

Praise for Design Patterns in Ruby
“Design Patterns in Ruby documents smart ways to resolve many problems that Ruby
developers commonly encounter. Russ Olsen has done a great job of selecting classic
patterns and augmenting these with newer patterns that have special relevance for
Ruby. He clearly explains each idea, making a wealth of experience available to Ruby
developers for their own daily work.”

—Steve Metsker, Managing Consultant
with Dominion Digital, Inc.

“This book provides a great demonstration of the key ‘Gang of Four’ design patterns
without resorting to overly technical explanations. Written in a precise, yet almost
informal style, this book covers enough ground that even those without prior expo-
sure to design patterns will soon feel confident applying them using Ruby. Olsen has
done a great job to make a book about a classically ‘dry’ subject into such an engag-
ing and even occasionally humorous read.”

—Peter Cooper

“This book renewed my interest in understanding patterns after a decade of good
intentions. Russ picked the most useful patterns for Ruby and introduced them in
a straightforward and logical manner, going beyond the GoF’s patterns. This book
has improved my use of Ruby, and encouraged me to blow off the dust covering the
GoF book.”

—Mike Stok

“Design Patterns in Ruby is a great way for programmers from statically typed object-
oriented languages to learn how design patterns appear in a more dynamic, flexible
language like Ruby.”

—Rob Sanheim, Ruby Ninja, Relevance

This page intentionally left blank

DESIGN PATTERNS IN RUBY

 Addison-Wesley Professional Ruby Series
Obie Fernandez, Series Editor

The Addison-Wesley Professional Ruby Series provides readers with practical, people-oriented, and in-depth
information about applying the Ruby platform to create dynamic technology solutions. The series is based
on the premise that the need for expert reference books, written by experienced practitioners, will never be
satisfi ed solely by blogs and the Internet.

Books currently in the series

RailsSpace: Building a Social Networking Website with Ruby on Rails™
Michael Hartl, Aurelius Prochazka • 0321480791 • ©2008

The Ruby Way: Solutions and Techniques in Ruby Programming, Second Edition
Hal Fulton • 0672328844 • ©2007

Professional Ruby Collection: Mongrel, Rails Plugins, Rails Routing, Refactoring to REST,
and Rubyisms CD1
James Adam, David A. Black, Trotter Cashion, Jacob Harris, Matt Pelletier, Zed Shaw
0132417995 • ©2007

The Rails Way
Obie Fernandez • 0321445619 • ©2008

Mongrel: Developing, Extending and Deploying Your Ruby Applications Coming Spring 2008
Zed Shaw • 0321503090 • ©2008

Short Cuts

Rails Routing
David A. Black • 0321509242 • ©2007

Rails Refactoring to Resources: Using CRUD and REST in Your Rails Application
Trotter Cashion • 0321501748 • ©2007

Mongrel: Serving, Deploying and Extending Your Ruby Applications
Matt Pelletier and Zed Shaw • 0321483502 • ©2007

Rails Plugins: Extending Rails Beyond the Core
James Adam • 0321483510 • ©2007

Rubyism in Rails
Jacob Harris • 0321474074 • ©2007

Troubleshooting Ruby Processes: Leveraging System Tools when the Usual Ruby Tricks Stop Working
Philippe Hanrigou • 0321544684 • ©2008

Writing Effi cient Ruby Code
Dr. Stefan Kaes • 0321540034 • ©2008

Video

RailsSpace Ruby on Rails Tutorial (Video LiveLessons)
Aurelius Prochazka • 0321517067 • ©2008

www.awprofessional.com/ruby

www.awprofessional.com/ruby

DESIGN PATTERNS IN RUBY

Russ Olsen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data
Olsen, Russ.

Design patterns in Ruby/Russ Olsen.
p. cm.

Includes index.
ISBN 978-0-321-49045-2 (hbk. : alk. paper)

1. Ruby on rails (Electronic resource) 2. Software patterns. I. Title.

QA76.64.O456 2007
005.1'17—dc22

2007039642
Copyright © 2008 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 848-7047

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).
ISBN-13: 978-0-321-29045-2
ISBN-10: 0-321-49045-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, December 2007

Editor-in-Chief: Karen Gettman
Acquisitions Editor: Chris
Guzikowski
Managing Editor: John Fuller

Project Editor: Lara Wysong
Copy Editor: Jill Hobbs
Indexer: Ted Laux

Proofreader: Deborah Prato
Composition: International
Typesetting and Composition

http://www.awprofessional.com/safarienabled
www.awprofessional.com
http://www.opencontent.org/openpub/

For Karen,
who makes it all possible,

and Jackson,
who makes it all worthwhile.

This page intentionally left blank

Contents

Foreword xvii

Preface xix

Acknowledgments xxv

About the Author xxvii

PART I: Patterns and Ruby 1

Chapter 1: Building Better Programs with Patterns 3
The Gang of Four 4
Patterns for Patterns 4

Separate Out the Things That Change from Those That Stay the Same 5
Program to an Interface, Not an Implementation 5
Prefer Composition over Inheritance 7
Delegate, Delegate, Delegate 12
You Ain’t Gonna Need It 13

Fourteen Out of Twenty-Three 15
Patterns in Ruby? 17

Chapter 2: Getting Started with Ruby 19
Interactive Ruby 20
Saying Hello World 20
Variables 23
Fixnums and Bignums 24
Floats 26

ix

There Are No Primitives Here 26
But Sometimes There Is No Object 27
Truth, Lies, and nil 28
Decisions, Decisions 30
Loops 32
More about Strings 34
Symbols 37
Arrays 38
Hashes 40
Regular Expressions 40
A Class of Your Own 41
Getting at the Instance Variables 43
An Object Asks: Who Am I? 46
Inheritance, Subclasses, and Superclasses 46
Argument Options 47
Modules 49
Exceptions 52
Threads 53
Managing Separate Source Files 54
Wrapping Up 55

PART II: Patterns in Ruby 57

Chapter 3: Varying the Algorithm with the Template Method 59
Keeping Up with What Life Throws at You 60
Separate the Things That Stay the Same 61
Discovering the Template Method Pattern 65
Hook Methods 66
But Where Are All the Declarations? 68
Types, Safety, and Flexibility 69
Unit Tests Are Not Optional 71
Using and Abusing the Template Method Pattern 73
Templates in the Wild 74
Wrapping Up 75

Chapter 4: Replacing the Algorithm with the Strategy 77
Delegate, Delegate, and Delegate Again 78
Sharing Data between the Context and the Strategy 80

x Contents

Duck Typing Yet Again 82
Procs and Blocks 84
Quick-and-Dirty Strategies 88
Using and Abusing the Strategy Pattern 90
The Strategy Pattern in the Wild 90
Wrapping Up 92

Chapter 5: Keeping Up with the Times with the Observer 95
Staying Informed 95
A Better Way to Stay Informed 97
Factoring Out the Observable Support 100
Code Blocks as Observers 104
Variations on the Observer Pattern 105
Using and Abusing the Observer Pattern 106
Observers in the Wild 108
Wrapping Up 109

Chapter 6: Assembling the Whole from the Parts
with the Composite 111

The Whole and the Parts 112
Creating Composites 114
Sprucing Up the Composite with Operators 118
An Array as a Composite? 119
An Inconvenient Difference 120
Pointers This Way and That 120
Using and Abusing the Composite Pattern 122
Composites in the Wild 123
Wrapping Up 125

Chapter 7: Reaching into a Collection with the Iterator 127
External Iterators 127
Internal Iterators 130
Internal Iterators versus External Iterators 131
The Inimitable Enumerable 133
Using and Abusing the Iterator Pattern 134
Iterators in the Wild 136
Wrapping Up 140

Contents xi

Chapter 8: Getting Things Done with Commands 143
An Explosion of Subclasses 144
An Easier Way 145
Code Blocks as Commands 147
Commands That Record 148
Being Undone by a Command 151
Queuing Up Commands 154
Using and Abusing the Command Pattern 154
The Command Pattern in the Wild 155

ActiveRecord Migrations 155
Madeleine 156

Wrapping Up 160

Chapter 9: Filling in the Gaps with the Adapter 163
Software Adapters 164
The Near Misses 167
An Adaptive Alternative? 168
Modifying a Single Instance 170
Adapt or Modify? 172
Using and Abusing the Adapter Pattern 173
Adapters in the Wild 173
Wrapping Up 174

Chapter 10: Getting in Front of Your Object with a Proxy 175
Proxies to the Rescue 176
The Protection Proxy 178
Remote Proxies 179
Virtual Proxies Make You Lazy 180
Eliminating That Proxy Drudgery 182

Message Passing and Methods 183
The method_missing Method 184
Sending Messages 185
Proxies without the Tears 185

Using and Abusing Proxies 189
Proxies in the Wild 190
Wrapping Up 192

xii Contents

Chapter 11: Improving Your Objects with a Decorator 193
Decorators: The Cure for Ugly Code 193
Formal Decoration 200
Easing the Delegation Blues 200
Dynamic Alternatives to the Decorator Pattern 201

Wrapping Methods 202
Decorating with Modules 202

Using and Abusing the Decorator Pattern 204
Decorators in the Wild 205
Wrapping Up 206

Chapter 12: Making Sure There Is Only One with the Singleton 207
One Object, Global Access 207
Class Variables and Methods 208

Class Variables 208
Class Methods 209

A First Try at a Ruby Singleton 211
Managing the Single Instance 212
Making Sure There Is Only One 213

The Singleton Module 214
Lazy and Eager Singletons 214
Alternatives to the Classic Singleton 215

Global Variables as Singletons 215
Classes as Singletons 216
Modules as Singletons 218

A Safety Harness or a Straitjacket? 219
Using and Abusing the Singleton Pattern 220

They Are Really Just Global Variables, Right? 220
Just How Many of These Singletons Do You Have? 221
Singletons on a Need-to-Know Basis 221
Curing the Testing Blues 223

Singletons in the Wild 224
Wrapping Up 225

Chapter 13: Picking the Right Class with a Factory 227
A Different Kind of Duck Typing 228
The Template Method Strikes Again 231

Contents xiii

Parameterized Factory Methods 233
Classes Are Just Objects, Too 236
Bad News: Your Program Hits the Big Time 237
Bundles of Object Creation 239
Classes Are Just Objects (Again) 241
Leveraging the Name 242
Using and Abusing the Factory Patterns 244
Factory Patterns in the Wild 244
Wrapping Up 246

Chapter 14: Easier Object Construction with the Builder 249
Building Computers 250
Polymorphic Builders 253
Builders Can Ensure Sane Objects 256
Reusable Builders 257
Better Builders with Magic Methods 258
Using and Abusing the Builder Pattern 259
Builders in the Wild 259
Wrapping Up 260

Chapter 15: Assembling Your System with the Interpreter 263
The Right Language for the Job 264
Building an Interpreter 264
A File-Finding Interpreter 267

Finding All the Files 267
Finding Files by Name 268
Big Files and Writable Files 269
More Complex Searches with Not, And, and Or 270

Creating the AST 272
A Simple Parser 272
A Parser-less Interpreter? 274
Let XML or YAML Do the Parsing? 276
Racc for More Complex Parsers 277
Let Ruby Do the Parsing? 277

Using and Abusing the Interpreter Pattern 277
Interpreters in the Wild 278
Wrapping Up 279

xiv Contents

PART III: Patterns for Ruby 281

Chapter 16: Opening Up Your System with
Domain-Specific Languages 283

The Domain of Specific Languages 283
A File Backup DSL 284
It’s a Data File—No, It’s a Program! 285
Building PackRat 287
Pulling Our DSL Together 288
Taking Stock of PackRat 289
Improving PackRat 290
Using and Abusing Internal DSLs 293
Internal DSLs in the Wild 294
Wrapping Up 295

Chapter 17: Creating Custom Objects with Meta-programming 297
Custom-Tailored Objects, Method by Method 298
Custom Objects, Module by Module 300
Conjuring Up Brand-New Methods 301
An Object’s Gaze Turns Inward 306
Using and Abusing Meta-programming 306
Meta-programming in the Wild 308
Wrapping Up 311

Chapter 18: Convention Over Configuration 313
A Good User Interface—for Developers 315

Anticipate Needs 315
Let Them Say It Once 316
Provide a Template 316

A Message Gateway 317
Picking an Adapter 319
Loading the Classes 320
Adding Some Security 323
Getting the User Started 325
Taking Stock of the Message Gateway 326
Using and Abusing the Convention Over Configuration Pattern 327
Convention Over Configuration in the Wild 328
Wrapping Up 328

Contents xv

Chapter 19: Conclusion 331

Appendix A: Getting Hold of Ruby 333
Installing Ruby on Microsoft Windows 333
Installing Ruby on Linux and Other UNIX-Style Systems 333
Mac OS X 334

Appendix B: Digging Deeper 335
Design Patterns 335
Ruby 336
Regular Expressions 337
Blogs and Web Sites 337

Index 339

xvi Contents

Foreword

Design Patterns: Elements of Reusable Object-Oriented Software, affectionately known
by many as the “Gang of Four book” (GoF) is the first reference work on the topic to
be published in a mainstream book. It has sold over half a million copies since 1995
and undoubtedly influenced the thoughts and code of millions of programmers
worldwide. I still vividly remember buying my first copy of the book in the late
nineties. Due in part to the enthusiasm with which it was recommended to me by my
peers, I treated it as part of my coming-of-age as a programmer. I tore through the
book in a few days, eagerly thinking up practical applications for each pattern.

It’s commonly agreed that the most useful thing about patterns is the way in which
they form a vocabulary for articulating design decisions during the normal course of
development conversations among programmers. This is especially true during pair-
programming, a cornerstone of Extreme Programming and other Agile processes,
where design is an ongoing and shared activity. It’s fantastically convenient to be able
to say to your pair, “I think we need a strategy here” or “Let’s add this functionality as
an observer.”

Knowledge of design patterns has even become an easy way to screen programming
job candidates in some shops, where it’s common to hear:

“What’s your favorite pattern?”

“Um . . . factory?”

“Thanks for coming, there’s the door.”

Then again, the whole notion of having a favorite pattern is kind of strange isn’t it?
Our favorite pattern should be the one that applies to a given circumstance. One of the

xvii

classic mistakes made by inexperienced programmers just beginning to learn about pat-
terns is to choose to implement a pattern as an end of its own, rather than as a means.
Why do people get wrapped up in implementing patterns “just for fun” anyway?

At least in the statically typed world, there are a fair amount of technical chal-
lenges to tackle when you implement design patterns. At best, you use some ninja
techniques that really show your coding prowess. Worst case scenario you end up with
a bunch of boilerplate gunk. It makes the topic of design patterns a fun one, at least
for programming geeks like me.

Are the GoF design patterns difficult to implement in Ruby? Not really. For starters,
the absence of static typing lowers the code overhead involved in our programs overall.
The Ruby standard library also makes some of the most common patterns available as
one-line includes, and others are essentially built into the Ruby language itself. For
instance, a Command object in the GoF sense is essentially a wrapper around some code
that knows how to do one specific thing, to run a particular bit of code at some time.
Of course, that is also a fairly accurate description of a Ruby code block object or a Proc.

Russ has been working with Ruby since 2002 and he knows that most experienced
Rubyists already have a good grasp of design patterns and how to apply them. Thus his
main challenge, as far as I can tell, was to write this book in such a way that it would be
relevant and essential for professional Ruby programmers, yet still benefit newcomers to
our beloved language. I think he has succeeded, and you will, too. Take the Command
object example again: In its simple form it may be implemented with simply a block,
but add state and a bit of behavior to it and now the implementation is not so simple
anymore. Russ gives us proven advice that is specific to Ruby and instantly useful.

This book also has the added benefit of including new design patterns specific to
Ruby that Russ has identified and explained in detail, including one of my favorite
ones: Internal Domain Specific Languages. I believe that his treatment of the subject,
as an evolution of the Interpreter pattern, is the first significant reference work in pub-
lication on the topic.

Finally, I think this book will hugely benefit those that are just beginning their
professional careers in Ruby or migrating from languages such as PHP, where there
isn’t as much of a cultural emphasis on OO design and patterns. In the process of
describing design patterns, Russ has captured the essence of solving many of the
common programming hurdles that we face in day-to-day programming of significant
Ruby programs—priceless information for newbies. So much so that I’m sure that this
book will be a staple of my gift-list for new programmer colleagues and friends.

—Obie Fernandez, Professional Ruby Series Editor

xviii Foreword

Preface

A former colleague of mine used to say that thick books about design patterns were
evidence of an inadequate programming language. What he meant was that, because
design patterns are the common idioms of code, a good programming language
should make them very easy to implement. An ideal language would so thoroughly
integrate the patterns that they would almost disappear from sight.

To take an extreme example, in the late 1980s I worked on a project that pro-
duced object-oriented code in C. Yes, C, not C++. We pulled off this feat by having
each “object” (actually a C structure) point to a table of function pointers. We oper-
ated on our “objects” by chasing the pointer to the table and calling functions out
of the table, thereby simulating a method call on an object. It was awkward and
messy, but it worked. Had we thought of it, we might have called this technique the
“object-oriented” pattern. Of course, with the advent of C++ and then Java, our
object-oriented pattern disappeared, absorbed so thoroughly into the language that it
vanished from sight. Today, we don’t usually think of object orientation as a pattern—
it is too easy.

But many things are still not easy enough. The justly famous Gang of Four book
(Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides) is required reading for every software engineer today. But actu-
ally implementing many of the patterns described in Design Patterns with the lan-
guages in widespread use today (Java and C++ and perhaps C#) looks and feels a lot
like my 1980s-vintage handcrafted object system. Too painful. Too verbose. Too prone
to bugs.

xix

The Ruby programming language takes us a step closer to my old friend’s ideal, a
language that makes implementing patterns so easy that sometimes they fade into the
background. Building patterns in Ruby is easier for a number of reasons:

• Ruby is dynamically typed. By dispensing with static typing, Ruby dramatically
reduces the code overhead of building most programs, including those that imple-
ment patterns.

• Ruby has code closures. It allows us to pass around chunks of code and associated
scope without having to laboriously construct entire classes and objects that do
nothing else.

• Ruby classes are real objects. Because a class in Ruby is just another object, we can
do any of the usual runtime things to a Ruby class that we can do to any other
object: We can create totally new classes. We can modify existing classes by adding
or deleting methods. We can even clone a class and change the copy, leaving the
original alone.

• Ruby has an elegant system of code reuse. In addition to supporting garden-variety
inheritance, Ruby allows us to define mixins, which are a simple but flexible way
to write code that can be shared among several classes.

All of this makes code in Ruby compressible. In Ruby, as in Java and C++, you
can implement very sophisticated ideas, but with Ruby it becomes possible to hide the
details of your implementations much more effectively. As you will see on the pages
that follow, many of the design patterns that require many lines of endlessly repeated
boilerplate code in traditional static languages require only one or two lines in Ruby.
You can turn a class into a singleton with a simple include Singleton command. You
can delegate as easily as you can inherit. Because Ruby enables you to say more inter-
esting things in each line of code, you end up with less code.

This is not just a question of keyboard laziness; it is an application of the DRY
(Don’t Repeat Yourself) principle. I don’t think anyone today would mourn the pass-
ing of my old object-oriented pattern in C. It worked for me, but it made me work
for it, too. In the same way, the traditional implementations of many design patterns
work, but they make you work, too. Ruby represents a real step forward in that you
become able to do work only once and compress it out of the bulk of your code. In
short, Ruby allows you to concentrate on the real problems that you are trying to solve
instead of the plumbing. I hope that this book will help you see how.

xx Preface

Who Is This Book For?
Simply put, this book is intended for developers who want to know how to build sig-
nificant software in Ruby. I assume that you are familiar with object-oriented pro-
gramming, but you don’t really need any knowledge of design patterns—you can pick
that up as you go through the book.

You also don’t need a lot of Ruby knowledge to read this book profitably. You will
find a quick introduction to the language in Chapter 2, and I try to explain any Ruby-
specific language issues as we go.

How Is This Book Organized?
This book is divided into three parts. First come a couple of introductory chapters,
starting with the briefest outline of the history and background of the whole design
patterns movement, and ending with a quick tour of the Ruby language at the “just
enough to be dangerous” level.

Part 2, which takes up the bulk of these pages, looks at a number of the original
Gang of Four patterns from a Ruby point of view. Which problem is this pattern try-
ing to solve? What does the traditional implementation of the pattern—the imple-
mentation given by the Gang of Four—look like in Ruby? Does the traditional
implementation make sense in Ruby? Does Ruby provide us with any alternatives that
might make solving the problem easier?

Part 3 of this book looks at three patterns that have emerged with the introduc-
tion and expanded use of Ruby.

A Word of Warning
I cannot sign my name to a book about design patterns without repeating the mantra
that I have been muttering for many years now: Design patterns are little spring-loaded
solutions to common programming problems. Ideally, when the appropriate problem
comes along, you should trigger the design pattern and your problem is solved. It is that
first part—the bit about waiting for the appropriate problem to come along—that
some engineers have trouble with. You cannot say that you are correctly applying a
design pattern unless you are confronting the problem that the pattern is supposed to solve.

The reckless use of every design pattern on the menu to solve nonexistent prob-
lems has given design patterns a bad name in some circles. I would contend that Ruby

Preface xxi

makes it easier to write an adapter that uses a factory method to get a proxy to the
builder, which then creates a command, which will coordinate the operation of adding
two plus two. Ruby will make that process easier, but even in Ruby it will not make
any sense.

Nor can you look at program construction as a simple process of piecing together
some existing design patterns in new combinations. Any interesting program will
always have unique sections, bits of code that fit that specific problem perfectly and
no other. Design patterns are meant to help you recognize and solve the common
problems that arise repeatedly when you are building software. The advantage of
design patterns is that they let you rapidly wing your way past the problems that some-
one has already solved, so that you can get on to the hard stuff, the code that is unique
to your situation. Design patterns are not the universal elixir, the magic potion that
will fix all of your design problems. They are simply one technique—albeit a very use-
ful technique—that you can use to build programs.

About the Code Style Used in This Book
One thing that makes programming in Ruby so pleasant is that the language tries to
stay out of your way. If there are several sensible ways of saying something, Ruby will
usually support them all:

One way to say it

if (divisor == 0)

puts 'Division by zero'

end

And another

puts 'Division by zero' if (divisor == 0)

And a third

(divisor == 0) && puts 'Division by zero'

Ruby also tries not to insist on syntax for syntax’s sake. Where possible, it will let
you omit things when the meaning is clear. For example, you can usually omit the
parentheses around the argument list when calling a method:

xxii Preface

puts('A fine way to call puts')

puts 'Another fine way to call puts'

You can even forget the parentheses when you are defining the argument list of a
method and around the conditional part of an if statement:

def method_with_3_args a, b, c

puts "Method 1 called with #{a} #{b} #{c}"

if a == 0

puts 'a is zero'

end

end

The trouble with all of these shortcuts, convenient as they are in writing real Ruby
programs, is that when liberally used, they tend to confuse beginners. Most program-
mers who are new to Ruby are going to have an easier time with

if file.eof?

puts('Reached end of file')

end

or even

puts 'Reached end of file' if file.eof?

than with

file.eof? || puts('Reached end of file')

Because this book is more about the deep power and elegance of Ruby than it is
about the details of the language syntax, I have tried to strike a balance between mak-
ing my examples actually look like real Ruby code on the one hand while still being
beginner friendly on the other hand. In practice, this means that while I take advan-
tage of some obvious shortcuts, I have deliberately avoided the more radical tricks. It
is not that I am unaware of, or disapprove of, the Ruby syntactical shorthand. It is just
that I am more interested getting the conceptual elegance of the language across to
readers who are new to Ruby. There will be plenty of time to learn the syntactical
shortcuts after you have fallen hopelessly in love with the language.

Preface xxiii

This page intentionally left blank

Acknowledgments

I have always thought that whoever said that no man is an island got it pretty much
backward. Most islands are the very tops of underwater mountains, the tiny green part
that you see supported by a massive and invisible structure just below the waves. So,
if the point is that no one does anything unaided, and that credit for everything we
do should be spread among our friends and families and colleagues, then we are all
islands, propped up by folks who help but who are not seen. Certainly this book
would have never gotten started or completed without the help of a mountain of very
generous people.

I would like to particularly thank my good friend Bob Kiel, who probably told
me no less than 17,827 times that I should write a book. Thanks also to Xandy
Johnson, for his generous support and encouragement throughout the writing of
this book.

I would also like to say “thank you” to everyone who reviewed this book in its
various drafts, including the aforementioned Bob and Xandy, along with Mike
Abner, Geoff Adams, Peter Cooper, Tom Corbin, Bill Higgins, Jason Long, Steve
Metsker, Glenn Pruitt, Rob Sanheim, Mike Stok, and Gary Winklosky. And special
thanks to Andy Lynn and Arild Shirazi, who both went over early drafts of the man-
uscript with an invaluable, if sometimes painful, fine-toothed comb. Special thanks
to Rob Cross for finding that “last” typo.

Thanks also to Heli Roosild, a very professional writer who took the time to look
over some things I had written and said, “Yes, this will do.”

Thanks also to Lara Wysong, Raina Chrobak, and Christopher Guzikowski, all of
Addison-Wesley—especially Chris, who read a 900-word blog article and saw a 384-page

xxv

book. Thanks also to Jill Hobbs, who copyedited this book with a sharp eye and an even
sharper pen.

I’d also like to thank the fine folks at FGM for creating the kind of intellectual
environment that makes efforts like this book possible.

Thanks, too, to Steve McMaster and his band of merry men at SamSix for their
support and encouragement.

On a more personal level, I would like to thank my wife Karen for her encour-
agement and suggestions, and for lending me the end of the kitchen table for all those
months. Thanks, too, to my son Jackson for letting me tell stories about him here and
there in these pages. Many thanks to Diana Greenberg, a good friend in the best of
times, and a great friend in the worst of times.

Thanks to my brother Charles for setting an example of courage and persistence
that I try to live up to every day.

Finally, thanks to my sister Dolores for awakening my interest in reading. I clearly
remember the day she dragged me across the library, away from the trash I had been
browsing and over to a shelf of serious books. She pulled one down and said, “This is
the kind of thing you should be reading.” I can still picture the book. It was The Rise
and Fall of the Third Reich by William L. Shirer, all 1,264 pages of it. I think I was
seven at the time.

xxvi Acknowledgments

About the Author

Russ Olsen is a software engineer with more than twenty-five years of experience. Russ
has built software in such diverse areas as CAD/CAM, GIS, document management,
and enterprise integration. Currently, he is involved in building SOA service discovery
and security solutions for large enterprises.

Russ has been involved in Ruby since 2002 and was the author of ClanRuby, an
early attempt to bring multimedia capabilities to Ruby. He is currently a committer
on a number of open source projects, including UDDI4R.

Russ’s technical articles have been featured on Javalobby, O’Reilly’s On Java, and
the Java Developer’s Journal Web site.

Russ holds a B.S. from Temple University and lives with his family, two turtles,
and an indeterminate number of guppies outside of Washington, D.C.

You can reach Russ via e-mail at russ@russolsen.com.

xxvii

This page intentionally left blank

PART I
Patterns and
Ruby

This page intentionally left blank

CHAPTER 1
Building Better Programs
with Patterns

It’s funny, but design patterns always remind me of a certain grocery store. You see,
my very first steady job was a part-time gig that I landed in high school. For a couple
of hours every weekday and all day on Saturday, I would help out at the local mom-
and-pop grocery store. I stocked the shelves, swept the floor, and generally did what-
ever unskilled labor needed doing. At first, the goings-on at that little store were a
complex blur of sights (I have never liked the look of raw liver), sounds (my boss had
been a Marine Corps drill instructor and knew how to express himself for effect), and
smells (better left to the imagination).

But the longer I worked at Conrad Market, the more all those disconnected
events began to form themselves into understandable chunks. In the morning you
unlocked the front door, disarmed the alarm, and put out the “Yes! We’re Open” sign.
At the end of the day you reversed the process. In between there were a million jobs
to be done—everything from stocking the shelves to helping customers find the
ketchup. As I got to know my colleagues in other grocery stores, it turned out that
those other markets were run pretty much the same way.

This is how people deal with the problems they confront, with the complexity
that life forces on them. The first few times we see a problem we may improvise and
invent a solution on the spot, but if that same problem keeps reappearing, we will
come up with a standard operating procedure to cover it. Don’t, as the old saying goes,
keep reinventing the wheel.

3

The Gang of Four
Wheel reinvention is a constant problem for software engineers. It is not that we like
doing things over and over. It is just that sometimes when you are designing systems
it is hard to realize that the circular friction reduction device with a central axis that
you have just built is, in fact, a wheel. Software design can be so numbingly complex
that it is easy to miss the patterns of challenges and solutions that pop up repeatedly.

In 1995, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides set
out to redirect all the effort going into building redundant software wheels into some-
thing more useful. That year, building on the work of Christopher Alexander, Kent
Beck, and others, they published Design Patterns: Elements of Reusable Object-Oriented
Software. The book was an instant hit, with the authors rapidly becoming famous
(at least in software engineering circles) as the Gang of Four (GoF).

The GoF did two things for us. First, they introduced most of the software engi-
neering world to the idea of design patterns, where each pattern is a prepackaged solu-
tion to a common design problem. We should look around, they wrote, and identify
common solutions to common problems. We should give each solution a name, and
we should talk about what that solution is good for, when to use it, and when to reach
for something else. And we should write all of this information down, so that over
time our palette of design solutions will grow.

Second, the GoF identified, named, and described 23 patterns. The original 23
solutions were the recurring patterns that the GoF saw as key to building clean, well-
designed object-oriented programs. In the years since Design Patterns was published,
people have described patterns in everything from real-time micro-controllers to enter-
prise architectures. But the original 23 GoF patterns stuck to the middle ground of
object-oriented design—bigger than a hash table, smaller than a database—and focused
on some key questions: How do objects like the ones you tend to find in most systems
relate to one another? How should they be coupled together? What should they know
about each other? How can we swap out parts that are likely to change frequently?

Patterns for Patterns
In trying to answer these questions, the GoF opened their book with a discussion of
some general principles, a set of meta-design patterns. For me, these ideas boil down
to four points:

• Separate out the things that change from those that stay the same.

• Program to an interface, not an implementation.

4 Chapter 1. Building Better Programs with Patterns

• Prefer composition over inheritance.

• Delegate, delegate, delegate.

To these, I would like to add one idea that is not really mentioned in Design
Patterns, but that guides much of my own approach to building programs:

• You ain’t gonna need it.

In the following sections, we will look at each of these principles in turn, to see
what they can tell us about building software.

Separate Out the Things That Change from Those
That Stay the Same

Software engineering would be a lot easier if only things would stay the same. We
could build our classes serene in the knowledge that, once finished, they would con-
tinue to do exactly what we built them to do. Of course, things never stay the same,
not in the wider world and certainly not in software engineering. Changes in com-
puting hardware, operating systems, and compilers, combined with ongoing bug fixes
and ever-migrating requirements, all take their toll.

A key goal of software engineering is to build systems that allow us to contain the
damage. In an ideal system, all changes are local: You should never have to comb
through all of the code because A changed, which required you to change B, which
triggered a change in C, which rippled all the way down to Z. So how do you achieve—
or at least get closer to—that ideal system, the one where all changes are local?

You get there by separating the things that are likely to change from the things
that are likely to stay the same. If you can identify which aspects of your system design
are likely to change, you can isolate those bits from the more stable parts. When
requirements change or a bug fix comes along, you will still have to modify your code,
but perhaps, just perhaps, the changes can be confined to those walled-off, change-
prone areas and the rest of your code can live on in stable peace.

But how do you effect this quarantine? How do you keep the changing parts from
infecting the stable parts?

Program to an Interface, Not an Implementation

A good start is to write code that is less tightly coupled to itself in the first place. If our
classes are to do anything significant, they need to know about each other. But what

Patterns for Patterns 5

exactly do they need to know? The following Ruby fragment1 creates a new instance
of the Car class and calls the drive method on that instance:

my_car = Car.new

my_car.drive(200)

Clearly, this bit of code is married to the Car class. It will work as long as the
requirement is that we need to deal with exactly one type of vehicle: a car. Of course,
if the requirement changes and the code needs to deal with a second type of transport
(such as an airplane), we suddenly have a problem. With only two flavors of vehicle
to deal with, we might be able to get away with the following monstrosity:

Deal with cars and planes

if is_car

my_car = Car.new

my_car.drive(200)

else

my_plane = AirPlane.new

my_plane.fly(200)

end

Not only is this code messy, but it is now also coupled to both cars and airplanes.
This fix may just about hold things together . . . until a boat comes along. Or a train. Or
a bike. A better solution, of course, is to return to Object-Oriented Programming 101
and apply a liberal dose of polymorphism. If cars and planes and boats all implement a
common interface, we could improve things by doing something like the following:

my_vehicle = get_vehicle

my_vehicle.travel(200)

In addition to being good, straightforward object-oriented programming, this
second example illustrates the principle of programming to an interface. The original

6 Chapter 1. Building Better Programs with Patterns

1. If you are new to Ruby, don’t fret: The code in this chapter is very, very basic, and the next chapter
offers a reasonably full introduction to the language. So just sit back for the next few pages and try
to hum along.

code worked with exactly one type of vehicle—a car—but the new and improved ver-
sion will work with any Vehicle.

Java and C# programmers sometimes take the advice to “program to an interface”
literally, as the interface is an actual construct in those languages. They carefully
abstract out all the important functionality into many separate interfaces, which their
classes then implement. This is usually a good idea, but it is not really what the prin-
ciple of programming to an interface is suggesting. The idea here is to program to the
most general type you can—not to call a car a car if you can get away with calling it
a vehicle, regardless of whether Car and Vehicle are real classes or abstract interfaces.
And if you can get away with calling your car something more general still, such as a
movable object, so much the better. As we shall see in the pages that follow, Ruby
(a language that lacks interfaces in the built-in syntax sense)2 actually encourages you
to program to your interfaces in the sense of programming to the most general types.

By writing code that uses the most general type possible—for example, by treat-
ing all of our planes and trains and cars like vehicles whenever we can—we reduce the
total amount of coupling in our code. Instead of having 42 classes that are all tied to
cars and boats and airplanes, perhaps we end up with 40 classes that know only about
vehicles. Chances are that the remaining two classes will still give us trouble if we have
to add another kind of vehicle, but at least we have limited the damage. In fact, if we
have to change only a couple of classes, we have succeeded in separating out the parts
that need to change (the two classes) from the parts that stay the same (the other 40
classes). The cumulative effect of turning down the coupling volume is that our code
tends to be less likely to shatter in a horrendous chain reaction in the face of change.

Even so, programming to an interface is not the only step that we can take to
make our code more change resistant. There is also composition.

Prefer Composition over Inheritance

If your introduction to object-oriented programming was like mine, you spent 10 minutes
on information hiding, 22 minutes on scope and visibility issues, and the rest of the
semester talking about inheritance. Once you got past the basic ideas of objects, fields,
and methods, inheritance was the interesting thing, the most object-oriented part
of object-oriented programming. With inheritance you could get implementation

Patterns for Patterns 7

2. The Ruby language does support modules, which bear a “first cousin” relationship to Java inter-
faces. We will have a lot more to say about Ruby modules in Chapter 2.

for free: Just subclass Widget and you magically can take advantage of all the good
stuff in the Widget class.

Inheritance sometimes seems like the solution to every problem. Need to model
a car? Just subclass Vehicle, which is a kind of MovableObject. Similarly, as shown
in Figure 1-1, an AirPlane might branch off to the right under Vehicle while
MotorBoat might go off to the left. At each level we have succeeded in taking advan-
tage of all the workings of the higher-level superclasses.

The trouble is that inheritance comes with some unhappy strings attached.
When you create a subclass of an existing class, you are not really creating two sepa-
rate entities: Instead, you are making two classes that are bound together by a com-
mon implementation core. Inheritance, by its very nature, tends to marry the subclass
to the superclass. Change the behavior of the superclass, and there is an excellent
chance that you have also changed the behavior of the subclass. Further, subclasses
have a unique view into the guts of the superclass. Any of the interior workings of
the superclass that are not carefully hidden away are clearly visible to the subclasses.
If our goal is to build systems that are not tightly coupled together, to build systems
where a single change does not ripple through the code like a sonic boom, breaking
the glassware as it goes, then probably we should not rely on inheritance as much
as we do.

If inheritance has so many problems, what is the alternative? We can assemble the
behaviors we need through composition. Instead of creating classes that inherit most
of their talents from a superclass, we can assemble functionality from the bottom up.
To do so, we equip our objects with references to other objects—namely, objects that
supply the functionality that we need. Because the functionality is encapsulated in

8 Chapter 1. Building Better Programs with Patterns

MovableObject

Car

Vehicle

AirPlaneMotorBoat

Figure 1-1 Getting the maximum mileage out of inheritance

these other objects, we can call on it from whichever class needs that functionality. In
short, we try to avoid saying that an object is a kind of something and instead say that
it has something.

Returning to our car example, assume we have a method that simulates taking a
Sunday drive. A key part of taking that drive is to start and stop the engine:

class Vehicle

All sorts of vehicle-related code...

def start_engine

Start the engine

end

def stop_engine

Stop the engine

end

end

class Car < Vehicle

def sunday_drive

start_engine

Cruise out into the country and return

stop_engine

end

end

The thinking behind this code goes something like this: Our car needs to start
and stop its engine, but so will a lot of other vehicles, so let’s abstract out the engine
code and put it up in the common Vehicle base class (see Figure 1-2).

Patterns for Patterns 9

Vehicle

Car

start_engine()
stop_engine()

Figure 1-2 Abstracting out the engine code into the base class

That is great, but now all vehicles are required to have an engine. If we come
across an engine-less vehicle (for example, a bicycle or a sailboat), we will need to
perform some serious surgery on our classes. Further, unless we take extraordinary
care in building the Vehicle class, the details of the engine are probably exposed to
the Car class—after all, the engine is being managed by Vehicle and a Car is noth-
ing but a flavor of a Vehicle. This is hardly the stuff of separating out the change-
able from the static.

We can avoid all of these issues by putting the engine code into a class all of its
own—a completely stand-alone class, not a superclass of Car:

class Engine

All sorts of engine-related code...

def start

Start the engine

end

def stop

Stop the engine

end

end

Now, if we give each of our Car objects a reference to its own Engine, we are
ready for a drive, courtesy of composition.

class Car

def initialize

@engine = Engine.new

end

def sunday_drive

@engine.start

Cruise out into the country and return...

@engine.stop

end

end

Assembling functionality with composition (Figure 1-3) offers a whole trunk-
load of advantages: The engine code is factored out into its own class, ready for reuse

10 Chapter 1. Building Better Programs with Patterns

(via composition, of course!). As a bonus, by untangling the engine-related code from
Vehicle, we have simplified the Vehicle class.

We have also increased encapsulation. Separating out the engine-related code
from Vehicle ensures that a firm wall of interface exists between the car and its
engine. In the original, inheritance-based version, all of the details of the engine
implementation were exposed to all of the methods in Vehicle. In the new version,
the only way a car can do anything to its engine is by working through the public—
and presumably well-thought-out—interface of the Engine class.

We have also opened up the possibility of other kinds of engines. The Engine
class itself could actually be an abstract type and we might have a variety of engines,
all available for use by our car, as shown in Figure 1-4.

On top of that, our car is not stuck with one engine implementation for its whole
life. We can now swap our engines at runtime:

Patterns for Patterns 11

Vehicle

Car Engine

start()
stop()

Figure 1-3 Assembling a car with composition

Car Engine

DieselEngineGasolineEngine

Figure 1-4 A car can now have different kinds of engines

class Car

def initialize

@engine = GasolineEngine.new

end

def sunday_drive

@engine.start

Cruise out into the country and return...

@engine.stop

end

def switch_to_diesel

@engine = DieselEngine.new

end

end

Delegate, Delegate, Delegate

There is a subtle functional difference between our current Car class (the one with the
separate Engine object) and the original inheritance-based implementation. The original
Car class exposed the start_engine and stop_engine methods to the world at large.
Of course, we can do the same thing in our latest implementation of Car by simply
foisting off the work onto the Engine object:

class Car

def initialize

@engine = GasolineEngine.new

end

def sunday_drive

@engine.start

Cruise out into the country and return...

@engine.stop

end

def switch_to_diesel

@engine = DieselEngine.new

end

def start_engine

@engine.start

end

12 Chapter 1. Building Better Programs with Patterns

def stop_engine

@engine.stop

end

end

This simple “pass the buck” technique goes by the somewhat pretentious name of
delegation. Someone calls the start_engine method on our Car. The car object
says, “Not my department,” and hands the whole problem off to the engine.

The combination of composition and delegation is a powerful and flexible alter-
native to inheritance. We get most of the benefits of inheritance, much more flexibil-
ity, and none of the unpleasant side effects. Of course, nothing comes for free.
Delegation requires an extra method call, as the delegating object passes the buck
along. This extra method call will have some performance cost—but in most cases, it
will be very minor.

Another cost of delegation is the boilerplate code you need to write—all of those
boring delegating methods such as start_engine and stop_engine that do noth-
ing except pass the buck on to the object that really knows what to do. Fortunately,
this is a book about design patterns in Ruby and, as we shall see in Chapters 10 and 11,
in Ruby we don’t have to write all of those dull methods.

You Ain’t Gonna Need It

So much for the principles originally cited by the GoF in 1995. To this formidable set,
I would like to add one more principle that I think is critical to building, and actually
finishing, real systems. This design principle comes out of the Extreme Programming
world and is elegantly summed up by the phrase You Ain’t Gonna Need It (YAGNI
for short). The YAGNI principle says simply that you should not implement features,
or design in flexibility, that you don’t need right now. Why? Because chances are, you
ain’t gonna need it later, either.

Look at it this way: A well-designed system is one that will flex gracefully in the face
of bug fixes, changing requirements, the ongoing march of technology, and inevitable
redesigns. The YAGNI principle says that you should focus on the things that you need
right now, building in only the flexibility that you know you need. If you are not sure
that you need it right now, postpone implementing the functionality until you really do
need it. If you do not need it now, do not implement it now; instead, spend your time
and energy implementing the things that you definitely need right now.

At the heart of the YAGNI idea is the simple realization that we tend to be wrong
when we try to anticipate exactly what we will need in the future. When you put in

Patterns for Patterns 13

some feature or add some new bit of flexibility to your system before you really need
it, you are making a two-pronged bet.

First, you are betting that you will eventually need this new feature. If you make
your persistence layer database independent today, you are betting that someday you
will need to port to a new database. If you internationalize your GUI now, you are
betting that someday you will have users in some foreign land. But as Yogi Berra is
supposed to have said, predictions are hard, especially about the future. If it turns out
that you never need to work with another database, or if your application never makes
it out of its homeland, then you have done all of that up-front work and lived with all
of the additional complexity for naught.

The second prong of the bet that you make when you build something before you
actually need it is perhaps even more risky. When you implement some new feature or
add some new flexibility before its time, you are betting that you can get it right, that
you know how to correctly solve a problem that you haven’t really encountered yet. You
are betting that the database independence layer you so lovingly installed last year will be
able to handle the database the system actually does move to: “What! Marketing wants
us to support xyzDB? I’ve never heard of it!” You are betting that your GUI internation-
alization will be able to deal with the specific languages that you need to support: “Gee,
I didn’t realize that we would need to support a language that reads from right to left . . .”

Look at it this way: Barring a sharp blow to the head, as you stand here today you
are as dumb as you ever will be. We are all learning, getting smarter every day. This is
especially true in software projects: You can be sure that you will have a better grasp
of the requirements, technology, and design of any software system that you work on
at the end of the project than at the beginning. Whenever you put in a feature before
you really need it, you are guilty of programming while stupid; if you wait until you
really need the thing, you are likely to have a better understanding of what you need
to do and how you should go about doing it.

Design patterns are all about making your systems more flexible, more able to roll
smoothly with change. But the use of design patterns has somehow become associated
with a particularly virulent strain of over-engineering, with code that tries to be infi-
nitely flexible at the cost of being understandable, and maybe even at the cost of just
plain working. The proper use of design patterns is the art of making your system just
flexible enough to deal with the problems you have today, but no more. Patterns are
useful techniques, rather than ends in themselves. They can help you construct a
working system, but your system will not work better because you used all 23 of the
GoF design patterns in every possible combination. Your code will work better only if
it focuses on the job it needs to do right now.

14 Chapter 1. Building Better Programs with Patterns

Fourteen Out of Twenty-Three
The patterns presented in Design Patterns are tools for building software. Like the real-
world tools that you can buy in a hardware store, they are not all equally useful in all sit-
uations. Some are like your trusty hammer, absolutely required for every job. Others are
more like that laser level that I got for my last birthday—great when you need it, which
is not really all that often. In this book we will look at 14 of the original 23 GoF pat-
terns. In picking which patterns to discuss, I have tried to concentrate on the most
widely used and useful. For example, I find it hard to imagine coding without iterators
(Chapter 7), so that one is definitely in. I have also leaned toward the patterns that
morph in the translation to Ruby. Here again, the iterator is a good example: I can’t live
without iterators, but iterators in Ruby are not quite the same as iterators in Java or C++.

To give you a preview of what lies in store for you, here is a quick overview of the
GoF patterns covered in this book:

• Every pattern has a problem that it is trying to solve. For example, perhaps your
code always wants to do exactly the same thing, except at step 44. Sometimes step
44 wants to do this, and sometimes it wants to do that. Perhaps you need a
Template Method.

• Maybe it is not step 44 that wants to vary but the whole algorithm. You have a
well-defined job, something that needs to get done, but there are a lot of ways to
do it. You might need to remove the outer covering from a feline creature, and
there is more than one technique you might employ. You might want to wrap
those techniques—those algorithms—in a Strategy object.

• What if you have a class A, which needs to know what is happening over there in
class B? But you don’t want to couple the two classes together because you never
know when class C (or even class D!) might come along. You might want to con-
sider using the Observer pattern.

• Sometimes you need to treat a collection of objects just like a single object—I can
delete or copy or move an individual file, but I can also delete or copy or move a
whole directory of files. If you need to build a collection of objects that looks just
like one of the individual objects, you probably need the Composite pattern.

• Now suppose you are writing some code that hides a collection of objects, but you
don’t want the collection hidden too well: You would like your client to be able to
access the objects in your collection in sequence without knowing how or where
you have stored those objects. You definitely need the Iterator pattern.

Fourteen Out of Twenty-Three 15

• Sometimes we need to wrap instructions in a kind of a postcard: Dear database,
when you get this, delete row number 7843. Postcards are hard to come by in code,
but the Command pattern is tailor made for this situation.

• What do you do when an object does what you need it to do, but its interface is
wrong? Your interface mismatch might be very deep and complex, or it might be
as simple as needing an object that can write but having an object that calls it
save. The GoF would recommend an Adapter to you.

• Maybe you have the right object, but it is over there, someplace else on the net-
work, and you don’t want the client code to care about its location. Or perhaps
you want to delay creating your object as long as possible, or control access to it.
In this circumstance, you may need a Proxy.

• Sometimes you need to add responsibilities to your objects on the fly, at runtime. If
you have a need for objects that implement some core capabilities but must some-
times take on additional responsibilities, perhaps you need the Decorator pattern.

• Perhaps you have an instance of a class, and it needs to be the only instance of
that class—that is, the single instance that everybody uses. Sounds like you have
a Singleton.

• Now suppose you are writing a base class, one that is meant to be extended. As
you are happily coding away at your base class, you realize that it needs to pro-
duce a new object and only the subclass will know exactly which kind of object
to produce. You may need a Factory Method here.

• How do you create families of compatible objects? Suppose you have a system that
models various types of cars, but not all engines are compatible with all fuel or
cooling systems. How do you ensure that you don’t end up with the automotive
equivalent of Frankenstein’s monster? You might build a class devoted to creating
all of those objects and call it an Abstract Factory.

• Perhaps you are building an object so complex that its construction requires a sig-
nificant bit of code. Even worse, the process of construction needs to vary accord-
ing to the circumstances. Perhaps you need the Builder pattern?

• Ever have the feeling that you are using the wrong programming language to solve
your problem? As crazy as it sounds, perhaps you should stop trying to solve your
problem directly and build an Interpreter for a language that solves your prob-
lem more easily.

16 Chapter 1. Building Better Programs with Patterns

Patterns in Ruby?
So much for the theory of patterns.3 But why Ruby? Isn’t Ruby just some scripting
language, only suitable for system administration tasks and building Web GUIs?

In a word, no.
Ruby is an elegant, general-purpose, object-oriented programming language. It is

not suited for every situation—for example, if you need very high performance, perhaps
you should look elsewhere (at least for the moment). But for many programming jobs
Ruby is more than suitable. Ruby code is terse but expressive. Ruby brings with it a
rich and sophisticated model of programming.

As we shall see in the coming chapters, Ruby has its own way of doing things, a
way that changes how we approach many programming problems, including the
problems addressed by the classic GoF design patterns. Given that, it would be sur-
prising if the combination of Ruby and the classic design patterns did not lead to
something a little bit different, a new twist on the traditional. Sometimes Ruby is dif-
ferent enough that its use permits completely new solutions to programming prob-
lems. In fact, three new patterns have come into focus with the recent popularity of
Ruby. So, the catalog of patterns in this book will close out with the following:

• The Internal Domain-Specific Language (DSL), a very dynamic twist on build-
ing specialized little languages

• Meta-programming, a technique for creating just the classes and objects that you
need, dynamically at runtime

• Convention Not Configuration, a cure for the (mostly XML) configuration blues

Let’s get started . . .

Patterns in Ruby? 17

3. Of course, I have just barely made the faintest of scratches on the surface of this huge and inter-
esting topic. Take a look at Appendix B, Digging Deeper, to learn more.

This page intentionally left blank

CHAPTER 2
Getting Started with Ruby

I first found Ruby because of my eight-year-old son and his love of a certain electrically
charged, but very sweet yellow mouse. Back in 2002, my son was spending his free time
playing a certain computer game that involved finding and taming various magical
creatures, including the energetic rodent.1 In my mind’s eye, I see the glowing light bulb
suddenly appear over his head. “My dad,” I imagine him thinking, “is a programmer.
This thing that I’m playing, this thing with the magical islands and wonderful crea-
tures, is a program. My dad makes programs. My dad can teach me to make a game!”

Well, maybe. After a blast of begging and pleading that only the parents of young
children can truly comprehend, I set out to teach my son to program. The first thing
I needed, I thought, was a simple, clear, and easy-to-understand programming
language. So I went looking—and I found Ruby. My son, as kids do, rapidly moved
on to other things. But in Ruby I had found a keeper. Yes, it was clean and clear and
simple—a good language for learning. But the professional software engineer in me,
the guy who has built systems in everything from assembly language to Java, saw
something else: Ruby is concise, sophisticated, and wickedly powerful.

But Ruby is also solidly mainstream. The basic moving parts of the language are
the old gears and pulleys familiar to all programmers. Ruby has all of the data types
with which you are familiar: strings, integers, and floating-point numbers, along with
arrays and our old friends, true and false. The basics of Ruby are familiar and
commonplace. It is the way they are assembled and the higher-level stuff that makes
the language such an unexpected joy.

19

1. Thankfully, the Pokemon craze has abated a bit since then.

If you already know the basics of Ruby, if you know how to pull the third char-
acter out of a string and how to raise 2 to the 437th power, and if you have written a
class or two, then you can probably dive right into Chapter 3. This chapter will still
be here if you get stuck.

If you are very new to Ruby, then this chapter is for you. In this chapter I will take
you through the basics of the language as quickly as possible. After all, Alan Turing
was right: Past a certain level of complexity, all programming languages are equivalent.
If you already know another mainstream language, then the basics of Ruby will pres-
ent no problem to you; you will just be relearning all of the things that you already
know. My hope is that by the end of this chapter you will know just enough of the
language to be dangerous.

Interactive Ruby
The easiest way to run Ruby 2 is to use the interactive Ruby shell, irb. Once you start
up irb, you can type in Ruby code interactively and see the results immediately. To run
irb, you simply enter irb at the command prompt. The following example starts up
irb and then uses Ruby to add 2 plus 2:

$ irb

irb(main):001:0> 2 + 2

=> 4

irb(main):002:0>

The interactive Ruby shell is great for trying out things on a small scale. There is
nothing like immediate feedback for exploring a new programming language.

Saying Hello World
Now that you have Ruby safely up and running, the next step is obvious: You need to
write the familiar hello world program. Here it is in Ruby:

#

The traditional first program in any language

#

puts('hello world')

20 Chapter 2. Getting Started with Ruby

2. See Appendix A if you need guidance in installing Ruby on your system.

You could simply start up irb and type in this code interactively. Alternatively, you
could use a text editor and type the hello world program into a text file with a name
such as hello.rb. You can then use the Ruby interpreter, appropriately called ruby, to
run your program:

$ ruby hello.rb

Either way, the result is the same:

hello world

You can learn an awful lot about a programming language from the hello world
program. For example, it looks like the puts method prints things out, and so it does.
You can also see that Ruby comments start with the # character and continue until the
end of the line. Comments may fill the entire line, as in the earlier example, or you
can tack on a comment after some code:

puts('hello world') # Say hello

Another thing to notice about our Ruby hello world program is the absence of
semicolons to end the statements. In Ruby, a program statement generally ends with
the end of a line. Ruby programmers tend to use semicolons only to separate multi-
ple statements on the same line on those rare occasions when they decide to jam more
than one statement on a line:

#

A legal, but very atypical Ruby use of the semicolon

#

puts('hello world');

#

A little more de rigueur, but still rare use of semicolons

#

puts('hello '); puts('world')

The Ruby parser is actually quite smart and will look at the next line if your state-
ment is obviously unfinished. For example, the following code works just fine because
the Ruby parser deduces from the dangling plus sign that the calculation continues on
the second line:

x = 10 +

20 + 30

Saying Hello World 21

You can also explicitly extend a statement onto the next line with a backslash:

x = 10 \

+ 10

There is a theme here: The Ruby design philosophy is to have the language help
you whenever possible but to otherwise stay out of the way. In keeping with this phi-
losophy, Ruby lets you omit the parentheses around argument lists when the meaning
is clear without them:

puts 'hello world'

For clarity, most of the examples in this book include the parentheses when call-
ing a method, unless there are no arguments, in which case the empty parentheses
are omitted.

While our hello world program wrapped its string with single quotes, you can also
use double quotes:

puts("hello world")

Single or double quotes will result in exactly the same kind of string object, albeit
with a twist. Single-quoted strings are pretty much a case of “what you see is what you
get”: Ruby does very little interpretation on single-quoted strings. Not so with double-
quoted strings. These strings are preprocessed in some familiar ways: \n becomes a
single linefeed (also known as a newline) character, while \t becomes a tab. So while
the string 'abc\n' is five characters long (the last two characters being a backslash
and the letter “n”), the string "abc\n" is only four characters long (the last character
being a linefeed character).

Finally, you may have noticed that no \n appeared at the end of the 'hello
world' string that we fed to puts. Nevertheless, puts printed our message with a
newline. It turns out that puts is actually fairly clever and will stick a newline char-
acter on the end of any output that lacks one. This behavior is not necessarily desir-
able for precision formatting, but is wonderful for the kind of examples you will find
throughout this book.

22 Chapter 2. Getting Started with Ruby

Variables
Ordinary Ruby variable names—we will meet several extraordinary variables in a bit—
start with a lowercase letter or an underscore.3 This first character can be followed by
uppercase or lowercase letters, more underscores, and numbers. Variable names are
case sensitive, and other than your patience there is no limit on the length of a Ruby
variable name. All of the following are valid Ruby variable names:

• max_length

• maxLength

• numberPages

• numberpages

• a_very_long_variable_name

• _flag

• column77Row88

• ___

The first two variable names in this list, max_length and maxLength, bring up
an important point: While camelCase variable names are perfectly legal in Ruby, Ruby
programmers tend not to use them. Instead, the well-bred Ruby programmer uses
words_separated_by_underscores. Also, because variable names are case sensitive,
numberPages and numberpages are different variables. Finally, the last variable name
listed above consists of three underscores, which is legal in the way that many very bad
ideas are legal.4

Okay, let’s put our strings and variables together:

first_name = 'russ'

last_name = 'olsen'

full_name = first_name + ' ' + last_name

Variables 23

3. In fact, for most parsing purposes in Ruby, an underscore actually counts as a lowercase letter.
This, of course, raises the question of what an uppercase underscore would look like, and whether it
would be called an overscore.
4. Another good reason to avoid using all-underscore variable names is that irb has already beat you
to the punch. irb sets the variable _ (that is, one underscore) to the last expression it evaluated.

What we have here are three basic assignments: The variable first_name is
assigned the string 'russ', last_name is assigned a value of 'olsen', and
full_name gets the concatenation of my first and last names separated by a space.

You may have noticed that none of the variables were declared in the previous
example. There is nothing declaring that the variable first_name is, and always will
be, a string. Ruby is a dynamically typed language, which means that variables have
no fixed type. In Ruby, you simply pull a variable name out of thin air and assign a
value to it. The variable will take on the type of the value it happens to hold. Not only
that, but at different times in the same program a variable might hold radically dif-
ferent types. Early in a program, the value of pi might be the number 3.14159; later
in the same program, the value might be a reference to a complex mathematical algo-
rithm; still later, it might be the string "apple". We will revisit dynamic typing a
number of times in this book (starting with the very next chapter, if you can’t wait),
but for now just remember that variables take on the types of their values.

Aside from the garden-variety variables that we have examined so far, Ruby sup-
ports constants. A constant is similar to a variable, except that its name starts with an
uppercase letter:

POUNDS_PER_KILOGRAM = 2.2

StopToken = 'end'

FACTS = 'Death and taxes'

The idea of a constant is, of course, that the value should not change. Ruby is not
overly zealous about enforcing this behavior, however. You can change the value of a
constant, but you will get a warning for your trouble:

StopToken = 'finish'

(irb):2: warning: already initialized constant StopToken

For the sake of sanity, you should probably avoid changing the values of
constants.

Fixnums and Bignums
To no one’s great surprise, Ruby supports arithmetic. You can add, subtract, multiply,
and divide in Ruby with the usual results:

24 Chapter 2. Getting Started with Ruby

x = 3

y = 4

sum = x+y

product = x*y

Ruby enforces some standard rules about numbers. There are two basic flavors,
integers and floating-point numbers. Integers, of course, lack a fractional part: 1, 3, 6,
23, –77, and 42 are all integers, whereas 7.5, 3.14159, and –60000.0 are all floating-
point numbers.

