
Prepared exclusively for Jacob Hochstetler

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As an experiment,
we’re releasing this copy well before we normally would. That way
you’ll be able to get this content a couple of months before it’s avail-
able in finished form, and we’ll get feedback to make the book even
better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-
tain errors. It has not been copyedited, so it will be full of typos.
And there’s been no effort spent doing layout, so you’ll find bad page
breaks, over-long lines, incorrect hyphenations, and all the other ugly
things that you wouldn’t expect to see in a finished book. We can’t
be held liable if you use this book to try to create a spiffy application
and you somehow end up with a strangely shaped farm implement
instead. Despite all this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs
from http://books.pragprog.com/titles/fr_eir/reorder.
When the book is finally ready, you’ll get the final version (and
subsequent updates) from the same address. In the meantime,
we’d appreciate you sending us your feedback on this book at
http://books.pragprog.com/titles/fr_eir/errata.

Thank you for taking part in this experiment.

Dave Thomas

Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/reorder
http://books.pragprog.com/titles/fr_eir/errata

Enterprise Integration with Ruby
A Pragmatic Guide

Maik Schmidt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Jacob Hochstetler

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-6-9

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

B1.2 printing, January 2006

Version: 2006-1-24

Prepared exclusively for Jacob Hochstetler

http://www.pragmaticprogrammer.com

Contents
1 Introduction 1

1.1 What Is Enterprise Software? 2
1.2 What Is Enterprise Integration? 3
1.3 Why Ruby? . 3
1.4 Who Should Read This Book? 5
1.5 PragBouquet . 5
1.6 Acknowledgments . 6

2 Databases 8

2.1 The Coupon Application 9
2.2 Database Interface (DBI) 25
2.3 Object-Relational Mappers 28
2.4 Lightweight Directory Access Protocol (LDAP) 51

3 Processing XML 75

3.1 A Short XML reminder . 77
3.2 Generating XML documents 79
3.3 Processing XML Documents 91
3.4 Validating XML Documents 123
3.5 Are There Alternatives to XML? 128

4 Low Ceremony Distributed Applications 141

4.1 “I’d Rather Use a Socket” 142
4.2 Remote Procedure Calls Using HTTP 155

5 Distributed Applications with RPC 175

5.1 Another Day, Another Protocol 175
5.2 We Will Take No REST, Will We? 185
5.3 SOAP . 196
5.4 CORBA, RMI, and Friends 210

Prepared exclusively for Jacob Hochstetler

CONTENTS vi

6 Tools and Techniques 230

6.1 Internationalization and Localization 230
6.2 Logging . 250
6.3 Creating Daemons and Services 269
6.4 Build and Deployment Process 276
6.5 Project Automation with Rake 293
6.6 Testing Legacy Applications 304

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=vi

There are two types of complex systems: those that have

grown out of simpler systems and those that do not work.

Unknown

Chapter 1

Introduction
Have you ever worked for a big enterprise? Do you remember your
expectations as you walked into work on that first day? Whistling as
the sun shone brightly, you might have been thinking “It will be great
to work for <company name here>. They will have a professional envi-
ronment, where coffee is free, where every system has been specified
accurately, implemented carefully, and tested thoroughly. Hmmmm...
I wonder which database and programming language they use.”

After your fifth cup of free coffee (around 9:07) you came to realize that
the real world looks completely different from your expectations. Typi-
cal enterprises use dozens, hundreds, and sometimes even thousands
of applications, components, services, and databases. Many of them
were custom-built in-house or by third parties, some were bought, oth-
ers are based on Open Source projects, and the origin of a few—usually
the most critical ones—is completely unknown. A lot of applications
are very old, some are fairly new and seemingly no two of them were
written using the same tools. They run on heterogeneous operating sys-
tems and hardware, they use databases and messaging systems from
various vendors, they were written in different programming languages.

The reasons for this are manifold. You can find countless books explain-
ing why the situation is so bad. You can even find books claiming
that they help you to prevent such a chaos. This book uses another
approach. We will not help you to clean up this mess, but we will
help you to deal with the problems pragmatically. Instead of complain-
ing that valuable data is spread across different database schemas or
across databases from several vendors, we will write code that inte-
grates it. We will take it even a step further and write new applications
which aggregate all your existing resources. It doesn’t matter if we

Prepared exclusively for Jacob Hochstetler

WHAT IS ENTERPRISE SOFTWARE? 2

have to use relational databases, LDAP repositories, XML files, or web
services based on different protocol standards. We will blend data from
multiple, disparate databases to create new business knowledge.

Along the way we’ll show you how to solve all the small day-to-day
problems. These are the things that occur over and over again, espe-
cially when developing enterprise software. We will access relational
databases such as Oracle and MySQL and we will work with LDAP

repositories. We’ll show you how to do application logging, how to
deploy your software, how to automate tedious and error-prone tasks,
and how to survive in an international environment. Oh, and as you
might have guessed already from the book’s title, we will use Ruby to
accomplish all these things.

1.1 What Is Enterprise Software?

In Patterns of Enterprise Application Architecture [?], Martin Fowler writes:
“Enterprise applications are about the display, manipulation, and stor-
age of large amounts of often complex data and the support or automa-
tion of business processes with that data.”

That’s a concise but nevertheless abstract definition, because every
non-trivial piece of software has to store, manipulate, and display data.
Video games do nothing else (and modern video games also need huge
amounts of data that often can get complex). The key point in the defi-
nition above is the second part: that the data in enterprise applications
is used for business processes and not for rendering alien space ships.

Unsurprisingly, there are more differences between enterprise applica-
tions and other types of software. For example, enterprise applications
are often created only for a small user group that is in close contact
with the development team, implying the developers know their cus-
tomers very well. In extreme cases programs are written for only a
single person (special report generators for the CEO, for example).

Enterprise software demands a certain set of tools. Large amounts
of data—complex or not—have to be stored somehow and somewhere.
Often it is stored in relational databases, but it can also be in plain
text files or LDAP repositories. In addition, modern enterprise software
is often based on distributed architectures consisting of many small
to mid-size components that perform specialized tasks and that are
connected by some kind of middleware such as CORBA, RMI, SOAP, and
XML-RPC.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=2

WHAT IS ENTERPRISE INTEGRATION? 3

Obviously, as an enterprise software developer you’re better off if you
know how to deal with such technologies. You shouldn’t be troubled
by the details of reading from a relational database or accessing a LDAP

repository. Mastering skills such as these help you to concentrate on
the fun stuff—the application itself.

1.2 What Is Enterprise Integration?

Enterprise integration is a rather vague term and cannot be defined in
a strict mathematical sense. Simply put, it happens whenever you use
an existing enterprise resource to achieve some results. If you use an
existing database or web service in your application, you’re perform-
ing enterprise integration. If you build a new component that is used
by other pieces of your existing architecture, you’re doing enterprise
integration, too.

Integration needn’t just happen inside a single enterprise. It’s possible—
and not too unusual—that the software or data of two different enter-
prises has to be integrated. If you’re using a payment gateway to bill
your customers, for example, you’re effectively integrating enterprise
software.

You might ask yourself if every development activity in an enterprise
environment is some kind of enterprise integration. There are a few
exceptions. Enterprise integration does not happen when you build a
completely new piece of software from scratch, for example. In reality
this case is rare, but from a theoretical point of view this is the only
clear exception.

Enterprise integration often means integration with standard software
such as databases, LDAP repositories, message queues, ERM systems,
and so on. If you’re using one of these technologies, chances are good
that you’re doing some enterprise integration.

1.3 Why Ruby?

Most enterprise software running today was written in languages such
as COBOL, C/C++, and Java. Because of its distributed nature, enter-
prise software often makes it easy to use new tools and programming
languages. When you have to create a small standalone application—
one that only relies upon an existing database, SOAP service, or LDAP

repository—it almost doesn’t seem to matter if you were to write it in

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=3

WHY RUBY? 4

C++, Java, or Ruby. But if you look into it more deeply, dynamic lan-
guages such as Perl, Python, and Ruby have many of advantages, espe-
cially in enterprise environments:

• They are interpreted and do not need a compile phase, which
increases development speed tremendously. After editing your
program you can see the results of your changes immediately.

• Enterprise software is about munging data. Dynamic languages
are designed to handle data, and include high-level data types
such as hashes.

• Memory management is dealt with by the language. This is a great
advantage over languages such as C++ where you have to specify
the length of each string you read from a database. Dynamic lan-
guages prevent waste and result in more concise, more robust,
and more secure software.

• Software written in dynamic languages is installed as source code,
so you always know exactly which version is currently running on
your production system. Gone are the days when you had to guess
if a certain binary executable is the right one.

We will show you Ruby’s strengths and how it helps you to accom-
plish many tasks much faster, more elegant, and with more fun than
with any other programming language available today. But, even more
important, we will also tell you about Ruby’s weaknesses. Ruby is com-
paratively young and although the core of the language is mature and
lots of excellent libraries are available, many things are still missing or
incomplete.

Although there is no industry standard for enterprise programming
with Ruby (as there is with J2EE or .NET), everything you need is
readily available. The most important libraries come with every Ruby
distribution and the standard distribution has grown rapidly over the
last years. All the other stuff can be found in public places such as
RubyForge 1 or the Ruby Application Archive2.

1http://www.rubyforge.org
2http://raa.ruby-lang.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.rubyforge.org
http://raa.ruby-lang.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=4

WHO SHOULD READ THIS BOOK? 5

1.4 Who Should Read This Book?

This book was written for experienced enterprise developers who know
Java, C#, or C++, but don’t know much Ruby (although you should
probably have read Programming Ruby [?]). We assume you are familiar
with relational databases and have at least an idea what LDAP is. Maybe
you do not know RELAX NG, but you understand the concepts of XML

and you know what well-formed, SAX2, and DOM mean.

You’ve probably used tools such as object-relational mappers. Maybe
you’re familiar with Enterprise Java Beans (EJB), Java Data Objects
(JDO) and so on. Maybe you’re fed up with editing configuration files
instead of coding. You are looking for better ways to integrate the exist-
ing resources in your company and you are looking for better ways to
quickly create new and fancy applications based on all the wonderful
stuff you already have.

Depending on the tools you’ve used to build your architecture, different
choices are available for the integration process. If you’re using mes-
sage queues you have a lot of freedom and flexibility for integrating your
services and software with others. The same holds true for all kinds of
web service protocols. It’s slightly different with databases, because
they usually do not offer interfaces as clean as message based systems
do. Sometimes you have to access tables directly, sometimes you have
to use a set of stored procedures written in a proprietary database pro-
gramming language.

In this book we do not talk about sophisticated messaging patterns.
Instead, we cover the basics. We show you how to use databases, web
services, XML files, and all the other legacy stuff you want to combine
for building new applications.

1.5 PragBouquet

To make things more interesting and tangible we’ve founded an imag-
inary company called PragBouquet. It sells flowers from a web shop.
Customers from all over the world can order flowers and send them to
people living in the United States.

PragBouquet’s business demands a lot of components and services. It
depends on several partners, too. Their current infrastructure is shown
in Figure 1.1, on the following page. Customers place orders in the web
shop. The shop communicates with the central order system. Because

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=5

ACKNOWLEDGMENTS 6

Figure 1.1: PragBouquet Infrastructure

PragBouquet has no billing system, the order system uses an external
payment gateway to charge orders. In parallel the production system is
informed of new orders and busy florists create wonderful bunches of
flowers. Eventually, the floral goods are picked up by a parcel service
and are delivered to the happy recipient.

This is only a rough overview. We’ll show single components in more
detail when necessary.

1.6 Acknowledgments

First, I’d like to thank Dave Thomas and Andy Hunt for giving me the
opportunity to write this book for The Pragmatic Bookshelf. Working
with them has been both an honor and a pleasure. I couldn’t imagine
better or more professional working conditions.

It would be impossible to write a book about software for enterprise
integration without the software itself. The following gentlemen kindly
made their ingenious work public for free, and have always responded
quickly and accurately to all my questions: Yukihiro “matz” Matsumoto,
Will Drewry, arton (the author of Rjb), Sean Russel, Ian Macdonald,
Takaaki Tateishi, Thomas Uehlinger, Jim Weirich, Nikolai Lugovoi, Daniel
Berger, why the lucky stiff, Minero Aoki, Michael Neumann, Kubo Take-
hiro, Tomita Masahiro, Matt Mower, David Heinemeier Hansson, Hiroshi

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=6

ACKNOWLEDGMENTS 7

Nakamura, John W. Small, Takahashi Masayoshi, Gotou Yuuzou, Yoshida
Masato, and Grant McLean.

Please, stand up with me and give my reviewers a round of applause:
Frank Tewissen, Matthias “Matze” Klame, Uwe Simon, and Kaan Karaca
did an awesome job! Without their corrections and suggestions this
book wouldn’t be half as good.

A loud “Thank you very much!!!” goes to all the people who sent errata
and suggestions during the beta book process: Lee Grey, Hoang Uong,
Ola Bini, Ron Lusk, John Athayde, Blair Zajac, Jim Weirich, Pat Poden-
ski, Gregory Brown, Lachlan Dowding, Sean, Eldon, Stuart Halloway,
Raymond Brigleb, Ken Barker, Peter Morelli, Eric-Olivier Lamey, and
Jim Kimball.

Perhaps there are authors who write books in isolation under a rock
or on a lonesome island. Fortunately, I didn’t and got invaluable sup-
port from a lot of wonderful people. I am deeply grateful to my par-
ents (this one’s for you), my sister Yvonne Janka (yet another book you
won’t read?), my brother Andrè Schmidt (for relaxing shopping/running
tours and even more relaxing evenings with “the boys”), Christian &
Agnieszka Rattat (for being true friends when I needed them most),
Frank Tewissen (for listening patiently and for advising carefully), Manu
(for being “die Manu”! Heja BVB!), AleX Reinartz (I’m looking forward to
the next decades), Bettina Hamidian & Corinna Lorscheid (for insight-
ful talks and lots of fun), Katja Wevelsiep (let’s have a coffee tomorrow,
OK?), Frank Möcke (for giving me the opportunity to publish texts in
my mother tongue), Dr. Andreas Kötz (for your appreciation), and to the
“Gleis drei” staff (for providing a perfect proof-reading environment).

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=7

Chapter 2

Databases
Database management systems are one of the oldest and most widely
used applications in information technology—they are indispensable to
enterprises. It’s nearly impossible to do some serious enterprise inte-
gration without touching some kind of database directly or indirectly.
Various types exist (relational databases, object-oriented databases,
directory services, XML databases, and hash databases such as Berke-
ley DB). They differ mainly in the way data is organized and accessed
internally. Under the hood, though, they are all similar: data is stored
in some kind of file system and is accessed through a special layer,
often over a network. You can find one or more of the different types
in every company, but relational databases are by far the most popular
ones in use today.

Although it’s often tedious, repetitive, and error-prone work, accessing
databases is, in principle, easy. You open a connection, create and
execute some statements, read and process some data, and finally free
all resources occupied. At least, that’s how the Gods Of Persistence
wanted it to be. But real life in our sinful world looks different. Infor-
mation and business logic is often spread across different schemas and
databases. To make things even worse many companies use products
from multiple vendors. This happens for various reasons: they want
to prevent vendor lock-in, our company is the product of a corporate
merger, different departments prefer different tools, and so on.

Unfortunately, PragBouquet is no exception. Its data is stored in both
Oracle and MySql databases. In this chapter we will show you not only
how to directly manipulate different types of databases, but also how
to access them using more advanced tools such as object-relational
mappers and database abstraction layers.

Prepared exclusively for Jacob Hochstetler

THE COUPON APPLICATION 9

2.1 The Coupon Application

PragBouquet’s business has been doing well, but business can always
be better, can’t it? To boost sales, the marketing department wants
to send a coupon to every customer who’s used the online store, but
hasn’t used it in the last 6 months. People who have been asked not to
be e-mailed should not get an e-mail.

That does not sound too difficult. PragBouquet already has a mass
mailing program that expects a CSV (Comma Separated Values) file
containing e-mail addresses, customer names, and a text to be sent.
The problem becomes selecting names and e-mail addresses of all cus-
tomers who did not place an order in the last 6 months, filtering out
those who do not want to be e-mailed, and writing the rest to the CSV
file.

Instantly you’ve fired up your favorite text editor thinking that this is
a great opportunity to strengthen your Ruby skills. Creating CSV files
is a breeze and selecting some data sets from a database should not
be a problem, either. So you ask your database administrator where
you can find the information you need and he takes you down a peg or
two. He tells you that for historical reasons (an euphemism for “Nobody
knows why”) the information you need is spread across two databases.
Customer data and order data are stored in an Oracle database, but the
white list containing the e-mail addresses of all customers who want to
receive e-mail from PragBouquet is stored in the web shop’s MySQL
database. You scribble a bit on your notepad and realize that the sys-
tem architecture has to look like Figure 2.1, on the next page.

Exploring The Environment

You decide to start with the Oracle part. Before moving on you want to
have a closer look at the structure of the order database. Your database
administrator told you that the relevant tables are called customers and
orders. He gave you plenty of Microsoft Word documents describing
every single table in the order database. Despite this you have a look at
the current state of affairs yourself using SQL*Plus, Oracle’s SQL shell.

C:\> sqlplus scott

SQL*Plus: Release 9.2.0.1.0 - Production on Sat Jun 4 16:00:04 2005

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Enter password: XXXX

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=9

THE COUPON APPLICATION 10

Figure 2.1: Coupon Application Workflow

Why didn’t we use a standard product?

You might be asking yourself if it’s a good idea for PragBo-
quet to have created its own customer and order databases?
Wouldn’t it be much easier to buy a solution off the shelf? Cus-
tomer data is at the core of every enterprise and many pro-
cesses rely upon it. It’s needed for billing, for statistics, for trou-
bleshooting, and so on. Although many big companies offer
software for customer relationship management, it’s never a
bad idea to think about building your own customer database.
No product will fit your needs better than your own and no
product will ever be as flexible as yours.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=10

THE COUPON APPLICATION 11

Connected to:

Personal Oracle9i Release 9.2.0.1.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options

JServer Release 9.2.0.1.0 - Production

SQL> describe customers

Name Null? Type

--- -------- -------------------

ID NOT NULL NUMBER(38)

NAME NOT NULL VARCHAR2(64)

SURNAME NOT NULL VARCHAR2(128)

STREET NOT NULL VARCHAR2(128)

HOUSE_NUMBER NOT NULL VARCHAR2(10)

POSTAL_CODE NOT NULL VARCHAR2(10)

CITY NOT NULL VARCHAR2(128)

STATE VARCHAR2(20)

COUNTRY_CODE NOT NULL VARCHAR2(2)

EMAIL NOT NULL VARCHAR2(128)

CREATED DATE

SQL> describe orders

Name Null? Type

--- -------- -------------------

ID NOT NULL NUMBER(38)

CUSTOMER_ID NOT NULL NUMBER(38)

STATE NOT NULL NUMBER(38)

CREATED TIMESTAMP(6)

No big surprises here. Obviously, customers are characterized mainly
by their address data and we guess that the tables are connected using
column customer_id in table orders.

Determine the Winners

If we’re going to use a Ruby program to extract information from an
Oracle database, we’ll need a library that connects our code to the
underlying Oracle API. There are currently three Ruby modules for Ora-
cle:

• Oracle by Yoshida Masato 1

• Ruby/OCI8 by Kubo Takehiro 2

• Ruby9i by Jim Kain 3

1http://raa.ruby-lang.org/project/oracle
2http://rubyforge.org/projects/ruby-oci8
3http://rubyforge.org/projects/ruby9i

Report erratum
Prepared exclusively for Jacob Hochstetler

http://raa.ruby-lang.org/project/oracle
http://rubyforge.org/projects/ruby-oci8
http://rubyforge.org/projects/ruby9i
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=11

THE COUPON APPLICATION 12

Storing Addresses—A Plea from the Rest of the World

Even though addresses are critical for many purposes, their
data representation is often performed carelessly and with-
out foresight. In particular, aspects of internationalization are
often forgotten, because designers and developers normally
do not know a lot about the administrative characteristics of
their neighbors.

For example, Germany is a federal country divided into 16
states, but to the Germans the different states do not mean
a lot. They aren’t part of an address, they do not occur on
envelopes, and you do not have to put them into a web form
when ordering something from an internet shop. It’s not surpris-
ing that German customers get annoyed by web forms insisting
on a state. When working in an international environment, it’s
better to make the state optional.

There is no international standard for the representation of an
address. In Germany, for example, a street address is street
name followed by a blank followed by the house number. In
Italy, there’s a comma between the street name and the house
number. Other countries put the number before the name.

It’s nearly impossible to automatically separate street names
and house numbers afterwards, because house numbers can
contain nearly arbitrary characters.

Another aspect of addresses that is forgotten surprisingly often
in this context is that addresses represent geographical objects.
Geographical objects have coordinates, locations that are
becoming increasingly important as we move into a world
using location-based services. If you want to offer location
based services to your customers some day you’ll have to
determine the geographical position of their addresses. For
many cities it’s possible to locate an object down to the indi-
vidual house number.

Please, don’t misunderstand me: you should not try to come up
with a solution that will work with every possible address format
in the world (I think that would probably be impossible), but
you should at least have a closer look at the countries you’re
potentially working in.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=12

THE COUPON APPLICATION 13

The main difference between these libraries is their support (or lack
thereof) for new data types. Gone are the days when you could only
store small strings and numbers in your database. Nowadays you can
store complete books or MP3 files in CLOB (Character Large Object) or Character Large Object

BLOB (Binary Large Object) columns. Major versions of the Oracle Call Binary Large Object

Interface (OCI) also differ in other areas, such as security, performance
Oracle Call Interface

etc.

In this book we’ll use Kubo Takehiro’s Ruby/OCI8 driver—it’s actively
maintained, runs on many platforms, and provides a lot of function-
ality. It comes in two flavors: A low-level and a high-level API. The
low-level API directly reflects the Oracle C library and we will not show
its usage, as the high-level API is probably more convenient to use.

Let’s dive into Ruby now and see how we can identify the customers
who should get a coupon.

File Line 1 require 'oci8'

-

- connection = OCI8.new('maik', 'maik')

- cursor = connection.exec(<<-SQL)

5 select a.id, a.name, a.surname, a.email

- from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - 180

- and b.created = (

10 select max(created)

- from orders

- where customer_id = a.id

-)

- SQL

15

- while row = cursor.fetch do

- puts row[3]

- end

-

20 cursor.close

- connection.logoff

produces something like this:

homer@example.com

seymour@example.com

Here we have a typical example of accessing a database. It would
look similar in every modern programming language. First we estab-
lish a database connection by calling the new() method of class OCI8

(connect() would have been a much better name, but for the moment
we have to live with it). The new() method returns a connection object,

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/first_ora_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=13

THE COUPON APPLICATION 14

that can be used to communicate with the database server and to create
other database objects, such as statements and cursors.

The SQL statement joins the tables customers and orders and returns
only those customers whose last order is older than 180 days. The sub-
select identifies the most current entry for each customer and makes
sure that every customer is returned only once.

As you can see, SQL statements can be executed directly by calling the
exec() method of an OCI8 connection. For SELECT statements, exec()
returns a so-called cursor representing a result set on the database
server. Clients can move through a result set by calling fetch() on the
cursor object. After the last row has been read from the cursor fetch()
returns nil.

Eventually, we close our cursor to free valuable resources on the database
server. Cursors are resources like file handles, and are in limited sup-
ply. If you’re a bad citizen and failed to free off these resources, Oracle
will raise an exception sooner or later.

Admittedly, our example is concise and expressive, but using Ruby’s
iterators automatically leads to a more elegant solution with less explicit
resource management:

File Line 1 require 'oci8'

-

- connection = OCI8.new('maik', 'maik')

- sql = <<-SQL

5 select a.id, a.name, a.surname, a.email

- from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - 180

- and b.created = (

10 select max(created)

- from orders

- where customer_id = a.id

-)

- SQL

15

- num_customers = connection.exec(sql) do |row|

- puts row[3]

- end

-

20 puts "Found #{num_customers} coupon recipients."

- connection.logoff

produces:

homer@example.com

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/first_ora_example_it.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=14

THE COUPON APPLICATION 15

seymour@example.com

Found 2 coupon recipients.

When exec() is called as an iterator—with a code block—it returns the
number of rows selected. The code block automatically gets each row
fetched as a parameter and you no longer have to close the cursor
explicitly. Actually, you don’t even notice that you’re working with a
cursor.

Enhancing Flexibility

OK, our first example works. We know where to get the data from and
we know how to get it, so let’s turn our little script into software. First
of all, we have to replace the constant 180 days with something more
dynamic. To do this, we could create the string containing the SQL

statement on the fly, substituting in the time value, but this approach
has some serious drawbacks.

As we already know, the SQL statement gets transferred over the net-
work to the database server whenever we call exec(). Then it gets
parsed, analyzed, optimized, executed, and eventually the result is sent
back to the client.

Actually, modern database servers try to optimize a lot. Part of this
process is the creation of a so-called query execution plan for every query execution plan

statement they receive. Current Oracle versions even try to compress
the result sets before sending it back to the client to decrease band-
width and processing time. For SQL statements that are executed often
this means that we could gain a lot if the statement could be parsed,
analyzed, and optimized only once.

Furthermore, building SQL statements on the fly often creates danger-
ous security holes. What if someone uses a web form to pass us the
following string for the number of days?

'180; delete from customers; commit;'

In the worst case the database server will happily execute the malicious
statement giving you an excellent opportunity to check if your backup
system is working properly. This common kind of attack is called SQL

injection. SQL injection

Fortunately, it is possible to circumvent all these disadvantages by
using so called prepared statements. We transmit a statement tem- prepared statements

plate to the server, where it is parsed, analyzed, and optimized. The
server then sends back a statement handle. All the dynamic portions

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=15

THE COUPON APPLICATION 16

of our statement are replaced by placeholders. Whenever we want to
execute our statement, we only send the server the handle and the
actual values for our placeholders.

File Line 1 require 'oci8'

-

- Customer = Struct.new(:id, :name, :surname, :email)

File Line 1 class CustomerFinder

- def initialize(connection)

- @find_stmt = connection.parse(<<-SQL)

- select a.id, a.name, a.surname, a.email

5 from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - :days

- and b.created = (

- select max(created)

10 from orders

- where customer_id = a.id

-)

- SQL

- end

15

- def find(days)

- @find_stmt.bind_param(':days', days)

- @find_stmt.exec

- customers = []

20 while row = @find_stmt.fetch do

- customers << Customer.new(*row)

- end

- customers

- end

25 end

First of all, we have inserted a placeholder (:days) into the SELECT state-
ment. Then we create a prepared statement by calling parse(sql) on our
connection. This method returns a handle identifying our statement on
the server.

Calling bind_param() in line 17 binds the :days placeholder to its actual
value and in the following line we finally execute the SELECT statement
@find_stmt is referring to. The rest is business as usual. Using the
CustomerFinder looks like this:

File Line 1 ora_connection = OCI8.new('maik', 'maik')

- finder = CustomerFinder.new(ora_connection)

- customers = finder.find(180)

- customers.each { |c| puts c.email }

5 ora_connection.logoff

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=16

THE COUPON APPLICATION 17

Respecting Customer Privacy

So far, so good. We can create a list of all customers that should poten-
tially get a coupon, but we still have to sort out those who do not want
to receive e-mails from PragBouquet. As we’ve already learned, this
information is stored in the web shop’s MySQL database. There we can
find a table called whitelist containing a list of all e-mail addresses that
we are allowed to use.

MySQL, created by Monty Widenius, is one of the most popular Open
Source databases at the moment. It started as a thin wrapper for the
mSQL database and has grown over the years into a full-blown trans-
actional database management system. MySQL support in Ruby was
made possible by the great work of Tomita Masahiro. He has developed
both a C library binding called MySQL/Ruby4 and a pure Ruby bind-
ing called Ruby/MySQL5. Thanks to a patch written by Matt Mower,
Ruby/MySQL now also works with MySQL version 4.1.1 and later.6.

In this book we’ll use the pure Ruby implementation (for no special
reason). As with our order database we first examine the webshop
database using the MySQL shell:

C:\>mysql webshop

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3 to server version: 4.0.22-nt

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> describe whitelist;

+---------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+------------------+------+-----+---------+-------+

| id | int(10) unsigned | | PRI | 0 | |

| email | varchar(255) | | UNI | | |

| created | timestamp(14) | YES | | NULL | |

+---------+------------------+------+-----+---------+-------+

3 rows in set (0.16 sec)

mysql>

As a first exercise we try to connect to the MySQL server and print the
whole whitelist.

4http://tmtm.org/en/mysql/ruby/README.html
5http://www.tmtm.org/en/ruby/mysql/README_en.html
6This patch is part of Rails’ ActiveRecord module, and can be found under

http://www.rubyonrails.org.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://tmtm.org/en/mysql/ruby/README.html
http://www.tmtm.org/en/ruby/mysql/README_en.html
http://www.rubyonrails.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=17

THE COUPON APPLICATION 18

File Line 1 require 'mysql'

-

- connection = Mysql.new('localhost', '', '', 'webshop')

- whitelist = connection.query('select * from whitelist');

5 whitelist.each_hash { |h| puts h['email'] }

- connection.close

produces something like this:

homer@example.com

info@example.net

...

c-m-burns@example.org

Here we have a textbook example of database use: create a connec-
tion, execute a query, print its result, and finally close the connec-
tion. What more could we say that hasn’t already been expressed in
the code? Alright, we have some details for you. Calling the query(sql)

method returns an object of class Mysql::Result that represents a com-
plete result set. You can read the single rows of a result set using
various methods—here we chose each_hash(). It returns a Hash for
every row where the column names are the hash keys with the data as
the corresponding values.

Printing the whole whitelist was not exactly what we wanted. Instead
we have to check whether a certain email address is contained in the
whitelist. That means we have to execute a statement such as

select count(*)

from whitelist

where email = 'email@example.com'

and see if it returns 1. Obviously, the email address in the where clause
of our statement is variable and from what we’ve learned in Section 2.1,
Enhancing Flexibility, on page 15, you might assume it would be a good
idea to use a prepared statement for this purpose. You are absolutely
right: it would be a good idea, but unfortunately support for prepared
statements in MySQL is a rather new feature. It was introduced in
version 4.1 and the current Ruby drivers do not support it.

File Line 1 require 'mysql'

-

- class Whitelist

- def initialize(connection) @connection = connection; end

5

- def contains?(email)

- sql = "select * from whitelist where email = '#{email}'"

- result = @connection.query(sql)

- result.num_rows == 1

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/print_whitelist.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/whitelist_naive.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=18

THE COUPON APPLICATION 19

10 end

- end

Obviously, num_rows() returns the number of rows in a result set (which
is what we wanted to determine). In use, our Whitelist class looks as
follows.

File Line 1 connection = Mysql.new('localhost', '', '', 'webshop')

- whitelist = Whitelist.new(connection)

- puts whitelist.contains?('homer@example.com')

- puts whitelist.contains?('unknown_address')

5 connection.close

produces:

true

false

We’ve created our SQL statement using strings. Does it make you feel
comfortable? Although the coupon application is an internal project,
the e-mail addresses come from an external source and so you should
never trust them. In addition, it’s really wasteful to execute an SQL

statement for every single e-mail address. So, we will trade some space
for time and read all e-mail addresses into a Hash initially.

File Line 1 require 'mysql'

-

- class Whitelist

- def initialize(connection)

5 @whitelist = {}

- result = connection.query('select email from whitelist');

- result.each_hash { |h| @whitelist[h['email']] = true }

- end

-

10 def contains?(email)

- @whitelist.has_key?(email)

- end

- end

That’s a really good compromise. Even if we have to read several thou-
sand e-mail addresses into memory, it’s still a low price for the perfor-
mance and security we get.

Joining Forces

We have everything available now to create the list of our lucky coupon
recipients: we can read all potential customers from the Oracle order
database and can look them up on the white list stored in the MySQL
webshop database. Because the mailing program expects data as CSV

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/whitelist_naive.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/whitelist.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=19

THE COUPON APPLICATION 20

we reopen the Customer class and add an appropriate method (see Sec-
tion 3.5, Comma-Separated Values (CSV), on page 129, to learn more
about Ruby’s CSV library).

File require 'csv'

class Customer

def to_csv(del = ',')

str = ''

CSV::Writer.generate(str, del) do |csv|

csv << [name, surname, email]

end

str

end

end

The following program then prints CSV data to the console so it can be
easily redirected to the mass mailing program.

File Line 1 require 'cusfinder'

- require 'whitelist'

-

- # Read all potential customers

5 ora_connection = OCI8.new('maik', 'maik')

- finder = CustomerFinder.new(ora_connection)

- customers = finder.find(180)

- ora_connection.logoff

-

10 # Sort out customers not in whitelist

- mysql_connection = Mysql.new('localhost', '', '', 'webshop')

- whitelist = Whitelist.new(mysql_connection)

-

- customers.each do |c|

15 puts c.to_csv if whitelist.contains?(c.email)

- end

-

- mysql_connection.close

produces:

Homer,Simpson,homer@example.com

Barney,Gumble,barney_gumble@example.org

...

Ned,Flanders,nflanders@example.net

That’s it. We could happily move to the next project. But wouldn’t
it be interesting to know how many customers actually convert their
coupon? To do this, we have to store at least the customer ids of all
coupon recipients somewhere. Let’s put it into the order database in
a new table called coupon_recipients. This will let us check to see how
many of the customers on this list placed an order after the coupon
mailing.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/cusfinder.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/coupon.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=20

THE COUPON APPLICATION 21

File create table coupon_recipients (

customer_id int not null,

created timestamp default sysdate

);

For the first time in this chapter we’re going to write data into the
database. It’s nearly the same as reading information, but there are
a few subtleties we have to take care of.

File Line 1 require 'oci8'

-

- class Recipient

- def initialize(connection)

5 sql = 'insert into coupon_recipients (customer_id) values(:1)'

- @insert_rec = connection.parse(sql)

- end

-

- def create(customer)

10 @insert_rec.bind_param(1, customer.id)

- @insert_rec.exec

- end

- end

Here, we’ve used another form of bind variable, numbering them instead
of naming them explicitly. It’s more or less a matter of taste whether
you bind parameters by name or by number, but you have to be con-
sistent. If you’ve used numbers as placeholders for the parameters in
the SQL statement, you have to bind them by number later. That’s
especially important for output parameters:

File Line 1 connection = OCI8.new('maik', 'maik')

- cursor = connection.parse("begin :now := sysdate; end;")

- cursor.bind_param(':now', Time.mktime(1972, 9, 30), Date)

- puts cursor[':now']

5 puts cursor[1]

- cursor.exec

- puts cursor[':now']

- puts cursor[1]

- cursor.close

10 connection.logoff

at the time of this writing produces:

1972-09-30

nil

2005-04-03

nil

There’s something even more critical hidden in our Recipient class.

File Line 1 require 'cusfinder'

- connection = OCI8.new('maik', 'maik')

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/recipients.sql
http://media.pragprog.com/titles/fr_eir/code/db/coupon/recipient.rb
http://media.pragprog.com/titles/fr_eir/code/db/oracle/outparam.rb
http://media.pragprog.com/titles/fr_eir/code/db/coupon/recipient.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=21

THE COUPON APPLICATION 22

- connection.autocommit = true

- recipients = Recipient.new(connection)

5 customer = Customer.new(1, 'Selma', 'Bouvier', 'selma@example.com')

- recipients.create(customer)

- connection.logoff

See that we’ve enabled the auto-commit feature of the connection object auto-commit

on line 3. This makes sure that every SQL statement gets committed
immediately, saving any changes to the database when the statement
is executed. That’s what we’d normally expect to happen.

Oracle is a transactional database—you can group several SQL state-
ments as if they were one. If any of the statements fail, all the state-
ments will be ignored—the database content will not be changed. The
current transaction can be committed by executing the COMMIT com-
mand or it can be rolled back by calling ROLLBACK. Setting autocommit

to true is like calling COMMIT after every single SQL statement. Without
it, nothing would ever get written to the database. You wouldn’t even
notice it, because from the database’s point of view it’s not an error.

Our final version of the coupon application differs only slightly from our
original approach:

File Line 1 require 'cusfinder'

- require 'whitelist'

- require 'recipient'

-

5 # Read all potential customers

- ora_connection = OCI8.new('maik', 'maik')

- ora_connection.autocommit = true

- recipients = Recipient.new(ora_connection)

- finder = CustomerFinder.new(ora_connection)

10 customers = finder.find(180)

-

- # Sort out customers not in whitelist

- mysql_connection = Mysql.new('localhost', '', '', 'webshop')

- whitelist = Whitelist.new(mysql_connection)

15

- customers.each do |c|

- if whitelist.contains?(c.email)

- puts c.to_csv

- recipients.create(c)

20 end

- end

-

- ora_connection.logoff

- mysql_connection.close

The most important changes affect the Oracle connection object. We’ve

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/coupon/coupon_final.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=22

THE COUPON APPLICATION 23

set its autocommit feature to true. We also defer closing the connection
until the end of the program, as it’s needed during the whole runtime.

The Fruits of Our Labor

Two weeks ago the coupons were sent to their lucky recipients. Today
started like any other: switched on your PC and went into the kitchen
to get a (free) cup of coffee. As you came back to your desk to create
yet more extraordinary code, one of the marketing guys was waiting for
you. “You’re the techie that sent out the coupons two weeks ago, aren’t
you?” he asks. Before you can say a word he proceeds: “Although
we worked several weeks on the functional specification of the coupon
application, we somehow forgot to define some statistics requirements.
Now we’re afraid that we can’t find out how successful our marvelous

and groundbreaking coupon idea was. Is there any way you could create
some statistics, anyhow?”

Mostly, you’re surprised that something like a functional specification
exists—it’s the first you heard of it. But, when you recover, you remem-
ber the coupon_recipients table and open an SQL*Plus shell:

SQL> select count(*) from coupon_recipients;

COUNT(*)

3145

SQL> select count(*) from orders where customer_id in (

2 select customer_id from coupon_recipients

3) and created > sysdate - 14;

COUNT(*)

917

SQL> select 917 * 100 / 3145 from dual;

917*100/3145

29.1573927

SQL>

Turning around to the marketing guy you say: “29.16% of the coupon
recipients placed an order during the last two weeks. Do you need
anything else?” He is obviously impressed: “No, thank you very much!

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=23

THE COUPON APPLICATION 24

Managing Database Resources

So far, our examples have been simple and we didn’t care
about performance and optimization. But opening a new
database connection is expensive and should not be per-
formed unnecessarily. If you only need a single connection,
databases can be represented as a singleton object. A single-
ton object is available everywhere in your program and can
be created only once. Thanks to the Ruby standard library it’s
a piece of cake to create a singleton encapsulating our OCI8
driver:

File require 'oci8'

require 'singleton'

class Database

include Singleton

attr_reader :connection

def initialize

@connection = nil

end

def connect(usr, pwd, dbname = nil)

@connection = OCI8.new(usr, pwd, dbname)

@connection.autocommit = true

@connection

end

def disconnect

if !@connection.nil?

@connection.logoff

@connection = nil

end

end

end

Class Database makes a connection to our database available
wherever we need it and we get access to the one and only
instance by calling Database.instance(). At program start we
have to call Database.instance.connect(usr,pwd) once and from
then on Database.instance.connection contains our connection.

You did an awesome job and I wouldn’t be surprised, if you get a corner
office soon.” You lean back and take a sip of your coffee. It’s still hot.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/oracle/database.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=24

DATABASE INTERFACE (DBI) 25

2.2 Database Interface (DBI)

It’s a bit annoying that the information we needed for our coupon
application is spread across two databases—it might be a good idea
to change this situation someday. Anticipating this change, it might
be advantageous to make our application more independent of the
underlying drivers. As we’ve seen in the previous sections, access-
ing databases using native drivers in principle differs only slightly from
vendor to vendor: you have to obtain a connection, create or prepare
statements, execute statements, and retrieve results eventually. Tech-
nically, though, there are many subtle (and sometimes not so subtle)
differences. Countless attempts have been made to standardize this
interface. For example, on the Microsoft Windows platform there is
ODBC, OLE DB, and ADO.NET, to name just a few. Java has its JDBC and
dynamic languages such as Perl, Python, and Ruby use an approach
called DBI (Database Interface).7 DBI

All database abstraction layers work in a similar fashion: they define database abstraction

layers
an abstract interface to the database, and a concrete implementation,
called a database driver, is implemented for each specific database. database driver

For the Ruby DBI library, these drivers are known as DBD modules.8.
These drivers are accessed by your program through a standard inter-
face,9 so you do not have to remember if the method to get a new con-
nection was called new(), connect(), create_connection(), or whatever.
In DBI it’s called connect(driver_url, user=nil, auth=nil, params=nil) for every
database supported and it always expects the same parameters in the
same order.

Compared to other database abstraction layers, DBI is extremely sim-
ple. To use it you only have to know two classes, DatabaseHandle and
StatementHandle. A database handle represents a connection to the
database, while a statement handle represents an active SQL statement.
To examine whether we can benefit from using DBI in our PragBouquet
application, we’ll change the Whitelist class to use it.

File Line 1 require 'dbi'

-

- DBI.connect('DBI:Mysql:webshop', '', '') do |conn|

- conn.select_all('select * from whitelist') { |row| p row }

7This list proves the old adage: the good thing about standards is that there’re so
many to choose from.

8http://ruby-dbi.rubyforge.org/DBD_SPEC.html
9http://ruby-dbi.rubyforge.org/DBI_SPEC.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/dbi/print_whitelist.rb
http://ruby-dbi.rubyforge.org/DBD_SPEC.html
http://ruby-dbi.rubyforge.org/DBI_SPEC.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=25

DATABASE INTERFACE (DBI) 26

5 end

Because of the block syntax supported by the DBI methods, our demon-
stration program became extremely compact. In line 3, DBI.connect()
returns a database handle that gets passed into the block. When the
program reaches the end of the block, the connection is closed auto-
matically. Within the block we call select_all(), which executes a SELECT

statement and calls a code block for every row that was returned.
Again, we do not have to care about resource management—the state-
ment will be released at the end of the block. The only thing left to do
is to integrate the code into the Whitelist class.

File Line 1 require 'dbi'

-

- class Whitelist

- def initialize(connection)

5 @whitelist = {}

- connection.select_all('select email from whitelist') do |row|

- @whitelist[row[0]] = true

- end

- end

10

- def contains?(email) @whitelist.has_key?(email); end

- end

We did not change the interface and only the connection object has to
be instantiated differently to use the Whitelist class:

File Line 1 connection = DBI.connect('DBI:Mysql:webshop', '', '')

- whitelist = Whitelist.new(connection)

- puts whitelist.contains?('homer@example.com')

- connection.disconnect

Should we move the whitelist table from MySQL to our Oracle database,
we only have to change the string “Mysql” to “Oracle” and the program
will still work.

Encouraged by our success, we’ll change the Oracle stuff in our Cus-

tomerFinder class to use DBI too.

File Line 1 class CustomerFinder

- def initialize(connection)

- @find_stmt = connection.prepare(<<-SQL)

- select a.id, a.name, a.surname, a.email

5 from customers a, orders b

- where a.id = b.customer_id

- and b.created < sysdate - :days

- and b.created = (

- select max(created)

10 from orders

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/dbi/whitelist.rb
http://media.pragprog.com/titles/fr_eir/code/db/dbi/whitelist.rb
http://media.pragprog.com/titles/fr_eir/code/db/dbi/cusfinder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=26

DATABASE INTERFACE (DBI) 27

- where customer_id = a.id

-)

- SQL

- end

15

- def find(days)

- @find_stmt.bind_param(':days', days)

- @find_stmt.execute

- customers = []

20 while row = @find_stmt.fetch do

- customers << Customer.new(*row)

- end

- customers

- end

25 end

As with the previous example, we did not have to change a lot. Instead
of calling parse() on our connection object in line 3, we have to call
prepare() now. Similarly, exec() becomes execute() on line 18. We have
to pass a DBI connection object now:

File Line 1 connection = DBI.connect('DBI:Oracle', 'maik', 'maik')

- finder = CustomerFinder.new(connection)

- customers = finder.find(180)

- customers.each { |c| puts c.email }

5 connection.disconnect

Despite all this, the benefits of a database abstraction layer aren’t as
big as you might think. It’s convenient to work with DBI when you
have to access a database product that you haven’t worked with before,
but you shouldn’t assume that you can easily replace your existing
database by a completely different one only because you’re using an
abstraction layer. Moving from one database to another is one of the
most complicated things in developing enterprise software.

Because there are so many proprietary additions to SQL in every ven-
dor’s implementation, writing portable statements is nearly impossible.
Often such statements look quite harmless. For example, look at the
statement starting on line 3 in our CustomerFinder class. It contains at
least three potential problems:

• Not all databases support sub-selects.

• sysdate is specific to Oracle. In MySQL you’d have to use now()
and in DB2 it’d be current timestamp.

• The syntax of arithmetic expressions for dates (such as sysdate-180)
differs from vendor to vendor.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/dbi/cusfinder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=27

OBJECT -RELATIONAL MAPPERS 28

Sometimes the problems aren’t directly related to a SQL statement, but
are caused by some side-effects like auto-generated identifiers which
aren’t available in every database. To support such database specific
functions, the drivers used by DBI allow for some extensions, but if
you want to write portable software, it’s certainly not a good idea to
use them. For example, to read the last auto-generated identifier from
a MySQL database, you call the last_insert_id() method. This method
is not available for Oracle databases and it’s not easy to simulate the
auto-generation feature in Oracle.

A last problem with DBI could be performance: the extra layers and
the need to map features can decrease performance significantly. For
example, accessing MySQL using the native driver is twice as fast as
using the DBI layer.

There are much more important (and tricky) issues that might prevent
you from easily changing your database. Consider, for example, C/C++
programs that contain Embedded SQL. Even if you’re lucky and have Embedded SQL

access to the source code of all programs running in your environment,
it still will be a lot of work to adjust them all.

So, if you know up front that you have to support multiple databases
you can gain a lot by using an abstraction layer, but you have to plan
for it carefully.

2.3 Object-Relational Mappers

A lot of people working in the software development department of Prag-
Bouquet have been thinking about re-organizing the current database
landscape for quite a long time. The design of many databases has
become a bit messy over the years and it’s a big problem that logic and
data are spread across Oracle and MySQL databases. To save license
costs, all the Oracle databases should be migrated to a MySQL database
in the future and all new stuff should be implemented in the MySQL
database right from the beginning.

The first thing that has to be added is an automatic management sys-
tem for ordering flowers. Today flowers are ordered from a big whole-
saler more or less manually by the buying department. The clerks get
daily order reports and they can see how many flowers are still in stock.
Then they do some simple calculations using a spreadsheet application
and place new orders accordingly. It’s your task now to automate this
process as far as possible, i.e. to create a database for the flowers in

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=28

OBJECT -RELATIONAL MAPPERS 29

Generating Unique Ids

It’s really strange: mankind is talking about going to Mars, but
creating artificial primary keys in databases is still a problem in
the 21

st century, because there’s no standard.

From a design point of view, there are a lot of advantages
to creating an artificial unique (numeric) primary key for every
table in the database, even if a natural primary key does exist.
Numeric values only need a small amount of space and can
be indexed efficiently.

Although there’s a need for unique ids in every database, all
vendors come up with their own ideas and concepts to gener-
ate them. It’s easy to generate them more or less portable by
creating a table containing only two columns:

create table sequences (

value int default 1 not null,

table_name varchar(64)

);

To create a sequence for our customers table, we insert a new
row into the sequences table:

insert into sequences (table_name) values ('customers');

Generating a new sequence value is straightforward, then:

begin

update sequences set id = id + 1

where table_name = 'customers';

select id from sequences

where table_name = 'customers';

end;

Unfortunately, this solution is not particularly efficient, because it
has to be executed in a transaction that can slow down things
a bit. Oh, and did I mention that not all databases support
transactions?

Whenever your program relies upon auto-generated identifiers
you should encapsulate this process carefully to prevent bad
surprises when you have to migrate to another database.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=29

OBJECT -RELATIONAL MAPPERS 30

stock and to remove flowers from stock whenever a new bouquet leaves
PragBouquet.

Before opening your text editor you take a day off to think about the
new database structure and after 24 hours of constant thinking you
finally had this revolutionary idea: we need a table that represents
flowers:

File Line 1 create table flowers(

- id int unsigned not null auto_increment primary key,

- name varchar(64) not null,

- price double not null

5);

That should be sufficient for a first version: flowers have a name, a
price, and an artificial primary key that is created by the database auto-
matically. The “only” thing left to do is mapping the flowers table to a
Flower class and mapping all its columns to the according attributes.

You have read Martin Fowler’s Patterns of Enterprise Application Archi-

tecture [?] and you still remember his Active Record pattern and its
definition:

“An object that wraps a row in a database table or view, encapsulates
the database access, and adds domain logic on that data.”

Before programming an Active Record for the flowers table we encapsu-
late access to the MySQL database in a singleton first:

File Line 1 require 'singleton'

- require 'mysql'

-

- class Database

5 include Singleton

- attr_reader :connection

-

- def initialize() @connection = nil; end

-

10 def connect(host, usr, pwd, db= nil)

- @connection = Mysql.new(host, usr, pwd, db)

- end

-

- def disconnect

15 @connection.close if !@connection.nil?

- @connection = nil

- end

- end

Fine, after calling Database.instance.connect() once, we can access the
database connection calling Database.instance.connection() from any-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=30

OBJECT -RELATIONAL MAPPERS 31

where we want. So, let’s use it to create new flowers:

File Line 1 class Flower

- attr_reader :id

- attr_accessor :name, :price

-

5 def Flower.create(name, price)

- Database.instance.connection.query(<<-SQL)

- insert into flowers (name, price)

- values ('#{name}', #{price.to_f})

- SQL

10 Flower.new(

- Database.instance.connection.insert_id,

- name,

- price

-)

15 end

-

- def to_s

- "A #{@name} (#{@id}) costs $#{@price}."

- end

20

- private

-

- def initialize(id, name, price)

- @id, @name, @price = id, name, price

25 end

- end

Virtually planting a rose looks like this:

File Line 1 Database.instance.connect('localhost', '', '', 'webshop')

- rose = Flower.create('rose', 1.99)

- puts rose

and produces:

A rose (1) costs $1.99.

The first version of the Flower class allows for creating new objects
by calling create(name,price). This method inserts a new row into the
database, reads the id that has been generated by MySQL and returns
a new Flower object. To make sure that no conflicts happen in the
database because of duplicate id values, we have declared the initialize()
method private. Hence, only methods of the Flower class can create new
objects.

For the sake of completeness we add the remaining methods needed
to be fully CRUD compliant (CRUD stands for Create, Retrieve, Update, CRUD

Delete):

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=31

OBJECT -RELATIONAL MAPPERS 32

File Line 1 class Flower

- def Flower.find(name)

- flower = Database.instance.connection.query(<<-SQL)

- select id, name, price from flowers where name ='#{name}'

5 SQL

- return nil if flower.num_rows == 0

- attr = flower.fetch_hash

- Flower.new(attr['id'], attr['name'], attr['price'])

- end

10

- def update

- Database.instance.connection.query(<<-SQL)

- update flowers set name = '#{@name}', price = '#{@price}'

- where id = #{@id}

15 SQL

- end

-

- def destroy

- Database.instance.connection.query(<<-SQL)

20 delete from flowers where id = #{@id}

- SQL

- end

- end

Now we can retrieve, update, and delete Flower objects in the database:

File Line 1 rose = Flower.find('rose')

- rose.price = 2.49

- rose.update

-

5 rose = Flower.find('rose')

- puts rose

- rose.destroy

- puts Flower.find('rose')

- Database.instance.disconnect

produces:

A rose (1) costs $2.49.

nil

It took less than an hour to create the Active Record and it works fine,
but despite all this you still think that sometimes life isn’t fair: all your
friends are hanging around at the beach having fun and you’re writing
tons of boring SQL statements only to read and save Flower objects.
Enough is enough and hence you decide to look for a tool that will do
all this tedious stuff for you.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/old_fashioned_flower.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=32

OBJECT -RELATIONAL MAPPERS 33

Object-Relational Mappers for Ruby

Because of its dynamic nature Ruby is a perfect language
for creating tools like object-relational mappers: you can eas-
ily create classes and methods on the fly and determining
the structure of a database is not a big problem with most
database systems, either.

Unsurprisingly, several projects have been initiated to imple-
ment an object-relational mapper∗, but ActiveRecord is by far
the most popular and most advanced. It’s much more than a
simple mapper, it’s fast, it supports nearly every database avail-
able, and it is constantly enhanced by a big community.

∗Kansas (http://raa.ruby-lang.org/project/kansas) is an interest-
ing one, for example.

ActiveRecord Basics

ActiveRecord is an an enhanced implementation of Martin Fowler’s
Active Record object-relational mapping pattern.10 ActiveRecord was
created by David Heinemeier Hansson because he needed it for the
famous Ruby on Rails project11. ActiveRecord now supports nearly
every database system currently in use (MySQL, PostgreSQL, SQLite,
Microsoft SQL Server, Oracle, and DB2).

Code always trumps prose, so instead of explaining academic persis-
tence strategies, let’s start by telling ActiveRecord to connect to our
database:

File Line 1 require 'rubygems'

- require 'active_record'

-

- ActiveRecord::Base.establish_connection(

5 :adapter => 'mysql',

- :host => '127.0.0.1',

- :database => 'webshop'

-)

These statements load the ActiveRecord gem (see Section 6.4, RubyGems,
on page 288 to learn more about RubyGems) then establish a connec-
tion to the webshop database running on localhost.

10http://www.martinfowler.com/eaaCatalog/activeRecord.html
11http://www.rubyonrails.com

Report erratum
Prepared exclusively for Jacob Hochstetler

http://raa.ruby-lang.org/project/kansas
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://www.rubyonrails.com
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=33

OBJECT -RELATIONAL MAPPERS 34

Now we have to map the flowers table to a Ruby class called Flower:

File Line 1 class Flower < ActiveRecord::Base; end

That’s it! All we had to do is derive our class from ActiveRecord::Base.
Every instance of class Flower represents a single row of the flowers table.

ActiveRecord derives the name of the database table by taking the class
name, turning it into lowercase, and pluralizing it. For example, Flower

becomes flowers and PragmaticProgrammer becomes pragmatic_programmers.
If necessary, you can also set the table name explicitly, either because
the built-in pluralization rules don’t work for you or because you want
to map to an existing table whose name doesn’t meet ActiveRecord’s
expectations.

class LegacyTable < ActiveRecord::Base

set_table_name 'xy12aj'

end

All Flower objects automatically have accessors for all the columns of
the flowers table, so there’ll be accessors named name() and price():

File Line 1 flower = Flower.new

- flower.name = 'primrose'

- flower.price = 0.99

ActiveRecord stores all columns internally in a hash called attributes,
but using this knowledge is dangerous, as it links us to ActiveRecord’s
implementation. Instead, we should access column values using just
the attributes. For example, we could add a to_s() method to our class.

File Line 1 class Flower < ActiveRecord::Base

- def to_s

- "A #{self.name} (#{self.id}) costs $#{self.price}."

- end

5 end

In addition, ActiveRecord creates methods for reading, updating, and
deleting rows in the database. To initialize the flowers table with some
lovely plants, we can do the following:

File Line 1 [

- ['rose', 1.10],

- ['violet', 0.40],

- ['sunflower', 0.40],

5 ['clove', 0.65],

- ['lily', 0.80]

-].each do |name, price|

- flower = Flower.new(:name => name, :price => price)

- flower.save

10 end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=34

OBJECT -RELATIONAL MAPPERS 35

The database will then contain the following rows:

mysql> select * from flowers;

+----+-----------+-------+

| id | name | price |

+----+-----------+-------+

| 1 | rose | 1.1 |

| 2 | violet | 0.4 |

| 3 | sunflower | 0.3 |

| 4 | clove | 0.65 |

| 5 | lily | 0.8 |

+----+-----------+-------+

5 rows in set (0.00 sec)

It’s important that every table that is mapped has an id column that
gets filled automatically when a new row is created (the column name
is id by default, but like the table name you can change it calling
set_primary_key(column_name)).12

For reading all entities belonging to a particular class, we use ActiveRe-

cord’s find(*args) method and pass it the :all option:

File Line 1 Flower.find(:all).each do |f|

- puts "A #{f.name} costs $#{f.price}."

- end

This gives us a list of all flowers:

A rose costs $1.1.

A violet costs $0.4.

A sunflower costs $0.3.

A clove costs $0.65.

A lily costs $0.8.

As well as some methods that perform more fine-grained searches,
ActiveRecord dynamically defines finder methods for each column and
for all combinations of columns. This example finds a flower by its
name:

File Line 1 rose = Flower.find_by_name('rose')

The following statement

File Line 1 Flower.find_all_by_price(0.4).each { |f| puts f }

returns a list of flowers costing $0.40 each:

A sunflower (48) costs $0.4

A violet (47) costs $0.4

12Not all databases support columns that get incremented automatically. For details
see the documentation of the ActiveRecord adapter for your database system.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=35

OBJECT -RELATIONAL MAPPERS 36

Finally we can search for flowers having a particular name and price:

File Line 1 clove = Flower.find_by_name_and_price('clove', 0.65)

All the find() methods we have used above are created automatically—
there is a method_missing() handler that turns your method calls into
SQL statements.

If searching for columns having certain values is not sufficient, you can
use another variant of find() that accepts a list of conditions as they may
appear in the WHERE clause of a SELECT statement:

File Line 1 cheap = Flower.find(:all, :conditions => ['price < 0.8'])

- cheap.each { |f| puts f }

prints:

A clove (49) costs $0.65

A sunflower (48) costs $0.4

A violet (47) costs $0.4

To prevent SQL injection attackss in the condition string you can use a
variant of the find() method that supports placeholders. The following
code produces the same result as the example above:

File Line 1 cheap = Flower.find(:all, :conditions => ['price < ?', 0.8])

- cheap.each { |f| puts f }

You don’t like sunflowers? Destroy ’em:

File Line 1 sunflower = Flower.find_by_name('sunflower')

- sunflower.destroy

ActiveRecord gives us the CRUD methods (Create, Read, Update, and
Delete) for free—this alone is a great benefit. But ActiveRecord does
a lot more. In the next section we’ll see how it helps us express the
relationships between tables.

