

wxPython 2.8
Application Development Cookbook

Quickly create robust, reliable, and reusable
wxPython applications

Cody Precord

 BIRMINGHAM - MUMBAI

wxPython 2.8
Application Development Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1031210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-78-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Cody Precord

Reviewers
Maurice HT Ling

Steve McMahon

Jeff McNeil

Chukwudi Nwachukwu

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editor
Conrad Sardinha

Indexers
Tejal Daruwale

Rekha Nair

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Vincila Colaco

Proofreader
Dirk Manuel

Graphics
Nilesh Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Cody Precord is a Software Engineer based in Minneapolis, MN, USA. He has been
designing and writing systems and application software for AIX, Linux, Windows, and
Macintosh OS X for the last ten years using primarily C, C++, Perl, Bash, Korn Shell, and
Python. The constant need of working on multiple platforms naturally led Cody to the
wxPython toolkit, which he has been using intensely for that last five years. Cody has been
primarily using wxPython for his open source project, Editra, which is a cross-platform
development tool. He is interested in promoting cross-platform development practices
and improving usability in software.

wxPython 2.8
Application Development Cookbook

Quickly create robust, reliable, and reusable
wxPython applications

Cody Precord

 BIRMINGHAM - MUMBAI

wxPython 2.8
Application Development Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1031210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-78-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Cody Precord

Reviewers
Maurice HT Ling

Steve McMahon

Jeff McNeil

Chukwudi Nwachukwu

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editor
Conrad Sardinha

Indexers
Tejal Daruwale

Rekha Nair

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Vincila Colaco

Proofreader
Dirk Manuel

Graphics
Nilesh Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Cody Precord is a Software Engineer based in Minneapolis, MN, USA. He has been
designing and writing systems and application software for AIX, Linux, Windows, and
Macintosh OS X for the last ten years using primarily C, C++, Perl, Bash, Korn Shell, and
Python. The constant need of working on multiple platforms naturally led Cody to the
wxPython toolkit, which he has been using intensely for that last five years. Cody has been
primarily using wxPython for his open source project, Editra, which is a cross-platform
development tool. He is interested in promoting cross-platform development practices
and improving usability in software.

About the Reviewers

Maurice HT Ling completed his Ph.D. in Bioinformatics and B.Sc.(Hons.) in Molecular
and Cell Biology from The University of Melbourne where he worked on microarray
analysis and text mining for protein-protein interactions. He is currently an Honorary
Fellow of The University of Melbourne, Australia. Maurice holds several Chief Editorships
including The Python Papers, iConcept Journal of Computational and Mathematical
Biology, and Methods and Cases in Computational, Mathematical, and Statistical Biology.
In his free time, Maurice likes to train in the gym, read, and enjoy a good cup of coffee.
He is also a Senior Fellow of the International Fitness Association, USA.

Steve McMahon is a Python and Plone developer located in Davis, California. His
company, Reid-McMahon, LLC specializes in developing Content Management Systems
for non-profit organizations. He’s been involved in many aspects of the Plone project,
including training and core, installer, and add-on development.

Jeff McNeil cut his teeth during the Internet boom, being one of the first employees at
one of the larger web-hosting shops. He’s done just about everything from server installs
to platform development and software architecture. Technical interests include systems
management and doing things Pythonically. Jeff recently joined Google.

Chukwudi Nwachukwu, aka Chux, studied Computer Science at Olabisi Onabanjo
University, Nigeria. He has, over the years, worked on both Windows and Linux operating
systems. Programming is fun. He had to join the programming wagon because
programmers are known to solve problems by making computers do things that they
visualize in their minds. He programs in over a dozen languages such as Processing, D,
Python, and so on. He loves to travel, discover new places, meet interesting people, and
learn new human languages too. You can reach him on chux@users.berlios.de.
He has worked on Java CourseWare, an in-house Java textbook for teaching students.

I acknowledge the following people, who have stood by me through thick
and thin, and without whom I wouldn’t have gotten to this point in my life.
Chinonye, Chigbonkpa, and Chimenka, my siblings. My mom and dad,
Mr. and Mrs. Richard Nwachukwu, for their support. Olugbenga Owolabi,
you lead me through the land of programming by helping me know what
algorithms are all about. Bertrand Ogu, who has always been there for me,
thank you. Tola Johnny Odule, a lecturer in Olabisi Onabanjo University,
Nigeria, and the elder brother of Dele Odule, the Nollywood actor. Wale
Adewoyin and Shirley Otukpa, by God’s grace I expect you guys to walk down
the aisle soon. Kenneth Oraegbunam of IITA, Nigeria. Olugbenga Siyanbola
and Bukola Ibironke of Lintak Enterprises, Lagos, Nigeria. The Adenekans
in NNPC, Abuja: Beatrice, Olukayode, Damilola and Tobilola. Adedayo
Adenekan in Lagos and other members of the family. Pastor Femi Adeboye
of Prodigy Ventures, Ikorodu, Lagos. Dr. Shola Olalude of Shola Medical
Centre, Ikorodu, Lagos: thank you for believing in me. Tobi Ojo in Ibadan.
Bro. Williams Anthony, you’ve acted like a father for me, God bless you.
Olowooribi Kolawole Taofeek, you are a friend. Yakubu Friday Kelvin, you
are lovely. Olaleye Peace, I love you.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt

Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started with wxPython 7

Introduction 7
The application object 8
The main frame 9
Understanding the window hierarchy 12
Referencing controls 13
Using Bitmaps 15
Adding icons to Windows 17
Utilizing Stock IDs 18
Accessing the clipboard 20
Supporting drag and drop 22
Two-stage widget creation 24
Understanding inheritance limitations 25

Chapter 2: Responding to Events 29
Introduction 29
Handling events 30
Understanding event propagation 32
Handling Key events 34
Using UpdateUI events 37
Playing with the mouse 39
Creating custom event classes 41
Managing event handlers with EventStack 43
Validating input with validators 45
Handling Apple events 48

ii

Table of Contents

Chapter 3: Basic Building Blocks of a User Interface 51
Introduction 51
Creating Stock Buttons 52
Buttons, buttons, and more buttons 53
Offering options with CheckBoxes 57
Using the TextCtrl 59
Providing choices with the Choice control 62
Adding Menus and MenuBars 63
Working with ToolBars 66
How to use PopupMenus 69
Grouping controls with a StaticBox 71

Chapter 4: Advanced Building Blocks of a User Interface 73
Introduction 73
Listing data with a ListCtrl 74
Browsing files with the CustomTreeCtrl 77
Creating a VListBox 81
StyledTextCtrl using lexers 84
Working with tray icons 89
Adding tabs to a Notebook 90
Using the FlatNotebook 93
Scrolling with a ScrolledPanel 96
Simplifying the FoldPanelBar 97

Chapter 5: Providing Information and Alerting Users 99
Introduction 99
Showing a MessageBox 100
Providing help with ToolTips 102
Using SuperToolTips 104
Displaying a BalloonTip 107
Creating a custom SplashScreen 109
Showing task progress with the Progress dialog 111
Creating an AboutBox 115

Chapter 6: Retrieving Information from Users 121
Introduction 121
Selecting files with a FileDialog 122
Searching text with a FindReplaceDialog 127
Getting images with ImageDialog 132
Using the Print dialogs 135

iii

Table of Contents

Chapter 7: Window Layout and Design 143
Introduction 143
Using a BoxSizer 144
Understanding proportions, flags, and borders 148
Laying out controls with the GridBagSizer 152
Standard dialog button layout 154
Using XML resources 157
Making a custom resource handler 160
Using the AuiFrameManager 163

Chapter 8: Drawing to the Screen 167
Introduction 167
Screen drawing 168
Drawing shapes 171
Utilizing SystemSettings 174
Using a GraphicsContext 177
Drawing with RendererNative 180
Reducing flicker in drawing routines 184

Chapter 9: Design Approaches and Techniques 187
Introduction 187
Creating Singletons 188
Implementing an observer pattern 190
Strategy pattern 194
Model View Controller 197
Using mixin classes 203
Using decorators 206

Chapter 10: Creating Components and Extending Functionality 209
Introduction 209
Customizing the ArtProvider 210
Adding controls to a StatusBar 212
Making a tool window 215
Creating a SearchBar 217
Working with ListCtrl mixins 220
StyledTextCtrl custom highlighting 222
Creating a custom control 225

Chapter 11: Using Threads and Timers to
Create Responsive Interfaces 231

Introduction 231
Non-Blocking GUI 232
Understanding thread safety 236

iv

Table of Contents

Threading tools 241
Using Timers 246
Capturing output 249

Chapter 12: Building and Managing Applications for Distribution 255
Introduction 255
Working with StandardPaths 256
Persisting the state of the UI 258
Using the SingleInstanceChecker 260
Exception handling 265
Optimizing for OS X 266
Supporting internationalization 269
Distributing an application 273

Index 279

Preface
In today's world of desktop applications, there is a great amount of incentive to be able
to develop applications that can run in more than one environment. Currently, there are a
handful of options available for cross-platform frameworks to develop desktop applications in
Python. wxPython is one such cross-platform GUI toolkit for the Python programming language.
It allows Python programmers to create programs with a complete, highly-functional graphical
user interface, simply and easily. wxPython code style has changed quite a bit over the years,
and has become much more Pythonic. The examples that you will find in this book are fully
up-to-date and reflect this change in style. This cookbook provides you with the latest recipes
to quickly create robust, reliable, and reusable wxPython applications. These recipes will guide
you from writing simple, basic wxPython scripts all the way through complex concepts, and
also feature various design approaches and techniques in wxPython.

This book starts off by covering a variety of topics, from the most basic requirements of
a wxPython application, to some of the more in-depth details of the inner workings of
the framework, laying the foundation for any wxPython application. It then explains event
handling, basic and advanced user interface controls, interface design and layout, creating
dialogs, components, extending functionality, and so on. We conclude by learning how to build
and manage applications for distribution.

For each of the recipes, there is an introductory example, then more advanced examples,
along with plenty of example code that shows how to develop and manage user-friendly
applications. For more experienced developers, most recipes also include an additional
discussion of the solution, allowing you to further customize and enhance the component.

What this book covers
Chapter 1, Getting Started with wxPython, introduces you to the basics of creating a wxPython
application. The topics covered in this chapter will provide you with the information needed
to start building your own applications, as well as some insight into the inner workings and
structure of the framework.

Preface

�

Chapter 2, Responding to Events, shows how to make use of events to drive an application
and allow the user to interact with it through the user interface. This chapter starts with
an overview of what events are and how they work, and then continues on to cover how to
interact with a number of common events.

Chapter 3, Basic Building Blocks of a User Interface, discusses a number of the basic widgets
that are critical to the creation of nearly all user interfaces. You will be introduced to the usage
of widgets such as Buttons, Menus, and ToolBars in this chapter.

Chapter 4, Advanced Building Blocks of a User Interface, introduces you to some of the more
advanced widgets available in the wxPython control library. These widgets will allow you to
create tabbed interfaces and display more complex types of data in your user interface.

Chapter 5, Providing Information and Alerting Users, shows multiple techniques for keeping
the users of an application informed about what is going on and to provide them with help on
interacting with the various controls in the applications interface. This chapter will show you
how to use various tooltip controls, message boxes, and splash screens.

Chapter 6, Retrieving Information from Users, covers the use of common dialogs to retrieve
information from users in order to perform tasks such as opening files, searching text, and
even printing. As a part of the recipes for the usage of FileDialog and FindDialogs
you will create a simple Notepad-like application.

Chapter 7, Window Layout and Design, is where you will be introduced to a number of
concepts and techniques for designing your user interfaces in wxPython. The majority of
this chapter will explain the use of Sizers to allow you to quickly implement cross-platform
user interfaces.

Chapter 8, Drawing to the Screen, gives an introduction to the basics of how a user interface
works, by showing you how to use some of the primitive tools to implement your own custom
user interface objects. This chapter will show you how to use Device Contexts to perform
custom drawing routines by creating a number of custom display controls.

Chapter 9, Design Approaches and Techniques, introduces you to a number of common
programming patterns, and explain how to apply them to wxPython applications. The information
in this chapter will provide you with an understanding of some strong approaches and
techniques to software design that will not only serve you in writing wxPython applications but
can also be generally applied to other frameworks as well, to expand your programming toolbox.

Chapter 10, Creating Components and Extending Functionality, shows you how to extend
the functionality of existing user interface components, as well as how to create your own
controls. The recipes in this chapter combine much of the information presented in Chapters
2, 7, 8, and 9 together to create new controls and to enhance the capabilities of some of the
more basic ones provided by wxPython.

Preface

�

Chapter 11, Using Threads and Timers to Create Responsive Interfaces, dives into the
world of concurrent programming. This chapter shows you how to create multi-threaded
applications, and covers the special care that is needed when interacting with the user
interface from worker threads in order to create stable and responsive interfaces.

Chapter 12, Building and Managing Applications for Distribution, concludes the tour of
the wxPython framework by introducing you to some useful recipes for bolstering the
infrastructure of any application that will be distributed to end users. This includes how to
store configuration information, exception handling, internationalization, and how to create
and distribute stand-alone binaries of your application.

What you need for this book
All that you will need to get started with wxPython is a good text editor for editing Python
source code. There are a number of choices available, but I will provide a shameless plug
for my own application, Editra, here since it is included in the wxPython Docs and Demo
package, as well as at http://editra.org. It is written in wxPython and provides good
syntax highlighting and auto-completion support for Python that will help you in learning the
wxPython API.

This book is primarily written for Python 2.5/2.6 and wxPython 2.8, although the content of
the book also directly applies to later versions of wxPython as well. The suggested software
to install is as follows:

1. Latest version of Python 2.6 (http://www.python.org/download/
releases/2.6/).

2. Latest version of wxPython 2.8 (http://www.wxpython.org/download.php).

Who this book is for
This book is written for Python programmers wanting to develop GUI applications. A basic
knowledge of Python and object oriented programming concepts is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The App object also maintains the MainLoop, which
is used to drive a wxPython application".

Preface

�

A block of code is set as follows:

import wx

class MyApp(wx.App):
 def OnInit(self):
 wx.MessageBox("Hello wxPython", "wxApp")
 return True

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

class MyPanel(wx.Panel):
 __metaclass__ = ClassSynchronizer
 def __init__(self, parent, *args, **kwargs)

Any command-line input or output is written as follows:

python setup.py py2exe

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on OK to close it and exit
the application".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

�

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with

wxPython

In this chapter, we will cover the components that are at the foundation of nearly all wxPython
applications, such as:

The application object
The main frame
Understanding the window hierarchy
Referencing controls
Using Bitmaps
Adding icons to Windows
Utilizing Stock IDs
Accessing the clipboard
Supporting drag and drop
Two-stage widget creation
Understanding inheritance limitations

Introduction
In today's world of desktop applications there is a great amount of incentive to be able to
develop applications that can run on multiple operating systems and desktop platforms.
Currently there are a handful of cross-platform Python frameworks that can be used to develop
desktop applications. The wxPython Library is a set of Python bindings to the wxWidgets Library,
which is a powerful cross-platform C++ application framework that can be used to create user
interfaces. What sets wxPython apart is that, unlike other UI toolkits that draw their own controls,
wxPython uses the platform's own native UI toolkit for creating and displaying UI components.
This means that a wxPython application will have the same look and feel as other applications
on the system since it is using the same controls and themes as the rest of the system.

Getting Started with wxPython

8

Developing an application in wxPython provides great flexibility for writing applications that
will run on Windows, Macintosh OS X, Linux, and other UNIX like environments. Applications
can rapidly be developed on one platform and often deployed to another with little or no
changes necessary.

The application object
The App object bootstraps the library and initializes the underlying toolkit. All wxPython
applications must create an App object. This should be instantiated before trying to create
any other GUI objects to ensure that all the dependant parts of the library have been
properly initialized. The App object also maintains the MainLoop, which is used to drive
a wxPython application.

This recipe will demonstrate the basic pattern that all wxPython applications can be built from.

How to do it...
Here we will create a "Hello World" like application to show the basic structure of a
wxPython application:

import wx

class MyApp(wx.App):
 def OnInit(self):
 wx.MessageBox("Hello wxPython", "wxApp")
 return True

if __name__ == "__main__":
 app = MyApp(False)
 app.MainLoop()

Running the previous script will result in the following pop-up dialog shown on the screen.
Click on OK to close it and exit the application.

Chapter 1

�

How it works...
The application object calls its OnInit method when it is created. This method is overridden
and used as the main entry point for initializing this application. By returning True, the
method informs the framework that it is good to go. OnInit is where most applications
will do their initialization and create their main window(s).

In this example, we created the App object by passing False as the first argument. This
argument is used to tell wxPython whether to redirect output or not. When developing an
application, it is advised to always set this to False, and to run scripts from the command
line so that you can see any error output that might be missed when running the script by
double clicking on it.

After creating the application object and once all initializations are complete, the last thing
that you need to do is to call the App objects MainLoop method in order to start the event
loop. This method will not return until the last top-level window is destroyed or until the App
object is told to exit. wxPython is an event-driven system and the MainLoop is the heart of the
whole system. During each iteration of the loop, events are dispatched to perform all of the
tasks in the GUI, such as handling mouse clicks, moving the window, and redrawing the screen.

There's more...
The wx.App class constructor has four optional keyword arguments:

wx.App(redirect=True, filename=None,
 useBestVisual=False,clearSigInt=True)

The four optional keyword arguments are as follows:

redirect: Redirect stdout.

filename: If redirect is True this can be used to specify an output file to redirect to.

useBestVisual: Specifies whether the application should try to use the best visuals
provided by the underlying toolkit. (It does not have an affect on most systems.)

clearSigInt: Should SIGINT be cleared? Setting this to True will allow the
application to be terminated by pressing Ctrl + C, like most other applications.

The main frame
For most applications, you will want to display a window for its users to interact with. In
wxPython, the most typical window object is known as a Frame. This recipe will show you
how to sublass a Frame and display it in an application.

Getting Started with wxPython

10

How to do it...
This example extends upon the previous recipe to add a minimal empty application window:

import wx

class MyApp(wx.App):
 def OnInit(self):
 self.frame = MyFrame(None, title="The Main Frame")
 self.SetTopWindow(self.frame)
 self.frame.Show()

 return True

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

 # Attributes
 self.panel = wx.Panel(self)

if __name__ == "__main__":
 app = MyApp(False)
 app.MainLoop()

Running the previous code will result in a window like the following being shown:

How it works...
The Frame is the main top-level window and container for most applications. Let's start
by examining our MyFrame class. In this class there is one important thing to note. We
created a Panel object as a child window of the Frame. You can think of a Panel as a box
for containing other controls. Also, in order for a Frame to operate and look correct on all
platforms, it is important that it has a Panel as its main child.

Chapter 1

11

Firstly, in the OnInit method of our App, we create an instance of MyFrame, passing None
as its first parameter. This parameter is used to specify the parent window of the Frame.
Because this is our main window, we pass in None to indicate that it has no parent. Secondly,
we call the SetTopWindow method of our App in order to set our newly-created MyFrame
instance as the application's top window. Thirdly and finally, we call Show on our Frame; this
simply does what its name suggests, and shows the Frame so that a user can see it, though
the Frame will not actually be visible on the screen until the MainLoop is started.

There's more...
The Frame class has a number of style flags that can be set in its constructor to modify the
behavior and appearance of the window. These style flags can be combined as a bitmask and
are supplied as the value to the constructors' style parameter. The following table outlines
some of the common ones. A full list of all available styles can be found in the wxPython
online documentation, at http://wxpython.org/onlinedocs.php.

Style flags Description
wx.DEFAULT_FRAME_STYLE This is a bitwise OR of the following flags:

wx.MINIMIZE_BOX

wx.MAXIMIZE_BOX

wx.RESIZE_BORDER

wx.SYSTEM_MENU

wx.CAPTION

wx.CLOSE_BOX

wx.CLIP_CHILDREN

wx.MINIMIZE_BOX Display a title bar button that minimizes the Frame
wx.MAXIMIZE_BOX Display a title bar button that maximizes the Frame
wx.CLOSE_BOX Display a title bar button that allows the Frame to

be closed. (the "X" button)
wx.RESIZE_BORDER Allow the Frame to be resized by the user when

they drag the border
wx.CAPTION Displays a caption on the Frame
wx.SYSTEM_MENU Display a system menu (that is, the menu that

is shown when clicking in the frames icon
on Windows)

wx.CLIP_CHILDREN Eliminates flicker caused by the background being
repainted (Windows only)

Getting Started with wxPython

12

Understanding the window hierarchy
All of the different windows and controls in wxPython have a hierarchy of containment. Some
controls can be containers for other controls and some cannot. This recipe is geared towards
giving an understanding of this hierarchy.

Getting ready
We will be making just a minor change to the Frame from the previous recipe, so let's open
the code from that recipe to get ready for the new changes.

How to do it...
Here is the new code that will replace our existing Frame class.

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

 # Attributes
 self.panel = wx.Panel(self)
 self.panel.SetBackgroundColour(wx.BLACK)
 self.button = wx.Button(self.panel,
 label="Push Me",
 pos=(50, 50))

How it works...
Basically, there are three general categories of window objects that are tiered, in the following
containment order:

Top-Level Windows (Frames and Dialogs)

General Containers (Panels and Notebooks, …)

Controls (Buttons, CheckBoxes, ComboBoxes, …)

Chapter 1

13

The Top-Level Window is at the top of the hierarchy and it can contain any kind of window
except another Top-Level Window. General Containers come next, and they can arbitrarily
hold any other General Container or Control. Finally, at the bottom of the Hierarchy are the
Controls. These are the functional part of a UI that the user will interact with. They can, in
some cases, be used to hold other controls, but typically will not. The containment hierarchy is
connected to the parental hierarchy of controls. A parent will be the container for its children.

When running the previous sample, this hierarchy becomes apparent. The Frame, as we have
previously seen, is the outer-most container object; next you can see the Panel, which we
turned black to make it more visible; finally you can see the Button, which was added
as a child of the Panel.

See also
The Referencing controls recipe in this chapter offers further explanation as to how
the window hierarchy is connected together.

Referencing controls
All Window objects in an application are connected in various ways. Quite often it is useful
to get a reference to an instance of a control so that you can perform some operation on
the control or retrieve some data from it. This recipe will show some of the facilities that
are available for finding and getting references to controls.

How to do it...
Here we extend the MyFrame class from the previous recipe to have an event handler for
when its Button is clicked. In the event handler we can see some ways to access different
controls in our UI during runtime:

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

 # Attributes
 self.panel = wx.Panel(self)
 self.panel.SetBackgroundColour(wx.BLACK)
 button = wx.Button(self.panel,
 label="Get Children",
 pos=(50, 50))
 self.btnId = button.GetId()

Getting Started with wxPython

14

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnButton, button)

 def OnButton(self, event):
 """Called when the Button is clicked"""
 print "\nFrame GetChildren:"
 for child in self.GetChildren():
 print "%s" % repr(child)

 print "\nPanel FindWindowById:"
 button = self.panel.FindWindowById(self.btnId)
 print "%s" % repr(button)
 # Change the Button's label
 button.SetLabel("Changed Label")

 print "\nButton GetParent:"
 panel = button.GetParent()
 print "%s" % repr(panel)

 print "\nGet the Application Object:"
 app = wx.GetApp()
 print "%s" % repr(app)

 print "\nGet the Frame from the App:"
 frame = app.GetTopWindow()
 print "%s" % repr(frame)

How it works...
Each window in the framework keeps a reference to its parent and to its children. Running our
program now will print out the results of using the accessor functions that all windows have
for finding and retrieving references to their children and other related controls.

GetChildren: This method will return a list of all of the children that the given
control has

FindWindowById: This can be used to find a specific child window by using its ID

GetParent: This method will retrieve the window's parent window

wx.GetApp: This is a global function for getting access to the one and only
application object

App.GetTopWindow: This gets the main Top-Level Window in the application

Chapter 1

15

Clicking on the Button will cause the OnButton method to be called. In OnButton, there
are examples that show how to use each of the above methods. Each of them will return a
reference to a GUI object. In our example, calling GetChildren on the Panel will return a
list of its children controls. Iterating over this list, we print out each of the children, which will
just be the Button in this case. FindWindowById can be used to find a specific child control;
again, we called this on our Panel to find the Button control. Just to show that we found
the Button, we used its SetLabel method to change its label. Next, calling GetParent
on the Button will return the Button's parent, which is the Panel. Finally, by using the
global GetApp function, we can get a reference to the application object. The App object's
GetTopWindow will return a reference to our Frame.

There's more...
Here are a few more useful methods available for getting references to controls.

Function Name Description

wx.FindWindowByLabel(label) Finds a child window by looking for it by Label
wx.FindWindowByName(name) Finds a child window by looking for it by Name
wx.GetTopLevelParent() Gets the Top-Level Window, which is at the top of

the given control's parental hierarchy

See also
The Understanding the window hierarchy recipe in this chapter outlines the structure
of how windows are contained within and are related to each other.

Using Bitmaps
It's likely that, at some point, you will want to be able to display an image in your application. A
Bitmap is the basic data type that is used to display images in an application. This recipe will
show how to load an image file into a Bitmap and then display it in a Frame.

How to do it...
To see how to use Bitmaps, we will create a little application that loads an image from the
hard disk and displays it in a Frame:

import os
import wx

class MyApp(wx.App):
 def OnInit(self):
 self.frame = MyFrame(None, title="Bitmaps")

Getting Started with wxPython

16

 self.SetTopWindow(self.frame)
 self.frame.Show()

 return True

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

 # Attributes
 self.panel = wx.Panel(self)

 img_path = os.path.abspath("./face-grin.png")
 bitmap = wx.Bitmap(img_path, type=wx.BITMAP_TYPE_PNG)
 self.bitmap = wx.StaticBitmap(self.panel,
 bitmap=bitmap)

if __name__ == "__main__":
 app = MyApp(False)
 app.MainLoop()

How it works...
The StaticBitmap control is the simplest method of displaying a Bitmap in an application.
In the example code that accompanies this recipe, we have an image in the same directory
as our script, called face-grin.png, that we want to display. In order to display the image
we first use the Bitmap constructor to load the image into memory, and then pass it to the
StaticBitmap control in order to display the image on the screen. The constructor takes a
path to the file, and a type argument that specifies the image format.

There's more...
There is built-in support for the most common image formats. The following list shows the
supported image file formats:

wx.BITMAP_TYPE_ANY

wx.BITMAP_TYPE_BMP

wx.BITMAP_TYPE_ICO

wx.BITMAP_TYPE_CUR

wx.BITMAP_TYPE_XBM

wx.BITMAP_TYPE_XPM

Chapter 1

17

wx.BITMAP_TYPE_TIF

wx.BITMAP_TYPE_GIF

wx.BITMAP_TYPE_PNG

wx.BITMAP_TYPE_JPEG

wx.BITMAP_TYPE_PNM

wx.BITMAP_TYPE_PCX

wx.BITMAP_TYPE_PICT

wx.BITMAP_TYPE_ICON

wx.BITMAP_TYPE_ANI

wx.BITMAP_TYPE_IFF

See also
The Working with ToolBars recipe in Chapter 3, Basic Building Blocks of a User
Interface contains some more Bitmap usage examples.

The Customizing the ArtProvider recipe in Chapter 10, Creating Components and
Extending Functionality provides more on information how to create Bitmaps.

Adding icons to Windows
Adding an icon to your application's title bar as a way of branding the application that will
help to set it apart and distinguish it from the other applications running on the desktop.
This recipe will show how easy it is to add an icon to a Frame.

Support for adding an Icon to the title bar on OS X is currently not
supported by wxPython 2.8.

How to do it...
Here we will create a Frame subclass that loads an image file from the hard disk and displays
it on its title bar:

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title, pos,
 size, style, name)

Getting Started with wxPython

18

 # Attributes
 self.panel = wx.Panel(self)

 # Setup
 path = os.path.abspath("./face-monkey.png")
 icon = wx.Icon(path, wx.BITMAP_TYPE_PNG)
 self.SetIcon(icon)

Displaying this Frame subclass will result in a window like the following. Comparing this to the
one in the Main Frame recipe, you can see the new icon to the left of the title:

How it works...
In this recipe we have a small (16x16) image of a monkey that we want to show in the title bar
of the Frame. For simplicity, this image is located in the same directory as our script and we
load it using a relative path. The Frame requires an icon instead of a Bitmap, so we have to
use an Icon to load our image into memory. After loading the image, all that is left is to call
the Frame's SetIcon method in order to set the Icon for the Frame.

See also
The Using Bitmaps recipe in this chapter discusses the more commonly-used Bitmap
image type.

Utilizing Stock IDs
All controls, and many other user-interface elements, such as menus, take an ID as an
argument in their constructor that can be used to identify the control or object inside event
handlers. Typically, the value of wx.ID_ANY is used to let the system automatically generate
an ID for the item, or the wx.NewId function is used to create a new ID. However, there are
also a number of predefined IDs available in the wx module that have special meaning for
certain common items that many applications tend to have, such as Copy/Paste menu items
or Ok/Cancel buttons. The expected behavior and appearance of some of these items can vary
from platform to platform. By using the stock ID, wxPython will take care of the differences for
you. This recipe will show a few of the places in which these IDs can come in handy.

Chapter 1

1�

How to do it...
This code snippet shows how to make use of some of the predefined IDs to simplify the
creation of some common UI elements:

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

 # Attributes
 self.panel = wx.Panel(self)

 # Setup
 ok_btn = wx.Button(self.panel, wx.ID_OK)
 cancel_btn = wx.Button(self.panel, wx.ID_CANCEL,
 pos=(100, 0))

 menu_bar = wx.MenuBar()
 edit_menu = wx.Menu()
 edit_menu.Append(wx.NewId(), "Test")
 edit_menu.Append(wx.ID_PREFERENCES)
 menu_bar.Append(edit_menu, "Edit")
 self.SetMenuBar(menu_bar)

The previous class will create the following window:

How it works...
The first thing to notice in this recipe is that no labels were specified for the two buttons
that we created. By using the Stock IDs for OK and Cancel as their IDs, the framework will
automatically put the proper label on the control.

Getting Started with wxPython

20

This also applies to menu items, as can be seen in our Edit menu for the Preferences item.
Another important thing to note is that if this sample is run on Macintosh OS X, the framework
will also automatically move the Preferences menu item to its expected location in the
Application menu.

There's more...
Using buttons with Stock IDs in a Modal Dialog will also allow the dialog to be dismissed,
and return the appropriate value, such as wx.OK or wx.CANCEL, without the need to
connect event handlers to the buttons for performing this standard action. Automatically
getting the correct button layout for a dialog can also be achieved by using Stock IDs with
StdDialogButtonSizer.

See also
The Creating Stock Buttons recipe in Chapter 3, Basic Building Blocks of a User
Interface shows how Stock IDs can be used to construct standard buttons.

The Standard dialog button layout recipe in Chapter 7, Window Layout and Design
shows how to easily add common buttons to dialogs by using Stock IDs.

The Optimizing for OS X recipe in Chapter 12, Building and Managing Applications
for Distribution shows more uses for Stock IDs.

Accessing the clipboard
The Clipboard is a system-wide, accessible way of getting data to and from one application
to another. This recipe will show how to get text from the clipboard, as well as how to put text
in the clipboard for other applications to access.

How to do it...
 The following two functions can be used to get text from and put text on the clipboard:

def SetClipboardText(text):
 """Put text in the clipboard
 @param text: string
 """
 data_o = wx.TextDataObject()
 data_o.SetText(text)
 if wx.TheClipboard.IsOpened() or wx.TheClipboard.Open():
 wx.TheClipboard.SetData(data_o)
 wx.TheClipboard.Close()

Chapter 1

21

def GetClipboardText():
 """Get text from the clipboard
 @return: string
 """
 text_obj = wx.TextDataObject()
 rtext = ""
 if wx.TheClipboard.IsOpened() or wx.TheClipboard.Open():
 if wx.TheClipboard.GetData(text_obj):
 rtext = text_obj.GetText()
 wx.TheClipboard.Close()
 return rtext

How it works...
wxPython provides a singleton clipboard object that can be used to interact with the systems
clipboard. This class works with data objects that are used to represent the underlying system
data types. The use of the clipboard is a three-step process:

Open the Clipboard

Set/Get the DataObject

Close the Clipboard

There's more...
The clipboard supports many other data types besides just text. wxPython provides built-in
support for some additional types, as well as classes for defining your own custom types. The
usage of these different data types follows the same general pattern as the TextDataObject.

Data types Description
wx.BitmapDataObject Used to get Bitmaps from and put Bitmaps on the

Clipboard
wx.CustomDataObject Can hold any Python picklable data type
wx.DataObjectComposite Can contain any arbitrary number of simple data types

and make them all available at once
wx.FileDataObject Used for holding filenames
wx.URLDataObject Used for holding URLs

See also
The Supporting drag and drop recipe in this chapter is related to the clipboard in that
it allows for the transfer of data between applications.

Getting Started with wxPython

22

Supporting drag and drop
In order to improve usability, it is good to support drag and drop in an application so that the
user can simply drop files or other objects into your application. This recipe will show how
to support accepting a CompositeDataObject that supports both files and text.

How to do it...
First we will define a custom drop target class:

class FileAndTextDropTarget(wx.PyDropTarget):
 """Drop target capable of accepting dropped
 files and text
 """
 def __init__(self, file_callback, text_callback):
 assert callable(file_callback)
 assert callable(text_callback)
 super(FileAndTextDropTarget, self).__init__()
 # Attributes
 self.fcallback = file_callback # Drop File Callback
 self.tcallback = text_callback # Drop Text Callback
 self._data = None
 self.txtdo = None
 self.filedo = None

 # Setup
 self.InitObjects()

 def InitObjects(self):
 """Initializes the text and file data objects"""
 self._data = wx.DataObjectComposite()
 self.txtdo = wx.TextDataObject()
 self.filedo = wx.FileDataObject()
 self._data.Add(self.txtdo, False)
 self._data.Add(self.filedo, True)
 self.SetDataObject(self._data)

 def OnData(self, x_cord, y_cord, drag_result):
 """Called by the framework when data is dropped
 on the target
 """

Chapter 1

23

 if self.GetData():
 data_format = self._data.GetReceivedFormat()
 if data_format.GetType() == wx.DF_FILENAME:
 self.fcallback(self.filedo.GetFilenames())
 else:
 self.tcallback(self.txtdo.GetText())

 return drag_result

Then to make use of the FileAndTextDropTarget, we assign it to a window using the
window object's SetDropTarget method.

class DropTargetFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="DropTargetFrame"):
 super(DropTargetFrame, self).__init__(parent, id,
 title, pos,
 size, style,
 name)

 # Attributes
 choices = ["Drag and Drop Text or Files here",]
 self.list = wx.ListBox(self,
 choices=choices)
 self.dt = FileAndTextDropTarget(self.OnFileDrop,
 self.OnTextDrop)
 self.list.SetDropTarget(self.dt)

 # Setup
 self.CreateStatusBar()

 def OnFileDrop(self, files):
 self.PushStatusText("Files Dropped")
 for f in files:
 self.list.Append(f)

 def OnTextDrop(self, text):
 self.PushStatusText("Text Dropped")
 self.list.Append(text)

Getting Started with wxPython

24

How it works...
The framework will call the OnData method of our DropTarget when the window has
received the drop data. When OnData is called, we simply get the data from our DataObject
and pass it to the appropriate callback function to let our window decide how to handle
the data.

All window objects have a SetDropTarget method that can be used to assign a
DropTarget, so this class can be reused for almost any type of control. In the previous
example, we assigned it to a ListBox and then appended the dropped data to the list in
each of our callbacks.

There's more...
The PyDropTarget class provides a few more methods that can be called at different times
during the drag operation. These methods can also be overridden in order to do things such
as change the mouse cursor, show a custom drag image, or reject the drag object.

Methods When the methods are called
OnEnter(x, y, drag_result) Called when a drag object enters the

window. Returns a drag result value (that is,
wx.DragNone, wx.DragCopy, …)

OnDragOver(x, y, drag_result) Called while the mouse is dragging the object
over the target

OnLeave() Called when the mouse leaves the drop target
OnDrop(x, y) Called when the user drops the object. Return

True to accept the object or False to reject it
OnData(x, y, drag_result) Called after OnDrop, when the data object

was accepted

See also
The Accessing the clipboard recipe in this chapter shows another way to perform
data transfer between applications.

Two-stage widget creation
Two-stage widget creation is a way of initialzing a widget and then its UI part, in two steps.
This method of object creation is used by class factories such as XRC (XML Resource) and to
set extra style flags that cannot be set by using the constructor's regular style parameter. This
recipe will show how to use two-stage creations to create a frame that has a special button
that can be used to put it into a context-sensitive help mode.

Chapter 1

25

This is a Windows-specific example; other platforms do not support
having a ContextButton in their title bar.

How to do it...
Here we will create a Frame subclass that uses two stage creation in order to set an extra
style flag:

class MyFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 pre = wx.PreFrame()
 pre.SetExtraStyle(wx.FRAME_EX_CONTEXTHELP)
 pre.Create(parent, *args, **kwargs)
 self.PostCreate(pre)

How it works...
In wxPython, two-stage widget creation is actually a three-step process. First, each class that
supports it has its own PreClass that is used as a factory constructor that pre-creates the
object. At this point, the pre object can be used to set the extra style flag. The next step is
to call Create. Create acts like the regular constructor and creates the UI portion of the
control. The final step is to call PostCreate, PostCreate does the work of translating the
pre object into self so that the object will appear just as if the class's __init__ method
had been called normally.

See also
The Using XRC recipe in Chapter 7, Window Layout and Design discusses XRC.

Understanding inheritance limitations
wxPython is a wrapper around the wxWidgets C++ framework. This relationship means that
inside most wxPython objects there is a C++ object. Because of this, methods that belong to
wxPython classes cannot always be overridden in the same way as they can with a normal
Python object.

To demonstrate this behavior, this recipe will show how to create a class that will automatically
add its children windows to its Sizer layout. This will be contrasted to a class that does not
expose its virtual methods to the Python layer of the class.

Getting Started with wxPython

26

How to do it...
To demonstrate the difference in overriding methods, we will create two similar classes first
starting with one that derives from the standard Panel class:

import wx

class MyPanel(wx.Panel):
 def __init__(self, parent):
 super(MyPanel, self).__init__(parent)

 sizer = wx.BoxSizer()
 self.SetSizer(sizer)

 def AddChild(self, child):
 sizer = self.GetSizer()
 sizer.Add(child, 0, wx.ALIGN_LEFT|wx.ALL, 8)
 return super(MyPanel, self).AddChild(child)

Now we will create a class that is exactly the same except that it derives from the Py version
of the class:

class MyVirtualPanel(wx.PyPanel):
 """Class that automatically adds children
 controls to sizer layout.
 """
 def __init__(self, parent):
 super(MyVirtualPanel, self).__init__(parent)

 sizer = wx.BoxSizer()
 self.SetSizer(sizer)

 def AddChild(self, child):
 sizer = self.GetSizer()
 sizer.Add(child, 0, wx.ALIGN_LEFT|wx.ALL, 8)
 return super(MyVirtualPanel, self).AddChild(child)

Now below we have a little sample application that uses the above two classes:

class MyFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 super(MyFrame, self).__init__(parent,
 *args, **kwargs)

 # Attributes
 self.mypanel = MyPanel(self)
 self.mypanel.SetBackgroundColour(wx.BLACK)
 self.virtpanel = MyVirtualPanel(self)

Chapter 1

27

 self.virtpanel.SetBackgroundColour(wx.WHITE)

 # Setup
 self.__DoLayout()

 def __DoLayout(self):
 """Layout the window"""
 # Layout the controls using a sizer
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.mypanel, 1, wx.EXPAND)
 sizer.Add(self.virtpanel, 1, wx.EXPAND)
 self.SetSizer(sizer)

 # Create 3 children for the top panel
 for x in range(3):
 wx.Button(self.mypanel,
 label="MyPanel %d" % x)
 # Create 3 children for the bottom panel
 for x in range(3):
 wx.Button(self.virtpanel,
 label="VirtPanel %d" % x)

 self.SetInitialSize(size=(300, 200))

class MyApp(wx.App):
 def OnInit(self):
 self.frame = MyFrame(None,
 title="Virtualized Methods")
 self.SetTopWindow(self.frame)
 self.frame.Show()

 return True

if __name__ == "__main__":
 app = MyApp(False)
 app.MainLoop()

Running this code will result in a window like the following one being displayed:

Getting Started with wxPython

28

How it works...
In each version of our Panel class we override the AddChild method, which is called every
time that a window has a new child window created. AddChild is called inside the C++ part
of the class when this happens, so in order to be able to override the method in our Python
version of the class, we need to use the special version that provides access to overriding
the virtualized method from the C++ class.

The classes in wxPython that have a version of the class prefixed with Py have the virtualized
versions of many of the methods exposed, so that when they are overridden in a Python
subclass they get bound to the method in the C++ layer of the object and will be called
by the framework instead of the base class's implementation.

This can be seen in the screenshot of our recipe application that was shown above. The
top version of the class that does not derive from PyPanel has all three of its Buttons
stacked on top of each other in the top left-hand corner of the window, because its overridden
AddChild method is never called. On the other hand, the version of the class that does
derive from PyPanel has its AddChild method called and is able to lay out the Buttons
in its Sizer.

There's more...
It is not well documented as to which methods are exposed as virtual methods and which
ones are not. Here is a little trick that can help you to identify which virtual methods are
available in a given class. Just run the following code inside the Python interpreter:

import wx
for method in dir(wx.PyPanel):
 if method.startswith('base_'):
 print method

The argument in the dir() call can be changed to whatever class you want to inspect.
Running this will print out a list of all of the methods in the class that are virtualized. The
base_ methods are generated by SWIG as a part of the wxPython bindings to wxWidgets,
and should not be used directly in your code. Instead, the methods without the base_ prefix
should be used.

See also
The Creating a custom control recipe in Chapter 10, Creating Components and
Extending Functionality, shows more usage examples of overriding virtual methods.

The Using a BoxSizer recipe in Chapter 7, Window Design and Layout, explains how
the BoxSizer class can be used to perform the layout of controls in a window.

2
Responding to Events

In this chapter, we will cover:

Handling events

Understanding event propagation

Handling Key events

Using UpdateUI events

Playing with the mouse

Creating custom event classes

Managing event handlers with EventStack

Validating input with validators

Handling Apple events

Introduction
In an event-driven system, events are used to connect actions within the framework to
callback functions that are linked to those events. Applications that are built upon an
event-driven framework make use of these events in order to know when to respond to actions
that are initiated by the user or the system. In a user interface, events are the way to know
when a button is clicked, when a menu has been selected, or any other one of a wide variety
of actions that a user could take while interacting with the applications interface.

As you can see, knowing how to respond to events that occur during the life of an application
is a crucial part of creating a functional application. So let's dive into the event-driven world
of wxPython.

Responding to Events

30

Handling events
wxPython is an event-driven system. The usage of this system is pretty straightforward and
regular across the framework. The basic patterns of working with events are the same
regardless of the type of control or event that your application will interact with. This recipe
will introduce the basics of working in wxPython's event system.

How to do it...
Let's create a simple Frame with two buttons in it to show how to work with events:

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

 # Attributes
 self.panel = wx.Panel(self)

 self.btn1 = wx.Button(self.panel, label="Push Me")
 self.btn2 = wx.Button(self.panel, label="push me too")

 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(self.btn1, 0, wx.ALL, 10)
 sizer.Add(self.btn2, 0, wx.ALL, 10)
 self.panel.SetSizer(sizer)

 self.Bind(wx.EVT_BUTTON, self.OnButton, self.btn1)
 self.Bind(wx.EVT_BUTTON,
 lambda event:
 self.btn1.Enable(not self.btn1.Enabled),
 self.btn2)

 def OnButton(self, event):
 """Called when self.btn1 is clicked"""
 event_id = event.GetId()
 event_obj = event.GetEventObject()
 print "Button 1 Clicked:"
 print "ID=%d" % event_id
 print "object=%s" % event_obj.GetLabel()

Chapter 2

31

How it works...
The lines of code to take notice of in this recipe are the two Bind calls. The Bind method
is used to associate an event handler function with an event that may be sent to a control.
Events always propagate up the window hierarchy and never down. In this example, we bound
the button event to the Frame, but the events will originate from the Button objects that are
children of the Panel. The Frame object is at the top of the hierarchy containing the Panel,
which in turn contains the two Buttons. Because of this, since the event callback is not
handled by the Button or the Panel, it will propagate to the Frame where our OnButton
handler will be called.

The Bind method takes two required parameters:

The event binder object (EVT_FOO)

A callable object that takes an event object as its first parameter. This is the event
handler function that will be called when the event occurs.

The optional parameters are for specifying the originating control to bind the event handler
to. We bound one handler for each of our buttons in this example by specifying the Button
objects as the third parameter to Bind.

EVT_BUTTON is the event binder for when a Button is clicked by the user of the application.
When the first button is clicked, the event handler OnButton will be called to notify our
program that this action occurred. The event object will be passed to the handler function
as its first parameter. The event object has a number of methods that can be used to get
information about the event and what control it came from. Each event may have different
data available, depending on the type of event that is related to the type of control it
originated from.

For our second Button, we used a lambda function as a shorthand way of creating an
event-handler function without needing to define a new function. This is a handy way
of handling events that only need to perform simple actions.

See also

The Application object recipe in Chapter 1, Getting Started with wxPython talks about
the MainLoop, which is at the core of the event system.

The Understanding the window hierarchy recipe in Chapter 1, Getting Started with
wxPython describes the window containment hierarchy.

The Creating Stock Buttons recipe in Chapter 3, Basic Building Blocks of a User
Interface explains Buttons in detail.

The Using a BoxSizer recipe in Chapter 7, Window Layout and Design explains how
to use the BoxSizer class to lay out controls.

Responding to Events

32

Understanding event propagation
There are two main types of Event Objects in wxPython, each with its own distinct behavior:

Events

Command Events

Basic Events are events that do not propagate upwards in the window hierarchy. Instead,
they stay local to the window that they were sent to or originated in. The second type,
CommandEvents, are the more common type of events, and differ from regular events in that
they propagate up the window parental hierarchy until they are handled or reach the end of
the line at the application object. This recipe will explore how to work with, understand, and
control the propagation of events.

How to do it...
To explore how events propagate, lets create another simple application:

import wx

ID_BUTTON1 = wx.NewId()
ID_BUTTON2 = wx.NewId()

class MyApp(wx.App):
 def OnInit(self):
 self.frame = MyFrame(None, title="Event Propagation")
 self.SetTopWindow(self.frame)
 self.frame.Show()

 self.Bind(wx.EVT_BUTTON, self.OnButtonApp)

 return True

 def OnButtonApp(self, event):
 event_id = event.GetId()
 if event_id == ID_BUTTON1:
 print "BUTTON ONE Event reached the App Object"

class MyFrame(wx.Frame):
 def __init__(self, parent, id=wx.ID_ANY, title="",
 pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.DEFAULT_FRAME_STYLE,
 name="MyFrame"):
 super(MyFrame, self).__init__(parent, id, title,
 pos, size, style, name)

Chapter 2

33

 # Attributes
 self.panel = MyPanel(self)

 self.btn1 = wx.Button(self.panel, ID_BUTTON1,
 "Propagates")
 self.btn2 = wx.Button(self.panel, ID_BUTTON2,
 "Doesn't Propagate")

 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(self.btn1, 0, wx.ALL, 10)
 sizer.Add(self.btn2, 0, wx.ALL, 10)
 self.panel.SetSizer(sizer)

 self.Bind(wx.EVT_BUTTON, self.OnButtonFrame)

 def OnButtonFrame(self, event):
 event_id = event.GetId()
 if event_id == ID_BUTTON1:
 print "BUTTON ONE event reached the Frame"
 event.Skip()
 elif event_id == ID_BUTTON2:
 print "BUTTON TWO event reached the Frame"

class MyPanel(wx.Panel):
 def __init__(self, parent):
 super(MyPanel, self).__init__(parent)

 self.Bind(wx.EVT_BUTTON, self.OnPanelButton)

 def OnPanelButton(self, event):
 event_id = event.GetId()
 if event_id == ID_BUTTON1:
 print "BUTTON ONE event reached the Panel"
 event.Skip()
 elif event_id == ID_BUTTON2:
 print "BUTTON TWO event reached the Panel"
 # Not skipping the event will cause its
 # propagation to end here

if __name__ == "__main__":
 app = MyApp(False)
 app.MainLoop()

Running this will create an application with two buttons on it. Click each of the buttons
to see how the events propagate differently.

Responding to Events

34

How it works...
The chain of event handlers that will be called starts at the object that the event originates
from. In this case, it will be one of our two buttons. Each level in the window hierarchy of this
application has a general event handler bound to it, that will receive any button events.

Clicking the first button will show that all of the event handlers get called. This is because
for the first button we called the event's Skip method. Calling Skip on an event will tell it to
continue propagating to the next level of event handlers in the hierarchy. This will be apparent,
as three statements will be printed to the console. On the other hand, clicking the second
button will result in only one event handler being called, because Skip is not called.

See also
The Handling events recipe in this chapter explains how event handlers work.

The Understanding the window hierarchy recipe in Chapter 1, Getting Started with
wxPython describes the window hierarchy that events propagate through.

Handling Key events
KeyEvents are events that are associated with keyboard actions. Many controls can accept
keyboard events. Each time that a key is pressed on the keyboard, there will be two or three
events sent to the control that has the keyboard focus, depending on what key was pressed.
This recipe will create a simple text editor window, in order to demonstrate how to use
KeyEvents to filter text that is added to a TextCtrl.

How to do it...
To see some KeyEvents in action, let's make a simple window that has a TextCtrl on it:

class MyFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 super(MyFrame, self).__init__(parent, *args, **kwargs)

 # Attributes
 self.panel = wx.Panel(self)
 self.txtctrl = wx.TextCtrl(self.panel,
 style=wx.TE_MULTILINE)

 # Layout
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(self.txtctrl, 1, wx.EXPAND)
 self.panel.SetSizer(sizer)
 self.CreateStatusBar() # For output display

Chapter 2

35

 # Event Handlers
 self.txtctrl.Bind(wx.EVT_KEY_DOWN, self.OnKeyDown)
 self.txtctrl.Bind(wx.EVT_CHAR, self.OnChar)
 self.txtctrl.Bind(wx.EVT_KEY_UP, self.OnKeyUp)

 def OnKeyDown(self, event):
 """KeyDown event is sent first"""
 print "OnKeyDown Called"
 # Get information about the event and log it to
 # the StatusBar for display.
 key_code = event.GetKeyCode()
 raw_code = event.GetRawKeyCode()
 modifiers = event.GetModifiers()
 msg = "key:%d,raw:%d,modifers:%d" % \
 (key_code, raw_code, modifiers)
 self.PushStatusText("KeyDown: " + msg)

 # Must Skip the event to allow OnChar to be called
 event.Skip()

 def OnChar(self, event):
 """The Char event comes second and is
 where the character associated with the
 key is put into the control.
 """
 print "OnChar Called"
 modifiers = event.GetModifiers()
 key_code = event.GetKeyCode()
 # Beep at the user if the Shift key is down
 # and disallow input.
 if modifiers & wx.MOD_SHIFT:
 wx.Bell()
 elif chr(key_code) in "aeiou":
 # When a vowel is pressed append a
 # question mark to the end.
 self.txtctrl.AppendText("?")
 else:
 # Let the text go in to the buffer
 event.Skip()

 def OnKeyUp(self, event):
 """KeyUp comes last"""
 print "OnKeyUp Called"
 event.Skip()

When typing in this window, it will not allow text to be entered when the Shift key is pressed
and it will turn all vowels into question marks.

Responding to Events

36

How it works...
The KeyEvents are sent by the system in the following order:

EVT_KEY_DOWN

EVT_CHAR (only for keys that have a character associated with them)
EVT_KEY_UP

It's important to notice that we called Bind on our TextCtrl and not the Frame. This is
necessary because the KeyEvents will only be sent to the control that has the keyboard
focus, which in this window will be TextCtrl.

Each KeyEvent has a number of attributes attached to it in order to specify what key was
pressed and what other modifier keys were held down during the event, such as the Shift, Alt,
and Ctrl keys.

Calling Skip on the event allows the control to process it and for the next handler in the chain
to be called. For example, not skipping the event in the EVT_KEY_DOWN handler will block the
EVT_CHAR and EVT_KEY_UP handlers from being called.

In this sample, when a key on the keyboard is pressed, our OnKeyDown handler will be
called first. All we do there is print a message to stdout and display some information
about the event in the StatusBar, before calling Skip. Then, in our OnChar handler, we do
some simple filtering of uppercase letters by checking to see if the Shift key is in the event's
modifiers mask. If it is, we beep at the user and don't call Skip on the event, in order to
prevent the character from appearing in the TextCtrl. Also, as an example of modifying
what the event does, we perform a check for vowels by converting the raw key code into a
character string and if the key was for a vowel, we simply insert a question mark into the
TextCtrl instead. Finally, if the event was skipped in the OnChar handler, our OnKeyUp
handler will be called, where we simply print a message to stdout to show it was called.

There's more...
Some controls require the wx.WANTS_CHARS style flag to be specified in their constructor
in order to receive character events. The Panel class is the most common example that
requires this special style flag in order to receive EVT_CHAR events. Often, this is used to
perform special processing when creating a new custom control type that is derived from
a Panel.

See also
The Validating input with validators recipe in this chapter uses KeyEvents
to perform input validation.

Chapter 2

37

Using UpdateUI events
UpdateUIEvents are events that are sent by the framework on a regular basis in order to
allow an application to update the state of its controls. These are useful for performing tasks
such as changing when a control is enabled or disabled, based on the application's business
logic. This recipe will show how to use UpdateUIEvents to update the state of menu items,
depending on the current context of the UI.

How to do it...
In this example, we create a simple window with an Edit Menu and a TextCtrl. The Edit
Menu has three items in it that will be enabled or disabled based on the current selection
status in the TextCtrl by using UpdateUIEvents.

class TextFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 super(TextFrame, self).__init__(parent,
 *args,
 **kwargs)

 # Attributes
 self.panel = wx.Panel(self)
 self.txtctrl = wx.TextCtrl(self.panel,
 value="Hello World",
 style=wx.TE_MULTILINE)

 # Layout
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(self.txtctrl, 1, wx.EXPAND)
 self.panel.SetSizer(sizer)
 self.CreateStatusBar() # For output display

 # Menu
 menub = wx.MenuBar()
 editm = wx.Menu()
 editm.Append(wx.ID_COPY, "Copy\tCtrl+C")
 editm.Append(wx.ID_CUT, "Cut\tCtrl+X")
 editm.Append(ID_CHECK_ITEM, "Selection Made?",
 kind=wx.ITEM_CHECK)
 menub.Append(editm, "Edit")
 self.SetMenuBar(menub)

Responding to Events

38

 # Event Handlers
 self.Bind(wx.EVT_UPDATE_UI, self.OnUpdateEditMenu)

 def OnUpdateEditMenu(self, event):
 event_id = event.GetId()
 sel = self.txtctrl.GetSelection()
 has_sel = sel[0] != sel[1]
 if event_id in (wx.ID_COPY, wx.ID_CUT):
 event.Enable(has_sel)
 elif event_id == ID_CHECK_ITEM:
 event.Check(has_sel)
 else:
 event.Skip()

How it works...
UpdateUIEvents are sent periodically by the framework during idle time to allow the
application to check if the state of a control needs to be updated. Our TextFrame class has
three menu items in its Edit Menu that will be managed by our OnUpdateUI event handler.
In OnUpdateUI, we check the event's ID to see which object the event is being sent for,
and then call the appropriate UpdateUIEvent method on the event to change the state
of the control. The states of each of our menu items are dependent upon whether there is
a selection in the TextCtrl or not. Calling the GetSelection method of TextCtrl will
return a tuple with the start and end positions of the selection. When the two positions differ,
there is a selection in the control and we will Enable the Copy and Cut items, or in the case
of our Selection Made item we will set the check mark. If there is no selection, then the
items will become disabled or un-checked.