Integer division in Ruby comes as no surprise: Divide two integers and your
answer will be another integer, with any decimal part of the quotient silently truncated
(not rounded!):

6/3 # Is 2

7/3 # Is still 2

8/3 # 2 again

9/3 # Is 3 finally!

Reasonably sized integers—anything you can store in 31 bits—are of type
Fixnum, while larger integers are of type Bignum; a Bignum can hold an arbitrarily
gigantic number. Given that the two types convert back and forth more or less seam-
lessly, however, you can usually forget that there is any distinction between them:

2 # A Fixnum

437 # A Fixnum

2**437 # Very definitely a big Bignum

1234567890 # Another Bignum

1234567890/1234567890 # Divide 2 Bignums, and get 1, a Fixnum

Ruby also supports the familiar assignment shortcuts, which enable you to shorten
expressions such as a = a+1 to a += 1:

a = 4

a += 1 # a is now 5

a -= 2 # a is now 3

a *= 4 # a is now 12

a /= 2 # a is now 6

Sadly, there are no increment (++) and decrement (--) operators in Ruby.

Fixnums and Bignums 25

Floats
If only the world were as exact as the integers. To deal with messy reality, Ruby also
supports floating-point numbers or, in Ruby terminology, floats. A float is easy to
spot—it is a number with a decimal point:

3.14159

-2.5

6.0

0.0000000111

You can add, subtract, and multiply floats with the results you would expect.
Floats even obey the more familiar rules of grammar-school division:

2.5+3.5 # Is 6.0

0.5*10 # Is 5.0

8.0/3.0 # Is 2.66666666

There Are No Primitives Here
You do not have to take my word about the types of these different flavors of num-
bers. You can simply ask Ruby by using the class method:

7.class # Gives you the class Fixnum

888888888888.class # Gives you the class Bignum

3.14159.class # Gives you the class Float

The slightly strange-looking syntax in this code is actually a tip-off to something
deep and important: In Ruby, everything—and I mean everything—is an object.
When we say 7.class, we are actually using the familiar object-oriented syntax to call
the class method on an object, in this case the object representing the number seven.
In fact, Ruby numbers actually have quite a wide selection of methods available:

3.7.round # Gives us 4.0

3.7.truncate # Gives us 3

-123.abs # Absolute value, 123

1.succ # Successor, or next number, 2

26 Chapter 2. Getting Started with Ruby

Unlike Java, C#, and many other widely used languages, Ruby does not have any
primitive data types. It is objects all the way down. The fact that everything is an
object in Ruby drives much of the elegance of the language. For example, the univer-
sal object orientation of Ruby is the secret that explains how Fixnums and Bignums
can be so effortlessly converted back and forth.

If you follow the class inheritance hierarchy of any Ruby object upward, from its
class up through the parent class or superclass, and on to its super-duper-class, eventu-
ally you will reach the Object class. Because every Ruby object can trace its class ances-
try back to Object, all Ruby objects inherit a minimum set of methods, a sort of
object-oriented survival kit. That was the source of the class method that we encoun-
tered earlier. We can also find out whether an object is an instance of a given class:

'hello'.instance_of?(String) # true

We can also see if it is nil:

'hello'.nil? # false

Perhaps the Object method that gets the most use is to_s, which returns a string
representation of the object—a suitably brief name for the Ruby equivalent of the Java
toString method:

44.to_s # Returns a two-character string '44'

'hello'.to_s # A fairly boring conversion, returns 'hello'

The total object orientation of Ruby also has some implications for variables.
Because everything in Ruby is an object, it is not really correct to say that the expres-
sion x = 44 assigns the value 44 to the variable x. Instead, what is really happening is
that x receives a reference to an object that happens to represent the number after 43.

But Sometimes There Is No Object
If everything is an object, what happens when you do not really have an object? For
exactly those occasions, Ruby supplies us with a special object that represents the
idea of not having an object, of being utterly object-less, sans object. This special
value is nil.

But Sometimes There Is No Object 27

In the last section, we said that everything in Ruby is an object, and so it is: nil
is every bit as much a Ruby object as "hello world" or 43. For example, you can
get the class of nil:

puts(nil.class)

That turns out to be something very predictable:

NilClass

Sadly, nil is destined to live out its life alone: There is only one instance of
NilClass (called nil) and you cannot make any new instances of NilClass.

Truth, Lies, and nil
Ruby supports the usual set of Boolean operators. For example, we can find out if two
expressions are equal, if one expression is less than the other, or if one expression is
greater than the other.

1 == 1 # true

1 == 2 # false

'russ' == 'smart' # sadly, false

(1 < 2) # true

(4 > 6) # nope

a = 1

b = 10000

(a > b) # no way

We also have less than or equal and its cousin, greater than or equal:

(4 >= 4) # yes!

(1 <= 2) # also true

All of these comparison operators evaluate to one of two objects—true or false.
Like nil, the true and false objects are the only instances of their respective classes:
true is the only instance of TrueClass and false is the sole instance of (you guessed it)

28 Chapter 2. Getting Started with Ruby

FalseClass. Oddly, both TrueClass and FalseClass are direct subclasses of Object.
I keep expecting a BooleanClass to slip in somewhere, but alas, no.

Ruby also has an and operator—in fact, several of them. For example, you
might say

(1 == 1) and (2 == 2) # true

(1 == 1) and (2 == 3) # false

You might also say

(1 == 1) && (2 == 2) # true

(1 == 1) && (2 == 3) # false

Both amount to the same thing. Essentially, and and && are synonyms.5

Matched up with and and && is or and ||, which do about what you would expect:6

(1 == 1) or (2 == 2) # yup

(2 == 1) || (7 > 10) # nope

(1 == 1) or (3 == 2) # yup

(2 == 1) || (3 == 2) # nope

Finally, Ruby has the usual not operator and its twin !:

not (1 == 2) # true

! (1 == 1) # false

not false # true

One thing to keep in mind is that Ruby can come up with a Boolean value for
any expression. We can, therefore, mix strings, integers, and even dates into Boolean

Truth, Lies, and nil 29

5. Okay, not quite. The && operator has a higher precedence—it is stickier in expressions—than
and. The same is true of the || and or operators.
6. Ruby also has & and | operators—note that they are single characters. These guys are bitwise logi-
cal operators, useful in their own right but probably not what you would want to use in your average
if statement.

expressions. The evaluation rule is very simple: false and nil evaluate to false; every-
thing else evaluates to true. So the following are perfectly legal expressions:

true and 'fred' # true, because 'fred' is neither nil nor false

'fred' && 44 # true, because both 'fred' and 44 are true

nil || false # false, because both nil and false are false

If you come from the world of C or C++, you will be shocked to learn that in
Ruby, zero, being neither false nor nil, evaluates to true in a Boolean expression.
Surprisingly, this expression

if 0

puts('Zero is true!')

end

will print out

Zero is true!

Decisions, Decisions
That last example was a sneak preview of the if statement, which has the usual
optional else:

age = 19

if (age >= 18)

puts('You can vote!')

else

puts('You are too young to vote.')

end

As you can see from the example, each if statement always has its own terminat-
ing end. If you have more than one condition, you can use an elsif:

30 Chapter 2. Getting Started with Ruby

if(weight < 1)

puts('very light')

elsif(weight < 10)

puts('a bit of a load')

elsif(weight < 100)

puts('heavy')

else

puts('way too heavy')

end

Note that the keyword is elsif—five letters, one word. It is not else if,
elseif, and certainly not elif.

As usual, Ruby tries its best to make the code as concise as possible. Because the
parentheses after the if and elsif really do not add much to the meaning, they are
optional:

if weight < 1

puts('very light')

elsif weight < 10

puts('a bit of a load')

elsif weight < 100

puts('heavy')

else

puts('way too heavy')

end

There is also an idiom for those times when you need to decide whether you want
to execute a single statement. Essentially, you can hang the if on the end of a statement:

puts('way too heavy') if weight >= 100

There is also an unless statement, which reverses the sense of an if statement:
The body of the statement executes only if the condition is false. As with the if state-
ment, you can have a long form of unless:

unless weight < 100

puts('way too heavy')

end

Decisions, Decisions 31

A short form is also available:

puts('way too heavy') unless weight < 100

Loops
Ruby has two flavors of loops. First, we have the classic while loop, which, like the
if statement, is always terminated with an end. Thus this loop

i = 0

while i < 4

puts("i = #{i}")

i = i + 1

end

will print out this:

i = 0

i = 1

i = 2

i = 3

The evil twin of the while loop is the until loop, which is more or less identi-
cal to the while loop except that it keeps looping until the condition becomes true.
Thus we might have written the preceding example as follows:

i = 0

until i >= 4

puts("i = #{i}")

i = i + 1

end

Ruby also has a for loop, which you can use, among other things, to sequence
through arrays:

array = ['first', 'second', 'third']

array.each do |x|

puts(x)

end

32 Chapter 2. Getting Started with Ruby

Surprisingly, for loops are rare in real Ruby programs. A Ruby programmer is
much more likely to write this equivalent code instead:

array.each do |x|

puts(x)

end

We will have much more to say about this odd-looking loop thing in Chapter 7.
For now, just think of the each syntax as another way to write a for loop.

If you need to break out of a loop early, you can use a break statement:

names = ['george', 'mike', 'gary', 'diana']

names.each do |name|

if name == 'gary'

puts('Break!')

break

end

puts(name)

end

Run this code and it will never print out gary:

george

mike

Break!

Finally, you can skip to the next iteration of a loop with the next statement:

names.each do |name|

if name == 'gary'

puts('Next!')

next

end

puts(name)

end

Loops 33

This code will skip right over gary but keep going:

george

mike

Next!

diana

More about Strings
Since we are already using Ruby strings, let’s get to know them a little better. As we
have seen, we can build string literals with both single and double quotes:

first = 'Mary had'

second = " a little lamb"

We have also seen that the plus sign is the concatenation operator, so that

poem = first + second

will give us this:

Mary had a little lamb

Strings have a whole range of methods associated with them. You can, for exam-
ple, get the length of a string:

puts(first.length) # Prints 8

You can also get an all-uppercase or all-lowercase version of a string:

puts(poem.upcase)

puts(poem.downcase)

This code will print out

MARY HAD A LITTLE LAMB

mary had a little lamb

34 Chapter 2. Getting Started with Ruby

In many ways, Ruby strings act like arrays: You can set individual characters in a
string by indexing the string in a very array-like fashion. Thus, if you execute

poem[0] = 'G'

puts(poem)

you will get a very different sort of poem:

Gary had a little lamb

You can also get at individual characters in a string in the same way, albeit with a
slightly annoying twist: Because Ruby lacks a special character type, when you pull an
individual character out of a Ruby string you get a number—namely, the integer char-
acter code. Consider this example:

second_char = poem[1] # second_char is now 97, the code for 'a'

Fortunately, you can also put individual characters back via the code, so perhaps
there is not much harm done:

poem[0] = 67 # 67 is the code for 'C'

Now Cary is the former owner of a young sheep.
Double-quoted strings in Ruby have another feature, one that you are going to

run into frequently in the examples in this book. While it is turning the familiar \n’s
into newlines and \t’s into tabs, if the Ruby interpreter sees #{expression} inside
a double-quoted string, it will substitute the value of the expression into the string.
For example, if we set the variable n

n = 42

we can smoothly insert it into a string

puts("The value of n is #{n}.")

to get

The value of n is 42.

More about Strings 35

This feature (called string interpolation) is not just limited to one expression per
string, nor is the expression limited to a simple variable name. For example, we can say

city = 'Washington'

temp_f = 84

puts("The city is #{city} and the temp is #{5.0/9.0 * (temp_f-32)} C")

which will print

The city is Washington and the temp is 28.8888888888889 C

While traditional quotes are great for relatively short, single-line strings, they tend
to be awkward for expressing longer, multiple-line strings. To ease this pain, Ruby has
another way of expressing string literals:

a_multiline_string = %Q{

The city is #{city}.

The temp is #{5.0/9.0 * (temp_f-32)} C

}

In this example, everything between the %Q{ and the final } is a string literal. If
you start your string literal with a %Q{ as we did above, Ruby will treat your string as
double quoted and do all of the usual double-quoted interpretation on it. If you use
%q{ (note the lowercase “q”), your text will receive the same minimal processing as a
single-quoted string.7

Finally, if you are coming from the Java or C# world, there is a serious conceptual
landmine waiting for you in Ruby. In C# and Java, strings are immutable: Once you
create a string in either of these languages, that string can never be changed. Not so in
Ruby. In Ruby, any string is liable to change just about any time. To illustrate, let us
create two references to the same string:

name = 'russ'

first_name = name

36 Chapter 2. Getting Started with Ruby

7. Actually, you have a lot more options. You can, for example, use matched pairs of parentheses “()”
or angle brackets “<>” instead of the braces that I show here to delimit your string. Thus %q<a string>
is a fine string. Alternatively, you can use any other special character to start and end your string—
for example, %Q-a string-.

If this were Java or C# code, I could use first_name essentially forever, serene
in the knowledge that its value could never change out from under me. By contrast,
if I change the contents of name:

name[0] = 'R'

I also change first_name, which is just a reference to the same string object. If
we print out either variable

puts(name)

puts(first_name)

we will get the same, changed value:

Russ

Russ

Symbols
The merits of making strings immutable have been the subject of long debate. Strings
were mutable in C and C++, were immutable in Java and C#, and went back to muta-
ble in Ruby. Certainly there are advantages to mutable strings, but making strings
mutable does leave an obvious gap: What do we do when we need to represent some-
thing that is less about data and more like an internal identifier in our program?

Ruby has a special class of object just for this situation—namely, the symbol. A
Ruby symbol is essentially an immutable identifier type thing. Symbols always start
with a colon:

• :a_symbol

• :an_other_symbol

• :first_name

If you are not used to them, symbols may seem a bit strange at first. Just remem-
ber that symbols are more or less immutable strings and that Ruby programmers use
them as identifiers.

Symbols 37

Arrays
Creating arrays in Ruby is as easy as typing a pair of square braces or Array.new:

x = [] # An empty array

y = Array.new # Another one

a = ['neo', 'trinity', 'tank'] # A three-element array

Ruby arrays are indexed from zero:

a[0] # neo

a[2] # tank

You can get the number of elements in an array with the length or size method.
Both do the same thing:

puts(a.length) # Is 3

puts(a.size) # Is also 3

Keep in mind that Ruby arrays do not have a fixed number of elements. You can
extend arrays on the fly by simply assigning a new element beyond the end of the array:

a[3] = 'morpheus'

Our array now contains four elements.
If you add an element to an array far beyond the end, then Ruby will automati-

cally add the intervening elements and initialize them to nil. Thus, if we execute the
code

a[6] = 'keymaker'

puts(a[4])

puts(a[5])

puts(a[6])

38 Chapter 2. Getting Started with Ruby

we will get

nil

nil

keymaker

A convenient way to append a new element to the end of an array is with the <<
operator:

a << 'mouse'

Ruby also sticks to the spirit of dynamic typing with arrays. In Ruby, arrays are
not limited to a single type of element. Instead, you can mix and match any kind of
object in a single array:

mixed = ['alice', 44, 62.1234, nil, true, false]

Finally, because arrays are just regular objects,8 they have a rich and varied set of
methods. You can, for example, sort your array:

a = [77, 10, 120, 3]

a.sort # Returns [3, 10, 77, 120]

You can also reverse the elements in an array:

a = [1, 2, 3]

a.reverse # Returns [3, 2, 1]

Keep in mind that the sort and reverse methods leave the original array
untouched: They actually return a new array that is sorted or reversed. If you want to
sort or reverse the original array, you can use sort! and reverse!:

a = [77, 10, 120, 3]

a.sort! # a is now [3, 10, 77, 120]

a.reverse! # a is now [120, 77, 10, 3]

Arrays 39

8. We know arrays are just objects in Ruby because (all together now!) everything in Ruby is an object.

This convention of method leaving the original object untouched while method!
modifies the original object is not limited to arrays. It is applied frequently (but sadly
not quite universally) throughout Ruby.

Hashes
A Ruby hash is a close cousin to the array—you can look at a hash as an array that will
take anything for an index. Oh yes, and unlike arrays, hashes are unordered. You can
create a hash with a pair of braces:

h = {}

h['first_name'] = 'Albert'

h['last_name'] = 'Einstein'

h['first_name'] # Is 'Albert'

h['last_name'] # Is Einstein

Hashes also come complete with a shortcut initialization syntax. We could define
the same hash with

h = {'first_name' => 'Albert', 'last_name' => 'Einstein'}

Symbols make good hash keys, so our example might be improved with

h = {:first_name => 'Albert', :last_name => 'Einstein'}

Regular Expressions
The final built-in Ruby type that we will examine is the regular expression. A regular
expression in Ruby sits between a pair of forward slashes:

/old/

/Russ|Russell/

/.*/

While you can do incredibly complex things with regular expressions, the basic
ideas underlying them are really very simple and a little knowledge will take you a

40 Chapter 2. Getting Started with Ruby

long way.9 Briefly, a regular expression is a pattern that either does or does not match
any given string. For example, the first of the three regular expressions above will
match only the string 'old', while the second will match two variations of my first
name. The third expression will match anything.

In Ruby, you can use the =~ operator to test whether a given regular expression
matches a particular string. The =~ operator will return either nil (if the expression
does not match the string) or the index of the first matching character (if the pattern
does match):

/old/ =~ 'this old house' # 5 - the index of 'old'

/Russ|Russell/ =~ 'Fred' # nil – Fred is not Russ nor Russell

/.*/ =~ 'any old string' # 0 - the RE will match anything

There is also a !~ operator for testing whether a regular expression does not
match a given string.

A Class of Your Own
Ruby would not be much of an object-oriented language if you could not create
classes of your own:

class BankAccount

def initialize(account_owner)

@owner = account_owner

@balance = 0

end

def deposit(amount)

@balance = @balance + amount

end

def withdraw(amount)

@balance = @balance - amount

end

end

A Class of Your Own 41

9. If you are one of those people who have avoided learning regular expressions, let me recommend
that you take some time to explore this wonderfully useful tool. You could start with some of the
books listed in Appendix B, Digging Deeper.

Clearly, the Ruby class definition syntax has the same unadorned brevity as the
rest of the language. We start a class definition with the keyword class followed by
the name of the class:

class BankAccount

Recall that in Ruby all constants start with an uppercase letter. In Ruby’s world-
view, a class name is a constant. This makes sense because the name of a class always
refers to the same thing—the class. Thus, in Ruby, all class names need to start with
an uppercase letter, which is why our class is BankAccount with a capital “B”. Also
note that while the only hard requirement is that the name of a class begin with an
uppercase letter, Ruby programmers typically use camel case for class names.

The first method of our BankAccount class is the initialize method:

def initialize(account_owner)

@owner = account_owner

@balance = 0

end

The initialize method is both special and ordinary. It is ordinary in the way
it is built—the line introducing the method consists of the keyword def followed by
the name of the method, followed by the argument list, if there is one. Our ini-
tialize method does have a single argument, account_owner.

Next, we have the body of the method—in this case, a couple of assignment state-
ments. The first thing our initialize method does is to grab the value passed in
through account_owner and assign it to the very strange-looking variable, @owner:

@owner = account_owner

Names that start with an @ denote instance variables—each instance of the
BankAccount class will carry around its own copy of @owner. Likewise, each instance
of BankAccount will carry around its copy of @balance, which we initialize to zero.
As usual, there is no up-front declaration of @owner or @balance; we simply make
up the names on the spot.

Although initialize is defined in the same, ordinary way as all other methods,
it is special because of its name. Ruby uses the initialize method to set up new
objects. When Ruby creates a new instance of a class, it calls the initialize method
to set up the new object for use. If you do not define an initialize method on your

42 Chapter 2. Getting Started with Ruby

class, Ruby will do the typical object-oriented thing: It will look upward through the
class hierarchy until either it finds an initialize method or it reaches Object.
Given that the Object class defines an initialize method (which does nothing),
the search is guaranteed to quietly end there. Essentially, initialize is the Ruby ver-
sion of a constructor.

To actually construct a new instance of our class, we call the new method on the
class. The new method takes the same parameters as the initialize method:

my_account = BankAccount.new('Russ')

This statement will allocate a new BankAccount object, call its initialize
method with the arguments passed into new, and assign the newly initialized
BankAccount instance to my_account.

Our BankAccount class has two other methods, deposit and withdraw, which
grow and shrink the size of our account, respectively. But how do we get at our
account balance?

Getting at the Instance Variables
While our BankAccount class seems like it is almost ready for use, there is one prob-
lem: In Ruby, an object’s instance variables cannot be accessed from outside the object.
If we made a new BankAccount object and tried to get at @balance, we are in for an
unpleasant shock. Running this code

my_account = BankAccount.new('russ')

puts(my_account.balance)

produces the following error:

account.rb:8: undefined method 'balance' ... (NoMethodError)

Nor does my_account.@balance, with the at sign, work. No, the instance vari-
ables on a Ruby object are just not visible outside the object. What is a coder to do?
We might simply define an accessor method:

def balance

@balance

end

Getting at the Instance Variables 43

One thing to note about the balance method is that it lacks a return statement.
In the absence of an explicit return statement, a method will return the value of the
last expression computed, which in this case is simply @balance.

We can now get at our balance:

puts(my_account.balance)

The fact that Ruby allows us to omit the parentheses for an empty argument list
gives us the satisfying feeling that we are accessing a value instead of calling a method.

We might also like to be able to set the account balance directly. The obvious
thing to do is to add a setter method to BankAccount:

def set_balance(new_balance)

@balance = new_balance

end

Code with a reference to a BankAccount instance could then set the account balance:

my_account.set_balance(100)

One problem with the set_balance method is that it is fairly ugly. It would be
much clearer if you could just write

my_account.balance = 100

Fortunately, you can. When Ruby sees an assignment statement like this one, it
will translate it into a plain old method call. The method name will be variable name,
followed by an equals sign. The method will have one parameter, the value of the
right-hand side of the assignment statement. Thus the assignment above is translated
into the following method call:

my_account.balance=(100)

Take a close look at the name of that method. No, that is not some special syn-
tax; the method name really does end in an equals sign. To make this all work for our
BankAccount object, we simply rename our setter method:

def balance=(new_balance)

@balance = new_balance

end

44 Chapter 2. Getting Started with Ruby

We now have a class that looks good to the outside world: Code that uses
BankAccount can set and get the balance with abandon, without caring that it is
really calling the balance and balance= methods. Sadly, our class is a bit verbose on
the inside: We seem doomed to have all of these boring name and name= methods
littered throughout our class definition. Unsurprisingly, Ruby comes to our rescue yet
again.

It turns out that getter and setter methods are so common that Ruby supplies us
with a great shortcut to create them. Instead of going through all of the def name . . .
motions, we can simply add the following line to our class:

attr_accessor :balance

This statement will create a method called balance whose body does nothing
more than return the value of @balance. It will also create the balance=
(new_value) setter method. We can even create multiple accessor methods in a single
statement:

attr_accessor :balance, :grace, :agility

The preceding code adds no less than six new methods for the enclosing class: get-
ter and setter methods for each of the three named instance variables.10 Instant acces-
sors, no waiting.

You also have help if you want the outside world to be able to read your instance
variables but not write them. Just use attr_reader instead of attr_accessor:

attr_reader :name

Now your class has a getter method for name, but no setter method. Similarly,
attr_writer will create only the setter method, name=(new_value).

Getting at the Instance Variables 45

10. There is a subtle twist of terminology going on here: The things with the at signs on the inside
of the class are instance variables. When you create the getter and setter methods and expose them to
the outside world, they become attributes of the object—hence attr_reader and attr_writer.
In practice, the finer points of the terminology seem to be honored more in the breach than the
observance and no one is confused.

An Object Asks: Who Am I?
Sometimes a method needs a reference to the current object, the instance to which the
method is attached. For that purpose we can use self, which is always a reference to
the current object:

class SelfCentered

def talk_about_me

puts("Hello I am #{self}")

end

end

conceited = SelfCentered.new

conceited.talk_about_me

If you run this code, you will get something like this:

Hello I am #<SelfCentered:0x40228348>

Of course, your instance of SelfCentered is unlikely to reside at the same hex
address as mine, so your output may look a little different.

Inheritance, Subclasses, and Superclasses
Ruby supports single inheritance—all the classes that you create have exactly one par-
ent or superclass. If you do not specify a superclass, your class automatically becomes
a subclass of Object. If you want your superclass to be something other than Object,
you can specify the superclass right after the class name:

class InterestBearingAccount < BankAccount

def initialize(owner, rate)

@owner = owner

@balance = 0

@rate = rate

end

def deposit_interest

@balance += @rate * @balance

end

end

46 Chapter 2. Getting Started with Ruby

Take a good look at the InterestBearingAccount initialize method. Like
the initialize method of BankAccount, the InterestBearingAccount ini-

tialize method sets @owner and @balance along with the new @rate instance vari-
able. The key point is that the @owner and @balance instance variables in
InterestBearingAccount are the same as the ones in the BankAccount class. In
Ruby, an object instance has only one set of instance variables, and those variables are
visible all the way up and down the inheritance tree. If we went BankAccount mad and
built a subclass of BankAccount and a sub-subclass of that, and so on for 40 classes
and 40 subclasses, there would still be only one @owner instance variable per instance.

One unfortunate aspect of our InterestBearingAccount class is that the
InterestBearingAccount initialize method sets the @owner and @balance

fields, essentially duplicating the contents of the initialize method in BankAccount.
We can avoid this messy code duplication by calling the Account initialize method
from the InterestBearingAccount initialize method:

def initialize(owner, rate)

super(owner)

@rate = rate

end

Our new initialize method replaces the duplicate code with a call to super.
When a method calls super, it is saying, “Find the method with the same name as me
in my superclass, and call that.” Thus the effect of the call to super in the initial-
ize method is to call the initialize method in the BankAccount class. If there is
no method of the same name in the superclass, Ruby will continue looking upward
through the inheritance tree until it finds a method or runs out of classes, in which
case you will get an error.

Unlike many object-oriented languages, Ruby does not automatically ensure that
initialize is called for all your superclasses. In this sense, Ruby treats initialize
like an ordinary method. If the InterestBearingAccount initialize method
did not make the call to super, the BankAccount rendition of initialize would
never be called on InterestBearingAccounts.

Argument Options
So far, the methods with which we have adorned our classes have sported pretty bor-
ing lists of arguments. It turns out that Ruby actually gives us a fair number of options
when it comes to method arguments. We can, for example, specify default values for
our arguments:

Argument Options 47

def create_car(model, convertible=false)

...

end

You can call create_car with one argument—in which case convertible
defaults to false—or two arguments. Thus all of the following are valid calls to
create_car:

create_car('sedan')

create_car('sports car', true)

create_car('minivan', false)

If you do write a method with default values, all of the arguments with default
values must come at the end of the argument list.

While default values give you a lot of method-defining flexibility, sometimes even
more freedom is handy. For those occasions you can create methods with an arbitrary
number of arguments:

def add_students(*names)

for student in names

puts("adding student #{student}")

end

end

add_students("Fred Smith", "Bob Tanner")

Run the code above and you will see

adding student Fred Smith

adding student Bob Tanner

The add_students method works because all of the arguments are rolled up
in the names array—that’s what the asterisk indicates. You can even mix and match
regular arguments with the variable arguments array, as long as the array appears at the
end of the argument list:

48 Chapter 2. Getting Started with Ruby

def describe_hero(name, *super_powers)

puts("Name: #{name}")

for power in super_powers

puts("Super power: #{power}")

end

end

The preceding method requires at least one argument but will take as many addi-
tional arguments as you care to give it. Thus all of the following are valid calls to
describe_hero:

describe_hero("Batman")

describe_hero("Flash", "speed")

describe_hero("Superman", "can fly", "x-ray vision", "invulnerable")

Modules
Along with classes, Ruby features a second code-encapsulating entity called a module.
Like a class, a module is a package of methods and constants. Unlike a class, however,
you can never create an instance of a module. Instead, you include a module in a class,
which will pull in all of the module’s methods and constants and make them available
to instances of the class. If you are a Java programmer, you might think of modules as
being a bit like interfaces that carry a chunk of implementation code.

A module definition bears an uncanny resemblance to a class definition, as we can
see from this simple, one-method module:

module HelloModule

def say_hello

puts('Hello out there.')

end

end

Once we have defined our little module, we can pull it into any of our classes with
the include statement:11

Modules 49

11. There is another way to use modules, which we will see in Chapter 12: You can just call methods
directly out of the module without including the module in any class.

50 Chapter 2. Getting Started with Ruby

class TryIt

include HelloModule

end

The effect of the include statement is to make all of the methods in the module
available to instances of the class:

tryit = TryIt.new

tryit.say_hello

The accessibility also works in the other direction: Once a module is included in
a class, the module methods have access to all of the methods and instance variables
of the class. For example, the following module contains a method that prints various
bits of information about the object in which it finds itself—values that it gets by call-
ing the name, title, and department methods supplied by its host class:

module Chatty

def say_hi

puts("Hello, my name is #{name}")

puts("My job title is #{title}")

puts("I work in the #{department} department")

end

end

class Employee

include Chatty

def name

'Fred'

end

def title

'Janitor'

end

def department

'Maintenance'

end

end

Running this code produces

Hello, my name is Fred

My job title is Janitor

I work in the Maintenance department

When you include a module in your class, the module becomes a sort of special,
secret superclass of your class (see Figure 2-1). But while a class can have only one
superclass, it can include as many modules as it likes.

When someone calls a method on an instance of your class, Ruby will first deter-
mine whether that method is defined directly in your class. If it is, then that method
will be called. For example, if you call the name method on an Employee instance,
Ruby will look first in the Employee class, see that a name method is available right
there, and call it. If there is no such method defined directly by the class, Ruby will
next look through all the modules included by the class. For example, if you call the
say_hi methods, Ruby—after failing to find it in the Employee class itself—will
look in the modules included by Employee. If the class includes more than one mod-
ule, Ruby will search the modules from the last one included back to the first. But our
Employee class includes only one module; right there in the Chatty module Ruby
will find and call the say_hi method. If Ruby had not found the method in the
Employee class or in any of its modules, it would have continued the search on to
Employee superclass—and its modules.

Modules, when used in the way described here, are known as mixins—because
they live to be mixed in (that is, to add their methods) to classes. Conceptually, mixin

Modules 51

Figure 2-1 A module mixed into a class

Employee

name()
title()
department

Object

Chatty

say_hi()

modules resemble Java and C# interfaces. Like an interface, a module allows classes
that resemble each other in some way to share a common set of methods. The differ-
ence is that while an interface is completely abstract—no implementation included—
a module comes complete with an implementation.

Exceptions
Most languages these days have a facility for dealing with the computing misfortunes
that sometimes befall even respectable code. Ruby is no exception. When something bad
happens to a good program, the Ruby interpreter will stop processing and raise an
exception. The exception will bubble up the call stack until Ruby comes across code that
will handle the exception or runs off the top of the call stack. In the later case Ruby will
terminate your program. You can catch exceptions with a begin/rescue statement:

begin

quotient = 1 / 0 # Boom!

rescue

puts('Something bad happened')

end

Ruby will catch any exception that might arise between the begin and rescue

statements and will immediately transfer control to the code after the rescue state-
ment if an exception is thrown. You can specify the errors that you will catch in greater
detail by supplying a list of exception classes in the rescue statement:

begin

quotient = 1 / 0 # Boom!

rescue ZeroDivisionError

puts('You tried to divide by zero')

end

If you happen to find yourself in the role of trouble source instead of trouble sink,
you can raise your own exception with raise:

if denominator == 0

raise ZeroDivisionError

end

return numerator / denominator

52 Chapter 2. Getting Started with Ruby

Ruby provides a number of nice shortcuts for raising exceptions. If your raise
statement calls out an exception class—as we did in the preceding example—Ruby
will conveniently create a new instance of that class and use the instance as the
exception. Conversely, if you supply raise with a string, Ruby will instantiate a
RuntimeException and use the string as the message embedded in that exception:

irb(main):001:0> raise 'You did it wrong'

RuntimeError: You did it wrong

Threads
Like many recent languages, Ruby has its own built-in threading facility. Threads
allow your program to do several things at once.12 Creating new threads in Ruby is
quite easy: The Thread constructor takes a block, which becomes the body of the
thread. The thread starts executing the second you create it and continues executing
until the block finishes. Here, for example, are a couple of threads that compute the
sum and products of the first ten integers:

thread1 = Thread.new do

sum=0

1.upto(10) {|x| sum = sum + x}

puts("The sum of the first 10 integers is #{sum}")

end

thread2 = Thread.new do

product=1

1.upto(10) {|x| product = product * x}

puts("The product of the first 10 integers is #{product}")

end

thread1.join

thread2.join

Threads 53

12. Well, if you are running on a single-processor system, threads only make it seem like your pro-
gram is doing several things at once. In fact, the system makes a little progress on each thing before
switching to the next task. But everything happens so quickly that most of the time you can’t tell the
difference.

You can wait for your thread to finish by using the join method:

thread1.join

thread2.join

While there is great power in multithreaded code, there is also a lot of danger. A
great way to introduce hard-to-find bugs into your programs is to allow two or more
threads to modify the same data structure at the same time. A good way to avoid this
and other race conditions and make your code thread safe is to use the Monitor class:

@monitor = Monitor.new

@monitor.synchronize do

Only one thread at a time here...

end

Managing Separate Source Files
One nice thing about dealing with programming examples is that they tend to be
short—short enough that they can easily be stuffed into a single source file. Sadly, at
some point most real applications outgrow that first file. The logical response is to
break up your system into multiple files, each containing a manageable chuck of code.
Of course, once you have broken your code up into those manageable chunks, you
need to deal with the issue of loading all of those files. Different languages deal with
this issue differently. Java, for example, has an elaborate system for loading classes
automatically as a program needs them.

Ruby approaches this problem a bit differently. Ruby programs must explicitly load
the classes on which they depend. For example, if your BankAccount class lives in a file
called account.rb and you want to use it in your Portfolio class, which resides in
portfolio.rb, you somehow need to ensure that BankAccount is actually loaded
before Portfolio starts to use it. You can accomplish this with the require statement:

require 'account.rb'

class Portfolio

Uses BankAccount

end

54 Chapter 2. Getting Started with Ruby

The require statement will load the contents of the file into the Ruby inter-
preter. The require statement is fairly smart: It will automatically add the .rb suffix.
Thus, for the code above, most Ruby programmers would simply say

require 'account'

The require statement also remembers whether a file has already been loaded
and will not load the same file twice, so you do not have to worry about requiring the
same file multiple times. Because require is so smart about what it has already
loaded, programmers commonly require in everything they need at the top of each
Ruby file—no need to fret about which classes have already been loaded by some
other file.

All of this applies not just to the files that you produce, but also to the files
included with the Ruby standard library. For example, if you need to parse some
URLs, you can simply require in the URI class that comes with Ruby:

require 'uri'

yahoo = URI.parse('http://www.yahoo.com')

A final twist on the whole require saga relates to RubyGems. RubyGems is a
software packaging system that lets coders release Ruby libraries and applications in
convenient, easy-to-install bundles. If you want to use a library from a gem—perhaps
from a gem called runt13—you need to require in the RubyGems support first:

require 'rubygems'

require 'runt'

Wrapping Up
From hello_world to modules and require, this chapter has been a whirlwind
tour of Ruby. Fortunately, many of the Ruby basics—for example, the numbers,
strings, and variables—are fairly commonplace. The quirks of the language, such as the

Wrapping Up 55

13. We will have more to say about runt, which is a library for dealing with times and schedules, in
Chapter 15.

not-quite-constant constants and the fact that zero is true, are not terribly over-
whelming. Even so, we can begin to see, peeking out from the subbasement founda-
tion of the language, some of the things that make Ruby such a joy. The syntax is terse
but not cryptic. Everything that lives inside a program—everything from the string
'abc' to the number 42 to arrays—is an object.

As we go through the design patterns in the chapters that follow, we shall see how
Ruby enables us to say some really powerful things, clearly and concisely.

56 Chapter 2. Getting Started with Ruby

PART II
Patterns in
Ruby

This page intentionally left blank

CHAPTER 3
Varying the Algorithm
with the Template Method

Imagine that you have a complex bit of code—maybe an involved algorithm or just
some hairy system code or perhaps something just hard enough that you want to code
it once, write some unit tests, and leave it alone. The trouble is that somewhere right
in the middle of your complex code is a bit that needs to vary. Sometimes this bit of
code wants to do this and sometimes it wants to do that. Even worse, you are pretty
sure that in the future the silly thing will need to something else. You are up against
the old “defend against change” problem discussed in Chapter 1. What do you do?

To make this scenario more concrete, imagine that your first real Ruby project is
to write a report generator—that is, a program that will spew out monthly status
reports. Your reports need to be formatted in reasonably attractive HTML, so you
come up with something like this:

class Report

def initialize

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

end

def output_report

puts('<html>')

puts(' <head>')

puts(" <title>#{@title}</title>")

59

puts(' </head>')

puts(' <body>')

@text.each do |line|

puts(" <p>#{line}</p>")

end

puts(' </body>')

puts('</html>')

end

end

Clearly, we are taking some liberties with this code in the interest of keeping this
example simple. In real life, our report would not just be hard-coded into the class,
and we certainly would not just include arbitrary text into an HTML file without
checking for the odd “<” or “>”. That said, the preceding code has some good things
going for it. It is simple, it is easy to use, and it does produce HTML:

report = Report.new

report.output_report

If all you want to do is generate some basic HTML, this code or something like
it is all you really need.

Keeping Up with What Life Throws at You
Unfortunately, even when life starts out simple, it rarely stays that way. Just months
after you finished the preceding programming masterpiece, you get a new require-
ment: Your formatting object needs to produce plain text reports along with the cur-
rent HTML. Oh, and we will probably need PostScript and maybe RTF output before
the year is out.

Sometimes the simplest solutions are the best, so you just code your way around
the problem in the dumbest possible way:

class Report

def initialize

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

end

60 Chapter 3. Varying the Algorithm with the Template Method

def output_report(format)

if format == :plain

puts("*** #{@title} ***")

elsif format == :html

puts('<html>')

puts(' <head>')

puts(" <title>#{@title}</title>")

puts(' </head>')

puts(' <body>')

else

raise "Unknown format: #{format}"

end

@text.each do |line|

if format == :plain

puts(line)

else

puts(" <p>#{line}</p>")

end

end

if format == :html

puts(' </body>')

puts('</html>')

end

end

end

Yuk. This second version may work, but it is a mess. The code to handle the plain
text formatting is tangled up with the HTML code. Worse, as you add more formats
(remember that looming requirement for PostScript!), you will have to go back and
rework the Report class to accommodate each new format. The way the code stands
right now, each time you add a new format you risk breaking the code for the other
formats. In short, our first attempt to add a new output format violates one of the
guiding principles for design patterns: It mixes up code that is changing with code that
is not changing.

Separate the Things That Stay the Same
The way out of this quandary is to refactor this mess into a design that separates the
code for the various formats. The key in doing so is to realize that no matter which

Separate the Things That Stay the Same 61

format is involved—whether plain text or HTML or the future PostScript—the basic
flow of Report remains the same:

1. Output any header information required by the specific format.

2. Output the title.

3. Output each line of the actual report.

4. Output any trailing stuff required by the format.

With this sequence in mind, we can reach back to the lessons we learned in
Object-Oriented Programming 101: Define an abstract base class with a master
method that performs the basic steps listed above, but that leaves the details of each
step to a subclass. With this approach, we have one subclass for each output format.
Here is our new, abstract Report class:

class Report

def initialize

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

end

def output_report

output_start

output_head

output_body_start

output_body

output_body_end

output_end

end

def output_body

@text.each do |line|

output_line(line)

end

end

def output_start

raise 'Called abstract method: output_start'

end

def output_head

raise 'Called abstract method: output_head'

end

62 Chapter 3. Varying the Algorithm with the Template Method

def output_body_start

raise 'Called abstract method: output_body_start'

end

def output_line(line)

raise 'Called abstract method: output_line'

end

def output_body_end

raise 'Called abstract method: output_body_end'

end

def output_end

raise 'Called abstract method: output_end'

end

end

Of course, this new Report class is not really an abstract class. While we might
talk in theory about abstract methods and classes, the fact is that Ruby supports nei-
ther. The ideas of abstract methods and classes do not really fit with Ruby’s easygoing,
dynamic view of life. The closest we can come is to raise exceptions should anyone try
to call one of our “abstract” methods.

With our new Report implementation in hand, we can now define a Report
subclass for each of our two formats. Here is the HTML class:

class HTMLReport < Report

def output_start

puts('<html>')

end

def output_head

puts(' <head>')

puts(" <title>#{@title}</title>")

puts(' </head>')

end

def output_body_start

puts('<body>')

end

def output_line(line)

puts(" <p>#{line}</p>")

end

Separate the Things That Stay the Same 63

def output_body_end

puts('</body>')

end

def output_end

puts('</html>')

end

end

Here is the plain text version:

class PlainTextReport < Report

def output_start

end

def output_head

puts("**** #{@title} ****")

puts

end

def output_body_start

end

def output_line(line)

puts(line)

end

def output_body_end

end

def output_end

end

end

Using our new report classes is straightforward:

report = HTMLReport.new

report.output_report

report = PlainTextReport.new

report.output_report

Picking a format is now as easy as selecting the right formatting class.

64 Chapter 3. Varying the Algorithm with the Template Method

Discovering the Template Method Pattern
Congratulations! You have just rediscovered what is probably the simplest of the orig-
inal GoF patterns, the Template Method pattern.

As shown in Figure 3-1, the general idea of the Template Method pattern is to
build an abstract base class with a skeletal method. This skeletal method (also called a
template method) drives the bit of the processing that needs to vary, but it does so by
making calls to abstract methods, which are then supplied by the concrete subclasses.
We pick the variation that we want by selecting one of those concrete subclasses.

In our example, the basic outline is all the things you need to do to generate a
report: output any header information, the report title, and then each line of the
report. In this case, the detail-supplying methods of the subclasses deal with writing
out the report in the correct format, either plain text or HTML. If we engineer all of
these tasks correctly, we will end up separating the stuff that stays the same (the basic
algorithm expressed in the template method) from the stuff that changes (the details
supplied by the subclasses).

One characteristic that the HTMLReport and PlainTextReport classes share
with all properly written Template Method pattern concrete subclasses is that they
look fragmentary. Like the good concrete subclasses that they are, both HTMLReport
and PlainTextReport override output_line and the other abstract methods. The
subclasses get their fragmentary appearance from the fact that they do not override the
key template method, output_report. In the Template Method pattern, the abstract
base class controls the higher-level processing through the template method; the sub-
classes simply fill in the details.

Discovering the Template Method Pattern 65

Figure 3-1 Class Diagram for the Template Method pattern

def template_method
 operation1()
 operation2()
 operation3()
end

ConcreteClass2

operation1()
operation2()
operation3()

ConcreteClass1

operation1()
operation2()
operation3()

AbstractClass

template_method()

operation1()
operation2()
operation3()

Hook Methods
If you go back and look at PlainTextReport, you will see that while it does override
the output_start and output_endmethods as well as the start and end methods for the
body, there is no actual code in any of the PlainTextReport versions of these methods.
This is reasonable enough: Unlike an HTML document, a plain text document does not
need any leading or trailing formatting. But there really is no reason to force a class such
as PlainTextReport, which has no use for all of these start and stop methods, to define
them anyway. It makes more sense for the base Report class to simply supply a default
implementation of these methods for the convenience of its subclasses:

class Report

def initialize

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

end

def output_report

output_start

output_head

@text.each do |line|

output_line(line)

end

output_end

end

def output_start

end

def output_head

raise 'Called abstract method: output_head'

end

def output_body_start

end

def output_line(line)

raise 'Called abstract method: output_line'

end

def output_body_end

end

66 Chapter 3. Varying the Algorithm with the Template Method

def output_end

end

end

Non-abstract methods that can be overridden in the concrete classes of the
Template Method pattern are called hook methods. Hook methods permit the con-
crete classes to choose (1) to override the base implementation and do something dif-
ferent or (2) to simply accept the default implementation. Frequently, the base class
will define hook methods solely to let the concrete subclass know what is going on.
When the Report class calls output_start, for example, it is telling its subclasses,
“We are ready to start outputting the report, so if you need to do something, do it
now.” The default implementations of these informative hook methods are frequently
empty. They exist merely to let the subclasses know what is happening but do not
require the subclasses to override methods that do not interest them.

Sometimes, however, the default implementation of a hook method may actually
contain some code. In our Report example, we might default to treating the title like
just another line of text:

class Report

def initialize

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

end

def output_report

output_start

output_head

@text.each do |line|

output_line(line)

end

output_end

end

def output_start

end

def output_head

output_line(@title)

end

def output_body_start

end

Hook Methods 67

def output_line(line)

raise 'Called abstract method: output_line'

end

def output_body_end

end

def output_end

end

end

But Where Are All the Declarations?
Given that this chapter describes our first Ruby pattern, it is worth taking a moment
to consider the issues of types and type safety in Ruby. If you are recently arrived from
the world of statically typed languages, you may be wondering how our Report class
and its subclasses can get away with the almost total lack of declarations. Nowhere in
the Report class, you may have noticed, do we declare that @title is a string or that
@text is an array of strings. In the same vein, when our client code creates a new
HTMLReport, we never actually say that the variable formatter holds a reference to
an instance of HTMLReport or Report—it just does:

report = HTMLReport.new

Ruby is dynamically typed, which means that the language does no checking to
ensure that the objects being passed around have any particular class ancestry. The
only thing that matters is that an object actually implements the methods that its
clients want to call. In the preceding example, the Report class simply expects the
@text object to behave like an array of strings. If @text looks like an array of
strings—that is, if you can get the third string out of it with @text[2]—then what-
ever its actual class, it is the correct type.

This “I am what I am” approach to typing has been called duck typing. The
name comes from the old bit of wisdom that goes, “If it looks like a duck and
quacks like a duck, then it is a duck.” Another way to look at this issue is to think
of static typing as working like an aristocracy: Statically typed languages are con-
stantly asking about your parent or grandparent, or perhaps, in the case of Java-style
interfaces, your aunts and uncles. In a statically typed language, an object’s family
tree matters deeply. Dynamically typed languages, by contrast, are meritocracies:

68 Chapter 3. Varying the Algorithm with the Template Method

They are concerned with which methods you have, rather than where those methods
came from. Dynamically typed languages rarely ask about an object’s ancestry;
instead, they simply say, “I don’t care who you are related to, Mac. All I want to
know is what you can do.”1

Types, Safety, and Flexibility
People who are used to programming in statically typed languages often wonder how
all of this could possibly work. You might think that all of this free and easy duck typ-
ing stuff will certainly lead to disaster, with programs constantly crashing as they try
to format some HTML with a database connection or attempt to tell the number 42
to generate a monthly report. Surprisingly, it turns out that these kinds of outrageous
typing problems rarely occur.

You can find evidence of this robustness in the world of Java programs, of all
places. Almost all Java programs written before the advent of Java 1.5—and that
covers the bulk of existing Java programs—use the containers from the java.util
package, things like HashMap and ArrayList. The pre-1.5 versions of these con-
tainers provided no type safety at all, and even post-1.5 Java continues to provide
non-type-safe versions of these containers for backward compatibility. Despite this
cavalier attitude toward type safety, most Java programs do not mix up their socket
objects with their Employee objects and crash while trying to give a network con-
nection a pay raise.

Statically typed languages are so pervasive these days that a key question is rarely
asked: What is the cost of static typing? My answer is that static typing costs a lot. In
fact, in the currency of programming effort and code clutter, static typing costs a for-
tune. Look at a Java or C# program and count the number of tokens devoted to
parameter and variable declarations. Add in most of the interfaces. Don’t forget those
pesky class casts, where you convince the typing system that, yes, that really is a String
over there. Add a bonus for each complex generic declaration. All of this code clutter
is not free.2

Types, Safety, and Flexibility 69

1. And, in my mind at least, they say it with the accent of a New York cab driver.
2. In fairness, I must point out that static typing is very expensive in terms of code clutter as it is
implemented in the languages in wide use today. There are, however, a number of much less
widely used languages, such as OCaml and Scala, that manage to handle static typing with much
less noise.

And it is not just programming effort. There is a very real, albeit hidden cost to
static typing: It tends to couple your system together much more tightly than neces-
sary. Consider the following Java isEmpty() method:

public boolean isEmpty(String s)

{

return s.length() == 0;

}

Now look at its Ruby twin:

def empty?(s)

s.length == 0

end

On the surface, the two methods seem pretty much the same. Now consider that the
Java version works only on arguments of type java.lang.String. The Ruby version
will work on strings, to be sure—but it will also work with arrays, queues, sets, and
hashes. In fact, the Ruby empty? method will work with any argument that has a length
method. It doesn’t care what the exact type of the argument is, and perhaps it should not.

The arguments for dynamic typing might sound counterintuitive to the statically
typed ear. If you are used to static typing, in which you declare everything all the time,
it might seem unrealistic to suppose that you can build large, reliable systems without
strong type checking. But it is possible—and there are two very obvious examples that
demonstrate just how possible it is.

Ruby on Rails is by far the most prominent evidence that you can write reliable
code in a dynamically typed language. Rails consists of tens of thousands of lines of
dynamically typed Ruby code, and Rails is rock stable. If Rails does not persuade you,
think about that other large lump of Ruby code in constant use everyday: the standard
library that comes with Ruby. The Ruby standard library consists of more than
100,000 lines of Ruby. It is nearly impossible to write a Ruby program that does not
use the Ruby standard library—and it works.

Ruby on Rails and the Ruby standard library are the existence proof: You can
write large bodies of reliable code in a dynamically typed language. The fear that
dynamic typing will produce code chaos is mostly unfounded. Yes, type problems do
occasionally cause Ruby programs to crash. But Ruby programs do not crash with any-
thing like the frequency that you might expect given the lengths that statically typed
languages go to in to avoid even the remote possibility of type errors.

70 Chapter 3. Varying the Algorithm with the Template Method

Does this mean that dynamically typed languages are just better, and that we
should give up on statically typed languages completely? The jury is still out on this
question. As with most software engineering questions, the answer involves seeing the
two options as a balance. Static typing is probably worth the price on large, complex
systems built by huge teams. But dynamic typing has some significant advantages:
Programs written in Ruby are generally a fraction of the size of their statically typed
equivalents. And, as we saw with the empty? example and shall see in the chapters to
come, dynamic typing offers a huge flexibility bonus.

If all of this seems crazy to you, stick with me through the rest of this book, and
give all of this dynamically typed insanity a chance. You may be pleasantly surprised.

Unit Tests Are Not Optional
One way that you can increase the chances that the surprise will be a pleasant one is
to write unit tests. No matter whether you are writing in Java, C#, or Ruby, you
should be writing unit tests: The second oldest3 joke in programming is “It compiles,
so it must work.”

While tests are important no matter which language you are using, they are crit-
ical when you are working in a dynamic language such as Ruby. There is no compiler
in Ruby to make that first sanity check—and perhaps give you a false sense of secu-
rity. Instead, the only way to know that the program is working is to run some tests.
The good news is that the same unit tests that you need to show that your code works
will also tend to ferret out the vast bulk of those pesky type-related problems.

The even better news is that if you know how to use JUnit, NUnit, or any of the
other familiar XUnit-style libraries, then you already know how to write unit tests in
Ruby. For example, the following class tests our Ruby empty? method:

require 'test/unit'

require 'empty'

class EmptyTest < Test::Unit::TestCase

def setup

@empty_string = ''

@one_char_string = 'X'

@long_string = 'The rain in Spain'

Unit Tests Are Not Optional 71

3. The oldest is that dead moth taped in the log book.

@empty_array = []

@one_element_array = [1]

@long_array = [1, 2, 3, 4, 5, 6]

end

def test_empty_on_strings

assert empty?(@empty_string)

assert ! empty?(@one_char_string)

assert ! empty?(@long_string)

end

def test_empty_on_arrays

assert empty?(@empty_array)

assert ! empty?(@one_element_array)

assert ! empty?(@long_array)

end

end

True to its XUnit roots, Test::Unit runs each of the methods whose name starts
with test as a test. If your test class has a setup method (as the preceding class does),
it is run before each test method. If your class has a teardown method (and the pre-
ceding class does not), it is run after each test method.

Test::Unit comes equipped with a whole menagerie of assert methods. You can
assert that something is true, or you can assert_equal that two objects are equal. If
you want to be sure that you have something and not nothing, you can assert_not_nil.

Running the unit tests could not be easier. If the test case above is found in a file
called string_test.rb, then you can run the tests by simply executing the file as a
Ruby program:

$ ruby empty_test.rb

Loaded suite empty_test

Started

..

Finished in 0.000708 seconds.

2 tests, 6 assertions, 0 failures, 0 errors

Nothing like the feeling of a test that completes without complaint.

72 Chapter 3. Varying the Algorithm with the Template Method

Using and Abusing the Template Method Pattern
Given that it is possible to write a reliable implementation of the Template Method pat-
tern in Ruby, how do you actually go about doing so? The best approach is an evolu-
tionary one: Start with one variation and simply code as though it was the only problem
that you need to solve. In our report example, you might have started with HTML:

class Report

def initialize

@title = 'MonthlyReport'

@text = ['Things are going', 'really, really well.']

end

def output_report

puts('<html>')

puts(' <head>')

puts(' <title>#{@title}</title>')

output the rest of the report ...

end

end

Next, you could refactor the method that will become the template method so
that it calls other methods for the variable parts of the algorithm, but still just focus
on the one case:

class Report

...

def output_report

output_start

output_title(@title)

output_body_start

for line in @text

output_line(line)

end

output_body_end

output_end

end

def output_start

puts('<html>')

end

Using and Abusing the Template Method Pattern 73

def output_title(title)

puts(' <head>')

puts(" <title>#{title}</title>")

puts(' </head>')

end

...

end

Finally, you could create a subclass for your first case and move your specific
implementation into that subclass. At this point, you are ready to start coding the rest
of the variations.

As mentioned in Chapter 1, the worst mistake you can make is to overdo things
in an effort to cover every conceivable possibility. The Template Method pattern is at
its best when it is at its leanest—that is, when every abstract method and hook is there
for a reason. Try to avoid creating a template class that requires each subclass to over-
ride a huge number of obscure methods just to cover every conceivable possibility. You
also do not want to create a template class that is encrusted with a multitude of hook
methods that no one will ever override.

Templates in the Wild
You can find a classic example of the Template Method pattern in WEBrick, the light-
weight, all-Ruby library for building TCP/IP servers. A key part of WEBrick is the
GenericServer class, which implements all of the details of being a network server. Of
course, GenericServer has no idea what you want to actually accomplish in your server.
Thus, to use GenericServer, you simply extend it and override the run method:

require 'webrick'

class HelloServer < WEBrick::GenericServer

def run(socket)

socket.print('Hello TCP/IP world')

end

end

The template method buried inside GenericServer contains all the code for listen-
ing on a TCP/IP port, accepting new connections, and cleaning up when a connection is

74 Chapter 3. Varying the Algorithm with the Template Method

broken. And right in the middle of all that code, right when it has its hands on a new
connection, it calls your run method.4

There is another very common example of the Template Method pattern that is
perhaps so pervasive that it is hard to see. Think about the initialize method that
we use to set up our objects. All we know about initialize is that it is called some-
time toward the end of the process of creating a new object instance and that it is a
method that we can override in our class to do any specific initialization. Sounds like
a hook method to me.

Wrapping Up
In this chapter we looked in detail at our first pattern, the Template Method pattern.
The Template Method pattern is simply a fancy way of saying that if you want to vary
an algorithm, one way to do so is to code the invariant part in a base class and to
encapsulate the variable parts in methods that are defined by a number of subclasses.
The base class can simply leave the methods completely undefined—in that case, the
subclasses must supply the methods. Alternatively, the base class can provide a default
implementation for the methods that the subclasses can override if they want.

Given that this was our first pattern, we also took a bit of a detour in which we
explored one of the most important aspects of programming in Ruby: duck typing.
Duck typing is a trade-off: You give up the compile-time safety of static typing, and
in return you get back a lot of code clarity and programming flexibility.

Looking ahead, we will soon see that the Template Method pattern is such a basic
object-oriented technique that it pops up in other patterns. In Chapter 13, for exam-
ple, we will learn that the Factory Method pattern is simply the Template Method pat-
tern applied to creating new objects. The problem that the Template Method pattern
attacks is also reasonably pervasive. In fact, in the next chapter we will look at the
Strategy pattern, which offers a different solution to the same problem—a solution that
does not rely on inheritance in the same way that the Template Method pattern does.

Wrapping Up 75

4. I know this because I have looked. One of the advantages of dealing with an interpreted language
is that all of the Ruby standard library source code is sitting somewhere on your system, just waiting
to teach you all sorts of things. I can’t imagine a better way to learn a new programming language
than to look at actual, working code.

This page intentionally left blank

CHAPTER 4
Replacing the Algorithm
with the Strategy

We kicked off the last chapter by posing the following question: How do you vary part
of an algorithm? How can you get step 3 of a five-step process to sometimes do one
thing and sometimes do another thing? The answer that we came up with in Chapter
3 is to use the Template Method pattern, to create a base class with a template method
that controls the overall processing and then to use subclasses to fill in the details. If
we want to sometimes do this and other times to do that, we create two subclasses,
one for this and another for that.

Unfortunately, the Template Method pattern has some drawbacks, most of which
stem from the fact that this pattern is built around inheritance. As we saw in Chapter
1, basing your design on inheritance has some significant disadvantages. No matter
how carefully you design your code, your subclasses are tangled up with their super-
class: It is in the nature of the relationship. On top of this, inheritance-based tech-
niques such as the Template Method pattern limit our runtime flexibility. Once we
have selected a particular variation of the algorithm—in our example, once we have
created an instance of HTMLReport—changing our mind is hard. With the Template
Method pattern, if we change our mind about the format of the report, we need to
create a whole new report object—perhaps a PlainTextReport—just to switch to a
different output format. But what is the alternative?

