file, and then wait for the user to click either the OK or

Cancel button. If execute() returns zero, the user clicked Cancel; other-

wise, the user clicked OK. At this point, you can check the value of the

dialog box’s filename attribute to read the full path to the selected file.

The file dialog box sports most of the features you’d expect from this

kind of widget and a few you may not have seen before (such as setting

bookmarks for frequently visited directories). As shown in the previ-

ous example, you can initialize the patternList to an array of strings that

indicate the available file filters. The file selection mode has to do with If you don’t explicitly set

the patternList, it will

default to All Files (*).whether you’re able to select only a single file or multiple files. A select-

Mode of SELECTFILE_EXISTING means the user can select only an existing

file; this would be an appropriate setting for loading a document. We

could instead allow for the selection of multiple files.

Download filedialog.rb

dialog = FXFileDialog.new(self, "Open JPEG File(s)")

dialog.patternList = [

"All Files (*)",

"JPEG Files (*.jpg, *.jpeg)"

]

dialog.selectMode = SELECTFILE_MULTIPLE

if dialog.execute != 0

dialog.filenames.each do |filename|

open_jpeg_file(filename)

end

end

The FXFileDialog provides a number of options that allow you to con-

figure its appearance and behavior; see the API documentation for the

FXFileDialog and FXFileSelector classes for more details.

It’s worth noting here that the FXFileDialog is specifically geared toward

dealing with individual files (or groups of them, as the case may be).

Although you can use the SELECTFILE_DIRECTORY selection mode to limit

the selection in a file dialog to directories only, that can result in an

awkward user experience in my opinion. For those situations where you

want the user to select a directory, and only a directory, the FXDirDialog

may be a better choice. We’ll take a look at that dialog box next.

14.2 Selecting a Directory with the Directory Dialog Box

You can use the FXDirDialog when you need the user to select a single

directory, and only a directory. For anything more complicated, you

should probably stick with an FXFileDialog.

http://media.pragprog.com/titles/fxruby/code/filedialog.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=199

SELECTING A DIRECTORY WITH THE DIRECTORY DIALOG BOX 200

Figure 14.2: Use a directory dialog box to select a single directory.

Because the FXDirDialog has this very simple function, it’s also straight-

forward to configure and use. In most cases, you’ll simply initialize the

directory attribute to some path in the file system, display the dialog box,

and then retrieve the selected directory from the directory attribute:

Download dirdialog.rb

dialog = FXDirDialog.new(self, "Choose Directory")

dialog.directory = "/Users/lyle"

if dialog.execute != 0

open_directory(dialog.directory)

end

Note that if you don’t initialize the directory attribute before displaying

the dialog box, it defaults to the current working directory.

Figure 14.2 shows how the directory dialog box displays the file system

as a tree structure. To choose an existing directory, simply navigate to

it in the directory tree list, and click the OK button. To create a new

directory, right-click the parent directory for the new directory, and

choose the New command from the pop-up menu.

Dialog boxes are not merely useful for collecting information about files

http://media.pragprog.com/titles/fxruby/code/dirdialog.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=200

CHOOSING COLORS WITH THE COLOR DIALOG BOX 201

Figure 14.3: Color dialog box in HSV dial mode

and directories. In the next few sections, we’ll look at the standard

dialog boxes for dealing with colors and fonts.

14.3 Choosing Colors with the Color Dialog Box

You can use the FXColorDialog when you need the user to select (or

modify) a color value. Because there are so few settings, it’s easy to

integrate the color dialog box into an application:

Download colordialog.rb

dialog = FXColorDialog.new(self, "Choose Background Color")

dialog.rgba = FXRGB(255, 0, 0) # initialize color to red

if dialog.execute != 0

self.backColor = dialog.rgba

end

If you don’t want to use the default initial color (black), you can of

course initialize the color value before displaying the dialog box by set-

ting the value of the rgba attribute.1

1. The attribute name rgba refers to the fact that the color consists of Red, Green, Blue,

and Alpha components. If you’re thinking that something like color might have been a

http://media.pragprog.com/titles/fxruby/code/colordialog.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=201

SELECTING FONTS WITH THE FONT DIALOG BOX 202

Although the color dialog box is easy to use from an application devel-

oper’s perspective, its wide variety of options can make it a little bewil-

dering for end users. The color dialog box contains five tabs, each

of which displays the currently selected color using a different color

model.