It's important to call the method on the event object to update the control and not the method
on the control itself, as it will allow for it to be updated far more efficiently. See the wxPython
API documentation for UpdateUIEvent to see the full listing of what methods are available.

There's more...
There are some static methods available in the UpdateUIEvent class that allow applications
to change the behavior of how the events are delivered. Most notable are the following
two methods:

1. wx.UpdateUIEvent.SetUpdateInterval

2. wx.UpdateUIEvent.SetMode

SetUpdateInterval can be used to configure how often the UpdateUIEvents are sent.
It takes a number of milliseconds as an argument. This is useful if you find that there is a
noticeable amount of overhead in handling UpdateUIEvents in your application. You can
use this to slow down the rate at which these events are sent.

Chapter 2

3�

SetMode can be used configure the behavior of what windows will receive the events, by
setting one of the following modes:

Mode Description
wx.UPDATE_UI_PROCESS_ALL Process UpdateUI events for all windows
wx.UPDATE_UI_PROCESS_SPECIFIED Only process UpdateUI events for the windows

that have the WS_EX_PROCESS_UI_UPDATES
extra style flag set.

See also
The Managing event handlers with EventStack recipe in this chapter shows a way
to manage UpdateUI events in a centralized way.

Playing with the mouse
MouseEvents can be used to interact with the mouse-position changes and mouse-button
clicks that a user makes within a window. This recipe will provide a quick crash course on
some of the common mouse events that are available for use in a program.

How to do it...
Here as an example, we will create a simple Frame class that has a Panel and a Button
to see how to interact with MouseEvents.

class MouseFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 super(MouseFrame, self).__init__(parent,
 *args,
 **kwargs)

 # Attributes
 self.panel = wx.Panel(self)
 self.btn = wx.Button(self.panel)

 # Event Handlers
 self.panel.Bind(wx.EVT_ENTER_WINDOW, self.OnEnter)
 self.panel.Bind(wx.EVT_LEAVE_WINDOW, self.OnLeave)
 self.panel.Bind(wx.EVT_LEFT_UP, self.OnLeftUp)
 self.panel.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown)

 def OnEnter(self, event):
 """Called when the mouse enters the panel"""
 self.btn.SetForegroundColour(wx.BLACK)

Responding to Events

40

 self.btn.SetLabel("EVT_ENTER_WINDOW")
 self.btn.SetInitialSize()

 def OnLeave(self, event):
 """Called when the mouse leaves the panel"""
 self.btn.SetLabel("EVT_LEAVE_WINDOW")
 self.btn.SetForegroundColour(wx.RED)

 def OnLeftDown(self, event):
 """Called for left down clicks on the Panel"""
 self.btn.SetLabel("EVT_LEFT_DOWN")

 def OnLeftUp(self, event):
 """Called for left clicks on the Panel"""
 position = event.GetPosition()
 self.btn.SetLabel("EVT_LEFT_UP")
 # Move the button
 self.btn.SetPosition(position - (25, 25))

How it works...
In this recipe, we made use of the events for when the mouse cursor enters the Panel
and for when the left mouse button is clicked on the Panel, to modify our Button. When
the mouse cursor enters a window's area, an EVT_ENTER_WINDOW event will be sent to it;
conversely, it will receive an EVT_LEAVE_WINDOW event when the cursor leaves the window.
When the mouse enters or leaves the Panel's area, we update the Button's label to show
what happened. When our Panel receives a left click event, we move the Button to where
the click took place.

The important thing to notice is that we called Bind on the Panel directly and not on the
Frame. This is important because MouseEvents are not CommandEvents so they will only be
sent to the window they originated from, and will not propagate up the containment hierarchy.

There's more...
There are a large number of MouseEvents that can be used to interact with other mouse
actions. The following table contains a quick reference to each of them:

MouseEvents Description
wx.EVT_MOUSEWHEEL Sent for mouse wheel scroll events. See the

GetWheelRotation and GetWheelDelta methods that
belong to the MouseEvent class for working with this event.

wx.EVT_LEFT_DCLICK Sent for left mouse button double-clicks.
wx.EVT_RIGHT_DOWN Sent when the right mouse button is pressed down.

Chapter 2

41

MouseEvents Description
wx.EVT_RIGHT_UP Sent when the right mouse button is released.
wx.EVT_RIGHT_DCLICK Sent for right mouse button double-clicks.
wx.EVT_MIDDLE_DOWN Sent when the middle mouse button is pressed down.
wx.EVT_MIDDLE_UP Sent when the middle mouse button is released.
wx.EVT_MIDDLE_DCLICK Sent for middle mouse button double-clicks.
wx.EVT_MOTION Sent every time the mouse cursor moves within the window.
wx.EVT_MOUSE_EVENTS This event binder can be used to get notifications for all

mouse related events.

See also
The Understanding event propagation recipe in this chapter discusses how different
types of events propagate.

Creating custom event classes
Sometimes it is necessary to define your own event types to signal custom actions and/or
transport data from one place in the application to another. This recipe will show two ways
of creating your own custom event class.

How to do it...
In this little snippet, we define two new event types using two different methods:

import wx
import wx.lib.newevent

Our first custom event
MyEvent, EVT_MY_EVENT = wx.lib.newevent.NewCommandEvent()

Our second custom event
myEVT_TIME_EVENT = wx.NewEventType()
EVT_MY_TIME_EVENT = wx.PyEventBinder(myEVT_TIME_EVENT, 1)
class MyTimeEvent(wx.PyCommandEvent):
 def __init__(self, id=0, time="12:00:00"):
 evttype = myEVT_TIME_EVENT
 super(MyTimeEvent, self).__init__(evttype, id)

 # Attributes
 self.time = time

 def GetTime(self):
 return self.time

Responding to Events

42

How it works...
The first example shows the easiest way to create a custom event class. The
NewCommandEvent function from the wx.lib.newevent module will return a tuple that
contains a new event class and an event binder for that class. The class definition that is
returned can be used to construct an event object. This method of creating a new event type
is of most use when you just want a new event type and don't need to send any custom data
with the event.

In order to make use of an event object, the object needs to be sent for processing by
the event loop. There are two ways to do this, one of which is the PostEvent function.
PostEvent takes two arguments: the first is the window that should receive the event, and
the second is the event itself. For example, the following two lines of code could be used
to create and send an instance of our custom MyEvent to a Frame:

event = MyEvent(eventID)
wx.PostEvent(myFrame, event)

The second way to send an event for processing is to use a window's ProcessEvent method:

event = MyEvent(eventID)
myFrame.GetEventHandler().ProcessEvent(event)

The difference between the two is that PostEvent will put the event into the application's
event queue to have it processed on the next iteration of the MainLoop, whereas
ProcessEvent will cause the event to be processed right then.

The second approach shows how to derive a new event type from the PyCommandEvent base
class. In order to create an event in this way, there are three things that need to be done.

1. Define a new event type using the NewEventType function.

2. Create the event binder object for binding event handlers with the PyEventBinder
class. This object takes the event type as its first argument.

3. Define the event class that is used for creating the event object.

This MyTimeEvent class can hold a custom value that we are using to send a formatted time
string. It is necessary to derive this from PyCommandEvent so that the custom Python data
and methods that we are attaching to this object will pass through the event system.

These events can now be sent to any event handler object, by using the PostEvent function
or the windows ProcessEvent method. Either of these methods will cause the event to be
dispatched to the event handler(s) that has been associated with the event by calling Bind.

Chapter 2

43

See also

The Understanding inheritance limitations recipe in Chapter 1, Getting Started with
wxPython explains the need for the Py versions of some classes.

The Handling events recipe in this chapter discusses the use of event handlers.

Managing event handlers with EventStack
EventStack is a module in wx.lib that provides a mix in class for the wx application object
that can be used to help manage event handlers for Menu and UpdateUI events. It can be
useful in programs that have multiple top-level windows or that need to switch the context of
which handlers are called depending on the control that has the focus. This recipe will present
a simple framework for managing events in Frame-based applications that make use of the
AppEventHandlerMixin class. A full working example, showing how to use this recipe's
classes, is included in the example code that accompanies this recipe.

How to do it...
With this code, we define two classes that work together. First we define an App base class
that uses the AppEventHandlerMixin.

import wx
import wx.lib.eventStack as eventStack

class EventMgrApp(wx.App, eventStack.AppEventHandlerMixin):
 """Application object base class that
 event handler managment.
 """
 def __init__(self, *args, **kwargs):
 eventStack.AppEventHandlerMixin.__init__(self)
 wx.App.__init__(self, *args, **kwargs)

class EventMgrFrame(wx.Frame):
 """Frame base class that provides event
 handler managment.
 """
 def __init__(self, parent, *args, **kwargs):
 super(EventMgrFrame, self).__init__(parent,
 *args,
 **kwargs)

 # Attributes
 self._menu_handlers = []
 self._ui_handlers = []

Responding to Events

44

 # Event Handlers
 self.Bind(wx.EVT_ACTIVATE, self._OnActivate)

 def _OnActivate(self, event):
 """Pushes/Pops event handlers"""
 app = wx.GetApp()
 active = event.GetActive()
 if active:

 mode = wx.UPDATE_UI_PROCESS_SPECIFIED
 wx.UpdateUIEvent.SetMode(mode)
 self.SetExtraStyle(wx.WS_EX_PROCESS_UI_UPDATES)

 # Push this instances handlers
 for handler in self._menu_handlers:
 app.AddHandlerForID(*handler)

 for handler in self._ui_handlers:
 app.AddUIHandlerForID(*handler)
 else:
 self.SetExtraStyle(0)
 wx.UpdateUIEvent.SetMode(wx.UPDATE_UI_PROCESS_ALL)
 # Pop this instances handlers
 for handler in self._menu_handlers:
 app.RemoveHandlerForID(handler[0])

 for handler in self._ui_handlers:
 app.RemoveUIHandlerForID(handler[0])

 def RegisterMenuHandler(self, event_id, handler):
 """Register a MenuEventHandler
 @param event_id: MenuItem ID
 @param handler: Event handler function
 """
 self._menu_handlers.append((event_id, handler))

 def RegisterUpdateUIHandler(self, event_id, handler):
 """Register a controls UpdateUI handler
 @param event_id: Control ID
 @param handler: Event handler function
 """
 self._ui_handlers.append((event_id, handler))

Chapter 2

45

How it works...
The EventMgrApp class is just a base class for creating an application object that uses
AppEventHandlerMixin. This mixin provides methods for adding and removing event
handlers for the MenuEvent and UpdateUIEvent handlers.

The EventMgrFrame class is a base class for frames to derive from. This class will
handle adding, removing, and binding event handlers that are registered using either its
RegisterMenuHandler or RegisterUpdateUIHandler methods. These methods take
care of adding the event handlers to the stack that will be pushed or popped as the Frame is
activated or deactivated. The AppEventHandlerMixin will internally manage Binding and
Unbinding of these handlers.

See also
The Using UpdateUI events recipe in this chapter discusses UpdateUI events
in detail.

Validating input with validators
Validators are a general type of helper class for validating data and filtering events that are
input to a control. Most controls that accept user input can dynamically have a Validator
associated with them. This recipe will show how to create a Validator that checks if the
data that has been entered into a window is an integer that is within a given range of values.

How to do it...
Here we will define a Validator for a TextCtrl that can be used to validate that the value
input is an integer and between a given range.

import wx
import sys

class IntRangeValidator(wx.PyValidator):
 """An integer range validator for a TextCtrl"""
 def __init__(self, min_=0, max_=sys.maxint):
 """Initialize the validator
 @keyword min: min value to accept
 @keyword max: max value to accept

 """
 super(IntRangeValidator, self).__init__()
 assert min_ >= 0, "Minimum Value must be >= 0"
 self._min = min_
 self._max = max_

Responding to Events

46

 # Event managment
 self.Bind(wx.EVT_CHAR, self.OnChar)

 def Clone(self):
 """Required override"""
 return IntRangeValidator(self._min, self._max)

 def Validate(self, win):
 """Override called to validate the window's value.
 @return: bool
 """
 txtCtrl = self.GetWindow()
 val = txtCtrl.GetValue()
 isValid = False
 if val.isdigit():
 digit = int(val)
 if digit >= self._min and digit <= self._max:
 isValid = True

 if not isValid:
 # Notify the user of the invalid value
 msg = "Value must be between %d and %d" % \
 (self._min, self._max)
 wx.MessageBox(msg,
 "Invalid Value",
 style=wx.OK|wx.ICON_ERROR)

 return isValid

 def OnChar(self, event):
 txtCtrl = self.GetWindow()
 key = event.GetKeyCode()
 isDigit = False
 if key < 256:
 isDigit = chr(key).isdigit()

 if key in (wx.WXK_RETURN,
 wx.WXK_DELETE,
 wx.WXK_BACK) or \
 key > 255 or isDigit:
 if isDigit:
 # Check if in range
 val = txtCtrl.GetValue()
 digit = chr(key)

Chapter 2

47

 pos = txtCtrl.GetInsertionPoint()
 if pos == len(val):
 val += digit
 else:
 val = val[:pos] + digit + val[pos:]

 val = int(val)
 if val < self._min or val > self._max:
 if not wx.Validator_IsSilent():
 wx.Bell()
 return

 event.Skip()
 return

 if not wx.Validator_IsSilent():
 # Beep to warn about invalid input
 wx.Bell()

 return

 def TransferToWindow(self):
 """Overridden to skip data transfer"""
 return True

 def TransferFromWindow(self):
 """Overridden to skip data transfer"""
 return True

How it works...
Validator classes have a number of virtual methods that need to be overridden in order for
them to function properly. Hence, it is important to derive a subclass from the PyValidator
class, instead of Validator, in order to get access to the virtual method aware version of
the class.

All Validator subclasses must override the Clone method. This method simply needs
to return a copy of the Validator.

The Validate method is called to check if the value is valid or not. This method will be called
if the control is the child of a modal dialog, prior to calling EndModal for an Ok button. This is
a good time to notify the user of any issues with the input.

Validators can also bind to any events that their window may bind to and can be used to
filter the events. The events will be sent to the OnChar method of the Validator before they
are sent to the window, allowing the Validator to filter which events are allowed to get to
the control.

Responding to Events

48

The TransferToWindow and TransferFromWindow methods can be overridden if
you wish to only do the validation in a Dialog at the time when the Dialog is being
shown or closed. TransferToWindow will be called when a Dialog is shown, and
TransferFromWIndow will be called when the Dialog is closed. Returning True from
either of the methods indicates that the data is valid, and returning False will indicate
that there is invalid data.

See also

The Understanding inheritance limitations recipe in Chapter 1, Getting Started
with wxPython discusses the use of the Py versions of classes and overriding
virtual methods.

The Handling Key events recipe in this chapter discusses KeyEvents in detail.

Handling Apple events
AppleEvents are high-level system events used by the Macintosh operating system to
pass information between processes. For an application to handle things such as opening files
that are dropped on the application icon, it is necessary to handle these events. The wxPython
application object has some built-in support for some of the most common events, by way of
virtual overrides in the application object. This recipe will show how to create an application
object that can make use of the built-in and somewhat hidden-event callback functions.

This is an OS X specific recipe, and will have will have no effect
on other platforms.

How to do it...
This little sample application shows all of the built-in callback methods available in the App
for handling some of the commonly needed AppleEvents.

import wx

class MyApp(wx.App):
 def OnInit(self):
 self.frame = MyFrame(None, title="AppleEvents")
 self.SetTopWindow(self.frame)
 self.frame.Show()
 return True

Chapter 2

4�

 def MacNewFile(self):
 """Called for an open-application event"""
 self.frame.PushStatusText("MacNewFile Called")

 def MacOpenFile(self, filename):
 """Called for an open-document event"""
 self.frame.PushStatusText("MacOpenFile: %s" % \
 filename)

 def MacOpenURL(self, url):
 """Called for a get-url event"""
 self.frame.PushStatusText("MacOpenURL: %s" % url)

 def MacPrintFile(self, filename):
 """Called for a print-document event"""
 self.frame.PushStatusText("MacPrintFile: %s" % \
 filename)

 def MacReopenApp(self):
 """Called for a reopen-application event"""
 self.frame.PushStatusText("MacReopenApp")
 # Raise the application from the Dock
 if self.frame.IsIconized():
 self.frame.Iconize(False)
 self.frame.Raise()

How it works...
There are five built-in handler methods for some of the common AppleEvents. All that needs
to be done to use them in your application is to override them in your application object,
as previously shown. Since what an application does in response to these events is highly
application-specific, this recipe does not do much, other than report to the frame's status
bar when the method is called.

The two most-common events that should be implemented are the MacOpenFile and
MacReopenApp methods, as these are necessary to get standard expected behavior in an
application on OS X. MacOpenFile is called when a user drops a file on an application's
Dock icon. When this happens, it will be passed the path of the file as an argument.
MacReopenApp is called when a user left-clicks on the Dock icon of a running application.
As shown in the recipe, this is used to bring an application to the front and/or raise it from
a minimized state in the Dock.

Responding to Events

50

There's more...
It is possible to add support for more AppleEvents to a wxPython application, although it
is not a particularly easy task as it requires writing a native extension module to catch the
event, block the wx EventLoop, and then restore the Python interpreter's state back to wx
after handling the event. There is a pretty good example that can be used as a starting point
in the wxPython Wiki (see http://wiki.wxpython.org/Catching%20AppleEvents%20
in%20wxMAC), if you find yourself needing to venture down this route.

See also

The Understanding inheritance limitations recipe in Chapter 1, Getting Started with
wxPython includes more information on overriding virtual methods.

The Optimizing for OS X recipe in Chapter 12, Application Infrastructure includes
more information on making wxPython applications work well on OS X.

3
Basic Building Blocks

of a User Interface

In this chapter, we will cover:

Creating Stock Buttons

Buttons, buttons, and more buttons

Offering options with CheckBoxes

Using the TextCtrl

Providing choices with the Choice control

Adding Menus and MenuBars

Working with ToolBars

How to use PopupMenus

Grouping controls with a StaticBox

Introduction
Even the most complex objects are typically created from many smaller, simpler objects
or parts. The task of the application developer is to utilize these smaller parts and link
them together in a way that is meaningful, in order to achieve the desired function of the
application. In order to be able to build the application, it is necessary to know what parts
are available to you.

wxPython provides a large collection of classes and utilities. In fact, the basic collection is so
rich that it is very much possible to construct a fully-functional application without inventing
any of your own parts. So lets jump in and take a look at some of the most common and basic
parts that can be found in nearly any desktop application.

Basic Building Blocks of a User Interface

52

Creating Stock Buttons
Nearly all applications have buttons in them and among the buttons there are many common
ones such as Ok and Cancel that appear over and over again. In wxPython, these common
buttons are known as Stock Buttons, because they are constructed by passing a Stock ID to
the constructor of a Button.

How to do it...
Let's make a simple Panel that has four Buttons on it, to see how Stock Buttons can
be created:

class MyPanel(wx.Panel):
 def __init__(self, parent):
 super(MyPanel, self).__init__(parent)

 # Make some buttons
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 for bid in (wx.ID_OK, wx.ID_CANCEL,
 wx.ID_APPLY, wx.ID_HELP):
 button = wx.Button(self, bid)
 sizer.Add(button, 0, wx.ALL, 5)
 self.SetSizer(sizer)

How it works...
Common buttons are created by using a standard Button with a Stock ID and no label. The
framework will then create the correct type of button with the proper label for the current
platform. Each platform has slightly different standards for these common buttons. By using
Stock Buttons, these cross-platform differences can be handled by the framework. For
example, take a look at the following two screenshots of the previous sample code being
run on Windows 7 and OS X respectively.

Screenshot of Windows 7:

Screenshot of OS X:

Chapter 3

53

Platform Notice: On Linux, depending upon the version of GTK, Stock Buttons
will also have the proper theme provided icon displayed on them as well.

There's more...
Stock buttons can be created from nearly all of the Stock IDs. If your text editor does not
provide completion hints, here is a quick way to see all of the available Stock IDs: Just run
the following code in your Python interpreter to introspect the wx namespace for all of the
ID constants.

import wx
for x in dir(wx):
 if x.startswith('ID_'):
 print x

See also
The Utilizing Stock IDs recipe in Chapter 1, Getting Started with wxPython contains a
detailed discussion about the IDs used to construct Stock Buttons.

The Buttons, buttons, and more buttons recipe in this chapter shows how to use the
other button classes available in wxPython.

The Standard dialog button layout recipe in Chapter 7, Window Layout and Design
shows how Stock Buttons are used to achieve easy control layout in dialogs.

Buttons, buttons, and more buttons
The regular Button class only allows for displaying a label on the button. If this is a little too
plain for the needs of your application, you're in luck. wxPython also provides a wide variety of
other types of buttons that provide a different look and feel, as well as extended functionality.
This recipe will introduce a number of the other button controls that are available in wxPython.

Version Notice: The agw package and GradientButton class used in the
following code are only available in wxPython 2.8.9.2 and later.

Basic Building Blocks of a User Interface

54

How to do it...
To see what these different Buttons look like and what they can do, we will make a simple
Panel with some different examples of these additional button classes:

import wx
import wx.lib.platebtn as pbtn
import wx.lib.agw.gradientbutton as gbtn

class ButtonTestPanel(wx.Panel):
 def __init__(self, parent):
 super(ButtonTestPanel, self).__init__(parent)

 # Attributes
 # Make a ToggleButton
 self.toggle = wx.ToggleButton(self,
 label="Toggle Button")

 # Make a BitmapButton
 bmp = wx.Bitmap("./face-monkey.png",
 wx.BITMAP_TYPE_PNG)
 self.bmpbtn = wx.BitmapButton(self, bitmap=bmp)

 # Make a few PlateButton variants
 self.pbtn1 = pbtn.PlateButton(self,
 label="PlateButton")
 self.pbtn2 = pbtn.PlateButton(self,
 label="PlateBmp",
 bmp=bmp)
 style = pbtn.PB_STYLE_SQUARE
 self.pbtn3 = pbtn.PlateButton(self,
 label="Square Plate",
 bmp=bmp,
 style=style)
 self.pbtn4 = pbtn.PlateButton(self,
 label="PlateMenu")
 menu = wx.Menu()
 menu.Append(wx.NewId(), text="Hello World")
 self.pbtn4.SetMenu(menu)

 # Gradient Buttons
 self.gbtn1 = gbtn.GradientButton(self,
 label="GradientBtn")

Chapter 3

55

 self.gbtn2 = gbtn.GradientButton(self,
 label="GradientBmp",
 bitmap=bmp)

 # Layout
 vsizer = wx.BoxSizer(wx.VERTICAL)
 vsizer.Add(self.toggle, 0, wx.ALL, 12)
 vsizer.Add(self.bmpbtn, 0, wx.ALL, 12)
 hsizer1 = wx.BoxSizer(wx.HORIZONTAL)
 hsizer1.AddMany([(self.pbtn1, 0, wx.ALL, 5),
 (self.pbtn2, 0, wx.ALL, 5),
 (self.pbtn3, 0, wx.ALL, 5),
 (self.pbtn4, 0, wx.ALL, 5)])
 vsizer.Add(hsizer1, 0, wx.ALL, 12)
 hsizer2 = wx.BoxSizer(wx.HORIZONTAL)
 hsizer2.AddMany([(self.gbtn1, 0, wx.ALL, 5),
 (self.gbtn2, 0, wx.ALL, 5)])
 vsizer.Add(hsizer2, 0, wx.ALL, 12)
 self.SetSizer(vsizer)

This code generates the following window:

How it works...
This recipe shows the basic use of four different button classes, so let's take a look at each
of them one by one to see what they can do.

Basic Building Blocks of a User Interface

56

ToggleButton
The ToggleButton is another native button provided by wxPython. It is just like the standard
Button, but provides two states. The button will be toggled from its regular state to a pressed
state when clicked on. A second click will toggle it back to its regular state once again.

BitmapButton
The BitmapButton is a native platform button used for showing an image instead of
label text. The usage of this button is just like the standard Button except that it takes a
Bitmap as an argument instead of a label string. The Bitmap for each state of when the
button is being pressed or interacted with by the mouse can also be customized with the
following methods:

Method Description
SetBitmapDisabled Sets the Bitmap to show when the button is disabled.
SetBitmapFocus Sets the Bitmap to show when the button has the keyboard focus.
SetBitmapHover Sets the Bitmap to show when the mouse cursor is hovering over

the button.
SetBitmapLabel Sets the default button (same as what is provided to the

constructor). In the absence of other bitmaps, this one will be used
for all states.

SetBitmapSelected Sets the Bitmap to use when the button is pressed.

PlateButton
The PlateButton is an owner-drawn button class provided by the platebtn module in
wx.lib. PlateButtons are a type of flat button control that will change its background
colour when the mouse hovers over it or when it is clicked on. A PlateButton can be
displayed with just a label, with just a Bitmap, with both a label and a Bitmap, or any
of the previous combinations plus as a drop-down Menu.

The look and feel of the button can also be customized to control the color of the
highlighting, the text label color, the button shape, and how the highlight is drawn. The
PB_STYLE_SQUARE style flag will make the button take up a square shape instead of using
its default rounded edges and the PB_STYLE_GRADIENT style flag will cause the background
to be drawn as a gradient based on the highlighting colour. In addition to this customizability,
the PlateButton also fully implements the BitmapButton API so it can be used as a
drop-in replacement for a BitmapButton in existing applications.

GradientButton
The GradientButton is very similar to the PlateButton. The only difference is that it is
not a flat button, it doesn't support a drop-down menu, and it is more flexible in what it allows
for configuring the gradient colors.

Chapter 3

57

There's more...
There are still quite a few more button implementations out there that you may find useful in
your application.

GenericButtons
GenericButtons are a collection of classes in wx.lib.buttons that provide some basic
owner-drawn buttons as well as owner-drawn implementations of the native buttons that
maintain the look of the native buttons but work around some limitations. For example, there
is GenBitmapTextButton which provides a bitmap button that also supports displaying a
label, and GenBitmapToggleButton which allows for a toggle button that shows a Bitmap.

AquaButton
AquaButtons are an owner-drawn button class with a glassy appearance that
approximates the look and feel of native Macintosh Aqua Buttons. Because the class is owner
drawn, it will provide the same look and feel on all platforms. This class can be found in
wx.lib.agw.aquabutton.

See also
The Creating Stock Buttons recipe in this chapter shows how to create
standard buttons.

Offering options with CheckBoxes
A CheckBox is a common, basic control that allows for a user to select one of two or three
states, depending on the style of CheckBox, though it is typically associated with just a True
or False state. In this recipe, we will take a look at how to use the CheckBox control.

How to do it...
To see how CheckBoxes work, we will create a little window with two different kinds of
CheckBoxes in it:

class CheckBoxFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(CheckBoxFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = wx.Panel(self)
 self.checkbox1 = wx.CheckBox(self.panel,
 label="2 State CheckBox")

Basic Building Blocks of a User Interface

58

 style = wx.CHK_3STATE|wx.CHK_ALLOW_3RD_STATE_FOR_USER
 self.checkbox2 = wx.CheckBox(self.panel,
 label="3 State CheckBox",
 style=style)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.checkbox1, 0, wx.ALL, 15)
 sizer.Add(self.checkbox2, 0, wx.ALL, 15)
 self.panel.SetSizer(sizer)
 self.CreateStatusBar()

 # Event Handlers
 self.Bind(wx.EVT_CHECKBOX, self.OnCheck)

 def OnCheck(self, event):
 e_obj = event.GetEventObject()
 if e_obj == self.checkbox1:
 checked = self.checkbox1.GetValue()
 msg = "Two State Clicked: %s" % checked
 self.PushStatusText(msg)
 elif e_obj == self.checkbox2:
 state = self.checkbox2.Get3StateValue()
 msg = "Three State Clicked: %d" % state
 self.PushStatusText(msg)
 else:
 event.Skip()

How it works...
We created two CheckBoxes; the first is the standard two-state CheckBox and the second
is a three-state CheckBox. The state of a two state CheckBox can be programmatically
controlled through its GetValue and SetValue methods.

The three-state checkbox is created by specifying the two style flags CHK_3STATE and
CHK_ALLOW_3RD_STATE_FOR_USER. The second style flag can be omitted if you want
to limit users from being able to set the undetermined state, so that it can only be done
programmatically. Three-state checkboxes use the Get3StateValue and Set3StateValue
methods with the following values to programmatically control the CheckBox state:

wx.CHK_CHECKED

wx.CHK_UNCHECKED

wx.CHK_UNDETERMINED

Chapter 3

5�

See also
The Using a BoxSizer recipe in Chapter 7, Window Layout and Design shows how
to use the BoxSizer class to control layout.

Using the TextCtrl
The TextCtrl is the basic means of allowing users to input textual data into an application.
This control has many possible uses and modes of operation. This recipe will show how to
create a simple login dialog that uses two TextCtrls to provide input fields for the login
name and password.

How to do it...
First, lets create the Dialog class that will hold the other controls:

class LoginDialog(wx.Dialog):
 def __init__(self, *args, **kwargs):
 super(LoginDialog, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = LoginPanel(self)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize()

 def GetUsername(self):
 return self.panel.GetUsername()

 def GetPassword(self):
 return self.panel.GetPassword()

Next let's make the Panel that will hold the TextCtlr controls for the users to enter their
login information into:

class LoginPanel(wx.Panel):
 def __init__(self, parent):
 super(LoginPanel, self).__init__(parent)

 # Attributes

Basic Building Blocks of a User Interface

60

 self._username = wx.TextCtrl(self)
 self._passwd = wx.TextCtrl(self, style=wx.TE_PASSWORD)

 # Layout
 sizer = wx.FlexGridSizer(2, 2, 8, 8)
 sizer.Add(wx.StaticText(self, label="Username:"),
 0, wx.ALIGN_CENTER_VERTICAL)
 sizer.Add(self._username, 0, wx.EXPAND)
 sizer.Add(wx.StaticText(self, label="Password:"),
 0, wx.ALIGN_CENTER_VERTICAL)
 sizer.Add(self._passwd, 0, wx.EXPAND)
 msizer = wx.BoxSizer(wx.VERTICAL)
 msizer.Add(sizer, 1, wx.EXPAND|wx.ALL, 20)
 btnszr = wx.StdDialogButtonSizer()
 button = wx.Button(self, wx.ID_OK)
 button.SetDefault()
 btnszr.AddButton(button)
 msizer.Add(btnszr, 0, wx.ALIGN_CENTER|wx.ALL, 12)
 btnszr.Realize()

 self.SetSizer(msizer)

 def GetUsername(self):
 return self._username.GetValue()

 def GetPassword(self):
 return self._passwd.GetValue()

How it works...
We did a number of things in the previous code, but since the focus of this recipe is on the
TextCtrl object, let's start by taking a look at the two TextCtrl object that we created.

Chapter 3

61

The first text control for the username is just a default TextCtrl created with all of the
default arguments. By default, a TextCtrl object is created as a single line control. This
creates just a simple text box that the user can type any arbitrary number of characters into.

The second text control uses the special TE_PASSWORD style flag. This creates a TextCtrl
that will disguise its input with asterisk characters, just like you see in any password entry field
in most applications or websites. As a user types in this control, each character that is typed
in will be displayed as an asterisk, but the actual character values are stored internally by the
control and can be accessed via GetValue.

This dialog should be shown with ShowModal, and when ShowModal returns you can just
retrieve the values by using the accessor methods GetUsername and GetPassword in order
to perform the login validation.

There's more...
The TextCtrl class has a fairly large collection of style flags that can be supplied to
its constructor to modify its behavior for different use cases. Included below is a list of
most-commonly-used style flags and a description of what each one does. The rest can be
found in wxPython's online API documentation (http://wxpython.org/docs/api/).

Style flags Description
wx.TE_PROCESS_ENTER Will cause the control to generate a wx.EVT_COMMAND_TEXT_

ENTER event when the Enter key is pressed.
wx.TE_PROCESS_TAB Allows a wx.EVT_CHAR event to be issued when the Tab key is

pressed. Without this style set, the Tab key will allow the user to
tab into the next control in the window.

wx.TE_MULTILINE Allows the TextCtrl to have multiple lines.
wx.TE_READONLY Makes the control read only, so that the user cannot enter text

into it.
wx.TE_RICH2 Use the RichText version of the control. (only applicable on

Windows).
wx.TE_LEFT Aligns all text to the left-hand side of the control.
wx.TE_CENTER Aligns all text to the center of the control
wx.TE_RIGHT Aligns all text to the right-hand side of the control.

See also
The Validating Input with validators recipe in Chapter 2, Responding to Events shows
how to use a Validator to validate user input.

The Using a BoxSizer recipe in Chapter 7, Window Layout and Design shows how
to use the BoxSizer class to control layout

Basic Building Blocks of a User Interface

62

Providing choices with the Choice control
The Choice control is a means to allow the user to make a single selection from a list of
possible selections. It does this by displaying the currently-selected choice and offering the list
of other possible choices in a pop-up when the control is clicked on by the user. This makes it
very efficient in its use of screen space.

How to do it...
To see how the Choice control works, we will make a simple Panel that has a Choice
control with three choices in it:

class ChoicePanel(wx.Panel):
 def __init__(self, parent):
 super(ChoicePanel, self).__init__(parent)

 # Attributes
 items = ["item 1", "item 2", "item 3"]
 self.choice = wx.Choice(self, choices=items)
 self.choice.SetSelection(0)

 # Layout
 sizer = wx.BoxSizer()
 sizer.Add(self.choice, 1,
 wx.EXPAND|wx.ALL, 20)
 self.SetSizer(sizer)

 # Event Handlers
 self.Bind(wx.EVT_CHOICE, self.OnChoice)

 def OnChoice(self, event):
 selection = self.choice.GetStringSelection()
 index = self.choice.GetSelection()
 print "Selected Item: %d '%s'" % (index, selection)

How it works...
The Choice control manages a list of strings. The list of strings that the control contains can
be specified either in the constructor or by calling the SetItems method with a list of strings
to put in the control. When clicked on, the control will display a pop-up list of all of the strings.
After the user makes a selection, an EVT_CHOICE event will be fired.

Chapter 3

63

Platform Notice: The Choice control in Windows does not automatically
select its first item when created. Due to this inconsistency, it is
sometimes desirable to explicitly set the selection after creating the
control, as we have done in this example, in order to ensure consistent
behavior across platforms.

There's more...
The items in the control can be manipulated or changed after the control has been created
by using the following methods:

Method Description
Append Append a string to the end of the list managed by the control
AppendItems Append a list of strings to the list managed by the control
Insert Insert a string into the list managed by the control
SetItems Set the list of strings that the control displays

Adding Menus and MenuBars
Most applications have menus. Menus are a means to providing the users of the application
with a way to execute actions either by clicking on them or by using keyboard shortcuts that can
be associated with each menu item. An application's menus consist of three components: a
MenuBar, Menus, and MenuItems. The MenuBar contains the Menus and the Menus contain
the MenuItems. This recipe will show how to add a MenuBar with some Menus to a Frame.

How to do it...
Here we will make a Frame that has some Menu options for controlling actions in
a TextCtrl:

ID_READ_ONLY = wx.NewId()

class MenuFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(MenuFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = wx.Panel(self)
 self.txtctrl = wx.TextCtrl(self.panel,
 style=wx.TE_MULTILINE)

Basic Building Blocks of a User Interface

64

 # Layout
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(self.txtctrl, 1, wx.EXPAND)
 self.panel.SetSizer(sizer)
 self.CreateStatusBar() # For output display

 # Setup the Menu
 menub = wx.MenuBar()

 # File Menu
 filem = wx.Menu()
 filem.Append(wx.ID_OPEN, "Open\tCtrl+O")
 menub.Append(filem, "&File")

 # Edit Menu
 editm = wx.Menu()
 editm.Append(wx.ID_COPY, "Copy\tCtrl+C")
 editm.Append(wx.ID_CUT, "Cut\tCtrl+X")
 editm.Append(wx.ID_PASTE, "Paste\tCtrl+V")
 editm.AppendSeparator()
 editm.Append(ID_READ_ONLY, "Read Only",
 kind=wx.ITEM_CHECK)
 menub.Append(editm, "E&dit")
 self.SetMenuBar(menub)

 # Event Handlers
 self.Bind(wx.EVT_MENU, self.OnMenu)

 def OnMenu(self, event):
 """Handle menu clicks"""
 evt_id = event.GetId()
 actions = { wx.ID_COPY : self.txtctrl.Copy,
 wx.ID_CUT : self.txtctrl.Cut,
 wx.ID_PASTE : self.txtctrl.Paste }
 action = actions.get(evt_id, None)
 if action:
 action()
 elif evt_id == ID_READ_ONLY:
 # Toggle enabled state
 self.txtctrl.Enable(not self.txtctrl.Enabled)
 elif evt_id == wx.ID_OPEN:
 dlg = wx.FileDialog(self, "Open File",
 style=wx.FD_OPEN)

Chapter 3

65

 if dlg.ShowModal() == wx.ID_OK:
 fname = dlg.GetPath()
 handle = open(fname, 'r')
 self.txtctrl.SetValue(handle.read())
 handle.close()
 else:
 event.Skip()

How it works...
The first thing to look at is where we created the MenuBar object. The MenuBar is what we
need to attach all of our Menus to, and it will ultimately become responsible for managing
them. Next we start to make our Menus, which is a rather straightforward process. All that
needs to be done is to call Append for each new item that we wish to add to the Menu.

Append accepts a few arguments, but the important one to notice is the one for the label. The
string that we pass can have some special formatting options in it to setup keyboard shortcuts
for the MenuItem. Placing an '&' before a letter in the label will setup a keyboard mnemonic
that will allow for keyboard navigation to the item. More importantly, though, is that placing
a Tab character (\t) followed by a shortcut option Ctrl + C will setup a keyboard shortcut to
select the menu option and cause an EVT_MENU event to be generated.

Platform Notice: On OS X, the Ctrl keyword will be automatically
translated to the Apple/Command key.

Finally, we just need to call Append on our MenuBar in order to add each of the Menus
that we created to it, and then finally call SetMenuBar on the Frame to add the MenuBar
to our Frame.

There's more...
Menus have some additional functionality that we did not cover above. Following below are
some references to a few more things that you can do with Menus.

SubMenus
Menus can have submenus appended to them, via the AppendMenu function.

Basic Building Blocks of a User Interface

66

Customizing MenuItems
MenuItems are created when calling Append on a Menu. The Append method takes a "kind"
keyword parameter that can accept any of the following values:

Value Description
wx.ITEM_NORMAL Default value
wx.ITEM_SEPARATOR Creates a separator item. It's easier to just call

AppendSeparator than do this.
wx.ITEM_CHECK Adds a CheckBox to the Menu.
wx.ITEM_RADIO Adds a RadioButton to the Menu.

MenuItems can also have Bitmaps added to them by calling SetBitmap on the MenuItem
object returned by calling Append on the Menu.

Platform Notice: On Linux/GTK, MenuItems that use Stock
IDs will automatically get system theme provided bitmaps
associated with them.

See also
The Utilizing Stock IDs recipe in Chapter 1, Getting Started with wxPython discusses
the use of the built-in standard control IDs.

The Using UpdateUI events recipe in Chapter 2, Responding to Events discusses how
to use UpdateUI events to manage the UI's state.

Working with ToolBars
ToolBars are a lot like Menus in that they provide a means to link an action in the interface
with an action in the application. They differ in that ToolBars use images to represent
actions and must be clicked on directly in order to initiate the action. They make for an easy
point and click interface for the user to interact with. This recipe will show a custom ToolBar
class that automatically gets bitmaps from the system's ArtProvider.

How to do it...
Let's start by defining our custom ToolBar class, and then map some Stock IDs to art
resource IDs:

ART_MAP = { wx.ID_CUT : wx.ART_CUT,
 wx.ID_COPY : wx.ART_COPY,
 wx.ID_PASTE : wx.ART_PASTE }

Chapter 3

67

class EasyToolBar(wx.ToolBar):
 def AddEasyTool(self, id, shortHelp="", longHelp=""):
 """Simplifies adding a tool to the toolbar
 @param id: Stock ID

 """
 assert id in ART_MAP, "Unknown Stock ID"
 art_id = ART_MAP.get(id)
 bmp = wx.ArtProvider.GetBitmap(art_id, wx.ART_TOOLBAR)
 self.AddSimpleTool(id, bmp, shortHelp, longHelp)

Now we can make use of this custom ToolBar class anywhere that we want to have a
ToolBar. The following code snippet is a minimal example of creating an EasyToolBar
with three items:

class ToolBarFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(ToolBarFrame, self).__init__(*args, **kwargs)

 # Setup the ToolBar
 toolb = EasyToolBar(self)
 toolb.AddEasyTool(wx.ID_CUT)
 toolb.AddEasyTool(wx.ID_COPY)
 toolb.AddEasyTool(wx.ID_PASTE)
 toolb.Realize()
 self.SetToolBar(toolb)

 # Event Handlers
 self.Bind(wx.EVT_TOOL, self.OnToolBar)

 def OnToolBar(self, event):
 print "ToolBarItem Clicked", event.GetId()

How it works...
The EasyToolBar class makes use of a map of stock IDs to art resource IDs. When the
AddEasyTool method is called, it will look up that art resource in the system's art provider.
This simplifies the use of the ToolBar by quite a bit since we don't need to repeat the code
for getting the appropriate bitmap each time we want to add a tool.

The ToolBarFrame class shows an example of the use of the EasyToolBar. Using a
ToolBar can be summed up in a four-step process. First, create the ToolBar, second
add the tools, third call Realize to tell the ToolBar that all of the tools have been added,
and then fourth and finally call the SetToolBar method of the Frame in order to add the
ToolBar to the Frame.

Basic Building Blocks of a User Interface

68

There's more...

ToolBar styles
There a number of style flags that can be passed to a ToolBars constructor to modify its
appearance and behavior. Following is a list of some of the more useful ones:

Style flags Description
wx.TB_DOCKABLE Allows the ToolBar to be undocked from the Frame (GTK Only)
wx.TB_FLAT Makes the ToolBar look flat (MSW and GTK ONLY)
wx.TB_HORIZONTAL Horizontal tool layout
wx.TB_VERTICAL Vertical tool layout
wx.TB_TEXT Show labels below the tool icon
wx.TB_NO_TOOLTIPS Don't show ToolTips when tools are hovered over
wx.TB_BOTTOM Put the ToolBar at the bottom of the parent window
wx.TB_RIGHT Put the ToolBar at the right-hand side of the parent window

Additional types of tools
It is possible to add different types of tools or controls to a ToolBar besides the standard
icon tools. Here is a quick reference to some of these other ToolBar methods.

ToolBar methods Description
AddControl Allows for a control such as a Button to be added to the

ToolBar.
AddCheckLabelTool Adds a tool that can be toggled.
AddRadioLabelTool Adds a tool that will work like a RadioButton.
AddSeparator Adds a vertical line to the ToolBar to separate items.

Events
ToolBar tools will fire an EVT_TOOL event when clicked on. If you already have a MenuItem
for the same ID that is bound to an EVT_MENU event handler, it is not necessary to create a
separate event handler for the tool event. The system will automatically route the tool event to
your menu handler.

Chapter 3

6�

See also
The Adding Menus and MenuBars recipe in this chapter discusses the use of menus
and menu events, which are closely related to toolbars.

The Customizing the ArtProvider recipe in Chapter 10, Creating Components and
Extending Functionality includes further examples and information about retrieving
bitmap resources.

How to use PopupMenus
Pop-up menus (a.k.a context menus) are a useful way of providing context-sensitive access to
actions when a user right clicks on a control or on a part of a window. Pop-up menus work the
same way as a regular menu but require some special handling since there is no MenuBar
to manage them. This recipe will create a mixin class to help manage a pop-up menu.

How to do it...
Here we will define a mixin class to manage the creation and lifetime of a context menu:

class PopupMenuMixin(object):
 def __init__(self):
 super(PopupMenuMixin, self).__init__()

 # Attributes
 self._menu = None

 # Event Handlers
 self.Bind(wx.EVT_CONTEXT_MENU, self.OnContextMenu)

 def OnContextMenu(self, event):
 """Creates and shows the Menu"""
 if self._menu is not None:
 self._menu.Destroy()

 self._menu = wx.Menu()
 self.CreateContextMenu(self._menu)
 self.PopupMenu(self._menu)

 def CreateContextMenu(self, menu):
 """Override in subclass to create the menu"""
 raise NotImplementedError

Basic Building Blocks of a User Interface

70

How it works...
This little mixin class is very generic and can be used with any type of window subclass to
add custom context menu support. The subclass that uses this mixin must override the
CreateContextMenu method to make its own Menu, and then the mixin will take care of
the rest. Following is a minimal example of using the PopupMenuMixin class. It will create a
Panel that has a context menu with three items on it; a more complete example is included
in the example code that accompanies this topic.

class PanelWithMenu(wx.Panel, PopupMenuMixin):
 def __init__(self, parent):
 wx.Panel.__init__(self, parent)
 PopupMenuMixin.__init__(self)

 def CreateContextMenu(self, menu):
 """PopupMenuMixin Implementation"""
 menu.Append(wx.ID_CUT)
 menu.Append(wx.ID_COPY)
 menu.Append(wx.ID_PASTE)

The EVT_CONTEXT_MENU is fired when a user right-clicks, or initiates a context menu from
the keyboard. Because context menus can be shown in multiple ways, it is important to use
EVT_CONTEXT_MENU instead of using the mouse right-click event. Our mixin class will catch
this event and first clean up any existing Menu. Since pop-up menus do not have a MenuBar
to manage them, it is necessary to clean them up ourselves, otherwise, if they are not
destroyed, they can cause memory leaks. Next, the subclass's CreateContextMenu
method will be called to add the items to the Menu. Finally, we display the Menu by calling
the PopupMenu method.

When a user clicks on an item in the Menu, an EVT_MENU event will be sent to the window
that the pop-up menu belongs to. Hence, it is necessary to Bind your own menu handlers
to handle the MenuEvents.

See also
The Adding Menus and MenuBars recipe in this chapter shows how to create
menu objects.

The Using mixin classes recipe in Chapter 9, Design Approaches and Techniques
discusses how to use mixin classes.

Chapter 3

71

Grouping controls with a StaticBox
The StaticBox is a fairly simple control used to group other related controls together, by
drawing a border around them that optionally includes a label. The usage of the StaticBox
control is a little different than other controls though, due to its relationship with the controls
it contains. Hence, this recipe will show how to use a StaticBox, and will give an explanation
of some of its quirks.

How to do it...
To see how to add controls to a StaticBox, let's make a Panel class that has a StaticBox,
and add a few controls to it:

class MyPanel(wx.Panel):
 def __init__(self, parent):
 super(MyPanel, self).__init__(parent)

 # Layout
 sbox = wx.StaticBox(self, label="Box Label")
 sboxsz = wx.StaticBoxSizer(sbox, wx.VERTICAL)

 # Add some controls to the box
 cb = wx.CheckBox(self, label="Enable")
 sboxsz.Add(cb, 0, wx.ALL, 8)
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(wx.StaticText(self, label="Value:"))
 sizer.Add((5, 5))
 sizer.Add(wx.TextCtrl(self))
 sboxsz.Add(sizer, 0, wx.ALL, 8)

 msizer = wx.BoxSizer(wx.VERTICAL)
 msizer.Add(sboxsz, 0, wx.EXPAND|wx.ALL, 20)
 self.SetSizer(msizer)

How it works...
Even though a StaticBox is a container for other controls, it is actually a sibling of the
controls that it contains, instead of being a parent window. The most important thing to
remember when working with a StaticBox is that it must be created before any of the
controls that it will contain. If it is not created before its siblings, then they will have issues
processing mouse events.

Basic Building Blocks of a User Interface

72

The StaticBox uses a StaticBoxSizer to add the controls to the box, as well as to
manage its size and to position the controls inside of it. The usage of a StaticBoxSizer
is used just like a regular BoxSizer in all regards except that its constructor takes a
StaticBox as the first argument. Calling the Add method of StaticBoxSizer is used
to then add the controls to the StaticBox. Like with the BoxSizer, the Add method of
StaticBoxSizer takes the object being added as the first parameter, and then optionally
the proportion, the sizer flags, and border keyword parameters.

See also
The Using a BoxSizer recipe in Chapter 7, Window Layout and Design contains more
examples of sizer-based control layout.

4
Advanced Building

Blocks of a User
Interface

In this chapter, we will cover:

Listing data with a ListCtrl

Browsing files with the CustomTreeCtrl

Creating a VListBox

StyledTextCtrl using lexers

Working with tray icons

Adding tabs to a Notebook

Using the FlatNotebook

Scrolling with a ScrolledPanel

Simplifying the FoldPanelBar

Introduction
Displaying collections of data and managing complex window layouts are a task that most
UI developers will be faced with at some point. wxPython provides a number of components
to help developers meet the requirements of these more demanding interfaces.

Advanced Building Blocks of a User Interface

74

As the amount of controls and data that an application is required to display in its user
interface increases, so does the task of efficiently managing available screen real estate. To
fit this information into the available space requires the use of some more advanced controls
and containers; so let's dive in and begin our exploration of some of the more advanced
controls that wxPython has to offer.

Listing data with a ListCtrl
The ListCtrl is a versatile control for displaying collections of text and/or images. The
control supports many different display formats, although typically its most often-used display
mode is the report mode. Report mode has a visual representation that is very similar to a
grid or spreadsheet in that it can have multiple rows and columns with column headings.
This recipe shows how to populate and retrieve data from a ListCtrl that was created
in report mode.

How to do it...
The ListCtrl takes a little more set up than most basic controls, so we will start by creating
a subclass that sets up the columns that we wish to have in the control:

class MyListCtrl(wx.ListCtrl):
 def __init__(self, parent):
 super(MyListCtrl, self).__init__(parent,
 style=wx.LC_REPORT)

 # Add three columns to the list
 self.InsertColumn(0, "Column 1")
 self.InsertColumn(1, "Column 2")
 self.InsertColumn(2, "Column 3")

 def PopulateList(self, data):
 """Populate the list with the set of data. Data

Chapter 4

75

 should be a list of tuples that have a value for each
 column in the list.
 [('hello', 'list', 'control'),]
 """
 for item in data:
 self.Append(item)

Next we will create an instance of our ListCtrl and put it on a Panel, and then use our
PopulateList method to put some sample data into the control:

class MyPanel(wx.Panel):
 def __init__(self, parent):
 super(MyPanel, self).__init__(parent)

 # Attributes
 self.lst = MyListCtrl(self)

 # Setup
 data = [("row %d" % x,
 "value %d" % x,
 "data %d" % x) for x in range(10)]
 self.lst.PopulateList(data)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.lst, 1, wx.EXPAND)
 self.SetSizer(sizer)

 # Event Handlers
 self.Bind(wx.EVT_LIST_ITEM_SELECTED,
 self.OnItemSelected)

 def OnItemSelected(self, event):
 selected_row = event.GetIndex()
 val = list()
 for column in range(3):
 item = self.lst.GetItem(selected_row, column)
 val.append(item.GetText())
 # Show what was selected in the frames status bar
 frame = self.GetTopLevelParent()
 frame.PushStatusText(",".join(val))

Advanced Building Blocks of a User Interface

76

How it works...
Usually there tends to be a fair amount of set up with the ListCtrl, and due to this it is good
to encapsulate the usage of the control in a specialized subclass instead of using it directly.
We kept things pretty basic here in our ListCtrl class. We just used the InsertColumn
method to set our list up with three columns. Then the PopulateList method was added
for convenience, to allow the population of the ListCtrl from a Python list of data. It simply
wraps the Append method of ListCtrl, which just takes an iterable that has a string for
each column in the list.

The MyPanel class is there to show how to use the ListCtrl class that we created. First
we populate it with some data by generating a list of tuples and calling our PopulateList
method. To show how to retrieve data from the list, we created an event handler for
EVT_LIST_ITEM_SELECTED which will be fired each time a new selection is made in the
control. In order to retrieve a value from a ListCtrl, you need to know the row and column
index of the cell that you wish to retrieve the data from, and then call GetItem with the row
and column to get the ListItem object that represents that cell. Then the string value of the
cell can be retrieved by calling the GetText method of ListItem.

There's more...
Depending on the style flags that are used to create a ListCtrl, it will behave in many
different possible ways. Because of this, it is important to know some of the different style
flags that can be used to create a ListCtr.

Style flags Description
LC_LIST In List mode, the control will calculate the columns automatically, so

there is no need to call InsertColumn. It can be used to display
strings and, optionally, small icons

LC_REPORT Single or multicolumn report view that can be shown with or
without headers

LC_ICON Large icon view that can optionally have labels
LC_SMALL_ICON Small icon view that can optionally have labels
LC_EDIT_LABELS Allow the item labels to be editable by users
LC_NO_HEADER Hide the column headers (report mode)
LC_SORT_ASCENDING Sort items in ascending order (must provide a SortItems

callback method)
LC_SORT_
DESCENDING

Sort items in descending order (must provide a SortItems
callback method)

LC_HRULE Draw a horizontal line between rows (report mode)
LC_VRULE Draw a vertical line between columns (report mode)

Chapter 4

77

Style flags Description
LC_SINGLE_SEL Only allow a single item to be selected at a time (Default is to allow

for multiple selections)
LC_VIRTUAL Fetch items to display in the list on demand (report mode)

Virtual Mode
When a ListCtrl is created in virtual mode (using the LC_VIRTUAL style flag), it does
not store the data internally; instead it will instead ask for the data from a datasource when
it needs to display it. This mode is useful when you have a very large set of data where
preloading it in the control would present performance issues. To use a ListCtrl in virtual
mode, you must call SetItemCount to tell the control how many rows of data there are, and
override the OnGetItemText method to return the text for the ListItem when the control
asks for it.

See also
The Creating a VListBox recipe in this chapter is another example of a control for
presenting data as a list.

Browsing files with the CustomTreeCtrl
A TreeCtrl is a way of displaying hierarchical data in a user interface. The
CustomTreeCtrl is a fully owner-drawn TreeCtrl that looks and functions much the
same way as the default TreeCtrl, but that offers a number of additional features and
customizability that the default native control cannot. This recipe shows how to make a
custom file browser class by using the CustomTreeCtrl.

How to do it...
To create this custom FileBrowser control, we will use its constructor to set up the images
to use for the folders and files in the tree:

import os
import wx
import wx.lib.customtreectrl as customtree

class FileBrowser(customtree.CustomTreeCtrl):
 FOLDER, \
 ERROR, \
 FILE = range(3)
 def __init__(self, parent, rootdir, *args, **kwargs):
 super(FileBrowser, self).__init__(parent,
 *args,

Advanced Building Blocks of a User Interface

78

 **kwargs)
 assert os.path.exists(rootdir), \
 "Invalid Root Directory!"
 assert os.path.isdir(rootdir), \
 "rootdir must be a Directory!"