Cultivating Relationships With Flowers

Now that we have so many flowers, we should try to make some won-
derful bouquets out of them. We’ll need another table to represent
these. Because we know that we will access it with ActiveRecord, we’ll
call it bouquets. Bouquets have a name and a base price (which covers
wrapping paper, florist work, and so on):

File create table bouquets(

id int unsigned not null auto_increment primary key,

name varchar(64) not null,

base_price double not null

);

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/insert_flowers.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=36

OBJECT -RELATIONAL MAPPERS 37

The relationship between bouquets and flowers is simple: bouquets
have many flowers and flowers may belong to several different bou-
quets. (Obviously what we mean here is that roses may appear in many
bouquets, not that a particular rose is in many direct bouquets. The
latter could lead to some interesting problems on Valentine’s Day.) SQL

pros call this a many-to-many relationship. To implement it, they usu- many-to-many

relationship
ally introduce a join-table (see Figure 2.2, on the next page), that maps

join-tablerows from one table to the other and vice versa:

File create table bouquets_flowers(

bouquet_id int not null,

flower_id int not null

);

alter table bouquets_flowers add constraint fk1_bouquet

foreign key (bouquet_id) references bouquets(id);

alter table bouquets_flowers add constraint fk2_flower

foreign key (flower_id) references flowers(id);

The table name is no coincidence. We want to implement the relation-
ship between the bouquets and the flowers table. By default, ActiveRe-
cord searches for a table that is named after the tables to be joined.
Concatenate the table names in lexical order and separate them by an
underscore, and you have the name of your join table. In addition,
the join columns follow a naming scheme, too. You have to append
“_id” to the class name in lowercase letters (camel case is turned into
underscores).

When you adhere to the naming rules, ActiveRecord makes it easy to
express the relationship between flowers and bouquets using special
macros:

File class Bouquet < ActiveRecord::Base

has_and_belongs_to_many :flowers

end

class Flower < ActiveRecord::Base

has_and_belongs_to_many :bouquets

end

Many-to-many relationships are symmetrical, so we have to use the
has_and_belongs_to_many() macro in both the Flower and Bouquet classes.

The following code snippet creates a new bouquet and stores it in the
database:

File Line 1 rose = Flower.find_by_name('rose')

- bouquet = Bouquet.new

- bouquet.name = 'Red Dream'

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=37

OBJECT -RELATIONAL MAPPERS 38

Figure 2.2: Join Table for Bouquets and Flowers

- bouquet.base_price = 2.49;

5 bouquet.save

- 6.times { bouquet.flowers << rose }

- bouquet.flowers << Flower.find_by_name('sunflower')

In line 6, we add six roses to our bouquet. In the following line we add
a single sunflower. The flowers member of the Bouquet class was created
automatically after we called has_and_belongs_to_many(). It acts as an
array, except that whenever we add a flower to it it creates a new entry
in the join-table.

After storing the bouquet the database content looks as follows:

mysql> select * from flowers where name in ('rose', 'sunflower');

+----+-----------+-------+

| id | name | price |

+----+-----------+-------+

| 1 | rose | 1.1 |

| 3 | sunflower | 0.3 |

+----+-----------+-------+

2 rows in set (0.02 sec)

mysql> select * from bouquets;

+----+-----------+------------+

| id | name | base_price |

+----+-----------+------------+

| 1 | Red Dream | 2.49 |

+----+-----------+------------+

1 row in set (0.00 sec)

mysql> select * from bouquets_flowers;

+------------+-----------+

| bouquet_id | flower_id |

+------------+-----------+

| 1 | 1 |

| 1 | 1 |

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=38

OBJECT -RELATIONAL MAPPERS 39

| 1 | 1 |

| 1 | 1 |

| 1 | 1 |

| 1 | 1 |

| 1 | 3 |

+------------+-----------+

7 rows in set (0.00 sec)

As expected, the bouquets_flowers table contains seven rows describing
the content of the “Red Dream” bouquet. Six of them refer to the rose
entry in the flowers table, and one refers to the sunflower. To read
all components with SQL we’d need a SELECT statement with a JOIN
clause. ActiveRecord does this dirty work transparently.

File b = Bouquet.find_by_name('Red Dream')

puts "'#{b.name}' contains #{b.flowers.size} flowers:"

b.flowers.each { |f| puts f.name }

These statements disassemble our bunch of flowers:

'Red Dream' contains 7 flowers:

sunflower

rose

rose

rose

rose

rose

rose

This is nice and easy, but it’s also a bit messy. Instead of storing every
rose in a single row, it would be better to store the information that
there are six roses in this bouquet. To do this, we’ll add another piece
of information to the relationship between flowers and bouquets:

File alter table bouquets_flowers add (quantity int not null);

The join-table bouquets_flowers now also stores the quantity of a partic-
ular flower that belongs to a bouquet. To populate this column we use
the push_with_attributes() method:

File Line 1 rose = Flower.find_by_name('rose')

- sunflower = Flower.find_by_name('sunflower')

- bouquet = Bouquet.new

- bouquet.name = 'Honeybunch'

5 bouquet.base_price = 1.37;

- bouquet.save

- bouquet.flowers.push_with_attributes(rose, :quantity => 1)

- bouquet.flowers.push_with_attributes(sunflower, :quantity => 6)

We can read the information back from the database (remember, we’re
still working with a database):

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/alter_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=39

OBJECT -RELATIONAL MAPPERS 40

File Line 1 b = Bouquet.find_by_name('Honeybunch')

- puts "'#{b.name}' contains #{b.flowers.size} different flowers:"

- b.flowers.each { |f| puts "#{f.name} (#{f.quantity})" }

This prints a compact recipe for the “Honeybunch” bouquet:

'Honeybunch' contains 2 different flowers:

sunflower (6)

rose (1)

The join-table looks like this:

mysql> select * from bouquets_flowers;

+------------+-----------+----------+

| bouquet_id | flower_id | quantity |

+------------+-----------+----------+

| 2 | 3 | 6 |

| 2 | 1 | 1 |

+------------+-----------+----------+

2 rows in set (0.00 sec)

It’s easy to add more logic to our domain classes, such as a method
that calculates the price of a bouquet:

File Line 1 class Bouquet

- def price

- flowers.inject(self.base_price) { |total, f|

- total += f.price * f.quantity.to_i

5 }

- end

- end

- b = Bouquet.find_by_name('Honeybunch')

- puts "'#{b.name}' costs $#{b.price}."

For our “Honeybunch” bouquet it prints:

'Honeybunch' costs $4.87.

Let’s summarize what we’ve done so far: we created three database
tables that represent flowers, bouquets, and their many-to-many rela-
tionship. The table names and the names of their columns conformed
to a fairly natural convention, one that you may have used anyway. To
map them to a Ruby class hierarchy that lets us manipulate them in
every imaginable way, we needed six lines of code:

File Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

- end

-

5 class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

- end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_bouquet2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=40

OBJECT -RELATIONAL MAPPERS 41

What Do We Have In Stock?

We shouldn’t forget that we originally wanted to automate the ordering
process for flowers. We still have to implement the concept of stock:

File create table stock_items(

id int unsigned not null auto_increment primary key,

quantity int not null

);

Each row of the stock_items table represents the quantity of a particular
flower that we currently have in stock—there is a stock item for every
flower and vice versa.13 This is a classic one-to-one relationship, that one-to-one relationship

can be modeled in the database like this:

File alter table flowers add (stock_item_id int not null);

alter table flowers add constraint fk1_flowers

foreign key (stock_item_id) references stock_items(id);

Here’s the Ruby model:

File Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

- end

-

5 class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

- belongs_to :stock_item

- end

-

10 class StockItem < ActiveRecord::Base

- has_one :flower

- end

It reads a bit like the notes you typically scribble on a piece of paper
when thinking about a new database, doesn’t it? Despite that, it’s
actual code that runs. In line 7 we declare that every flower belongs
in stock and line 11 makes every stock item a flower.

Like the has_and_belongs_to_many() macro, the has_one() and belongs_to()
macros automatically create some methods for the classes that use
them. Let’s fill our stock with some flowers:

File Line 1 [

- ['rose', 1.10, 1000],

- ['violet', 0.40, 2000],

- ['sunflower', 0.40, 500],

5 ['clove', 0.65, 2000],

13We could have added the quantity column to the flowers table, but in the future we will
stock more than flowers.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/create_db.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/alter_flowers.sql
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=41

OBJECT -RELATIONAL MAPPERS 42

- ['lily', 0.80, 1500]

-].each do |name, price, quantity|

- si = StockItem.new(:quantity => quantity)

- si.save

10 Flower.new(

- :stock_item => si,

- :name => name,

- :price => price

-).save

15 end

Note that in line 11 we have connected a particular flower with the
current stock item by setting its stock_item attribute.

We can print a stock report like this:

File Line 1 puts "Stock items:"

- StockItem.find(:all).each { |si|

- puts "#{si.flower.name}: #{si.quantity} in stock."

- }

It produces:

Stock items:

rose: 1000 in stock.

violet: 2000 in stock.

sunflower: 500 in stock.

clove: 2000 in stock.

lily: 1500 in stock.

This time the magic is hidden in line 3. Obviously, ActiveRecord has
added a flower member to the StockItem class that contains the Flower

object that belongs to a certain instance.

Now for the real thing: the ultimate stock management system! First of
all we map all database tables to Ruby classes and add bits of business
logic where necessary:

File Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

-

- def price

5 flowers.inject(self.base_price) do |total, f|

- total += f.price * f.quantity.to_i

- end

- end

-

10 def add(flower, quantity)

- self.flowers.push_with_attributes(

- flower,

- :quantity => quantity

-)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=42

OBJECT -RELATIONAL MAPPERS 43

15 end

- end

-

- class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

20 belongs_to :stock_item

- end

-

- class StockItem < ActiveRecord::Base

- has_one :flower

25 end

No big surprises here. The only new method is add(flower,quantity)

method in Bouquet, and it was added only for convenience. More inter-
esting is the Stock class:

File Line 1 class Stock

- def add_flower(name, price, quantity)

- si = StockItem.new(:quantity => quantity)

- si.save

5 si.create_flower(

- :name => name,

- :price => price

-)

- end

10

- def remove(bouquet)

- Bouquet.transaction do

- bouquet.flowers.each do |f|

- si = StockItem.find(f.stock_item_id)

15 if si.quantity < f.quantity.to_i

- raise 'Not enough flowers left!'

- end

- si.quantity -= f.quantity.to_i

- si.save

20 end

- end

- end

-

- def print_report

25 StockItem.find(:all).each do |si|

- puts "#{si.flower.name}: #{si.quantity} in stock."

- end

- end

- end

It has everything we’d normally expect a Stock class to have: we can add
a certain number of flowers having a certain price by calling add_flower(name,price,quantity).
The remove(bouquet) method will remove all flowers belonging to a bou-
quet from stock and the print_report() method will print something nice

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=43

OBJECT -RELATIONAL MAPPERS 44

for the clerks.

In line 12 we used another valuable ActiveRecord feature: transactions.
When removing a bouquet from the database, we want to remove it
completely—all the flower go, or none go. The transaction() method exe-
cutes a code block and performs a rollback if an exception was raised
in the block.

Let’s fill our stock and print a first report:

File Line 1 stock = Stock.new

- [

- ['rose', 1.10, 1000],

- ['violet', 0.40, 2000],

5 ['sunflower', 0.40, 6]

-].each do |name, price, quantity|

- stock.add_flower(name, price, quantity)

- end

- stock.print_report

produces:

rose: 1000 in stock.

violet: 2000 in stock.

sunflower: 500 in stock.

Then we create a new bouquet:

File Line 1 bouquet = Bouquet.new(

- :name => 'Honeybunch',

- :base_price => 1.37

-)

5 bouquet.save

- bouquet.add(Flower.find_by_name('rose'), 1)

- bouquet.add(Flower.find_by_name('sunflower'), 6)

- puts "'#{bouquet.name}' costs $#{bouquet.price}."

and print its price:

'Honeybunch' costs $4.87.

Finally, we remove all flowers belonging to the bouquet from stock:

File Line 1 stock.remove(bouquet)

- stock.print_report

and print another report:

rose: 999 in stock.

violet: 2000 in stock.

sunflower: 494 in stock.

It’s almost unbelievable: the only SQL statements we had to write were
the table definitions (if you want to avoid writing table definitions, too,

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/complete_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=44

OBJECT -RELATIONAL MAPPERS 45

have a look at Section 2.3, Migrating Database Schemas, on page 47).
ActiveRecord let us implement PragBouquet’s new stock management
system in less than 80 lines of Ruby code that reads like a specification.

Validation

As we all know, the most difficult things in software development are
usually more or less unrelated to the actual problem being solved. The
biggest problems are caused by error conditions: users enter invalid
data, networks break down, hard disks crash, and so on.

This is also true in database programming. The most important tech-
nique for preventing errors in relational databases is to constrain columns
so that they only contain valid values. As a special case of this, we need
to maintain referential integrity—to make sure that foreign keys always
refer to existing table rows in the other table.

All relational database systems allow you to put constraints on columns
and tables somehow, but there are huge differences between their capa-
bilities (many versions of MySQL, for example, allow you to define for-
eign key constraints, but they do not actually check them). To overcome
these incompatibilities, ActiveRecord lets you define validation for your
database objects in Ruby code.

For our Flower and Bouquet object the rules are simple:

File Line 1 class Bouquet < ActiveRecord::Base

- has_and_belongs_to_many :flowers

-

- def validate

5 errors.add_on_empty %w(name base_price)

- unless base_price >= 0.0

- errors.add('base_price', 'is negative')

- end

- errors.add('flowers', 'must exist') unless flowers.size > 0

10 end

- end

-

- class Flower < ActiveRecord::Base

- has_and_belongs_to_many :bouquets

15

- def validate

- errors.add_on_empty %w(name price)

- errors.add(:price, 'is negative') unless price >= 0.0

- end

20 end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/validation.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=45

OBJECT -RELATIONAL MAPPERS 46

Where to Put Constraints?

Putting constraints on columns and on the relationships
between tables is a two-edged sword. On the one hand, you
have constraints that apply globally and can only be checked
by the database system itself. It does not make sense—and
often is impossible—to implement primary key, foreign key, or
unique constraints in your application.

On the other hand you have things such as column value con-
straints like “prices should not be negative.” To assert that a
numerical column value always is in a certain range can be
easily achieved in both the database and the application.
ActiveRecord supports this with its validation mechanism.

When you know for sure that a database will be used exclu-
sively by your application, you may put the constraints on your
data into the database. In all other cases try to put as much
of your business logic into your application, because it can be
found more easily (you don’t have to look into the database
and the application) and you won’t affect other (future) appli-
cations that might have different or additional constraints on
some columns.

No matter which way you choose, don’t forget the DRY
principle—Don’t Repeat Yourself.∗ Define every constraint just
once, either in the application or in the database.

∗http://www.artima.com/intv/dry.html

Every ActiveRecord object has a member called errors of type ActiveRe-

cord::Errors. Before writing an object to the database using save(), ActiveRe-
cord calls the validate() method of the object. After validate() returns,
ActiveRecord checks to see if any error has been written to the errors

object. If any error occurred, the database will not be updated, and
save() returns false (you can also use the save!() variant that will raise
an exception if an error occurred).

The rules for our domain objects are simple: the name and base price
of a bouquet may not be empty, the base price has to be non-negative,
and every bouquet must have at least one flower. Flowers must have a
name and a price, too, and their price has to be greater than or equal
to zero. The validation for this is shown in the following snippet:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.artima.com/intv/dry.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=46

OBJECT -RELATIONAL MAPPERS 47

File Line 1 print 'Trying to save nameless flower: '

- puts Flower.new(:name => nil, :price => 0).save

- print 'Trying to save really cheap flower: '

- puts Flower.new(:name => 'cheap', :price => -1).save

5 print 'Trying to save a valid flower: '

- puts Flower.new(:name => 'daisy', :price => 0.02).save

produces:

Trying to save nameless flower: false

Trying to save really cheap flower: false

Trying to save a valid flower: true

Now we can prevent ourselves from storing imaginary bouquets:

File Line 1 rose = Flower.find_by_name('rose')

- sunflower = Flower.find_by_name('sunflower')

- bouquet = Bouquet.new

- bouquet.name = 'Honeybunch'

5 bouquet.base_price = 1.37

- print 'Trying to save bouquet without flowers: '

- puts bouquet.save

- bouquet.flowers.push_with_attributes(rose, :quantity => 1)

- bouquet.flowers.push_with_attributes(sunflower, :quantity => 6)

10 print 'Trying to save valid bouquet: '

- puts bouquet.save

This produces:

Trying to save bouquet without flowers: false

Trying to save valid bouquet: true

Migrating Database Schemas

One of the biggest problems with relational databases is maintaining
their schemas and content. For example, in the development phase
you often have to rename, drop, or add a column to a table. On your
local machine this is not a big deal—you can mess with your private
database installation whatever you want. However, when you check
your code in, your fellow developers might be surprised to see that a
new column is used in your Ruby code that is not present in their
database.

ActiveRecord addresses this problem in a pragmatic way. The Migration

class14 defines methods for manipulating database schemas without
writing a single DDL (Data Definition Language) statement. You can
create and drop tables and indexes, and you can add, rename, or drop

14http://api.rubyonrails.com/classes/ActiveRecord/Migration.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/validation.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/validation.rb
http://api.rubyonrails.com/classes/ActiveRecord/Migration.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=47

OBJECT -RELATIONAL MAPPERS 48

columns, without knowing anything about the nitty-gritty details of the
CREATE TABLE and ALTER TABLE statements of the database system you’re
using. Migration handles all this for you. This has significant advan-
tages:

• All changes to your database schema are documented in Ruby
code.

• The application can be easily migrated to every database system
that is supported by Migration (at the time of this writing it works
on MySQL, PostgreSQL, Microsoft SQL Server, and Oracle. Sup-
port for DB2 is in the works.).

To make the automatic flower ordering process even more intelligent,
let’s add a new column containing the average lifetime of a flower to the
flowers table. When we have a lot of roses in stock and know that they
only survive a few days in the cold store, it could make sense to make
bouquets containing roses a bit cheaper in the shop.

Let’s call our new column life_time. Using migrations, we’ll add it like
this:

File Line 1 class AddLifeTime < ActiveRecord::Migration

- def self.up

- add_column :flowers, :life_time, :integer, :default => 5

- end

5

- def self.down

- remove_column :flowers, :life_time

- end

- end

Every migration step is encapsulated in a class (AddLifeTime in our case)
that is derived from ActiveRecord::Migration. The migration class has
to implement the up() and down() methods for upgrading and down-
grading the database schema. In these methods you can use meth-
ods such as create_table(), drop_table(), add_column(), rename_column(),
remove_column(), add_index(), and remove_index() to modify your schema
any way you’d like. In addition, you can call execute(sql) to run arbitrary
SQL statements.

Let’s test our migration class:

File Line 1 AddLifeTime.up

- Flower.reset_column_information

-

- [

5 ['rose', 1.10, 4],

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_migration.rb
http://media.pragprog.com/titles/fr_eir/code/db/ar/test_migration.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=48

OBJECT -RELATIONAL MAPPERS 49

- ['sunflower', 0.40, 10],

- ['lily', 0.80, 5]

-].each do |name, price, life_time|

- flower = Flower.new(

10 :name => name,

- :price => price,

- :life_time => life_time

-)

- flower.save

15 end

-

- Flower.find(:all).each do |f|

- puts "A #{f.name} costs $#{f.price} and lives " +

- "for #{f.life_time} days."

20 end

produces:

A rose costs $1.1 and lives for 4 days.

A sunflower costs $0.4 and lives for 10 days.

A lily costs $0.8 and lives for 5 days.

After calling the up() method of class AddLifeTime, we can use the life_time

attribute like any other attribute. The only important thing to remem-
ber is to call reset_column_information() (as we did in line 2) after changing
a database schema. This will clear all cached column information. This
is only necessary in this test case, as the program changes the schema
while it is running.

Now the flowers table looks as follows:

mysql> describe flowers;

+-----------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+------------------+------+-----+---------+----------------+

| id | int(10) unsigned | | PRI | NULL | auto_increment |

| name | varchar(64) | | | | |

| price | double | | | 0 | |

| life_time | int(11) | YES | | 5 | |

+-----------+------------------+------+-----+---------+----------------+

4 rows in set (0.00 sec)

As expected, Migration has added a new life_time column behind the
scenes that we could remove just as easily by calling AddLifeTime.down.

The default lifetime value is 5 days. What if we wanted to set it to
another value for existing rows right after we have added the new col-
umn? Simple answer: set it to whatever value you like in the up()
method:

File Line 1 class AddLifeTime < ActiveRecord::Migration

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ar/test_migration2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=49

OBJECT -RELATIONAL MAPPERS 50

- def self.up

- add_column :flowers, :life_time, :integer, :default => 5

- Flower.reset_column_information

5 Flower.find(:all).each do |f|

- f.life_time = 3

- f.save

- end

- end

10

- def self.down

- remove_column :flowers, :life_time

- end

- end

Right after adding the new column, we call reset_column_information() in
line 4 to activate it. Then, in line 5, we use the ordinary find(*args)

method to iterate over all flowers and set their lifetime to 3 days.

To implement a real migration strategy, you’d need to write support
scripts that work out which of your migrations to apply, but ActiveRe-

cord::Migration will simplify this task significantly.15

Conclusion

ActiveRecord can seem pretty magic, shielding you from the low-level
SQL needed to perform CRUD operations and joins between tables.
And, for much of the time, that’s good enough. But ActiveRecord can’t
do everything. SQL is still a very important technology. The examples
in this chapter were chosen to demonstrate ActiveRecord’s strengths.
If you cannot develop a complete database from scratch, and instead
have to integrate with a legacy schema, things can get much more com-
plicated. ActiveRecord relies upon a lot of conventions, and modeling
complicated relationships between tables that have primary keys span-
ning several columns can be tricky to impossible.16

In any case you should study the ActiveRecord documentation carefully
(or have a look at Agile Web Development With Rails [?]), because it
has many useful features (such as table inheritance) that we did not
cover here. Additionally, its capabilities differ from database system to
database system so, for example, not all the features that are available
with MySQL are also available if you use DB2.

15The Ruby On Rails project has a sophisticated solution for migrating database
schemas. You should have a look at it.

16Read what the pros have to say: http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Tech/Ruby/IsRailsReady

Report erratum
Prepared exclusively for Jacob Hochstetler

http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Tech/Ruby/IsRailsReadyForPrimeTime.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=50

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 51

2.4 Lightweight Directory Access Protocol (LDAP)

We use directories all the time: telephone books, lists of network accounts,
address books, the domain name service (DNS), and so on. Typically,
directories are organized hierarchically—as trees—and their entries are
often read and rarely modified.

Implementing directories with relational database systems can be a bit
complicated. Even though many database vendors added tools for hier-
archical queries to their products, they are still far from being conve-
nient (some vendors, including Oracle, even ship a separate directory
service that is based on their relational database product).

Hence, a standard for accessing directories was created as part of the
X.500 directory specification. It was called Directory Access Protocol X.500 directory

specification

Directory Access Protocol

(DAP). Unfortunately, it was both complex and complicated, and no one
implemented it completely.

As a consequence, an easier standard was defined: the Lightweight
Directory Access Protocol (LDAP)17, the most widespread directory ser-
vice in use today.

Simply put, LDAP is for directories what SQL is for relational databases.
It helps you to model real-world entities as so-called object classes (not object classes

as tables) that have different attributes. These can inherit additional
attributes from other classes. Hence, an LDAP repository is a hierarchi-
cal tree of objects belonging to several object classes. In addition, LDAP

defines a query language that allows you to read, modify, and delete
subtrees and single nodes of your directories.

But the LDAP standard defines more than the protocol that is spoken
between LDAP servers and their clients. It also specifies dozens of base
classes for all the things you typically find in directories: person, resi-
dentialPerson, organizationalPerson, and so on.

It’s not difficult to build your own object classes (it’s similar to creat-
ing tables in SQL), but it’s certainly a good idea first to check if the
object class you need has not already be defined. Often it’s sufficient
to derive a new class from an existing one adding just a few attributes.
For example, if you need to store address data containing the geograph-
ical position of the address, you can derive a new geoPerson class from
residentialPerson, adding longitude and latitude attributes.

17http://www.faqs.org/rfcs/rfc2251.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.faqs.org/rfcs/rfc2251.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=51

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 52

Although a lot of directory services work more or less invisibly, touched
only by your system administrators, chances are good that you’ll have
to integrate with one someday, because LDAP is gaining popularity
among application developers, too. In the following sections we’ll show
how to manipulate a directory service based on OpenLDAP with Ruby.

An Address Book For PragBouquet Customers

The marketing department made another astonishing observation: there
are people who celebrate their birthdays every year! Wouldn’t it be great
if PragBouquet customers could easily send them a bouquet on those
birthdays? And wouldn’t it be nice if PragBouquet customers could be
spared the extra work of entering the same address data for the recipi-
ents, over and over again?

So, marketing came up with an ingenious idea. All PragBouquet cus-
tomers should have their own address book where they can store the
addresses of the people they’ve ever sent a bunch of flowers.

The web shop team said that it’s not a big deal to create an user inter-
face for the address book, but they asked you to create the correspond-
ing backend services. Fortunately, they want to give Ruby on Rails18 a
try, so you can use Ruby for implementing the address book logic.

When thinking about things like address books, LDAP immediately comes
to mind, so you decide to implement the address book as a directory
service using the the OpenLDAP19 system. It has everything you need,
it’s available for free, it works on top of several database systems, and
it ships with several utilities for reading and manipulating data.

For the development phase we install an OpenLDAP server on our local
machine and configure it using this configuration file:

File Line 1 include /sw/etc/openldap/schema/core.schema

-

- database bdb

- suffix "dc=pragbouquet,dc=com"

5 rootdn "cn=root,dc=pragbouquet,dc=com"

- rootpw secret

- directory /sw/var/openldap-data

- index objectclass eq

18http://www.rubyonrails.com
19http://www.openldap.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/slapd.conf
http://www.rubyonrails.com
http://www.openldap.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=52

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 53

That is really all we need to get our address book application up and
running. We have to include the core schema, because we’ll need some
of its definitions (person, residentialPerson, and uidObject). In addi-
tion, we have to define the database we want to use (the LDAP stan-
dard does not define how the directory is to be stored). It’s a Berkeley
database (bdb)20 with all data files stored in directory /sw/var/openldap-

data. The distinguished name of our root node (needed for adminis-
trative purposes only) is cn=root,dc=pragbouquet,dc=com. We have to
authenticate ourselves using the nearly unbreakable plain text pass-
word “secret” whenever we want to write to the database.

LDAP allows us to create a sophisticated directory layout for our address
books comprising lots of organizational units or even define our own
object classes, but we will use a more modern and simpler approach.
We will organize our directory in a flat way using domain components
and uid attributes.21

Before diving into Ruby code, let’s have a closer look at the direc-
tory structure and then initialize our repository with some sample data
stored in init.ldif:

File Line 1 # Create the PragBouquet organization.

- dn: dc=pragbouquet,dc=com

- objectclass: dcObject

- objectclass: organization

5 o: PragBouquet

- dc: pragbouquet

-

- # Create an address book for customer 4711.

- dn:uid=4711,dc=pragbouquet,dc=com

10 objectclass: top

- objectclass: person

- objectclass: uidObject

- uid: 4711

- cn: John Jackson

15 sn: Jackson

- description: Address book of John Jackson.

-

- # Create the first address book entry for customer 4711.

- dn:cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com

20 objectclass: top

- objectclass: residentialPerson

- cn: Marge Jackson

- sn: Jackson

20http://sleepycat.com/
21http://www.faqs.org/rfcs/rfc2377.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/init.ldif
http://sleepycat.com/
http://www.faqs.org/rfcs/rfc2377.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=53

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 54

- l: Springfield

25 st: IL

- street: Evergreen Terrace 42

- postalCode: 62701

- description: Don't forget our wedding anniversary!

-

30 # Create the second address book entry for customer 4711.

- dn:cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: residentialPerson

- cn: P.H. Beans

35 sn: Beans

- l: Springfield

- st: MO

- street: Nuclear Powerplant Road 1

- postalCode: 65801

40 description: My boss.

-

- # Create an address book for customer 0815.

- dn:uid=0815,dc=pragbouquet,dc=com

- objectclass: top

45 objectclass: person

- objectclass: uidObject

- uid: 0815

- cn: Max Mustermann

- sn: Mustermann

50 description: Address book of Max Mustermann.

-

- # Create the first address book entry for customer 0815.

- dn:cn=Jane Doe,uid=0815,dc=pragbouquet,dc=com

- objectclass: top

55 objectclass: residentialPerson

- cn: Jane Doe

- sn: Doe

- street: 125 N. Arbitrary Street

- st: DC

60 l: Washington

- postalCode: 20500

- description: My Sweetheart!

The LDIF file above should be nearly self-explainatory (comment lines
start with a ’#’ character). Every entry has a so-called distinguished

name (DN). All its other attributes are listed as “key: value” pairs. All distinguished name

attributes are potentially multi-dimensional, so they may appear sev-
eral times.

Note that we use the attribute uid to structure our address books. Every
web shop user is identified by a particular identifier (it might be a cus-
tomer id, an e-mail address, or something similar). Whenever a cus-
tomer creates a completely new address book (not an address book

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=54

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 55

Figure 2.3: Address Book Layout

entry) a new directory entry for her user id will be added. The directory
belonging to our init.ldif file looks like Figure 2.3 (we have left out most
attributes for brevity).

Let’s start our server and load the initial data using the ldapadd com-
mand:

mschmidt:~/ldap> sudo slapd

Password:

mschmidt:~/ldap> ldapadd -c -x -D "cn=root,dc=pragbouquet,dc=com" \

> -W -f init.ldif

Enter LDAP Password:

adding new entry "dc=pragbouquet,dc=com"

adding new entry "uid=4711,dc=pragbouquet,dc=com"

adding new entry "cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com"

adding new entry "cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com"

adding new entry "uid=0815,dc=pragbouquet,dc=com"

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=55

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 56

adding new entry "cn=Jane Doe,uid=0815,dc=pragbouquet,dc=com"

Our .ldif file didn’t contain any errors, and six new entries have been
created.

OpenLDAP’s ldapsearch command allows us to query the repository.
It prints its results in LDIF. To become a bit more familiar with our
directory, let’s print the address book of the user identified by uid 4711:

mschmidt:~/ldap> ldapsearch -x -s one

> -b 'uid=4711,dc=pragbouquet,dc=com'

> '(objectclass=*)'

extended LDIF

#

LDAPv3

base <uid=4711,dc=pragbouquet,dc=com> with scope one

filter: (objectclass=*)

requesting: ALL

#

Marge Jackson, 4711, pragbouquet.com

dn: cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com

objectClass: top

objectClass: residentialPerson

cn: Marge Jackson

sn: Jackson

l: Springfield

st: IL

street: Evergreen Terrace 42

postalCode: 62701

description: Don't forget our wedding anniversary!

P.H. Beans, 4711, pragbouquet.com

dn: cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com

objectClass: top

objectClass: residentialPerson

cn: P.H. Beans

sn: Beans

l: Springfield

st: MO

street: Nuclear Powerplant Road 1

postalCode: 65801

description: My boss.

search result

search: 2

result: 0 Success

numResponses: 3

numEntries: 2

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=56

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 57

Obviously, everything is up an running. Our query returned the two
address book entries that belong to the customer identified by user id
4711. But what are those options we passed to the command?

• -x uses the simple authentication mechanism. In our case the
communication is unencrypted and no password is needed.

• -s one will search the directory “one level beyond base”, so it returns
all entries below our search base, but not the base itself. -s base

would have returned the base object only and -s sub would have
returned the base object and all its descendants.

• -b ’uid=4711,dc=pragbouquet,dc=com’ sets the search base to the
distinguished name uid=4711,dc=pragbouquet,dc=com, so all entries
of the subtree belonging to this DN will be returned.

• (objectclass=*) specifies a filter for the entries to be returned. The
(objectclass=*) filter is comparable to SQL’s SELECT * statement and
selects all entries not matter what attributes they have. If we were
interested in entries from Illinois only, we could have set the filter
to (st=IL).

In the following sections we’ll see how to manipulate our repository with
Ruby.

Ruby/LDAP

The Ruby/LDAP22 library was initially created by Takaaki Tateishi, and
is currently maintained by Ian Macdonald. It supports all LDAP clients
that comply with the LDAP Application Program Interface.23 So, you
can use it with OpenLDAP, Netscape, and ActiveDirectory, e.g.

As a first exercise we’ll try to read John Jackson’s address book. It
should not be too surprising that accessing a directory service looks
similar to accessing a relational database system:

File Line 1 require 'pp'

- require 'ldap'

- include LDAP

-

5 begin

- connection = Conn.new

- connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind do

22http://ruby-ldap.sourceforge.net
23http://www.faqs.org/rfcs/rfc1823.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/first_access.rb
http://ruby-ldap.sourceforge.net
http://www.faqs.org/rfcs/rfc1823.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=57

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 58

- base_dn = 'uid=4711,dc=pragbouquet,dc=com'

10 scope = LDAP_SCOPE_ONELEVEL

- filter = '(objectClass=*)'

- connection.search(base_dn, scope, filter) do |entry|

- pp entry.to_hash

- end

15 end

- rescue Exception => ex

- puts ex

- end

prints:

{"cn"=>["Marge Jackson"],

"st"=>["IL"],

"l"=>["Springfield"],

"sn"=>["Jackson"],

"description"=>["Don't forget our wedding anniversary!"],

"postalCode"=>["62701"],

"street"=>["Evergreen Terrace 42"],

"objectClass"=>["top", "residentialPerson"],

"dn"=>["cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com"]}

{"cn"=>["P.H. Beans"],

"st"=>["MO"],

"l"=>["Springfield"],

"sn"=>["Beans"],

"description"=>["My boss."],

"postalCode"=>["65801"],

"street"=>["Nuclear Powerplant Road 1"],

"objectClass"=>["top", "residentialPerson"],

"dn"=>["cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com"]}

First, we create a new connection to the LDAP service by calling LDAP::Conn.new(host='localhost',port=LD

We then set the LDAP_OPT_PROTOCOL_VERSION option, because we have
set up a LDAPv3 service (it’s OpenLDAP’s default).

In line 8 we bind our connection object to the server. The real work is
performed in the code block we pass to the bind(dn=nil,password=nil,method=LDAP_AUTH_SIMPLE)

method. The heart of our “program logic” is the search() method. It
expects the following parameters:

1. base_dn contains the base DN of the subtree to search in.

2. scope defines the search scope. It can be set to LDAP_SCOPE_ONELEVEL,
LDAP_SCOPE_SUBTREE, or LDAP_SCOPE_BASE.

In our example we have used LDAP_SCOPE_ONELEVEL, which means
“one level beyond base.” We are not interested in the base object
(the address book owner) itself. If we had set the scope to LDAP_SCOPE_SUBTREE

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=58

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 59

the program would have printed the entry for the address book
owner, too:

{"cn"=>["John Jackson"],

"sn"=>["Jackson"],

"uid"=>["4711"],

"description"=>["Address book of John Jackson."],

"objectClass"=>["top", "person", "uidObject"],

"dn"=>["uid=4711,dc=pragbouquet,dc=com"]}

...

LDAP_SCOPE_BASE only returns the base object (the address book
owner in our case).

3. filter contains the LDAP search filter to be used.

4. The attributes array contains the name of the attributes to be returned.
If it is empty or nil (the default), all attributes are returned.

5. The attributes_only flag indicates whether only the names of the
attributes should be returned (true). When it is set to false (the
default), it returns both names and values.

6. seconds specifies the seconds portion of the search timeout. It
defaults to 0. If this parameter or the useconds parameter is greater
than 0, the timeout mechanism will be activated.

7. useconds specifies the microseconds portion of the search timeout.
It defaults to 0. If this parameter or the seconds parameter is
greater than 0, the timeout mechanism will be activated. To set a
timeout of 2.5 seconds, set seconds to 2 and useconds to 500.

8. sort_attribute specifies the attribute to sort the search result entries
by. If no sort attribute is specified (the default), the order of the
result entries is unpredictable.

9. sort_proc may contain a code block that is used for sorting the
entries returned by the server. It defaults to nil, so the order of the
result entries is unpredictable.

search() is an iterator. It expects a code block that gets passed the
current entry as LDAP::Entry object. In line 13 we turn these objects into
hashes and print them, nicely formatted.

Reading LDAP entries seems to be fairly easy. Let’s try to create new
ones, now. First, let’s add an empty address book for Jane Doe (she is
already a member of Max Mustermann’s address book, but that doesn’t
matter, because for us they are two different customers):

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=59

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 60

File Line 1 User = Struct.new(:uid, :forename, :surname)

- class AddressBook

- BASE_DC = 'dc=pragbouquet,dc=com'

-

5 attr_reader :user

-

- def initialize(connection, user)

- @connection, @user = connection, user

- end

10

- def AddressBook.create(connection, user)

- cn = user.forename + ' ' + user.surname

- adr_book = []

- [

15 ['objectclass', %w(top person uidObject)],

- ['uid', [user.uid]],

- ['cn', [cn]],

- ['sn', [user.surname]],

- ['description', ['Address book of ' + cn]]

20].each do |attr, values|

- adr_book << LDAP.mod(LDAP_MOD_ADD, attr, values)

- end

-

- connection.add(

25 'uid=' + user.uid + ',' + BASE_DC,

- adr_book

-)

- AddressBook.new(connection, user)

- end

30 end

On line 1 we declare a User class that contains all the attributes we need
to manage an address book for a web shop user: a user id (typically
something like a customer id or an e-mail address), a first name and a
surname.

New address books can be created with the create(connection,user) method.
Objects returned by initialize(connection,user) refer to address books that
have to exist already. This time we did not make our connection object
available as a singleton. If we decide to do so later, we can easily change
our class.

The interesting stuff happens in the create(connection,user) method. Here
we iterate over an array of two-dimensional arrays. Because LDAP

attributes can often appear multiple times, each entry contains the
name of an attribute to be added and an array of values.

LDAP::Mod objects represent modifications to a single attribute. These
modifications can be of type LDAP_MOD_ADD, LDAP_MOD_REPLACE, or

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=60

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 61

LDAP_MOD_DELETE (some LDAP servers define extension types).24 In line
21 we create LDAP::Mod objects for adding attributes with the LDAP.mod(mod_type,attr,values)

method and append them to the adr_book array. The result is an array
that contains “add modifications” for all the attributes we’re storing for
a new address book.

Finally, in line 24, we send our modifications list to the server and can
create a new AddressBook object:

File Line 1 connection = Conn.new

- connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind('cn=root,dc=pragbouquet,dc=com', 'secret')

-

5 user = User.new('23', 'Jane', 'Doe')

- address_book = AddressBook.create(connection, user)

We had to use a variant of the bind() method in line 3. Because we want
to use our connection for writing, we have to authenticate ourselves,
passing the root DN and the corresponding password.

Now that we’ve seen how to add entries to a LDAP database in princi-
ple, let’s define a method for adding bouquet recipients to an existing
address book.

File Line 1 Recipient = Struct.new(

- :forename, :surname, :street, :postal_code,

- :city, :state, :description

-)

5

- class AddressBook

- def udn

- 'uid=' + @user.uid + ',' + BASE_DC

- end

10

- def add(recipient)

- cn = recipient.forename + ' ' + recipient.surname

- entry = {

- 'objectclass' => %w(top residentialPerson),

15 'cn' => [cn],

- 'sn' => [recipient.surname],

- 'l' => [recipient.city],

- 'street' => [recipient.street],

- 'postalCode' => [recipient.postal_code],

20 'st' => [recipient.state || ''],

- 'description' => [recipient.description || '']

24If you want to add binary values you have to logically or the modification type
with LDAP_MOD_BVALUES, so to add a binary value you’d use LDAP_MOD_ADD |

LDAP_MOD_BVALUES.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=61

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 62

- }

- @connection.add('cn=' + cn + ',' + udn(), entry)

- end

25 end

There is not much to say here. We declared a Recipient class that repre-
sents the happy recipients of a bouquet, and we defined an add(recipient)

method that adds a Recipient object to the address book of a particu-
lar user. This time we did not create an array of LDAP::Mod objects.
Instead we used a hash containing all the attributes (and their cor-
responding values) for the new recipient. LDAP::Conn.add(dn, entry) can
handle a hash object, too. For convenience we defined the udn() method
that returns the distinguished name for a directory entry belonging to
a particular user id.

So, let’s add a new entry to Jane Doe’s address book.

File Line 1 user = User.new('23', 'Jane', 'Doe')

- address_book = AddressBook.new(connection, user)

- recipient = Recipient.new(

- 'Jose', 'Rodriguez',

5 'Casanova Street 6', '77002',

- 'Houston', 'TX',

- 'Rrrrrrr!'

-)

- address_book.add(recipient)

Hmmm, did it work? We’d better implement a method to print the whole
address book:

File Line 1 class AddressBook

- def each

- @connection.search(

- udn,

5 LDAP_SCOPE_ONELEVEL,

- '(objectClass=residentialPerson)',

- nil, false, 0, 0,

- 'sn'

-) do |recipient|

10 yield recipient

- end

- end

-

- def each_recipient

15 each do |entry|

- rec_data = entry.to_hash

- sn = rec_data['sn'][0]

- cn = rec_data['cn'][0]

- cn.sub!(Regexp.new(' ' + sn + '$'), '')

20 yield Recipient.new(

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/add_recipient.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=62

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 63

- cn,

- sn,

- rec_data['street'][0],

- rec_data['postalCode'][0],

25 rec_data['l'][0],

- rec_data['st'][0],

- rec_data['description'][0]

-)

- end

30 end

- end

Yeah, that’s Ruby code! Starting on line 2, we define an iterator that
passes every recipient to a code block. In line 6 we define an object
filter for the first time—we are only interested in objects of class residen-

tialPerson—and in line 8 we set the sort attribute to sn, so the results
are sorted by the recipients surname attribute (in the preceding line we
had to explicitly pass the default values for all remaining parameters.
Hopefully, named parameters will be introduced in Ruby 2.0...).

The each_recipient() method is a piece of cake. In line 16 we turn each
LDAP::Entry object into a hash and use its entries to initialize a new Recip-

ient object. Line 19 is a bit more interesting: here we extract the recipi-
ent’s first name from the entries’ common name.

Now let’s print the address book of Jane Doe:

File Line 1 user = User.new('23', 'Jane', 'Doe')

- address_book = AddressBook.new(connection, user)

- address_book.each_recipient { |r| pp r}

This produces:

#<struct Recipient

forename="Jose",

surname="Rodriguez",

street="Casanova Street 6",

postal_code="77002",

city="Houston",

state="TX",

description="Rrrrrrr!">

That’s correct, and Jose Rodriguez’s entry was the one we expected.
But the formatting needs some adjustments...

File Line 1 require 'ldap/ldif'

- class AddressBook

- include Enumerable

-

5 def to_ldif

- inject('') { |ldif,e| ldif << e.to_ldif }

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/print_entries.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=63

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 64

Why Isn’t AddressBook#each Private?

Back in the dark and ancient days of object-oriented program-
ming, a lot of people were obsessed with declaring everything
private whenever possible (not when it made sense!).

Of course, purists may say that the each() method of the
AddressBook class should be declared private, because it passes
LDAP::Entry objects to its code block and reveals some of its
innards. What if you change your address book backend?
What if you’re using a relational database instead of a LDAP
repository?

They are right—in a way—but at the moment it’s more
important to create an API that’s easy to use and—more
importantly—easy to test. It’s more difficult to test a private
each() method. The users of your AddressBook class won’t care
about method visibility, but they will care about bugs that could
have been prevented by simple unit tests...

As a rule of thumb, you should only care about the visibility of
your methods when programming libraries that will be used by
a large number of programmers. When writing code for appli-
cations, it’s usually more important to think about things like
testability.

- end

- end

That’s a perfect example for idiomatic Ruby: because we have defined
an each() method, we can include the Enumerable module. Because we
called include Enumerable, we can use the inject(initial) method to create
an LDIF representation of the whole address book with a single line of
code (note that we had to require ’ldap/ldif’, too). So, let’s do it:

File Line 1 user = User.new('23', 'Jane', 'Doe')

- address_book = AddressBook.new(connection, user)

- puts address_book.to_ldif

Here’s the corresponding LDIF output:

dn: cn=Jose Rodriguez,uid=23,dc=pragbouquet,dc=com

cn: Jose Rodriguez

st: TX

l: Houston

objectClass: top

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/print_ldif.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=64

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 65

objectClass: residentialPerson

sn: Rodriguez

description: Rrrrrrr!

postalCode: 77002

street: Casanova Street 6

That looks like something that could be imported by any modern address
book application, doesn’t it?

Jane just realized that Jose did not get the last present she sent (the
biggest bouquet that has ever been produced by PragBouquet) because
Jane got the wrong house number: it’s 8 not 6. We need to change the
entry:

File Line 1 class AddressBook

- def modify(recipient)

- cn = recipient.forename + ' ' + recipient.surname

- entry = {

5 'l' => [recipient.city],

- 'street' => [recipient.street],

- 'postalCode' => [recipient.postal_code],

- 'st' => [recipient.state],

- 'description' => [recipient.description]

10 }

- @connection.modify('cn=' + cn + ',' + udn(), entry)

- end

- end

LDAP::Conn.modify(dn,attributes) modifies the object identified by the dis-
tinguished name dn, setting its attributes to the content of the attributes

parameter. This parameter can be a hash or an array of LDAP::Mod

objects. The following snippet corrects Jose’s address:

File Line 1 user = User.new('23', 'Jane', 'Doe')

- address_book = AddressBook.new(connection, user)

- recipient = Recipient.new(

- 'Jose', 'Rodriguez',

5 'Casanova Street 8', '77002',

- 'Houston', 'TX',

- 'Rrrrrrr!'

-)

- address_book.modify(recipient)

Although Jose definitely got her present this time, he was not as enthu-
siastic as Jane would have liked, so she decides to remove him from
her address book. Fortunately, we have defined an appropriate method
already:

File Line 1 class AddressBook

- def remove(recipient)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/modify_entry.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=65

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 66

- cn = recipient.forename + ' ' + recipient.surname

- @connection.delete('cn=' + cn + ',' + udn())

5 end

- end

The only new thing is the delete(dn) call we used in line 4. Now removing
Jose is easy:

File Line 1 user = User.new('23', 'Jane', 'Doe')

- address_book = AddressBook.new(connection, user)

- recipient = Recipient.new(

- 'Jose', 'Rodriguez',

5 'Casanova Street 6', '77002',

- 'Houston', 'TX',

- 'Rrrrrrr!'

-)

- address_book.remove(recipient)

Two weeks later Jane met a guy called Ron, and now she doesn’t need
her PragBouquet address book any longer...

File Line 1 class AddressBook

- def delete() @connection.delete(udn); end

- end

Good luck, Jane!

ActiveLDAP

After reading the preceding sections about databases, ActiveRecord,
and LDAP, you might be thinking that it would be a good idea to develop
an ActiveRecord equivalent for LDAP. What would you call it? ActiveL-
DAP, perhaps?

I’ve got good news for you: Will Drewry had the same idea. He’s released
a small library called ActiveLDAP that maps LDAP repository structures
to Ruby classes and vice versa.25 Under the hood it is based on Ian
Macdonald’s Ruby/LDAP library.

Let’s use ActiveLDAP to clean up our customer account data. Users
of PragBouquet’s web shop have to enter their e-mail address and a
password to create an account. These two values are stored in an LDAP

repository. Later, they can be used to log into the web shop, allowing
them to place new orders or have a look at current orders.

People who have an account do not necessarily have to be customers.
Unless someone actually ordered something from the shop, PragBou-

25http://ruby-activeldap.rubyforge.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/remove.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://ruby-activeldap.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=66

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 67

quet will not ask for address data, and so on. As a result, there are
nominal accounts that have been created but never have been used
for shopping. The marketing department wants to know how many
there are, and it wants the email addresses belonging to these accounts.
(Maybe they can find out why these people never bought anything.)

PragBouquet runs an OpenLDAP server that manages the account data
of all customers and of all employees. The server has been configured
like this:

File Line 1 include /sw/etc/openldap/schema/core.schema

- include /sw/etc/openldap/schema/cosine.schema

- include /sw/etc/openldap/schema/nis.schema

-

5 database bdb

- suffix "dc=pragbouquet,dc=com"

- rootdn "cn=root,dc=pragbouquet,dc=com"

- rootpw secret

- directory /sw/var/openldap-data

10 index objectclass eq

Because we store account data that depends on the posixGroup and
posixAccount object classes we have to include the nis schema. This
schema in turn depends on the cosine schema, so we include that, too.

Sample data in the repository looks like this:

File Line 1 # Create the PragBouquet organization.

- dn: dc=pragbouquet,dc=com

- objectclass: dcObject

- objectclass: organization

5 o: PragBouquet

- dc: pragbouquet

-

- # Create a container for all groups.

- dn:ou=Groups,dc=pragbouquet,dc=com

10 objectclass: organizationalUnit

- ou: Groups

-

- # Create a group for employee accounts.

- dn:cn=employees,ou=Groups,dc=pragbouquet,dc=com

15 objectclass: top

- objectclass: posixGroup

- cn: employees

- gidNumber: 42

-

20 # Create a group for customer accounts.

- dn:cn=customers,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: posixGroup

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/slapd.conf
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/init.ldif
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=67

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 68

- cn: customers

25 gidNumber: 23

-

- # Create an account for employee Maik Schmidt

- dn:uid=mschmidt,cn=employees,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

30 objectclass: account

- objectclass: posixAccount

- cn: Maik Schmidt

- uid: mschmidt

- uidNumber: 1000

35 gidNumber: 42

- userPassword: {SSHA}wFH8hVlIQKttNK2+334mh2K3PHBRv9Lt

- homeDirectory: /home/mschmidt

-

- # Create an account for employee Carl Coder

40 dn:uid=ccoder,cn=employees,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: account

- objectclass: posixAccount

- cn: Carl Coder

45 uid: ccoder

- uidNumber: 1001

- gidNumber: 42

- userPassword: {SSHA}ytRSx9Sc8v3RmitArARTfPRdQRCGZRs9

- homeDirectory: /home/ccoder

50

- # Create an account for Homer Simpson

- dn:uid=homer@example.com,cn=customers,ou=Groups,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: account

55 objectclass: posixAccount

- cn: Homer Simpson

- uid: homer@example.com

- uidNumber: 2000

- gidNumber: 23

60 userPassword: {SSHA}DFTpR8b5R+x+p5E9fj1NZwrQQLRgfeBn

- homeDirectory: /tmp

-

- # Create an account for Jane Doe

- dn:uid=jane_doe@example.net,cn=customers,ou=Groups,dc=pragbouquet,dc=com

65 objectclass: top

- objectclass: account

- objectclass: posixAccount

- cn: Jane Doe

- uid: jane_doe@example.net

70 uidNumber: 2001

- gidNumber: 23

- userPassword: {SSHA}lc7hXzhDP9T8qS51TUSE/89oLfq4EWti

- homeDirectory: /tmp

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=68

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 69

There are two groups called “customers” and “employees”. Each has
two entries: Carl Coder and Maik Schmidt belong to the employees
group, and Homer Simpson and Jane Doe are members of the cus-
tomers group.

In Ruby, we’ll represent these groups using classes Group and Cus-

tomer. Our hope is that (just as ActiveRecord does for database tables)
ActiveLDAP will create them automatically for us. But before we can
use ActiveLDAP we have to initialize it:

File Line 1 require 'rubygems'

- require 'activeldap'

-

- ActiveLDAP::Base.connect(

5 :base => 'dc=pragbouquet,dc=com',

- :bind_format => 'cn=root,dc=pragbouquet,dc=com',

- :password_block => Proc.new { 'secret' },

- :allow_anonymous => false

-)

After loading the ActiveLDAP Gem, we call the ActiveLDAP::Base.connect(options)

method passing it the following options:

• base defines the search base that will be appended to all distin-
guished name attributes.

• bind_format contains the distinguished name to be used for binding
to the server. Usually, this is the rootdn defined in the OpenLDAP
server configuration.

• password_block points to a code block that returns a password.
Defaults to nil.

• If allow_anonymous is true, it is possible to bind to the server anony-
mously after all other bind methods fail. Otherwise it is not.
Defaults to true.

The connect() method supports many more options, but we don’t need
them here. If you don’t want to modify data in your LDAP repository and
your server allows anonymous binding, you don’t have to call connect()
at all—ActiveLDAP will do it for you automatically.

File Line 1 class Group < ActiveLDAP::Base

- ldap_mapping :dnattr => 'cn', :prefix => 'ou=Groups'

- end

-

5 customers = Group.new('customers')

- puts "The 'customers' group has the following attributes:"

- customers.attributes.each { |a| puts " #{a}" }

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=69

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 70

-

- puts "\nIts group id is #{customers.gidNumber}."

10

- puts "\nWe have the following groups:"

- Group.find_all('*').each { |g| puts " #{g}" }

produces:

The 'customers' group has the following attributes:

gidNumber

cn

memberUid

commonName

description

userPassword

objectClass

Its group id is 23.

We have the following groups:

employees

customers

Although the example is short, there’s a lot to be explained. In line 1 we
derive our Group class from ActiveLDAP::Base. That would be sufficient
if we were mapping a relational database using ActiveRecord, but for
LDAP we have to call ldap_mapping() in line 2. It accepts the following
parameters:

• prefix is the static (more or less) part of the distinguished name
that will always be prepended to the base defined in the connect()
call. It defaults to ’ou=class name’ (’ou=Group’ in our case).

• dnattr contains the variable part of the distinguished name of an
object. It defaults to ’cn’, so we could have left it out this time.

• classes contains an Array of all object classes whose attributes
should be mapped to the ActiveLDAP object. Its default value is
[’top’].

When we create our first ActiveLDAP object in line 5, it references the
LDAP object with the DN cn=customers,ou=Groups,dc=pragbouquet,dc=com.

In line 7 we use the reflective features of ActiveLDAP for the first time
and print a list of all attributes belonging to a Group object. ActiveLDAP
gives you accessors for all these attributes for free.

Then, in line 12, we read some real data from our repository with the
find_all() method. ActiveLDAP objects can use the following class meth-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=70

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 71

ods to search for entries in a repository:

• find(config={}) returns the dnattr of the first entry that matches a
certain query. config can be a String or a Hash object. If it is a String,
it will be matched against dnattr. For example, Group.find(’e*’)

returns the common name attribute of the first group entry whose
cn attribute starts with e. In our case, it returns ’employees’.

If config is a Hash, it may contain the keys :attribute, :value, and
:objects. The :attribute and :value parameters can be used to search
for objects where a particular attribute has a particular value. To
find the common name of the group having the group id 23 run
the following statement:

Group.find(:attribute => 'gidNumber', :value => '23')

Usually, you are not only interested in the dnattr of an object but
in the object itself. To get back complete objects, pass :objects =>

true:

Group.find(

:attribute => 'gidNumber',

:value => '23',

:objects => true)

• find_all(config={}) works like the find() method, but returns all the
entries matching a certain query.

• search(config={}) gives you more or less direct access to the search()
method of the underlying Ruby/LDAP library. It implements the
:attrs, :base, :filter, and :scope parameters, corresponding to the
attributes, base_dn, filter, and scope, parameters of the Ruby/LDAP
search() method described on page 57. The return value has the
same format, too:

Group.search(:filter => '(cn=cus*)')

returns:

[

{

"gidNumber" => ["23"],

"cn" => ["customers"],

"objectClass" => ["posixGroup"],

"dn" => ["cn=customers,ou=Groups,dc=pragbouquet,dc=com"]

}

]

The following code segment separates the customer account data from
the employee account data:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=71

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 72

File Line 1 class Customer < ActiveLDAP::Base

- ldap_mapping :dnattr => 'uid',

- :prefix => 'cn=customers,ou=Groups'

- end

5

- puts "Our customers are:"

- Customer.find_all('*').each { |c| puts " #{c}" }

- h = Customer.new('homer@example.com')

- puts "\nCommon name attribute:"

10 p h.cn

- p h.cn(true)

This produces:

Our customers are:

homer@example.com

jane_doe@example.net

Common name attribute:

["Homer Simpson"]

"Homer Simpson"

The definition of the Customer class does not differ much from the Group

class—we just set the dnattr and prefix attributes differently. In lines
10 and 11, we print the common name attribute of a Customer object.
Usually, all attribute values will be returned as an Array, as every LDAP

attribute is potentially multidimensional. If you want to get back an
attribute value as a String object, pass true to the accessor.

We have everything at hand now to solve our little problem. The fol-
lowing method expects an Array containing the e-mail addresses of all
customers that have ever bought something in our web shop. It returns
a list of email addresses of all people who have created an account, but
never used it to send some flowers:

File Line 1 def get_unused_accounts(used_accounts)

- unused_accounts = []

- Customer.find_all('*').each do |email|

- unused_accounts << email if !used_accounts.include?(email)

5 end

- unused_accounts

- end

- puts get_unused_accounts(['homer@example.com'])

Our original job is done, but since we have a test system up and run-
ning anyway, wouldn’t it be fun to see what other interesting features
ActiveLDAP has to offer?

Perhaps you want delete the unused accounts?

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=72

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 73

File Line 1 def delete_unused_accounts(used_accounts)

- Customer.find_all('*').each do |cn|

- Customer.new(cn).delete if !used_accounts.include?(cn)

- end

5 end

Or perhaps you want to tag them with a special note in their description
attribute?

File Line 1 def mark_unused_accounts(used_accounts)

- Customer.find_all('*').each do |cn|

- if !used_accounts.include?(cn)

- c = Customer.new(cn)

5 c.description = 'unused'

- c.write

- end

- end

- end

ActiveLDAP gives us all the CRUD methods for free. This feature alone
makes it a valuable tool. But it gives us even more, allowing us to define
relationships between objects as if we were working with a relational
database:

File Line 1 class Customer < ActiveLDAP::Base

- ldap_mapping :dnattr => 'uid',

- :prefix => 'cn=customers,ou=Groups'

-

5 belongs_to :groups,

- :class_name => 'Group',

- :foreign_key => 'gidNumber',

- :local_key => 'gidNumber'

- end

10

- h = Customer.new('homer@example.com')

- h.groups.each { |g| puts g.cn }

This prints:

customers

Great, isn’t it? In line 5 we declare that every customer belongs to a
group, with the relationship defined by the gidNumber attribute in both
the Group and Customer class. The first parameter of the belongs_to()
method is the name of the new member variable to be created in the
Customer class. The second parameter is a Hash that contains up to
three parameters: :class_name points to the class your current class
belongs to. :foreign_key determines, which attribute of the “foreign”
class should be used to build the relationship and :local_key determines
which attribute of the local class will be considered.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/first_example.rb
http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/relationships.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=73

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 74

The newly created groups method accepts an optional boolean argu-
ment. If you pass true, it returns an Array of Group objects. If you pass
false, you’ll get back an Array of Strings containing the dnattr of every
group our customer belongs to.

If you know ActiveRecord, you’ll know that if you have a method called
belongs_to(), there’s likely to be a method called has_many(), too:

File Line 1 class Group < ActiveLDAP::Base

- ldap_mapping :dnattr => 'cn', :prefix => 'ou=Groups'

-

- has_many :members,

5 :class_name => 'Employee',

- :local_key => 'gidNumber',

- :foreign_key => 'gidNumber'

- end

-

10 class Employee < ActiveLDAP::Base

- ldap_mapping :dnattr => 'uid',

- :prefix => 'cn=employees,ou=Groups'

- end

-

15 employees = Group.new('employees')

- employees.members.each { |e| puts e.cn }

This outputs the following list:

Maik Schmidt

Carl Coder

There is really not much to say here: has_many(member,options) works
exactly as belongs_to(member,options).