• The first tab displays a dial for adjusting the Hue, Saturation, and

Value (HSV) components of the color.2 You can see what this page

of the FXColorDialog looks like in Figure 14.3, on the previous page.

• The second tab displays a set of slider bars for setting the Red,

Green, Blue, and Alpha components of the color.

• The third tab displays a set of slider bars, again for setting the

HSV components of the color.

• The fourth tab displays a set of slider bars for setting the Cyan,

Magenta, Yellow, and Key (CMYK) components of the color.3

• The last tab displays a list of color names.

In addition, the color dialog box incorporates on its left side a “color

picker” button that enables you to select a color from anywhere on-

screen as the new color, and along the bottom, a collection of predefined

color wells.

14.4 Selecting Fonts with the Font Dialog Box

We made reference to the FXFontDialog in Section 11.1, Using Custom

Fonts, on page 143, when we discussed that the font dialog box returns

information about the selected font using an FXFontDesc object. As with

the other dialog boxes that we’ve been looking at in this chapter, the

usage pattern for an FXFontDialog is to initialize its settings, display the

dialog box to let the user interact with it, and then retrieve the selec-

tion information once the user’s done. Figure 14.4, on the next page,

shows a font dialog, with the bold, 16-point version of the Book Antiqua

typeface selected.4

better name for this attribute, I’d have to agree with you.
2. See http://en.wikipedia.org/wiki/HSV_color_space for a discussion of the HSV color model.
3. See http://en.wikipedia.org/wiki/CMYK_color_model for a discussion of the CMYK color

model.
4. Depending on your operating system and the fonts installed, this particular font may

or may not be available on your system.

http://en.wikipedia.org/wiki/HSV_color_space
http://en.wikipedia.org/wiki/CMYK_color_model
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=202

SELECTING FONTS WITH THE FONT DIALOG BOX 203

Figure 14.4: Selecting fonts in a font dialog box

Working with the font dialog box is a little trickier than working with the

file, directory, or color dialog since we’re passing back and forth FXFont-

Desc objects and not actual FXFont objects. The following code excerpt

demonstrates the typical pattern of interaction with an FXFontDialog:

Download fontdialog.rb

dialog = FXFontDialog.new(self, "Choose a Font")

dialog.fontSelection = button.font.fontDesc

if dialog.execute != 0

new_font = FXFont.new(app, dialog.fontSelection)

new_font.create

button.font = new_font

end

The first step is to extract the initial font settings (as an FXFontDesc

object) from an existing font via its fontDesc attribute. We can use that

font description to initialize the FXFontDialog’s fontSelection attribute.

This step isn’t strictly necessary; the font dialog box will come up with

some default settings if you don’t initialize the fontSelection attribute in

advance.

http://media.pragprog.com/titles/fxruby/code/fontdialog.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=203

ALERTING THE USER WITH MESSAGE BOXES 204

Figure 14.5: Displaying a warning using a message box

Once the user is finished interacting with the font dialog box and has

made their selection, we need to retrieve the font description from the

font dialog’s fontSelection attribute and use it to construct a new FXFont

object. As we discussed in Chapter 11, Creating Visually Rich User Inter-

faces, on page 142, it’s crucial that we call create() on the newly con-

structed FXFont object before we assign it to a widget.

14.5 Alerting the User with Message Boxes

Compared to the other standard dialog boxes, a message box is very

simple. It provides for only the most basic interaction with the user.

For example, the following FXMessageBox displays the warning message

shown in Figure 14.5:

Download messagebox.rb

FXMessageBox.warning(

self,

MBOX_OK,

"Buyer Beware",

"All Sales are Final!"

)

Unlike the other dialog boxes that we’ve looked at, an FXMessageBox

is usually constructed and displayed in one shot using a class method

like warning(). Since we configured this message box using the MBOX_OK

option, it displays only an OK button, and there’s no need for us to

check the return value of the warning() method. If the message box

includes more than one termination button, you’ll want to inspect the

return value of the method to determine which button the user clicked.

http://media.pragprog.com/titles/fxruby/code/messagebox.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=204

CREATING CUSTOM DIALOG BOXES 205

Figure 14.6: Asking a question using a message box

For example, the message box shown in Figure 14.6 asks a question

that can be answered with yes or no:

Download messagebox.rb

answer = FXMessageBox.question(

self,

MBOX_YES_NO,

"Just one question...",

"Is it safe?"