 # Attributes
 self._il = wx.ImageList(16, 16)
 self._root = rootdir
 self._rnode = None

 # Setup
 for art in (wx.ART_FOLDER, wx.ART_ERROR,
 wx.ART_NORMAL_FILE):
 bmp = wx.ArtProvider.GetBitmap(art, size=(16,16))
 self._il.Add(bmp)
 self.SetImageList(self._il)
 self._rnode = self.AddRoot(os.path.basename(rootdir),
 image=FileBrowser.FOLDER,
 data=self._root)
 self.SetItemHasChildren(self._rnode, True)
 # use Windows-Vista-style selections
 self.EnableSelectionVista(True)

 # Event Handlers
 self.Bind(wx.EVT_TREE_ITEM_EXPANDING,
 self.OnExpanding)
 self.Bind(wx.EVT_TREE_ITEM_COLLAPSED,
 self.OnCollapsed)

 def _GetFiles(self, path):
 try:
 files = [fname for fname in os.listdir(path)
 if fname not in ('.', '..')]
 except OSError:
 files = None
 return files

The following two event handlers are used to update which files are displayed when a node is
expanded or collapsed in the tree:

 def OnCollapsed(self, event):
 item = event.GetItem()
 self.DeleteChildren(item)

Chapter 4

7�

 def OnExpanding(self, event):
 item = event.GetItem()
 path = self.GetPyData(item)
 files = self._GetFiles(path)

 # Handle Access Errors
 if files is None:
 self.SetItemImage(item, FileBrowser.ERROR)
 self.SetItemHasChildren(item, False)
 return

 for fname in files:
 fullpath = os.path.join(path, fname)
 if os.path.isdir(fullpath):
 self.AppendDir(item, fullpath)
 else:
 self.AppendFile(item, fullpath)

The following methods are added as an API for working with the control to add items and
retrieve their on-disk paths:

 def AppendDir(self, item, path):
 """Add a directory node"""
 assert os.path.isdir(path), "Not a valid directory!"
 name = os.path.basename(path)
 nitem = self.AppendItem(item, name,
 image=FileBrowser.FOLDER,
 data=path)
 self.SetItemHasChildren(nitem, True)

 def AppendFile(self, item, path):
 """Add a file to a node"""
 assert os.path.isfile(path), "Not a valid file!"
 name = os.path.basename(path)
 self.AppendItem(item, name,
 image=FileBrowser.FILE,
 data=path)

 def GetSelectedPath(self):
 """Get the selected path"""
 sel = self.GetSelection()
 path = self.GetItemPyData(sel)
 return path

Advanced Building Blocks of a User Interface

80

 def GetSelectedPaths(self):
 """Get a list of selected paths"""
 sels = self.GetSelections()
 paths = [self.GetItemPyData(sel)
 for sel in sels]
 return paths

How it works...
With just a few lines of code here we have created a pretty useful little widget for displaying
and working with the file system. Let's take a quick look at how it works.

In the classes constructor, we added a root node with the control's AddRoot method. A root
node is a top-level node that has no other parent nodes above it. The first argument is the
text that will be shown, the image argument specifies the default image for the TreeItem,
and the data argument specifies any type of data associated with the item—in this case we
are setting a string for the items path. We then called SetItemHasChildren for the item so
that it will get a button next to it to allow it to be expanded. The last thing that we did in the
constructor was to Bind the control to two events so that we can update the tree when one of
its nodes is being expanded or collapsed.

Immediately before the node is going to be expanded our handler for EVT_TREE_ITEM_
EXPANDING will be called. It is here where we find all the files and folders under a directory
node, and then add them as children of that node by calling AppendItem, which works just
like AddRoot but is used to add items to already-existing nodes in the tree.

Conversely when a node in the tree is going to be collapsed, our EVT_TREE_ITEM_COLLAPED
event handler will be called. Here we simply call DeleteChildren in order to remove the
children items from the node so that we can update them more easily the next time that the
node is expanded. Otherwise, we would have to find what was different the next time it was
expanded, and then remove the items that have been deleted and insert new items that may
have been added to the directory.

The last two items in our class are for getting the file paths of the selected items, which—since
we store the file path in each node—is simply just a matter of getting the data from each of the
currently-selected TreeItems with a call to GetPyData.

There's more...
Most of what we did in this recipe could actually also be replicated with the standard TreeCtrl.
The difference is in the amount of extra customizability that the CustomTreeCtrl provides.
Since it is a fully owner-drawn control, nearly all of the visible attributes of it can be customized.
Following is a list of some of the functions that can be used to customize its appearance:

Chapter 4

81

Functions Description
EnableSelectionGradient(bool) Use a gradient to draw the tree item selection

rectangle.
EnableSelectionVista(bool) Use a nice rounded rectangle for the item

selections similar to the native control seen in
Windows Vista.

SetButtonsImageList(ImageList) Changes the expand/collapse buttons.
ImageList should have four bitmaps for
the following states, in this order: Normal,
Selected, Expanded, and Expanded
Selected.

SetConnectionPen(pen) Changes how the connection lines are drawn
between items in the tree. Takes a wx.Pen object
that will be used to draw the lines.

SetBackgroundImage(bitmap) Allows for an image to be used as the control's
background.

SetBackgroundColour(colour) Used to change the color of the control's
background.

Creating a VListBox
The VListBox control is much like a ListBox control, but it is virtual (it doesn't store the
data internally) and allows for items to have variable row heights. It works by providing a
number of virtual callback methods that you must override in a subclass in order to draw
the items on demand. Because of this requirement to override pure virtual methods, the
VListBox will always be subclassed. This recipe shows how to create a VListBox derived
control that supports an icon and text in each of its items.

How to do it...
To create our user list control, we just need to subclass a VListBox and override some of its
callback methods to perform the necessary actions:

class UserListBox(wx.VListBox):
 """Simple List Box control to show a list of users"""
 def __init__(self, parent, users):
 """@param users: list of user names"""
 super(UserListBox, self).__init__(parent)

 # Attributes
 # system-users.png is a sample image provided with
 # this chapters sample code.
 self.bmp = wx.Bitmap("system-users.png",

Advanced Building Blocks of a User Interface

82

 wx.BITMAP_TYPE_PNG)
 self.bh = self.bmp.GetHeight()
 self.users = users

 # Setup
 self.SetItemCount(len(self.users))

 def OnMeasureItem(self, index):
 """Called to get an items height"""
 # All our items are the same so index is ignored
 return self.bh + 4

 def OnDrawSeparator(self, dc, rect, index):
 """Called to draw the item separator"""
 oldpen = dc.GetPen()
 dc.SetPen(wx.Pen(wx.BLACK))
 dc.DrawLine(rect.x, rect.y,
 rect.x + rect.width,
 rect.y)
 rect.Deflate(0, 2)
 dc.SetPen(oldpen)

 def OnDrawItem(self, dc, rect, index):
 """Called to draw the item"""
 # Draw the bitmap
 dc.DrawBitmap(self.bmp, rect.x + 2,
 ((rect.height - self.bh) / 2) + rect.y)
 # Draw the label to the right of the bitmap
 textx = rect.x + 2 + self.bh + 2
 lblrect = wx.Rect(textx, rect.y,
 rect.width - textx,
 rect.height)
 dc.DrawLabel(self.users[index], lblrect,
 wx.ALIGN_LEFT|wx.ALIGN_CENTER_VERTICAL)

Here is a screenshot of what the UserListBox looks like with some sample data in it.

Chapter 4

83

How it works...
Our custom VListBox control could be used in any kind of application that wants to display
a list of users. The constructor takes a list of usernames and calls SetItemCount to tell the
control how many items it needs to be able to display. We also loaded a bitmap to use in our
list's items. This bitmap is available in the sample code that accompanies this topic.

The main thing to take from this recipe is the three virtual callback methods that we overrode
in order to draw the items in our control:

1. The first required override is OnMeasureItem. This method will be called for each
item in the list, and it needs to return the height of the item.

2. The next method is OnDrawSeparator. This method is optional and can be
used to draw a separator between each item in the control. It can also modify the
Rect if necessary, so that when OnDrawItem is called it will know not to draw
over the separator.

3. The final method is OnDrawItem. This method is used to draw the actual item. For
our control, we draw a bitmap and then position the users' name as a label to the
right of it. That's all there is to it; pretty easy right.

There's more...
There are a couple more methods available that can be useful in implementing a VListBox
subclass. The following list describes these methods.

Methods Description
OnDrawItemBackground This method can be overridden, as DrawItem can, in order to

draw a custom background for an item. The default base class
does the reasonable thing of drawing the background of the
selected item with the system default selection color.

IsSelected This method can be used to see if an item is selected or not,
in case you want to change the way in which you draw the item
in OnDrawItem, for example making the font bold.

See also
The Understanding inheritance limitations recipe in Chapter 1, Getting Started with
wxPython contains an explanation about virtual methods in the C++ objects.

The Listing data with a ListCtrl recipe in this chapter is another example of a control
for presenting data as a list.

The Screen drawing recipe in Chapter 8, Drawing to the Screen, discusses the usage
of PaintEvents and Device Contexts.

Advanced Building Blocks of a User Interface

84

StyledTextCtrl using lexers
The StyledTextCtrl is an advanced text control class supplied by the wx.stc
module. The class is a wrapping around the Scintilla source control editing component (see
http://www.scintilla.org). The StyledTextCtrl is primarily intended for displaying
and working with source code for various programming languages. It provides built-in syntax
highlighting support for many different types of source code files, and is extendable to work
with custom lexers. This recipe shows how to setup the control to perform source code
highlighting using its built-in lexer for Python.

How to do it...
To get started, we will define a language-generic editor class that will manage all the common
style settings so that we can easily create other classes that support different types of
programming languages:

import wx
import wx.stc as stc
import keyword

class CodeEditorBase(stc.StyledTextCtrl):
 def __init__(self, parent):
 super(CodeEditorBase, self).__init__(parent)

 # Attributes
 font = wx.Font(10, wx.FONTFAMILY_MODERN,
 wx.FONTSTYLE_NORMAL,
 wx.FONTWEIGHT_NORMAL)
 self.face = font.GetFaceName()
 self.size = font.GetPointSize()

 # Setup
 self.SetupBaseStyles()

 def EnableLineNumbers(self, enable=True):
 """Enable/Disable line number margin"""
 if enable:
 self.SetMarginType(1, stc.STC_MARGIN_NUMBER)
 self.SetMarginMask(1, 0)
 self.SetMarginWidth(1, 25)
 else:
 self.SetMarginWidth(1, 0)

Chapter 4

85

 def GetFaces(self):
 """Get font style dictionary"""
 return dict(font=self.face,
 size=self.size)

 def SetupBaseStyles(self):
 """Sets up the the basic non lexer specific
 styles.
 """
 faces = self.GetFaces()
 default = "face:%(font)s,size:%(size)d" % faces
 self.StyleSetSpec(stc.STC_STYLE_DEFAULT, default)
 line = "back:#C0C0C0," + default
 self.StyleSetSpec(stc.STC_STYLE_LINENUMBER, line)
 self.StyleSetSpec(stc.STC_STYLE_CONTROLCHAR,
 "face:%(font)s" % faces)

Now here we will derive a new class from our CodeEditorBase class that specializes the
control for Python files:

class PythonCodeEditor(CodeEditorBase):
 def __init__(self, parent):
 super(PythonCodeEditor, self).__init__(parent)

 # Setup
 self.SetLexer(wx.stc.STC_LEX_PYTHON)
 self.SetupKeywords()
 self.SetupStyles()
 self.EnableLineNumbers(True)

 def SetupKeywords(self):
 """Sets up the lexers keywords"""
 kwlist = u" ".join(keyword.kwlist)
 self.SetKeyWords(0, kwlist)

 def SetupStyles(self):
 """Sets up the lexers styles"""
 # Python styles
 faces = self.GetFaces()
 fonts = "face:%(font)s,size:%(size)d" % faces
 default = "fore:#000000," + fonts

Advanced Building Blocks of a User Interface

86

 # Default
 self.StyleSetSpec(stc.STC_P_DEFAULT, default)
 # Comments
 self.StyleSetSpec(stc.STC_P_COMMENTLINE,
 "fore:#007F00," + fonts)
 # Number
 self.StyleSetSpec(stc.STC_P_NUMBER,
 "fore:#007F7F," + fonts)
 # String
 self.StyleSetSpec(stc.STC_P_STRING,
 "fore:#7F007F," + fonts)
 # Single quoted string
 self.StyleSetSpec(stc.STC_P_CHARACTER,
 "fore:#7F007F," + fonts)
 # Keyword
 self.StyleSetSpec(stc.STC_P_WORD,
 "fore:#00007F,bold," + fonts)
 # Triple quotes
 self.StyleSetSpec(stc.STC_P_TRIPLE,
 "fore:#7F0000," + fonts)
 # Triple double quotes
 self.StyleSetSpec(stc.STC_P_TRIPLEDOUBLE,
 "fore:#7F0000," + fonts)
 # Class name definition
 self.StyleSetSpec(stc.STC_P_CLASSNAME,
 "fore:#0000FF,bold," + fonts)
 # Function or method name definition
 self.StyleSetSpec(stc.STC_P_DEFNAME,
 "fore:#007F7F,bold," + fonts)
 # Operators
 self.StyleSetSpec(stc.STC_P_OPERATOR, "bold," + fonts)
 # Identifiers
 self.StyleSetSpec(stc.STC_P_IDENTIFIER, default)
 # Comment-blocks
 self.StyleSetSpec(stc.STC_P_COMMENTBLOCK,
 "fore:#7F7F7F," + fonts)
 # End of line where string is not closed
 eol_style = "fore:#000000,back:#E0C0E0,eol," + fonts
 self.StyleSetSpec(stc.STC_P_STRINGEOL, eol_style)

Chapter 4

87

How it works...
We created two classes: a base editor class and a specialized class for Python source files.
Let's first start by taking a look at the CodeEditorBase class.

The CodeEditorBase sets up the basic functionality of the control, and is just there to
encapsulate some of the common items, should we decide to add other specialized classes
for different types of source files later on.

First and foremost, it initializes the basic window styles and provides font information.
The StyledTextCtrl has a number of style specifications for styling different text in the
buffer. These styles are specified using the StyleSetSpec method, which takes the style
ID and style specification string as arguments. The style IDs that are generic to all lexers
are identified with the STC_STYLE_ prefix. The style specification string is formatted in the
following way:

ATTRIBUTE:VALUE,ATTRIBUTE:VALUE,MODIFIER

Here, ATTRIBUTE and VALUE are replaced by any combination of the possible specifications
in the following table:

Attributes Possible values
fore Foreground color; can either be a color name (black) or hex color string

(for example, #000000)
back Background color; can either be a color name (white) or hex color string

(for example, #FFFFFF)
face A font face name (for example, Monaco)
size A point size for the font (for example, 10)

There is also support from some additional MODIFER attributes that don't take a
VALUE argument:

Modifier Description
bold Makes the text bold
italic Italicizes the text
eol Extends the background style to the end of the current line
underline Underlines the text

The StyledTextCtrl also supports special margins on the left-hand side of the buffer
for displaying things such as line numbers, breakpoints, and code folding buttons. Our
CodeEditorBase shows how to enable line numbers in the left-most margin with its
EnableLineNumbers method.

Advanced Building Blocks of a User Interface

88

Our derived PythonCodeEditor class simply does the three basic things necessary to
set up the proper lexer:

1. First, it calls SetLexer to set the lexer mode. This method simply takes one of the
STC_LEX_FOO values that are found in the stc module.

2. Second, it sets up the keywords for the lexer. There is little documentation on what
keyword sets are available for each lexer, so it is sometimes necessary to look at the
Scintilla source code to see what keyword sets have been defined for each lexer. The
Python lexer supports two keyword sets: one for language keywords and a second for
user- defined keywords. The SetKeywords method takes two arguments: a keyword
ID and a string of space-separated keywords to associate with that ID. Each keyword
ID is associated with a Style ID for the given lexer. In this example, the keyword ID of
zero is associated with the Style ID: STC_P_WORD.

3. Third and finally, it sets all of the styling specifications for the lexer. This is done
just as we did in our base class by calling StyleSetSpec for each lexer style
specification ID that the lexer defines. A quick reference for what styles relate to what
lexers can be found in the wxPython wiki (http://wiki.wxpython.org/StyledT
extCtrl%20Lexer%20Quick%20Reference).

There's more...
The StyledTextCtrl is a big class that comes with a very large API. It has many additional
features that we did not discuss here, such as pop-up lists for implementing auto-completion,
clickable hotspots, code folding, and custom highlighting. Following are links to some
references and documentation about the StyledTextCtrl:

http://www.yellowbrain.com/stc/index.html

http://www.wxpython.org/docs/api/wx.stc.StyledTextCtrl-class.
html

http://wiki.wxpython.org/StyledTextCtrl

See also
The Using the TextCtrl recipe in Chapter 3, Basic Building Blocks of a User Interface
shows how to use the basic text control.

The StyledTextCtrl custom highlighting recipe in Chapter 10, Creating Components
and Extending Functionality shows how to extend the StyledTextCtrl in order
to perform custom text styling.

Chapter 4

8�

Working with tray icons
Tray icons are UI components that integrate with the window manager's Task Bar (Windows /
Linux) or Dock (OS X). They can be used for notifications and to provide a pop-up menu when
the user clicks on the notification icon. This recipe shows how to create and use a tray icon
through the use of the TaskBarIcon class.

How to do it...
To create the icon bar for this recipe's sample code, we create a subclass of TaskBarIcon
that loads an image to use for its display, and that has handling for showing a Menu when it
is clicked on:

class CustomTaskBarIcon(wx.TaskBarIcon):
 ID_HELLO = wx.NewId()
 ID_HELLO2 = wx.NewId()
 def __init__(self):
 super(CustomTaskBarIcon, self).__init__()

 # Setup
 icon = wx.Icon("face-monkey.png", wx.BITMAP_TYPE_PNG)
 self.SetIcon(icon)

 # Event Handlers
 self.Bind(wx.EVT_MENU, self.OnMenu)

 def CreatePopupMenu(self):
 """Base class virtual method for creating the
 popup menu for the icon.
 """
 menu = wx.Menu()
 menu.Append(CustomTaskBarIcon.ID_HELLO, "HELLO")
 menu.Append(CustomTaskBarIcon.ID_HELLO2, "Hi!")
 menu.AppendSeparator()
 menu.Append(wx.ID_CLOSE, "Exit")
 return menu

 def OnMenu(self, event):
 evt_id = event.GetId()
 if evt_id == CustomTaskBarIcon.ID_HELLO:
 wx.MessageBox("Hello World!", "HELLO")
 elif evt_id == CustomTaskBarIcon.ID_HELLO2:
 wx.MessageBox("Hi Again!", "Hi!")
 elif evt_id == wx.ID_CLOSE:
 self.Destroy()
 else:
 event.Skip()

Advanced Building Blocks of a User Interface

�0

How it works...
The TaskBarIcon class is pretty easy and straightforward to use. All that needs to be done
is to create an icon and call SetIcon to create the UI part of the object that will be shown in
the system tray. Then we override the CreatePopupMenu method that the base class will call
when the icon is clicked on, to create the menu. All that this method needs to do is create a
Menu object and then return it; the TaskBarIcon class will take care of the rest. Finally, we
added an event handler for EVT_MENU to handle the menu events from our pop-up menu.

There's more...
The TaskBarIcon class has a number of events associated with it, if you want to customize
what different types of clicks do. Please see the following table for a list of available events
and a description of when they are called.

Events Description
EVT_TASKBAR_CLICK Icon was clicked on by the mouse
EVT_TASKBAR_LEFT_DCLICK Left mouse button double clicked on the icon
EVT_TASKBAR_LEFT_DOWN Left mouse button clicked down on the icon
EVT_TASKBAR_LEFT_UP Left mouse button released on the icon
EVT_TASKBAR_MOVE The TaskBarIcon moved
EVT_TASKBAR_RIGHT_DCLICK Right mouse button double clicked on the icon
EVT_TASKBAR_RIGHT_DOWN Right mouse button clicked down on the icon
EVT_TASKBAR_RIGHT_UP Right mouse button released on the icon

See also
The Adding Menus and MenuBars recipe in Chapter 3, Basic Building Blocks of a
User Interface contains more examples of using and creating menus.

The How to use PopupMenus recipe in Chapter 3, Basic Building Blocks of a User
Interface contains another example of creating a context menu.

Adding tabs to a Notebook
The Notebook class is a container control that is used to manage multiple panels through
the use of tabs. When a tab is selected, the associated panel is shown and the previous one
is hidden. This recipe shows how to use the default native Notebook class to create a
tab-based user interface like the one shown in the following screenshot:

Chapter 4

�1

How to do it...
The following example code snippet defines a Notebook class that has three tabs in it:

class MyNotebook(wx.Notebook):
 def __init__(self, parent):
 super(MyNotebook, self).__init__(parent)

 # Attributes
 self.textctrl = wx.TextCtrl(self, value="edit me",
 style=wx.TE_MULTILINE)
 self.blue = wx.Panel(self)
 self.blue.SetBackgroundColour(wx.BLUE)
 self.fbrowser = wx.GenericDirCtrl(self)

 # Setup
 self.AddPage(self.textctrl, "Text Editor")
 self.AddPage(self.blue, "Blue Panel")
 self.AddPage(self.fbrowser, "File Browser")

How it works...
This recipe just shows the fundamental basics of how to use the Notebook control. We
simply created some window objects that we wish to put in the Notebook. In this case,
we created three different objects: a TextCtrl, a Panel, and a GenericDirCtrl. The
important thing to note is that the items that we wish to put in the Notebook must be
children of the Notebook.

The objects are then added to the Notebook by calling its AddPage method. This method
takes a window object and a label to put on the tab as arguments.

Advanced Building Blocks of a User Interface

�2

There's more...
The basic Notebook class doesn't offer too many more features beyond what was shown
above. However, there are a few additional styles, and some events related to when tabs
are selected. Included below are some quick references to these additional items.

Styles
The following styles can be provided to the Notebook's constructor:

Style Description
NB_BOTTOM Put the tabs at the bottom of the control area
NB_FIXEDWIDTH All tabs are the same size (Windows only)
NB_LEFT Put the tabs on the left side of the control area
NB_MULTILINE Allow for multiple rows of tabs (Windows only)
NB_NOPAGETHEME Use a solid color for the tabs (Windows only)
NB_RIGHT Put the tabs on the right-hand side of the control area
NB_TOP Put the tabs at the top of the control area (Default)

Events
The Notebook emits the following events:

Event Description
EVT_NOTEBOOK_PAGE_
CHANGING

This event is fired when the Notebook is in the process of
changing the page from one to another. Calling Veto on the
event object will block the page from being changed.

EVT_NOTEBOOK_PAGE_
CHANGED

This event is fired when the selected page has been changed.

See also
The Using the FlatNotebook recipe in this chapter shows the usage of another type
of tab control.

Chapter 4

�3

Using the FlatNotebook
The FlatNotebook class is a custom Notebook implementation that provides a large
array of features over the default Notebook. The additional features include such things as
being able to have a close button on each tab, drag and drop tabs to different positions, and
a number of different tab styles to change the look and feel of the control. This recipe will
explore some of the extended functionality that this control provides.

How to do it...
As an example of how to use the FlatNotebook, we will define a subclass that has some
specializations for displaying multiple TextCtrls:

import wx
import wx.lib
import wx.lib.flatnotebook as FNB

class MyFlatNotebook(FNB.FlatNotebook):
 def __init__(self, parent):
 mystyle = FNB.FNB_DROPDOWN_TABS_LIST|\
 FNB.FNB_FF2|\
 FNB.FNB_SMART_TABS|\
 FNB.FNB_X_ON_TAB
 super(MyFlatNotebook, self).__init__(parent,
 style=mystyle)
 # Attributes
 self._imglst = wx.ImageList(16, 16)

 # Setup
 bmp = wx.Bitmap("text-x-generic.png")
 self._imglst.Add(bmp)
 bmp = wx.Bitmap("text-html.png")
 self._imglst.Add(bmp)
 self.SetImageList(self._imglst)

 # Event Handlers
 self.Bind(FNB.EVT_FLATNOTEBOOK_PAGE_CLOSING,
 self.OnClosing)

 def OnClosing(self, event):
 """Called when a tab is closing"""
 page = self.GetCurrentPage()
 if page and hasattr(page, "IsModified"):

Advanced Building Blocks of a User Interface

�4

 if page.IsModified():
 r = wx.MessageBox("Warning unsaved changes"
 " will be lost",
 "Close Warning",
 wx.ICON_WARNING|\
 wx.OK|wx.CANCEL)
 if r == wx.CANCEL:
 event.Veto()

In the following screenshot, we can see the above subclass in action, in a simple file editor
application. The full source code for the below application is available with the code that
accompanies this recipe.

How it works...
This little recipe demonstrates quite a few of the features that the FlatNotebook offers
over the standard Notebook class. So let's break it down, section by section, starting with
the constructor.

In our subclass's constructor we specified four style flags. The first, FNB_DROPDOWN_TAB_
LIST, specifies that we want to have a drop-down list that shows all the open tabs. The drop-
down list is the small down-arrow button: clicking on it will show a pop-up menu that allows
one of the currently open tabs to be selected from the list. The second style flag, FNB_FF2,
specifies that we want tabs that use the Firefox 2 tab renderer, which will draw tabs that look
and feel similar to the ones in Firefox 2. The third style flag, FNB_SMART_TABS, specifies that
the Ctrl + Tab shortcut will pop up a dialog that shows the open tabs and allows them to be
cycled through by pressing the Tab key. The fourth and final style flag that we used, FNB_X_
ON_TAB, specifies that we want a close button to be shown on the active tab. This allows the
user to dismiss a tab when this button is clicked on.

In order to be able to show icons on the tabs, we also created and assigned an ImageList to
the control. An ImageList is simply a container for holding Bitmap objects, and the control
will use it for retrieving the bitmap data when it draws the tabs. The important point to notice
is that we keep a reference to the object by assigning it to self._imglst; it is important
to keep a reference to it so that it doesn't get garbage collected.

Chapter 4

�5

The last thing that we did was Bind the control to the page closing event EVT_FLATNOTEBOOK_
PAGE_CLOSING. In this example, we are expecting our pages to provide an IsModified
method so that we can check for unsaved changes prior to closing the page, in order to give
the user a chance to cancel closing the page.

There's more...
Because the FlatNotebook is a pure Python class, it is more customizable than the basic
Notebook class. Included below is a listing of the style flags that can be used to customize
the appearance and behavior of the control:

Style flags
Here is a list of the other style flags that are available that we didn't already cover:

Style flags Description
FNB_ALLOW_FOREIGN_DND Allow tabs to be dragged and moved to and accepted

from other FlatNotebook instances
FNB_BACKGROUND_GRADIENT Draw a gradient in the tabs background area
FNB_BOTTOM Place the tabs at the bottom of the control area
FNB_COLORFUL_TABS Use colorful tabs (VC8 style only)
FNB_DCLICK_CLOSES_TABS Allow double-clicks to close the active tab
FNB_DEFAULT_STYLE Combination of FNB_MOUSE_MIDDLE_CLOSES_

TABS and FNB_HIDE_ON_SINGLE_TAB
FNB_FANCY_TABS Use the fancy tab renderer for drawing the tabs
FNB_HIDE_ON_SINGLE_TAB Hide the tab container area when there is only one

tab open
FNB_MOUSE_MIDDLE_CLOSES_TABS Allow middle mouse button clicks to close tabs
FNB_NODRAG Don't allow tab drag and drop
FNB_NO_NAV_BUTTONS Don't show the tab scroll buttons
FNB_NO_X_BUTTON Don't show the X button on the right hand side of the

tab container area
FNB_TABS_BORDER_SIMPLE Draw a thin border around the page
FNB_VC71 Use Visual Studio 2003 style tabs
FNB_VC8 Use Visual Studio 2005 style tabs

See also
The Adding tabs to a Notebook recipe in this chapter shows how to use the basic
tab control.

Advanced Building Blocks of a User Interface

�6

Scrolling with a ScrolledPanel
The ScrolledPanel class is a custom Panel class that has built in ScrollBars. This class
is provided by the scrolledpanel module in wx.lib. By default, Panels do not have the
ability to scroll when their contents overflow the windows given area. This recipe shows how
to use the ScrolledPanel, by using it to create a custom image list widget.

How to do it...
To create our custom image viewer control that uses the ScrolledPanel, we will define this
simple class that manages a list of Bitmaps:

import wx
import wx.lib.scrolledpanel as scrolledpanel

class ImageListCtrl(scrolledpanel.ScrolledPanel):
 """Simple control to display a list of images"""
 def __init__(self, parent, bitmaps=list(),
 style=wx.TAB_TRAVERSAL|wx.BORDER_SUNKEN):
 super(ImageListCtrl, self).__init__(parent,
 style=style)

 # Attributes
 self.images = list()
 self.sizer = wx.BoxSizer(wx.VERTICAL)

 # Setup
 for bmp in bitmaps:
 self.AppendBitmap(bmp)
 self.SetSizer(self.sizer)

 def AppendBitmap(self, bmp):
 """Add another bitmap to the control"""
 self.images.append(bmp)
 sbmp = wx.StaticBitmap(self, bitmap=bmp)
 self.sizer.Add(sbmp, 0, wx.EXPAND|wx.TOP, 5)
 self.SetupScrolling()

How it works...
The ScrolledPanel makes it pretty easy to work with ScrollBars, so let's take a quick
look at how it works.

Chapter 4

�7

We created a simple class called ImageListCtrl. This control can be used for displaying
a list of bitmaps. We derived our class from ScrolledPanel so that if it contains many
images, the user will be able to scroll to see them all. The only special thing needed to use
the ScrolledPanel is to call its SetupScrolling method when all of the panels' child
controls have been added to its Sizer. Typically, this is done in the subclasses
__init__ method, but since our widget can add more Bitmap items at any time we
need to call it after each Bitmap that is added in the AppendBitmap method.

The SetupScrolling method works by calculating the minimum size of the contents of the
Panel and setting up the virtual size of the containment area for the ScrollBar objects
to work with.

Simplifying the FoldPanelBar
The FoldPanelBar is a custom container class that allows multiple controls to be grouped
together into FoldPanelItem controls that allow them to be expanded or contracted by
clicking on its CaptionBar. The FoldPanelBar doesn't work with layouts based on a Sizer
and as such its API can get a little cumbersome, because it requires you to add each control
one by one and set its layout by using various flags. This recipe shows how to create a custom
FoldPanelBar that works with Panel objects. This class will allow for you to modularize your
code into Panel classes and then just add them to the FoldPanelBar instead of directly
adding everything to the FoldPanelBar itself.

How to do it...
This custom FoldPanelBar class uses a factory approach to simplify and abstract the
addition of a new Panel to the control:

import wx
import wx.lib.foldpanelbar as foldpanel

class FoldPanelMgr(foldpanel.FoldPanelBar):
 """Fold panel that manages a collection of Panels"""
 def __init__(self, parent, *args, **kwargs):
 super(FoldPanelMgr, self).__init__(parent,
 *args,
 **kwargs)

 def AddPanel(self, pclass, title=u"", collapsed=False):
 """Add a panel to the manager
 @param pclass: Class constructor (callable)
 @keyword title: foldpanel title
 @keyword collapsed: start with it collapsed
 @return: pclass instance

Advanced Building Blocks of a User Interface

�8

 """
 fpitem = self.AddFoldPanel(title, collapsed=collapsed)
 wnd = pclass(fpitem)
 best = wnd.GetBestSize()
 wnd.SetSize(best)
 self.AddFoldPanelWindow(fpitem, wnd)
 return wnd

How it works...
Our subclass of FoldPanelBar, adds one new method to the class AddPanel. The
AddPanel method is a simple wrapper around the FoldPanelBar control's AddFoldPanel
and AddFoldPanelWindow methods. The AddFoldPanel method is used to create the
CaptionBar and container for the controls and the AddFoldPanelWindow method is
used to add a Window object to the FoldPanel.

Our AddPanel method takes a callable object as its first parameter. The callable must accept
a "parent" argument and return a new window that is a child of that parent window when
called. We do this because our panels need to be created as children of the FoldPanelItem
that is returned by AddFoldPanel. This is an important point to remember when working
with the FoldPanelBar. All of the controls that are added to it must be children of one of
its FoldPanelItems and not children of the FoldPanelBar itself.

Since the FoldPanelBar internally works with a manual layout, we need to set an explicit
size on each Panel as it is added. This is done by getting the best size from each Panel
object's GetBestSize method.

There's more...
The CaptionBar of the FoldPanelBar can be customized by making a custom
CaptionBarStyle object and passing it to the AddFoldPanel method. A
CaptionBarStyle object has methods for changing the colors, fonts, and styles that the
CaptionBar will use. The AddFoldPanel method also accepts an optional foldIcons
argument, which accepts an ImageList object that must have two 16x16 pixel bitmaps in
it. The first will be used for the button's expanded state and the second will be used for its
collapsed state.

5
Providing Information

and Alerting Users

In this chapter, we will cover:

Showing a MessageBox

Providing help with ToolTips

Using SuperToolTips

Displaying a BalloonTip

Creating a custom SplashScreen

Showing task progress with the Progress dialog

Creating an AboutBox

Introduction
During an application's runtime, a wide variety of events can arise under a number of different
circumstances. This gives rise to the need to be able to alert and inform users of these events
in an equally wide variety of context-sensitive, intuitive, and effective ways.

Providing information in the right way at the right time is crucial to the usability of an
application. wxPython includes many widgets to help meet the specific needs of any type
of application. So let's take a look at some of these widgets and see how to use them to
their fullest.

Providing Information and Alerting Users

100

Showing a MessageBox
MessageBoxes are one of, if not, the most common and easy ways of alerting users and
providing them with the ability to make simple choices. MessageBoxes come in a number
of varying forms but all share two common points. They all have a (usually) short caption
message and one or more buttons that allow the user to respond to the message. This recipe
shows how to add a MessageBox that gives the user a chance to abort closing a Frame.

How to do it...
As an example of how to show a MessageBox, we will create a little Frame class that uses
a MessageBox as a confirmation to the window close event:

class MyFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 super(MyFrame, self).__init__(parent, *args, **kwargs)

 # Layout
 self.CreateStatusBar()
 self.PushStatusText("Close this window")

 # Event Handlers
 self.Bind(wx.EVT_CLOSE, self.OnClose)

 def OnClose(self, event):
 result = wx.MessageBox("Are you sure you want "
 "to close this window?",
 style=wx.CENTER|\
 wx.ICON_QUESTION|\
 wx.YES_NO)
 if result == wx.NO:
 event.Veto()
 else:
 event.Skip()

Chapter 5

101

How it works...
wx.MessageBox is a function that will create, show, and clean up a modal dialog. It only
requires the first parameter, which specifies the message that will be displayed:

wx.MessageBox(message, caption="", style=wx.OK|wx.CENTER,
 parent=None, x=-1, y=-1)

The other parameters are all optional keyword parameters. The second parameter is used
to specify the dialog's title. The third parameter is the style parameter for specifying how the
dialog will look and what buttons it will have on it. This parameter is just like any other widget
constructor in that its value will be a bitmask of style flags. The fourth parameter can be used
to specify the parent window of the dialog. The final two parameters can be used for explicitly
setting the dialog's X and Y coordinates on the desktop.

In this recipe, we just used the message and the style parameters. In the style parameter,
we specified the CENTER flag which indicates that the dialog should be centered on its
parent, which in this case will be the desktop since we did not specify a parent window. The
ICON_QUESTION flag specifies that we want to display the question mark icon on the dialog.
The last flag, YES_NO, says that we want to have a Yes and a No button on the dialog, so that
the user can reply to the yes/no question we asked in our message.

When the user clicks on one of the dialog's buttons, the dialog will end its modal loop and
return the value of the button that was clicked, which in this case will be either YES or NO.
Here we simply check the return value and either Veto the event to stop the Frame from
closing, or Skip it to allow the Frame to be destroyed.

Platform Notice

On OS X, these dialogs will show the application icon. This is done to conform
with Apple's Human Interface Guidelines. This means that unless you have
built your script into an applet and given it its own icon, the dialog will show
the Python.app icon.

There's more...
There are a number of style flags that the MessageBox function can accept. Here is a quick
reference list, broken down by category.

Providing Information and Alerting Users

102

Icons
The MessageBox can show only one icon, so only one of the following flags should be
specified at a time:

Flags Description
wx.ICON_ERROR Display an icon on the dialog that signifies that an error

has occurred.
wx.ICON_INFORMATION Display an icon on the dialog that signifies that the dialog is only

displaying information.
wx.ICON_QUESTION Display an icon on the dialog that signifies that a question is

being asked that the user needs to respond to.
wx.ICON_WARNING Display an icon on the dialog that signifies a warning message

to the user.

Buttons
The following flags are used to specify the buttons to show in the dialog. By default, the dialog
will just show an OK button:

Flags Description
wx.CANCEL Add a Cancel button to the dialog.
wx.OK Add an OK button to the dialog.
wx.YES Add a Yes button to the dialog.
wx.NO Add a No button to the dialog.
wx.YES_NO Convenience for wx.YES/wx.NO.
wx.YES_DEFAULT Set the Yes button as the default button.
wx.NO_DEFAULT Set the No button as the default button.

Providing help with ToolTips
ToolTips are small pop-up help texts that are shown when the mouse cursor hovers over
a window object for a few moments. When the mouse leaves the window's area they are
automatically dismissed. They are very useful for places where it may be necessary to present
extra information to your users about the function of a certain part of the interface. Nearly all
window objects support having a ToolTip associated with them. This recipe shows how
to add a ToolTip to a Button.

Chapter 5

103

How to do it...
In order to see how to add a ToolTip to a control, let's just make a simple Panel class that
has a single Button on it:

class ToolTipTestPanel(wx.Panel):
 def __init__(self, parent):
 super(ToolTipTestPanel, self).__init__(parent)

 # Attributes
 self.button = wx.Button(self, label="Go")

 # Setup
 self.button.SetToolTipString("Launch the shuttle")
 self.timer = wx.Timer(self)
 self.count = 11

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.button, 0, wx.ALIGN_CENTER)
 msizer = wx.BoxSizer(wx.HORIZONTAL)
 msizer.Add(sizer, 1, wx.ALIGN_CENTER)
 self.SetSizer(msizer)

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnGo, self.button)
 self.Bind(wx.EVT_TIMER, self.OnTimer, self.timer)

 def OnGo(self, event):
 self.button.Disable()
 print self.timer.Start(1000)
 tlw = self.GetTopLevelParent()
 tlw.PushStatusText("Launch initiated...")

 def OnTimer(self, event):
 tlw = self.GetTopLevelParent()
 self.count -= 1
 tlw.PushStatusText("%d" % self.count)
 if self.count == 0:
 self.timer.Stop()
 wx.MessageBox("Shuttle Launched!")

Providing Information and Alerting Users

104

How it works...
Here, we just created a simple panel with a single button on it. The button just has a simple
label that says Go. Since there is no other indication as to what this button may do, we then
added a ToolTip to it by calling the SetToolTipString method. The SetToolTipString
method belongs to the base wx.Window class so it can be used with any object that is
visible on the screen. This method creates a ToolTip object and then calls the Window's
SetToolTip method to associate ToolTip with the Window.

There's more...
The Using SuperToolTips recipe in this chapter shows another way of providing
context sensitive help to users.

See the Playing with the mouse recipe in Chapter 2, Responding to Events for some
insight into how the system shows the tips when the mouse cursor enters the window.

Using SuperToolTips
The SuperToolTip class is an advanced type of ToolTip provided by the wx.lib.agw.
supertooltip module. Unlike the regular ToolTip, the SuperToolTip is a custom
fully-owner-drawn control that supports a wide range of display options. It has the ability to
show a header, a footer, a body section, and each section can also have an image shown in it.
In addition to this, it also supports custom backgrounds, HTML rendering of the content, and
hyperlinks. This recipe shows how to create and use a SuperToolTip.

wx.lib.agw is available in wxPython 2.8.9.2 and higher.

How to do it...
Let's modify the sample from the Providing help with ToolTips recipe to show how a more
verbose help message may be helpful in this case. This recipe uses two image files that are
provided with the source code that accompanies this chapter:

import wx.lib.agw.supertooltip as supertooltip

class SuperToolTipTestPanel (wx.Panel):
 def __init__(self, parent):
 super(SuperToolTipTestPanel, self).__init__(parent)

Chapter 5

105

 # Attributes
 self.button = wx.Button(self, label="Go")
 msg = "Launches the shuttle"
 self.stip = supertooltip.SuperToolTip(msg)

 # Setup SuperToolTip
 bodybmp = wx.Bitmap("earth.png", wx.BITMAP_TYPE_PNG)
 self.stip.SetBodyImage(bodybmp)
 self.stip.SetHeader("Launch Control")
 footbmp = wx.Bitmap("warning.png", wx.BITMAP_TYPE_PNG)
 self.stip.SetFooterBitmap(footbmp)
 footer = "Warning: This is serious business"
 self.stip.SetFooter(footer)
 self.stip.ApplyStyle("XP Blue")
 self.stip.SetTarget(self.button)

How it works...
Here, we took our previous recipe and changed it to use a SuperToolTip instead of the
standard ToolTip.

First, we start by importing the extension module from the wx.lib.agw package so that we
can access the SuperToolTip class. Then we proceed to create the SuperToolTip object
for our button in the SuperToolTipTestPanel class. In our use case, this involves creating
the tip with its body message, then setting a body image that will be shown to the left of our
message. We then added some header text by calling the SetHeader method as well as a
footer and footer image by using the SetFooter and SetFooterBitmap methods. The last
setup step we make is to call ApplyStyle. This method allows for the use of one of the 30 or
so built-in style themes for the background gradient.

Providing Information and Alerting Users

106

The final step in using the SuperToolTip is the important difference between it and the
standard ToolTip. We have to call SetTarget on the SuperToolTip object instead of
calling SetToolTip on the Window object (in this case our Button). This is because the
SuperToolTip manages when it is shown/hidden, and not the Window it belongs too.

There's more...
The SuperToolTip has a few more options not covered in this recipe. Included below are
some additional references and information.

Styles
The ApplyStyles method takes one of the named built-in styles as a parameter. There
are currently about 30 different built-in styles. They are all defined and can be found in
the supertooltip module. They can also be found by looking at the return value of
supertooltip.GetStyleKeys(), which will return a list of all the built-in styles.

Additional customization
There are a few more additional methods that can be used to customize the appearance of
the SuperToolTip. The following table includes a quick reference for these methods:

Methods Description
SetDrawHeaderLine(bool) Draw a horizontal separator line between the

header and the body.
SetDrawFooterLine(bool) Draw a horizontal separator line between the

footer and the body.
SetDropShadow(bool) Use a drop shadow on the tip window.

(Windows only)
SetUseFade(bool) Fade in/out of view. (Windows only)
SetEndDelay(int) Set the time for which the tip will be shown.
SetTopGradientColour(colour) Sets the top gradient color.
SetBottomGradientColour(colour) Sets the bottom gradient color.
SetMiddleGradientColour(colour) Sets the middle gradient color.

See also
The Providing help with ToolTips recipe in this chapter shows a way to provide simple
help messages.

Chapter 5

107

Displaying a BalloonTip
BalloonTips are yet another ToolTip implementation. They are fairly similar to the
SuperToolTip but have a look and feel that imitates the Windows XP taskbar balloon
notifications. When shown, the BalloonTip will create a tip window that has a point that
extends towards the centre of its target window. This recipe shows how to add a BalloonTip
to an application's TaskBarIcon.

wx.lib.agw is available in wxPython 2.8.9.2 and higher.

How to do it...
Here, we will create a simple TaskBarIcon class that will show a BalloonTip when
hovered over. In this example, we again use an external icon that is provided with the source
code that accompanies this chapter:

import wx.lib.agw.balloontip as btip

class TaskBarBalloon(wx.TaskBarIcon):
 def __init__(self):
 super(TaskBarBalloon, self).__init__()

 # Setup
 icon = wx.Icon("face-monkey.png", wx.BITMAP_TYPE_PNG)
 self.SetIcon(icon)

 # Setup BallooTip
 title="BalloonTip Recipe"
 msg = "Welcome to the Balloon Tip Recipe"
 bmp = wx.BitmapFromIcon(icon)
 self.tip = btip.BalloonTip(topicon=bmp,
 toptitle=title,
 message=msg,
 shape=btip.BT_ROUNDED,
 tipstyle=btip.BT_BUTTON)
 self.tip.SetStartDelay(1000)
 self.tip.SetTarget(self)

 # Event Handlers
 self.Bind(wx.EVT_MENU, self.OnMenu)

Providing Information and Alerting Users

108

 def CreatePopupMenu(self):
 menu = wx.Menu()
 menu.Append(wx.ID_CLOSE, "Exit")
 return menu

 def OnMenu(self, event):
 self.RemoveIcon()
 self.tip.DestroyTimer()
 self.Destroy()

How it works...
The BalloonTip class is found in the wx.lib.agw.balloontip module. To make it easier
to use, we imported it with the alias btip. The BalloonTip constructor takes up to five
optional keyword arguments to specify the tip's contents and appearance:

Keyword
arguments

Description

topicon Accepts a Bitmap object that will be shown in the top left-hand corner of the
BalloonTip window

toptitle A string that specifies the title of the BalloonTip window
message A string that specifies the main message for the BalloonTip window
shape Either BT_RECTANGLE or BT_ROUNDED (default), which specify the shape of

the BalloonTip window
tipstyle One of the following values for specifying how the BalloonTip window will

be dismissed:

BT_LEAVE: The tip window will be dismissed when the mouse leaves
the target window

BT_CLICK: The tip window will be dismissed when a user clicks on
the target window

BT_BUTTON: The tip window will be dismissed by clicking on a close
button on the tip window

After creating the BalloonTip, we modified its start delay by making a call to
SetStartDelay, which sets the delay in milliseconds from which the tip window will be
shown after the mouse is moved over the target window. Finally, we called SetTarget to set
the TaskBarIcon as the target window for this BalloonTip. After this, the BalloonTip is
all set up for use with our TaskBarIcon.

In the TaskBarIcons event handler for the exit menu event, we had to add a call to
DestroyTimer on our BalloonTip. This is to ensure that the tip window is destroyed,
otherwise if it is still open the applications main loop will not exit since there are still
top-level windows in the application.

Chapter 5

10�

There's more...
As with most of the generic widgets available in wx.lib, the BalloonTip class offers a wide
variety of methods to customize its appearance. The following table includes a quick reference
to a number of these methods:

Method Description
SetBalloonColour(colour) Sets the BalloonTips background color. Pass None

to revert back to the default.
SetMessageColour(colour) Set the text Colour for the main message. Pass None

to revert back to the default.
SetMessageFont(font) Set the Font to use for the main message. Pass None

to revert back to the default.
SetTitleColour(colour) Set the text Colour for the title. Pass None to revert back

to the default.
SetTitleFont(font) Set the titles Font. Pass None to revert back to the default.

See also
The Using SuperToolTips recipe in this chapter shows another way to provide
context-sensitive information messages.

The Working with tray icons recipe in Chapter 4, Advanced Building Blocks of a User
Interface contains an explanation of using TaskBarIcons in an application.

Creating a custom SplashScreen
SplashWindows are commonly seen during the start up of an application. They are a means
to show a software's logo and, more importantly, they are often used as a means to provide
feedback to the user when an application takes a bit of time to start up so that the user
knows that the application is in the process of loading up. This recipe shows how to create
an advanced SplashWindow class that can show the incremental progress of where an
application is during startup.

How to do it...
Here we will create our custom SplashScreen class. The source code that accompanies this
chapter also includes a sample application showing how to use this class:

class ProgressSplashScreen(wx.SplashScreen):
 def __init__(self, *args, **kwargs):
 super(ProgressSplashScreen, self).__init__(*args,
 **kwargs)

Providing Information and Alerting Users

110

 # Attributes
 self.gauge = wx.Gauge(self, size=(-1, 16))

 # Setup
 rect = self.GetClientRect()
 new_size = (rect.width, 16)
 self.gauge.SetSize(new_size)
 self.SetSize((rect.width, rect.height + 16))
 self.gauge.SetPosition((0, rect.height))

 def SetProgress(self, percent):
 """Set the indicator gauges progress"""
 self.gauge.SetValue(percent)

 def GetProgress(self):
 """Get the current progress of the gauge"""
 return self.gauge.GetValue()

The screenshot is as follows:

How it works...
The basic SplashScreen uses the Bitmap that is passed into the constructor to set its
size, and then the Bitmap is drawn to fill the background. In our subclass, we created a
Gauge to allow for the program to give feedback to the user about the progress of the
startup procedure.

To allow the Gauge to fit on the SplashScreen, we first changed the width of the Gauge to
be the same width as the SplashScreen, by calling its SetSize method with the Gauge's
height and the SplashScreen's width. Next, we changed the size of the SplashScreen
to make it taller, so that we could position the Gauge at the bottom of it without overlapping
the SplashScreen image. Then the final step was to manually position the Gauge into the
extra space we added at the bottom, by calling its SetPosition method with the X and Y
coordinates of where the top-left corner of the Gauge should be placed.

The last two things that we added to our class were just some simple access methods to allow
the Gauge to be manipulated by the users of this class. For an example of this class in action,
check out the sample code that accompanies this chapter.

Chapter 5

111

There's more...
The SplashScreen's constructor has two different style parameters. The first one,
splashStyle, is a required bitmask of one or more of the following flags:

Flags Description
wx.SPLASH_CENTRE_ON_PARENT Center the SplashScreen on its parent window.
wx.SPLASH_CENTRE_ON_SCREEN Center the SplashScreen on the desktop.
wx.SPLASH_NO_CENTRE Don't center the SplashScreen.
wx.SPLASH_TIMEOUT Allow the SplashScreen to be automatically

destroyed when the timeout is reached.
wx.SPLASH_NO_TIMEOUT Don't allow the SplashScreen to timeout (require

explicit destruction of it).

The second style flag parameter is the typical optional one, and is for specifying wx.Frame
style flags. The SplashScreen derives from wx.Frame, so these flags will be passed down
to the base class. In most cases, the default flags are what you want to use here, otherwise it
will end up behaving more like a Frame than a SplashScreen.

Showing task progress with the
Progress dialog

The ProgressDialog is a dialog for showing the progress of a long-running task, such as
downloading a file from the Internet, or exporting data from your program. The dialog shows a
short message, a progress bar, and optionally Abort and/or Skip buttons. Additionally, it can
also optionally show the estimated, elapsed, and remaining time. This recipe shows how to
make a command-line script that can be used to download a file from the Internet and show
the progress of the download using ProgressDialog.

How to do it...
We will create a full application here to allow downloading a file from a URL that is passed
to the script on the command line. So first we will define the application object class:

import wx
import os
import sys
import urllib2

class DownloaderApp(wx.App):
 def OnInit(self):

Providing Information and Alerting Users

112

 # Create a hidden frame so that the eventloop
 # does not automatically exit before we show
 # the download dialog.
 self.frame = wx.Frame(None)
 self.frame.Hide()
 return True

 def Cleanup(self):
 self.frame.Destroy()

Here, we define the method that will be used to show the ProgressDialog, and perform the
actual downloading of the file by using the urllib module from the Python standard library:

 def DownloadFile(self, url):
 """Downloads the file
 @return: bool (success/fail)
 """
 dialog = None
 try:
 # Open the url to read from and
 # the local file to write the downloaded
 # data to.
 webfile = urllib2.urlopen(url)
 size = int(webfile.info()['Content-Length'])
 dlpath = os.path.abspath(os.getcwd())
 dlfile = url.split('/')[-1]
 dlpath = GetUniqueName(dlpath, dlfile)
 localfile = open(dlpath, 'wb')

 # Create the ProgressDialog
 dlmsg = "Downloading: %s" % dlfile
 style = (wx.PD_APP_MODAL
 |wx.PD_CAN_ABORT
 |wx.PD_ELAPSED_TIME
 |wx.PD_REMAINING_TIME)
 dialog = wx.ProgressDialog("Download Dialog",
 dlmsg,
 maximum=size,
 parent=self.frame,
 style=style)

 # Download the file
 blk_sz = 4096
 read = 0
 keep_going = True

Chapter 5

113

 while read < size and keep_going:
 data = webfile.read(blk_sz)
 localfile.write(data)
 read += len(data)
 keep_going, skip = dialog.Update(read)

 localfile.close()
 webfile.close()
 finally:
 # All done so cleanup top level windows
 # to cause the event loop to exit.
 if dialog:
 dialog.Destroy()
 self.Cleanup()

Here, we have an additional helper function that is used to get a unique path to write the
downloaded data to:

#--- Utility Functions ----#

def GetUniqueName(path, name):
 """Make a file name that will be unique in case a file
 of the same name already exists at that path.
 @param path: Root path to folder of files destination
 @param name: desired file name base
 @return: string
 """
 tmpname = os.path.join(path, name)
 if os.path.exists(tmpname):
 if '.' not in name:
 ext = ''
 fbase = name
 else:
 ext = '.' + name.split('.')[-1]
 fbase = name[:-1 * len(ext)]

 inc = len([x for x in os.listdir(path)
 if x.startswith(fbase)])
 newname = "%s-%d%s" % (fbase, inc, ext)
 tmpname = os.path.join(path, newname)
 while os.path.exists(tmpname):
 inc = inc + 1
 newname = "%s-%d%s" % (fbase, inc, ext)
 tmpname = os.path.join(path, newname)

 return tmpname

Providing Information and Alerting Users

114

Finally, the main execution of the script that does the simple command-line argument
handling for this application and starts the download is as follows:

#---- Main Execution ----#
if __name__ == "__main__":
 if len(sys.argv) > 1:
 url = sys.argv[1]
 app = DownloaderApp(False)
 # Start with a slight delay so the eventloop
 # can start running, to ensure our dialog gets
 # shown
 wx.CallLater(2000, app.DownloadFile, url)
 app.MainLoop()
 else:
 # Print some help text
 print(("wxPython Cookbook - ProgressDialog\n"
 "usage: downloader url\n"))

Here is an example of how to call this script from the command-line downloader:
python downloader.py http://somewebsite.com/afile.zip.

How it works...
The recipe above shows the code for the entire downloader application. Let's take a walk
through how it works, starting at the top and working our way down.

First, we imported some modules from the standard Python library. We needed the os
module for path manipulation, the sys module for getting the command-line arguments,
and the urllib2 module so that we can open remote URLs.

Next, we defined our DownloaderApp. This application object has two methods that are
of interest to us. The first is the override of wx.App.OnInit. In our override, we created a
Frame and hid it. We did this just to ensure that the event loop does not exit before we create
and show our ProgressDialog, as the event loop will exit by default when there are no
more top-level windows in the application. The second is the DownloadFile method. This is
where the main action of this application takes place.