77

Delegate, Delegate, and Delegate Again
The alternative is to follow that bit of GoF advice mentioned in Chapter 1: Prefer
delegation. What if, instead of creating a subclass for each variation, we tear out the
whole annoyingly varying chunk of code and isolate it in its own class? Then we
could create a whole family of classes, one for each variation. Here for example, is our
HTML formatting code from the report example, surgically transplanted into its
own class:

class Formatter

def output_report(title, text)

raise 'Abstract method called'

end

end

class HTMLFormatter < Formatter

def output_report(title, text)

puts('<html>')

puts(' <head>')

puts(" <title>#{title}</title>")

puts(' </head>')

puts(' <body>')

text.each do |line|

puts(" <p>#{line}</p>")

end

puts(' </body>')

puts('</html>')

end

end

Here’s the formatter for plain text:

class PlainTextFormatter < Formatter

def output_report(title, text)

puts("***** #{title} *****")

text.each do |line|

puts(line)

end

end

end

78 Chapter 4. Replacing the Algorithm with the Strategy

Now that we have completely removed the details of formatting the output from
our Report class, that class becomes much simpler:

class Report

attr_reader :title, :text

attr_accessor :formatter

def initialize(formatter)

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

@formatter = formatter

end

def output_report

@formatter.output_report(@title, @text)

end

end

Using the new Report class is only slightly more complicated. We now need to
supply Report with the correct formatting object:

report = Report.new(HTMLFormatter.new)

report.output_report

The GoF call this “pull the algorithm out into a separate object” technique the
Strategy pattern (Figure 4-1). The key idea underlying the Strategy pattern is to define
a family of objects, the strategies, which all do the same thing—in our example, for-
mat the report. Not only does each strategy object perform the same job, but all of the
objects support exactly the same interface. In our example, both of the strategy objects

Delegate, Delegate, and Delegate Again 79

Figure 4-1 The Strategy pattern

Context
Strategy

operation()

Strategy1

operation()

Strategy2

operation()

@strategy

support the output_report method. Given that all of the strategy objects look alike
from the outside, the user of the strategy—called the context class by the GoF—can
treat the strategies like interchangeable parts. Thus, it does not matter which strategy
you use, because they all look alike and they all perform the same function.

But it does matter which strategy you pick, because each one does its thing a little
differently. In the example, one of our formatting strategies produces HTML while the
other produces plain text. If we were doing tax calculations, we might have use the
Strategy pattern for state income tax calculations: one strategy to compute taxes for resi-
dents of Virginia, and another to do the calculations according to the California tax code.

The Strategy pattern has some real advantages. As we saw in the report example,
we can achieve better separation of concerns by pulling out a set of strategies from a
class. By using the Strategy pattern, we relieve the Report class of any responsibility
for or knowledge of the report file format.

In addition, because the Strategy pattern is based on composition and delegation,
rather than on inheritance, it is easy to switch strategies at runtime. We simply swap
out the strategy object:

report = Report.new(HTMLFormatter.new)

report.output_report

report.formatter = PlainTextFormatter.new

report.output_report

The Strategy pattern does have one thing in common with the Template Method
pattern: Both patterns allow us to concentrate the decision about which variation we
are using in one or a few places. With the Template Method pattern, we make our
decision when we pick our concrete subclass. In the Strategy pattern, we make our
decision by selecting a strategy class at runtime.

Sharing Data between the Context and the Strategy
A real advantage of the Strategy pattern is that because the context and the strategy
code are in different classes, a nice wall of data separation divides the two. The bad
news is that we now need to figure a way to get the information that the context has
but the strategy needs up and over that wall. We have essentially two choices here.

First, we can continue with the approach that we have used so far—that is, pass
in everything that the strategy needs as arguments when the context calls the

80 Chapter 4. Replacing the Algorithm with the Strategy

methods on the strategy object. Recall that in our Report example, the report
object passed in everything that the formatter needed to know in the arguments to
output_report. Passing in all of the data has the advantage of keeping the context
and the strategy objects crisply separated. The strategies have their interface; the con-
text simply uses that interface. The downside of doing things this way is that if there
is a lot of complex data to pass between the context and the strategy, then, well, you
are going to be passing a lot of complex data around without any guarantee that it
will get used.

Second, we can get the data from the context to the strategy by having the con-
text object pass a reference to itself to the strategy object. The strategy object can then
call methods on the context to get at the data it needs. Returning to our reporting
example, we might do something like this:

class Report

attr_reader :title, :text

attr_accessor :formatter

def initialize(formatter)

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

@formatter = formatter

end

def output_report

@formatter.output_report(self)

end

end

Here Report passes a reference to itself to the formatting strategy, and the for-
matter class calls the new title and text methods to get the data it needs. Here is a
refactored HTMLFormatter to go with this self-passing Report class:

class Formatter

def output_report(context)

raise 'Abstract method called'

end

end

Sharing Data between the Context and the Strategy 81

class HTMLFormatter < Formatter

def output_report(context)

puts('<html>')

puts(' <head>')

puts(" <title>#{context.title}</title>")

puts(' </head>')

puts(' <body>')

context.text.each do |line|

puts(" <p>#{line}</p>")

end

puts(' </body>')

puts('</html>')

end

end

Although this technique of passing the context to the strategy does simplify the
flow of data, it also increases the coupling between the context and the strategy. This
magnifies the danger that the context class and the strategy classes will get tangled up
with each other.

Duck Typing Yet Again
The formatting example that we have built so far mirrors the GoF approach to the
Strategy pattern. Our family of formatting strategies consists of the “abstract”
Formatter base class with two subclasses, HTMLFormatter and PlainTextFormatter.
This is, however, a very un-Ruby implementation, because the Formatter class
does not actually do anything: It simply exists to define the common interface for
all the formatter subclasses. There is certainly nothing wrong with this approach in
the sense of it working or not working—it does work. Nevertheless, this kind of
code runs counter to Ruby’s duck typing philosophy. The ducks would argue
(quack?) that HtmlFormatter and PlainTextFormatter already share a common
interface because both implement the output_report method. Thus there is no
need to artificially grind in the point by creating what is essentially a do-nothing
superclass.

We can eliminate the Formatter base class with a few swipes of the delete key.
We end up with the following code:

82 Chapter 4. Replacing the Algorithm with the Strategy

class Report

attr_reader :title, :text

attr_accessor :formatter

def initialize(formatter)

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

@formatter = formatter

end

def output_report()

@formatter.output_report(self)

end

end

class HTMLFormatter

def output_report(context)

puts('<html>')

puts(' <head>')

Output The rest of the report ...

puts(" <title>#{context.title}</title>")

puts(' </head>')

puts(' <body>')

context.text.each do |line|

puts(" <p>#{line}</p>")

end

puts(' </body>')

puts('</html>')

end

end

class PlainTextFormatter

def output_report(context)

puts("***** #{context.title} *****")

context.text.each do |line|

puts(line)

end

end

end

If you compare this code with the previous version, you will see that we eliminated
the base Formatter class but not much else has changed. Thanks to dynamic typing,

Duck Typing Yet Again 83

we still get the same reports proclaiming that all is well. Although both versions do
work, the Ruby world would firmly vote for skipping the Formatter base class.

Procs and Blocks
It turns out that ripping out the base class is not the only way we can recast the Strategy
pattern to give it a more Ruby-colored tint. But before we can take the next step, we need
to explore one of the most interesting aspects of Ruby, code blocks and the Proc object.

As users of object-oriented programming languages, we spend a lot of our time
thinking about objects and how they go together. But there is an asymmetry regard-
ing how we tend to think about our objects. We have no problem separating out data
from an object—we can pull out the @text from a report and pass it around inde-
pendently of the rest of the report. Yet we tend to think of our code as tightly bound,
inseparable from the object to which it is attached. Of course, it doesn’t have to be this
way. What if we could pull out chunks of code from our objects and pass those chunks
around just like objects? It turns out that Ruby allows us to do exactly that.

In Ruby, a Proc is an object that holds a chunk of code. The most common way
to make a Proc is with the lambda method:

hello = lambda do

puts('Hello')

puts('I am inside a proc')

end

Ruby calls the chunk of code between the do and the end a code block.1 The
lambda method returns a new Proc object, a container for all of the code between the do
and the end. Our hello variable points at the Proc object. We can run the code
buried inside the Proc by calling the (what else?) call method. In our example, if we
call the call method on the Proc object

hello.call

we will get

Hello

I am inside a proc

84 Chapter 4. Replacing the Algorithm with the Strategy

1. Other terms for the same concept are closure and lambda, which explains the name of our
Proc-producing method.

An extremely useful aspect of the Proc object is that it picks up the surrounding
environment when it is created. Thus any variables that are visible when a Proc is cre-
ated remain visible inside the Proc when it is run. For example, there is only one vari-
able name in the following code fragment:

name = 'John'

proc = Proc.new do

name = 'Mary'

end

proc.call

puts(name)

When we run this code, name will be set to “John” in the first statement, then
reset to “Mary” when the Proc is called. Ultimately, Ruby will print “Mary”.

If do and end seem like too much typing for you, Ruby provides a slightly more
concise syntax using curly braces. Here is a quicker way to create our hello Proc:

hello = lambda {

puts('Hello, I am inside a proc')

}

Ruby programmers have adopted the convention of using do/end for multiple-
line code blocks and braces for one liners.2 A more socially acceptable version of our
example, then, is this:

hello = lambda {puts('Hello, I am inside a proc')}

Proc objects have a lot in common with methods. For example, not only are
Proc objects and methods bundles of code, but both can also return a value. A Proc
always returns the last value computed in the code block; thus, to return a value from

Procs and Blocks 85

2. Actually, there is one real difference between do/end and the braces. In Ruby expressions, the
braces have a higher precedence than the do/end pair. Essentially, the braces are stickier in an
expression. This difference usually rears its head only when you start dropping all of those optional
parentheses.

a Proc, you just make sure that the value you want returned is computed by the last
expression in the Proc object. Whatever value is returned by the Proc is passed back
through by call. Thus the code

return_24 = lambda {24}

puts(return_24.call)

will print

24

You can also define parameters for your Proc object, although the syntax is a lit-
tle strange. Instead of wrapping your parameter list with the usual round parentheses
“()”, you open and close the list with a vertical bar character “|”:

multiply = lambda {|x, y| x * y}

This code defines a Proc object that takes two parameters, multiplies them
together, and returns the result. To call a Proc with parameters, we simply add the
parameters to the call method:

n = multiply.call(20, 3)

puts(n)

n = multiply.call(10, 50)

puts(n)

Running this code will produce the following printout:

60

500

The ability to pass around blocks of code is so useful that Ruby has defined a spe-
cial shorthand syntax for it. If we want to pass a block of code into a method, we sim-
ply append the block to the end of the method call. The method can then execute the
code block by using the yield keyword. For example, here is a method that prints a
message, executes its code block, and prints a second message:

86 Chapter 4. Replacing the Algorithm with the Strategy

def run_it

puts("Before the yield")

yield

puts("After the yield")

end

And here is the call to run_it. Notice that we just append the code block to the
end of the method call:

run_it do

puts('Hello')

puts('Coming to you from inside the block')

end

When we slap a code block on the end of a method call as we did above, the block
(actually the Proc object) is passed along as a sort of invisible parameter to the
method. The yield keyword will then execute that parameter. For instance, running
the code above will produce the following output:

Before the yield

Hello

Coming to you from inside the block

After the yield

If the block that is passed into your method takes parameters, you supply the
parameters to the yield. For instance, the code

def run_it_with_parameter

puts('Before the yield')

yield(24)

puts('After the yield')

end

run_it_with_parameter do |x|

puts('Hello from inside the proc')

puts("The value of x is #{x}")

end

Procs and Blocks 87

will print

Before the yield

Hello from inside the proc

The value of x is 24

After the yield

Sometimes we want to make the code block parameter explicit—that is, we want
to capture the block passed into our method as a Proc object in an actual parameter.
We can do so by adding a special parameter to the end of our parameter list. This spe-
cial parameter, which is preceded by an ampersand, is assigned the Proc object cre-
ated from the code block that came after the method call. Thus an equivalent
rendition of the run_it_with_parameters method is

def run_it_with_parameter(&block)

puts('Before the call')

block.call(24)

puts('After the call')

end

The ampersand works in the other direction, too. If we have a Proc object in a
variable and we want to pass it to a method that is looking for a code block, we can
convert the Proc object back into a code block by sticking an ampersand in front of it:

my_proc = lambda {|x| puts("The value of x is #{x}")}

run_it_with_parameter(&my_proc)

Quick-and-Dirty Strategies
What does all of this code block and Proc stuff have to do with the Strategy pattern?
Simply put, you can look at a strategy as a lump of executable code that knows how
to do something—format text, for example—and is wrapped up in an object. This
should sound familiar because it is also a good description of a Proc—a chunk of code
wrapped in an object.

Recasting our report formatting example to use a Proc strategy is trivial. The only
changes we need to make to the Report class are to add an ampersand to pick up any
code block that is passed in the initialize method and to rename the method that
we call from output_report to call:

88 Chapter 4. Replacing the Algorithm with the Strategy

class Report

attr_reader :title, :text

attr_accessor :formatter

def initialize(&formatter)

@title = 'Monthly Report'

@text = ['Things are going', 'really, really well.']

@formatter = formatter

end

def output_report

@formatter.call(self)

end

end

Building the formatters is a little different, however. We now need to create Proc
objects instead of instances of our special formatter classes:

HTML_FORMATTER = lambda do |context|

puts('<html>')

puts(' <head>')

puts(" <title>#{context.title}</title>")

puts(' </head>')

puts(' <body>')

context.text.each do |line|

puts(" <p>#{line}</p>")

end

puts(' </body>')

puts

With our new Proc-based formatters in hand, we are ready to create some
reports. Given that we have a Proc object and the Report constructor expects a code
block, we need to stick an ampersand in front of our Proc object when we create a
new Report instance:

report = Report.new &HTML_FORMATTER

report.output_report

Why bother with a Proc-based strategy at all? For one thing, we do not have to define
special classes for our strategy—we just wrap the code in a Proc. More importantly, we

Quick-and-Dirty Strategies 89

can now create a strategy out of thin air by passing a code block right into the method. As
an example, here is our plain text formatter, recast as an on-the-fly code block:

report = Report.new do |context|

puts("***** #{context.title} *****")

context.text.each do |line|

puts(line)

end

end

If you are not used to them, code blocks can seem a little bizarre. But consider
that with code blocks, we have simplified the Strategy pattern from a context, a base
strategy class, some number of concrete strategies, and associated instances here and
there, to a context class and some code blocks.

Does all of this mean we should just forget about the class-based strategies? Not
really. Code block-based strategies work only when the strategy interface is a simple,
one-method affair. After all, the only method that we can call on a Proc object is call.
If you need more than that for your strategy, by all means build some classes. But if
your requirement calls for a simple strategy, the code block may just be the way to go.

Using and Abusing the Strategy Pattern
The easiest way to go wrong with the Strategy pattern is to get the interface between
the context and the strategy object wrong. Bear in mind that you are trying to tease
an entire, consistent, and more or less self-contained job out of the context object and
delegate it to the strategy. You need to pay particular attention to the details of the
interface between the context and the strategy as well as to the coupling between
them. Remember, the Strategy pattern will do you little good if you couple the con-
text and your first strategy so tightly together that you cannot wedge a second or a
third strategy into the design.

The Strategy Pattern in the Wild
The rdoc utility, which came packaged with your Ruby distribution, contains a cou-
ple of instances of the classic GoF class-based Strategy pattern. The purpose of rdoc
is to extract documentation from programs. Besides Ruby, rdoc can distill documen-
tation from C and (goodness help us!) FORTRAN programs. The rdoc utility uses the

90 Chapter 4. Replacing the Algorithm with the Strategy

Strategy pattern to handle each of the different programming languages—there is a C
parser, a Ruby parser, and a FORTRAN parser, each of which is a strategy for han-
dling its respective input.

The rdoc utility also gives you a choice of output formats—you can choose to
output your documentation in several flavors of HTML, or in XML, or in the format
used by the Ruby-supplied ri command. As you have probably guessed, each of
these output formats is also handled by its own strategy. The relationship between
the various rdoc strategy classes is a good illustration of the typical Ruby attitude
toward inheritance. The class relationship between the various strategies is depicted
in Figure 4-2.

As you can see from Figure 4-2, there are four related output strategies (or gener-
ators, as rdoc calls them) and one stand-alone strategy. The four related strategies all
generate similar output—that familiar <stuff> wrapped in angle brackets
</stuff>.3 The final strategy generates output for the Ruby ri command, which
does not resemble either XML or HTML. As you can see from the UML diagram in
Figure 4-2, the class relationships are purely a reflection of implementation issues: The
classes that generate HTML, CHM, and XML will naturally share a lot of common
code and, therefore, have an inheritance relationship. The RIGenerator produces
very different output and is completely unrelated to the XML/HTML family. The
rdoc code gives no thought to making all of the generators share a common superclass
simply because they need to implement the same interface. Each generator imple-
ments the right methods, and that is the end of it.

The Strategy Pattern in the Wild 91

Figure 4-2 The generator classes of rdoc

HTMLGenerator

CHMGenerator XMLGenerator HTMLGeneratorInOne

RIGenerator

3. CHM is an HTML flavor used to generate Microsoft help files. And please remember it is the
rdoc code—and not me—that suggests XML is a kind of HTML.

A good example of the Proc object as a lightweight strategy object is as close at
hand as the familiar array. If you want to sort the contents of a Ruby array, you can
simply call the sort method:

a = ['russell', 'mike', 'john', 'dan', 'rob']

a.sort

By default, sort will sort by the “natural” ordering of the objects in the array. But
what if we want to use some other ordering? For example, what if we want to sort by
the length of the strings? We simply pass in a comparison strategy—as a code block:

a.sort { |a,b| a.length <=> b.length }

The sort method will call your code block each time it needs to compare two
elements in the array. Your block should return 1 if the first element is larger, 0 if they
are equal, and -1 if the second element is larger. Not so coincidentally, this is exactly
what the <=> operator does.

Wrapping Up
The Strategy pattern is a delegation-based approach to solving the same problem as
the Template Method pattern. Instead of teasing out the variable parts of your algo-
rithm and pushing them down into subclasses, you simply implement each version of
your algorithm as a separate object. You can then vary the algorithm by supplying dif-
ferent strategy objects to the context—one strategy for producing HTML and a dif-
ferent one for outputting PDF files, for example, or perhaps one strategy for
calculating Virginia taxes and a different one for computing Pennsylvania taxes.

We have a couple of choices regarding how we get the appropriate data from the
context object over to the strategy object. We can pass all of the data as parameters as
we call methods on the strategy object, or we can simply pass a reference to the whole
context object to the strategy.

Ruby code blocks, which are essentially code wrapped up in an instant object (the
Proc object), are wonderfully useful for creating quick, albeit simple, strategy objects.

As we shall see in coming chapters, the Strategy pattern resembles, at least super-
ficially, several other patterns. For example, in the Strategy pattern we have an
object—the context—that is trying to get something done. But to get that thing done,
we need to supply the context with a second object—the strategy object—that helps

92 Chapter 4. Replacing the Algorithm with the Strategy

get the thing done. Superficially, the Observer pattern works in much the same way:
An object does something, but along the way it makes calls to a second object, which
we need to supply.

The difference between these two patterns relates to their intent. The motive
behind the Strategy pattern is to supply the context with an object that knows how to
perform some variation on an algorithm. The intent of the Observer pattern is very
different—the intent of the Observer pattern is . . . Well, perhaps we should leave that
distinction to another chapter (the next one, in fact).

Wrapping Up 93

This page intentionally left blank

CHAPTER 5
Keeping Up with the
Times with the Observer

One of the knottiest design challenges is the problem of building a system that is highly
integrated—that is, a system where every part is aware of the state of the whole. Think
about a spreadsheet, where editing the contents of one cell not only changes the number
in the grid but also changes the column totals, alters the height of one of the bars in a
bar chart, and enables the Save button. Even more simply, how about a personnel system
that needs to let the payroll department know when someone’s salary changes?

Building this kind of system is hard enough, but throw in the requirement that
the system be maintainable and now you are talking truly difficult. How can you tie
the disparate parts of a large software system together without increasing the coupling
between classes to the point where the whole thing becomes a tangled mess? How do
you construct a spreadsheet that properly displays changes in the data without hard-
coding a link between the spreadsheet editing code and the bar chart renderer? How
can you make the Employee object spread the news about salary changes without
tangling it up with the payroll system?

Staying Informed
One way to solve this problem is to focus on the fact that the spreadsheet cell and the
Employee object are both acting as a source of news. Fred gets a raise and his
Employee record shouts out to the world (or at least to anyone who seems interested),
“Hello! I’ve got something going on here!” Any object that is interested in the state of

95

Fred’s finances need simply register with his Employee object ahead of time. Once
registered, that object would receive timely updates about the ups and downs of Fred’s
paycheck.

How would all of this work in code? Here is a basic version of an Employee object
with no code to tell anyone anything—it just goes about its business of keeping track
of an employee:

class Employee

attr_reader :name

attr_accessor :title, :salary

def initialize(name, title, salary)

@name = name

@title = title

@salary = salary

end

end

Because we have made the salary field accessible with attr_accessor, our
employees can get raises:1

fred = Employee.new("Fred Flintstone", "Crane Operator", 30000.0)

Give Fred a raise

fred.salary=35000.0

Let’s now add some fairly naive code to keep the payroll department informed of
pay changes:

class Payroll

def update(changed_employee)

puts("Cut a new check for #{changed_employee.name}!")

puts("His salary is now #{changed_employee.salary}!")

end

end

96 Chapter 5. Keeping Up with the Times with the Observer

1. Of course, the employees can also suffer pay cuts, but we will silently pass over such unpleasant
matters.

class Employee

attr_reader :name, :title

attr_reader :salary

def initialize(name, title, salary, payroll)

@name = name

@title = title

@salary = salary

@payroll = payroll

end

def salary=(new_salary)

@salary = new_salary

@payroll.update(self)

end

end

We can now change Fred’s wages:

payroll = Payroll.new

fred = Employee.new('Fred', 'Crane Operator', 30000, payroll)

fred.salary = 35000

And the payroll department will know all about it:

Cut a new check for Fred!

His salary is now 35000!

Note that since we need to inform the payroll department about changes in salary,
we cannot use attr_accessor for the salary field. Instead, we need to write the
salary= method out by hand.

A Better Way to Stay Informed
The trouble with this code is that it is hard-wired to inform the payroll department
about salary changes. What do we do if we need to keep other objects—perhaps some
accounting-related classes—informed about Fred’s financial state? As the code stands
right now, we must go back in and modify the Employee class. Needing to change the
Employee class in this situation is very unfortunate because nothing in the Employee

A Better Way to Stay Informed 97

class is really changing. It is the other classes—the payroll and accounting classes—
that are actually driving the changes to Employee. Our Employee class seems to be
showing very little change resistance here.

Perhaps we should step back and try to solve this notification problem in a more
general way. How can we separate out the thing that is changing—who gets the news
about salary changes—from the real guts of the Employee object? What we seem to
need is a list of objects that are interested in hearing about the latest news from the
Employee object. We can set up an array for just that purpose in the initialize
method:

def initialize(name, title, salary)

@name = name

@title = title

@salary = salary

@observers = []

end

We also need some code to inform all of the observers that something has
changed:

def salary=(new_salary)

@salary = new_salary

notify_observers

end

def notify_observers

@observers.each do |observer|

observer.update(self)

end

end

The key moving part of notify_observers is observer.update(self). This
bit of code calls the update method on each observer,2 telling it that something—in
this case, the salary—has changed on the Employee object.

98 Chapter 5. Keeping Up with the Times with the Observer

2. Recall that array.each is Ruby terminology for a loop that runs through all of the elements in an
array. We will have more to say about this array.each in Chapter 7.

The only job left is to write the methods that add and delete observers from the
Employee object:

def add_observer(observer)

@observers << observer

end

def delete_observer(observer)

@observers.delete(observer)

end

Now any object that is interested in hearing about changes in Fred’s salary can
simply register as an observer on Fred’s Employee object:

fred = Employee.new('Fred', 'Crane Operator', 30000.0)

payroll = Payroll.new

fred.add_observer(payroll)

fred.salary=35000.0

By building this general mechanism, we have removed the implicit coupling
between the Employee class and the Payroll object. Employee no longer cares
which or how many other objects are interested in knowing about salary changes; it
just forwards the news to any object that said that it was interested. In addition,
instances of the Employee class will be happy with no observers, one, or several:

class TaxMan

def update(changed_employee)

puts("Send #{changed_employee.name} a new tax bill!")

end

end

tax_man = TaxMan.new

fred.add_observer(tax_man)

Suppose we change Fred’s salary again:

fred.salary=90000.0

A Better Way to Stay Informed 99

Now both the payroll department and the tax man will hear about it:

Cut a new check for Fred!

His salary is now 80000.0!

Send Fred a new tax bill!

The GoF called this idea of building a clean interface between the source of the
news that some object has changed and the consumers of that news the Observer pattern
(Figure 5-1). The GoF called the class with the news the subject class. In our exam-
ple, the subject is the Employee class. The observers are the objects that are interested
in getting the news. In our employee example, we have two observers: Payroll and
TaxMan. When an object is interested in being informed of the state of the subject, it
registers as an observer on that subject.

It has always seemed to me that the Observer pattern is somewhat misnamed.
While the observer object gets top billing—in fact, the only billing—it is actually the
subject that does most of the work. It is the subject that is responsible for keeping
track of the observers. It is also the subject that needs to inform the observers that a
change has come down the pike. Put another way, it is much harder to publish and
distribute a newspaper than to read one.

Factoring Out the Observable Support
Implementing the Observer pattern in Ruby is usually no more complex than our
Employee example suggested: just an array to hold the observers and a couple of
methods to manage the array, plus a method to notify everyone when something
changes. But surely we can do better than to repeat this code every time we need to
make an object observable. We could use inheritance. By factoring out the code that
manages the observers, we end up with a functional little base class:

100 Chapter 5. Keeping Up with the Times with the Observer

Figure 5-1 The Observer pattern

Subject

add_observer(o)
remove_observer(o)
notify_observers()

@observers[]
Observer

update(subject)

Employee

update(subject)

class Subject

def initialize

@observers=[]

end

def add_observer(observer)

@observers << observer

end

def delete_observer(observer)

@observers.delete(observer)

end

def notify_observers

@observers.each do |observer|

observer.update(self)

end

end

end

Now we can make Employee a subclass of Subject:

class Employee < Subject

attr_reader :name, :address

attr_reader :salary

def initialize(name, title, salary)

super()

@name = name

@title = title

@salary = salary

end

def salary=(new_salary)

@salary = new_salary

notify_observers

end

end

This is not a completely unreasonable solution; in fact, Java has gone exactly this
route with its java.util.Observable class. But, as we saw in Chapter 1, using
inheritance can cause grief. The problem with using Subject as a base class is that it

Factoring Out the Observable Support 101

shuts out the possibility of having anything else as a base class. Ruby allows each class
to have exactly one superclass: Use up your single superclass of Employee on Subject

and you are done. If our domain model demands that we make Employee a subclass
of OrganizationalUnit or DatabaseObject, we are out of luck; we cannot also
make it a subclass of Subject.

The problem is that sometimes we want to share code between otherwise unre-
lated classes. Our Employee class wants to be a Subject, but perhaps so does that
spreadsheet cell. So how can we share the Subject implementation without using up
our one allotted superclass?

The solution to this dilemma is to use a module. Recall that a module is a pack-
age of methods and constants that we can share among classes, but that does not soak
up the single allotted superclass. If we recast our Subject class as a module, it does
not really look all that different:

module Subject

def initialize

@observers=[]

end

def add_observer(observer)

@observers << observer

end

def delete_observer(observer)

@observers.delete(observer)

end

def notify_observers

@observers.each do |observer|

observer.update(self)

end

end

end

Using the new Subject module is simplicity itself. We include the module and
call notify_observers when something changes:

class Employee

include Subject

attr_reader :name, :address

attr_reader :salary

102 Chapter 5. Keeping Up with the Times with the Observer

def initialize(name, title, salary)

super()

@name = name

@title = title

@salary = salary

end

def salary=(new_salary)

@salary = new_salary

notify_observers

end

end

By including the Subject module, our new Employee class gains all of the
Subject methods: It is now fully equipped to play the subject in the Observer pat-
tern. Note that we needed to call super() in the initialize method of Employee,
which has the effect of calling initialize in the Subject module.3

Building our own Subject module was great fun and a good exercise in creating
a mixin module. But would you really want to use the Subject that we just cooked up?
Probably not. The Ruby standard library comes with a fine, prebuilt Observable
module that provides all of the support you need to make your object, well, observ-
able. Using it is not all that different from using the Subject module that we built:

require 'observer'

class Employee

include Observable

attr_reader :name, :address

attr_reader :salary

def initialize(name, title, salary)

@name = name

@title = title

@salary = salary

end

Factoring Out the Observable Support 103

3. Calling super() is one of the few places in Ruby where you need to supply the parentheses for an
empty argument list. Calling super the way we do here, with the parentheses, calls the method in
the superclass with no arguments. If you omit the parentheses, you will be calling super with the
original set of arguments to the current method—in this case, name, title, salary, and pay-
roll_manager.

def salary=(new_salary)

@salary = new_salary

changed

notify_observers(self)

end

end

The standard Observable module does feature one twist that we omitted from
our hand-built version. To cut down on redundant notifications to the observers, the
standard Observable module requires that you call the changed method before you
call notify_observers. The changed method sets a Boolean flag that says the
object really has changed; the notify_observers method will not actually make any
notifications if the changed flag is not set to true. Each call to notify_observers
sets the changed flag back to false.

Code Blocks as Observers
A common Ruby variation on the Observer pattern is our old friend the code block.
The code becomes a lot simpler if we can just pass in a code block as our listener.
Because the Ruby library Observable does not support code blocks, perhaps we can
find a use for a slightly modified version of our Subject module after all:

module Subject

def initialize

@observers=[]

end

def add_observer(&observer)

@observers << observer

end

def delete_observer(observer)

@observers.delete(observer)

end

def notify_observers

@observers.each do |observer|

observer.call(self)

end

end

end

104 Chapter 5. Keeping Up with the Times with the Observer

class Employee

include Subject

attr_accessor :name, :title, :salary

def initialize(name, title, salary)

super()

@name = name

@title = title

@salary = salary

end

def salary=(new_salary)

@salary = new_salary

notify_observers

end

end

The advantage of using code blocks as observers is that they simplify the code; we
no longer need a separate class for the observers. To add an observer, we just call
add_observer and pass in a code block:

fred = Employee.new('Fred', 'Crane Operator', 30000)

fred.add_observer do |changed_employee|

puts(“Cut a new check for #{changed_employee.name}!”)

puts(“His salary is now #{changed_employee.salary}!”)

end

This example passes a two-line code block as an observer into Employee object.
By the time those two lines reach the Employee object, they are all wrapped up in a
convenient Proc object and are set to act as a ready-made observer. When Fred’s salary
changes, the Employee object calls the call method on the Proc, and the two puts
get fired.

Variations on the Observer Pattern
The key decisions that you need to make when implementing the Observer pattern all
center on the interface between the subject and the observer. At the simple end of the
spectrum, you might do what we did in the example above: Just have a single method

Variations on the Observer Pattern 105

in the observer whose only argument is the subject. The GoF term for this strategy is
the pull method, because the observers have to pull whatever details about the change
that they need out of the subject. The other possibility—logically enough termed the
push method—has the subject send the observers a lot of details about the change:

observer.update(self, :salary_changed, old_salary, new_salary)

We can even define different update methods for different events. For example,
we could have one method for a salary update

observer.update_salary(self, old_salary, new_salary)

and a different method for title changes

observer.update_title(self, old_title, new_title)

The advantage in providing more details is that the observers do not have to work
quite as hard to keep track of what is going on. The disadvantage of the push model
is that if all of the observers are not interested in all of the details, then the work of
passing the data around goes for naught.

Using and Abusing the Observer Pattern
Most of the problems that come up in using the Observer pattern revolve around the
frequency and timing of the updates. Sometimes the sheer volume of updates can be
a problem. For example, an observer might register with a subject, unaware that the
subject is going to spew out thousands of updates each second. The subject class can
help with all of this by avoiding broadcasting redundant updates. Just because some-
one updates an object, it does not mean that anything really changed. Remember the
salary= method on the Employee object? We probably should not notify the
observers if nothing has actually changed:

def salary=(new_salary)

old_salary = @salary

@salary = new_salary

if old_salary != new_salary

changed

notify_observers(self)

end

end

106 Chapter 5. Keeping Up with the Times with the Observer

Another potential problem lies in the consistency of the subject as it informs its
observers of changes. Imagine we enhance our employee example a bit so that it
informs its observers of changes in an employee’s title as well as his or her salary:

def title=(new_title)

old_title = @title

@title = new_title

if old_title != new_title

changed = true

notify_observers(self)

end

end

Now imagine that Fred gets a big promotion and a big raise to go along with it.
We might code that as follows:

fred = Employee.new("Fred", "Crane Operator", 30000)

fred.salary = 1000000

Warning! Inconsistent state here!

fred.title = 'Vice President of Sales'

The trouble with this approach is that because he receives his raise before his new
title takes effect, Fred will briefly be the highest-paid crane operator in the world. This
would not matter, except that all of our observers are listening and experiencing that
inconsistent state. You can deal with this problem by not informing the observers until
a consistent set of changes is complete:

Don't inform the observers just yet

fred.salary = 1000000

fred.title = 'Vice President of Sales'

Now inform the observers!

fred.changes_complete

One final thing to look out for is badly behaved observers. Although we have used
the analogy of the subject delivering news to its observer, we are really talking about

Using and Abusing the Observer Pattern 107

one object calling a method on another object. What happens if you update an
observer with the news that Fred has gotten a raise, and that observer responds by rais-
ing an exception? Do you simply log the exception and soldier on, or do you do some-
thing more drastic? There is no standard answer: It really depends on your specific
application and the amount of confidence you have in your observers.

Observers in the Wild
The Observer pattern is not hard to find in the Ruby code base. It is, for example,
used by ActiveRecord. ActiveRecord clients that want to stay informed of the
goings on as database records are created, read, written, and deleted can define
observers that look like this:4

class EmployeeObserver < ActiveRecord::Observer

def after_create(employee)

New employee record created

end

def after_update(employee)

Employee record updated

end

def after_destroy(employee)

Employee record deleted

end

end

In a nice example of the Convention Over Configuration pattern (see Chapter 18),
ActiveRecord does not require you to register your observer: It just figures out that
EmployeeObserver is there to observe Employees, based on the class name.

You can find an example of the code block-based observer in REXML, the XML
parsing package that ships as part of the standard Ruby library. The REXML
SAX2Parser class is a streaming XML parser: It will read an XML file and you are wel-
come to add observers that will be informed when specific XML constructs get read.

108 Chapter 5. Keeping Up with the Times with the Observer

4. If the ActiveRecord::Observer syntax looks a little odd to you, it is because we haven’t talked
about it. This syntax exists because the Observer class is defined inside of a module and you need
the :: to dig inside the module to get to the class.

While SAX2Parser supports the more formal, separate object observer style, you can
also pass in code blocks that act as your observer:

require 'rexml/parsers/sax2parser'

require 'rexml/sax2listener'

#

Create an XML parser for our data

#

xml = File.read('data.xml')

parser = REXML::Parsers::SAX2Parser.new(xml)

#

Add some observers to listen for start and end elements...

#

parser.listen(:start_element) do |uri, local, qname, attrs|

puts("start element: #{local}")

end

parser.listen(:end_element) do |uri, local, qname|

puts("end element #{local}")

end

#

Parse the XML

#

parser.parse

Feed the code above an XML file, and you can sit back and observe as the ele-
ments go flying by.

Wrapping Up
The Observer pattern allows you to build components that know about the activities
of other components without having to tightly couple everything together in an
unmanageable mess of code-flavored spaghetti. By creating a clean interface between
the source of the news (the observable object) and the consumer of that news (the
observers), the Observer pattern moves the news without tangling things up.

Most of the work in implementing the Observer pattern occurs in the subject or
observable class. In Ruby, we can factor that mechanism out into either a superclass

Wrapping Up 109

or (more likely) a module. The interface between observer and observable can be a
complex as you like, but if you are building a simple observer, code blocks work well.

As pointed out in Chapter 4, the Observer pattern and the Strategy pattern look a
bit alike: Both feature an object (called the observable in the Observer pattern and the
context in the Strategy pattern) that makes calls out to some other object (either the
observer or the strategy). The difference is mostly one of intent. In the case of the
observer, we are informing the other object of the events occurring back at the observable.
In the case of the strategy, we are getting the strategy object to do some computing.

The Observer pattern also serves more or less the same function as hook methods
in the Template Method pattern; both are there to keep some object informed of cur-
rent events. The difference is, of course, that the Template Method pattern will only
talk to its relatives: If you are not a subclass, you will not get any news from a Template
Method pattern hook.

110 Chapter 5. Keeping Up with the Times with the Observer

CHAPTER 6
Assembling the Whole
from the Parts with the
Composite

When I was about 11 or 12 years old, I developed a theory of the universe. You see, I
had just learned about the solar system and about atoms, and the similarities between
the two seemed to be more than a coincidence. While our solar system has planets
whirling around the sun, the atom (at least when you learn about it in elementary
school) has electrons spinning around its nucleus. I remember wondering whether our
whole world wasn’t just an electron in some larger universe. And maybe there was
some fantastically tiny adolescent living out his whole life in a world that was part of
the last atom at the tip of my pencil.

Although my theory almost certainly involved faulty physics, the idea of things
being built of similar sub-things is actually a powerful one that you can apply to writ-
ing programs. In this chapter, we will look at the Composite pattern—a pattern that
suggests that we build up bigger objects from small sub-objects, which might them-
selves be made up of still smaller sub-sub-objects. We will see how we can use the
Composite pattern to model situations as diverse as organizational structures and the
layout of graphical user interfaces. And who knows, in the unlikely event that my old
theory of the universe proves correct, we might just be able to use the Composite pattern
as a Model of Everything.

111

The Whole and the Parts
Building object-oriented software is the process of taking relatively simple objects,
such as integers and strings, and combining them into slightly more complex objects,
such as personnel records and song lists. We can then use the resulting objects to build
even more interesting objects. What usually emerges at the end of this process are a
few very sophisticated objects that look nothing like the component bits and pieces
that we used to assemble them.

But not always. Sometimes we want a complex object to look and act exactly like
the components we use to build it. Imagine you are working for TasteeBite Ltd., a
gourmet bakery. You have been asked to build a system that keeps track of the manu-
facturing of the new ChocOBite chocolate cake. A key requirement is that your sys-
tem must be able to keep track of the time it takes to manufacture a cake. Of course,
making a cake is a fairly complicated process. First you have to make the cake batter,
put the batter in a pan, and put the pan in the oven. Once the cake is baked, you need
to frost it and package it for sale. Making the batter is also a reasonably complicated
process in itself, involving a fairly long sequence of steps such as measuring out the
flour, cracking the eggs, and licking the spoon.

As you can see from Figure 6-1, you can think of the cake-baking process as a tree,
where the master task of making a cake is built up from subtasks such as baking the
cake and packaging it, which are themselves made up of even simpler tasks.

Naturally, you do not want to subdivide the cake manufacturing process infinitely
(“Now move the 1,463,474th speck of flour to the bowl . . .”). Instead, you need to
identify the lowest-level, most-fundamental tasks of cake making and stop there. It is
probably reasonable to stop at the “add dry ingredients” and “put cake in oven” level

112 Chapter 6. Assembling the Whole from the Parts with the Composite

Figure 6-1 The tree of cake-making tasks

Manufacture Cake

Package CakeMake Cake

FrostMake Batter Fill Pan Bake

AddDryIngredients MixAddLiquids

Box Label

and model each of these steps as a separate class. Clearly, all of classes will need to share
a common interface—an interface that will let them report back how much time they
take. In your TasteeBite project, you decide to use a common base class, called Task,
and you start by creating a bunch of subclasses, one for the each basic job:
AddDryIngredientsTask, AddLiquidsTask, and MixTask.

So much for the simple tasks. But what about the more complex tasks, such as
“make batter” or even “manufacture cake,” which are built up of smaller subtasks? On
the one hand, these are perfectly respectable tasks. In exactly the same way that we
might want to know how long it takes to do something basic such as add the dry
ingredients, we might want to know how long it takes to make the batter, package the
cake, or even make the whole cake. But, these higher-level tasks are not quite the same
as the simple ones: They are built up from other tasks.

Obviously, you will need some kind of container object to deal with these com-
plex (or shall we say, composite) tasks. But there is one other point to keep in mind
about these higher-level tasks: While they are built up internally of any number of
subtasks, from the outside they look just like any other Task.

This approach works on two levels. First, any code that uses the MakeBatterTask
object does not have to worry about the fact that making batter is more complex than,
say, measuring flour. Simple or complex, everything is just a Task. The same is true for
the MakeBatter class itself: MakeBatter does not have to concern itself with the details
of its subtasks; simple or complex, they are just Tasks to MakeBatter. That brings us
to the second elegant aspect of this technique: Because MakeBatter simply manages a
list of Tasks, any of those subtasks could themselves be made up of sub-subtasks. We
can, in short, make the tree of tasks and subtasks go as deep as we like.

It turns out that this situation, in which you group together a number of compo-
nents to create a new super-component, actually occurs fairly frequently. Think about
how large companies are organized. Any company is fundamentally made up of people—
the executives and the accountants and the factory workers. But we rarely think of a big
company as simply a collection of individuals. Instead, we might look at a big com-
pany and see a conglomeration of divisions, which are made of departments, which
are assembled from teams, which are staffed by people.

Departments and divisions have a lot in common with individual workers. For
instance, all of them cost the company money in salaries: Fred in shipping might be
grossly underpaid, for example, but so is the whole public relations department. Both
workers and departments report to someone: Sally is Fred’s boss, while Lori is the vice
president of the entire public relations department. Finally, both workers and whole
departments can leave the company: Fred might find a better-paying job, while the

The Whole and the Parts 113

public relations department could be sold off to a different firm. In terms of model-
ing, the people in a big company are analogous to the simple steps in cake baking,
while the departments and divisions are higher-level elements akin to the more com-
plex tasks involved in making a cake.

Creating Composites
The GoF called the design pattern for our “the sum acts like one of the parts” situa-
tion the Composite pattern. You will know that you need to use the Composite pat-
tern when you are trying to build a hierarchy or tree of objects, and you do not want
the code that uses the tree to constantly have to worry about whether it is dealing with
a single object or a whole bushy branch of the tree.

To build the Composite pattern (Figure 6-2), you need three moving parts. First,
you need a common interface or base class for all of your objects. The GoF call this base
class or interface the component. Ask yourself, “What will my basic and higher-level
objects all have in common?” In baking cakes, both the simple task of measuring flour
and the much more complex task of making the batter take a certain amount of time.

Second, you need one or more leaf classes—that is, the simple, indivisible building
blocks of the process. In our cake example, the leaf tasks were the simple jobs, such as
measuring flour or adding eggs. In our organization example, the individual workers
were the leaves. The leaf classes should, of course, implement the Component interface.

Third, we need at least one higher-level class, which the GoF call the composite
class. The composite is a component, but it is also a higher-level object that is built
from subcomponents. In the baking example, the composites are the complex tasks
such as making the batter or manufacturing the whole cake—that is, the tasks that are

114 Chapter 6. Assembling the Whole from the Parts with the Composite

Figure 6-2 The Composite pattern

Component

operation()

Leaf

operation()

Composite

operation()

@subcomponents[]

made up of subtasks. For organizations, the composite objects are the departments
and divisions.

To make this discussion a little more concrete, let’s look at the process of making
a cake in terms of some code. We’ll start with the component base class:

class Task

attr_reader :name

def initialize(name)

@name = name

end

def get_time_required

0.0

end

end

Task is an abstract base class in the sense that it is not really complete: It just keeps
track of the name of the task and has a do-nothing get_time_required method.

Now let’s build two leaf classes:

class AddDryIngredientsTask < Task

def initialize

super('Add dry ingredients')

end

def get_time_required

1.0 # 1 minute to add flour and sugar

end

end

class MixTask < Task

def initialize

super('Mix that batter up!')

end

def get_time_required

3.0 # Mix for 3 minutes

end

end

Creating Composites 115

The AddDryIngredientsTask and MixTask classes are very simple subclasses of
Task; they simply supply a real get_time_required method. Obviously, we could
go on and on defining all of the basic cake-baking tasks, but let’s just use our imagi-
nation and skip ahead to the punch line—a composite task:

class MakeBatterTask < Task

def initialize

super('Make batter')

@sub_tasks = []

add_sub_task(AddDryIngredientsTask.new)

add_sub_task(AddLiquidsTask.new)

add_sub_task(MixTask.new)

end

def add_sub_task(task)

@sub_tasks << task

end

def remove_sub_task(task)

@sub_tasks.delete(task)

end

def get_time_required

time=0.0

@sub_tasks.each {|task| time += task.get_time_required}

time

end

end

While the MakeBatterTask class looks to the outside world like any other sim-
ple task—it implements the key get_time_required method—it is actually built
up from three subtasks: AddDryIngredientsTask and MixTask, which we saw
earlier, plus AddLiquidsTask, a task whose implementation I will leave to your
imagination. A key part of MakeBatterTask is the way it handles the
get_time_required method. Specifically, MakeBatterTask totals up all of the
times required by its child tasks.

Because we will have a number of composite tasks in our baking example (pack-
aging the cake as well as the master task of manufacturing the cake), it makes sense to
factor out the details of managing the child tasks into another base class:

116 Chapter 6. Assembling the Whole from the Parts with the Composite

class CompositeTask < Task

def initialize(name)

super(name)

@sub_tasks = []

end

def add_sub_task(task)

@sub_tasks << task

end

def remove_sub_task(task)

@sub_tasks.delete(task)

end

def get_time_required

time=0.0

@sub_tasks.each {|task| time += task.get_time_required}

time

end

end

Our MakeBatterTask then reduces to the following code:

class MakeBatterTask < CompositeTask

def initialize

super('Make batter')

add_sub_task(AddDryIngredientsTask.new)

add_sub_task(AddLiquidsTask.new)

add_sub_task(MixTask.new)

end

end

The key point to keep in mind about composite objects is that the tree may be
arbitrarily deep. While MakeBatterTask goes down only one level, that will not be
true in general. For example, when we really finish out our bakery project, we will
need a MakeCake class:

class MakeCakeTask < CompositeTask

def initialize

super('Make cake')

add_sub_task(MakeBatterTask.new)

add_sub_task(FillPanTask.new)

Creating Composites 117

add_sub_task(BakeTask.new)

add_sub_task(FrostTask.new)

add_sub_task(LickSpoonTask.new)

end

end

Any one of the subtasks of MakeCakeTask might be a composite. In fact, we have
already seen that MakeBatterTask actually is a composite.

Sprucing Up the Composite with Operators
We can make our composite code even more readable if we realize that composite
objects fulfill a dual role. On the one hand, the composite object is a component; on
the other hand, it is a collection of components. As we have written it, our
CompositeTask does not look much like any of the standard Ruby collections, such
as Array or Hash. It would be nice, for example, to be able to add tasks to a
CompositeTask with the << operator, just as we could in an array:

composite = CompositeTask.new('example')

composite << MixTask.new

It turns out that we can get this done by simply renaming the add_sub_task
method:

def <<(task)

@sub_tasks << task

end

We might also want to get at our subtasks by the familiar array indexing syntax,
something like this:

puts(composite[0].get_time_required)

composite[1] = AddDryIngredientsTask.new

This is once again a simple matter of picking the right name for our method.
Ruby will translate object[i] into a call to a method with the odd name of [],

118 Chapter 6. Assembling the Whole from the Parts with the Composite

which takes one parameter, the index. To add support for this operation to our
CompositeTask class, we simply add a method:

def [](index)

@sub_tasks[index]

end

In the same way, object[i] = value is translated into a call to the method with
the even stranger name of []=, which takes two parameters, the index and the new value:

def []=(index, new_value)

@sub_tasks[index] = new_value

end

An Array as a Composite?
We could also get the same container operator effect with our CompositeTask by
simply making it a subclass of Array instead of Task:

class CompositeTask < Array

attr_reader :name

def initialize(name)

@name = name

end

def get_time_required

time=0.0

each {|task| time += task.get_time_required}

time

end

end

Given the dynamic typing rules of Ruby, this approach will work. By making
CompositeTask a subclass of Array, we get a container and its associated [], []=,
and << operators for free via inheritance. But is this a good approach?

I vote no. A CompositeTask is not some specialized kind of array; it is a special-
ized kind of Task. If CompositeTask is going to be related to any class, it should be
related to Task, not Array.

An Array as a Composite? 119

An Inconvenient Difference
Any implementation of the Composite pattern needs to deal with one other sticky
issue. We began by saying that the goal of the Composite pattern is to make the leaf
objects more or less indistinguishable from the composite objects. I say “more or less”
here because there is one unavoidable difference between a composite and a leaf: The
composite has to manage its children, which probably means that it needs to have a
method to get at the children and possibly methods to add and remove child objects.
The leaf classes, of course, really do not have any children to manage; that is the nature
of leafyness.

How we handle this inconvenient fact is mostly a matter of taste. On the one
hand, we can make the composite and leaf objects different. For example, we can sup-
ply the composite object with add_child and remove_child methods (or the equiv-
alent array-like operators) and simply omit these methods from the leaf class. This
approach has certain logic behind it: After all, leaf objects are childless, so they do not
need the child management plumbing.

On the other hand, our main goal with the Composite pattern is to make the leaf
and composite objects indistinguishable. If the code that uses your composite has to
know that only some of the components—the composite ones—have get_child and
add_child methods while other components—the leaves—do not, then the leaf and
composite objects are not the same. But if you do include the child-handling methods
in the leaf object, what happens if someone actually calls them on a leaf object?
Responding to remove_child is not so bad—leaf objects do not have children so there
is never anything to remove. But what if someone calls add_child on a leaf object? Do
you ignore the call? Throw an exception? Neither response is very palatable.

As I say, how you handle this decision is mostly a matter of taste: Make the leaf
and composite classes different, or burden the leaf classes with embarrassing methods
that they do not know how to handle. My own instinct is to leave the methods off of
the leaf classes. Leaf objects cannot handle child objects, and we may as well admit it.

Pointers This Way and That
So far, we have looked at the Composite pattern as a strictly top-down affair. Because
each composite object holds references to its subcomponents but the child compo-
nents do not know a thing about their parents, it is easy to traverse the tree from the
root to the leaves but hard to go the other way.

It is easy to add a parent reference to each participant in the composite so that we
can climb back up to the top of the tree. The best place to put the parent-reference

120 Chapter 6. Assembling the Whole from the Parts with the Composite

handling code is in the component class. You can centralize the code to handle the
parent there:

class Task

attr_accessor :name, :parent

def initialize(name)

@name = name

@parent = nil

end

def get_time_required

0.0

end

end

Given that the composite class is the place where the parent–child relationships
are managed, it is also the logical place to set the parent attribute:

class CompositeTask < Task

def initialize(name)

super(name)

@sub_tasks = []

end

def add_sub_task(task)

@sub_tasks << task

task.parent = self

end

def remove_sub_task(task)

@sub_tasks.delete(task)

task.parent = nil

end

def get_time_required

time=0.0

@sub_tasks.each {|task| time += task.get_time_required}

time

end

end

Pointers This Way and That 121

With the parent references in place, we can now trace any composite component
up to its ultimate parent:

while task

puts("task: #{task}")

task = task.parent

end

Using and Abusing the Composite Pattern
The good news about the Composite pattern is that there is only one really common
mistake people make when they implement it; the bad news is that they make this
mistake a lot. The error that crops up so frequently with the Composite pattern is
assuming that the tree is only one level deep—that is, assuming that all of the child
components of a composite object are, in fact, leaf objects and not other composites.
To illustrate this misstep, imagine we needed to know how many leaf steps are
involved in our cake-baking process. We could simply add the following code to the
CompositeTask class:

#

Wrong way of doing it

#

class CompositeTask < Task

Lots of code omitted...

def total_number_basic_tasks

@sub_tasks.length

end

end

We could do that, but it would be wrong. This implementation ignores the fact that
any one of those subtasks could itself be a huge composite with many of its own sub-
subtasks. The right way to handle this situation is to define the total_num_of_tasks
method in the component class:

122 Chapter 6. Assembling the Whole from the Parts with the Composite

class Task

Lots of code omitted...

def total_number_basic_tasks

1

end

end

Next we override this method in the composite class to run recursively down the tree:

class CompositeTask < Task

Lots of code omitted...

def total_number_basic_tasks

total = 0

@sub_tasks.each {|task| total += task.total_number_basic_tasks}

total

end

end

Remember, the power of the Composite pattern is that it allows us to build arbi-
trarily deep trees. Do not go to all this trouble and then throw the advantage away by
writing a few sloppy lines of code.

Composites in the Wild
If you look around for real examples of the Composite pattern in the Ruby code base,
the graphical user interface (GUI) libraries jump out. All modern GUIs support a pal-
let of basic components, things like labels and text fields and menus. These basic GUI
components have a lot in common with each other: No matter whether they are but-
tons or labels or menu items, all of them have a font, and a background and fore-
ground color, and all of them take up a certain amount of screen real estate. Of course,
any real, modern GUI is not just a simple collection of the basic GUI components.
No, a real GUI is built as a hierarchy: Start with a label and a field, position them just

Composites in the Wild 123

so, and then join them together into a single visual thing that prompts the user for his
or her first name. Combine this first-name prompter with a similar last-name
prompter and a prompter that asks for a Social Security number. Combine those ele-
ments into a still larger and more complex GUI component. If you have read this
chapter carefully, this process should sound very familiar: We have just built a GUI
composite.

A good example of the use of composites in a GUI toolkit can be found in
FXRuby. FXRuby is a Ruby extension that brings FOX—an open-source cross-
platform GUI toolkit—to the Ruby world. FXRuby supplies you with a wide variety of
user interface widgets, ranging from the mundane FXButton and FXLabel to the very
elaborate FXColorSelector and FXTable. You can also build your own, arbitrarily
complex widgets with FXHorizontalFrame and its cousin FXVerticalFrame. The
two frame classes act as containers, allowing you to add sub-widgets to create a single
unified GUI element. The difference between these two frame classes is the way they
display their sub-widgets visually: One lines up the sub-widgets in a horizontal line,
while the other stacks them vertically. Horizontal or vertical, both FOX frame widgets
are subclasses of FXWindow, as are all of the basic widgets.

By way of example, here is an application that uses FXRuby to build a tiny, mock
text editor:

require 'rubygems'

require 'fox16'

include Fox

application = FXApp.new("CompositeGUI", "CompositeGUI")

main_window = FXMainWindow.new(application, "Composite",

nil, nil, DECOR_ALL)

main_window.width = 400

main_window.height = 200

super_frame = FXVerticalFrame.new(main_window,

LAYOUT_FILL_X|LAYOUT_FILL_Y)

FXLabel.new(super_frame, "Text Editor Application")

text_editor = FXHorizontalFrame.new(super_frame,

LAYOUT_FILL_X|LAYOUT_FILL_Y)

text = FXText.new(text_editor, nil, 0,

TEXT_READONLY|TEXT_WORDWRAP|LAYOUT_FILL_X|LAYOUT_FILL_Y)

124 Chapter 6. Assembling the Whole from the Parts with the Composite

text.text = "This is some text."

Button bar along the bottom

button_frame = FXVerticalFrame.new(text_editor,

LAYOUT_SIDE_RIGHT|LAYOUT_FILL_Y)

FXButton.new(button_frame, "Cut")

FXButton.new(button_frame, "Copy")

FXButton.new(button_frame, "Paste")

application.create

main_window.show(PLACEMENT_SCREEN)

application.run

The entire GUI is built as a series of nested composites. At the top of the tree is
FXMainWindow, which has exactly one child element, a vertical frame. The frame has
a horizontal frame for a child element, which has . . . Well, you get the picture—and
if you don’t, have a look at Figure 6-3. It shows a neat Composite pattern that you can
see on your screen.

Wrapping Up
Once you grasp its recursive nature, the Composite pattern is really quite simple.
Sometimes we need to model objects that naturally group themselves into larger
components. These more complex objects fit into the Composite pattern if they
share some characteristics with the individual components: The whole looks a lot like
one of the parts. The Composite pattern lets us build arbitrarily deep trees of objects

Wrapping Up 125

Figure 6-3 A mock text editor, built with FXRuby

in which we can treat any of the interior nodes—the composites—just like any of the
leaf nodes.

The Composite pattern is so fundamental that it is not surprising that it reap-
pears, sometimes in disguise, in other patterns. As we will see in Chapter 15, the
Interpreter pattern is nothing more than a specialization of the Composite pattern.

Finally, it is difficult to imagine the Composite pattern without the Iterator pat-
tern. The reasons behind this hand-in-glove relationship are about to be revealed,
because the Iterator pattern is the topic of the very next chapter.

126 Chapter 6. Assembling the Whole from the Parts with the Composite

CHAPTER 7
Reaching into a Collection
with the Iterator

In Chapter 6, we looked at composites—objects that appear to be simple components
but are actually made up of a collection of subcomponents. Of course, an object does
not have to be a composite to know about collections of other objects. An Employee
object might know about several dependents, or phone numbers, or, in the case of a
well-paid executive, the addresses of many palatial estates. In this kind of situation, it
would be helpful if we could sequence through all of the sub-objects without needing
to know any of the details of how the aggregate object is storing them.

In this chapter, we will explore the Iterator pattern, a technique that allows an
aggregate object to provide the outside world with a way to access its collection of sub-
objects. We will see how iterators come in two basic flavors and learn how the Iterator
pattern explains those funny-looking each loops that we encounter in Ruby.

External Iterators
The GoF tell us that the Iterator pattern will do the following:

Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation

In other words, an Iterator provides the outside world with a sort of movable
pointer into the objects stored inside an otherwise opaque aggregate object.

127

If you are a Java programmer, iterators will be most familiar to you in the guise of
the java.util.Iterator interface and its older brother, java.util.Enumeration.
A typical use of the Java iterator is shown here:

ArrayList list = new ArrayList();

list.add("red");

list.add("green");

list.add("blue");

for(Iterator i = list.iterator(); i.hasNext();) {

System.out.println("item: " + i.next());

}

Iterators also show up in slightly more unexpected places. For example, you can
look at java.util.StringTokenizer as an iterator that allows you to run through
all of the tokens in a string. Similarly, JDBC includes ResultSet, which allows us to
iterate over each row in a SQL query result.