)

if answer == MBOX_CLICKED_YES

ask_again()

end

The FXMessageBox class also provides information() and error() class meth-

ods for displaying those kinds of messages. For a complete listing of the

message box options, and possible return values, see the API documen-

tation for the FXMessageBox class.

14.6 Creating Custom Dialog Boxes

If your application has a requirement that can be satisfied by using one

of the standard dialog boxes, it’s preferable to stick with the standard

so that your application’s users are treated to a consistent and familiar

user interface. For many applications, however, you’ll need to develop

one or more custom dialog boxes to handle application-specific func-

tionality. In this section, we’ll walk through the creation of a typical

Preferences dialog box that you might include in an application.

Fortunately, most everything you have learned up to this point with

respect to creating user interfaces in FXRuby is relevant to creating

http://media.pragprog.com/titles/fxruby/code/messagebox.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=205

CREATING CUSTOM DIALOG BOXES 206

custom dialog boxes in FXRuby. As noted in the introduction to this

chapter, dialog boxes are like main windows in many ways. The first

step in creating a custom dialog box is to subclass FXDialogBox:

Download tabbook.rb

class PreferencesDialog < FXDialogBox

def initialize(owner)

super(owner, "Preferences", DECOR_TITLE|DECOR_BORDER|DECOR_RESIZE)

end

Now we need to add a row of terminating buttons along the bottom of

the dialog box. The name may sound kind of ominous, in an Arnold

Schwarzenegger kind of way, but we’re just talking about the buttons

that you use to dismiss the dialog box once you’re done interacting with

it. It’s fairly common to see OK and Cancel buttons and possibly also

an Apply button if that makes sense for the dialog box you’re build-

ing. We’re going to add a horizontal frame along the bottom side of the

window, and then add first an OK button, followed by a Cancel button.

Here’s the code for the add_terminating_buttons() method:

Download tabbook.rb

def add_terminating_buttons

buttons = FXHorizontalFrame.new(self,

:opts => LAYOUT_FILL_X|LAYOUT_SIDE_BOTTOM|PACK_UNIFORM_WIDTH)

FXButton.new(buttons, "OK",

:target => self, :selector => FXDialogBox::ID_ACCEPT,

:opts => BUTTON_NORMAL|LAYOUT_RIGHT)

FXButton.new(buttons, "Cancel",

:target => self, :selector => FXDialogBox::ID_CANCEL,

:opts => BUTTON_NORMAL|LAYOUT_RIGHT)

end

Because we add the OK button first and pass in the LAYOUT_RIGHT layout

hint, that button will be packed against the right side of the horizontal

frame. When we subsequently add the Cancel button, it too will get

packed against the right side of the remaining space in the horizontal

frame, which means that it will appear to the left of the OK button.

This is a pretty standard arrangement for those two buttons, but if

you’d prefer that the OK button be on the left and the Cancel button be

on the right, you can swap the order of those two statements.

We’re also taking advantage of the fact that the FXDialogBox class from

which PreferencesDialog is subclassed defines two message identifiers,

ID_ACCEPT and ID_CANCEL, that we can send directly from the OK and

Cancel buttons to the dialog box to dismiss it. If the user clicks our

OK button, it will send a message of type SEL_COMMAND, with identifier

ID_ACCEPT, back to the dialog box object. When the dialog box receives

http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=206

CREATING CUSTOM DIALOG BOXES 207

that message, it will hide itself and ensure that the call to execute()

that originally launched the dialog box returns a nonzero value. If the

dialog box receives the ID_CANCEL message instead, it will ensure that

execute() returns zero.

Now that we have the terminating buttons squared away, we can turn

to the main attraction. We’re going to display the preferences settings

in an FXTabBook, using the same example that we introduced back in

Section 12.5, Organizing Windows with Tabbed Notebooks, on page 179.

Let’s begin by writing an add_tab_book() method that constructs the

FXTabBook and adds a couple of tab items and empty pages. We’ll worry

about the content for the pages in a moment.