DownloadFile first opens the remote URL that was passed in using urllib2, and gets the
size of the file that the URL points to. Next, it opens a file on the local file system to, write to
as we read the data from the remote URL. We then create our ProgressDialog, giving it the
style flags necessary to have an Abort button and show the elapsed and remaining time. Once
the dialog has been created, we can start reading the data from the URL that we opened. We
do this in a loop that checks how much we have read already and whether or not the Abort
button was clicked. After reading a chunk from the URL, we call the ProgressDialog's
Update method, which will update the progress bar and return two Boolean flags that
indicate if one of the two possible dialog buttons was clicked. Once the loop exits, we simply
close the two files and Destroy our window objects, to cause the main loop to exit.

Chapter 5

115

The final two things are the GetUniqueName function and the __main__. GetUniqueName
is just a simple utility function to help generate the local filename, to make sure that we
don't try to write over an already-existing file. The __main__ execution makes just a simple
check of the command-line arguments, and then creates the DownloaderApp and calls its
DownloadFile method. We needed to use wx.CallLater to delay the call by a couple of
seconds because DownloadFile will block when it is called. Without using CallLater, it
would have blocked, performed the download, and returned before the MainLoop was started,
which would have meant that our dialog would have never been displayed on the screen.

There's more...
Included below are some additional references and information to take into consideration
when using the ProgressDialog.

Message parameter
There is some undesirable behavior that can be seen with the ProgressDialog's message
parameter in some cases. If the passed-in message string is very long, it will cause the
dialog's width to be set very wide. So if you see that the dialog is showing up as being much
wider than you would expect, try shortening your message.

Style flags
Here is a quick reference to the available style flags that the ProgressDialog can use:

Style flags Description
wx.PD_APP_MODAL The dialog should be application modal
wx.PD_AUTO_HIDE Have the dialog automatically disappears when the progress

bar reaches its maximum value
wx.PD_SMOOTH Cause the progress bar to be updated smoothly
wx.PD_CAN_ABORT Show the Abort button on the dialog
wx.PD_CAN_SKIP Show the Skip button on the dialog
wx.PD_ELAPSED_TIME Show the elapsed time status text
wx.PD_ESTIMATED_TIME Show the estimated total time status text
wx.PD_REMAININT_TIME Show the estimated remaining time status text

Creating an AboutBox
An About dialog is a simple dialog for displaying some information about an application
to the user, such as the application's version number and license information. This dialog
can be found in most applications on any operating system. It contains an icon and a small
information section that usually contains at least the version information and credits. This
recipe shows how to set up and show an About dialog in an application.

Providing Information and Alerting Users

116

How to do it...
Here, we create a simple skeleton application that shows how to integrate an AboutBox into
an application:

import wx
import sys

class AboutRecipeFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(AboutRecipeFrame, self).__init__(*args,
 **kwargs)

 # Attributes
 self.panel = wx.Panel(self)

 # Setup Menus
 menubar = wx.MenuBar()
 helpmenu = wx.Menu()
 helpmenu.Append(wx.ID_ABOUT, "About")
 menubar.Append(helpmenu, "Help")
 self.SetMenuBar(menubar)

 # Setup StatusBar
 self.CreateStatusBar()
 self.PushStatusText("See About in the Menu")

 # Event Handlers
 self.Bind(wx.EVT_MENU, self.OnAbout, id=wx.ID_ABOUT)

 def OnAbout(self, event):
 """Show the about dialog"""
 info = wx.AboutDialogInfo()

 # Make a template for the description
 desc = ["\nwxPython Cookbook Chapter 5\n",
 "Platform Info: (%s,%s)",
 "License: Public Domain"]
 desc = "\n".join(desc)

 # Get the platform information
 py_version = [sys.platform,
 ", python ",

Chapter 5

117

 sys.version.split()[0]]
 platform = list(wx.PlatformInfo[1:])
 platform[0] += (" " + wx.VERSION_STRING)
 wx_info = ", ".join(platform)

 # Populate with information
 info.SetName("AboutBox Recipe")
 info.SetVersion("1.0")
 info.SetCopyright("Copyright (C) Joe Programmer")
 info.SetDescription(desc % (py_version, wx_info))

 # Create and show the dialog
 wx.AboutBox(info)

class AboutRecipeApp(wx.App):
 def OnInit(self):
 self.frame = AboutRecipeFrame(None,
 title="AboutDialog",
 size=(300,200))
 self.SetTopWindow(self.frame)
 self.frame.Show()

 return True

if __name__ == "__main__":
 app = AboutRecipeApp(False)
 app.MainLoop()

How it works...
In this recipe, we created a very simple yet complete application for creating and displaying an
About dialog. So let's go over the important parts of the code shown above.

Firstly, let's take a look a look at the part where we set up the menus in the
AboutRecipeFrame class. Standard application About dialogs are shown from a menu
item. On Windows and GTK Linux this menu entry is under the Help menu; on Macintosh
OS X this menu entry is under the Application menu. wxPython will take care of these platform
differences for us automatically since we assigned our About menu entry the wx.ID_ABOUT
stock ID, which lets wx know that the menu entry is a standard about information menu entry.

The next and most important part of this recipe is the OnAbout menu event handler. This
is the method that will get called when our About menu entry is activated and it is where we
create and show the About dialog by calling the AboutBox function. The AboutBox function
requires an AboutDialogInfo object that contains all of the information that we want
to display in the dialog that it will create.

Providing Information and Alerting Users

118

The AboutDialogInfo object has a number of methods for setting the different data fields
that the dialog can support. These methods are all simple setter methods that take strings or
lists of strings as arguments. We used four of these methods in this recipe:

1. SetName takes the application's name. This string will be shown in the dialog's title
bar and as the first line in the main content area.

2. SetVersion is for setting and showing the application's version number. This is
shown after the application name in the main content area.

3. SetCopyright sets the copyright information field. The special thing to note about
this method is if the string contains a (C) in it, this will be automatically converted
to the copyright symbol ©.

4. SetDescription is the main description field, which can contain any arbitrary
information about the application.

The last thing that we did was to show the About dialog box. This is quite simple. All we needed
to do was to call the wx.AboutBox function with the AboutDialogInfo that we created.

There's more...
The AboutDialogInfo object supports a number of additional fields for other
special types of data and customization of the AboutBox. wxPython provides a native
implementation of the About dialog on the three major platforms (MSW, GTK, OSX). However,
only the GTK version of the AboutBox has native support for all the extra fields that the
AboutDialogInfo supports. If the AboutDialogInfo contains any fields that the native
dialog does not support, wxPython will automatically switch to the generic version of the
dialog. This can be a problem if you want to maintain a native look and feel in your application.
So following is a list of the other AboutDialogInfo fields that are available, and which ones
will cause the generic dialog to be used on Windows and OS X:

Other AboutDialogInfo fields Description
SetArtists(list_of_strings) For crediting the application's graphic artists.
SetDevelopers(list_of_strings) For crediting the application's developers.
SetDocWriters(list_of_strings) For crediting the application's documentation

writers.
SetIcon(icon) Customize the dialog's icon. Default is the

application icon (GTK only)
SetLicense(license_string) For displaying the application's long license text

(GTK only).
SetTranslators(list_of_strings) For crediting the application's translators.
SetWebSite(url_string) Creates a hyperlink to a website in the dialog

(GTK only).

Chapter 5

11�

See also

The Utilizing Stock IDs recipe in Chapter 1, Getting Started with wxPython explains
the usage of the built-in IDs.

The Adding Menus and MenuBars recipe in Chapter 3, Basic Building Blocks of a
User Interface contains detailed information about creating menus and adding them
to a Frame's MenuBar.

6
Retrieving Information

from Users

In this chapter, we will cover:

Selecting files with a FileDialog

Searching text with a FindReplaceDialog

Getting images with ImageDialog

Using the Print dialogs

Introduction
Being able to retrieve information from users is an essential part of any application. Dialogs
are one of the many ways of retrieving information from users; most desktop applications use
a number of common dialogs for tasks such as opening, saving, and printing files.

There are two main types of dialogs: Modal and Modeless. Modal dialogs are dialogs that,
when shown, block and disable interaction with their parent window or all other windows in
an application (in the case of an application-modal dialog). Modal dialogs are used for cases
where a program must retrieve data from a user before proceeding to its next task. Modeless
dialogs, on the other hand, behave similarly to Frames. When modeless dialogs are shown,
the other windows in the application remain accessible. When closed, modeless dialogs will
usually post an event to their parent window to inform it that the dialog has closed.

wxPython supplies many built-in dialogs that can fill the needs of almost any common
circumstance. So let's take a look at a handful of these common dialogs in action with
the recipes in this chapter.

Retrieving Information from Users

122

Selecting files with a FileDialog
Allowing users to open and save files is one of the most fundamental capabilities of many
applications. To provide this functionality, it is often necessary to give the user the ability to
select which files to open, what to name a file, and where to put it when saving a new file. The
FileDialog can be used to fill this role in your application. This recipe creates a simple text
editor application that can open and save text files to show how to use the FileDialog.

How to do it...
Here, we will create a complete text-editor application:

import wx

class FileEditorApp(wx.App):
 def OnInit(self):
 self.frame = FileEditorFrame(None,
 title="File Editor")
 self.frame.Show()
 return True

Our main application window is defined here, and consists of a Frame, TextCtrl, and MenuBar:

class FileEditorFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(FileEditorFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.file = None
 style = style=wx.TE_MULTILINE|wx.TE_RICH2
 self.txtctrl = wx.TextCtrl(self, style=style)

 # Setup
 self._SetupMenus()

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.txtctrl, 1, wx.EXPAND)
 self.SetSizer(sizer)

 # Event Handlers
 self.Bind(wx.EVT_MENU, self.OnOpen, id=wx.ID_OPEN)
 self.Bind(wx.EVT_MENU, self.OnSave, id=wx.ID_SAVE)

Chapter 6

123

 self.Bind(wx.EVT_MENU, self.OnSave, id=wx.ID_SAVEAS)
 self.Bind(wx.EVT_MENU, self.OnExit, id=wx.ID_EXIT)
 self.Bind(wx.EVT_CLOSE, self.OnExit)

 def _SetupMenus(self):
 """Make the frames menus"""
 menub = wx.MenuBar()
 fmenu = wx.Menu()
 fmenu.Append(wx.ID_OPEN, "Open\tCtrl+O")
 fmenu.AppendSeparator()
 fmenu.Append(wx.ID_SAVE, "Save\tCtrl+S")
 fmenu.Append(wx.ID_SAVEAS, "Save As\tCtrl+Shift+S")
 fmenu.AppendSeparator()
 fmenu.Append(wx.ID_EXIT, "Exit\tCtrl+Q")
 menub.Append(fmenu, "File")
 self.SetMenuBar(menub)

Here are the event handlers for the MenuItems we added to the Frame's MenuBar above.
These event handlers are used mostly to just delegate to the method that performs the
action the user requested.

 #---- Event Handlers ----#

 def OnOpen(self, event):
 """Handle Open"""
 if event.GetId() == wx.ID_OPEN:
 self.DoOpen()
 else:
 event.Skip()

 def OnSave(self, event):
 """Handle Save/SaveAs"""
 evt_id = event.GetId()
 if evt_id in (wx.ID_SAVE,
 wx.ID_SAVEAS):
 if self.file:
 self.Save(self.file)
 else:
 self.DoSaveAs()
 else:
 event.Skip()

 def OnExit(self, event):
 """Handle window close event"""

Retrieving Information from Users

124

 # Give warning about unsaved changes
 if self.txtctrl.IsModified():
 message = ("There are unsaved changes.\n\n"
 "Would you like to save them?")
 style = wx.YES_NO|wx.ICON_WARNING|wx.CENTRE
 result = wx.MessageBox(message,
 "Save Changes?",
 style=style)
 if result == wx.YES:
 if self.file is None:
 self.DoSaveAs()
 else:
 self.Save(self.file)
 event.Skip()

 #---- End Event Handlers ----#

 #---- Implementation ----#

Here, in the DoOpen method, we make the first use of the FileDialog in OPEN mode
to allow the user to select the file they wish to open:

 def DoOpen(self):
 """Show file open dialog and open file"""
 wildcard = "Text Files (*.txt)|*.txt"
 dlg = wx.FileDialog(self,
 message="Open a File",
 wildcard=wildcard,
 style=wx.FD_OPEN)
 if dlg.ShowModal() == wx.ID_OK:
 path = dlg.GetPath()
 with open(path, "rb") as handle:
 text = handle.read()
 self.txtctrl.SetValue(text)
 self.file = path
 dlg.Destroy()

In DoSaveAs, we see the second use of the FileDialog to allow the user to choose where
to save the file to, by creating the dialog in SAVE mode.

 def DoSaveAs(self):
 """Show SaveAs dialog"""
 wildcard = "Text Files (*.txt)|*.txt"
 dlg = wx.FileDialog(self,
 message="Save As",

Chapter 6

125

 wildcard=wildcard,
 style=wx.FD_SAVE
 |wx.FD_OVERWRITE_PROMPT)
 if dlg.ShowModal() == wx.ID_OK:
 path = dlg.GetPath()
 self.Save(path)
 self.file = path
 dlg.Destroy()

 def Save(self, path):
 """Save the file"""
 with open(path, "wb") as handle:
 text = self.txtctrl.GetValue()
 handle.write(text)
 self.txtctrl.SetModified(False)

 #---- End Implementation ----#

#---- Main Execution ----#
if __name__ == "__main__":
 app = FileEditorApp(False)
 app.MainLoop()

How it works...
Just to provide a feel of how quickly you can create a usable application in wxPython, let's
just look at the recipe above. In roughly 100 lines of code, we have basically implemented a
Windows Notepad clone. Since this recipe was about the FileDialog, let's just focus in on
the DoOpen and DoSaveAs methods of our text editor application, to see how it works.

The FileDialog has two basic modes: Open and Save. The mode of the dialog depends
upon which style flags it was created with. Our DoOpen method creates it with the FD_OPEN
style flag, which puts it into Open mode. Open mode differs from Save mode in that it only
allows you to select a file and not enter a name in order to create a new one.

In both of our uses of the FileDialog in this application, we used the same set of optional
parameters for creating it. The wildcards parameter accepts a specially-formatted string
to specify the file filter list in the dialog. This string must be formatted as follows:

"All Files (*)|*|Text Files (*.txt;*.in)|*.txt;*.in"

The fields in this string are interpreted as follows:

Description1|wildcard1|Description2|wildcard1;wildcard2

Retrieving Information from Users

126

Each field is a description followed by the pipe character as a separator, and then the
wx.ID_OK wildcards to associate with that description. Multiple wildcards are separated
by a semicolon.

Once the dialog is set up, its usage is quite simple. It just needs to be shown by using
ShowModal. Then, if the user closed it with the affirmative, we just need to call the dialog's
GetPath method in order to get the path that was selected or entered into the dialog by
the user.

There's more...
The FileDialog's constructor takes a number of parameters to customize its behavior; see
below for more information on how to setup a FileDIalog.

Default paths
The FileDialog has a few extra parameters that we did not use in our application, and that
can be used to customize its initial state. The first is the defaultDir parameter, which takes
a directory path as a value. This path must exist, and will ensure that the dialog is shown with
that directory selected initially. The other additional parameter is defaultFile, which takes
the name of a file as a value. This will be put as the default value in the dialog's filename field.

Style flags
The style flags and their descriptions are shown in the following table:

Style Flags Description
wx.FD_DEFAULT_STYLE Same as wx.FD_OPEN
wx.FD_OPEN Create it as an Open dialog. Cannot be combined with

wx.FD_SAVE.
wx.FD_SAVE Create it as a Save dialog. Cannot be combined with

wx.FD_OPEN.
wx.FD_OVERWRITE_PROMPT Prompt for confirmation if the path already exists. For

Save dialog only.
wx.FD_FILE_MUST_EXIST Allow users to select only files that actually exist. For Open

dialog only.
wx.FD_MULTIPLE Allow multiple files to be selected. For Open dialog only.

Should use the dialogs GetPaths method to get the list
of selected paths.

wx.FD_PREVIEW Show a preview of the selected file.
wx.FD_CHANGE_DIR Change the current working directory to where the

user selected the file(s). If not using the defaultDir
parameter, the next time the dialog is opened, it will open
to the last-used location.

Chapter 6

127

See also
The Utilizing Stock IDs recipe in Chapter 1, Getting Started with wxPython explains
the usage of the built-in IDs.

The Handling events recipe in Chapter 2, Responding to Events covers the basics
of event handling.

The Adding Menus and MenuBars recipe in Chapter 3, Basic Building Blocks of
a User Interface discusses how to add menus to a Frame.

Searching text with a FindReplaceDialog
The FindReplaceDialog is a common dialog for getting information from the user in
order to perform find and replace actions in an application. The FindReplaceDialog is
always used as a modeless dialog, and emits events when its buttons are clicked that notify
the parent window of the action that the user wishes to perform. This recipe will extend the
previous recipe (FileDialog) to show how to add the Find and Replace functionality to an
application using the FindReplaceDialog.

How to do it...
Here we will show how we subclassed the FileEditorFrame to add find and replace
functionality with the FindReplaceDialog:

import wx
FileDialog Recipe sample module
import filedialog

class FindReplaceEditorFrame(filedialog.FileEditorFrame):
 def __init__(self, *args, **kwargs):
 super(FindReplaceEditorFrame, self).__init__(*args,
 **kwargs)

 # Attributes
 self.finddlg = None
 self.finddata = wx.FindReplaceData()

 # Setup
 menub = self.GetMenuBar()
 editmenu = wx.Menu()
 editmenu.Append(wx.ID_FIND, "Find\tCtrl+F")
 editmenu.Append(wx.ID_REPLACE, "Replace\tCtrl+R")
 menub.Append(editmenu, "Edit")

Retrieving Information from Users

128

 # Event Handlers
 self.Bind(wx.EVT_MENU,
 self.OnFindMenu,
 id=wx.ID_FIND)
 self.Bind(wx.EVT_MENU,
 self.OnFindMenu,
 id=wx.ID_REPLACE)
 self.Bind(wx.EVT_FIND, self.OnFind)
 self.Bind(wx.EVT_FIND_NEXT, self.OnFind)
 self.Bind(wx.EVT_FIND_REPLACE, self.OnReplace)
 self.Bind(wx.EVT_FIND_REPLACE_ALL, self.OnReplaceAll)
 self.Bind(wx.EVT_FIND_CLOSE, self.OnFindClose)

This method is a helper method that creates the FindReplaceDialog in the correct mode,
depending on which action the user selects from the Menu:

 def _InitFindDialog(self, mode):
 if self.finddlg:
 self.finddlg.Destroy()

 style = (wx.FR_NOUPDOWN
 |wx.FR_NOMATCHCASE
 |wx.FR_NOWHOLEWORD)
 if mode == wx.ID_REPLACE:
 style |= wx.FR_REPLACEDIALOG
 title = "Find/Replace"
 else:
 title = "Find"
 dlg = wx.FindReplaceDialog(self,
 self.finddata,
 title,
 style)
 self.finddlg = dlg

 # ---- Event Handlers ----#

This first event handler is used to handle the events when a menu item is selected, and will be
used to create and show the appropriate version of the FindReplaceDialog:

 def OnFindMenu(self, event):
 evt_id = event.GetId()
 if evt_id in (wx.ID_FIND, wx.ID_REPLACE):
 self._InitFindDialog(evt_id)
 self.finddlg.Show()
 else:
 event.Skip()

Chapter 6

12�

These next four event handlers handle events that are generated by the FindReplaceDialog
in response to user actions:

 def OnFind(self, event):
 """Find text"""
 findstr = self.finddata.GetFindString()
 if not self.FindString(findstr):
 wx.Bell() # beep at the user for no match

 def OnReplace(self, event):
 """Replace text"""
 rstring = self.finddata.GetReplaceString()
 fstring = self.finddata.GetFindString()
 cpos = self.GetInsertionPoint()
 start, end = cpos, cpos
 if fstring:
 if self.FindString(fstring):
 start, end = self.txtctrl.GetSelection()
 self.txtctrl.Replace(start, end, rstring)

 def OnReplaceAll(self, event):
 """Do a replace all"""
 rstring = self.finddata.GetReplaceString()
 fstring = self.finddata.GetFindString()
 text = self.txtctrl.GetValue()
 newtext = text.replace(fstring, rstring)
 self.txtctrl.SetValue(newtext)

 def OnFindClose(self, event):
 if self.finddlg:
 self.finddlg.Destroy()
 self.finddlg = None

 #---- End Event Handlers ----#

 #---- Implementation ----#

Finally, here we have a very simple method of searching for a given string in the TextCtrl,
and setting the selection if a match is found:

 def FindString(self, findstr):
 """Find findstr in TextCtrl and set selection"""
 text = self.txtctrl.GetValue()
 csel = self.txtctrl.GetSelection()
 if csel[0] != csel[1]:

Retrieving Information from Users

130

 cpos = max(csel)
 else:
 cpos = self.txtctrl.GetInsertionPoint()

 if cpos == self.txtctrl.GetLastPosition():
 cpos = 0

 # Do a simple case insensitive search
 # to find the next match
 text = text.upper()
 findstr = findstr.upper()
 found = text.find(findstr, cpos)
 if found != -1:
 end = found + len(findstr)
 self.txtctrl.SetSelection(end, found)
 self.txtctrl.SetFocus()
 return True
 return False

Running the previous code will result in a window like the following being shown:

How it works...
In this recipe, we took the FileEditorFrame class that we created in the last recipe and
extended it to have find and replace functionality, by using the FindReplaceDialog. So let's
take a look at how we made use of the FindReplaceDialog by walking through what we
added to this class from top to bottom.

Chapter 6

131

In our FindReplaceEditorFrame class's __init__ method, we added two instance
attributes, finddlg and finddata. Since the FindReplaceDialog is modeless, we need
to keep track of it in our class so we can properly clean it up later, to ensure that it will get
assigned to the finddlg attribute when it is created. The second attribute, finddata, holds
a reference to the FindReplaceData that is used for initializing the dialog, as well as for
passing data back and forth between the dialog, and its parent window. We keep a reference
to this item for two firstly, one it allows convenient access to the dialogs flags and user
entered find and replace field strings, and secondly, by using the same FindReplaceData
object each time, the dialog will be initialized with the same settings that the user last used it
with. The last thing to take note of in __init__ is the event binding: we bound to five of the
events that the FindReplaceDialog can emit as a user interacts with it.

The next new method is the _InitFindDialog method. This method is what we use to
initialize the FindReplaceDialog in response to the Find or Replace menu item events.
Since our application is only going to support a simple one-direction, case-insensitive search,
we disabled all the extra options in the dialog with the appropriate style flags. Then we simply
create the dialog with the FR_REPLACEDIALOG flag if we are in replace mode, or without it if
we are not, and finally assign the new dialog instance to our finddlg attribute.

The next section to look at is our FindReplaceDialog event handlers. This is where we
handle the requested actions made by the user that is using the dialog. OnFind handles the
situation where the user clicks the Find or Find Next buttons in the dialog. Here, we first get
the string that was entered into the dialog by using our finddata attribute to access it. Then
we perform a simple search in the text of the base class's TextCtrl, selecting the match if
one is found, or use wx.Bell to make the computer beep at the user if no match is found.

OnReplace is called in response to the FindReplaceDialogs Replace button in the
FindReplaceDialog being clicked. Here we get both the entered find and replace strings
from the FindReplaceData. We then try to find a match and replace that match with the
entered replace string. OnReplaceAll is called in response to the dialog's Replace All
button being clicked, and does basically the same thing as OnReplace, but applies it to
all matches in the TextCtrl text.

The last event handler is OnFindClose. This is called when the user closes the
FindReplaceDialog. We need to handle this event so that we can clean up the dialog
by calling Destroy on it. That's it. Now we have a text editor application that has find and
replace functionality!

There's more...
For simplicity's sake, this recipe disabled the dialog's extra find options. When these options
are selected in the dialog, they can be checked for, just like the find and replace strings, by
using the FindReplaceData object. It will have the selected option's flags set in the value
returned from GetFlags, which is a bitmask of the FindReplaceData flags. Due to the way
in which these flags and the dialog's style flags are named, it can be a little confusing to know
which are which, so please refer to the following two tables to distinguish between these two
different, yet similarly-named sets of flags.

Retrieving Information from Users

132

FindReplaceDialog style flags
These flags are flags that should be passed to the dialog's constructor's style parameter:

Flags Description
wx.FR_NOMATCHCASE Disable the "match case" checkbox
wx.FR_NOUPDOWN Disable the "up" and "down" radio buttons
wx.FR_NOWHOLEWORD Disable the "whole word" checkbox
wx.FR_REPLACEDIALOG Create the dialog in Replace mode

FindReplaceData flags
The following flags are flags that can be set in FindReplaceData to set the initial state
of the dialog and to identify the user's selected find preferences.

Flags Description
wx.FR_DOWN The "down" radio button is selected
wx.FR_MATCHCASE The "match case" checkbox is selected
wx.FR_WHOLEWORD The "whole word" checkbox is selected

See also
See the Selecting files with a FileDialog recipe for the base example that this
recipe extends.

The Understanding event propagation recipe in Chapter 2, Responding to Events
contains more information on how events are delivered to different windows.

Getting images with ImageDialog
ImageDialog is a custom dialog class provided by the wx.lib.imagebrowser module.
It is similar in purpose to the default FileDialog, but is specialized for allowing the user to
select and preview images. This recipe shows how to use this dialog to retrieve a user-selected
image and load it into a StaticBitmap for display in the application's main window.

How to do it...
Here we will create a very simple image viewer application that allows the user to select an
image to view with the ImageDialog:

import wx
import wx.lib.imagebrowser as imagebrowser

class ImageDialogApp(wx.App):

Chapter 6

133

 def OnInit(self):
 self.frame = ImageDialogFrame(None,
 title="ImageDialog")
 self.frame.Show()
 return True

class ImageDialogFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(ImageDialogFrame, self).__init__(*args,
 **kwargs)

 # Attributes
 self.panel = ImageDialogPanel(self)

class ImageDialogPanel(wx.Panel):
 def __init__(self, *args, **kwargs):
 super(ImageDialogPanel, self).__init__(*args,
 **kwargs)

 # Attributes
 self.lastpath = None
 self.bmp = wx.StaticBitmap(self)
 self.btn = wx.Button(self, label="Choose Image")

 # Layout
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)
 vsizer.Add(self.bmp, 0, wx.ALIGN_CENTER)
 vsizer.AddSpacer((5, 5))
 vsizer.Add(self.btn, 0, wx.ALIGN_CENTER)
 hsizer.AddStretchSpacer()
 hsizer.Add(vsizer, 0, wx.ALIGN_CENTER)
 hsizer.AddStretchSpacer()
 self.SetSizer(hsizer)

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnShowDialog, self.btn)

 def OnShowDialog(self, event):
 # Create the dialog with the path cached
 # from the last time it was opened
 dlg = imagebrowser.ImageDialog(self, self.lastpath)
 if dlg.ShowModal() == wx.ID_OK:
 # Save the last used path
 self.lastpath = dlg.GetDirectory()
 imgpath = dlg.GetFile()
 bitmap = wx.Bitmap(imgpath)

Retrieving Information from Users

134

 if bitmap.IsOk():
 self.bmp.SetBitmap(bitmap)
 self.Layout()
 self.bmp.Refresh()
 dlg.Destroy()

if __name__ == '__main__':
 app = ImageDialogApp(False)
 app.MainLoop()

Running the previous code and clicking on the Choose Image button will result in the following
dialog being shown:

How it works...
In this recipe we created a simple little image viewer application that allows the user to use
the ImageDialog to choose an image that is on the computer's hard drive, and have this
image displayed in the application's window.

This application follows the common pattern of most simple applications. So let's take a
detailed look at how we used the ImageDialog. First, we had to import the wx.lib.
imagebrowser module, as the ImageDialog is not a part of the standard wx module. In
our ImageDialogFrame class, we added three instance attributes. The first is to hold the
path that was last used by the ImageDialog. We did this as a way to improve the usability
of the application so that we can open the dialog to the last path the user used the next time

Chapter 6

135

they open it. The second attribute is a StaticBitmap object, which we will use to display the
image that the user selects with the ImageDialog. Note that we used a StaticBitmap in
this example for simplicity. To better support larger-sized images, it would be better to draw
the image on the Panel ourselves. This approach will be covered by topics in Chapter 8,
Drawing to the Screen. The last attribute is just a button that will be used to trigger the
event to show the ImageDialog.

Our OnShowDialog method in this recipe creates the ImageDialog and initializes it to the
last path used. The first time, it will be None, which defaults to the current working directory.
The dialog is then shown, in order to allow the user to navigate to and select an image to
display. If they click on the dialog's Open button, the dialog will return wx.ID_OK. At this point,
we first get and save a reference to the last directory that the dialog was at so that we can
restore it next time the dialog is shown. Then all that is left is to create the Bitmap and call the
StaticBitmap's SetBitmap method to change the image that is displayed. After this, it is
necessary to call Layout on the Panel, to make sure the sizers can compensate for the new
Bitmap's size, and then we finally call Refresh on the StaticBitmap to make sure it is
completely repainted.

There's more...
The only other option available in the current version of the ImageDialog is the ability
to change the list of supported file filters. This can be done by passing to the dialog's
ChangeFileTypes method a list of tuples that contain the file type's description
and wildcard string.

dlg.ChangeFileTypes([('png, '*.png'), ('jpeg', '*.jpg')])

See also
The Using Bitmaps recipe in Chapter 1, Getting Started with wxPython has additional
examples of using Bitmaps and the StaticBitmap class.

Using the Print dialogs
Adding printing support to an application can be a difficult task, as there are a number
of tasks that need to be handled. These include selecting and configuring a printer, translating
your on-screen presentation to paper, and ultimately sending the data to the printer.

In wxPython, there are three dialog classes related to printing: the PageSetupDialog,
PreviewFrame, and Printer classes. In addition to these classes, there are a number
of supporting classes that must be used in conjunction with these dialogs, in order to add
printing support to an application. This recipe shows some of the basics of how to use the
wx printing framework, by creating a class that encapsulates the usage of the three printing
dialogs and allows an application to print a Bitmap.

Retrieving Information from Users

136

How to do it...
In order to simplify and condense the many different steps required to support printing in
an application, we will start by defining a class to encapsulate the different tasks into a few
simple method calls:

class BitmapPrinter(object):
 """Manages PrintData and Printing"""
 def __init__(self, parent):
 """Initializes the Printer
 @param parent: parent window
 """
 super(BitmapPrinter, self).__init__()

 # Attributes
 self.parent = parent
 self.print_data = wx.PrintData()

 def CreatePrintout(self, bmp):
 """Creates a printout object
 @param bmp: wx.Bitmap
 """
 assert bmp.IsOk(), "Invalid Bitmap!"
 data = wx.PageSetupDialogData(self.print_data)
 return BitmapPrintout(bmp, data)

The PageSetup method handles the display of the printer setup dialog, and storage of the
settings in the print_data attributes:

 def PageSetup(self):
 """Show the PrinterSetup dialog"""
 # Make a copy of our print data for the setup dialog
 dlg_data = wx.PageSetupDialogData(self.print_data)
 print_dlg = wx.PageSetupDialog(self.parent, dlg_data)
 if print_dlg.ShowModal() == wx.ID_OK:
 # Update the printer data with the changes from
 # the setup dialog.
 newdata = dlg_data.GetPrintData()
 self.print_data = wx.PrintData(newdata)
 paperid = dlg_data.GetPaperId()
 self.print_data.SetPaperId(paperid)
 print_dlg.Destroy()

Chapter 6

137

In Preview, we create the PrintPreview dialog to give a preview of what the printout will
look like:

 def Preview(self, bmp):
 """Show the print preview
 @param bmp: wx.Bitmap
 """
 printout = self.CreatePrintout(bmp)
 printout2 = self.CreatePrintout(bmp)
 preview = wx.PrintPreview(printout, printout2,
 self.print_data)
 preview.SetZoom(100)
 if preview.IsOk():
 pre_frame = wx.PreviewFrame(preview,
 self.parent,
 "Print Preview")
 # The default size of the preview frame
 # sometimes needs some help.
 dsize = wx.GetDisplaySize()
 width = self.parent.GetSize()[0]
 height = dsize.GetHeight() - 100
 pre_frame.SetInitialSize((width, height))
 pre_frame.Initialize()
 pre_frame.Show()
 else:
 # Error
 wx.MessageBox("Failed to create print preview",
 "Print Error",
 style=wx.ICON_ERROR|wx.OK)

Finally, in the Print method, we show the Printer dialog to allow the user to request
a printout of a Bitmap, and send it to the printer to be printed:

 def Print(self, bmp):
 """Prints the document"""
 pdd = wx.PrintDialogData(self.print_data)
 printer = wx.Printer(pdd)
 printout = self.CreatePrintout(bmp)
 result = printer.Print(self.parent, printout)
 if result:
 # Store copy of print data for future use
 dlg_data = printer.GetPrintDialogData()
 newdata = dlg_data.GetPrintData()
 self.print_data = wx.PrintData(newdata)

Retrieving Information from Users

138

 elif printer.GetLastError() == wx.PRINTER_ERROR:
 wx.MessageBox("Printer error detected.",
 "Printer Error",
 style=wx.ICON_ERROR|wx.OK)
 printout.Destroy()

Here we will implement the Printout object for printing Bitmaps. The Printout object
is the object that is responsible for managing the print job and drawing the bitmap to the
printer's device context:

class BitmapPrintout(wx.Printout):
 """Creates an printout of a Bitmap"""
 def __init__(self, bmp, data):
 super(BitmapPrintout, self).__init__()

 # Attributes
 self.bmp = bmp
 self.data = data

 def GetPageInfo(self):
 """Get the page range information"""
 # min, max, from, to # we only support 1 page
 return (1, 1, 1, 1)

 def HasPage(self, page):
 """Is a page within range"""
 return page <= 1

 def OnPrintPage(self, page):
 """Scales and Renders the bitmap
 to a DC and prints it
 """
 dc = self.GetDC() # Get Device Context to draw on

 # Get the Bitmap Size
 bmpW, bmpH = self.bmp.GetSize()

 # Check if we need to scale the bitmap to fit
 self.MapScreenSizeToPageMargins(self.data)
 rect = self.GetLogicalPageRect()
 w, h = rect.width, rect.height
 if (bmpW > w) or (bmpH > h):
 # Image is large so apply some scaling

Chapter 6

13�

 self.FitThisSizeToPageMargins((bmpW, bmpH),
 self.data)
 x, y = 0, 0
 else:
 # try to center it
 x = (w - bmpW) / 2
 y = (h - bmpH) / 2

 # Draw the bitmap to DC
 dc.DrawBitmap(self.bmp, x, y)

 return True

How it works...
The BitmapPrinter class encapsulates the three main print-related tasks that an
application may need to support: printer setup, print preview, and printing. This class is the
interface that the application which wants to allow printing Bitmaps will use for all of its
printing needs. All that the application requires is a Bitmap, and all that it needs to do is
to use one of the three methods, PageSetup, Preview, and Print. So let's take a look
at how this class and these three methods work.

The constructor takes one argument for a parent window. This will be used as the parent
window for all of the dialogs. This will typically be an application's main window. We also
create and store a reference to a PrintData object in the constructor. All of the print dialogs
use PrintData in one form or another. This allows us to save any print configuration changes
a user may make while using one of the dialogs.

PageSetup is used to create and show the PageSetupDialog. To use the
PageSetupDialog, we first create a PageSetupDialogData object by passing
our PrintData object to its constructor, so it will use any settings that may already
be persisted in our data object. We then simply create the dialog by passing in the
PageSetupDialogData object. If the dialog is closed by the OK button, we then get the
PrintData from the dialog and make a copy of it to store. It is important to make a copy,
because when the PageSetupDialog is destroyed it will delete the data.

Preview creates a preview of what the printout will look like, and shows it with the
PreviewFrame. The PreviewFrame requires a PrintPreview object. To create the
PrintPreview object, it must be passed two Printout objects and a PrintData object.
A Printout object is what does the actual work of rendering what will be printed by the
printer. We will come back to the details about how the Printout works when we get to our
BitmapPrintout class. The first Printout object is used for the PreviewFrame, and
the second one is used for the actual printing if the user clicks on the PreviewFrame's
Print button.

Retrieving Information from Users

140

Print creates a Printer object that will show the printer dialog when its Print method is
called. Like the Preview object, the Printer object is created with some PrintData and
an instance of a Printout object. When the print dialog's Print button is clicked, it will use
the Printout object to tell the physical printer what to draw on the paper.

The BitmapPrintout class implements a Printout object that is used for printing a single
bitmap to a single sheet of paper at a time. Printout objects must always be subclassed in
order to implement the application-specific requirements of the data that needs to be printed
as the base class only provides an interface of virtual methods to override in the subclass.
In our class, we overrode the three following methods: GetPageInfo, HasPage, and
OnPrintPage. The first two are for returning information about the number of pages that will
be printed; since we are only supporting one page, these are quite trivial in this recipe. The
OnPrintPage method is what does the actual drawing to the printer's device context. This
method gets called to do the drawing of each page that will be printed.

Drawing the Printout is done by using the device context object returned by the call
to GetDC. The use of device contexts are covered in detail in Chapter 8, Drawing to the
Screen so just too keep things simple all we did here was just to set the scale of the canvas
calculations to try and center the image on the paper, and then used the DC's DrawBitmap
method to draw the Bitmap to the device context. For an example of the BitmapPrinter
class in action, see the sample code that accompanies this chapter.

There's more...
Included below is some additional information about the print framework.

Printout
The wx.Printout object has a number of other overrideable methods that may be of use
for different types of documents. The following table is a reference to some of these other
interface methods.

Interface methods Description
OnBeginDocument(start, end) Called at the beginning of each copy of a document

that is in the print job. If this method is overridden,
the base class's method must still be called in it.

OnEndDocument() Called at the end of printing each copy of a document
in the print job. If this method is overridden, the base
class method must be called in it.

OnBeginPrinting() Called once and only once at the beginning of a
print job.

OnEndPrinting() Called once and only once at the end of a print job.
OnPreparePrinting() Called before any other use of the Printout object.

This is usually where the calculations about things
such as the number of pages in a document are done.

Chapter 6

141

Bug notice
There is a bug in wxPython 2.8 where the page orientation (Portrait or Landscape) cannot be
retrieved from the PageSetup or Print dialog's PrintData.

See also
The Understanding inheritance limitations recipe in Chapter 1, Getting Started
with wxPython includes a detailed explanation of how to override virtual methods
in wxPython classes.

The Screen drawing recipe in Chapter 8, Drawing to the Screen discusses the use
of Device Contexts (DCs) and their drawing commands.

7
Window Layout and

Design

In this chapter, we will cover:

Using a BoxSizer
Understanding proportions, flags, and borders
Laying out controls with the GridBagSizer
Standard dialog button layout
Using XML resources
Making a custom resource handler
Using the AuiFrameManager

Introduction
Once you have an idea of how the interface of your applications should look, it comes the time
to put it all together. Being able to take your vision and translate it into code can be a tricky
and often tedious task. A window's layout is defined on a two dimensional plane with the origin
being the window's top-left corner. All positioning and sizing of any widgets, no matter what it's
onscreen appearance, is based on rectangles. Clearly understanding these two basic concepts
goes a long way towards being able to understand and efficiently work with the toolkit.

Traditionally in older applications, window layout was commonly done by setting explicit static
sizes and positions for all the controls contained within a window. This approach, however, can
be rather limiting as the windows will not be resizable, they may not fit on the screen under
different resolutions, trying to support localization becomes more difficult because labels and
other text will differ in length in different languages, the native widgets will often be different
sizes on different platforms making it difficult to write platform independent code, and the list
goes on.

Window Layout and Design

144

So, you may ask what the solution to this is. In wxPython, the method of choice is to use the
Sizer classes to define and manage the layout of controls. Sizers are classes that manage
the size and positioning of controls through an algorithm that queries all of the controls that
have been added to the Sizer for their recommended best minimal sizes and their ability to
stretch or not, if the amount of available space increases, such as if a user makes a dialog
bigger. Sizers also handle cross-platform widget differences, for example, buttons on GTK tend
to have an icon and be generally larger than the buttons on Windows or OS X. Using a Sizer to
manage the button's layout will allow the rest of the dialog to be proportionally sized correctly
to handle this without the need for any platform-specific code.

So let us begin our adventure into the world of window layout and design by taking a look at a
number of the tools that wxPython provides in order to facilitate this task.

Using a BoxSizer
A BoxSizer is the most basic of Sizer classes. It supports a layout that goes in a single
direction—either a vertical column or a horizontal row. Even though it is the most basic to
work with, a BoxSizer is one of the most useful Sizer classes and tends to produce more
consistent cross-platform behavior when compared to some of the other Sizers types. This
recipe creates a simple window where we want to have two text controls stacked in a vertical
column, each with a label to the left of it. This will be used to illustrate the most simplistic
usage of a BoxSizer in order to manage the layout of a window's controls.

How to do it...
Here we define our top level Frame, which will use a BoxSizer to manage the size of its Panel:

class BoxSizerFrame(wx.Frame):
 def __init__(self, parent, *args, **kwargs):
 super(BoxSizerFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = BoxSizerPanel(self)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize()

The BoxSizerPanel class is the next layer in the window hierarchy, and is where we will
perform the main layout of the controls:

class BoxSizerPanel(wx.Panel):
 def __init__(self, parent, *args, **kwargs):
 super(BoxSizerPanel, self).__init__(*args, **kwargs)

Chapter 7

145

 # Attributes
 self._field1 = wx.TextCtrl(self)
 self._field2 = wx.TextCtrl(self)

 # Layout
 self._DoLayout()

Just to help reduce clutter in the __init__ method, we will do all the layout in a separate
_DoLayout method:

 def _DoLayout(self):
 """Layout the controls"""
 vsizer = wx.BoxSizer(wx.VERTICAL)
 field1_sz = wx.BoxSizer(wx.HORIZONTAL)
 field2_sz = wx.BoxSizer(wx.HORIZONTAL)

 # Make the labels
 field1_lbl = wx.StaticText(self, label="Field 1:")
 field2_lbl = wx.StaticText(self, label="Field 2:")

 # Make the first row by adding the label and field
 # to the first horizontal sizer
 field1_sz.AddSpacer(50)
 field1_sz.Add(field1_lbl)
 field1_sz.AddSpacer(5) # put 5px of space between
 field1_sz.Add(self._field1)
 field1_sz.AddSpacer(50)

 # Do the same for the second row
 field2_sz.AddSpacer(50)
 field2_sz.Add(field2_lbl)
 field2_sz.AddSpacer(5)
 field2_sz.Add(self._field2)
 field2_sz.AddSpacer(50)

 # Now finish the layout by adding the two sizers
 # to the main vertical sizer.
 vsizer.AddSpacer(50)
 vsizer.Add(field1_sz)
 vsizer.AddSpacer(15)
 vsizer.Add(field2_sz)
 vsizer.AddSpacer(50)

 # Finally assign the main outer sizer to the panel
 self.SetSizer(vsizer)

Window Layout and Design

146

How it works...
The previous code shows the basic pattern of how to create a simple window layout
programmatically, using sizers to manage the controls. First let's start by taking a look at the
BoxSizerPanel class's _DoLayout method, as this is where the majority of the layout in
this example takes place.

First, we started off by creating three BoxSizer classes: one with a vertical orientation, and
two with a horizontal orientation. The layout we desired for this window requires us to use
three BoxSizer classes and this is why. If you break down what we want to do into simple
rectangles, you will see that:

1. We wanted two TextCtrl objects each with a label to the left of them which can
simply be thought of as two horizontal rectangles.

2. We wanted the TextCtrl objects stacked vertically in the window which is just a
vertical rectangle that will contain the other two rectangles.

This is illustrated by the following screenshot (borders are drawn in and labels are added
to show the area managed by each of Panel's three BoxSizers):

In the section where we populate the first horizontal sizer (field1_sz), we use two of the
BoxSizer methods to add items to the layout. The first is AddSpacer, which does simply as
its named and adds a fixed amount of empty space in the left-hand side of the sizer. Then we
use the Add method to add our StaticText control to the right of the spacer, and continue
from here to add other items to complete this row. As you can see, these methods add items
to the layout from left to right in the sizer. After this, we again do the same thing with the other
label and TextCtrl in the second horizontal sizer.

The last part of the Panel's layout is done by adding the two horizontal sizers to the vertical
sizer. This time, since the sizer was created with a VERTICAL orientation, the items are added
from top to bottom. Finally, we use the Panel's SetSizer method to assign the main outer
BoxSizer as the Panel's sizer.

Chapter 7

147

The BoxSizerFrame also uses a BoxSizer to manage the layout of its Panel. The only
difference here is that we used the Add method's proportion and flags parameters to tell
it to make the Panel expand to use the entire space available. After setting the Frame's sizer,
we used its SetInitialSize method, which queries the window's sizer and its descendents
to get and set the best minimal size to set the window to. We will go into more detail about
these other parameters and their effects in the next recipe.

There's more...
Included below is a little more additional information about adding spacers and items
to a sizer's layout.

Spacers
The AddSpacer will add a square-shaped spacer that is X pixels wide by X pixels tall to
the BoxSizer, where X is the value passed to the AddSpacer method. Spacers of other
dimensions can be added by passing a tuple as the first argument to the BoxSizer's
Add method.

someBoxSizer.Add((20,5))

This will add a 20x5 pixel spacer to the sizer. This can be useful when you don't want the
vertical space to be increased by as much as the horizontal space, or vice versa.

AddMany
The AddMany method can be used to add an arbitrary number of items to the sizer in one call.
AddMany takes a list of tuples that contain values that are in the same order as the Add
method expects.

someBoxSizer.AddMany([(staticText,),
 ((10, 10),),
 (txtCtrl, 0, wx.EXPAND)]))

This will add three items to the sizer: the first two items only specify the one required
parameter, and the third specifies the proportion and flags parameters.

See also
The Understanding proportions, flags, and borders recipe in this chapter expands into
further detail about the behavioral attributes of SizerItems.

Window Layout and Design

148

Understanding proportions, flags,
and borders

Through the use of the optional parameters in a sizer's various Add methods, it is possible
to control the relative proportions, alignment, and padding around every item that is managed
by the sizer. Without using these additional settings, all the items in the sizer will just use their
"best" minimum size and will be aligned to the top-left of the rectangle of space that the sizer
provides. This means that the controls will not stretch or contract when the window is resized.
Also, for example, if in a horizontal row of items in a BoxSizer one of the items has a greater
height than some of the other items in that same row, they may not be aligned as desired
(see the following diagram).

This diagram illustrates an alignment issue that can occur when some controls have a
different-sized rectangle than the one next to it. This is a realistic example of a problem that can
occur on GTK (Linux), as its ComboBoxes tend to be much taller than a StaticTextCtrl. So
where on other platforms these two controls may appear to be properly center-aligned, they will
look like this on Linux.

This recipe will re-implement the previous recipe's BoxSizerPanel, using these additional
Add parameters to improve its layout, in order to show how these parameters can be used
to influence how the sizer manages each of the controls that have been added to it.

Getting Started
Before getting started on this recipe, make sure you have reviewed the previous recipe,
Using a BoxSizer, as we will be modifying its _DoLayout method in this recipe to define
some additional behaviors that the sizers should apply to its layout.

Chapter 7

14�

How to do it...
Here, we will make some modifications to the SizerItems proportions, flags, and borders
to change the behavior of the layout:

 def _DoLayout(self):
 """Layout the controls"""
 vsizer = wx.BoxSizer(wx.VERTICAL)
 field1_sz = wx.BoxSizer(wx.HORIZONTAL)
 field2_sz = wx.BoxSizer(wx.HORIZONTAL)

 # Make the labels
 field1_lbl = wx.StaticText(self, label="Field 1:")
 field2_lbl = wx.StaticText(self, label="Field 2:")

 # 1) HORIZONTAL BOXSIZERS
 field1_sz.Add(field1_lbl, 0,
 wx.ALIGN_CENTER_VERTICAL|wx.RIGHT, 5)
 field1_sz.Add(self._field1, 1, wx.EXPAND)

 field2_sz.Add(field2_lbl, 0,
 wx.ALIGN_CENTER_VERTICAL|wx.RIGHT, 5)
 field2_sz.Add(self._field2, 1, wx.EXPAND)

 # 2) VERTICAL BOXSIZER
 vsizer.AddStretchSpacer()
 BOTH_SIDES = wx.EXPAND|wx.LEFT|wx.RIGHT
 vsizer.Add(field1_sz, 0, BOTH_SIDES|wx.TOP, 50)
 vsizer.AddSpacer(15)
 vsizer.Add(field2_sz, 0, BOTH_SIDES|wx.BOTTOM, 50)
 vsizer.AddStretchSpacer()

 # Finally assign the main outer sizer to the panel
 self.SetSizer(vsizer)

How it works...
This recipe just shows what we changed in the previous recipe's __DoLayout method to
take advantage of some of these extra options. The first thing to notice in the section where
we add the controls to the horizontal sizers is that we no longer have the AddSpacer calls.
These have been replaced by specifying a border in the Add calls. When adding each of the
labels we added two sizer flags, ALIGN_CENTER_VERTICAL and RIGHT. The first flag is an
alignment flag that specifies the desired behavior of the alignment and the second is a border
flag that specifies where we want the border parameter to be applied. In this case, the sizer
will align the StaticText in the center of the vertical space and add a 5px padding to the
right side of it.

Window Layout and Design

150

Next, where we add the TextCtrl objects to the sizer, we specified a 1 for the proportion and
EXPAND for the sizer flag. Setting the proportion greater than the default of 0 will tell the sizer
to give that control proportionally more of the space in the sizer's managed area. A proportion
value greater than 0 in combination with the EXPAND flag which tells the control to get bigger
as space is available will let it stretch as the dialog is resized to a bigger size. Typically you will
only need to specify 0 or 1 for the proportion parameter, but under some complex layouts it
may be necessary to give different controls a relatively different amount of the total available
space. For example, in a layout with two controls if both are given a proportion of 1, they would
each get 50 percent of the space. Changing the proportion of one of the controls to 2 would
change the space allocation to a 66/33 percent balance.

We also made some changes to the final layout with the vertical sizer. First, instead of using
the regular AddSpacer function to add some static spacers to the layout, we changed it to
use AddStretchSpacer instead. AddStretchSpacer is basically the equivalent of doing
Add((-1,-1), 1, wx.EXPAND), which just adds a spacer of indeterminate size that will
stretch as the window size is changed. This allows us to keep the controls in the center of
the dialog as its vertical size changes.

Finally, when adding the two horizontal sizers to the vertical sizer, we used some flags to
apply a static 50px of spacing around the LEFT, RIGHT, and TOP or BOTTOM of the sizers.
It's also important to notice that we once again passed the EXPAND flag. If we did not do this,
the vertical sizer would not allow those two items to expand which in turn would nullify us
adding the EXPAND flag for the TextCtrl objects. Try running this and the previous sample
side-by-side and resizing each window to see the difference in behavior.

The previous screenshot has had some lines drawn over it to show the five items that are
managed by the main top level VERTICAL sizer vsizer.

There's more...
There are a number of flags that can be used to affect the layout in various ways. The
following three tables list the different categories of these flags that can be combined
in the flag's bitmask:

Chapter 7

151

Alignment flags
This table shows a listing of all the alignment flags and a description of what each one does:

Alignment flags Description
wx.ALIGN_TOP Align the item to the top of the available space
wx.ALIGN_BOTTOM Align the item to the bottom of the available space
wx.ALIGN_LEFT Align the item to the left of the available space
wx.ALIGN_RIGHT Align the item to the right of the available space
wx.ALIGN_CENTER_VERTICAL

wx.ALIGN_CENTRE_VERTICAL

Align the item in the center of the vertical space

wx.ALIGN_CENTER_HORIZONTAL

wx.ALIGN_CENTRE_HORIZONTAL

Align the item in the center of the horizontal space

Border flags
The following flags can be used to control which side(s) of the control the border argument
of the Sizer's Add method is applied to:

Border flags Description
wx.TOP Apply the border to the top of the item
wx.BOTTOM Apply the border to the bottom of item
wx.LEFT Apply the border to the left of the item
wx.RIGHT Apply the border to the right of the item
wx.ALL Apply the border to all sides of the item

Behavior flags
The sizer flags in this table can be used to control how a control is resized within a sizer:

Behaviour flags Description
wx.EXPAND Item will expand to fill the space provided to it

(wx.GROW is the same)
wx.SHAPED Similar to EXPAND but maintains the item's

aspect ratio
wx.FIXED_MINSIZE Don't let the item become smaller than its

initial minimum size
wx.RESERVE_SPACE_EVEN_IF_HIDDEN Don't allow the sizer to reclaim an item's space

when it is hidden

Window Layout and Design

152

See also
See the Using a BoxSizer recipe in this chapter for the basics of using a BoxSizer.

The Laying out controls with the GridBagSizer recipe in this chapter shows how
to use one of the more complex sizer classes.

Laying out controls with the GridBagSizer
There are a number of other types of sizers in wxPython, besides the BoxSizer, that are
designed to help simplify different kinds of layouts. The GridSizer, FlexGridSizer,
and GridBagSizer can be used to lay items out in a grid-like manner. The GridSizer
provides a fixed grid layout where items are added into different "cells" in the grid. The
FlexGridSizer is just like the GridSizer, except that the columns in the grid can be
different widths. Finally, the GridBagSizer is similar to the FlexGridSizer but also allows
items to span over multiple "cells" in the grid, which makes it possible to achieve layouts that
can usually only be achieved by nesting several BoxSizers. This recipe will discuss the use
of the GridBagSizer, and use it to create a dialog that could be used for viewing the details
of a log event.

How to do it...
Here we will create a custom DetailsDialog that could be used for viewing log messages
or system events. It has two fields in it for displaying the type of message and the verbose
message text:

class DetailsDialog(wx.Dialog):
 def __init__(self, parent, type, details, title=""):
 """Create the dialog
 @param type: event type string
 @param details: long details string
 """
 super(DetailsDialog, self).__init__(parent, title=title)

 # Attributes
 self.type = wx.TextCtrl(self, value=type,
 style=wx.TE_READONLY)
 self.details = wx.TextCtrl(self, value=details,
 style=wx.TE_READONLY|
 wx.TE_MULTILINE)

 # Layout
 self.__DoLayout()
 self.SetInitialSize()

Chapter 7

153

 def __DoLayout(self):
 sizer = wx.GridBagSizer(vgap=8, hgap=8)

 type_lbl = wx.StaticText(self, label="Type:")
 detail_lbl = wx.StaticText(self, label="Details:")

 # Add the event type fields
 sizer.Add(type_lbl, (1, 1))
 sizer.Add(self.type, (1, 2), (1, 15), wx.EXPAND)

 # Add the details field
 sizer.Add(detail_lbl, (2, 1))
 sizer.Add(self.details, (2, 2), (5, 15), wx.EXPAND)

 # Add a spacer to pad out the right side
 sizer.Add((5, 5), (2, 17))
 # And another to the pad out the bottom
 sizer.Add((5, 5), (7, 0))

 self.SetSizer(sizer)

How it works...
The GridBagSizer's Add method of GridBagSizer takes some additional parameters
compared to the other types of sizers. It is necessary to specify the grid position and optionally
the number of columns and rows to span. We used this in our details dialog in order to allow
the TextCtrl fields to span multiple columns and multiple rows in the case of the details
field. The way this layout works can get a little complicated, so let's go over our __DoLayout
method line-by-line to see how each of them affect the dialog's layout.