Conclusion

ActiveLDAP is in an early stage of development and it will certainly take
some time until all details are settled. Despite this it’s an amazingly
useful tool and makes working with LDAP a breeze.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/db/ldap/activeldap/relationships2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=74

Chapter 3

Processing XML
Exchanging data between processes, components, and companies has
always been a vital part of enterprise software. Many attempts have
been made to create a universal format for data exchange, but they all
have failed for various technical and political reasons.

It’s hard to believe that it took several decades before something like
a standard for a platform-independent data representation was both
created and accepted. The eXtensible Markup Language (XML) has, over eXtensible Markup

Language
the years, evolved into such an industry standard for portable data.
That’s because it has some useful characteristics:

• It is plain text.

• It has been standardized by the W3C1.

• It is machine-independent (so low-level details such as byte order-
ing do not matter).

• It is easy to use.

• It supports international character sets.

XML is supported by all modern programming languages. The current
Ruby distribution comes with good XML support, but compared to lan-
guages such as Java and C#, there is still a lot to be done. On the one
hand it is easy to create and parse XML documents in Ruby. On the
other hand Ruby lacks support for some important technologies such
as Document Type Definitions (DTD), schema validation, and XSLT.

1http://www.w3.org/XML

Prepared exclusively for Jacob Hochstetler

CHAPTER 3. PROCESSING XML 76

REXML: What’s The Difference?

Although several XML parsers exist for Ruby (for example,
NQXML∗ or xmlparser†), the most popular is Sean Russel’s REXML.

The majority of XML parsers are based on either the SAX2 or DOM
APIs. These have been standardized, and hence look the same
in all programming languages. That’s certainly a good thing,
because if you’re familiar with DOM programming in Java, you
do not have to learn a lot to do DOM programming in C++ or
Ruby.

The downside is that general approaches such as DOM are
a compromise, and tend not to be tailored to exploit the
strengths of a particular language. Sean Russel felt so, too, and
while looking for better alternatives he found the Electric XML
library for Java, created by a company called The Mind Elec-
tric.‡REXML is a pure Ruby implementation of the original Electric
XML API.

REXML is not a copy of the java API, but a genuine Ruby port.
All classes and methods have been renamed to follow Ruby
conventions and special Ruby features (such as iterators) have
been used wherever it was possible and advantageous. In
addition, REXML comes with a lot of things that were not part
of the original Electric XML interface. There is support for SAX2,
a proprietary stream parsing API, an experimental pull parser,
and an experimental RELAX NG validator.

∗http://nqxml.sourceforge.net
†This is a binding for James Clark’s expat XML parser. It can be found

under http://www.yoshidam.net/Ruby.html##xmlparser.
‡The company is called Webmethods today and the Electric XML library

is now integrated into their products. It’s no longer available as a stand-alone
product.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://nqxml.sourceforge.net
http://www.yoshidam.net/Ruby.html##xmlparser
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=76

A SHORT XML REMINDER 77

Figure 3.1: Tree Representation of a CD

It’s unlikely that you can find a single company in this world that does
not use XML by any means and a lot of enterprise data is no longer
only stored in tables but between angle brackets. Hence, you better
know how to extract it and in the following sections we’ll cover the
most important XML processing requirements: we’ll show you how to
create XML documents, how to parse them, and how to validate them.

3.1 A Short XML reminder

XML is a subset of the more flexible and more liberal Standard General-

ized Markup Language (SGML). It allows you to define your own markup Standard Generalized

Markup Language
languages for describing data organized hierarchically, in a tree struc-
ture. For example, Figure 3.1 shows a possible tree representation of
an audio CD. Its XML representation might look like this:

Line 1 <?xml version='1.0' encoding='ISO-8859-1'?>

-

- <!-- Comments look like this! -->

- <cd title="Developer's Dreams">

5 <track id='1' title='No More Bugs' playing-time='3:49'/>

- <track id='2' title='Unlimited Resources' playing-time='4:14'/>

- <track id='3' title='Fat-Free Fast Food' playing-time='1:23'/>

- </cd>

All XML documents must be well-formed, which roughly means:

• The document must have a single top-level element.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=77

A SHORT XML REMINDER 78

• All elements have to be closed explicitly and they have to be nested
properly, i.e. <a> is not allowed, because element
 must be closed before element <a>.

• Attributes always have a value and this value has to be set in
single or double quotes. HTML attributes such as NOWRAP or
colspan=5 are not allowed in XML documents.

Should I use elements or attributes?

Sometimes it’s just a matter of taste, but more often it’s a decision that
should be made carefully.

The following cases force us to use elements:

• The information you want to describe can potentially occur more
than once or can potentially have child elements. It’s important to
plan for such cases upfront—if you are not sure, use an element.

• Whitespace characters are significant.

In other cases, prefer attributes over elements:

• You do not have to worry about whitespace characters. Using
attributes it’s clear that “hello” differs from “ hello ”.

• Attributes often produce less noise and are more readable. For
example, compare this

<person>

<name>Homer</name>

<middle-name>Jay</middle-name>

<surname>Simpson</surname>

</person>

to this:

<person name="Homer" middle-name="Jay" surname="Simpson"/>

• Attributes are slightly faster, because they usually need less space
than elements and therefore less text has to be processed by the
XML parser (this is especially true for documents with long tag
names for elements that get open and closed over and over again).
In addition they increase parsing speed because of the inner struc-
ture of most XML parsers. Many XML parsers are event driven and
use the SAX2 API. They search for the start tag of elements and
whenever they find one, they call the startElement() method trans-
mitting the element name and a list of all attributes belonging to
the current element.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=78

GENERATING XML DOCUMENTS 79

If you have a document fragment looking like this

<book>

<title>Pragmatic Project Automation</title>

<isbn>0974514039</isbn>

<publisher>Pragmatic Bookshelf</publisher>

</book>

startElement() is called four times (for the elements <book>, <title>,
<isbn>, and <publisher>) and calling methods in programming
languages supporting polymorphism is expensive. When we use
attributes instead of elements, our document will look like this:

<book title='Pragmatic Project Automation' isbn='0974514039'

publisher='Pragmatic Bookshelf' />

Now startElement() is called only once for every <book> element.
You might not consider this a big performance boost, but if you’re
Amazon.com and have to parse several hundred thousand books
having dozens of elements, it certainly will matter.

3.2 Generating XML documents

Generating XML documents is often necessary for communicating with
other systems. If you are using technologies such as SOAP or XML-RPC

you don’t have to worry about the XML generation yourself, because
it will be done under the hood by supporting libraries. But there are
still many applications today expecting XML documents that you have
to create “manually.”

In this section we’ll show you various techniques for generating XML

documents. You’ll see how to create documents using rather naive
approaches (such as writing raw strings). We’ll then look at more
sophisticated technologies, such as the REXML API.

To Score Well

From the beginning, customers using PragBouquet’s web shop could
freely choose from various payment methods: prepaid, invoice, or credit
card. But after some months you came to realize that there were actu-
ally customers who’d cheated you. They’ve ordered flowers but never
paid for them. Therefore the company decided to buy a so called e-score
application. This assigns a risk score to each of your new customers.
A customer with a low e-score will only be allowed to order if he or she
pays upfront.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=79

GENERATING XML DOCUMENTS 80

Figure 3.2: e-score architecture

The e-score provider uses a proprietary protocol, but gave you a proxy
application that hides all that stuff behind an XML/HTTP layer. It
expects an XML file containing a list of customers and returns a similar
document where every customer was assigned a risk score. You can
see the architecture in Figure 3.2 .

It’s your task to convert a customer address into an XML document
acceptable to the e-scoring application. Based on the response, you’ll
then decide which payment options will be offered to the customer.

The input documents are simple: they consist of a list of <person> ele-
ments. Of course, the e-scoring company—like every company employ-
ing more than two people—defined its own XML markup, looking like
this:

File <persons>

<person name='Max' surname='Mustermann'>

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

</persons>

Generating XML Documents Using Raw Strings

Because XML documents are nothing but text, it’s tempting to generate
them using strings. So, let’s start with a simple helper function that
tags a certain value:

File Line 1 def tag(tag_name, value, attrs ={})

- tmp = "<#{tag_name}"

- if attrs

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/persons.xml
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=80

GENERATING XML DOCUMENTS 81

- attrs.each { |k,v| tmp += " #{k}='#{v}'" }

5 end

- tmp + ">#{value}</#{tag_name}>\n"

- end

-

- puts tag('hello', 'world')

10 puts tag('a', 'b', { 'c' => 'd' })

produces:

<hello>world</hello>

b

For generating our <person> elements we’ll take the object-oriented
road—we’ll create classes for both addresses and persons. Because
they are only storage classes we use Struct to create them automatically,
then add to_xml() methods to turn them into XML documents.

File Line 1 Address = Struct.new(:street, :city, :postal_code)

-

- class Address

- def to_xml

5 tag('address',

- tag('street', self.street) +

- tag('city', self.city) +

- tag('postal-code', self.postal_code)

-)

10 end

- end

One of the things that makes working with Ruby so much fun is reopen-
ing classes. After Struct created an Address class for us, we reopened its
definition and added our to_xml() method. It works the same way for
the Person class:

File Line 1 Person = Struct.new(:name, :surname, :address)

-

- class Person

- def to_xml

5 tag('person',

- self.address.to_xml, {

- 'name' => self.name,

- 'surname' => self.surname

- }

10)

- end

- end

Finally, we check if it all works together:

File Line 1 address = Address.new(

- 'Musterstr. 42',

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=81

GENERATING XML DOCUMENTS 82

- 'Berlin',

- '11011'

5)

- max_m = Person.new('Max', 'Mustermann', address)

- puts max_m.to_xml

produces:

<person name='Max' surname='Mustermann'><address> \

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

Although everything looks fine, you should follow this approach only in
the simplest cases, because it has some serious disadvantages. First of
all, you cannot move around and refine document fragments. This is
a pity, because XML is such a flexible format and it happens often that
new elements or attributes get added to existing document structures.
If you’ve worked exclusively with strings you have to either parse or
manipulate them directly to add the new stuff.

Let’s assume we have access to one of those brand-new localization
services that determine the geographic coordinates of an address and
you want to add this information to the XML representation of your
Address objects without both adding a position attribute and changing
the to_xml() method.

Accessing the localization service is easy: you give it the street, the
house number, the postal code, and the city, and it returns a pair of
coordinates:

address = Address.new(

:street => 'Musterstr.',

:house_number => '42',

:postal_code => '11011',

:city => 'Berlin'

)

coordinates = LocalizationService.locate(address)

puts coordinates.latitude # -> 51.5245

puts coordinates.longitude # -> 6.75

Representing the coordinates in XML would probably look like this:

<position latitude='51.5245' longitude='6.75'/>

How can you add this to an existing XML file containing <address> ele-
ments? You can try using regular expressions and all the fancy meth-
ods of the String class, but think about it for a moment: did you really

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=82

GENERATING XML DOCUMENTS 83& a m p ;& & g t ;& l t ; >< & a p o s ; " & q u o t ;'C h a r a c t e r X M L E n t i t y C h a r a c t e r X M L E n t i t y
Figure 3.3: XML Standard Entities

consider all special cases? What about comments or CDATA sections?
What about <address> elements that do not belong to <person> ele-
ments? What about <address> elements that already have a <position>

element?

You have to admit that it can get complicated. Sometimes it’s nearly
impossible to perform this kind of manipulation without parsing the
document fragment, adding the new stuff using conventional DOM manip-
ulation methods, and finally creating a new XML string again.

Believe it or not, but we still have some disadvantages left. For exam-
ple, if you work with raw strings, chances are good that you forget to
markup elements correctly as we did in our tag() function above. What
if a person’s address is “Main Street 7 & 8”? The resulting <street>
element would be

<street>Main Street 7 & 8</street>

Every standards compliant XML parser will reject this, complaining
that your document isn’t well-formed—blanks are not allowed after an
ampersand. Whenever the parser sees an ampersand, it assumes it
introduces an entity reference, that has to have an alphanumeric name,
ends with a semicolon, and has been defined in a Document Type Defi-

nition (DTD). Similar things will happen whenever you use one of XML’s Document Type

Definition
special characters. If you really want to use strings for generating your
documents, you’ll have to replace these characters with their standard
entities shown in Figure 3.3 .

Adding such a mechanism to our tag() method is easy:

File def encode_markup(text)

return '' if text.nil? or text == ''

text.gsub!('&', '&')

text.gsub!("'", ''')

text.gsub!('"', '"')

text.gsub!('<', '<')

text.gsub!('>', '>')

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/markup.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=83

GENERATING XML DOCUMENTS 84

end

def tag(tag_name, value, attrs = nil)

tmp = "<#{tag_name}"

if attrs

attrs.each { |k,v| tmp += " #{k}='#{encode_markup(v)}'" }

end

tmp + ">#{encode_markup(value)}</#{tag_name}>\n"

end

puts tag('favorite', 'Starsky & Hutch')

produces:

<favorite>Starsky & Hutch</favorite>

You’ll face more subtle problems if you ignore character set issues (as
we did in the tag() method). An XML document that does not explicitly
specify a character set encoding in its header automatically is sup-
posed to contain only UTF-8 characters. For ASCII texts this is perfect,
but what if you have a customer from Germany having the popular sur-
name “Müller?” In UTF-8 the German umlaut ü is represented as a two
byte sequence (0xc2, 0x81), but it’s a single byte (0xfc) in the character
set ISO-8859-1.

Whenever you get text data from an external source, from a database,
a file, a HTTP server, for example, you have to determine what character
set encoding has been used.

If the specified encoding and the document’s content do not match,
your XML parser will reject it or—even worse—will misinterpret some
characters. Before reading on, you should have a look at Joel Spol-
sky’s awesome essay The Absolute Minimum Every Software Developer

Absolutely, Positively Must Know About Unicode and Character Sets (No

Excuses!)2

For our documents we now have two choices: we can set the encoding
attribute in the XML header correctly or we convert our final document
into UTF-8. To convert texts between different character sets in Ruby,
you can use the Iconv library. Its interface is simple: a single line of Iconv

code converts a text encoded in the ISO-8859-1 character set into the
UTF-8 character set.

Iconv.conv('utf-8', 'iso-8859-1', 'Müller')

2http://www.joelonsoftware.com/articles/Unicode.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.joelonsoftware.com/articles/Unicode.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=84

GENERATING XML DOCUMENTS 85

Our final version of method tag() will use this, assuming that all ele-
ment and attribute values are encoded in ISO-8859-1.

File Line 1 require 'iconv'

-

- def empty?(text) text.nil? or text == ''; end

-

5 def encode_markup(text)

- return '' if empty?(text)

- text.gsub!('&', '&')

- text.gsub!("'", ''')

- text.gsub!('"', '"')

10 text.gsub!('<', '<')

- text.gsub!('>', '>')

- end

-

- def to_utf8(text)

15 Iconv.conv('utf-8', 'iso-8859-1', text)

- end

-

- def encode(value)

- encode_markup(to_utf8(value))

20 end

-

- def tag(tag_name, value, attrs ={})

- tmp = "<#{tag_name}"

- if !attrs.nil? and !attrs.empty?

25 attrs.each { |k,v| tmp += " #{k}='#{encode(v)}'" }

- end

- if !empty?(value)

- tmp += ">#{encode(value)}</#{tag_name}>\n"

- else

30 tmp += "/>\n"

- end

- end

This version is much better than our first one, but it’s also much longer
and it still has some flaws that cannot be solved easily. For example,
it does not check if element and attribute names are valid according to
the XML standard (be honest: do you know the rules?). Additionally,
you cannot reformat the generated document—you do not have much
control over indentation, line breaks, etc. Obviously, generating well-
formed XML documents is not as simple as it seems.

Generating XML Documents With REXML

Although REXML does not implement the original DOM interface, it
offers an API based on trees. Using this API you can convert an XML

document into trees and create trees that represent XML documents.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/better_tag.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=85

GENERATING XML DOCUMENTS 86

Everything starts with a document. With REXML you create it like this:

require 'rexml/document'

doc = REXML::Document.new

An empty document is as useful as an empty bottle of beer. Let’s add
an element to it.

root = REXML::Element.new('my-root')

doc.add_element(root)

puts doc.to_s

produces:

<my-root/>

Creating attributes makes our toolbox complete:

root.add_attribute('an-attribute', 'a-value')

puts doc.to_s

results in:

<my-root an-attribute='a-value'/>

Now we can turn our Address object into XML the right way.

File Line 1 class Address

- def to_xml

- adr = REXML::Element.new('address')

- adr.add_element('street').add_text(self.street)

5 adr.add_element('city').add_text(self.city)

- adr.add_element('postal-code').add_text(self.postal_code)

- adr

- end

- end

10

- address.to_xml.write($stdout, 0)

produces:

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

That’s how it should look: every element is created explicitly and the
to_xml() method no longer returns a simple string, but a document frag-
ment. In addition, we can now use the write() method. This allows us
to control the string representation of an XML document. It expects an
object derived from IO and the level of indentation to be used.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=86

GENERATING XML DOCUMENTS 87

The result of the to_xml() method can be processed further by other
methods now. Adding coordinates to an Address object, for example,
can be done like this:

File Line 1 adr = address.to_xml

- pos = REXML::Element.new('position')

- pos.add_attribute('longitude', '12.345')

- pos.add_attribute('latitude', '56.789')

5 adr.add_element(pos)

- adr.write($stdout, 0)

produces:

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

<position latitude='56.789' longitude='12.345'/>

</address>

REXML correctly encodes markup characters, but you still cannot ignore
character set encoding issues. REXML internally uses the UTF-8 charac-
ter set and so you have to encode all strings before inserting them into
a REXML document and you have to decode them accordingly when
reading them back.

We already saw how to achieve this using the Iconv library in Sec-
tion 3.2, Generating XML Documents Using Raw Strings, on page 80.
You can also use Ruby’s unpack() and pack() methods. "hello".unpack("C*").pack("U*")

turns a string into UTF-8 and "hello".unpack("U*").pack("C*") does the oppo-
site.

Builder

As we’ve seen, building well-formed XML documents is not a trivial
task. So people constantly try to simplify it. One of those people is
Jim Weirich, who produced the Builder library for Ruby.3 Its core class
is Builder::XmlMarkup, which provides everything you need to generate
well-formed XML documents. For example,

File Line 1 require 'rubygems'

- require 'builder'

-

- doc = Builder::XmlMarkup.new

5 doc.person(:name => 'Max', :surname => 'Mustermann')

- puts doc.target!

3http://builder.rubyforge.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://builder.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=87

GENERATING XML DOCUMENTS 88

prints this little document:

<person surname="Mustermann" name="Max"/>

The technique is probably familiar to Ruby fans: Builder defines a method_missing()
handler that catches calls to unknown methods and turns them into
XML tags with the same name as the method that was called originally.
In addition, a hash of parameters is turned into attributes of the newly
created element.

The resulting document can be obtained by calling target!() as we did in
line 6.

To build hierarchical documents, XmlMarkup has a nice syntax: if you
pass a code block to one of those “unknown” methods, it gets passed
the current element automatically:

File Line 1 xml = ''

- doc = Builder::XmlMarkup.new(:target => xml)

- doc.person(:name => 'Max', :surname => 'Mustermann') { |person|

- person.address { |address|

5 address.street('Hauptstr. 42')

- }

- }

- puts xml

produces:

<person surname="Mustermann" name="Max"><address> \

<street>Hauptstr. 42</street></address></person>

Intuitive, isn’t it? Note that in line 2 we have specified the target option
and set it explicitly to a String object. Hence, Builder fills up the xml

variable with our document. The target option accepts any object that
responds to the <<(text)-operator.

That’s all very nice, but the formatting of the result document is, let’s
say, suboptimal. Fortunately, there is the indent option:

File Line 1 xml = ''

- doc = Builder::XmlMarkup.new(:target => xml, :indent => 2)

- doc.person(:name => 'Max', :surname => 'Mustermann') { |person|

- person.address { |address|

5 address.street('Hauptstr. 42')

- address.tag!('postal-code', '12345')

- address.city('Musterstadt')

- }

- }

10 puts xml

prints this beautiful XML document:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=88

GENERATING XML DOCUMENTS 89

<person surname="Mustermann" name="Max">

<address>

<street>Hauptstr. 42</street>

<postal-code>12345</postal-code>

<city>Musterstadt</city>

</address>

</person>

There’s also a margin option, which specifies the indentation offset, so
you can format your XML documents any way you like.

Did you notice the little trick with the postal code in line 6? postal-

code() is not a valid method name in Ruby, but <postal-code> is a
perfectly valid XML tag. To get around this, Builder lets you explicitly
insert tags using the tag!(sym,*args,&block) method.

To make sure that we do not get into trouble when XML documents
without an explicit encoding get prohibited by federal law, we better
add another line of code:

File Line 1 xml = ''

- doc = Builder::XmlMarkup.new(:target => xml, :indent => 2)

- doc.instruct!

- doc.person(:name => 'Max', :surname => 'Mustermann') { |person|

5 person.address { |address|

- address.street('Hauptstr. 42')

- address.tag!('postal-code', '12345')

- address.city('Musterstadt')

- }

10 person.position(:longitude => '12.345', :latitude => '56.789')

- }

- puts xml

produces this perfect XML document:

<?xml version="1.0" encoding="UTF-8"?>

<person surname="Mustermann" name="Max">

<address>

<street>Hauptstr. 42</street>

<postal-code>12345</postal-code>

<city>Musterstadt</city>

</address>

<position longitude="12.345" latitude="56.789"/>

</person>

That’s nearly all you have to know to create XML documents with Builder,
but for some special cases you’d might need the following methods, too:

text!(text)

allows you to create elements with mixed content:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=89

GENERATING XML DOCUMENTS 90

File doc = Builder::XmlMarkup.new(:indent => 2)

doc.foo { |f|

f.bar

f.text! "I live outside the bar!\n"

}

puts doc.target!

prints:

<foo>

<bar/>

I live outside the bar!

</foo>

cdata!(data)

inserts a CDATA section into an XML document:

File doc = Builder::XmlMarkup.new

doc.cdata!('Do not run with scissors!')

puts doc.target!

prints:

<![CDATA[Do not run with scissors!]]>

comment!(text)

inserts a comment into an XML document:

File doc = Builder::XmlMarkup.new

doc.comment!('Some comments are totally useless!')

puts doc.target!

prints:

<!-- Some comments are totally useless! -->

declare!(instruction,*args,&block)

allows you to insert DTD declarations into your document:

File doc = Builder::XmlMarkup.new

doc.declare!(:ENTITY, :pp, 'Pragmatic Programmers')

puts doc.target!

prints:

<!ENTITY pp "Pragmatic Programmers">

Conclusion

It should be clear by now that creating XML documents is by no means
as simple as it seems. Because of this, you’ve probably already received
or created documents that were not well-formed or that contained char-
acters that did not match the document’s encoding.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=90

PROCESSING XML DOCUMENTS 91

Although it is tempting to use a raw string approach, it does not scale
very well and has a lot of drawbacks. Compared to using REXML or
Builder it’s even more complex and results in more code (and ugly code).
From a pragmatic point of view it is certainly beneficial to do it correctly
from the beginning. In Refactoring to Patterns [?] you will even find
patterns that help you to refactor “I absolutely wanted to create XML

myself” code.

3.3 Processing XML Documents

Imagine you’ve sent a bunch of flowers to a person you like. Wouldn’t
it be interesting to know if he or she got the flowers on time, or even if
the person refused the flowers? Fortunately, all big parcel services offer
their customers the opportunity to check the status of a parcel using
the Internet.

PragBouquet works together with several parcel services. Although we
could simply give our customers the tracking numbers assigned by the
particular service to their order, that means that they’d then need to
visit the shipping service’s site and enter that number to track their
flowers. That isn’t great customer service on our part.

A much better solution would be periodically to track the status of all
undelivered orders in our system and then inform our customers about
all important events in the life of a deliver via e-mail or SMS messages.
To do this, we’ll have to take a closer look at the parcel service’s web
services.

A typical parcel tracking result looks like this:

File <tracking-result>

<parcel-history tracking-no='2X42'>

<event timestamp='2005-05-02T04:05:00'

state='picked-up'/>

<event timestamp='2005-05-02T08:30:00'

state='first-delivery-attempt'/>

<event timestamp='2005-05-03T09:05:00'

state='second-delivery-attempt'/>

<event timestamp='2005-05-04T10:15:00'

state='refused-damaged'>

<consignee>Mrs. Smith</consignee>

</event>

<event timestamp='2005-05-04T19:07:00' state='returns-to-sender'/>

</parcel-history>

<parcel-history tracking-no='2X43'>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/packages.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=91

PROCESSING XML DOCUMENTS 92

<event timestamp='2005-05-02T04:25:00' state='picked-up'/>

<event timestamp='2005-05-02T09:15:00' state='delivered'>

<consignee>Mr. Gumble</consignee>

</event>

</parcel-history>

<parcel-history tracking-no='2X44'>

<event timestamp='2005-05-02T03:55:00' state='picked-up'/>

</parcel-history>

</tracking-result>

Here we have the history of three different parcels, each identified by a
unique tracking number:

• Parcel 2X42 was picked up by the parcel service at the produc-
tion site at 4:05 am on May 2nd. They tried to deliver it on the
same day and later on May 3rd without success. On May 4th the
driver finally met Mrs. Smith, but she refused to accept the parcel
because it was damaged. Now it’s on its way back home.

• Parcel 2X43 is a textbook example: Picked up, delivered.

• Parcel 2X44 was picked up, but has not yet been delivered.

In the following sections we’ll demonstrate how to parse a document
such as this using different approaches.

XML Processing With REXML

One of the key problems when dealing with XML documents is parsing
them and representing the result in our programs. Currently, there are
two major parsing schemes: tree parsing and stream parsing. A tree
parser reads an XML document as a whole and represents it as a tree
in memory. Stream parsers expect you to provide a so-called listener
that is invoked whenever the parser finds a new element. Hence, all

elements get processed in the order of their start tags and the listener
is responsible for handling them.

Both approaches have their advantages and disadvantages. Tree parsers
are significantly slower and consume much more memory. On the
upside, they give you convenient access to the tree’s nodes. On the
other hand, stream parsers are fast and do not consume much mem-
ory, but they force you to organize the elements yourself. Choosing the
right way to parse your documents depends to a large extent on your
performance needs and on how you want to process the document. If
you want to process every node, a stream parser is what you need. If

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=92

PROCESSING XML DOCUMENTS 93

you often have to access different node sets, a tree parser might be a
better choice.

There are standard APIs for both tree and stream parsing: DOM and
SAX2 respectively. DOM has been standardized by the W3C and SAX2

is an open standard maintained by David Megginson.4 Because it’s so
simple, there’s not much discussion about the usefulness of the SAX2

API. DOM, though, has always been something of an enfant terrible. Its
inventors wanted the DOM API to work in as many environments and
programming languages as possible. Even COBOL programmers should
have their DOM parser. This requirement turned DOM into the beast
it is today. Ironically, nearly every programming platform now has an
additional convenience API for tree parsing. Java, for example, has
JDOM5 and XOM6.

REXML is no exception to this rule and supports both tree and stream
parsing. For reasons explained in the preceding paragraphs the only
standard API it supports is SAX2. Its tree parsing API is completely
proprietary, but meets the needs of a Ruby programmer much better
than DOM.

Tree Parsing

Easy things should be easy. Turning an XML document into a tree
could not be much easier than this:

File Line 1 require 'rexml/document'

- include REXML

-

- doc = Document.new("<sample>Our first example.</sample>")

5 print doc.root.name, ": ", doc.root.text, "\n"

produces:

sample: Our first example.

The first two lines load the REXML module and include its namespace
into our code, so we don’t have to prefix all its class names with REXML::

over and over again (from now on we’re going to omit these lines). By
calling Document.new() with our little example document in line 4 we
turn a string into an instance of class Document. The new() method
accepts parameters of different types:

4http://www.saxproject.org
5http://www.jdom.org
6http://www.xom.nu

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/parsing/first_rexml_example.rb
http://www.saxproject.org
http://www.jdom.org
http://www.xom.nu
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=93

PROCESSING XML DOCUMENTS 94

• Instances of class REXML::Document will get copied.

• Strings containing XML documents will be parsed and turned into
instances of class REXML::Document.

• Instances of class IO will be read and then parsed. For example,
to parse a file called example.xml you’d call

Document.new(File.new('example.xml'))

Finally, the last line of our example program prints the name and
the content of our document’s root element, which is an instance of
class REXML::Element. Not surprisingly, the root element can be accessed
using a document’s root() method.

Our first successful parsing attempts should give us enough confidence
to tackle our original problem: processing parcel tracking results. Let’s
load and parse our document and play around a bit with its elements
and attributes.

File Line 1 doc = Document.new(File.new('packages.xml'))

- tracking_results = doc.root

- first_parcel = tracking_results.elements[1]

- tracking_no = first_parcel.attributes['tracking-no'] # -> 2X42

All REXML elements (including the root element) have an accessor called
elements containing an array of the element’s children. This array is
indexed starting at 1, not 0, so to get the first child of the root element
you have to call doc.root.elements[1] instead of doc.root.elements[0]. As
a shortcut, you can index the element directly to access its children:
doc.root[1].

Consistently, every element also has an attributes accessor that con-
tains all the element’s attributes. It can be used like a Hash, so the
attribute tracking-no= of our first <parcel-history> element can be found
in doc.root[1].attributes[’tracking-no’].

It’s nice that accessing elements and attributes is easy with REXML,
but it’s not exactly what we need, because we do not know upfront how
many parcel histories we will get from our provider. It would be nice to
be able to iterate over a set of elements matching certain criteria. For
example, we might want to get at all the children of an element with a
certain name. each_element() to the rescue:

File doc.root.each_element('parcel-history') do |ph|

puts ph.attributes['tracking-no']

end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/tree_parse_parcels.rb
http://media.pragprog.com/titles/fr_eir/code/xml/tracking/tree_parse_parcels.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=94

PROCESSING XML DOCUMENTS 95

produces:

2X42

2X43

2X44

It seems that each_element() allows you to iterate over all children hav-
ing a particular name, but that’s only half the story. In fact, each_element()
expects a so-called XPath expression. XPath can be used for describing XPath

nearly arbitrary node sets. We’ll talk more about XPath in Section 3.3,
XPath, on page 111, but for now we’ll try to get by with what we have
already.

File Line 1 require 'time'

- require 'rexml/document'

- include REXML

-

5 Event = Struct.new(:timestamp, :state, :consignee)

-

- class Event

- def to_s

- self.timestamp.strftime('%Y-%m-%d %H:%M') + ": " + self.state

10 end

- end

-

- class ParcelHistory

- attr_reader :tracking_no, :events

15

- def initialize(tracking_no)

- @tracking_no = tracking_no

- @events = []

- end

20

- def add_event(event) @events << event; end

- end

-

- class ParcelHistoryParser

25 def initialize(source)

- @doc = Document.new(source)

- end

-

- def each_parcel

30 @doc.root.each_element('parcel-history') do |ph|

- history = ParcelHistory.new(ph.attributes['tracking-no'])

- ph.each_element("event") do |event_element|

- history.add_event(to_event(event_element))

- end

35 yield history

- end

- end

-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/parcel_parser.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=95

PROCESSING XML DOCUMENTS 96

- private

40

- def to_event(element)

- timestamp = Time::xmlschema(element.attributes['timestamp'])

- state = element.attributes['state']

- consignee = nil

45 if !element.elements['consignee'].nil?

- element.elements['consignee'].text

- end

- Event.new(timestamp, state, consignee)

- end

50 end

-

- parser = ParcelHistoryParser.new(File.new('packages.xml'))

- parser.each_parcel do |history|

- puts history.tracking_no + ":"

55 history.events.each { |e| puts " " + e.to_s }

- end

produces:

2X42:

2005-05-02 04:05: picked-up

2005-05-02 08:30: first-delivery-attempt

2005-05-03 09:05: second-delivery-attempt

2005-05-04 10:15: refused-damaged

2005-05-04 19:07: returns-to-sender

2X43:

2005-05-02 04:25: picked-up

2005-05-02 09:15: delivered

2X44:

2005-05-02 03:55: picked-up

Admittedly, for Ruby this is a really big example, but we will dissect
it class by class. Classes Event and ParcelHistory are only for storage
purposes. Event encapsulates all attributes describing an event in the
lifetime of a parcel and ParcelHistory accumulates a list of such events.

Event is pretty trivial, so we let class Struct create it for us automatically.
In lines 8 to 10 we reopen it to add our own to_s() method. Because
ParcelHistory contains an array (events), which has to be managed “man-
ually”, we could not use Struct to create it, too. Struct should be used
only for the simplest cases, when you have a list of atomic attributes
that do not depend on each other and do not demand any logic while
initializing, setting, and getting them.

The real fun begins on line 13. Class ParcelHistoryParser provides all
the functionality that turns a parcel history document from all sources
supported by the REXML parser into a list of ParcelHistory objects.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=96

PROCESSING XML DOCUMENTS 97

Mixed Content

In line 46 of our parcel parser example we determine the name
of a consignee by calling text() on an instance of Element. In
our case this is perfect, because we expect any <consignee>

element to have exactly one child node of type text. What
would happen if it had more than one? The answer is simple:
text() only returns the first child node of type text.

You have to be careful when dealing with so called mixed
content—elements that have child nodes of different types.
Given the following document:

File doc = Document.new(<<-XML)

<root>

<a>

First!

xyz

Second!

abc

Third!

</root>

XML

the code

puts doc.elements['root/a'].text

produces:

First!

If we use the texts() method, with code like this:

puts doc.elements['root/a'].texts

we’ll instead see

First!

Second!

Third!

Sometimes you do not parse an XML document yourself, but get
it as a REXML::Document object from another method. In these
cases be prepared to get elements that do not contain mixed
content, but more than one text node. Depending on the way
the elements were built, it can happen easily:

File e = Element.new('example')

e.add_text('foo')

e.add_text(Text.new('bar'))

puts e.texts.size # -> 2
Report erratum

Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/text_nodes.rb
http://media.pragprog.com/titles/fr_eir/code/xml/multiple_text_nodes.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=97

PROCESSING XML DOCUMENTS 98

Right at the beginning of our code, in initialize(source), you can see one
of the biggest advantages of dynamic languages such as Ruby: we
initialize the attribute doc with our parsed document without caring
where the document came from originally. As we explained above,
REXML accepts an XML string, an object derived from IO, or another
REXML::Document instance. Automatically, our initialize(source) method
behaves in the same liberal fashion. For unit testing we can feed our
parser with constant strings or files and in production it will probably
get a Socket object or something similar without changing a single line
of code.

Our next method is each_parcel(). It’s a Ruby iterator. Iterators invoke
a block of code for every member of a collection. Within each_parcel()
we iterate over all <parcel-history> elements and for each of these ele-
ments we iterate over all <event> elements. Every <event> element is
converted into an Event object by calling to_event(element) and all the
Event objects are added to their corresponding ParcelHistory object. The
yield() call in line 35 invokes the code block that is associated with
each_parcel(), passing it the current ParcelHistory object.

At the end of our program, we finally use our ParcelHistoryParser to write
the content of our example document to the console. Note that we
have solved only the mechanical part of our problem—we have parsed
the tracking results and represented them in our own class hierar-
chy. Academics call this process deserialization or XML data binding.
Because it really is mechanical there are tools out there that will do it
automatically for you. We’ll have a look at such a tool in Section 3.3,
XML Processing With XmlSimple, on page 120.

For the final solution the results still have to be interpreted—we need
a class that determines the actual state of each package, stores it in
a database, and sends e-mails or SMS messages, but that has nothing
to do with XML. In this section we wanted to show you how you can
process an XML document using the basic functions of REXML.

REXML Stream Parsing

Last Valentine’s Day was chaotic: PragBouquet’s parcel tracking system
nearly broke down under the heavy load. Mother’s Day is looming, so
you did some performance tests and found out that one of the biggest
bottlenecks was the XML processing. Obviously, loading several thou-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=98

PROCESSING XML DOCUMENTS 99

sand tracking results into memory was not a good idea, particularly as
you then process all the tracking results serially anyway.

It would be much better if you could parse the XML documents serially,
element by element. Fortunately REXML’s stream parsing API allows
you to do just that. Stream parsers always work the same way: they
process an XML document character by character and invoke methods
on a so called listener class whenever an interesting event occurs: when
a start tag was found, text was found, a comment was found, and so
on.

You can invoke the REXML stream parser by calling REXML::Document.parse_stream(source,listener),
where source is an XML source and listener is your listener class. Let’s
see what happens if we pass an empty listener.

File class ParcelHistoryListener; end

Document.parse_stream(

File.new('packages.xml'),

ParcelHistoryListener.new

)

This produces:

c:/ruby/lib/ruby/1.8/rexml/parsers/streamparser.rb:37:in ‘send':

undefined method ‘xmldecl' for #<ParcelHistoryListener:0x2ad5620> \

(NoMethodError)

from c:/ruby/lib/ruby/1.8/rexml/parsers/streamparser.rb:37:in ‘parse'

from c:/ruby/lib/ruby/1.8/rexml/document.rb:171:in ‘parse_stream'

from sp_empty_listener.rb:8

Not surprisingly, the stream parser complains that it could not find
the xmldecl() method in our ParcelHistoryListener class. Obviously, this
method is invoked when the stream parser finds an XML declaration,
and that’s the first thing in our tracking results document.

Let’s do some more reverse engineering (that’s more exciting than read-
ing API docs, isn’t it?) by adding method_missing(method_id,*args) to our
listener class. This is a Ruby standard method that’s called whenever
an undefined method is called in an object. method_id is the name of
the method called (as a symbol) and args are any arguments that were
passed to it.

File class ParcelHistoryListener

def method_missing(method_id, *args)

puts "Method '#{method_id.id2name}' was called."

end

end

Document.parse_stream(

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sp_empty_listener.rb
http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sp_method_missing.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=99

PROCESSING XML DOCUMENTS 100

File.new('packages.xml'),

ParcelHistoryListener.new

)

This produces:

Method 'xmldecl' was called.

Method 'comment' was called.

Method 'tag_start' was called.

Method 'text' was called.

Method 'tag_start' was called.

Method 'text' was called.

Method 'tag_start' was called.

Method 'tag_end' was called.

Method 'text' was called.

Method 'tag_start' was called.

...

Method 'tag_end' was called.

Method 'text' was called.

Method 'comment' was called.

Method 'text' was called.

Method 'comment' was called.

Method 'text' was called.

At the very least, the stream parser expects us to implement methods
called xmldecl(), comment(), tag_start(), text(), and tag_end(). We stop
playing detective now and have a look at the complete list of possible
events:

xmldecl(version, encoding, standalone)

Called when the parser encounters an XML declaration. The param-
eters directly reflect an XML declaration’s attributes, so for the
declaration

<?xml version='1.0' encoding='iso-8859-1'?>

the parser would invoke xmldecl(version='1.0', encoding='iso-8859-1',

standalone=nil). Note that the default value for encoding and stan-

dalone is nil, which is different from the XML standard’s default
values (’utf-8’ and ’no’).

tag_start(name, attrs)

Called when the beginning of an element is found. name contains
the element’s name and attrs is an array containing the element’s
attributes, where every list item is a two-dimensional array con-
sisting of the attribute’s name and its value. If the element has no
attributes, attrs is an empty array. For example, given the element

<person name='Homer' age='45'/>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=100

PROCESSING XML DOCUMENTS 101

the parser invokes

tag_start('person', [['name', 'Homer'], ['age', '45']])

tag_end(name)

Called when the end of element <name> was found.

text(text)

Called when text is encountered in the document. For nicely for-
matted documents, this method is invoked more often than you
might think, because by default whitespace in your document is
significant. The actual text is passed as the parameter.

cdata(content)

Called when a CDATA section has been found. Parameter content

contains the content of the CDATA section including all whitespace
characters.

comment(text)

Called when a comment has been found. The comment text is
passed in text without the <!-- and --> sequences.

instruction(target, instruction)

Processing instructions were introduced into XML for passing infor-
mation to particular applications reading a document. They have
the following format:

<?target [instructions depending on application]?>

Common targets are “xml-stylesheet” and “php”. Whenever the
stream parser detects a processing instruction it calls instruction()
setting target and instruction accordingly. For example, the process-
ing instruction

<?xml-stylesheet href='sitestyle.css' type='text/css'?>

would call

instruction("xml-stylesheet", "href='sitestyle.css' type='text/css'")

doctype(root_name, pub_sys, long_name, uri)

Documents may be associated with a DTD that can be used for
validating the document’s content. DTDs come in different flavors:

• <!DOCTYPE root SYSTEM "http://path/to/dtd">

• <!DOCTYPE rss PUBLIC

"-//Netscape Communications//DTD RSS 0.91//EN"

"http://my.netscape.com/publish/formats/rss-0.91.dtd">

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=101

PROCESSING XML DOCUMENTS 102

• <!DOCTYPE books [

<!ELEMENT books (book*)>

<!ATTLIST book title CDATA #IMPLIED isbn CDATA #IMPLIED>

]>

If a document contains a document type declaration (there is only
one allowed), the stream parser calls the doctype() method, set-
ting all parameters accordingly. All attributes that have not been
declared in the document type declaration will be set to nil.

elementdecl(declaration)

Called when an element declaration like “<!ELEMENT books (book*)>”
was found in a document type definition.

attlistdecl(element_name, attributes, raw_content)

Called for every attribute list declaration in a DTD. Parameter ele-

ment_name contains the name of the element the attribute list has
been defined for, attributes is a Hash containing all the attributes
and raw_content contains the original declaration from the DTD.
For example, the declaration

<!ATTLIST book title CDATA #IMPLIED isbn CDATA #IMPLIED>

would result in the following method call:

attlistdecl(

'book',

{ 'title' => '', 'isbn' => ''},

'<!ATTLIST book title CDATA #IMPLIED isbn CDATA #IMPLIED>'

)

entity(entity_name)

Called when an entity reference (such as “%shortcut;”) is found in
a document type declaration.

entitydecl(declaration)

Called when an entity declaration (such as “<!ENTITY ms Maik
Schmidt>”) is found in a document type definition.

notationdecl(content)

If you want to embed non-XML content (such as images or audio
files) in your document, you can describe it in more detail using
so called notations in a DTD. The stream parser calls notationdecl()
when it finds a notation type attribute in a DTD. For

<!NOTATION gif SYSTEM 'image/gif'>

the parser would invoke

notationdecl(['gif', 'SYSTEM', 'image/gif'])

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=102

PROCESSING XML DOCUMENTS 103

This attribute type is rarely used in practice.

That’s a lot of methods, but we already knew that XML is a fairly com-
plex beast. For building our own listener classes it seems that we
have only a few options: we could implement all of the methods above,
leaving some of them empty, or we could implement only the meth-
ods we definitely need and define method_missing() to suppress the rest.
Because this is such a common scenario, REXML has a predefined solu-
tion for it, namely the REXML::StreamListener.

REXML::StreamListener is a template module that can be used when build-
ing your own listeners. It provides an empty implementation for all
methods that can potentially be invoked by the stream parser. You
include it in your listener class:

File Line 1 require 'rexml/streamlistener'

-

- class ParcelHistoryListener

- include StreamListener

5

- def tag_start(tag_name, attrs)

- puts tag_name

- end

- end

10

- Document.parse_stream(

- File.new('packages.xml'),

- ParcelHistoryListener.new

-)

produces:

tracking-result

parcel-history

event

event

event

event

consignee

event

parcel-history

event

event

consignee

parcel-history

event

That’s highly convenient, especially because many of the stream parser
events are related to DTDs, which aren’t used often nowadays.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sp_stream_listener.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=103

PROCESSING XML DOCUMENTS 104

We should not forget that we still have a problem to solve: the tree
parsing approach was too slow and we wanted to enhance it using a
stream parser. Our listener class might look like this:

File Line 1 class ParcelHistoryListener

- include StreamListener

-

- def initialize

5 @in_consignee = false

- end

-

- def tag_start(tag_name, attrs)

- if tag_name == 'parcel-history'

10 @parcel_history = ParcelHistory.new(attrs['tracking-no'])

- elsif tag_name == 'event'

- timestamp = Time::xmlschema(attrs['timestamp'])

- state = attrs['state']

- @event = Event.new(timestamp, state, nil)

15 elsif tag_name == 'consignee'

- @in_consignee = true

- end

- end

-

20 def tag_end(tag_name)

- if tag_name == 'parcel-history'

- puts @parcel_history.tracking_no + ":"

- @parcel_history.events.each { |e| puts ' ' + e.to_s }

- elsif tag_name == 'event'

25 @parcel_history.add_event(@event)

- elsif tag_name == 'consignee'

- @in_consignee = false

- end

- end

30

- def text(value)

- if @in_consignee

- @event.consignee = '' unless @event.consignee

- @event.consignee << value

35 end

- end

- end

-

- Document.parse_stream(

40 File.new('packages.xml'),

- ParcelHistoryListener.new

-)

produces:

2X42:

2005-05-02 04:05: picked-up

2005-05-02 08:30: first-delivery-attempt

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/stream_parse_parcels.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=104

PROCESSING XML DOCUMENTS 105

2005-05-03 09:05: second-delivery-attempt

2005-05-04 10:15: refused-damaged

2005-05-04 19:07: returns-to-sender

2X43:

2005-05-02 04:25: picked-up

2005-05-02 09:15: delivered

2X44:

2005-05-02 03:55: picked-up

Here we have a classical stream parsing example., We only had to
implement three StreamListener methods: tag_start(), tag_end(), and text().
The biggest difference between tree parsing and stream parsing is that
stream parsers force you to maintain state yourself. For example, as
you can see in lines 32 to 35, we are only interested in text nodes if we
are currently in a <consignee> element. Therefore we store this state
in the boolean instance variable @in_consignee.

Method tag_start() is responsible for creating new elements. Whenever
we encounter a new <parcel-history> or <event> element, we create
a corresponding ParcelHistory or Event object and store it in an instance
variable. The only exception to this are <consignee> elements.

But it’s not Standard

Long before XML became more popular among software developers than
caffeine, there were no standards except the XML standard itself. If you
wanted to process XML documents you were forced to write your own
parser or to use one of countless proprietary solutions. To overcome
this awkward situation, a group of developers collaboratively developed
an API on the XML-DEV mailing list and called it Simple API for XML

(SAX). This happened in 1998 and SAX version 1.0 quickly became the
de facto industry standard for XML stream parsing. The current ver-
sion is called SAX2 and was released in 2002. Since then nothing has
changed in the API.

Due to the nature of stream parsing, the proprietary REXML approach
and the SAX2 API are similar. You have to define a listener whose meth-
ods are invoked by the parser, whenever it encounters an interesting
event.

For the sake of completeness we’ll show you the whole REXML::SAX2Listener

class, but we often refer to REXML::StreamListener to avoid redundancy.

start_document()
Called at the beginning of a document.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=105

PROCESSING XML DOCUMENTS 106

end_document()
Called at the end of a document.

start_element(uri, localname, qname, attributes)

Called when the beginning of a new element is encountered. uri

contains the namespace URI of to the element (an empty string
when the element is not associated with a namespace). If the ele-
ment is associated with a namespace, localname contains the ele-
ment’s name without the namespace prefix, otherwise it is empty.
qname contains the element’s qualified name—the name as it appeared
in the XML document. It might be empty for for elements associ-
ated with a namespace URI. attributes contains all the element’s
attributes.

end_element(uri, localname, qname)

Called when the end of an element was encountered.

cdata(content)

See the description in Section 3.3, REXML Stream Parsing, on
page 98.

characters(text)

See description of text() in Section 3.3, REXML Stream Parsing, on
page 98.

comment(comment)

See description in Section 3.3, REXML Stream Parsing, on page 98.

start_prefix_mapping(prefix, uri)

Called at the beginning of a namespace declaration. prefix is the
namespace prefix and uri the namespace URI.

end_prefix_mapping(prefix)

Called at the end of a namespace declaration, when the current
namespace goes out of scope.

processing_instruction(target, data)

See description of instruction() in Section 3.3, REXML Stream Pars-

ing, on page 98.

doctype(name, pub_sys, long_name, uri)

See description in Section 3.3, REXML Stream Parsing, on page 98.

elementdecl(content)

See description in Section 3.3, REXML Stream Parsing, on page 98.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=106

PROCESSING XML DOCUMENTS 107

attlistdecl(element, pairs, contents)

See description in Section 3.3, REXML Stream Parsing, on page 98.

entitydecl(content)

See description in Section 3.3, REXML Stream Parsing, on page 98.

notationdecl(content)

See description in Section 3.3, REXML Stream Parsing, on page 98.

Let’s rewrite our ParcelHistoryListener using the SAX2 parser.

File Line 1 require 'time'

- require 'rexml/parsers/sax2parser'

- require 'rexml/sax2listener'

-

5 class ParcelHistoryListener

- include REXML::SAX2Listener

-

- def initialize

- @in_consignee = false

10 end

-

- def start_element(uri, localname, tag_name, attrs)

- if tag_name == 'parcel-history'

- @parcel_history = ParcelHistory.new(attrs['tracking-no'])

15 elsif tag_name == 'event'

- timestamp = Time::xmlschema(attrs['timestamp'])

- state = attrs['state']

- @event = Event.new(timestamp, state, nil)

- elsif tag_name == 'consignee'

20 @in_consignee = true

- end

- end

-

- def end_element(uri, localname, tag_name)

25 if tag_name == 'parcel-history'

- puts @parcel_history.tracking_no + ":"

- @parcel_history.events.each { |e| puts ' ' + e.to_s }

- elsif tag_name == 'event'

- @parcel_history.add_event(@event)

30 elsif tag_name == 'consignee'

- @in_consignee = false

- end

- end

-

35 def characters(value)

- if @in_consignee

- @event.consignee = '' unless @event.consignee

- @event.consignee << value

- end

40 end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/tracking/sax2_parse_parcels.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=107

PROCESSING XML DOCUMENTS 108

- end

-

- parser = REXML::Parsers::SAX2Parser.new(File.new('packages.xml'))

- parser.listen(ParcelHistoryListener.new)

45 parser.parse

We already knew that both APIs were similar, but isn’t it surprising
how similar they really are? In the ParcelHistoryListener class itself we
had to change only the names and the signature of some methods.
tag_start(tag_name,attrs) became start_element(uri,localname,tag_name,attrs),
tag_end(tag_name) became end_element(uri,localname,tag_name), and text(value)

became characters(value). Instead of StreamListener we had to include
SAX2Listener but not a single line of business logic had to be changed.

Because it’s not part of the REXML::Document class, invoking the parser
is a bit different. Additional parsers can be found in the rexml/parsers

directory and reside in the REXML::Parsers namespace. In the last three
lines of our program, we create the REXML::Parsers::SAX2Parser, pass it our
implementation of a REXML::SAX2Listener, and eventually start the parsing
process.

SAX was originally defined to make XML processing easier for Java, so
its design reflects the typical shortcomings of a more or less static pro-
gramming language. Sean Russel realized this and added some sugar
to REXML that make it more, let’s say, Rubyesque.

For example, if you are only interested in a small subset of your doc-
ument’s nodes, you don’t have to implement a complete listener class.
It’s possible to associate SAX2 events with a code block. To extract all
text nodes from the following document:

File <?xml version="1.0" encoding="iso-8859-1"?>

<todo-list>

<to-do>Write a book.</to-do>

<to-do>Learn a new programming language.</to-do>

<to-do>Don't Repeat Yourself</to-do>

</todo-list>

We could do the following:

File Line 1 require 'rexml/parsers/sax2parser'

-

- todo_list = File.new('todo.xml')

- parser = REXML::Parsers::SAX2Parser.new(todo_list)

5 parser.listen(:characters) { |text| puts "* #{text}" }

- parser.parse

and it produces:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/todo.xml
http://media.pragprog.com/titles/fr_eir/code/xml/extract_todo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=108

PROCESSING XML DOCUMENTS 109

Line 1 *

-

- * Write a book.

- *

5

- * Learn a new programming language.

- *

-

- * Don't Repeat Yourself

10 *

- *

Hmm, that’s not exactly what we expected, is it? The standard entity
' has not been resolved and obviously our code block was called
for all text nodes, i.e. even for those containing only whitespace char-
acters.

REXML’s handling of all things related to DTDs is rudimentary and you
have to do a lot of things yourself that other parsers won’t expect you
to do. It’s a bit annoying, but at least for the XML standard entities we
only have to perform simple text substitutions.

To solve our whitespace problem, we could check if the text that is
passed to the code block is empty. But wouldn’t it be much nicer if we
could tell the parser to call our code block only for <to-do> elements?
Here we go:

File Line 1 def decode_markup(text)

- text.gsub!(/</, '<')

- text.gsub!(/>/, '>')

- text.gsub!(/'/, "'")

5 text.gsub!(/"/, '"')

- text.gsub!(/&/, '&')

- text

- end

-

10 todo_list = File.new('todo.xml')

- parser = REXML::Parsers::SAX2Parser.new(todo_list)

- parser.listen(:characters, ['to-do']) { |text|

- puts "* #{decode_markup(text)}"

- }

15 parser.parse

produces:

* Write a book.

* Learn a new programming language.

* Don't Repeat Yourself

As well as the event to listen for, the listen() method can take a list

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/extract_todo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=109

PROCESSING XML DOCUMENTS 110

of element names. It’s even possible to pass regular expressions that
describe the element names to be matched against.

In the following descriptions of the variants of the listen() method, the
parameters have the following meaning:

• symbol can be one of: :start_element, :end_element, :characters, :cdata,
:start_prefix_mapping, :end_prefix_mapping, :processing_instruction, :doc-

type, :attlistdecl, :elementdecl, :entitydecl, :notationdecl, :xmldecl, :com-

ment.

• array contains regular expressions or strings which will be matched
against fully qualified element names.

• listener is an object implementing all methods of the REXML::SAX2Listener

class.

• block will be passed the same arguments as the according REXML::SAX2Listener

method would get. The method name is the same as the matched
symbol.

You can invoke listen() as follows:

listen(symbol, array, &block)

Listens to the symbol event for all elements in array. For example,

parser.listen(:characters, %w(name surname)) do |text|

puts text

end

prints the text of all <name> and <surname> elements.

listen(symbol, &block)

Calls block whenever the symbol event occurs. For example,

parser.listen(:comment) { |text| puts text }

prints all comments in a document.

listen(array, listener)

Invokes methods of listener only for elements whose name is in
array. For example,

class MyListener

include REXML::SAX2Listener

...

end

parser.listen(%w(to-do), MyListener.new)

invokes listener methods only for <to-do> elements.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=110

PROCESSING XML DOCUMENTS 111

listen(array, &block)

block is called when the :start_element event occurs and the name
of the current element is in array. For example,

parser.listen(%w(order person)) do |uri, localname, qname, attr|

attr.each { |k, v| puts "#{k}=#{v}" }

end

prints all attributes of all <order> and <person> elements.

listen(listener)

Listen to all events and invoke the according methods of the lis-

tener.

class MyListener

include REXML::SAX2Listener

...

end

parser.listen(MyListener.new)

That’s the standard way of SAX2 parsing.

XPath

In Section 3.3, Tree Parsing, on page 93, we saw that the each_element()
method of class REXML::Element accepts an element name or a so-called
XPath expression. According to the official specification7 “XPath is a
language for addressing parts of an XML document, designed to be used
by both XSLT and XPointer.” And that’s exactly how it is: with XPath
you can extract single nodes and node sets matching certain criteria
from an XML document. Simply put, XPath is for XML documents what
regular expressions are for strings.

XPath expressions are not XML documents or document fragments them-
selves: they have their own syntax. We will not fully cover XPath and all
its nitty-gritty details, but we will at least show you enough of its syntax
to move conveniently through typical XML documents using REXML (for
a complete reference see XPath and XPointer [?]).

Besides XPath support in the Element class, REXML has a class called
XPath. This class contains three methods that allow you to select arbi-
trary node sets from a certain element:8

7http://www.w3.org/TR/xpath
8These methods potentially deal with objects of different classes. For example, match()

may return objects of class Element, Attribute, etc.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.w3.org/TR/xpath
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=111

PROCESSING XML DOCUMENTS 112

each(element,xpath=nil,namespaces={})

iterates over all nodes matching xpath in the context of element.
xpath defaults to ’*’. The namespaces Hash may contain a names-
pace mapping.

first(element,xpath=nil,namespaces={})

returns the first node matching xpath in the context of element.
xpath defaults to ’*’. iterates over all nodes matching xpath in the
context of element. xpath defaults to ’*’.

match(element,xpath=nil,namespaces={})

returns all nodes matching xpath in the context of element. xpath

defaults to ’*’.

In the following shortened version of our tracking history document
from Section 3.3, Processing XML Documents, on page 91, we use these
methods to demonstrate how REXML’s XPath support works.

File <tracking-result>

<parcel-history tracking-no='2X42'>

<event timestamp='2005-05-02T04:05:00'

state='picked-up'/>

<event timestamp='2005-05-02T08:30:00'

state='first-delivery-attempt'/>

<event timestamp='2005-05-04T10:15:00'

state='refused-damaged'>

<consignee>Mrs. Smith</consignee>

</event>

<event timestamp='2005-05-04T19:07:00' state='returns-to-sender'/>

</parcel-history>

<parcel-history tracking-no='2X43'>

<event timestamp='2005-05-02T04:25:00' state='picked-up'/>

<event timestamp='2005-05-02T09:15:00' state='delivered'>

<consignee>Mr. Gumble</consignee>

</event>

</parcel-history>

</tracking-result>

We assume that the doc variable has been initialized like this:

File doc = Document.new(File.new('packages.xml'))

Let’s start with some simple examples:

File puts XPath.match(doc, '/tracking-result/parcel-history')[1]

produces:

<parcel-history tracking-no='2X43'>

<event timestamp='2005-05-02T04:25:00' state='picked-up'/>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/packages.xml
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=112

PROCESSING XML DOCUMENTS 113

<event timestamp='2005-05-02T09:15:00' state='delivered'>

<consignee>Mr. Gumble</consignee>

</event>

</parcel-history>

XPath expressions are made up of location paths and location steps. In location paths

location stepsthe example above, the location path is /tracking-result/package-history. It
consists of two location steps, namely /tracking-result and package-history.

As you might have guessed, location steps are separated by a slash, but
the leading slash in the first location step is not a delimiter. Instead,
it identifies the document root. Hence, the first location step identifies
the <tracking-result> child of the document root—the root element.
The second location step identifies all <parcel-history> children of the
preceding element (the <tracking-result> element). Because there are
three of them, match() returns them all as an array. We select the
second one.