Download tabbook.rb

tabbook = FXTabBook.new(self, :opts => LAYOUT_FILL)

basics_tab = FXTabItem.new(tabbook, " Basics ")

basics_page = FXVerticalFrame.new(tabbook,

:opts => FRAME_RAISED|LAYOUT_FILL)

contact_tab = FXTabItem.new(tabbook, " Contact ")

contact_page = FXVerticalFrame.new(tabbook,

:opts => FRAME_RAISED|LAYOUT_FILL)

extras_tab = FXTabItem.new(tabbook, " Extras ")

extras_page = FXVerticalFrame.new(tabbook,

:opts => FRAME_RAISED|LAYOUT_FILL)

Earlier in this chapter, when we were talking about how to use the stan-

dard dialog boxes, we established a pattern of initializing the dialog box

with some default data, displaying it to the user to collect their inputs,

and then retrieving those inputs when the dialog box is dismissed. We

want to take the same tack with our custom dialog boxes, although

we’ll have to do a little more of the heavy lifting since we’re dealing with

our own custom data types and settings instead of some built-in type

(like the FXFontDesc that we used with an FXFontDialog).

It’s important to remember that the presence of a Cancel button on a

dialog box implies a sort of contract with the user. If the user decides

they don’t want to keep the changes they’ve made to the settings, they

can always back out of the deal by cancelling the dialog box and rest

assured that the real application settings will be undisturbed. For that

reason, I never let the dialog box code directly change the application

settings. When it’s time to display a Preferences dialog box or some

other kind of custom dialog, I make a copy of the current application

settings and pass that copy into the dialog box. If the user subsequently

clicks the OK button to dismiss the dialog box, I retrieve that copy and

then extract the needed information from it. If on the other hand the

user clicks the Cancel button to dismiss the dialog box, I can just forget

http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=207

CREATING CUSTOM DIALOG BOXES 208

about the copy that the dialog box was using, and I don’t have to worry

about undoing any changes.

To keep things simple, let’s focus on how we could handle the settings

for the Basics tab, which deals with name and address information.

We’re going to take advantage of the FXDataTarget class to handle getting

data into and out of the individual widgets in the form.5 Internally, the

PreferencesDialog will just use a hash of FXDataTarget instances:

Download tabbook.rb

@prefs = {

:first_name => FXDataTarget.new,

:last_name => FXDataTarget.new,

:street => FXDataTarget.new,

:city => FXDataTarget.new,

:state => FXDataTarget.new,

:zip_code => FXDataTarget.new

}

Now let’s build up the contents for the first page, the one associated

with the Basics tab. To keep this code out of the dialog box’s initial-

ize() method, we’ll put it in a separate instance method called con-

struct_basics_page():

Download tabbook.rb

def construct_basics_page(page)

form = FXMatrix.new(page, 2,

:opts => MATRIX_BY_COLUMNS|LAYOUT_FILL_X)

FXLabel.new(form, "First:")

FXTextField.new(form, 20,

:target => @prefs[:first_name], :selector => FXDataTarget::ID_VALUE,

:opts => TEXTFIELD_NORMAL|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(form, "Last:")

FXTextField.new(form, 20,

:target => @prefs[:last_name], :selector => FXDataTarget::ID_VALUE,

:opts => TEXTFIELD_NORMAL|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(form, "Street Address:")

FXTextField.new(form, 20,

:target => @prefs[:street], :selector => FXDataTarget::ID_VALUE,

:opts => TEXTFIELD_NORMAL|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(form, "City:")

FXTextField.new(form, 20,

:target => @prefs[:city], :selector => FXDataTarget::ID_VALUE,

:opts => TEXTFIELD_NORMAL|LAYOUT_FILL_X|LAYOUT_FILL_COLUMN)

FXLabel.new(form, "State:")

5. You remember data targets, right? We talked about them in Section 7.5, Using Data

Targets for GUI Update, on page 92.

http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=208

CREATING CUSTOM DIALOG BOXES 209

states = FXListBox.new(form,

:target => @prefs[:state], :selector => FXDataTarget::ID_VALUE,

:opts => (LISTBOX_NORMAL|FRAME_SUNKEN|

LAYOUT_FILL_X|LAYOUT_FILL_COLUMN))

FXLabel.new(form, "Zip Code:")

FXTextField.new(form, 10,

:target => @prefs[:zip_code], :selector => FXDataTarget::ID_VALUE,

:opts => TEXTFIELD_NORMAL|LAYOUT_FILL_COLUMN)

end

Note that for each of the FXTextField widgets, as well as the FXListBox that

holds the state name, we’re using one of the data targets from the @prefs

hash. The widgets will take their initial settings from the data in those

data targets, and whenever the user changes some setting in a widget,

the data target’s value will be updated automatically.