First, we create out GridBagSizer, and in its constructor we specify how much padding we
want between the rows and columns. Next, we start adding our items to the sizer. The first
item that we add is the type StaticText label, which we added at row 1, column 1. This was
done to leave some padding around the outside edge. Next, we added the TextCtrl to the
right of the label at row 1, column 2. For this item, we also specified the span parameter to tell
the item to span 1 row and 15 columns. The column width is proportionally based upon the
size of the first column in the grid.

Next we add the details fields, starting with the details label, which is added at row 2,
column 1, in order to line up with the type StaticText label. Since the details text may be
long, we want it to span multiple rows. Hence, for its span parameter we specified for it to
span 5 rows and 15 columns.

Window Layout and Design

154

Finally, so that the padding around our controls on the bottom and right-hand side matches
the top and left, we need to add a spacer to the right and bottom to create an extra column
and row. Notice that for this step we need to take into account the span parameters of the
previous items we added, so that our items do not overlap. Items cannot occupy the same
column or row as any other item in the sizer. So first we add a spacer to row 2, column 17, to
create a new column on the right-hand side of our TextCtrl objects. We specified column
17 because the TextCtrl objects start at column 2 and span 15 columns. Likewise, we did
the same when adding one to the bottom, to take into account the span of the details text
field. Note that instead of offsetting the first item in the grid and then adding spacers, it would
have been easier to nest our GridBagSizer inside of a BoxSizer and specify a border.
The approach in this recipe was done just to illustrate the need to account for an item's span
when adding additional items to the grid:

See the sample code that accompanies this chapter for a small application that uses
this dialog.

See also
The Understanding proportions, flags, and borders recipe in this chapter describes
the use of sizer flags in detail.

Standard dialog button layout
Each platform has different standards for how different dialog buttons are placed in
the dialog. This is where the StdDialogButtonSizer comes into play. It can be
used to add standard buttons to a dialog, and automatically take care of the specific
platform standards for where the button is positioned. This recipe shows how to use the
StdDialogButtonSizer to quickly and easily add standard buttons to a Dialog.

Chapter 7

155

How to do it...
Here is the code for our custom message box class that can be used as a replacement for the
standard MessageBox in cases where the application wants to display custom icons in their
pop-up dialogs:

class CustomMessageBox(wx.Dialog):
 def __init__(self, parent, message, title="",
 bmp=wx.NullBitmap, style=wx.OK):
 super(CustomMessageBox, self).__init__(parent, title=title)

 # Attributes
 self._flags = style
 self._bitmap = wx.StaticBitmap(self, bitmap=bmp)
 self._msg = wx.StaticText(self, label=message)

 # Layout
 self.__DoLayout()
 self.SetInitialSize()
 self.CenterOnParent()

 def __DoLayout(self):
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)

 # Layout the bitmap and caption
 hsizer.AddSpacer(10)
 hsizer.Add(self._bitmap, 0, wx.ALIGN_CENTER_VERTICAL)
 hsizer.AddSpacer(8)
 hsizer.Add(self._msg, 0, wx.ALIGN_CENTER_VERTICAL)
 hsizer.AddSpacer(10)

 # Create the buttons specified by the style flags
 # and the StdDialogButtonSizer to manage them
 btnsizer = self.CreateButtonSizer(self._flags)

 # Finish the layout
 vsizer.AddSpacer(10)
 vsizer.Add(hsizer, 0, wx.ALIGN_CENTER_HORIZONTAL)
 vsizer.AddSpacer(8)
 vsizer.Add(btnsizer, 0, wx.EXPAND|wx.ALL, 5)

 self.SetSizer(vsizer)

Window Layout and Design

156

How it works...
Here, we created a custom MessageBox clone that can accept a custom Bitmap to display
instead of just the standard icons available in the regular MessageBox implementation. This
class is pretty simple, so let's jump into the __DoLayout method to see how we made use of
the StdDialogButtonSizer.

In __DoLayout, we first created some regular BoxSizers to do the main part of the layout,
and then in one single line of code we created the entire layout for our buttons. To do this, we
used the CreateButtonSizer method of the base wx.Dialog class. This method takes a
bitmask of flags that specifies the buttons to create, then creates them, and adds them to a
StdDialogButtonSizer that it returns. All we need to do after this is to add the sizer
to our dialog's main sizer and we are done!

The following screenshots show how the StdDialogButtonSizer handles the differences
in platform standards.

For example, the OK and Cancel buttons on a dialog are ordered as OK/Cancel on Windows:

On Macintosh OS X, the standard layout for the buttons is Cancel/OK:

There's more...
Here is a quick reference to the flags that can be passed as a bitmask to the
CreateButtonSizer method in order to create the buttons that the button sizer will manage:

Flags Description
wx.OK Creates an OK button
wx.CANCEL Creates a Cancel button
wx.YES Creates a Yes button

Chapter 7

157

Flags Description
wx.NO Creates a No button
wx.HELP Creates a Help button
wx.NO_DEFAULT Sets the No button as the default

See also

The Creating Stock Buttons recipe in Chapter 3, Basic Building Blocks of a User
Interface discusses how to create common buttons from built-in IDs.

The Using a BoxSizer recipe in this chapter discusses the basics of window layout
using BoxSizers.

Using XML resources
XRC is a way of creating and design window layouts with XML resource files. The hierarchical
nature of XML parallels that of an application's window hierarchy, which makes it a very
sensible data format to serialize a window layout with. This recipe shows how to create and
load a simple dialog with two CheckBoxe objects and two Button objects on it, from an XML
resource file.

How to do it...
Here is the XML for our dialog that we have in a file called xrcdlg.xrc:

<?xml version="1.0" ?>
<resource>
 <object class="wxDialog" name="xrctestdlg">
 <object class="wxBoxSizer">
 <orient>wxVERTICAL</orient>
 <object class="spacer">
 <option>1</option>
 <flag>wxEXPAND</flag>
 </object>
 <object class="sizeritem">
 <object class="wxCheckBox">
 <label>CheckBox Label</label>
 </object>
 <flag>wxALL|wxALIGN_CENTRE_HORIZONTAL</flag>
 <border>5</border>
 </object>
 <object class="spacer">
 <option>1</option>
 <flag>wxEXPAND</flag>

Window Layout and Design

158

 </object>
 <object class="sizeritem">
 <object class="wxBoxSizer">
 <object class="sizeritem">
 <object class="wxButton" name="wxID_OK">
 <label>Ok</label>
 </object>
 <flag>wxALL</flag>
 <border>5</border>
 </object>
 <object class="sizeritem">
 <object class="wxButton" name="wxID_CANCEL">
 <label>Cancel</label>
 </object>
 <flag>wxALL</flag>
 <border>5</border>
 </object>
 <orient>wxHORIZONTAL</orient>
 </object>
 <flag>wxALIGN_BOTTOM|wxALIGN_CENTRE_HORIZONTAL</flag>
 <border>5</border>
 </object>
 </object>
 <title>Xrc Test Dialog</title>
 <style>wxDEFAULT_DIALOG_STYLE|wxRESIZE_BORDER</style>
 </object>
</resource>

When loaded, the above XML will generate the following dialog:

This is a minimal program to load this XML resource to make and show the dialog it represents:

import wx
import wx.xrc as xrc
app = wx.App()
frame = wx.Frame(None)
resource = xrc.XmlResource("xrcdlg.xrc")
dlg = resource.LoadDialog(frame, "xrctestdlg")
dlg.ShowModal()
app.MainLoop()

Chapter 7

15�

How it works...
The XML in this recipe was created with the help of xrced, which is an XML resource editor
tool that is a part of the wxPython tools package. The object tag is used to represent a class
object. Nesting other objects inside is how the parent child relationship is represented with
the XML. The class attribute of the object tag is what is used to specify the type of class to
create. The values should be a class name and in the case of wxPython provided classes, they
use the wxWidgets names, which are prefixed with "wx". To work with XmlResource classes,
it is highly recommended to use a tool like xrced to generate the XML.

In order to load the XML to create the object(s) that are used for representation, you need to
import the wx.xrc package, which provides the XmlResource class. There are a few ways
to use XmlResource to perform the transformations on the XML. In this example, we created
our XmlResource object by passing the path to our xrc file in its constructor. This object
has a number of load methods for instantiating different types of objects. We want to load a
dialog, so we called its LoadDialog method, passing a parent window as the first argument
and then the name of the dialog we want to load from the XML. It will then instantiate an
instance of that dialog and return it so that we can show it.

There's more...
Included below are some additional references to features available when using the
XRC library.

Loading other types of resources
The XmlResource object has methods for loading many different kinds of resources from
XML. Here is quick reference to some of the additional methods:

Methods Description
LoadBitmap(name) Loads and returns the Bitmap identified by name
LoadDialog(parent, name) Loads and returns the Dialog identified by name
LoadFrame(parent, name) Loads and returns the Frame identified by name
LoadIcon(name) Loads and returns the Icon identified by name
LoadMenu(name) Loads and returns the Menu identified by name
LoadMenuBar(parent, name) Loads and returns the MenuBar identified by name
LoadPanel(parent, name) Loads and returns the Panel identified by name
LoadToolBar(parent, name) Loads and returns the ToolBar identified by name

Specifying standard IDs
In order to give an object a standard ID in XRC, it should be specified in the object tag's
name attribute, using the wxWidgets naming for the ID (that is, wxID_OK without the '.').

Window Layout and Design

160

See also
The Making a custom resource handler recipe in this chapter contains some
additional information on using XRC.

Making a custom resource handler
Although XRC has built-in support for a large number of the standard controls, any
non-trivial application will use its own subclasses and/or custom widgets. Creating a custom
XmlResource class will allow these custom classes to be loaded from an XML resource file.
This recipe shows how to create an XML resource handler for a custom Panel class and then
use that handler to load the resource.

Getting Started
This recipe discusses how to customize and extend the handling of XML resources. Please
review the Using XML resources recipe in this chapter to learn the basics of how XRC works.

How to do it...
In the following code, we will show how to create a custom XML resource handler for a Panel
and then how to use XRC to load that resource into a Frame:

import wx
import wx.xrc as xrc

Xml to load our object
RESOURCE = r"""<?xml version="1.0"?>
<resource>
<object class="TextEditPanel" name="TextEdit">
</object>
</resource>
"""

Here, in our Frame subclass, we simply create an instance of our custom resource handler
and use it to load our custom Panel:

class XrcTestFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(XrcTestFrame, self).__init__(*args, **kwargs)

 # Attributes
 resource = xrc.EmptyXmlResource()

Chapter 7

161

 handler = TextEditPanelXmlHandler()
 resource.InsertHandler(handler)
 resource.LoadFromString(RESOURCE)
 self.panel = resource.LoadObject(self,
 "TextEdit",
 "TextEditPanel")

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)

Here is the Panel class that our custom resource handler will be used to create. It is just
a simple Panel with a TextCtrl and two Buttons on it:

class TextEditPanel(wx.Panel):
 """Custom Panel containing a TextCtrl and Buttons
 for Copy and Paste actions.
 """
 def __init__(self, *args, **kwargs):
 super(TextEditPanel, self).__init__(*args, **kwargs)

 # Attributes
 self.txt = wx.TextCtrl(self, style=wx.TE_MULTILINE)
 self.copy = wx.Button(self, wx.ID_COPY)
 self.paste = wx.Button(self, wx.ID_PASTE)

 # Layout
 self._DoLayout()

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnCopy, self.copy)
 self.Bind(wx.EVT_BUTTON, self.OnPaste, self.paste)

 def _DoLayout(self):
 """Layout the controls"""
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)

 vsizer.Add(self.txt, 1, wx.EXPAND)
 hsizer.AddStretchSpacer()
 hsizer.Add(self.copy, 0, wx.RIGHT, 5)
 hsizer.Add(self.paste)
 hsizer.AddStretchSpacer()
 vsizer.Add(hsizer, 0, wx.EXPAND|wx.ALL, 10)

Window Layout and Design

162

 # Finally assign the main outer sizer to the panel
 self.SetSizer(vsizer)

 def OnCopy(self, event):
 self.txt.Copy()

 def OnPaste(self, event):
 self.txt.Paste()

Finally, here is our custom XML resource handler class, where we just have to override two
methods to implement the handling for our TextEditPanel class:

class TextEditPanelXmlHandler(xrc.XmlResourceHandler):
 """Resource handler for our TextEditPanel"""
 def CanHandle(self, node):
 """Required override. Returns a bool to say
 whether or not this handler can handle the given class
 """
 return self.IsOfClass(node, "TextEditPanel")

 def DoCreateResource(self):
 """Required override to create the object"""
 panel = TextEditPanel(self.GetParentAsWindow(),
 self.GetID(),
 self.GetPosition(),
 self.GetSize(),
 self.GetStyle("style",
 wx.TAB_TRAVERSAL),
 self.GetName())
 self.SetupWindow(panel)
 self.CreateChildren(panel)
 return panel

How it works...
The TextEditPanel is our custom class that we want to create a custom resource handler
for. The TextEditPanelXmlHandler class is a minimal resource handler that we created
to be able to load our class from XML. This class has two required overrides that need to
be implemented for it to function properly. The first is CanHandle, which is called by the
framework to check if the handler can handle a given node type. We used the IsOfClass
method to check if the node was of the same type as our TextEditPanel. The second is
DoCreateResource, which is what is called to create our class. To create the class, all of
its arguments can be retrieved from the resource handler.

Chapter 7

163

The XrcTestFrame class is where we made use of our custom resource handler. First, we
created an EmptyXmlResource object and used its InsertHandler method to add our
custom handler to it. Then we loaded the XML from the RESOURCE string that we defined using
the handler's LoadFromString method. After that, all there was to do was load the object
using the resource's LoadObject method, which takes three arguments: the parent window
of the object to be loaded, the name of the object in the XML resource, and the classname.

See also

See the Understanding inheritance limitations recipe in Chapter 1, Getting Started
with wxPython for some additional information about overriding virtual methods in
wxPython classes.

See the Using XML resources recipe in this chapter for more examples of using XML
to create screen layouts.

Using the AuiFrameManager
The AuiFrameManager is part of the Advanced User Interface (wx.aui) library added to
wxPython in 2.8. It allows a Frame to have a very user customizable interface. It automatically
manages children windows in panes that can be undocked and turned into separate floating
windows. There are also some built-in features to help with persisting and restoring the
window's layout during running the application. This recipe will create a Frame base class that
has AUI support and will automatically save its perspective and reload it when the application
is next launched.

How to do it...
The following code will define a base class that encapsulates some of the usage of
an AuiManager:

import wx
import wx.aui as aui

class AuiBaseFrame(wx.Frame):
 """Frame base class with builtin AUI support"""
 def __init__(self, parent, *args, **kwargs):
 super(AuiBaseFrame, self).__init__(*args, **kwargs)

 # Attributes
 auiFlags = aui.AUI_MGR_DEFAULT
 if wx.Platform == '__WXGTK__' and \
 aui.AUI_MGR_DEFAUL & aui.AUI_MGR_TRANSPARENT_HINT:
 # Use venetian blinds style as transparent can
 # cause crashes on Linux when desktop compositing

Window Layout and Design

164

 # is used. (wxAUI bug in 2.8)
 auiFlags -= aui.AUI_MGR_TRANSPARENT_HINT
 auiFlags |= aui.AUI_MGR_VENETIAN_BLINDS_HINT
 self._mgr = aui.AuiManager(self, flags=auiFlags)

 # Event Handlers
 self.Bind(wx.EVT_CLOSE, self.OnAuiBaseClose)

OnAuiBaseClose will be called when the Frame closes. We use this as the point to get the
current window layout perspective and save it for the next time the application is launched:

 def OnAuiBaseClose(self, event):
 """Save perspective on exit"""
 appName = wx.GetApp().GetAppName()
 assert appName, "No App Name Set!"
 config = wx.Config(appName)
 perspective = self._mgr.SavePerspective()
 config.Write("perspective", perspective)
 event.Skip() # Allow event to propagate

AddPane simply wraps getting access to the Frame's AuiManager and adds the given pane
and auiInfo to it:

 def AddPane(self, pane, auiInfo):
 """Add a panel to be managed by this Frame's
 AUI Manager.
 @param pane: wx.Window instance
 @param auiInfo: AuiInfo Object
 """
 # Delegate to AuiManager
 self._mgr.AddPane(pane, auiInfo)
 self._mgr.Update() # Refresh the layout

The next method is simply a convenience method for creating and adding the main center
pane to the managed window:

 def SetCenterPane(self, pane):
 """Set the main center pane of the frame.
 Convenience method for AddPane.
 @param pane: wx.Window instance
 """
 info = aui.AuiPaneInfo()
 info = info.Center().Name("CenterPane")
 info = info.Dockable(False).CaptionVisible(False)
 self._mgr.AddPane(pane, info)

Chapter 7

165

This final method is used to load the last saved window layout from the last time the window
was opened:

 def LoadDefaultPerspective(self):
 appName = wx.GetApp().GetAppName()
 assert appName, "Must set an AppName!"
 config = wx.Config(appName)
 perspective = config.Read("perspective")
 if perspective:
 self._mgr.LoadPerspective(perspective)

How it works...
In this recipe, we created a class to help encapsulate some of the AuiManager's functionality.
So let's take a look at some of the functionality that this class provides, and how it works.

The __init__ method is where we create the AuiManager object that will manage the
panes that we want to add to the Frame. The AuiManager accepts a number of possible flags
to dictate its behavior. We employed a small workaround for a bug on Linux platforms that
use desktop compositing. Using the transparent docking hints can cause an AUI application
to crash in this scenario, so we replaced it with the venetian blind style instead.

OnAuiBaseClose is used as an event handler for when the Frame closes. We use this
as a hook to automatically store the current layout of the AuiManager, which is called a
perspective, for the next application launch. To implement this feature, we have created a
requirement that the App object's SetName method was called to set the application name
because we need this in order to use wx.Config. The wx.Config object is simply an
interface used to access the Registry on Windows or an application configuration file on other
platforms. SavePerspective returns a string encoded with all of the information that the
AuiManager needs in order to restore the current window layout. The application can then
simply call our LoadDefaultPerspective method when the application starts up, in order
to restore the user's last window layout.

The other two methods in this class are quite simple and are provided simply for convenience
to delegate to the AuiManager of the Frame. The AddPane method of the AuiManager is
how to add panes to be managed by it. The pane argument needs to be a window object that
is a child of the Frame. In practice, this is usually some sort of Panel subclass. The auiInfo
argument is an AuiPaneInfo object. This is what the AuiManager uses to determine how to
manage the pane. See the sample code that accompanies this recipe for an example of this
class in action.

Window Layout and Design

166

There's more...
Here is a quick reference to the flags that can be used in the flags bitmask for the
AuiManager in order to customize its behavior and the styles of some of its components:

Flags Description
AUI_MGR_DEFAULT Equivalent of

AUI_MGR_ALLOW_FLOATING| AUI_MGR_
TRANSPARENT_HINT| AUI_MGR_HINT_
FADE| AUI_MGR_NO_VENETIAN_BLINDS_
FADE

AUI_MGR_ALLOW_FLOATING Allow for floating panes
AUI_MGR_ALLOW_ACTIVE_PANE Highlight the caption bar of the currently-active

pane
AUI_MGR_HINT_FADE Fade docking hints out of view
AUI_MGR_LIVE_RESIZE Resize panes while the sash between them is

being dragged
AUI_MGR_NO_VENETIAN_BLINDS_FADE Disable the venetian blind fade in/out
AUI_MGR_RECTANGLE_HINT Show a simple rectangle docking hint when

dragging floating panes
AUI_MGR_TRANSPARENT_DRAG Make floating panes partially-transparent when

they are being dragged
AUI_MGR_TRANSPARENT_HINT Show a partially-transparent light blue docking

hint when dragging floating panels
AUI_MGR_VENETIAN_BLINDS_HINT Use a venetian blind style docking hint for

floating panels

8
Drawing to the Screen

In this chapter, we will cover:

Screen drawing

Drawing shapes

Utilizing SystemSettings

Using a GraphicsContext

Drawing with RendererNative

Reducing flicker in drawing routines

Introduction
Being able to display objects on a computer's display is one of the most basic functionalities
of a GUI toolkit. In wxPython, objects are shown on the display through drawing commands
issued to a Device Context (DC). Underneath the hood, all controls are represented as
bitmaps that are drawn on the screen's display. The interface provided by a DC allows for the
customization of a control's appearance. When used in combination with events, they are also
the basis for creating new controls.

These rudimentary tools open a number of doors and possibilities that allow the application
designer to fill the gaps in what the toolkit provides in order to meet the specific needs of an
application. Now that the tool has been presented, it is time to pick it up and put it to use.

Drawing to the Screen

168

Screen drawing
All windows that are visible on the screen issue some drawing commands to a Device Context
(often referred to as a DC) to tell the system what kind of pixel information to display on the
screen. Some control's classes, such as wx.Control, wx.Window, and wx.Panel allow for
user-defined control of what is drawn on the screen through the use of wx.EVT_PAINT. This
recipe provides an introduction to screen drawing by creating a simple little slideshow widget
that will load a PNG or JPG file from a directory, and then draw that image on the screen along
with some label text below it, to show which image is out of the set.

How to do it...
Here we will look at our ImageCanvas widget. Starting with its constructor we Bind to
EVT_PAINT so that we can get call backs from the framework when a part of our window
has been marked as needing to be redrawn:

import os
import wx

class ImageCanvas(wx.PyPanel):
 def __init__(self, parent):
 super(SlideShowPanel, self).__init__(parent)

 # Attributes
 self.idx = 0 # Current index in image list
 self.images = list() # list of images found to display

 # Event Handlers
 self.Bind(wx.EVT_PAINT, self.OnPaint)

Here we override DoGetBestSize so that the widget can be resized depending upon the size
of the image that is displayed in it:

 def DoGetBestSize(self):
 """Virtual override for PyPanel"""
 newsize = wx.Size(0, 0)
 if len(self.images):
 imgpath = self.images[self.idx]
 bmp = wx.Bitmap(imgpath)
 newsize = bmp.GetSize()
 newsize = newsize + (20, 20) # some padding
 else:

Chapter 8

16�

 tsize = self.GetTextExtent("No Image!")
 newsize = tsize + (20, 20)

 # Ensure new size is at least 300x300
 return wx.Size(max(300, newsize[0]),
 max(300, newsize[1]))

Here, in OnPaint, we handle EVT_PAINT and create a PaintDC to draw the current image
on the Panel:

 def OnPaint(self, event):
 """Draw the image on to the panel"""
 dc = wx.PaintDC(self) # Must create a PaintDC

 # Get the working rectangle
 rect = self.GetClientRect()

 # Setup the DC
 dc.SetTextForeground(wx.BLACK)

 # Do the drawing
 if len(self.images):
 # Draw the current image
 imgpath = self.images[self.idx]
 bmp = wx.Bitmap(imgpath)
 bsize = bmp.GetSize()
 # Try and center the image
 # Note: assumes image is smaller than canvas
 xpos = (rect.width - bsize[0]) / 2
 ypos = (rect.height - bsize[1]) / 2
 dc.DrawBitmap(bmp, xpos, ypos)
 # Draw a label under the image saying what
 # number in the set it is.
 imgcount = len(self.images)
 number = "%d / %d" % (self.idx+1, imgcount)
 tsize = dc.GetTextExtent(number)
 xpos = (rect.width - tsize[0]) / 2
 ypos = ypos + bsize[1] + 5 # 5px below image
 dc.DrawText(number, xpos, ypos)
 else:
 # Display that there are no images
 font = self.GetFont()
 font.SetWeight(wx.FONTWEIGHT_BOLD)
 dc.SetFont(font)
 dc.DrawLabel("No Images!", rect, wx.ALIGN_CENTER)

Drawing to the Screen

170

Finally, we add a few methods for client code to interact with in order to change the image and
set the image source directory:

 def Next(self):
 """Goto next image"""
 self.idx += 1
 if self.idx >= len(self.images):
 self.idx = 0 # Go back to zero
 self.Refresh() # Causes a repaint

 def Previous(self):
 """Goto previous image"""
 self.idx -= 1
 if self.idx < 0:
 self.idx = len(self.images) - 1 # Goto end
 self.Refresh() # Causes a repaint

 def SetImageDir(self, imgpath):
 """Set the path to where the images are"""
 assert os.path.exists(imgpath)
 # Find all the images in the directory
 self.images = [os.path.join(imgpath, img)
 for img in os.listdir(imgpath)
 if img.lower().endswith('.png') or
 img.lower().endswith('.jpg')]
 self.idx = 0

How it works...
That was pretty easy, so let's take a quick walkthrough to see how everything works. First we
derived our ImageCanvas panel from PyPanel so that we could get access to some of its
virtual methods. Next, in the constructor, we Bind our paint handler to EVT_PAINT so that
we will get PaintEvent notifications.

The next method, DoGetBestSize, is a virtual override. The framework will call this
method when it wants us to tell it what our best size is. This occurs when the layout is being
calculated. We base the best size on the size of the current image, but reserve a minimum
rectangle of 300x300 pixels just to ensure that we have some space to work with.

Next we get to OnPaint. This is where the main focus of this recipe unfolds. The first thing
to notice is that we create a PaintDC. This is a required step. If a PaintDC is not created
within an EVT_PAINT handler, then on platforms such as Windows there will be errors when
refreshing the window. The PaintDC provides the interface to the DC, which will allow us
to draw on the screen.

Chapter 8

171

Most of the work in OnPaint is just calculating where to position what we want to draw. We
do this by first getting the rectangle that we have to work in, which is simply returned by calling
GetClientRect. From here, in the case where we have some images to display, we do some
simple calculations to center the current image, and then use the DC's DrawBitmap method
to draw our Bitmap object to the screen. Then we proceed to draw some text under the image
to show what number the image is in the set. To do this, we use GetTextExtent to get the
on-screen size that our string will require to be drawn with the current font. In the case where
there are no images, we simply use the DC's DrawLabel function with the ALIGN_CENTER
flag to draw a warning label in the middle of the rectangle.

To facilitate cycling through the images in the directory specified by calling SetImageDir,
we have two methods: Next and Previous. These methods simply increment or decrement
the index we are looking at in the list, and then call Refresh. Refresh will cause the system
to issue a new PaintEvent. When this happens, our OnPaint handler will be called and
will draw the new image. See the sample code that accompanies this recipe for a sample
application using our ImageCanvas widget.

See also

The Using Bitmaps recipe in Chapter 1, Getting Started with wxPython discusses the
basics of using Bitmaps in an application.

The Understanding inheritance limitations recipe in Chapter 1, Getting Started
with wxPython explains the usage of the Py classes and how to override their
virtual methods.

Drawing shapes
Besides being able to draw text and bitmaps, DC's are also able to draw arbitrary shapes and
lines. These rudimentary tools are what make it possible to create entirely custom widgets
and controls, and to perform tasks such as drawing diagrams. This recipe explores these
additional abilities of the PaintDC by creating a simple smiley face control.

How to do it...
Here we will define our simple smiley face control that is derived from PyControl:

class Smiley(wx.PyControl):
 def __init__(self, parent, size=(50,50)):
 super(Smiley, self).__init__(parent,
 size=size,
 style=wx.NO_BORDER)

 # Event Handlers
 self.Bind(wx.EVT_PAINT, self.OnPaint)

Drawing to the Screen

172

Here in, OnPaint is where we will draw our Smiley face onto the PyControl's background:

 def OnPaint(self, event):
 """Draw the image on to the panel"""
 dc = wx.PaintDC(self) # Must create a PaintDC

 # Get the working rectangle we can draw in
 rect = self.GetClientRect()

 # Setup the DC
 dc.SetPen(wx.BLACK_PEN) # for drawing lines / borders
 yellowbrush = wx.Brush(wx.Colour(255, 255, 0))
 dc.SetBrush(yellowbrush) # Yellow fill

First we will start by drawing the circle for the head, by finding the center of the control's
rectangle and using DrawCircle to draw a yellow circle with a black border, using the
current Pen and Brush that was set above:

 cx = (rect.width / 2) + rect.x
 cy = (rect.width / 2) + rect.y
 radius = min(rect.width, rect.height) / 2
 dc.DrawCircle(cx, cy, radius)

The next step is to draw the eyes. This smiley face is going to have blue, square-shaped eyes.
To do this, we first calculate the size of the eyes as 1/8th of the total face area, set the brush
to blue, and then use the DC's DrawRectangle method to draw each of the eyes:

 eyesz = (rect.width / 8, rect.height / 8)
 eyepos = (cx / 2, cy / 2)
 dc.SetBrush(wx.BLUE_BRUSH)
 dc.DrawRectangle(eyepos[0], eyepos[1],
 eyesz[0], eyesz[1])
 eyepos = (eyepos[0] + (cx - eyesz[0]), eyepos[1])
 dc.DrawRectangle(eyepos[0], eyepos[1],
 eyesz[0], eyesz[1])

Last but not least is to draw the smile onto the face. To do this, we set the brush back to
yellow and then use the DC's DrawArc method to draw a slice of a circle. Since all we want is
the bottom part of the arc to use as the smile, we finish by drawing a yellow rectangle over the
top part of the slice, to cover up the wedge:

 dc.SetBrush(yellowbrush)
 startpos = (cx / 2, (cy / 2) + cy)
 endpos = (cx + startpos[0], startpos[1])
 dc.DrawArc(startpos[0], startpos[1],
 endpos[0], endpos[1], cx, cy)

Chapter 8

173

 dc.SetPen(wx.TRANSPARENT_PEN)
 dc.DrawRectangle(startpos[0], cy,
 endpos[0] - startpos[0],
 startpos[1] - cy)

How it works...
In this recipe, we made use of a Pen, a Brush, and some of the rudimentary drawing
routines that PaintDC provides us with. Let's take a look at our OnPaint method,
to see how everything works.

First, we start off by setting up our DCs drawing tools. We set a black Pen, which will be used
by the DC when it draws lines. We then set a yellow Brush. A Brush is used to fill the area
inside of a shape when it is drawn. Next, we proceed to draw the face, which is a circle. To do
this, we simply needed to find the center of our drawing area and then call the DrawCircle
method with the center point and radius that we desire. The DC will then use our Pen and
Brush to create a yellow circle with a black border drawn around it.

Next, for the eyes, we decided to draw them as blue squares. So we changed to a blue
Brush and called the DrawRectangle routine to draw the squares. This method's first two
arguments are where the top left corner of the rectangle will be drawn from. The second two
are the width and height of the rectangle.

The final step is to draw the smile, which is just a simple arc. To perform this step, we need
to figure out where we want the arc's two end points to be, which we just based on the center
point of our circle. Then we called the DrawArc method, which will draw a slice of a circle.
Because it draws a slice, there will be two unwanted lines from the center point extending to
the start and end points of the arc. To get rid of this, we drew a yellow rectangle over the top
of these two lines to erase it and only leave the arc which makes up the smile.

There's more...
Here is a quick reference to the basic drawing functions of a PaintDC.

Functions Description
DrawArc(x1,y1,x2,y2,
 xcenter,ycenter)

Draws a section of a circle with an arc
from x1,y1 to x2,y2 centered from
xcenter,ycenter.

DrawBitmap(bmp,x,y,
 useMask=False)

Draws a bitmap at position x,y.

DrawCheckMark(x,y,width,
 height)

Draws a checkmark in the given rectangle.

DrawCircle(x,y,radius) Draws a circle with center point x,y and the
given radius.

Drawing to the Screen

174

Functions Description
DrawEllipse(x,y,width,height) Draws an ellipse in the given rectangle.
DrawEllipticArc(x,y,w,h,
 start,end)

Draw the arc of an ellipse in the given rectangle.
The start and end parameters are angles that
specify the start and end of the arc relative to
the 3 o'clock position in the rectangle.

DrawIcon(icon, x, y) Draw an icon at x,y.
DrawImageLabel(lbl,bmp,rect,
 align)

Draw a label and a bitmap in the given rectangle,
using the given alignment flags.

DrawLabel(text,rect,align) Draw the text in the rectangle with the given
alignment flags.

DrawLine(x1,y1,x2,y2) Draw a line with the current pen from x1,y1 to
x2,y2.

DrawPoint(x,y) Draw a point at x,y with the current pen.
DrawPolygon(points,x,y) Draw a polygon based on the list of points at

position x,y.
DrawRectangle(x,y,w,h) Draw a rectangle of size w,h at position x,y.
DrawRotatedText(text,x,y,
 angle)

Draw text at position x,y rotated to the given
angle.

DrawRoundedRectangle(x,y,w,h,
 angle)

Draw a rectangle with rounded corners.

DrawSpline(points) Draw a spline using the list of points.
DrawText(text,x,y) Draw text at position x,y.

See also
See the Screen drawing recipe in this chapter for the basics of creating and
using a DeviceContext.

Utilizing SystemSettings
The SystemSettings object allows a program to query the system for information about
default colors and fonts. Being able to know this information can be very helpful when
creating custom drawings, as it makes it possible to use the same colors and fonts that
the native system components are using, so that your custom control or window decoration
can blend in and look like it belongs with the other native components that share the same
window with it. In this recipe, we will use SystemSettings to create a custom control that
is similar to a StaticBox but with a caption that is similar to the title bar of the Frame bar.

Chapter 8

175

How to do it...
For this custom control, we will again start by deriving from PyPanel so that we have access
to its DoGetBestSize method:

class CaptionBox(wx.PyPanel):
 def __init__(self, parent, caption):
 super(CaptionBox, self).__init__(parent,
 style=wx.NO_BORDER)

 # Attributes
 self._caption = caption
 self._csizer = wx.BoxSizer(wx.VERTICAL)

 # Setup
 self.__DoLayout()

 # Event Handlers
 self.Bind(wx.EVT_PAINT, self.OnPaint)

 def __DoLayout(self):
 msizer = wx.BoxSizer(wx.HORIZONTAL)
 self._csizer.AddSpacer(12) # extra space for caption
 msizer.Add(self._csizer, 0, wx.EXPAND|wx.ALL, 8)
 self.SetSizer(msizer)

 def DoGetBestSize(self):
 size = super(CaptionBox, self).DoGetBestSize()
 # Compensate for wide caption labels
 tw = self.GetTextExtent(self._caption)[0]
 size.SetWidth(max(size.width, tw+20))
 return size

 def AddItem(self, item):
 """Add a window or sizer item to the CaptionBox"""
 self._csizer.Add(item, 0, wx.ALL, 5)

Here, in our EVT_PAINT handler, we draw a simple caption at the top of the panel, and a border
around the rest, using the caption color that we retrieve from the SystemSettings singleton:

 def OnPaint(self, event):
 """Draws the Caption and border around the controls"""
 dc = wx.PaintDC(self)

Drawing to the Screen

176

 # Get the working rectangle we can draw in
 rect = self.GetClientRect()

 # Get the sytem color to draw the caption
 ss = wx.SystemSettings
 color = ss.GetColour(wx.SYS_COLOUR_ACTIVECAPTION)
 txtcolor = ss.GetColour(wx.SYS_COLOUR_CAPTIONTEXT)
 dc.SetTextForeground(txtcolor)

 # Draw the border
 rect.Inflate(-2, -2)
 dc.SetPen(wx.Pen(color))
 dc.SetBrush(wx.TRANSPARENT_BRUSH)
 dc.DrawRectangleRect(rect)

 # Add the Caption
 rect = wx.Rect(rect.x, rect.y,
 rect.width, 16)
 dc.SetBrush(wx.Brush(color))
 dc.DrawRectangleRect(rect)
 rect.Inflate(-5, 0)
 dc.SetFont(self.GetFont())
 dc.DrawLabel(self._caption, rect, wx.ALIGN_LEFT)

How it works...
In this recipe, we derived our new CaptionBox class from PyPanel. This was done because
this control is going to be a container of other controls, and the use of PyPanel will allow the
use of sizers to manage the layout and sizing of the control.

As a part of the initial layout of the Panel in __DoLayout, we reserved 20 pixels of space
on the top and 8 pixels around the other sides, for the caption and border. This was done
by putting in a spacer at the top plus an additional 8 pixel border around the BoxSizer
that will be used to layout the CaptionBox's children controls. Also as part of the layout
management, we overrode DoGetBestSize in order to handle cases where the caption text
is wider than the box's children windows. When using this class, its AddItem method must be
used to add its children controls to it.

Now let's check out how we draw the control. In OnPaint, the first thing we do is use the
SystemSettings singleton to get the system-defined colours for a caption's background and
text, which will allow the control to fit in and match other controls no matter what theme or
operating system it is run on. Next, we shrink the drawing Rect by 2 pixels in both directions
to define the controls border. After this, all there is to do is set the Pen to the caption color
and call DrawRect to draw the border. The caption bar is also drawn in a similar fashion by
creating a smaller rectangle in the upper space we had reserved in the layout and drawing

Chapter 8

177

a solid rectangle by setting the Brush to the caption color. All that leaves is the final step of
drawing the caption text on the rectangle we just drew. See the following screenshot, which
shows two CaptionBoxes:

There's more
In addition to being able to provide colors, the SystemSettings object can also provide
system fonts and metrics. The three methods GetColour, GetFont, and GetMetric all
take an index parameter that is one of the wx.SYS_* constants.

See also
See the Screen drawing recipe in this chapter for details of how to create and use a
Device Context.

Using a GraphicsContext
The GraphicsContext is a new feature in wxPython2.8. It provides access to the platform's
higher-level drawing functionality. It provides features such as anti-aliasing, a floating point
precision coordinate system, alpha blending, gradient brushes, and a handful of advanced
methods. This recipe uses it to create a custom control that is like StaticText, but has
a gradient-filled, pill-shaped background.

How to do it...
Much like the other recipes in this chapter, we will derive our new control from PyControl
so that we can override its DoGetBestSize method to size the control to our label:

class PodLabel(wx.PyControl):
 def __init__(self, parent, label, color):
 super(PodLabel, self).__init__(parent,
 style=wx.NO_BORDER)
 # Attributes
 self._label = label
 self._color = color

Drawing to the Screen

178

 # Event Handlers
 self.Bind(wx.EVT_PAINT, self.OnPaint)

 def DoGetBestSize(self):
 txtsz = self.GetTextExtent(self._label)
 size = wx.Size(txtsz[0] + 10, txtsz[1] + 6)
 return size

This time in OnPaint, we will create a GCDC from our PaintDC and do the drawing with the
GCDC and its GraphicsContext:

 def OnPaint(self, event):
 """Draws the Caption and border around the controls"""
 dc = wx.PaintDC(self)
 gcdc = wx.GCDC(dc)
 gc = gcdc.GetGraphicsContext()

 # Get the working rectangle we can draw in
 rect = self.GetClientRect()

 # Setup the GraphicsContext
 pen = gc.CreatePen(wx.TRANSPARENT_PEN)
 gc.SetPen(pen)
 rgb = self._color.Get(False)
 alpha = self._color.Alpha() *.2 # fade to transparent
 color2 = wx.Colour(*rgb, alpha=alpha)
 x1, y1 = rect.x, rect.y
 y2 = y1 + rect.height
 gradbrush = gc.CreateLinearGradientBrush(x1, y1,
 x1, y2,
 self._color,
 color2)
 gc.SetBrush(gradbrush)

 # Draw the background
 gc.DrawRoundedRectangle(rect.x, rect.y,
 rect.width, rect.height,
 rect.height/2)
 # Use the GCDC to help draw the aa text
 gcdc.DrawLabel(self._label, rect, wx.ALIGN_CENTER)

Chapter 8

17�

How it works...
In order to draw this control in OnPaint, we took the PaintDC and wrapped it in a GCDC.
A GCDC is a device context interface that uses a GraphicsContext internally. Using this
interface makes it possible to use a GraphicsContext in a similar way to using a regular
device context.

When setting up the Pen and Brush, we used a transparent pen in order to not draw a border
round the control. Drawing a gradient-colored background with a GraphicsContext is made
simple with the use of the GraphicsBrush returned by the CreateLinearGradientBrush
method of GraphicsContext. This method will create a brush that draws a gradient from
the first set of coordinates to the second set, starting with the first color and blending it to the
second. In this case, our second color only differs in its alpha level, so the gradient will fade to
partially-transparent, which will show the panel behind it.

All that is left now is to just call the GraphicsContext's DrawRoundedRectangle
method, to draw a nice pill-shaped background that is filled with the gradient defined by
the GraphicsBrush we created earlier. Then all that is left is to draw the label text on top
of the background. To do this, we used the DrawLabel method of GCDC which is just like
the DrawLabel method of PaintDC but uses the GraphicsContext under the hood to
draw smooth, anti-aliased text. The following screenshot shows an example dialog with three
instances of the PodLabel control on it. As can be seen, using the GraphicsContext has
allowed the control to be drawn with smooth, anti-aliased edges and a gradient background
that fades and becomes transparent near the bottom by taking advantage of the alpha
blending of GraphicsContext.

See also
The Screen drawing recipe in this chapter discusses the use of Device Contexts.

See the Drawing shapes recipe in this chapter for an overview of the basic
drawing routines.

See the Reducing flicker in drawing routines recipe in this chapter for more examples
of using a GraphicsContext.

Drawing to the Screen

180

Drawing with RendererNative
RendererNative is a class that contains a collection of functions that encapsulate
the drawing of a native UI component. It allows you to draw things such as native-looking
Button and CheckBox objects in a device context without needing to know any of the
details about how it is done. This is a very powerful and useful class when you need to
create generic widgets but want and maintain the native look and feel of the platform's own
widgets. This recipe uses RendererNative to create a custom button class for showing a
drop-down menu.

How to do it...
This custom Button class will use RendererNative to do its drawing, based on the location
and state of the mouse:

class DropArrowButton(wx.PyControl):
 def __init__(self, parent, id=wx.ID_ANY,
 label="", pos=wx.DefaultPosition,
 size=wx.DefaultSize, style=0,
 validator=wx.DefaultValidator,
 name="DropArrowButton"):
 style |= wx.BORDER_NONE
 super(DropArrowButton, self).__init__(parent, id,
 pos, size,
 style,
 validator, name)
 # Attributes
 self._label = label
 self._menu = None
 self._state = 0

 # Event Handlers
 self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown)
 self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp)
 self.Bind(wx.EVT_LEAVE_WINDOW,
 lambda event:
 self.SetState(0))
 self.Bind(wx.EVT_ENTER_WINDOW,
 lambda event:
 self.SetState(wx.CONTROL_CURRENT))
 self.Bind(wx.EVT_PAINT, self.OnPaint)

Chapter 8

181

We override DoGetBestSize and use the size of the label string as the basis for calculating
the button's size:

 def DoGetBestSize(self):
 size = self.GetTextExtent(self._label)
 size = (size[0]+16, size[1]+16) # Drop Arrow
 size = (size[0]+8, size[1]+4) # Padding
 self.CacheBestSize(size)
 return size

Here we add handlers for EVT_LEFT_DOWN and EVT_LEFT_UP to change the state of the
control, and to show our pop-up menu:

 def OnLeftDown(self, event):
 """Show the drop menu"""
 self.SetState(wx.CONTROL_PRESSED)
 if self._menu:
 size = self.GetSizeTuple()
 self.PopupMenu(self._menu, (0, size[1]))

 def OnLeftUp(self, event):
 """Send a button click event"""
 if self._state != wx.CONTROL_PRESSED:
 return

 self.SetState(wx.CONTROL_CURRENT)

Here, in OnPaint, we create the required PaintDC and get a reference to the
RendererNative singleton, which we will use to help us draw the Button's background:

 def OnPaint(self, event):
 """Draw the Conrol"""
 dc = wx.PaintDC(self)
 gc = wx.GCDC(dc) # AA text

 # Get the renderer singleton
 render = wx.RendererNative.Get()

 # Get the working rectangle we can draw in
 rect = self.GetClientRect()

 # Draw the button
 render.DrawPushButton(self, gc, rect, self._state)
 # Draw the label on the button
 lblrect = wx.Rect(rect.x+4, rect.y+2,
 rect.width-24, rect.height-4)
 gc.DrawLabel(self._label, lblrect, wx.ALIGN_CENTER)

Drawing to the Screen

182

 # Draw drop arrow
 droprect = wx.Rect((rect.x+rect.width)-20,
 rect.y+2, 16, rect.height-4)
 state = self._state
 if state != wx.CONTROL_PRESSED:
 state = wx.CONTROL_CURRENT
 render.DrawDropArrow(self, gc, droprect, state)

Finally, we have an API to allow the client code to set the Button's pop-up menu:

 def SetMenu(self, menu):
 """Set the buttons drop menu
 @param menu: wx.Menu
 """
 if self._menu:
 self._menu.Destroy()
 self._menu = menu

 def SetState(self, state):
 self._state = state
 self.Refresh()

How it works...
In this recipe, we created a completely new custom button control that looks just like a
regular native button but has a drop-down arrow and will show a Menu when clicked on. Using
RendererNative to handle most of the drawing has greatly simplified the creation of this
nice-looking control, so let's take a look at how it all came together.

Let's start by looking at the OnPaint method, since it is where the control gets drawn. First,
we created the required PaintDC, and then we used this to create a GCDC that will allow
us to draw anti-aliased text just like the native control has. Then we get a reference to the
RendererNative singleton by calling the classes Get method. Next, we start drawing the
control. All the RenderNative methods take the same four arguments: the window we are
drawing on, a DC, the Rect, and the renderer flags. DrawPushButton will draw a native button
control with the given DC in the state specified by the renderer flag's bitmask. We pass in one of
three flags in this example: 0 for the default state, CONTROL_CURRENT for the hover-over state,
and CONTROL_PRESSED for when the control is pressed. We finish up the rest with DrawLabel
and DrawDropArrow to draw the button's label with a down arrow to the right of it.

To make this behave like a button, we bind to a number of mouse events in the
__init__ method of our control. EVT_ENTER_WINDOW and EVT_LEAVE_WINDOW are used
to toggle the hover-over state by changing the control flag between CONTROL_CURRENT and
0. EVT_LEFT_DOWN is used to set the CONTROL_PRESSED state, and finally EVT_LEFT_UP is
used to show the pop-up menu. After each state change, Refresh is called to re-invoke the
OnPaint handler and draw the control in its new state.

Chapter 8

183

There's more...
Included below are some quick reference tables that list the drawing commands for
RendererNative, and the state flags that affect how it draws the control.

Drawing Methods
The following table is a quick reference to the RendererNative methods. All the methods
take the same first four arguments: window, DC, rect, and flags.

RendererNative methods Description
DrawCheckBox Draws a CheckBox
DrawChoice Draws a Choice control
DrawComboBox Draws a ComboBox
DrawComboBoxDropButton Draws a ComboBox button
DrawDropArrow Draws a drop arrow
DrawHeaderButton Draws a ListCtrl column header
DrawItemSelectionRect Draws a selection rectangle
DrawPushButton Draws a Button
DrawRadioButton Draws a RadioButton
DrawSplitterBorder Draws the border of a SplitterWindow sash
DrawSplitterSash Draws a SplitterWindow sash
DrawTextCtrl Draws a TextCtrl
DrawTreeItemButton Draws a TreeCtrl node button

Control Flags
The following flags can be passed as a part of a bitmask to the draw method's flags
parameter. Not passing any flags, or passing 0 for the flags parameter, results in the
control being drawn in its default state:

Flags Description
CONTROL_CHECKABLE Control can be checked (for DrawCheckBox)
CONTROL_CHECKED Control is checked (for DrawCheckBox)
CONTROL_CURRENT Mouse is over the control
CONTROL_DISABLED Control is disabled
CONTROL_EXPANDED Only for DrawTreeItemButton
CONTROL_FOCUSED Control has the keyboard focus
CONTROL_ISDEFAULT Is default control (for DrawPushButton)

Drawing to the Screen

184

Flags Description
CONTROL_PRESSED Button is pressed
CONTROL_SELECTED Control is selected
CONTROL_UNDETERMINED CheckBox is in undetermined state

See also

See the Playing with the mouse recipe in Chapter 2, Responding to Events for some
additional examples of working with MouseEvents.

Reducing flicker in drawing routines
Flicker occurs when the redrawing of the window leads to a visible flashing in the user
interface. Even simple drawing routines, when done improperly, can lead to flicker. Luckily
there are a number of things that can be done to combat and minimize flicker, which will
then lead to an improved look and feel in an application's interface. This recipe shows a
few snippets of three techniques that can be used to reduce flicker in drawing routines. The
sample code that accompanies this chapter includes a sample application that uses all of
these techniques in a simple animated wristwatch control.

How to do it...
We will start with one of the simplest techniques, which is to avoid unnecessary background
erasure events by binding to EVT_ERASE_BACKGROUND:

self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnErase)

Then we need do nothing in the handler for it, in order to prevent it from erasing the background:

 def OnErase(self, event):
 # Do nothing, reduces flicker by removing
 # unneeded background erasures and redraws
 pass

The next technique is to use a buffered PaintDC in the OnPaint handler, so that all the
individual drawing steps are performed off-screen, and then the finished product is displayed
on the screen in one step:

 def OnPaint(self, event):
 """Draw the image on to the panel"""
 # Create a Buffered PaintDC
 dc = wx.AutoBufferedPaintDCFactory(self)

Chapter 8

185

The third technique is to just redraw the bare minimum of the screen when possible, by
using the Refresh method's rect argument to tell it the part of the window that needs
to be updated:

self.Refresh(rect=RectToUpdate)

How it works...
The first technique that was shown creates an empty event handler and bind it to the
EVT_ERASE_BACKGROUND event. This is usually the first thing to try when you are running
into flicker issues in your drawing routines. By doing nothing in the event handler, we prevent
the system from clearing the background, so that when we draw it again in OnPaint it will
draw over the existing background. This reduces the visibility of the redraw because the
background won't flash to white in between EVT_ERASE_BACKGROUND and EVT_PAINT.

The second technique uses an AutoBufferedPaintDCFactory in order to create a
buffered PaintDC instead of a regular PaintDC in the OnPaint handler. Buffered DCs
do all the drawing in an off-screen Bitmap and then Blit the whole new Bitmap to the
screen in one operation. This greatly reduces flicker because the screen gets updated in one
single change instead of many individual changes when drawing to the screen directly in an
unbuffered DC.

The final technique shown was to only redraw the minimal part of the screen that needs to
be redrawn. This technique can be used when a control needs to manually redraw only a part
of itself due to a state change. For example, imagine a control that consists of some label
text and an image. If the control has the behavior to change the label color on mouse over, it
could call Refresh on itself using the rect argument to specify just the label's rectangle in the
control, so that only that part of the control is updated, minimizing the area of the screen that
is redrawn.

See also

The Handling events recipe in Chapter 2, Responding to Events explains the basics
of event handling.

See the Using a GraphicsContext recipe in this chapter for more detailed information
on using the GraphicsContext class for drawing gradients.

See the Using Timers recipe in Chapter 11, Using Threads and Timers to Create
Responsive Interfaces for more information on using timers.

�
Design Approaches

and Techniques

In this chapter, we will cover:

Creating Singletons

Implementing an observer pattern

Strategy pattern

Model View Controller

Using mixin classes

Using decorators

Introduction
Programming is all about patterns. There are patterns at every level, from the programming
language itself, to the toolkit, to the application. Being able to discern and choose the optimal
approach to use to solve the problem at hand can at times be a difficult task. The more
patterns you know, the bigger your toolbox, and the easier it will become to be able
to choose the right tool for the job.

Different programming languages and toolkits often lend themselves to certain patterns and
approaches to problem solving. The Python programming language and wxPython are no
different, so let's jump in and take a look at how to apply some common design approaches
and techniques to wxPython applications.

Design Approaches and Techniques

188

Creating Singletons
In object oriented programming, the Singleton pattern is a fairly simple concept of only
allowing exactly one instance of a given object to exist at a given time. This means that it
only allows for only one instance of the object to be in memory at any given time, so that all
references to the object are shared throughout the application. Singletons are often used
to maintain a global state in an application since all occurances of one in an application
reference the same exact instance of the object. Within the core wxPython library, there
are a number of singleton objects, such as ArtProvider, ColourDatabase, and
SystemSettings. This recipe shows how to make a singleton Dialog class, which can be
useful for creating non-modal dialogs that should only have a single instance present at a
given time, such as a settings dialog or a special tool window.

How to do it...
To get started, we will define a metaclass that can be reused on any class that needs to
be turned into a singleton. We will get into more detail later in the How it works section.
A metaclass is a class that creates a class. It is passed a class to it's __init__ and
__call__ methods when someone tries to create an instance of the class.

class Singleton(type):
 def __init__(cls, name, bases, dict):
 super(Singleton, cls).__init__(name, bases, dict)
 cls.instance = None

 def __call__(cls, *args, **kw):
 if not cls.instance:
 # Not created or has been Destroyed
 obj = super(Singleton, cls).__call__(*args, **kw)
 cls.instance = obj
 cls.instance.SetupWindow()

 return cls.instance

Here we have an example of the use of our metaclass, which shows how easy it is to turn
the following class into a singleton class by simply assigning the Singleton class as
the __metaclass__ of SingletonDialog. The only other requirement is to define the
SetupWindow method that the Singleton metaclass uses as an initialization hook
to set up the window the first time an instance of the class is created.

Note that in Python 3+ the __metaclass__ attribute has been replaced
with a metaclass keyword argument in the class definition.

Chapter 9

18�

class SingletonDialog(wx.Dialog):
 __metaclass__ = Singleton

 def SetupWindow(self):
 """Hook method for initializing window"""
 self.field = wx.TextCtrl(self)
 self.check = wx.CheckBox(self, label="Enable Foo")

 # Layout
 vsizer = wx.BoxSizer(wx.VERTICAL)
 label = wx.StaticText(self, label="FooBar")
 hsizer = wx.BoxSizer(wx.HORIZONTAL)
 hsizer.AddMany([(label, 0, wx.ALIGN_CENTER_VERTICAL),
 ((5, 5), 0),
 (self.field, 0, wx.EXPAND)])
 btnsz = self.CreateButtonSizer(wx.OK)
 vsizer.AddMany([(hsizer, 0, wx.ALL|wx.EXPAND, 10),
 (self.check, 0, wx.ALL, 10),
 (btnsz, 0, wx.EXPAND|wx.ALL, 10)])
 self.SetSizer(vsizer)
 self.SetInitialSize()

How it works...
There are a number of ways to implement a Singleton in Python. In this recipe, we used a
metaclass to accomplish the task. This is a nicely contained and easily reusable pattern to
accomplish this task. The Singleton class that we defined can be used by any class that
has a SetupWindow method defined for it. So now that we have done it, let's take a quick
look at how a singleton works.

The Singleton metaclass dynamically creates and adds a class variable called instance
to the passed in class. So just to get a picture of what is going on, the metaclass would
generate the following code in our example:

class SingletonDialog(wx.Dialog):
 instance = None

Then the first time the metaclass's __call__ method is invoked, it will then assign the
instance of the class object returned by the super class's __call__ method, which in this
recipe is an instance of our SingletonDialog. So basically, it is the equivalent of
the following:

SingletonDialog.instance = SingletonDialog(*args,**kwargs)

Design Approaches and Techniques

1�0

Any subsequent initializations will cause the previously-created one to be returned, instead of
creating a new one since the class definition maintains the lifetime of the object and not an
individual reference created in the user code.