We can achieve the same result a bit differently by using XPath’s index
features. Node sets can be treated as arrays and can be indexed using
square brackets:

File puts XPath.first(doc, '/tracking-result/parcel-history[2]')

Did you notice that we used the index 2? It’s true: XPath indices start
at 1, not 0! That’s why the indexing of the elements array of class
REXML::elements starts at 1, too.

It’s also possible to define relative paths: they do not start with a slash.
A more or less obscure way to get all the consignees belonging to deliv-
ered packages could look like this:

File events = XPath.match(

doc,

'/tracking-result/parcel-history/event[@state="delivered"]'

)

events.each do |event|

puts XPath.match(event, 'consignee')

end

It produces:

<consignee>Mr. Gumble</consignee>

XPath expressions are similar to file and directory paths under Unix,
but this analogy cannot be stretched too far. Even in our small example
we have encountered the first big difference: every element may have
an arbitrary number of children having the same name. For example, a
<tracking-result> element may have more than one <package-history>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=113

PROCESSING XML DOCUMENTS 114

child element (which is impossible in file systems). The next big differ-
ence is that we can recursively select nodes. For example, the following
statement

File puts XPath.match(doc, '//consignee')

produces:

<consignee>Mrs. Smith</consignee>

<consignee>Mr. Gumble</consignee>

//consignee selects all <consignee> nodes in the document. The expres-
sion ’//’ is an abbreviation for the descendant-or-self axis. This con- descendant-or-self axis

tains all descendant nodes (not only direct children) belonging to a par-
ticular node, along with the node itself. At the beginning of a location
path, // means “select all nodes in the document” and we refine that by
adding the consignee location step.

The concepts of context and axes are important when working with
XPath, because XPath interpreters see XML documents as trees where
every node has a type and lives in a particular context that defines a
relationship to all other nodes in the tree. For example, our tracking
result document looks to an XPath interpreter like Figure 3.4, on the
following page. It is a tree consisting of 30 nodes (actually, it has many
more because of all the whitespace text nodes belonging to nearly every
element, but we left them out for brevity). Twelve of them are element
nodes, sixteen are attribute nodes and two are text nodes.

Given a particular node, you can easily define node sets that are some-
how related to this node. For an element node, for example, you can
create a set consisting of all its children, all its attributes, all its descen-
dants, all its siblings, and so on. XPath defines some standard ways
to create node sets from a given context node and calls them axes (you
can see them in Figure 3.5, on page 116). To make things more com-
plicated, all axes can not only select nodes by their position, but also
by their type. For example, the descendant-or-self axis we used above
selects all nodes below the current context node, but only if they are
not attribute nodes or namespace nodes.

We could have selected all consignees more verbosely without using the
// abbreviation:

File puts XPath.match(doc, 'descendant-or-self::consignee')

It works the same with all other axes. For example, the following two
statements select all tracking numbers:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=114

PROCESSING XML DOCUMENTS 115

Figure 3.4: Tree Representation of Tracking Results

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=115

PROCESSING XML DOCUMENTS 116

child

All immediate children of the context node.
Selects: element, processing instruction, comment, text

descendant

All descendants of the context node, i.e. all children, grandchil-
dren, and so on.
Selects: element, processing instruction, comment, text

parent

All nodes immediately above the context node. It may include the
root node. Abbreviation: ..
Selects: element

ancestor

All ancestors of the context node, i.e. its parents, grandparents,
and so one. Includes the root node.
Selects: element

preceding-sibling/following-sibling

All siblings preceding (following) the context node having the same
parent. Empty for attribute and namespace nodes. Never includes
the root node.
Selects: Any but attribute and namespace.

preceding/following

All nodes preceding (following) the context node excluding any
ancestors (descendants) and excluding attribute nodes and
namespace nodes. Never includes the root node.
Selects: Any but attribute and namespace.

attribute

All attribute nodes of the context node. Abbreviation: @
namespace

All namespace nodes of the context node.
self

The context node itself. Abbreviation: .
descendant-or-self

The context node and all its descendants. Abbreviation: //
Selects: Any but attribute and namespace.

ancestor-or-self

The context node and all its ancestors. Includes the root node.
Selects: element

Figure 3.5: XPath Axes

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=116

PROCESSING XML DOCUMENTS 117

File puts XPath.match(doc, '//parcel-history/@tracking-no')

File puts XPath.match(doc, '//parcel-history/attribute::tracking-no')

Now we know how to access each node and some particular interest-
ing neighbors of each of them. XPath is concise and elegant in many
respects, but we could have achieved this using iterators and loops,
too.

But XPath can do more for us, i.e. it allows us to use conditions—XPath
calls them predicates—that refine node sets even further. For example, predicates

the following statement locates all events belonging to package 2X43:

File puts XPath.match(doc, '//parcel-history[@tracking-no="2X43"]/*')

and produces:

<event timestamp='2005-05-02T04:25:00' state='picked-up'/>

<event timestamp='2005-05-02T09:15:00' state='delivered'>

<consignee>Mr. Gumble</consignee>

</event>

Here we have selected nodes anonymously—without knowing their names—
by using the asterisk (*). It stands for “select every node you can find.”
Predicates are put in square brackets and can occur after any location
step. They are boolean expressions. Whenever a predicate evaluates to
true the corresponding node becomes part of the result node set. XPath
boolean expressions are usually of the form lvalue op rvalue, where op is
one of the operators shown in Figure 3.6, on the following page.

Predicates can be stacked by chaining them together (with no separa-
tor). For example, the following statement selects all <event> elements
that have been delivered on 2005-05-02.

File puts XPath.match(

doc,

'//event[starts-with(@timestamp, "2005-05-02")][@state="delivered"]'

)

produces:

<event timestamp='2005-05-02T09:15:00' state='delivered'>

<consignee>Mr. Gumble</consignee>

</event>

But wait: what about that first predicate? Apparently, it’s a boolean
expression, but it does not contain an operator. As you might have
guessed already, XPath defines functions, too, and starts-with(string,substring)

is one of them. If string actually starts with substring, this method returns
true, otherwise it returns false.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=117

PROCESSING XML DOCUMENTS 118

Operator Meaning

= Equal to

!= Not equal to

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

Figure 3.6: XPath Boolean Operators

XPath functions are divided into four groups:9

• Node set functions let you perform operations on node sets. For
example, the count(node-set) function returns the number of nodes
in the argument node-set.

• String functions manipulate and compare strings. For instance,
the normalize-space([string]) function returns a normalized repre-
sentation of the argument string (it defaults to the current context
node). It removes leading and trailing whitespace characters and
replaces sequences of multiple whitespace characters by a single
space.

• Boolean functions implement common predicates. For example,
not(expr) returns true, if expr is false. Otherwise, it returns false.

• Number functions help you work with numeric expressions. The
sum(node-set) function, for example, converts the string values of
all nodes belonging to node-set into numbers and returns their
overall sum.

9You can find a description of all functions under
http://www.w3.org/TR/xpath##corelib.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.w3.org/TR/xpath##corelib
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=118

PROCESSING XML DOCUMENTS 119

REXML::Element has one more interesting method, xpath(). It returns
one XPath belonging to a particular element (there’s a nearly infinite
number of XPaths leading to every XML document node). For example,
the following statement

File event = XPath.first(

doc,

'/tracking-result/parcel-history/event[@state="delivered"]'

)

puts event.xpath

produces:

/tracking-result/parcel-history[2]/event[2]

REXML’s XPath support is comparatively good, but its implementation
of the standard functions and some of the more complex features of the
XPath specification is still a work in progress. So, before depending on
a particular function, you’d better test REXML’s support for it.

For example, the union operator does not work as expected. In XPath
it’s possible to join node sets using the | operator. The following expres-
sion should return all state= and all tracking-no= attributes:

File puts XPath.match(doc, '//event/@state | //parcel-history/@tracking-no')

puts XPath.match(

doc,

'//event[@state="delivered"]|//event[@state="picked-up"'

)

Currently, REXML only returns the node set on the left side of the ’|’-
operator. The previous code prints

picked-up

first-delivery-attempt

refused-damaged

returns-to-sender

picked-up

delivered

As with stored procedures in databases it’s usually not a good idea
to put too much of your business logic into XPath expressions (even
simple length constraints can make up a vital part of your business
logic). On the other hand, XPath is probably the most convenient way
to access content of XML documents and the REXML way of life will
certainly change the way you approach your next parsing problem.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xpath/xpath_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=119

PROCESSING XML DOCUMENTS 120

XML Processing With XmlSimple

The attentive reader (and that’s all of you, isn’t it?) might have noticed
that processing XML is often a tedious job, mapping elements to classes
and attributes to member variables. Usually, the classes have the same
name as their corresponding XML elements and the member variables
have the same names as their attribute counterparts. This calls for
automation. Fortunately, a lot of tools exist to free you from this type
of repetitive work.

Depending on the programming environment you’re working in, you
can chose from a variety of tools today ranging from small helper libraries
supporting your own serialization strategy to sophisticated solutions
that automatically create complete class hierarchies and serializer classes
based on XmlSchema files. Java and .NET certainly have the most
mature support for these kind of things, but there are some useful
libraries for Ruby, too.

Grant McLean got fed up writing the same code over and over again and
came up with a clever solution. His Perl module XML::Simple10 con-
verts an XML document into a structure of hashes and arrays according
to some simple rules and conventions. I often used this model back in
the old days when Ruby was nearly unknown so it seemed natural to
port it across when I started using Ruby. The Ruby version, named Xml-

Simple,11 implements nearly 100% of the original’s functionality and
fixes some of its major flaws.

Less talk, more examples! Here we have a configuration file called app-

config.xml, as found in countless projects the world over:

File <?xml version="1.0" encoding="iso-8859-1"?>

<app-config>

<database env='test'>

<usr>developer</usr>

<pwd>foo</pwd>

</database>

<database env='production'>

<usr>admin</usr>

<pwd>secret</pwd>

</database>

10http://www.cpan.org/modules/by-module/XML/XML-Simple-2.14.readme
11It is available as a gem called xml-simple and from

http://raa.ruby-lang.org/project/xml-simple

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.xml
http://www.cpan.org/modules/by-module/XML/XML-Simple-2.14.readme
http://raa.ruby-lang.org/project/xml-simple
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=120

PROCESSING XML DOCUMENTS 121

<http-proxy>

<host>my.proxy.host</host>

<port>8080</port>

</http-proxy>

</app-config>

Configuration files like this are often read when the application starts.
Their content is then made available globally using a singleton class
or something similar. It would be a complete overkill to deserialize its
content manually and to create a corresponding class hierarchy. A
hash containing all configuration parameters would be sufficient. To
achieve this with XmlSimple, do something like the following.

File require 'xmlsimple'

cfg = XmlSimple::xml_in('appconfig.xml')

p cfg

This produces:

{

"http-proxy" => [

{

"port" => ["8080"],

"host" => ["my.proxy.host"]

}

],

"database" => [

{

"env" => "test",

"pwd" => ["foo"],

"usr" => ["developer"]

},

{

"env" => "production",

"pwd" => ["secret"],

"usr" => ["admin"]

}

]

}

XmlSimple turns the XML document into a structure consisting of hashes
and arrays, where every element and attribute name becomes a hash
key pointing to its associated content. Because elements can poten-
tially occur more than once, their values are stored in arrays by default,
while attribute values are not.

Our first result looks promising, but it’s far from being optimal. To
find the password of our production database, for example, we have to

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=121

PROCESSING XML DOCUMENTS 122

search for an entry in the array cfg[’database’], where the value associ-
ated with the key env is “production”.

To adjust the output’s structure, xml_in() accepts an optional hash con-
taining name => value option pairs. The option key_attr controls which
elements should be used as the basis for the array folding. We’ll will set
it to “env”:

File cfg = XmlSimple::xml_in('appconfig.xml', 'key_attr' => 'env')

p cfg

Now we get:

{

"http-proxy" => [

{

"port" => ["8080"],

"host" => ["my.proxy.host"]

}

],

"database" => { # -> No longer an Array.

"production" => {

"pwd" => ["secret"],

"usr" => ["admin"]

},

"test" => {

"pwd" => ["foo"],

"usr" => ["developer"]

}

}

}

That’s much better. Now we can access the production database’s pass-
word using

cfg['database']['production']['pwd'][0]

The arrays containing a single element are still a bit annoying, but we
can get rid of them by setting the parameter force_array to false.

File cfg = XmlSimple::xml_in(nil, 'key_attr' => 'env', 'force_array' => false)

p cfg

The output is simpler:

{

"http-proxy" => {

"port" => "8080",

"host" => "my.proxy.host"

},

"database" => {

"production" => {

"pwd" => "secret",

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.rb
http://media.pragprog.com/titles/fr_eir/code/xml/xmlsimple/appconfig.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=122

VALIDATING XML DOCUMENTS 123

"usr" => "admin"

},

"test" => {

"pwd" => "foo",

"usr" => "developer"

}

}

}

Now the database password can be found in cfg[’database’][’production’][’pwd’].

As we saw, xml_in() expects some kind of XML source and a parameter
hash. The XML source can be:

• a filename, as in

cfg = XmlSimple.xml_in('appconfig.xml')

• nil

If there is no XML source, xml_in() will check the source program’s
directory for a file with the same name as the script but with the
extension .xml. If you wish to specify options, you must specify the
value nil:

cfg = XmlSimple.xml_in(nil, 'force_array' => false)

• a string containing XML (recognized by the presence of ’<’ and ’>’
characters) will be parsed directly. For example:

cfg = XmlSimple.xml_in('<cfg env="test" password="foo" />')

• an IO object will be read and its contents parsed. For example:

cfg = XmlSimple.xml_in(File.new('appconfig.xml'))

XmlSimple is not a full-blown XML data binding tool, but it does just
what you need surprisingly often.

3.4 Validating XML Documents

Because you have to pay for every request to the e-scoring applica-
tion even when it’s syntactically invalid, you decide to validate all XML

documents you’re going to sent before actually transmitting them (all
documents we create using REXML are wellformed, but they do not
have to be valid necessarily). In general, you could chose from vari-
ous validation technologies, using DTDs (Document Type Definition),
XmlSchema, and RELAX NG (Regular Language for XML, New Gener-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=123

VALIDATING XML DOCUMENTS 124

ation)12. Fortunately, the decision with Ruby is easy, because REXML

only supports RELAX NG. That’s good news, because RELAX NG is the
most powerful and most convenient of the three. The bad news is
that REXML’s support for RELAX NG is highly experimental and a lot
of important features do not work at all.

RELAX NG does not allow you to control the lexical appearance of a
document, so you can’t use it to control what kind of quotes you’ve
used for attributes, or the comments or processing instructions that
can be used.

RELAX NG comes in two different syntax styles: XML syntax and com-
pact syntax. Both have their pros and cons, but again the choice is
made easy for Ruby programmers, because REXML does not support
the compact syntax style. To be honest: at the current stage of devel-
opment, REXML’s support for RELAX NG is barely useful, but it’s still
possible to perform some basic validation, if you obey some simple
rules.

Before diving into the details of RELAX NG, let’s revisit our example
document from Section 3.2, Generating XML documents, on page 79.

File <persons>

<person name='Max' surname='Mustermann'>

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

</persons>

Considering only a document’s structure and not its content, a valid
document fulfills the following requirements:

• There’s exactly one root element called <persons>.

• The <persons> element may have one or more <person> children.

• A <person> element has exactly two attributes called name and
surname.

• A <person> element has one <address> child.

• Every <address> element has a <street>, a <city>, and a <postal-
code> child.

12http://www.oasis-open.org/committees/relax-ng

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/persons.xml
http://www.oasis-open.org/committees/relax-ng
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=124

VALIDATING XML DOCUMENTS 125

• The <street>, <city>, and <postal-code> elements may contain
text.

RELAX NG allows us to translate these requirements easily into the XML

syntax:

File <?xml version='1.0'?>

<element xmlns='http://relaxng.org/ns/structure/1.0' name='persons'>

<oneOrMore>

<element name='person'>

<attribute name='name'/>

<attribute name='surname'/>

<element name='address'>

<element name='street'><text/></element>

<element name='city'><text/></element>

<element name='postal-code'><text/></element>

</element>

</element>

</oneOrMore>

</element>

To validate our example document against this schema, we do the fol-
lowing:

File Line 1 require 'rexml/document'

- require 'rexml/validation/relaxng'

- include REXML

-

5 def read_doc(filename)

- doc = IO.readlines(filename).to_s

- doc.gsub!(/\s+</, '<')

- doc.gsub!(/\s+$/, '')

- doc

10 end

-

- begin

- schema = File.new('person_schema.xml')

- validator = Validation::RelaxNG.new(schema)

15 parser = Parsers::TreeParser.new(read_doc('persons.xml'))

- parser.add_listener(validator.reset)

- parser.parse

- rescue Validation::ValidationException => e

- puts "An error occured during validation: #{e}"

20 rescue Exception => e

- puts "An exception occured: #{e}"

- end

As we don’t need to process the document any further, it doesn’t mat-
ter which parser we use for our validation purposes and we arbitrarily
chose the TreeParser. Most of the code should be self-explanatory: in

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/validation/person_schema.xml
http://media.pragprog.com/titles/fr_eir/code/xml/validation/valid_persons.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=125

VALIDATING XML DOCUMENTS 126

lines 14 to 17 we initialize a validator with our schema and pass it to
the parser. If anything goes wrong while validating the document, a
ValidationException exception will be thrown.

But what the heck does read_doc() do? As mentioned earlier, REXML’s
support for RELAX NG validation is full of flaws. One of them is the
incorrect handling of whitespace. Whitespace handling has always
been a complicated issue in XML. When validating documents, it becomes
an even bigger problem. In a formatted XML document, the indentation
before tags automatically is converted into text nodes. So, even if your
element does not allow for text, it actually has some, if you format your
document. The corresponding schema must support it too.

RELAX NG usually works pragmatically with this issue, as it consid-
ers whitespace and empty content equal—you do not have to clut-
ter your schema document with <text> elements only because you
want to lay out your source with white space. REXML currently does
not implement this behavior, so instead of adding countless <text>
elements, read_doc() eliminates all whitespace before ’<’ characters.
Another annoying bug is REXML’s comment handling. There’s no way in
RELAX NG to restrict comments in any way, but if you have a comment
in an XML document you’re trying to validate with REXML it will fail
miserably, because REXML complains about the unexpected comment
node. Finally, REXML does not support the XML header.

xmllint

If you definitely need to validate XML documents against a particular
schema, you can use xmllint.13xmllint is a command line tool that is
available for nearly all operating systems. It checks that a given set
of XML files are well-formed and if they are in compliance with a certain
schema. The following class encapsulates access to the xmllint program.
If there is native schema support someday in Ruby, you’ll be able to
replace the system() call easily.

File Line 1 class Validator

- class << self

- def validate(document, schema)

- option = case schema

5 when /\.dtd$/ then '-valid'

- when /\.xml$/ then '-relaxng'

- when /\.xsd$/ then '-schema'

13http://xmlsoft.org/xmllint

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/validation/validator.rb
http://xmlsoft.org/xmllint
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=126

VALIDATING XML DOCUMENTS 127

- end

- exec_xmllint(document, schema, option)

10 end

-

- private

-

- def exec_xmllint(file, schema, option)

15 rc = system("xmllint -noout #{option} #{schema} #{file}")

- status = $? >> 8

- return true if rc && status == 0

- raise 'ValidationError' if [3, 4].include?(status)

- raise 'UnexpectedError' unless rc

20 end

- end

- end

This solution isn’t particularly efficient, but it’s good enough in many
cases. xmllint’s validation support is excellent. From line 4 to 8 we
determine which options have to be passed to xmllint. In line 15 we
call xmllint and evaluate its return status. First we check if the system()
call succeeded—whether it returned true or false (it will return false,
for example, if xmllint could not be found). Then we determine xmllint’s
return code. xmllint returns 0 if it could parse and validate a document
successfully. If a validation error occurred, it returns 3 or 4. All other
return codes indicate errors.

To validate our sample document you have to do this:

File Line 1 begin

- Validator.validate('persons.xml', 'person_schema.xml')

- rescue => ex

- puts ex

5 end

Conclusion

Validation of XML documents using any kind of schema is not as use-
ful as it might initially seem; as a careful and defensive programmer
you will check the restrictions defined in the schema in your program
anyway. Validation only makes sense when you generate the code com-
pletely from a schema or when you generate documents that are going
to be consumed by other applications.

Ruby’s support for any kind of XML schema language is currently weak.
If you are in need of high performance XML validation, you will have to
look for alternatives or—even better—implement a libxml2 binding for
Ruby.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/validation/validator.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=127

ARE THERE ALTERNATIVES TO XML? 128

3.5 Are There Alternatives to XML?

Data representation is one of the most important things in our busi-
ness; you shouldn’t take it lightly. Sometimes you do not have a choice.
If you have to deal with legacy data, you usually have to eat what has
been served.

Although XML is a comparatively young technology, for some people
it seems hard to remember the dark and ancient times without XML.
Today nearly every program offers functions for importing or exporting
XML or can be configured by editing one or more XML files.

Many developers do not think about alternative file formats anymore.
“XML is a standard and I get a parser for free, so why should I use
something else or even invent something new?”, they say. Certainly
this is true under some circumstances, but more often than not you’re
better off, if you think about alternatives.

As a rule of thumb you should try to avoid XML, when you know that
human beings have to read or edit the documents. It’s OK for machines
to do it, because that’s what they were built for, but you do not want
your customers to learn the secrets of wellformedness. Even if your
customers are programmers, they will be deeply grateful, if you offer
them the most convenient way to achieve their goals.

You should not use XML only because you get a parser for free. James
Duncan Davidson did this when he created the Java build tool Ant and
today he publicly regrets having done it 14, because looking back XML

wasn’t an adequate choice. It does not fit the needs of a build tool and
we’ll see a much better approach in Section 6.5, Project Automation with

Rake, on page 293.

XML is quite a misnomer, because it is not a language itself but a set
of rules for describing markup languages. You should never consider
using XML for the description of a programming language. Probably
the most obvious example of this kind of misuse is the eXtensible
Stylesheet Language (XSL) 15.

Despite all this XML should be part of every developer’s toolbox, because
it is widespread and can be handy under certain circumstances, but
you should always keep in mind: There’s no such thing like “cool tech-

14http://web.archive.org/web/20040602210721/x180.net/Articles/Java/AntAndXML.html
15http://www.w3.org/Style/XSL

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=128

ARE THERE ALTERNATIVES TO XML? 129

nology”. There are only tools that help you to get your job done, and
there are tools that don’t.

Comma-Separated Values (CSV)

Although there is no official standard, the Comma-Separated Values Comma-Separated

Values
(CSV) format may well be the most popular data exchange format ever
16, because countless spreadsheet and database applications use it for
importing and exporting data.

Simply put, a CSV file is a plain text file containing tabular data where
every line represents a table row and where all columns (fields) are
separated by a delimiter. The lines themselves are usually separated
by a carriage return. If a column contains the delimiting character or
a carriage return, quotes will be put before and after its value. If the
value contains quotes, too, the quotes will be doubled. Optionally the
first line of the file may contain the column names (separated by the
delimiter, too).

Here we have a CSV representation of some bunches of flowers:

File id,name,price,description

1,Red Dream,79.99,"Lots of red roses saying ""Come back, please!"""

2,Blue Velvet,29.99,Your Mom will love it.

Because the description of the “Red Dream” data set contains a comma,
we had to set it in quotes. Consequently, we had to double all the
quotes in the description, too.

The name Comma-Separated Values is quite a misnomer, because today
it’s used for all kind of formats where a set of attributes is separated
by special characters. For every file you have to be consistent about
the delimiter, i.e. all attributes in every line have to be separated by
the same character. Frequently used delimiters are ;, :, |, blanks, and
tabulators. Hence, pedantic people call the format Character-Separated

Values nowadays. Character-Separated

Values

You might be tempted to create and read CSV files using strings and
regular expressions, but beware: it’s not as easy as it seems and there
are a lot of pitfalls lurking. In addition, Hiroshi Nakamura’s excellent
CSV library in the meantime became part of the standard distribution
and makes both reading and writing CSV data a breeze.

16Under http://en.wikipedia.org/wiki/Comma-separated_values you’ll find a lot of
interesting background information.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/csv/products.csv
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=129

ARE THERE ALTERNATIVES TO XML? 130

Generating Comma-Separated Values

For generating CSV data we use the generate(stream,fs=',',rs=nil, &block)

method of class CSV::Writer. Parameter stream is an object support-
ing the <<(string)-operator, fs is the field separator to be used (comma
by default), rs is the record separator to be used (carriage return by
default), and block is a code block to be called for every line to be gen-
erated. The code block gets a single parameter of class CSV::BasicWriter.

To generate our list of flowers using a semicolon as delimiter, we have
to do the following:

File Line 1 require 'csv'

- CSV::Writer.generate(STDOUT, ';') do |csv|

- csv << [1, 'Red Dream', 'Red roses saying "Come back, please!"']

- csv << [2, 'Blue Velvet', 'Your Mom will love it.']

5 end

produces:

1;Red Dream;"Red roses saying ""Come back, please!"""

2;Blue Velvet;Your Mom will love it.

Did you notice that CSV::Writer enclosed our “Red Dream” description
in quotes, although it does not contain the delimiter? Always keep in
mind: There is no CSV standard and whenever you have to create or
process CSV files, you should talk to the sender or recipient of the files
upfront. Maybe Hiroshi’s library does not emit what your counterpart
expects or vice versa.

Processing Comma-Separated Values

You already guessed it: the CSV library contains a CSV::Reader class for
reading CSV files. The following program produces a price list of our
flavorsome products:

File Line 1 require 'csv'

- CSV::Reader.parse(File.open('products.csv', 'r')) do |row|

- puts "#{row[1]}: #{row[2]}"

- end

produces:

name: price

Red Dream: 79.99

Blue Velvet: 29.99

Obviously we forgot to ignore our header line and the parse(stream,fs=',',rs=nil,

&block) method of class CSV::Reader does not offer a possibility to ignore

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/csv/write_csv.rb
http://media.pragprog.com/titles/fr_eir/code/xml/csv/read_csv.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=130

ARE THERE ALTERNATIVES TO XML? 131

it. Hence, we will use open(path, mode, fs=nil, rs=nil, &block) to get an
instance of CVS::Reader:

File Line 1 csv = CSV.open('products.csv', 'r')

- header = csv.shift # Ignore header line.

- csv.each { |row| puts "#{row[1]}: #{row[2]}" }

- csv.close

produces:

Red Dream: 79.99

Blue Velvet: 29.99

Normally, you would not ignore the header, but use it to dynamically
create objects or reports. The following program dynamically creates a
list of Product classes from our CSV file:

File Line 1 require 'csv'

- csv = CSV.open('products.csv', 'r')

- Product = Struct.new(*(csv.shift.map { |f| f.to_sym }))

- products = csv.inject([]) do |products, row|

5 products << Product[*row]

- end

- csv.close

-

- products.each do |p|

10 puts "#{p.name}: #{p.price}"

- end

produces:

Red Dream: 79.99

Blue Velvet: 29.99

That’s the Ruby way of life and nearly all the magic comes from line
3, where we create a new Product class on the fly by using class Struct.
Let’s dissect this line from the inside out: csv.shift.map { |f| f.to_sym} reads
the header line from our CSV file and turns all columns into a symbol
by calling to_sym(). The result is an array of symbols that is converted
into a parameter list using the asterisk. This parameter list is then
used to create a new Struct called Product. Our newly created class has
accessors for all the header columns (id, name, price, description) and
new instances can be created using the new() or []-operator (as shown
in line 5).

Skimming the documentation of the CSV library is not a bad idea,
because it contains some convenient methods (like foreach() and read-

line()) we didn’t cover here.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/csv/read_csv.rb
http://media.pragprog.com/titles/fr_eir/code/xml/csv/product_generator.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=131

ARE THERE ALTERNATIVES TO XML? 132

Properties Files

Properties files can be often found in Java environments and it happens Properties files

sometimes that you have to add a program to an existing enterprise
Java project that has to use the same configuration as the project. For
example, the HTTP proxy and database parameters are typically the
same for many applications running on the same machine.

Simply put, a property is a value associated with a unique key and a
properties file is a file containing such key/value pairs. Keys and values
are separated by “=” or “:” characters and logical lines can comprise
more than one physical line. A typical properties file looks like this:

File ! Comments start with '!'...

... or with '#'.

ruby = pragmatic

A property spanning two lines.

broken_value = This value is \

long.

colon_prop: hello

A property spanning three lines.

fruits: apple, banana, pear, \

cantaloupe, watermelon, \

kiwi, mango

http.proxyHost=example.com

http.proxyPort=8080

Although the original specification is much more complicated (e.g., it
allows “:” and “=” characters in keys and Unicode characters), the fol-
lowing class should understand enough of the Java properties syntax
to process most properties files out there.

File Line 1 class PropertiesFile

- def initialize(file_name)

- @properties = load_props(file_name)

- end

5

- def [](key) @properties[key]; end

- def to_hash() @properties; end

-

- private

10

- def load_props(file_name)

- properties = {}

- file = File.new(file_name)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/properties/regular.properties
http://media.pragprog.com/titles/fr_eir/code/xml/properties/propfile.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=132

ARE THERE ALTERNATIVES TO XML? 133

- while !file.eof? do

15 line = get_line(file)

- next if line =~ /^[#!]/ or line =~ /^\s*$/

- if line =~ /^\s*(\S+)\s*[=:]\s*(.*)$/

- properties[$1] = $2

- end

20 end

- file.close

- properties

- end

-

25 def get_line(file)

- current_line = file.readline.chomp

- while current_line =~ /^(.*)\\$/

- next_line = file.readline.chomp

- current_line = $1 + next_line.gsub(/^\s*(.*)$/, '\\1')

30 end

- current_line

- end

- end

Feeding our sample file to our class produces:

require 'propfile'

properties = PropertiesFile.new('regular.properties')

properties.to_hash.each do |k,v|

puts "#{k}: #{v}"

end

broken_value: This value is long.

http.proxyPort: 8080

fruits: apple, banana, pear, cantaloupe, watermelon, kiwi, mango

colon_prop: hello

ruby: pragmatic

http.proxyHost: example.com

Fixed Length Records

One of the oldest and simplest file formats in the history of computer
science is fixed length records, where every line of a file is divided into
several fields having a fixed length. A fixed length record file containing
a credit card number (19 characters), a first name (20 characters) and
a surname (30 characters) looks like this:

File Line 1 1234-5678-9012-3456Barney Gumble

- 1111-2222-3333-4444Homer Simpson

Even in times of seemingly unlimited resources we still have to think
about maximum sizes surprisingly often. For instance, relational databases
still force us to define the maximum length of columns (How long can
a surname or a street name be? In North America? In Iceland?)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/fixlength/customers.fix
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=133

ARE THERE ALTERNATIVES TO XML? 134

and therefore database exports are often files containing fixed length
records. But using fixed length records can also be a natural choice,
because the size of a lot of data, e.g. social security or credit card
numbers, is limited anyway.

Hence, files containing fixed length records are still in widespread use
today and processing them with Ruby is easy:

File class FixedLengthRecordFile

def FixedLengthRecordFile.open(filename, field_sizes)

field_pattern = 'a' + field_sizes.join('a')

IO.foreach(filename) do |line|

record = line.chomp.unpack(field_pattern)

record.map { |f| f.strip! }

yield record

end

end

end

File FixedLengthRecordFile.open('customers.fix', [19, 20, 30]) do |row|

puts "#{row[1]}, #{row[2]} (#{row[0]})"

end

produces:

Barney, Gumble (1234-5678-9012-3456)

Homer, Simpson (1111-2222-3333-4444)

The main work in our class is done by the unpack(format) method, which
is a string tokenizer on steroids, that can be used whenever you have to
dissect a string of bytes. It expects a format string consisting of single-
letter commands and returns an array of all values extracted from the
string.

In our case we dynamically construct a format string that extracts
sequences of ASCII characters from a string. An “a” followed by a num-
ber means "extract this amount of ASCII characters". For our customer
example it is “a19a20a30”, i.e. extract 19 characters, then 20 char-
acters, and finally 30 characters. It should be obvious that it’s not
possible to process binary data using our class.

YAML Ain’t Markup Language (YAML)

You probably won’t have to integrate your software with existing YAML

documents in your enterprise. But, in the Ruby world, YAML is popular,
maybe even more popular than XML. So let’s spend a few pages looking
at YAML.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/fixlength/fixfile.rb
http://media.pragprog.com/titles/fr_eir/code/xml/fixlength/read_fix_customers.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=134

ARE THERE ALTERNATIVES TO XML? 135

YAML stands for “YAML Ain’t Markup Language.” That’s no lie: YAML

actually does not define markup sequences the way XML does. Instead,
it specifies a small set of simple rules for formatting structured data
without much clutter, using plain text. YAML is available not only for
Ruby, but also for Python, PHP, and Perl.17

The following YAML file (themes.yaml) represents a list of wrapping paper
themes. It shows examples of array elements, which start with a -
symbol and are separated by newline characters.

File - red hearts

- lovely smileys

- rainbows

To load and parse the file, we use the YAML parser written by why the

lucky stiff:

File Line 1 require 'yaml'

- themes = YAML::load_file('themes.yaml')

- puts themes.class

- puts themes.join("\n")

This prints:

Array

red hearts

lovely smileys

rainbows

Obviously, the parser knows how to turn our list back into a native
Ruby Array, but does it work the other way around, too?

File Line 1 include YAML

- puts %w(a spectacular example).to_yaml

produces:

- a

- spectacular

- example

When you include YAML, every object gets a to_yaml() method that returns
its YAML representation. That whets our appetite; let’s see how YAML

treats other data types:

File Line 1 [

- 'PragBouquet',

- :aSymbol,

- 42,

5 3.14,

17http://www.yaml.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/themes.yaml
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://www.yaml.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=135

ARE THERE ALTERNATIVES TO XML? 136

- true,

- { 'chunky' => 'bacon', 'answer' => 42},

-].each do |obj|

- puts "#{obj.class}#to_yaml:\n#{obj.to_yaml}\n"

10 end

produces:

String#to_yaml:

PragBouquet

Symbol#to_yaml:

:aSymbol

Fixnum#to_yaml:

42

Float#to_yaml:

3.14

TrueClass#to_yaml:

true

Hash#to_yaml:

answer: 42

chunky: bacon

All the basic data types (Fixnum, Float, Boolean, and String) seem to be
encoded as ordinary Ruby literals. The encoding of Hash objects looks
intuitive, too.

By default, every sequence of characters starting with an alphanumeric
character is a String object in YAML unless it matches the more fine-
grained rules for other data types.

As usual, symbols start with a colon (keep in mind that YAML is not
specific to Ruby, so it has no specific syntax for symbols, as they do
not exist in all dynamic languages.). Integer objects are sequences of
digits that may start with an optional sign character (+ or -). They
may contain commas for better readability, so -1,234 will be interpreted
as an integer. Boolean values are represented by true and false. Float

objects are two sequences of digits separated by a period (’.’). They may
start with an optional sign character and in contrast to Ruby’s literals
for Float objects, the scientific notation for floating point numbers is
allowed in YAML.

Hash objects are represented as key/value pairs where key and value
are separated by a colon and each pair is separated by a newline char-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=136

ARE THERE ALTERNATIVES TO XML? 137

acter.

Now we know how Ruby’s standard types are represented in YAML, let’s
look at more complex structures. When running this little program

File Line 1 [

- [%w(a nested list)],

- ['another', %w(more deeply), 'nested', 'list'],

- ['a', { 'list' => 'of', 3 => 'different' }, 'objects'],

5 { 'that' => %w(is getting), 'really' => { 'very' => 'complex'}}

-].each do |obj|

- puts "#{obj.inspect}.to_yaml:\n#{obj.to_yaml}\n"

- end

we get the following result:

[["a", "nested", "list"]].to_yaml:

- - a

- nested

- list

["another", ["more", "deeply"], "nested", "list"].to_yaml:

- another

- - more

- deeply

- nested

- list

["a", {"list"=>"of", 6=>"different"}, "objects"].to_yaml:

- a

- list: of

3: different

- objects

{ "that"=>["is", "getting"], "really"=>{"very"=>"complex"}}.to_yaml:

really:

very: complex

that:

- is

- getting

No big deal: nested Arrays and Hashes are encoded by indenting the
nested elements with leading spaces. The number of characters used
for indentation doesn’t matter, but it has to be consistent, so if the first
element is indented by four characters, the following elements have to
be indented by four characters, also.

As there are no more standard types left, let’s have a look at other
interesting objects.

File Line 1 Flower = Struct.new(:name, :price)

- [

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=137

ARE THERE ALTERNATIVES TO XML? 138

- Time.now,

- Flower.new('rose', 1.99),

5 /even regexes/i,

- 'a'..'f'

-].each do |obj|

- puts "#{obj.class}#to_yaml:\n#{obj.to_yaml}\n"

- end

This is how our objects are “yamlfied”:

Time#to_yaml:

2005-11-06 13:13:41.536822 +01:00

Flower#to_yaml:

!ruby/struct:Flower

name: rose

price: 1.99

Regexp#to_yaml:

!ruby/regexp /even regexes/i

Range#to_yaml:

!ruby/range

begin: a

end: f

excl: false

Timestamps and dates are encoded in iso-8601 format or—as shown
in the example above—a slight variation where you can put spaces
between the date, time, and time zone. Struct objects begin with !ruby/struct:<struct
name>, followed by the members of the Struct object, listed as colon-
separated key/value pairs. Regular expressions are encoded by putting
!ruby/regexp in front. Finally, the representation of Range objects starts
with the !ruby/range sequence, followed by the three attributes begin,
end, and excl, corresponding to the range definition.

Now let’s see how YAML encodes objects created from the classes you
write.

File Line 1 class CustomClass

- attr_accessor :a_hash, :an_array, :a_timestamp

- end

-

5 custom_class = CustomClass.new

- custom_class.a_hash = { 'how' => 'boring' }

- custom_class.an_array = %w(still awake?)

- custom_class.a_timestamp = Time.now

- puts custom_class.to_yaml

prints:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=138

ARE THERE ALTERNATIVES TO XML? 139

!ruby/object:CustomClass

a_hash:

how: boring

a_timestamp: 2005-11-07 19:36:54.477093 +01:00

an_array:

- still

- awake?

That should be fairly self explanatory.

We’re looked at YAML serializing data. It can also deserialize data. If,
for example, the file demo.yaml is as follows

File - 42

- ~

- null

- true

- 1.2345

- :aSymbol

- 2005-11-07

- 1972-09-30T03:42:17.0+01:00

- !ruby/object:CustomClass

a_hash:

how: boring

a_timestamp: 2005-11-07 19:36:54.477093 +01:00

an_array:

- still

- awake?

and we parse it like this

File Line 1 p YAML::load_file('demo.yaml')

then we get the following (manually formatted) output:

[

42, nil, nil, true, 1.2345, :aSymbol,

#<Date: 4907363/2,0,2299161>, Sat Sep 30 03:42:17 CET 1972,

#<CustomClass:0x392ffc

@a_hash={"how"=>"boring"},

@a_timestamp=Mon Nov 07 19:36:54 CET 2005,

@an_array=["still", "awake?"]>

]

Conclusion

YAML is a useful technology and its Ruby support is excellent. It still
has many more useful features we didn’t cover here.18 For example,
you can put several documents into a single file and you can define

18Visit http://yaml4r.sourceforge.net/cookbook to learn every little detail.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/xml/yaml/demo.yaml
http://media.pragprog.com/titles/fr_eir/code/xml/yaml/yaml_demo.rb
http://yaml4r.sourceforge.net/cookbook
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=139

ARE THERE ALTERNATIVES TO XML? 140

references to particular entries in a document and use them wherever
you want. The next time you need a data format, you should give YAML

a chance...

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=140

Chapter 4

Low Ceremony Distributed
Applications

Few technologies have changed the IT landscape the way networks
have. Today networks are ubiquitous. Some key players claim that
the network is the computer. Think about it for a moment: when was
the last time you switched on your computer and did not immediately
connect to the internet? When was the last time you started your office
PC and did not log in to a server using ssh or telnet?

Yes, it’s true: networks have changed the way we think about comput-
ers significantly. They’ve changed the way we think about applications,
too. Nowadays, even small applications often depend on distributed
architectures where parts of a program are made available using net-
work technologies. That’s obvious on the internet, where you can freely
use services offered by Amazon.com or Google. By sending simple HTTP

requests you get back information about a book, or you can search for
news about your favorite football team.

Big companies in the banking or telecommunications business were
the first to adapt to the distributed applications paradigm. Because
these companies often are spread across different continents, they were
motivated to find ways to implement a feature or a function only once
and to reuse it wherever it is possible. Today it’s so easy to implement
inter-process communication that nearly every company can benefit
from using the technology.

You do not have to use heavy-weight industry standards like SOAP or
CORBA to make your processes talk to each other. In this section we’ll

Prepared exclusively for Jacob Hochstetler

“I’D RATHER USE A SOCKET” 142

show you how to use plain sockets and pure HTTP to separate concerns
and to distribute business logic across process boundaries.

4.1 “I’d Rather Use a Socket”

On a conference panel in 2003 someone asked Robert C. Martin about
the future of SOAP. After listening to the answers of his panelists, Uncle
Bob replied: “I’d rather use a socket.”1. He is right: more often than
not it’s sufficient to use some plain text files and a socket instead of
huge databases and complex middleware. So, let’s start by looking at
this simple approach.

Using plain sockets in an efficient and platform-independent manner
isn’t trivial; handling multi-threading issues and the like can become
fairly complicated. If you’re really interested in the nitty-gritty details of
socket programming, you should have a look at Unix Network Program-

ming [?] and the appendix of Programming Ruby [?]. Fortunately, there
are a off-the-shelf solutions available in Ruby’s standard distribution.

Ruby comes with a class called GServer which helps in the creation of
generic TCP servers. Written by John W. Small, GServer deals with stuff
like connection handling and distributing requests to different threads,
leaving you to implement the business logic. The unavoidable echo
server example that sends back everything it gets looks like this:

File Line 1 require 'gserver'

-

- class Parrot < GServer

- def initialize(host = 'localhost', port = '3333')

5 super(port, host)

- end

-

- def serve(client)

- text = client.gets

10 client.puts(text)

- end

- end

-

- lora = Parrot.new

15 lora.start

- lora.join

On line 3 we derive our class Parrot from GServer, initializing it on line
5. The serve(client) method gets called whenever a client connects to

1http://www.artima.com/weblogs/viewpost.jsp?thread=4846

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/echosrv.rb
http://www.artima.com/weblogs/viewpost.jsp?thread=4846
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=142

“I’D RATHER USE A SOCKET” 143

our server. After reading what the client has to say, it sends it back
as an echo. As you might have guessed already, start() starts the server
and the join() method ensures that all running threads finish their work
before shutting down the server. Here we have a recording from a live
performance:

mschmidt:/tmp> telnet localhost 3333

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ Do you wanna have a cookie

⇒ Do you wanna have a cookie

Connection closed by foreign host.

mschmidt:/tmp>

The PragBouquet Status Monitor

Because building a server with GServer is so easy, we will try to solve
a problem that has been around for a long time now at PragBouquet.
Nearly every application running at PragBouquet writes a log file, often
used for trouble shooting. Unfortunately, not all of them (to be exact:
no two of them) use the same format and the files are scattered across
several file systems. Even if you’re lucky and eventually find the file
that should contain the information you need to resolve a trouble ticket
initiated by one of your best (and probably most choleric) customers,
chances are good that it has been overwritten already and no backup
is available.

To overcome this situation we will create a status monitor, a TCP server
whose only purpose is to centrally store messages sent by PragBouquet
applications. Each message belongs to a certain application and is
tagged with a severity level (warn, error, fatal). You might be wondering
“Hey, why rewrite syslogd?”, but our little server differs from syslogd in
a lot of ways: it’s used exclusively by PragBouquet applications, we can
decide where and how to store our log messages, special actions can
be triggered for certain log levels, and it’s platform-independent—it will
run on Unix boxes as well as on Windows PCs.

Release candidate 1 of status monitor V0.0.1b only writes messages to
STDOUT. It looks like this:

File Line 1 require 'logger'

- require 'gserver'

-

- class StatusMonitor < GServer

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=143

“I’D RATHER USE A SOCKET” 144

5 def initialize(host = '127.0.0.1', port = '3333')

- super(port, host)

- @level_map = {

- 'w' => 'warn', 'e' => 'error', 'f' => 'fatal'

- }

10 @logger = Logger.new(STDOUT)

- end

-

- # Expects CSV data in the following format:

- # level,application,message.

15 def serve(client)

- level, app, msg = client.readline.chomp.split(',', 3)

- if @level_map.has_key?(level)

- @logger.send(@level_map[level], "#{app}: #{msg}")

- client.puts('0')

20 else

- client.puts('1')

- end

- end

- end

25 sm = StatusMonitor.new

- sm.start

- sm.join

Let’s test it using good old telnet:

mschmidt:/tmp> telnet localhost 3333

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ f,billing,Lost connection to payment gateway.

⇒ 0

Connection closed by foreign host.

mschmidt:/tmp>

Our request has been successful (0 was returned). The corresponding
server output looks like this:

F, [2005-09-03T16:32:03.952707 #1124] FATAL -- : billing: \

Lost connection to payment gateway.

Line 18 shows a nice Ruby trick; it dynamically invokes a method on
our logger object using send(symbol, [, args...]) (to read more about the
Logger class, see Section 6.2, Logging, on page 250).

By the way: if you don’t want to test your GServer objects using old-
fashioned manual prodding with telnet, you can easily use ordinary
unit tests, too. Thanks to the magic of duck typing (see the sidebar, on
page 146), you can pass any object to the server() method that responds
to the readline() and puts() methods. StringIO works well:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=144

“I’D RATHER USE A SOCKET” 145

File Line 1 require 'test/unit'

- require 'stringio'

- require 'status_monitor'

-

5 class StatusMonitorTest < Test::Unit::TestCase

- def setup

- @server = StatusMonitor.new

- end

-

10 def test_empty_string

- result = simulate_request("\n")

- assert_equal('1', result)

- end

-

15 def test_invalid_level

- result = simulate_request("x,foo,invalid level\n")

- assert_equal('1', result)

- end

-

20 def test_normal_case

- result = simulate_request("e,foo,normal case\n")

- assert_equal('0', result)

- end

-

25 def simulate_request(request)

- client = StringIO.new(request)

- @server.serve(client)

- client.string[request.size - 2 .. -2]

- end

30 end

produces:

Loaded suite sm_test

Started

..E, [2005-10-14T08:00:54.960679 #374] ERROR -- : foo: normal case

.

Finished in 0.012851 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

For the unit tests, we initialize StringIO objects with messages that poten-
tial clients could send to the status monitor. The StatusMonitor’s serve()
method doesn’t care what class its clients belong to, and happily reads
requests from a StringIO object and writes results to it.

The main work is done by the simulate_request() method. This calls the
serve() method, passing it a StringIO object. To read the result on line 28,
we have to ignore the message that is still in the StringIO object and we
have to ignore the line feed the server sends at the end of the message.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sm_test.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=145

“I’D RATHER USE A SOCKET” 146

Duck Typing

Ruby is an object-oriented language. Where there are objects,
classes and types are usually not far away. However, in con-
trast to Java or C++ programs Ruby programs are not cluttered
with type declarations. In Ruby, the type of variables, methods,
and method parameters do not have to be explicitly declared.
Despite this, all Ruby objects have a certain type.

However, when you’re programming in a dynamic language
you soon realize that the most important question about a par-
ticular object is normally not “What’s its class, and what are all
the methods it responds to?” but instead “Does the object at
hand respond to foo()?”

That’s were the duck analogy comes from: if it walks like a duck
and talks like a duck, then it will be treated as if it were a duck.
No matter, if it actually is one or not.

This situation is not uncommon even in apparently statically
typed languages. For example, Java programmers expect
every object to have a toString() method. In Java, this is
because all objects are derived from the omnipresent Object
class. The implementation is different, but the principle is the
same: you want a particular object to respond to a certain
message; its class doesn’t matter much to you.

Our implementation of the GServer’s serve(client) method
doesn’t care about client’s class: it doesn’t declare its type and
it doesn’t check if it is actually is some kind of TCP socket. It
only expects client to respond to methods called readline() and
puts(text).

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=146

“I’D RATHER USE A SOCKET” 147

Status Monitor Clients

The biggest problem with servers is that they are totally useless without
a client. In our case, we have to create one for every programming lan-
guage PragBouquet uses. Although this may seem like a lot of redun-
dancy, it’s always a good idea to provide programmers with the highest
degree of flexibility. If there is no status monitor client library for Java,
they will not use it (the status monitor, of course. Not Java). If you
think that the status monitor is a GOOD THING and you want your
colleagues to use it, then you have to make it as painless as possible to
do so.

Currently, there are not many Ruby applications in the PragBouquet
environment, but we want to be prepared. Feeding our status monitor
from Ruby programs can be accomplished using class TCPSocket:

File Line 1 require 'socket'

-

- class StatusMonitorClient

- WARN = 'w'

5 ERROR = 'e'

- FATAL = 'f'

-

- def initialize(host, port)

- @sm = TCPSocket.new(host, port)

10 end

-

- def warn(app, msg) log(WARN, app, msg); end

- def error(app, msg) log(ERROR, app, msg); end

- def fatal(app, msg) log(FATAL, app, msg); end

15

- def terminate() @sm.close; end

-

- private

-

20 def log(level, app, msg)

- @sm.puts [level, app, msg].join(',')

- @sm.readline

- end

- end

At the heart of class StatusMonitorClient is the log(level,app,msg) method.
It sends a string to the status monitor and reads back the result.
Because TCPSocket objects behave like any other IO instance, it’s easy
to implement.

You can use this class as follows:

File Line 1 sm = StatusMonitorClient.new('127.0.0.1', 3333)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=147

“I’D RATHER USE A SOCKET” 148

- # ...

- sm.fatal('billing', 'Lost connection to payment gateway.')

- # ...

5 sm.terminate

One of the most important clients will be the Java client, because it
has been the programming language of choice for a long time at Prag-
Bouquet. As we did with the Ruby client, we won’t go abstracting too
much. At the same time, adding a little layer on top of the TCP stack
will certainly pay off in the future.

File Line 1 import java.io.*;

- import java.net.*;

-

- public class StatusMonitor {

5 public static final String WARN = "w";

- public static final String ERROR = "e";

- public static final String FATAL = "f";

-

- public StatusMonitor(final String host, final int port)

10 throws UnknownHostException, IOException

- {

- _sm = new Socket(host, port);

- _out = new PrintWriter(_sm.getOutputStream(), true);

- _in = new BufferedReader(

15 new InputStreamReader(_sm.getInputStream())

-);

- }

-

- public int warn(final String app, final String msg)

20 throws IOException

- {

- return log(WARN, app, msg);

- }

-

25 public int error(final String app, final String msg)

- throws IOException

- {

- return log(ERROR, app, msg);

- }

30

- public int fatal(final String app, final String msg)

- throws IOException

- {

- return log(FATAL, app, msg);

35 }

-

- public void terminate() throws IOException {

- _out.close();

- _in.close();

40 _sm.close();

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/statusMonitor.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=148

“I’D RATHER USE A SOCKET” 149

- }

-

- private int log(

- final String level,

45 final String app,

- final String msg) throws IOException

- {

- final String DEL = ",";

- _out.println(level + DEL + app + DEL + msg);

50 final String response = _in.readLine();

- int return_code = 1;

- try {

- return_code = Integer.parseInt(response);

- }

55 catch(NumberFormatException ignoreMe) {}

- return return_code;

- }

-

- private Socket _sm;

60 private PrintWriter _out;

- private BufferedReader _in;

- }

Again, most of the work is done in the log(level,app,msg) method. Because
this is a book about Ruby we will not go into the details of the Status-

Monitor class. However, we will demonstrate how to use it:

File Line 1 public class StatusMonitorTest {

- public static void main(String[] args) {

- try {

- final StatusMonitor sm = new StatusMonitor(

5 "127.0.0.1",

- 3333

-);

- final int result = sm.debug("billing", "ALAAARM!!");

- System.out.println(result);

10 sm.terminate();

- }

- catch(Exception e) {

- System.err.println(

- "An error occurred: " + e.getMessage()

15);

- }

- }

- }

Oh, and we shouldn’t forget the hordes of Perl programmers that inhab-
ited our IT department in the past. All the poor guys who have to main-
tain their legacy code have the right to use our amazing status monitor,
too.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/statusMonitorTest.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=149

“I’D RATHER USE A SOCKET” 150

File Line 1 use strict;

- use IO::Socket;

-

- package StatusMonitor;

5

- use constant WARN => 'w';

- use constant ERROR => 'e';

- use constant FATAL => 'f';

-

10 sub new {

- my $class = shift;

- my ($host, $port) = @_;

- my $self = {};

- my $sm = IO::Socket::INET->new("$host:$port");

15 die "Could not connect to status monitor: $!\n" unless $sm;

- $self->{'sm'} = $sm;

- bless $self, $class;

- }

-

20 sub warn() {

- my ($self, $app, $msg) = @_;

- $self->_log(WARN, $app, $msg);

- }

-

25 sub error() {

- my ($self, $app, $msg) = @_;

- $self->_log(ERROR, $app, $msg);

- }

-

30 sub fatal() {

- my ($self, $app, $msg) = @_;

- $self->_log(FATAL, $app, $msg);

- }

-

35 sub _log() {

- my ($self, $level, $app, $msg) = @_;

- print { $self->{'sm'} } "$level,$app,$msg\n";

- my $sm = $self->{'sm'};

- <$sm>;

40 }

-

- sub DESTROY {

- close($_[0]->{'sm'});

- }

45

- 1;

For those who are familiar with Perl (the Pathological Eclectic Rub-
bish Lister as its inventor Larry Wall sometimes calls it) the lines above
should be no problem. For all the others it will look like line noise

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor.pm
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=150

“I’D RATHER USE A SOCKET” 151

until they have studied Perl for several years. Just believe it: this code
achieves the same results as our Ruby and Java code. Here’s a little
test program to prove it:

File use strict;

use status_monitor;

my $sm = StatusMonitor->new('127.0.0.1', 3333);

$sm->error('tracking', 'Lost connection to service.');

This produces:

E, [2005-09-17T17:23:43.216794 #1419] ERROR -- : tracking: \

Lost connection to service.

Admittedly, this is a lot of code that has to be maintained from now on,
but it has some valuable benefits. Although we had to implement TCP

client code for various languages, we can now add features to the status
monitor without touching the client libraries. For example, we can send
an e-mail to the operations department whenever an application logs a
fatal error. Additionally, to change the transport layer, only the different
log(level,app,msg) methods have to be changed.

Adding Better Persistence

Let’s illustrate that flexibility by replacing our cheap logger by a full-
blown MySQL database. At the same time, we’ll add an e-mail fea-
ture. too. Our little database (called smon) consists of only one table,
log_entries. Its structure should be fairly clear:

File create table log_entries(

id int unsigned not null primary key,

application varchar(64) not null,

level enum('warn', 'error', 'fatal'),

message text,

created timestamp not null

);

For convenience, we access the status monitor database using ActiveRe-

cord.

File Line 1 require 'rubygems'

- require 'active_record'

- require 'gserver'

-

5 ActiveRecord::Base.establish_connection(

- :adapter => 'mysql',

- :host => '127.0.0.1',

- :database => 'smon'

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_test.pl
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/create_smon.sql
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=151

“I’D RATHER USE A SOCKET” 152

-)

10

- class LogEntry < ActiveRecord::Base; end

-

- class StatusMonitor < GServer

- def initialize(host = '127.0.0.1', port = '3333')

15 super(port, host)

- @level_map = {

- 'w' => 'warn', 'e' => 'error', 'f' => 'fatal'

- }

- end

20

- # Expects CSV data in the following format:

- # level,application,message.

- def serve(client)

- level, app, msg = client.readline.chomp.split(',', 3)

25 if @level_map.has_key?(level)

- entry = LogEntry.new

- entry.application = app

- entry.level = @level_map[level]

- entry.message = msg

30 entry.save

- client.puts('0')

- else

- client.puts('1')

- end

35 end

- end

First, we removed the Logger class (maybe we will use it again for log-
ging the status monitor’s own status, but for now we try to keep the
examples short). Next, we added initialization code for ActiveRecord and
the LogEntry class (to learn more about ActiveRecord, see Section 2.3,
ActiveRecord Basics, on page 33). In our serve(client) method we didn’t
have to change a lot either. All the logging stuff was replaced by initial-
ization code for a new LogEntry object that gets saved for each request.

None of the client libraries had to be touched. By changing only a few
lines of Ruby code, we solved one of our biggest problems—important
information is now stored centrally. From now on we do not have to
search tons of log files to find vital information; a simple SELECT state-
ment will be sufficient. Provided that your database and system admin-
istrators earn their salary by creating regular database backups, this
information will be safe forever.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=152

“I’D RATHER USE A SOCKET” 153

Sending E-Mails

At this point we’re unstoppable. Let’s add some more code to the status
monitor that sends an e-mail to the operations department whenever
an application logs a fatal error.

File Line 1 require 'rubygems'

- require 'active_record'

- require 'gserver'

- require 'tmail'

5 require 'net/smtp'

-

- ActiveRecord::Base.establish_connection(

- :adapter => 'mysql',

- :host => '127.0.0.1',

10 :database => 'smon'

-)

-

- class LogEntry < ActiveRecord::Base; end

-

15 class StatusMonitor < GServer

- def initialize(host = '127.0.0.1', port = '3333')

- super(port, host)

- @level_map = {

- 'w' => 'warn', 'e' => 'error', 'f' => 'fatal'

20 }

- end

-

- # Expects CSV data in the following format:

- # level,application,message.

25 def serve(client)

- level, app, msg = client.readline.chomp.split(',', 3)

- if @level_map.has_key?(level)

- entry = LogEntry.new

- entry.application = app

30 entry.level = @level_map[level]

- entry.message = msg

- entry.save

- puts "Entry was saved."

- inform_helpdesk(app, level, msg) if level == 'f'

35 client.puts('0')

- else

- client.puts('1')

- end

- end

40

- private

-

- def inform_helpdesk(app, level, msg)

- subject = "A fatal error occured in #{app}!"

45 subject << " Regret your sins!"

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor3.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=153

“I’D RATHER USE A SOCKET” 154

- mail = create_mail(

- 'helpdesk@pragbouquet.com',

- subject,

- msg

50)

- send_mail('localhost', mail)

- end

-

- def create_mail(to, subject, body)

55 mail = TMail::Mail.new

- mail.date = Time.now

- mail.mime_version = '1.0'

- mail.set_content_type 'text', 'plain'

- mail.from = 'status_monitor@pragbouquet.com'

60 mail.to = to

- mail.subject = subject

- mail.body = body

- mail

- end

65

- def send_mail(host, mail)

- msg = mail.encoded

- Net::SMTP.start(host, 25) do |smtp|

- smtp.send_mail(msg, mail.from_address, mail.destinations)

70 end

- end

- end

Sending e-mail can be divided into two parts: creating the SMTP (Sim-
ple Mail Transfer Protocol) formatted e-mail and sending that e-mail
over a network. To create the SMTP representation, we used Minero
Aoki’s excellent tmail library2 (you can see how to obtain and install it
in Section 6.4, Deploying With setup.rb, on page 277.).