To integrate this dialog box with the application, we’d need to add a

Preferences... menu command in one of the application’s menus. When

that menu command is invoked, it will first construct a new Preferences-

Dialog instance:

Download tabbook.rb

dialog = PreferencesDialog.new(self)

Next, it should initialize the dialog box’s copy of the preferences data

from the current application settings:

Download tabbook.rb

dialog.prefs[:first_name].value = user_name.first_name

dialog.prefs[:last_name].value = user_name.last_name

dialog.prefs[:street].value = user_address.street

dialog.prefs[:city].value = user_address.city

dialog.prefs[:state].value = user_address.state

dialog.prefs[:zip_code].value = user_address.zip_code

The last step is call execute() on the dialog box to display it. If execute()

returns nonzero, we’ll extract the modified application settings from the

dialog box’s copy and push those back to the model:

Download tabbook.rb

if dialog.execute != 0

user_name.first_name = dialog.prefs[:first_name].value

user_name.last_name = dialog.prefs[:last_name].value

user_address.street = dialog.prefs[:street].value

user_address.city = dialog.prefs[:city].value

user_address.state = dialog.prefs[:state].value

user_address.zip_code = dialog.prefs[:zip_code].value

end

http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://media.pragprog.com/titles/fxruby/code/tabbook.rb
http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=209

LOOKING AHEAD 210

To keep things straightforward for this example, we’ve relied on a Ruby

hash, a really basic data structure. As a result, the code required to get

data into and out of the dialog box is pretty verbose. Depending on the

amount of data you’re dealing with in a custom dialog box, you may

find it helpful to create custom data types that allow the rest of your

application code to interact with the dialog box in a more compact way.

14.7 Looking Ahead

As I noted at the beginning of the book, this isn’t a comprehensive

book on FXRuby development. My hope is that now that you’ve finished

reading this book, you have enough of a foundation to head out into the

world and learn about some of the more advanced aspects of FOX and

FXRuby.

For example, one of the many cool things about FOX that we didn’t

address at all is its support for OpenGL-based 2D and 3D graphics

applications. You can use FXRuby’s FXGLViewer widget to construct a

complex 3D scene graph that supports selection, rotation, zooming,

and a number of other sophisticated features right out of the box, or

you can drop down to the more basic FXGLCanvas widget when you need

to exercise more control over how the scene is presented to the user.

FOX also provides a number of special-purpose widgets, such as dials,

spinners, and sliders, that you can use alongside the other widgets that

we looked at in Chapter 8, Building Simple Widgets, on page 100. You

know how to look up the documentation for those classes to learn more

about their specific capabilities, and you can apply the techniques that

you’ve learned from this book for responding to messages from those

widgets and associating them with data targets.

As one of this book’s reviewers noted, the development of a GUI appli-

cation is not merely a technical exercise. In this book we’ve discussed

numerous issues related to the implementation of GUIs with FXRuby,

but designing an intuitive and easy-to-use GUI application is a chal-

lenge in and of itself. Knowing why to make certain choices is perhaps

even more important than knowing how to implement those choices.

I’m a big fan of the previously mentioned About Face [Coo95], but there

are a number of other fine books on user interface design that you can

(and should) consult on this discipline.

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=210

LOOKING AHEAD 211

In closing, let me encourage you to join us on the FOX and FXRuby

mailing lists, whether it’s to ask questions or to share your own expe-

riences with other software developers.Section 1.4, Where to Get Help,

on page 15, provides details about how to subscribe to those lists (as

well as other sources of information). There are always going to be peo-

ple who are new to Ruby and FXRuby, and now that you’ve got this

head start on FXRuby application development, we could really use

your help!

http://books.pragprog.com/titles/fxruby/errata/add?pdf_page=211

Bibliography

[Coo95] Alan Cooper. About Face: The Essentials of User Interface

Design. John Wiley & Sons, New York, 1995.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