Our SingletonDialog class is a very simple Dialog that has TextCtrl, CheckBox, and Ok
Button objects on it. Instead of invoking initialization in the dialog's __init__ method, we
instead defined an interface method called SetupWindow that will be called by the Singleton
metaclass when the object is initially created. In this method, we just perform a simple layout
of our controls in the dialog. If you run the sample application that accompanies this topic, you
can see that no matter how many times the show dialog button is clicked, it will only cause
the existing instance of the dialog to be brought to the front. Also, if you make changes in the
dialog's TextCtrl or CheckBox, and then close and reopen the dialog, the changes will be
retained since the same instance of the dialog will be re-shown instead of creating a new one.

Implementing an observer pattern
The observer pattern is a design approach where objects can subscribe as observers of
events that other objects are publishing. The publisher(s) of the events then just broadcasts
the events to all of the subscribers. This allows the creation of an extensible, loosely-coupled
framework of notifications, since the publisher(s) don't require any specific knowledge of the
observers. The pubsub module provided by the wx.lib package provides an easy-to-use
implementation of the observer pattern through a publisher/subscriber approach. Any arbitrary
number of objects can subscribe their own callback methods to messages that the publishers
will send to make their notifications. This recipe shows how to use the pubsub module
to send configuration notifications in an application.

How to do it...
Here, we will create our application configuration object that stores runtime configuration
variables for an application and provides a notification mechanism for whenever a value is
added or modified in the configuration, through an interface that uses the observer pattern:

import wx
from wx.lib.pubsub import Publisher

PubSub message classification
MSG_CONFIG_ROOT = ('config',)

class Configuration(object):
 """Configuration object that provides
 notifications.
 """
 def __init__(self):
 super(Configuration, self).__init__()

Chapter 9

1�1

 # Attributes
 self._data = dict()

 def SetValue(self, key, value):
 self._data[key] = value
 # Notify all observers of config change
 Publisher.sendMessage(MSG_CONFIG_ROOT + (key,),
 value)

 def GetValue(self, key):
 """Get a value from the configuration"""
 return self._data.get(key, None)

Now, we will create a very simple application to show how to subscribe observers
to configuration changes in the Configuration class:

class ObserverApp(wx.App):
 def OnInit(self):
 self.config = Configuration()
 self.frame = ObserverFrame(None,
 title="Observer Pattern")
 self.frame.Show()
 self.configdlg = ConfigDialog(self.frame,
 title="Config Dialog")
 self.configdlg.Show()
 return True

 def GetConfig(self):
 return self.config

This dialog will have one configuration option on it to allow the user to change the
applications font:

class ConfigDialog(wx.Dialog):
 """Simple setting dialog"""
 def __init__(self, *args, **kwargs):
 super(ConfigDialog, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = ConfigPanel(self)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize((300, 300))

Design Approaches and Techniques

1�2

class ConfigPanel(wx.Panel):
 def __init__(self, parent):
 super(ConfigPanel, self).__init__(parent)

 # Attributes
 self.picker = wx.FontPickerCtrl(self)

 # Setup
 self.__DoLayout()

 # Event Handlers
 self.Bind(wx.EVT_FONTPICKER_CHANGED,
 self.OnFontPicker)

 def __DoLayout(self):
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)

 vsizer.AddStretchSpacer()
 hsizer.AddStretchSpacer()
 hsizer.AddWindow(self.picker)
 hsizer.AddStretchSpacer()
 vsizer.Add(hsizer, 0, wx.EXPAND)
 vsizer.AddStretchSpacer()
 self.SetSizer(vsizer)

Here, in the FontPicker's event handler, we get the newly-selected font and call SetValue
on the Configuration object owned by the App object in order to change the configuration,
which will then cause the ('config', 'font') message to be published:

 def OnFontPicker(self, event):
 """Event handler for the font picker control"""
 font = self.picker.GetSelectedFont()
 # Update the configuration
 config = wx.GetApp().GetConfig()
 config.SetValue('font', font)

Now, here, we define the application's main window that will subscribe it's OnConfigMsg
method as an observer of all ('config',) messages, so that it will be called whenever
the configuration is modified:

class ObserverFrame(wx.Frame):
 """Window that observes configuration messages"""
 def __init__(self, *args, **kwargs):
 super(ObserverFrame, self).__init__(*args, **kwargs)

Chapter 9

1�3

 # Attributes
 self.txt = wx.TextCtrl(self, style=wx.TE_MULTILINE)
 self.txt.SetValue("Change the font in the config "
 "dialog and see it update here.")

 # Observer of configuration changes
 Publisher.subscribe(self.OnConfigMsg, MSG_CONFIG_ROOT)

 def __del__(self):
 # Unsubscribe when deleted
 Publisher.unsubscribe(self.OnConfigMsg)

Here is the observer method that will be called when any message beginning with 'config'
is sent by the pubsub Publisher. In this sample application, we just check for the
('config', 'font') message and update the font of the TextCtrl object to use the
newly-configured one:

 def OnConfigMsg(self, msg):
 """Observer method for config change messages"""
 if msg.topic[-1] == 'font':
 # font has changed so update controls
 self.SetFont(msg.data)
 self.txt.SetFont(msg.data)

if __name__ == '__main__':
 app = ObserverApp(False)
 app.MainLoop()

How it works...
This recipe shows a convenient way to manage an application's configuration by allowing
the interested parts of an application to subscribe to updates when certain parts of the
configuration are modified. Let's start with a quick walkthrough of how pubsub works.

Pubsub messages use a tree structure to organize the categories of different messages. A
message type can be defined either as a tuple ('root', 'child1', 'grandchild1')
or as a dot-separated string ('root.child1.grandchild1'). Subscribing a callback
to ('root',) will cause your callback method to be called for all messages that start
with ('root',). This means that if a component publishes ('root', 'child1',
'grandchild1') or ('root', 'child1'), then any method that is subscribed
to ('root',) will also be called.

Pubsub basically works by storing the mapping of message types to callbacks in static
memory in the pubsub module. In Python, modules are only imported once any other part of
your application that uses the pubsub module shares the same singleton Publisher object.

Design Approaches and Techniques

1�4

In our recipe, the Configuration object is a simple object for storing data about the
configuration of our application. Its SetValue method is the important part to look at. This is
the method that will be called whenever a configuration change is made in the application. In
turn, when this is called, it will send a pubsub message of ('config',) + (key,) that will
allow any observers to subscribe to either the root item or more specific topics determined by
the exact configuration item.

Next, we have our simple ConfigDialog class. This is just a simple example that only has an
option for configuring the application's font. When a change is made in the FontPickerCtrl
in the ConfigPanel, the Configuration object will be retrieved from the App and will be
updated to store the newly-selected Font. When this happens, the Configuration object
will publish an update message to all subscribed observers.

Our ObserverFrame is an observer of all ('config',) messages by subscribing its
OnConfigMsg method to MSG_CONFIG_ROOT. OnConfigMsg will be called any time the
Configuration object's SetValue method is called. The msg parameter of the callback
will contain a Message object that has a topic and data attribute. The topic attribute
will contain the tuple that represents the message that triggered the callback and the data
attribute will contain any data that was associated with the topic by the publisher of the
message. In the case of a ('config', 'font') message, our handler will update the Font
of the Frame and its TextCtrl.

See also
See the Creating Singletons recipe in this chapter for an explanation of how singleton
objects like the Publisher from this recipe work.

See the Making a tool window recipe in Chapter 10, Creating Components and
Extending Functionality for another example of the publisher pattern in action.

Strategy pattern
The strategy pattern is an approach that allows for an application to choose the strategy
or behavior that will be used at run time. It accomplishes this by encapsulating different
algorithms and making them usable by the client regardless of what the underlying
behavior of the algorithm is. This is probably one of the most fundamental design patterns
in programming, and you're probably already using it in one form or another without even
knowing it. This recipe shows how to create a reusable Dialog class that uses the strategy
pattern to allow for the main content to vary depending on the strategy used.

Chapter 9

1�5

How to do it...
First, we will start by defining a base interface with all of the strategies that our dialog class
will use:

class BaseDialogStrategy:
 """Defines the strategy interface"""
 def GetWindowObject(self, parent):
 """Must return a Window object"""
 raise NotImplementedError, "Required method"

 def DoOnOk(self):
 """@return: bool (True to exit, False to not)"""
 return True

 def DoOnCancel(self):
 """@return: bool (True to exit, False to not)"""
 return True

Now let's define our simple Ok/Cancel dialog, which will use a strategy derived from our
BaseDialogStrategy class to allow its main content area to vary depending on the
strategy used:

class StrategyDialog(wx.Dialog):
 """Simple dialog with builtin OK/Cancel button and
 strategy based content area.
 """
 def __init__(self, parent, strategy, *args, **kwargs):
 super(StrategyDialog, self).__init__(parent,
 *args,
 **kwargs)

 # Attributes
 self.strategy = strategy
 self.pane = self.strategy.GetWindowObject(self)

 # Layout
 self.__DoLayout()

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnButton)

Design Approaches and Techniques

1�6

Here, in the following methods of our StrategyDialog, we just delegate to the current
strategy to allow it to define the behavior of the dialog:

 def __DoLayout(self):
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.pane, 1, wx.EXPAND)
 btnsz = self.CreateButtonSizer(wx.OK|wx.CANCEL)
 sizer.Add(btnsz, 0, wx.EXPAND|wx.ALL, 8)
 self.SetSizer(sizer)

 def GetStrategy(self):
 return self.strategy

 def OnButton(self, event):
 evt_id = event.GetId()
 bCanExit = False
 if evt_id == wx.ID_OK:
 bCanExit = self.strategy.DoOnOk()
 elif evt_id == wx.ID_OK:
 bCanExit = self.strategy.DoOnCancel()
 else:
 evt.Skip()

 if bCanExit:
 self.EndModal(evt_id)

Now let's implement a simple strategy that can be used to get the dialog to display a control
for selecting a file:

class FileTreeStrategy(BaseDialogStrategy):
 """File chooser strategy"""
 def GetWindowObject(self, parent):
 assert not hasattr(self, 'dirctrl')
 self.dirctrl = wx.GenericDirCtrl(parent)
 return self.dirctrl

 def DoOnOk(self):
 path = self.dirctrl.GetPath()
 if path:
 wx.MessageBox("You selected: %s" % path)
 return True
 else:
 wx.MessageBox("No file selected!")
 return False

Chapter 9

1�7

Then, in an application, all that needs to be done to create a dialog that uses this strategy
would be the following:

Note: 'self' is some window object (i.e a Frame)
strategy = FileTreeStrategy()
dlg = StrategyDialog(self, strategy, title="Choose File")
dlg.ShowModal()

How it works...
Since all strategies that our dialog will use must be interchangeable, it is important to define
an interface that they will implement. So, in our BaseDialogStrategy class, we defined a
simple three-method interface that our StrategyDialog will delegate to.

The StrategyDialog is basically just a simple generic shell that delegates all decisions
regarding its appearance and behavior to the strategy. When the dialog is initialized, it asks
the strategy for a window object that will be used as the main content area of the dialog. The
dialog then creates and adds some standard OK/Cancel buttons to the interface.

When a user clicks on one of these buttons, the StrategyDialog will then simply delegate
to its strategy, to allow the strategy to handle the user action. This allows us to reuse this
dialog class in many different ways, by simply implementing different strategies.

See also
See the Model View Controller recipe in this chapter for some more examples of a
strategy pattern.

Model View Controller
Model View Controller (MVC) is a design pattern that creates a clear separation of concerns
within a program's architecture. It breaks down into three layers: the Model, which is the
application's data objects and business logic at the bottom, the View at the top, which typically
consists of controls for displaying and editing data, and finally the Controller in the middle,
which is responsible for mediating the flow of data from the Model to the View and vice versa:

Design Approaches and Techniques

1�8

MVC is really one big monster pattern made up of other, simpler patterns working together.
The Model implements an observer pattern to keep interested parties updated on changes,
which allows it to be implemented separately from the View and Controller. The View and the
Controller, on the other hand, implement a strategy pattern where the Controller is a strategy
that implements the behavior of the View.

In this recipe, we explore how to create a simple number generator application that
implements this pattern in wxPython.

How to do it...
Since there are multiple components that need to work together, having defined interfaces
is an important step in the process, so first let us define some base classes that define the
interface for our number generator's model and controller.

Beginning with our Model's interface, we provide a class that simply requires its Generate
method to be overridden in order to provide the implementation-specific behavior. We have
also built in a simple observer pattern mechanism to allow the view to subscribe to update
notifications in the model:

class ModelInterface(object):
 """Defines an interface for a simple value
 generator model.
 """
 def __init__(self):
 super(ModelInterface, self).__init__()

 # Attributes
 self.val = 0
 self.observers = list()

 def Generate(self):
 """Interface method to be implemented by
 subclasses.
 """
 raise NotImplementedError

 def SetValue(self, val):
 self.val = val
 self.NotifyObservers()

 def GetValue(self):
 return self.val

Chapter 9

1��

 def RegisterObserver(self, callback):
 """Register an observer callback
 @param: callable(newval)
 """
 self.observers.append(callback)

 def NotifyObservers(self):
 """Notify all observers of current value"""
 for observer in self.observers:
 observer()

Next we have the base interface definition for the controllers of our framework's view to derive
from. This just defines one simple DoGenerateNext method that must be overridden by the
specific implementation:

class ControllerInterface(object):
 """Defines an interface a value generator
 controller.
 """
 def __init__(self, model):
 super(ControllerInterface, self).__init__()

 # Attributes
 self.model = model
 self.view = TheView(None, self, self.model,
 "Fibonacci Generator")

 # Setup
 self.view.Show()

 def DoGenerateNext(self):
 """User action request next value"""
 raise NotImplementedError

Now let's define some subclasses that implement the interface and provide the specialization.

Beginning with our FibonacciModel class, we define a model that will generate
Fibonacci numbers:

class FibonacciModel(ModelInterface):
 def Generate(self):
 cval = self.GetValue()
 # Get the next one
 for fib in self.fibonacci():
 if fib > cval:
 self.SetValue(fib)
 break

Design Approaches and Techniques

200

 @staticmethod
 def fibonacci():
 """Fibonacci generator method"""
 a, b = 0, 1
 while True:
 yield a
 a, b = b, a + b

Then our FibonacciController provides the controller specialization, which in this
example just makes one update to the user interface, to disable the button while the
model is calculating the next value:

class FibonacciController(ControllerInterface):
 def DoGenerateNext(self):
 self.view.EnableButton(False)
 self.model.Generate()

Now that the model and controller have been defined, let's take a look at our view, which
is composed of a Frame, a Panel that has a TextCtrl for displaying the current value
stored in the model, and a Button for retrieving the next value in the sequence defined
by the model:

class TheView(wx.Frame):
 def __init__(self, parent, controller, model, title):
 """The view for """
 super(TheView, self).__init__(parent, title=title)

 # Attributes
 self.panel = ViewPanel(self, controller, model)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize((300, 300))

 def EnableButton(self, enable=True):
 self.panel.button.Enable(enable)

Here, the ViewPanel is where we interface with the model and controller. We retrieve the
initial value from the model on initialization and then register as an observer of changes in
the model:

class ViewPanel(wx.Panel):
 def __init__(self, parent, controller, model):
 super(ViewPanel, self).__init__(parent)

Chapter 9

201

 # Attributes
 self.model = model
 self.controller = controller
 initial = str(self.model.GetValue())
 self.text = wx.TextCtrl(self, value=initial)
 self.button = wx.Button(self, label="Generate")

 # Layout
 self.__DoLayout()

 # Setup
 self.model.RegisterObserver(self.OnModelUpdate)

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnAction)

 def __DoLayout(self):
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)

 vsizer.AddStretchSpacer()
 vsizer.Add(self.text, 0, wx.ALIGN_CENTER|wx.ALL, 8)
 hsizer.AddStretchSpacer()
 hsizer.AddWindow(self.button)
 hsizer.AddStretchSpacer()
 vsizer.Add(hsizer, 0, wx.EXPAND)
 vsizer.AddStretchSpacer()
 self.SetSizer(vsizer)

Here is our observer method that will be called when the model is updated with a new value:

 def OnModelUpdate(self):
 """Observer method"""
 value = self.model.GetValue()
 self.text.SetValue(str(value))
 self.button.Enable(True)

This event handler is for the Button, and it delegates to the controller in order to allow the
controller to perform the implementation-specific action:

 def OnAction(self, event):
 self.controller.DoGenerateNext()

Design Approaches and Techniques

202

Finally, we put it all together and implement an application:

class ModelViewApp(wx.App):
 def OnInit(self):
 self.model = FibonacciModel()
 self.controller = FibonacciController(self.model)
 return True

if __name__ == '__main__':
 app = ModelViewApp(False)
 app.MainLoop()

How it works...
Using MVC to design an application's framework takes a fair amount of discipline. As can
be seen in this simple example, there is quite a bit of extra "stuff" that needs to be done.
As described before, MVC separates concerns into three main roles:

1. The Model

2. The View

3. The Controller

So let's take a look at how these roles came together in our sample recipe.

First the Model: This has the ability to store a value and to generate the next one in the
sequence when its Generate method is called. In this recipe, we implemented a Model that
calculates and stores Fibonacci numbers. The important part to take away from this is that
the Model does not have any direct knowledge of the View or the Controller.

Next let's jump to the View, which just displays a TextCtrl field and a Button. It does not
know any of the details of how the Controller or Model works. It only interacts with them
through a defined interface. When the user clicks the Button, it asks the Controller to decide
what to do. In order to know when the Model has changed, it registers a callback function with
the Model, as an observer of when the Model's SetValue method is called.

Now to the Controller which is the glue that holds the Model and View together. The Controller
is primarily charged with implementing the View's behavior in regards to the Model's state. Our
simple Controller for this recipe only has one interface method that is called in response to a
Button click in the View. This action first disables the Button, and then tells the Model
to generate the next number in the sequence.

Chapter 9

203

There's more...
You may be wondering "what's the point?" of all that extra rigmarole to create such a simple
application. Well since the Model is completely separate from the View, it can be more easily
unit tested in an automated test suite. In addition to this, since the View is just simply a view
and does not implement any behavior, it can easily be reused if, for example, we wanted
to add a Prime Number generator model to our application.

Maintainability is also improved since all three parts are separated and can be worked on
individually without interfering with the other components. Because of these benefits, many
other toolkits, such as Django and web2py make use of this pattern.

See also
See the Implementing an observer pattern recipe in this chapter for another
approach to using an observer pattern.

See the Strategy pattern recipe in this chapter for more information on
using strategies.

Using mixin classes
A mixin class is a design approach that is similar to the strategy pattern, but directly uses
inheritance in order to add extended/common functionality to a new class. This recipe shows
how to create a mixin class that adds debug logging facilities to any class that uses it.

How to do it...
First, let's start by creating our LoggerMixin class, which will provide the logging functionality
to classes that need to have logging. It simply provides a Log method that will write the passed
in string to a file:

import os
import time
import wx

class LoggerMixin:
 def __init__(self, logfile="log.txt"):
 """@keyword logfile: path to log output file"""
 # Attributes
 self.logfile = logfile

 def Log(self, msg):
 """Write a message to the log.

Design Approaches and Techniques

204

 Automatically adds timestamp and originating class
 information.
 """
 if self.logfile is None:
 return

 # Open and write to the log file
 with open(self.logfile, 'ab') as handle:
 # Make a time stamp
 ltime = time.localtime(time.time())
 tstamp = "%s:%s:%s" % (str(ltime[3]).zfill(2),
 str(ltime[4]).zfill(2),
 str(ltime[5]).zfill(2))
 # Add client info
 client = getattr(self, 'GetName',
 lambda: "unknown")()
 # Construct the final message
 output = "[%s][%s] %s%s" % (tstamp, client,
 msg, os.linesep)
 handle.write(output)

Then, to use the LoggerMixin in an application, it can simply be mixed in to any class to give
it a Log method:

class MixinRecipeFrame(wx.Frame, LoggerMixin):
 """Main application window"""
 def __init__(self, parent, *args, **kwargs):
 wx.Frame.__init__(self, parent, *args, **kwargs)
 LoggerMixin.__init__(self)
 self.Log("Creating instance...")

 # Attributes
 self.panel = MixinRecipePanel(self)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize((300, 300))

Chapter 9

205

How it works...
The mixin class in this recipe is the LoggerMixin class. It will add a Log method to the
classes that use it, which will take a simple string as an argument and write it to the specified
log file with a timestamp and ID that shows where the message came from.

A mixin works by using multiple inheritance in order to add additional functionality to a class.
The LoggerMixin mixin class can be used with any Python class, but it expects (but doesn't
require) that the class it is being mixed into has a GetName method to use for getting the ID
portion of the log message:

[17:42:24][unknown] OnInit called

[17:42:24][frame] Creating instance...

[17:42:24][panel] Begin Layout

[17:42:24][panel] End Layout

[17:42:26][panel] Button -203: Clicked

[17:42:26][panel] Button -203: Clicked

[17:42:27][panel] Button -203: Clicked

There's more
There are a number of handy mixin classes provided by the wx.lib.mixins package.
Here is a quick rundown on some of the mixins that are available and what functionality
they provide.

ListCtrl mixins
All of the following mixins classes are intended for use with a ListCtrl subclass and are
provided by the wx.lib.mixins.listctrl module:

Mixins classes Description
CheckListCtrlMixin Adds CheckBox functionality to the first column of a

ListCtrl

ColumnSorterMixin Handles sorting of items in the ListCtrl when its
column header is clicked

ListCtrlAutoWidthMixin Automatically resizes the last column of a ListCtrl to fill
any remaining space

ListRowHighlighter Automatically changes the background color on alternating
rows in the ListCtrl to give it a stripped appearance

TextEditMixin Adds the ability to show an editable text field in any column
of a ListCtrl

Design Approaches and Techniques

206

TreeCtrl mixins
All of the following mixin classes are for use with a TreeCtrl subclass, and are provided
by the wx.lib.mixins.treectrl module:

Mixins classes Description
DragAndDrop Helps to simplify the addition of Drag and Drop support to a

TreeCtrl

ExpansionState Helper to save and restore the expansion state of nodes in a
TreeCtrl

VirtualTree Allow the TreeCtrl to be virtualized so that nodes are added and
removed on demand, instead of having to construct the whole tree
up front

Using decorators
Due to the window hierarchy, there are some architectural issues that can be presented to
the programmer that lead to some tedious and unnecessary code duplication due to the need
to have delegate accessor methods or properties at each level of the containment hierarchy.
Typically, any Frame or Dialog in an application is structured as shown in the following diagram:

When needing to retrieve or modify the data that is shown in the window, it is the widgets
and Controls that need to be accessed. These are contained by the Panel which is in turn
contained by the Top Level Window. Since the Panel is responsible for its children, it will
often have methods for modifying and accessing the data that is maintained by its children's
controls. Because of this, the top-level window class often needs to have duplicate methods
that simply delegate to the Panel's methods for getting and setting the window's data. These
delegate methods are needed because the top-level window is the object that is instantiated
at the application level and the application should not need to know the details of the
top-level window's Panel in order to use it.

Chapter 9

207

This recipe shows how to create a simple decorator method that takes advantage of Python's
dynamic nature in order to expose a select method of a custom Panel class to its top-level
window container.

How to do it...
This decorator class takes the name of a class as an argument and will dynamically define the
delegate method in the targeted child Panel of the top level window:

class expose(object):
 """Expose a panels method to a to a specified class
 The panel that is having its method exposed by this
 decorator must be a child of the class its exposing
 itself too.
 """
 def __init__(self, cls):
 """@param cls: class to expose the method to"""
 super(expose, self).__init__()
 self.cls = cls

Here is where the magic occurs. We use setattr to dynamically add a function with the
same name as the function being decorated to the targeted class. When called from the
targeted class, the new method will walk through the window's children to find its Panel,
and will delegate the call to the child class's method:

 def __call__(self, funct):
 """Dynamically bind and expose the function
 to the toplevel window class.
 """
 fname = funct.func_name
 def delegate(*args, **kwargs):
 """Delegate method for panel"""
 self = args[0] # The TLW
 # Find the panel this method belongs to
 panel = None
 for child in self.GetChildren():
 if isinstance(child, wx.Panel) and \
 hasattr(child, fname):
 panel = child
 break
 assert panel is not None, "No matching child!"
 # Call the panels method
 return getattr(panel, fname)(*args[1:], **kwargs)

Design Approaches and Techniques

208

 # Bind the new delegate method to the tlw class
 delegate.__name__ = funct.__name__
 delegate.__doc__ = funct.__doc__
 setattr(self.cls, fname, delegate)

 # Return original function to the current class
 return funct

The example code that accompanies this chapter has a sample application that shows how
to use this decorator.

How it works...
This recipe isn't so much a design pattern as it is a technique to help make writing new Dialog
and Frame classes quicker and also to reduce code duplication. To do this, we created a
decorator class for exposing methods from child Panel classes to their parent top-level
window. Let's start with a look at the expose decorator to see how it works its magic.

The expose decorator takes a single argument, which is the class that the method should be
exposed to. A reference to this is saved in the constructor for later use when the decorator is
applied in its __call__ method. The __call__ method creates a method called delegate
which will search for the first child panel that has a method with the same name as the one
that is being exposed. If it finds an appropriate panel, then it simply calls the panel's method
and returns its value. Next, it uses setattr to insert the newly-generated delegate method
with an alias matching the Panel's method into the namespace of the class specified in the
decorator's constructor. At this point, the method is available for use in the top-level window
that expose was called with. Finally, we just return the unaltered original function to the
Panel class it belongs to.

Just to be clear, this decorator, as it is defined in this recipe, can only be used by Panel
subclasses that have a known relationship of being the only child of their parent window. This
is typical of how most Frame and Dialog subclasses are constructed, as can be seen in the
example CommentDialog class that is included in this chapter's sample code.

See also
See the Understanding the window hierarchy recipe in Chapter 1, Getting Started
with wxPython for an additional explanation of the containment hierarchy of
different objects.

10
Creating Components

and Extending
Functionality

In this chapter, we will cover:

Customizing the ArtProvider

Adding controls to a StatusBar

Making a tool window

Creating a SearchBar

Working with ListCtrl mixins

StyledTextCtrl custom highlighting

Creating a custom control

Introduction
Once you've been working with wxPython for a while, you may find that you need some
functionality or behavior that is not provided by default with the common controls. So in order
to get this, you need some level of customization, or even the creation of a completely new
type of control may become necessary in order to provide the interface that your application
and users need.

There is a fair amount of flexibility built into many controls to change their behavior through
the use of their style flags. In this chapter however, we will explore some object-oriented
approaches for creating new controls as well as extending the functionality of some of the
standard controls through inheritance. So let's get going and jump into some recipes.

Creating Components and Extending Functionality

210

Customizing the ArtProvider
The ArtProvider is a singleton object that can be used by any component that wants
to display system theme provided bitmaps. In wxPython 2.8, only the GTK (Linux) port has
a native implementation of this object, so other platforms use the icons that are built into
wxPython. These built-in icons are a bit dated and out-of-place looking to say the least. This
recipe shows how to create a custom ArtProvider to handle the display of custom icons
on Windows and OS X while still retaining the native system theme icons on Linux.

How to do it...
Here we define our custom ArtProvider implementation, which just requires us to override
the CreateBitmap method, which is used to load our custom icons:

class TangoArtProvider(wx.ArtProvider):
 def __init__(self):
 super(TangoArtProvider, self).__init__()

 # Attributes
 self.bmps = [bmp.replace('.png', '')
 for bmp in os.listdir('tango')
 if bmp.endswith('.png')]

 def CreateBitmap(self, id,
 client=wx.ART_OTHER,
 size=wx.DefaultSize):

 # Return NullBitmap on GTK to allow
 # the default artprovider to get the
 # system theme bitmap.
 if wx.Platform == '__WXGTK__':
 return wx.NullBitmap

 # Non GTK Platform get custom resource
 # when one is available.
 bmp = wx.NullBitmap
 if client == wx.ART_MENU or size == (16,16):
 if id in self.bmps:
 path = os.path.join('tango', id+'.png')
 bmp = wx.Bitmap(path)
 else:

Chapter 10

211

 # TODO add support for other bitmap sizes
 pass

 return bmp

Then all that we need to do in order to use the custom TangoArtProvider in an application
is to push it onto the ArtProvider stack:

class ArtProviderApp(wx.App):
 def OnInit(self):
 # Push our custom ArtProvider on to
 # the provider stack.
 wx.ArtProvider.PushProvider(TangoArtProvider())
 title = "Tango ArtProvider"
 self.frame = ArtProviderFrame(None,
 title=title)
 self.frame.Show()
 return True

How it works...
The ArtProvider singleton maintains a stack of ArtProvider objects that are chained
together. When calling GetBitmap on the ArtProvider, it will first ask the one at the top of
the stack for the requested Bitmap. If that one returns NullBitmap, it will ask the next one,
and so on and so forth until either the Bitmap is found or the bottom of the stack is reached.

All that needs to be done to create a custom ArtProvider is to create a subclass that
overrides the CreateBitmap method. Our TangoArtProvider overrides this method and
provides a small set of icons from the free Tango (http://tango.freedesktop.org) icon
set. We simply have a folder with some PNG images in it that we map to some of the wxPython
ART_* IDs and then load them from disk into a Bitmap when requested.

See also

See the Creating Singletons recipe in Chapter 9, Design Approaches and Techniques
for an explanation of what singletons, such as the ArtProvider, are.

Creating Components and Extending Functionality

212

Adding controls to a StatusBar
The StatusBar is a common component found in many applications for the display of
short information messages at the bottom of the main windows content area. The standard
StatusBar supports the display of multiple status text fields. This recipe shows how to
create an advanced StatusBar that has a Gauge built-in to it in order to show progress
during long-running tasks. Just as a sneak peak of what we are going to create, take a look
at the following screenshot to see the ProgressStatusBar in action:

How to do it...
First, we will create our ProgressStatusBar class by creating a subclass of StatusBar.
In the constructor, we create the Gauge for showing the progress and a Timer to use for
updating the Gauge:

class ProgressStatusBar(wx.StatusBar):
 """Custom StatusBar with a built-in progress bar"""
 def __init__(self, parent, id_=wx.ID_ANY,
 style=wx.SB_FLAT,
 name="ProgressStatusBar"):
 super(ProgressStatusBar, self).__init__(parent,
 id_,
 style,
 name)

 # Attributes
 self._changed = False # position has changed ?
 self.busy = False # Bar in busy mode ?
 self.timer = wx.Timer(self)
 self.prog = wx.Gauge(self, style=wx.GA_HORIZONTAL)
 self.prog.Hide() # Hide on init

 # Layout
 self.SetFieldsCount(2)
 self.SetStatusWidths([-1, 155])

Chapter 10

213

 # Event Handlers
 self.Bind(wx.EVT_IDLE,
 lambda evt: self.__Reposition())
 self.Bind(wx.EVT_TIMER, self.OnTimer)
 self.Bind(wx.EVT_SIZE, self.OnSize)

 def __del__(self):
 if self.timer.IsRunning():
 self.timer.Stop()

The following helper method is used to make sure that the Gauge control is repositioned into
the right-most status field when its Frame changes position or size:

 def __Reposition(self):
 """Repositions the gauge as necessary"""
 if self._changed:
 lfield = self.GetFieldsCount() - 1
 rect = self.GetFieldRect(lfield)
 prog_pos = (rect.x + 2, rect.y + 2)
 self.prog.SetPosition(prog_pos)
 prog_size = (rect.width - 8, rect.height - 4)
 self.prog.SetSize(prog_size)
 self._changed = False

 def OnSize(self, evt):
 self._changed = True
 self.__Reposition()
 evt.Skip()

The Timer event handler is used for handling when the Gauge is being used in indeterminate
mode to pulse the Gauge:

 def OnTimer(self, evt):
 if not self.prog.IsShown():
 self.Stop()

 if self.busy:
 # In busy (indeterminate) mode
 self.prog.Pulse()

Creating Components and Extending Functionality

214

Starting here with the Run method, we have added some public methods for manipulating the
StatusBar's Gauge from user code.

 def Run(self, rate=100):
 if not self.timer.IsRunning():
 self.timer.Start(rate)

 def GetProgress(self):
 return self.prog.GetValue()

 def SetProgress(self, val):
 if not self.prog.IsShown():
 self.ShowProgress(True)

 # Check if we are finished
 if val == self.prog.GetRange():
 self.prog.SetValue(0)
 self.ShowProgress(False)
 else:
 self.prog.SetValue(val)

 def SetRange(self, val):
 if val != self.prog.GetRange():
 self.prog.SetRange(val)

 def ShowProgress(self, show=True):
 self.__Reposition()
 self.prog.Show(show)

 def StartBusy(self, rate=100):
 self.busy = True
 self.__Reposition()
 self.ShowProgress(True)
 if not self.timer.IsRunning():
 self.timer.Start(rate)

 def StopBusy(self):
 self.timer.Stop()
 self.ShowProgress(False)
 self.prog.SetValue(0) # Reset progress value
 self.busy = False

 def IsBusy(self):
 """Is the gauge busy?"""
 return self.busy

Chapter 10

215

See the sample code that accompanies this chapter for a sample application of the
ProgressStatusBar in action.

How it works...
The main trick to this recipe is the need to manually maintain the size and position of the
Gauge control so that it stays in the same relative place on the StatusBar, regardless of
how the window is moved or resized. We handled this with our __Reposition method that
simply positions and sizes the Gauge based on the right-most field in the StatusBar. Then
we just call this method whenever we hide or show the Gauge, or when the window is resized,
and during OnIdle as necessary.

The ProgressStatusBar class supports two modes of operation for the progress gauge.
The Gauge can either be shown in busy mode (indeterminate) or in incremental mode. In busy
mode, we just start and run a Timer to Pulse the Gauge in the event handler. In incremental
mode, the Gauge's range is first set with SetRange and then its progress is updated
incrementally by the application as necessary by calling SetProgress.

See also
See the Creating a custom SplashScreen recipe in Chapter 5, Providing Information
and Alerting Users for another example of using the Gauge control and Timers.

Making a tool window
A ToolWindow is a little floating window that often functions like a ToolBar by having many
different tool icons on it that can be clicked to initiate various actions. These types of windows
are often seen in paint applications for holding pallets and other tools. This recipe shows how
to create a simple ToolWindow class.

How to do it...
First let's define the base ToolWindow class by deriving from MiniFrame so that it will be
a small, floating, top-level window:

import wx
import wx.lib.pubsub as pubsub

message data will be tool id
MSG_TOOL_CLICKED = ('toolwin', 'clicked')

class ToolWindow(wx.MiniFrame):
 def __init__(self, parent, rows=1, columns=0, title=''):

Creating Components and Extending Functionality

216

 style = wx.CAPTION|wx.SYSTEM_MENU|\
 wx.SIMPLE_BORDER|wx.CLOSE_BOX
 super(ToolWindow, self).__init__(parent,
 title=title,
 style=style)

 # Attributes
 self.panel = ToolPanel(self, rows, columns)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)

 def AddTool(self, id, bmp, helplbl=''):
 """Add a tool to the window"""
 self.panel.AddTool(id, bmp, helplbl)
 self.Fit()

The ToolPanel class acts as the container and manager for the tools that are added
to the ToolWindow:

class ToolPanel(wx.Panel):
 """Panel to hold the tools"""
 def __init__(self, parent, rows, columns):
 super(ToolPanel, self).__init__(parent)

 # Attributes
 self.sizer = wx.FlexGridSizer(rows, columns, 5, 5)

 # Setup
 self.SetSizer(self.sizer)

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnButton)

The AddTool method takes the passed in ID and Bitmap and creates a BitmapButton
to use as the tool, and then simply adds this to the sizer's layout:

 def AddTool(self, id, bmp, helplbl=''):
 tool = wx.BitmapButton(self, id, bmp)
 tool.SetToolTipString(helplbl)
 self.sizer.Add(tool)
 self.Layout()

Chapter 10

217

The OnButton handler catches all button clicks in the Panel and then publishes
a notification to all observers that have subscribed to tool messages:

 def OnButton(self, event):
 """Notify clients when tool is clicked"""
 pubsub.Publisher.sendMessage(MSG_TOOL_CLICKED,
 event.GetId())

See the example code that accompanies this chapter for a sample text editor application that
uses ToolWindow.

How it works...
Now that we have seen the code, let's take a quick walkthrough so we can see how it all
works together.

Our ToolWindow class is composed of a MiniFrame and a Panel that will have
BitmapButtons added to it when the client code calls its AddTool method. The
ToolWindow has two arguments, rows and columns, that can specify the dimensions to
use when laying out the tools in the ToolPanel's FlexGridSizer. In order to ensure that
the ToolWindow is the correct size and that all of its tools are visible, it is necessary to call
Layout in the ToolPanel's AddTool method, and then call Fit on the ToolWindow to
ensure that the layout is recalculated and that the window is resized to best fit its contents.

When a tool is clicked on the ToolWindow, the event handler for the button simply
uses pubsub to send a message containing the tool's ID to any observers of the
MSG_TOOL_CLICKED topic. This method of notification was chosen because this way,
if the application has multiple windows, they can all share the same ToolWindow
instead of each creating their own instance of it.

See also

See the Implementing an observer pattern recipe in Chapter 9, Design Approaches
and Techniques for an in-depth discussion about using the observer pattern.

Creating a SearchBar
Search bars have become a fairly familiar component in many applications as an alternative
to showing a FindDialog that can cover part of the screen, obscuring the search area. There
is no built-in control in wxPython that implements this functionality, so this recipe shows how
to create a simple SearchBar control.

Creating Components and Extending Functionality

218

How to do it...
Our SearchBar control will be a composite control composed of a Panel as the base, with a
SearchCtrl on it to allow for the search text to be entered:

class SearchBar(wx.Panel):
 def __init__(self, parent):
 style = wx.BORDER_RAISED
 super(SearchBar, self).__init__(parent,
 style=style)

 # Attributes
 self.search = wx.SearchCtrl(self,
 size=(250, -1),
 style=wx.TE_PROCESS_ENTER)
 self.lastfind = ''

 # Layout
 self.__DoLayout()

 # Event Handlers
 if wx.Platform in ['__WXMSW__', '__WXGTK__']:
 # Workaround for composite control on msw/gtk
 for child in self.search.GetChildren():
 if isinstance(child, wx.TextCtrl):
 child.Bind(wx.EVT_KEY_UP, self.OnEnter)
 break
 else:
 self.search.Bind(wx.EVT_KEY_UP, self.OnEnter)
 self.Bind(wx.EVT_SEARCHCTRL_CANCEL_BTN, self.OnCancel)

 def __DoLayout(self):
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(self.search, 0, wx.ALL, 2)
 self.SetSizer(sizer)

Here, in OnCancel, we handle the cancel button event of the SearchCtrl in order to clear
the current search text and hide the cancel button:

 def OnCancel(self, event):
 self.search.SetValue("")
 self.search.ShowCancelButton(False)

Chapter 10

21�

OnEnter will handle the keyboard events generated by the SearchCtrl. We use it to
see when the user has pressed the return key to initiate a search. We do this by creating
a FindDialogEvent to allow clients to bind to EVT_FIND and handle the searching:

 def OnEnter(self, event):
 """Send a search event"""
 code = event.GetKeyCode()
 val = self.search.GetValue()
 if code == wx.WXK_RETURN and val:
 if val == self.lastfind:
 etype = wx.wxEVT_COMMAND_FIND
 else:
 etype = wx.wxEVT_COMMAND_FIND_NEXT
 fevent = wx.FindDialogEvent(etype)
 fevent.SetFindString(val)
 self.ProcessEvent(fevent)
 self.lastfind = val
 else:
 show = bool(val)
 self.search.ShowCancelButton(show)

Running the example application that accompanies this recipe will result in a window like the
following being shown:

How it works...
This recipe shows how to make a very basic composite control. The SearchBar is just a
simple Panel that has a SearchCtrl on it. To use it in a Frame, all that needs to be done
is to create a vertical BoxSizer and add the SearchBar to this, so that it is positioned
below or above the main content area in which the searches will take place. The Frame
can then respond to the events that the SearchBar emits. We had to do a few things in
order to support the sending of a find event when the user presses the Return key in the
SearchCtrl. So let's take a look at that now.

Creating Components and Extending Functionality

220

In the SearchBar's constructor we had to define some special case code for Windows
and Linux to be able to bind our EVT_KEY_UP handler. This was necessary to work around
a bug where the KeyEvents don't propagate properly due to the SearchControl being
a composite control on those two platforms. On Macintosh, the SearchCtrl is a native
widget so the event binding works normally. Next, in our OnEnter event handler, we check
the value of the text in the control and generate either an EVT_FIND or EVT_FIND_NEXT
event depending on the context of the search. Since these are command events, calling
self.ProcessEvent will start the processing of our FIND event in the event handler
chain allowing it to propagate until it is handled.

See also

See the Understanding event propagation recipe in Chapter 2, Responding to Events
for a discussion of how events work.

See the Using a BoxSizer recipe in Chapter 7, Window Layout and Design for an
explanation of how to use BoxSizers to perform window layout control.

Working with ListCtrl mixins
Like the TreeCtrl, there are a number of mixin classes available to extend the
functionality of the standard ListCtrl. This recipe provides an introduction to using the
CheckListCtrlMixin, ListRowHighlighter, and ListCtrlAutoWidthMixin mixin
classes to create a ListCtrl that allows the selection of multiple items by using CheckBoxes.

How to do it...
Here, we will define our base CheckListCtrl class that uses three mixin classes
to customize the control's look and feel, as well as add checkboxes:

import wx
import wx.lib.mixins.listctrl as listmix

class CheckListCtrl(wx.ListCtrl,
 listmix.CheckListCtrlMixin,
 listmix.ListRowHighlighter,
 listmix.ListCtrlAutoWidthMixin):
 def __init__(self, *args, **kwargs):
 wx.ListCtrl.__init__(self, *args, **kwargs)
 listmix.CheckListCtrlMixin.__init__(self)
 listmix.ListRowHighlighter.__init__(self)
 listmix.ListCtrlAutoWidthMixin.__init__(self)

 # Attributes
 self._observers = list()

Chapter 10

221

Here, we override the CheckListCtlrMixin's OnCheckItem method and implement an
observer interface to notify clients when a CheckBox in the list is toggled:

 def OnCheckItem(self, index, flag):
 """Overrides CheckListCtrlMixin.OnCheckItem
 callback"""
 # Notify observers that a checkbox was
 # checked/unchecked
 for observer in self._observers:
 observer(index, flag)

All that's remaining is to add a GetItems method to return the list of checked items, and
another method to allow clients to register themselves as observers of when items are
checked in the control:

 def GetItems(self, checked=True):
 """Gets a list of all the (un)checked items"""
 indexes = list()
 for index in range(self.GetItemCount()):
 if self.IsChecked(index) == checked:
 indexes.append(index)
 return indexes

 def RegisterObserver(self, callback):
 """Register OnCheckItem callback
 @param callaback: callable(index, checked)
 """
 self._observers.append(callback)

How it works...
In this recipe, we created a general use base class, CheckListCtrl, that will have
the following extended features. It will have a CheckBox on each row in column 0,
alternate rows will have their backgrounds highlighted, and the rightmost column of the
ListCtrl will automatically be sized to fill the remaining space in the control. Each of
these features are provided by the CheckListCtrlMixin, ListRowHighlighter,
and ListCtrlAutoWidthMixin classes respectively.

The CheckListCtrlMixin provides an overridable method, OnCheckItem, that will be
called when one of the CheckBoxes in the ListCtrl is clicked on. We overrode this method
and added a way for client code to register observer callback methods with the control. In this
way, if any client code that uses this control wants to be notified when a CheckBox is toggled,
they can register their own observer methods.

Creating Components and Extending Functionality

222

The last part of our CheckListCtrl class is the GetItems method that was added to make
it easy to get a list of the indexes of all the checked or unchecked items in the control. Please
see the sample code that accompanies this topic for a sample application that uses this
new control:

There's more...
The wx.lib.mixins.listctrl module provides a couple more mixin classes for the
ListCtrl. Here is a quick reference to these other classes:

Mixin classes Description
ColumnSorterMixin Helps handle the sorting of the items in the control when a

column header is clicked on.
TextEditMixin Makes it possible to edit the text in any column of a multi-column

ListCtrl.

See also

See the Listing data with a ListCtrl recipe in Chapter 4, Advanced Building Blocks of
a User Interface for another example of using the ListCtrl.

See the Implementing an observer pattern recipe in Chapter 9, Design Approaches
and Techniques for a discussion of using the observer pattern.

StyledTextCtrl custom highlighting
As discussed in the StyledTextCtrl using lexers section of Chapter 4, Advanced Building Blocks
of a User Interface, the StyledTextCtrl is a powerful source code editing component that
has support for syntax-highlighting many different types of source code. However, if you find
that you need to support some highlighting in your application that the StyledTextCtrl
doesn't have a built-in lexer for, you might think that you are out of luck. This isn't the case,
though. Custom lexers can be added through the use of the special container lexer. This
recipe shows how to write and use a custom lexer that does some simple highlighting.

Chapter 10

223

How to do it...
As a part of this recipe, we will create a simple little framework that can be extended to do
other kinds of highlighting. Let's start with the BaseLexer class, which defines a single
method interface for handling the EVT_STC_STYLENEEDED event that is generated by
the StyledTextCtrl:

import wx
import wx.stc

class BaseLexer(object):
 """Defines simple interface for custom lexer objects"""
 def __init__(self):
 super(BaseLexer, self).__init__()

 def StyleText(self, event):
 raise NotImplementedError

Next we have our example implementation of the VowelLexer, which will provide text styling
for all vowels in a document:

class VowelLexer(BaseLexer):
 """Simple lexer to highlight vowels"""
 # Define some style IDs
 STC_STYLE_VOWEL_DEFAULT, \
 STC_STYLE_VOWEL_KW = range(2)
 def __init__(self):
 super(VowelLexer, self).__init__()

 # Attributes
 self.vowels = [ord(char) for char in "aeiouAEIOU"]

The StyleText method is what our custom StyledTextCtrl will delegate to in its
EVT_STC_STYLENEEDED event handler. The VowelLexer supports two different styles:
one for its default style and another one for vowels.

 def StyleText(self, event):
 """Handle the EVT_STC_STYLENEEDED event"""
 stc = event.GetEventObject()
 # Last correctly styled character
 last_styled_pos = stc.GetEndStyled()
 # Get styling range for this call
 line = stc.LineFromPosition(last_styled_pos)
 start_pos = stc.PositionFromLine(line)
 end_pos = event.GetPosition()

Creating Components and Extending Functionality

224

 # Walk the line and find all the vowels to style
 while start_pos < end_pos:
 stc.StartStyling(start_pos, 0x1f)
 char = stc.GetCharAt(start_pos)
 if char in self.vowels:
 # Set Vowel Keyword style
 style = VowelLexer.STC_STYLE_VOWEL_KW
 else:
 # Set Default style
 style = VowelLexer.STC_STYLE_VOWEL_DEFAULT
 # Set the styling byte information for 1 char from
 # current styling position (start_pos) with the
 # given style.
 stc.SetStyling(1, style)
 start_pos += 1

The CustomSTC class will provide the framework for using BaseLexer-derived classes
to customize the highlighting of the text in the control:

class CustomSTC(wx.stc.StyledTextCtrl):
 def __init__(self, *args, **kwargs):
 super(CustomSTC, self).__init__(*args, **kwargs)

 # Attributes
 self.custlex = None

 # Event Handlers
 self.Bind(wx.stc.EVT_STC_STYLENEEDED, self.OnStyle)

 def OnStyle(self, event):
 # Delegate to custom lexer object if one exists
 if self.custlex:
 self.custlex.StyleText(event)
 else:
 event.Skip()

 def SetLexer(self, lexerid, lexer=None):
 """Overrides StyledTextCtrl.SetLexer
 Adds optional param to pass in custom container
 lexer object.
 """
 self.custlex = lexer
 super(CustomSTC, self).SetLexer(lexerid)

Included with the sample code that accompanies this chapter is a simple application that
uses the custom VowelLexer class defined above.

Chapter 10

225

How it works...
In this recipe, we first built a little framework for creating custom lexers for the
StyledTextCtrl. Starting with our BaseLexer class, we defined a simple interface for
objects that will delegate the task of handling EVT_STC_STYLENEEDED. Next, we created
the VowelLexer class, which is a simple subclass of BaseLexer that will highlight vowels in
the text of a document. Applying styling in the StyledTextCtrl involves three basic steps.
First, you need to call StartStyling to indicate the position in the buffer you wish to start
styling text, then you need to determine what style byte to set, and finally you need to call
SetStyling to set how many characters from the start position to style with the given style.

Now in order for the StyledTextCtrl to make use of these lexers, we needed to do a
couple things that we have encapsulated in the CustomSTC class. The StyledTextCtrl
needs to bind to EVT_STC_STYLENEEDED and set the STC_LEX_CONTAINER lexer. The
StyledTextCtrl will generate EVT_STC_STYLEDNEEDED when the container lexer is the
current lexer and when it detects that some of the text in the buffer may need to be restyled
due to changes in its contents. To handle this in our CustomSTC class, we simply delegate the
event to the current lexer object that was set by the call to our overridden SetLexer method.

Finally, we have a super-simple sample application that shows how our CustomSTC and
VowelLexer can be used in an application. First, we needed to set up the styling by calling
SetStyleSpec to set which colors will be applied for our lexer's two-style bytes. The STC_
STYLE_VOWEL_DEFAULT will be styled with plain black text, and STC_STYLE_VOWEL_KW will
be styled with red text. Then, all is left is to call SetLexer to set the STC_LEX_CONTAINER
lexer and create an instance of our VowelLexer for the control to use. So give it a run and
see that as you type into the buffer, all vowels should be colored red.

See also

See the StyledTextCtrl using lexers recipe in Chapter 4, Advanced Building Blocks of
a User Interface for another example of using the StyleTextCtrl.

Creating a custom control
At some point, you may need to invent an entirely new control to fit some specific requirement
of your application. So in this recipe we will take a look at some techniques for creating a new
control completely from scratch. We will create a custom CheckBox control that has its label
below the CheckBox.

Creating Components and Extending Functionality

226

How to do it...
To get started, we will define the constructor of the CustomCheckBox control as a subclass
of PyControl. In the constructor, we bind to a number of events that will let us define the
behavior of the control:

class CustomCheckBox(wx.PyControl):
 """Custom CheckBox implementation where label is
 below the CheckBox.
 """
 def __init__(self, parent, id_=wx.ID_ANY, label=""):
 style = wx.BORDER_NONE
 super(CustomCheckBox, self).__init__(parent,
 id_,
 style=style)

 # Attributes
 self.InheritAttributes()
 self._hstate = 0
 self._checked = False
 self._ldown = False
 self.SetLabel(label)

 # Event Handlers
 self.Bind(wx.EVT_PAINT, self.OnPaint)
 self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnErase)
 self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown)
 self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp)
 self.Bind(wx.EVT_ENTER_WINDOW,
 lambda event:
 self._SetState(wx.CONTROL_CURRENT))
 self.Bind(wx.EVT_LEAVE_WINDOW,
 lambda event: self._SetState(0))

Next, we have this helper method to help manage what state the control is in with regards
to the mouse:

 def _SetState(self, state):
 if self._hstate != state:
 if state == 0:
 self._ldown = False
 self._hstate = state
 self.Refresh()

 #-- Implementation --#

Chapter 10

227

This is a virtual override of the PyControl's DoGetBestSize method to control what the
size of the control is:

 def DoGetBestSize(self):
 lblsz = self.GetTextExtent(self.GetLabel())
 width = max(lblsz[0], 16) + 4 # 2px padding l/r
 height = lblsz[1] + 16 + 6
 best_sz = wx.Size(width, height)
 self.CacheBestSize(best_sz)
 return best_sz

 #-- Event Handlers --#

Next, we focus on the event handlers that will define the behavior of the control. First, in
OnPaint, we do the drawing that gives the control its appearance:

 def OnPaint(self, event):
 dc = wx.AutoBufferedPaintDCFactory(self)
 gc = wx.GCDC(dc)
 renderer = wx.RendererNative.Get()

 # Setup GCDC
 rect = self.GetClientRect()
 bcolour = self.GetBackgroundColour()
 brush = wx.Brush(bcolour)
 gc.SetBackground(brush)
 gc.Clear()

 # Center checkbox
 cb_x = (rect.width - 16) / 2
 cb_y = 2 # padding from top
 cb_rect = wx.Rect(cb_x, cb_y, 16, 16)

 # Draw the checkbox
 state = 0
 if self._checked:
 state = wx.CONTROL_CHECKED
 if not self.IsEnabled():
 state |= wx.CONTROL_DISABLED
 renderer.DrawCheckBox(self, dc, cb_rect,
 state|self._hstate)

 # Draw the label
 lbl_rect = wx.Rect(0, cb_rect.bottom, rect.width,
 rect.height - cb_rect.height)

Creating Components and Extending Functionality

228

 gc.DrawLabel(self.GetLabel(),
 lbl_rect,
 wx.ALIGN_CENTER)

 def OnErase(self, event):
 pass # do nothing

The next two event handlers manage the mouse click state in the control to toggle the
CheckBox state:

 def OnLeftDown(self, event):
 self._ldown = True
 event.Skip()

 def OnLeftUp(self, event):
 if self._ldown:
 self._ldown = False
 self._checked = not self._checked
 self.Refresh()
 # Generate EVT_CHECKBOX event
 etype = wx.wxEVT_COMMAND_CHECKBOX_CLICKED
 chevent = wx.CommandEvent(etype, self.GetId())
 chevent.SetEventObject(self)
 self.ProcessEvent(chevent)
 event.Skip()

Last but not least, we define a couple of methods to implement part of the
wx.CheckBox interface:

 #---- Public Api ----#

 def SetValue(self, state):
 self._checked = state
 self.Refresh()

 def GetValue(self):
 return self._checked

 def IsChecked(self):
 return self.GetValue()

Chapter 10

22�

How it works...
This was a fairly simple control to implement, but it is a good example of some of the
approaches to take when creating your own custom control. So let's break down each
of the important parts and see how they affect the way in which the control works.

First, in the constructor, we define three attributes to manage the state of the control:

1. self._hstate: To hold the current highlight state of the control.

2. self._checked: To hold the CheckBox state.

3. self._ldown: To hold when the left mouse button was clicked down in the control.

Next, we Bind to the events that are necessary to draw the control and implement its
behavior. We made use of two paint events and four different mouse events. First, let's
take a look at the mouse event handlers that are used to implement the control's behavior.

In OnLeftDown, we simply set our self._ldown flag to True in order to indicate that the
down-click action was initiated in this window and not elsewhere. Then, in the OnLeftUp
handler, if the self._ldown flag is True, we toggle the self._checked flag to reflect the
new CheckBox state, and then call Refresh. Calling Refresh will cause an EVT_PAINT
event to be generated so that we can redraw the control in its new state with our OnPaint
handler. After this, we also generate an EVT_CHECKBOX event in order to inform the
application that the CheckBox state has changed. The remaining two mouse events are used
to update the control's highlight state when the mouse enters or leaves the controls area.

OnPaint is where we draw the control and give it its appearance. We start in OnPaint by
creating our drawing contexts and setting up the background. Next, we calculate the position
to draw the CheckBox within the control's rectangle and use RendererNative to draw the
CheckBox according to the control's current state. Then, all that is left is to draw the label
below the CheckBox using our GCDC's DrawLabel method.