In the create_mail(to,subject,body) method we assemble a TMail::Mail object
that contains all the attributes we’d expect an e-mail to have. Finally,
on line 67, we call encoded(). It returns something like this:

Date: Sat, 17 Sep 2005 14:48:30 +0200

From: status_monitor@pragbouquet.com

To: helpdesk@pragbouquet.com

Subject: A fatal error occurred in billing! Regret your sins!

Mime-Version: 1.0

Content-Type: text/plain

Lost connection to payment gateway.

2http://raa.ruby-lang.org/project/tmail

Report erratum
Prepared exclusively for Jacob Hochstetler

http://raa.ruby-lang.org/project/tmail
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=154

REMOTE PROCEDURE CALLS USING HTTP 155

Ruby’s standard class Net::SMTP comes quite handy to send the e-mail
we just created. Lines 68 to 70 of method send_mail(host,mail) show how
to accomplish this.

We’re done! The application is now backed by a database and sends an
e-mail to the operations department whenever a fatal application error
occurs.

4.2 Remote Procedure Calls Using HTTP

Our new status monitor has been a huge success—the system failure
rate has dropped down to an all-time low of 2 per day, each lasting
for less than 10 minutes. Unfortunately, this is true only for the time
between 8 am and 5 pm, Monday to Friday. Every night 3 to 5 fatal
application errors still occur, and they don’t get solved until the follow-
ing morning.

Obviously, the status monitor e-mails are only read during the office
hours. It would increase our quality of service significantly if we could
inform our operations department’s employees of failures wherever they
are, and whatever time it is. A good way to do this is to use the Short
Messages (SMS) supported by cellular networks: to send the message
you simply need a cellular number, and to receive it the employee need
only keep their cell phone with them.

Waking Up the Operator

To send short messages from a computer to a cell phone, you can:

1. Serially connect a computer and a cellular phone or modem that
can be controlled via an AT cellular command interface.

2. Connect to a Short Message Service Center (SMSC) at your net-
work provider. You send messages using a protocol called Short
message peer-to-peer protocol (SMPP)3 to the SMSC, and the SMSC

is responsible for delivering them to the according mobile devices.

3. Use an existing web service on the Internet.

PragBouquet chose the SMSC connection. We already have a server that
is capable of sending SMS. This particular piece of software offers a sim-
ple interface via HTTP: it supports the single function send(recipient,sender,type,data).

3http://en.wikipedia.org/wiki/SMPP

Report erratum
Prepared exclusively for Jacob Hochstetler

http://en.wikipedia.org/wiki/SMPP
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=155

REMOTE PROCEDURE CALLS USING HTTP 156

You have to distinguish between Short Messages containing textual or
binary data. Set type to “text” or “binary” accordingly (“text” is the
default). Binary data has to be transmitted in two-digit hexadecimal
ASCII representation, so a binary zero is transmitted as 00 and binary
63 is transmitted as 3f.

The remaining parameters contain the data to be sent and the recipi-
ent’s and the sender’s phone numbers in international format. If the
sender parameter is not set, it will be set to the recipient parameter
automatically. This way the recipient thinks he has sent himself a
message—in our case that is alright.

The service listens on port 4242 under path “/send”. It returns its
result using the HTTP status code, so 200 means everything went fine
and 500 means an error occurred. Let’s try it using telnet:

mschmidt:/tmp> telnet localhost 4242

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ GET /send?type=text&recipient=+011234123456&data=hello HTTP/1.0

⇒

HTTP/1.1 200 OK

Connection: close

Date: Wed, 14 Sep 2005 20:26:47 GMT

Content-Type: text/plain

Server: WEBrick/1.3.1 (Ruby/1.8.2/2004-12-25)

Content-Length: 0

Connection closed by foreign host.

mschmidt:/tmp>

Hm, there’s no error message from the session, but our cell phone
didn’t yell “YOU HAVE A NEW MESSAGE!” at full volume as it usually
does when it receives an SMS. So, what’s wrong? Provided that the SMS

server is working properly, the problem must be hidden in our input.
Obviously, the type and data parameters are correct, but the recipient’s
phone number contains a subtle syntax error. All international phone
numbers start with one of the following prefixes4:

• “00”<international area code><national area code>

• “+”<international area code><national area code>

4Usually, a leading zero of the national area code is omitted, but you should not
blindly follow this rule. For Italy, as an example, you have to explicitly transmit the
leading zero of the national area code in international phone numbers.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=156

REMOTE PROCEDURE CALLS USING HTTP 157

Figure 4.1: Testing The Status Monitor

At first sight, everything seems to be alright with the recipient’s phone
number, but we forgot that we are using an HTTP service that expects
all its parameters in URL-encoded format. Hence, the leading + sign
is interpreted as a blank which renders the phone number completely
wrong. Instead of transmitting “+011234123456” (an American phone
number) “ 011234123456” (a national phone number with a leading
blank) is transmitted.

In the best case, this phone number does not exist and the SMSC fails to
deliver your message. In the worst case, someone could become really
angry while you’re desperately running your unit test suite over and
over again at 2am on a Saturday night.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=157

REMOTE PROCEDURE CALLS USING HTTP 158

When testing complex HTTP services the telnet command can be a bit
tedious. For services expecting GET requests you’re much better off
using an ordinary web browser that transparently handles all encoding
issues for you (command line die-hards will use wget5 or curl6 anyway).
A HTML page such as the following is sufficient for testing purposes:

File Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

-

- <html>

5 <head>

- <title>SMS Service Test Page</title>

- </head>

- <body>

- <h1>Send an SMS</h1>

10 <form action="http://localhost:4242/send">

- <table>

- <tr>

- <td>Type:</td>

- <td>

15 <select name="type">

- <option>text</option>

- <option>binary</option>

- </select>

- </td>

20 </tr>

- <tr>

- <td>Recipient:</td>

- <td><input type="text" name="recipient"/></td>

- </tr>

25 <tr>

- <td>Sender:</td>

- <td><input type="text" name="sender"/></td>

- </tr>

- <tr>

30 <td>Data:</td>

- <td><input type="text" name="data"/></td>

- </tr>

- <tr>

- <td colspan="2">

35 <input type="submit" value="Send"/>

- </td>

- </tr>

- </table>

- </form>

40 </body>

- </html>

5http://www.gnu.org/software/wget/wget.html
6http://curl.haxx.se

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/testpage.html
http://www.gnu.org/software/wget/wget.html
http://curl.haxx.se
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=158

REMOTE PROCEDURE CALLS USING HTTP 159

URL Encoding

In the beginning of computer networking everything had to be
represented in ASCII characters using only 7 bits. Because of
this nearly all protocols in today’s Internet turn non-ASCII data
into 7-bit ASCII characters somehow. RFC 1738∗ painstakingly
explains which characters are allowed in URLs:

“Only alphanumerics [0-9a-zA-Z], the special characters [$-
_.+!*’(),], and reserved characters used for their reserved pur-
poses may be used unencoded within a URL.”

The rules are simple: all ASCII control characters (0x00-0x1f,
0x7f), all non-ASCII characters (0x80-0xff), and all reserved char-
acters ([$&+,/:;=?@]) have to be encoded under all circum-
stances. In addition, some characters considered unsafe
should be encoded, too: ["?<>#%{}|\ˆ~‘] and the square brack-
ets ([,]) themselves (0x5b, 0x5d).

Encoding a single value is easy: you prepend its case-
insensitive, two-digit hexadecimal ISO-Latin code by a percent
symbol (%). For example, the blank character is encoded as
%20 (for convenience, a blank can also be encoded as a sin-
gle ’+’ symbol) and an upper-case ’A’ (whose ISO-Latin code is
65) is turned into %41.

∗http://www.rfc-editor.org/rfc/rfc1738.txt

Another way to circumvent problems like these is to use a mature HTTP

client library, such as the one that comes with the Ruby standard dis-
tribution. Let’s see how we can perform HTTP requests and encapsulate
the SMS server:

File Line 1 require 'net/http'

- require 'cgi'

-

- class SmsService

5 def initialize(host = '127.0.0.1', port = 4242)

- @host, @port = host, port

- end

-

- def send_text(params)

10 send_sms(params, 'text')

- end

-

- def send_binary(params)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.rfc-editor.org/rfc/rfc1738.txt
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=159

REMOTE PROCEDURE CALLS USING HTTP 160

- send_sms(params, 'binary')

15 end

-

- private

-

- def send_sms(params, type)

20 result = false

- Net::HTTP.start(@host, @port) do |http|

- query = "type=#{type}"

- params.each do |k,v|

- query << "&#{k}=#{CGI.escape(v)}"

25 end

- response = http.get("/send?#{query}")

- result = response.class == Net::HTTPOK

- end

- result

30 end

- end

A small sample program demonstrates the usage of the SmsService class.
Finally you (and all your enervated colleagues) can hear it again: “YOU
HAVE A NEW MESSAGE!”.

File Line 1 sms = SmsService.new

- sms.send_text(

- :recipient => '+0112341234567',

- :data => 'Hello, world!'

5)

In send_sms(params,type) of the SmsService class we open a new HTTP

connection using the start(host,port) method of class Net::HTTP. It expects
a code block that gets passed the current connection. Within the code
block the query string for the GET request is prepared (note that we
have to use the encode(string) method of the CGI class to URL-encode
our query parameters.).

Eventually, on line 26 we initiate a GET request that returns an object
derived from Net::HTTPResponse. This object encapsulates everything that
makes up an HTTP response. Its most important methods are:

• code() returns the HTTP status code.

• message() returns the HTTP status message.

• body() returns the response body.

• The headers Hash contains all HTTP headers.

There is a separate class for every HTTP status code (yes, this little
library defines more than 50 classes), so instead of checking if code()

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=160

REMOTE PROCEDURE CALLS USING HTTP 161

returns 200 you can alternatively check if your response object’s class
is Net::HTTPOK (as we did in line 27).

Integrating the SMS service into the StatusMonitor is left as an exercise
for the reader. Keep in mind that Short Messages do have to be short:
they shouldn’t be more than 160 characters. Sending Java stack traces
is definitely not an option.

If you don’t like encoding query parameters manually, you can use
HTTP’s POST command. In the current example it doesn’t make a big
difference, though. Here’s how send_sms(params,type) would look:

File Line 1 def send_sms(params, type)

- result = false

- Net::HTTP.start(@host, @port) do |http|

- query = "type=#{type}"

5 params.each { |k,v| query << "&#{k}=#{v}" }

- response = http.post(

- '/send',

- query,

- 'content-type' => 'application/x-www-form-urlencoded'

10)

- result = response.class == Net::HTTPOK

- end

- result

- end

In lines 4 and 5 we build up the query string by concatenating key/value
pairs using the = symbol. The pairs themselves are delimited by ’&’
symbols. That’s how input values from an HTML form get transferred
to a server and therefore, we have set the content type of our POST
request to “application/x-www-form-urlencoded”. As the server now
knows how to interpret the data, and because we’re not sending it in a
URL, we don’t have to encode it.

The Other Side Of HTTP

We have seen that accessing HTTP services with Ruby is a breeze. This
made us think a bit: shouldn’t we make the status monitor available
as a HTTP service, too? It certainly would have some advantages:

• We could get rid of the proprietary CSV parameter list, which would
make it much easier to add new parameters.

• Adding additional functions would be easier, because we could
publish them using different URLs—new functions would never
interfere with existing ones.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=161

REMOTE PROCEDURE CALLS USING HTTP 162

More Privacy!

Even in the early days of the World Wide Web security was an
important issue. In 1994 Netscape Communications invented a
protocol called Secure Sockets Layer (SSL)∗ that enabled web
clients and servers to exchange sensitive data without worries.

The first protocol version and its implementation was full of flaws,
but since then SSL has become a de facto standard and has
been improved several times. Currently, its most popular imple-
mentation is OpenSSL†. The OpenSSL project has created a C
library that has been ported to countless platforms and is the
basis for Ruby’s SSL support, too.

In the simplest cases it makes nearly no difference whether you
use HTTP or HTTPS. For example, printing the index page of the
OpenSSL web site can be achieved as follows:

File Line 1 require 'net/https'

-

- h = Net::HTTP.new('www.openssl.org', 443)
- h.use_ssl = true

5 h.get2('/') { |response| print response.body }

You have to set the use_ssl attribute of your Net::HTTP object to
true and you have to use get2(path,initheader=nil,&block) instead
of get(path,initheader=nil,dest=nil,&block). Oh, and it’s important
that you explicitly set the SSL port (443) when opening the con-
nection. Otherwise, the HTTP default port (80) will be used and
your request will probably fail.

Because it’s based on the OpenSSL reference implementation,
Ruby’s support of the SSL protocol is as secure and complete as
it can be. You can encrypt and decrypt communication trans-
parently (as we did in the example above). There are methods
for signing and verifying both client and server certificates. For
example, peer_cert() returns the server’s X.509 certificate and
using cert=(certificate) you can set a client’s X.509 certificate.
The library allows you to maintain a certificate store in your local
file system, too.

∗http://en.wikipedia.org/wiki/Secure_Sockets_Layer
†http://www.openssl.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/ssl_test.rb
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://www.openssl.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=162

REMOTE PROCEDURE CALLS USING HTTP 163

HTTP Proxy Servers

Our first HTTP example works fine, because the SMS service is
running on a server in the local network. In big companies
HTTP access to servers on the Internet is often routed through
a proxy server. Proxies cache frequently requested web sites
to decrease network load, and they restrict access to unap-
proved content.

HTTP clients have to connect to the proxy server instead of the
actual server. The proxy server then forwards the client’s request
and sends back the result. Using a proxy server with Net::HTTP
works as follows:

Net::HTTP::Proxy(

proxy_host,

proxy_port).start('www.example.com') do |http|

http is connected to proxy_host:proxy_port

end

If the proxy host is set to nil, no proxy will be used, so it will do no
harm if you always use the proxy call.

Sometimes a proxy server expects an authentication via a user
name and a password. Such information is passed as follows:

Net::HTTP::Proxy(

proxy_host, proxy_port,

proxy_user, proxy_pass).start('www.example.com') do |http|

http is connected to proxy_host:proxy_port

end

• We could access the status monitor with an ordinary web browser.
This certainly has some advantages when we add statistics or
query features.

Now that we’ve convinced ourselves, let’s see what the Ruby platform
has to offer for creating HTTP services. Unsurprisingly, it comes with
one of the most advanced and most convenient frameworks currently
available: WEBrick. WEBrick really has it all: you can create generic
HTTP and HTTPS servers. All of them are multi-threaded, they support
servlets, and you will find a bunch of useful utility classes and func-
tions, too.

So, let’s see how we can turn our status monitor into a HTTP service:

File Line 1 require 'webrick'

- include WEBrick

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor4.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=163

REMOTE PROCEDURE CALLS USING HTTP 164

- class StatusMonitorServlet < HTTPServlet::AbstractServlet

-

5 # ...

-

- def do_GET(req, res)

- app = req.query['app']

- msg = req.query['msg']

10 level = req.query['level'] || ''

- level.downcase!

- res['content-type'] = 'text/plain'

- if %w(debug info warn error fatal).include?(level)

- entry = LogEntry.new

15 entry.application = app

- entry.level = level

- entry.message = msg

- entry.save

- inform_helpdesk(app, level, msg) if level == 'fatal'

20 res.status = 200

- res.body = "Message was logged successfully."

- else

- res.status = 500

- res.body = "An error occurred while logging message!"

25 end

- end

-

- alias do_POST :do_GET

-

30 # ...

-

- end

-

- server = HTTPServer.new(:Port => 4242)

35 server.mount('/log', StatusMonitorServlet)

-

- %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

40

- server.start

Even if it doesn’t seem obvious at first sight, we only had to modify our
last version a small amount. The StatusMonitor class has been renamed
to StatusMonitorServlet and is derived from WEBrick::HTTPServlet::AbstractServlet.
initialize(host,port) has been removed and serve(client) has been replaced
by do_GET(request,response). Everything else was left untouched.

Whenever the server receives a GET request, do_GET(request,response) is
called automatically. The query parameters app, level, and msg are read
from the client request. This renders the former CSV solution obsolete
and adding new parameters is trivial now (for better readability we have

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=164

REMOTE PROCEDURE CALLS USING HTTP 165

dropped the level_map hash).

What follows is business as usual. We initialize a new LogEntry object
and store it in the database. Instead of sending back ’0’ or ’1’ to indi-
cate success or failure we now set the HTTP status code accordingly in
lines 20 and 23. Another way of setting the response status is to raise
an exception, so raise HTTPStatus::OK is the same as res.status = 200. In this
case it does not seem to make a lot of sense, but raising an exception
for an error condition such as HTTPStatus::InternalServerError auto-
matically sets the response body to an HTML error page containing a
complete stack trace. Such a page will be returned for uncaught excep-
tions, too.

Because there is no reason for the status monitor to care about the
request method, we have aliased do_GET(request,response) with do_POST(request,response)

on line 28. This allows clients to freely choose which request method
they want to use.

Naked servlets are nonviable; they depend heavily on a friendly server
environment to live in. Hence, we create a servlet environment begin-
ning on line 34. In the next line the StatusMonitorServlet is mounted
under the path “/log” and lines 37 to 39 install a callback for INT and
TERM signals that shuts down the server gracefully when it receives an
corresponding signal. After starting the server in the last line, you can
point your web browser to “http://localhost:4242/log?app=billing&level=info&msg=hello”
to create a new log message.

Some WEBrick Details

WEBrick’s rules for dispatching HTTP requests are simple. When the
server receives an command, for example PUT, it calls the correspond-
ing do_XXX method, in this case do_PUT(request,response). WEBrick does
not restrict this dispatching mechanism to the official HTTP commands
and you’re free to define your own HTTP commands, such as the one in
our friendly greeting service below.

File Line 1 class FriendlyServlet < HTTPServlet::AbstractServlet

- def do_GREET(req, res)

- res.status = 200

- res.body = "Hello!! Nice to meet you!\n"

5 end

- end

-

- server = HTTPServer.new(:Port => 4200)

- server.mount('/', FriendlyServlet)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/greet.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=165

REMOTE PROCEDURE CALLS USING HTTP 166

10 %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

- server.start

You can use it like any other HTTP command and you will receive the
same request parameters, too (so, if you need a WEBDAV7 extension, for
example, go ahead and build one).

mschmidt:/tmp> telnet localhost 4200

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ GREET / HTTP/1.0

⇒

HTTP/1.1 200 OK

Connection: close

Date: Fri, 23 Sep 2005 07:18:19 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.2/2004-12-25)

Content-Length: 26

Hello!! Nice to meet you!

Connection closed by foreign host.

The HEAD and OPTIONS commands have default implementations:

do_HEAD(request,response)

Returns everything do_GET(request,response) would return except
the response body. This enables clients to check, whether a cer-
tain document has changed, so it is downloaded only if it is nec-
essary.

do_OPTIONS(request,response)

Returns a list of all commands available

All do_XXX methods get passed request and response parameters of
type WEBrick::HTTPRequest and WEBrick::HTTPResponse, respectively. Both of
them provide all the things you’d normally expect. The most important
methods and attributes of WEBrick::HTTPRequest are:

• query is a Hash object containing all query parameters that have
been sent by the client. If a parameter is transmitted more than
once, the corresponding entry in the query Hash is an Array object
containing all values transmitted.

7http://www.webdav.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.webdav.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=166

REMOTE PROCEDURE CALLS USING HTTP 167

• header is a Hash object containing all HTTP headers sent by the
client.

• cookies is an Array object containing all cookies sent by the client.
Array elements are WEBrick::Cookie objects.

• Details of the resource requested by the client are available in
the attributes host, port, request_uri, query_string, script_name, and
path_info.

WEBrick::HTTPResponse is just as simple.

• Put the overall status of a request into the status attribute.

• Set body to the data you want to send back to the client. Make
sure it corresponds to the response’s content type.

• WEBrick automatically sends back standard HTTP headers such
as server and date. The header Hash allows you to add your own.
For example,

response.header['content-type'] = 'text/xml'

declares that the server output is an XML document.

• You can send cookies to the client by adding WEBrick::Cookie objects
to the cookies Array.

There are many more methods and attributes. Most are simply for
convenience, to provide access to low-level HTTP properties.

It Can Always Be Easier

Although creating your own servlets is easy, WEBrick comes with some
default servlet implementations for common tasks such as serving files
(we talk about the FileHandler in Section 4.2, WEBricklets, on page 170)
and executing CGI scripts.

Sometimes it seems to be overkill to define a complete servlet class. The
WEBrick::HTTPServer class has a highly convenient shortcut:

File Line 1 server = HTTPServer.new(:Port => 4100)

- server.mount_proc('/') do |req, res|

- res.status = 200

- res.body = "Hello, #{req.query['name']}!"

5 end

-

- %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/webrick_cb.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=167

REMOTE PROCEDURE CALLS USING HTTP 168

- end

10 server.start

In line 2 we add a code block using mount_proc(dir,&block) to a server
object. These handlers respond to both GET and POST requests and
are managed by an instance of class ProcHandler.

Another useful WEBrick handler is CGIHandler. It’s invoked automati-
cally by FileHandler when the request URL ends with the extension .cgi.
The Common Gateway Interface (CGI) defines a simple protocol between Common Gateway

Interface
web servers and programs that create dynamic content: the web server
runs an executable program with the exec() system call and the CGI

protocol specifies a list of environment variables that can be used by
the CGI script to get request parameters and so on. After the program
has terminated, the web server sends its output to the web client. Typi-
cal companies have tons of old CGI programs (often Perl or bash scripts)
that “will definitely be replaced as soon as we have some time.” Here’s
a simple Perl script that creates an XML report of all flowers that are
currently used in our bouquets:

File Line 1 #!/usr/bin/perl -w

-

- use strict;

- use DBI;

5

- sub get_flowers {

- my $result = [];

- my $dbh = DBI->connect('dbi:mysql:webshop', '', '');

-

10 my $sql = qq{ SELECT name, price FROM flowers };

- my $sth = $dbh->prepare($sql);

- $sth->execute();

- my ($name, $price);

- $sth->bind_columns(undef, \$name, \$price);

15

- while($sth->fetch()) {

- push(@$result, [$name, $price]);

- }

-

20 $sth->finish();

- $dbh->disconnect();

- return $result;

- }

-

25 print "status: 200\r\n";

- print "content-type: text/xml\r\n\r\n";

-

- print "<?xml version='1.0'?>\r\n";

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/cgi-bin/report.cgi
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=168

REMOTE PROCEDURE CALLS USING HTTP 169

Figure 4.2: WEBrick’s CGI Handler in Action

- print "<flowers>\r\n";

30 my $flowers = get_flowers();

- for (@$flowers) {

- print " <flower name='$_->[0]' price='$_->[1]'/>\r\n";

- }

- print "</flowers>\r\n";

To reuse such legacy scripts (do you remember why you switched to
Ruby?) we set up an HTTP server as follows:

File Line 1 cgi_dir = File.expand_path('./cgi-bin')

- s = HTTPServer.new(:Port => 2080)

- s.mount('/cgi-bin', HTTPServlet::FileHandler, cgi_dir,

- :FancyIndexing => true

5)

We installed a FileHandler that manages the content of the cgi-bin direc-
tory. Whenever you request a resource ending with .cgi WEBrick del-
egates the request to CGIHandler, executes the corresponding program,
and returns its output. (You’ll learn what the FancyIndexing option is in
Section 4.2, Hiding Little Secrets, on page 171).

The CGI program can set the final HTTP status code by printing the
status header (as we did in line 25 of the Perl program).

For the sake of completeness, let’s look at the ERBHandler. This is

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/cgisrv.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=169

REMOTE PROCEDURE CALLS USING HTTP 170

called by the FileHandler when a resource ending with .rhtml is requested.
Before the requested file is sent back, it gets processed by the templat-
ing engine ERB. To learn the scoop about .rhtml files, have a look at
Agile Web Development With Rails [?].

WEBricklets

You do not have to develop huge applications to benefit from WEBrick.
Often little scripts—let’s call them WEBricklets—can significantly improve WEBricklets

your life.

For example, when developing Java software for PragBouquet, I often
work on a remote host using a Secure Shell. I do this because the host
is extremely powerful and it has the same Java environment as the final
production system. My only development tools there are Vim8 and Ant9.
I write a lot of unit tests and I use Ant’s junit task to execute them.
This task produces nicely formatted HTML pages. In the past I had to
copy these pages to my PC using scp in order to view them. Thanks to
WEBrick these times are long gone. I now run a mini WEBrick-based
server on the remote host which allows me to view the pages using the
web browser running on my PC.10

File Line 1 require 'webrick'

- include WEBrick

-

- dir = Dir::pwd

5 port = 13000 + (dir.hash % 1000)

-

- puts "URL: http://#{Socket.gethostname}:#{port}"

-

- s = HTTPServer.new(

10 :Port => port,

- :DocumentRoot => dir,

- :ServerType => Daemon

-)

-

15 trap('INT') { s.shutdown }

- s.start

These 16 lines of Ruby code start a HTTP server on a vaguely random
port and provide access to all files in the current directory. The script

8http://www.vim.org
9http://ant.apache.org

10The basis for this example was originally posted by Jim Weirich under
http://onestepback.org/index.cgi/Tech/Ruby/WEBrick.rdoc

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv.rb
http://www.vim.org
http://ant.apache.org
http://onestepback.org/index.cgi/Tech/Ruby/WEBrick.rdoc
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=170

REMOTE PROCEDURE CALLS USING HTTP 171

turns itself into a daemon process. After you run it in the directory
the junit task’s output goes to, it will serve your test results until you
explicitly kill it.

In line 4 we detect the current directory (which is used as the server’s
document root) and in line 5 a new port is calculated. Then, the file
server’s URL is printed to the console. Usually, I paste it to my browser’s
bookmark manager and give it a reasonable name like “JUnit results of
project X”. It can happen that the program calculates a port that is
already in use by another application. In this case set the port variable
temporarily to a constant value and start the server again.

Beginning in line 9, we create and initialize a new HTTPServer object and
pass it two new options. We set DocumentRoot to the current directory,
mapping that directory to the URL /. Behind the scenes this option
installs an object of class HTTPServlet::FileHandler whose do_GET() method
returns every file requested (after determining its MIME type and setting
the content-type header correctly). Option ServerType is set to “Daemon”
which—unsurprisingly—turns the server into a daemon (you can learn
how to turn your own scripts into a daemon by intensively studying
some of H.P. Lovecraft’s books at full moon or by having a look at Sec-
tion 6.3, Creating Daemons and Services, on page 269).

Hiding Little Secrets

For files such as unit test results, the solution in the preceding section
is appropriate, because the files’ contents usually contain no secrets
(your unit tests results are running constantly at a 100% success rate
anyway, aren’t they?). As we all know, being paranoid does not mean
they aren’t after us, so it sometimes makes sense to plug a little security
layer to our software. In the case of our file server we could add HTTP

basic authentication.

File Line 1 require 'webrick'

- include WEBrick

-

- dir = Dir::pwd

5 port = 13000 + (dir.hash % 1000)

- puts "URL: http://#{Socket.gethostname}:#{port}"

-

- authenticate = Proc.new do |req, res|

- HTTPAuth.basic_auth(req, res, "") do |usr, pwd|

10 usr == 'maik' && pwd == 'secret'

- end

- end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=171

REMOTE PROCEDURE CALLS USING HTTP 172

-

- s = HTTPServer.new(:Port => port, :ServerType => Daemon)

15 s.mount('/', HTTPServlet::FileHandler, dir,

- :FancyIndexing => true,

- :HandlerCallback => authenticate

-)

-

20 trap('INT') { s.shutdown }

- s.start

Lines 8 to 12 define our authentication logic by creating a Proc object
that uses method basic_auth(request,response,realm)11 of class HTTPAuth.
This method expects a code block and passes it the user name and
password that have been transmitted with the current request. If the
authentication fails—basic_auth() returns false—WEBrick automatically
returns the HTTP status code 401 and a corresponding HTML error page.
If authentication succeeds, WEBrick continues as usual.

Now we have to install the authentication handler. We can’t use mount_proc()
any longer, as it doesn’t allow us to install any hooks. Instead, we have
to use a servlet. Fortunately, for our purposes it’s not necessary to
define a new one—we can use the HTTPServlet::FileHandler class. We add
it to the server using mount() and pass several options:

• FancyIndexing defines how directory listings will be handled. If the
requested URI refers to a directory and this option is false (the
default), the HTTP status code 403 (Forbidden) is returned. Oth-
erwise, a directory listing will be displayed.

• HandlerCallback points to a code block that will be called before the
do_XXX method belonging to the current request is called.

This solution is far from being perfect. It would only increase security if
you put the script into your home directory and grant read permission
to no one but yourself. WEBrick offers more advanced security mech-
anisms, including support for the same password files the Apache web
server12 uses. These files are usually created with the htpasswd com-
mand:

mschmidt:/tmp> htpasswd -cdb /tmp/test.pwd scott tiger

Adding password for user scott

mschmidt:/tmp> cat /tmp/test.pwd

scott:Erw4v9nQMuwHQ

mschmidt:/tmp>

11The realm parameter is currently ignored.
12http://www.apache.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.apache.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=172

REMOTE PROCEDURE CALLS USING HTTP 173

Here we created a file called test.pwd that contains the encrypted pass-
word of the user named scott. To use this password database with
WEBrick, only the authenticate() method is redefined:

File Line 1 authenticator = HTTPAuth::BasicAuth.new(

- :UserDB => HTTPAuth::Htpasswd.new('/tmp/test.pwd'),

- :Realm => ""

-)

5

- authenticate = Proc.new do |req, res|

- authenticator.authenticate(req, res)

- end

Instead of hard-wiring user names and passwords into your script, they
will be read by HTTPAuth::Htpasswd and evaluated by HTTPAuth::BasicAuth.

You can increase the level of security even more if you use htdigest

to create passwords. In authenticate() replace HTTPAuth::Htpasswd by
HTTPAuth::Htdigest and HTTPAuth::BasicAuth by HTTPAuth::DigestAuth. Unfor-
tunately, all these mechanisms implement only weak security. For
something stronger, use HTTPS right from the beginning:

File require 'webrick'

require 'webrick/https'

include WEBrick

dir = Dir::pwd

port = 13000 + (dir.hash % 1000)

puts "URL: http://#{Socket.gethostname}:#{port}"

authenticate = Proc.new do |req, res|

HTTPAuth.basic_auth(req, res, "") do |usr, pwd|

usr == 'maik' && pwd == 'secret'

end

end

s = HTTPServer.new(

:Port => port,

:ServerType => Daemon,

:SSLEnable => true,

:SSLVerifyClient => ::OpenSSL::SSL::VERIFY_NONE,

:SSLCertName => [%w(C US), %w(O PragBouquetSSL.com), %w(CN WWW)]

)

s.mount(

'/',

HTTPServlet::FileHandler,

dir,

:FancyIndexing => true,

:HandlerCallback => authenticate

)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv3.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/filesrv4.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=173

REMOTE PROCEDURE CALLS USING HTTP 174

trap('INT') { s.shutdown }

s.start

Here we have modified our first version and added support for SSL. We
had to require webrick/https and we had to slightly modify the initial-
ization of our server in lines 18 to 20. For a production system you’d
need to get a valid certificate, but we only wanted to demonstrate the
technical details.

Conclusion

HTTP gets abused in countless ways. Because these ways weren’t even
considered by its inventors, implementations that bend HTTP stray out-
side of HTTP’s design. (There’s even a whole RFC called On the use of

HTTP as a Substrate13 dealing with this issue). Sometimes it’s unnec-
essary to add a HTTP layer to your program, but often it is highly conve-
nient. It may even open your application up to completely unexpected
purposes.

In the end it doesn’t really matter whether HTTP has been a good choice
for a particular application or not. If you have to integrate with an
existing HTTP service, you have to use HTTP, too. As you have seen,
Ruby supports you in any imaginable way.

Alternatively, if you do want to add an HTTP interface to your own appli-
cation, WEBrick will prove to be an invaluable companion.

In terms of HTTP support, Ruby is more than ready for prime time.

13http://www.faqs.org/rfcs/rfc3205.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.faqs.org/rfcs/rfc3205.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=174

Chapter 5

Distributed Applications with RPC
In the beginning, distributed applications seemed to be some kind of
magic to many people, because you had to use rather obscure stan-
dards like Sun’s Remote Procedure Call (RPC) 1 protocol to make two
processes talk to each other.

Today countless protocols, technologies, products and standards exist
for inter-process communication (IPC). Most of them—such as CORBA,
XML-RPC, and SOAP—are language-neutral and bindings are available
for many programming languages. Still there are some protocols that
do only work with certain programming languages like Java’s Remote

Method Invocation (RMI) or Distributed Ruby (DRb). Remote Method

Invocation

Theoretically, though, when building an architecture from scratch, there
are many options to chose from (XML-RPC, CORBA, RMI, REST, SOAP,
etc.) and chances are good that the company you are working for uses
at least two third of all protocol standards available world-wide. Ruby
supports many of them and in the following sections we will demon-
strate the usage of those that are most frequently used today.

5.1 Another Day, Another Protocol

After studying the market intensively for several years, PragBouquet’s
marketing department made an astonishing observation: people often
add personalized greeting cards to bunches of flowers!

To satisfy this unexpected requirement on a technical level, the follow-
ing solution has been implemented: in the web shop users can choose

1http://www.faqs.org/rfcs/rfc1057.html

Prepared exclusively for Jacob Hochstetler

ANOTHER DAY, ANOTHER PROTOCOL 176

an image from a list, write a short text, and then the text is printed onto
the back of the greeting card in a nice font.

In the past people often got some strange texts on their cards, because
their love letters have been too long and the old solution did not pro-
vide any feedback. Hence, PragBouquet decided to separate the image
production process into a server and to add some more logic to it. The
web shop client requests the front and back page of the greeting card
from the server and presents them to the user. If everything is fine, the
client will ask the server to print the card. Otherwise, it will be deleted.

At the time the current greeting card system was built, the responsible
chief software evangelist was convinced that XML-RPC will last forever.
Hence, he insisted on plugging an XML-RPC interface to nearly every-
thing during his short employment period. One of the last relicts is a
C++ server that handles all things related to the creation of greeting
cards. This piece of software is a pain in the neck. It only runs on
Windows NT 4, and since the order volume increased significantly at
PragBouquet it cries for Dr. Watson two times a week without an obvi-
ous reason. Not to forget that while trying to make it work with a newer,
faster laser printer, two people got mad.

Parts of the source code got lost somehow and the company that has
developed the current solution does not exist any longer. No one has
been able to find the programmer who has originally created the server
(you hope that he has to make a living by creating micro-code for toast-
ers today) and consequentially it has been decided to re-implement it,
at least partially.

The new system still has to support the old XML-RPC interface, because
the web shop guys are not able to change their software soon enough.
The server only has to care about the image manipulation, because for
printing the cards, another system will be built. It only has to transfer
the cards to be printed as .pdf files (comprising two pages) into a certain
directory where they are picked up by the new printer process (see
Figure 5.1, on the following page).

Luckily, we have found a README file that accurately describes the
procedures supported by the server:

• draw_card(order_no,image_id,text) draws a greeting card, i.e. it cre-
ates images in GIF format for the front and the back pages. It
returns the image data and a unique card reference that can be
used to identify the card later. To identify a greeting card and to

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=176

ANOTHER DAY, ANOTHER PROTOCOL 177

Figure 5.1: Greeting Card Architecture

put it to the right bouquet, the client has to transmit the accord-
ing order number as first parameter. All images used for greeting
cards at PragBouquet have an id that has to be passed as the
image_id parameter. text contains the text that should appear on
the card.

• print_card(cardref) sends the greeting card identified by cardref to
the printer.

• delete_card(cardref) deletes the greeting card identified by cardref.

Before implementing the interface above, we will briefly describe XML-

RPC. If you are already familiar with its bowels, you can safely skip the
next section.

XML-RPC In Less Than 8 Minutes

Shortly after XML was born, a lot of people obsessively tried to represent
everything using < and > symbols. So it came as no surprise that in
1998/1999 a protocol for Remote Procedure Calls based on XML has
been defined by Dave Winer. Running out of creativity after a long and
exhausting specification process its inventor called it XML-RPC2.

2http://www.xmlrpc.com

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=177

ANOTHER DAY, ANOTHER PROTOCOL 178

Figure 5.2: XML-RPC Architecture

Simply put, XML-RPC works like any other RPC protocol, but under the
hood it is a lot simpler than its binary brothers and sisters. Implement-
ing your own XML-RPC client will not take much more than a black and
boring winter day, I guess, but smart people have already done it for
you. So, better spend such a day reading trivial stuff while having a
good cup of tea.

From an architectural point of view XML-RPC is a synchronous protocol
where every request is followed by a response. Only two types of mes-
sages, method calls and method responses, are supported and both
are encoded as XML documents that get transferred on a HTTP layer
(see Figure 5.2).

When we, e.g., call a method to draw a greeting card having the Id 42
and the message text on the back of the card (draw_greeting_card(4711,

42, ’Please, forgive me, honeybunch!’)) its XML-RPC representation will look
like this:

File Line 1 <methodCall>

- <methodName>draw_card</methodName>

- <params>

- <value><int>4711</int></value>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/request_sample.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=178

ANOTHER DAY, ANOTHER PROTOCOL 179

5 <value><int>42</int></value>

- <value>

- <string>Please, forgive me, honeybunch!</string>

- </value>

- </params>

10 </methodCall>

The according response contains an image file encoded in base-64 and
additionally indicates the type of the file, i.e. GIF, JPEG, PNG, and so
on.

File Line 1 <methodResponse>

- <params>

- <value><string>4711_006754</string></value>

- <value><string>GIF</string></value>

5 <value>

- <base64>

- VGhpcyBpcyBhIHJhdGhlciBsb25nIHRleHQgSSBo

- YXZlIHdyaXR0ZW4gdG8gc2ltdWxhdGUgYSBwaWN0

- dXJlLiBPZiBjb3Vyc2UsIEkgZGlkIG5vdCB3YW50

10 IHRvIGZha2UgYSBiYXNlLTY0IHN0cmluZyBhbmQg

- c28gSSBoYXZlIHVzZWQgUnVieSB0byBidWlsdCBv

- bmUgZnJvbSB0aGlzIHJlYWxseSBzdHVwaWQgYW5k

- IHVzZWxlc3MgdGV4dC4=

- </base64>

15 </value>

- <value><nil/></value>

- </params>

- </methodResponse>

XML-RPC supports a fixed set of simple and compound data types (see
Figure 5.3, on the following page for a list of all simple data types). Due
to the nature of XML all parameter values are tagged and their values
are transmitted as strings. For example, a double value like -3.14 is
encoded as <double>-3.14</double>.

In addition, two compound types are available: arrays and structs.
Contrary to array implementations in most programming languages,
XML-RPC arrays aggregate a list of elements that must not all be of the
same type. Arrays may contain simple data types, structs, and other
arrays. For example, [1, 2, 3] is represented like this:

<value>

<array>

<value><int>1</int></value>

<value><int>2</int></value>

<value><int>3</int></value>

</array>

</value>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/response_sample.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=179

ANOTHER DAY, ANOTHER PROTOCOL 180

Type Values Tag

Integer 32-bit signed integer <i4> or <int>

Double 64-bit IEEE 75 floating-point num-
ber

<double>

Boolean false (0) or true (1) <boolean>

String ASCII string (may contain NULL
bytes). Current implementations
support Unicode, too.

<string>

Base64 Binary string encoded in Base64 3 <base64>

DateTime Absolute specification of date and
time without time zone information

<dateTime.iso8601>

nil Null value (this an unofficial exten-
sion to the standard)

<nil>

Figure 5.3: XML-RPC Simple Data Types

Structs contain a list of key/value pairs where values might be sim-
ple data types, arrays, or structs. The following represents the Hash {
’name’ => ’maik’, ’age’ => 32 }:

<value>

<struct>

<member>

<name>name</name>

<value><string>Maik</string></value>

</member>

<member>

<name>age</name>

<value><int>32</int></value>

</member>

</struct>

</value>

As a response to a method call, an exception (XML-RPC calls them
faults) can be raised. Because they can only occur instead of a method

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=180

ANOTHER DAY, ANOTHER PROTOCOL 181

response, they are encoded in the same way:

File Line 1 <methodResponse>

- <fault>

- <value>

- <struct>

5 <member>

- <name>faultCode</name>

- <value><int>7777</int></value>

- </member>

- <member>

10 <name>faultString</name>

- <value>

- <string>Text too short for an apology!</string>

- </value>

- </member>

15 </struct>

- </value>

- </fault>

- </methodResponse>

Fault codes have not been standardized, but several XML-RPC imple-
mentations use small numbers to indicate errors on the lower transport
layers, so better use numbers bigger than 1000 for your own codes.

All these details should only deepen your understanding of the under-
lying technology, because for an application developer most of these
things happen completely transparently. Usually, you won’t even notice
that you’re calling a procedure on a remote host. An XML-RPC library
handles all the low-level stuff, turns method calls into XML documents,
transfers these documents via HTTP to a server, reads its XML response,
turns the response into a data structure or an exception, and finally
returns the result to the caller.

xmlrpc4r

Kudos to Michael Neumann for contributing xmlrpc4r—one of the most xmlrpc4r

complete and most advanced XML-RPC implementations currently available—
to the Ruby standard library.

We will use it in the following to develop the new greeting cards server
and its according test client. Before diving into the details of xmlrpc4r

let’s create a skeleton class for representing two-sided greeting cards:

File Line 1 class GreetingCard

- attr_reader :card_ref, :front, :back

-

- class << self

5 def create(order_no, image_id, text)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/fault_sample.xml
http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/greeting_card.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=181

ANOTHER DAY, ANOTHER PROTOCOL 182

- front = read_image(image_id)

- back = create_text_page(text)

- card_ref = order_no.to_s + "_" + rand(1000).to_s

- store_card(card_ref, front, back)

10 GreetingCard.new(card_ref, front, back)

- end

-

- private

-

15 def read_image(image_id)

- IO.read("img/#{image_id}.gif")

- end

-

- def create_text_page(text)

20 return nil unless text

- # Here we have to create the nice-looking

- # text page somehow.

- ""

- end

25

- def store_card(card_ref, front, back)

- # Generate PDF and store cardref.pdf

- # containing front and back images.

- end

30 end

-

- private

-

- def initialize(card_ref, front, back)

35 @card_ref, @front, @back = card_ref, front, back

- end

- end

A GreetingCard has only three attributes: an unique reference (cardref),
a front page (front) and a back page (back). A factory method called
create(image_id,text) creates new GreetingCard objects.

Current versions of xmlrpc4r are based on WEBrick and the following
server should look familiar:

File Line 1 require 'webrick'

- require 'xmlrpc/server'

- require 'net/ftp'

- require 'greeting_card'

5

- s = XMLRPC::WEBrickServlet.new

- s.add_handler('pragbouquet.draw_card') do |order_no, id, text|

- card = GreetingCard.create(order_no, id, text)

- {

10 'cardref' => card.card_ref,

- 'front' => XMLRPC::Base64.encode(card.front),

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/image_server.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=182

ANOTHER DAY, ANOTHER PROTOCOL 183

- 'back' => XMLRPC::Base64.encode(card.back)

- }

- end

15

- s.add_handler('pragbouquet.print_card') do |cardref|

- # Transfer cardref.pdf to special directory, where

- # it gets picked up and is printed eventually

- ftp = Net::FTP.new('ftp.imagehost')

20 ftp.login('imageserver', 'secret')

- files = ftp.chdir('pub/cards/img')

- ftp.putbinaryfile("#{cardref}.pdf")

- ftp.close

- end

25

- s.add_handler('pragbouquet.delete_card') do |cardref|

- File.delete("#{cardref}.pdf")

- end

-

30 s.set_default_handler do |name, *args|

- raise XMLRPC::FaultException.new(

- -100,

- "Method #{name} missing or wrong number of parameters!"

-)

35 end

-

- server = WEBrick::HTTPServer.new(:Port => 8080)

- server.mount('/RPC2', s)

- trap('INT') { server.shutdown }

40 server.start

We have created a servlet of class XMLRPC::WEBrickServlet and added han-
dlers for the draw_card(), print_card(), and delete_card() functions. It’s
not demanded by the specification, but it’s good style to give them all a
prefix (“pragbouquet” in our case) and it will pay off later.

draw_card()’s implementation is straight-forward using the GreetingCard

class. Note that in lines 11 and 12 we had to explicitly convert our
images into base-64 format. The handlers for print_card() and delete_card()
do not produce anything useful at the moment, but at least you can test
if they are available.

In line 30 we have installed a so called default handler that is com-
parable to Ruby’s method_missing() method. It gets called whenever the
server receives a request it cannot dispatch for any reason, i.e. because
the method name is unknown or the amount of method parameters
does not match. In these cases an exception is raised, i.e. a fault
response will be returned.

The rest of the server does not differ from initializing and starting

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=183

ANOTHER DAY, ANOTHER PROTOCOL 184

any other WEBrick server. By loose convention, XML-RPC services are
located under /RPC2, so we mount our servlet there.

Alright, the XML-RPC service is listening on port 8080 under the URL/RPC2.
The following client will test if it works as expected:

File Line 1 require "xmlrpc/client"

-

- server = XMLRPC::Client.new('localhost', '/RPC2', 8080)

- begin

5 response = server.call(

- 'pragbouquet.draw_card',

- 4711,

- 42,

- 'Forgive me!'

10)

- rescue XMLRPC::FaultException => e

- puts "An error occurred:"

- puts e.faultCode

- puts e.faultString

15 end

xmlrpc4r’s usage is intuitive. To obtain a reference to the server you have
to create an instance of XMLRPC::Client specifying the host, the path, and
the port the service is listening on. Calling a particular procedure is
performed by call(procedure,*args), then. Its result is the decoded server
response.

As we all know there is no Ruby code that could not be made shorter
and more expressive:

File Line 1 require "xmlrpc/client"

-

- server = XMLRPC::Client.new('localhost', '/RPC2', 8080)

- gc = server.proxy2('pragbouquet')

5 success, cards = gc.draw_card(4711, 42, 'Forgive me!')

- if success

- puts cards

- else

- puts "An error occurred:"

10 puts cards.faultCode

- puts cards.faultString

- end

In line 4 we have created a proxy for the greeting card service that
allows us to use the remote procedures exactly as they were local ones
(here we needed the prefix “pragbouquet” again). Furthermore, we have
suppressed the exception feature, i.e. calling proxy2() makes all remote
procedures return a boolean value indicating success or failure. If we

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/image_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/xml_rpc/proxy_client.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=184

WE WILL TAKE NO REST, WILL WE? 185

had used proxy(), exceptions would be raised. The same applies to call()
and call2().

In addition to the WEBrick servlet you can choose from a variety of
different server types that can be configured by several options:

• Server is a stand-alone server that does not depend on WEBrick or
anything else.

• CGIServer can be used in a CGI environment, i.e. you can put your
XML-RPC implementation into a CGI script that is executed by a
web server, whenever it receives an XML-RPC request. To prevent
the web server from executing the script over and over again, this
server type works with FastCGI4, too.

• ModRubyServer allows you to embed your XML-RPC procedures into
a web server using mod_ruby5.

Conclusion

XML-RPC is fairly popular, e.g., it is supported by many operating sys-
tems like Apple’s Mac OS X, and it builds the basis for services like the
Blogger API6. Its biggest strength compared to competitors like SOAP

or CORBA is its simplicity. When designing a distributed application,
XML-RPC is always worth a look. Especially, when you’re using Ruby,
because xmlrpc4r is extremely powerful and gives you a variety of options
for making your remote procedures available to the public quickly.

5.2 We Will Take No REST, Will We?

Remember the LDAP address book we implemented in Section 2.4, Lightweight

Directory Access Protocol (LDAP), on page 51? We did it because the web
shop guys wanted to give Ruby On Rails a try. Because of some unex-
pected change requests (what else?), they didn’t have enough time to
work their way through Ruby and the Rails framework, but the address
book is still needed. They know that you’ve already set up an LDAP

server, and that your Ruby classes are working, too. So they asked you
to turn the implementation into a HTTP service that they can access
from their Java classes. Although the web shop team said that the

4http://www.fastcgi.com
5http://www.modruby.net
6http://www.blogger.com/developers/api/1_docs

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=185

WE WILL TAKE NO REST, WILL WE? 186

details of the interface do not matter much, you know that they’d pre-
fer XML.

You decide that it would be a good idea to map the address book opera-
tions (create a new address book, show an address book, add an entry
to an existing address book, modify an entry, delete an entry, and delete
an address book) to different HTTP methods. To show an address book,
for example, we could use the HTTP GET method. To delete an entry
or a complete address book, we can use an HTTP DELETE. We’ll pass
parameters as XML documents.

Let’s create the main infrastructure first: a WEBrick server that will be
the basis for our service:

File Line 1 require 'rexml/document'

- require 'addressbook'

- require 'ldap'

- require 'thread'

5 require 'cgi'

- require 'webrick'

- include WEBrick

- class AddressBookServlet < HTTPServlet::AbstractServlet

- @@instance = nil

10 @@instance_creation_mutex = Mutex.new

-

- def self.get_instance(config, *options)

- @@instance_creation_mutex.synchronize do

- @@instance ||= self.new(config, *options)

15 end

- end

-

- def initialize(config, ldap_conn)

- super

20 @ldap_conn = ldap_conn

- @ldap_mutex = Mutex.new

- end

- end

- connection = Conn.new

25 connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind('cn=root,dc=pragbouquet,dc=com', 'secret')

-

- server = HTTPServer.new(:Port => 4242)

- server.mount('/ab', AddressBookServlet, connection)

30

- %w(INT TERM).each do |signal|

- trap(signal) { server.shutdown }

- end

-

35 server.start

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=186

WE WILL TAKE NO REST, WILL WE? 187

This server differs a bit from the servers we have used so far. The
servlet is a bit more complicated because we’re working with an expen-
sive resource, the connection to the LDAP server. By default, a new
servlet instance will be created for every request. This is convenient,
because you do not have to care about multithreading issues, but it
can waste a lot of resources, too.

The WEBrick inventors were aware of this problem, so they provided the
get_instance(config,*options) method. This gives you complete control the
servlet creation process. We used it to implement a singleton pattern
that creates only a single instance of the AddressBookServlet class, but
you can come up with any resource management strategy you prefer or
need. For example, you could instead implement a servlet pool.

Our solution is much simpler. In line 13 we synchronize the creation of
the one and only servlet instance (to prevent a race condition when two
requests arrive simultaneously before the instance is created) and in
the following line we actually create a new instance if it does not exist
already.

For the first time we’ve defined an initialize() method for our servlet. We
had to do this because we want to configure it before we actually mount
it. In line 29 we pass it the LDAP connection. In addition, we create a
Mutex object in line 21 that we will use for synchronizing access to the
LDAP server.

Initializing the server is business as usual. We create a connection
to the LDAP server, initialize a servlet, and mount it at /ab (ab is an
abbreviation for address book).

Before adding handlers for the different HTTP methods, we add to_xml()
methods to the Recipient and AddressBook classes that return XML rep-
resentations of their according instances.

File Line 1 class Recipient

- def to_xml

- recipient = REXML::Element.new('recipient')

- recipient.add_attribute('forename', forename)

5 recipient.add_attribute('surname', surname)

- address = recipient.add_element('address')

- address.add_element('street').add_text(street)

- address.add_element('postal-code').add_text(postal_code)

- address.add_element('city').add_text(city)

10 address.add_element('state').add_text(state)

- recipient.add_element('description').add_text(description)

- recipient

- end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=187

WE WILL TAKE NO REST, WILL WE? 188

- end

15

- class AddressBook

- def to_xml

- addressbook = REXML::Element.new('address-book')

- addressbook.add_attribute('uid', user.uid)

20 each_recipient { |r| addressbook.add_element(r.to_xml) }

- addressbook

- end

- end

We use REXML to turn our objects into XML. This is convenient, as the
to_xml() methods return REXML::Element objects, not strings, so we can
easily add elements and attributes if we need to (and, of course, we
will).

Now we have everything prepared, so let’s implement the first HTTP

method handler. This returns the complete address book belonging to a
particular uid. Our server expects a request of the form http://host:port/ab/(uid),
so to get the address book belonging to uid 4711, you send a GET request
to http://host:port/ab/4711.

File Line 1 class AddressBookServlet

- # Return all entries belonging to a particular address book.

- def do_GET(req, res)

- res['content-type'] = 'text/xml'

5 uid = get_uid(req)

- @ldap_mutex.synchronize do

- begin

- ab = AddressBook.new(@ldap_conn, User.new(uid))

- entries = ab.to_xml

10 entries.each_element('recipient') do |r|

- cn = to_cn(

- r.attributes['forename'],

- r.attributes['surname']

-)

15 link = r.add_element('link')

- link.add_text(

- "http://#{req.host}:#{req.port}/ab/#{uid}/#{cn}"

-)

- end

20 entries.write(res.body, 0)

- res.body << "\n"

- res.status = 200

- rescue ResultError

- res.status = 404

25 end

- end

- end

-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://host:port/ab/(uid)
http://host:port/ab/4711
http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=188

WE WILL TAKE NO REST, WILL WE? 189

- def get_uid(req)

30 req.path_info =~ /\/(\d+)$/ ? $1 : nil

- end

-

- def to_cn(forename, surname)

- CGI.escape(forename + " " + surname)

35 end

- end

Admittedly, this is a lot of code, but it’s not difficult to understand.
Let’s dissect it, line by line. First, we extract the uid from the URL. This
is done in the get_uid() method.

Because we need it two lines later to read the address book, in line 6 we
synchronize the access to the LDAP server. Then we convert the address
book into an XML element with our new to_xml() method.

The iterator starting on line 10 adds a <link> element to each address
book entry (that’s the reason why to_xml() does not return a string, but
a REXML::Element object). This element tells the client how to refer to
the entry on the server. To build the URL we append the common name
(cn) of the entry to the address book’s URL and therefore we have to
url-encode it in the to_cn() method.

Eventually, we create a nicely formatted version of our XML document
in line 20 and send it back to the client. If we could not find the address
book requested, we leave the body empty and set the status to File Not

Found in line 24.

Let’s test the method with the command line tool curl (the -i option
instructs curl to print the HTTP headers, too).

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 09:02:52 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 739

<address-book uid='4711'>

<recipient forename='P.H.' surname='Beans'>

<address>

<street>Nuclear Powerplant Road 1</street>

<postal-code>65801</postal-code>

<city>Springfield</city>

<state>MO</state>

</address>

<description>My boss.</description>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=189

WE WILL TAKE NO REST, WILL WE? 190

<link>http://localhost:4242/ab/4711/P.H.+Beans</link>

</recipient>

<recipient forename='Marge' surname='Jackson'>

<address>

<street>Evergreen Terrace 42</street>

<postal-code>62701</postal-code>

<city>Springfield</city>

<state>IL</state>

</address>

<description>

Don't forget our wedding anniversary!

</description>

<link>http://localhost:4242/ab/4711/Marge+Jackson</link>

</recipient>

</address-book>

Everything looks good, but you may ask yourself, what all this has to
do with REST—Representational State Transfer?7 Isn’t it an ordinary Representational State

Transfer
HTTP service? Yes, it is! The main thing that differs from the services
we have built so far is the use of URLs. They do not contain actions
such as send_sms or store_address, but they refer to resources such
as address books on the server.

Another difference with REST is that we no longer use just GET and POST

requests. To delete an address book entry or a complete address book,
we use the DELETE method, for example:

File Line 1 class AddressBookServlet

- def do_DELETE(req, res)

- if req.path_info =~ /\/(\d+)\/(.+)$/

- delete_recipient($1, $2)

5 elsif req.path_info =~ /\/(\d+)$/

- delete_address_book($1)

- end

- res.status = 204 # No Content

- end

10

- def delete_recipient(uid, common_name)

- @ldap_mutex.synchronize do

- ab = AddressBook.new(@ldap_conn, User.new(uid))

- cn = CGI.unescape(common_name)

15 surname = cn.split(/.* (\w+)$/)[1]

- forename = cn[0 .. -(surname.size + 1)]

- ab.remove(Recipient.new(forename, surname))

- end

- end

20

7http://en.wikipedia.org/wiki/Representational_State_Transfer

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=190

WE WILL TAKE NO REST, WILL WE? 191

- def delete_address_book(uid)

- @ldap_mutex.synchronize do

- ab = AddressBook.new(@ldap_conn, User.new(uid))

- ab.each_recipient { |r| ab.remove(r) }

25 ab.delete

- end

- end

- end

At the beginning of the do_DELETE(req,res) method we check if we have to
delete a single address book entry or a complete address book. Depend-
ing on the URL format we delegate work to the delete_address_book(uid)

or to the delete_recipient(uid,common_name) method. In lines 14 to 16
we extract the forename and surname of the recipient to be deleted
from the common name passed in the URL.

The following session first demonstrates how to delete Marge Jack-
son from the address book belonging to user 4711 and then how to
delete the entire address book (curl’s -X option lets us specify which
HTTP request to use).

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711/Marge+Jackson \

> -X DELETE

HTTP/1.1 204 No Content

Date: Sun, 13 Nov 2005 13:20:42 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 13:24:02 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 373

<address-book uid='4711'>

<recipient forename='P.H.' surname='Beans'>

<address>

<street>Nuclear Powerplant Road 1</street>

<postal-code>65801</postal-code>

<city>Springfield</city>

<state>MO</state>

</address>

<description>My boss.</description>

<link>http://localhost:4242/ab/4711/P.H.+Beans</link>

</recipient>

</address-book>

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711 -X DELETE

HTTP/1.1 204 No Content

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=191

WE WILL TAKE NO REST, WILL WE? 192

Date: Sun, 13 Nov 2005 13:20:55 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

mschmidt:/tmp> curl -i http://localhost:4242/ab/4711

HTTP/1.1 404 Not Found

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 13:24:40 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

It looks like our delete methods work. Now let’s balance the books by
creating new entries.