This style of iterator is sometimes referred to as an external iterator—“external”
because the iterator is a separate object from the aggregate. We will see in a minute
that this is not the only iterator on the menu, but first let’s see what an external iterator
might look like in Ruby.

It is actually quite easy to construct Java-like external iterators in Ruby. A simple,
if somewhat less than vitally needed, implementation of an iterator for Ruby arrays
might look something like this:

class ArrayIterator

def initialize(array)

@array = array

@index = 0

end

def has_next?

@index < @array.length

end

def item

@array[@index]

end

128 Chapter 7. Reaching into a Collection with the Iterator

def next_item

value = @array[@index]

@index += 1

value

end

end

ArrayIterator is a straightforward translation of a Java-style iterator into
Ruby, albeit with the addition of item, a method that retrieves the current item
(something that is oddly missing from the Java rendition). Here’s how we might use
this new iterator:

array = ['red', 'green', 'blue']

i = ArrayIterator.new(array)

while i.has_next?

puts("item: #{i.next_item}")

end

Running this code will give us the output we expect:

item: red

item: green

item: blue

With just a few lines of code, our ArrayIterator gives us just about everything
we need to iterate over any Ruby array. As a free bonus, Ruby’s flexible dynamic typ-
ing allows ArrayIterator to work on any aggregate class that has a lengthmethod and
can be indexed by an integer. String is just such a class, and our ArrayIterator
will work fine with strings:

i = ArrayIterator.new('abc')

while i.has_next?

puts("item: #{i.next_item.chr}")

end

External Iterators 129

Run the code above and you will see this output:

item: a

item: b

item: c

The only wrinkle in using ArrayIterator on strings is that string[n] returns
the nth character in the string as a number, the character code. Hence we need the chr
method in the example above.

Given how easy it was to build ArrayIterator, it is surprising that external iter-
ators are so rare in Ruby. It turns out that Ruby has something better—and that this
something better is based on our old friends the code block and the Proc object.

Internal Iterators
If you think about it, the purpose of an iterator is to introduce your code to each sub-
object of an aggregate object. Traditional external iterators do so by providing a long
grappling hook, the iterator object, that you can use to pull the sub-objects out of
the aggregate without getting messily involved in the aggregate details. But by using
a code block, you can pass your logic down into the aggregate. The aggregate can
then call your code block for each of its sub-objects. Because all of the iterating action
occurs inside the aggregate object, the code block-based iterators are called internal
iterators.

Building an internal iterator for arrays is very easy—we just define a method that
calls (via yield) the passed-in code block for each element:1

def for_each_element(array)

i = 0

while i < array.length

yield(array[i])

i += 1

end

end

130 Chapter 7. Reaching into a Collection with the Iterator

1. Actually, a real Ruby program would likely add the for_each_element method to the String
class—something that you can do easily in Ruby. For much more on this topic, see Chapter 9.

To use our internal iterator, we hang a code block on the end of the method call:

a = [10, 20, 30]

for_each_element(a) {|element| puts("The element is #{element}")}

It turns out that we don’t really need for_each_element—the Array class
sports a fine iterator method call called each. Just like our for_each_element method,
each takes a one-parameter code block and calls that code block for each element in
the array:

a.each {|element| puts("The element is #{element}")}

Run either version of the preceding code and you will get this output:

The element is 10

The element is 20

The element is 30

The each method is the explanation for all of those funny-looking each loops
that you have been seeing in this book. Those loops are not, in fact, actual “built-into-
the-language” loops, but rather applications of internal iterators.

Internal Iterators versus External Iterators
While either an internal iterator or an external iterator will do the basic job of step-
ping through an aggregate, there are some practical differences to consider.
External iterators certainly have some advantages. For example, when you use an
external iterator, the client drives the iteration. With an external iterator, you won’t
call next until you are good and ready for the next element. With an internal iter-
ator, by contrast, the aggregate relentlessly pushes the code block to accept item
after item.

Most of the time, this difference does not matter. But what if you are trying to
merge the contents of two sorted arrays into a single array that was itself sorted? This
kind of merge is actually fairly easy with an external iterator like ArrayInterator:
We simply create an iterator for the two input arrays and then merge the arrays by

Internal Iterators versus External Iterators 131

repeatedly pushing the smallest value from either of the iterators onto the output
array.

def merge(array1, array2)

merged = []

iterator1 = ArrayIterator.new(array1)

iterator2 = ArrayIterator.new(array2)

while(iterator1.has_next? and iterator2.has_next?)

if iterator1.item < iterator2.item

merged << iterator1.next_item

else

merged << iterator2.next_item

end

end

Pick up the leftovers from array1

while(iterator1.has_next?)

merged << iterator1.next_item

end

Pick up the leftovers from array2

while(iterator2.has_next?)

merged << iterator2.next_item

end

merged

end

I am not sure how you would implement a merge like this using internal iterators.
A second advantage of external iterators is that, because they are external, you can

share them—you can pass them around to other methods and objects. Of course, this
is a bit of a double-edged sword: You get the flexibility but you also have to know what
you are doing. In particular, beware of multiple threads getting hold of a non-thread-safe
external iterator.

The main thing that internal iterators have going for them is simplicity and code
clarity. External iterators have that extra moving part, the iterator object. In our array

132 Chapter 7. Reaching into a Collection with the Iterator

example, we not only have the array and the client code, but also the separate
ArrayInterator object. With internal iterators, there is no separate iterator object
to manage (“Did I call next yet?”), just a stretch of more or less in-line code.

The Inimitable Enumerable
If you do find yourself creating an aggregate class and equipping it with an internal
iterator, you should probably consider including the Enumerable mixin module in
your class. Enumerable is like one of those late-night gadget commercials: To mix in
Enumerable, you need only make sure that your internal iterator method is named
each and that the individual elements that you are going to iterate over have a rea-
sonable implementation of the <=> comparison operator. For this one low, low price,
Enumerable will add to your class a whole range of useful methods. Among the
handy things you get from Enumerable are include?(obj), which returns true if
the object supplied as a parameter is part of your aggregate object, plus min and max,
which return exactly what you would expect.

The Enumerable mixin also includes more exotic methods such as all?, which
takes a block and returns true if the block returns true for all of the elements. The
Array class includes Enumerable, so we can write one line of code to return true if
all the strings in an array are less than four characters long:

a = ['joe', 'sam', 'george']

a.all? {|element| element.length < 4}

The string 'george' is longer than four characters, so the call to all? in this
example will evaluate to false. Along the same lines of all? we have any?, which will
return true if the block returns true for any of the iterator elements. Since 'joe' and
'sam' are both less than four characters long, the following will return true:

a.any? {|element| element.length < 4}

Finally, Enumerable supplies your class with a sort method, which returns all of
the subitems in an array, sorted.

To see just how easy it is to include all of this functionality in one of your own
classes, imagine that you have two classes: one that models a single financial account
and one that manages a portfolio of accounts.

The Inimitable Enumerable 133

class Account

attr_accessor :name, :balance

def initialize(name, balance)

@name = name

@balance = balance

end

def <=>(other)

balance <=> other.balance

end

end

class Portfolio

include Enumerable

def initialize

@accounts = []

end

def each(&block)

@accounts.each(&block)

end

def add_account(account)

@accounts << account

end

end

By simply mixing the Enumerable module into Portfolio and defining an
each method, we have equipped Portfolio with all kinds of Enumerable goodness.
For example, we can now find out whether any of the accounts in our portfolio has a
balance of at least $2,000:

my_portfolio.any? {|account| account.balance > 2000}

We can also find out whether all of our accounts contain at least $10:

my_portfolio.all? {|account| account.balance > = 10}

Using and Abusing the Iterator Pattern
While Iterator is one of the most commonly used and useful patterns, it does have
some pointy bits sticking out waiting to snag the unwary. The main danger is this:
What happens if the aggregate object changes while you are iterating through it?

134 Chapter 7. Reaching into a Collection with the Iterator

Suppose you are sequencing through a list and just before you get to the third element,
someone deletes that element from the list. What happens? Does the iterator show you
the now-defunct third element anyway? Does the iterator quietly go on to the fourth
element as though nothing has happened? Does it throw an exception?

Unfortunately, none of the iterators that we have built in this chapter so far react
particularly well to change. Recall that our external ArrayIterator worked by hold-
ing on to the index of the current item. Deleting elements from the array that we have
not seen yet is not a problem, but making modifications to the beginning of the array
will wreak havoc with the indexing.

We can make our ArrayIterator resistant to changes to the underlying array by
simply making a copy of the array in the iterator constructor:

class ChangeResistantArrayIterator

def initialize(array)

@array = Array.new(array)

@index = 0

end

...

This new iterator makes a shallow copy of the array—the copy points to the orig-
inal contents, which are not themselves copied—and sequences through the new
array. Thanks to this new iterator, we have a change-resistant snapshot of the array and
can iterate through that.

Internal iterators have exactly the same concurrent modification problems as
external iterators. For example, it is probably a very bad idea to do the following:

array=['red', 'green', 'blue', 'purple']

array.each do | color |

puts(color)

if color == 'green'

array.delete(color)

end

end

This code will print

red

green

purple

Using and Abusing the Iterator Pattern 135

By deleting the 'green' entry, we managed to mess up the indexing of the iterator
just enough to cause it to miss 'blue'.

Internal iterators can also defend against the crime of modifying while iterating
by working on a separate copy of the aggregate, just as we did in our
ChangeResistantArrayIterator class. This might look something like the following
code:

def change_resistant_for_each_element(array)

copy = Array.new(array)

i = 0

while i < copy.length

yield(copy[i])

i += 1

end

end

Finally, a multithreaded program is a particularly dangerous home for iterators. You
need to take all of the usual care to ensure that one thread does not rip the aggregate rug
out from under your iterator.

Iterators in the Wild
Iterators—mostly internal but occasionally external—are so common in Ruby that it
is hard to know where to start. Ruby arrays actually have two other internal iterators
beside each: reverse_each cycles through the array elements from the end of the
array to the beginning, while each_index calls the block passed in with each index
in the array instead of each element.

The String class has an each method that cycles through each line (yes, each
line, not each character) in the string as well as each_byte. Strings also have a won-
derful scan method, which takes a regular expression and iterates over each match
that is found in the string. For example, we might search for all words that begin with
the letter 'p' in a well-known tongue twister:

s = 'Peter Piper picked a peck of pickled peppers'

s.scan(/[Pp]\w*/) {|word| puts("The word is #{word}")}

136 Chapter 7. Reaching into a Collection with the Iterator

If you run this code, you will get lots of 'p' words:

The word is Peter

The word is Piper

The word is picked

The word is peck

The word is pickled

The word is peppers

Unsurprisingly, the Hash class supports a rich assortment of iterators. We have
each_key, which calls the code block for each key in the hash:

h = {'name'=>'russ', 'eyes'=>'blue', 'sex'=>'male'}

h.each_key {|key| puts(key)}

This code produces the following output:

name

sex

eyes

The Hash class also has an each_value method:

h.each_value {|value| puts(value)}

This code produces the following output:

russ

male

blue

Finally, a vanilla each method is also available:

h.each {|key, value| puts("#{key} #{value}")}

Iterators in the Wild 137

The each method iterates over every key/value pair in the hash, so this code will
output

name russ

sex male

eyes blue

External iterators are harder to find in Ruby, but the IO object presents an inter-
esting example. The IO class is the base class for input and output streams. The neat
thing about the IO object is that it is amphibious—it does both internal and external
iterators. You can open a file and read each line in a very traditional style by using the
open file handle as an external iterator:

f = File.open('names.txt')

while not f.eof?

puts(f.readline)

end

f.close

The IO object also has an each method (also known as each_line) that imple-
ments an internal iterator over the lines in the file:

f = File.open('names.txt')

f.each {|line| puts(line)}

f.close

For the non-line-oriented files, IO supplies an each_byte iterator method:

f.each_byte {|byte| puts(byte)}

If your programs do a lot of IO, you will probably want to know about the
Pathname class. Pathname tries to offer one-stop shopping for all your directory
and path manipulation needs. You create a Pathname by supplying the constructor
with a path:

pn = Pathname.new('/usr/local/lib/ruby/1.8')

138 Chapter 7. Reaching into a Collection with the Iterator

Along with a raft of useful methods that have nothing to do with iterators,
Pathname supplies the each_filename iterator, which cycles through the compo-
nents of the path that you supplied. So if you run

pn.each_filename {|file| puts("File: #{file}")}

you will get something like this:

File: usr

File: local

File: lib

File: ruby

File: 1.8

But you can also go in the other dimension—the each_entry method will iter-
ate over the contents of the directory pointed at by the Pathname. So if you run

pn.each_entry {|entry| puts("Entry: #{entry}")}

you will see the contents of /usr/local/lib/ruby/1.8:2

Entry: .

Entry: ..

Entry: i686-linux

Entry: shellwords.rb

Entry: mailread.rb

...

Finally, my very favorite internal iterator in Ruby is one supplied by the
ObjectSpace module. ObjectSpace provides a window into the complete universe
of objects that exist within your Ruby interpreter. The fundamental iterator supplied
by ObjectSpace is the each_object method. It iterates across all of the Ruby
objects—everything that is loaded into your Ruby interpreter:

ObjectSpace.each_object {|object| puts("Object: #{object}")}

Iterators in the Wild 139

2. Well, you will see this if you happen to be using a UNIX-style operating system and Ruby is
installed in /usr/local/lib.

The each_object method takes an optional argument that can be either a class
or a module. If you supply the argument, each_object will iterate over only the
instances of that class or module. And yes, subclasses count. So if I wanted to print
out all of the numbers known to my Ruby interpreter, I might do this:

ObjectSpace.each_object(Numeric) {|n| puts("The number is #{n}")}

This level of introspection is reasonably breathtaking. You can, for example, use
ObjectSpace to implement your own memory profiling system: Simply start a
thread that looks for the objects of interest and prints a report about them. A class
might use ObjectSpace to hunt down all instances of itself, for example. Rails uses
ObjectSpace to build a method that finds all of the subclasses of a given class:

def subclasses_of(superclass)

subclasses = []

ObjectSpace.each_object(Class) do |k|

next if !k.ancestors.include?(superclass) || superclass == k ||

k.to_s.include?('::') || subclasses.include?(k.to_s)

subclasses << k.to_s

end

subclasses

end

If we call

subclasses_of(Numeric)

we will get back an array containing ‘Bignum', 'Float', 'Fixnum', and
'Integer'. As I say, reasonably breathtaking.

Wrapping Up
In this chapter, we explored the two basic forms of iterators. The first, and probably
more familiar, version is the external iterator, where an object points down at a mem-
ber of some collection. With an internal iterator, instead of passing some sort of
pointer up, we pass the code that needs to deal with the sub-objects down.

We also met the Enumerable module, which can enhance the iterator experience
for just about any collection. In addition, we peeked into the dark side of iterators, the
shady part of town where your collection can change under your feet as you are

140 Chapter 7. Reaching into a Collection with the Iterator

iterating through it. Finally, we became iterator tourists, taking in the sights provided
by ObjectSpace, which can reach into the Ruby interpreter and show you things you
never thought you would see.

Iterators in Ruby are a great example of what is right with the language. Instead
of providing special-purpose external iterator objects for each aggregate class, Ruby
relies on the very flexible idea of Proc objects and code blocks to build internal iter-
ators. Because internal iterators are very easy to write—you build only one new
method instead of a whole new class—Ruby encourages programmers to build what-
ever iterators make sense. We can see the power of this approach in the wide array of
iterators available in the standard Ruby library, where we can get at everything from
each_byte in a single string to each_object in the whole Ruby interpreter.

Wrapping Up 141

This page intentionally left blank

CHAPTER 8
Getting Things Done
with Commands

I mentioned in Chapter 1 that I spent a lot of my high school and early college wak-
ing hours working in a grocery store. My tiny store was struggling to compete with
the big supermarkets, so we tried to offer services that you wouldn’t find at the local
MegaMart. In particular, you could call us and dictate your shopping list over the
phone, and we would be more than happy to gather up your beans, butter, and
baloney and deliver it right to your door for free. Some of our customers even
had standing orders. They would call us up and ask that we deliver their regular
shipment—and there I would be, list in hand, pulling together yet another delivery
order.

The grocery lists of my youth are a lot like the commands that give the Command
pattern its name. Like a grocery list, a Command pattern command is an instruction
to do something, something specific. Like a grocery list, a Command pattern com-
mand can be filled—or executed—right now, or later, or when something specific
happens.

Because the Command pattern is one of the more versatile patterns covered in this
book, our discussion here will necessarily be something of a survey. We will start with
the very common use of the Command pattern in GUIs and then move on to their
use in recording what we need to do or what we have already done. Finally, we will see
how we can use the Command pattern to undo things that we have done and, occa-
sionally, to redo thing things that we have undone.

143

An Explosion of Subclasses
Imagine that you are building SlickUI, a new GUI framework. You are busily creat-
ing beautiful buttons, delightful dialogs, and eye-popping icons. But once you are fin-
ished making your user interface framework attractive, you face a critical problem:
How do you get that interface to do something useful?

Imagine that you have built your button class so that the on_button_push
method is called whenever the user clicks the button on the screen:

class SlickButton

#

Lots of button drawing and management

code omitted...

#

def on_button_push

#

Do something when the button is pushed

#

end

end

But what should you do inside the on_button_push method? You are hoping
that SlickUI will be massively popular, used by thousands of programmers the world
over, who will create millions of instances of SlickButton. Perhaps one team of pro-
grammers will be building a word processor and will need buttons to create new doc-
uments and save the current document. Another team might be working on a network
utility; they might need a button to initialize a network connection. The trouble is
that while you are constructing the SlickButton class, you have no idea what any of
those buttons are supposed to do.

One solution to this problem is to pull out our nearly universal, but now some-
what tarnished silver hammer—inheritance. You could ask your users to create a new
subclass for each different type of button:

class SaveButton < SlickButton

def on_button_push

#

Save the current document...

#

end

end

144 Chapter 8. Getting Things Done with Commands

class NewDocumentButton < SlickButton

def on_button_push

#

Create a new document...

#

end

end

Unfortunately, a complex GUI application will have tens or even hundreds of
buttons, and so tens or hundreds of SlickButton subclasses. And then there are the
other GUI elements: things like menu items and radio buttons. On top of that, inher-
itance is so permanent—what if you want your button to do one thing before the user
has actually opened the spreadsheet and something else after the spreadsheet is open?
If you subclass Button, either you need two separate Button subclasses or you need
to code the “Is the file open?” logic into a single Button subclass. Either approach is
messy. Is there an easier way?

An Easier Way
The way to deal with this problem is to package up the idea of what to do when the button
is pushed or the menu item is selected. That is, we want to bundle up the code to handle
the button push or menu selection in its own object—an object that does nothing but
wait to be executed and, when executed, goes out and performs an application-specific
task. These little packages of action are the commands of the Command pattern.

To apply the Command pattern to our button example, we simply store a com-
mand object with each button:

class SlickButton

attr_accessor :command

def initialize(command)

@command = command

end

#

Lots of button drawing and management

code omitted...

#

def on_button_push

@command.execute if @command

end

end

An Easier Way 145

We can then define different commands for all of the things that our buttons
might do:

class SaveCommand

def execute

#

Save the current document...

#

end

end

We supply the actual commands when we create the button:

save_button = SlickButton.new(SaveCommand.new)

The idea of factoring out the action code into its own object is the essence of
the Command pattern. This pattern separates out something that changes—the
thing that we want to happen when the button is pushed—from something that
does not change—the generic button class supplied with the GUI framework.
Because the connection between the button and the command is a runtime thing—
the button simply has a reference to the command that it should fire when
pushed—it is easy to change commands on the fly, thereby changing the behavior
of the button at runtime.

As you can see from the UML diagram in Figure 8-1, the Command pattern is
structurally very simple. It consists of a number of classes that all share a common
interface.

146 Chapter 8. Getting Things Done with Commands

Figure 8-1 The Command pattern

Command

execute()

ConcreteCommand1

execute()

ConcreteCommand2

execute()

Code Blocks as Commands
We have seen that a command is simply a wrapper around some code that knows how
to do one specific thing, whose only reason for existence is to run some code at the
right time. This should sound familiar: It is a fairly accurate description of a Ruby
code block object or a Proc. Recall that a Proc object encapsulates a chunk of code,
just sitting there, ready to be run.

The Command pattern translates very smoothly into code blocks. Here is our
SlickButton class reworked to use code blocks:

class SlickButton

attr_accessor :command

def initialize(&block)

@command = block

end

#

Lots of button drawing and management

code omitted...

#

def on_button_push

@command.call if @command

end

end

To create our new, code block-based SlickButton, we simply pass in a code
block when we create the button:

new_button = SlickButton.new do

#

Create a new document...

#

end

In the world of Ruby code blocks and Proc objects, are hand-coded command
classes like our SaveCommand class passé? Not really—it all depends on the complexity
of the job at hand. If you simply want a command that executes some straightforward
actions when it is run, by all means use a Proc object. But if you are doing something
fairly complex, if you need to create a command that will carry around a lot of state

Code Blocks as Commands 147

information or that naturally decomposes into several methods, by all means create a
command class.

Commands That Record
While buttons and the commands that go with them are a good example of the
Command pattern, commands are by no means limited to GUIs. For example, the
Command pattern can be useful in keeping track of what you have already done.
Imagine that you are building an installation program, a utility that will set up soft-
ware on the user’s system. Installation programs typically need to create, copy, move,
and sometimes delete files. The user might want to know exactly what the installer is
going to do before it actually does it. The user might also want to know what the
installer did, after the fact. Keeping track of this information is easy if you organize
each change as a command.

Because these installation commands will be carrying a bit of state information
around, we will make them separate classes in the classic Command pattern style. Let’s
start by defining a few file manipulation commands, all of which will implement a
describe method along with execute.

First we have the base command class:

class Command

attr_reader :description

def initialize(description)

@description = description

end

def execute

end

end

Next we have a command to create a file and write the contents of a string out to
the new file:

class CreateFile < Command

def initialize(path, contents)

super("Create file: #{path}")

@path = path

@contents = contents

end

148 Chapter 8. Getting Things Done with Commands

def execute

f = File.open(@path, "w")

f.write(@contents)

f.close

end

end

We might also need a command to delete a file:

class DeleteFile < Command

def initialize(path)

super("Delete file: #{path}")

@path = path

end

def execute

File.delete(@path)

end

end

And perhaps a command to copy one file to another:

class CopyFile < Command

def initialize(source, target)

super("Copy file: #{source} to #{target}")

@source = source

@target = target

end

def execute

FileUtils.copy(@source, @target)

end

end

Clearly, we could go on, building even more classes to move or rename files, to
change file permissions, or to create directories, but let’s stop here. Because we are try-
ing to keep track of what we are about to do—or have done—we will need a class to
collect all of our commands. Hmm, a class that acts like a command, but really is just
a front for a number of subcommands. Sounds like a composite:

Commands That Record 149

class CompositeCommand < Command

def initialize

@commands = []

end

def add_command(cmd)

@commands << cmd

end

def execute

@commands.each {|cmd| cmd.execute}

end

def description

description = ''

@commands.each {|cmd| description += cmd.description + "\n"}

description

end

end

Other than being a nice use of another pattern, CompositeCommand allows us to
tell the user exactly what we are doing to his or her system. We could, for example,
create a new file, copy it to a second file, and then delete the first file:

cmds = CompositeCommand.new

cmds.add_command(CreateFile.new('file1.txt', "hello world\n"))

cmds.add_command(CopyFile.new('file1.txt', 'file2.txt'))

cmds.add_command(DeleteFile.new('file1.txt'))

To actually execute all of these file comings and goings, we simply call execute:

cmds.execute

The big win is that at any time—either after we execute the commands or before
we do so—we can explain to the user what is happening. For example, the code

puts(cmds.description)

150 Chapter 8. Getting Things Done with Commands

produces

Create file: file1.txt

Copy file: file1.txt to file2.txt

Delete file: file1.txt

Being Undone by a Command
Enabling your client (either a real user or another program) to undo what has already
been done is a common enough requirement. These days, undo is an absolute neces-
sity for any decent editor or word processor, but it also shows up in other places. For
example, most databases support rolling back transactions, which is just undo by
another name. In fact, undo can show up as a requirement anywhere a fallible human
or program invests substantial and perhaps misguided effort in a series of changes.

The naive way to implement an undo operation is to simply remember the state
of things before you make the change and then restore the remembered state if the
client wants to undo the change. The trouble with this approach is that text files and
word-processing documents, not to mention databases, can be quite large. Making a
complete copy of everything each time you make a change can get ugly, in a resource-
intensive way, very quickly.

The Command pattern can help here, too. A command—being the encapsulation
of how do some specific thing—can, with some enhancing surgery, also undo things.
The idea is really quite simple: Every undo-able command that we create has two
methods. Along with the usual execute method, which does the thing, we add an
unexecute method, which undoes the same thing. As the user makes changes, we cre-
ate command after command, executing each command immediately to effect the
change. But we also store the commands, in order, in a list somewhere. If the user sud-
denly changes his or her mind and wants to undo a change, we find the last command
on the list and unexecute it. And more than the last command can be undone—we
can let the user march back in history as far as he or she likes by un-executing the pre-
vious command, and the one before that, and the one before that.

Redo—that is, the ability to unchange your mind and to reapply the change that
you just undid—falls elegantly out of the same design. To redo something, we just
start reexecuting the commands, starting with the last one that was undone.

Let’s make this a little more concrete by going back to our installer example.
Perhaps the requirement is not merely that we should be able to explain what we are
doing to the user’s system, but that we should be able to back out of the changes if the

Being Undone by a Command 151

user decides that the installation is a bad idea. We start by adding an unexecute
method to the CreateFile command:

class CreateFile < Command

def initialize(path, contents)

super "Create file: #{path}"

@path = path

@contents = contents

end

def execute

f = File.open(@path, "w")

f.write(@contents)

f.close

end

def unexecute

File.delete(@path)

end

end

The unexecute method does exactly what it name suggests: It deletes the file that
the create command created. That which execute gives, unexecute takes away.

Things get a little more challenging with the DeleteCommand, because this com-
mand is inherently destructive: To undo a delete operation, we need to save the con-
tents of the original file, before we delete it 1 In a real system, we would probably copy
the contents of the file to some temporary directory, but for our example we will just
read them into memory:

class DeleteFile < Command

def initialize(path)

super "Delete file: #{path}"

@path = path

end

152 Chapter 8. Getting Things Done with Commands

1. The astute reader (that would be you) will have realized that creating a file with CreateFile could
be destructive, too: The file that we are trying to create might already exist and be overwritten as we
create the new file. In a real system, we would need to deal with this possibility as well as with a host
of issues related to file permissions and ownership. In the interest of keeping the examples simple,
I will shunt all of those issues aside. Sometimes it is good to be just writing examples.

def execute

if File.exists?(@path)

@contents = File.read(@path)

end

f = File.delete(@path)

end

def unexecute

if @contents

f = File.open(@path,"w")

f.write(@contents)

f.close

end

end

end

Adding unexecute to CopyFile would tangle you up in the same issues as
DeleteFile: Before you do any copying in the execute method, you would need to
check whether the target file exists and save its contents if it does. The unexecute
method would need to restore the contents of the file if it did exist and simply delete
it if it had not been there before.

Finally, we need to add an unexecute method to the CompositeCommand class:

class CompositeCommand < Command

...

def unexecute

@commands.reverse.each { |cmd| cmd.unexecute }

end

...

end

Here, the unexecute method is pretty much the reverse of the execute method:
We take the subcommands and unexecute them. Notice that we reverse the commands
array before we iterate through it; we want to undo our actions by starting with the
most recent command and working our way back to the most ancient command.

Being Undone by a Command 153

Queuing Up Commands
The Command pattern can also be useful in situations where you need to accumulate
a number of operations over time, but want to execute them all at once. Installers do
this all the time. In a typical installation program, you go through the wizard saying
that yes, you want the basic program, and yes, you want the documentation, but no,
you do not want the example files. As you progress through the installer, it memorizes
a sort of to-do list: copy in the program, copy in the documentation, and so on. At
the end of the wizard, you get one final chance to change your mind. Only when you
actually click the Install button do things really start to happen. Clearly, the installer’s
to-do list can be a list of commands.

A similar situation arises when you need to perform a series of operations for which
each operation has a substantial start-up cost when done alone. For example, it frequently
takes a minor computer-time eternity to connect to a database. If you need to perform a
number of database operations over time, you sometimes face the unpleasant choice of
(1) leaving the connection open for the whole time, thereby wasting a scarce resource, or
(2) wasting the time it takes to open and close the connection for each operation.

The Command pattern offers one way out of this kind of bind. Instead of per-
forming each operation as a stand-alone task, you accumulate all of these commands
in a list. Periodically, you can open a connection to the database, execute all of your
commands, and flush out this list.

Using and Abusing the Command Pattern
There is something about the Command pattern seems to invite enthusiastic overuse.
As concise as the Command pattern can be in Ruby,

class FileDeleteCommand

def initialize(path)

@path = path

end

def execute

File.delete(@path)

end

end

fdc = FileDeleteCommand.new('foo.dat')

fdc.execute

154 Chapter 8. Getting Things Done with Commands

there is nothing simpler than just getting on with it:

File.delete('foo.dat')

The key thing about the Command pattern is that it separates the thought from
the deed. When you use this pattern, you are no longer simply saying, “Do this”;
instead, you are saying, “Remember how to do this,” and, sometime later, “Do that
thing that I told you to remember.” Even in the lightweight code block-based rendi-
tions of the Command pattern available in Ruby, the two-part aspect of this pattern
adds some serious complexity to your code. Make sure that you really need that com-
plexity before you pull the Command pattern out of your bag of tricks.

Assuming you really do need the Command pattern, to make it work you have to
be sure that the initial thought is complete. You have to carefully think through the cir-
cumstances in which the command object will find itself when it is executed versus when
it was created. Yes, this key file was open, and that vital object was initialized when I cre-
ated the command. Will it all still be there for me when the command is executed?

Getting this “creation time versus execution time” stuff correct is usually not too
difficult with a command that is simply do-able. Mostly you just need to save all of
the arguments to the operation in the command object. It is the undo-able commands
that require vigilance. Many operations are destructive—they wipe away existing data.
If you plan to build an undo-able command, you have to somehow save the perish-
able data in the command object when you execute the command, so that you can put
the data back if you need to unexecute the command.

The Command Pattern in the Wild
As you might expect from the discussion at the beginning of this chapter, the
Command pattern pops up frequently in GUI frameworks. Both the TK and FXRuby
GUI toolkits allow you to associate code block-style commands with GUI elements
such as buttons and menu items. But the Command pattern also shows up in many
other parts of the Ruby code base.

ActiveRecord Migrations

ActiveRecord2 comes equipped with a classic example of an undo-able Command
pattern implementation in the form of its migration facility. The ActiveRecord
migration facility allows the programmer to define his or her database schema in a

The Command Pattern in the Wild 155

2. ActiveRecord, you will recall, is the database interface that Rails uses.

database-vendor-independent way—in Ruby, of course. The thing that makes
migrations relevant here that each bit of the schema definition is organized as a
command. Here, for instance, is a migration that creates a new database table called
books:

class CreateBookTable < ActiveRecord::Migration

def self.up

create_table :books do |t|

t.column :title, :string

t.column :author, :string

end

end

def self.down

drop_table :books

end

end

Notice that all of the actual creation code appears in the up method. The up
method is the migration “execute” method—it does the dirty work of creating the
books table. Our migration also features a down method, which drops the table cre-
ated by the up method, thereby undoing the effect of the command, er, migration.

A typical Rails application will define an entire set of migration classes like the
one above, adding new classes as the database expands or changes. The beauty of
migrations lies in the fact that you can step your database schema forward or back-
ward in time by either doing (up-ing?) or undoing (down-ing?) the migrations.

Madeleine

Another great example of the command pattern in real Ruby code comes from
Madeleine. Madeleine is a Ruby implementation of Prevayler, a project that has its
roots in the Java world but has since spread out to many different languages.

Madeleine is a transactional, high-performance, object persistence framework that
does not need any object relational mapping for the simple reason that it does not use
a relational database—or any other kind of database, for that matter. Instead,
Madeleine relies on the Ruby Marshal package, a facility for converting live Ruby
objects into bytes and for turning those bytes back into objects. Unfortunately, being
able to marshal your objects to a file is not by itself a complete solution to application

156 Chapter 8. Getting Things Done with Commands

persistence. Imagine how slow your system would be if you had to write out a whole
airport’s worth of seat assignments every time someone changed his or her mind and
wanted that aisle seat after all.

Things would go a lot more quickly if you could just save the changes—save the
original state of your objects—and then subsequently just write out the changes. Wait,
this sounds eerily familiar . . .

To get a feeling for Madeleine, let’s build a simple personnel system with it. We
start with the ubiquitous Employee class:

require 'rubygems'

require 'madeleine'

class Employee

attr_accessor :name, :number, :address

def initialize(name, number, address)

@name = name

@number = number

@address = address

end

def to_s

"Employee: name: #{name} num: #{number} addr: #{address}"

end

end

Next, we create a manager class for employees. This class manages a hash of
employees, with the key being the employee number. The EmployeeManager class
lets us add a new employee, delete an existing employee, change an employee’s address,
and find an employee by his or her employee number:

class EmployeeManager

def initialize

@employees = {}

end

def add_employee(e)

@employees[e.number] = e

end

The Command Pattern in the Wild 157

def change_address(number, address)

employee = @employees[number]

raise "No such employee" if not employee

employee.address = address

end

def delete_employee(number)

@employees.remove(number)

end

def find_employee(number)

@employees[number]

end

end

Nothing very exciting so far, but now the plot begins to thicken. We define a set of
command objects, one for each of the operations supported by the EmployeeManager
class. First, we have AddEmployee, which is the command for inserting a new
Employee into the EmployeeManager hash. Like all of the other command classes,
AddEmployee consists of an initialize method that simply stores enough informa-
tion to be able to repeat the command and an execute method that actually does the
command:

class AddEmployee

def initialize(employee)

@employee = employee

end

def execute(system)

system.add_employee(@employee)

end

end

The delete, change address, and find commands are very similar:

class DeleteEmployee

def initialize(number)

@number = number

end

158 Chapter 8. Getting Things Done with Commands

def execute(system)

system.add_employee(@number)

end

end

class ChangeAddress

def initialize(number, address)

@number = number

@address = address

end

def execute(system)

system.change_address(@number, @address)

end

end

class FindEmployee

def initialize(number)

@number = number

end

def execute(system)

system.find_employee(@number)

end

end

Now we get to the interesting part—we create a new Madeleine object store by
passing in the name of a directory where it will persist its data as well as a code block
to create a new EmployeeManager instance:

store = SnapshotMadeleine.new('employees') {EmployeeManager.new}

We also need a thread that will save the state of the object store to disk every so
often. Our thread simply tells Madeleine to save the current state of the system to disk
every 20 seconds.

Thread.new do

while true

sleep(20)

madeleine.take_snapshot

end

end

The Command Pattern in the Wild 159

With this thread running, we can start throwing commands at our personnel system:

tom = Employee.new('tom','1001','1 Division Street')

harry = Employee.new('harry','1002','3435 Sunnyside Ave')

store.execute_command(AddEmployee.new(tom))

store.execute_command(AddEmployee.new(harry))

With Tom and Harry safely in the Madeleine store, we can run some queries:

puts(store.execute_command(FindEmployee.new('1001')))

puts(store.execute_command(FindEmployee.new('1002')))

These queries will produce the following output:

Employee: name: tom num: 1001 addr: 1 Division Street

Employee: name: harry num: 1002 addr: 3435 Sunnyside Ave

We can even change Tom’s address:

store.execute_command(ChangeAddress.new('1001', '555 Main Street'))

Madeleine is a great example of the Command pattern in action. As the com-
mands arrive at Madeleine—add this employee or change this one address—
Madeleine uses this pattern to modify its in-memory copy of the data. But Madeleine
also writes the command out to a file. Should your system crash, Madeleine can
restore its state back to the correct state by reading the last snapshot and applying all
of the outstanding commands. Every so often—every 20 seconds in our example—we
write the current data out to a new snapshot and clear out all of the commands that
have accumulated on disk.

Wrapping Up
With the Command pattern, we construct objects that know how to perform some
very specific actions. The key word here is “specific.” A command instance in the
Command pattern doesn’t know how to change any employee’s address; instead, it
knows how to move one specific employee to his new house. Commands are useful

160 Chapter 8. Getting Things Done with Commands

for keeping a running list of things that your program needs to do, or for remember-
ing what it has already done. You can also run your commands backward and undo
the things that your program has done. Depending on the complexity of your com-
mands, you can implement them either as a full-scale class or as a simple code block.

The Command pattern and the Observer pattern have a lot in common. Both
patterns identify an object—the command in the former pattern and the observer in
the latter pattern—that is called from the other participant in the pattern. Is that
object that I pass to a GUI button a command, the thing that the button will do when
it is pushed, or is it an observer, waiting to be notified when the button changes state?
The answer is—well, it depends. A command object simply knows how to do some-
thing, but is not particularly interested in the state of the thing that executed it.
Conversely, an observer is intensely interested in the state of the subject, the thing that
called it.

Wrapping Up 161

This page intentionally left blank

CHAPTER 9
Filling in the Gaps
with the Adapter

Like most people who like to tinker with electronics, I have a box in my basement
that is overflowing with little electronic gizmos. Near the top of the box is always my
trusty USB-to-PS2 converter that lets me plug my new USB keyboard into that bat-
tered old Pentium 250 that I keep around for some reason. A little deeper is a layer
of serial-to-parallel converters. The bottom strata of my box consist of all those little
black power supply things.

All of these gadgets have one thing in common: They let me connect two devices
that really want to talk to each other but can’t, because the pins do not line up or the
sockets are the wrong size or the voltage coming from one is more than enough to
send the other to gizmo heaven. In short, they are all adapters.

The software world needs adapters more than the hardware folks do. Software
does not have physical form factors; software engineers do not specify that this pin
must be exactly 1.5 mm from that other pin. But because software is made of ideas,
because we can code interfaces just as fast as our little fingers can type, we developers
have nearly limitless opportunities to construct incompatible objects—objects that
want to talk to each other but cannot because their interfaces do not match.

In this chapter, we will explore adapters of the software kind. We will see how
these software adapters allow us to bridge the gap between mismatching software
interfaces. We will also see how we can use one of the most startling features of
Ruby—the ability to modify objects and classes on the fly at runtime—to ease the
burden of creating adapters.

163

Software Adapters
Let’s start our look at software adapters by imagining that we have an existing class
that encrypts a file:

class Encrypter

def initialize(key)

@key = key

end

def encrypt(reader, writer)

key_index = 0

while not reader.eof?

clear_char = reader.getc

encrypted_char = clear_char ^ @key[key_index]

writer.putc(encrypted_char)

key_index = (key_index + 1) % @key.size

end

end

end

The encrypt method of the Encrypter class takes two open files, one open for
reading and the other open for writing, as well as a key. It writes an encrypted version
of the input file to the output file, one byte at a time.1

Using the Encrypter class to encrypt an ordinary file is straightforward. You sim-
ply open the two files and call encrypt with the secret key of your choice:

reader = File.open('message.txt')

writer = File.open('message.encrypted','w')

encrypter = Encrypter.new('my secret key')

encrypter.encrypt(reader, writer)

Now comes the catch: What happens if the data we want to secure happen to be
in a string, rather than in a file? In this case, we need an object that looks like an open

164 Chapter 9. Filling in the Gaps with the Adapter

1. The Encrypter class uses a venerable encryption algorithm. To come up with the encrypted text,
it computes the exclusive OR (sometimes known as XOR) of each character of the input text with
the corresponding character of the key, repeating the key over and over as needed. The beauty of this
algorithm is that it is its own inverse, so you can decrypt the text by simply running the encrypted
text through—with the same key—a second time.

file—that supports the same interface as the Ruby IO object—on the outside, but
actually gets its characters from the string on the inside. What we need is
StringIOAdapter:

class StringIOAdapter

def initialize(string)

@string = string

@position = 0

end

def getc

if @position >= @string.length

raise EOFError

end

ch = @string[@position]

@position += 1

return ch

end

def eof?

return @position >= @string.length

end

end

Our StringIOAdapter class has two instance variables: a reference to the string
and a position index. Each time getc is called, StringIOAdapter will return the char-
acter at the current position in the string, incrementing the position as it goes. The getc
method will raise an exception if there are no more characters left in the string. The eof?
method will return true if we have run out of characters and false otherwise.

To use Encrypter with StringIOAdapter, we just have to replace the input
file with an adapter:

encrypter = Encrypter.new('XYZZY')

reader= StringIOAdapter.new('We attack at dawn')

writer=File.open('out.txt', 'w')

encrypter.encrypt(reader, writer)

As you may have guessed from the name, StringIOAdapter class is an example
of an adapter. An adapter is an object that crosses the chasm between the interface
that you have and the interface that you need.

Software Adapters 165

166 Chapter 9. Filling in the Gaps with the Adapter

Figure 9-1 The Adapter pattern

Client Target

Adapter Adaptee

Figure 9-2 A StringIOAdapter object in action

Encrypter
(client)

String
(adaptee)

StringIOAdapter
(adapter)

reader.getc

@string[@position]

The Class Diagram for adapters is usually drawn as shown in Figure 9-1. What
this diagram is saying is that the client knows about some target class—as a client, I
have a reference to my target object. The client expects the target to have a certain
interface. But unknown to the client, the target object is really an adapter, and buried
inside of the adapter is a reference to a second object, the adaptee, which actually per-
forms the work. Perhaps in a perfect world all interfaces would line up perfectly and
the client would talk directly to the adaptee. In the real world, however, we need to
build adapters because the interface that the client is expecting is not the interface that
the adaptee is offering.

Mapping this back to our example, Encrypter is our client object—it is looking
for a reference to its target, which in our case is an IO instance. As shown in Figure 9-2,
what the client actually has is a reference to the adapter, StringIOAdapter.

The StringIOAdapter class looks like an ordinary IO object on the outside, but
secretly it gets its characters from a string, which is the adaptee.

The Near Misses
Perhaps the most frustrating situations that seem to call for an adapter are those where
the interface you have almost—but not quite—lines up with the interface that you
need. For example, suppose we are writing a class to render text on the screen:

class Renderer

def render(text_object)

text = text_object.text

size = text_object.size_inches

color = text_object.color

render the text ...

end

end

Clearly, Renderer is looking to render objects that look something like this:

class TextObject

attr_reader :text, :size_inches, :color

def initialize(text, size_inches, color)

@text = text

@size_inches = size_inches

@color = color

end

end

Unfortunately, we discover that some of the text that we need to render is con-
tained in an object that looks more like this:

class BritishTextObject

attr_reader :string, :size_mm, :colour

...

end

The Near Misses 167

The good news is that BritishTextObject contains fundamentally everything
we need to render the text. The bad news is that the text is stored in a field called
string, not text; that the size of the text is in millimeters, not inches; and that the
colour attribute has that bonus “u”.

To fix these problems, we could certainly break out the Adapter pattern:

class BritishTextObjectAdapter < TextObject

def initialize(bto)

@bto = bto

end

def text

return @bto.string

end

def size_inches

return @bto.size_mm / 25.4

end

def color

return @bto.colour

end

end

Maybe. Alternatively, we might choose to take advantage of Ruby’s ability to
modify a class on the fly.

An Adaptive Alternative?
If you are new to Ruby, you may have been thinking that the language is really pretty
conventional: single inheritance, plus the usual built-in classes, methods, and if state-
ments. Sure, the code blocks seem a little odd, but in the end they turn into Proc
objects that behave in a fairly familiar way. Well, if that is what you are thinking, hold
on to your keyboard: In Ruby, you can modify almost any class at any time.

To see what this means, imagine that we decide that we will not build an adapter
to bridge the gap between the BritishTextObject instance that we have and the
TextObject interface that we need. Instead, we’ll just change the original
BritishTextObject to look the way we need it to look. To do so, first we make sure

168 Chapter 9. Filling in the Gaps with the Adapter

that the original BritishTextObject class is loaded, and then we reopen the class
and add some methods to it:

Make sure the original class is loaded

require 'british_text_object'

Now add some methods to the original class

class BritishTextObject

def color

return colour

end

def text

return string

end

def size_inches

return size_mm / 25.4

end

end

The workings of this code are really quite simple. The require method at the top of
the file loads the original BritishTextObject class. The class BritishTextObject

statement after the require call does not create a new class, but rather reopens the
existing class and adds some methods. There are really no limits as to what you can do
when you modify a class. Not only can you add methods, but you can also change
existing methods or delete them altogether. Perhaps most startling, you can do all of
this to Ruby’s built-in classes as well as the classes that you define. We could, for
instance, vandalize the absolute value method in Fixnum:

Don't do this!

class Fixnum

def abs

return 42

end

end

An Adaptive Alternative? 169

With this “improved” version of abs, the absolute value of any Fixnum is now
42, so that both of the statements

puts(79.abs)

puts(-1234.abs)

will print

42

42

The ability to modify classes is one of the secrets behind Ruby’s flexibility and power.
But, as the preceding example illustrates, with great power comes great responsibility.

Modifying a Single Instance
If modifying an entire class on the fly seems a little extreme, Ruby provides another,
perhaps less invasive alternative. Instead of modifying an entire class, you can modify
the behavior of a single instance:

bto = BritishTextObject.new('hello', 50.8, :blue)

class << bto

def color

colour

end

def text

string

end

def size_inches

return size_mm/25.4

end

end

The key bit of syntax in this code is this line:

class << bto

170 Chapter 9. Filling in the Gaps with the Adapter

Essentially, this code is an instruction to modify the behavior of the bto object
independently of its class. You can achieve the same effect with a different syntax by
simply defining the methods on the instance:

def bto.color

colour

end

def bto.text

string

end

...

Ruby calls the methods that are unique to an object singleton methods.2 It turns
out that most Ruby objects,3 along with their regular classes, have a second, more or
less secret class. As shown in Figure 9-3, this second, singleton class is actually the first

Modifying a Single Instance 171

Figure 9-3 Singleton methods on a BritishTextObject instance

bto
(instance)

BritishTextObject

colour()
string()
size_mm()

(bto singleton class)

color()
text()
size_inches()

2. The phrase singleton method is a reasonably unfortunate twist of terminology. Such methods really
have nothing to do with the Singleton pattern that we will discuss in Chapter 12.
3. Immutable objects—instances of Fixnum, for example—will not cooperate with attempts to add
singleton methods to them.

place where Ruby looks when you call a method, so any method defined in the single-
ton class will override the methods in the regular class.4 The preceding code modifies
the singleton class of the bto object. All of this is done with the utmost discretion, and
even after it has been modified the object will still claim to be of its old, original class.5

Adapt or Modify?
Undeniably, modifying a class or a single instance to support the interface that you
need makes for simpler code than creating an adapter. If you modify the original class
or object, you do not need the additional adapter class, nor do you need to worry
about wrapping the adapter around the adaptee. Things just work. And yet the mod-
ification technique involves serious encapsulation violations: You just dive in and start
changing things. So when should you use an adapter, and when is it okay to rearrange
the guts of a wayward class?

As usual, a pinch of pragmatism seems best. Lean toward modifying the class in
the following circumstances:

• The modifications are simple and clear. The method aliasing we did earlier is a
prime example of a simple, crystal-clear modification

• You understand the class you are modifying and the way in which it is used.
Performing serious surgery on a class without taking a hard look at the class
beforehand is probably going to lead to grief.

Lean toward an adapter solution in the following situations:

• The interface mismatch is extensive and complex. For example, you probably
would not want to modify a string to look like a Fixnum object.

• You have no idea how this class works. Ignorance is always cause to tread lightly.

Engineering is all about trade-offs. Adapters preserve encapsulation at the cost of
some complexity. Modifying a class may buy you some simplification, but at the cost
of tinkering with the plumbing.

172 Chapter 9. Filling in the Gaps with the Adapter

4. The singleton methods also override the methods in any module that happens to be included in
the class, too.
5. Well, not too much discretion: You can query an object about its singleton methods with the
singleton_methods method.

Using and Abusing the Adapter Pattern
One of the advantages that Ruby’s duck typing gives to adapter writers is that it allows
us to create adapters that support only that part of the target interface that the client
will actually use. For example, IO objects sport a large number of methods—with a real
IO object, you can read lines, search your file, and do lots of other file-related things.
But the StringIOAdapter we created earlier implemented exactly two methods:
getc and eof?. We got away with this because those were the only IO methods that the
Encrypter class actually used. Partially implemented adapters are something of a
double-edged sword: On the one hand, it is very convenient to implement only what
you absolutely need; on the other hand, your program can come to grief if the client
decides to call a method that you didn’t think you needed.

Adapters in the Wild
You can find a classic application of the Adapter pattern buried in ActiveRecord, the
object relational mapper used by Ruby on Rails. ActiveRecord has to deal with the
fact that it needs to talk to a whole crowd of different database systems: MYSQL and
Oracle and Postgres, not to mention SQLServer. All of these database systems provide a
Ruby API—which is good. But all of the APIs are different—which is bad. For exam-
ple, if you have a connection to a MYSQL database and you want to execute some SQL,
you need to call the query method:

results = mysql_connection.query(sql)

But if you are talking to Sybase, you need to use the sql method:

results = sybase_connection.sql(sql)

Meanwhile, if you are dealing with Oracle, you call the execute method and get
back a cursor to the results instead of the results themselves. It is almost as if the
authors got together and conspired to ensure that there was no overlap.

ActiveRecord deals with all of these differences by defining a standardized inter-
face, encapsulated in a class called AbstractAdapter. The AbstractAdapter class
defines the interface to a database that is used throughout ActiveRecord. For exam-
ple, AbstractAdapter defines a standard method to execute a SQL select statement
and return the results, called select_all. A subclass of AbstractAdapter is avail-
able for each of the different flavors of databases—for example, there is a

Adapters in the Wild 173

MysqlAdapter and an OracleAdapter and a SybaseAdapter. Each individual
adapter implements the select_all method in terms of the API of the underlying
database system.

Finally, our StringIOAdapter example is inspired by the StringIO class, which
comes with Ruby.

Wrapping Up
There really is no magic to adapters: They exist to soak up the differences between the
interfaces that we need and the objects that we have. An adapter supports the inter-
face that we need on the outside, but it implements that interface by making calls to
an object hidden inside—an object that does everything we need it to do, but does it
via the wrong interface.

Ruby also supports a second, albeit limited way to solve the “wrong interface”
problem: We can simply modify the object with the wrong interface at runtime so that
it has the right interface. In other words, we can beat the object into submission. The
choice of using an adapter or modifying the object really comes down to how well you
understand the class in question and the issue of encapsulation. If you know how the
thing works and your interface changes are relatively minor, perhaps modifying the
object is the way to go. If the object is complex or if you simply do not understand it
fully, use a classic adapter.

The Adapter pattern is the first member of a family of patterns we will
encounter—a family of patterns in which one object stands in for another object. This
family of object-oriented impostors also includes proxies and decorators. In each case,
an object acts more or less as the front man for another object. As you will see in sub-
sequent chapters, in each of these patterns the code will look vaguely familiar. At the
risk of repeating myself, keep in mind that a pattern is not just about code: Intent is
critical. An adapter is an adapter only if you are stuck with objects that have the wrong
interface and you are trying to keep the pain of dealing with these ill-fitting interfaces
from spreading throughout your system.

174 Chapter 9. Filling in the Gaps with the Adapter

CHAPTER 10
Getting in Front of Your
Object with a Proxy

Software engineering is full of ironies. I can work day and night for months on the
new BankAccount object, a technical masterpiece that allows clients to manage all
their banking needs. Then I can labor for even more months to keep all but a very few
(authorized) clients from getting anywhere near it.

But then my boss tells me that the authorized clients don’t even want my
BankAccount object. Well, at least they don’t want it on their computers—it would
be great if they could somehow use the BankAccount class while it is running on the
server, but no way will the users install that thing on their computers.

Finally, as the all-but-impossible, we got to have this code right now deadline
approaches, I get one more requirement: For performance reasons, please delay creating
BankAccount objects at runtime until the last possible moment.

As disparate as these problems seem—controlling access to an object or providing
a location-independent way of getting at the object or delaying its creation—all three
actually have a common solution: the Proxy pattern.

In this chapter, we will look at the Proxy pattern, examine the traditional way of
building a proxy, and see how we can use it to solve our trio of dilemmas. Finally, we
will reach into our Ruby bag of tricks and pull out a technique that will make building
a proxy as easy as writing a single method.

175

Proxies to the Rescue
The Proxy pattern is essentially built around a little white lie. When the client asks us
for an object—perhaps the bank account object mentioned earlier—we do indeed give
the client back an object. However, the object that we give back is not quite the object
that the client expected. What we hand to the client is an object that looks and acts
like the object the client expected, but is actually an imposter. As you can see in
Figure 10-1, the counterfeit object, called the proxy by the GoF, has a reference to the
real object, the subject, hidden inside. Whenever the client code calls a method on
the proxy, the proxy simply forwards the request to the real object.

To make the proxy idea a little more concrete, let’s do some banking. The code
below shows a simple class that keeps track of a bank account:

class BankAccount

attr_reader :balance

def initialize(starting_balance=0)

@balance = starting_balance

end

def deposit(amount)

@balance += amount

end

def withdraw(amount)

@balance -= amount

end

end

176 Chapter 10. Getting in Front of Your Object with a Proxy

Figure 10-1 The Proxy pattern

Service

do_something()

RealService

do_something()
def do_something
@subject.do_something
end

ServiceProxy

@subject

do_something()

Instances of BankAccount will be our real objects or subjects. Let’s now move on
to a proxy for BankAccount:

class BankAccountProxy

def initialize(real_object)

@real_object = real_object

end

def balance

@real_object.balance

end

def deposit(amount)

@real_object.deposit(amount)

end

def withdraw(amount)

@real_object.withdraw(amount)

end

end

We can now create a bank account and a proxy for the bank account and use them
more or less interchangeably:

account = BankAccount.new(100)

account.deposit(50)

account.withdraw(10)

proxy = BankAccountProxy.new(account)

proxy.deposit(50)

proxy.withdraw(10)

There really is nothing very exciting going on in BankAccountProxy. The
BankAccountProxy presents exactly the same interface as its subject, the
BankAccount object. But the proxy doesn’t really know a thing about high finance—
whenever someone calls a method on it, the BankAccountProxy turns to the real
BankAccount object, delegating the method call to the subject.

Of course, if our proxy did nothing more than echo every call blindly down to
the subject, we will not have accomplished much except create a sink for those extra

Proxies to the Rescue 177

CPU cycles as the method calls arrive at the proxy, only to be immediately bounced
off to the subject. But once we have a proxy, we have a place to stand squarely between
the client and the real object. If we want to manage who does what to the bank
account, the proxy provides the ideal pinch point to exert control.

The Protection Proxy
Let’s take our generic, do-nothing BankAccountProxy and turn it into a protection
proxy, a proxy that controls access to the subject. To do so, we need simply add a
check at the start of each method:

require 'etc'

class AccountProtectionProxy

def initialize(real_account, owner_name)

@subject = real_account

@owner_name = owner_name

end

def deposit(amount)

check_access

return @subject.deposit(amount)

end

def withdraw(amount)

check_access

return @subject.withdraw(amount)

end

def balance

check_access

return @subject.balance

end

def check_access

if Etc.getlogin != @owner_name

raise "Illegal access: #{Etc.getlogin} cannot access account."

end

end

end

178 Chapter 10. Getting in Front of Your Object with a Proxy

Each operation on the account is protected by a call to the check_access method.
The check_access method does what its name implies: It makes sure that the current
user is allowed to access the account. The example version of check_access uses the
Etc1 module to get the name of the current user; it then compares this name to the
name of the account owner, which is passed in to the constructor.

Clearly, we could have included the checking code in the BankAccount object
itself. The advantage of using a proxy for protection is that it gives us a nice separation
of concerns: The proxy worries about who is or is not allowed to do what. The only
thing that the real bank account object need be concerned with is, well, the bank
account. By implementing the security in a proxy, we make it easy to swap in a differ-
ent security scheme (just wrap the subject in a different proxy) or eliminate the secu-
rity all together (just drop the proxy). For that matter, we can also change the
implementation of the BankAccount object without messing with our security
scheme.

Protection proxies have another advantage over the naive “implement all of the
security and functionality in one class” approach. By splitting the protection cleanly
off from the workings of the real object, we can minimize the chance that any impor-
tant information will inadvertently leak out through our protective shield.

Remote Proxies
Perhaps security is not really your problem; perhaps location is the real issue. Maybe
you have a program on some client machine and it would like to use the BankAccount
object. The trouble is that the BankAccount object lives on a server machine that is
way, way across the network. Now you could make the client program work really
hard—have it cook up packets and submit them to the network and deal with all of
the complexities of holding a conversation over a (possibly unreliable) network.
Alternatively, you could hide the complexity behind a remote proxy, an object that lives
on the client machine and looks, to the client code, just like the real BankAccount
object. When a request comes in, the remote proxy goes through all the horror of pack-
aging up the request, sending it over the network, waiting for a response, unpacking
the response, and returning the answer to the unsuspecting client.

Remote Proxies 179

1. The Etc module is kind of, sort of, pretty much standard with Ruby. It is part of the standard
Ruby distribution for UNIX and UNIX-like systems. There is also an optional—albeit widely
available—Windows version. The Windows version comes packaged with the one-click Ruby
Windows installer, so I will just assume that you have it.

From the client’s point of view, it called a method on what it thought was the real
BankAccount object and sometime later—perhaps an unusually long time later—the
answer came back. This is how virtually all remote procedure call (RPC) systems work.

As a quick example of a remote proxy, the following code uses Ruby’s own SOAP
client mechanism to create a proxy for a public SOAP service that provides weather
information:2

require 'soap/wsdlDriver'

wsdl_url = 'http://www.webservicex.net/WeatherForecast.asmx?WSDL'

proxy = SOAP::WSDLDriverFactory.new(wsdl_url).create_rpc_driver

weather_info = proxy.GetWeatherByZipCode('ZipCode'=>'19128')

Once the proxy object is set up, the client code no longer has to worry about the
fact that the service actually lives at www.webservicex.net. Instead, it simply calls
GetWeatherByZipCode and leaves all of the network details to the proxy.