To finish off the control, we added some methods to implement part of the regular interface
for the CheckBox so that the application code using this control can get and set the
CheckBox state:

Creating Components and Extending Functionality

230

See also

See the Understanding inheritance limitations recipe in Chapter 1, Getting Started
with wxPython for a discussion about overriding virtual methods.

See the Understanding event propagation recipe in Chapter 2, Responding to Events
for more information on working with events.

See the Drawing with RendererNative recipe in Chapter 8, Drawing to the Screen for
another example of using RendererNative for drawing native-looking controls.

See the Reducing flicker in drawing routines recipe in Chapter 8, Drawing to the
Screen for an explanation of how to reduce flicker in drawing routines.

11
Using Threads and

Timers to Create
Responsive Interfaces

In this chapter, we will cover:

Non-Blocking GUI

Understanding thread safety

Threading tools

Using Timers

Capturing output

Introduction
It's all too familiar and an annoying issue when you are using an application and click on
some button or control only to find that the application's UI all of a sudden appears to stop
responding, the busy cursor shows up, and you are left there wondering if the application is
still working, or if it has locked up and needs to be forced quit. This unpleasant experience
is almost always the result of a function or action that takes a considerable amount of time
to return after being called. If this function or action is called on the same thread that the
GUI objects live on, it will block all the code that is running in the background and that is
managing the GUI, leading to this locked up and unresponsive interface.

Being able to design an application in a way that prevents this situation from being presented
to its users requires additional considerations in comparison to most traditional procedural
approaches. This chapter explores this problem by providing solutions, and hopefully all the
tools necessary, to build highly-responsive, multi-threaded applications in wxPython.

Using Threads and Timers to Create Responsive Interfaces

232

Non-Blocking GUI
In this recipe, we explore what a responsive interface is and try to gain a good understanding
of what the problem is that the other recipes in this chapter will provide solutions to. The
recipe creates a simple application with two buttons. Each button will perform exactly the
same task. However, the way in which the application responds and provides feedback to
the user after the button is clicked will differ greatly between the two buttons, due to how
the control flow is carried out.

How to do it...
To illustrate the issue at hand, we will create a simple Fibonacci number calculator
application. First, we will begin by defining a Thread class and the function that will
be used to calculate the Nth Fibonacci number:

import wx
import threading

class FibThread(threading.Thread):
 def __init__(self, window, n):
 super(FibThread, self).__init__()

 # Attributes
 self.window = window
 self.n = n

 def run(self):
 val = SlowFib(self.n)
 wx.CallAfter(self.window.output.SetValue, str(val))
 wx.CallAfter(self.window.StopBusy)

def SlowFib(n):
 """Calculate Fibonacci numbers
 using slow recursive method to demonstrate
 blocking the UI.
 """
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return SlowFib(n-1) + SlowFib(n-2)

Chapter 11

233

Now let's create the user interface for our Fibonacci number calculator:

class BlockingApp(wx.App):
 def OnInit(self):
 self.frame = BlockingFrame(None,
 title="Non-Blocking Gui")
 self.frame.Show()
 return True

class BlockingFrame(wx.Frame):
 """Main application window"""
 def __init__(self, *args, **kwargs):
 super(BlockingFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = BlockingPanel(self)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize()

Here, in the Panel, is where most of the action will be taking place in this example. Here we lay
out a simple interface with an input field and an output field, two buttons, and a progress bar:

class BlockingPanel(wx.Panel):
 def __init__(self, parent):
 super(BlockingPanel, self).__init__(parent)

 # Attributes
 self.timer = wx.Timer(self)
 self.input = wx.SpinCtrl(self, value="35", min=1)
 self.output = wx.TextCtrl(self)
 self.block = wx.Button(self, label="Blocking")
 self.noblock = wx.Button(self, label="Non-Blocking")
 self.prog = wx.Gauge(self)

 # Layout
 self.__DoLayout()

 # Event Handlers
 self.Bind(wx.EVT_BUTTON, self.OnButton)
 self.Bind(wx.EVT_TIMER, self.OnPulse, self.timer)

 def __DoLayout(self):
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)
 gridsz = wx.GridSizer(2, 2, 5, 5)

Using Threads and Timers to Create Responsive Interfaces

234

 # Layout controls
 vsizer.Add(self.prog, 0, wx.EXPAND)
 gridsz.Add(wx.StaticText(self, label="fib(n):"))
 gridsz.Add(self.input, 0, wx.EXPAND)
 gridsz.Add(wx.StaticText(self, label="result:"))
 gridsz.Add(self.output, 0, wx.EXPAND)
 vsizer.Add(gridsz, 0, wx.EXPAND|wx.ALL, 10)
 hsizer.Add(self.block, 0, wx.ALL, 5)
 hsizer.Add(self.noblock, 0, wx.ALL, 5)
 vsizer.Add(hsizer, 0, wx.ALIGN_CENTER_HORIZONTAL)

 self.SetSizer(vsizer)

Here, in our handler for EVT_BUTTON, is where we do the calculations. First, we clear the
current output and then start the progress Gauge. After that, we take one of two paths
depending upon which Button was clicked. If the "Blocking" button, we do the calculations
right here in the same thread. If the "Non-Blocking" button was clicked, we delegate the task
to a background thread in order to allow the GUI to continue processing:

 def OnButton(self, event):
 input = self.input.GetValue()
 self.output.SetValue("") # clear output
 self.StartBusy() # give busy feedback
 if event.GetEventObject() == self.block:
 # Calculate value in blocking mode
 val = SlowFib(input)
 self.output.SetValue(str(val))
 self.StopBusy()
 else:
 # Non-Blocking mode
 task = FibThread(self, input)
 task.start()

These methods were added to control the progress Gauge and to update the state of the GUI,
depending upon whether the application is busy calculating or not:

 def OnPulse(self, event):
 self.prog.Pulse() # Pulse busy feedback

 def StartBusy(self):
 self.timer.Start(100)
 self.block.Disable()
 self.noblock.Disable()

 def StopBusy(self):
 self.timer.Stop()

Chapter 11

235

 self.prog.SetValue(0)
 self.block.Enable()
 self.noblock.Enable()

if __name__ == '__main__':
 app = BlockingApp(False)
 app.MainLoop()

How it works...
Running the previous code will result in the following application window being displayed:

This application will calculate the Nth Fibonacci number specified by the first field. Using a
number of 35 or higher will take from many seconds to several minutes to calculate by using
the SlowFib function. Clicking on either of the two buttons will result in the same SlowFib
function being called, and ultimately the same result being generated. So with this in mind,
let's jump to the BlockingPanel's OnButton method to see what happens differently
between the two buttons.

When OnButton is called, we first clear the result field and then Start the Timer to Pulse
the Gauge at the top of the window to give the user feedback that we are busy calculating
the result. If the Blocking button was clicked, we directly call the SlowFib function to get
the result. At this point, the control flow of the application will be stuck waiting for SlowFib
to return, which means that the MainLoop will be waiting on our OnButton method to
return. Since OnButton will not return until SlowFib finishes, the framework will not be
able to process any events for things such as repainting the window, mouse clicks, or our
TimerEvent for pulsing the Gauge. Because of this, the Blocking button will still appear
to be pressed, and the Frame and all of its controls will be completely unresponsive until
SlowFib finishes and returns control to the MainLoop:

Using Threads and Timers to Create Responsive Interfaces

236

On the contrary, if you click on the Non-Blocking button we still run the same SlowFib
function, but do it in a separate Thread. This allows OnButton to return immediately,
returning control to the MainLoop. So since the MainLoop isn't stuck in OnButton, it is free
to process other events, allowing our busy indicator to be updated, the buttons to be shown as
disabled, and the Frame to be freely moved around the desktop. When the calculations finish
on the FibThread, it uses the CallAfter function to send a message to call the required
functions to update the GUI back on the main thread and then exits, leaving the GUI ready
to start another calculation:

Both buttons will take about the same time to produce the result, but the Non-Blocking button
allows the GUI to continue running smoothly and will give the user a better impression of
knowing that the software is busy working and is not just locked up.

See also
See the Understanding thread safety recipe in this chapter for more information on
creating thread-safe GUIs.

See the Using Timers recipe in this chapter for another approach to keeping the
GUI responsive while performing a long-running task.

Understanding thread safety
Nearly all user interface toolkits are designed to run within a single thread of execution.
Knowing how to interact with the GUI thread from other worker threads in a threaded
application is an important task that needs to be performed with care in order to avoid
seemingly unexplainable and random crashes in an application. This is as true in wxPython
as any other typical GUI toolkit.

Maintaining thread safety in a wxPython application can be handled in a few different ways,
but the use of events is most typical. The event queue monitored by the MainLoop provides
a thread-safe way to pass data and actions from a background thread to be processed in the
context of the GUI thread. This recipe shows how to use custom events and the PostEvent
function to make updates to GUI objects that exist in the main GUI thread.

Chapter 11

237

How to do it...
Since we will be using events to maintain thread safety in our sample application, we will first
start by defining a custom event type:

import wx
import time
import threading

Define a new custom event type
wxEVT_THREAD_UPDATE = wx.NewEventType()
EVT_THREAD_UPDATE = wx.PyEventBinder(wxEVT_THREAD_UPDATE, 1)

class ThreadUpdateEvent(wx.PyCommandEvent):
 def __init__(self, eventType, id):
 super(ThreadUpdateEvent, self).__init__(eventType, id)

 # Attributes
 self.value = None

 def SetValue(self, value):
 self.value = value

 def GetValue(self):
 return self.value

The CountingThread class below will be used as this application's background worker
thread and will use the previous event class to notify and make updates on the main
GUI thread:

class CountingThread(threading.Thread):
 """Simple thread that sends an update to its
 target window once a second with the new count value.
 """
 def __init__(self, targetwin, id):
 super(CountingThread, self).__init__()

 # Attributes
 self.window = targetwin
 self.id = id
 self.count = 0
 self.stop = False

Using Threads and Timers to Create Responsive Interfaces

238

 def run(self):
 while not self.stop:
 time.sleep(1) # wait a second
 # Notify the main thread it's time
 # to update the ui
 if self.window:
 event = ThreadUpdateEvent(wxEVT_THREAD_UPDATE,
 self.id)
 event.SetValue(self.count)
 wx.PostEvent(self.window, event)
 self.count += 1

 def Stop(self):
 # Stop the thread
 self.stop = True

class ThreadSafetyApp(wx.App):
 def OnInit(self):
 self.frame = ThreadSafeFrame(None,
 title="Thread Safety")
 self.frame.Show()
 return True

Beginning here, with the ThreadSafeFrame class, we will create the application's GUI. The
Frame will be the target for the updates from the CountingThread:

class ThreadSafeFrame(wx.Frame):
 """Main application window"""
 def __init__(self, *args, **kwargs):
 super(ThreadSafeFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = ThreadSafePanel(self)
 self.threadId = wx.NewId()
 self.worker = CountingThread(self, self.threadId)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize((300, 300))

 # Start the worker thread
 self.worker.start()

 # Event Handlers
 self.Bind(wx.EVT_CLOSE, self.OnClose)
 self.Bind(EVT_THREAD_UPDATE, self.OnThreadEvent)

Chapter 11

23�

 def OnClose(self, event):
 # Stop the worker thread
 self.worker.Stop()
 event.Skip()

Here is the event handler that the ThreadSafeFrame bound to the EVT_THREAD_UPDATE
event binder for the custom ThreadUpdateEvent class. This method will be called after the
CountingThread posts a new update event to do the GUI updates on the main GUI thread:

 def OnThreadEvent(self, event):
 if event.GetId() == self.threadId():
 # Handle event to update Displayed Count
 value = event.GetValue()
 self.panel.DisplayCount(value)
 else:
 event.Skip()

class ThreadSafePanel(wx.Panel):
 def __init__(self, parent):
 super(ThreadSafePanel, self).__init__(parent)

 # Attributes
 self.count = wx.StaticText(self, label="Count: ")

 # Setup
 self.__DoLayout()

 def __DoLayout(self):
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)
 vsizer.AddStretchSpacer()
 hsizer.AddStretchSpacer()
 hsizer.Add(self.count)
 hsizer.AddStretchSpacer()
 vsizer.Add(hsizer, 0, wx.EXPAND)
 vsizer.AddStretchSpacer()
 self.SetSizer(vsizer)

 def DisplayCount(self, value):
 self.count.SetLabel("Count: %d" % value)

if __name__ == '__main__':
 app = ThreadSafetyApp(False)
 app.MainLoop()

Using Threads and Timers to Create Responsive Interfaces

240

How it works...
The point of this recipe was to show a generic pattern for updating the GUI from a background
thread. To illustrate this, we created a simple Frame that has a Panel with a single
StaticTextCtrl that will be updated by our CountingThread after each time that
it has completed its arduous task of incrementing the count by one.

First, we created a new event type of ThreadUpdateEvent, and related event binder
to use for transporting the data from the CountingThread to the main thread when it
needs to tell the UI to update the displayed value. The ThreadUpdateEvent is used by the
CountingThread in its run method by passing it to PostEvent, which is a thread-safe way
to queue up some work for the main GUI thread.

PostEvent will place the event object into the MainLoop's event queue so that after it
has finished processing any current tasks, it will grab and dispatch this update event to the
appropriate event handler in our ThreadSafeFrame. This is the key that makes it possible
to safely update the GUI from a background thread.

If we had instead called the Panel's DisplayCount method directly from within the context
of the CountingThread, there is no guarantee that both threads would not be trying to access
or modify the same data at the same time. For example, if the GUI thread was in the middle of
processing an internal PaintEvent in order to redraw the StaticTextCtrl, the control's
label value would be getting accessed. If, at the same time, in the CountingThread, it was
trying to change that value, there would be potential memory corruption, which would cause the
application to crash. By using an event, the update will be processed in the context of the main
thread after it has finished any other pending tasks, eliminating the risk of collision since access
to the variable would be controlled in a serialized manner by the main thread.

There's more...
The CallAfter function provided by wxPython can also be used to make calls to methods
that affect a GUI object from a background thread. The CallAfter function encapsulates
much of the event creation and processing internally, and can be more convenient and
transparent for making simple changes to the GUI, as we did in this recipe. So let's take
a little look at how CallAfter works and can be used:

wx.CallAfter(callable, *args, **kw)

CallAfter takes a function as its first argument. The *args and **kw are for specifying
any positional or keyword arguments that should be passed the function specified by the
first argument when it is called. So, for example, we could replace the three lines of code in
our CountingThread's run method that are creating and sending the custom event with
the following:

wx.CallAfter(self.window.panel.DisplayCount,
 self.count)

Chapter 11

241

Now, the CallAfter function will create and post an event that contains the function and its
arguments to the App object on the main GUI thread. When the MainLoop gets to processing
this event, it will get handled by an event handler belonging to the App object. This event
handler will then just simply call the function with any of its specified arguments, so that
it is called in the context of the main GUI thread.

It's important to understand that CallAfter means precisely that—the method will be called
after the next iteration of the MainLoop. So you cannot expect to get a return value from the
method that you pass to it since it will be called asynchronously to the scope of where you
made the CallAfter call. So, just to be clear, CallAfter always returns None, meaning
that you can't use it for code like the following:

value = wx.CallAfter(window.GetValue)

This is because window.GetValue isn't actually called until after the CallAfter
function returns.

See also

See the Creating custom event classes recipe in Chapter 2, Responding to Events
for another example of creating custom events.

See the Threading tools recipe in this chapter for some more examples and
approaches to maintaining the thread safety of the GUI when working with
background threads.

Threading tools
Maintaining thread safety can be cumbersome and difficult at times so in this recipe we will
create three useful utilities that will make working with threads easier. We will create two
decorator functions and a metaclass to help make applying thread safe rules to methods
and functions as simple as adding a single line of code.

How to do it...
Here, will create a little utility module that can be used to help any wxPython application that
needs to work with threads:

import wx
import threading
from types import FunctionType, MethodType

__all__ = ['callafter', 'synchfunct', 'ClassSynchronizer']

Using Threads and Timers to Create Responsive Interfaces

242

Starting here, we will create a simple decorator function that can be used to decorate any
method in a GUI class, so that if a call to the decorated method is made from a background
thread, it will automatically delegate the call to the CallAfter function:

def callafter(funct):
 """Decorator to automatically use CallAfter if
 a method is called from a different thread.
 """
 def callafterwrap(*args, **kwargs):
 if wx.Thread_IsMain():
 return funct(*args, **kwargs)
 else:
 wx.CallAfter(funct, *args, **kwargs)
 callafterwrap.__name__ = funct.__name__
 callafterwrap.__doc__ = funct.__doc__
 return callafterwrap

Next is the Synchronizer class, which is used as a helper class to synchronize an
asynchronous call to the main GUI thread:

class Synchronizer(object):
 """Synchronize CallAfter calls"""
 def __init__(self, funct, args, kwargs):
 super(Synchronizer, self).__init__()

 # Attributes
 self.funct = funct
 self.args = args
 self.kwargs = kwargs
 self._synch = threading.Semaphore(0)

This method will be called by this class's Run method using CallAfter to execute it on the
main GUI thread. It simply calls the function and releases the Semaphore:

 def _AsynchWrapper(self):
 """This part runs in main gui thread"""
 try:
 self.result = self.funct(*self.args,
 **self.kwargs)
 except Exception, msg:
 # Store exception to report back to
 # the calling thread.
 self.exception = msg
 # Release Semaphore to allow processing back
 # on other thread to resume.
 self._synch.release()

Chapter 11

243

The Run method is called by the background thread, and uses CallAfter to delegate
the function call to the main GUI thread. It then acquires the Semaphore so that the
execution will pause at that line in the background thread until the _AsyncWrapper
method calls release:

 def Run(self):
 """Call from background thread"""
 # Make sure this is not called from main thread
 # as it will result in deadlock waiting on the
 # Semaphore.
 assert not wx.Thread_IsMain(), "Deadlock!"
 # Make the asynchronous call to the main thread
 # to run the function.
 wx.CallAfter(self._AsynchWrapper)
 # Block on Semaphore release until the function
 # has been processed in the main thread by the
 # UI's event loop.
 self._synch.acquire()
 # Return result to caller or raise error
 try:
 return self.result
 except AttributeError:
 raise self.exception

Next up is the syncfunct decorator which works the same way as the CallAfter
decorator, except that it uses the Synchronizer to make the calls from the background
thread synchronous:

def synchfunct(funct):
 """Decorator to synchronize a method call from a worker
 thread to the GUI thread.
 """
 def synchwrap(*args, **kwargs):
 if wx.Thread_IsMain():
 # called in context of main thread so
 # no need for special synchronization
 return self.funct(*args, **kwargs)
 else:
 synchobj = Synchronizer(funct, args, kwargs)
 return synchobj.Run()

 synchwrap.__name__ = funct.__name__
 synchwrap.__doc__ = funct.__doc__
 return synchwrap

Using Threads and Timers to Create Responsive Interfaces

244

The final utility that we will present in this module is the ClassSynchronizer metaclass,
which can be used to automatically apply the synchfunct decorator to all of the methods
in a class:

class ClassSynchronizer(type):
 """Metaclass to make all methods in a class threadsafe"""
 def __call__(mcs, *args, **kwargs):
 obj = type.__call__(mcs, *args, **kwargs)

 # Wrap all methods/functions in the class with
 # the synchfunct decorator.
 for attrname in dir(obj):
 attr = getattr(obj, attrname)
 if type(attr) in (MethodType, FunctionType):
 nfunct = synchfunct(attr)
 setattr(obj, attrname, nfunct)

 return obj

How it works...
Decorators and MetaClasses can be a little intimidating at first if you haven't used them
before, so let's take a look at each of our three new utilities one by one and see how they
work and how to use them in your code.

The first utility is the callafter decorator. This is a very simple decorator that will just
wrap a function in CallAfter when called from a thread that is not the GUI thread. Since
it uses CallAfter, this decorator should only be used for methods that don't expect a
return value, such as setting a value or doing an update that you don't need feedback from
on the background thread. The usage of this decorator is very simple. See the following
example snippet:

class MyPanel(wx.Panel):
 @callafter
 def SetSomeGuiValues(self, values):
 self.ctrl1.SetValue(values[0])
 ...
 self.ctrlN.SetValue(values[N])

Now the SetSomeGuiValues method can be called from any thread in the application. A
decorator function takes another function as an argument and returns a new function that
usually wraps the existing function in some new behavior. So when our module is initialized
by Python, it will see that the decorator arguments in the class will apply the decorator to
the function and then rebind the function to the new one returned by the decorator. Our
callafter decorator simply wraps the given function in a check to see if it is being called
from the main thread, and if not, it uses CallAfter to run the function.

Chapter 11

245

Next is the synchfunct decorator. This decorator uses our Synchronizer class to make
it possible to synchronize inter-thread calls to functions. This method can be used when a
background thread needs to make a call to retrieve a value from the GUI in a synchronous
manner. The synchfunct decorator works pretty much the same as our callafter one, so
let's look at how the Synchronizer makes it possibly to turn the asynchronous CallAfter
function into a synchronous call.

The Synchronizer class, like the CallAfter function, takes a function and any of its
arguments as parameters to initialize it. It also creates a Semaphore object from the
threading module to use for synchronizing the actions. The Synchronizer's Run method
uses CallAfter to call the passed-in function. After calling CallAfter, the Run method
will block on the Semaphore's acquire call. This will halt execution of the rest of the code in
the Run function and the background thread until the _AsynchWrapper method has called
release on the Semaphore after it has finished running the passed-in function back on the
main thread. When release has been called, the Run method will continue past its acquire
call and will either return the result from the function that was run on the main thread or raise
an exception if one was raised by calling that method.

Last, we have the ClassSynchronizer metaclass. This metaclass will use the synchfunct
decorator to make every method in a class thread safe. First, let's take a quick look at the
snippet below, in order to show how to use this metaclass, and then we will check out how
it works:

class MyPanel(wx.Panel):
 __metaclass__ = ClassSynchronizer
 def __init__(self, parent, *args, **kwargs)

Can't get much easier than that, can it? When the Python interpreter initializes the class, it
will see our __metaclass__ declaration, which will result in our ClassSynchronizer's
__call__ method getting called. In __call__, we use dir to enumerate all of the given
class's items from its dictionary. Then, for each item in the class that is a MethodType or
FunctionType, we apply the synchfunct decorator in order to get a newly-wrapped
version of the method, and then use the wrapped version to replace it with.

There's more...
Included in the sample code that accompanies this topic is the full threadtools module
shown above, plus a sample application that shows some additional usage examples of the
callafter and syncfunct decorators, as well as the ClassSynchronizer metaclass
in an application that fetches HTML from a given URL and displays it in a TextCtrl.

Using Threads and Timers to Create Responsive Interfaces

246

See also
See the Understanding thread safety recipe in this chapter for more information
about using threads with a GUI.

See the Using decorators recipe in Chapter 9, Design Approaches and Techniques
for another example of using decorator functions.

Using Timers
A Timer is an object that can be created to send out events on a regular periodic basis.
Typically, a Timer is used to run short, atomic tasks, such as status checks and updates,
but can also be leveraged to keep the UI active during a long-running task by performing tasks
in incremental steps instead of one long blocking call. However, since a Timer will run in
the context of the main GUI thread, it is necessary to be able to design the execution of the
long-running task to be able to be carried out in several smaller incremental steps, otherwise
the UI will still become locked up while processing the TimerEvent. This recipe creates a
simple framework for processing long-running tasks by using a Timer.

How to do it...
First, we will create a base class that defines an interface for tasks to derive from:

class TimerTaskBase(object):
 """Defines interface for long running task
 state machine.
 """
 TASK_STATE_PENDING, \
 TASK_STATE_RUNNING, \
 TASK_STATE_COMPLETE = range(3)
 def __init__(self):
 super(TimerTaskBase, self).__init__()

 # Attributes
 self._state = TimerTaskBase.TASK_STATE_PENDING

 #---- Interface ----#

 def ProcessNext(self):
 """Do next iteration of task
 @note: must be implemented by subclass
 """
 raise NotImplementedError

Chapter 11

247

 def InitTask(self):
 """Optional override called before task
 processing begins
 """
 self.SetState(TimerTaskBase.TASK_STATE_RUNNING)

 #---- Implementation ----#

 def GetState(self):
 return self._state

 def SetState(self, state):
 self._state = state

Next, the TimerTaskMixin class can be used to add the functionality for using a Timer
to process TimerTaskBase-derived task objects to any window class:

class TimerTaskMixin(object):
 """Mixin class for a wxWindow object to use timers
 for running long task. Must be used as a mixin with
 a wxWindow derived class!
 """
 def __init__(self):
 super(TimerTaskMixin, self).__init__()

 # Attributes
 self._task = None
 self._timer = wx.Timer(self)

 # Event Handlers
 self.Bind(wx.EVT_TIMER, self.OnTimer, self._timer)

 def __del__(self):
 # Make sure timer is stopped
 self.StopProcessing()

The OnTimer method will be called once every 100ms, when the Timer generates a
new event. Each time, it will call the TimerTask object's ProcessNext method to allow
it to perform the next step in its processing:

 def OnTimer(self, event):
 if self._task is not None:
 self._task.ProcessNext()
 state = self._task.GetState()
 if state == self._task.TASK_STATE_COMPLETE:
 self._timer.Stop()

Using Threads and Timers to Create Responsive Interfaces

248

 def StartTask(self, taskobj):
 assert not self._timer.IsRunning(), \
 "Task already busy!"
 assert isinstance(taskobj, TimerTaskBase)
 self._task = taskobj
 self._task.InitTask()
 self._timer.Start(100)

 def StopProcessing(self):
 if self._timer.IsRunning():
 self._timer.Stop()

How it works...
First, let's take a look at our TimerTaskBase class, which defines the basic interface that our
TimerTaskMixin class will use to execute the long running task. The TimerTaskBase class
is very simple. It provides a ProcessNext method that must be overridden by a subclass in
order to implement the processing of the next chunk of the task's work. This method will be
called each time that the TimerTaskMixin class's Timer fires a TimerEvent. The other
method, InitTask, is an optional override for a subclass to implement. It will be called
immediately prior to the first ProcessNext call, and can be used to perform any set-up
that the task may require prior to processing.

The TimerTaskMixin class is a mixin class that can be used with any wx.Window-derived
class, such as a Frame or Panel. It adds the framework for managing a TimerTask object.
This simple framework adds a StartTask method that can be used by the UI to start the
processing of a TimerTask. StartTask takes the TimerTask object that needs to be
processed, and then starts the Timer. The Timer will fire every 100ms in order to call the
task's ProcessNext method, until the task reports that its state is in a completed state.

There's more...
In the full sample code that accompanies this topic, there is a simple example application that
uses this framework for transcribing a string of DNA code to RNA, as an example of breaking
up a bigger task into many smaller tasks that are to be processed during timer events.

See also

See the Handling events recipe in Chapter 2, Responding to Events for more
information on event handling.

See the Using mixin classes recipe in Chapter 9, Design Approaches and Techniques
for more information on and examples of working with mixin classes.

Chapter 11

24�

Capturing output
This recipe takes a number of the concepts put forth earlier in this chapter, to create an
OutputWindow component that can be used to capture console output from a subprocess and
redirect it to a text display in an application. It will use Threads and Timers to implement a
high-performance solution to this task, so let's get started and take a look at the code.

When run on Windows, this recipe makes use of the pywin32 extension
module.(http://sourceforge.net/projects/pywin32/)

How to do it...
In this recipe, we will create two classes. The first will be a worker thread class that will run
the subprocess and report its output to the GUI. The second will be the GUI component
that makes use of the worker thread and displays its output:

import wx
import wx.stc as stc
import threading
import subprocess

The ProcessThread class will run a subprocess and read the process's output from its
output pipe, and then pass the data back to the thread's parent object:

class ProcessThread(threading.Thread):
 """Helper Class for OutputWindow to run a subprocess in
 a separate thread and report its output back
 to the window.
 """
 def __init__(self, parent, command, readblock=4096):
 """
 @param parent: OutputWindow instance
 @param command: Command line command
 @param readblock: amount to read from stdout each read
 """
 assert hasattr(parent, 'AppendUpdate')
 assert readblock > 0
 super(ProcessThread, self).__init__()

 # Attributes
 self._proc = None
 self._parent = parent
 self._command = command
 self._readblock = readblock

 # Setup
 self.setDaemon(True)

Using Threads and Timers to Create Responsive Interfaces

250

Here, in the ProcessThread's run method, we use the subprocess module from the
Python standard library to start and run the process that we want to get output from:

 def run(self):
 # Suppress popping up a console window
 # when running on windows
 if subprocess.mswindows:
 suinfo = subprocess.STARTUPINFO()
 try:
 from win32process import STARTF_USESHOWWINDOW
 suinfo.dwFlags |= STARTF_USESHOWWINDOW
 except ImportError:
 # Give up and use hard coded value
 # from Windows.h
 suinfo.dwFlags |= 0x00000001
 else:
 suinfo = None

 try:
 # Start the subprocess
 outmode = subprocess.PIPE
 errmode = subprocess.STDOUT
 self._proc = subprocess.Popen(self._command,
 stdout=outmode,
 stderr=errmode,
 shell=True,
 startupinfo=suinfo)
 except OSError, msg:
 self._parent.AppendUpdate(unicode(msg))
 return

Here, we just loop as long as the process is running, reading its output and appending it to the
parent object's update queue:

 # Read from stdout while there is output from process
 while True:
 self._proc.poll()
 if self._proc.returncode is None:
 # Still running so check stdout
 txt = self._proc.stdout.read(self._readblock)
 if txt:
 # Add to UI's update queue
 self._parent.AppendUpdate(txt)
 else:
 break

Chapter 11

251

Next, we have the GUI control for displaying a process's output. This class will use the
ProcessThread to run a process and be the receiver for its data. It will maintain a list of
threads so that there can be an arbitrary number of processes running at the same time.

class OutputWindow(stc.StyledTextCtrl):
 def __init__(self, parent):
 super(OutputWindow, self).__init__(parent)

 # Attributes
 self._mutex = threading.Lock()
 self._updating = threading.Condition(self._mutex)
 self._updates = list()
 self._timer = wx.Timer(self)
 self._threads = list()

 # Setup
 self.SetReadOnly(True)

 # Event Handlers
 self.Bind(wx.EVT_TIMER, self.OnTimer)

 def __del__(self):
 if self._timer.IsRunning():
 self._timer.Stop()

The AppendUpdate method is used by the ProcessThread to pass data to this control.
The updates are appended to a list that we guard with a lock to ensure that only one thread
is accessing it at a time:

 def AppendUpdate(self, value):
 """Thread safe method to add updates to UI"""
 self._updating.acquire()
 self._updates.append(value)
 self._updating.release()

Next, we have a Timer event handler to periodically check the update list and apply them
to the GUI:

 def OnTimer(self, event):
 """Check updates queue and apply to UI"""
 # Check Thread(s)
 tlist = list(self._threads)
 for idx, thread in enumerate(tlist):
 if not thread.isAlive():
 del self._threads[idx]

Using Threads and Timers to Create Responsive Interfaces

252

 # Apply pending updates to control
 ind = len(self._updates)
 if ind:
 # Flush update buffer
 self._updating.acquire()
 self.SetReadOnly(False)
 txt = ''.join(self._updates[:])
 self.AppendText(txt)
 self.GotoPos(self.GetLength())
 self._updates = list()
 self.SetReadOnly(True)
 self._updating.release()

 if not len(self._threads):
 self._timer.Stop()

Finally, the StartProcess method is what the application can use to tell the control to start
a new process:

 def StartProcess(self, command, blocksize=4096):
 """Start command. Blocksize can be used to control
 how much text must be read from stdout before window
 will update.
 """
 procthread = ProcessThread(self, command, blocksize)
 procthread.start()
 self._threads.append(procthread)
 if not self._timer.IsRunning():
 self._timer.Start(250)

How it works...
First, let's jump in with a look at our ProcessThread class. This is the worker thread that
the OutputWindow uses to start an external process and capture its output from. The
constructor takes three arguments: a parent window, a command-line string, and an optional
keyword parameter that can specify the amount of text to block on reading from the process's
standard output on each iteration. Setting the readblock parameter to a small number will
result in more responsive updates from the ProcessThread. However, setting it too low
on a process that outputs lots of data can result in lots of small, inefficient updates. So it's
generally best to try to select a value that is as large as is appropriate for the given
process's output.

Chapter 11

253

The ProcessThread's run method is where it does all its work. First, we have to handle
a special case for Windows, because subprocess.POpen can cause a command window
to be opened when running shell commands. The use of the startupflags can be used
to suppress this behavior since we want to show the output in our OutputWindow instead.
Next, we use the subprocess module's POpen class to run the command specified in
the constructor. Finally, the thread just enters a simple loop that checks to see if the
process is still running, and if it is it then blocks the read of the specified amount of text
from the processes output pipe. After the text has been read, it calls the OutputWindow's
AppendUpdate method to add the output to its update queue.

Now, let's see how the OutputWindow works to display the text that the ProcessThread
captures. The OutputWindow derives from StyledTextCtrl because this can handle
larger amounts of text with generally better performance than the standard TextCtrl, and
has a more powerful API for working with the text in the buffer, should we decided to add
some additional functionality at a later date. In the OutputWindow's constructor, we did a
few important things. First, we created a lock to use for guarding the update queue so that
only one thread can modify it at a time. If a second thread tries to acquire the lock while
another thread has it, it will cause the second thread to wait at the acquire call until the lock
is released by the other thread. The second is the update queue, third is the Timer that will
be used to poll the update queue periodically, and finally we have a list to keep references
to the ProcessThread(s) that are started.

The remaining methods in the OutputWindow class are all used to manage the updates
from the ProcessThread(s) that it owns. StartProcess creates and starts a new
ProcessThread, as well as the OutputWindow's update Timer if it hasn't been previously
started. AppendUpdate is a thread-safe method for background threads to call and add
updates to the OutputWindow. This method is safe to directly call from a background thread
because the data object that it is modifying is guarded by a lock that will prevent more
than one thread from modifying the object at the same time. This method was chosen over
posting events from the worker threads because it can help to keep the UI more responsive
during high-volume updates, because it allows the updates to the UI to be grouped into a
smaller number of larger updates as opposed to many small updates which can lead to the
UI becoming locked up while processing all the events. Last but not least is the OnTimer
method, where the actual UI updates occur. OnTimer first checks and removes any threads
that have finished running from the thread pool, and then it acquires the lock to make sure it
has exclusive access to the update queue. After acquiring the lock, it proceeds to flush all the
queued updates to the OutputWindow, and then empties the queue and releases the lock.

Using Threads and Timers to Create Responsive Interfaces

254

There's more...
See the sample code that accompanies this topic for a small, sample application that makes
use of the OutputWindow to create a GUI display for running the ping command:

See also
See the Understanding thread safety recipe in this chapter for a discussion of what
thread safety is as it relates to the GUI.

See the Using Timers recipe in this chapter for another example of using Timers.

12
Building and Managing

Applications for
Distribution

In this chapter, we will cover:

Working with StandardPaths

Persisting the state of the UI

Using the SingleInstanceChecker

Exception handling

Optimizing for OS X

Supporting internationalization

Distributing an application

Introduction
An application's infrastructure provides the backbone for the application's inner workings,
which are often things that are not directly apparent to the user but are critical to the
application's functionality. This includes things such as storing configuration and external data
files, error handling, and installation. Each of these areas provides important functionality
and contributes to the usability and the end-user's overall perception of the application.
In this chapter, we will take an in-depth tour of a number of these topics and more, in order
to provide you with the appropriate tools to help build and distribute your application.

Building and Managing Applications for Distribution

256

Working with StandardPaths
Nearly every non-trivial application is going to have the need to store data to use between
usage of the program and to load resources such as images. The question is where to put this
stuff? The appropriate locations where the operating system and users expect to find these
files will vary from platform to platform. This recipe shows how to use wx.StandardPaths
to manage an application's configuration and resource files.

How to do it...
Here, we will create a thin wrapper utility class to help manage an application's configuration
files and data. The constructor will ensure that any predefined directories have been set up in
the configuration storage location on the system.

class ConfigHelper(object):
 def __init__(self, userdirs=None):
 """@keyword userdirs: list of user config
 subdirectories names
 """
 super(ConfigHelper, self).__init__()

 # Attributes
 self.userdirs = userdirs

 # Setup
 self.InitializeConfig()

 def InitializeConfig(self):
 """Setup config directories"""
 # Create main user config directory if it does
 # not exist.
 datap = wx.StandardPaths_Get().GetUserDataDir()
 if not os.path.exists(datap):
 os.mkdir(datap)
 # Make sure that any other application specific
 # config subdirectories have been created.
 if self.userdirs:
 for dname in userdirs:
 self.CreateUserCfgDir(dname)

Here, we add a helper function to create a directory in the current user's data directory:

 def CreateUserCfgDir(self, dirname):
 """Create a user config subdirectory"""
 path = wx.StandardPaths_Get().GetUserDataDir()
 path = os.path.join(path, dirname)
 if not os.path.exists(path):
 os.mkdir(path)

Chapter 12

257

The next function can be used to get the absolute path to a file or directory in the user's
data directory:

 def GetUserConfigPath(self, relpath):
 """Get the path to a resource file
 in the users configuration directory.
 @param relpath: relative path (i.e config.cfg)
 @return: string
 """
 path = wx.StandardPaths_Get().GetUserDataDir()
 path = os.path.join(path, relpath)
 return path

Finally, the last method in this class can be used to check if a given configuration file has been
created yet or not:

 def HasConfigFile(self, relpath):
 """Does a given config file exist"""
 path = self.GetUserConfigPath(relpath)
 return os.path.exists(path)

How it works...
The ConfigHelper class just provides a thin simple wrapper around some of the
StandardPaths methods, in order to make it a little easier to use. When the object is
created, it will make sure that the user data directory and any of its application-specific
subdirectories have been created. The StandardPaths singleton uses the application's
name to determine the name of the user's data directory. Because of this, it is important
to wait until the App object has been created and had its name set with SetAppName.

class SuperFoo(wx.App):
 def OnInit(self):
 self.SetAppName("SuperFoo")
 self.config = ConfigHelper()

 self.frame = SuperFooFrame(None, title="SuperFoo")
 self.frame.Show()
 return True

 def GetConfig(self):
 return self.config

The CreateUserCfgDir provides a convenient way to create a new directory inside the
user's main configuration directory. GetUserConfigPath can be used to get the full path
to a file or directory in the configuration directory or subdirectory, by using a path relative
to the main directory. Finally, HasConfigFile is a simple way to check if a file exists in
the user's configuration files.

Building and Managing Applications for Distribution

258

There's more...
The StandardPaths singleton provides a number of other methods to get other system
and installation-specific installation paths. The following table describes some of these
additional methods:

Methods Description
GetConfigDir() Returns the system-level configuration directory
GetDataDir() Returns the application's global (non user specific) data directory
GetDocumentsDir() Returns the current user's documents directory
GetExecutablePath() Returns the path to the currently-running executable
GetPluginsDir() Returns the path to where the application's plug-ins should reside
GetTempDir() Returns the path to the system's TEMP directory
GetUserConigDir() Returns the path to the current user's configuration directory

See also

See the Creating Singletons recipe in Chapter 9, Design Approaches and Techniques
for a discussion about what singletons, such as the StandardPaths object, are.

See the Persisting the state of the UI recipe in this chapter for more information on
storing confirmation information.

Persisting the state of the UI
A common feature that many applications have is to be able to remember and restore
their window size and position between launches of the program. This is not a built-in
feature provided by the toolkit, so this recipe will create a simple Frame base class that
will automatically save and restore its size and position on the desktop between uses of
the application.

How to do it...
This example shows one approach to creating a Frame class that will automatically restore
its position and size between runs of the program:

class PersistentFrame(wx.Frame):
 def __init__(self, *args, **kwargs):
 super(PersistentFrame, self).__init__(*args, **kwargs)

Chapter 12

25�

 # Setup
 wx.CallAfter(self.RestoreState)

 # Event Handlers
 self.Bind(wx.EVT_CLOSE, self._OnClose)

Here, we handle EVT_CLOSE for when the Frame is closing, in order to save its position and size
to the Config object, which is the registry on Windows and a .ini file on other platforms:

 def _OnClose(self, event):
 position = self.GetPosition()
 size = self.GetSize()
 cfg = wx.Config()
 cfg.Write('pos', repr(position.Get()))
 cfg.Write('size', repr(size.Get()))
 event.Skip()

The RestoreState method restores the currently-stored window state or the default state
if nothing has been stored yet:

 def RestoreState(self):
 """Restore the saved position and size"""
 cfg = wx.Config()
 name = self.GetName()
 position = cfg.Read(name + '.pos',
 repr(wx.DefaultPosition))
 size = cfg.Read(name + '.size',
 repr(wx.DefaultSize))
 # Turn strings back into tuples
 position = eval(position)
 size = eval(size)
 # Restore settings to Frame
 self.SetPosition(position)
 self.SetSize(size)

How it works...
The PersistentFrame should be used as a base class for any Frame in an application that
should persist its size and position on exit. The way in which this class works is rather simple,
so let's take a quick look at how it works.

First, in order to save its size and position, the PersisistentFrame binds an event handler
to EVT_CLOSE. Its _OnClose method will then be called when the user closes the Frame. In
this event handler, we simply get the current size and position of the Frame and save it to a
wx.Config object, which will be the registry on Windows and a .ini file on other platforms.

Building and Managing Applications for Distribution

260

Conversely, when the PersistentFrame is created, it tries to read the previously-saved size
and position from the configuration. This happens in the RestoreState method, which is
initiated with CallAfter. This was done to make sure that we don't restore the settings until
after the Frame has been created, so that if a subclass sets up some default sizes they won't
override the last state that the user left it in. In RestoreState, if there is stored information
for the Frame, it will load the strings and convert them back to tuples using the eval
function, and then will simply apply the settings.

There's more...
For simplicity, we just used wx.Config for storing the settings between running the
application. We could have also used StandardPaths and written out our own configuration
file to the user's configuration directory, like we did in the previous recipe in order to ensure
that this information was kept where the user expects it to be.

See also
See the Working with StandardPaths recipe in this chapter for information about
another class that can help with storing and locating configuration information.

Using the SingleInstanceChecker
Sometimes it is desirable to only allow a single instance of an application to exist at any
given time. The SingleInstanceChecker class provides a way to detect if any instances
of the application are already running. This recipe creates an App class that uses the
SingleInstanceChecker to maintain only a single running instance of the application on
the computer at one time, and also uses a simple IPC mechanism to allow any subsequent
instances of the application to send a message to the original instance to tell it to open a
new window.

How to do it...
Here, we will create an App base class that ensures that only one instance of the process
is running at a time, and supports a simple, socket-based inter-process communication
mechanism to inform an already-running instance that a new one tried to start:

import wx
import threading
import socket
import select

Chapter 12

261

class SingleInstApp(wx.App):
 """App baseclass that only allows a single instance to
 exist at a time.
 """
 def __init__(self, *args, **kwargs):
 super(SingleInstApp, self).__init__(*args, **kwargs)

 # Setup (note this will happen after subclass OnInit)
 instid = "%s-%s" % (self.GetAppName(), wx.GetUserId())
 self._checker = wx.SingleInstanceChecker(instid)
 if self.IsOnlyInstance():
 # First instance so start IPC server
 self._ipc = IpcServer(self, instid, 27115)
 self._ipc.start()
 # Open a window
 self.DoOpenNewWindow()
 else:
 # Another instance so just send a message to
 # the instance that is already running.
 cmd = "OpenWindow.%s" % instid
 if not SendMessage(cmd, port=27115):
 print "Failed to send message!"

 def __del__(self):
 self.Cleanup()

The SingleInstanceChecker needs to be explicitly deleted when the application exits
to ensure that the file lock that it creates is released:

 def Cleanup(self):
 # Need to cleanup instance checker on exit
 if hasattr(self, '_checker'):
 del self._checker
 if hasattr(self, '_ipc'):
 self._ipc.Exit()

 def Destroy(self):
 self.Cleanup()
 super(SingleInstApp, self).Destroy()

 def IsOnlyInstance(self):
 return not self._checker.IsAnotherRunning()

Building and Managing Applications for Distribution

262

 def DoOpenNewWindow(self):
 """Interface for subclass to open new window
 on ipc notification.
 """
 pass

The IpcServer class implements the inter-process communication by opening a connection
to a socket on the local loopback of the machine. This has been implemented as a
background thread that loops, waiting for messages, until it is told to exit:

class IpcServer(threading.Thread):
 """Simple IPC Server"""
 def __init__(self, app, session, port):
 super(IpcServer, self).__init__()

 # Attributes
 self.keeprunning = True
 self.app = app
 self.session = session
 self.socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)

 # Setup TCP socket
 self.socket.bind(('127.0.0.1', port))
 self.socket.listen(5)
 self.setDaemon(True)

The run method runs the server thread's main loop of checking the socket for messages and
using CallAfter to notify the App to call its DoOpenNewWindow method when the server
has received an 'OpenWindow' command:

 def run(self):
 """Run the server loop"""
 while self.keeprunning:
 try:
 client, addr = self.socket.accept()

 # Read from the socket
 # blocking up to 2 seconds at a time
 ready = select.select([client,],[], [],2)
 if ready[0]:
 recieved = client.recv(4096)

 if not self.keeprunning:
 break

Chapter 12

263

 # If message ends with correct session
 # ID then process it.
 if recieved.endswith(self.session):
 if recieved.startswith('OpenWindow'):
 wx.CallAfter(self.app.DoOpenNewWindow)
 else:
 # unknown command message
 pass
 recieved = ''
 except socket.error, msg:
 print "TCP error! %s" % msg
 break

 # Shutdown the socket
 try:
 self.socket.shutdown(socket.SHUT_RDWR)
 except:
 pass

 self.socket.close()

 def Exit(self):
 self.keeprunning = False

The SendMessage function is used to open a client connection to the IpcServer's socket
and send it the given message:

def SendMessage(message, port):
 """Send a message to another instance of the app"""
 try:
 # Setup the client socket
 client = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 client.connect(('127.0.0.1', port))
 client.send(message)
 client.shutdown(socket.SHUT_RDWR)
 client.close()
 except Exception, msg:
 return False
 else:
 return True

Included with the code that accompanies this chapter is a complete running application
showing how to use the above framework. To test it out, try starting multiple instances of the
application on the same computer, and see that only the original process is running and that
each subsequent launch results in a new window being opened in the original process.

Building and Managing Applications for Distribution

264

How it works...
We packed a lot of stuff into a small amount of code in this recipe, so let's go through how
each class works.

The SingleInstApp class creates a SingleInstanceChecker object to make it possible
to detect if there is already another instance of the application running. As a part of the ID for
the SingleInstanceChecker, we used the user's login ID to make sure that the instance
checker is only checking for other instances that the same user has started.

In our SingleInstanceApp object's __init__ method, it is important to realize the order
of operations that will take place when a derived class is initialized. Calling the base wx.App
class __init__ will result in the derived class's virtual OnInit being called, and then after
that the rest of the code in the SingleInstApp's __init__ will run. If it detects that this
is the first instance of the application running, it will create and start our IpcServer. If
not, it will simply create and send a simple string command to the other, already-running,
IpcServer object to tell it to inform the other application instance to create a new window.

Before moving on to look at the IpcServer class, one very important thing to keep in mind
when using the SingleInstanceChecker is that you need to explicitly delete it when you
are done with it. If it is not deleted, the file lock that it uses for determining if another instance
is active or not may never get released, which can cause problems on future launches of
the program.

The IpcServer class is a simple class derived from Thread that uses a TCP socket for
inter-process communication. As mentioned, the first SingleInstanceApp that is started will
create an instance of this server. The server will run in its own thread, checking for messages
at the socket. The IpcServer thread's run method just runs a loop, checking the socket for
new data. If it is able to read a message, it checks that the last part of the message matches
the key that was used to create the App's SingleInstanceChecker, to make sure that the
command is coming from another instance of the application. We have only designed support
for a single 'OpenWindow' command in our simple IPC protocol right now, but it could be
easily expanded to support more. Upon receiving an OpenWindow message, the IpcServer
will use CallAfter to call the SingleInstanceApp's interface method DoOpenNewWindow
to inform the application to open a new instance of its main window.

The last part of this little framework is the SendMessage function, which is used as a client
method to connect and send a message to the IpcServer.

See also

See the Understanding inheritance limitations recipe in Chapter 1, Getting Started with
wxPython for an explanation about overriding virtual methods in wxPython classes.

See the Understanding thread safety recipe in Chapter 11, Responsive Interfaces for
more information about working with threads in a wxPython GUI.

Chapter 12

265

Exception handling
In even seemingly-simple applications, it can be difficult to account for all possible error
conditions that could occur in the application. This recipe shows how to handle unhandled
exceptions, and how to display a notification to the user to let them know that an unexpected
error has happened, before the application exits.

How to do it...
For this recipe, we will show how to create a simple exception hook to handle and inform the
user of any unexpected errors that occur while the program is running:

import wx
import sys
import traceback

def ExceptionHook(exctype, value, trace):
 """Handler for all unhandled exceptions
 @param exctype: Exception Type
 @param value: Error Value
 @param trace: Trace back info
 """
 # Format the traceback
 exc = traceback.format_exception(exctype, value, trace)
 ftrace = "".join(exc)
 app = wx.GetApp()
 if app:
 msg = "An unexpected error has occurred: %s" % ftrace
 wx.MessageBox(msg, app.GetAppName(),
 style=wx.ICON_ERROR|wx.OK)
 app.Exit()
 else:
 sys.stderr.write(ftrace)

class ExceptionHandlerApp(wx.App):
 def OnInit(self):
 sys.excepthook = ExceptionHook
 return True

Building and Managing Applications for Distribution

266

How it works...
This recipe showed a very simple way to create an exception hook to catch unhandled
exceptions in the application. During the start-up of the application, all that we needed to
do was replace the default excepthook function with our own ExceptionHook function.
The ExceptionHook function will then be called any time that an unhandled exception is
raised in the application. In this function, all we do is pop up a MessageBox to show that
an unexpected error has occurred, and then tell the MainLoop to exit.

There's more...
The purpose of this example was to show the process of how to handle these errors in a
graceful manor. So we kept it pretty simple by just using a MessageBox. It would be easy
to extend and customize this example to also log the error, or to allow the user to send a
notification to the developer of the application so that the error can be debugged.

Optimizing for OS X
There are a number of things that can be done in a wxPython application in order to help it fit
in better when running on a Macintosh OS X system. There are a number of things that users
expect from an application on OS X, and this recipe shows some of the things to do in order to
make sure your application runs and looks good on OS X as well as on other platforms. This
will include the proper positioning of standard menus and menu items, main window behavior,
and how to enable some Macintosh-specific functionality.

How to do it...
As an example of some of the things to take into consideration, we will create a simple
application that shows how to make an application conform to Macintosh UI standards:

import wx
import sys

class OSXApp(wx.App):
 def OnInit(self):
 # Enable native spell checking and right
 # click menu for Mac TextCtrl's
 if wx.Platform == '__WXMAC__':
 spellcheck = "mac.textcontrol-use-spell-checker"
 wx.SystemOptions.SetOptionInt(spellcheck, 1)
 self.frame = OSXFrame(None,
 title="Optimize for OSX")

Chapter 12

267

 self.frame.Show()
 return True

 def MacReopenApp(self):
 self.GetTopWindow().Raise()

class OSXFrame(wx.Frame):
 """Main application window"""
 def __init__(self, *args, **kwargs):
 super(OSXFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.textctrl = wx.TextCtrl(self,
 style=wx.TE_MULTILINE)

 # Setup Menus
 mb = wx.MenuBar()
 fmenu = wx.Menu()
 fmenu.Append(wx.ID_OPEN)
 fmenu.Append(wx.ID_EXIT)
 mb.Append(fmenu, "&File")
 emenu = wx.Menu()
 emenu.Append(wx.ID_COPY)
 emenu.Append(wx.ID_PREFERENCES)
 mb.Append(emenu, "&Edit")
 hmenu = wx.Menu()
 hmenu.Append(wx.NewId(), "&Online Help...")
 hmenu.Append(wx.ID_ABOUT, "&About...")
 mb.Append(hmenu, "&Help")

 if wx.Platform == '__WXMAC__':
 # Make sure we don't get duplicate
 # Help menu since we used non standard name
 app = wx.GetApp()
 app.SetMacHelpMenuTitleName("&Help")

 self.SetMenuBar(mb)
 self.SetInitialSize()

if __name__ == '__main__':
 app = OSXApp(False)
 app.MainLoop()

Building and Managing Applications for Distribution

268

How it works...
This simple application creates a Frame with a MenuBar and a TextCtrl in it, and
demonstrates a few things to take note of when preparing an application that will be
deployed to Macintosh systems.

Starting in our OSXApp object's OnInit method, we used the SystemOptions singleton to
enable the native context menu and spellchecking feature of the TextCtrl objects on OS
X. This option is disabled by default; setting it to 1 enables it. Also in our OSXApp class, we
overrode the MacReopenApp method, which is a callback for an AppleEvent that occurs
when the application's dock icon is clicked on. We overrode it to make sure that this click
will cause our application's main window to be brought to the front, as expected.

Next, in our OSXFrame class, it can be seen that there is some special handling needed
for the Menus. All native OS X applications have some common elements in their menus.
All applications have a Help menu, a Windows menu, and an Application menu. If your
application needs to create a custom Help or Windows menu, then some additional steps are
necessary to make sure that they will work as expected on OS X. In our previous example, we
created a custom Help menu that included a mnemonic accelerator in its title for Windows/
GTK to use with keyboard navigation. Since the menu title is not the same as the default, we
needed to call SetMacHelpMenuTitleName on the App object so that it knows that our
Help menu should be used. If we omit this step, our application will end up with two help
menus shown in the MenuBar on OS X. The other important thing to note is to use stock IDs
whenever possible for menu items. The About, Exit, and Preferences entries in particular will
always be shown under the Application menu on OS X. By using the stock IDs for these items,
wxPython will ensure that they end up in the proper locations on each platform.

There's more...
Included below are some additional Macintosh-specific methods and notes, for quick reference.

wx.App Macintosh specific methods
There are some other additional Macintosh-specific helper methods that belong to the App
object that can be used to customize the handling for the three special menu items. These
methods will be a no-op when the application is running on another platform.

Methods Description
SetMacAboutMenuItemId Change the ID used to identify the About menu

item from ID_ABOUT to a custom value

SetMacExitMenuItemId Change the ID used to identify the Exit menu
item from ID_EXIT to a custom value

Chapter 12

26�

Methods Description
SetMacPreferencesMenuItemId Change the ID used to identify the Preferences

menu item from ID_PREFERENCES to a custom
value

SetMacSupportPCMenuShortcuts Enable the use of menu mnemonics on OS X

wx.MenuBar
It is possible to disable the automatic creation of the Windows menu on OS X by using
the wx.MenuBar's static SetAutoWindowMenu method. Calling SetAutoWindowMenu
with the value of False before creating a MenuBar will prevent the Windows menu from
being created.

See also

See the Utilizing Stock IDs recipe in Chapter 1, Getting Started with wxPython for
a detailed discussion about using the built-in stock IDs.