Index
A
About Face (Cooper), 100

appendText (), 135

B
Busy cursor, 148

Buttons, 105f, 104–106, 206

C
CardLayout, 68n

Cascading menus, 190f, 188–191

Check buttons, 110f, 109–111, 192f

Chores, 88–89

Color selection, 201f, 201–202

Cooper, Alan, 100

create (), 53

Create, detach, and destroy life cycle,

96f

Cropping, 152–154f

Cursor position, 136

Cursors, 147f, 148f, 146–149

built-in, 146

busy, 148

custom, 146

D
Data targets, 208

Delayed layout, 93–94

Delayed repaint, 94

Design Patterns: Elements of Reusable

Object-Oriented Software

(Gamma, et al), 91n

Dialog boxes, 197–211

colors, selecting, 201f, 201–202

custom, 205–210

described, 197

directories, selecting, 200f, 199–201

files, selecting, 198f, 198–199

fonts, 203f, 202–204

message boxes, 204f, 205f, 204–205

tabbed notebooks and, 181f

Directories, 200

Docking, toolbars, 195

E
execute (), 209

Errors, source of, 97, 158

Event loop, 80

Event-driven programming, 80f, 82f,

80–84

execute (), 52

F
Files, selecting, 198

Fixed layouts, 169

Fonts

custom, 145f, 143–146

selecting, 203f, 202–204

FOX, 13

benefits of, 79

layout managers, 31, 44

scrollable windows, 59

versions, 18

FOX Community (wiki), 16

FoxTails library, 92

FXApp, 27

FXButton, 104, 114

FXCheckButton, 109

FXColorDialog, 201–202

FXComboBox, 118–121

FXCursor, 146–149

FXDataTarget, 93

FXDialogBox, 206

FXDirDialog, 199–201

FXFileDialog, 198–199

FXFont, 143–146

FXFontDialog, 202–204

FXICON 214 KEYPRESS MODIFIER FLAGS

FXIcon, 155–157

FXImage, 47, 149–155

FXImageFrame, 37–40

FXInputDialog, 70–72

FXJPGImage, 40–42

FXLabel, 101, 102

FXList, 63, 115–118

FXListBox, 118–121

FXMatrix, 44, 55, 58, 173–177

FXMessageBox, 204–205

FXPacker, 160, 176

FXRadioButton, 106

FXRuby

3D graphics, 210

chores, 88–89

defined, 13, 20

delayed layout, 93–94

delayed repaint, 94

errors in, 97

event-driven Ruby, 80f, 82f, 80–84

FXWindow and, 98–99

GUI considerations, 21–22

GUI update with data targets, 92–93

Hello, World! application, 28f, 25–30

I/O input events, 90–91

idioms for, 29–30

image format support, 40

installation of, 23–25

keyboard events in, 86–87

messages between objects in, 80

messages, connecting to code, 83

modifier flags, 87f

mouse events in, 85–86

objects, client-side vs. server-side,

96f, 95–98

operating system signals, 89–90

relationship to Ruby, 20, 21f

RubyGems and, 26

scheduling with timeout events,

87–88

shared resources in, 143

support for OpenGL-based graphics,

210

syncing GUI with application data,

91–92

user guide for, 17

versions, 18

FXScrollWindow, 179–180

FXSplitter, 65–67, 177–179

FXStatusBar, 114

FXSwitcher, 67–69

FXTabBook, 180–182

FXTable, 126–131

FXText, 133, 134

adding and removing text, 134–136

navigation, 136–137

searching, 137–139

styles, applying, 139–141

FXTextField, 111–113

FXToolBar, 193–194

FXToolTip, 113

FXTreeList, 121, 122

FXWindow, 98–99

G
GUI considerations, 21–22

GUI front end to a translation service,

183f, 183

GUI update with data targets, 92–93

GUI updating mechanism, 91–92

H
Heavyweight widgets, 22

Hello, World! application, 28f, 25–30

Help and support

API documentation, 17

FOC documentation, 16

FOX Community (wiki), 16

FXRuby user guide, 17

mailing lists, 15

online documentation, 16

Horizontal frames, 163, 168f

Hue, saturation, and value (HSV), 202

I
Icons, 156f, 157f, 155–157

Idioms, 29–30

Images, 150f

creating and displaying, 149–150

cropping, 152–154f

manipulating, 151–155

mirror, 155f

Importing photos, 55f, 50–55

Input events, 90–91

Installation, 23–25

K
Keyboard events, 86–87

Keypress modifier flags, 87f

LAYOUT MANAGERS 215 RUBY

L