Remote proxies offer many of the same advantages as protection proxies. In par-
ticular, the remote proxy enables a nice separation of concerns: One object, the sub-
ject, can focus on forecasting the weather or whatever domain-specific thing that it is
doing while the other object, the proxy, can concentrate on shipping the bytes across
the network. Changing protocols (perhaps from SOAP to XMLRPC) is as easy as
swapping out the proxy.

Virtual Proxies Make You Lazy
Finally, we can use a proxy to delay creating expensive objects until we really need
them. This is exactly what we need to deal with the final twist of fate in the little para-
ble that opened this chapter. Recall that the last requirement for our banking project
was to delay the creation of BankAccount instances for as long as possible. We do not
want to create the real BankAccount until the user is ready to do something with it,
such as making a deposit. But we also do not want to spread the complexity of that
delayed creation out over all the client code. The answer is to use yet another flavor of
proxy, the virtual proxy.

180 Chapter 10. Getting in Front of Your Object with a Proxy

2. If you decide to try out this example, please keep in mind that public Web services seem to have
approximately the same life expectancy as a day-old mayfly, so the specific service shown in the
example may not be around when you try to access it.

www.webservicex.net

In a sense, the virtual proxy is the biggest liar of the bunch. It pretends to be the
real object, but it does not even have a reference to the real object until the client code
calls a method. Only when the client actually calls a method does the virtual proxy
scurry off and create or otherwise get access to the real object.

Implementing the virtual proxy is very simple:

class VirtualAccountProxy

def initialize(starting_balance=0)

@starting_balance=starting_balance

end

def deposit(amount)

s = subject

return s.deposit(amount)

end

def withdraw(amount)

s = subject

return s.withdraw(amount)

end

def balance

s = subject

return s.balance

end

def subject

@subject || (@subject = BankAccount.new(@starting_balance))

end

end

The heart of our VirtualAccountProxy is the subject method. The subject
method checks whether the BankAccount object has already been created and, if not,
creates a new one. The subject method uses a very common, if slightly strange-looking
Ruby idiom to get the job done:

@subject || (@subject = BankAccount.new(@starting_balance))

This line of code is really just one big OR expression. The first term of the OR expres-
sion is @subject. If @subject is not nil, the expression evaluates to that non-nil value

Virtual Proxies Make You Lazy 181

(it this case, our bank account object) and we are done. If @subject is nil, Ruby will
evaluate the right side of the OR expression, which creates the new bank account; thus
the value of the expression is the new bank account.

One drawback of the VirtualAccountProxy implementation shown above is
that the proxy is responsible for creating the bank account object. That approach tan-
gles the proxy and the subject up a little more than we might like. We can improve on
this strategy by applying a little of that Ruby code block magic:

class VirtualAccountProxy

def initialize(&creation_block)

@creation_block = creation_block

end

Other methods omitted ...

def subject

@subject || (@subject = @creation_block.call)

end

end

In this new implementation, the code that creates the proxy passes in a block that
is responsible for creating the bank account when the time comes:

account = VirtualAccountProxy.new { BankAccount.new(10) }

Like the other two flavors of proxies, the virtual proxy provides us with a good
separation of concerns: The real BankAccount object deals with deposits and with-
drawals, while the VirtualAccountProxy deals with the issue of when to create the
BankAccount instance.

Eliminating That Proxy Drudgery
One annoying characteristic that all of our proxies so far have shared is the need to
write all of those boring, repetitive proxied methods. For example, our bank account
proxies all needed to implement proxy methods for deposit, withdrawal, and
balance methods. Of course, three methods is by no means the limit, or even typical.
Ruby’s Array class has 118 methods, while String has 142. Writing 142 dumb
methods is not merely pure drudgery; it is also a rich source of opportunities for
screwing up.

182 Chapter 10. Getting in Front of Your Object with a Proxy

Can we avoid writing all these boring methods? It turns out that Ruby does have
a way—a way that is rooted in something you learned very early in your object-oriented
programming career and have probably long since forgotten.

Message Passing and Methods

If your introduction to object-oriented programming was like mine, somewhere early
on day 1 you learned about “message passing.” You were told that doing something like

account.deposit(50)

meant that you were sending the deposit message to the account object. Of course, if
you were learning about a statically typed language, you soon figured out that
account.deposit(50) was synonymous with calling the deposit method on the
account object. The whole static typing system was there to make sure that the
deposit method was there and was called. So by the end of day 1 of object-oriented
programming, we all stopped talking about passing messages and started talking about
calling methods.

The concept of message passing would make more sense if we could say
account.deposit(50), and the BankAccount class was then free to do something
else with the message besides simply calling the deposit method. Perhaps the
BankAccount class could call some method other than deposit, or perhaps it could
decide to do nothing. It turns out that this is all possible in Ruby.

The Ruby meaning of account.deposit(50) is much closer to true message
passing than the “we all know this is a straight method call” model of most statically
typed languages. When you invoke account.deposit(50), Ruby will initially do
exactly what you expect: It will look for the deposit method first in BankAccount’s
class, then in its superclass, and so on, until it either finds the method or runs out of
superclasses. If Ruby finds the method, we get the behavior that we have long come
to expect: deposit is called and you are $50 richer.

But what if there is no deposit method? In this case, Ruby does something a lit-
tle unexpected: Behind the scenes it calls another method. This fallback method is
named method_missing. Again Ruby will look in the BankAccount class, this time
for method_missing. If there is no method_missing in BankAccount, Ruby will
again climb up the inheritance tree from class to superclass until it either finds a
method_missing or hits Object. The search will stop at Object because the Object
class comes equipped with a method_missing method. Its implementation of
method_missing simply raises the usual NoMethodError exception.

Eliminating That Proxy Drudgery 183

The net effect of all of this is that if you do not define a method_missing
method in your class (or in a superclass), things work as we have come to expect: You
call a bad method and Ruby raises an exception. The beauty of the method_missing
method is that by implementing it in your class, you can build classes that can catch
any arbitrary method—or, should I say, message—that comes down the road and do
whatever seems correct in that situation.3 This is message passing.

The method_missing Method

The method_missing method is one of those variable argument methods that we
glimpsed briefly in Chapter 2. The first argument is always a symbol—the name of
the nonexistent method. It is followed by all of the arguments from the original call.

Let’s look at a simple example, a class that whines in its own special way when-
ever a nonexistent method is called. Try running the following code:

class TestMethodMissing

def hello

puts("Hello from a real method")

end

def method_missing(name, *args)

puts("Warning, warning, unknown method called: #{name}")

puts("Arguments: #{args.join(' ')}")

end

end

If we send a message to an instance of TestMethodMissing that does correspond
to a real method,

tmm=TestMethodMissing.new

tmm.hello

we get the behavior that we have long expected:

Hello from a real method

184 Chapter 10. Getting in Front of Your Object with a Proxy

3. The Smalltalk programming language behaves pretty much the same way as Ruby does when
someone calls a nonexistent method, but in Smalltalk the name of the catch-all method is the much
more descriptive doesNotUnderstand.

But if we throw something unexpected at TestMethodMissing, then
method_missing is called:

tmm.goodbye('cruel', 'world')

Warning, warning, unknown method called: goodbye

Arguments: cruel world

Sending Messages

The idea of message passing is so thoroughly integrated into Ruby that you can not
only catch unexpected messages with method_missing, but also explicitly send mes-
sages to objects with the send method. For example, sending the messages

tmm.send(:hello)

tmm.send(:goodbye, 'cruel', 'world')

gives the same output as calling hello and goodbye in the normal way:

Hello from a real method

Warning, warning, unknown method called: goodbye

Arguments: cruel world

The arguments to send are identical to the arguments to method_missing. The
first argument is the name of the message, which is followed by any arguments that
go along with the message.

So what, you may be wondering, is all the excitement about? Yes, you can catch
unexpected method calls with method_missing. And yes, you can explicitly send
messages. But why would you ever bother with account.send(:deposit, 50) when
account.deposit(50) is not only shorter but also more familiar? It turns out that
this message-passing nonsense actually makes building proxies and a number of other
patterns much easier.

Proxies without the Tears

Recall that just before we went off on our message-passing tangent, we were lament-
ing the fact that building proxies involved painfully repeating in the proxy all of the
methods of the subject class that we wanted to proxy. But what if we did not repeat

Eliminating That Proxy Drudgery 185

these methods? What if we built our proxy class and simply did not define any of the
methods we intended to proxy? We might end up with something like this:

class AccountProxy

def initialize(real_account)

@subject = real_account

end

end

As it stands, our AccountProxy class is quite useless. If we create this class and
call any of the methods from BankAccount on it,

ap = AccountProxy.new(BankAccount.new(100))

ap.deposit(25)

all we get is a blank stare:

proxy1.rb:32: undefined method 'deposit'

for #<AccountProxy:0x401bd408>(NoMethodError)

Based on our discussion in the previous section, we know what is happening
behind the scenes here. First Ruby will look for the deposit method and will fail
to find it. Having failed to find the deposit method, Ruby will look for the
method_missing method, which it will find in the Object class. It is this Object
method that raises the NoMethodError exception.

Now here comes the key insight: If we add a method_missing method to our
proxy class, the proxy can catch any method call that comes its way. Using the send
method, the proxy can also forward the message—the message that the proxy has no
idea how to handle—to the real account object! Here is the new and improved
AccountProxy:

class AccountProxy

def initialize(real_account)

@subject = real_account

end

def method_missing(name, *args)

puts("Delegating #{name} message to subject.")

@subject.send(name, *args)

end

end

186 Chapter 10. Getting in Front of Your Object with a Proxy

We can now throw any BankAccount message we want at the proxy, serene in the
knowledge that any message that AccountProxy does not understand will be
bounced to method_missing, which will send the message on to the real account
object. Let’s create one of these new account proxies and start using it:

ap = AccountProxy.new(BankAccount.new(100))

ap.deposit(25)

ap.withdraw(50)

puts("account balance is now: #{ap.balance}")

We will get the following outcome:

delegating deposit method to subject.

delegating withdraw method to subject.

delegating balance method to subject.

account balance is now: 75

What we have here is a very painless method of delegation, which is exactly
what we need to take the sting out of building proxies. Let’s rewrite our
AccountProtectionProxy using the method_missing technique:

class AccountProtectionProxy

def initialize(real_account, owner_name)

@subject = real_account

@owner_name = owner_name

end

def method_missing(name, *args)

check_access

@subject.send(name, *args)

end

def check_access

if Etc.getlogin != @owner_name

raise "Illegal access: #{Etc.getlogin} cannot access account."

end

end

end

Eliminating That Proxy Drudgery 187

There are two interesting things to note about our new AccountProtection
Proxy, one obvious and one a little more subtle. The obvious thing is that
AccountProtectionProxy is 15 lines long—and it will stay 15 lines long, no mat-
ter how many methods we need to delegate to the real account object. Less obvious is
the fact that there is nothing BankAccount-specific about AccountProtectionProxy.
AccountProtectionProxy will cheerfully proxy (and protect) any object that you
throw at it, applying the same access policy to all comers.

To try a silly example, suppose we use AccountProtectionProxy to defend an
ordinary string. If we wrap the string with a proxy with the correct user (me!), things
work just fine:

s = AccountProtectionProxy.new("a simple string", 'russ')

puts("The length of the string is #{s.length}")

But if the string belongs to Fred,

s = AccountProtectionProxy.new("a simple string", 'fred')

puts("The length of the string is #{s.length}")

then I will not get anywhere near it:

string_permission.rb:17.in `check_access':

Illegal access: russ cannot access account.

We can just as easily build a virtual proxy with our method_missing technique:

class VirtualProxy

def initialize(&creation_block)

@creation_block = creation_block

end

def method_missing(name, *args)

s = subject

s.send(name, *args)

end

188 Chapter 10. Getting in Front of Your Object with a Proxy

def subject

@subject = @creation_block.call unless @subject

@subject

end

end

Like our new method_missing-based protection proxy, this second virtual proxy
is pretty universal. We can, for instance, use it to delay the creation of an array:

array = VirtualProxy.new { Array.new }

array << 'hello'

array << 'out'

array << 'there'

As we will see in the pages to come, method_missing is useful in many situa-
tions that require delegation.

Using and Abusing Proxies
An easy trap to fall into when building a proxy, especially when you are using the
method_missing technique, is to forget that every object starts out with a minimal
set of methods—those that it inherits from Object. For example, every object inher-
its a method called to_s from Object. Call to_s on most any object, and you will
get back a string containing some kind of description of the object. A proxy is sup-
posed to pretend to be its subject, but if you call to_s on any of the proxies that we
have built so far, the illusion quickly breaks down:

account = VirtualProxy.new { BankAccount.new }

puts(account)

#<VirtualProxy:0x40293b48>

What is happening here is that we are calling the VirtualProxy to_s method,
not the BankAccount to_s method. This may or may not be the behavior we are
looking for; the point is that you need to think about those often-forgotten Object
methods as you build your proxies.

Using and Abusing Proxies 189

The method_missing technique extolled in this chapter also has some down-
sides. For example, using method_missing involves a bit of a performance hit. If you
compare a class with a straightforward method

class DirectCall

def add(a, b)

a+b

end

end

with a class that uses the method_missing method

class MethodMissingCall

def method_missing(name, a, b)

a+b

end

end

the method_missing version will run somewhat more slowly. On my machine, the
first, traditionally written class runs about 10 percent faster than calling add on the
second version and letting the unknown method fall through to method_missing.

More importantly, overusing method_missing, like overusing inheritance, is
a great way to obscure your code. When you use the method_missing technique,
you are creating objects whose messages are handled more or less magically.
Anyone reading the code for our banking system, for example, will start by look-
ing for the deposit and withdraw methods in the proxy classes. The Ruby-savvy
reader will rapidly make the mental jump and recognize the method_missing
technique. But your code should not require any more metal athletics than necessary—
make sure you have a good reason to put the next coder who comes along through all
of that.

Proxies in the Wild
By far, the most popular use of the Proxy pattern in Ruby today takes the form of a
remote proxy. Aside from the Ruby SOAP client that we saw earlier, the Distributed
Ruby package (drb) is also available; it allows you to build distributed Ruby applica-
tions that are bound together by a TCP/IP network. The drb package is really easy to

190 Chapter 10. Getting in Front of Your Object with a Proxy

use: Just about any plain old Ruby object (a PORO perhaps?) can act as a drb service.
Let’s build a stupendously dumb one:

class MathService

def add(a, b)

return a + b

end

end

To expose this object as a drb service requires only a few lines of code:

require 'drb/drb'

math_service=MathService.new

DRb.start_service("druby://localhost:3030", math_service)

DRb.thread.join

Essentially, we create a MathService object and then mumble the correct drb
incantation to advertise the new object on port 3030. To get things going, we would
start up the math service program on some computer and then let it sit there in the
background, ready to handle incoming requests.

To generate a request, we will need a client program. Move to another window or
even another computer on your network and crank up the following code. First we
need to initialize the drb client side:

require 'drb/drb'

DRb.start_service

Now we can connect to the remote math service:

math_service = DRbObject.new_with_uri("druby://localhost:3030")

Of course, if you are running the service on a different computer or port, you will
need to change the URL accordingly. Running the client program allows us to exer-
cise the stupendous math server:

sum=math_service.add(2,2)

Proxies in the Wild 191

This is all relevant to the Proxy pattern because the client-side math_service is
actually a remote proxy to the real math service, which is running inside the server-
side Ruby interpreter. If you poke around inside the drb innards, you will find the
same method_missing technique that we have discussed in this chapter.

Wrapping Up
In this chapter, we looked at three different problems: protecting an object from unau-
thorized access, hiding the fact that this object really lives somewhere else on the net-
work, and delaying the creation of an expensive object until the last possible instant.
Remarkably, all of these problems find a common solution in the Proxy pattern.
Proxies are the con artists of the programming world: They pretend to be some other
object when they are not, in fact, that object. Inside the proxy is hidden a reference to
the other, real object—an object that the GoF referred to as the subject.

Nevertheless, the proxy does not just act as a method call conduit for the subject.
Instead, it serves as a pinch point between the client and the subject. “Is this opera-
tion authorized?” asks the protection proxy. “Does the subject actually live on this
other machine?” asks the remote proxy. “Have I actually created the subject yet?” asks
the virtual proxy. In short, the proxy controls access to the subject. We also saw in this
chapter how using the method_missing technique can substantially reduce the cod-
ing burden of building proxies.

The Proxy pattern is the second pattern we have encountered in which one object
stands in for another. In Chapter 9, we considered the adapter, which wraps one object
with another to transform the interface of the first object. Superficially, the proxy is
very similar to the adapter: One object stands in for another. But the proxy does not
change the interface; the interface of the proxy is exactly the same as the interface of
its subject. Instead of trying to transform the interface of that inner object in the same
way that an adapter does, the proxy tries to control access to it.

It turns out that the “object within an object,” Russian-doll kind of construction
that we have seen in the Adapter and Proxy patterns is so useful that we will see it a
one more time before this book ends. In particular, it is likely to pop up again in the
very next chapter . . .

192 Chapter 10. Getting in Front of Your Object with a Proxy

CHAPTER 11
Improving Your Objects
with a Decorator

Among the most basic questions of software engineering is this: How do you add fea-
tures to your program without turning the whole thing into a huge, unmanageable
mess? So far, you have seen how to split the internal workings of your objects up
among a family of classes with the Template Method pattern and how to use the
Strategy pattern to split off whole chunks of algorithms. You have also seen how to
react to requests coming into your objects with the Command pattern and how to
keep up with changes made to other objects with the Observer pattern. Composites
and iterators each help in their own way in dealing with collections of objects.

But what if you simply need to vary the responsibilities of an object? What do you
do when sometimes your object needs to do a little more, but sometimes a little less?
In this chapter we will look at the Decorator pattern, which enables you to easily add
an enhancement to an existing object. The Decorator pattern also allows you to layer
features atop one another so that you can construct objects that have exactly the right
set of capabilities that you need for any given situation. As usual, we will take a look
at a very Ruby-flavored alternative to the Decorator pattern. Finally, we will see why
highly decorated objects are not always everyone’s idea of a hero.

Decorators: The Cure for Ugly Code
Imagine that you have some text that needs to be written to a file. Sounds simple
enough, but in your system sometimes you want to write out just the plain, unadorned
text, while at other times you want to number each line as it gets written out.

193

Sometimes you want to add a time stamp to each line as it goes out into the file.
Sometimes you need a checksum from the text so that later on you can ensure that it
was written and stored properly.

To handle these demands, you might just start out with an object that wraps a
Ruby IO object and has several methods, one for each output variation:

class EnhancedWriter

attr_reader :check_sum

def initialize(path)

@file = File.open(path, "w")

@check_sum = 0

@line_number = 1

end

def write_line(line)

@file.print(line)

@file.print("\n")

end

def checksumming_write_line(data)

data.each_byte {|byte| @check_sum = (@check_sum + byte) % 256 }

@check_sum += "\n"[0] % 256

write_line(data)

end

def timestamping_write_line(data)

write_line("#{Time.new}: #{data}")

end

def numbering_write_line(data)

write_line("%{@line_number}: #{data}")

@line_number += 1

end

def close

@file.close

end

end

194 Chapter 11. Improving Your Objects with a Decorator

You can then use EnhancedWriter to write out ordinary text:

writer = EnhancedWriter.new('out.txt')

writer.write_line("A plain line")

Or a line that gets included in the checksum:

writer.checksumming_write_line('A line with checksum')

puts("Checksum is #{writer.check_sum}")

Or a time-stamped line or a numbered one:

writer.timestamping_write_line('with time stamp')

writer.numbering_write_line('with line number')

There is only one thing wrong with this approach: everything. First, every client
that uses EnhancedWriter will need to know whether it is writing out numbered,
checksummed, or time-stamped text. And the clients do not need to know this just
once, perhaps to set things up—no, they need to know it continuously, with every line
of data that they write out. If a client gets things wrong just once—for example, if it
uses timestamping_write_line when it meant to use numbering_write_line or
if it uses plain old write_line when it meant to use checksumming_write_line—
then the name of the class, EnhancedIO, is going to seem more than a little ironic.

An only slightly less obvious problem with this “throw it all in one class” approach
is, well, that everything is thrown together in a one class. There is all of the line num-
bering code sitting alongside the checksum code, which is nestled up against the time
stamp code, and all of them are locked together in the same class, used or not, just
looking for trouble.

You might be able to separate out all of these text writing concerns by creating a
base class and subclasses—in other words, use our old friend inheritance—along the
lines shown in the UML diagram in Figure 11-1.

But what if you want a checksum of your numbered output? What if you want to
put line numbers on your output, but only after you add time stamps to it? You can
still do it, but the number of classes does seem to be getting out of hand, as is painfully
clear in Figure 11-2.

Decorators: The Cure for Ugly Code 195

Figure 11-2 Out-of-control inheritance

EnhancedWriter

write_line(line)

NumberingWriter

write_line(line)

TimestampedWriter

write_line(line)

CheckSummedWriter

write_line(line)

TimestampingNumberingWriter

write_line(line)

CheckSummingLineNumberingWriter

write_line(line)

NumberingCheckSummingWriter

write_line(line)

Figure 11-1 Solving the enhanced writer problem with inheritance

EnhancedWriter

write_line(line)

NumberingWriter

write_line(line)

TimestampingWriter

write_line(line)

CheckSummingWriter

write_line(line)

Now consider that even with the forest of classes shown in Figure 11-2, we still
can’t get a checksum of that time-stamped text after we have line-numbered it. The
trouble is that the inheritance-based approach requires you to come up with all possi-
ble combinations of features up-front, at design time. Chances are, you are not really
going to need every single combination—you are just going to need the combinations
that you need.

196 Chapter 11. Improving Your Objects with a Decorator

A better solution would allow you to assemble the combination of features that you
really need, dynamically, at runtime. Let’s start over with a very dumb object that just
knows how to write the plain, unadorned text and do a few other file-related operations:

class SimpleWriter

def initialize(path)

@file = File.open(path, 'w')

end

def write_line(line)

@file.print(line)

@file.print("\n")

end

def pos

@file.pos

end

def rewind

@file.rewind

end

def close

@file.close

end

end

If you want your lines numbered, insert an object (perhaps one called
NumberingWriter) between your SimpleWriter and the client, an object that adds
a number to each line and forwards the whole thing on to the basic SimpleWriter,
which then writes it to disk. NumberingWriter adds its own contribution to the abil-
ities of SimpleWriter—in a sense, it decorates SimpleWriter; hence the name of
the pattern. We plan to write a bunch of these decorator objects, so let’s factor out the
generic code into a common base class:

class WriterDecorator

def initialize(real_writer)

@real_writer = real_writer

end

Decorators: The Cure for Ugly Code 197

def write_line(line)

@real_writer.write_line(line)

end

def pos

@real_writer.pos

end

def rewind

@real_writer.rewind

end

def close

@real_writer.close

end

end

class NumberingWriter < WriterDecorator

def initialize(real_writer)

super(real_writer)

@line_number = 1

end

def write_line(line)

@real_writer.write_line("#{@line_number}: #{line}")

@line_number += 1

end

end

Because the NumberingWriter class presents the same core interface as the plain
old writer, the client does not really have to worry about the fact that it is talking to a
NumberingWriter instead of a plain old SimpleWriter. At their most basic, both
flavors of writer look exactly the same.

To get our lines numbered, we just encase our SimpleWriter in a Numbering-
Writer:

writer = NumberingWriter.new(SimpleWriter.new('final.txt'))

writer.write_line('Hello out there')

We can follow the same pattern to build a decorator that computes checksums.
That is, another object will sit between the client and the SimpleWriter, this time

198 Chapter 11. Improving Your Objects with a Decorator

summing up all of the bytes before it sends them off to the SimpleWriter for
writing:

class CheckSummingWriter < WriterDecorator

attr_reader :check_sum

def initialize(real_writer)

@real_writer = real_writer

@check_sum = 0

end

def write_line(line)

line.each_byte {|byte| @check_sum = (@check_sum + byte) % 256 }

@check_sum += "\n"[0] % 256

@real_writer.write_line(line)

end

end

The CheckSummingWriter is a little different from our first decorator in that it
has an enhanced interface. In addition to the usual methods found on all of the writers,
CheckSummingWriter sports the check_sum method.1

Finally, we can write a class that adds time stamps to the data as it goes by:

class TimeStampingWriter < WriterDecorator

def write_line(line)

@real_writer.write_line("#{Time.new}: #{line}")

end

end

Now here is the punchline: Because all of the decorator objects support the same
basic interface as the original, the “real” object that we supply to any one of the deco-
rators does not actually have to be an instance of SimpleWriter—it can, in fact, be
any other decorator. This means that we can build arbitrarily long chains of decorators,
with each one adding its own secret ingredient to the whole. We can, for example,
finally get that checksum of that time-stamped text, after we have line-numbered it:

writer = CheckSummingWriter.new(TimeStampingWriter.new(

NumberingWriter.new(SimpleWriter.new('final.txt'))))

writer.write_line('Hello out there')

Decorators: The Cure for Ugly Code 199

1. Of course, the check_sum method was generated for us by attr_reader.

Figure 11-3 The Decorator pattern

Component

operation()

ConcreteComponent

operation()

Decorator

operation()
new_operation()

@component

Formal Decoration
All of the players in the Decorator pattern, as shown in Figure 11-3, implement the
component interface.

The ConcreteComponent is the “real” object, the object that implements the
basic component functionality. In the writer example, the SimpleWriter is the
ConcreteComponent. The Decorator class has a reference to a Component—the
next Component in the decorator chain—and it implements all of the methods of the
Component type. Our example has three different Decorator classes: one for line num-
bering, one for checksumming, and one for time stamping. Each Decorator layers its
own special magic onto the workings of the base component, adding its own talent to
at least one of the methods. Decorators can also add new methods—that is, operations
that are not defined in the Component interface—although this behavior is optional.
In our example, only the decorator that computes the checksum adds a new method.

Easing the Delegation Blues
The Decorator pattern takes one bit of GoF advice to heart: It incorporates a lot of
delegation. We can see this in the WriterDecorator class, which consists almost
entirely of boilerplate methods that do nothing except delegate to the next writer
down the line.

We could eliminate all of this boring code with a variation on the method_missing
technique that we learned in Chapter 10, but the forwardable module is probably
a better fit. The forwardable module will automatically generate all of those dull

200 Chapter 11. Improving Your Objects with a Decorator

delegating methods for us with very little effort. Here is our WriterDecorator class
rewritten to take advantage of forwardable:

require 'forwardable'

class WriterDecorator

extend Forwardable

def_delegators :@real_writer, :write_line, :rewind, :pos, :close

def initialize(real_writer)

@real_writer = real_writer

end

end

The forwardable module supplies the def_delegators class method,2 which
takes two or more arguments. The first argument is the name of an instance attribute.3

It is followed by the name of one or more methods. The def_delegators method
will add all of the named methods to your class, and each of those new methods in
turn delegates to the object referred to by the attribute. Thus the WriterDecorator
class will end up with write, rewind, pos, and close methods, all of which dele-
gate to @component.

The forwardable module is more of a precision weapon than the
method_missing technique. With forwardable, you have control over which
methods you delegate. Although you could certainly put logic in method_missing to
pick and choose which methods to delegate, the method_missing technique really
shines when you want to delegate large numbers of calls.

Dynamic Alternatives to the Decorator Pattern
The runtime flexibility of Ruby presents some interesting alternatives to the GoF
Decorator pattern. In particular, we can obtain most of that decorator goodness either
by dynamically wrapping methods or via module decorations.

Dynamic Alternatives to the Decorator Pattern 201

2. You may have noticed that we extend the Forwardable module in WriterDecorator instead
of include-ing it. The difference is subtle-the Forwardable module wants to add class-level
methods, not instance methods.
3. Oddly, complete with the @.

Wrapping Methods

We have already seen that Ruby allows us to modify the behavior of single instances or
whole classes pretty much anytime. Armed with this flexibility, plus some knowledge
of the alias keyword, we can turn a plain-vanilla writer into a time-stamping writer:

w = SimpleWriter.new('out')

class << w

alias old_write_line write_line

def write_line(line)

old_write_line("#{Time.new}: #{line}")

end

end

The alias keyword creates a new name for an existing method. In the preceding
code, we start by creating an alias for the original write method, so that we can refer
to it as either write or old_write. Then we redefine the write method, but—
critically—old_write continues to point to the original definition. It’s all downhill
from there: The new method time-stamps each line and then calls the original method
(now known only as old_write_line) to write the time-stamped text out.

Luckily for all you would-be decorators, the “wrap the method” technique is a bit
limited. It suffers from the danger of method name collisions. For example, as our
code stands right now, if we tried to add two sets of line numbers to our output, we
would lose our reference to the original write method because we do the alias twice.
You could probably come up with a clever scheme to avoid name collisions, but as
your decorations become more complicated they just cry out to live in their own
classes. Nevertheless, for smaller-scale problems, the method-wrapping technique is
useful enough that it should be in every Ruby programmer’s toolkit.

Decorating with Modules

Another way to add capabilities to a Ruby object is to dynamically mix in modules
with the extend method. To use this technique, we need to refactor our decorating
classes into modules:

202 Chapter 11. Improving Your Objects with a Decorator

module TimeStampingWriter

def write_line(line)

super("#{Time.new}: #{line}")

end

end

module NumberingWriter

attr_reader :line_number

def write_line(line)

@line_number = 1 unless @line_number

super("#{@line_number}: #{line}")

@line_number += 1

end

end

class Writer

define write(line)

@f.write(line)

end

end

The extend method essentially inserts a module into an object’s inheritance tree
before its regular class. We can, therefore, start with an ordinary writer and then sim-
ply add in the functionality that we need:

w = SimpleWriter.new('out')

w.extend(NumberingWriter)

w.extend(TimeStampingWriter)

w.write_line('hello')

The last module added will be the first one called. Thus, in the preceding example,
the processing would run from client to TimeStampingWriter to NumberingWriter to
Writer.

While either of the dynamic techniques work—and they are, in fact, the runaway
choice in existing Ruby code—they do have one disadvantage: With both of these
techniques, it is hard to undo the decoration. Unwrapping an aliased method is likely
to be tedious, and you simply cannot un-include a module.

Dynamic Alternatives to the Decorator Pattern 203

Using and Abusing the Decorator Pattern
The classic Decorator pattern is loved more by the folks who build the thing than by
those who use it. As we have seen, the Decorator pattern helps the person who is try-
ing to build all of this functionality neatly separate out the various concerns—line
numbering in this class, checksumming over in this other class, time stamping in a
third. The irritating moment comes when someone tries to assemble all of these little
building block classes into a working whole. Instead of being able to instantiate a
single object, perhaps with EnhancedWriter.new(path), the client has to put all of
the pieces together itself. Of course, there are things that the author of a decorator
implementation can do to ease the assembly burden. If there are common chains of
decorators that your clients will need, by all means provide a utility (perhaps a Builder?4)
to get that assembly done.

One thing to keep in mind when implementing the Decorator pattern is that you
need to keep the component interface simple. You want to avoid making the compo-
nent interface overly complex, because a complex interface will make it that much
harder to get each decorator right.

Another potential drawback of the Decorator pattern is the performance over-
head associated with a long chain of decorators. When you trade in that single,
monolithic ChecksummingNumberingTimestampingWriter class for a chain of
decorators, you are gaining a lot of programming compartmentalization and code
clarity. Of course, the price you pay is that you are multiplying the number of
objects floating around in your program. This may not be much of a concern if, as
in our writer example, you are dealing with a handful of open files. It becomes
much more problematic if we are talking about every employee in a very large com-
pany. Remember, too, that besides the number of objects involved, any data that
you send through a chain of N decorators will change hands N times as the first
decorator hands it off to the second decorator, which hands it off to the third dec-
orator, and so on.

Finally, one drawback of the method-aliasing technique for decorating objects
is that it tends to make your code harder to debug. Think about it: Your methods
will show up in the stack trace with different names than they have in the code
stored in your source files. This is not a fatal difficulty, just one more thing to keep
in mind.

204 Chapter 11. Improving Your Objects with a Decorator

4. See Chapter 14.

Decorators in the Wild
A good example of the method-aliasing style of decorating objects can be found
ActiveSupport, the package of support utilities used by Rails. ActiveSupport adds
a method to all objects called alias_method_chain. The alias_method_chain
method allows you to decorate your methods with any number of features. To use
alias_method_chain, you start with a plain-vanilla method in your class, such as
write_line:

def write_line(line)

puts(line)

end

You then add in another method that adds some decoration to the original
method:

def write_line_with_timestamp(line)

write_line_without_timestamp("#{Time.new}: #{line}")

end

Finally, you call alias_method_chain:

alias_method_chain :write_line, :timestamp

The alias_method_chain method will rename the original write_line
method to write_line_without_timestamp and rename write_line_with_
timestamp to plain old write_line, essentially creating a chain of methods. The
nice thing about alias_method_chain is that, as its name suggests, you can chain
together a number of enhancing methods. For example, we could add on a line-
numbering method:

def write_line_with_numbering(line)

@number = 1 unless @number

write_line_without_numbering("#{@number}: #{line}")

@number += 1

end

alias_method_chain :write_line, :numbering

Decorators in the Wild 205

Wrapping Up
The Decorator pattern is a straightforward technique that you can use to assemble
exactly the functionality that you need at runtime. It offers an alternative to creating
a monolithic “kitchen sink” object that supports every possible feature or a whole forest
of classes and subclasses to cover every possible combination of features. Instead, with
the Decorator pattern, you create one class that covers the basic functionality and a set
of decorators to go with it. Each decorator supports the same core interface, but adds
its own twist on that interface. The key implementation idea of the Decorator pattern
is that the decorators are essentially shells: Each takes in a method call, adds its own
special twist, and passes the call on to the next component in line. That next compo-
nent may be another decorator, which adds yet another twist, or it may be the final,
real object, which actually completes the basic request.

The Decorator pattern lets you start with some basic functionality and layer on
extra features, one decorator at a time. Because the Decorator pattern builds these lay-
ers at runtime, you are free to construct whatever combination you need, at runtime.

The Decorator pattern is the last of the “one object stands in for another” patterns
that we will consider in this book. The first was the Adapter pattern; it hides the fact
that some object has the wrong interface by wrapping it with an object that has the
right interface. The second was the Proxy pattern. A proxy also wraps another object,
but not with the intent of changing the interface. Instead, the proxy has the same
interface as the object that it is wrapping. The proxy isn’t there to translate; it is there
to control. Proxies are good for tasks such as enforcing security, hiding the fact that an
object really lives across the network, and delaying the creation of the real object until
the last possible moment. And then we have the subject of this chapter, the decorator,
which enables you to layer features on to a basic object.

206 Chapter 11. Improving Your Objects with a Decorator

CHAPTER 12
Making Sure There Is Only
One with the Singleton

Pity the poor Singleton pattern. Even coders who do not know very much about patterns
know about the singleton. Mainly they know one thing: Singletons are Bad, with a
capital “B”. And yet we cannot seem to live without the things. Singletons are every-
where. In the Java world, singletons show up in some of the most widely used software
around—you will find them in tomcat, in ant, and in JDOM. On the Ruby side, we
can find singletons lurking in Webrick, in rake, and even in Rails, just to name a few.

What is it about the Singleton pattern that makes it so indispensable and yet so
widely detested? In the pages that follow we will look at why you might need a singleton,
how you would go about building singletons and singleton-like things in Ruby, why sin-
gletons cause trouble, and what you can do to ease some of this pain.

One Object, Global Access
The motivation behind the Singleton pattern is very simple: There are some things
that are unique. Programs frequently have a single configuration file. It is not unusual
for a program to let you know how it is doing via a single log file. GUI applications
frequently have a one main window, and they typically take input from exactly one
keyboard. Many applications need to talk to exactly one database. If you only ever
have one instance of a class and a lot of code that needs access to that instance, it seems
silly to pass the object from one method to another. In this kind of situation, the GoF
suggest that you build a singleton—a class that can have only one instance and that
provides global access to that one instance.

207

There are a number of different ways that you can get some or all of the single-
ton behavior in Ruby, but we will start with the method that is closest to the one rec-
ommended by the GoF: Let the class of the singleton object manage the creation and
access to its sole instance. To do so, we need to look first at class variables and class
methods in Ruby.

Class Variables and Methods
So far, all of the code that we have written in this book has involved instance methods
and variables—that is, code and data that are attached to individual instances of a
class. Ruby, like most object-oriented languages, also supports class variables and
methods, which are attached to a class.1

Class Variables

As we have seen, a class variable is a variable that is attached to a class2 instead of to
an instance of the class. Creating a class variable is very straightforward: You simply
add another at sign (@) to the variable name. Here, for example, is a class that counts
the number of times the increment method is called in two different variables—once
in an instance variable and once in a class variable:

class ClassVariableTester

@@class_count = 0

def initialize

@instance_count = 0

end

def increment

@@class_count = @@class_count + 1

@instance_count = @instance_count + 1

end

def to_s

"class_count: #{@@class_count} instance_count: #{@instance_count}"

end

end

208 Chapter 12. Making Sure There Is Only One with the Singleton

1. Many other languages—most notably, C++ and Java—refer to class-level methods and variables as
static methods and variables. The terminology is different, but the idea is more or less the same.
2. Actually, in Ruby, class variables are attached to the whole inheritance hierarchy. Thus a class shares
a common set of class variables with its superclass and all of its subclasses. Most Ruby programmers
regard this behavior as an unfortunate quirk of the language, and there is talk of changing it.

Now let’s create an instance named ClassVariableTester and call its increment
method a couple of times:

c1 = ClassVariableTester.new

c1.increment

c1.increment

puts("c1: #{c1}")

Not surprisingly, both counts end up being 2:

c1: class_count: 2 instance_count: 2

Things get more interesting when you create a second instance of the class:

c2 = ClassVariableTester.new

puts("c2: #{c2}")

This produces

c2: class_count: 2 instance_count: 0

What is happening here is that the instance counter was reset to zero for the second
ClassVariableTester instance, whereas the class counter, which is shared by both
instances, keeps right on counting.

Class Methods

Creating class-level methods in Ruby is a bit more challenging, but only a bit. We cannot
just open a class and define a method:

class SomeClass

def a_method

puts('hello from a method')

end

end

As we have already seen, if we do that we end up with an instance method:

SomeClass.a_method

instance.rb:11: undefined method 'a_method' for SomeClass:Class

Class Variables and Methods 209

The secret to creating a class method is knowing that when you are inside a class
definition—but outside a method definition—the self variable is the class you are
defining. You do not have to take my word for it, however. Suppose you run this class
definition:

class SomeClass

puts("Inside a class def, self is #{self}")

end

You will see the following output:

Inside a class def, self is SomeClass

With this useful bit of information in hand, we can define a method on the class:

class SomeClass

def self.class_level_method

puts('hello from the class method')

end

end

We can now call class_level_method exactly as its name suggests, at the class
level:

SomeClass.class_level_method

If you do not like the self.method_name syntax, Ruby offers another option.
You can just define the class method by calling out the name explicitly:

class SomeClass

def SomeClass.class_level_method

puts('hello from the class method')

end

end

Ruby programmers seem evenly split on this syntactical conundrum: Some like
self, and some like the explicit class name. Personally, I like the self format,

210 Chapter 12. Making Sure There Is Only One with the Singleton

because you have less to change if you rename the class or transplant code to
another class.

A First Try at a Ruby Singleton
Now that we know how to create class variables and methods, we have all the tools we
need to create a singleton. Let’s start with an ordinary, non-singleton class (a multi-
ton?) and transform it into a singleton. Perhaps you have a logging class, a little facility
for keeping track of the comings and goings of your program. Your ordinary, non-
singleton version of the logging class might look something like this:

class SimpleLogger

attr_accessor :level

ERROR = 1

WARNING = 2

INFO = 3

def initialize

@log = File.open("log.txt", "w")

@level = WARNING

end

def error(msg)

@log.puts(msg)

@log.flush

end

def warning(msg)

@log.puts(msg) if @level >= WARNING

@log.flush

end

def info(msg)

@log.puts(msg) if @level >= INFO

@log.flush

end

end

A First Try at a Ruby Singleton 211

You might use this version of the logger by creating a new one and passing it
around:

logger = SimpleLogger.new

logger.level = SimpleLogger::INFO

logger.info('Doing the first thing')

Do the first thing...

logger.info('Now doing the second thing')

Do the second thing...

Managing the Single Instance

The whole point of the Singleton pattern is to avoid passing an object like the logger
all over the place. Instead, you want to make the SimpleLogger class responsible for
managing its single instance. So how would you turn SimpleLogger into a singleton?

First, you add a class variable to hold the one and only instance of your class. You
will also need a class method to return the singleton instance.

class SimpleLogger

Lots of code deleted...

@@instance = SimpleLogger.new

def self.instance

return @@instance

end

end

We can now call the instance method of the SimpleLogger class any number
of times and always get back the same logger object:

logger1 = SimpleLogger.instance # Returns the logger

logger2 = SimpleLogger.instance # Returns exactly the same logger

212 Chapter 12. Making Sure There Is Only One with the Singleton

More practically, we can get at the singleton logger from anywhere in our code
and use it to write out messages:

SimpleLogger.instance.info('Computer wins chess game.')

SimpleLogger.instance.warning('AE-35 hardware failure predicted.')

SimpleLogger.instance.error(

'HAL-9000 malfunction, take emergency action!')

Making Sure There Is Only One

Our singleton is now sort of functional, but it is not really complete. Remember, one
requirement of the singleton is to ensure that the one and only singleton is the sole
instance of the singleton class. So far we have ignored this requirement. As things
stand right now, any program can call SimpleLogger.new to make a second instance
of our allegedly singleton class. So how do we go about securing SimpleLogger
against promiscuous instantiation?

We do so by making the new method on SimpleLogger private:

class SimpleLogger

Lots of code deleted...

@@instance = SimpleLogger.new

def self.instance

return @@instance

end

private_class_method :new

end

There are two ideas to take away from this code fragment, one a detail and the
other a bit more profound. The detail is that by adding the private_class_method
call, we have done exactly what the name suggests: We made the new class method pri-
vate, preventing any other class from creating new instances of our logger. The broader
issue is that new is just another class-level method. Yes, the new method does perform
some special behind-the-scenes magic in allocating a new object, but in the end it is
just another class-level method.

A First Try at a Ruby Singleton 213

The Singleton Module
Our singleton implementation is now complete, in that we have all of the ingredients
required of a full-fledged GoF singleton. Our class creates exactly one instance of
itself, any code that is interested can access the single instance, and no one can ever
create a second instance.

Our singleton implementation does appear to have one problem, however. What
if we want to build a second singleton class, perhaps for our configuration data? It
seems that we will need to go through the whole exercise again: create a class variable
for the singleton instance along with a class method to access it. Oh, and don’t forget
to make the new method private. If we need a third instance, we need to do it all again
a third time. This seems like a lot of duplicated effort.

Fortunately, we can avoid working so hard. Instead of going through all of the
pain of turning our classes into singletons by hand, we can just include the
Singleton module:

require 'singleton'

class SimpleLogger

include Singleton

Lots of code deleted...

end

The Singleton module does all of the heavy lifting of creating the class variable
and initializing it with the singleton instance, creating the class-level instance
method, and making new private. All we need to do is include the module. From the
outside, this new Singleton module-based logger looks exactly like our previous
hand-built implementations: Just call SimpleLogger.instance to retrieve the
instance and off you go.

Lazy and Eager Singletons
There is one significant difference between the singleton implementation that we con-
structed and the one provided by the Singleton module. Recall that our imple-
mentation created the singleton instance as the class was being defined:

214 Chapter 12. Making Sure There Is Only One with the Singleton

class SimpleLogger

Lots of code deleted...

@@instance = SimpleLogger.new

Lots of code deleted...

end

As a consequence, our singleton instance is created before any client code ever gets
a chance to call SimpleLogger.instance. Creating the singleton instance before you
actually need it is called eager instantiation—we just can’t wait to make the thing. The
Singleton module, by contrast, waits until someone calls instance before it actually
creates its singleton. This technique is known as lazy instantiation.

Alternatives to the Classic Singleton
While the class-managed technique for building singletons that we have introduced
here closely follows the implementation recommended in Design Patterns, it by no
means exhausts the possibilities for realizing some or all of the singleton behavior.
There are a number of other alternatives that we might use to achieve the same effect.

Global Variables as Singletons

We might, for example, use a global variable as a singleton. I will pause here while the
screams of horror die down. In Ruby, any variable whose name begins with a dollar
sign—$logger, for example—is global. Global variables certainly have the global
access part of the singleton routine down pat: You can access $logger in any context,
in any class, module, or method, and it will always be the same $logger. Because
there is only one instance of any given global variable and because that variable is
available everywhere (it being global and all), global variables seem like they might be
a good platform for implementing singletons.

Sadly, no. Global variables lack some of the fundamental moving parts of a sin-
gleton. While $logger always refers to exactly one object at any given time, there is
no way to control the value of a global variable. While we might start off with our
global pseudo-singleton carefully set to the right thing:

$logger = SimpleLogger.new

Alternatives to the Classic Singleton 215

But there is absolutely nothing to prevent some misguided code from changing it:

$logger = LoggerThatDoesSomethingBad.new

If change is the problem, then maybe we should turn to a flavor of Ruby variable
that not only has global scope but also resists change: the constant. Recall that a Ruby
constant is a variable whose name starts with an uppercase letter and has the nice
property that, once set, its value is not supposed to change:

Logger = SimpleLogger.new

Recall from Chapter 2 that Ruby will complain if we change the value of a con-
stant, which is at least an improvement in attitude over the “anything goes” philosophy
of global variables. So is this the simple solution to the singleton?

Not really. Both global variables and constants share a number of deficiencies as sin-
gletons. First, if you use a global variable or a constant for this purpose, there is no way
to delay the creation of the singleton object until you need it. The global variable or con-
stant is there from the moment we first set it. Second, neither of these techniques does
anything to prevent someone from creating a second or third instance of your suppos-
edly singleton class. You could, of course, deal with that issue separately. For example,
you might create the singleton instance and then change the class so that it will refuse to
create any more instances—but all of this is beginning to feel rather ad hoc and messy.

Given that global variables and constants seem to fall short, are there any other
ways to do the singleton thing?

Classes as Singletons

As we have seen, we can define methods and variables directly on a class object. In fact,
our original singleton implementation used class methods and variables to manage the
singleton instance. But given that we can have methods and variables on a class, why
not just use the class itself as a container for the singleton functionality? Each class is
unique—there can be only one SimpleLogger class loaded at any one time—so we
might just define our singleton functionality as class methods and variables on a
class object:

class ClassBasedLogger

ERROR = 1

WARNING = 2

INFO = 3

216 Chapter 12. Making Sure There Is Only One with the Singleton

@@log = File.open('log.txt', 'w')

@@level = WARNING

def self.error(msg)

@@log.puts(msg)

@@log.flush

end

def self.warning(msg)

@@log.puts(msg) if @@level >= WARNING

@@log.flush

end

def self.info(msg)

@@log.puts(msg) if @@level >= INFO

@@log.flush

end

def self.level=(new_level)

@@level = new_level

end

def self.level

@@level

end

end

Using the class-based singleton is not hard:

ClassBasedLogger.level = ClassBasedLogger::INFO

ClassBasedLogger.info('Computer wins chess game.')

ClassBasedLogger.warning('AE-35 hardware failure predicted.')

ClassBasedLogger.error('HAL-9000 malfunction, take emergency action!')

The “class as singleton” technique has a key advantage over the global variable and
constant methods: You are sure that no one will create a second instance of your single-
ton. Lazy initialization remains a problem with this technique, however. Specifically,
your class is initialized when it gets loaded (typically when someone requires the file that
the class lives in), and you do not have a lot of control over the timing of this initializa-
tion. Another disadvantage of using a class as a singleton is that programming class

Alternatives to the Classic Singleton 217

methods and variables is just not as easy as coding garden-variety instance methods and
variables; all of those self.methods and @@variables have a strange feel to them.

Modules as Singletons

Another possibility is to use a module as the container for your singleton behavior. As
noted earlier in this chapter, modules have a lot in common with classes. In fact, mod-
ules are so much like classes that you can define module-level methods and variables
in exactly the same way that you define class methods and variables. Except for chang-
ing class to module, the module-based implementation is exactly the same as the
class-based one:

module ModuleBasedLogger

ERROR = 1

WARNING = 2

INFO = 3

@@log = File.open("log.txt", "w")

@@level = WARNING

def self.error(msg)

@@log.puts(msg)

@@log.flush

end

Lots of code, exactly like the

ClassBasedSingleton deleted...

end

You can use module methods from just about anywhere, just like class methods:

ModuleBasedLogger.info('Computer wins chess game.')

The “module as singleton” technique does have one notable advantage over the
“class as singleton” technique. Because you cannot instantiate a module (that is the key
difference between a module and a class), the intent of a module-based singleton is
probably a bit clearer from the code: Here is a bucket of methods meant to be called
and not something you can instantiate.

218 Chapter 12. Making Sure There Is Only One with the Singleton

A Safety Harness or a Straitjacket?
The discussion of the alternative ways of implementing the Singleton pattern raises
the question of language-based safety features, and what such features can mean in a
language as flexible as Ruby. To reach for a handy example, we have seen that one of
the effects of including the Singleton module is to make the new method private. This,
of course, prevents anyone from making a second or third instance of the singleton class.
If our singleton class is defined as

require 'singleton'

class Manager

include Singleton

def manage_resources

puts("I am managing my resources")

end

end

I cannot make another instance of Manager. For example, if I try

m = Manager.new

I will get

private method 'new' called for Manager:Class

Actually, the Singleton module cannot really prevent anything. All I need is a
little insight into how Singleton works and a bit of knowledge about
public_class_method (the evil twin of private_class_method), and it becomes
very easy to circumvent all of that prevention:

class Manager

public_class_method :new

end

m = Manager.new

In the same spirit, we noted earlier that one advantage of the class- or module-
based singleton is that no one can make a second instance of your singleton. Well, not
by accident, they can’t. But no matter whether you are using ClassBasedLogger or

A Safety Harness or a Straitjacket? 219

its cousin ModuleBasedLogger, your logger is in the end an object, and all objects in
Ruby inherit the clone method. The clone method is wonderful utility for short-
circuiting that singleton-ness that we have been working so hard to establish:

a_second_logger = ClassBasedLogger.clone

a_second_logger.error('using a second logger')

We might, of course, override the clone method in ClassBasedLogger to pre-
vent unauthorized cloning. Of course, the determined cloner could just reopen your
class to un-override the method . . .

The point is not that this kind of thing is a good idea, but rather that in a lan-
guage where virtually everything done at runtime can be undone a little later in run-
time, very few decisions are irreversible. The Ruby philosophy is that if you decide to
circumvent the very clear intent of the author of the ClassBasedLogger class by
cloning it, the language is there to help you out. You are in the driver’s seat, not the
language. By keeping almost everything open to modification, Ruby allows you to do
the things that you say you want to do—but it is up to you to say the right things.

Using and Abusing the Singleton Pattern
Now that we know how to build a singleton, let’s figure out why this is perhaps the
most hated of all patterns.

They Are Really Just Global Variables, Right?

Let’s start with the most obvious problem first: A singleton bears a very strong family
resemblance to its outlaw cousin, the global variable. No matter whether you implement
your singleton with the GoF class-managed technique or as a bunch of class- or module-
level methods and variables, you are creating a single object with global scope. Create a
singleton, and you have just made it possible for widely separated bits of your program to
use that singleton as a secret channel to communicate with each other and, in the process,
tightly couple themselves to each other. The horrible consequences of this coupling are
why software engineering got out of the global variable business in the first place.

There is only one solution to this problem: Don’t do that. Properly applied, sin-
gletons are not global variables. Rather, they are meant to model things that occur
exactly once. Yes, because it occurs only once, you can use a singleton as a unique
communications conduit between bits of your program. But don’t do that. Singletons
are like every other pattern and programming technique—which means you can really
screw things up if you abuse them. I can only repeat: Don’t do that.

220 Chapter 12. Making Sure There Is Only One with the Singleton

Just How Many of These Singletons Do You Have?

Which brings us to another obvious-sounding, but all-too-common way to come to
grief with the Singleton pattern: to lose count. As you are considering applying the
Singleton pattern, ask yourself this question: Am I sure that there is only one of these
things? The Singleton pattern gives us a way to model a single instance of something,
but this modeling also just happens to come with a nice coding feature that makes that
single instance very easily accessible—just call SimpleLogger.instance. That easy
access can have a hypnotic allure: “My code will be so much simpler if this thing is a
singleton.” Don’t listen to the siren song of that easy access. Instead, focus on the ques-
tion of how many of these things exist and treat the easy access as a bonus.

Singletons on a Need-to-Know Basis

Another mistake that many people make is to spread the knowledge of a class’s sin-
gleton-ness far and wide. You can look at the fact that a class is a singleton as some-
thing of an implementation detail: Once you get hold of the configuration file,
exactly how you got hold of it is not really important. Remember that you can always
grab the singleton object in one or a few places and then pass it around from there.

This technique comes in handy when your application needs to use the singleton
in a few widely scattered clusters of code. For example, you might have an application
structured like the one shown in Figure 12-1.

Imagine that the PreferenceManager class and the classes that it uses need
access to a database connection, as does the DataPersistence class and its friends.

Using and Abusing the Singleton Pattern 221

Figure 12-1 An application with widely scattered uses of a singleton

Application

PrefWriterPrefReader

PreferenceManager

DataPersistence

Further imagine that the entire application uses a single instance of the class
DatabaseConnectionManager for all of its connection management needs.
Recognizing this, you make DatabaseConnectionManager a singleton:

require 'singleton'

class DatabaseConnectionManager

include Singleton

def get_connection

Return the database connection...

end

end

Now here’s the question: Which classes are actually aware that Database-
ConnectionManager is a singleton? We could spread this information far and wide,
perhaps among the preference readers and writers:

class PreferenceManager

def initialize

@reader = PrefReader.new

@writer = PrefWriter.new

@preferences = { :display_splash=>false, :background_color=>:blue }

end

def save_preferences

preferences = {}

Preference are in

@writer.write(@preferences)

end

def get_preferences

@preferences = @reader.read

end

end

class PrefWriter

def write(preferences)

connection = DatabaseConnectionManager.instance.get_connection

Write the preferences out

end

end

222 Chapter 12. Making Sure There Is Only One with the Singleton

class PrefReader

def read

connection = DatabaseConnectionManager.instance.get_connection

Read the preferences and return them...

end

end

A better approach might be to concentrate the knowledge that Database-
ConnectionManager is a singleton in the PreferenceManager class and simply
pass it into the preference reader and writer:

class PreferenceManager

def initialize

@reader = PrefReader.new

@writer = PrefWriter.new

@preferences = { :display_splash=>false, :background_color=>:blue }

end

def save_preferences

preferences = {}

Preference are in

@writer.write(DatabaseConnectionManager.instance, @preferences)

end

def get_preferences

@preferences = @reader.read(DatabaseConnectionManager.instance)

end

end

This little refactoring decreases the amount of code that needs to know that
DatabaseConnectionManager is a singleton. There are two advantages to doing
this. First, there is less code to fix if it turns out that your singleton is not, in fact, quite
so alone. Second, by excising the singleton from the PrefReader and PrefWriter

classes, you have made those classes much more easily testable.

Curing the Testing Blues

This last point brings us to testing. One exceedingly nasty thing about the Singleton
pattern is the way that it interferes with unit testing. A good unit test needs to start
with a known state. After all, your test results are unlikely to be worth much if you

Using and Abusing the Singleton Pattern 223

aren’t sure how things were set up when you started the test. A good unit test also
needs to be independent of any other test, so that test 3 should give you exactly the
same results no matter whether you run it between tests 2 and 4, after test 20, or all
by itself. The problem, of course, is that if tests 1 through 20 are testing a singleton,
each test is liable to modify the one and only singleton instance in some unpredictable
way. So much for test independence.

One way to deal with this problem is to create two classes: an ordinary (i.e., non-
singleton) class that contains all of the code, and a subclass of the first class that is a
singleton. Something like this:

require 'singleton'

class SimpleLogger

All of the logging functionality in this class...

end

class SingletonLogger < SimpleLogger

include Singleton

end

The actual application code uses the SingletonLogger, while the tests can use
the plain old, non-singleton Logger class.

Singletons in the Wild
You can find a good example of the use of the Singleton pattern in real life in
ActiveSupport, which is a library of utility classes used by Rails. Rails relies heavily
on the use of conventions, and many of the Rails conventions involve working out the
plurals of singular words and the singulars of plural words. To do so, ActiveSupport
maintains a list of rules, which encapsulate facts like “The plural of employee is
employees, but the plural of criterion is criteria.” But since the rules are, well, the rules,
you really need to keep only one copy of them around. So the Inflections class is
a singleton, which saves space and ensures that the same inflection rules are available
everywhere.

Ruby’s build utility, rake, also uses a singleton. As it runs, rake—like most build
tools—reads in information about what it needs to do: which directories to create,

224 Chapter 12. Making Sure There Is Only One with the Singleton

which files to copy, and so on.3 All of this information needs to be available to all of the
moving parts of rake, so rake stores it all in a single object (the Rake::Application
object, to be precise) that is available as a singleton to the entire rake program.

Wrapping Up
In this chapter, we looked at the somewhat checkered career of the Singleton pattern.
The Singleton pattern can help us deal with the cases where there is only one of some-
thing. There are two characteristics that make a singleton a singleton: A singleton class
has exactly one instance, and access to that one instance is available globally. Using
class methods and variables, we can easily build the “classic” implementation of the
singleton, the one recommended by the GoF.

We can also build singletons (or at least near-singletons) using a variety of other
methods. For example, we could get some of the singleton behavior from global vari-
ables or constants, although these elements lack the uniqueness characteristic that
makes a real singleton a singleton. In addition, we can build singletons from class- or
module-level methods and variables.

We spent a fair bit of time in this chapter looking at the landmines scattered
around Singleton-land. We saw that the singleton presents rich opportunities for cou-
pling your code to itself in very unfortunate ways. We also saw that you might want
to limit the amount of code that is aware of an object’s singleton-ness, and we looked
at one way to ease the burden that singletons place on testing.

The Singleton pattern is a bit like that ancient table saw that my dad used to have.
That saw was incredibly effective at cutting lumber, but, since it had very few safety
features, it was equally adept at slicing an unwary hand in two.