See the Handling Apple events recipe in Chapter 2, Responding to Events for an
example of how handle AppleEvents in a wxPython application.

See the Distributing an application recipe in this chapter for a discussion of how to
distribute an application on OS X.

Supporting internationalization
In the interconnected world that we live in today, it is very important to take
internationalization into account when developing an application's interface. There is very
little to lose in designing an application that completely supports internationalization right
from the beginning, but a whole lot to lose if you don't. This recipe will show how to set up
an application to use wxPython's built-in support for interface translations.

How to do it...
Below, we will create a complete sample application that shows how to support localization
in a wxPython application's user interface. The first thing to note is the alias for
wx.GetTranslation that we use below to wrap all interface strings in the application:

import wx
import os

Make a shorter alias
_ = wx.GetTranslation

Building and Managing Applications for Distribution

270

Next, during the creation of our App object, we create and save a reference to a Locale
object. We then tell the Locale object where we keep our translation files, so that it knows
where to look up translations when the GetTranslation function is called:

class I18NApp(wx.App):
 def OnInit(self):
 self.SetAppName("I18NTestApp")
 # Get Language from last run if set
 config = wx.Config()
 language = config.Read('lang', 'LANGUAGE_DEFAULT')

 # Setup the Locale
 self.locale = wx.Locale(getattr(wx, language))
 path = os.path.abspath("./locale") + os.path.sep
 self.locale.AddCatalogLookupPathPrefix(path)
 self.locale.AddCatalog(self.GetAppName())

 # Local is not setup so we can create things that
 # may need it to retrieve translations.
 self.frame = TestFrame(None,
 title=_("Sample App"))
 self.frame.Show()
 return True

Then, in the rest, we create a simple user interface that will allow the application to switch
the language between English and Japanese:

class TestFrame(wx.Frame):
 """Main application window"""
 def __init__(self, *args, **kwargs):
 super(TestFrame, self).__init__(*args, **kwargs)

 # Attributes
 self.panel = TestPanel(self)

 # Layout
 sizer = wx.BoxSizer(wx.VERTICAL)
 sizer.Add(self.panel, 1, wx.EXPAND)
 self.SetSizer(sizer)
 self.SetInitialSize((300, 300))

class TestPanel(wx.Panel):
 def __init__(self, parent):
 super(TestPanel, self).__init__(parent)

 # Attributes
 self.closebtn = wx.Button(self, wx.ID_CLOSE)

Chapter 12

271

 self.langch = wx.Choice(self,
 choices=[_("English"),
 _("Japanese")])

 # Layout
 self.__DoLayout()

 # Event Handler
 self.Bind(wx.EVT_CHOICE, self.OnChoice)
 self.Bind(wx.EVT_BUTTON,
 lambda event: self.GetParent().Close())

 def __DoLayout(self):
 vsizer = wx.BoxSizer(wx.VERTICAL)
 hsizer = wx.BoxSizer(wx.HORIZONTAL)

 label = wx.StaticText(self, label=_("Hello"))
 hsizer.AddStretchSpacer()
 hsizer.Add(label, 0, wx.ALIGN_CENTER)
 hsizer.AddStretchSpacer()

 langsz = wx.BoxSizer(wx.HORIZONTAL)
 langlbl = wx.StaticText(self, label=_("Language"))
 langsz.AddStretchSpacer()
 langsz.Add(langlbl, 0, wx.ALIGN_CENTER_VERTICAL)
 langsz.Add(self.langch, 0, wx.ALL, 5)
 langsz.AddStretchSpacer()

 vsizer.AddStretchSpacer()
 vsizer.Add(hsizer, 0, wx.EXPAND)
 vsizer.Add(langsz, 0, wx.EXPAND|wx.ALL, 5)
 vsizer.Add(self.closebtn, 0, wx.ALIGN_CENTER)
 vsizer.AddStretchSpacer()

 self.SetSizer(vsizer)

 def OnChoice(self, event):
 sel = self.langch.GetSelection()
 config = wx.Config()
 if sel == 0:
 val = 'LANGUAGE_ENGLISH'
 else:
 val = 'LANGUAGE_JAPANESE'
 config.Write('lang', val)

if __name__ == '__main__':
 app = I18NApp(False)
 app.MainLoop()

Building and Managing Applications for Distribution

272

How it works...
The little sample application above shows how to make use of the support for translations in
a wxPython application. Changing the selected language in the Choice control and restarting
the application will change the interface strings between English and Japanese. Making use
of translations is pretty easy, so let's just take a look at the important parts that make it work.

First, we created an alias of _ for the function wx.GetTranslation, so that it is shorter to
type and easier to read. This function should be wrapped around any string in the application
that will be shown to the user in the interface.

Next, in our Application's OnInit method, we did a few things to set up the proper locale
information for loading the configured translations. First, we created a Locale object. It is
necessary to keep a reference to this object so that it does not get garbage collected. Hence,
we saved it to self.locale. Next, we set up the Locale object to let it know where our
translation resource files are located, by first calling AddCatalogLookupPathPrefix with
the directory where we keep our translation files. Then we tell it the name of the resource files
for our application by calling AddCatalog with the name of our application object. In order for
the translations to be loaded, the following directory structure is required for each language
under the catalog lookup path prefix directory:

Lang_Canonical_Name/LC_MESSAGES/CatalogName.mo

So, for example, for our application's Japanese translation, we have the following directory
layout under our locale directory.

ja_JP/LC_MESSAGES/I18NTestApp.mo

After the Locale object has been created, any calls to GetTranslation will use the locale
to load the appropriate string from the gettext catalog file.

There's more...
wxPython uses gettext-formatted files for loading string resources from. There are two
files for each translation. The .po file (Portable Object) is the file that is edited to create the
mapping of the default string to the translated version. The other file is the .mo file (Machine
Object) which is the compiled version of the .po file. To compile a .po file to a .mo file, you
need to use the msgfmt tool. This is part of gettext on any Linux platform. It can also be
installed on OS X through fink, and on Windows through Cygwin. The following command
line statement will generate the .mo file from the given input .po file.

msgfmt ja_JP.po

Chapter 12

273

Distributing an application
Once the application that you have been working on is complete, it is time to put together a
way to distribute the application to its users. wxPython applications can be distributed like any
other Python application or script, by creating a setup.py script and using the distutils
module's setup function. However, this recipe will focus on how to create standalone
executables for Windows and OS X by creating a build script that uses py2exe and py2app
respectively for the two target platforms. Creating a standalone application makes it much
easier for the user to install the application on their system, which means that more people
are likely to use it.

Getting ready
To build standalone binaries, some extension modules are needed in addition to wxPython.
So if you haven't already done so, you will need to install py2exe (Windows) or py2app
(OS X).

How to do it...
Here, we will create a simple setup.py template that, with a few simple customizations, can
be used to build Windows and OS X binaries for most wxPython applications. The Application
Information section here at the top can be modified to specify the application's name and
other specific information.

import wx
import sys

#---- Application Information ----#
APP = "FileEditor.py"
NAME = "File Editor"
VERSION = "1.0"
AUTHOR = "Author Name"
AUTHOR_EMAIL = "authorname@someplace.com"
URL = "http://fileeditor_webpage.foo"
LICENSE = "wxWidgets"
YEAR = "2010"

#---- End Application Information ----#

Building and Managing Applications for Distribution

274

Here, we will define a method that uses py2exe to build a Windows executable from the
Python script specified in the APP variable in the Application Information section:

RT_MANIFEST = 24

def BuildPy2Exe():
 """Generate the Py2exe files"""
 from distutils.core import setup
 try:
 import py2exe
 except ImportError:
 print "\n!! You dont have py2exe installed. !!\n"
 exit()

Windows binaries have a manifest embedded in them that specifies dependencies and other
settings. The sample code that accompanies this chapter includes the following two XML files
that will ensure that the GUI has the proper themed controls when running on Windows XP
and greater:

 pyver = sys.version_info[:2]
 if pyver == (2, 6):
 fname = "py26manifest.xml"
 elif pyver == (2, 5):
 fname = "py25manifest.xml"
 else:
 vstr = ".".join(pyver)
 assert False, "Unsupported Python Version %s" % vstr
 with open(fname, 'rb') as handle:
 manifest = handle.read()
 manifest = manifest % dict(prog=NAME)

The OPTS dictionary specifies the py2exe options. These are some standard settings
that should be good for most applications, but they can be tweaked further if necessary
for specific use cases:

 OPTS = {"py2exe" : {"compressed" : 1,
 "optimize" : 1,
 "bundle_files" : 2,
 "excludes" : ["Tkinter",],
 "dll_excludes": ["MSVCP90.dll"]}}

The windows keyword to the setup function is used to specify that we are creating a GUI
application and is used to specify what the application icon and manifest are to embed in
the binary:

 setup(
 name = NAME,
 version = VERSION,

Chapter 12

275

 options = OPTS,
 windows = [{"script": APP,
 "icon_resources": [(1, "Icon.ico")],
 "other_resources" : [(RT_MANIFEST, 1,
 manifest)],
 }],
 description = NAME,
 author = AUTHOR,
 author_email = AUTHOR_EMAIL,
 license = LICENSE,
 url = URL,
)

Next we have our OS X build method that uses py2app to build the binary applet bundle:

def BuildOSXApp():
 """Build the OSX Applet"""
 from setuptools import setup

Here, we define a PLIST, which is very similar in purpose to the manifest used by Windows
binaries. It is used to define some information about the application that the OS uses to know
what roles the application fills.

 # py2app uses this to generate the plist xml for
 # the applet.
 copyright = "Copyright %s %s" % (AUTHOR, YEAR)
 appid = "com.%s.%s" % (NAME, NAME)
 PLIST = dict(CFBundleName = NAME,
 CFBundleIconFile = 'Icon.icns',
 CFBundleShortVersionString = VERSION,
 CFBundleGetInfoString = NAME + " " + VERSION,
 CFBundleExecutable = NAME,
 CFBundleIdentifier = appid,
 CFBundleTypeMIMETypes = ['text/plain',],
 CFBundleDevelopmentRegion = 'English',
 NSHumanReadableCopyright = copyright
)

The following dictionary specifies the py2app options that setup() will use when building
the application:

 PY2APP_OPTS = dict(iconfile = "Icon.icns",
 argv_emulation = True,
 optimize = True,
 plist = PLIST)

Building and Managing Applications for Distribution

276

 setup(
 app = [APP,],
 version = VERSION,
 options = dict(py2app = PY2APP_OPTS),
 description = NAME,
 author = AUTHOR,
 author_email = AUTHOR_EMAIL,
 license = LICENSE,
 url = URL,
 setup_requires = ['py2app'],
)

if __name__ == '__main__':
 if wx.Platform == '__WXMSW__':
 # Windows
 BuildPy2Exe()
 elif wx.Platform == '__WXMAC__':
 # OSX
 BuildOSXApp()
 else:
 print "Unsupported platform: %s" % wx.Platform

How it works...
With the previous set-up script, we can build standalone binaries on both Windows and OS X
for our FileEditor script. So let's take a look at each of the two functions, BuildPy2exe
and BuildOSXApp, to see how each of them works.

BuildPy2exe performs the necessary preparations in order to run setup for building a
standalone binary on Windows machines by using py2exe. There are three important parts
to take note of in this function. First is the section where we create the manifest. Between
versions 2.5 and 2.6, the Windows runtime libraries that were used to build the Python
interpreter binaries changed. Due to this, we need to specify different dependencies in
our binary's manifest in order for it to be able to load the correct runtimes and give our
GUI application the correct themed appearance. The two possible manifests for either
Python 2.5 or 2.6 are included with this topic's sample source code.

Second is the py2exe options dictionary. This dictionary contains the py2exe specific
options to use when bundling the script. We used five options: compressed, optimize,
bundle_files, excludes, and dll_excludes. The compressed option states that we
want to compress the resulting .exe file. The optimize says to optimize the Python byte
code. We can specify 0, 1, or 2 here, for different levels of optimizations. The bundle_files
option specifies the level at which to bundle dependencies into the library.zip file. The
lower the number (1-3), the greater the number of files that will be bundled into the ZIP file,
reducing the overall number of individual files that need to be distributed. Using 1 can often

Chapter 12

277

cause problems with wxPython applications, so using 2 or 3 is suggested. Next, the excludes
option is a list of modules to exclude from the resulting bundle. We specified Tkinter here
just to ensure that none of its dependencies accidentally get drawn in making our binary
larger. Finally, the dll_excludes option was used to work around an issue when using
py2exe with Python 2.6.

Third and finally is the windows parameter in the setup command. This is used to specify
that we are building a GUI application, and is where we specify the application's icon to
embed into the .exe as well as the manifest that we spoke of earlier.

Running setup with py2exe is as simple as the following command line statement:

python setup.py py2exe

Now let's look at how py2app works. It is very similar to py2exe and actually even a little
easier to use since there is no need to worry about runtime dependencies like there is on
Windows. The main difference is the PLIST, which is somewhat similar to a manifest on
Windows, but is used to define some application behavior and to store information about
the application for use by the operating system. Py2app will use the specified dictionary to
generate the Plist XML file in the resulting application. To learn about the available Plist
options, see the properly listed documentation available at http://developer.apple.
com. The PLIST dictionary is passed to py2app through the setup function's options
parameter, along with the other py2app options that we specified, such as the application's
icon. Also, very similar to py2exe, running py2app just requires the following command
line statement:

python setup.py py2app

There's more...
Included below is some additional information about some specific distribution dependency
issues for Windows applications, as well as some references for creating installers for
applications on Windows and OS X.

Py2Exe dependencies
After running the py2exe setup command, make sure that you review the list of dependencies
that were not included, and that are listed at the end of the output. There are a couple of
additional files that you may need to manually include in your application's dist folder for
it to run properly when deployed on a different computer. For Python 2.5, the msvcr71.dll
and gdiplus.dll files are typically needed. For Python 2.6, the msvcr90.dll and
gdiplus.dll files are needed. The msvcr .dll files are copyrighted by Microsoft, so you
should review the licensing terms to make sure you have the rights to redistribute them. If
not, users may be required to install them separately using the freely-availably redistributable
runtime package that can be downloaded from Microsoft's website.

Building and Managing Applications for Distribution

278

Installers
After building your application with either py2exe or py2app, you will need a way to help the
application's users to properly install the files onto their systems. For Windows, there are a
number of options available for building installers: NSIS (http://nsis.sourceforge.net)
and Inno Setup (http://www.jrsoftware.org/isinfo.php) are two popular free options.
On OS X, the necessary tools are already installed. Simply use the Disk Utility application
to make a disk image (.dmg) file and then copy the built applet into it.

Index
Symbols
 .mo file 272
.po file 272
_AsyncWrapper method 243

A
AboutBox

setting up, in application 116, 117
AboutDialogInfo object

methods 118
AboutDialogInfo object, fields

SetArtists(list_of_strings) 118
SetDevelopers(list_of_strings) 118
SetDocWriters(list_of_strings) 118
SetIcon(icon) 118
SetLicense(license_string) 118
SetTranslators(list_of_strings) 118
SetWebSite(url_string) 118

AboutDialogInfo object, methods
SetCopyright 118
SetDescription 118
SetName 118
SetVersion 118

AddChild method 28
AddCheckLabelTool method 68
AddControl method 68
AddEasyTool method 67
AddFoldPanelWindow method 98
AddMany method 147
AddRadioLabelTool method 68
AddRoot method 80
AddSeparator method 68
AddSpacer method 147
AddTool method 216
Append method 63

AppendItems method 63
alignment flags

about 151
wx.ALIGN_BOTTOM 151
wx.ALIGN_CENTER_HORIZONTAL 151
wx.ALIGN_CENTER_VERTICAL 151
wx.ALIGN_CENTRE_HORIZONTAL 151
wx.ALIGN_CENTRE_VERTICAL 151
wx.ALIGN_LEFT 151
wx.ALIGN_RIGHT 151
wx.ALIGN_TOP 151

App.GetTopWindow mehod 14
App class

creating 260
AppendMenu function 65
AppendUpdate method 251
AppEventHandlerMixin class 43
AppleEvents

about 48
handling 48
working 49

application infrastructure
about 255
managing, wx.StandardPaths used 256, 257

application window
creating 122, 123

ApplyStyles method 106
App objects

about 8
working 9

AquaButton 57
arbitrary shapes

drawing 171-173
ArtProvider

about 210
customizing 210, 211
working 211

�80

AUI_MGR_ALLOW_ACTIVE_PANE flag 166
AUI_MGR_ALLOW_FLOATING flag 166
AUI_MGR_DEFAULT flag 166
AUI_MGR_HINT_FADE flag 166
AUI_MGR_LIVE_RESIZE flag 166
AUI_MGR_NO_VENETIAN_BLINDS_FADE flag

166
AUI_MGR_RECTANGLE_HINT flag 166
AUI_MGR_TRANSPARENT_DRAG flag 166
AUI_MGR_TRANSPARENT_HINT flag 166
AUI_MGR_VENETIAN_BLINDS_HINT flag 166
AuiFrameManager 163
AuiManager object

about 165
methods 165

AuiManager object, flags
about 166
AUI_MGR_ALLOW_ACTIVE_PANE 166
AUI_MGR_ALLOW_FLOATING 166
AUI_MGR_DEFAULT 166
AUI_MGR_HINT_FADE 166
AUI_MGR_LIVE_RESIZE 166
AUI_MGR_NO_VENETIAN_BLINDS_FADE 166
AUI_MGR_RECTANGLE_HINT 166
AUI_MGR_TRANSPARENT_DRAG 166
AUI_MGR_TRANSPARENT_HINT 166
AUI_MGR_VENETIAN_BLINDS_HINT 166

B
back attribute 87
BalloonTip class

methods 109
BalloonTip class, methods

SetBalloonColour(colour) 109
SetMessageColour(colour) 109
SetTitleColour(colour) 109
SetTitleFont(font) 109

BalloonTip constructor
keyword arguments 108

BalloonTip constructor, keyword arguments
message 108
shape 108
tipstyle 108
topicon 108
toptitle 108

BalloonTip
about 107
displaying 108

BaseDialogStrategy class 195
behavior flags

about 151
wx.EXPAND 151
wx.FIXED_MINSIZE 151
wx.RESERVE_SPACE_EVEN_IF_HIDDEN 151
wx.SHAPED 151

Bind method
parameters 31

Bitmap
about 15
image file, displaying 15
image file, loading 15
image file formats 16
working 16

BitmapButton 56
BitmapPrinter class

about 139
working 140

BlockingPanel
OnButton method 235

bold modifier 87
border flags

about 151
wx.ALL 151
wx.BOTTOM 151
wx.LEFT 151
wx.RIGHT 151
wx.TOP 151

BoxSizer
about 144
panel size, managing 144, 145
working 146

BoxSizer, methods
about 146
AddSpacer 146, 147

BoxSizerPanel class
_DoLayout method 146
about 144

BuildPy2exe 276
bundle_files option 276
Button class 53

AquaButton 57
BitmapButton 56

�81

examples 54, 55
GenericButtons 57
GradientButton 56
PlateButton 56
ToggleButton 56
working 56

C
callafter decorator

working 244
CallAfter function 236, 240

threading tools 241
CaptionBox class 176
CheckBoxes

about 57
Get3StateValue method, using 58
options, offering 57, 58
Set3StateValue, using 58
working 58

CheckListCtrlMixin class 205 221
Choice control

about 62
AppendItems method 63
append method 63
choices, providing 62
Insert method 63
SetItems method 63
working 62, 63

ClassSynchronizer metaclass
working 245

clearSigInt argument, 9
Clipboard

about 20
data types 21
text, obtaining 20
working 21

CodeEditorBase class 85
ColumnSorterMixin class 205, 222
compressed option 276
ConfigHelper class 257
Configuration class 191
context menus. See pop-up menus
CONTROL_CHECKABLE flag 183
CONTROL_CHECKED flag 183
CONTROL_CURRENT flag 183

CONTROL_DISABLED flag 183
CONTROL_EXPANDED flag 183
CONTROL_FOCUSED flag 183
CONTROL_ISDEFAULT flag 183
CONTROL_PRESSED flag 184
CONTROL_SELECTED flag 184
CONTROL_UNDETERMINED flag 184
control flags

CONTROL_CHECKABLE 183
CONTROL_CHECKED 183
CONTROL_CURRENT 183
CONTROL_DISABLED 183
CONTROL_EXPANDED 183
CONTROL_FOCUSED 183
CONTROL_ISDEFAULT 183
CONTROL_PRESSED 184
CONTROL_SELECTED 184
CONTROL_UNDETERMINED 184

controls
adding, to StatusBar 212-215

CountingThread class 237
CreateBitmap method 210
CreateButtonSizer method, flags

wx.CANCEL 156
wx.HELP 157
wx.NO 157
wx.NO_DEFAULT 157
wx.OK 156
wx.YES 156

CreateContextMenu method 70
CreateUserCfgDir 257
custom button class

creating, RendererNative class used 180-182
custom control

creating 226-229
custom event class

about 41
creating 41
working 42

custom lexer
using 223, 225
writing 223, 225

custom MessageBox clone
creating 156

custom resource handler
preparing 160, 162

�8�

CustomTreeCtrl
about 77
EnableSelectionGradient() function 81
EnableSelectionVista() function 81
files, browsing 77-79
SetBackgroundColour ()function 81
SetBackgroundImage () function 81
SetButtonsImageList() function 81
SetConnectionPen() function 81
working 80

D
data types, Clipboard

wx.BitmapDataObject 21
wx.CustomDataObject 21
wx.DataObjectComposite 21
wx.FileDataObject 21
wx.URLDataObject 21

decorator class 207
decorator method

creating 207
decorators 206
delegate method 207
Device Context (DC) 167
Dialog class 59
dialogs 121
dialogs, types

about 121
modal 121
modeless 121

dir() call 28
dll_excludes option 277
DoGetBestSize method 168, 170, 175
DoOpen method 124, 125
DoSaveAs method 124, 125
drag and drop

about 22
custom drop target class, defining 22, 23
using 22, 23
working 24

DragAndDrop class 206
DrawArc(x1,y1,x2,y2,xcenter,ycenter)

function 173
DrawArc method 172, 173
DrawBitmap(bmp,x,y,useMask=False)

function 173

DrawCheckBox method 183
DrawCheckMark(x,y,width,height) function

173
DrawChoice method 183
DrawCircle(x,y,radius) function 173
DrawCircle method 173
DrawComboBoxDropButton method 183
DrawComboBox method 183
DrawDropArrow method 183
DrawEllipse(x,y,width,height) function 174
DrawEllipticArc(x,y,w,h,start,end) function

174
DrawHeaderButton method 183
DrawIcon(icon, x, y) function 174
DrawImageLabel(lbl,bmp,rect,align) function

174
drawing routines

flicker, reducing in 184, 185
DrawItemSelectionRect method 183
DrawLabel(text,rect,align) function 174
DrawLine(x1,y1,x2,y2) function 174
DrawPoint(x,y) function 174
DrawPolygon(points,x,y) function 174
DrawPushButton method 183
DrawRadioButton method 183
DrawRectangle(x,y,w,h) function 174
DrawRectangle method 172
DrawRotatedText(text,x,y,angle) function 174
DrawRoundedRectangle(x,y,w,h,angle) func-

tion 174
DrawSpline(points) function 174
DrawSplitterBorder method 183
DrawSplitterSash method 183
DrawText(text,x,y) function 174
DrawTextCtrl method 183
DrawTreeItemButton method 183

E
EasyToolBar class 67
EnableLineNumbers method 87
eol modifier 87
events, Notebook class

EVT_NOTEBOOK_PAGE_CHANGED 92
EVT_NOTEBOOK_PAGE_CHANGING 92

event handlers
managing, EventStack used 43, 44

�8�

event handling, wxPython
steps 30
working 31

EventMgrApp class 45
event propagation, wxPython

about 32
steps 32, 33
working 34

events
about 29
AppleEvents, handling 48
custom event classes 41
EventStack, using 43
handling 30
KeyEvents, handling 34
propagating 30, 31
UpdateUI Events 37

events, TaskBarIcon class
EVT_TASKBAR_CLICK 90
EVT_TASKBAR_LEFT_DCLICK 90
EVT_TASKBAR_LEFT_DOWN 90
EVT_TASKBAR_LEFT_UP 90
EVT_TASKBAR_MOVE 90
EVT_TASKBAR_RIGHT_DCLICK 90
EVT_TASKBAR_RIGHT_DOWN 90
EVT_TASKBAR_RIGHT_UP 90

EventStack
about 43
event handlers, managing 43, 44
working 45

EVT_NOTEBOOK_PAGE_CHANGED event 92
EVT_NOTEBOOK_PAGE_CHANGING event 92
EVT_TASKBAR_CLICK event 90
EVT_TASKBAR_LEFT_DCLICK event 90
EVT_TASKBAR_LEFT_DOWN event 90
EVT_TASKBAR_LEFT_UP event 90
EVT_TASKBAR_MOVE event 90
EVT_TASKBAR_RIGHT_DCLICK event 90
EVT_TASKBAR_RIGHT_DOWN event 90
EVT_TASKBAR_RIGHT_UP event 90
excepthook function 266
exception

handling 265, 266
exception handling 265
exception hook

creating 265

ExceptionHook function 266
excludes option 277
ExpansionState class 206
expose decorator 208

F
face attribute 87
FibonacciController class 200
FibonacciModel class 199
FileDialog

about 122
files, selecting 122-126
modes 125
parameters 126
style flags 126
using 125, 126

FileDialog, parameters
defaultDir 126
defaultFile 126

FileDialog, style flags
wx.FD_CHANGE_DIR 126
wx.FD_DEFAULT_STYLE 126
wx.FD_FILE_MUST_EXIST 126
wx.FD_MULTIPLE 126
wx.FD_OPEN 126
wx.FD_OVERWRITE_PROMPT 126
wx.FD_PREVIEW 126
wx.FD_SAVE 126

files
selecting, with FileDialog 122-126

FindReplaceData
flags 132

FindReplaceData, flags
about 132
wx.FR_MATCHCASE 132
wx.FR_WHOLEWORD 132

FindReplaceDialog
about 127
style flags 132
text, searching 127-131

FindReplaceDialog, style flags
wx.FR_NOMATCHCASE 132
wx.FR_NOUPDOWN 132
wx.FR_NOWHOLEWORD 132
wx.FR_REPLACEDIALOG 132

FindWindowById method 14

�8�

FindWindowByLabel(label) method 15
FindWindowByName(name) method 15
flags, AuiManager object

about 166
AUI_MGR_ALLOW_ACTIVE_PANE 166
AUI_MGR_ALLOW_FLOATING 166
AUI_MGR_DEFAULT 166
AUI_MGR_HINT_FADE 166
AUI_MGR_LIVE_RESIZE 166
AUI_MGR_NO_VENETIAN_BLINDS_FADE 166
AUI_MGR_RECTANGLE_HINT 166
AUI_MGR_TRANSPARENT_DRAG 166
AUI_MGR_TRANSPARENT_HINT 166
AUI_MGR_VENETIAN_BLINDS_HINT 166

flags, CreateButtonSizer method
wx.CANCEL 156
wx.HELP 157
wx.NO 157
wx.NO_DEFAULT 157
wx.OK 156
wx.YES 156

flags, FindReplaceData
about 132
wx.FR_MATCHCASE 132
wx.FR_WHOLEWORD 132

FlatNotebook class
about 93
style flags 95
using 93
working 94

FlexGridSizer 152
flicker

about 184
reducing, in drawing routines 184, 185

FNB_ALLOW_FOREIGN_DND style flag 95
FNB_BACKGROUND_GRADIENT style flag 95
FNB_BOTTOM style flag 95
FNB_COLORFUL_TABS style flag 95
FNB_DCLICK_CLOSES_TABS style flag 95
FNB_DEFAULT_STYLE style flag 95
FNB_FANCY_TABS style flag 95
FNB_HIDE_ON_SINGLE_TAB style flag 95
FNB_MOUSE_MIDDLE_CLOSES_TABS style

flag 95
FNB_NO_NAV_BUTTONS style flag 95
FNB_NO_X_BUTTON style flag 95
FNB_NODRAG style flag 95

FNB_TABS_BORDER_SIMPLE style flag 95
FNB_VC71 style flag 95
FNB_VC8 style flag 95
FoldPanelBar

about 97
AddFoldPanel method 98
CaptionBar 98
simplifying 97, 98
working 98

fore attribute 87
Frame

about 9
subclassing 10
working 10, 11

frame base class
creating 163, 164

Frame class
creating 258, 259

G
GCDC 179
GenericButtons 57
GetChildren method 14
GetConfigDIr() method 258
GetDataDir() method 258
GetDocumentsDir() method 258
GetExecutablePath() method 258
GetParent method 14
GetPluginsDir() method 258
GetSelection method 38
GetTempDir() method 258
gettext formatted files

using 272
GetTopLevelParent() method 15
GetUserConfigPath 257
GetUserConigDir() method 258
GradientButton 56
GradientButton class 53
GraphicsContext

about 177
custom control, creating 178, 179

GridBagSizer class
about 152
layout, controlling with 152
working 153

GridSizer 152

�8�

H
HasConfigFile 257

I
icons, adding to Windows

steps 17
working 18

ImageCanvas widget 168, 170
ImageDialog

about 132
images, acquiring 132-135

images
acquiring, with ImageDialog 132-135

inheritance limitations
demonstrating 26, 27
working 28

Inno Setup 278
Insert method 63
InsertColumn method 76
installers

about 278
Inno Setup 278
NSIS 278

internationalization 269
IpcServer class

about 262
working 264

IsSelected method 83
italic modifier 87

K
KeyEvents

about 34
handling 34, 35
working 36

keyword arguments, BalloonTip constructor
message 108
shape 108
tipstyle 108
topicon 108
toptitle 108

keyword arguments, wx.App class
clearSigInt 9
filename 9

redirect 9
useBestVisual 9

L
lambda function 31
layout

controlling, with GridBagSizer 152, 153
layout behavior

SizerItems borders, modifying 148-150
SizerItems flags, modifying 148-150
SizerItems proportions, modifying 148-150

LC_EDIT_LABELS style flag 76
LC_HRULE style flag 76
LC_ICON style flag 76
LC_LIST style flag 76
LC_NO_HEADER style flag 76
LC_REPORT style flag 76
LC_SINGLE_SEL style flag 77
LC_SMALL_ICON style flag 76
LC_SORT_ASCENDING style flag 76
LC_SORT_DESCENDING style flag 76
LC_VIRTUAL style flag 77
LC_VRULE style flag 76
lines

drawing 171-173
ListCtrl

about 74
data, listing 74, 75
style flags 76
virtual mode 77
working 76

ListCtrlAutoWidthMixin class 205
ListCtrl mixins

about 220
CheckListCtrlMixin 205, 220
ColumnSorterMixin 205
ListCtrlAutoWidthMixin 205, 220
ListRowHighlighter 205, 220
TextEditMixin 205
working with 221

ListRowHighlighter class 205
LoadBitmap(name) method 159
LoadDialog(parent, name) method 159
LoadFrame(parent, name) method 159
LoadIcon(name) method 159
LoadMenu(name) method 159

�86

LoadMenuBar(parent, name) method 159
LoadPanel(parent, name) method 159
LoadToolBar(parent, name) method 159
localization

supporting, in wxPython applications 269-
272

LoggerMixin class
creating 203
using 204

logging functionality
adding, to classes 203, 204

Log method 203

M
Machine Object file. See .mo file
MacOpenFile method 49
MacReopenApp method 49
MenuBar

working 65
Menus

about 63
adding , to Frame 63, 65
MenuBar 63
MenuItems 63
MenuItems, customizing 66
submenus 65
working 65

MessageBox
about 100
displaying 100, 101
style flags 102

MessageBox, style flags
wx.CANCEL 102
wx.ICON_ERROR 102
wx.ICON_INFORMATION 102
wx.ICON_QUESTION 102
wx.ICON_WARNING 102
wx.NO 102
wx.NO_DEFAULT 102
wx.OK 102
wx.YES 102
wx.YES_DEFAULT 102
wx.YES_NO 102

message keyword argument 108
metaclass 188

mixin classes
about 203
working 205

modal dialog 121
modeless dialog 121
Model View Controller. See MVC
MouseEvents

about 39
using, in program 39, 40
working 40, 41
wx.EVT_LEFT_DCLICK 40
wx.EVT_MIDDLE_DCLICK 41
wx.EVT_MIDDLE_DOWN 41
wx.EVT_MIDDLE_UP 41
wx.EVT_MOUSE_EVENTS 41
wx.EVT_MOUSEWHEEL 40
wx.EVT_RIGHT_DCLICK 41
wx.EVT_RIGHT_DOWN 40
wx.EVT_RIGHT_UP 41

MVC
about 197, 198
application framework, designing 202

MyFrame class 10
MyPanel class 76
MyTimeEvent class 42

N
NB_BOTTOM style flag 92
NB_FIXEDWIDTH style flag 92
NB_LEFT style flag 92
NB_MULTILINE style flag 92
NB_NOPAGETHEME style flag 92
NB_RIGHT style flag 92
NB_TOP style flag 92
non-blocking GUI

about 232
illustrating 232
working 235, 236

Notebook class
about 90
events 92
styles, adding 92
tabs, adding 91
working 91

�87

Notebook class, events
EVT_NOTEBOOK_PAGE_CHANGED 92
EVT_NOTEBOOK_PAGE_CHANGING 92

Notebook class, styles
NB_BOTTOM 92
NB_FIXEDWIDTH 92
NB_LEFT 92
NB_MULTILINE 92
NB_NOPAGETHEME 92
NB_RIGHT 92
NB_TOP 92

NSIS 278
Nth Fibonacci number

calculating 232-234

O
observer pattern

about 190
implementing 190-194

OnBeginDocument(start, end) method 140
OnBeginPrinting() method 140
OnButton handler 217
OnButton method 235
OnChar method 47
OnData(x, y, drag_result) method 24
OnDragOver(x, y, drag_result) method 24
OnDrawItemBackground method 83
OnDrop(x, y) method 24
OnEndDocument() method 140
OnEndPrinting() method 140
OnEnter(x, y, drag_result) method 24
OnGetItemText method 77
OnInit method 9
OnLeave() method 24
OnPaint handler 169, 170
OnPreparePrinting() method 140
OPEN mode, FileDialog 124
optimize option 276
output, capturing

about 249
ProcessThread class, working 252, 253
steps 249-252

OutputWindow class 253

P
PaintDC

functions 173, 174
PaintDC, functions

DrawArc(x1,y1,x2,y2,xcenter,ycenter) 173
DrawBitmap(bmp,x,y,useMask=False) 173
DrawCheckMark(x,y,width,height) 173
DrawCircle(x,y,radius) 173
DrawEllipse(x,y,width,height) 174
DrawEllipticArc(x,y,w,h,start,end) 174
DrawIcon(icon, x, y) 174
DrawImageLabel(lbl,bmp,rect,align) 174
DrawLabel(text,rect,align) 174
DrawLine(x1,y1,x2,y2) 174
DrawPoint(x,y) 174
DrawPolygon(points,x,y) 174
DrawRectangle(x,y,w,h) 174
DrawRotatedText(text,x,y,angle) 174
DrawRoundedRectangle(x,y,w,h,angle) 174
DrawSpline(points) 174
DrawText(text,x,y) 174

Panel class 36
PlateButton 56
pop-up menus

about 69
using, ways 69
working 70

PopulateList method 76
PopupMenuMixin class 70
Portable Object file. See .po file
PostEvent function

about 42, 236
custom event type, creating 237

Print dialogs
about 135
using 137, 138

ProcessEvent method 42
ProcessNext method 248
ProcessThread class 249
programming 187
ProgressDialog

about 111, 113
style flags 115
working 114, 115

�88

ProgressDialog, style flags
wx.PD_APP_MODAL 115
wx.PD_AUTO_HIDE 115
wx.PD_CAN_ABORT 115
wx.PD_CAN_SKIP 115
wx.PD_ELAPSED_TIME 115
wx.PD_ESTIMATED_TIME 115
wx.PD_REMAININT_TIME 115
wx.PD_SMOOTH 115

ProgressStatusBar class
about 215
creating 212

pubsub messages 193
pubsub module 190, 193
Py2Exe dependencies 277
py2exe options dictionary 276
PyDropTarget class 24
PyEventBinder class 42
PythonCodeEditor class 88
PyValidator class 47

R
rect argument 185
references control

about 13
FindWindowByLabel() 15
FindWindowByName() 15
GetTopLevelParent () 15
steps 13, 14
working 14

Refresh method 185
RegisterMenuHandle method 45
RegisterUpdateUIHandler method 45
RendererNative class

about 180
control flags 183, 184
custom button class, creating 180-182
methods 182, 183

RendererNative methods
DrawCheckBox 183
DrawChoice 183
DrawComboBox 183
DrawComboBoxDropButton 183
DrawDropArrow 183
DrawHeaderButton 183
DrawItemSelectionRect 183

DrawPushButton 183
DrawRadioButton 183
DrawSplitterBorder 183
DrawSplitterSash 183
DrawTextCtrl 183
DrawTreeItemButton 183

resources files
managing, wx.StandardPaths used 256, 257

RestoreState method 259
reusable Dialog class, creating

strategy pattern, used 195, 197
Run method 243

S
SAVE mode, FileDialog 124
screen drawing

about 168
slideshow widget, creating 168-171

ScrolledPanel
about 96
scrolling with 96
working 96

SearchBar control
creating 218, 219

SendMessage function 263
SetArtists(list_of_strings) field 118
SetAutoWindowMenu method 269
SetBalloonColour(colour) method 109
SetBitmapDisabled method 56
SetBitmapFocus method 56
SetBitmapHover method 56
SetBitmapLabel method 56
SetBitmapSelected method 56
SetBottomGradientColour(colour) method

106
SetCopyright method 118
SetDescription method 118
SetDevelopers(list_of_strings) field 118
SetDocWriters(list_of_strings) field 118
SetDrawFooterLine(bool) method 106
SetDrawHeaderLine(bool) method 106
SetDropShadow(bool) method 106
SetDropTarget method 24
SetEndDelay(int) method 106
SetIcon(icon) field 118
SetInitialSize method 147

�89

SetItems method 62
SetLicense(license_string) field 118
SetMacAboutMenuItemId method 268
SetMacExitMenuItemId method 268
SetMacPreferencesMenuItemId method 269
SetMacSupportPCMenuShortcuts method

269
SetMessageColour(colour) method 109
SetMessageFont(font) method 109
SetMiddleGradientColour(colour) method 106
SetName method 118
SetSomeGuiValues method 244
SetTitleColour(colour) method 109
SetTitleFont(font) method 109
SetToolBar method 67
SetToolTipString method 104
SetTopGradientColour(colour) method 106
SetTopWindow method 11
SetTranslators(list_of_strings) field 118
SetupScrolling method 97
SetUseFade(bool) method 106
SetVersion method 118
SetWebSite(url_string) field 118
shape keyword argument 108
shapes

drawing 171-173
simple number generator application

creating 198-201
simple smiley face control

defining 171-173
SingleInstanceChecker class

about 260
using 261-264

SingleInstApp class 264
SingletonDialog class 190
singleton objects

about 188
ArtProvider 188
ColourDatabase 188
SystemSettings 188

singleton pattern
about 188
creating 188
implementing, in Python 189, 190

size attribute 87
Sizer classes 144
Skip() method 34

slideshow widget
creating 168-171

SlowFib function 236
SplashScreen class

creating 109
working 110

StandardPaths singleton
about 257
methods 258

StandardPaths singleton, methods
about 258
GetConfigDIr() 258
GetDataDir() 258
GetDocumentsDir() 258
GetExecutablePath() 258
GetPluginsDir() 258
GetTempDir() 258
GetUserConigDir() 258

StartProcess method 252
StaticBox

about 71
controls, adding 71
working 71

StatusBar
about 212
controls, adding to 212-215

StdDialogButtonSizer
about 154
using 156

stock button
about 52
creating 52
stock IDs, viewing 53
working 52, 53

Stock IDs
about 18
using 19
working 19

StrategyDialog 197
strategy pattern

about 194
implementing 195, 197

StyledTextCtrl
about 84, 88, 222, 225
lexers, using 225
working 87, 88

�90

style flags, FindReplaceDialog
wx.FR_NOMATCHCASE 132
wx.FR_NOUPDOWN 132
wx.FR_NOWHOLEWORD 132
wx.FR_REPLACEDIALOG 132

style flags, FlatNotebook class
FNB_ALLOW_FOREIGN_DND 95
FNB_BACKGROUND_GRADIENT 95
FNB_BOTTOM 95
FNB_COLORFUL_TABS 95
FNB_DCLICK_CLOSES_TABS 95
FNB_DEFAULT_STYLE 95
FNB_FANCY_TABS 95
FNB_HIDE_ON_SINGLE_TAB 95
FNB_MOUSE_MIDDLE_CLOSES_TABS 95
FNB_NO_NAV_BUTTONS 95
FNB_NO_X_BUTTON 95
FNB_NODRAG 95
FNB_TABS_BORDER_SIMPLE 95
FNB_VC71 95
FNB_VC8 95

style flags, FileDialog
wx.FD_CHANGE_DIR 126
wx.FD_DEFAULT_STYLE 126
wx.FD_FILE_MUST_EXIST 126
wx.FD_MULTIPLE 126
wx.FD_OPEN 126
wx.FD_OVERWRITE_PROMPT 126
wx.FD_PREVIEW 126
wx.FD_SAVE 126

style flags, Frame
wx.CLIP_CHILDREN 11
wx.DEFAULT_FRAME_STYLE 11
 wx.MAXIMIZE_BOX 11
wx.MINIMIZE_BOX 11
wx.RESIZE_BORDER 11
 wx.SYSTEM_MENU 11

style flags, ListCtrl
LC_EDIT_LABELS 76
LC_HRULE 76
LC_ICON 76
LC_LIST 76
LC_NO_HEADER 76
LC_REPORT 76
LC_SINGLE_SEL 77
LC_SMALL_ICON 76
LC_SORT_ASCENDING 76

LC_SORT_DESCENDING 76
LC_VIRTUAL 77
LC_VRULE 76

style flags, MessageBox
wx.CANCEL 102
wx.ICON_ERROR 102
wx.ICON_INFORMATION 102
wx.ICON_QUESTION 102
wx.ICON_WARNING 102
wx.NO 102
wx.NO_DEFAULT 102
wx.OK 102
wx.YES 102
wx.YES_DEFAULT 102
wx.YES_NO 102

style flags, ProgressDialog
wx.PD_APP_MODAL 115
wx.PD_AUTO_HIDE 115
wx.PD_CAN_ABORT 115
wx.PD_CAN_SKIP 115
wx.PD_ELAPSED_TIME 115
wx.PD_ESTIMATED_TIME 115
wx.PD_REMAININT_TIME 115
wx.PD_SMOOTH 115

style flags, TextCtrl
wx.TE_CENTER 61
wx.TE_LEFT 61
wx.TE_MULTILINE 61
wx.TE_PROCESS_ENTER 61
wx.TE_PROCESS_TAB 61
wx.TE_READONLY 61
wx.TE_RICH2 61
wx.TE_RIGHT 61

style flags, ToolBars
wx.TB_BOTTOM 68
wx.TB_DOCKABLE 68
wx.TB_FLAT 68
wx.TB_HORIZONTAL 68
wx.TB_NO_TOOLTIPS 68
wx.TB_TEXT 68
wx.TB_VERTICAL 68

styles, Notebook class
NB_BOTTOM 92
NB_FIXEDWIDTH 92
NB_LEFT 92
NB_MULTILINE 92
NB_NOPAGETHEME 92

�91

NB_RIGHT 92
NB_TOP 92

supertooltip.GetStyleKeys() method 106
SuperToolTip class

about 104
methods 106
working 105

SuperToolTip class, methods
SetBottomGradientColour(colour) 106
SetDrawFooterLine(bool) 106
SetDrawHeaderLine(bool) 106
SetDropShadow(bool) 106
SetEndDelay(int) 106
SetMiddleGradientColour(colour) 106
SetTopGradientColour(colour) 106
SetUseFade(bool) 106

synchfunct decorator
working 245

SystemSettings object
about 174
PyPanel custom control, creating 175, 176

T
TaskBarIcon class 90
TaskBarIcon class, events

EVT_TASKBAR_CLICK 90
EVT_TASKBAR_LEFT_DCLICK 90
EVT_TASKBAR_LEFT_DOWN 90
EVT_TASKBAR_LEFT_UP 90
EVT_TASKBAR_MOVE 90
EVT_TASKBAR_RIGHT_DCLICK 90
EVT_TASKBAR_RIGHT_DOWN 90
EVT_TASKBAR_RIGHT_UP 90

text
searching, with FindReplaceDialog 127-131

text-editor application
creating 122

TextCtrl
about 59, 61
style flags 61
using 59, 60
working 60

TextCtrl, style flags
wx.TE_CENTER 61
wx.TE_LEFT 61
wx.TE_MULTILINE 61

wx.TE_PROCESS_ENTER 61
wx.TE_PROCESS_TAB 61
wx.TE_READONLY 61
wx.TE_RICH2 61
wx.TE_RIGHT 61

TextEditMixin class 205, 222
TextEditPanel class 162
TextFrame class 38
ThreadSafeFrame class 238
thread safety

CallAfter function 240
ClassSynchronizer metaclass, using 244
maintaining 236-239
syncfunct decorator, working 243
utility module, creating 241, 242
working 240

ThreadUpdateEvent class 239
Timer

about 246
framework for long running tasks, creating

246, 247
working 248

TimerTaskBase class 248
tipstyle keyword argument 108
ToggleButton 56
ToolBar

AddCheckLabelTool method 68
AddControl method 68
AddRadioLabelTool method 68
AddSeparator method 68
events 68
methods 68

ToolBars, style flags
wx.TB_BOTTOM 68
wx.TB_DOCKABLE 68
wx.TB_FLAT 68
wx.TB_HORIZONTAL 68
wx.TB_NO_TOOLTIPS 68
wx.TB_TEXT 68
wx.TB_VERTICAL 68

ToolBarFrame class 67
ToolBars

about 66
defining 66
style flags 68
working 67

�9�

ToolTips
about 102
working 104

ToolWindow class
creating 215, 216
working 217

topicon keyword argument 108
toptitle keyword argument 108
TransferToWindow method 48
tray icons

about 89
working 90
working with 89

TreeCtrl 77
TreeCtrl mixins

DragAndDrop 206
ExpansionState 206
VirtualTree 206

two-stage widget creation
about 24
steps 25
working 25

U
UpdateUIEvent method 38
UpdateUI Events

about 37
using 37, 38
working 38
working, modes 39

underline modifier 87
user interface

state, persisting 258-260

V
Validate method 47
Validator

about 45
creating 45, 46
working 47

VirtualTree class 206
VListBox

about 81
creating 81, 82
IsSelected method 83

OnDrawItemBackground method 83
working 83

W
window hierarchy

about 12
working 12

Windows
icons, adding to 17

windows keyword 274
wx.ALIGN_BOTTOM flag 151
wx.ALIGN_CENTER_HORIZONTAL flag 151
wx.ALIGN_CENTER_VERTICAL flag 151
wx.ALIGN_CENTRE_HORIZONTAL flag 151
wx.ALIGN_CENTRE_VERTICAL flag 151
wx.ALIGN_LEFT flag 151
wx.ALIGN_RIGHT flag 151
wx.ALIGN_TOP flag 151
wx.ALL flag 151
wx.App class 9
wx.App class, keyword arguments

clearSigInt 9
filename 9
redirect 9
useBestVisual 9

wx.App Macintosh specific methods
about 268
SetMacAboutMenuItemId 268
SetMacExitMenuItemId 268
SetMacPreferencesMenuItemId 269
SetMacSupportPCMenuShortcuts 269

wx.BOTTOM flag 151
wx.CANCEL flag 102, 156
wx.Control class 168
wx.EVT_PAINT 168
wx.EXPAND flag 151
wx.FD_CHANGE_DIR flag 126
wx.FD_DEFAULT_STYLE flag 126
wx.FD_FILE_MUST_EXIST flag 126
wx.FD_MULTIPLE flag 126
wx.FD_OPEN flag 126
wx.FD_OVERWRITE_PROMPT flag 126
wx.FD_PREVIEW flag 126
wx.FD_SAVE flag 126
wx.FIXED_MINSIZE flag 151
wx.FR_DOWN flag 132

�9�

wx.FR_MATCHCASE flag 132
wx.FR_NOMATCHCASE flag 132
wx.FR_NOUPDOWN flag 132
wx.FR_NOWHOLEWORD flag 132
wx.FR_REPLACEDIALOG flag 132
wx.FR_WHOLEWORD flag 132
wx.GetApp method 14
wx.GetTranslation 269
wx.HELP flag 157
wx.ICON_ERROR flag 102
wx.ICON_INFORMATION flag 102
wx.ICON_QUESTION flag 102
wx.ICON_WARNING flag 102
wx.LEFT flag 151
wx.lib.agw.supertooltip module 104
wx.lib.agw package 105
wx.lib.imagebrowser module 132
wx.lib.mixins.listctrl module 205 222
wx.lib.mixins.treectrl module 206
wx.lib package 190
wx.MenuBar

about 269
SetAutoWindowMenu method 269

wx.MessageBox function 101
wx.NO_DEFAULT flag 102, 157
wx.NO flag 102, 157
wx.OK flag 102, 156
wx.Panel class 168
wx.PD_APP_MODAL flag 115
wx.PD_AUTO_HIDE flag 115
wx.PD_CAN_ABORT flag 115
wx.PD_CAN_SKIP flag 115
wx.PD_ELAPSED_TIME flag 115
wx.PD_ESTIMATED_TIME flag 115
wx.PD_REMAININT_TIME flag 115
wx.PD_SMOOTH flag 115
wx.RESERVE_SPACE_EVEN_IF_HIDDEN flag

151
wx.RIGHT flag 151
wx.SHAPED flag 151
wx.SPLASH_CENTRE_ON_PARENT flag 111
wx.SPLASH_CENTRE_ON_SCREEN flag 111
wx.SPLASH_NO_CENTRE flag 111
wx.SPLASH_NO_TIMEOUT flag 111

wx.SPLASH_TIMEOUT flag 111
wx.StandardPaths

about 256
application configuration, managing 256, 257
resources files, managing 256, 257

wx.TOP flag 151
wx.Window class 168
wx.YES_DEFAULT flag 102
wx.YES_NO flag 102
wx.YES flag 102, 156
wxPython

about 7, 25, 121
buttons 53
events 29
gettext formatted files, using 272
utilities 51
window hierarchy 12

wxPython2.8
GraphicsContext object 177, 179

wxPython applications
distributing 273-277
localization, supporting 269-272
optimizing, for OS X 266, 268
basic patterns, building from 8

X
XmlResource object

about 159
methods 159
using 159

XmlResource object, methods
LoadBitmap(name) 159
LoadDialog(parent, name) 159
LoadFrame(parent, name) 159
LoadIcon(name) 159
LoadMenu(name) 159
LoadMenuBar(parent, name) 159
LoadPanel(parent, name) 159
LoadToolBar(parent, name) 159

XML resources
using 157, 159

XRC 157
XrcTestFrame class 163

Thank you for buying

wxPython 2.8 Application Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CherryPy Essentials: Rapid Python Web
Application Development
ISBN: 978-1-904811-84-8 Paperback: 272 pages

Design, develop, test, and deploy your Python web
applications easily

1. Walks through building a complete Python web
application using CherryPy 3

2. The CherryPy HTTP:Python interface

3. Use CherryPy with other Python libraries

4. Design, security, testing, and deployment

Python �.6 Graphics Cookbook
ISBN: 978-1-849513-84-5 Paperback: 330 pages

Over 100 great recipes for creating and animating
graphics using Python

1. Create captivating graphics with ease and bring
them to life using Python

2. Apply effects to your graphics using powerful
Python methods

3. Develop vector as well as raster graphics
and combine them to create wonders in the
animation world

4. Create interactive GUIs to make your creation of
graphics simpler

5. Part of Packt’s Cookbook series: Each recipe is
a carefully organized sequence of instructions to
accomplish the task of creation and animation of
graphics as efficiently as possible

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started with wxPython
	Introduction
	The application object
	The main frame
	Understanding the window hierarchy
	Referencing controls
	Using Bitmaps
	Adding icons to Windows
	Utilizing Stock IDs
	Accessing the clipboard
	Supporting drag and drop
	Two-stage widget creation
	Understanding inheritance limitations

	Chapter 2: Responding to Events
	Introduction
	Handling events
	Understanding event propagation
	Handling Key events
	Using UpdateUI events
	Playing with the mouse
	Creating custom event classes
	Managing event handlers with EventStack
	Validating input with validators
	Handling Apple events

	Chapter 3: Basic Building Blocks of a User Interface
	Introduction
	Creating Stock Buttons
	Buttons, buttons, and more buttons
	Offering options with CheckBoxes
	Using the TextCtrl
	Providing choices with the Choice control
	Adding Menus and MenuBars
	Working with ToolBars
	How to use PopupMenus
	Grouping controls with a StaticBox

	Chapter 4: Advanced Building Blocks of a User Interface
	Introduction
	Listing data with a ListCtrl
	Browsing files with the CustomTreeCtrl
	Creating a VListBox
	StyledTextCtrl using lexers
	Working with tray icons
	Adding tabs to a Notebook
	Using the FlatNotebook
	Scrolling with a ScrolledPanel
	Simplifying the FoldPanelBar

	Chapter 5: Providing Information and Alerting Users
	Introduction
	Showing a MessageBox
	Providing help with ToolTips
	Using SuperToolTips
	Displaying a BalloonTip
	Creating a custom SplashScreen
	Showing task progress with the Progress dialog
	Creating an AboutBox

	Chapter 6: Retrieving Information from Users
	Introduction
	Selecting files with a FileDialog
	Searching text with a FindReplaceDialog
	Getting images with ImageDialog
	Using the Print dialogs

	Chapter 7: Window Layout and Design
	Introduction
	Using a BoxSizer
	Understanding proportions, flags, and borders
	Laying out controls with the GridBagSizer
	Standard dialog button layout
	Using XML resources
	Making a custom resource handler
	Using the AuiFrameManager

	Chapter 8: Drawing to the Screen
	Introduction
	Screen drawing
	Drawing shapes
	Utilizing SystemSettings
	Using a GraphicsContext
	Drawing with RendererNative
	Reducing flicker in drawing routines

	Chapter 9: Design Approaches and Techniques
	Introduction
	Creating Singletons
	Implementing an observer pattern
	Strategy pattern
	Model View Controller
	Using mixin classes
	Using decorators

	Chapter 10: Creating Components and Extending Functionality
	Introduction
	Customizing the ArtProvider
	Adding controls to a StatusBar
	Making a tool window
	Creating a SearchBar
	Working with ListCtrl mixins
	StyledTextCtrl custom highlighting
	Creating a custom control

	Chapter 11: Using Threads and Timers to Create Responsive Interfaces
	Introduction
	Non-Blocking GUI
	Understanding thread safety
	Threading tools
	Using Timers
	Capturing output

	Chapter 12: Building and Managing Applications for Distribution
	Introduction
	Working with StandardPaths
	Persisting the state of the UI
	Using the SingleInstanceChecker
	Exception handling
	Optimizing for OS X
	Supporting internationalization
	Distributing an application

	Index