File Line 1 class AddressBookServlet

- def do_POST(req, res)

- doc = REXML::Document.new(req.body)

- if doc.root.name == 'recipient'

5 create_recipient(doc, req, res)

- else

- create_address_book(doc, req, res)

- end

- end

10

- def create_address_book(doc, req, res)

- user = parse_user(doc)

- @ldap_mutex.synchronize do

- AddressBook.create(@ldap_conn, user)

15 end

- res.status = 201

- res['Location'] = "/ab/#{user.uid}"

- end

-

20 def create_recipient(doc, req, res, update = false)

- uid = get_uid(req)

- recipient = parse_recipient(doc)

- @ldap_mutex.synchronize do

- begin

25 ab = AddressBook.new(@ldap_conn, User.new(uid))

- if update

- ab.modify(recipient)

- else

- ab.add(recipient)

30 end

- cn = to_cn(recipient.forename, recipient.surname)

- res.status = 201 # Created

- res['Location'] = "/ab/#{uid}/#{cn}"

- rescue ResultError => ex

35 @logger.info ex

- res.status = 404

- end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=192

WE WILL TAKE NO REST, WILL WE? 193

- end

- end

40

- def parse_user(doc)

- attributes = doc.root.attributes

- User.new(

- attributes['uid'],

45 attributes['forename'],

- attributes['surname']

-)

- end

-

50 def parse_recipient(doc)

- attributes = doc.root.attributes

- Recipient.new(

- attributes['forename'],

- attributes['surname'],

55 attributes['street'],

- attributes['postal-code'],

- attributes['city'],

- attributes['state'],

- attributes['description']

60)

- end

- end

New objects are created using the POST request. First, we check if a new
address book or a new address book entry should be created. In both
cases we read the attributes of the object to be created from an XML

document that is passed with the request. Attributes for a new address
book will be read by parse_user(doc) and attributes for a new address
book entry will be read by parse_recipient(doc).

The create_recipient(doc,req,res,update=false) is a bit special. It’s not only
able to create new recipient objects, but it can also modify existing
ones. You can change its behaviour using the update flag.

Both methods, create_address_book() and create_recipient(), set the Loca-

tion header in the HTTP response. This contains a link to the object that
ws just created. This is a REST convention.

The following session creates a new address book and a new address
book entry:

mschmidt:/tmp> curl -i http://localhost:4242/ab/23 -X POST -d \

> "<address-book uid='23' forename='Homer' surname='Simpson'/>"

HTTP/1.1 201 Created

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 18:46:54 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=193

WE WILL TAKE NO REST, WILL WE? 194

Content-Length: 0

Location: http://localhost:4242/ab/23

mschmidt:/tmp> curl -i http://localhost:4242/ab/23 -X POST -d \

> "<recipient forename='Barney' surname='Gumble' street='Musterstr. 42'

> postal-code='11011' city='Berlin' state='n/a'

> description='My best friend.' />"

HTTP/1.1 201 Created

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 18:48:46 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

Location: http://localhost:4242/ab/23/Barney+Gumble

mschmidt:/tmp> curl -i http://localhost:4242/ab/23

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 18:49:41 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 366

<address-book uid='23'>

<recipient forename='Barney' surname='Gumble'>

<address>

<street>Musterstr. 42</street>

<postal-code>11011</postal-code>

<city>Berlin</city>

<state>n/a</state>

</address>

<description>My best friend.</description>

<link>http://localhost:4242/ab/23/Barney+Gumble</link>

</recipient>

</address-book>

Now we can create new objects. It would be nice to be able to modify
existing entries, too.

File Line 1 class AddressBookServlet

- def do_PUT(req, res)

- doc = REXML::Document.new(req.body)

- create_recipient(doc, req, res, true)

5 end

- end

This code is short, because we could reuse the create_recipient() method
that we used to create new entries. Note that to update existing entries
we use the PUT request. If, for example, Barney becomes Homer’s very
best friend, we can change the description attribute as follows:

mschmidt:/tmp> curl -i http://localhost:4242/ab/23 -X PUT -d \

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rest/rest_addressbook.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=194

WE WILL TAKE NO REST, WILL WE? 195

CRUD Action HTTP Method

Create POST
Retrieve GET
Update PUT
Delete DELETE

Figure 5.4: Mapping CRUD to REST

> "<recipient forename='Barney' surname='Gumble'

> street='Musterstr. 42' postal-code='11011'

> city='Berlin' state='n/a'

> description='My very best friend.' />"

HTTP/1.1 201 Created

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 19:02:07 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 0

Location: http://localhost:4242/ab/23/Barney+Gumble

mschmidt:/tmp> curl -i http://localhost:4242/ab/23

HTTP/1.1 200 OK

Connection: Keep-Alive

Date: Sun, 13 Nov 2005 19:03:46 GMT

Content-Type: text/xml

Server: WEBrick/1.3.1 (Ruby/1.8.3/2005-09-21)

Content-Length: 371

<address-book uid='23'>

<recipient forename='Barney' surname='Gumble'>

<address>

<street>Musterstr. 42</street>

<postal-code>11011</postal-code>

<city>Berlin</city>

<state>n/a</state>

</address>

<description>My very best friend.</description>

<link>http://localhost:4242/ab/23/Barney+Gumble</link>

</recipient>

</address-book>

Perfect! We now have methods for all the CRUD actions. Figure 5.4
shows how we mapped them to HTTP request types.

At the risk of destroying your faith in technology, we have a confession
to make. There is no REST standard. REST is an architectural style
that depends on a lot of other standards such as HTTP and XML. It

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=195

SOAP 196

recommends representing entities on a server as XML documents that
can be referred to by URLs. But that’s about it. There is no such thing
as a REST service framework. But, because Ruby has excellent support
for HTTP and XML, it also has excellent support for REST services. In
fact, maybe you’ve already implemented a REST service without even
noticing it.

5.3 SOAP

Today you gave a little presentation of the Stock class we developed in
Section 2.3, What Do We Have In Stock?, on page 41 to the clerks and
the team that normally develops PragBouquet’s financial applications.
They were all very impressed, and so you’ve landed the job to work
out the details of the final system with Jeff, the leader of the financial
applications team.

Jeff told you that Microsoft’s .NET environment is their preferred devel-
opment platform. Processes and components on this platform often
communicate via SOAP, so Jeff’s life would be easier if the Stock class
was available as a SOAP service, too. You don’t have much experience
with SOAP and absolutely no experience with Ruby and SOAP, but you
are sure that there will be an easy way to turn the Stock class into a
SOAP service.

Refactoring the Stock Class API

First, we have to refactor the API of the Stock class a bit, because Jeff
made some useful suggestions. For example, he wants to remove the
Bouquet class, because in his opinion, a flower stock should not have to
know anything about bouquets. At least it should be possible to remove
flowers without putting them into a bouquet first. He also thinks that
the print_report() method should be replaced with a get_report() method
that actually returns a stock report instead of printing it.

After 90 minutes of discussion you both agree upon the following API:

create_flower(name,price,quantity)

creates an entry for a new flower called name in the database and
sets an initial price and an initial quantity.

add_flowers(name,quantity)

adds quantity flowers called name to the stock. It returns the quan-
tity of flowers called name in stock.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=196

SOAP 197

remove_flowers(name,quantity)

removes quantity flowers called name from the stock. It returns the
quantity of flowers called name in stock.

set_price(name,price)

sets the price of the flower called name to price.

get_report()
returns a Hash containing a two-dimensional array for each flower
in stock. The first array entry is the quantity of the flower and the
second is the current price. A typical example looks like this:

{

'rose' => [1000, 2.99],

'sunflower' => [500, 1.79]

}

All price information is stored in US dollars. Every method can raise
an exception if it gets invalid arguments or runs into a database error.

“That’s great!” you think. “I don’t have to make any changes to the
database schema.”8 Before we deal with any soapy things, we will drop
the Bouquet class and completely refactor our Stock. If SOAP is worthy
of all the hype surrounding it, we hopefully won’t have to modify our
class again later. Our database access layer looks like this, then:

File Line 1 require 'rubygems'

- require 'active_record'

-

- ActiveRecord::Base.establish_connection(

5 :adapter => 'mysql',

- :host => '127.0.0.1',

- :database => 'webshop'

-)

-

10 class Flower < ActiveRecord::Base

- belongs_to :stock_item

- end

-

- class StockItem < ActiveRecord::Base

15 has_one :flower

- end

No big surprises here: the Bouquet class and all its dependencies are
gone. Let’s implement our API specification:

File Line 1 class Stock

8Still thinking the old way, eh? With ActiveRecord these changes would have been a
piece of cake anyway :-)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/stock.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=197

SOAP 198

- def create_flower(name, price, quantity)

- flower = Flower.find_by_name(name)

- raise "#{name} already exists!" if !flower.nil?

5 si = StockItem.new(:quantity => quantity)

- si.save

- si.create_flower(:name => name, :price => price)

- quantity

- end

10

- def add_flowers(name, quantity)

- adjust_quantity(name, quantity)

- end

-

15 def remove_flowers(name, quantity)

- adjust_quantity(name, -quantity)

- end

-

- def set_price(name, price)

20 flower = Flower.find_by_name(name)

- raise "#{name} is unknown!" if flower.nil?

- flower.price = price

- flower.save

- price

25 end

-

- def get_report

- StockItem.find(:all).inject({}) do |r,si|

- r[si.flower.name] = [si.quantity, si.flower.price]; r

30 end

- end

-

- private

-

35 def adjust_quantity(name, difference)

- flower = Flower.find_by_name(name)

- raise "#{name} is unknown!" if flower.nil?

- si = StockItem.find(flower.stock_item_id)

- si.quantity += difference

40 raise 'Not enough flowers!' if si.quantity < 0

- si.save

- si.quantity

- end

- end

As expected, the Ruby implementation almost reads like the API descrip-
tion itself, and ActiveRecord makes the code pure, short, and simple.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=198

SOAP 199

A Look Under the Hood of SOAP

In doing some research on SOAP, you might have come across the draft
W3C specification:9

“SOAP is a lightweight protocol for exchange of information in a decen-
tralized, distributed environment. It is an XML based protocol that con-
sists of three parts: an envelope that defines a framework for describing
what is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a conven-
tion for representing remote procedure calls and responses.”

Simply put, SOAP is XML-RPC after it has been ground by the mills
of a standards committee.10 Like XML-RPC, SOAP specifies a way to
implement a remote procedure call architecture where all requests and
responses are encoded as XML documents. Compared to XML-RPC, it
has a more flexible data type system, deals with encoding and authen-
tication issues, and is meant to be used on different transport layers,
not only HTTP.

Let’s see how it works in the real world. A method call such as cre-

ate_flower(’rose’, 1.99, 1000) gets converted into the following document:

<?xml version="1.0" encoding="utf-8"?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Body>

<n1:create_flower xmlns:n1="urn:Stock"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:string">rose</name>

<price xsi:type="xsd:double">+1.99</price>

<quantity xsi:type="xsd:int">1000</quantity>

</n1:create_flower>

</env:Body>

</env:Envelope>

If we leave out all the namespace stuff, it becomes easier to see how it
works:11

<?xml version="1.0"?>

<Envelope>

9http://www.w3.org/TR/2000/NOTE-SOAP-20000508
10In the beginning SOAP stood for “Simple Object Access Protocol”, but today it only

means SOAP. Have a look at the current specification and you can easily see why the
committee decided to drop the “Simple.”

11We only remove the namespaces for better readability. When you are actually work-
ing with SOAP, you have to use them!

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=199

SOAP 200

<Body>

<create_flower>

<name type="string">rose</name>

<price type="double">+1.99</price>

<quantity type="int">1000</quantity>

</create_flower>

</Body>

</Envelope>

Obviously, every method call gets translated into its own element (in
our case, it’s <create_flower>). All the method’s parameters are turned
into elements, too, and they become child elements of the method call
element. They all have a type= attribute that specifies the data type of
the parameter using XmlSchema.12

The return value of our method call looks like this:

<?xml version="1.0" encoding="utf-8"?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Body>

<n1:create_flowerResponse xmlns:n1="urn:Stock"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:int">1000</return>

</n1:create_flowerResponse>

</env:Body>

</env:Envelope>

Removing all the namespace clutter will help again:

<?xml version="1.0"?>

<Envelope>

<Body>

<create_flowerResponse>

<return type="int">1000</return>

</create_flowerResponse>

</Body>

</Envelope>

To encode a method’s return value, a new element is created and its
name is build by appending “Response” to the name of the method that
was called. The return value itself is encoded as a child called <return>

of the newly created element. Its data type is specified the same way as
the data type of method parameters.

SOAP is much more than this (see Programming Web Services with

SOAP [?], for example), but for our purposes it’s sufficient to know how

12http://www.w3.org/XML/Schema

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.w3.org/XML/Schema
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=200

SOAP 201

method calls and responses are encoded. To call the create_flower()
method we could create an XML document such as the one above and
send it using Ruby’s HTTP library. Then we could parse the response
using REXML. Actually, there are lots of clients out there that work
exactly this way. We will follow a more flexible approach and use Ruby’s
standard SOAP library, called soap4r.

SOAP the Hard Way

To turn the Stock class into a SOAP service we use Hiroshi Nakamura’s
soap4r library. It is part of the Ruby standard library, implements SOAP
version 1.113, and makes the creation of web services really easy:

File Line 1 require 'soap/rpc/standaloneServer'

- require 'stock'

-

- class StockServer < SOAP::RPC::StandaloneServer

5 def on_init

- @stock = Stock.new

- @log.level = Logger::Severity::DEBUG

- add_method(self, 'create_flower', 'name', 'price', 'quantity')

- add_method(self, 'add_flowers', 'name', 'quantity')

10 add_method(self, 'remove_flowers', 'name', 'quantity')

- add_method(self, 'set_price', 'name', 'price')

- add_method(self, 'get_report')

- end

-

15 def create_flower(name, price, quantity)

- @stock.create_flower(name, price, quantity)

- end

-

- def add_flowers(name, quantity)

20 @stock.add_flowers(name, quantity)

- end

-

- def remove_flowers(name, quantity)

- @stock.remove_flowers(name, quantity)

25 end

-

- def set_price(name, price)

- @stock.set_price(name, price)

- end

30

- def get_report

- @stock.get_report

- end

13There is a W3C recommendation for version 1.2, but it’s currently not in widespread
use.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/s_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=201

SOAP 202

- end

35

- server = StockServer.new('stock', 'urn:Stock', '0.0.0.0', 2000)

- trap(:INT) { server.shutdown }

- server.start

We actually didn’t have to touch the Stock class to make its functionality
available in our first SOAP server. In fact, we didn’t have to do much at
all.

First, we derived our StockServer class from a standard soap4r class
called SOAP::RPC::StandaloneServer. This is one of several ways to create
SOAP services with soap4r.

The on_init() method gets called when the server is initialized, so we
use it to create our Stock instance, configure the logging system (you’ll
need a lot of debug output, especially in the beginning), and declare all
the remote methods we’re going to support. All the remaining methods
simply delegate their work to their counterparts in the Stock class.

In line 36 we create a server instance. The constructor gets four param-
eters:

• The application name.

• URN of the application.

• The name or IP address of the host the service is running on. 0.0.0.0

means that the service is listening on all interfaces.

• The port the service is running on.

In line 37 we make sure that the server gets terminated when it receives
a SIGINT signal. Finally, on the last line, we start the server.

At this point you could ask a member of Jeff’s team if they’d try to use
and test the new service, but you’re afraid that it if doesn’t run properly
and could ruin all your newly gained reputation. Better write your own
test client:

File Line 1 require 'soap/rpc/driver'

-

- stock = SOAP::RPC::Driver.new('http://localhost:2000', 'urn:Stock')

- [

5 %w(create_flower name price quantity),

- %w(add_flowers name quantity),

- %w(remove_flowers name quantity),

- %w(set_price name price),

- %w(get_report)

10].each do |signature|

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/c_stock.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=202

SOAP 203

- stock.add_method(*signature)

- end

-

- begin

15 stock.create_flower('rose', 1.99, 1000)

- stock.create_flower('orchid', 3.14, 200)

- puts "Created 'rose' and 'orchid'."

- p stock.get_report

-

20 stock.remove_flowers('rose', 5)

- puts 'Removed 5 roses.'

- p stock.get_report

-

- stock.add_flowers('orchid', 100)

25 puts 'Added 100 orchids.'

- p stock.get_report

-

- stock.set_price('orchid', 3.01)

- puts 'Changed orchid price to $3.01.'

30 p stock.get_report

- rescue Exception => ex

- puts ex

- end

This produces the following output (after we have deleted all records
from the flowers table):

Created 'rose' and 'orchid'.

{"orchid"=>[200, 3.14], "rose"=>[1000, 1.99]}

Removed 5 roses.

{"orchid"=>[200, 3.14], "rose"=>[995, 1.99]}

Added 100 orchids.

{"orchid"=>[300, 3.14], "rose"=>[995, 1.99]}

Changed orchid price to $3.01.

{"orchid"=>[300, 3.01], "rose"=>[995, 1.99]}

That wasn’t too difficult, either. We obtained a proxy for the stock
service by creating a SOAP::RPC::Driver instance, passing it the address
and the URN of the service we want to access. In lines 4 to 12 we tell
the proxy which methods we’d like to use. From then on we could treat
the proxy as if it were an instance of the Stock class.

So far, so good, but our current implementation of the server does not
meet our high coding standards. Why do we have to repeat the Stock

class’ API in the SOAP server? Ruby is supposed to be a dynamic lan-
guage. Isn’t it possible to create the server automatically from the Stock

class? Fortunately, it is:

File Line 1 class StockServer < SOAP::RPC::StandaloneServer

- def initialize(*args)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/s_stock2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=203

SOAP 204

- super

- @log.level = Logger::Severity::DEBUG

5 add_servant(Stock.new)

- end

- end

Sweet, isn’t it? Instead of adding every single remote method with
add_method(), you can make all the methods of a particular class avail-
able by passing an instance of the class to add_servant().

Web Services Description Language

Did you notice that we are still violating the DRY principle? In the client
we call add_method() for every method of the Stock class to define the
interface we want to use. Wouldn’t it be nice if we could generate the
boring and tedious interface code from a more abstract definition?

In CORBA environments you can use the Interface Definition Language
(IDL) to describe interfaces and to generate stubs and skeletons for
servers and clients. SOAP uses the Web Services Description Language Web Services Description

Language
(WSDL) for this purpose. It’s an XML dialect made for describing the
interface of remote services.

With WSDL you can describe the service itself, its interface, and its
bindings. It’s not required, but it’s good practice, to separate the ser-
vice description from the interface description. Our service description
looks as follows:

File Line 1 <?xml version="1.0"?>

- <definitions name="StockServiceImplementationDescription"

- targetNamespace="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns="http://schemas.xmlsoap.org/wsdl/"

5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

- xmlns:tns="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns:xsd="http://www.w3.org/2001/XMLSchema">

-

- <import namespace="urn:Stock" location="stock.wsdl"/>

10

- <service name="StockService">

- <documentation>

- The stock service allows you to manage PragBouquet's flower

- stock.

15 </documentation>

- <port binding="tns:StockBinding" name="StockPort">

- <soap:address location="http://localhost:2000"/>

- </port>

- </service>

20 </definitions>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/sd_stock.wsdl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=204

SOAP 205

The biggest problem with WSDL files is that they are often cluttered
with XML namespaces. If you ignore these, the rest is easy to read. In
line 9 we import the interface definition of the stock service that we are
going to describe next. We then use the <service> element to briefly
describe it. With the <documentation> element we explain a bit about
the purpose of our service and the <port> element tells us where it can
be found.

Describing the service’s interface is a bit more complex, but still not
difficult:

File Line 1 <?xml version="1.0"?>

- <definitions name="StockServiceInterfaceDescription"

- targetNamespace="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns="http://schemas.xmlsoap.org/wsdl/"

5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

- xmlns:tns="http://www.pragbouquet.com/wsdl/StockService.wsdl"

- xmlns:xsd="http://www.w3.org/2001/XMLSchema">

-

- <message name="set_price_in">

10 <part name="name" type="xsd:string"/>

- <part name="price" type="xsd:double"/>

- </message>

-

- <message name="set_price_out">

15 <part name="price" type="xsd:double"/>

- </message>

-

- <portType name="StockInterface">

- <operation name="set_price">

20 <input message="tns:set_price_in"/>

- <output message="tns:set_price_out"/>

- </operation>

- </portType>

-

25 <binding name="StockBinding" type="tns:StockInterface">

- <soap:binding style="rpc"

- transport="http://schemas.xmlsoap.org/soap/http"/>

- <operation name="set_price">

- <soap:operation soapAction="set_price"/>

30 <input>

- <soap:body

- encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

- namespace="urn:Stock"

- use="encoded"/>

35 </input>

- <output>

- <soap:body

- encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

- namespace="urn:Stock"

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/stock.wsdl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=205

SOAP 206

40 use="encoded"/>

- </output>

- </operation>

- </binding>

- </definitions>

WSDL does not force us to declare the whole interface at once, so we
only declared the set_price(name,price) method. Let’s dissect it element
by element.

We use the <message> elements to declare the signatures and return
values of all methods we are going to describe. In SOAP everything is
a message—a method gets a message containing its parameters and
it sends back its return value as a message. The set_price(name,price)

method receives a message called set_price_in that consists of two parts:
a String called name and a double called price. A set_price_out message
containing a double object named price is sent back.

It may look a bit awkward to declare our Ruby methods this way, but
SOAP was meant to be interoperable and so the standards committee
had to agree upon a list of data types that are available in most (static)
programming languages. Hence, data types in SOAP can be everything
you are used to in object-oriented languages such as Java and C++:
atomic types such as int and double, arrays, structs, and even full-
blown objects. They are described using XmlSchema14 and reside in
the xsd namespace.

We describe the methods (or operations as SOAP calls them) offered by
the service with the <portType> element beginning on line 18. In our
case this is simple: we have an operation called set_price() that expects
a message of type set_price_in and returns a set_price_out message.

The rest of the WSDL file deals with the so-called service binding. It’s
possible to declare several implementations of the same interface in a
single WSDL file. For example, there could be different SOAP implemen-
tations of our Stock service. One that uses HTTP as its transport layer
and another one that uses HTTPS. Both services would have the same
interface, but they would have different bindings. (In fact, they don’t
even have to be SOAP services at all.) But our Stock service is a plain
old SOAP service running on top of HTTP.

Now that we have this abstract, omnipotent XML description of our
stock, only a single question remains: what the heck can we do with it?

14http://www.w3.org/XML/Schema

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.w3.org/XML/Schema
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=206

SOAP 207

Simple answer: we can use it to generate all the boring code we had to
write manually before:

mschmidt:/tmp> ls

sd_stock.wsdl stock.wsdl

mschmidt:/tmp> wsdl2ruby.rb --type client --wsdl sd_stock.wsdl

I, [2005-12-31T12:29:39.745796 #567] INFO -- app: Creating class \

definition.

I, [2005-12-31T12:29:39.786257 #567] INFO -- app: Creates file \

'StockServiceImplementationDescription.rb'.

I, [2005-12-31T12:29:39.789094 #567] INFO -- app: Creating driver.

I, [2005-12-31T12:29:39.790492 #567] INFO -- app: Creates file \

'StockServiceImplementationDescriptionDriver.rb'.

I, [2005-12-31T12:29:39.796227 #567] INFO -- app: Creating client \

skelton.

I, [2005-12-31T12:29:39.797680 #567] INFO -- app: Creates file \

'StockServiceClient.rb'.

I, [2005-12-31T12:29:39.800845 #567] INFO -- app: End of app.\

(status: 0)

mschmidt:/tmp> ls

StockServiceClient.rb

StockServiceImplementationDescription.rb

StockServiceImplementationDescriptionDriver.rb

sd_stock.wsdl

stock.wsdl

mschmidt:/tmp>

wsdl2ruby.rb turns .wsdl files into Ruby code. Although it is part of soap4r,
it is not part of the Ruby standard distribution and has to be installed
separately.15

You can specify the .wsdl file to be compiled with the --wsdl option. Using
the --type option you can choose if you want client or server code. We
were interested in client code this time and wsdl2ruby.rb has generated
three files for us. The most interesting one is StockServiceClient.rb:

File Line 1 #!/usr/bin/env ruby

- require 'StockServiceImplementationDescriptionDriver.rb'

-

- endpoint_url = ARGV.shift

5 obj = StockInterface.new(endpoint_url)

-

- # run ruby with -d to see SOAP wiredumps.

- obj.wiredump_dev = STDERR if $DEBUG

-

10 # SYNOPSIS

- # set_price(name, price)

- #

15soap4r’s home page is http://dev.ctor.org/soap4r

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/StockServiceClient.rb
http://dev.ctor.org/soap4r
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=207

SOAP 208

- # ARGS

- # name String - {http://www.w3.org/2001/XMLSchema}string

15 # price Double - {http://www.w3.org/2001/XMLSchema}double

- #

- # RETURNS

- # price Double - {http://www.w3.org/2001/XMLSchema}double

- #

20 name = price = nil

- puts obj.set_price(name, price)

How convenient: replace name and price in line 20 with actual values
and you are done.

All the other files that have been created are not meant to be touched.
The file ending with “Driver” contains the proxy (or driver as soap4r calls
it) for the SOAP service. The remaining file contains classes needed by
the driver. Whenever the .wsdl file changes, they have to be generated
anew.

For the sake of completeness let’s generate the server side, too:

mschmidt:/tmp> ls

sd_stock.wsdl stock.wsdl

mschmidt:/tmp> wsdl2ruby.rb --type server --wsdl sd_stock.wsdl

I, [2005-12-31T14:33:09.426067 #701] INFO -- app: Creating class \

definition.

I, [2005-12-31T14:33:09.428748 #701] INFO -- app: Creates file \

'StockServiceImplementationDescription.rb'.

I, [2005-12-31T14:33:09.431321 #701] INFO -- app: Creating servant \

skelton.

I, [2005-12-31T14:33:09.432716 #701] INFO -- app: Creates file \

'StockServiceImplementationDescriptionServant.rb'.

I, [2005-12-31T14:33:09.436486 #701] INFO -- app: Creating standalone \

stub.

I, [2005-12-31T14:33:09.438000 #701] INFO -- app: Creates file \

'StockService.rb'.

- Standalone stub can have only 1 port for now. So creating stub for \

the first port and rests are ignored.

- Standalone server stub ignores port location defined in WSDL. \

Location is http://localhost:10080/ by default. Generated client \

from WSDL must be configured to point this endpoint manually.

I, [2005-12-31T14:33:09.474488 #701] INFO -- app: End of app. \

(status: 0)

mschmidt:/tmp> ls

StockService.rb

StockServiceImplementationDescription.rb

StockServiceImplementationDescriptionServant.rb

sd_stock.wsdl

stock.wsdl

mschmidt:/tmp>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=208

SOAP 209

File Line 1 require 'StockServiceImplementationDescription.rb'

-

- class StockInterface

- # SYNOPSIS

5 # set_price(name, price)

- #

- # ARGS

- # name String - {http://www.w3.org/2001/XMLSchema}string

- # price Double - {http://www.w3.org/2001/XMLSchema}double

10 #

- # RETURNS

- # price Double - {http://www.w3.org/2001/XMLSchema}double

- #

- def set_price(name, price)

15 p [name, price]

- raise NotImplementedError.new

- end

- end

Generating the server skeleton is normally only interesting if you’re
developing a SOAP service from scratch. If you already have an imple-
mentation (like our Stock class), it’s easier to “soapify” it with the method
add_servant(). Despite all this, it’s always a good idea to design your
software without having a certain technology for distributed applica-
tions in mind. It may change sooner than you think...

There’s an even easier way to automatically create client code from a
.wsdl file:

File Line 1 require 'soap/wsdlDriver'

- wsdl = 'sd_stock.wsdl'

- stock = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

- stock.set_price('orchid', 2.42)

The constructor of the SOAP::WSDLDriverFactory accepts the file name of
a WSDL file or an URL that points to one. Its create_rpc_driver() method
returns a proxy for the service described in the WSDL file.

We cannot simplify the client anymore, so it’s time to start the server
and to send the .wsdl files to Jeff and his guys. They’ll know what to do
with ’em....

Conclusion

After the inevitable hype dissipated, SOAP quickly became a standard
technology in the industry. If you haven’t used it already, the chances
are good that you’ll have to use or build a SOAP service some day. For
most applications, SOAP is complete overkill. Sometimes, though, it

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/StockServiceImplementationDescriptionServant.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/soap/dynclient.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=209

CORBA, RMI, AND FRIENDS 210

makes sense (and there will always be pointy-haired bosses that force
you to use a certain technology even when it’s absolutely inappropri-
ate).

With Ruby it almost doesn’t matter whether SOAP is appropriate or not,
because soap4r completely hides all the nasty details, allowing you to
fully concentrate on your application domain.

5.4 CORBA, RMI, and Friends

With the advent of the Internet, textual protocols like SMTP and HTTP

became the norm and so it comes as no surprise that the most popular
web services protocols like SOAP and XML-RPC are textual protocols,
too.

Some years ago the situation looked a bit different and many organiza-
tions and companies tried to establish their own “standard” for building
distributed architectures. Sun, e.g., has defined the Remote Method

Invocation protocol (RMI) for Java and the Object Management Group Remote Method

Invocation

Object Management

Group

(OMG) 16 has specified CORBA.

All these approaches suffered from the same problems: they were way
too complex and they all relied upon binary protocols. Only big com-
panies like Sun, Borland, or IBM had the manpower to implement such
specifications and even for them it was sometimes too difficult to do it
right. Consequentially, the situations today is a mess: there are imple-
mentations for only a few programming languages, many systems do
not interact as they should because of proprietary vendor extensions,
and all in all the former “standards” have been superseded by their
young and fresh fellows like XML-RPC, anyway.

Despite this, many companies have created CORBA components and
RMI services during that short period of time and chances are good that
you still have to use some of these relicts. Unfortunately, there is no
CORBA or RMI implementation for Ruby (and probably there never will
be one), but instead of implementing a CORBA or RMI protocol stack in
Ruby, it’s much more comfortable to reuse an existing implementation
like the one for Java, e.g.

Hence, this section mainly deals with integrating Ruby and Java and
we will show you how you can still use the gigabytes of .jar files that

16Read more about the OMG and its work at http://www.omg.org.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.omg.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=210

CORBA, RMI, AND FRIENDS 211

you have collected and created during the last years. Although our
main example deals with CORBA, it explains all techniques necessary
for accessing your good old RMI services, too.

CORBA, Java, and Ruby

CORBA stands for Common Object Request Broker Architecture and is
a language-neutral standard for object-oriented inter-process commu-
nication. Simply put, it allows you to instantiate remote objects and
invoke methods on them transparently over a network. It has been
popular in the industry at the end of the nineties, so chances are good
that you can find some CORBA services in any company that has sur-
vived the dot-com bubble burst 17.

Core of every CORBA system is the so called Object Request Broker Object Request Broker

(ORB). All service objects register themselves at the ORB and clients ask
the ORB for particular services. To make network transparency possible
all the marshaling and demarshaling code for all objects is generated
from an abstract interface definition. Interfaces of CORBA objects are
defined using the Interface Definition Language (IDL). Such interfaces Interface Definition

Language
are compiled using an IDL compiler that generates so called stubs for

stubsthe clients and skeletons for the server objects. Stubs and skeletons
skeletonsact as proxies and convert method calls into network traffic and vice

versa.

CORBA implementations usually come with a lot of standard services
like, e.g., a naming service. Hence, clients do not have to know exact
network addresses to obtain a reference to a particular service, they
only have to know its name and have to ask the ORB to find the service
(they have to know the address of the ORB, of course). It is even possible
that different ORBs communicate to find a particular service. Therefore
the Internet Inter ORB Protocol (IIOP) was invented. See Figure 5.5, on Internet Inter ORB

Protocol
the following page for an overview.

The SMS Server again

Before drowning in theory we will show you how to access CORBA ser-
vices with Ruby. Do you remember the HTTP server that allowed us to
send short messages in cellular networks (if not you should read now)?
I have to admit that I’ve tricked you a bit: there is no such thing like a

17http://en.wikipedia.org/wiki/Dot-com

Report erratum
Prepared exclusively for Jacob Hochstetler

http://en.wikipedia.org/wiki/Dot-com
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=211

CORBA, RMI, AND FRIENDS 212

Figure 5.5: CORBA Overview

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=212

CORBA, RMI, AND FRIENDS 213

HTTP interface for this server. It’s a CORBA service and I’ve wrapped it
with a thin HTTP layer.

The CORBA interface definition of the SMS service we have used looks
like this:

File Line 1 #ifndef SMS_IDL__

- #define SMS_IDL__

-

- module sms {

5

- exception IOError {};

-

- interface SmsService {

- /* Sends a textual short message and returns the amount

10 * of characters sent.

- */

- short send_text(

- in string recipient,

- in string sender,

15 in string data) raises (IOError);

-

- /* Sends a binary short message (the data has to be

- * encoded as two-digit, case-insensitive hexadecimal

- * values). Returns the amount of bytes sent.

20 */

- short send_binary(

- in string recipient,

- in string sender,

- in string data) raises (IOError);

25 };

- };

-

- #endif

Even if you’ve never seen an .idl file before you should have no problems
understanding it. We define an interface called SmsService that declares
an exception called IOError and exports two methods for sending short
messages. All these elements belong to the sms module.

An IDL compiler turns such an interface definition into stub and skele-
ton code for a particular programming language and generates every-
thing that is needed to transport data types, method calls, and excep-
tions in a transparent manner.

Unfortunately, there is no native CORBA binding for Ruby (to be con-
cise: there is not even a standardized IDL mapping. Standardized map-
pings exist for C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python, and
IDLscript) and consequentially there is no IDL compiler for Ruby. That’s

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/sms.idl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=213

CORBA, RMI, AND FRIENDS 214

not a big problem, because there are many for Java and it’s easy for us
to use one of them 18.

Our approach is to build the client code with Java and embed it into
Ruby. One of the nice things about CORBA is that it doesn’t matter if
the server has been implemented in C++ or Java. You can always write
or use a Java client, which is usually easier than fiddling around with
C++ compiler options and the like.

The idlj command shipping with the Java SDK turns our .idl file into
a bunch of .java files (the -fall option generates both client and server
code):

mschmidt:~/sms> idlj -fall sms.idl

mschmidt:~/sms> ls sms

IOError.java SmsServiceHolder.java

IOErrorHelper.java SmsServiceOperations.java

IOErrorHolder.java SmsServicePOA.java

SmsService.java _SmsServiceStub.java

SmsServiceHelper.java

First of all, we create a dummy implementation of the SMS service that
makes testing easier and prevents us from sending short messages fre-
quently. Our implementation has to be derived from class SmsService-

POA and looks as follows:

File Line 1 import sms.*;

-

- class SmsServiceImpl extends SmsServicePOA {

- public short send_text(

5 final String recipient,

- final String sender,

- final String data) throws IOError

- {

- // Send SMS somehow...

10 final short text_length = (short)data.length();

- final short bit_amount = (short)(text_length * 7);

- short byte_amount = (short)(bit_amount / 8);

- if (bit_amount % 8 != 0)

- byte_amount++;

15 return byte_amount;

- }

-

- public short send_binary(

- final String recipient,

20 final String sender,

18At http://java.sun.com/j2se/1.4.2/docs/guide/idl/GShome.html you can
find a nice Java/CORBA tutorial.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SmsServiceImpl.java
http://java.sun.com/j2se/1.4.2/docs/guide/idl/GShome.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=214

CORBA, RMI, AND FRIENDS 215

- final String data) throws IOError

- {

- if (data.length() % 2 != 0)

- throw new IOError("Odd length of binary data!");

25

- // Send SMS somehow...

- return (short)(data.length() / 2);

- }

- }

This implementation of the sendTextSms() and sendBinarySms() does not do
a lot, but for testing purposes it’s sufficient. Both methods calculate the
amount of bytes that would have been transmitted, if we actually had
sent a short message. For binary messages it’s easy, because we encode
the binary data as a string of two-digit, case-insensitive hexadecimal
values. Hence we have to divide the string length by 2 to get the byte
amount. The calculation for text messages is a bit more complicated,
because the character set encodings for short messages usually only
use 7 bits per character.

File Line 1 import org.omg.CosNaming.*;

- import org.omg.CORBA.*;

- import org.omg.PortableServer.*;

- import sms.*;

5

- public class SmsServer {

- public static void main(final String args[]) {

- try {

- final ORB orb = ORB.init(args, null);

10 final POA rootpoa = POAHelper.narrow(

- orb.resolve_initial_references("RootPOA")

-);

- rootpoa.the_POAManager().activate();

-

15 final org.omg.CORBA.Object ref =

- rootpoa.servant_to_reference(new SmsServiceImpl());

- final org.omg.CORBA.Object objRef =

- orb.resolve_initial_references("NameService");

-

20 final NamingContextExt ncRef =

- NamingContextExtHelper.narrow(objRef);

- final NameComponent path[] =

- ncRef.to_name("SmsService");

- ncRef.rebind(path, SmsServiceHelper.narrow(ref));

25

- System.out.println("SMS server is starting ...");

- orb.run();

- }

- catch(Exception e) {

30 System.err.println("An exception occurred: " + e);

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SmsServer.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=215

CORBA, RMI, AND FRIENDS 216

- e.printStackTrace(System.err);

- }

- }

- }

If you’re a CORBA pro, the lines above will be totally clear to you. All
the others have to believe me: theses lines register the services of the
SmsServer class at the ORB under the name “SmsService”. So, every
client that wants to use our service has to ask the ORB for a reference
to the service called “SmsService”.

Before actually starting and registering the SmsServer object we have to
start the ORB itself. For our purposes Sun’s reference implementation
called orbd is everything we need:

mschmidt:~/sms> orbd -ORBInitialPort 1050 -ORBInitialHost localhost &

The standard port for ORBs is 900, but we did not want to start the
service as the root user and so we chose port 1050.

Let’s start the server and register our service object at the ORB:

mschmidt:~/sms> javac SmsServer.java sms/*.java

mschmidt:~/sms> java SmsServer -ORBInitialHost localhost \

> -ORBInitialPort 1050 &

SMS server is starting ...

The CORBA Client

Now that the whole infrastructure is up and running and we can imple-
ment our client.

File Line 1 import sms.*;

- import org.omg.CosNaming.*;

- import org.omg.CORBA.*;

-

5 public class SmsServiceClient {

- public SmsServiceClient() throws Exception {

- this("localhost", 1050);

- }

-

10 public SmsServiceClient(

- final String host,

- final int port) throws Exception

- {

- _smsService = getSmsService(host, port);

15 }

-

- public short sendTextSms(

- final String recipient,

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SmsServiceClient.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=216

CORBA, RMI, AND FRIENDS 217

- final String sender,

20 final String data) throws IOError

- {

- return _smsService.send_text(recipient, sender, data);

- }

-

25 public short sendBinarySms(

- final String recipient,

- final String sender,

- final String data) throws IOError

- {

30 return _smsService.send_binary(recipient, sender, data);

- }

-

- private SmsService getSmsService(

- final String host,

35 final int port) throws Exception

- {

- final String[] args = new String[] {

- "-ORBInitialHost", host,

- "-ORBInitialPort", "" + port

40 };

- final ORB orb = ORB.init(args, null);

-

- final org.omg.CORBA.Object objRef =

- orb.resolve_initial_references("NameService");

45 final NamingContextExt ncRef =

- NamingContextExtHelper.narrow(objRef);

-

- final String name = "SmsService";

- return SmsServiceHelper.narrow(ncRef.resolve_str(name));

50 }

-

- private final SmsService _smsService;

- }

To demonstrate the usage of class SmsServiceClient in Java, we have
written a small command line tool that allows us to send textual short
messages from the shell:

File Line 1 public class SendSms {

- public static void main(final String args[]) {

- try {

- final String recipient = args[0];

5 final String sender = args[1];

- final String data = args[2];

- final SmsServiceClient smsServiceClient =

- new SmsServiceClient();

- short bytes = smsServiceClient.sendTextSms(

10 recipient,

- sender,

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/SendSms.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=217

CORBA, RMI, AND FRIENDS 218

- data

-);

- System.out.println(bytes + " bytes have been sent.");

15 }

- catch(Exception e) {

- System.err.println("An exception occurred: " + e) ;

- e.printStackTrace(System.err);

- }

20 }

- }

This little program expects three command line arguments: the phone
number of the recipient, the phone number of the sender, and the text
to be sent (do not forget to put the text in quotes, if it contains blanks.
Otherwise, the shell will interpret parts of your text as separate argu-
ments). It is compiled and run as follows:

mschmidt:~/sms> javac SmsServiceClient.java SendSms.java sms/*.java

mschmidt:~/sms> java SendSms +0112345 +0198765 Hello

5 bytes have been sent.

Bridging the Gap

We have everything available now: a running CORBA service and the
according client code. The only thing left to do is integrating the client
code with Ruby. Thanks to a project called “Ruby Java Bridge”19 this is
a piece of cake:

File Line 1 require 'rjb'

-

- sms_service_client_class = Rjb::import('SmsServiceClient')

- sms_service = sms_service_client_class.new('localhost', 1050)

5 begin

- puts sms_service.sendTextSms('+0112345', '+0198765', 'hello')

- puts sms_service.sendBinarySms('+0112345', '+0198765', 'caffe')

- rescue IOError => ex

- puts "An exception occurred: #{ex}"

10 end

It produces:

mschmidt:~/sms> ruby sms_client.rb

5

An exception occurred: IDL:sms/IOError:1.0

The whole integration happens in two lines of code. Rjb::import(classname)

returns a reference to the SmsServiceClient class and then we create an

19http://raa.ruby-lang.org/project/rjb

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/sms_client.rb
http://raa.ruby-lang.org/project/rjb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=218

CORBA, RMI, AND FRIENDS 219

Ruby and Java

One of the things that made Java as popular as it is, is its vir-
tual machine (JVM). Instead of generating code for a particular
CPU, Java source code is compiled into byte code for a virtual
processor. Hence, to run Java programs on a new hardware
platform or a new operating system, you only have to write a
new interpreter for the Java byte code.

There are many projects that have successfully built interpreters
for languages targeting the Java Virtual Machine. For example,
Jython ∗ is a Java implementation of the Python interpreter and
Groovy † is a new dynamic language—similar to Ruby in many
respects—that has been built for the JVM from the beginning.

Simply put, for integrating an arbitrary programming language
with the JVM you have two options: you can choose the Jython
or Groovy approach and translate the language directly into
Java byte code or you can embed the JVM using the so called
Java Native Interface (JNI) ‡. Sun has created a Java Specifi-
cation Request (JSR) § that deals with the integration of the JVM
and scripting languages.

It’s only natural that Ruby developers also tried to reuse all the
fine stuff that is available in the Java world and so there are
many projects dealing with this topic:

• JRuby ¶ is an implementation of a Ruby interpreter in Java.
It’s useful for embedding Ruby in Java and vice versa.

• rjb (Ruby Java Bridge) ‖ uses JNI to access Java objects
in Ruby programs. We will use it in this book, because it’s
relatively lightweight and is a perfect fit for integration pur-
poses.

• yajb (Yet Another Java Bridge) ∗∗ uses a network
approach to access Java objects in Ruby programs, i.e.
it implements a Ruby client and a Java server that com-
municate using some kind of XML-RPC.

• rjni (Java binding for Ruby through JNI) †† uses JNI to access
Java objects in Ruby programs. It’s no longer maintained.

∗http://www.jython.org
†http://groovy.codehaus.org
‡http://java.sun.com/docs/books/tutorial/native1.1
§http://www.jcp.org/en/jsr/detail?id=223
¶http://jruby.sourceforge.net
‖http://raa.ruby-lang.org/project/rjb

∗∗http://raa.ruby-lang.org/project/yajb
††http://thekode.net/ruby/rjni

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.jython.org
http://groovy.codehaus.org
http://java.sun.com/docs/books/tutorial/native1.1
http://www.jcp.org/en/jsr/detail?id=223
http://jruby.sourceforge.net
http://raa.ruby-lang.org/project/rjb
http://raa.ruby-lang.org/project/yajb
http://thekode.net/ruby/rjni
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=219

CORBA, RMI, AND FRIENDS 220

instance as usual. Afterwards, we can forget that it actually is a Java
class.

In the following lines we send a text message and a binary message. To
provoke an exception, we send an invalid binary message and catch the
exception in line 8.

It’s nearly unbelievable, but that’s all you have to do to use arbitrary
Java classes in your Ruby programs and the API of the Rjb library is
really lightweight:

• load(classpath='.',jvmargs=[]) explicitly loads the Java Virtual Machine.
classpath contains a list of directories separated by the host’s path
separator. This list will be prepended to ENV[’CLASSPATH]. jvmargs

is an array of strings containing all arguments to be passed to the
JVM. For example, the following statement

Rjb::load(

'.:lib/servlet.jar',

[

'-Dhttp.proxyHost=example.com',

'-Dhttp.proxyPort=8080'

]

)

loads the JVM, prepends the current directory and the file lib/servlet.jar

to the class path and sets the system properties for a HTTP proxy.

If the JVM is not loaded explicitly by calling load(), it will be loaded
automatically, before the first call to import(). Hence, you can write
hybrid Ruby/Java one-liners:

ruby -rrjb -e "Rjb::import('java.lang.System').out.println('Strange, eh?')"

prints:

Strange, eh?

• unload() removes the Java Virtual Machine from memory.

• import(classname) turns the Java class called classname into a Ruby
class. If we have the following Java class

File package com.pragbouquet;

public class Flower {

public Flower(final String name, final double price) {

_name = name;

_price = price;

}

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/Flower.java
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=220

CORBA, RMI, AND FRIENDS 221

public String getName() { return _name; }

public double getPrice() { return _price; }

public void setPrice(final double price) {

_price = price;

}

private double _price;

private String _name;

}

we can use it like this

File flower = Rjb::import('com.pragbouquet.Flower')

f = flower.new('rose', 2.49)

puts "A #{f.getName()} costs $#{f.getPrice()}."

and the code produces:

A rose costs $2.49.

• bind() allows you to associate a Ruby class with a Java interface.
For example, the following program defines a FileFilter in Ruby that
gets passed to the listFiles(filter) method of Java’s File class.

File Line 1 class FileFilter

- def accept(file)

- !(file.toString =~ /\.java$/).nil?

- end

5 end

-

- filter = FileFilter.new

- filter = Rjb::bind(filter, 'java.io.FileFilter')

- java_file = Rjb::import('java.io.File')

10 jf = java_file.new('.')

- jf.listFiles(filter).each { |f| puts f.toString }

produces:

./BindDemo.java

./Flower.java

• throw() throws a Java exception. When you extend a Java class
that has been converted into a Ruby class, it can be necessary to
“simulate” a Java exception:

def foo(argument)

if argument.nil?

Rjb::throw('java.lang.NullPointerException', 'argument is null.')

end

end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=221

CORBA, RMI, AND FRIENDS 222

All classes returned by Rjb::import(classname) automatically have the fol-
lowing methods:

• new_with_sig(signature,[arg]+) allows you to call typed Java construc-
tors from Ruby. Java is a statically typed language and therefore
you sometimes have to explicitly say, which constructor you want
to use. Rjb tries to automatically determine the signature you want
according to the following rules:

1. Rjb first of all checks if the number of arguments matches.

2. All arguments that are instances of the same class match.

3. Ruby Fixnum arguments match Java byte, char, double, float,
int, long, and short parameters.

4. Ruby String arguments match java.lang.String parameters.

5. true and false match Java boolean parameters.

6. Ruby arrays match Java arrays.

7. Every Ruby object matches the Java Object class.

If there still is an ambiguity, you can call the constructor you want
by passing the type information explicitly. Therefore you have to
encode the signature using Java’s type encoding 20 (see Figure 5.6,
on the next page):

File Line 1 flower = Rjb::import('com.pragbouquet.Flower')

- f = flower.new_with_sig('Ljava.lang.String;D', 'rose', 2.49)

- puts "A #{f.getName()} costs $#{f.getPrice()}."

To encode the signature of an array you have to prepend a ’[’
character to the type encoding. The following irb session demon-
strates how to call the Java’s String(byte[] bytes,String charsetName)

constructor:

irb(main):001:0> require 'rjb'

=> true

irb(main):002:0> Str = Rjb::import('java.lang.String')

=> #<Rjb::Java_lang_String:0x337b04>

irb(main):003:0> ruby = Str.new_with_sig(

irb(main):004:1* '[BLjava.lang.String;',

irb(main):005:1* [82, 117, 98, 121],

irb(main):006:1* 'iso-8859-1'

irb(main):007:1>)

=> #<#<Class:0x34739c>:0x328b90>

20http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html##getName()

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Class.html##getName()
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=222

CORBA, RMI, AND FRIENDS 223

Element Type Encoding Element Type Encoding

boolean Z byte B
char C class L<classname>;
interface L<interface name>; double D
float F int I
long J short S

Figure 5.6: Encoding of Java Types

irb(main):008:0> p ruby.toString

"Ruby"

=> nil

• _invoke(method_name,signature,[arg]+) invokes the method called method_name

having the signature signature on the current object and passes it
the according arguments. For details about the signature mecha-
nism see the description of the new_with_sig(signature,[arg]+) method.

• _classname() returns the class name as string:

File Line 1 str = Rjb::import('java.lang.String')

- instance = str.new('Hello, world!')

- puts instance._classname

produces:

java.lang.String

CORBA’s coming home...

Finally, we implement a HTTP server using WEBrick that forwards incom-
ing requests to the CORBA service:

File Line 1 require 'rjb'

- require 'webrick'

- include WEBrick

-

5 Rjb::load

- sms_service_client_class = Rjb::import('SmsServiceClient')

- sms_service = sms_service_client_class.new('localhost', 1050)

-

- sms_server = HTTPServer.new(:Port => 4242)

10 sms_server.mount_proc('/send') do |req, res|

- type = req.query['type'] || 'text'

- recipient = req.query['recipient']

- sender = req.query['sender'] || recipient

- data = req.query['data']

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/rjb/rjb_test.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/corba/sms/sms_server.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=223

CORBA, RMI, AND FRIENDS 224

15

- res['Content-Type'] = 'text/plain'

- res.status = 200

- res.body = 'Message was sent successfully.'

- method = type == 'binary' ? 'sendBinarySms' : 'sendTextSms'

20 begin

- sms_service.send(method, recipient, sender, data)

- rescue IOError => ex

- res.status = 500

- res.body = 'Message could not be sent.'

25 end

- end

-

- trap("INT") { sms_server.shutdown }

- sms_server.start

If you have read carefully, the program above should be perfectly clear
to you and with less than 30 lines of Ruby code we have turned our
CORBA service into a HTTP service.

C++ CORBA Services

For CORBA clients in theory it doesn’t matter if the service they want
to use has been written in C++, Java, or COBOL. If you absolutely want
to (or have to) use a C++ client, you can use an approach similar to
our Java example above: generate the C++ client stub from the .idl

file using the idl2cpp command and compile the resulting code into a
shared object. Then, integrate the shared object using the Ruby native
interface, SWIG 21, or Ruby/DL 22.

We won’t cover this topic here, because you can find tons of tutorials
about integrating Ruby with C/C++ code on the internet and in Pro-

gramming Ruby [?] there is a whole chapter about it, too.

Distributed Ruby (dRuby)

As soon as a programming languages offers dynamic features (such
as reflection or code that’s interpreted at runtime), it was pretty much
guaranteed that someone would invent a system for distributing objects
over a network. It’s so easy: create methods that marshal and unmar-
shal objects, put the resulting byte streams into an envelope, and trans-
fer them between processes using TCP (or any other protocol, for that
matter).

21http://www.swig.org
22http://raa.ruby-lang.org/project/ruby-dl

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.swig.org
http://raa.ruby-lang.org/project/ruby-dl
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=224

CORBA, RMI, AND FRIENDS 225

The Ruby community fell to the temptation, and so Masatoshi Seki
developed the Distributed Ruby (dRuby or DRb) module.23 dRuby is
similar to Java’s RMI in many respects, including its use of a proprietary
binary format to encode messages. It’s simple to use, and usually does
not require any modifications to the classes you want to distribute.

To see how it works we’ll implement a distributed sequence object.
Back in the sidebar, on page 29, we complained about the weak sup-
port for artificial primary keys in modern databases. Now it’s time to
roll up our sleeves and fix the problem once and for all—at least for our
Ruby applications.

File Line 1 require 'drb'

-

- class Sequence

- def initialize(start_value = 0, step = 1)

5 @value, @step = start_value - step, step

- end

-

- def next_value

- @value += @step

10 end

- end

-

- DRb.start_service('druby://localhost:9000', Sequence.new)

- DRb.thread.join

As promised, we did not have to use any special tricks to turn the
Sequence class into a network service. To make an object available on
a network with dRuby, you have to pass it to DRb.start_service(url,object)

(see line 13). This method expects a dRuby URL and the object to be
distributed.

It’s easy to use our distributed sequence.

File Line 1 require 'drb'

-

- DRb.start_service

- puts "Sequence #1:"

5 sequence = DRbObject.new(nil, 'druby://localhost:9000')

- 2.times { puts sequence.next_value }

-

- puts "Sequence #2:"

- sequence2 = DRbObject.new(nil, 'druby://localhost:9000')

10 2.times { puts sequence.next_value }

produces:

23http://www2a.biglobe.ne.jp/\protect~seki/ruby/druby.en.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence_srv.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence_client.rb
http://www2a.biglobe.ne.jp/protect ~seki/ruby/druby.en.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=225

CORBA, RMI, AND FRIENDS 226

Sequence #1:

0

1

Sequence #2:

2

3

That was too easy, wasn’t it? Usually, creating network services is a
difficult thing, so where’s the catch in our example? Right: it isn’t
thread-safe. If two clients try to get the next sequence value simultane-
ously, it’s possible that both of them get the same value. We’ll fix this
by adding some synchronization code:

File Line 1 require 'thread'

-

- class Sequence

- def initialize(start_value = 0, step = 1)

5 @value, @step = start_value - step, step

- @mutex = Mutex.new

- end

-

- def next_value

10 @mutex.synchronize do

- @value += @step

- end

- @value

- end

15 end

This version can be safely used in a multi-threaded environment, so are
we done? Will a single sequence be sufficient for all our processes and
database tables? Probably not. Let’s implement a class that manages a
set of named sequences:

File Line 1 require 'drb'

- require 'sequence'

-

- class SequenceManager

5 def initialize

- @sequences = {}

- @mutex = Mutex.new

- end

-

10 def create(name, start_value, step)

- @mutex.synchronize do

- if !@sequences.has_key?(name)

- @sequences[name] = Sequence.new(start_value, step)

- end

15 end

- @sequences[name]

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/seq_manager.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=226

CORBA, RMI, AND FRIENDS 227

- end

-

- def get(name)

20 @sequences[name]

- end

- end

-

- DRb.start_service('druby://localhost:9000', SequenceManager.new)

25 DRb.thread.join

Let’s see if it works as expected:

File Line 1 require 'drb'

- require 'sequence'

-

- DRb.start_service

5 factory = DRbObject.new(nil, 'druby://localhost:9000')

-

- puts "Sequence #1:"

- sequence = factory.create('order_table', 5, 2)

- 2.times { puts sequence.next_value }

10

- puts "Sequence #2:"

- sequence2 = factory.get('order_table')

- 2.times { puts sequence2.next_value }

produces:

Sequence #1:

5

7

Sequence #2:

5

7

Hm, we have a problem here. It’s because dRuby normally passes
objects by value. In our case the Sequence objects created by the
SequenceManager are copied before being transmitted, so changes to
the local instances aren’t seen on the server. In line 8, we create a
sequence called order_table and get two values from it in the following
line. These changes are made only to the local object. When we get the
order_table sequence again in line 12, it’s another copy of the original
on the server.

What we actually need is a remote reference to a Sequence object on the
server. Fortunately, dRuby makes it possible: just mix DRbUndumped

into classes you want to transfer by reference:

File Line 1 class Sequence

- include DRbUndumped

- end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence_client2.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/sequence.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=227

CORBA, RMI, AND FRIENDS 228

Distributed Ruby and Security

dRuby passes (references to) real Ruby objects. In terms of
security this is a big problem. For example, running the following
code

File Line 1 require 'drb'

- DRb.start_service
- object = DRbObject.new(nil, 'druby://localhost:9000')
- puts object.instance_eval("‘date‘")

will print something like this:

Mon Dec 19 18:49:09 CET 2005

Would you be comfortable with code executing the shell com-
mand rm -rf /*? If not, you’d better set $SAFE = 1 and unde-
fine potentially dangerous methods such as instance_eval() and
instance_variable_set(). In addition, you can install Access Con-
trol Lists (ACL) that prevent or allow access from certain hosts:

File Line 1 require 'drb'

- require 'drb/acl'

-

- acl = ACL.new(%w(
5 deny all
- allow localhost
- allow 192.168.1.*
-))
- DRb.install_acl(acl)

Class DRbUndumped creates a proxy that communicates with the real
object. Instead of marshaling the whole object and passing it by value,
only the proxy will be transferred. This explains why you have to exe-
cute DRb.start_service in your clients, too: every client has to be prepared
to act as a server for incoming proxy calls.

After restarting the modified server our client works as expected:

Sequence #1:

5

7

Sequence #2:

9

11

For the final solution, you’d probably add a thin persistence layer that
stores the current sequence values in a database or file system, but
from a networking point of view we are done.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/injection.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/drb/acl_sample.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=228

CORBA, RMI, AND FRIENDS 229

The implementation of dRuby is a perfect example of Ruby’s strengths,
demonstrating how easy it is to create a complete distributed object
system with some nice bells and whistles in less than 3000 lines of
code. If necessary, you can run it over a secure SSL connection and
across firewalls.24 In addition, it is surprisingly fast, as it uses Ruby’s
internal marshaling mechanism that’s written in C.

dRuby finds uses all over the place. Folks often use it for prototyping
new architectures. You’ll also find it in Ruby on Rails,25 where it’s used
to implement the remote breakpoint facility.

Despite all this, dRuby has the same disadvantages as all other language-
specific systems. In particular, to access a dRuby service you have to
use a Ruby client. Although we think that Ruby is currently the best
programming language available, we’re sure that it’ll be improved or
replaced by a better one someday. To prepare your distributed objects
for the unpredictable future, you might want to consider using a stan-
dard technology such HTTP.

24See http://www.rubygarden.org/ruby?DrbTutorial for more details.
25http://api.rubyonrails.com/classes/Breakpoint.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.rubygarden.org/ruby?DrbTutorial
http://api.rubyonrails.com/classes/Breakpoint.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=229

Chapter 6

Tools and Techniques
A programming language alone will not make you more productive in an
enterprise environment. Ruby will certainly increase your development
speed, because it supports a lot of advanced concepts (pure object-
oriented programming, iterators, and meta-programming, to name a
few), but that’s less than half the battle.

Especially, in enterprise environments, you face a lot of challenges that
are not directly related to your programming language of choice, but
that are typical for every piece of enterprise software. For example,
enterprise software often comes in the shape of servers and daemon
processes without any user interface. They have to be deployed some-
how into the production system. To indicate that they are still alive and
working they usually write into external log files. In addition, enterprise
software often has to fulfill the needs of clients coming from different
countries, speaking different languages, and paying in strange curren-
cies.

Hence, in this chapter you will learn how to overcome international-
ization problems, how to create sophisticated logging strategies, how to
create your own daemon processes, and how to automatically deploy
your software.

6.1 Internationalization and Localization

The world is getting smaller. For enterprise applications internation-
alization (i18n) and localization (l10n)1 have become important topics.

1i18n is an abbreviation for internationalization. The word starts with an i, ends with
an n, and in-between are 18 letters. Guess what l10n means....