Wrapping Up 225

3. The rake utility actually uses the Internal DSL pattern (discussed in Chapter 16) to do most of
this reading.

This page intentionally left blank

CHAPTER 13
Picking the Right Class
with a Factory

My high school physics teacher was one of those extraordinary educators who could
make even the driest of subjects come alive. It seemed that by about the second
month of the school year, all of us in his Introduction to Physics class had forgotten
about getting a decent grade and had moved on to a higher goal: We all wanted to
do good physics. “Doing good physics” involved a lot of things—I recall careful
experiments and a lot of thinking were involved—but there was one thing that a
good physics student needed to avoid at all costs. There was to be no “hand waving.”
Hand waving, as it was defined in my class, involved glossing over some key detail,
fudging some equation, or simply assuming some fact that was not supported by
experiment.

And now I have a confession to make: I have done a bit of hand waving in
this book. The key detail that I have been glossing over until now is the one where
your code magically knows which class to pick at some critical point. Picking the
right class usually requires very little brain power: If I need a String or a Date or
even a PersonnelRecord, I generally just call new on the String or Date or
PersonnelRecord class and I am done. But sometimes the choice of which class to
use is a critical decision. Examples of this kind of situation are easy to come by. For
example, think about the Template Method pattern. When you use the Template
Method pattern, you need to pick one of the subclasses—and the subclass that you
pick determines which variation of the algorithm you will end up using. Will you

227

be using a PlainReport or an HTMLReport today? Similarly, with the Strategy
pattern, you must pick the correct strategy to feed to your context object: Do you
need the VirginiaTaxCalculator or the NewJerseyTaxCalculator? Likewise,
if you plan to proxy an object, you need to select the proxy class that does what you
want.

There are a number of ways to deal with the problem of picking the right class for
the circumstances, including two of the original GoF patterns. In this chapter, we will
look at both of these GoF patterns: the Factory Method pattern and the Abstract
Factory pattern. We will also shine our light on some dynamic Ruby techniques that
will help us build factories more effectively.

So let’s get started before I incur the wrath of Mr. Malone, physics teacher extra-
ordinaire.

A Different Kind of Duck Typing
To start our exploration of factories, let’s begin with a programming problem. Imagine
that you are asked to build a simulation of life in a pond. In particular, you need to
model the comings and goings of the ducks. So you sit down and write a class to
model the ducks:

class Duck

def initialize(name)

@name = name

end

def eat

puts("Duck #{@name} is eating.")

end

def speak

puts("Duck #{@name} says Quack!")

end

def sleep

puts("Duck #{@name} sleeps quietly.")

end

end

228 Chapter 13. Picking the Right Class with a Factory

As you can see from this code, ducks—like most animals—eat, sleep, and make
noise. But ducks also need a place to live, and for that you build a Pond class:

class Pond

def initialize(number_ducks)

@ducks = []

number_ducks.times do |i|

duck = Duck.new("Duck#{i}")

@ducks << duck

end

end

def simulate_one_day

@ducks.each {|duck| duck.speak}

@ducks.each {|duck| duck.eat}

@ducks.each {|duck| duck.sleep}

end

end

Running the pond simulation is not much of a challenge:

pond = Pond.new(3)

pond.simulate_one_day

The preceding code simulates one day in the life of a three-duck pond, and it
produces the following output:

Duck Duck0 says Quack!

Duck Duck1 says Quack!

Duck Duck2 says Quack!

Duck Duck0 is eating.

Duck Duck1 is eating.

Duck Duck2 is eating.

Duck Duck0 sleeps quietly.

Duck Duck1 sleeps quietly.

Duck Duck2 sleeps quietly.

A Different Kind of Duck Typing 229

Life on the pond continues idyllically until one dark day when you get a request
to model a different denizen of the puddle: the frog. Now it is easy enough to create
a Frog class that sports exactly the same interface as the ducks:

class Frog

def initialize(name)

@name = name

end

def eat

puts("Frog #{@name} is eating.")

end

def speak

puts("Frog #{@name} says Crooooaaaak!")

end

def sleep

puts("Frog #{@name} doesn't sleep; he croaks all night!")

end

end

But there is a problem with the Pond class—right there in the initialize
method you are explicitly creating ducks:

def initialize(number_ducks)

@ducks = []

number_ducks.times do |i|

duck = Duck.new("Duck#{i}")

@ducks << duck

end

end

The trouble is that you need to separate out something that is changing—the spe-
cific creatures that inhabit the pond (duck or frog)—from something that is staying the
same—the other workings of the Pond class. If only you could somehow excise that
Duck.new from the Pond class, then the Pond class could support both ducks and
frogs. This dilemma brings us to the central question of this chapter: Which class do
you use?

230 Chapter 13. Picking the Right Class with a Factory

The Template Method Strikes Again
One way to deal with the “which class” problem is to push the question down onto a
subclass. We start by building a generic base class, a class that is generic in the sense
that it does not make the “which class” decision. Instead, whenever the base class
needs a new object, it calls a method that is defined in a subclass. For example, we
could recast our Pond class as shown below so that it relies on a method called
new_animal to produce the inhabitants of the pond:

class Pond

def initialize(number_animals)

@animals = []

number_animals.times do |i|

animal = new_animal("Animal#{i}")

@animals << animal

end

end

def simulate_one_day

@animals.each {|animal| animal.speak}

@animals.each {|animal| animal.eat}

@animals.each {|animal| animal.sleep}

end

end

Next we can build two subclasses of Pond—one for a pond full of ducks and the
other for a pond hopping with frogs:

class DuckPond < Pond

def new_animal(name)

Duck.new(name)

end

end

class FrogPond < Pond

def new_animal(name)

Frog.new(name)

end

end

The Template Method Strikes Again 231

Now we need simply choose the right kind of pond, and it will be full of the right
kind of creatures:

pond = FrogPond.new(3)

pond.simulate_one_day

And we get all sorts of slimy green goings on:

Frog Animal0 says Crooooaaaak!

Frog Animal1 says Crooooaaaak!

Frog Animal2 says Crooooaaaak!

Frog Animal0 is eating.

Frog Animal1 is eating.

...

Although I won’t show it here, we could also create a subclass of Pond whose
new_animal method produces a mix of both ducks and frogs without much trouble.

The GoF called this technique of pushing the “which class” decision down on a
subclass the Factory Method pattern. Figure 13-1 shows the UML diagram for this
pattern, which includes two separate class hierarchies. On the one hand, we have the
creators, the base and concrete classes that contain the factory methods. On the other
hand, we have the products, the objects that are being created. In our pond example,
the creator is the Pond class, and the specific types of ponds (like DuckPond and

232 Chapter 13. Picking the Right Class with a Factory

Figure 13-1 Class Diagram for the Factory Method pattern

Creator

factory_method()

ConcreteCreator1

factory_method()

ConcreteCreator2

factory_method()

Product

Product1

Product2

FrogPond) are the concrete creators; the products are the Duck and Frog classes.
While Figure 13-1 shows the two products sharing a common base class (Product),
our Duck and Frog are not actually blood relatives: They simply share a common type
because they implement a common set of methods.

If you stare at Figure 13-1 long enough, you may discover that the Factory
Method pattern is not really a new pattern at all. At its heart, this pattern is really just
the Template Method pattern (remember Chapter 3?) applied to the problem of cre-
ating new objects. In both the Factory Method pattern and the Template Method pat-
tern, a generic part of the algorithm (in our pond example, its day-to-day aquatic
existence) is coded in the generic base class, and subclasses fill in the blanks left in the
base class. With the factory method, those filled-in blanks determine the class of
objects that will be living in the pond.

Parameterized Factory Methods
One problem with successful programs is that they tend to attract an ever-increasing
pile of requirements. Suppose your pond simulation is so popular that your users start
asking you to simulate plants as well as animals. So you wave your magic code wand
and come up with a couple of plant classes:

class Algae

def initialize(name)

@name = name

end

def grow

puts("The Algae #{@name} soaks up the sun and grows")

end

end

class WaterLily

def initialize(name)

@name = name

end

def grow

puts("The water lily #{@name} floats, soaks up the sun, and

grows")

end

end

Parameterized Factory Methods 233

You also modify the Pond class to deal with plants, like this:

class Pond

def initialize(number_animals, number_plants)

@animals = []

number_animals.times do |i|

animal = new_animal("Animal#{i}")

@animals << animal

end

@plants = []

number_plants.times do |i|

plant = new_plant("Plant#{i}")

@plants << plant

end

end

def simulate_one_day

@plants.each {|plant| plant.grow }

@animals.each {|animal| animal.speak}

@animals.each {|animal| animal.eat}

@animals.each {|animal| animal.sleep}

end

end

You will also need to modify the subclasses to create some flora:

class DuckWaterLilyPond < Pond

def new_animal(name)

Duck.new(name)

end

def new_plant(name)

WaterLily.new(name)

end

end

class FrogAlgaePond < Pond

def new_animal(name)

Frog.new(name)

end

234 Chapter 13. Picking the Right Class with a Factory

def new_plant(name)

Algae.new(name)

end

end

An awkward aspect of this implementation is that we need a separate method for
each type of object we are producing: We have the new_animal method to make frogs
and ducks and the new_plant method to create lilies and algae. Having a separate
method for each type of object that you need to produce is not too much of a burden
if you are dealing with only two types, as in our pond example. But what if you have
five or ten different types? Coding all those methods can be, well, tedious.

A different and perhaps cleaner way to go is to have a single factory method that
takes a parameter, a parameter that tells the method which kind of object to create.
The following code shows yet another version of our Pond class, this time sporting a
parameterized factory method—a method that can produce either a plant or an
animal, depending on the symbol that is passed in:

class Pond

def initialize(number_animals, number_plants)

@animals = []

number_animals.times do |i|

animal = new_organism(:animal, "Animal#{i}")

@animals << animal

end

@plants = []

number_plants.times do |i|

plant = new_organism(:plant, "Plant#{i}")

@plants << plant

end

end

...

end

class DuckWaterLilyPond < Pond

def new_organism(type, name)

if type == :animal

Duck.new(name)

elsif type == :plant

WaterLily.new(name)

Parameterized Factory Methods 235

else

raise "Unknown organism type: #{type}"

end

end

end

Parameterized factory methods tend to slim down the code, because each subclass
needs to define only one factory method. They also make the whole thing a bit easier
to extend. Suppose you need to define a new kind of product, perhaps fish to go in
your pond. In that case, you need to modify only a single method in the subclasses
instead of adding a whole new method—another example of the virtues of separating
the things that change from those that don’t.

Classes Are Just Objects, Too
A more significant objection to the Factory Method pattern as we have written it so
far is that this pattern requires a separate subclass for each specific type of object that
needs to be manufactured. This is reflected in the names of the subclasses in the last
version—we have DuckWaterLilyPond and FrogAlgaePond, but we could have just
as easily needed a DuckAlgaePond or a FrogWaterLilyPond. Add a few more types
of animals and plants, and the number of possible subclasses becomes truly scary. But
the only difference between the various flavors of ponds is the class of objects pro-
duced by the factory method: In the one case it produces lilies and ducks, and in the
other it makes algae and frogs.

The thing to realize is that the Frog, Duck, WaterLily, and Algae classes are
just objects—objects that make their living by producing other objects, but objects
nevertheless. We can get rid of this whole hierarchy of Pond subclasses by storing the
classes of the objects that we want to create in instance variables:

class Pond

def initialize(number_animals, animal_class,

number_plants, plant_class)

@animal_class = animal_class

@plant_class = plant_class

@animals = []

number_animals.times do |i|

animal = new_organism(:animal, "Animal#{i}")

@animals << animal

end

236 Chapter 13. Picking the Right Class with a Factory

@plants = []

number_plants.times do |i|

plant = new_organism(:plant, "Plant#{i}")

@plants << plant

end

end

def simulate_one_day

@plants.each {|plant| plant.grow}

@animals.each {|animal| animal.speak}

@animals.each {|animal| animal.eat}

@animals.each {|animal| animal.sleep}

end

def new_organism(type, name)

if type == :animal

@animal_class.new(name)

elsif type == :plant

@plant_class.new(name)

else

raise "Unknown organism type: #{type}"

end

end

end

Using the new Pond class is not really any more complex than using the old one.
We just pass the plant and animal classes into the constructor:

pond = Pond.new(3, Duck, 2, WaterLily)

pond.simulate_one_day

By storing the animal and plant classes in Pond, we have knocked the number of
classes that we need to write down to one. That’s a good thing, considering that we
have not really added any additional complexity to Pond.

Bad News: Your Program Hits the Big Time
Suppose even more success has befallen your pond simulator, and new requirements
are pouring in faster than ever. The most pressing request is to extend this program to
model other types of habitats besides ponds. In fact, a jungle simulation seems to be
the next order of business.

Bad News: Your Program Hits the Big Time 237

Clearly, this change calls for major surgery on the code. You obviously will
need classes for the jungle animals (perhaps tigers) and the jungle plants (mainly
trees):

class Tree

def initialize(name)

@name = name

end

def grow

puts("The tree #{@name} grows tall")

end

end

class Tiger

def initialize(name)

@name = name

end

def eat

puts("Tiger #{@name} eats anything it wants.")

end

def speak

puts("Tiger #{@name} Roars!")

end

def sleep

puts("Tiger #{@name} sleeps anywhere it wants.")

end

end

You also need to change your Pond class’s name to something more appropriate
for jungles as well as ponds. Habitat seems like a good choice:

jungle = Habitat.new(1, Tiger, 4, Tree)

jungle.simulate_one_day

pond = Habitat.new(2, Duck, 4, WaterLily)

pond.simulate_one_day

238 Chapter 13. Picking the Right Class with a Factory

Other than the name change, Habitat is exactly the same as our last Pond imple-
mentation (the one with the plant and animal classes). We can create new habitats in
exactly the same way that we did ponds.

Bundles of Object Creation
One problem with our new Habitat class is that it is possible to create incoherent
(not to mention ecologically unsound) combinations of fauna and flora. For instance,
nothing in our current habitat implementation tells us that tigers and lily pads do not
go together:

unstable = Habitat.new(2, Tiger, 4, WaterLily)

This may not seem like much of a problem when you are dealing with just two
kinds of things (plants and animals, in this case), but what if our simulation was much
more detailed, extending to insects and birds and mollusks and fungi? We certainly
don’t want any mushrooms growing on our lily pads or fish floundering away in the
boughs of some jungle tree.

We can deal with this problem by changing the way we specify which creatures
live in the habitat. Instead of passing the individual plant and animal classes to
Habitat, we can pass a single object that knows how to create a consistent set of
products. We will have one version of this object for ponds, a version that will create
frogs and lily pads. We will have a second version of this object that will create the
tigers and trees that are appropriate to a jungle. An object dedicated to creating a
compatible set of objects is called an abstract factory. In fact, the Abstract Factory
pattern is yet another of those patterns made famous by the GoF. The code below
shows two abstract factories for our habitat simulation, one for the jungle and one
for the pond:

class PondOrganismFactory

def new_animal(name)

Frog.new(name)

end

def new_plant(name)

Algae.new(name)

end

end

Bundles of Object Creation 239

class JungleOrganismFactory

def new_animal(name)

Tiger.new(name)

end

def new_plant(name)

Tree.new(name)

end

end

After a few simple modifications, our Habitat initialize method is ready to
begin using the abstract factory:

class Habitat

def initialize(number_animals, number_plants, organism_factory)

@organism_factory = organism_factory

@animals = []

number_animals.times do |i|

animal = @organism_factory.new_animal("Animal#{i}")

@animals << animal

end

@plants = []

number_plants.times do |i|

plant = @organism_factory.new_plant("Plant#{i}")

@plants << plant

end

end

Rest of the class...

We can now feed different abstract factories to our habitat, serene in the knowl-
edge that there will be no unholy mixing of pond creatures with jungle denizens:

jungle = Habitat.new(1, 4, JungleOrganismFactory.new)

jungle.simulate_one_day

pond = Habitat.new(2, 4, PondOrganismFactory.new)

pond.simulate_one_day

240 Chapter 13. Picking the Right Class with a Factory

Figure 13-2 shows the UML diagram for the Abstract Factory pattern. Here we
have two concrete factories, each of which produces its own set of compatible products.

The Abstract Factory pattern really boils down to a problem and a solution. The
problem is that you need to create sets of compatible objects. The solution is that you
write a separate class to handle that creation. In the same way that the Factory Method
pattern is really the Template Method pattern applied to object creation, so the
Abstract Factory pattern is simply the Strategy pattern applied to the same problem.

Classes Are Just Objects (Again)
One way to look at the abstract factory is to view it as a sort of super-duper-class
object. While ordinary class objects know how to create only one type of object (i.e.,
instances of themselves), the abstract factory knows how to create several different
types of objects (i.e., its products). This suggests a way to simplify our Abstract Factory
pattern implementation: We can make it a bundle of class objects, with one class for
each product. This is exactly the same “classes are just objects” insight that helped us
simplify the Factory Method pattern.

The code below shows a class-based abstract factory. Instead of having several dif-
ferent abstract factory classes, one class for each set of things that the factory needs to
produce, we can have just one factory class that stores the class objects of the things
that it needs to produce:

Classes Are Just Objects (Again) 241

Figure 13-2 The Abstract Factory pattern

AbstractFactory

ProductA2

ProductA1

ProductB2

ProductB1

create_product1()
create_product2()

ConcreteFactoryA

create_product1()
create_product2()

ConcreteFactoryB

create_product1()
create_product2()

class OrganismFactory

def initialize(plant_class, animal_class)

@plant_class = plant_class

@animal_class = animal_class

end

def new_animal(name)

@animal_class.new(name)

end

def new_plant(name)

@plant_class.new(name)

end

end

With this class-based abstract factory, we can create a new instance of the factory
for each compatible set of objects that we need:

jungle_organism_factory = OrganismFactory.new(Tree, Tiger)

pond_organism_factory = OrganismFactory.new(WaterLily, Frog)

jungle = Habitat.new(1, 4, jungle_organism_factory)

jungle.simulate_one_day

pond = Habitat.new(2, 4, pond_organism_factory)

pond.simulate_one_day

This all may seem a bit circular. After all, didn’t we originally create the abstract
factory to avoid specifying the individual classes? And with our latest abstract factory
implementation, aren’t we right back to being able to create a pond full of tigers or a
jungle overrun by algae? Not really. The important thing about the abstract factory
is that it encapsulates the knowledge of which product types go together. You can
express that encapsulation with classes and subclasses, or you can get to it by storing the
class objects as we did in the code above. Either way, you end up with an object that
knows which kind of things belong together.

Leveraging the Name
Another way that we can simplify the implementation of abstract factories is to rely
on a consistent naming convention for the product classes. This approach won’t work
for our habitat example, which is populated with things like tigers and frogs that have

242 Chapter 13. Picking the Right Class with a Factory

unique names, but imagine you need to produce an abstract factory for objects that
know how to read and write a variety of file formats, such as PDF, HTML, and
PostScript files. Certainly we could implement IOFactory using any of the tech-
niques that we have discussed so far. But if the reader and writer class names follow
some regular pattern, something like HTMLReader and HTMLWriter for HTML and
PDFReader and PDFWriter for PDF, we can simply derive the class name from the
name of the format. That’s exactly what the following code does:

class IOFactory

def initialize(format)

@reader_class = self.class.const_get("#{format}Reader")

@writer_class = self.class.const_get("#{format}Writer")

end

def new_reader

@reader_class.new

end

def new_writer

@writer_class.new

end

end

html_factory = IOFactory.new('HTML')

html_reader = html_factory.new_reader

pdf_factory = IOFactory.new('PDF')

pdf_writer = pdf_factory.new_writer

The const_get method used in IOFactory takes a string (or a symbol) con-
taining the name of a constant1 and returns the value of that constant. For example,
if you pass const_get the string "PDFWriter", you will get back the class object of
that name, which is exactly what we want in this case.2

Leveraging the Name 243

1. Recall that in Ruby all class names are constants.
2. Of course, if there is no PDFWriter class, const_get will throw an exception, which in this case
is also exactly what we want to happen.

Using and Abusing the Factory Patterns
The best way to go wrong with any of the object creation techniques that we have
examined in this chapter is to use them when you don’t need them. Not every object
needs to be produced by a factory. In fact, most of the time you will want to create
most of your objects with a simple call to MyClass.new. Use the techniques discussed
in this chapter when you have a choice of several different, related classes and you need
to choose among them.

Remember, chances are You Ain’t Gonna Need It. The YAGNI principle applies
with a vengeance to factories. Perhaps I am dealing with only ducks and lilies at the
moment, but maybe in the future I might need to cope with tigers and trees. Should
I build a factory now to get ready? Probably not. You have to balance the cost of the
additional, currently useless factory infrastructure against the likelihood that you will
actually need the factory. Factor in the price of back-fitting a factory in later. The
answer depends on the details, but engineers do have a tendency to build the Queen
Mary (or perhaps the Titanic?) when a canoe will suffice. If you have a choice of
exactly one class at the moment, put off adding in a factory.

Factory Patterns in the Wild
It is actually fairly difficult to find the classic inheritance-based versions of either fac-
tory pattern in the Ruby code base. Ruby programmers have resoundingly voted with
their keyboards for the more dynamic versions of the factories, the ones based on the
class objects or on various class naming schemes. For example, the SOAP library that
came with your Ruby interpreter goes from XML strings to Ruby objects by leverag-
ing the names. Similarly, the XMLRPC3 implementation that is included in the Ruby
standard library supports several XML parsing options. Each of these methods of pars-
ing XML has an associated parser class; there is one class for parsing the XML as a
stream and another for parsing it as a DOM tree. But there is no separate subclass of
some XMLRPC class for each parsing technique. Instead, the XMLRPC code simply
holds on to the class of the chosen XML parser and manufactures new instances of the
parser from the class object as required.

A fairly exotic version of a factory method lives in ActiveRecord. As we saw in
Chapter 9, ActiveRecord has an adapter class for each different kind of database that

244 Chapter 13. Picking the Right Class with a Factory

3. XMLRPC, if you have not come across it before, is an XML-based remote procedure call mechanism,
along the lines of SOAP. Unlike SOAP, XMLRPC really does strive for simplicity.

it talks to—there is a MySQL adapter, an Oracle adapter, and so on. When you ask
ActiveRecord to set up a connection to a database, you need to specify—along with
the user name, password, and port—a string containing the name of the adapter that
ActiveRecord should use. So you supply "mysql" if you want ActiveRecord to
talk to a MySQL database or "oracle" if it is to communicate with Oracle. But how
does ActiveRecord go from that adapter name to an instance of the adapter?

It turns out that ActiveRecord uses a fairly interesting technique to come up
with an adapter instance, all of it centered on the Base4 class. Base starts out completely
ignorant of any specific database adapters:

class Base

Lots of non-adapter-related code removed...

end

However, each database adapter contains code that modifies Base in a particular
way; that is, each adapter adds a method that creates its specific flavor of connection to
the Base class. For example, the MySQL adapter contains code more or less like this:

class Base

def self.mysql_connection(config)

Create and return a new MySQL connection, using

the user name, password, etc. stored in the

config hash...

end

end

Similarly, the Oracle adapter contains code that looks like this:

class Base

def self.oracle_connection(config)

Create a new Oracle connection...

end

end

Factory Patterns in the Wild 245

4. Actually, the Base class is defined inside the ActiveRecord module, so its name is usually written as
ActiveRecord::Base. In the interest of simplicity, I have stripped the module as well as many other
irrelevant details from the code in this section.

After all of the adapters are finished with it, the Base class has a method called
<<db_type>>_connection for each of the different types of databases it can
accommodate.

To create an actual connection from the name of the adapter, Base constructs the
name of the database-specific method as a string. It works something like this:

adapter = "mysql"

method_name = "#{adapter}_connection"

Base.send(method_name, config)

The last line of this method effectively calls the database-specific method, passing
along the database connection configuration (things like the database, user name, and
password) as a parameter. Voila—instant connection.

Wrapping Up
In this chapter, we looked at the two GoF factory patterns, both of which are tech-
niques for answering the question “Which class?”

The Factory Method pattern involves the application of the Template Method
pattern to object creation. True to its Template Method roots, this pattern says to just
leave the “which class” question to be answered by a subclass. We saw that we could
use this pattern to build a generic Pond class that knows all about environmental sim-
ulations but leaves the choice of the specific plant and animal classes to its subclass.
We therefore create subclasses with names like DuckWaterLilyPond and
FrogAlgaePond, which in turn fill in the factory methods with implementations that
create the appropriate kinds of objects.

The Abstract Factory pattern comes into play when you want to create compati-
ble sets of objects. If you want to ensure that your frogs and algae don’t end up in the
same habitat as your tigers and trees, then create an abstract factory for each valid
combination.

The key thing that we discovered in this chapter is how both of these patterns
morphed in Ruby’s dynamic environment—specifically, how they became much sim-
pler. While the GoF concentrated on inheritance-based implementations of their fac-
tories, we can get the same results with much less code by taking advantage of the fact
that in Ruby, classes are just objects. In Ruby we can look up classes by name, pass
them around, and store them away for future use.

246 Chapter 13. Picking the Right Class with a Factory

Looking ahead, the next pattern that we will examine is the Builder pattern,
which also produces new objects but is much more tightly focused on constructing
complex objects than on picking the right class. But we are by no means finished with
the question of how to produce the right objects for the problem at hand. In Chapter 17,
we will look at meta-programming, a technique for customizing your classes and
objects at runtime.

Wrapping Up 247

This page intentionally left blank

CHAPTER 14
Easier Object Construction
with the Builder

I remember the day we bought my son his first bike. The morning went well enough—
the drive to the store, finding the right size, and the lengthy but critical process of
selecting the right color. Then there was the middle phase of getting the bike home
and getting everything out of the box. Of course, some assembly was required. Perhaps
more than some. What followed our happy arrival home was the third phase, the
phase that took all afternoon and involved a descent into frustration and multiple
skinned knuckles. I spent hours trying to pull together a minor junkyard of parts
according to instructions that would have baffled the entire National Security Agency.
As it turned out, picking that bike was the easy part; putting it together was the real
challenge.

Objects can be like that, too. Chapter 13 was all about using factories to lay your
hands on the right kind of object. But sometimes getting hold of the right object is
not the main problem. No, sometimes the problem is in configuring the object.

In this chapter, we will look at the Builder pattern, a pattern designed to help you
configure those complex objects. We will see that, as you might expect, there is a fair
bit of overlap between builders and factories. We will also look at magic methods, a
Ruby technique that can make your builders even easier to use. In addition, we will
consider the issues that arise in reusing a builder. Finally, we will see how the Builder
pattern can help you avoid accidentally creating invalid objects and perhaps even help
you create valid ones.

249

Building Computers
Imagine that you are writing a system that will support a small computer manufac-
turing business. Each machine is custom made to order, so you need to keep track of
the components that will go into each machine. To keep things simple, suppose each
computer is made up of a display, a motherboard, and some drives:

class Computer

attr_accessor :display

attr_accessor :motherboard

attr_reader :drives

def initialize(display=:crt, motherboard=Motherboard.new, drives=[])

@motherboard = motherboard

@drives = drives

@display = display

end

end

The display is easy; it is either a :crt or an :lcd. The motherboard is a whole
object in itself; it has a certain amount of memory and holds either an ordinary CPU
or a superfast turbo processor:

class CPU

Common CPU stuff...

end

class BasicCPU < CPU

Lots of not very fast CPU-related stuff...

end

class TurboCPU < CPU

Lots of very fast CPU stuff...

end

class Motherboard

attr_accessor :cpu

attr_accessor :memory_size

250 Chapter 14. Easier Object Construction with the Builder

def initialize(cpu=BasicCPU.new, memory_size=1000)

@cpu = cpu

@memory_size = memory_size

end

end

The drives, which come in three flavors (hard drive, CD, and DVD) are modeled
by the Drive class:

class Drive

attr_reader :type # either :hard_disk, :cd or :dvd

attr_reader :size # in MB

attr_reader :writable # true if this drive is writable

def initialize(type, size, writable)

@type = type

@size = size

@writable = writable

end

end

Even with this somewhat simplified model of, constructing a new instance of
Computer is painfully tedious:

Build a fast computer with lots of memory...

motherboard = Motherboard.new(TurboCPU.new, 4000)

...and a hard drive, a CD writer, and a DVD

drives = []

drives << Drive.new(:hard_drive, 200000, true)

drives << Drive.new(:cd, 760, true)

drives << Drive.new(:dvd, 4700, false)

computer = Computer.new(:lcd, motherboard, drives)

The very simple idea behind the Builder pattern is that you take this kind of con-
struction logic and encapsulate it in a class all of its own. The builder class takes

Building Computers 251

charge of assembling all of the components of a complex object. Each builder has an
interface that lets you specify the configuration of your new object step by step. In a
sense, a builder is sort of like a multipart new method, where objects are created in
an extended process instead of all in one shot. A builder for our computers might look
something like this:

class ComputerBuilder

attr_reader :computer

def initialize

@computer = Computer.new

end

def turbo(has_turbo_cpu=true)

@computer.motherboard.cpu = TurboCPU.new

end

def display=(display)

@computer.display=display

end

def memory_size=(size_in_mb)

@computer.motherboard.memory_size = size_in_mb

end

def add_cd(writer=false)

@computer.drives << Drive.new(:cd, 760, writer)

end

def add_dvd(writer=false)

@computer.drives << Drive.new(:dvd, 4000, writer)

end

def add_hard_disk(size_in_mb)

@computer.drives << Drive.new(:hard_disk, size_in_mb, true)

end

end

The ComputerBuilder class factors out all of the details involved in creating
an instance of Computer. To use it, you simply make a new instance of the builder

252 Chapter 14. Easier Object Construction with the Builder

and step through the process of specifying all the options that you need on your
computer:

builder = ComputerBuilder.new

builder.turbo

builder.add_cd(true)

builder.add_dvd

builder.add_hard_disk(100000)

Finally, you get the shiny new Computer instance from the builder:

computer = builder.computer

Figure 14-1 shows the UML diagram for our basic builder.
The GOF called the client of the builder object the director because it directs the

builder in the construction of the new object (called the product). Builders not only
ease the burden of creating complex objects, but also hide the implementation details.
The director does not have to know the specifics of what goes into creating the new
object. When we use the ComputerBuilder class, we can stay blissfully ignorant of
which classes represent the DVDs or the hard disks; we just ask for the computer
configuration that we need.

Polymorphic Builders
This chapter began by contrasting the Builder pattern with factories and saying that
builders are less concerned about picking the right class and more focused on helping
you configure your object. Factoring out all of that nasty construction code is the
main motivation behind builders. Nevertheless, given that builders are involved in

Polymorphic Builders 253

Figure 14-1 A Builder

Builder

add_part1()
add_part2()
add_part3()
result()

Director

Product

object construction, they also are incredibly convenient spots to make those “which
class” decisions.

For example, imagine that our computer business expands into producing laptops
along with traditional desktop machines. Thus we now have two basic kinds of prod-
ucts: desktop computers and laptops.

class DesktopComputer < Computer

Lots of interesting desktop details omitted...

end

class LaptopComputer < Computer

def initialize(motherboard=Motherboard.new, drives=[])

super(:lcd, motherboard, drives)

end

Lots of interesting laptop details omitted...

end

Of course, the components of a laptop computer are not the same as the ones you
find in a desktop computer. Fortunately, we can refactor our builder into a base class
and two subclasses to take care of these differences. The abstract base builder deals
with all of the details that are common to the two kinds of computers:

class ComputerBuilder

attr_reader :computer

def turbo(has_turbo_cpu=true)

@computer.motherboard.cpu = TurboCPU.new

end

def memory_size=(size_in_mb)

@computer.motherboard.memory_size = size_in_mb

end

end

The DesktopBuilder knows how to build desktop computers. In particular, it
knows to create instances of the DesktopComputer class and it is aware that desktop
computers use ordinary drives:

254 Chapter 14. Easier Object Construction with the Builder

class DesktopBuilder < ComputerBuilder

def initialize

@computer = DesktopComputer.new

end

def display=(display)

@display = display

end

def add_cd(writer=false)

@computer.drives << Drive.new(:cd, 760, writer)

end

def add_dvd(writer=false)

@computer.drives << Drive.new(:dvd, 4000, writer)

end

def add_hard_disk(size_in_mb)

@computer.drives << Drive.new(:hard_disk, size_in_mb, true)

end

end

By contrast, the laptop builder knows to create instances of LaptopComputer
and to populate that object with instances of the special LaptopDrive:

class LaptopBuilder < ComputerBuilder

def initialize

@computer = LaptopComputer.new

end

def display=(display)

raise "Laptop display must be lcd" unless display == :lcd

end

def add_cd(writer=false)

@computer.drives << LaptopDrive.new(:cd, 760, writer)

end

def add_dvd(writer=false)

@computer.drives << LaptopDrive.new(:dvd, 4000, writer)

end

def add_hard_disk(size_in_mb)

@computer.drives << LaptopDrive.new(:hard_disk, size_in_mb, true)

end

end

Polymorphic Builders 255

Figure 14-2 shows the UML diagram for our new, polymorphic builder. If you
compare Figure 14-2 with the UML diagram for the abstract factory (Figure 13-2),
you will see that the two patterns share a certainly family resemblance.

Alternatively, we could have written a single builder class that creates either a lap-
top or a desktop system depending on the value of a parameter.

Builders Can Ensure Sane Objects
In addition to making object construction easier, builders can make object construc-
tion safer. That final “give me my object” method makes an ideal place to check that
the configuration requested by the client really makes sense and that it adheres to the
appropriate business rules. For example, we might enhance our computer method to
make sure that it has a sane hardware configuration:

def computer

raise "Not enough memory" if @computer.motherboard.memory_size < 250

raise "Too many drives" if @computer.drives.size > 4

hard_disk = @computer.drives.find {|drive| drive.type == :hard_disk}

raise "No hard disk." unless hard_disk

@computer

end

256 Chapter 14. Easier Object Construction with the Builder

Figure 14-2 A polymorphic builder implementation

ComputerBuilder

add_dvd()
add_cd()
add_hard_drive()
computer()

Director

LaptopComputer

LaptopBuilder

add_dvd()
add_cd()
add_hard_drive
computer()

DesktopBuilder

add_dvd()
add_cd()
add_hard_drive
computer()

DesktopComputer

Nor do we have to simply throw up our hands and raise an exception in the face
of an incomplete configuration:

...

if ! hard_disk

raise "No room to add hard disk." if @computer.drives.size >= 4

add_hard_disk(100000)

end

...

The preceding code simply adds in a hard drive if there is room for one and the
client did not specify one.

Reusable Builders
An important issue to consider when writing and using builders is whether you can
use a single builder instance to create multiple objects. For example, you might quite
reasonably expect that you could use a LaptopBuilder to create a couple of identi-
cal computers in one go:

builder = LaptopBuilder.new

builder.add_hard_disk(100000)

builder.turbo

computer1 = builder.computer

computer2 = builder.computer

The trouble is, because the computer method always returns the same computer,
both computer1 and computer2 end up being references to the same computer, which
is probably not what you expected here. One way to deal with this issue is to equip your
builder with a reset method, which reinitializes the object under construction:

class LaptopBuilder

Lots of code omitted...

def reset

@computer = LaptopComputer.new

end

end

Reusable Builders 257

The reset method will let you reuse the builder instance, but it also means that you
have to start the configuration process all over again for each computer. If you want to
perform the configuration once and then have the builder produce any number of
objects based on that configuration, you need to store all of the configuration informa-
tion in instance attributes and create the actual product only when the client asks for it.

Better Builders with Magic Methods
Our computer builder is certainly an improvement over spreading all of that object cre-
ation, configuration, and validation code throughout your application. Unfortunately,
even with the builder, the process of fitting out a new computer is less than elegant. As
we have seen, you still have to create the builder and then call any number of methods
to configure the new computer. The question is, can we make the process of configur-
ing the new computer a bit terser and perhaps a shade more elegant?

One way we might do this is by creating a magic method. The idea behind a
magic method is to let the caller make up a method name according to a specific pat-
tern. For example, we might configure a new laptop with

builder.add_dvd_and_harddisk

or perhaps even

builder.add_turbo_and_dvd_and_harddisk

Magic methods are very easy to implement using the method_missing tech-
nique that we first met back when we were talking about proxies (in Chapter 10). To
use a magic method, you simply catch all unexpected methods calls with
method_missing and parse the method name to see if it matches the pattern of your
magic method name:

def method_missing(name, *args)

words = name.to_s.split("_")

return super(name, *args) unless words.shift == 'add'

words.each do |word|

next if word == 'and'

add_cd if word == 'cd'

add_dvd if word == 'dvd'

add_hard_disk(100000) if word == 'harddisk'

turbo if word == 'turbo'

end

end

258 Chapter 14. Easier Object Construction with the Builder

This code breaks the method name up along the underscores and tries to make
sense of it as a request to add various options to the computer.

The magic method technique is certainly not limited to builders. You can use it
in any situation where you want to let client code specify multiple options succinctly.

Using and Abusing the Builder Pattern
The need for the Builder pattern sometimes creeps up on you as your application
becomes increasingly complex. For example, in its early days your Computer class may
have just tracked the CPU type and memory size. Using a builder for so simple a class
would clearly be overdoing things. But as you enhanced the Computer class to model
the drives, the number of options and the interdependences between those options
suddenly explodes—and a build starts to make more sense. It is usually fairly easy to
spot code that is missing a builder: You can find the same object creation logic scat-
tered all over the place. Another hint that you need a builder is when your code starts
producing invalid objects: “Oops, I checked the number of drives when I create a new
Computer over here, but not over there.”

As with factories, the main way that you can abuse the Builder pattern is by using
it when you don’t need it. I don’t think it is a good idea to anticipate the need for a
builder. Instead, let MyClass.new be your default way of creating new objects. Add
in a builder only when cruel fate, or ever-escalating requirements, force your hand.

Builders in the Wild
One of the more interesting builders that you will find in the Ruby code base claims
that it is not a builder at all. Despite its name, MailFactory1 is a really nice builder
that helps you create e-mail messages. Although e-mail messages are, at their heart,
just chunks of plain text, anyone who has ever tried to construct a message with mul-
tipart MIME attachments knows that even plain text can be very complicated.

MailFactory propels you past all of this complication by providing a nice
builder-style interface to create your message:

require 'rubygems'

require 'mailfactory'

mail_builder = MailFactory.new

mail_builder.to ='russ@russolsen.com'

Builders in the Wild 259

1. The MailFactory package was written by David Powers.

mail_builder.from = 'russ@russolsen.com'

mail_builder.subject = 'The document'

mail_builder.text = 'Here is that document you wanted'

mail_builder.attach('book.doc')

Once you have told MailFactory (builder!) all about your e-mail message, you
can get the text of the message—the thing that you can ship off to an SMTP server—
by calling the to_s method:

puts mail_builder.to_s

to: russ@russolsen.com

from: russ@russolsen.com

subject: Here is that document you wanted

Date: Wed, 16 May 2007 14:02:32 -0400

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="——=_NextPart_3rj.Kbd9.t9JpHIc663P_4mq6"

Message-ID: <1179338750.3053.1000.-606657668@russolsen.com>

This is a multi-part message in MIME format.

...

The most prominent examples of magic methods are the finder methods in
ActiveRecord. In exactly the same way that our last computer builder allowed us to
specify computer configurations with the name of the method we call, ActiveRecord
allows us to encode database queries. You might, for instance, find all of the employees
in the Employee table by Social Security number:

Employee.find_by_ssn('123-45-6789')

Or you could search by first and last names:

Employee.find_by_firstname_and_lastname('John', 'Smith')

Wrapping Up
The idea behind the Builder pattern is that if your object is hard to build, if you have
to write a lot of code to configure each object, then you should factor all of that cre-
ation code into a separate class, the builder.

The Builder pattern suggests that you provide an object—the builder—that takes
a multipart specification of your new object and deals with all the complexity and

260 Chapter 14. Easier Object Construction with the Builder

drudgery of creating that object. Builders, because they are in control of configuring
your object, can also prevent you from constructing an invalid object. The builder is
uniquely positioned to look over the client’s shoulder and say, “No, I think a fifth
wheel on that car may be a bit too much . . .”

With a little ingenuity, you can create magic methods to facilitate the building.
To build a magic method, you catch arbitrary method calls to your object with
method_missing, parse the names of those nonexistent methods, and build the right
thing based on the name. Magic methods tend to take speedy object construction to
the next level by allowing the client to specify a number of configuration options with
a single method call.

When you create a builder, and especially when you use one, you need to be aware
of the reusability issue. Can you use a single instance of a builder to create multiple
instances of the product? It is certainly easier to write one-shot builders, or builders
that need to be reset before reuse, than it is to create completely reusable builders. The
question is this: Which kind of builder are you creating or using?

The Builder pattern is the last of the patterns that we will examine that is con-
cerned with object creation.2 In the next chapter, we will stop talking about creating
new objects and go back to talking about doing something interesting with all those
brand-new objects: create an interpreter.

Wrapping Up 261

2. Or in the case of the Singleton pattern, preventing object creation.

This page intentionally left blank

CHAPTER 15
Assembling Your System
with the Interpreter

In the late 1980s, a much earlier edition of Russ Olsen the software engineer—perhaps
the beta version of the professional me, certainly not the release candidate—worked
on a Geographical Information System (GIS). One of the key goals of that GIS system
was easy adaptability. Customers’ maps were all different, and each customer wanted
to have its maps look just the way that customer wanted them to look. Also, each customer
wanted to use its maps in some unique way, and we naturally wanted our system to
zig with every customer’s zag.

Unfortunately, we were writing this system in the C programming language.
While C has a lot of points to recommend it, easy adaptability is not one of them.
Writing C is hard—you need to pay close attention to all of that pointer arithmetic or
your program is very likely to suffer an early demise. What was worse, C lived on the
wrong conceptual level for our system. When you write a C program you are dealing
with ints and floats and pointers to structs, but we wanted to spend our time
dealing with the valleys and rivers and political borders that make up a map.

The architects of that GIS system (an elite group that emphatically did not include
me) solved the easy-adaptability problem with one dramatic decision: They ruled that
most of the system was not to be written in C after all. Instead, perhaps 80 percent of
the application was coded in a specialized language that knew all about geographic
things like latitudes and longitudes. This language sported a sophisticated query syntax
that made it easy to move all of the medium-sized trees to the north by 500 meters.

263

The map language was not exactly what you would hear when two cartographers get
together for lunch, but it was much closer to that than any C program ever written.

As I say, about 80 percent of the code was this specialized, map-oriented stuff.
And what of the other 20 percent? That was written in C, but the interesting part was
what it did: That C code implemented an interpreter, an interpreter for the other
80 percent of the code, the stuff written in the specialized, map-oriented language. In
short, that old GIS system was a massive implementation of the Interpreter pattern.

In this chapter, we will look at the Interpreter pattern, which suggests that some-
times the best way to solve a problem is to invent a new language for just that pur-
pose. We will explore how a typical interpreter is assembled and consider some ways
of dealing with the tedious task of parsing. We will also find out that interpreters are
perhaps not the best-performing beasts in the programming zoo, but that for their
performance price they do offer a lot of flexibility and extensibility.

The Right Language for the Job
The Interpreter pattern is built around a very simple idea: Some programming prob-
lems are best solved by creating a specialized language and expressing the solution in
that language. What kind of problems are good candidates for the Interpreter pattern?
As a general rule, problems well suited to the Interpreter pattern tend to be self-
contained, with crisp boundaries around them. For example, if you are writing code
that searches for specific objects based on some specification, you might consider creating
a query language.1 Conversely, if you are faced with the task of creating complex
object configurations, you might think about building a configuration language.

Another clue that your problem might be right for the Interpreter pattern is that
you find yourself creating lots of discrete chunks of code, chunks that seem easy
enough to write in themselves, but which you find yourself combining in an ever-
expanding array of combinations. Perhaps a simple interpreter could do all of the
combining work for you.

Building an Interpreter
Interpreters typically work in two phases. First, the parser reads in the program text
and produces a data structure, called an abstract syntax tree (AST). The AST repre-
sents the same information as the original program, but transformed into a tree of

264 Chapter 15. Assembling Your System with the Interpreter

1. This is, of course, what the folks behind SQL did for databases.

objects that, unlike the original program text, can be executed with reasonable efficiency.
Second, the AST is evaluated against some set of external conditions, or context, to
produce the desired computation.

For example, we might build an interpreter to evaluate very simple arithmetic
expressions like this one:

5.0*(3+x)

First, we need to parse this expression. Our parser would start out by tackling the
first character of the expression—the numeral 5—and then move on to the decimal
point and the zero, working out along the way that it is dealing with a floating-point
number. Having finished with the 5.0, the parser would move on to process the rest
of the expression, eventually producing a data structure that looks something like
Figure 15-1.

The data structure shown in Figure 15-1 is our AST. The leaf nodes of the AST—
that is, the 5.0, the 3, and the x—are called terminals, and represent the most basic
building blocks of the language. The nonleaf nodes—in this example, the + and the *—
are called (logically enough) nonterminals. The nonterminals represent the higher-
order concepts in the language.

As you can see from the UML diagram in Figure 15-2, the nonterminals have a
reference to one or more subexpressions, which allows us to build arbitrarily complex
trees.2

Although the GoF called the key method in the Interpreter pattern interpret,
names such as evaluate or execute also make sense and show up in code
frequently.

Building an Interpreter 265

Figure 15-1 Abstract syntax tree for a simple arithmetic expression

*

5.0 +

3 x

2. Yes, you have seen this diagram before. ASTs are, in fact, specialized examples of the Composite
pattern, with the nonterminal expressions playing the parts of the composites.

With the AST in hand, we are almost ready to evaluate our expression, save for
one small detail: What is the value of x? To evaluate our expression, we need to sup-
ply a value for x. Is x equal to 1 or 167 or –279? The GoF called such values or con-
ditions supplied at the time the AST is interpreted the context. Returning to our
example, if we interpret our AST with a context where x is set to 1, we will get a result
of 20.0; if we interpret it a second time with x set to 4, we will get a result of 35.0.

Whatever the values in the context, the AST evaluates itself by recursively
descending down the tree. We ask the root node of the tree (in this case, the node rep-
resenting the multiplication) to evaluate itself. It, in turn, recursively tries to evaluate
its two factors. The 5.0 is easy, but the other factor, the addition, must evaluate its
terms (the 3 and x). We finally hit bottom here and the results come bubbling back
up through the recursion.

We can learn two things from this simple arithmetic expression example. First, the
Interpreter pattern has a lot of moving parts. Think of all the different classes that
make up the AST and then add in the parser. The sheer number of components is why
the Interpreter pattern is in practice limited to relatively simple languages: We are pre-
sumably trying to solve some real business problem and not engage in programming
language research. The second thing that we can take away from the example is that
the Interpreter pattern is unlikely to be fast. Aside from the parsing overhead, travers-
ing the AST will inevitably exact some speed penalty of its own.

We do get a couple of things back in return for the interpreter’s complexity and
speed penalty. First, we get flexibility. Once you have an interpreter, it is usually very
easy to add new operations to it. Certainly we can imagine that once we have built an
interpreter for our little arithmetic expressions that it would be easy to add subtraction
and multiplication nodes to the AST. Second, we get the AST itself. An AST is a data

266 Chapter 15. Assembling Your System with the Interpreter

Figure 15-2 Class Diagram for the Interpreter pattern

Expression

interpret(context)

TerminalExpression

interpret(context)

NonTerminalExpression

interpret(context)

@sub_expressions[]

Client

Context

structure that represents some specific bit of programming logic. While we originally
built the AST to evaluate it, we can manipulate it so that it does other things, too. We
might, for example, have the AST print out a description of itself:

Multiply 5.0 by the sum of 3 and x, where x is 1.

A File-Finding Interpreter
Enough theory—let’s create an interpreter in Ruby. The last thing the world needs is
another arithmetic expression interpreter, so we will do something a little different
here. Imagine that we are writing a program that manages files, lots of files of many
different formats and sizes. We will frequently need to search for files with particular
characteristics, such as all the MP3 files or all the writable files. Not only that, but we
will also need to find files that share a specific combination of characteristics, such as
all the big MP3 files or all the JPEG files that are read only.

Finding All the Files

This sounds like a problem that could be solved with a simple query language. We can
imagine that each expression in our language will specify the kind of files that we are
looking for. Let’s start with the classes that will make up the AST and put off the
parser until later.

The most basic kind of file search simply returns all of the files, so we build a class
to do that:

require 'find'

class Expression

Common expression code will go here soon...

end

class All < Expression

def evaluate(dir)

results= []

Find.find(dir) do |p|

next unless File.file?(p)

results << p

end

results

end

end

A File-Finding Interpreter 267

There is not a lot going on here. The key method of our interpreter is called
evaluate; the evaluate method in All simply uses the Ruby standard library Find
class to gather up all the files that live under a given directory. If you pass Find.find
a directory name and a block, it will call the block once for everything that it finds
under that directory. And I mean everything: Because Find works recursively, our
block will be called not only for all of the files in the directory but also for all of the
subdirectories, all of the files in the subdirectories, and so on. Of course, we are only
interested in files, so we need to do a bit of filtering. The line

next unless File.file?(p)

will skip anything that is not a file.
Oh, and don’t fret too much about that empty Expression superclass. We will

fill it in with some useful code a little later on.

Finding Files by Name

The next most obvious thing is to create a class that will return all files whose names
match a given pattern:

class FileName < Expression

def initialize(pattern)

@pattern = pattern

end

def evaluate(dir)

results= []

Find.find(dir) do |p|

next unless File.file?(p)

name = File.basename(p)

results << p if File.fnmatch(@pattern, name)

end

results

end

end

FileName is only slightly more complicated than All. This class employs a cou-
ple of very useful methods from the Ruby File class. The File.basename method
returns just the filename part of a path—give it "/home/russ/chapter1.doc" and
you will get back "chapter1.doc". The File.fnmatch method returns true only

268 Chapter 15. Assembling Your System with the Interpreter

if the filename pattern specified in the first parameter (something like "*.doc")
matches the filename in the second parameter (something like "chapter1.doc").

Using our file-finding classes is very straightforward. If my test_dir directory
contains two MP3 files and an image, I can find all three files with this code:

expr_all = All.new

files = expr_all.evaluate('test_dir')

But if I am just interested in the MP3s, I can say this:

expr_mp3 = FileName.new('*.mp3')

mp3s = expr_mp3.evaluate('test_dir')

In the preceding examples, the directory name that we pass into the evaluate
method plays the part of the context—some set of externally supplied parameters that
we evaluate the expression against. We can evaluate the same expression against dif-
ferent contexts and produce different results. I might, for example, want to find all of
the MP3 files in my music directory:

other_mp3s = expr_mp3.evaluate('music_dir')

Big Files and Writable Files

Of course, finding all the files, or finding all the files with a certain style of name, in
no way exhausts the possibilities. We might, for example, want to look for files that
are bigger than some specified size:

class Bigger < Expression

def initialize(size)

@size = size

end

def evaluate(dir)

results = []

Find.find(dir) do |p|

next unless File.file?(p)

results << p if(File.size(p) > @size)

end

results

end

end

A File-Finding Interpreter 269

Or we might go looking for files that are writable:

class Writable < Expression

def evaluate(dir)

results = []

Find.find(dir) do |p|

next unless File.file?(p)

results << p if(File.writable?(p))

end

results

end

end

More Complex Searches with Not, And, and Or

Now that we have some basic file-searching classes—these will become the terminals
in our AST—let’s move on to something more interesting. What if we want to find
all of the files that are not writable? Clearly, we could build yet another class along the
lines of the ones we created earlier. But let’s do something different; let’s build our first
nonterminal, Not:

class Not < Expression

def initialize(expression)

@expression = expression

end

def evaluate(dir)

All.new.evaluate(dir) - @expression.evaluate(dir)

end

end

The constructor of the Not class takes another file-finding expression, which rep-
resents the expression we want to negate. When evaluate is called, it starts with all
of the paths (as conveniently determined by the All class) and, using the Array sub-
traction operator, removes all of the paths returned by the expression. What is left is
every path that is not returned by the expression. Thus, to find all of the files that are
not writable, you would say:

expr_not_writable = Not.new(Writable.new)

readonly_files = expr_not_writable.evaluate('test_dir')

270 Chapter 15. Assembling Your System with the Interpreter

The beauty of the Not class is that it is not just applicable to Writable. We
might, for instance, use Not to find all of the files smaller than 1KB:

small_expr = Not.new(Bigger.new(1024))

small_files = small_expr.evaluate('test_dir')

Or we might look for all files that are not MP3s:

not_mp3_expr = Not.new(FileName.new('*.mp3'))

not_mp3s = not_mp3_expr.evaluate('test_dir')

We can also create a nonterminal that combines the results of two file-searching
expressions:

class Or < Expression

def initialize(expression1, expression2)

@expression1 = expression1

@expression2 = expression2

end

def evaluate(dir)

result1 = @expression1.evaluate(dir)

result2 = @expression2.evaluate(dir)

(result1 + result2).sort.uniq

end

end

With Or, we can find all of the files that are either MP3s or writable in one shot:

big_or_mp3_expr = Or.new(Bigger.new(1024), FileName.new('*.mp3'))

big_or_mp3s = big_or_mp3_expr.evaluate('test_dir')

And where there is an Or, can And be far behind?

class And < Expression

def initialize(expression1, expression2)

@expression1 = expression1

@expression2 = expression2

end

A File-Finding Interpreter 271

def evaluate(dir)

result1 = @expression1.evaluate(dir)

result2 = @expression2.evaluate(dir)

(result1 & result2)

end

end

We now have everything we need to specify some truly complex file searches.
How about all of the big MP3 files that are not writable?

complex_expression = And.new(

And.new(Bigger.new(1024),

FileName.new('*.mp3')),

Not.new(Writable.new))

This complex expression gives us a glimpse into another nice property of the
Interpreter pattern. Once we have created a complex AST like the one above, we
can use it over and over with different contexts:

complex_expression.evaluate('test_dir')

complex_expression.evaluate('/tmp')

Done correctly, the Interpreter pattern gives you a lot of mileage for your effort. In
our example, it took us only seven classes to get to a reasonably flexible file-searching AST.

Creating the AST
Surprisingly, the Interpreter pattern as defined by the GoF is silent on the origins of
the AST. The pattern simply assumes that you have somehow gotten your hands on
an AST and works from there. Of course, the AST has to come from somewhere. In
practice, there are a surprising number of alternative ways to create an AST.

A Simple Parser

Perhaps the most obvious way of coming up with an AST is to build a parser. Building
a parser for our little file-searching language is not especially difficult. Suppose we
define the syntax to look something like this:

and (and(bigger 1024)(filename *.mp3)) writable

272 Chapter 15. Assembling Your System with the Interpreter

Then the following code does a passable job of parsing, all in about 50 lines:

class Parser

def initialize(text)

@tokens = text.scan(/\(|\)|[\w\.*]+/)

end

def next_token

@tokens.shift

end

def expression

token = next_token

if token == nil

return nil

elsif token == '('

result = expression

raise 'Expected)' unless next_token == ')'

result

elsif token == 'all'

return All.new

elsif token == 'writable'

return Writable.new

elsif token == 'bigger'

return Bigger.new(next_token.to_i)

elsif token == 'filename'

return FileName.new(next_token)

elsif token == 'not'

return Not.new(expression)

elsif token == 'and'

return And.new(expression, expression)

elsif token == 'or'

return Or.new(expression, expression)

Creating the AST 273

else

raise "Unexpected token: #{token}"

end

end

end

To use the parser, pass the file-finding expression into the constructor and then
call the parse method. The parse method returns the corresponding AST, all ready
to be evaluated:

parser = Parser.new "and (and(bigger 1024)(filename *.mp3)) writable"

ast = parser.expression

The Parser class uses the scan method from the String class to break up the
expression into convenient tokens:

@tokens = text.scan(/\(|\)|[\w\.*]+/)

Using a little regular-expression magic,3 this code breaks the string contained in
text into an array of substrings or tokens, where each token is either a left or right
parenthesis or a discrete chunk of the expression like “filename” or “*.mp3”.4

The bulk of the parser is taken up by the expression method, which looks at
the tokens one at a time, building up the AST as it goes.

A Parser-less Interpreter?

Although the parser that we built was not really all that difficult to create, it did take
some effort and raises a somewhat subversive-sounding question: Do we really need a
parser at all? The file-searching classes that we have built so far would, all by them-
selves, make a fine internal programmer-oriented API. If we just need a good way to
specify file searches from code, then perhaps we can just create the file-searching AST

274 Chapter 15. Assembling Your System with the Interpreter

3. If you are not very familiar with regular expressions, take a look at Appendix B, Digging Deeper.
Regular expressions are well worth the effort that it takes to figure them out.
4. If you are familiar with regular expressions, no doubt you have spotted the fact that my parser will
not handle filenames with spaces in them. Let me again plead the need for simple examples—not to
mention the fact that I think that filenames with embedded spaces are a serious breach of ethics.

in code in exactly the same way we did in the examples in the previous section. In this
way, we can still get all of the flexibility and extensibility benefits of the Interpreter
pattern without the bother of dealing with parsing.

If you do decide to go with a parser-less interpreter, it is frequently worth the
trouble of adding some shortcuts to make life easier for your users. For example, we
could extend our file-searching interpreter by defining some operators in the
Expression class that will create And and Or expressions with a little less syntax:5

class Expression

def |(other)

Or.new(self, other)

end

def &(other)

And.new(self, other)

end

end

You knew I was going to come up with a use for the Expression class! With
these new operators defined, complex file-searching expressions flow a little more easily
off the keyboard. Instead of

Or.new(

And.new(Bigger.new(2000), Not.new(Writable.new)),

FileName.new('*.mp3'))

we can now say

(Bigger.new(2000) & Not.new(Writable.new)) | FileName.new("*.mp3")

We can even take this syntactic sugaring one step further by defining some conven-
ience methods to create the terminals:

def all

All.new

end

Creating the AST 275

5. While in principle there is nothing wrong with defining operators for your classes, it is something
that is best done in moderation. Zealous overuse of operators tends to make code hard to understand.

def bigger(size)

Bigger.new(size)

end

def name(pattern)

FileName.new(pattern)

end

def except(expression)

Not.new(expression)

end

def writable

Writable.new

end

The new convenience methods reduce the file-searching expression above to
something even more succinct:

(bigger(2000) & except(writable)) | file_name('*.mp3')

The only caveat here is that we can’t use the name not for the Not.new conven-
ience method because this name collides with the Ruby not operator.

Let XML or YAML Do the Parsing?