Layout managers, 44, 55, 159–187

arranging widgets, 174f, 175f, 176f,

177f, 173–177

fixed layouts, 169

frames and, 163

hints for, 184

multiple, using together, 183f, 184f,

185f, 182–187

nesting, 166, 186

packing model and, 162f, 163f, 164f,

165f, 166f, 167f, 168f, 171f,

160–173

resizing layouts, 177–179

role of, 159

for scrolling, 179–180

tabbed notebooks and, 181f,

180–182

see also specific names of layout

managers

Lightweight widgets, 22

Linux, FXRuby installation on, 24

List widgets, 116f

Lists

FXList and, 115–118

items, selected, 118

tree-like, 123f, 126f, 121–126

widgets for, 119

M
Mac OS X, FXRuby installation on, 24

Mailing lists, 15

Marshal, 73

Menu pane, 51, 125

Menus, 188–196

cascading and scrolling, 190f, 191f,

188–191

check and radio buttons, 192f

floating toolbars, 196f, 194–196

separators, 191

toolbars, 194f, 193–194

Message boxes, 204f, 205f, 204–205

Methods, overloaded, 51

Modifier flags, 87f

Mouse events, 85–86

Multiple albums, 62–77

adding, 70–72

layout hierarchy, 66f

list view for, 64f, 65f, 62–65

serialize list with YAML, 72–76

split view for, 65–67

switching between, 69f, 67–69

MVC architecture, 33

N
Nesting, layout managers, 166, 186

O
Objects

client-side vs. server-side, 96f, 95–98

for FXFont, 144

Online documentation, 16

Operating system signals, 89–90

Overloaded methods, 51

P
Packing model, 162f, 163f, 164f, 165f,

166f, 167f, 168f, 171f, 160–173

Padding and spacing, 171f, 171

Picture Book application, 31–35

application data, 33–35

enhancements to, 76

entire album display, 43–61

importing from files, 55f, 50–55

resizeable feature, 58f

as thumbnails, 50f, 47–50

view for, 44–46, 47f

view, dynamic reconfiguration of,

55–57

view, scrollable, 60f, 58–61

multiple albums, 62–77

adding, 70–72

layout hierarchy, 66f

list view for, 64f, 65f, 62–65

serialize list with YAML, 72–76

split view for, 65–67

switching between, 69f, 67–69

overview of, 32–33

single photo display, 42f, 36–42

application, 36–37

image from file, constructing,

40–42

view for, 37–40

user interface for, 32f

R
Radio buttons, 107f, 106–109, 192f

Regular expression, 139

Right-click pop-up menus, 124

Ruby

Marshal, 73

RUBYGEMS 216 WIDGETS

overloaded methods and, 51

relationship to FXRuby and, 20, 21f

require () statements and, 39, 45, 64,

73

YAML library, 72–76

RubyGems, setting up, 26

S
Scrollable view, 60f, 58–61, 179–180

Scrolling menus, 191f, 188–191

setTableSize (), 127

Shared resources, 143

Single photo display, 42f, 36–42

application, 36–37

image from file, constructing, 40–42

view for, 37–40

Spacing, 171f, 171

Spanning table items, 128f

Splitters, see FXSplitter

Status bar, 114

Styles, applying, 140f, 139–141

Support, see Help and support; Dialog

boxes

T
Tabbed notebooks, 181f, 180–182

Tables, 126–131

display options, 128

editing contents of, 129

icons for, 130f

selection, 130

spanning items, 128f

storing data in, 127

Text fields, editing string data with,

111f, 111–113

Thumbnail display, 50f, 47–50, 77

Timeout events, 87–88

Toolbars, 194f, 193–194

Tooltips, 113

Tree lists, 123f, 126f, 121–126

U
User interfaces, 142–158

cursors, 147f, 148f, 146–149

features, 142

fonts, custom, 145f, 143–146

icons, 156f, 157f, 155–157

image data, manipulation of, 152f,

153f, 154f, 155f, 151–155

images, 150f, 149–150

menus

separators, 191

menus and, 188–196

cascading and scrolling, 190f,

191f, 188–191

check and radio buttons, 192f

floating toolbars, 196f, 194–196

toolbars, 194f, 193–194

see also GUI; Dialog boxes

V
van der Zijp, Jeroen, 13

VanderWerf, Joel, 92

Versions, 18

Vertical frames, 163, 165, 166f

W
Widgets, 22