Prepared exclusively for Jacob Hochstetler

INTERNATIONALIZATION AND LOCALIZATION 231

You now have to be prepared to have people use your application in
foreign countries–you’ll have to deal with different character sets, date
formats, address formats, number formats, etc.

There is no official definition of the terms internationalization and local-
ization. We’ll define them as follows:

• Your software is internationalized if it runs correctly in all locales
it has to. If, for example, you have developed and tested a program
in the United States and it runs correctly in your target markets
Germany and Japan without modifying it, it is internationalized.

• Your software is localized if it is internationalized and reflects the
peculiarities of the locale it is running in—it outputs messages in
the correct language, prints numbers, dates, and currencies in the
right format, and so on.

Perhaps you have worked with Java or C# before and now you are
impatiently waiting for easy answers to all your i18n questions. You’ve
skimmed the documentation of the Ruby standard library and did not
instantly find the counterparts of Locale, DateFormat, InputStream and so
on. In this chapter we will reveal an ugly truth: i18n is not supported
very well in Ruby. Enterprise platforms such as J2EE and .NET come
with a huge number of classes that deal with this topic, and even have
standardized formats for resource bundles and so on. Ruby does not.

This is not as bad as it may seem in the beginning, but you will have to
do a lot of things manually that you took for granted in other program-
ming languages. But you can always find a solution.

Character Sets and Encodings

Character sets and encodings are different things. The Unicode code
character set, for example, contains nearly all known characters. It
can be encoded in more than one way: UTF-8, UTF-16, and UTF-32.2

Because of its Japanese roots, Ruby in principle supports different
encodings such as EUC, SJIS, and UTF-8. Unfortunately, many of its
classes do not.

2For more information about character sets and their encodings see:

• http://www.w3.org/International/resource-index.html

• http://www.joelonsoftware.com/articles/Unicode.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.w3.org/International/resource-index.html
http://www.joelonsoftware.com/articles/Unicode.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=231

INTERNATIONALIZATION AND LOCALIZATION 232

What’s $KCODE?

You can specify Ruby’s internal character set by assigning
’EUC’, ’SJIS’, ’UTF8’, or ’NONE’ (which means use the default char-
acter set) to the global variable $KCODE. Alternatively, pass ’e’,
’s’, or ’u’ to the -K option of the Ruby interpreter.

$KCODE determines, which characters are allowed in identifiers
(variable names, method names, etc.) and literals. To see
what implications it has, run the following UTF-8 program with-
out telling Ruby that it is encoded in UTF-8:

File Line 1 class Circle < Struct.new(:x, :y, :r)
- def area
- π = Math::PI
- π * r * r
5 end

- end

-

- c = Circle.new(0, 0, 1)
- puts c.area

You will get the following result (in a UTF-8 terminal):

mschmidt:/tmp> ruby circle.rb

circle.rb:3: Invalid char ‘\317' in expression

circle.rb:3: Invalid char ‘\200' in expression

circle.rb:3: parse error, unexpected '='

π = Math::PI

^

circle.rb:4: Invalid char ‘\317' in expression

circle.rb:4: Invalid char ‘\200' in expression

circle.rb:4: parse error, unexpected '*', expecting '='

π * r * r

^

Obviously, ’π’ has not been recognized as a valid word char-
acter. Tell Ruby that it is an UTF-8 program and everything is
fine:

mschmidt:/tmp> ruby -Ku circle.rb

3.14159265358979

Note, though, that the $KCODE does not affect the behavior of
the String class, so the length() method, for example, still returns
the number of bytes not characters:

mschmidt:/tmp> ruby -Ku -e 'puts "Motörhead".length'

10

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/circle.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=232

INTERNATIONALIZATION AND LOCALIZATION 233

One of the biggest problems with i18n is that developers do not know —
and often do not care—what encoding their textual data has. If you get
text from an external source such as a database, an LDAP repository,
a socket, or a plain file, you always have to ask: “What encoding does
this data use?”

In fact, the situation is even worse: you also have to ask yourself which
encoding your text editor uses to store your source code files. The Ruby
lexer treats everything between single or double quotes as a String—
it copies all the bytes between quotes into a String object. Hence, it
makes a big difference whether these bytes represent characters of a
single-byte encoding such as ASCII or a multi-byte encoding such as
UTF-8.

To see the difference, store the following statement as an UTF-8 text3

and run it:

File puts 'Über-Programmer'.length

It will print “16”, although our string has only 15 characters. That’s
because the German umlaut ’Ü’ needs two bytes in UTF-8. Store the
file using the ISO-8859-1 encoding and it will print “15”.

We have to realize that Ruby’s String class is nothing more than a byte
array with a convenient API. It doesn’t know anything about the char-
acter concept. That becomes even more obvious when we try methods
such as upcase(). When we store the following source code as an UTF-8
file and run it

File puts 'Müller'.upcase

it produces:

MüLLER

When we store the same source code in ISO-8859-1 it prints:4

M?LLER

Both versions produce an incorrect result: the correct uppercase ver-
sion of “Müller” is “MÜLLER”. Fortunately, the German alphabet only
has four additional characters: ä, ö, ü, and ß. Their uppercase ver-

3If your text editor does not support UTF-8, go and get a new one. No excuses!
4I’m working with an UTF-8 terminal that prints ’?’ for every character it doesn’t

recognize. In this case ’?’ stands for 0xfc which is a lowercase ’ü’ in ISO-8859-1 and is
invalid in UTF-8.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/length_utf.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/upcase.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=233

INTERNATIONALIZATION AND LOCALIZATION 234

sions are Ä, Ö, Ü, and SS, so we can write a correct upcase() method
ourselves:

File Line 1 def german_upcase(text)

- uc = text.upcase

- uc.tr('äöü', 'ÄÖÜ')

- uc.gsub('ß', 'SS')

5 end

-

- str = 'Märchenstraße'

- puts str

- puts german_upcase(str)

The program above outputs the following:5

Märchenstraße

MÄRCHENSTRASSE

Alright, we have corrected one method, but what about downcase(),
index(), reverse(), and so on.? All of them fail with multi-byte characters:

File Line 1 str = 'Märchen'

- puts 'Ouch!' if str.length != 7

- puts 'Ouch again!' if str.reverse != 'nehcräM'

prints:

Ouch!

Ouch again!

Hmmm, things are getting complicated. Ruby supports different char-
acter sets, but you have to do a lot yourself. To determine the cor-
rect length of an UTF-8 string, for example, you could use the unpack()
method with the format specifier ’U*’, which stands for unsigned integer

values representing UTF-8 characters:

puts 'Motörhead'.unpack('U*').length # -> 9

To manipulate each character (not byte!) of a UTF-8 string, you can use
a regular expression that knows about UTF-8:

File str = 'Motörhead'

p str.scan(/./)

p str.scan(/./u)

produces:

["M", "o", "t", "\303", "\266", "r", "h", "e", "a", "d"]

["M", "o", "t", "\303\266", "r", "h", "e", "a", "d"]

5’Märchen’ is the German word for fairy-tale and ’Straße’ is German for street.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/german_upcase.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/strmanip.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/scan.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=234

INTERNATIONALIZATION AND LOCALIZATION 235

It really is that complicated...

If you’ve never had to deal with characters outside the ASCII
set then you might be surprised how complicated things get
when you want to perform apparently simple operations such
as converting a string to uppercase or sorting words.

Although the German alphabet has only four additional letters,
they cause a lot of trouble and debate. We have three umlauts
’ä’, ’ö’, ’ü’, and we have the letter ’ß’ (“sharp s”). The upper-
case equivalents of the umlauts are ’Ä’, ’Ö’, and ’Ü’, but ’ß’
becomes ’SS’ when it’s turned into uppercase, i.e. the size of
an uppercase string can be bigger than the size of the original
string!

A few years ago, the rules were even more complicated. When
turning a string to uppercase, it was acceptable to convert ß to
SZ, if SS had otherwise led to a misunderstanding (for example
in the uppercase versions of Busse (plural form of the German
word for bus) and Buße (German for expiation).

Another big problem is sort order (collation). Usually, you ignore
the umlaut—if you have two words that only differ in the dots
(such as the German verbs “fallen” and “fällen”), the not-
dotted version comes first. But there’s also an industry standard
(DIN 5007) that turns all German umlauts into their “non-dotted”
equivalents (ae for ä, oe for ö, and ue for ü) and sorts them
lexically. In this case “faellen” would come before “fallen”.

When you add the ’u’-modifier to a regular expression, you get each
UTF-8 character as a string (these strings can contain more than one
byte!). Without the ’u’-modifier, you get every byte separately. This
works for EUC (modifier: ’e’) and SJIS (modifier: ’s’), too.

Now let’s turn our newly gained knowledge into a class that represents
UTF-8 strings in Ruby:6

File Line 1 class UString < String

- def length; self.unpack('U*').length end

-

- def reverse; self.scan(/./u).reverse.join end

5

6This example was originally published by why the lucky stiff :
http://redhanded.hobix.com/inspect/closingInOnUnicodeWithJcode.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring.rb
http://redhanded.hobix.com/inspect/closingInOnUnicodeWithJcode.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=235

INTERNATIONALIZATION AND LOCALIZATION 236

- def inspect; "u#{super}" end

- end

-

- module Kernel

10 def u(str)

- UString.new str.gsub(/U\+([0-9a-fA-F]{4})/u) {

- ["#$1".hex].pack('U*')

- }

- end

15 end

Our UString class demonstrates some of Ruby’s biggest strengths. First„
we can override the methods of one the most important standard classes
(String) by subclassing it. Then, we override the length() and reverse()
methods with our UTF-8 implementations. In addition, we changed the
inspect() method so we can distinguish String and UString objects.

Finally, we added a new method called u(str) to Kernel. It allows us to
create UTF-8 strings that can contain hexadecimal character literals
beginning with ’U+’. Here’s a small usage example:

File Line 1 str = u'Märchen'

- puts str.length == 7

- puts str.reverse == 'nehcräM'

-

5 str = u'MU+00fcnchen'

- puts str

- puts str.length

It prints:

true

true

München

7

UString could be the basis for a full-blown UTF-8 string class, but you’d
have to add a lot of code. Rather than writing your own implementation
like this, you’re better off using an existing one. We’ll introduce some
options in the following sections. None of them is perfect—they all
have their strengths and weaknesses—so if you need stronger encoding
support choose carefully.

jcode

jcode is a standard library that modifies Ruby’s String class. Depend-
ing on the value of the global variable $KCODE (see the sidebar, on
page 232). jcode updates these methods: chop!(), chop(), delete!(),

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=236

INTERNATIONALIZATION AND LOCALIZATION 237

Don’t Panic!

We have to admit it: Ruby is still in its infancy when it comes to
internationalization, and it will take some time until the situation
gets better.∗

But don’t panic! Keep in mind that all this is only relevant if you
have to manipulate, compare, or sort strings. If all you do is to
read them from an external source and write them to another
(such as displaying database data in a web browser) without
touching a single byte, you are safe. And for special domains
such as the Ruby on Rails framework, i18n solutions will probably
be available soon.

Even if you absolutely have to manipulate Unicode strings,
there is a good chance that you might find what you need in
an Open Source library such as ICU4R. It might not be conve-
nient, but at least it will work.

∗http://redhanded.hobix.com/inspect/futurismUnicodeInRuby.html

shows what Matz wants to do.

delete(), squeeze!(), squeeze(), succ!(), succ(), tr!(), tr(), tr_s!(), and tr_s().
Additionally, it adds methods such as jlength(), jcount(), and each_char(),
but it does not provide correct implementations for upcase(), down-

case(), and so on.

File Line 1 $KCODE = 'UTF8'

- require 'jcode'

- str = 'Köln' # Cologne, a big city in Germany.

- puts "Ruby length: #{str.length}."

5 puts "jcode length: #{str.jlength}."

- str.each_char { |c| print c.inspect, ' ' }

- puts

prints:

Ruby length: 5.

jcode length: 4.

"K" "ö" "l" "n"

jcode’s biggest advantage is that it is part of every Ruby installation. In
other respects it is severely limited and will only be sufficient for the
simplest transformations.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://redhanded.hobix.com/inspect/futurismUnicodeInRuby.html
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/jcode_sample.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=237

INTERNATIONALIZATION AND LOCALIZATION 238

Unicode

For the sake of completeness we mention Yoshida Masato’s unicode

project.7 It complements jcode somewhat, as it offers methods that
allow you to compare UTF-8 strings and change them to upper or lower
case:

File Line 1 require 'rubygems'

- require 'unicode'

-

- puts Unicode::downcase('HOFBRÄUHAUS')

5 puts Unicode::upcase('straße')

prints:

hofbräuhaus

STRAßE

Unfortunately, even our trivial example does not work correctly, because
the ’ß’ letter has not been converted properly. In addition, the library
seems not to be maintained any longer, so I recommend not using it.

ICU4R

ICU4R8 is (as I write this) a brand new project created by Nikolai Lugovoi
that looks very promising. It is a C extension for IBM’s “International
Component for Unicode” (ICU)9 It provides two classes: UString and URe-

gexp. UString is a feature-rich implementation of strings encoded in
UTF-16:

File Line 1 require 'ustring'

-

- str = u'Märchenstraße'

- puts "Length is #{str.length} characters."

5 puts str.downcase

- puts str.upcase

- p str.to_s('ISO-8859-1').scan(/./)

produces:

Length is 13 characters.

märchenstraße

MÄRCHENSTRASSE

["M", "\344", "r", "c", "h", "e", "n", "s", "t", "r", "a", "\337", "e"]

7http://raa.ruby-lang.org/project/unicode/
8http://rubyforge.org/projects/icu4r
9http://ibm.com/software/globalization/icu

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/unicode/unicode_test.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://raa.ruby-lang.org/project/unicode/
http://rubyforge.org/projects/icu4r
http://ibm.com/software/globalization/icu
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=238

INTERNATIONALIZATION AND LOCALIZATION 239

In line 3 we create a new UString object with the u(string) method (you
can turn a String object into a UString object by calling its to_u() or u()
method.). We then print its length, change its case, and finally we turn
back our UString object into a String by invoking to_s(encoding), which
accepts an encoding for the result now.

After you have created a UString, you can do a lot of useful things with
it. For example, you can iterate over its characters and words:

File Line 1 str = u'Märchenstraße'

- str.each_char('de_DE') { |c| puts c.inspect_names }

- "Hello, world!".u.each_word('en_US') { |w| puts "'#{w}'" }

Here’s the output of the program above:

<U00004D>LATIN CAPITAL LETTER M

<U0000E4>LATIN SMALL LETTER A WITH DIAERESIS

<U000072>LATIN SMALL LETTER R

<U000063>LATIN SMALL LETTER C

<U000068>LATIN SMALL LETTER H

<U000065>LATIN SMALL LETTER E

<U00006E>LATIN SMALL LETTER N

<U000073>LATIN SMALL LETTER S

<U000074>LATIN SMALL LETTER T

<U000072>LATIN SMALL LETTER R

<U000061>LATIN SMALL LETTER A

<U0000DF>LATIN SMALL LETTER SHARP S

<U000065>LATIN SMALL LETTER E

'Hello'

','

' '

'world'

'!'

In the first line we iterate over each character using each_char(locale)

and print its code and its official name. A lot of ICU methods accept
a locale that consists of a two-character language code and a two-
character country code separated by an underscore (’de_DE’, ’en_GB’,
’en_US’, etc.). If you set this locale to an empty string, it uses your
machine’s default locale. When iterating over characters the locale is
important because of so-called combining marks that are sometimes
used to store letters and their accents separately.10

The each_word(locale) method lets you iterate over the words in a string.
Because the concept of a word greatly differs from language to lan-

10See http://www.unicode.org/notes/tn2 for the gory details.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://www.unicode.org/notes/tn2
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=239

INTERNATIONALIZATION AND LOCALIZATION 240

guage, you can pass a locale, too.

Another great feature of the UString class is its fmt(locale,*args) method,
which is sprintf() on steroids:

File Line 1 gb = u"In{0, date, MMMM} it will cost {1, number, currency}."

- puts gb.fmt('en_GB', Time.now, 12345.34)

- us = u"In{0, date, MMMM} it will cost {1, number, currency}."

- puts us.fmt('en_US', Time.now, 12345.34)

5 de = u"Im{0, date, MMMM} kostet es {1, number, currency}."

- puts de.fmt('de_DE', Time.now, 12345.34)

produces:

In January it will cost £12,345.34.

In January it will cost $12,345.34.

Im Januar kostet es 12.345,34 e.

fmt() handles everything nicely: month names are translated, decimal
points are chosen correctly and thousands are separated by the right
character. It picks the right currency symbol and it knows where to put
it (did you know where Euro symbols go?). Awesome, isn’t it? And it
gets even better:

File Line 1 s = u'{0, choice, 0#no chance|1#a chance|1<many chances}.'

- 0.upto(2) { |i| puts "We have " + s.fmt('de_DE', i) }

produces:

We have no chance.

We have a chance.

We have many chances.

The ’choice’ pattern consists of a number of range specifiers separated
by ’|’-characters. Every range specifier is compared to the actual argu-
ment and depending on its value the right one is chosen.11

Objects of class URegexp handle Unicode regular expressions and can
be created with the ure(str) method:

File Line 1 puts 'Last character: ' + ure('(.)(.)(.)').match('süß'.u)[3]

-

- strange_csv = 'thisäisästrange'

- puts ure('ä').split(strange_csv.to_u, nil)

produces:

Last character: ß

this

11You should have a look at the ICU4R documentation. There are many more nice
features.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/ustring/utest.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=240

INTERNATIONALIZATION AND LOCALIZATION 241

is

strange

ICU4R’s biggest disadvantage is that your strings need twice as much
memory as before. In addition, a lot of important methods such as
tr(), chop(), delete(), etc. are still missing.12 Despite this, ICU4R is the
most advanced Unicode library currently available for Ruby and might
well become an important milestone for the internationalization of Ruby
programs.

International I/O

We know how strings in Ruby work in general. Now we’d like to see
how the I/O classes support different character set encodings. For our
first experiment, take your favorite text editor, set its encoding to UTF-
8, and create a file called utf8.txt containing only the German surname
’Müller’. Six characters, no newline.

Then store the same file using the ISO-8859-1 character set or use the
iconv utility to convert it:13

mschmidt:/tmp/data> iconv -f UTF-8 -t iso-8859-1 utf8.txt > \

> iso-8859-1.txt

mschmidt:/tmp/data> ls -l

total 16

-rw-r--r-- 1 mschmidt mschmidt 6 Jan 3 19:26 iso-8859-1.txt

-rw-r--r-- 1 mschmidt mschmidt 7 Jan 3 19:25 utf8.txt

Notice that the ISO-8859-1 file is shorter than its UTF-8 counterpart.
A hex viewer such as xxd shows us why:

mschmidt:/tmp/data> xxd iso-8859-1.txt

0000000: 4dfc 6c6c 6572 M.ller

mschmidt:/tmp/data> xxd utf8.txt

0000000: 4dc3 bc6c 6c65 72 M..ller

mschmidt:/tmp/data>

In ISO-8859-1 the German umlaut ’ü’ is encoded with a single byte
(0xfc), but in UTF-8 it needs two (0xc3, 0xbc). All the other characters
of the string ’Müller’ are encoded the same way in ISO-8859-1 and UTF-
8.

12It is a fairly young project, so that might already have changed by the time you’re
reading this.

13The ISO-8859-1 character set represents all western European languages.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=241

INTERNATIONALIZATION AND LOCALIZATION 242

Let’s see what happens, when we feed our files to Ruby’s standard IO

classes:

File Line 1 def examine_file(file_name)

- content = IO.read(file_name)

- puts "Its content is '#{content}'."

- puts "Content length is #{content.length} bytes."

5 a = []; content.each_byte { |b| a << b }; p a

- end

-

- puts 'Here we have the ISO-8859-1 file...'

- examine_file('data/iso-8859-1.txt')

10 puts

- puts '... and here we have the UTF-8 file:'

- examine_file('data/utf8.txt')

This produces:

Here we have the ISO-8859-1 file...

Its content is 'M?ller'.

Content length is 6 bytes.

[77, 252, 108, 108, 101, 114]

... and here we have the UTF-8 file:

Its content is 'Müller'.

Content length is 7 bytes.

[77, 195, 188, 108, 108, 101, 114]

That doesn’t look very promising. Reading data in our standard charac-
ter set works, but the IO class and the String class obviously don’t know
anything about character set encodings. All standard Ruby IO meth-
ods are strictly byte-oriented—you cannot tell them which character set
encoding they should use.

This is different in Java, for example, where all strings are encoded
with a Unicode encoding internally and all IO classes support different
character set encodings. They distinguish between byte streams and
character streams. To read an input stream that uses a particular
encoding, you can use a java.io.InputStreamReader and initialize it with
an InputStream and a character set encoding:

InputStreamReader in = new InputStreamReader(System.in, 'UTF-8');

The reader called in in the example above reads bytes from the console
and interprets them as characters encoded in UTF-8.

If we need such a feature in Ruby, we have to do the conversion manu-
ally. Thanks to Iconv this is a piece of cake:

File Line 1 require 'iconv'

-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/iotest.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/iotest2.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=242

INTERNATIONALIZATION AND LOCALIZATION 243

- class IO

- def IO.i18n_read(name, from_cs = 'utf-8', to_cs = 'iso-8859-1')

5 converter = Iconv.new(to_cs, from_cs)

- converter.iconv(read(name))

- end

- end

-

10 content = IO.i18n_read('data/utf8.txt')

- puts "#{content} (#{content.length} bytes)"

In an UTF-8 terminal the program above prints:

M?ller (6 bytes)

We added a method called i18n_read() to the IO class that allows us to
specify an input and an output character set. Now we can specify which
character set encoding the creator of the file used and which encoding
we’d like to work with.

Iconv is sufficient as long as you don’t have to manipulate data. If you
only want to display it on a web site, for example, set the character set
encoding of the HTML pages and the HTTP header content-type appropri-
ately, or convert the data using Iconv.

Date and Time Formats

Back in the good old days of C programming, you had nothing but
the printf() family of functions to format textual data. Sometimes you
needed esoteric stuff such as strftime(), but even then you didn’t want
to know that there were different calendars such as the Gregorian and
the Julian, and you didn’t want to know that there were people who did
not use ’am’ and ’pm’ in timestamps.

This kind of thinking no longer cuts it. The creators of platforms such
as J2EE and .NET tried to solve typical i18n problems once and for all.
Despite this, many programs that run on these platforms are often not
capable of dealing with i18n issues. So what’s the problem? Are the
libraries buggy? Are the developers too stupid? They aren’t, but often
the APIs of the standard classes are much too complicated. Today you
have beasts such as Java’s Calendar and DateFormat classes that enable
you to calculate your grandma’s next 20 birthdays and print them in
Klingon standard time, but seemingly simple tasks such as printing the
current date need several method calls.

Perhaps surprisingly, in Ruby you have the best of breed classes when
it comes to time and dates: the Time, Date, and DateTime classes provide

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=243

INTERNATIONALIZATION AND LOCALIZATION 244

everything you’re likely to need for date and time management. They
even come with excellent documentation.14 In addition, you can still
hack away with sprintf(), strftime(), and friends.15

You won’t run into serious problems as long as you output dates only
in a numerical format such as 2006-01-09 or 30/09/1972. As soon
as you want to output the name of a month or the name of a day, you
have to manage the names for every language yourself if you use the
standard classes. Ruby’s Date and Time classes only provide the English
names.

File Line 1 require 'date'

-

- birthday = Date.new(1972, 9, 30)

- puts birthday.strftime('It was a %A in %B.')

prints:

It was a Saturday in September.

If you want to print the German translation, do something like the
following:

File Line 1 MONTHS = {

- :de => %w(

- placeholder Januar Februar März April Mai Juni

- Juli August September Oktober November Dezember

5)

- }

-

- DAYS = {

- :de => %w(

10 Sonntag Montag Dienstag Mittwoch Donnerstag Freitag Samstag

-)

- }

-

- month_name = MONTHS[:de][birthday.month]

15 day_name = DAYS[:de][birthday.wday]

- puts "Es war ein %s im Monat %s." % [day_name, month_name]

Then you’ll get these result:

Es war ein Samstag im Monat September.

That means you have to manage the translation of month and day
names for every language you’d like to support. In the following section

14See http://www.ruby-doc.org/stdlib/libdoc/date/rdoc and
http://www.ruby-doc.org/stdlib/libdoc/time/rdoc

15Isn’t it interesting that Sun added sprintf()-like behavior recently to the Java platform?
(http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html)

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/dates/names.rb
http://media.pragprog.com/titles/fr_eir/code/tools/i18n/dates/names.rb
http://www.ruby-doc.org/stdlib/libdoc/date/rdoc
http://www.ruby-doc.org/stdlib/libdoc/time/rdoc
http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=244

INTERNATIONALIZATION AND LOCALIZATION 245

you’ll learn how to solve this kind of problem (alternatively, you can
have a look at Section 6.1, ICU4R, on page 238).

Managing Message Text

One of the most important things when localizing software is the man-
agement of the text of message text. Every program whose source code
reaches a critical mass outputs hundreds or even thousands of differ-
ent messages. No matter if the program has a text interface, a batch
interface, or a GUI, it usually has to ask for input and print results or
error messages.

Translating every single message into another language is already a
lot of work, so it would be nice if you didn’t also have to worry about
the technical details of managing the different translations in your pro-
grams. Fortunately, the GNU foundation has created the gettext com-
mand.16 Even better: Masao Mutoh has created a Ruby version called
Ruby-GetText. 17

In principle, using the gettext family of commands is simple. To localize
all messages of your program, you have to perform the following steps:

1. Pass all hardcoded strings in your program to one of the gettext

methods (_(str), gettext(), etc.).

2. Run rgettext to create a .pot (Portable Object Template) file that Portable Object Template

contains a list of all messages to be translated.

3. For every language you’d like to support create a copy of the .pot

file and give it the extension .po (Portable Object). Portable Object

4. Edit the .po files and translate every message.

5. Turn all Portable Objects into Machine Objects with the rmsgfmt Machine Objects

command. The machine objects have the extension .mo.

When you run the following program:

File Line 1 require 'gettext'

- include GetText

-

- bindtextdomain('sample')

5 puts _('Our first example!')

- str = gettext('Translate me!')

- puts str

16http://www.gnu.org/software/gettext
17http://gettext.rubyforge.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/sample.rb
http://www.gnu.org/software/gettext
http://gettext.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=245

INTERNATIONALIZATION AND LOCALIZATION 246

it prints:

Our first example!

Translate me!

We tell rgettext where to look for a particular translation of our mes-
sage texts with the bindtextdomain(domain,path=nil,locale=nil,charset=nil)

method. This points it to a file that can be found in the following subdi-
rectory: path/locale/LC_MESSAGES/domain.mo. The parameters are:

domain
is a symbolic name for the translation package.

path
points to the directory that contains the .mo files. If it’s nil and
the environment variable GETTEXT_PATH is not set, gettext searches
in /usr/share/locale and /usr/local/share/locale.

locale
specifies the locale (’de_DE’, ’en_US’, and so on) to be used in the
current file. If it is nil, the following environment variables will
be checked consecutively: LC_ALL, LC_TYPE, LC_MESSAGES, LANG. If
they are all empty, the system’s default language will be used.
You should not normally set this value explicitly, because doing
so defeats the purpose of gettext.

charset
sets the output character set of the translated messages. If it
is nil and the environment variable OUTPUT_CHARSET is not set, it
defaults to the system’s character set. You shouldn’t set this vari-
able explicitly.

Let’s localize our little example step by step, creating a German trans-
lation. First, we extract all the messages with rgettext:

mschmidt:/tmp> rgettext sample.rb -o sample.pot

The newly created file sample.pot looks as follows:

File msgid ""

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"POT-Creation-Date: 2006-01-12 19:28+0100\n"

"PO-Revision-Date: 2006-01-12 19:28+0100\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/sample.pot
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=246

INTERNATIONALIZATION AND LOCALIZATION 247

"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: sample.rb:5

msgid "Our first example!"

msgstr ""

#: sample.rb:6

msgid "Translate me!"

msgstr ""

It starts with a list of meta information, followed by all messages that
have to be translated. Messages aren’t identified by an artificial identi-
fier but by the message text itself.

For every language we’d like to support, we have to create a portable
object (.po) file:

mschmidt:/tmp> mkdir de

mschmidt:/tmp> cp sample.pot de/sample.po

Then we have to translate every message in the .po file. In our case the
result looks like this:

File msgid ""

msgstr ""

"Project-Id-Version: Sample 0.0.1\n"

"POT-Creation-Date: 2006-01-12 19:28+0100\n"

"PO-Revision-Date: 2006-01-12 19:28+0100\n"

"Last-Translator: Maik Schmidt\n"

"Language-Team: DE <de@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: sample.rb:5

msgid "Our first example!"

msgstr "Unser erstes Beispiel!"

#: sample.rb:6

msgid "Translate me!"

msgstr "Übersetze mich!"

Now we turn the translation into a machine object, creating a .mo file
that contains a more compact representation. Usually, you will put
them into a directory called locale that itself contains a subdirectory for
every language supported (actually, we put it under a directory called
LC_MESSAGES, which is a convention for affirmative and negative system
responses).

mschmidt:/tmp> mkdir -p locale/de/LC_MESSAGES

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/de/sample.po
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=247

INTERNATIONALIZATION AND LOCALIZATION 248

mschmidt:/tmp> rmsgfmt de/sample.po \

> -o ./locale/de/LC_MESSAGES/sample.mo

Finally, we test if everything works as expected:

mschmidt:/tmp> export GETTEXT_PATH=./locale

mschmidt:/tmp> LANG=de_DE ruby sample.rb

Unser erstes Beispiel!

Übersetze mich!

We set the GETTEXT_PATH environment variable to tell gettext where to
search for .mo files (if your program does not work as expected, start it
in debug mode with ruby -d). For the runtime of our sample script, we
set the LANG variable to a German locale.

For the most simple cases this is all you need, but sometimes mes-
sages are a bit more dynamic (for example, when the value of a variable
dictates whether you’d choose a plural or singular form of a message).

File Line 1 require 'gettext'

- include GetText

- bindtextdomain("plural")

- 0.upto(3) do |i|

5 printf(

- n_("%d file was removed.\n", "%d files were removed.\n", i),

- i

-)

- end

prints:

0 files were removed.

1 file was removed.

2 files were removed.

3 files were removed.

You can specify different text for singular and plural forms of a mes-
sage with the n_(singular,plural,quantity) method . You can define a “plural
rule” in the portable object that determines—depending on the value of
quantity—which message should be used.

In our current example gettext didn’t just help us with translating a
message text: it helped choose the right one. Although we did not
specify which message text to choose the output is correct, because
by default gettext chooses the first message text only if the parameter
value is 1 (usually a good guess for a singular form).

A nice-looking German translation is a bit more difficult, because we
need three different texts. Let’s create the portable object first:

mschmidt:/tmp> rgettext plural.rb -o plural.pot

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/plural.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=248

INTERNATIONALIZATION AND LOCALIZATION 249

mschmidt:/tmp> cp plural.pot de/plural.po

After editing plural.po it looks like this:

File msgid ""

msgstr ""

"Project-Id-Version: Sample 0.0.1\n"

"POT-Creation-Date: 2006-01-14 10:07+0100\n"

"PO-Revision-Date: 2006-01-14 10:07+0100\n"

"Last-Translator: Maik Schmidt\n"

"Language-Team: DE <de@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=3; plural=(n < 2 ? n : 2)\n"

#: plural.rb:5

msgid "%d file was removed.\n"

msgid_plural "%d files were removed.\n"

msgstr[0] "Keine Dateien wurden gelöscht.\n"

msgstr[1] "Eine Datei wurde gelöscht.\n"

msgstr[2] "%d Dateien wurden gelöscht.\n"

For the first time we had to change one of the portable object headers:
Plural-Forms. This header specifies how to determine a plural form. It
consists of two parts: nplurals defines how many plural forms a message
may have and plural is set to a piece of Ruby code that returns the index
of the message text to be used for a particular parameter value. In our
case we have different plural forms for 0, 1, and for values that are
bigger than 1. Finally, we have to define the translated message texts
in Array syntax.

It’s time for a final test run:

mschmidt:/tmp> rmsgfmt de/plural.po \

> -o ./locale/de/LC_MESSAGES/plural.mo

mschmidt:/tmp> export GETTEXT_PATH=./locale

mschmidt:/tmp> LANG=de_DE ruby plural.rb

Keine Dateien wurden gelöscht.

Eine Datei wurde gelöscht.

2 Dateien wurden gelöscht.

3 Dateien wurden gelöscht.

Perfect! gettext is a mature and powerful tool.18 Its Ruby implementa-
tion is comprehensive and often it will be everything you need to localize
your software.

18Read its manual (http://www.gnu.org/software/gettext/manual/gettext.html),
if you want to get the best out of it. Although it covers the C version, you’ll learn a lot of
useful tricks for the Ruby version, too.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/i18n/resource/de/plural.po
http://www.gnu.org/software/gettext/manual/gettext.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=249

LOGGING 250

Conclusion

It will take some time until Ruby fully supports all the techniques
that are necessary to create fully internationalized applications. For-
tunately, it will probably take even longer until all software developers
really understand what these techniques are ;-)

In the meantime you should keep in mind that many important tips and
tricks related to internationalization and localization are completely
independent of a particular programming language:

• Always test your applications with non-ASCII content from the
beginning. The sooner you notice that your program fails mis-
erably, when Özgür Müller wants to get some stuff delivered to
Düsseldorf, the better are the chances that you can quickly fix it.

• Structure data—especially address data—as finely-grained as pos-
sible, because it’s easier to create different output formats when
you need them.

• Do not hardwire message texts, icons, and other resources. Use
tools like gettext instead.

• Do not hardwire output formats for dates, numbers, currencies,
etc.

• If you can specify an encoding (e.g. in HTTP headers or HTML

pages), do it. At least it will make you think about it.

• Encapsulate string manipulations carefully, so you can replace
them easily as soon as Ruby gets better i18n support.

• Delegate i18n issues to external sources, if they have better sup-
port. If, for example, your database provides a to_upper(text) func-
tion that correctly converts a string into uppercase, use it.

6.2 Logging

Typical enterprise production systems are often implemented as dis-
tributed architectures where lots of server processes that do not have
any user interface communicate with each other. As a result, enter-
prise systems are full of log files. You probably already deal with some
of these, like the ones created by the Apache web server or the Unix
syslog daemon.

Log files are used for different purposes:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=250

LOGGING 251

• As a poor man’s debugger

• For creating statistics

• For troubleshooting

• For monitoring purposes

If you choose your logging strategy carefully, a whole tool suite can be
build around the log files of your program. For the Apache web server,
for example, there are programs that take the logs and create access
statistics, click streams, and so on. Because it logs messages in a
standard format, this whole process is decoupled from the web server.

In this section we’ll introduce the two logging tools that are available
for Ruby, Logger and Log4r.

Logging with Logger

The standard distribution of Ruby provides logging support in form of
the Logger class. It’s pretty straightforward to use.

File require 'logger'

logger = Logger.new(STDOUT)

logger.debug("Look, Ma: I've created my first logger...")

logger.info('... and started a program.')

logger.warn("It's getting boring.")

Our first example prints something like this to the console:

File D, [2005-03-05T08:11:17.305000 #3012] DEBUG - : \

Look, Ma: I've created my first logger...

I, [2005-03-05T08:11:17.305000 #3012] INFO - : \

... and started a program.

W, [2005-03-05T08:11:17.305000 #3012] WARN - : \

It's getting boring.

As expected, we got three output lines. Big deal—we could have achieved
the same results using simple puts() statements. But Logger has a lot
more to offer than this.

Log Levels

Every message that is logged with Logger has an associated log level:

DEBUG < INFO < WARN < ERROR < FATAL < UNKOWN

The log levels are ordered by priority, so a warning message is more
important than a debug message. For every log level there is a corre-
sponding method that logs a message with a certain priority. This is
especially useful for filtering and suppressing messages. For example,

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_usage.rb
http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_usage.out
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=251

LOGGING 252

debug messages are good for debugging purposes only and in a pro-
duction system they may be annoying or could even slow down your
process. Hence, it is possible to set a threshold for a Logger so only
messages with a priority bigger or equal to the current threshold value
get logged.

File Line 1 require 'logger'

- logger = Logger.new(STDOUT)

- logger.level = Logger::WARN

- logger.debug('You will not see me ...')

5 logger.info('... or me.')

- logger.warn("I've warned you!")

- logger.error('Ouch!')

In line 3 we have set the threshold to WARN, so only the last two mes-
sages get logged:

W, [2005-09-26T08:59:02.567292 #408] WARN -- : I've warned you!

E, [2005-09-26T08:59:02.570480 #408] ERROR -- : Ouch!

The set of available log levels is fixed, so if you need something other
than the six levels provided by Logger, you’ll have to use Log4r (see
Section 6.2, Logging with Log4r, on page 254) instead.

Logging To Files

Printing messages to the console doesn’t cut it in a production environ-
ment. At the very least we’d like to store the output of our program in
a file. Therefore Logger’s new() method accepts a file name or an object
derived from IO. This is how the file name variant works.

File logger = Logger.new('logger_with_file.log')

logger.info('Logging to a file now.')

This example creates a file called logger_with_file.log in the current direc-
tory. Your program will log to it until your file system becomes full. To
prevent such accidents (and angry calls from your system administra-
tor), Logger supports so-called rotating loggers that automatically create
generations of log files.

File logger = Logger.new('rotating_logger.log', 2, 512)

10.times { logger.info('Wasting space and time...') }

This will create a rotating Logger, which renames the current log file
whenever its size gets bigger than 512 bytes after logging a message.19

19We set the limit low here to show rotation in action. In production, you’re likely to
set the size limit to something in the megabyte range.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/logger/threshold.rb
http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_with_file.rb
http://media.pragprog.com/titles/fr_eir/code/tools/logger/rotating_logger.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=252

LOGGING 253

The file name will be generated by appending a number, so after run-
ning the program we have two files in the current directory: rotat-

ing_logger.log and rotating_logger.log.0.

In addition it’s possible to create new generations of log files depending
on periods of time. Logger.new(’sys.log’, ’daily’) will create a Logger that
changes the log file daily. Other options are ’weekly’ and ’monthly’.

Logging to ordinary files is what you will need 99% of the time, but
sometimes it’s useful to log to an arbitrary IO object, such as a StringIO

in the following example.

File require 'stringio'

buffer = StringIO.new

io_logger = Logger.new(buffer)

io_logger.debug('Logging with IO.')

puts buffer.string

produces:

D, [2005-09-26T09:52:34.393910 #510] DEBUG -- : Logging with IO.

By writing your own class derived from IO, it’s possible to create sophis-
ticated loggers with Logger, but if you really need such a beast, you
might be better off using Log4r.

The Log Line Format

Logger’s biggest weakness is its lack of configuration options, especially
regarding the format of the log lines. They always look like this:

log level, [timestamp #pid] log level -- progname: message

The elements are separated by different characters: The abbreviated
log level is separated by a comma from the timestamp, timestamp and
process id are put in square brackets, and so on. Wouldn’t it be much
easier to automatically process a log file if its format were a bit more
consistent? Unfortunately, you cannot change the format easily.20

There is one piece of customization: the timestamp’s format can be
changed by setting the instance variable datetime_format to a format
string supported by strftime(). For example, you could write

logger.datetime_format = '%Y-%m-%d %H:%M:%S'

20At least not in the version that is shipped with Ruby 1.8.2. The next generation (in
1.8.3) will provide such an option.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/logger/logger_with_file.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=253

LOGGING 254

How And What Should I Log?

Choosing a log file format does not seem like a big decision,
but you should consider it carefully. The biggest challenge is to
make it suitable for both human readers and automatic pro-
cesses. If you have to spend minutes (or even hours) watching
a log file using less or tail to find an obscure bug, you will be
grateful if you don’t have to read the same useless debug mes-
sages over and over again. You will be even more grateful if
you can quickly come up with a little shell script that will do the
job for you.

Make sure that you always write all vital information into the
log file. Nothing is worse than having your application behave
unexpectedly, but seeing no evidence of a problem in the log
file. In an ideal world, the log file should contain everything you
need to diagnose the problem. It is a good idea to log every
input value your program receives, so you can at least create a
unit test (and you have lots of them, don’t you?) to reproduce
the error on your development box.

Especially in enterprise environments, standardizing of log file
layout and timestamp format pays off quickly.

Logging with Log4r

For many purposes Logger is sufficient, but there are times when you
need more sophisticated features. One of the biggest disadvantages of
Logger is the lack of customizable log formats (in the current version)
and the inflexibility of log destinations. In a multithreaded environ-
ment, for example, it is usually helpful to log the id of the current
thread. In a distributed environment, logging to a local file may not
meet your needs. With the basic Logger class, though, you don’t have
may options.

In the Java, C++, Perl, and Python worlds, the “log4*” family (log4j,
log4cpp, Log4perl, and log4p) sets the standard for logging. Thanks to
Leon Torres we have a Log4r, too. It can be used like this.

File Line 1 require 'rubygems'

- require 'log4r'

- include Log4r

-

5 joker = Logger.new('joker')

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/hello_world.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=254

LOGGING 255

- joker.outputters = Outputter.stdout

- joker.info('I am back!')

- joker.warn('This is my last warning, Batman!')

produces:

INFO joker: I am back!

WARN joker: This is my last warning, Batman!

For convenience we installed Log4r as a gem (read more about gems in
Section 6.4, RubyGems, on page 288), so we have to require ’rubygems’.
To save some keystrokes we used include to bring the Log4r module into
our program’s namespace.

We first create a Logger instance on line 5, giving it the name “joker”. By
default, the Logger objects in Log4r do nothing with the messages you
give them. To see the messages appear on the console, in a file, and
so on, you have to explicitly assign one out more so-called outputters

to the Logger instance. On line 6 we make sure that Joker’s messages
can be seen on the console and in the following lines an information
message and a warning are sent to our first Logger. Admittedly, the
output is a bit spartan, but we will beautify it later.

Because super heroes are usually a bit short of time, they are only
interested in the really important statements and serious threats com-
ing from their archenemies. Log4r allows our heroes to increase the log
level by setting joker.level = WARN, so Joker’s annoying info and debug
messages will be suppressed and only the really scary stuff will appear
on the ticker in the Batcave.

Our little program already demonstrates two of the most important
classes in the Log4r class hierarchy, Logger and Outputter (The latter is
equivalent to log4j’s Appender class.) Together with the Formatter class
(called Layout in log4j) they form the basis for Log4r. We’ll dissect them
in the following sections.

Loggers

Logger classes are the interface to the whole logging system. You can
create as many Logger objects as you like. Each must have a unique
name, as Log4r organizes them in a hierarchy. Usually, you will create
a separate Logger for every class with the same name as the class. This
is only a convention: you can name your loggers any way you like.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=255

LOGGING 256

Logger objects have methods for every log level; debug(), info(), warn(),
error(), and fatal(). All take the message to be logged. Every Logger holds
a threshold value. When one of these methods is called the logger
checks whether the message’s level is bigger or equal to the current
threshold. If yes, the message is sent to all outputters belonging to the
Logger. Otherwise the message is ignored. Log4r’s default levels are:

DEBUG < INFO < WARN < ERROR < FATAL

Log4r’s Level class allows you to completely redefine the log levels. You
can add new levels and change the order of existing levels. You could,
for example, implement Sun’s log level hierarchy for Java:21

File Line 1 require 'rubygems'

- require 'log4r'

- require 'log4r/configurator'

- include Log4r

5

- Configurator.custom_levels(

- :FINEST, :FINER, :FINE, :CONFIG,

- :INFO, :WARNING, :SEVERE

-)

10

- logger = Logger.new('java-style')

- logger.outputters = Outputter.stdout

- logger.finest('Who needs this?')

- logger.config('Or this?')

15 logger.info('yo')

This produces:

FINEST java-style: Who needs this?

CONFIG java-style: Or this?

Don’t worry if you don’t exactly know what a Configurator is—we’ll explain
it shortly. To define your own hierarchy of log levels you have to call
custom_levels(*levels) and pass it a list of all the levels you want your
Logger objects to have. This list has to be in ascending order of the log
level priority. You can use strings or symbols for the level names. Level
names have to start with an uppercase letter, but the names of their
corresponding log methods will be completely lowercase. You should
define your custom levels before you do anything else.

All Logger objects are children of the RootLogger singleton. This can be
obtained by calling Logger.root or Logger.global. To navigate through the
hierarchy of your Logger objects you can use path-like structures.

21http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/custom_levels.rb
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=256

LOGGING 257

File Line 1 Logger.new('abe')

- Logger.new('abe::homer')

- Logger.new('abe::homer::bart')

- Logger['abe'].outputters = Outputter.stdout

5

- Logger['abe'].debug('Once upon a time...')

- Logger['abe::homer'].debug("D'oh!")

- Logger['abe::homer::bart'].debug('Eat my shorts!')

produces:

DEBUG abe: Once upon a time...

DEBUG homer: D'oh!

DEBUG bart: Eat my shorts!

Here we created a hierarchy of three different Loggers called ’abe’, homer’,
and ’bart’. By default the logger path delimiter is the ’::’ sequence (it
can be changed by setting LoggerPathDelimiter). In our case we made
’homer’ a child of ’abe’, and ’bart’ a child of ’homer’. Although we have
only added an Outputter to ’abe’, the debug messages of ’homer’ and
’bart’ are logged, too. This happens because all children inherit their
parent’s outputters by default (you can change this behavior by setting
the additive attribute of the parent to false).

Child Loggers also inherit the log level threshold of their parents. This
means that it’s possible to change this value for a whole sub-tree of the
Logger hierarchy:

File Line 1 Logger['abe::homer'].level = INFO

- Logger['abe'].debug('*snore*')

- Logger['abe::homer'].debug("Marge!")

- Logger['abe::homer::bart'].debug('Ay, caramba!')

which produces:

DEBUG abe: *snore*

We have set the log level threshold to INFO for all Loggers that are
descendants of ’homer’ and therefore only the debug messages of the
’abe’ Logger are still visible.

Formatters

Until now our log messages have been pretty boring, because only the
log level, the logger name, and the log message itself have been printed.
So, where’s all the fancy stuff that we’re been promising? Where are
the timestamps, thread ids, and so on? Don’t panic! Log4r has it all.
Let’s start with a simple example:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/hierarchy.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/hierarchy.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=257

LOGGING 258

File Line 1 fancy = Logger.new('fancy')

- p = PatternFormatter.new(:pattern => "[%5l] %d: %m")

- fancy.add(StdoutOutputter.new('stdout', :formatter => p))

- fancy.info(%w(cat mouse dog))

5 fancy.error('I am so nicely formatted!')

produces:

[INFO] 2005-09-25 16:33:41: catmousedog

[ERROR] 2005-09-25 16:33:41: I am so nicely formatted!

Did you notice that we have passed an array to the info() call? Log4r

handles such things nicely, because it calls to_s() on every object that
is passed to a log method.

All the formatting stuff Log4r has to offer is performed by the Format and
PatternFormat classes. Usually, a pattern format is all you need, because
it works the way printf() fans are used to. On line 2, we create a new Pat-

ternFormat object that prints the log level (in square brackets and with a
fixed width of 5 characters), the current timestamp, and the actual log
message. Format strings may contain arbitrary characters and special
sequences prefixed by a percent sign. All attributes available are listed
in Figure 6.1, on the next page.

Because it’s one of the most important pieces of information in log files,
Log4r handles the formatting of timestamps separately. If your web
shop is new and you do not expect too many requests, the following
date format may be sufficient:

File Line 1 p = PatternFormatter.new(

- :pattern => '[%5l] %d: %m',

- :date_pattern => '%Y'

-)

5 fancy.add(StdoutOutputter.new('stdout', :formatter => p))

- fancy.info('Oh, our second customer.')

produces:

[INFO] 2005: Oh, our second customer.

Or maybe you have so many requests that even microseconds mat-
ter? No problem, just pass the usec() method of the Time class as
date_method to the PatternFormat constructor (date_method expects one
of class Time’s methods):

File Line 1 p = PatternFormatter.new(

- :pattern => '[%5l] %d: %m',

- :date_method => :usec

-)

5 fancy.add(StdoutOutputter.new('stdout', :formatter => p))

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_format.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_format.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_format.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=258

LOGGING 259

Format Specifier Meaning

c A Logger’s name.

C A Logger’s full name up to the RootLogger.

d Current timestamp (in iso-8601 format by default).
Otherwise the format returned by date_pattern() or
by date_method() will be used.

t Name of the file (and line number) that’s the ori-
gin of the log message. Has the same format as
Kernel.caller[0].

m Whatever is returned when to_s() is called on the
log message.

M Whatever is returned when format_object() in class
BasicFormatter is called on the log message. For
example, exceptions will be nicely formatted auto-
matically.

l The log level.

% The percent sign itself.

Figure 6.1: Log4r Format Specifiers

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=259

LOGGING 260

- fancy.info('Money, money, money.')

produces:

[INFO] 724998: Money, money, money.

Still unsatisfied? Ok, then let’s write a completely new Formatter. The
following example formats exceptions in an aggressive manner:

File Line 1 class ExceptionFormatter < Log4r::Formatter

- def format(e)

- log = "[%5s] %s: %s\n" %

- [LNAMES[e.level], Time.now, e.data.to_s]

5 if e.data.class == Exception

- msg = e.data.message

- size = msg.size

- line = '!' * (size + 6) + "\n"

- log << line

10 log << '! ' + msg.center(size + 2) + " !\n"

- log << line

- end

- log

- end

15 end

-

- custom = Logger.new('my_first_format')

- outputter = StdoutOutputter.new(

- 'stdout',

20 :formatter => ExceptionFormatter

-)

- custom.add(outputter)

- custom.info(%w(cat mouse dog))

- custom.fatal(Exception.new('ALAAARRRRMMM!'))

25 custom.error('I am so nicely formatted!')

produces:

[INFO] Sun Sep 25 18:17:12 CEST 2005: catmousedog

[FATAL] Sun Sep 25 18:17:12 CEST 2005: ALAAARRRRMMM!

!!!!!!!!!!!!!!!!!!!

! ALAAARRRRMMM! !

!!!!!!!!!!!!!!!!!!!

[ERROR] Sun Sep 25 18:17:12 CEST 2005: I am so nicely formatted!

Writing your own formatter is simple: Derive a class from Formatter

and override the format(event) method that gets passed the current log
event as an instance of LogEvent. The LogEvent class encapsulates the
attributes belonging to a single log message: the log level, the logger
name, the message itself, and so on (the LNAMES Hash we have used in
line 4 maps the numerical log levels to their textual representations).
At the end of format() return a string in your selected format.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/custom_format.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=260

LOGGING 261

Outputters

Log messages are pretty useless if they don’t appear somewhere. Log4r

supports the concept of outputters that receive log messages and “visu-
alizes” them somehow. You can print them to the console, write them
to a file, send them via e-mail, or send them to a syslog daemon (see
Figure 6.2, on the following page for a complete list).

Each Logger can have many outputters. You can add them to the output-

ters array at any time. In addition to the log level threshold of the Logger,
each Outputter has a threshold, too. It can be set with the only_at(*levels)

method (for example, outputter.only_at(ERROR, FATAL)).

Log4r comes with a lot of configurable outputters. Usually these will do
everything you need. However, you can also create your own outputters
if you need something special.

The following class implements a buffered outputter that consumes a
certain number of log events, then logs them all at once whenever a
configurable threshold value has been reached or a fatal event has been
logged:

File Line 1 class BufferedOutputter < IOOutputter

- def initialize(name, io, options = {})

- super(name, io, options)

- @out = io

5 @last_events = []

- @max_events = options[:max_events] || 50

- end

-

- def canonical_log(event)

10 @last_events << event

- if @last_events.size >= @max_events ||

- LNAMES[event.level] == 'FATAL'

- @last_events.each { |e| super(e) }

- @last_events = []

15 end

- end

- end

-

- logger = Logger.new('buffered-outputter')

20 outputter = BufferedOutputter.new(

- 'buffered',

- $stdout,

- :max_events => 2

-)

25 logger.outputters = outputter

- logger.debug('I cannot be seen immediately!')

- logger.info('Now both are there!')

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/custom_outputter.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=261

LOGGING 262

Outputter Purpose

IOOutputter Logs to an arbitrary IO object.

StdoutOutputter Logs to STDOUT.

StderrOutputter Logs to STDERR.

FileOutputter Logs to a single file.

RollingFileOutputter Logs to a file and automatically maintains a gen-
eration of log files depending on their size, that
is, files will be closed and renamed at a certain
size.

DateFileOutputter Logs to a file and automatically maintains a gen-
eration of log files depending on their times-
tamp: files will be closed and renamed daily,
monthly, etc.

SyslogOutputter Logs to the syslog daemon.

EmailOutputter Sends log messages via e-mail.

RemoteOutputter Sends log messages to a remote LogServer

instance.

Figure 6.2: Log4r Outputters

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=262

LOGGING 263

produces:

DEBUG buffered-outputter: I cannot be seen immediately!

INFO buffered-outputter: Now both are there!

Because BufferedOutputter needs a number of IO facilities, we chose to
subclass IOOutputter, rather than Outputter. The initialize(name,out,options)

method expects the outputter’s name, the IO Object to write to, and an
optional options Hash.

Beginning on line 9 we override the canonical_log(logevent) method. This
is responsible for handling a log event that has made its way to our
outputter. By the time a log event arrives here it has passed all log level
checks and is actually meant to be logged. We add every event to our
current list of events. Whenever this list exceeds the maximum size or
a fatal event is logged, we delegate the logging of every buffered event
to Log4r’s default implementation by calling super().

In our main program we create new Logger and BufferedOutputter objects.
We associate the outputter with $stdout, so all outputs will appear on
the console. To make sure we will see anything, we have set max_events

to 2.

Configuration

Until now we have configured all our Loggers manually in the code.
For demonstration purposes this is perfect, but in a production system
you want to have configuration files that can be safely edited without
touching a single line of your program. Log4r gives you the freedom to
choose XML or YAML as the format of your configuration files.

Configurator is a central component that controls most of the config-
uration options (we have already used it in Section 6.2, Loggers, on
page 255 to configure our own log levels). Its most important methods
are load_xml_file(file_name) and load_xml_string(xml_string). These are used
to configure Log4r using its XML dialect. A typical example looks like
this:

File Line 1 <log4r_config>

- <pre_config>

- <custom_levels>

- FINEST, FINER, FINE, CONFIG,

5 INFO, WARNING, SEVERE

- </custom_levels>

- <global level="FINE"/>

- </pre_config>

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/log4r.xml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=263

LOGGING 264

- </log4r_config>

Log4r’s XML configuration has to be defined under a <log4r_config> ele-
ment. This doesn’t have to be the root element in the actual XML file.
This allows you to to embed the Log4r configuration into your applica-
tion’s global configuration file: you do not have to spread your configu-
ration across several files.

Optionally, the XML file may contain a <pre_config> section, where
custom log levels, configuration parameters, and a global log level can
be defined.

If we store the XML configuration file above in a file called log4r.xml, we
can use it like this:

File Line 1 Configurator.load_xml_file('log4r.xml')

- main = Logger.new('main')

- main.outputters = Outputter.stdout

- main.finest("That's how my coffee should be!")

5 main.fine("That's ok, too.")

produces:

FINE main: That's ok, too.

Because we have set the global log level to FINE, only the second message
gets logged.

Using parameters defined in the <pre_config> section we can commu-
nicate between the Configurator class and the configuration file:

File <log4r_config>

<pre_config>

<parameter name="pattern" value="%l [%d] %m"/>

</pre_config>

<outputter name="logfile" level="WARN">

<type>FileOutputter</type>

<filename>#{basepath}/main.log</filename>

</outputter>

<logger name="main" level="DEBUG" trace="true">

<outputters>stdout, logfile</outputters>

</logger>

</log4r_config>

We initialize the basepath variable used in the configuration file above
in our Ruby program:

File Line 1 Configurator['basepath'] = '/tmp'

- Configurator.load_xml_file('log4r2.xml')

- main = Logger['main']

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/first_xml_config.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/log4r2.xml
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/pre_config_parameters.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=264

LOGGING 265

XML Parameters In Log4r

It’s possible to use Ruby variables in Log4r configuration files and
vice versa. To pass a value from Ruby to the configuration you
can use the Configurator class like a Hash:

Configurator['basepath'] = '/tmp'

In the configuration file you can use it like this, then:

<log4r_config>

<pre_config>

<parameters>

<basepath>#{basepath}</basepath>

</parameters>

<parameter name="pattern" value="[%l] %d: %m"/>

</pre_config>

</log4r_config>

On the other side you can access parameters defined in the
<pre_config> section of the XML configuration file in your Ruby
program. For example, you can access the pattern parameter
defined previously like this:

puts Configurator['pattern']

Most Log4r configuration parameters can be expressed in two
ways, namely as a value= attribute or as a child element. For
example, the following definition:

<outputter name="main" filename="./log/main.log"/>

is equivalent to:

<outputter>

<name>main</name>

<filename>./log/main.log</filename>

</outputter>

- main.debug('On console only.')

5 main.warn('On console and in file.')

This is where the fun begins! We have configured a Logger with two
outputters for the first time. One prints to STDOUT and the other one
into a file (/tmp/main.log). On the console we have

DEBUG main(pre_config_parameters.rb:11): On console only.

WARN main(pre_config_parameters.rb:12): On console and in file.

and /tmp/main.log contains

WARN main(pre_config_parameters.rb:12): On console and in file.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=265

LOGGING 266

There are configuration sections for every Log4r object: loggers, format-
ters, and outputters. As a rule of thumb all attributes we have used
as we have configured our objects manually are also available in the
configuration files. Let’s examine a complete example:

File Line 1 <log4r_config>

- <pre_config>

- <global level="WARN"/>

- <parameter name="pattern" value="%l [%d] %m"/>

5 </pre_config>

-

- <outputter name="console">

- <type>StdoutOutputter</type>

- <formatter type="PatternFormatter" pattern="#{pattern}">

10 <date_pattern>%Y-%m-%d %H:%M:%S</date_pattern>

- </formatter>

- </outputter>

-

- <outputter name="logfile" level="ERROR">

15 <type>RollingFileOutputter</type>

- <filename>#{basepath}/main.log</filename>

- <maxsize>1048576</maxsize>

- <count>5</count>

- <trunc>false</trunc>

20 <formatter type="PatternFormatter" pattern="#{pattern}">

- <date_method>usec</date_method>

- </formatter>

- </outputter>

-

25 <logger name="app">

- <outputter>console</outputter>

- </logger>

-

- <logger name="db" outputters="logfile"/>

30 </log4r_config>

Here we define two outputters called console and logfile. The first one
writes its output to the console using a StdoutOutputter, the other uses
a RollingFileOutputter that keeps up to 5 log files each having a maxi-
mum size of 1MB. Both outputters use a PatternFormatter having the
same format. Only the date format differs: for the console we use the
date_pattern modifier and for the log file we use date_method.