If you do decide that you need a parser, a tempting alternative to building your own
is to define your new language in XML or even YAML.6 If you do this, then you can
use the built-in XML or YAML parsing libraries that come with your Ruby installa-
tion to handle the parsing. On the surface, this sounds like a great idea—you get to
enjoy all of the flexibility and extensibility of a full interpreter and you don’t have to
mess with the details of a parser. Who could complain?

Unfortunately, your users might well complain. While XML and YAML are great
choices for representing data, neither is really ideal for expressing programs. Keep in
mind that the main motivation behind building an interpreter is to give your users a
natural way to express the kind of processing that needs to be done. If the ideas

276 Chapter 15. Assembling Your System with the Interpreter

6. YAML, which stands for “YAML Ain’t Markup Language,” is a plain text file format used, like
XML, to store hierarchical data. Unlike XML, YAML is very human-friendly and is popular with the
Ruby community.

embodied in your interpreter can be naturally expressed in XML or YAML, then go
ahead and use that format and take full advantage of the built-in parser for that format.
But if your language does not fit—and I would venture to guess that most Interpreter
pattern languages will not—then don’t try to jam your language into the wrong format
just to save a bit of coding.

Racc for More Complex Parsers

If your language is fairly complex and neither XML nor YAML seems appropriate, you
might consider using a parser generator such Racc. Racc is modeled (and named) after
the venerable UNIX YACC utility. Racc takes as input a description of the grammar
for your language and spits out a parser, written in Ruby for that language. While Racc
is a fine tool, it is not for the faint of heart—learning how to use a parser generator
entails a fairly long walk up a steep learning curve.

Let Ruby Do the Parsing?

There is one other answer to the parser question. Perhaps, just perhaps, you could
implement your Interpreter pattern in such a way that users could write their pro-
grams in actual Ruby code. Maybe you could design your AST API in such a way that
the code flows so naturally that your users might be unaware that they are, in fact,
writing Ruby code. This is such an intriguing idea that I will leave it for now and
devote the next chapter to it.

Using and Abusing the Interpreter Pattern
In my mind, the Interpreter pattern is unique among the GoF patterns that we will
look at in this book in that it tends to be underused. Over the years I have seen a num-
ber of systems that could have benefited from the Interpreter pattern, systems that
laboriously solved their problems with other, less appropriate designs. For example,
back in the stone age of databases, a query was a program that some database expert
laboriously coded. This kind of thing went on for a very long time until the advent of
(mostly interpreted) query languages like SQL. Similarly, for many years the con-
struction of even very simple GUIs required the services of a software engineer, who
would take days or weeks to spew out page after page of code. Now every middle
school kid with access to a keyboard can create reasonably elaborate GUIs, all thanks
to the introduction of an interpreted language; we call it HTML.

Why is the Interpreter pattern so widely neglected? Most software engineers who
spend their days solving business problems may be expert in things like database design

Using and Abusing the Interpreter Pattern 277

and Web application development, but they may not have thought about ASTs and
parsers since that second-year CIS 253 course, if at all. That’s too bad. As we have seen,
when properly applied, the Interpreter pattern adds a unique flexibility to your system.

We have already touched on the main technical drawbacks of interpreters. First,
there is the complexity issue. When you are considering the Interpreter pattern, and
especially if you are going to build a parser, think about how complex your language
will be. The simpler, the better. Also, think about who will be writing programs in
your new language. Will these programmers be experienced software engineers, who
will be able to get along with minimal error messages, or will your users be less tech-
nical civilians, who may need more elaborate diagnostics?

Second, there is the issue of program efficiency. Remember, it is going to be
darned hard to make

Add.new(Constant.new(2), Constant.new(2)).interpret

run as quickly as

2 + 2

For all of its flexibility and power, the Interpreter pattern is not a good choice for
the 2 percent of your code that really is performance sensitive. Of course, that does
leave the remaining 98 percent wide open . . .

Interpreters in the Wild
Interpreters are easy to find in the Ruby world. In fact, we need look no farther than
Ruby itself. Ruby is, of course, an interpreted language, albeit a slightly more complex
one than is envisioned by the Interpreter pattern.

Similarly, regular expressions—those marvelous pattern-matching beasts that
were so helpful when we needed to code our little parser—are themselves imple-
mented as an interpreted language. When you write a regular expression like
/[rR]uss/, behind the scenes it gets translated into an AST that matches a couple of
variations of my first name.

There is also Runt,7 a library that provides a simple language for expressing things
like date and time ranges and schedules. Using Runt, you can write temporal expres-
sions that will, for example, match only certain days of the week:

278 Chapter 15. Assembling Your System with the Interpreter

7. The Runt library was written by Matthew Lipper and is based on the idea of temporal expressions
from Martin Fowler.

require 'rubygems'

require 'runt'

mondays = Runt::DIWeek.new(Runt::Monday)

wednesdays = Runt::DIWeek.new(Runt::Wednesday)

fridays = Runt::DIWeek.new(Runt::Friday)

With the three objects above, we can discover that Christmas will fall on a Friday
in 2015, since

fridays.include?(Date.new(2015,12,25))

will return true, while

mondays.include?(Date.new(2015,12,25))

wednesdays.include?(Date.new(2015,12,25))

will both return false.
As usual with the Interpreter pattern, the real power of Runt shines through when

you start combining expressions. Here is a Runt expression that will match the
dreaded “all morning long” class schedule that I used to suffer through in my college
days:

nine_to_twelve = Runt::REDay.new(9,0,12,0)

class_times = (mondays | wednesdays | fridays) & nine_to_twelve

Runt is a good example of a parser-less interpreter: It is intended to be a simple,
easy-to-use library of classes for Ruby programmers.

Wrapping Up
In this chapter, we looked at the Interpreter pattern. This pattern suggests that some-
times a simple interpreter is the best way to solve a problem. The Interpreter pattern
is good at solving well-bounded problems such as query or configuration languages
and is a good option for combining chunks of existing functionality together.

The heart of the Interpreter pattern is the abstract syntax tree. You think of your
new little language as a series of expressions, and decompose those expressions into a

Wrapping Up 279

tree structure. How you perform that decomposition is up to you: You can supply
your clients with an API for building up the tree in code, or you can write a parser
that takes strings and turns them into the AST. Either way, once you have the AST,
you can use it to evaluate itself and come up with the solution.

The Interpreter pattern brings with it the advantages of flexibility and extensibil-
ity. By building different ASTs, you can get the same Interpreter classes to do differ-
ent things. It is usually straightforward to extend your language by adding new kinds
of nodes to your AST. These benefits carry a cost, however, in terms of performance
and complexity. Interpreters do tend to be slow and making them run fast is difficult,
so it is probably best to limit your use of the Interpreter pattern to areas that do not
demand high performance. The complexity comes from the simple fact that the
Interpreter pattern requires a fair bit of infrastructure: You need all of the classes that
go into building the AST, and maybe a parser to boot.

In the next chapter, we will look at domain-specific languages (DSLs), a pattern
that is closely related to the Interpreter pattern. In particular, we will spend a lot of
time examining internal DSLs, an elegant alternative to the sometimes painful job of
coming up with a parser for your interpreter.

280 Chapter 15. Assembling Your System with the Interpreter

PART III
Patterns for
Ruby

This page intentionally left blank

CHAPTER 16
Opening Up Your System
with Domain-Specific
Languages

In Chapter 15, we looked at the process of creating interpreters to solve certain kinds
of problems. The Interpreter pattern is all about using an abstract syntax tree (AST)
to obtain the answer or perform the action that you are looking for. As we saw in that
chapter, the Interpreter pattern is not really concerned with where the AST comes
from; it just assumes that you have one and focuses on how the AST should operate.
In this chapter, we will explore the Domain-Specific Language (DSL) pattern, which
looks at the world from the other end of the telescope. The DSL pattern suggests that
you should focus on the language itself, not on the interpreter. It says that sometimes
you can make problems easier to solve by giving the user a convenient syntax for
expressing the problem in the first place.

You won’t find the DSL pattern in your copy of Design Patterns. Nevertheless, as
we will see in this chapter, Ruby’s flexible syntax makes building a particular style of
DSL very easy.

The Domain of Specific Languages
Like most of the patterns that we have looked at in this book, the basic idea behind the
DSL pattern is not very complicated. You can understand DSLs by stepping back and
asking exactly what we are trying to do when we write programs. The answer is (I hope)

283

that we are trying to make our users happy. A user is interested in getting the computer
to do something—balance the accounts or steer a space probe to Mars. In short, the
user wants the computer to satisfy some requirement. Given that, we might naively ask,
why does the user need us? Why can’t we just hand the user the Ruby interpreter with
a hearty “Good luck!” This is a silly idea because, in general, users do not understand
programming and computers; they don’t usually know any more about bits and bytes
than we know about accounting or celestial mechanics. The user understands his or her
one area, his or her domain, but not the domain of programming.

What if we could create a programming language that, instead of expressing
computer-related ideas, allowed the user say things about his or her domain of interest
directly? What if we created a language that allows accountants to say accounting
things and rocket scientists to say space probe things? Then that silly idea of just
handing the user the language and saying, “Have at it,” doesn’t seem so bad after all.

Now we could certainly build such a language using all the techniques that we saw
in Chapter 15. That is, we could sharpen up our pencil and write a parser for an
accounting language or use Racc to create a celestial navigation language. Martin
Fowler calls these more or less traditional approaches external DSLs. External DSLs
are external in the sense that there is a parser and an interpreter for the DSL, and there
are the programs written in the DSL, and the two are completely distinct. For exam-
ple, if we created a specialized accounting DSL and wrote a parser and interpreter for
it in Ruby, we would end up with two entirely separate things: the accounting DSL
and an interpreter program for it.

Given the existence of external DSLs, we might wonder whether there are also
internal DSLs and how they might differ from the external kind. An internal DSL,
again according to Fowler, is one in which we start with some implementation lan-
guage, perhaps Ruby, and we simply bend that one language into being our DSL. If
we are using Ruby to implement our DSL—and if you have looked at the title of this
book, you know we are—then anyone who writes a program in our little language is
actually, and perhaps unknowingly, writing a Ruby program.

A File Backup DSL
It turns out that it is actually fairly easy to build internal DSLs in Ruby. Imagine that
we want to build a backup program, something that will wake up every so often and
copy our valuable files off to some (presumably safe) directory. We decide to do this by
creating a DSL, a language called PackRat, that will allow users to talk purely in terms
of which files that they want to back up and when. Something like this would do fine:

284 Chapter 16. Opening Up Your System with Domain-Specific Languages

backup '/home/russ/documents'

backup '/home/russ/music', file_name('*.mp3') & file_name('*.wav')

backup '/home/russ/images', except(file_name('*.tmp'))

to '/external_drive/backups'

interval 60

What this little PackRat program says is that we have three directories full of stuff
that we want copied to the /external_drive/backups directory once an hour (i.e.,
every 60 minutes). While we want everything from the documents directory backed
up, as well as everything except the temporary files from the images directory, we
want only the audio files from the music directory. Because we are never in the mood
to reinvent things that already exist, PackRat makes use of the handy file-finding
expressions that we built in Chapter 15.

It’s a Data File—No, It’s a Program!
Now we might decide to pull out our regular expressions or parser generator and write
a traditional parser for the PackRat program above: We first read a word that should
be “backup,” then we look for a quote, and then . . . But there must be an easier way.
Looking over the backup instructions, we realize that they could almost be Ruby
method calls. Wait! They could be Ruby method calls. If backup, to, and interval
are all names of Ruby methods, then what we have is perfectly valid Ruby program—
that is, a series of calls to backup, to, and interval, each with one or two parame-
ters. There are no parentheses around the arguments to those method calls, but of
course that is perfectly valid in Ruby.

Just to get things started, let’s see if we can’t write a little Ruby program that does
nothing except read in the backup.pr file. Here is the start of our DSL interpreter, a
little program called packrat.rb:

require 'finder'

def backup(dir, find_expression=All.new)

puts "Backup called, source dir=#{dir} find expr=#{find_expression}"

end

It’s a Data File—No, It’s a Program! 285

def to(backup_directory)

puts "To called, backup dir=#{backup_directory}"

end

def interval(minutes)

puts "Interval called, interval = #{minutes} minutes"

end

eval(File.read('backup.pr'))

It doesn’t look like much, but this code captures a lot of the ideas that you need
to implement an internal DSL in Ruby. First, we have the three methods backup,
to, and interval. The key bit of code for our DSL is the last statement:

eval(File.read('backup.pr'))

This statement says to read in the contents of the file backup.pr and run those
contents as Ruby program text.1 This means that the interval and to methods and
all those backup statements in backup.pr—in other words, the things that looked
like Ruby method calls—will actually be sucked into our program and interpreted
as Ruby method calls. When we run packrat.rb, we get the output of all those
method calls:

Backup called, source

dir=/home/russ/documents find expr=#<All:0xb7d84c14>

Backup called, source dir=/home/russ/music find expr=#<And:0xb7d84b74>

Backup called, source dir=/home/russ/images find expr=#<Not:0xb7d84afc>

To called, backup dir=/external_drive/backups

Interval called, interval = 60 minutes

It is this idea of sucking in the DSL and interpreting it as Ruby that puts the
“internal” into an internal DSL. With that eval statement, the interpreter and the
PackRat program merge. It is very B-movie science fiction.

286 Chapter 16. Opening Up Your System with Domain-Specific Languages

1. Ruby also features a load method that will evaluate the contents of a file as Ruby code in one step,
but for the purposes of a DSL the two-step read and eval method just seems clearer.

Building PackRat
Now that we have our user unknowingly writing Ruby method calls, what should we
really do inside those methods? That is, what should interval, to, and backup actu-
ally do? The answer is that they should remember that they were called; in other
words, they should set up some data structures. To get started, let’s create a class that
represents the whole backup request. Let’s call it Backup:

class Backup

include Singleton

attr_accessor :backup_directory, :interval

attr_reader :data_sources

def initialize

@data_sources = []

@backup_directory = '/backup'

@interval = 60

end

def backup_files

this_backup_dir = Time.new.ctime.tr(' :','_')

this_backup_path = File.join(backup_directory, this_backup_dir)

@data_sources.each {|source| source.backup(this_backup_path)}

end

def run

while true

backup_files

sleep(@interval*60)

end

end

end

The Backup class is really just a container for the information stored in the
backup.pr file. It has attributes for the interval and the backup directory plus an array
in which to store all of the directories to be backed up. The only slightly complex aspect
of Backup is the run method, which actually performs the periodic backups by copying
all of the source data to the backup directory (actually a time-stamped subdirectory under
the backup directory) and then sleeping until it is time for the next backup. We have
made the Backup class a singleton given that our little utility will only ever have one.

Building PackRat 287

Next we need a class to represent the directories that are to be backed up:

class DataSource

attr_reader :directory, :finder_expression

def initialize(directory, finder_expression)

@directory = directory

@finder_expression = finder_expression

end

def backup(backup_directory)

files=@finder_expression.evaluate(@directory)

files.each do |file|

backup_file(file, backup_directory)

end

end

def backup_file(path, backup_directory)

copy_path = File.join(backup_directory, path)

FileUtils.mkdir_p(File.dirname(copy_path))

FileUtils.cp(path, copy_path)

end

end

A DataSource is just a container for a path to a directory and a file-finder expres-
sion AST. DataSource also has much of the code to do the actual file copying.

Pulling Our DSL Together
Now that we have built all of our supporting code, making the PackRat DSL actually
work is easy. Let’s rewrite our original backup, to, and interval methods to use the
classes we just wrote:

def backup(dir, find_expression=All.new)

Backup.instance.data_sources << DataSource.new(dir, find_expression)

end

def to(backup_directory)

Backup.instance.backup_directory = backup_directory

end

288 Chapter 16. Opening Up Your System with Domain-Specific Languages

def interval(minutes)

Backup.instance.interval = minutes

end

eval(File.read('backup.pr'))

Backup.instance.run

We’ll look at this code this one method at a time. The backup method just grabs
the Backup singleton instance and adds a data source to it. Similarly, the interval
method collects the backup interval and sets the right field on the Backup singleton.
The to method does the same with the backup directory path.

Finally, we have the last two lines of our PackRat interpreter:

eval(File.read('backup.pr'))

Backup.instance.run

The eval statement we have seen before: It just pulls in our PackRat file and evalu-
ates it as Ruby code. The very last line of the program finally starts the backup cycle going.

The structure of the PackRat interpreter is pretty typical of this style of internal
DSL. Start by defining your data structures—in our case, the Backup class and its
friends. Next, set up some top-level methods that will support the actual DSL
language—in PackRat, the interval, to, and backup methods. Then, suck in the DSL
text with an eval(File.read(...)) statement. Typically, the effect of pulling in the
DSL text is to fill in your data structures; in our case, we ended up with a fully config-
ured Backup instance. Finally, do whatever it is that the user asked you to do. How do
you know what to do? Why, by looking in those freshly populated data structures.

Taking Stock of PackRat
The internal DSL technique certainly has some advantages: We managed to create the
whole backup DSL in less than 70 lines of code, and most of those are devoted to the
Backup/Source infrastructure that we probably would have needed no matter how
we implemented the program. In addition, with a Ruby-based internal DSL, you get
the entire language infrastructure for free. If you had a directory name with a single
quote in it,2 you could escape that quote in the usual Ruby way:

backup '/home/russ/bob\'s_documents'

Taking Stock of PackRat 289

2. In my view, such a name would be evidence that you had taken leave of your senses, but opinions
do differ.

In fact, since this is Ruby, you could also do it like this:

backup "/home/russ/bob's_documents"

If we were writing our own parser in the traditional way, we would probably need
to write some code to deal with that embedded quote. Not so here, because we just
inherit it from Ruby. Likewise, we get comments for free:

#

Back up Bob's directory

#

backup "/home/russ/bob's_documents"

Our users can also take advantage of the full programming capabilities of Ruby if
they want:

#

A file-finding expression for music files

#

music_files = file_name('*.mp3') | file_name('*.wav')

#

Back up my two music directories

#

backup '/home/russ/oldies', music_files

backup '/home/russ/newies', music_files

to '/tmp/backup'

interval 60

The preceding code creates a file-finding expression ahead of time and uses it in
two backup statements.

Improving PackRat
Although our PackRat implementation is functional, it is a bit limited, in that we can
specify only one backup configuration at a time. If we want to use two or three backup
directories, or if we want to back up some files on a different schedule than other files,

290 Chapter 16. Opening Up Your System with Domain-Specific Languages

we are out of luck with our current implementation. Another problem is that PackRat
is a bit messy: It relies on the interval, to, and backup top-level methods.

A way around this is to redo the syntax for our packrat.pr file so that the user
is actually creating and configuring multiple instances of Backup:

Backup.new do |b|

b.backup '/home/russ/oldies', file_name('*.mp3') | file_name('*.wav')

b.to '/tmp/backup'

b.interval 60

end

Backup.new do |b|

b.backup '/home/russ/newies', file_name('*.mp3') | file_name('*.wav')

b.to '/tmp/backup'

b.interval 60

end

Let’s see how we can get this to work, starting with the Backup class itself:

class Backup

attr_accessor :backup_directory, :interval

attr_reader :data_sources

def initialize

@data_sources = []

@backup_directory = '/backup'

@interval = 60

yield(self) if block_given?

PackRat.instance.register_backup(self)

end

def backup(dir, find_expression=All.new)

@data_sources << DataSource.new(dir, find_expression)

end

def to(backup_directory)

@backup_directory = backup_directory

end

def interval(minutes)

@interval = minutes

end

Improving PackRat 291

def run

while true

this_backup_dir = Time.new.ctime.tr(" :","_")

this_backup_path = File.join(backup_directory, this_backup_dir)

@data_sources.each {|source| source.backup(this_backup_path)}

sleep @interval*60

end

end

end

Because the user will be creating any number of instances, the Backup class is no
longer a singleton. We have also moved the backup, to, and interval methods
inside the Backup class. The remaining two changes both appear in the initialize
method. The Backup class’s initialize method calls yield with itself as the only
parameter. This allows the user to configure the Backup instance in a code block
passed into new:

Backup.new do |b|

Configure the new Backup instance

end

The other change to the Backup initialize method is that the new version
registers itself with the new PackRat class:

class PackRat

include Singleton

def initialize

@backups = []

end

def register_backup(backup)

@backups << backup

end

def run

threads = []

@backups.each do |backup|

threads << Thread.new {backup.run}

end

292 Chapter 16. Opening Up Your System with Domain-Specific Languages

threads.each {|t| t.join}

end

end

eval(File.read('backup.pr'))

PackRat.instance.run

The PackRat class maintains a list of Backup instances and starts each one up in
its own thread when its run method is called.

Using and Abusing Internal DSLs
As we have seen, internal DSLs allow you to apply a unique kind of leverage to cer-
tain kinds of problems. But like all tools, they are not without their limitations. As
free flowing as Ruby syntax is, you are limited to what you can parse with a Ruby-
based internal DSL. For example, you probably could not write an internal DSL in
Ruby that could directly parse raw HTML.

Another issue is error messages. Unless you are very careful, errors in the DSL pro-
gram can produce some pretty strange messages. For example, what if your hapless
user accidentally typed x when he or she meant b in the backup.pr file:

Backup.new do |b|

b.backup '/home/russ/newies', name('*.mp3') | name('*.wav')

b.to '/tmp/backup'

x.interval 60

end

The result would be the following error message:

./ex6_multi_backup.rb:86: undefined local variable or method 'x' ...

To a user who is just trying to specify some files to back up and who knows nothing
about Ruby, this error message is, well, less than friendly. With careful coding and judi-
cious use of exception catching, you can frequently mitigate this problem. Nevertheless,
these kinds of non sequitur error messages are a constant problem in internal DSLs.

Finally, if security is an issue, stay away from internal DSLs—far, far away. After
all, the whole point of an internal DSL is that you take some arbitrary code that
someone else wrote and suck it into your program. That requires a toothbrush-
sharing level of trust.

Using and Abusing Internal DSLs 293

Internal DSLs in the Wild
The most prominent example of a pure internal DSL in the Ruby world is probably
rake, Ruby’s answer to ant or make. The rake DSL syntax is similar to the second ver-
sion of the PackRat syntax, which allowed for multiple backups.

The rake utility lets you specify the steps that make up your build process as a
series of tasks. Tasks can depend on one another. Thus, if task B depends on task A,
then rake will run task A before it runs task B. As a simple example, the following rake
file backs up my music directories:

#

Directories for my collection of music

#

OldiesDir = '/home/russ/oldies'

NewiesDir = '/home/russ/newies'

#

Backup directory

#

BackupDir = '/tmp/backup'

#

Unique directory name for this copy

#

timestamp=Time.new.to_s.tr(" :", "_")

#

rake tasks

#

task :default => [:backup_oldies, :backup_newies]

task :backup_oldies do

backup_dir = File.join(BackupDir, timestamp, OldiesDir)

mkdir_p File.dirname(backup_dir)

cp_r OldiesDir, backup_dir

end

task :backup_newies do

backup_dir = File.join(BackupDir, timestamp, NewiesDir)

mkdir_p File.dirname(backup_dir)

cp_r NewiesDir, backup_dir

end

294 Chapter 16. Opening Up Your System with Domain-Specific Languages

This rake file defines three tasks. The backup_oldies and backup_newies

tasks do precisely what their names suggest. The third task, default, depends on the
other two. Thus, when rake tries to run the default task, it will first run
backup_oldies and backup_newies.

Aside from rake, there is, of course, Rails. While not a pure, straightforward inter-
nal DSL like rake, Rails is full of DSL-like features—bits of code where you can
almost forget you are programming in Ruby. Just to take one outstanding example,
ActiveRecord allows you to specify class relationships in a very DSL-like way:

class Manager < ActiveRecord::Base

belongs_to :department

has_one :office

has_many :committees

end

Wrapping Up
The Domain-Specific Language pattern is the first pattern that we have examined that
is not an original GoF pattern. But don’t hold that against it—when paired with
Ruby’s very flexible syntax, the internal DSL is one of those special techniques in
computer science that brings a lot of power and flexibility without requiring a lot of
code. The idea behind the internal DSL is really very straightforward: You define your
DSL so that it fits within the rules of Ruby syntax; you define the infrastructure
required to get a program written in your DSL to do what the DSL program says it
should. The punch line comes when you simply use eval to execute the DSL program
as ordinary Ruby code.

Wrapping Up 295

This page intentionally left blank

CHAPTER 17
Creating Custom Objects
with Meta-programming

In Chapter 13 we looked at the two GoF factory patterns. Both of these patterns try
to solve one of the fundamental problems of object-oriented programming: How do
you get hold of the right object to solve the problem at hand? How do you get the
right parser for your input data? How do you get the right adapter for the database
that you need to talk to? Where do you come up with just the security object that you
need to deal with this version of the specification as opposed to that one?

With the factory patterns, the solution was to reduce the problem of getting hold
of the right object to the problem of getting hold of the right class; pick the right class
and that class will produce the right object for you. This emphasis on picking the right
class makes perfect sense when you are dealing with a statically typed language, where
the behavior of any given object is completely determined by its class and classes don’t
change while the application is running. Under those rules, picking the right class is
the only game in town.

But as we have already seen, those static rules do not apply in Ruby. Ruby allows
you to modify an existing class, modify the behavior of an object independently of its
class, and even evaluate strings as Ruby code, right there at runtime. In this chapter,
we will look at the Meta-programming pattern, which suggests that we take advan-
tage of these very dynamic behaviors as an alternative way to access the objects that
we need. With this pattern, we adopt the perspective that, because in Ruby, classes,
methods and the code inside methods are all just programming constructs of one kind
or another, a good way to get to the objects that we need is to manipulate those constructs

297

in exactly the same way that we manipulate integers and strings. If this sounds a
little scary, it shouldn’t: While meta-programming certainly takes a different tack in
producing the right object, at its heart this pattern focuses on leveraging the flexibility
of Ruby—the same flexibility that I have been going on and on about throughout
this book.

Let’s start our look at meta-programming1 by taking yet another run at produc-
ing the denizens of our wildlife habitat simulator.

Custom-Tailored Objects, Method by Method
Imagine that we are back in the Chapter 13 jungle, trying to populate it with various
plants and animals. The approach we took in Chapter 13 was to use one of the facto-
ries to pick the right class for our flora and fauna. But what if we want more flexibility?
What if instead of asking for some specific type of organism from a fixed list of pos-
sibilities, we want to specify the properties of the organism and get one tailored to our
needs? We could, for example, have a method to produce plant life for our habitat,
where this method takes some parameters that describe the kind of plant that we are
looking for. The punch line is that instead of trying to pick the right class, we could
just manufacture the object that we need on the spot:

def new_plant(stem_type, leaf_type)

plant = Object.new

if stem_type == :fleshy

def plant.stem

'fleshy'

end

else

def plant.stem

'woody'

end

end

298 Chapter 17. Creating Custom Objects with Meta-programming

1. You should probably be aware that there is not a tremendous amount of agreement in the Ruby
world as to the exact boundaries of the term meta-programming. In this chapter, I have tried to cast a
reasonably wide net, to try and hit on as many of the meta-programming concepts as possible with-
out worrying too much about the exact definition of the term.

if leaf_type == :broad

def plant.leaf

'broad'

end

else

def plant.leaf

'needle'

end

end

plant

end

The preceding code creates a plain old Object instance and then proceeds to
tailor this object according to the specifications supplied by the caller. Depending on
which options the caller passed it, new_plant will add one variant or another of the
leaf and stem methods. The resulting object is more or less unique—most of its func-
tionality does not come from its class (it is just an Object, after all) but rather from its
singleton methods. In effect, the object that comes out of new_plant is made to order.

Using the new_plant method is very simple. Just specify the kind of plant you want:

plant1 = new_plant(:fleshy, :broad)

plant2 = new_plant(:woody, :needle)

puts "Plant 1's stem: #{plant1.stem} leaf: #{plant1.leaf}"

puts "Plant 2's stem: #{plant2.stem} leaf: #{plant2.leaf}"

And that’s what you will get:

Plant 1's stem: fleshy leaf: broad

Plant 2's stem: woody leaf: needle

Of course, there really is no rule that says you need to start your customizations
with a plain-vanilla instance of Object. In real life, you will likely want to start with
an instance of a class that provides some base level of functionality and then tweak the
methods from there.

This custom-tailoring technique is particularly useful when you have lots
of orthogonal features that you need to assemble into a single object. By simply
manufacturing an object to specification, you can avoid creating a whole host of

Custom-Tailored Objects, Method by Method 299

classes with names like WoodyStemmedNeedleLeafFloweringPlant and
VinyStemmedBroadLeafNonfloweringPlant.

Custom Objects, Module by Module
If you would rather not deal with your custom objects method by method, you can
always handle this task module by module. Perhaps you have separate modules for
plant- and meat-eating animals:

module Carnivore

def diet

'meat'

end

def teeth

'sharp'

end

end

module Herbivore

def diet

'plant'

end

def teeth

'flat'

end

end

You could also have a second set of modules for animals that are usually up and about
during the day like people (well, most people) versus those animals that prowl the night:

module Nocturnal

def sleep_time

'day'

end

def awake_time

'night'

end

end

300 Chapter 17. Creating Custom Objects with Meta-programming

module Diurnal

def sleep_time

'night'

end

def awake_time

'day'

end

end

Because your methods are now bunched up in nice module groupings, the code
to manufacture the new objects is a little bit less tedious:

def new_animal(diet, awake)

animal = Object.new

if diet == :meat

animal.extend(Carnivore)

else

animal.extend(Herbivore)

end

if awake == :day

animal.extend(Diurnal)

else

animal.extend(Nocturnal)

end

animal

end

The extend method in this code has exactly the same effect as including the
module in the normal way—extend is just a bit more convenient when we are mod-
ifying an object on the fly.

No matter whether you tailor your objects one method at a time or in module-
sized chunks, the ultimate effect is to create a customized object, uniquely made to
order for the requirements of the moment.

Conjuring Up Brand-New Methods
Now suppose you receive yet another requirement for your habitat simulator: Your
customers would like you to model various populations of plants and animals. For
example, they want to be able to group together all of the living things that live in a

Conjuring Up Brand-New Methods 301

given area, to group together all of the tigers and trees that share a given section of a
jungle or a set of nearby jungles. Oh, and while you are at it, could you please add
some code to keep track of the biological classifications of all these creatures, so that
we will know that this tiger is of species P. tigris, which is part of the genera Panthera,
which is part of the family Felidae, and so on up to the kingdom Animalia?

On the surface, what you have here are two separate programming problems:
organize the organisms by geographic population on the one hand, and organize them
by biological classification on the other hand. The two problems do seem very
similar—both have that Composite pattern look to them—but it does seem like you
will need to sit down and write some code to handle the population problem and
some different code to handle the classification problem. Right? Well, maybe not.
Perhaps we can extract out the common aspects of these two problems and implement
a single software facility to solve both problems in one go.

Sometimes the best way to approach a task like this one is to imagine what we
want the end result to look like and then work backward to an implementation.
Ideally, we want to be able to announce in our Frog or Tiger class2 that instances of
this class are part of a geographic population or part of a biological classification—or
both. Something like this:

class Tiger < CompositeBase

member_of(:population)

member_of(:classification)

Lots of code omitted . . .

end

class Tree < CompositeBase

member_of(:population)

member_of(:classification)

Lots of code omitted . . .

end

302 Chapter 17. Creating Custom Objects with Meta-programming

2. I’m going back to the traditional class-based implementations of Tiger and Tree for this section.
It is not that the various meta-programming techniques are incompatible with one another, but
rather that trying to explain everything at the same time is incompatible with successfully explaining
anything.

What we are trying to say here is that instances of both the Tiger and Tree

classes are the leaf nodes in two different composites—one that tracks geographic pop-
ulations and another that models biological classifications.

We also need to be able to announce that the classes representing species and geo-
graphic populations are actually composites:

class Jungle < CompositeBase

composite_of(:population)

Lots of code omitted . . .

end

class Species < CompositeBase

composite_of(:classification)

Lots of code omitted . . .

end

Ideally, instances of our new tiger, tree, jungle, and species classes would be very
easy to use. For example, we should be able to create a tiger and add it to the popula-
tion of some jungle:

tony_tiger = Tiger.new('tony')

se_jungle = Jungle.new('southeastern jungle tigers')

se_jungle.add_sub_population(tony_tiger)

Once we have done that, we should be able to get the parent population of our tiger:

tony_tiger.parent_population # Should be the southeastern jungle

Finally, we should be able to do exactly the same kind of things with the biological
classifications:

species = Species.new('P. tigris')

species.add_sub_classification(tony_tiger)

tony_tiger.parent_classification # Should be P. tigris

Conjuring Up Brand-New Methods 303

The CompositeBase class, which implements all of this magic, is shown
below:

class CompositeBase

attr_reader :name

def initialize(name)

@name = name

end

def self.member_of(composite_name)

code = %Q{

attr_accessor :parent_#{composite_name}

}

class_eval(code)

end

def self.composite_of(composite_name)

member_of composite_name

code = %Q{

def sub_#{composite_name}s

@sub_#{composite_name}s = [] unless @sub_#{composite_name}s

@sub_#{composite_name}s

end

def add_sub_#{composite_name}(child)

return if sub_#{composite_name}s.include?(child)

sub_#{composite_name}s << child

child.parent_#{composite_name} = self

end

def delete_sub_#{composite_name}(child)

return unless sub_#{composite_name}s.include?(child)

sub_#{composite_name}s.delete(child)

child.parent_#{composite_name} = nil

end

}

class_eval(code)

end

end

304 Chapter 17. Creating Custom Objects with Meta-programming

Let’s analyze this class one bit at a time. CompositeBase starts out innocently
enough: The first thing that it does is to define a very pedestrian name instance vari-
able and an initialize method to set it. It’s the second method, the member_of
class method, where things start to get interesting:

def self.member_of(composite_name)

code = %Q{

attr_accessor :parent_#{composite_name}

}

class_eval(code)

end

The member_of method takes the name of the composite relationship and uses it
to cook up a fragment of Ruby code. If you call member_of with an argument of :pop-
ulation (as our Tiger class does), member_of will generate a string that looks like this:

attr_accessor :parent_population

The member_of method then uses the class_eval method to evaluate the string
as Ruby code. The class_eval method is similar to the eval method that we have
seen before, the difference being that class_eval evaluates its string in the context
of the class instead of the current context.3 You have probably guessed that the net
effect of all of this is to add the getter and setter methods for the parent_population
instance variable to the class—which is exactly what you need if your class is to be a
member of (or, more precisely, a leaf node in) a composite.

The next method in CompositeBase, composite_of, simply does more of the
same—this time adding the methods appropriate for a composite object. Thus, if you
call the composite_of class method from one of your classes, your class will end up
with three new methods: a method to add a subitem to the composite, a method to
remove a subitem, and a method to return an array holding all the subitems. Because
we construct all of these methods by generating a string and then class_eval-ing the
string, it is easy to insert the name of the composite into the method names. Thus,
when we call member_of(:population), the methods that are actually created are
add_sub_population, delete_sub_population, and sub_populations.

Conjuring Up Brand-New Methods 305

3. The class_eval method is also known as module_eval.

The key point to keep in mind about this example is that subclasses of
CompositeBase do not automatically inherit any Composite pattern behavior.
Instead, they inherit the member_of and composite_of class methods, which, if
invoked, will add the composite methods to the subclass.

An Object’s Gaze Turns Inward
A question that comes up with adding functionality the way we did with the
CompositeBase class is this: How do you know if any given object is part of a com-
posite or not? More generally, if you are meta-programming new functionality into
your classes on the fly, how can you tell what any given instance can do?

You can tell by simply asking the instance. Ruby objects come equipped with a
very complete set of reflection features—that is, methods that will tell you all kinds of
things about an object, such as the methods that it has and its instance variables. For
example, one way to determine whether an object is part of a composite as defined by
CompositeBase is to look at its list of public methods:

def member_of_composite?(object, composite_name)

public_methods = object.public_methods

public_methods.include?("parent_#{composite_name}")

end

Alternatively, you can just use the respond_to? method:

def member_of_composite?(object, composite_name)

object.respond_to?("parent_#{composite_name}")

end

Reflection features like public_methods and respond_to? are handy anytime
but become real assets as you dive deeper and deeper into meta-programming, when
what your objects can do depends more on their history than on their class.

Using and Abusing Meta-programming
More than any other pattern in this book, the Meta-programming pattern is a very
sharp tool that should be taken out of your toolkit only when needed. The key facet
of meta-programming is that you are writing programs that augment or change

306 Chapter 17. Creating Custom Objects with Meta-programming

themselves as they run. The more meta-programming that you use, the less your run-
ning program will resemble the code sitting there in your source files. This is, of
course, the whole point—but it is also the danger. It is hard enough to debug ordinary
code, but harder still to debug the ephemeral stuff generated by meta-programming.
Thus, while a good set of unit tests is vital in getting garden-variety programs to
work, such tests are absolutely mandatory for systems that use a lot of meta-
programming.

A key danger with this pattern is the unexpected interaction between features.
Think about the chaos that would have ensued in our habitat example if the Species
class already had defined a parent_classification method when it called
composite_of(:classification):

class Species < CompositeBase

This method is about to be lost!

def parent_classification

. . .

end

And there it goes . . .

composite_of(:classification)

end

Sometimes you can avoid these unexpected train wrecks by adding a little meta-
defensive code to your meta-programming:

class CompositeBase

. . .

def self.member_of(composite_name)

attr_name = "parent_#{composite_name}"

raise 'Method redefinition' if instance_methods.include?(attr_name)

Using and Abusing Meta-programming 307

code = %Q{

attr_accessor :#{attr_name}

}

class_eval(code)

end

...

end

This version of CompositeBase will throw an exception if the parent_
<composite_name> method is already defined. That approach is not ideal but is
probably better than just silently obliterating an existing method.

Meta-programming in the Wild
Finding examples of meta-programming in the Ruby code base is a little like trying to
find dirty clothes in my son’s bedroom—you just have to glance around. Take the
ubiquitous attr_accessor and its friends attr_reader and attr_writer. Recall
that in Chapter 2, we talked about how all Ruby instance variables are private and that
to allow the outside world to get at an instance variable you need to supply getter and
setter methods:

class BankAccount

def initialize(opening_balance)

@balance = opening_balance

end

def balance

@balance

end

def balance=(new_balance)

@balance = new_balance

end

end

Chapter 2 also conveyed the good news that you did not actually need to write all
of those silly methods. Instead, you could just insert the appropriate attr_reader,
addr_writer, or the combination punch of attr_accessor:

308 Chapter 17. Creating Custom Objects with Meta-programming

class BankAccount

attr_accessor :balance

def initialize(opening_balance)

@balance = opening_balance

end

end

It turns out that attr_accessor and its reader and writer friends are not special
Ruby language keywords. Rather, they are just ordinary class methods4 along the lines
of the member_of and composite_of methods that we built in this chapter.

It’s actually easy to write our own version of attr_reader. Given that the name
attr_reader is already taken, we will call our method readable_attribute:

class Object

def self.readable_attribute(name)

code = %Q{

def #{name}

@#{name}

end

}

class_eval(code)

end

end

Once we have readable_attribute in hand, we can use it just like
attr_reader:

class BankAccount

readable_attribute :balance

def initialize(balance)

@balance = balance

end

end

Meta-programming in the Wild 309

4. The attr_accessor method and its friends live in the module Module, which is included by
the Object class. If you go looking for the Ruby code for attr_accessor, attr_reader, and
attr_writer, however, you are destined to be disappointed. For the sake of efficiency—but purely
for efficiency—these methods are written in C.

We might also recall the Forwardable module, which we used to help build dec-
orators. The Forwardable module makes creating those boring delegating methods a
snap. For example, if we had a Car class with a separate Engine class, we might say this:

class Engine

def start_engine

Start the engine...

end

def stop_engine

Stop the engine

end

end

class Car

extend Forwardable

def_delegators :@engine, :start_engine, :stop_engine

def initialize

@engine = Engine.new

end

end

The line beginning with def_delegators creates two methods, start_engine
and stop_engine, each of which delegates to the object referenced by @engine. The
Forwardable module creates these methods using the same class_eval technique
that we looked at in this chapter.

And then there is Rails. There is so much meta-programming going on in Rails
that it is hard to know where to start. Perhaps the most notable example is in the way
that you define the relationships between tables in ActiveRecord. In ActiveRecord,
there is one class for each database table. If we were modeling a wildlife habitat in
ActiveRecord, for example, we might have a table—and therefore a class—for the
individual animals. We might also model a complete physical description of each animal
in a separate table. Of course, the records in the animal and description tables would
bear a one-to-one relationship with each other. ActiveRecord lets you express these
kinds of relationships very neatly:

310 Chapter 17. Creating Custom Objects with Meta-programming

class Animal < ActiveRecord::Base

has_one :description

end

class Description < ActiveRecord::Base

belongs_to :animal

end

You can also express all of the other common database table relationships. For
instance, each species includes many individual animals:

class Species < ActiveRecord::Base

has_many :animals

end

But each animal belongs to a single species:

class Animal < ActiveRecord::Base

has_one :description

belongs_to :species

end

The effect of all of this “having many” and “belonging to” kerfuffle is to add the
code needed to maintain and support the various database relationships to the Animal,
Description, and Species classes. Once we have the relationships that we defined
above, we can ask an instance of Animal for its corresponding description object sim-
ply by saying animal.description, or we can get all of the animals that are mem-
bers of a given species with something like species.animals. All of this courtesy of
some ActiveRecord meta-programming.

Wrapping Up
In this chapter, we took a look at meta-programming, the idea that sometimes the easiest
way to get to the code that you need is not to write it at your keyboard but rather to
conjure it up programmatically, at runtime. Using the dynamic features of Ruby, we can
start with a simple object and add individual methods or even whole modules full of meth-
ods to it. Also, using class_eval, we can generate completely new methods at runtime.

Wrapping Up 311

Finally, we can take advantage of Ruby’s reflection facilities, which allow a program to
examine its own structure—to look at what is there—before it changes things.

In real life, meta-programming is one of the key underpinnings of the Domain-
Specific Language pattern (discussed in Chapter 16). While you can build a DSL with
little or no meta-programming—which is pretty much what we did in Chapter 16—
meta-programming is frequently a key ingredient in building DSLs that are both
powerful and easy to use.

In the next chapter, we will round out our examination of design patterns in Ruby
by looking at another pattern that fits well into the meta-programming lifestyle:
Convention Over Configuration.

312 Chapter 17. Creating Custom Objects with Meta-programming

CHAPTER 18
Convention Over
Configuration

As the final pattern discussed in this book, we will look at Convention Over
Configuration, a pattern that did not originate in Design Patterns but comes to us
straight from the Rails framework. Convention Over Configuration is arguably one of
the keys to the success of Rails. It is a bit different from the other patterns that we have
examined in this book in that it is bigger and more ambitious. While the other pat-
terns mostly dealt on the smaller scale of pulling together a number of related classes,
Convention Over Configuration is concerned with pulling together whole applica-
tions and application frameworks. How do you structure an application or a frame-
work so that it is extensible, so that other engineers can easily add bits to it as the
program evolves over time? As we construct ever more ambitious systems, the prob-
lem of making them configurable and extensible looms ever larger.

The reaction of the software world to the problem of extensibility reminds me of
a quandary I faced when I was in elementary school. You see, I could never decide
when to do my homework. Some days I would run home from school, throw open
those books, and just get it over with. There is nothing like the feeling of just being
done with it. But there is also nothing like coming home, chucking the books on the
dining room table, jumping on a bike, and heading out for driveways afar. Of course,
those stinking books would still be there—and eventually I would have to return,
sweaty and tired, and do the homework anyway. Ultimately, I reached a compromise
with myself: Do the hated English and boring social studies right after school, and
leave the easy math until later in the evening.

313

Software engineering has gone through an analogous process when it comes to
making our systems extensible. Many of us grew up professionally with applications
that took pride in their own limitations. These programs supported exactly one pro-
tocol, or required that the database schema look just so, or imposed some inflexible
interface on hapless users.

The reaction to the heartache produced by this rigidity was to make software sys-
tems extensible via configuration. If we pushed the important decisions into a config-
uration file, we could drive our system to the Utopian ideal of “Hey, just configure me
to do what you want.” Sadly, we kept right on driving—through downtown Utopia,
past the Utopian suburbs, and out into the far side into a new wasteland. We now have
configuration-dependent code. We are afflicted with frameworks that are afraid to
make the slightest configuration commitment and applications that live in fear that any
assumption will inevitably need to be overturned in a hastily arranged patch release.

Java servlets provide a good example of too much configuration. Servlets are a key
component of virtually all Java Web applications. A servlet is an elegant little Java class
that knows how to handle HTTP requests coming into one or more URLs. But writ-
ing a Java class that extends javax.servlet.HttpServlet is not enough—not
nearly enough. No, you also need to configure the thing, via the web.xml configura-
tion file. In its most basic form, a web.xml lets you associate a servlet class with an
arbitrary name and then associate that arbitrary name with one or more URLs.

And yet, in real life, we rarely need all this flexibility. Mostly—not always, but
mostly—we tend to use the class name as the arbitrary name. Mostly—not always, but
mostly—we associate the arbitrary name with a URL that bears a startling resem-
blance to the arbitrary name and, by extension, to the class name. We do so because
any name will suffice: best use one that will remind us of the class. And we usually do
not care about the exact URL that is fronting our servlet: best use one that reminds us
of the class behind the servlet. Programmers (or the good ones, anyway) value sim-
plicity, and the simple thing to do here is to rigorously cancel out all of that flexibility.
If you have no use for it, flexibility becomes a danger. All those names and associations
become just another way to screw up.

The main motive behind the Convention Over Configuration pattern is to
lighten that configuration burden. We want to preserve the essential extensibility of
our applications and frameworks, yet get rid of the extraneous configuration. In this
chapter we will begin by looking at the principles behind the Convention Over
Configuration pattern. Then we will build a hypothetical messaging system show-
ing how you can construct software that, like my final homework strategy, stands in
the happy middle ground.

314 Chapter 18. Convention Over Configuration

A Good User Interface—for Developers
The problem of writing software that is both flexible and easy to use is a familiar one.
Well, it’s familiar if you build graphical user interfaces (GUIs) for a living. The folks
who build GUIs have evolved a number of design guidelines for creating easy-to-use
interfaces:

• Attempt to anticipate the user’s needs. A good interface tries to make very common
tasks nearly effortless—a good interface does the most common case by default.
Uncommon or more advanced tasks should still be doable with a bit more effort.

• Don’t make the user repeat himself or herself. Who among us has not been tempted
to put a foot through the CRT when that application asks, for the third time, “Are
you sure you want to do this?”

• Provide a starter template. Providing your user with a template to build on is
another one of those good GUI ideas that we can port to our systems. Don’t make
your user start with a blank sheet—if he is creating a résumé, give him a résumé
template to get him started.

The Convention Over Configuration pattern focuses on applying these same princi-
ples to the design of applications and framework APIs. Why save all of the good tech-
niques for the end user? The engineers who are trying to configure your application
or program to your API are users, too, and they could use a hand as well. Why not
provide a good interface for all your users?

Anticipate Needs

No matter whether we are talking about the GUI for an e-mail client or the design of
an API, there is one thing that sets a good user interface apart from a bad one: If the user
wants to do it (whatever it is) a lot, it is the default. Conversely, if the user does not want
to do it all that often, it can be a bit harder. This is the reason why moving to the next
message in my in-box takes only a press of the down arrow key, whereas doing the con-
figuration for a new e-mail server requires navigating through several menus.

All too often we build APIs that assume every action is exactly as likely as every
other action. You can see this assumption in Java servlet configuration—it doesn’t
matter if I am creating a very commonplace servlet that answers to exactly one URL
or a more complex, multipurpose servlet that is hooked up to a number of URLs. It
doesn’t matter because the more common task takes just about the same amount of

A Good User Interface—for Developers 315

work as the less common task. A more considerate interface would make the more
common case easy, while requiring somewhat more work for the less common case.

Let Them Say It Once

Another way to drive your technical users crazy is by forcing them to repeat them-
selves. We know this when it comes to the traditional user interfaces (the kind with
menus and icons), but for some reason we tend not to apply the same logic to APIs.
How can we avoid making our technical users repeat themselves? We can give them a
way to tell us what they want and not ask again. Engineers naturally tend to adopt
conventions as a natural part of the way they work. They tend to name files and classes
a certain way, to group source files that do similar things in the same directory, and to
christen methods with names that follow regular patterns.

The Convention Over Configuration pattern suggests that you define a conven-
tion that a sensible engineer might use anyway—put all of the adapters in this direc-
tory or name all of the authorization methods this way—and then run with it.
Designing a good convention, like designing any good user interface, involves putting
yourself in your user’s shoes. Try to deduce how your users will behave, what they
would call something, and where they would naturally put things; then build your
convention around those assumptions. Once you have that convention in hand, get as
much mileage out of it as you possibly can—by naming his or her class or putting it
in a given directory, the engineer is telling you something. Listen and don’t make the
engineer tell you again.

Provide a Template

Another thing that you can do is to give your user a kick start by supplying him or her
with a model, a template, or an example to follow. Modern word processors no longer
expect you to start with a completely blank sheet of electronic paper. Instead, when
you create a new document, the program wants to know if it is a résumé, a letter, or
a presidential speech. If your document is any one of those or another hundred doc-
ument types, a good word processor will start you off with the right margins and
paragraph styles.

You can do the same for the people who are trying to extend your system: You can
give them samples, templates, and working examples to help them get off the ground.
If a picture is worth a thousand words, then one or two good examples have got to be
worth at least twenty pages of documentation.

316 Chapter 18. Convention Over Configuration

A Message Gateway
To see how we can apply these lofty ideals to real code, let’s imagine that we have been
asked to build a message gateway. Our code will have the job of receiving messages
and then sending them on to their final destinations. Messages look like this:

require 'uri'

class Message

attr_accessor :from, :to, :body

def initialize(from, to, body)

@from = from

@to = URI.parse(to)

@body = body

end

end

The from field is a simple string containing something like 'russ.olsen',
indicating who is sending the message. The to field is a URI telling us where we
should send the message. The body field is a string holding the actual contents of
the message. The Message class uses the URI class, which is a standard part of your
Ruby installation, to turn the to string into a useful URI object. Initially, the to
URIs will come to the gateway in three flavors. You will need to send the message
out as an e-mail:

smtp://fred@russolsen.com

Or via an HTTP Post request:

http://russolsen.com/some/place

Or to a file:

file:///home/messages/message84.txt

A key requirement of our message gateway is that it should be easy to add new
protocols. For example, if we need to send messages via FTP, it should be very easy to
extend the gateway to handle the new destinations.

A Message Gateway 317

http://russolsen.com/some/place

Looking through your favorite book on design patterns,1 you realize that what
you need to handle these different message destinations is an adapter. More precisely,
you need three adapters, one for each protocol. In this case, the adapter interface is
very simple, consisting of just a single send_message(message) method. Here is the
adapter that handles forwarding the message as e-mail:

require 'net/smtp'

class SmtpAdapter

MailServerHost = 'localhost'

MailServerPort = 25

def send(message)

from_address = message.from.user + '@' + message.from.host

to_address = message.to.user + '@' + message.to.host

email_text = "From: #{from_address}\n"

email_text += "To: #{to_address}\n"

email_text += "Subject: Forwarded message\n"

email_text += "\n"

email_text += message.text

Net::SMTP.start(MailServerHost, MailServerPort) do |smtp|

smtp.send_message(email_text, from_address, to_address)

end

end

end

Here is the adapter that uses HTTP to send the message on its way:

require 'net/http'

class HttpAdapter

def send(message)

Net::HTTP.start(message.to.host, message.to.port) do |http|

http.post(message.to.path, message.text)

end

end

end

318 Chapter 18. Convention Over Configuration

1. This one, of course.

Finally, here is the adapter that “sends” the message by copying it to a file:

class FileAdapter

def send(message)

#

Get the path from the URL

and remove the leading '/'

#

to_path = message.to.path

to_path.slice!(0)

File.open(to_path, 'w') do |f|

f.write(message.text)

end

end

end

Picking an Adapter
The next problem that you have is matching up a message with the proper adapter
class that will send that message on its way. One solution is to hard-code the adapter
selection logic:

def adapter_for(message)

protocol = message.to.scheme

return FileAdapter.new if protocol == 'file'

return HttpAdapter.new if protocol == 'http'

return SmtpAdapter.new if protocol == 'smtp'

nil

end

This hard-coding solution has a problem, however: Anyone adding a new delivery
protocol—and therefore a new adapter—would have to dive into the adapter_for
method to add another adapter. Making someone change existing code does not seem to
fall within the bounds of “easily extensible.” Perhaps we can do better. Maybe we should
have a configuration file that maps protocols to adapter names, something like this:

smtp: SmtpAdapter

file: FileAdapter

http: HttpAdapter

Picking an Adapter 319

We could also make this solution work, but with the configuration file we have
just traded one form of hard-coding for another. Either way, the person who is adding
a new adapter not only needs to write the adapter class, but must also do something
else to get the system to recognize the new adapter.

This brings us to the punch line: Why not make writing the adapter class all that
is required? If we ask the adapter writer to adhere to the following, very sensible con-
vention, we can reduce the job of adding a new adapter to simply writing the adapter
class. Here is the magic convention:

Name your adapter class <protocol>Adapter.

Following this convention, a new adapter to send files via FTP would be called
FtpAdapter. If all of the adapters follow this convention, then the system can pick
the adapter class based on its name:2

def adapter_for(message)

protocol = message.to.scheme.downcase

adapter_name = "#{protocol.capitalize}Adapter"

adapter_class = self.class.const_get(adapter_name)

adapter_class.new

end

The adapter_for method pulls the destination protocol off of the message and,
using a bit of string legerdemain, transforms a name like 'http' into 'HttpAdapter'.
From there it is a matter of a call to const_get to get the class of the same name. With
this approach, we have completely lost any hint of a configuration file—to add a new
adapter, you simply add the adapter class.

Loading the Classes
Well, almost. We still have to deal with the fact that we need to load the adapter classes
into the Ruby interpreter. In terms of code, we need to require in the files that contain
the adapter classes:

require 'file_adapter'

require 'http_adapter'

require 'smtp_adapter'

320 Chapter 18. Convention Over Configuration

2. You may recall we used this same technique in Chapter 13 to simplify an abstract factory.

Now we could simply put all of the adapter require statements in a file and tell the
adapter writer to be sure to add his or her adapter to the list. But once again, we are ask-
ing the adapter writer to repeat himself or herself; we are asking the adapter writer to tell
us twice that an adapter exists—once by writing and properly naming the adapter class
and again by adding it to the list of include statements. Besides, we can do better.

Let’s start doing better by focusing on directory structures. While we tend to ignore
the files and directories that play host to our software, we can actually get a lot of mileage
out of conventions based on where various files live. Imagine that we set up a directory
structure for our gateway system along the lines of that shown in Figure 18-1.

This directory structure is not particularly original—it is a very common layout for
Ruby projects.3 It is particularly germane to the question of finding adapters because
we can use a standard directory structure to solve the problem of loading adapters:

def load_adapters

lib_dir = File.dirname(__FILE__)

full_pattern = File.join(lib_dir, 'adapter', '*.rb')

Dir.glob(full_pattern).each {|file| require file }

end

Loading the Classes 321

Figure 18-1 Directory structure for the message gateway system

gateway/

lib/ README.txt

gateway.rb adapter/

http_adapter.rb smtp_adapter.rb file_adapter.rb

3. Perhaps the reason this structure is so common is that you need to lay out a project like this if you
want to package it as a gem.

The load_adapters method computes the path of the adapter directory by start-
ing with the __FILE__ constant, which the Ruby interpreter always sets to the path to
the current source file. A little manipulation using various methods from the File class
allows us to come up with a filename pattern for all of our adapters—something like
"adapter/*.rb" . The method then uses this pattern to find and require in all of the
adapter classes. This scheme works because require is just another method call in Ruby;
we can call it from code whenever we need to pull a source file into the Ruby interpreter.
We do need to beef up our adapter convention a bit, though:

Name your adapter class <protocol>Adapter and put it in the adapter
directory.

Remarkably, this is pretty much all we need to get a very basic message gateway
working. Here is the MessageGateway class in full:

class MessageGateway

def initialize

load_adapters

end

def process_message(message)

adapter = adapter_for(message)

adapter.send_message(message)

end

def adapter_for(message)

protocol = message.to.scheme

adapter_class = protocol.capitalize + 'Adapter'

adapter_class = self.class.const_get(adapter_class)

adapter_class.new

end

def load_adapters

lib_dir = File.dirname(__FILE__)

full_pattern = File.join(lib_dir, 'adapter', '*.rb')

Dir.glob(full_pattern).each {|file| require file }

end

end

Call the process_message method and pass in a Message object, and in no
time your missive will be winging its merry way to its destination.

322 Chapter 18. Convention Over Configuration

There are two things to note about our adapter convention. First, the convention
focuses squarely on making it easy to add adapters. We did not try to make the whole
message gateway easily extensible in every dimension; we just tried to make it easy to
add new adapters. Why? Because we anticipate that adding new adapters is what our
users (i.e., the future adapter-writing engineers) will need to do. By anticipating that
need, we can make life easier for the adapter writer.

Second, while our convention does impose some constraints on the adapter writer—
he or she needs to name the adapter just so and put it into the correct directory—these
constraints are really quite innocuous. They are, in fact, exactly the kind of thing that a
careful engineer would do anyway.

Adding Some Security
Now that we have the basic message gateway working, we need to think about adding
some security. Specifically, we want to apply a separate policy to control which users
are allowed to send messages to a given host. In addition to the general policy, we need
to deal with a variety of special users, who are exceptions to the general policy for a
given host.

We can start by deciding to have one authorization class per destination host; this
constraint seems acceptable as long as we are dealing with a limited number of hosts.
The directory and class name-based convention worked so well for the adapters that
we will adopt a similar one for authorization classes:

Name your authorization class <destination_host>Authorizer and put it in the
auth directory.

Figure 18-2 shows our updated directory structure.