app and, 41

arranging, 174f, 175f, 176f, 177f,

173–177

buttons, 105f, 104–106

check buttons, 110f, 109–111

described, 100

editing text with, 133–141

adding and removing, 134–136

navigation, 136–137

searching in, 137–139

styles, applying, 140f, 139–141

FXComboBox and FXListBox, 118–121

FXText keystrokes, 134f

list of, 116f

lists and, 63

packing model and, 161, 163f

parent, 38

radio buttons, 107f, 106–109

for simple lists, 117f, 115–118

special purpose, 210

status bar for, 114

tables, 126–131

display options, 128

editing contents of, 129

icons for, 130f

selection, 130

spanning items, 128f

storing data in, 127

text fields, editing string data with,

111f, 111–113

text labels, 102f, 103f, 104f, 101–104

tooltips and, 113

tree-like lists, 123f, 126f, 121–126

types of, 100, 101f

WINDOW COORDINATE SYSTEMS 217 YAML

see also Layout managers

Window coordinate systems, 98

Windows

FXRuby installation on, 23

Hello, World! application, 28f

Y
YAML, 72–76

	Contents
	Foreword
	Acknowledgments
	Introduction
	What's in This Book?
	Who Is This Book For?
	How to Read This Book
	Where to Get Help
	A Word About Versions

	Building an FXRuby Application
	Getting Started with FXRuby
	Installing FXRuby
	Instant Gratification

	The Picture Book Application
	What Picture Book Does
	Application Data
	Let's Code

	Take 1: Display a Single Photo
	Get Something Running
	Create the View
	Construct an Image from a File

	Take 2: Display an Entire Album
	Add Album View
	Display Images as Thumbnails
	Import Photos from Files
	Dynamically Reconfigure the Album View
	Make the Album View Scrollable

	Take 3: Manage Multiple Albums
	Create the Album List View
	Use a Split View
	Switch Between Albums
	Add New Albums
	Serialize the Album List with YAML
	So, What Now?

	FXRuby Fundamentals
	FXRuby Under the Hood
	Event-Driven Programming
	Mouse and Keyboard Events
	Timers, Chores, Signals, and Input Events
	Syncing the User Interface with the Application Data
	Using Data Targets for GUI Update
	Responsive Applications with Delayed Layout and Repaint
	Client-Side vs. Server-Side Objects
	How Windows Work

	Building Simple Widgets
	Creating Labels and Buttons
	Editing String Data with Text Fields
	Providing Hints with Tooltips and the Status Bar

	Sorting Data with List and Table Widgets
	Displaying Simple Lists with FXList
	Good Things Come in Small Packages: FXComboBox and FXListBox
	Branching Out with Tree Lists
	Displaying Tabular Data with FXTable

	Editing Text with the Text Widget
	Adding and Removing Text
	Navigating Through Text
	Searching in Text
	Applying Styles to Text

	Creating Visually Rich User Interfaces
	Using Custom Fonts
	Pointing the Way with Cursors
	Creating and Displaying Images
	Manipulating Image Data
	Creating and Displaying Icons
	One More Thing

	Managing Layouts
	Understanding the Packing Model
	Arranging Widgets in Rows and Columns with a Matrix Layout
	Dynamically Resizing Layouts with a Splitter Layout
	Managing Large Content with Scrolling Windows
	Organizing Windows with Tabbed Notebooks
	Strategies for Using Different Layout Managers Together

	Advanced Menu Management
	Creating Cascading and Scrolling Menus
	Adding Separators, Radio Buttons, and Check Buttons to Menus
	Adding Toolbars to an Application
	Creating Floating Menu Bars and Toolbars

	Providing Support with Dialog Boxes
	Selecting Files with the File Dialog Box
	Selecting a Directory with the Directory Dialog Box
	Choosing Colors with the Color Dialog Box
	Selecting Fonts with the Font Dialog Box
	Alerting the User with Message Boxes
	Creating Custom Dialog Boxes
	Looking Ahead

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