Then we define two loggers called app and db. app only logs to the
console and db logs into a log file.

Running the following snippet

File Line 1 require 'log4r/outputter/rollingfileoutputter'

- include Log4r

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete.xml
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=266

LOGGING 267

- Configurator['basepath'] = '/tmp'

- Configurator.load_xml_file('complete.xml')

5

- app = Logger['app']

- app.debug('Look at me!')

- app.warn('Look at Roy!')

-

10 db = Logger['db']

- db.error('DB logs go always into a file.')

- db.warn('But not this one.')

leaves these messages on our console:

WARN [471281] Look at Roy!

Because we have set the global log level to WARN in the <pre_config>

section, only the second message sent to the app object gets logged.

Our log file contains something like this:

ERROR [163338] DB logs go always into a file.

Only the first message is written, because the log level of the logfile

outputter is ERROR.

You have to require all Log4r classes you have used in your configuration
to prevent problems during the configuration process. For example, we
had to explicitly require ’log4r/outputter/rollingfileoutputter’. Annoyingly,
for the rolling file outputter Log4r creates an empty /tmp/main.log file
and begins the actual logging in a file called /tmp/main000001.log. Note
that we have set trunc to false. If we hadn’t, our new log file would be
truncated whenever we restart our program. That’s usually not what
you want.

For those who prefer YAML over XML’s verbosity Log4r has the YamlCon-

figurator. Let’s translate our example above into YAML (see Section 3.5,
YAML Ain’t Markup Language (YAML), on page 134 if you are not familiar
with YAML):

File log4r_config:

pre_config:

global:

level: WARN

my_pattern:

- &pat "%l [%d] %m"

loggers:

- name : app

outputters:

- stdout

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete.yaml
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=267

LOGGING 268

- name : db

outputters:

- logfile

outputters:

- type : StdoutOutputter

name : stdout

formatter:

date_pattern: '%Y-%m-%d %H:%M:%S'

pattern : *pat

type : PatternFormatter

- type : RollingFileOutputter

level : ERROR

name : logfile

maxsize : '1048576'

count : '5'

date_pattern: '%Y%m%d'

trunc : 'false'

filename : "#{basepath}/main.log"

formatter :

date_method : 'usec'

pattern : *pat

type : PatternFormatter

By replacing only the first two lines of the XML example above we
achieve the same results with our YAML configuration.

File Line 1 require 'log4r/yamlconfigurator'

- YamlConfigurator['basepath'] = '/tmp'

- YamlConfigurator.load_yaml_file('complete.yaml')

Performance Considerations

Logging is an invaluable tool in enterprise environments. But, like most
things in life, logging has a dark side. Excessive logging will slow down
your processes significantly, because logging usually causes a lot of I/O

and I/O is expensive. To prevent this, it’s a good idea to execute logging
statements only when they are absolutely necessary. To help you do
this, Log4r makes it easy for you to set the current log level:

File Line 1 logger = Logger.new('perf')

- logger.outputters = Outputter.stdout

-

- long_list = %w(lots of elements)

5 if logger.debug?

- long_list.each_with_index do |o, i|

- logger.debug("Element #{i}: #{o}")

- end

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/log4r/complete_yaml.rb
http://media.pragprog.com/titles/fr_eir/code/tools/log4r/performance.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=268

CREATING DAEMONS AND SERVICES 269

- end

Logging the contents of long_list—especially when it’s really long—is an
expensive operation, because you have to iterate over all elements and
to_s() is called each one. Therefore, it makes sense to execute the
according method calls only when the debug log level is actually active.
It should not be too surprising that all log methods are capable of pro-
cessing code blocks, too.

Conclusion

Logger’s API is as simple as it could be. Although it is often tempting,
you should not use plain puts() statements to print out messages even
from simple scripts. Use Logger instead, because it’s as easy to use as
puts() and comes with a lot of benefits.

For bigger software systems that comprise several modules you will run
into Logger’s limits soon. In these cases, you’re better off using Log4r

right from the beginning. It is highly configurable and has everything
(and even more) you’d expect from a full-blown logging tool.

6.3 Creating Daemons and Services

On Unix operating systems, daemons are long-living processes that run
in the background and do not have a controlling terminal. Often they
are started when a computer is booted and then run forever. Their
names usually end with ’d’, as in syslogd or httpd. Because daemons
are dangerous creatures, you have to tame them with a control script.
The Apache web server, for example, comes with the famous apachectl

script that allows you to start, stop, or restart the server. Daemons
exist in the Microsoft Windows world, too, but the superstitious folks
in Redmond call them services instead. In the following sections we
show you how to create them on both platforms with Ruby.

UNIX Daemons

According to Stevens’ Unix Network Programming [?], you have to do a
lot of complicated things to safely create a daemon under Unix. You
have to detach from the console, change the current working directory
to a specific location (usually to the root directory /), set the file creation
mask to 0, and close all unneeded file descriptors. Even for Unix wiz-
ards, it’s not easy to remember these steps (their order is significant,
too). To make it even harder, your work isn’t done after the daemon

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=269

CREATING DAEMONS AND SERVICES 270

is running, because you still need a control script such as apachectl.
It’s therefore very nice that Thomas Uehlinger has created the Daemons

package22 that transparently handles all this for us. It turns an arbi-
trary Ruby script into a daemon process and automatically generates
the according control script for starting, restarting, and stopping it.

Do you remember the greeting card server from Section 5.1, Another

Day, Another Protocol, on page 175? We didn’t implement the complete
architecture that could be seen in Figure 5.1, on page 177. One process
is still missing: the one that actually prints the cards. In this section
we will develop a daemon process that will do the job.

Our print process is a little script that reads a particular directory
every 10 seconds, sends all .pdf files in the directory to a process called
print_card, and deletes them afterwards.

File Line 1 require 'logger'

-

- path = ARGV[0] || '/tmp'

- interval = ARGV[1] || 10

5 interval = interval.to_i

-

- logfile = File.dirname(__FILE__) + '/watcher.log'

- logger = Logger.new(logfile)

- logger.info('Started the watcher...')

10

- loop do

- files = Dir["#{path}/*.pdf"]

- files.each do |filename|

- logger.info("Processing #{filename}.")

15 %x(print_card #{filename})

- File.delete(filename)

- end

- sleep(interval)

- end

Our little observer accepts two command line parameters, the directory
to be observed (/tmp by default) and the timer interval measured in
seconds (10 by default). Then we create a logger to see what our process
is doing. In line 7 we determine the full path name of the log file. This is
very important, because we are going to turn our script into a daemon
process and these processes normally change their working directory
to / when they start. The path variable has to contain an absolute path
if we’re to put the log file in the correct place..

22http://daemons.rubyforge.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/watcher.rb
http://daemons.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=270

CREATING DAEMONS AND SERVICES 271

The rest is fairly easy. We read the directory’s content every interval

seconds, execute a system command called print_card, and delete the
file. Now let’s turn our script into a full-blown Unix daemon process:

File Line 1 require 'rubygems'

- require 'daemons'

- Daemons.run('watcher.rb')

Really, that’s all we have to do. Using the automatically generated
control script, we can start, stop, or restart our process like this:

$ ruby watcher_control.rb start

$ ruby watcher_control.rb restart

$ ruby watcher_control.rb stop

To perform all this magic, Daemon writes the process id into a file called
watcher.rb.pid and reads it whenever it’s needed.

You can pass command line options after a double-hyphen:

$ ruby watcher_control.rb start -- /tmp/cards/img 5

This command line starts our daemon process and looks for new .pdf

files in the /tmp/cards/img directory every five seconds. It logs its activ-
ities into a file called watcher.log that lives in the same directory as the
watcher script itself.

The Daemons class allows you to daemonize your programs in several
ways. For example, it’s possible to turn your script into a daemon by
calling Daemons.daemonize at any time, but by doing so you loose ability
to use the _control script to administer your daemon.

For debugging purposes, there is a run option that starts the script in
the foreground.

Windows Services

None of the nice things we learned in the preceding section work on
the Microsoft Windows platform, because Unix daemons depend on
the fork() system call which isn’t available on Windows. Daniel Berger
opened up the Windows platform to Ruby programmers with his win32utils
project23. Part of this project is win32-service. This allows us to create
daemons (services) for Win32, too. It is not as convenient as the Dae-

mons package, because it does not have automatic support for control
scripts, but it certainly is helpful.

23http://rubyforge.org/projects/win32utils

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/watcher_control.rb
http://rubyforge.org/projects/win32utils
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=271

CREATING DAEMONS AND SERVICES 272

Do you remember our status monitor (see Section 4.1, The PragBou-

quet Status Monitor, on page 143) and the SOAP stock server (see Sec-
tion 5.3, SOAP, on page 196)? To make sure that the stock server is
working properly, let’s create a small script that periodically checks to
see if the server is still alive. If it detects any problem, it sends a mes-
sage to the status monitor. Our checks will not be too sophisticated—
we’ll only test if the service is physically available, but for a first solution
this approach is sufficient.

Because we install the observer script as a Windows service, we have to
(partly) implement the interface of a Windows service:

File Line 1 $:.unshift File.dirname(__FILE__)

- require 'status_monitor_client'

- require 'logger'

- require 'soap/rpc/driver'

5 require 'win32/service'

- include Win32

-

- class StockServerObserver < Daemon

- def initialize(opts = {})

10 super()

- @opts = opts

- end

-

- def service_init

15 @interval = @opts[:interval] || 60

- @logger = Logger.new(@opts[:logfile] || 'c:/observer.log')

- @stock = SOAP::RPC::Driver.new(

- @opts[:soap_url] || 'http://localhost:2000',

- @opts[:soap_urn] || 'urn:Stock'

20)

- @stock.add_method('get_report')

- @sm = StatusMonitorClient.new(

- @opts[:sm_host] || '127.0.0.1',

- @opts[:sm_port] || 3333

25)

- @logger.info('Observer has been initialized.')

- end

-

- def test_stock_service

30 @stock.get_report.class == Hash

- end

-

- def service_main

- @logger.info('Observer has been started.')

35 sleep 1 while state != RUNNING

- while state == RUNNING

- if !test_stock_service

- msg = 'Stock service is not running.'

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/stock_observer.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=272

CREATING DAEMONS AND SERVICES 273

- @logger.warn(msg)

40 @sm.warn('stock', msg)

- else

- @logger.info('Stock service is running.')

- end

- sleep(@interval)

45 end

- @logger.info('Observer has been stopped.')

- end

- end

All the stuff related to our original task—observing the stock server—is
fairly trivial. In the test_stock_service() method we perform a simple test
to see if the stock server is still alive. We call the get_report() method and
verify that it returns a Hash object. If the remote procedure call works
properly, we can be fairly confident that the physical connection to our
stock server is working. If it does not, we send a warning message to
the status monitor.

We derived our StockServerObserver from the Win32::Daemon class, and
we overrode the service_init() and service_main() methods. service_init()
gets called when a service is initialized—we use it to create clients for
the status monitor and the stock server. In addition, we initialize a
Logger for logging the observer’s status.

The service_main() method contains the main logic of the daemon. This
is typically an “infinite” loop that waits for external events or performs
a task periodically. In our case we call test_stock_service() every @interval

seconds as long as the daemon’s state is RUNNING. If test_stock_service()
returns false or an exception is raised, we send a message to the status
monitor.

Two things are very important when developing Windows services:

1. Windows services (like UNIX daemons) change their working direc-
tory when they start, so you have to specify all files you need in
absolute form. To find Ruby libraries outside the standard direc-
tories, we add the script’s directory to Ruby’s load path in the first
line.

2. You should not rely upon being in a certain state. A lot of things
regarding Windows services work asynchronously, because ser-
vices are controlled from the outside with a control script or the
services panel. Hence, in line 35 we wait until the service is actu-
ally running, because sometimes it needs a few seconds.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=273

CREATING DAEMONS AND SERVICES 274

You cannot simply start our current script and expect that it turns
itself into a service. Every service has to have a name and it has to be
installed properly before starting it.

File Line 1 require 'win32/service'

- include Win32

-

- def install_service(name, display_name, executable)

5 service = Service.new

- service.create_service do |s|

- s.service_name = name

- s.display_name = display_name

- s.binary_path_name = 'ruby ' + File.expand_path(executable)

10 s.dependencies = []

- end

- service.close

- puts "#{name} has been installed."

- end

Call install_service() to install any Ruby program you like as a service.
Pass it a unique service name, a name that should be displayed in the
service list, and the path to a Ruby script that should be installed as
a service. The working of the function is fairly obvious, but line 9 is
interesting. Here we specify the program that is going to be installed
using (as is the case with all files referenced by a service) its absolute
file name.

Provided that we have stored our stock observer in a file called stock_observer.rb,
we can now install it like this:

irb(main):002:0> service_name = 'StockObserver'

=> "StockObserver"

irb(main):003:0> install_service(

irb(main):004:1* service_name,

irb(main):005:1* 'PragBouquet Observer',

irb(main):006:1* 'stock_observer.rb'

irb(main):007:1>)

StockObserver has been installed.

=> nil

Our internal service name is StockObserver, but in the service list it
appears as PragBouquet Observer. Even though it’s in the service list,
it isn’t running yet. You could start it using the Windows service control
panel (see Figure 6.3, on the next page), but isn’t it more fun to do it
programmatically?

File Line 1 def start_service(name)

- Service.start(name)

- started = false

- while !started

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=274

CREATING DAEMONS AND SERVICES 275

Figure 6.3: PragBouquet Observer in the Service Control Panel

5 s = Service.status(name)

- started = (s.current_state == 'running')

- break if started

- puts 'Trying to start service...'

- sleep 1

10 end

- puts "#{name} was started."

- end

To safely start a service, call the start(name) method of the Service class
and wait until its status turns to running.

irb(main):004:0> start_service(service_name)

Trying to start service...

StockObserver was started.

=> nil

From now on the stock observer will send SOAP requests to the stock
server every minute until the end of time... or until we stop it:

File Line 1 def stop_service(name)

- Service.stop(name)

- stopped = false

- while !stopped

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=275

BUILD AND DEPLOYMENT PROCESS 276

5 s = Service.status(name)

- stopped = (s.current_state == 'stopped')

- break if stopped

- puts 'Trying to stop service.'

- sleep 1

10 end

- puts "#{name} was stopped."

- end

Stopping a service works exactly like starting it: call the stop() method
of the Service class and wait until the service has the stopped state.

irb(main):005:0> stop_service(service_name)

StockObserver was stopped.

=> nil

Finally, we should be prepared to uninstall a service:

File Line 1 def uninstall_service(name)

- begin

- Service.stop(name)

- rescue

5 end

- Service.delete(name)

- puts "#{name} was uninstalled."

- end

That’s all you need to turn your Ruby programs into Windows services.
The Daemon class provides many more useful and important meth-
ods and the win32utils project is full of interesting stuff. If you want to
develop Ruby applications on the Windows platform you must have a
look at it.

6.4 Build and Deployment Process

Compared to deployment processes needed when shipping software to
end users on a CD or DVD, deployment processes in enterprise environ-
ments are relatively simple. Often, they can be reduced to copying a
bunch of files from a development or integration platform to a produc-
tion host. If anything goes wrong, bugs can be fixed in a single place
instead of providing all users with an update.

Additionally, installers for enterprise software do not need colorful wiz-
ards with bells and whistles or several hundred kilobytes of End User
License Agreements (EULA). Nevertheless, all software—your own and
the third party products and the libraries it depends on—has to be
deployed somehow. There are several alternatives for Ruby programs.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/daemons/observer_control.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=276

BUILD AND DEPLOYMENT PROCESS 277

Many programming languages encourage developers to produce com-
pletely self-contained programs that bring everything they need with
them. For example, it’s not unusual for companies using Java to have
several XML parsers (in dozens of versions) lying around on their pro-
duction systems, because every application ships with its own xerces-

xyz.jar. Sometimes they are even bundled with their own version of
the Java virtual machine. For C++ applications, people often link the
required libraries into huge executable images, or risk DLL hell by ship-
ping the required shared libraries with each of their applications.

Ruby’s (and Perl’s, Python’s, etc.) approach is different. It’s oriented
towards a more central installation philosophy, where all libraries are
installed only once in the same directory. On UNIX systems this is by
default something like /usr/lib/ruby or /usr/local/lib/ruby and on Microsoft
Windows boxes it’s c:\Program Files\ruby\lib or c:\ruby\lib. (If you’re look-
ing for the source code of a certain library, these places are good start-
ing points.)

You aren’t constrained to have a single, central Ruby installation. You
can install it wherever you want (and you can have multiple, indepen-
dent installations on the same machine). On some platforms it’s even
possible to turn Ruby programs into self-contained executables that do
not even depend on an existing Ruby installation.

Deploying With setup.rb

Back in the dark and ancient days of Ruby’s childhood, nearly every
developer who made available a library or script in the Ruby Applica-
tion Archive (RAA) 24 wrote yet another proprietary installation program
that usually copied some files to the central Ruby lib directory. These
programs were often quick’n’dirty solutions that failed on many plat-
forms: their authors did not know the nitty-gritty details of every envi-
ronment their software was going to be installed in. Considering that
generations of programmers contributed to tools like GNU’s autoconf,
it’s not surprising that an individual Ruby coder would struggle with
these issues.

Minero Aoki was fed up with the situation. He built a sophisticated
solution, called setup.rb, that over time became extremely powerful.
Before the appearance of the RubyGems project it was the de facto

24http://raa.ruby-lang.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=277

BUILD AND DEPLOYMENT PROCESS 278

Figure 6.4: Getting tmail From The Internet

standard for packaging Ruby software. As a result, there are still hun-
dreds of project out there that depend on it. It’s still vital for every
serious Ruby programmer to know how it works.

We”ll demonstrate the use of setup.rb by installing the tmail library we
used in Section 4.1, “I’d Rather Use a Socket”, on page 142 (for those
who don’t read books front to back: tmail is a library that supports the
creation of e-mail messages in SMTP format). Before installing tmail, we
have to get it somehow. Figure 6.4 shows how to download and unpack
the current tmail distribution (by the way: the terminal application I’ve
used on Mac OS X is iTerm.)25 To download the file, of course, you can
use wget, your favorite web browser, or whatever you prefer instead of
the curl command I used.26.

25http://iterm.sourceforge.net
26Whatever you use, keep in mind that you’d usually have to specify a proxy server in

an enterprise environment. For curl you’d have to add the option -x proxy_host:proxy_port.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://iterm.sourceforge.net
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=278

BUILD AND DEPLOYMENT PROCESS 279

Part of the the tar-ball is a file called setup.rb. This contains everything
needed to install the tmail library on an arbitrary platform. The only
prerequisites are Ruby and a C compiler. (The C compiler is necessary
because tmail includes code written in C. If the software to be installed
does not contain C extensions, a compiler is not needed.)

setup.rb is similar to GNU’s autoconf; it divides the installation of soft-
ware in a UNIX environment into three steps. With autoconf, you do
something like the following:

1. ./configure

2. make

3. make install

Step 1 detects the specifics of the current environment: which C com-
piler is installed, the size of a native int, and so on. The second step
builds the software from source. The final step copies everything to its
final destination (so this step usually has to be performed by a user
having root privileges).

setup.rb works in an equivalent fashion—even the meaning of the three
steps is the same as in the UNIX installation procedure described pre-
viously:27

1. ruby setup.rb config

2. ruby setup.rb setup

3. ruby setup.rb install

Let’s examine the installation of the tmail library step by step. Fig-
ure 6.5, on the following page shows the output of running ruby setup.rb

config. The script automatically explored the environment and created
two Makefiles that will be used in the next step to compile all C exten-
sions needed by tmail. Platform independent Makefiles are created by
extconf.rb, which uses the mkmf library to do its dirty work. This step’s
output differs from package to package. For example, the majority of
Ruby packages don’t depend on C extensions; for these, no Makefiles
are created.

Usually, the configuration step just detects where the Ruby installation
is located on the current system. Its results are stored in a file called
config.save that can be edited manually if necessary. On my box it looks

27In older versions an additional file called install.rb was part of the setup.rb project. It’s
not supported any longer, but you will still find it in many older packages.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=279

BUILD AND DEPLOYMENT PROCESS 280

Figure 6.5: Configuring tmail

as follows (all values starting with a ’$’ sign can be configured during
the installation process; you can also view the current configuration by
running ruby setup.rb show):

File bin-dir=$prefix/bin

site-ruby=$prefix/lib/ruby/site_ruby/1.8

prefix=/usr

ruby-path=/usr/bin/ruby

make-prog=make

rb-dir=$site-ruby

without-ext=no

ruby-prog=/usr/bin/ruby

site-ruby-common=$prefix/lib/ruby/site_ruby

std-ruby=$prefix/lib/ruby/1.8

data-dir=$prefix/share

so-dir=$prefix/lib/ruby/site_ruby/1.8/powerpc-darwin8.0

tmail depends on two C extensions (one for encoding and decoding of
Base64 strings and one for scanning e-mails). In Figure 6.6, on the
next page you can see how running ruby setup.rb setup compiles these.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/setup/config.save
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=280

BUILD AND DEPLOYMENT PROCESS 281

Figure 6.6: Setting Up tmail

In our textbook example everything went fine and the GNU compiler on
my Mac happily produced the object files needed. However, if you have
even a small amount of experience with UNIX, you’ll know that a lot
can go wrong during this step. Tools like autoconf and setup.rb made it
much easier to build and install software even on exotic hardware and
operating systems, but there are still potential incompatibilities, and
you have to be prepared for compiler warnings, errors, and so on.

This is especially true for the Microsoft Windows platform, where often
no C compiler or make command is available. For popular tools and
libraries you can sometimes get pre-compiled binaries, but often you
are doomed to have to try to build it yourself. This can be a frustrating
(and sleep depriving) experience....

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=281

BUILD AND DEPLOYMENT PROCESS 282

Finally, tmail has to be copied to the standard Ruby library directory.
You can see how this can be achieved in Figure 6.7, on the following
page. Normally Ruby libraries are installed in a system-wide directory,
so the final step has to be performed by a user having root privileges.
As good citizens we did not log in as root, but used the sudo command28

instead.

Underprivileged?

There are times when you do not have the root password and have
no write permission for some directories. There are times when you
explicitly do not want to install your software in the standard paths
for other reasons. setup.rb therefore supports some global options and
some task-specific options that allow you to override nearly every set-
ting that would normally be determined automatically. Using these,
you can control where stuff goes.

Considering good old UNIX traditions the most important global option
is -q or --quiet. This completely mutes the output of setup.rb.

The --prefix option is often useful for the config and install tasks, as it
allows you to specify the base directory of the installation. If you want
to install a package in the lib/ruby directory right under your home direc-
tory, for example, run

$ ruby setup.rb config --prefix=~/lib/ruby

Afterwards, don’t forget to set the environment variable RUBYLIB accord-
ingly, or to add the path specified in --prefix to your load path (by adding
it to $:) Otherwise, the Ruby interpreter will not be able to find your
freshly installed stuff.

A complete list of all options can be found on setup.rb’s web site,29

but beware: the documentation does not completely match the cur-
rent state of affairs. For example, the all task is documented but not
supported any longer.

Shipping The Status Monitor

Although it took several pages to demonstrate the usage of setup.rb, in
reality it’s simple. Just run the following commands.

28http://en.wikipedia.org/wiki/Sudo
29http://i.loveruby.net/en/man/setup/usage.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://en.wikipedia.org/wiki/Sudo
http://i.loveruby.net/en/man/setup/usage.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=282

BUILD AND DEPLOYMENT PROCESS 283

Figure 6.7: Installing tmail

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=283

BUILD AND DEPLOYMENT PROCESS 284

It’s Not Perfect

By default the Firefox browser∗ running on my Mac stores
files I’ve downloaded from the Internet in the directory
~/Documents/My Downloads. I never experienced any problems
with this setting until I’ve tried to install tmail from this particu-
lar location in the file system. After downloading and unpack-
ing the tar-ball, I ran ruby setup.rb config which unexpectedly
resulted in the following error message:

/usr/bin/ruby: No such file or directory -- ~/Documents/My \

(LoadError)

'system /usr/bin/ruby ~/Documents/My Downloads/tmail-0.10.8/ \

ext/tmail/base64/extconf.rb ' failed

Try 'ruby setup.rb --help' for detailed usage.

Obviously, setup.rb dynamically creates a command line string
that gets executed with the system() method. Unfortunately, this
command line string does not work for directory names con-
taining blanks. The lesson I’ve learned is: Do not try to run
setup.rb (or extconf.rb) from a directory whose name contains
spaces!

∗http://www.mozilla.org/products/firefox

$ curl http://i.loveruby.net/archive/tmail/tmail-0.10.8.tar.gz \

> -o tmail-0.10.8.tar.gz

$ tar xfz- tmail-0.10.8.tar.gz

$ cd tmail-0.10.8

$ ruby setup.rb config

$ ruby setup.rb setup

$ sudo ruby setup.rb install

So where does all the magic come from? Even Ruby programmers do
not believe in magic (although many of them firmly believe that matz
is from outer space. Some concepts are just too advanced...). You may
ask yourself what you have to do to package your own stuff and make
it available on nearly all platforms currently supported? The answer is
quite simple: probably nothing if you did what good programmers (and
that’s all of you, isn’t it?) do anyway: You have to put your software
into a certain directory structure and you have to add a copy of setup.rb

to your project. That’s it!

setup.rb expects you to use the following directory layout:

project-root/

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.mozilla.org/products/firefox
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=284

BUILD AND DEPLOYMENT PROCESS 285

setup.rb destination

lib /usr/local/lib/site_ruby/1.8

bin /usr/bin

data /usr/share

ext /usr/local/lib/site_ruby/1.8/i386-linux

Figure 6.8: Typical Directory Mapping For setup.rb

setup.rb

lib/

bin/

ext/

data/

The different directories are mapped to certain destinations. A typical
setup for Linux running on an Intel processor can be seen in Figure 6.8
. These values will differ from platform to platform, but you should get
the idea.

It’s OK to put more than one module into a package. Simply add sub-
directories to your project’s root directory. The classic compiler example
looks like this (note: the packages directory is mandatory):

my-compiler/

setup.rb

packages/ --> mandatory directory name!

scanner/

bin/

lib/

ext/

data/

parser/

bin/

lib/

ext/

data/

codegen/

bin/

lib/

ext/

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=285

BUILD AND DEPLOYMENT PROCESS 286

data/

So, let’s get a bit more concrete and create a package for the status
monitor we have developed in Section 4.1, “I’d Rather Use a Socket”, on
page 142. Our directory layout is simple:

sm/

setup.rb

create_smon.sql

bin/

control_sm.sh

lib/

pre-install.rb

sm/

status_monitor.rb

status_monitor_client.rb

sms.rb

setup.rb was copied verbatim from Minero Aoki’s web site. create_smon.sql

contains everything to create the MySQL database needed by the status
monitor:

File create database smon;

use smon;

create table log_entries(

id int unsigned not null primary key,

application varchar(64) not null,

level enum('debug', 'info', 'warn', 'error', 'fatal'),

message text,

created timestamp not null

);

In the bin directory we placed a shell script called control_sm.sh that
controls the status monitor—it lets the users of the monitor start and
stop it.

The lib/sm directory contains all the files we created for the status mon-
itor: the status monitor itself (status_monitor.rb), the library that encap-
sulates the access to the SMS server (sms.rb), and the Ruby library for
accessing the status monitor (status_monitor_client.rb).

There’s only one file left to be explained: pre-install.rb in the lib direc-
tory. setup.rb has a nice feature that makes it possible to execute a
Ruby script before and after every installation phase. Such scripts are
named (pre|post)-(config|setup|install).rb. In our case the script gets
executed before the status monitor is installed. Unsurprisingly, the
script installs the status monitor database:

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/setup/sm/create_smon.sql
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=286

BUILD AND DEPLOYMENT PROCESS 287

File Line 1 # pre-install.rb creates the status monitor database

- # before installing the status monitor itself.

-

- system('mysql < ../create_smon.sql')

One of the biggest problems with installation processes is testing them,
as you normally don’t have access to the final production environment.
In addition, installation processes often perform tasks that cannot be
reverted easily, such as dropping or modifying databases or files. For-
tunately, setup.rb’s inventor was well aware of these restrictions and
added useful options that make testing much easier. Probably the most
important one is --no-harm, that simulates the installation process with-
out actually touching anything, It will not create or copy any directories
or files. In Figure 6.9, on the next page you can see a sample run.

Oops! Didn’t we say that nothing would be touched? In the lower third
of the screenshot MySQL complains about the existence of our smon

database. It does already exist, because we have installed it for run-
ning our local tests. The problem is that setup.rb’s philosophy regarding
the pre- and post-script mechanism is a bit more local. It was not pri-
marily designed for processes like installing complete databases, but
for creating temporary files that are needed for further steps like gen-
erating C code by executing commands like lex and yacc.

Fortunately, there is the so called “Hook Script” API30 that allows us to
read nearly all options that have been passed to setup.rb. For example,
calling get_config(’prefix’) in a pre- or post- script determines the current
value of the --prefix option (/opt/pb in our case). Unfortunately, this is
only true for configuration options and not for options that have been
passed to the different installation steps such as --no-harm.

Open Source to the rescue: after examining the source code of setup.rb,
I quickly discovered that the Hash object @options contains everything
we need to make the status monitor installation complete:

File Line 1 # pre-install.rb creates the status monitor database

- # before installing the status monitor itself.

-

- if @options['no-harm']

5 puts 'Normally, we would install the database now!'

- else

- system('mysql < ../create_smon.sql')

- end

30http://i.loveruby.net/en/man/setup/hookapi.html

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/setup/sm/lib/pre-install.rb
http://media.pragprog.com/titles/fr_eir/code/tools/setup/sm/lib/pre-install_safe.rb
http://i.loveruby.net/en/man/setup/hookapi.html
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=287

BUILD AND DEPLOYMENT PROCESS 288

Figure 6.9: Simulating Status Monitor Installation

From now on only a polite message will be printed to the console when
we run ruby setup.rb install --no-harm.

Of course, relying on the internals of an implementation like this is
generally a bad idea, but in this case we will get away with it, because
the probability is low that setup.rb is going to change. This is especially
true for our local copy.

RubyGems

As Ruby grew in popularity, and more and more great libraries were
released, it became quickly obvious that a full-blown standardized pack-

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=288

BUILD AND DEPLOYMENT PROCESS 289

aging and installation system was needed. setup.rb does a fairly good
job for typical installation tasks, but it lacks a lot of important features.
For example, it is not possible to install different versions of a particular
package in parallel. Uninstalling packages isn’t possible, either.

To create a more advanced solution David A. Black, Paul Brannan,
Chad Fowler, Richard Kilmer, and Jim Weirich sat together on a Ruby
conference some years ago and designed (and implemented!) a first
version of a new packaging system. They called the packages Gems Gems

and the package system RubyGems.31.

Since these modest beginnings, RubyGems has been rewritten com-
pletely and greatly enhanced. It has become the de-facto standard for
distributing Ruby libraries and applications. At the time of this writing
RubyGems was not part of the official Ruby distribution, but chances
are good that things have changed by the time you’re reading this. You
can see if RubyGems is installed already by running gem list. This com-
mand prints a list of all Gems that are installed on your system. The
output should look like this:

mschmidt:/tmp> gem list

*** LOCAL GEMS ***

actionmailer (1.1.3, 1.0.1)

Service layer for easy email delivery and testing.

actionpack (1.11.0, 1.9.1)

Web-flow and rendering framework putting the VC in MVC.

actionwebservice (0.9.3, 0.8.1)

Web service support for Action Pack.

activerecord (1.13.0, 1.11.1)

Implements the ActiveRecord pattern for ORM.

...

xml-simple (1.0.7)

A very simple API for XML processing.

If instead you get an error message like “gem: No such file or directory”,
you probably don’t have RubyGems installed. You’ll need to download
and install it. It might be the last Ruby program you have to install
manually....

31http://rubygems.rubyforge.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://rubygems.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=289

BUILD AND DEPLOYMENT PROCESS 290

RubyGems comes with an excellent documentation system (try gem --

help and play around with the options of the list command a bit), there’s
a great user guide on the project’s home page,32, and Chad Fowler has
written a chapter about it in [?]. Because of all this, I’m not going to
write yet another full tutorial, but I’d like at least to explain briefly how
to use RubyGems.

A Gem is a self-contained package that contains everything belonging
to a particular Ruby library or application. It doesn’t matter if it’s a pro-
gram written in pure Ruby or it’s a C extension, if it contains extensive
documentation or comes with a big test suite. Everything belonging to
the package can be found in the .gem file.

In the next section we will need the rake command that is available as
a Gem, so let’s install it now:

mschmidt:/tmp> sudo gem install rake

Password:

Attempting local installation of 'rake'

Local gem file not found: rake*.gem

Attempting remote installation of 'rake'

Updating Gem source index for: http://gems.rubyforge.org

Successfully installed rake-0.6.2

Installing RDoc documentation for rake-0.6.2...

Because Gems are usually installed in a central directory such as /usr/local/lib/ruby/gems,
you have to run gem as the root user. As good citizens we use the sudo

command instead of su.

RubyGems tries to find a local installation of the rake Gem first. If it
doesn’t find one, it tries to get it from the central Gems server.33 Then
it downloads the package, unpacks it, and installs it. The installation
process usually is more than a simple cp or install command. Often, C
extensions and documentation files are built before copying the result
to the central Gems directory.

The update option installs the most current version of an existing pack-
age.

mschmidt:/tmp> sudo gem update activerecord

Password:

Upgrading installed gems...

32http://docs.rubygems.org/
33If you’re trying to install Gems on a computer in your company you probably have

to specify a proxy server:
mschmidt:/tmp>gem install -p http://proxy:port rake

Report erratum
Prepared exclusively for Jacob Hochstetler

http://docs.rubygems.org/
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=290

BUILD AND DEPLOYMENT PROCESS 291

Attempting remote upgrade of activerecord

Attempting remote installation of 'activerecord'

Install required dependency activesupport? [Yn] Y

Successfully installed activerecord-1.13.2

Successfully installed activesupport-1.2.5

Installing RDoc documentation for activerecord-1.13.2...

Installing RDoc documentation for activesupport-1.2.5...

Gems: [activerecord] updated

gem automatically downloaded the current ActiveRecord version, along
with its dependency ActiveSupport (another important feature of Gems:
they can depend on each other and the gem command knows about it).
Then, it installed the two libraries and their documentation, which is
freshly generated from RDoc comments in the source code.

To find out which versions of ActiveRecord are installed, we use the list

option again:

mschmidt:/tmp> gem list activerecord

*** LOCAL GEMS ***

activerecord (1.13.2, 1.13.0, 1.11.1)

Implements the ActiveRecord pattern for ORM.

There seem to be different versions of ActiveRecord installed on our sys-
tem. But how can we use them in our Ruby programs? Until RubyGems
actually becomes the Ruby packaging standard, you have to call require

’rubygems’ whenever you want to use a Gem.34

require 'rubygems'

require 'active_record'

Note that even though the Gem is called activerecord, we used ’active_record’

and not ’activerecord’ in the require statement.

If you don’t want to add require ’rubygems’ to all of your programs, you
can invoke the Ruby interpreter and use the -r option:35

ruby -rubygems . . .

Even better, set the RUBYOPT environment variable:

mschmidt:/tmp> export RUBYOPT=rubygems

34RubyGems is currently in transitions. It is very likely to become built-in to a future
version of Ruby, but until then it allows you to write your require statements as if it
already were the standard tool. Someday you only have to remove all the require ’rubygems’

statements.
35Yes, there is a file called ubygems.rb.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=291

BUILD AND DEPLOYMENT PROCESS 292

If you want to use a particular version of a Gem, you have to use the
require_gem(gem,*version_requirements) function:

irb(main):001:0> require 'rubygems'

=> true

irb(main):002:0> require_gem 'activerecord', '= 1.11.1'

=> true

irb(main):003:0>

In this case we loaded version 1.11.1 of ActiveRecord. If we try to load a
version that is not installed on our system, RubyGems complains with
an informative error message:

irb(main):003:0> require_gem 'activerecord', '= 1.11.0'

Gem::LoadError: RubyGem version error: activerecord(1.11.1 not = 1.11.0)

To specify a particular Gem version, you have to pass a list of version
requirements to require_gem(). Every version requirement consists of
an operator and a version number. The operators are =, !=, <, >=, <, <=,
and ~>. Most of them should be self-explanatory, so

require_gem 'activerecord', '> 1.1'

loads the most current ActiveRecord Gem whose version is greater than
1.1. If instead we’d used:

require_gem 'activerecord', '> 1.1', '<= 1.2'

RubyGems would load the most current ActiveRecord Gem in the ver-
sion range 1.1–1.2.

However, the ’~>’-operator (read: approximately greater than) looks
unfamiliar. It’s called the pessimistic operator, because it makes the
pessimistic assumption that major releases of software are often incom-
patible with former releases. Using that reasoning, it’s optimistic to

require_gem 'activerecord', '> 2.1'

because this may end up loading ActiveRecord version 18.7.1, which
may no longer support some of the methods that you’re using in your
script. A more pessimistic approach would be to constraint the version
number to start “2.”.

require_gem 'activerecord', '> 2.1', '< 3.0'

That’s what the pessimistic operator does. The following is (in effect)
identical to the previous code:

require_gem 'activerecord', '~> 2.1'

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=292

PROJECT AUTOMATION WITH RAKE 293

RubyGems provides many more useful features for the Gem user. You
can also write your own Gems. All this isn’t necessary to get your enter-
prise integration software up and running, but if you want to become a
real Ruby hacker, you’d better read the RubyGems manual.

Conclusion

When creating Open Source software that will be disseminated via
Internet, RubyGems is the best choice today—it has been designed for
this specific purpose. For the deployment of enterprise software setup.rb

is still a useful tool.

setup.rb dictates a directory layout you have probably used anyway
and there is no reason why setup.rb and RubyGems should not coex-
ist peacefully.

6.5 Project Automation with Rake

In the lifetime of every software project there comes a point when you
have to automate things. It might be sufficient to run the compiler
manually and to copy the resulting executable to its final destination
by hand if you have to compile only two files. But as soon as the
number of source files reaches a critical mass (i.e. three files), you’d
better think about automating tasks like compiling, linking, packaging,
and so on.

When developing software, impatience is a good guide. Whenever you’re
working with a compiled programming language such as C/C++, Java,
or C#, you think about project automation automatically to decrease
compile time. It does not make sense to compile every single file every
time. Instead you want to compile only those files that are newer than
their corresponding binary objects. Integrated Development Environ-
ments (IDE) such as Eclipse and tools such as make manage these
things for you.

With interpreted languages like Ruby this compilation and build man-
agement isn’t necessary. There are, however, still some tasks that have
to be managed the “make way”. For example, if you use SOAP, you’d
like to call wsdl2ruby.rb (see Section 5.3, Web Services Description Lan-

guage, on page 204) only when it’s necessary.

Also, compiling files is not the only task that can be automated in a
typical software project. Usually, you have to generate documentation

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=293

PROJECT AUTOMATION WITH RAKE 294

using rdoc, package and deploy your software, and run all unit tests.
Often, these tasks depend on each other and have to be performed in a
particular order.

Many project automation tools exist: make,36 Ant,37 and A-A-P,38 to
name a few. Although they differ slightly in functionality, they have
one thing in common: their input file formats are rarely convenient.
For example, make depends on significant whitespace characters and
Ant expects you to write bloated XML documents. For simple tasks that
is OK, but as soon as you have to implement some logic, you’re doomed.

Jim Weirich was fed up with this situation. Because he likes Ruby,
he has developed a project automation tool called Rake.39 Jim did not
invent yet another input file format. Instead, he used Ruby to drive his
build tool. This Ruby lives inside things called Rakefiles.

Rakefiles

Before this section gets too theoretical (after all, this is a pragmatic
book), we’d better run rake and see what happens:

mschmidt:/tmp> rake

rake aborted!

No Rakefile found (looking for: rakefile, Rakefile, rakefile.rb, \

Rakefile.rb)

/usr/local/lib/ruby/gems/1.8/gems/rake-0.6.2/lib/rake.rb:1373:in \

‘load_rakefile'

rake automatically searches for an input file called rakefile, Rakefile, rake-

file.rb, or Rakefile.rb. From the fact that it searches for files with the
extension .rb we conclude that it expects a Ruby file. Let’s create our
first Rakefile:

puts 'Hello, Rake!'

And run rake again:

mschmidt:/tmp> rake

(in /tmp)

Hello, Rake!

rake aborted!

Don't know how to build task 'default'

36http://www.gnu.org/software/make
37http://ant.apache.org
38http://www.a-a-p.org
39http://rake.rubyforge.org

Report erratum
Prepared exclusively for Jacob Hochstetler

http://www.gnu.org/software/make
http://ant.apache.org
http://www.a-a-p.org
http://rake.rubyforge.org
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=294

PROJECT AUTOMATION WITH RAKE 295

We’re getting closer. rake has executed our Ruby code, but complains
that we did not specify a task called ’default’. So, what is a Rake task
and what is the default task?

Rakefiles consist of ordinary Ruby code that uses a set of methods and
classes defined by Rake. Typically, a Rakefile contains several tasks.
Each has a name and is associated with a block of Ruby code. Tasks
can depend on other tasks—a task may have some prerequisites that
have to be fulfilled before it gets executed. If you do not specify a task to
be executed, the task called ’default’ is run. Tasks can be defined with
the task(args,&block) method. Here’s the new version of our Rakefile:

task :default do

puts 'Hello, Rake!'

end

This time everything works as expected:

mschmidt:/tmp> rake

(in /tmp)

Hello, Rake!

In most Rakefiles the default task doesn’t have code in its body (Rake

calls this body an action). Instead, the default task will list other tasks
as dependencies, and these tasks will run by default when rake is exe-
cuted without any overriding parameters.

Let’s refactor our Rakefile and store it in a file called hello.rb:

File Line 1 # The refactored Rakefile.

- task :default => [:hello]

-

- desc 'Prints a nice greeting!'

5 task :hello do

- puts 'Hello, Rake!'

- end

This way we can reuse the ingenious ’hello’ task and we can run it
separately: rake -f hello.rb hello.40 The ’default’ task was reduced to a list
of dependencies that consists of only a single element in our case.

In addition, we have written a description for the hello task with the
desc task. These descriptions will be output when you pass the -T option
to rake. With -f you can set the Rakefile to be used and the -P option will
print all tasks and their prerequisites:

40It’s possible to specify a list of tasks on the command line that should be executed:
rake task1 task2....

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/hello.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=295

PROJECT AUTOMATION WITH RAKE 296

Some Syntax Notes

Rakefiles tend to look nice. In part, that’s because they use
some of Ruby’s syntactic sugar. There are two things that often
confuse unexperienced Ruby programmers when they work
with Rake:

1. The prerequisites of a task are passed as a Hash with the
=> notation:

task :default => [:hello]

This is is the same as

prerequisites = Hash.new

prerequisites[:default] = [:hello]

task(prerequisites)

2. Because of the different precedence of do/end blocks
and their curly counterparts ({ }), you have to be careful
when using the latter. The following statement produces a
parse error:

task :default { puts 'Hello, Rake!' }

The code block is associated with the :default symbol and
not with the task() method. Put :default into parentheses
and everything is fine again:

task(:default) { puts 'Hello, Rake!' }

I recommend to not use the curly braces syntax in Rake-
files.

mschmidt:/tmp> rake -f hello.rb -T

(in /tmp)

rake hello # Prints a nice greeting!

mschmidt:/tmp> rake -f hello.rb -P

(in /tmp)

rake default

hello

rake hello

Tasks and Actions

Having a mechanism for defining tasks and their dependencies is use-
ful. It’s even more useful that you can implement the actions needed
when executing in the same Ruby code. And, to get you started, Rake

comes with a lot of useful predefined tasks. We’ll use one of these,

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=296

PROJECT AUTOMATION WITH RAKE 297

the PackageTask, to create a package of the Ruby files belonging to our
status monitor. Here’s the content of the lib directory:

mschmidt:~/work/sm> ls lib

StatusMonitor.java status_monitor.rb

status_monitor.pm status_monitor_client.rb

We’d like to create a .tgz file that contains all the Ruby files in the lib

directory (along with the directory itself). The Rakefile which does this
looks like this:

File Line 1 require 'rake'

- require 'rake/packagetask'

- include Rake

-

5 SM_VERSION = '0.0.1'

-

- PackageTask.new('sm-ruby', SM_VERSION) do |p|

- p.need_tar = true

- p.package_files.include('lib/**/*.rb')

10 end

First we load the two libraries we need to use the standard Rake tasks.
In line 7 we define the package task with PackageTask. Its constructor
expects the name of the file to be created and the version information
that should be appended to the file name. The rest is defined in a
code block that gets the current PackageTask instance. By setting the
need_tar attribute to true, we tell the task that we want to have a .tgz

file. package_files is an instance of class FileList which we set to all .rb
files below the lib directory (see Section 6.5, File Lists, on page 302 for
more details). What’s the name of the task and how do we call it? -T to
the rescue:

mschmidt:~/work/sm> rake -T

(in /Users/mschmidt/work/sm)

rake clobber_package # Remove package products

rake package # Build all the packages

rake repackage # Force a rebuild of the package files

Obviously, Rake defines three tasks automatically for us as soon as we
define a package task. So, let’s use them:41

mschmidt:~/work/sm> rake package

(in /Users/mschmidt/work/sm)

mkdir -p pkg

41At the time of writing, Rake has some problems with Ruby 1.8.4. If you run into any
problems (such as “no such option: noop”) try to install the latest version. gem update

rake.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/Rakefile
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=297

PROJECT AUTOMATION WITH RAKE 298

mkdir -p pkg/sm-ruby-0.0.1/lib

rm -f pkg/sm-ruby-0.0.1/lib/status_monitor.rb

ln lib/status_monitor.rb pkg/sm-ruby-0.0.1/lib/status_monitor.rb

rm -f pkg/sm-ruby-0.0.1/lib/status_monitor_client.rb

ln lib/status_monitor_client.rb \

pkg/sm-ruby-0.0.1/lib/status_monitor_client.rb

cd pkg

tar zcvf sm-ruby-0.0.1.tgz sm-ruby-0.0.1

sm-ruby-0.0.1/

sm-ruby-0.0.1/lib/

sm-ruby-0.0.1/lib/status_monitor.rb

sm-ruby-0.0.1/lib/status_monitor_client.rb

cd -

mschmidt:~/work/sm> ls pkg

sm-ruby-0.0.1 sm-ruby-0.0.1.tgz

mschmidt:~/work/sm>

To execute the package task, Rake calls standard UNIX commands such
as cd, ln, and rm. Do you need a .zip file, too? Add p.need_zip = true to
the PackageTask task and run it again:

mschmidt:~/work/sm> rake package

(in /Users/mschmidt/work/sm)

cd pkg

zip -r sm-ruby-0.0.1.zip sm-ruby-0.0.1

adding: sm-ruby-0.0.1/ (stored 0%)

adding: sm-ruby-0.0.1/lib/ (stored 0%)

adding: sm-ruby-0.0.1/lib/status_monitor.rb (deflated 43%)

adding: sm-ruby-0.0.1/lib/status_monitor_client.rb (deflated 50%)

cd -

mschmidt:~/work/sm>

Rake creates the .zip file and is clever enough to realize that the .tgz file
does not have to be created again. Anyway, we will clean up our mess:

mschmidt:~/work/sm> rake clobber_package

(in /Users/mschmidt/work/sm)

rm -r pkg

mschmidt:~/work/sm>

But what if you want to have different package tasks? Maybe we need
one that creates the status monitor files for Ruby programmers, and
another one that creates it for Java programmers? Rake automatically
gives the package task a name and there is no way to set it. But Rake

has a much better solution: namespaces. namespaces

File Line 1 require 'rake'

- require 'rake/packagetask'

- include Rake

-

5 SM_VERSION = '0.0.1'

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/Rakefile_with_ns
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=298

PROJECT AUTOMATION WITH RAKE 299

-

- namespace :ruby do

- PackageTask.new('sm-ruby', SM_VERSION) do |p|

- p.need_tar = true

10 p.need_zip = true

- p.package_files.include('lib/**/*.rb')

- end

- end

-

15 namespace :java do

- PackageTask.new('sm-java', SM_VERSION) do |p|

- p.need_tar = true

- p.need_zip = true

- p.package_files.include('lib/**/*.java')

20 p.package_files.include('build.xml')

- end

- end

You can wrap any task in a namespace. Rake automatically puts this
namespace in front of the task name (separated by a colon). This time
we have defined two package tasks, one for the Ruby package and one
for the Java package. You can use them like this:

mschmidt:~/work/sm> rake -T

(in /Users/mschmidt/work/sm)

rake java:clobber_package # Remove package products

rake java:package # Build all the packages

rake java:repackage # Force a rebuild of the package files

rake ruby:clobber_package # Remove package products

rake ruby:package # Build all the packages

rake ruby:repackage # Force a rebuild of the package files

Rake comes with a lot of standard tasks:

• The file task creates a file from a list of other files. In C/C++
projects, for example, an executable is build by linking a list of
object files.

file 'game' => %w(aliens.o joystick.o screen.o sound.o) do |t|

sh "c++ -o #{t.name} #{t.prerequisites.join(' ')}"

end

Whenever one of the object files is more recent than our exe-
cutable, the game file is rebuilt. We build it by invoking the
C++ compiler with the sh() method. This method, which comes
with Rake, simply executes shell commands. The code block gets
passed the task and we use some of its properties (the task’s name
and prerequisites) to create the command line string.

Note we did not specify how to create the object files themselves.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=299

PROJECT AUTOMATION WITH RAKE 300

You could do this with a file task for every object file, but we’ll show
you a better way using the rule task.

• The rule task specifies what Rake should do if it encounters a file
name that has no task associated with it. For example, you can
define how to create ..o files from .cc files:

rule '.o' => ['.cc'] do |t|

sh "c++ -c #{t.source} -o #{t.name}"

end

You can access the names of both the source and the destination
files in the task’s action. We use them to invoke the C++ compiler
with Rake’s sh() method. rule works recursively; if it cannot find
the .cc file it needs, it would try to find a rule for creating .cc files.
This is useful when you’re working with code generators such as
lex and yacc.

Regular expressions can be used to specify the output files and
the source files can be determined by a code block. Our last rule
was an abbreviation for42

rule(/.o$/ => [proc { |dest| dest.sub(/\.[^.]+$/, '.cc') }]) do |t|

sh "c++ -c #{t.source} -o #{t.name}"

end

• The directory task creates paths in the filesystem. For example,
the :default task in the following Rakefile

File require 'rake'

data_dir = 'pkg/test/data'

task :default => [data_dir]

directory data_dir

will create the directory pkg/test/data if it does not already exist.

• The clean and clobber tasks can be used to clean up the working
directory. clean removes all temporary files that have been cre-
ated during the build process and clobber removes all files that
have been added to the original package. The files to be removed
are specified by the file lists CLEAN and CLOBBER, respectively.
(CLOBBER always contains all the files in CLEAN.)

require 'rake/clean'

CLEAN.add('**/*.o')

CLOBBER.add('**/*~', '**/*.bak', '**/*.tmp')

42In this case it’s necessary to put the arguments of rule() in brackets.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/dirtask.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=300

PROJECT AUTOMATION WITH RAKE 301

• RDoc is the de-facto standard for documenting Ruby code. The
RDocTask task runs the rdoc command to create documentation
from the comments in your source files. A typical RDocTask looks
as follows:

Rake::RDocTask.new(:docs) do |rd|

rd.main = 'README.rdoc'

rd.rdoc_files.add('README.rdoc', 'lib/**/*.rb')

rd.options << '--all'

end

In this case we gave the RDocTask the name docs. Rake automati-
cally creates two additional tasks called clobber_docs (remove the
generated documentation), and redocs (force a rebuild of the doc-
umentation) for us.

• You can create a Gem for your project with the GemPackageTask.
It works exactly like the PackageTask. The only difference is that it
expects a Gem specification:

File Line 1 require 'rubygems'

- require 'rake/gempackagetask'

- include Rake

-

5 SM_VERSION = '0.0.1'

- gem_spec = Gem::Specification.new do |s|

- s.name = 'sm'

- s.version = SM_VERSION

- s.platform = Gem::Platform::RUBY

10 s.files = FileList['lib/**/*.rb']

- s.requirements << 'none'

- s.require_path = 'lib'

- s.autorequire = 'status_monitor_client'

- s.summary = 'Status monitor for PragBouquet applications.'

15 s.description = 'Use the status monitor to report errors.'

- end

-

- GemPackageTask.new(gem_spec) do |pkg|

- pkg.need_zip = true

20 pkg.need_tar = true

- end

The preceding Rakefile creates a .tgz, a .zip, and a .gem version of
our status monitor package:

mschmidt:~/work/sm> rake package

(in /Users/mschmidt/work/sm)

mkdir -p pkg

mkdir -p pkg/sm-0.0.1/lib

rm -f pkg/sm-0.0.1/lib/status_monitor.rb

ln lib/status_monitor.rb pkg/sm-0.0.1/lib/status_monitor.rb

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/Rakefile_with_gem.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=301

PROJECT AUTOMATION WITH RAKE 302

rm -f pkg/sm-0.0.1/lib/status_monitor_client.rb

ln lib/status_monitor_client.rb \

pkg/sm-0.0.1/lib/status_monitor_client.rb

cd pkg

tar zcvf sm-0.0.1.tgz sm-0.0.1

sm-0.0.1/

sm-0.0.1/lib/

sm-0.0.1/lib/status_monitor.rb

sm-0.0.1/lib/status_monitor_client.rb

cd -

cd pkg

zip -r sm-0.0.1.zip sm-0.0.1

adding: sm-0.0.1/ (stored 0%)

adding: sm-0.0.1/lib/ (stored 0%)

adding: sm-0.0.1/lib/status_monitor.rb (deflated 43%)

adding: sm-0.0.1/lib/status_monitor_client.rb (deflated 50%)

cd -

Successfully built RubyGem

Name: sm

Version: 0.0.1

File: sm-0.0.1.gem

mv sm-0.0.1.gem pkg/sm-0.0.1.gem

mschmidt:~/work/sm> ls pkg/

sm-0.0.1 sm-0.0.1.gem sm-0.0.1.tgz sm-0.0.1.zip

You can find more tasks on the internet. For example, there are tasks
that create code statistics or publish files with ssh. Before you write a
new task, find out if someone else had a similar problem and solved it
already.

File Lists

Managing software projects often comes down to managing files. Files
have to be created, removed, and compiled. Files depend on each other.
So it’s only natural that Rake supports the handling of file lists with a
separate class called FileList.

FileList objects are arrays with some additional methods for managing
files specified by file name patterns. These patterns are evaluated
lazily—when the first object is requested from a FileList object. In a typi-
cal Java project, you will probably find a file list that looks like this:

files = FileList['build.xml', 'lib/**/*.jar', 'src/**/*.java']

Once a FileList has been created, more files can be added with both the
add(*filenames) or include(*filenames) methods.

files.add('README')

files.include('MANIFEST')

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=302

PROJECT AUTOMATION WITH RAKE 303

If you pass an array to any of these methods, every element of the array
is added to the file list. Excluding files is possible, too:

files.exclude('src/**/Test*.java')

By default, file lists will ignore files:

• containing ’CVS’ or ’.svn’ in the file path

• ending with .bak or ’~’

• named ’core’

You can clear the default exclude pattern with the clear_ignore_patterns()
method. Calling select_default_ignore_patterns() sets it back to the initial
default value.

When automating software project tasks you often have to rename files
or change their extensions. FileList supports these actions, too.

File Line 1 files = FileList['lib/**/*.rb']

- puts "Original files:"

- puts files

- puts

5

- backup_files = files.gsub(/$/, '.bak')

- puts "Backup files:"

- puts backup_files

- puts

10

- rhtml_files = files.ext('.rhtml')

- puts "rhtml files:"

- puts rhtml_files

Prints (for the directory of the status monitor):

Original files:

lib/status_monitor.rb

lib/status_monitor_client.rb

Backup files:

lib/status_monitor.rb.bak

lib/status_monitor_client.rb.bak

rhtml files:

lib/status_monitor.rhtml

lib/status_monitor_client.rhtml

FileList has more interesting methods. Have a look at them before you
start working with Rake. It’s an independent class and maybe you can
use it in your own projects, too.

Report erratum
Prepared exclusively for Jacob Hochstetler

http://media.pragprog.com/titles/fr_eir/code/tools/Rake/project1/fl_test.rb
http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=303

TESTING LEGACY APPLICATIONS 304

Conclusion

Rake is well accepted in the Ruby community, is actively maintained,
and will certainly become more and more popular (perhaps even out-
side the Ruby world). Interestingly, most of the Rake tutorials you can
find on the internet concentrate on topics such as building C/C++ pro-
grams. That’s nice for demonstrating some of Rake’s features, but it’s a
bit misleading, too. Rake is in an early stage of development and does
not work well with tools such as GNU’s autoconf, which are important
when building portable tools. At the moment I recommend not using
Rake for anything other than Ruby projects.

Rake might not even be optimal choice for all Ruby projects. One of
the biggest advantages of the Java build tool ant is that it offers use-
ful commands like ftp and scp that are independent of the underlying
operating system. Hence, you do not have to write and maintain .sh and
.bat versions of the same build and deploy tools. Unfortunately, Rake

does not work this way. It calls the tools it needs with the system() call.
If no tar command is found in your path, the PackageTask won’t work.
For development teams that are working on different operating systems
it might be better to use a platform-independent tool such as Ant (even
though its input files are a pain to maintain). Missing: legacy

tests: Fill out

chapter!

6.6 Testing Legacy Applications

Report erratum
Prepared exclusively for Jacob Hochstetler

http://books.pragprog.com/titles/fr_eir/errata/add?pdf_page=304

TESTING LEGACY APPLICATIONS 305 CHAPTER 6. TOOLS AND TECHNIQUES

Missing: need to

define local sales

blurb

Prepared exclusively for Jacob Hochstetler

	Introduction
	What Is Enterprise Software?
	What Is Enterprise Integration?
	Why Ruby?
	Who Should Read This Book?
	PragBouquet
	Acknowledgments

	Databases
	The Coupon Application
	Database Interface (DBI)
	Object-Relational Mappers
	Lightweight Directory Access Protocol (LDAP)

	Processing XML
	A Short XML reminder
	Generating XML documents
	Processing XML Documents
	Validating XML Documents
	Are There Alternatives to XML?

	Low Ceremony Distributed Applications
	``I'd Rather Use a Socket''
	Remote Procedure Calls Using HTTP

	Distributed Applications with RPC
	Another Day, Another Protocol
	We Will Take No REST, Will We?
	SOAP
	CORBA, RMI, and Friends

	Tools and Techniques
	Internationalization and Localization
	Logging
	Creating Daemons and Services
	Build and Deployment Process
	Project Automation with Rake
	Testing Legacy Applications