Adding Some Security 323

Figure 18-2 Gateway directory structure extended for authorization

gateway/

lib/ README.txt

gateway.rb adapter/ auth/

Naming the authorization classes after hosts does bring up a problem, however:
Host names generally are not valid Ruby class names. What we need is a little string
transformation magic. Let’s translate a host name like russolsen.com to the author-
ization class RussolsenDotComAuthorizer:4

def camel_case(string)

tokens = string.split('.')

tokens.map! {|t| t.capitalize}

tokens.join('Dot')

end

def authorizer_for(message)

to_host = message.to.host || 'default'

authorizer_class = camel_case(to_host) + "Authorizer"

authorizer_class = self.class.const_get(authorizer_class)

authorizer_class.new

end

But what should the interface for the authorization classes look like? Recall that for
any given host, there should be a single set of rules that applies to almost all users. I say
“almost” because there may be an exceptional user or two who obey their own rules.
For example, we might imagine that anyone is allowed to send short messages to
russolsen.com, but only 'russ.olsen' himself is allowed to send really long messages.

One convention we might adopt is that if an authorization class has a method
called <user name>_authorized?, then we will use that method to authorize the
message. Of course, we will have to suitably transform the user name to fit the rules
of a method name. If there is no such method, we will fall back to using a generic
authorized? method. A typical authorizer class might look like this:

class RussolsenDotComAuthorizer

def russ_dot_olsen_authorized?(message)

true

end

def authorized?(message)

message.body.size < 2048

end

end

324 Chapter 18. Convention Over Configuration

4. To keep things simple, the authorizer_for method does not cope properly with host names
that have embedded dashes. Of course, it would not be difficult to cook up some regular expressions
to deal with the full range of host names.

The code to implement this policy convention is very straightforward. First, we
get an instance of the authorizer for the message that we are processing. Next, we
work out the name of the special policy method for the user who sent the message.
Finally, we check whether our authorizer object answers to that method. If it does,
then that is the method we use. If not, then we use the standard authorized?
method.

def worm_case(string)

tokens = string.split('.')

tokens.map! {|t| t.downcase}

tokens.join('_dot_')

end

def authorized?(message)

authorizer = authorizer_for(message)

user_method = worm_case(message.from) + '_authorized?'

if authorizer.respond_to?(user_method)

return authorizer.send(user_method, message)

end

authorizer.authorized?(message)

end

Here is our final authorization convention:

Name your authorization class <destination_host>Authorizer and put it
in the auth directory. Implement the general policy for the host in the authorize
method. If you have a special policy for a given user, implement that policy in a
method called <user>_authorized?.

Getting the User Started
There is one other way that we can help the engineer who needs to extend the
gateway—we can help him or her get started. Earlier in this chapter, we noted that
one of the principles of good interface design is to provide the user with templates
and samples to help get started. At one end of the spectrum, we might provide a few
examples showing how to create a protocol adapter or an authorizer. At the other
end of the spectrum, we could supply a utility to generate the outline or scaffold of
a class.

Getting the User Started 325

For example, we might supply the prospective adapter writer with the following
Ruby script, which will generate the bare bones of an adapter class:

protocol_name = ARGV[0]

class_name = protocol_name.capitalize + 'Adapter'

file_name = File.join('adapter', protocol_name + '.rb')

scaffolding = %Q{

class #{class_name}

def send_message(message)

Code to send the message

end

end

}

File.open(file_name, 'w') do |f|

f.write(scaffolding)

end

If we put this code in a file called adapter_scaffold.rb, then we can use it to
generate a starter adapter for FTP by running

ruby adapter_scaffold.rb ftp

We end up with a class called FtpAdapter in a file called ftp.rb in the adapter
directory.

It is easy to discount the value of this scaffold-generating script. Nevertheless,
these kinds of utilities are invaluable to the new user who is overloaded with infor-
mation about an unfamiliar application or environment, and is struggling just to get
started.

Taking Stock of the Message Gateway
We could continue to extend our message gateway, perhaps by adding a transforma-
tion step to reformat the message or a flexible auditing facility to log some but not all
of the messages. But let’s stop here and consider what we have accomplished. We have

326 Chapter 18. Convention Over Configuration

built a message gateway that is extensible in two different dimensions: You can sup-
port new protocols and you can add new authorization policies, complete with excep-
tions for individual users. We accomplished this with absolutely no configuration files.
Instead, the would-be system extender simply needs to write the correct class and drop
it into proper directory.

An interesting and unexpected side effect of using conventions is that this
approach actually simplifies the main gateway code itself. If we had used configura-
tion files, we would have had to locate and read in the files, perhaps check for errors,
and only then begin to set up our adapters and authorization classes. Instead, we
simply got on with the task of finding our adapters and authorizers.

Using and Abusing the Convention Over
Configuration Pattern
One danger in building convention-based systems is that your convention might
be incomplete, thereby limiting the range of things that your system can do. Our
message gateway, for example, does not really do a thorough job of transforming
host names into Ruby class names. The code in this chapter will work fine with a
simple host name like russolsen.com, transforming it into RussOlsenDotCom.
But feed our current system something like icl-gis.com and it will go looking
for the very illegal Icl-gisDotComAuthorizer class. You can usually solve this
kind of problem neatly by allowing classes to override the conventions when nec-
essary. In our example, we could allow each authorization class to potentially over-
ride the default host name-mapping behavior and specify the hosts to which it
applies.

Another potential source of trouble is the possibility that a system that uses a lot
of conventions may seem like it is operating by magic to the new user. Configuration
files may be a pain in the neck to write and maintain, but they do provide a sort of
road map—perhaps a very complicated and hard-to-interpret road map, but a map
nevertheless—to the inner workings of the system. A well-done convention-based
system, by contrast, needs to supply its operational road map in the form of (gasp!)
documentation.

Also keep in mind that as the convention magic becomes deeper and more com-
plex, you will need ever more thorough unit tests to ensure that your conventions
behave, well, conventionally. There are few things more confusing to users than a sys-
tem driven by an inconsistent or just plain broken set of conventions.

Using and Abusing the Convention Over Configuration Pattern 327

Convention Over Configuration in the Wild
Rails is still the best example of a system sewn together by conventions. Certainly,
our message gateway example lifts many of the Rails convention ideas whole
cloth. Indeed, you can trace much of the elegance of Rails to its consistent use of
conventions:

• If your Rails application is deployed on http://russolsen.com, then a request
on http://russolsen.com/employee/delete/1234 is handled by default by
a call to the delete method on the EmployeeController class. The 1234 is
passed in to the method as a parameter.

• The results of that controller call are, by default, handled by the view defined in
the view/employee/delete.rhtml file.

• Rails applications typically use ActiveRecord to talk the database. By default, a
table called proposals (note the plural) will be handled by a class called
Proposal (singular) that lives in a file called proposal.rb (note the lowercase)
that lives in the models directory. A field called comment in the proposals table
shows up unassisted as a field called comment in the Proposal object.

• Rails comes complete with a whole set of scaffold-generating utilities that help the
user create a starter model, views, and controllers.

A typical Rails application is literally sewn together by conventions of one sort or
another.

But Rails is not the only example of the wise application of conventions in the Ruby
world. RubyGems is the standard software packaging utility used by Ruby applications.
It is relatively easy to use, especially if you follow its directory layout conventions—as we
did with the message gateway.

Wrapping Up
In this chapter, we looked at the Convention Over Configuration pattern. Convention
Over Configuration says that you can sometimes build a friendlier system by binding
your code together using conventions based on class names, method names, filenames,
and a standard directory layout. By doing so, you can make your programs easily exten-
sible; you can extend your system by simply adding in a properly named file or class or
method.

328 Chapter 18. Convention Over Configuration

http://russolsen.com
http://russolsen.com/employee/delete/1234

The Convention Over Configuration pattern takes advantage of the same
dynamic and flexible Ruby features that make the other two Ruby-specific patterns
that we examined in this book possible. Like the Domain-Specific Language pattern,
Convention Over Configuration relies heavily on runtime evaluation of code. Like the
Meta-programming pattern, it requires a fairly high level of program introspection to
function. But these three patterns all share something else: an approach to solving pro-
gramming problems. Their common message is that you should not just take your lan-
guage as you find it, but rather mold it into something closer to the tool that you need
to solve the problem at hand.

Wrapping Up 329

This page intentionally left blank

331

CHAPTER 19
Conclusion

We have come a long way in this book—from our modest beginnings in overriding
methods in the Template Method pattern, all the way to dynamically loading classes by
convention. During our journey we have seen that the duck-typed, dynamic nature of
Ruby changes the way we solve many programming problems. If we need to vary an algo-
rithm that is buried deep in the depths of some class, we might build a Strategy object,
but then again we might just pass in a code block. Implementing patterns like Proxy and
Decorator—the ones that rely most heavily on delegation—ceases being an exercise in
cranking out boilerplate code. The dynamic and reflective features of Ruby let us embrace
the idea of a factory while going beyond the inheritance-bound limitations of the classic
Abstract Factory and Factory Method patterns. Adapters become less of a problem in a
language where we can adjust the interfaces of objects on the fly. External iterators are cer-
tainly possible—and occasionally found—in Ruby, but it is the internal iterators that are
truly ubiquitous. The internal domain-specific language technique means that we can
often use the Ruby interpreter itself as our parser when we build an interpreter.

None of this should really be very surprising. While the appearance of GoF’s
Design Patterns constituted a giant leap forward in the art of writing programs, it has
been almost a decade and a half since that book was published. It would be a sad com-
mentary on our profession if, all these years later, we were still solving exactly the same
problems in exactly the same ways. Many of the original GoF patterns are truly long-
lived solutions, ideas that are likely to be with us for a very long time. But program-
ming has something in common with literature. Translate Romeo and Juliet from
English into Italian, and you will change the flow of the words, the feeling of the
work. Juliet will still be young and beautiful, but Juliet in Italian will somehow be a

little different. Translate a design pattern into a different language—into Ruby—and
it is still the same, but a little different.

Most of the differences that you will see when you revisit the original Design
Patterns problems in Ruby stem from the almost unbounded flexibility of the lan-
guage. When you are programming in Ruby, if you are unhappy with the behavior or
interface of some class, you have options. You can certainly wrap instances of the
offending class with an adapter. You might decorate or proxy it. You might create a
factory to produce those wrapped instances. You might make the factory available as
a singleton. And if you are dealing with a complex business object, perhaps one cre-
ated by some other team in your large organization, all of that might be sensible.
However, if you are dealing with some simple object that you understand, you can just
modify the object, morphing it to have precisely the behavior that you need. With
Ruby, we no longer need to pull out relatively heavyweight design patterns to solve
tiny problems. Instead, Ruby allows you to do simple things simply.

One thing that has not changed in the years since Design Patterns was published is
the need for wisdom. Bruce Tate is fond of pointing out1 that when a new program-
ming technique or language pops up, there is frequently a wisdom gap. The industry
needs time to come to grips with the new technique, to figure out the best way to
apply it. How many years had to elapse between the first realization that object-
oriented programming was the way to go and the time when we really began to use
object-oriented technology effectively? Those years were the object-oriented wisdom gap.

The increasing industry recognition of the value of dynamic and flexible lan-
guages such as Ruby has plunged us into yet another wisdom gap. Ruby’s powerful fea-
tures suggest different approaches to the programming problems with which we have
wrestled for years. Ruby also gives us the power to do things we have never thought
of before. But what things should we do? Which shortcuts can we take safely? Which
pitfalls must we avoid? With Ruby, we have all of this power at our fingertips, but we
need some guidance—some wisdom—to go with it. In this book, I have tried to shed
a little light on what to do with the power of Ruby. But as we work our way through
the new wisdom gap, we will uncover even more solutions, new design patterns that
will fit the dynamic, flexible world of Ruby. I don’t know what those new patterns will
look like, but I do know that I can’t wait to see them. I also know that it is a great time
to be a programmer.

1. He points it out here, for example:
http://weblogs.java.net/blog/batate/archive/2004/10/time_wisdom_and.html.

332 Chapter 19. Conclusion

http://weblogs.java.net/blog/batate/archive/2004/10/time_wisdom_and.html

333

APPENDIX A
Getting Hold of Ruby

The good thing about using a popular language is that it is not hard to find. With Ruby,
the place to start is the Ruby language home page, located at http://www.ruby-lang.org.
What you do from there pretty much depends on what kind of computer you are using.

Installing Ruby on Microsoft Windows
If you are running Microsoft Windows, your best bet is probably the One-Click Ruby
Installer, which you can find at http://rubyforge.org/projects/rubyinstaller. This installer
will put the basic Ruby environment along with a whole range of useful utilities on
your system with only slightly more than one click. Make sure that you enable the
RubyGems option to get the standard Ruby third-party code manager.

If you are more of a UNIX-oriented user who happens to use Windows, you
might want to look into Cygwin (http://www.cygwin.com), a UNIX-like environ-
ment for Windows that comes complete with Ruby.

Installing Ruby on Linux and Other UNIX-Style Systems
If you are using a UNIX-like system such as Linux, you usually have a choice:

• Install a prebuilt package. Chances are that a prebuilt Ruby is available for your
system. Make sure that you also install RubyGems to get the standard Ruby third-
party code manager. If you use Debian Linux or one of its derivatives (which
include the very popular Ubuntu Linux), you should be aware that because of

http://www.ruby-lang.org
http://www.cygwin.com
http://rubyforge.org/projects/rubyinstaller

philosophical differences about how software should be packaged, RubyGems is
not available as a prebuilt Debian package. If you find yourself in this bind, you
might consider building Ruby from source.

• Build Ruby from source. Building your Ruby environment from source is not
really very difficult. Simply download the software and follow the instructions in
the README file. After you finish with Ruby itself, you will also want to pull down
the RubyGems source and build that, too.

Mac OS X
The good news is that OS X Tiger comes with Ruby right out of the box. The bad
news is that what comes out of the box is an older version of Ruby. Many—perhaps
most—users of Ruby on OS X prefer to build Ruby from source (see the previous
section) or to get Ruby from MacPorts (http://www.macports.org/).

As I write this OS X Leopard has been released with much improved Ruby
support. So perhaps it is all good news. . . .

334 Appendix A. Getting Hold of Ruby

http://www.macports.org/

APPENDIX B
Digging Deeper

An enormous body of literature has been published on design patterns in the last
decade and a half. The literature on Ruby is certainly growing day by day. This appen-
dix points out some of the resources that will be of particular help to the programmer
who is interested in both Ruby and design patterns.

Design Patterns
Obviously:

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

I am a big fan of reading the original literature, and if you are interested in design
patterns, there is no better source than Design Patterns.

Another, less obvious choice, but one that is well worth the time is

Alpert, S., Brown, K., and Woolf, B. The Design Patterns Smalltalk Companion.
Reading, MA: Addison-Wesley, 1998.

The Smalltalk programming language, as my former small-talking colleagues
never tire of reminding me, has all of the good stuff that the rest of us are only now
discovering in Ruby, and it had it decades ago. That Smalltalk never really became
widely used is perhaps due more to its somewhat strange-looking syntax than to
any lack of power or elegance. Language differences aside, The Design Patterns

335

Smalltalk Companion is well worth reading because it is a thoughtful look at applying
design patterns to programming in a language that is every bit as dynamic and
flexible as Ruby.

A more recent book along the same lines is

Sweat, J. php|architect’s Guide to PHP Design Patterns. Toronto, ON: Marco Tabini and
Associates, 2005.

There is an enormous body of literature on design patterns in various languages,
particularly Java. Two Java-oriented books that are worth looking at are

Freeman, E., Freeman, E., Bates B., and Sierra, K. Head First Design Patterns.
Sebastopol, CA: O’Reilly Media, 2004.

Stelting, S., and Maassen, O. Applied Java Patterns., Palo Alto, CA: Sun Microsystems
Press, 2002.

These are two very different books: Applied Java Patterns is a very detailed, more
traditional treatment, while Head First Design Patterns contains a bit less detail but is
a lot more fun.

Ruby
By far the most prominent introductory Ruby book is the one by Dave Thomas, Chad
Fowler, and Andy Hunt:

Thomas, D., Fowler, C., and Hunt, A. Programming Ruby: The Pragmatic Programmers’
Guide, second edition. Raleigh, NC: The Pragmatic Bookshelf, 2005.

Programming Ruby is a good all-around introduction to Ruby and its environment
and libraries. I have to admit, however, that when I am looking for a truly in-depth
discussion of Ruby language issues, the book that I reach for is

Black, D. Ruby for Rails. Greenwich, CT: Manning Publications, 2006.

Be aware that despite the name Ruby for Rails is about 85 percent Ruby and only
15 percent Rails.

In many ways, Ruby is a language of idioms; there really does seem to be a “Ruby
way” of doing things. I have tried to point out the Ruby way of doing things through
out this book. If you want to know the Ruby way of doing most anything, look no
farther than

Fulton, H. The Ruby Way, second edition. Boston: Addison-Wesley, 2006.

336 Appendix B. Digging Deeper

The Ruby Way is part cookbook and part introductory text. If you want to know
how to do something in Ruby as well as a little bit about why you are doing it that
way, this is the book for you. In the same vein is

Carlson, L., and Richardson, L. Ruby Cookbook. Sebastopol, CA: O’Reilly Media, 2006.

While books are among my favorite things in the whole world, if you are trying
to pick up a new programming language there is a resource that is as important as any
book: good programs written in the new language. Anyone who is serious about learn-
ing Ruby should spend some time looking at these sources:

• The Ruby standard library. This is all of the code that comes delivered with your
Ruby installation. Curious about the Complex class? Wondering about Webrick?
Yearning to know about URI? Just have a look, they are sitting right there on your
disk.

• Ruby on Rails. Of course, you will also want to look at the Ruby killer applica-
tion. Be warned, however, that for the most part Rails is pretty advanced Ruby.
Don’t let that intimidate you—just sharpen your pencil and be prepared to spend
some time wondering, “How the heck does that work?” The Rails Web site is
http://www.rubyonrails.org.

• Ruby Facets (a huge collection of useful Ruby utilities). Of particular interest for
the new Ruby programmer is the fact that many of these utilities are actually
extensions to the standard classes that come with Ruby. Worth reading, worth
using. You can find the Facets Web site at http://facets.rubyforge.org.

Regular Expressions
I’ve mentioned regular expressions a number of times in this book. If you haven’t
already taken the time to learn this incredibly useful tool, it is time to put it at the top
of your list. A good place to start is

Friedl, J. Mastering Regular Expressions. Sebastopol, CA: O’Reilly Media, 2006.

Blogs and Web Sites
The main Ruby Web site is http://www.ruby-lang.org. Most people who are
interested in Ruby will at least be curious about Rails, which can be found at
http://www.rubyonrails.org.

Blogs and Web Sites 337

http://www.rubyonrails.org
http://www.ruby-lang.org
http://www.rubyonrails.org
http://facets.rubyforge.org

There are a number of good Ruby and Rails blogs out there. Here are the ones
that I find most useful and interesting:

• Jamis Buck’s blog—http://weblog.jamisbuck.org

• Jay Fields’s blog—http://blog.jayfields.com

• Ruby Inside—http://www.rubyinside.com (where you will find the collected
wisdom of Peter Cooper)

The Web site associated with this book is http://designpatternsinruby.com.
Finally, feel free to see what I am up to at http://www.russolsen.com or e-mail me

at russ@russolsen.com.

338 Appendix B. Digging Deeper

http://www.rubyinside.com
http://designpatternsinruby.com
http://weblog.jamisbuck.org
http://blog.jayfields.com
http://www.russolsen.com

339

Index

A
abs method, 26, 169–170
Absolute value, 26, 169–170
Abstract Factory pattern, 16, 239–241
Abstract syntax trees (ASTs) for parsers

building, 264–267
complex, 277
file-finding interpreters, 267–272
parser-less interpreters, 274–276
simple, 272–274
XML and YAML, 276–277

AbstractAdapter class, 173
Account class, 134
Account initialize method, 47
AccountProtectionProxy class

creating, 178–179
for delegation, 187–188

AccountProxy class, 186–187
ActiveRecord class

Adapter pattern, 173
and DSL, 295
factory method, 244–245
magic methods, 260
migration, 155–156
observers, 108
relationships, 310–311

ActiveSupport class
Decorator pattern, 205
Singleton pattern, 224–225

adapter_for method, 319–320
Adapter pattern and adapters, 16, 163

alternatives, 168–170
in Convention Over Configuration

example, 316
examples, 173–174
file, 319
FTP, 326
HTTP, 318–319
loading, 320–323
vs. modification, 172
selecting, 319–320
single instance modifications, 170–172
SMTP, 318
summary, 174
text rendering, 167–168
working with, 173

add_child method, 120
add_observer method, 99, 105
add_students method, 48
add_sub_population method, 305
add_sub_task method, 118
AddDryIngredientsTask class, 115–116
AddEmployee class, 158
Addition in Ruby, 24–26
AddLiquidsTask class, 116
addr_writer method, 308
Alexander, Christopher, 4
Algae class, 233, 236
alias keyword, 202

alias_method_chain method, 205
All class, 267–268
all? method, 133
Alternatives

Adapter pattern, 168–170
Decorator pattern, 201–203
Singleton pattern, 215–218

Ampersands (&) in comparisons, 29
And class, 271–272
and operator, 29
Animal class, 311
any? method, 133
Appending array elements, 39
Arguments

options, 47–49
parentheses for, 22

Arithmetic operations, 24–26
Array class and arrays

appending elements to, 39
as composites, 119
creating, 38–39
iterators, 128–133, 135
methods, 182
sorting, 39–40, 92
as strings, 35
subtraction operator, 270

ArrayIterator class, 128–133, 135
assert method, 72
assert_equal method, 72
assert_not_nil method, 72
Assignments

shortcuts, 25
variables, 24, 44

ASTs (Abstract syntax trees) for interpreters
building, 264–267
complex, 277
file-finding interpreters, 267–272
parser-less interpreters, 274–276
simple, 272–274
XML and YAML, 276–277

At signs (@)
for class variables, 208
for instance variables, 42

attr_accessor method
BankAccount, 45, 308–309
Employee, 96–97

attr_reader method, 45, 308–309

attr_writer method, 45, 308
authorize method, 325
authorized? method, 324–325
authorizer_for method, 324

B
Backslashes (\) for extended statements, 22
Backup class, 287, 291–292
backup method, 285–292
backup_newies task, 295
backup_oldies task, 295
balance method, 44–45
BankAccount

example class, 41–47
Proxy pattern, 174–184

Bars (|)
in comparisons, 29
Proc objects, 86

basename method, 268
BasicCPU class, 250
Beck, Kent, 4
begin/rescue statement, 52
Berra, Yogi, 14
Big files, finding, 269–270
Bigger class, 269–270
Bignum class, 25–26
Blocks

as commands, 147–148
as observers, 104–105
Strategy pattern, 84–88

Blogs, Ruby, 337
body field in message gateways, 317
Boolean operators, 28–30
break statement, 33
BritishTextObject class, 167–169
BritishTextObjectAdapter class, 168
bto class, 170–172
build utility, 224
builder class, 251–253
Builder pattern, 16, 249

computers, 250–253
examples, 259–260
magic methods, 258–259
polymorphic, 253–256
reusable, 257–258
preventing mistakes, 256–257

340 Index

summary, 260–261
working with, 259

Button class, 145

C
C programming language, 263–264
C# programming language, 7

data types, 27
declarations, 69
strings, 36–37
unit tests, 71

call method, 84, 86
camelCase variable names, 23
Car class, 6, 9–10

delegation, 12–13
meta-programming, 310

Carnivore module, 300
Case-sensitivity of variables, 23
ChangeAddress class, 159
changed method, 104
ChangeResistantArrayIterator class,

135–136
Chatty module, 50
check_access method, 179
check_sum method, 199
checksumming_write_line method, 195
CheckSummingWriter class, 199
Checksums, 194–196, 199
Children in composites, 121
class method, 26–27
class_eval method, 305, 310–311
class keyword, 42
class level methods, 210
ClassBasedLogger class, 216–217,

219–220
Classes

creating, 41–43
inheritance, 8
loading, 320–323
methods, 209–211
as singletons, 216–217
variables, 208–209

ClassVariableTester class, 208–209
clone method, 220
close method, 201
Closure, 84

Code blocks
and commands, 147–148
and observers, 104–105
and strategies, 84–88

Collections. See Iterator pattern
Colons (:) for symbols, 37
Command class, 148
Command pattern, 16, 143

ActiveRecord, 155–156
for buttons, 145–146
code blocks, 147–148
Madeleine implementation, 156–160
queues, 154
for recording, 148–151
subclasses, 144–145
summary, 160–161
undo operations, 151–153
working with, 154–155

Comments, 21
Compilers, 71
Complex parsers, 277
Complex searches, 270–272
Component class, 200
Composite class, 114–115
composite_of method, 305–307, 309
Composite pattern, 15, 111

arrays, 119
composites vs. leaf objects, 120
creating composites, 114–118
examples, 123–124
operators, 118–119
pointers, 120–122
wholes and parts, 112–114
working with, 122–123

CompositeBase class
analyzing, 304–306
meta-programming, 306–308

CompositeCommand class, 150, 153
CompositeTask class, 117–119, 121–123
Composition and inheritance, 7–12
Computer class, 250–251, 259
computer method, 256–257
ComputerBuilder class, 252–254
Computers, Builder pattern example,

250–253
Concatenation of strings, 34
ConcreteComponent class, 200

Index 341

Configuration. See Convention Over
Configuration pattern

Configuration-dependent code, 314
const_get method

adapters, 320
IOFactory, 243

Constants, 24, 216
Contexts

ASTs, 266
data sharing with strategy, 80–82

Convention Over Configuration pattern, 17,
313–314

adapter selection, 319–320
class loading, 320–323
examples, 328
message gateways, 317–319, 326–327
security, 323–325
summary, 328–329
working with, 327

Conventions in GUI development, 316
CopyFile class, 149, 153
Copying files, 149
CPU class, 250
CreateBookTable class, 156
CreateFile class, 148–149, 152
Creators in Factory Method pattern, 232–233
Curly braces ({})

for code blocks, 85
for expressions, 35–36
for hashes, 40

Custom objects. See Meta-programming pattern
Cygwin environment, 333

D
Data types, 27
DatabaseConnectionManager class, 222–223
DataPersistence class, 221
DataSource class, 288
<<db_type>>_connection method, 246
Declaring variables, 24, 68–71
Decorator class, 200
Decorator pattern, 16, 193

components, 200
delegation, 200–201
dynamic alternatives, 201–203
examples, 205

modules, 202–203
overview, 193–199
summary, 206
working with, 204
wrapping methods, 202

def_delegators method, 201
def keyword, 42
Delegation

Car class, 12–13
Decorator pattern, 200–201
for proxies, 187–188
Strategy pattern, 78–80

delete_observer method, 99
delete_sub_population method, 305
DeleteCommand class, 152
DeleteEmployee class, 158–159
DeleteFile class, 149, 152–153
Deleting

files, 149
observers, 99

deposit method
account, 183
BankAccount, 43
missing_method for, 186, 190

describe method, 148
describe_hero method, 49
Description class, 311
DesktopBuilder class, 254–255
DesktopComputer class, 254
<destination_host>Authorizer class, 323, 325
DirectCall class, 190
Directors in builder classes, 253
Distributed Ruby (drb) package, 190–191
Diurnal module, 301
Division, 24–26
do statement, 84–85
Documentation

Convention Over Configuration pattern,
327

rdoc utility, 90–91
doesNotUnderstand method, 184
Dollar signs ($) for global variables, 215
Domain-Specific Language (DSL) pattern, 17,

283
examples, 294–295
file backups, 284–285
overview, 283–284

342 Index

PackRat DSL, 284–285
building, 287–289
data files, 285–286
evaluating, 289–290
improving, 290–293

summary, 295
working with, 293–294

Double quotes (") for strings, 22, 34–35
down method in ActiveRecord migrations,

156
downcase method, 34
drb (Distributed Ruby) package, 190–191
Drive class, 251
drive method, 6
DSL. See Domain-Specific Language (DSL)

pattern
Duck class, 228–229, 233, 236
Duck typing

safety and flexibility, 69–71
vs. static typing, 68–69
Strategy pattern, 82–84

DuckAlgaePond class, 236
DuckPond class, 231
DuckWaterLilyPond class, 234–236
Dynamic alternatives in Decorator pattern,

201–203
Dynamic typing, 24

with arrays, 39
safety and flexibility, 69–71
vs. static typing, 68–69
Strategy pattern, 82–84

E
each method

Array, 131
Hash, 138
IO, 138
String, 136

each_byte method
IO, 139
String, 136

each_entry method, 139
each_filename method, 139
each_index method, 136
each_key method, 137
each_line method, 139

each_object method, 139–140
each statement, 33
each_value method, 137
Eager instantiation, 214–215
else keyword, 30–31
elsif keyword, 30–31
Email messages

creating, 259–260
gateways, 317–319

Employee class, 50–51
Madeleine implementation, 157
Observer pattern, 95–105

EmployeeManager class, 157–158
EmployeeObserver class, 108
empty? method, 70–71
EmptyTest class, 71
Encapsulation

commands, 151
increasing, 11
modules for, 49
preserving, 172
Proc objects, 147

encrypt method, 164
Encrypter class, 164–166, 173
end statements

code blocks, 84–85
loops, 32

Engine class, 10–11, 310
EnhancedIO class, 195
EnhancedWriter class, 194–195
Enumerable module, 133–134
Enumeration interface, 128
eof? method, 165, 173
Equal signs (=)

for assignments, 44
with regular expressions, 41

Etc module, 179
eval statement, 286, 289
evaluate method, 265
Exceptions, 52–53
Exclamation points (!)

for not operator, 29
with regular expressions, 41

execute method
AddEmployee, 158
Command, 150–151
CompositeCommand, 153

Index 343

execute method (continued)
CreateFile, 148–149
Interpreter, 265
Oracle, 173

execute_command method, 160
Expression class, 267, 275
expression method, 274
Expressions

regular, 40–41, 274, 278, 337
in strings, 35–36

extend method, 202–203
Extended statements, 21–22
Extending Factory Method pattern, 237–239
Extensibility. See Convention Over

Configuration pattern
External DSLs, 284
External iterators, 127–133

F
Factory Method pattern, 16, 227–228

classes, 236–237, 241–242
examples, 244–246
extending, 237–239
names, 242–243
parameterized methods, 233–236
pond simulation, 228–230
summary, 246–247
template method pattern and, 231–233
working with, 244

false, 28–30
FalseClass class, 29
__FILE__ constant, 322
File backup DSLs, 284–285
File class, 322
File-finding interpreters, 267–272
FileAdapter class, 319
FileDeleteCommand class, 154–155
FileName class, 268
Files

copying, 149
creating, 148
data, 285–286
deleting, 149
finding, 268–270
sending messages to, 319
source, 54–55

Find class, 268
find method, 268
Finding files, 268–270
Fixnum class, 25–26

vandalizing, 169–170
Flexibility in duck typing, 69–71
Floating-point numbers, 25–26
fnmatch method, 268
for_each_element method, 130–131
for loops, 32–33
Formatter class, 78, 81–84
Forward slashes (/) for regular expressions, 40–41
Forwardable module, 200–201, 310
FOX widgets, 124–125
Frame classes, 124
Frog class, 230, 233, 236
FrogAlgaePond class, 234, 236
FrogPond class, 231–232
FrogWaterLilyPond class, 236
from field in message gateway, 317
FtpAdapter class, 320, 326
FXButton class, 124
FXHorizontalFrame class, 124
FXLabel class, 124
FXMainWindow class, 125
FXRuby, 124
FXVerticalFrame class, 124
FXWindow class, 124

G
Gamma, Erich, 4
Gang of Four (GoF), 4
Gateways, message

extending, 326–327
overview, 317–319

GenericServer class in WEBrick, 74
Geographical Information System (GIS), 263
get_child method, 120
get_time_required method

MakeBatterTask, 116
Task, 115

getc method, 165, 173
getter and setter methods, 45
GetWeatherByZipCode method, 180
GIS (Geographical Information System), 263
Global access, 207–208, 215–216, 220

344 Index

GoF (Gang of Four), 4
Graphical user interfaces (GUIs), 315

libraries, 123–124
needs anticipation, 315–316
templates, 316

greater than operator (>) for expressions, 28

H
Habitat class, 238–240
Hand waving, 227
Hash class, 137–138
Hashes, 40
Hello World program, 20–22
HelloModule module, 49–50
HelloServer class, 74–75
Helm, Richard, 4
Herbivore module, 300
Hook methods, 66–68
HTML, 277
HTMLFormatter class, 78, 81–83
HTMLReader class, 243
HTMLReport class, 63–65
HTMLWriter class, 243
HTTP Post requests, 317
HttpAdapter class, 318
HttpServlet class, 314

I
if statement, 30–31
Immutable objects

singleton methods disallowed, 171
strings, 36–37

include? method, 133
include statement, 49–50
increment method, 209
Indexing

arrays, 38
hashes, 40
strings, 35

Inflections class, 224
Inheritance

composition over, 7–12
overview, 46–47

Initialization syntax for hashes, 40

Installing Ruby
Mac OS X, 334
Microsoft Windows, 333
UNIX-style systems, 333–334

instance method, singleton, 212, 214
Instance methods, 42
instance_of method, 27
Instance variables, 42–45
Instances

modifying, 170–172
reflection features, 306

Instantiation in Singleton pattern, 214–215
Integers, 25
interactive Ruby (irb) shell, 20–21
InterestBearingAccount class, 46–47
Interfaces, programming to, 5–7
Internal Domain-Specific Language (DSL)

pattern. See Domain-Specific Language
(DSL) pattern

Internal iterators, 130–133
Interpolation, string, 36
interpret method, 265
Interpreter, ruby, 21
Interpreter pattern, 16, 263–264

AST creation, 272–277
examples, 278–279
languages, 264
parsers

building, 264–267
complex, 277
file-finding interpreters, 267–272
parser-less interpreters, 274–276
simple, 272–274
XML and YAML, 276–277

process, 264–267
summary, 279–280
working with, 277–278

interval method, 285–292
IO class, 138–139
IOFactory class, 243
irb (interactive Ruby) shell, 20–21
isEmpty method, 70
item method, 129
Iterator interface, 128
Iterator pattern, 15, 127

Enumerable module, 133–134
examples, 136–140

Index 345

Iterator pattern (continued)
external iterators, 127–133
internal iterators, 130–133
summary, 140–141
working with, 134–136

J
Java language

interfaces, 7
servlets, 314

Johnson, Ralph, 4
join method, 54
Jungle class, 303
JungleOrganismFactory class, 240

K
keys, encryption, 164

L
lambda method, 84
Languages

DSL. See Domain-Specific Language (DSL)
pattern

interpreters. See Interpreter pattern
LaptopBuilder class, 255, 257–258
LaptopComputer class, 254–255
Lazy instantiation, 214–215
Leaf classes, 114–115, 120
leaf method, 299
Leaf nodes in ASTs, 265
Length and length method

aggregate classes, 129
arrays, 38
strings, 34

Less than signs (<)
arrays, 39
Composite pattern, 118–119
for expressions, 28

Libraries
GUI, 123–124
standard, 55

Linux, installing Ruby on, 333–334
Literals, string, 34–35

load method, 286
load_adapters method, 321–322
Loading classes, 320–323
Logging class, 211–215
Loops, 32–34
Lowercase letters for variables, 23

M
Mac OS X, installing Ruby on, 334
Madeleine, 156–160
Magic methods, 258–260
MailFactory builder, 259–260
MakeBatter class, 113
MakeBatterTask class, 113, 116–118
MakeCakeTask class, 117–118
Manager class, 219, 295
Marshal package, 156
math_service proxy, 191–192
MathService class, 191
max method, 133
member_of method, 305–306, 309
member_of_composite? method, 306
merge method, 132
Message class, 317
MessageGateway class, 322
Messages

creating, 259–260
gateways, 317–319, 326–327
passing, 183–184
sending, 185

Meta-programming pattern, 17, 297–298
custom-tailored objects

method by method, 298–300
module by module, 300–301
new methods, 301–306
reflection features, 306

examples, 308–311
summary, 311–312
working with, 306–307

method_missing method
vs. forwardable, 201
with magic methods, 258
Object class, 183–184
performance, 190
working with, 184–187

346 Index

method_name method, 210
MethodMissingCall class, 190
Methods

class-level, 209–211
custom-tailored objects, 298–300
defining, 42
hook, 66–68
instance, 208
magic, 258–260
new, 301–306
wrapping, 202

Microsoft Windows, installing Ruby on, 333
min method, 133
Mixins, 51–52
MixTask class, 115–116
Modifying single instances, 170–172
ModuleBasedLogger module, 218, 220
Modules, 49–52

custom-tailored objects, 300–301
Decorator pattern, 202–203
Singleton pattern, 214
as singletons, 218

Monitor class, 54
Motherboard class, 250
Multiplication, 24–26
Mutable strings, 37
MySQL adapter, 245

N
\n character, 22
Names, variable 23–24
Need for wisdom, 332
Needs anticipation in GUI development, 315
new_animal method

DuckPond, 231
DuckWaterLilyPond, 235
Pond, 232

new_plant method
DuckWaterLilyPond, 235
meta-programming, 298–299

NewDocumentButton class, 145
Newline characters, 22
next statement, 33
nil value, 27–28, 30
NilClass class, 28
Nocturnal module, 300

NoMethodError class, 183
Nonterminals in ASTs, 265
Not class, 270–271
not operator

comparisons, 29
parsers, 276

notify_observers method
Employee, 98, 104
Subject, 102

NumberedWriter class, 203
numbering_write_line method, 195
NumberingWriter module, 197–198, 203
Numbers for strings, 35

O
Object class, 27

method_missing method, 183–184
Module module, 309

Object-oriented programming inheritance,
7–12

Objects
custom. See Meta-programming pattern
everything is, 26–27
Factory Method pattern, 236–237, 241–242

ObjectSpace module, 139–140
Observable class, 101
Observable module, 103
Observer pattern, 15, 95

code blocks, 104–105
examples, 108–109
implementing, 100–104
for information, 95–100
summary, 109–110
variations, 105–106
working with, 106–108

old_write method, 202
old_write_line method, 202
on_button_push method, 144
One-Click Ruby Installer, 333
Operators

arithmetic, 25–26
Boolean, 28–30
Composite pattern, 118–119

Or class, 271
or operator, 29
Oracle adapter, 245

Index 347

OrganismFactory class, 242
OS X, 334
output_end method, 66
output_line method, 65
output_report method

HTMLReport and PlainTextReport,
65, 82

Report, 80–81
output_start method

PlainTextReport, 66
Report, 67

P
PackRat class, 292–293
PackRat DSL, 284–285

building, 287–289
data files, 285–286
evaluating, 289–290
improving, 290–293

Parameterized factory methods, 233–236
parent_classification method, 307
parent_<composite_name> method, 308
Parentheses () for arguments, 22
Parents in composites, 121
parse method, 274
Parser class, 273–274
Parser-less interpreters, 274–276
Parsers, 265

complex, 277
simple, 272–274
XML and YAML, 276–277

Parts, assembling. See Composite pattern
Pass the buck technique, 13
Pathname class, 138–139
Payroll class, 96, 99–100
PDFReader class, 243
PDFWriter class, 243
PlainTextFormatter class, 78, 82–83
PlainTextReport class, 64–66
Plus signs (+) for concatenation, 34
Pointers, 120–122
Polymorphic builders, 253–256
Pond class, 229–232, 234–237
Pond simulation, 228–230

extending, 237–239
objects, 236–237

parameterized, 233–236
templates, 231–233

PondOrganismFactory class, 239
Portfolio class, 54, 134
pos method, 201
Post requests, 317
Pound signs (#)

for comments, 21
for string interpolation, 35

PreferenceManager class, 221–223
PrefReader class, 223
Prevayler project, 156
private_class_method call, 213
Proc class

code blocks, 84–89
closures, 84
lambda, 84

process_message method, 322
Products

builder classes, 253
Factory Method pattern,

232–233
Programming to interfaces, 5–7
Protection proxies, 178–179
<protocol>Adapter class, 320, 322
Protocols

adapters, 319–320
message gateways, 317–318

Proxy pattern, 16, 175–176
examples, 190–192
message passing, 183–184
message sending, 185
method_missing method,

184–185
protection proxies, 178–179
purpose, 176–178
remote proxies, 179–180
repetitive code, 182–183
simplifying, 185–189
summary, 192
virtual proxies, 180–182
working with, 189–190

public_class_method method, 219
public_methods method, 306
pull strategy, 106
push strategy, 106
puts method, 21–22

348 Index

Q
Queries with file-finding interpreters,

267–272
Queuing up commands, 154

R
Racc parser, 277
Race conditions, 54
raise statement, 52–53
rake utility, 224, 294–295
.rb suffix, 55
rdoc utility, 90–91
readable_attribute method, 309
Recording commands, 148–151
Redoing commands, 151
Regular expressions, 40–41

information on, 337
interpreters for, 278
for parsers, 274

Remote procedure call (RPC) systems, 180
Remote proxies, 179–180
remove_child method, 120
Renderer class, 167
Rendering text, 167–169
Report class

declarations, 68–69
hook methods, 66–68
Strategy pattern, 79–81, 83, 88–89
Template Method pattern, 59–64, 73–75

require statement, 54–55, 169, 321–322
Resources, 335–337
respond_to? method, 306
ResultSet, 128
return statement, 44
Reusable builders, 257–258
reverse method, 39
reverse! method, 39
reverse_each method, 136
Reversing array elements, 39, 136
rewind method, 201
REXML package, 108
ri command, 91
RIGenerator class, 91
round method, 26
RPC (remote procedure call) systems, 180

Ruby language overview
arguments, 47–49
arithmetic operations, 24–26
arrays, 38–40
benefits, 17, 19–20
Boolean operations, 28–30
classes, 41–43
current object, 46
decision statements, 30–32
exceptions, 52–53
hashes, 40
Hello World program, 20–22
inheritance, 46–47
instance variables, 43–45
interactive, 20
interpreter, 21
loops, 32–34
modules, 49–52
nil value, 27–28
objects, 26–27
regular expressions, 40–41
source Files, 54–55
strings, 34–37
summary, 55–56
symbols, 37
threads, 53–54
variables, 23–24

RubyGems packaging system, 55, 333
run method

Backup, 287
HelloServer, 75

run_it method, 87
run_it_with_parameters method, 87–88
Runt library, 55, 278
RuntimeException class, 53
RussolsenDotComAuthorizer class, 324

S
Safety

in duck typing, 69–71
Singleton pattern, 219–220

SaveButton class, 144
SaveCommand class, 146–147
SAX2Parser class, 108–109
scaffolding, 325
scan method, 274

Index 349

Searches by file-finding interpreters,
267–272

Security in Convention Over Configuration
example, 323–325

select_all method, 173–174
self keyword, 46, 210
SelfCentered class, 46
Semicolons (;) in statements, 21
send method, 185
send_message method, 318
Sending messages, 185
Separating changes from stable code, 5, 61–64
Servlets, 314
set_balance method, 44
setup method, 72
Sharing data between context and strategy,

80–82
Shortcuts, assignment, 25
Simple parsers, 272–274
SimpleLogger class, 211–215, 224
SimpleWriter class, 197–199
Single instance modifications, 170–172
Single quotes (‘) for strings, 22, 34–35
singleton class, 171
singleton_methods method, 172
Singleton pattern, 16, 207

alternatives, 215–218
classes, 216–217
counts, 221
examples, 224–225
global access, 207–208
lazy and eager, 214–215
logging class, 211–213
methods, 209–211
modules, 214, 218
safety features, 219–220
scattered uses, 221–223
summary, 225
testing, 223–224
variables, 208–209, 215–216, 220

size method, 38
Skeletal methods. See Template Method pattern
SlickButton class, 144–145, 147
Smalltalk programming language, 184,

335–336
SmtpAdapter class, 318
SOAP, 180

Software adapters, 164–167
sort method

arrays, 39, 92
Enumerable, 133

sort! method, 39
Sorting arrays, 39–40, 92
Source files, 54–55
Special characters for delimiting strings, 36
Species class, 303, 307, 311
SQL language, 277
sql method, 173
Square braces ([]) for arrays, 38
start_engine method

Car, 12–13
Engine, 310

Statements, 21–22
Static typing, 68–71
stem method, 299
stop_engine method

Car, 12–13
Engine, 310

Strategy pattern, 15, 77
delegation, 78–80
duck typing, 82–84
examples, 90–92
procs and blocks, 84–88
quick-and-dirty strategies, 88–90
sharing data between context and strategy,

80–82
summary, 92–93
working with, 90

String class and strings, 22
with ArrayIterator, 130
iterators in, 136
methods, 182
object representation as, 27
regular expression pattern matching, 40–41
scan method, 274
working with, 34–37

String interpolation, 36
StringIO class, 174
StringIOAdapter class, 165–167, 173–174
StringTokenizer interface, 128
sub_populations method, 305
Subclasses, 8, 46–47, 144–145
Subject class, 100–101
subject method, 181–182

350 Index

Subject module, 102–104
Subjects in proxies, 176
Subtasks, 113
Subtraction, 24–26, 270
succ method, 26
super method, 103
Superclasses, 8, 46–47
Symbols

for hash keys, 40
as immutable identifiers, 37

T
\t character, 22
Tab characters, 22
Task class, 113, 115, 121–123
Tate, Bruce, 332
TaxMan class, 99–100
teardown method in tests, 72
Template Method pattern, 15, 59–61

drawbacks, 77
examples, 74–75
hook methods, 66–68
overview, 65
for separation of code, 61–64
unit tests, 71–72
working with, 73–74

Temporal expressions, 278
Terminals in ASTs, 265
TestMethodMissing class, 184–185
Tests

Singleton pattern, 223–224
unit, 71–72

Text rendering, 167–169
TextObject class, 167–168
Thread class, 53–54
Thread safe code, 54
Threads, 53–54
Tiger class, 238, 302–303
Tildes (~) with regular expressions, 41
timestamping_write_line method, 195
TimeStampingWriter class, 199
TimeStampingWriter module, 203
to field in message gateways, 317
to method, 285–292
to_s method, 27
total_num_of_tasks method, 122

Tree class, 238, 302–303
true, 28
TrueClass class, 28–29
truncate method, 26
TurboCPU class, 250
Types, 68–71

U
Underscores (_) for variables, 23
Undo operations, 151–153
unexecute method

Command, 151
CopyFile, 153
CreateFile, 152

Unit tests, 71–72
UNIX-style systems, installing Ruby on,

333–334
unless statement, 31–32
until loops, 32
up method, ActiveRecord migrations, 156
upcase method, 34
update method, 98, 106
Uppercase letters for constants, 24
URI class, 317
<user name>_authorized? method, 324–325

V
Variables, 23–24

classes, 208–209
instance, 42–45

Vehicle class, 9–11
Vertical bars (|)

in comparisons, 29
Proc objects, 86

Virtual proxies, 180–182
VirtualAccountProxy class, 181–182
VirtualProxy class, 188–189
Vlissides, John, 4

W
WaterLily class, 233, 236
Web sites, information from, 337
web.xml file, 314

Index 351

WEBrick library
singletons in, 207
Template pattern, 74

while loops, 32
Wisdom gap, 332
withdraw method, 43, 190
Wrapping methods, 202
Writable class, 270
Writable files, finding, 269–270
write method

wrapping, 202
WriterDecorator, 201

write_line method, 195, 205
write_line_with_numbering method, 205
write_line_with_timestamp method, 205
write_line_without_timestamp method, 205
Writer class, 203
WriterDecorator class, 197–198, 200–201

X
XML parsing

Factory Method pattern, 244
Limitations in Interpreter pattern, 276–277
package, 108

XMLRPC implementation, 244
XOR encryption, 164

Y
YAGNI (You Ain’t Gonna Need It) principle,

13–14, 244
YAML (YAML Ain’t Markup Language) parsers,

276–277
yield keyword

Backup, 292
internal iterators, 130

352 Index

Also Available in The Addison-Wesley Professional Ruby Series

For more information, visit www.awprofessional.com/ruby | www.informit.com/shortcuts

THE RUBY WAY, SECOND EDITION
HAL FULTON | 0-672-32884-4

The Ruby Way takes a “how-to” approach to Ruby
programming with the bulk of the material consist-
ing of more than 400 examples arranged by topic.
Each example answers the question “How do I do
this in Ruby?” Working along with the author, you
are presented with the task description and a discus-
sion of the technical constraints. This is followed by
a step-by-step presentation of one good solution.
Along the way, the author provides detailed com-
mentary and explanations to aid your understanding.

RAILSSPACE
MICHAEL HARTL and AURELIUS PROCHAZKA
0-321-48079-1

Ruby on Rails is fast displacing PHP, ASP, and J2EE
as the development framework of choice for
discriminating programmers. Using a tutorial
approach, RailsSpace teaches you to build large-
scale projects with Rails by developing a real-
world, social networking website application. This
essential introduction to Rails provides you with a
solid foundation for creating any login-based web-
site in Rails; coverage of newer and more advanced
Rails features such as form generators, REST,
and Ajax (including RJS); and a thorough and
integrated introduction to automated testing.

www.awprofessional.com/ruby
www.informit.com/shortcuts

ALSO AVAILABLE IN THE ADDISON-WESLEY PROFESSIONAL RUBY SERIES

For more information, visit www.awprofessional.com/ruby | www.informit.com/shortcuts

RAILS PLUGINS
Extending Rails Beyond the Core
JAMES ADAM | ISBN: 0-321-48351-0

This short cut introduces Rails plugins and
considers each aspect of their behavior and
development. You’ll learn what plugins are,
how they work, and why they’re useful. Dis-
cover how to find and install plugins using the
provided script, then explore the world of plu-
gin development, including common plugin
idioms, testing, and version control. Finally,
learn how to share your own plugins with the
rest of the world.

RUBYISMS IN RAILS
JACOB HARRIS | ISBN: 0-321-47407-4

A look at how the grace and philosophy of the
Ruby language are reflected in the design of
Ruby on Rails. The main goal is simply aes-
thetic appreciation. But if you are a beginning
programmer in Rails who is stymied in your
understanding of Ruby—or an intermediate
Rails developer still writing code that looks
like Ruby-tinged PHP or Java—this short cut
will enlighten and inspire you about the Ruby
way of programming. It also reveals how the
revolutionary design of the Rails framework
can only be built upon the beauty of Ruby.

SHORT CUTS are succinct, to the point, quick-reads on new and existing technologies. They’re digital, deliv-
ered in Adobe Reader PDF. They’re quick to publish. They’re a quick-to knowledge. Short cuts will show you
how to solve a specific problem and introduce you to a new topic. Written by industry experts and bestselling
authors, short cuts are published with you in mind—getting you the technical information that you need now.

www.informit.com/shortcuts
www.awprofessional.com/ruby

ALSO AVAILABLE IN THE ADDISON-WESLEY PROFESSIONAL RUBY SERIES

For more information, visit www.awprofessional.com/ruby | www.informit.com/shortcuts

MONGREL: Serving, Deploying, and Extending Your
Ruby Applications
MATT PELLETIER and ZED SHAW
ISBN: 0-321-48350-2

A critical resource for any developer, system/network
administrator, or business owner interested in under-
standing Mongrel, a fast, versatile Ruby Web server.
Since its initial release in January 2006, Mongrel has
quickly gained the attention and support of the Ruby
community as its preferred server. This short cut is the
only comprehensive Mongrel documentation in exis-
tence and is written by the authors of Mongrel. It pro-
vides background information, setup and configuration
instructions, and development techniques for extending
Mongrel. It also covers performance tuning and security.

RAILS REFACTORING TO RESOURCES: Using CRUD
and REST in Your Rails Application
TROTTER CASHION | ISBN: 0-321-50174-8

This short cut gives you step-by-step instructions for
converting an existing Rails application to fit the CRUD
architecture, the first step in reaping the benefits of
RESTful design as proposed by the creator of Rails, David
Heinemeir Hansson. Also featured is in-depth coverage
of the new ActiveResource module for Rails.

RAILS ROUTING
DAVID A. BLACK | 0-321-50924-2

The Rails routing system has always been a key compo-
nent of the framework, and with the introduction of
RESTful routes, it has taken center stage. Fully program-
mable, the routing system governs the process of map-
ping request URLs to the appropriate controller action.
In this short cut, you’ll learn techniques for writing cus-
tom routing rules, how to tap into the convenience and
power of named routes, and the workings of the RESTful
routing that’s had such an impact on Rails development.

www.awprofessional.com/ruby
www.informit.com/shortcuts

	DESIGN PATTERNS IN RUBY
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	PART I: Patterns and Ruby
	Chapter 1: Building Better Programs with Patterns
	The Gang of Four
	Patterns for Patterns
	Fourteen Out of Twenty-Three
	Patterns in Ruby?

	Chapter 2: Getting Started with Ruby
	Interactive Ruby
	Saying Hello World
	Variables
	Fixnums and Bignums
	Floats
	There Are No Primitives Here
	But Sometimes There Is No Object
	Truth, Lies, and nil
	Decisions, Decisions
	Loops
	More about Strings
	Symbols
	Arrays
	Hashes
	Regular Expressions
	A Class of Your Own
	Getting at the Instance Variables
	An Object Asks: Who Am I?
	Inheritance, Subclasses, and Superclasses
	Argument Options
	Modules
	Exceptions
	Threads
	Managing Separate Source Files
	Wrapping Up

	PART II: Patterns in Ruby
	Chapter 3: Varying the Algorithm with the Template Method
	Keeping Up with What Life Throws at You
	Separate the Things That Stay the Same
	Discovering the Template Method Pattern
	Hook Methods
	But Where Are All the Declarations?
	Types, Safety, and Flexibility
	Unit Tests Are Not Optional
	Using and Abusing the Template Method Pattern
	Templates in the Wild
	Wrapping Up

	Chapter 4: Replacing the Algorithm with the Strategy
	Delegate, Delegate, and Delegate Again
	Sharing Data between the Context and the Strategy
	Duck Typing Yet Again
	Procs and Blocks
	Quick-and-Dirty Strategies
	Using and Abusing the Strategy Pattern
	The Strategy Pattern in the Wild
	Wrapping Up

	Chapter 5: Keeping Up with the Times with the Observer
	Staying Informed
	A Better Way to Stay Informed
	Factoring Out the Observable Support
	Code Blocks as Observers
	Variations on the Observer Pattern
	Using and Abusing the Observer Pattern
	Observers in the Wild
	Wrapping Up

	Chapter 6: Assembling the Whole from the Parts with the Composite
	The Whole and the Parts
	Creating Composites
	Sprucing Up the Composite with Operators
	An Array as a Composite?
	An Inconvenient Difference
	Pointers This Way and That
	Using and Abusing the Composite Pattern
	Composites in the Wild
	Wrapping Up

	Chapter 7: Reaching into a Collection with the Iterator
	External Iterators
	Internal Iterators
	Internal Iterators versus External Iterators
	The Inimitable Enumerable
	Using and Abusing the Iterator Pattern
	Iterators in the Wild
	Wrapping Up

	Chapter 8: Getting Things Done with Commands
	An Explosion of Subclasses
	An Easier Way
	Code Blocks as Commands
	Commands That Record
	Being Undone by a Command
	Queuing Up Commands
	Using and Abusing the Command Pattern
	The Command Pattern in the Wild
	Wrapping Up

	Chapter 9: Filling in the Gaps with the Adapter
	Software Adapters
	The Near Misses
	An Adaptive Alternative?
	Modifying a Single Instance
	Adapt or Modify?
	Using and Abusing the Adapter Pattern
	Adapters in the Wild
	Wrapping Up

	Chapter 10: Getting in Front of Your Object with a Proxy
	Proxies to the Rescue
	The Protection Proxy
	Remote Proxies
	Virtual Proxies Make You Lazy
	Eliminating That Proxy Drudgery
	Using and Abusing Proxies
	Proxies in the Wild
	Wrapping Up

	Chapter 11: Improving Your Objects with a Decorator
	Decorators: The Cure for Ugly Code
	Formal Decoration
	Easing the Delegation Blues
	Dynamic Alternatives to the Decorator Pattern
	Using and Abusing the Decorator Pattern
	Decorators in the Wild
	Wrapping Up

	Chapter 12: Making Sure There Is Only One with the Singleton
	One Object, Global Access
	Class Variables and Methods
	A First Try at a Ruby Singleton
	The Singleton Module
	Lazy and Eager Singletons
	Alternatives to the Classic Singleton
	A Safety Harness or a Straitjacket?
	Using and Abusing the Singleton Pattern
	Singletons in the Wild
	Wrapping Up

	Chapter 13: Picking the Right Class with a Factory
	A Different Kind of Duck Typing
	The Template Method Strikes Again
	Parameterized Factory Methods
	Classes Are Just Objects, Too
	Bad News: Your Program Hits the Big Time
	Bundles of Object Creation
	Classes Are Just Objects (Again)
	Leveraging the Name
	Using and Abusing the Factory Patterns
	Factory Patterns in the Wild
	Wrapping Up

	Chapter 14: Easier Object Construction with the Builder
	Building Computers
	Polymorphic Builders
	Builders Can Ensure Sane Objects
	Reusable Builders
	Better Builders with Magic Methods
	Using and Abusing the Builder Pattern
	Builders in the Wild
	Wrapping Up

	Chapter 15: Assembling Your System with the Interpreter
	The Right Language for the Job
	Building an Interpreter
	A File-Finding Interpreter
	Creating the AST
	Using and Abusing the Interpreter Pattern
	Interpreters in the Wild
	Wrapping Up

	PART III: Patterns for Ruby
	Chapter 16: Opening Up Your System with Domain-Specific Languages
	The Domain of Specific Languages
	A File Backup DSL
	It’s a Data File—No, It’s a Program!
	Building PackRat
	Pulling Our DSL Together
	Taking Stock of PackRat
	Improving PackRat
	Using and Abusing Internal DSLs
	Internal DSLs in the Wild
	Wrapping Up

	Chapter 17: Creating Custom Objects with Meta-programming
	Custom-Tailored Objects, Method by Method
	Custom Objects, Module by Module
	Conjuring Up Brand-New Methods
	An Object’s Gaze Turns Inward
	Using and Abusing Meta-programming
	Meta-programming in the Wild
	Wrapping Up

	Chapter 18: Convention Over Configuration
	A Good User Interface—for Developers
	A Message Gateway
	Picking an Adapter
	Loading the Classes
	Adding Some Security
	Getting the User Started
	Taking Stock of the Message Gateway
	Using and Abusing the Convention Over Configuration Pattern
	Convention Over Configuration in the Wild
	Wrapping Up

	Chapter 19: Conclusion

	Appendix A: Getting Hold of Ruby
	Installing Ruby on Microsoft Windows
	Installing Ruby on Linux and Other UNIX-Style Systems
	Mac OS X

	Appendix B: Digging Deeper
	Design Patterns
	Ruby
	Regular Expressions
	Blogs and Web Sites

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

