

Python & XML

Christopher A. Jones

Fred L. Drake, Jr.

Publisher: O'Reilly

First Edition January 2002
ISBN: 0-596-00128-2, 384 pages

Python is an ideal language for manipulating XML, and this new
volume gives you a solid foundation for using these two languages
together. Complete with practical examples that highlight common
application tasks, the book starts with the basics then quickly
progresses to complex topics like transforming XML with XSLT
and querying XML with XPath. It also explores more advanced
subjects, such as SOAP and distributed web services.

IT-SC book
1

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational,
business, or sales promotional use. Online editions are also
available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the
O'Reilly logo are registered trademarks of O'Reilly & Associates,
Inc. Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The
association between the image of elephant shrews and Python
and XML is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this
book, the publisher assumes no responsibility for errors or
omissions, or for damages resulting from the use of the
information contained herein.

IT-SC book
2

Dedication

Preface
 Audience
 Organization
 Conventions Used in This Book
 How to Contact Us
 Acknowledgments

1. Python and XML
 1.1 Key Advantages of XML
 1.2 The XML Specifications
 1.3 The Power of Python and XML
 1.4 What Can We Do with It?

2. XML Fundamentals
 2.1 XML Structure in a Nutshell
 2.2 Document Types and Schemas
 2.3 Types of Conformance
 2.4 Physical Structures
 2.5 Constructing XML Documents
 2.6 Document Type Definitions
 2.7 Canonical XML
 2.8 Going Beyond the XML Specification

3. The Simple API for XML
 3.1 The Birth of SAX
 3.2 Understanding SAX
 3.3 Reading an Article
 3.4 Searching File Information
 3.5 Building an Image Index
 3.6 Converting XML to HTML
 3.7 Advanced Parser Factory Usage
 3.8 Native Parser Interfaces

4. The Document Object Model
 4.1 The DOM Specifications
 4.2 Understanding the DOM
 4.3 Python DOM Offerings
 4.4 Retrieving Information
 4.5 Changing Documents
 4.6 Building a Web Application
 4.7 Going Beyond SAX and DOM

5. Querying XML with XPath
 5.1 XPath at a Glance
 5.2 Where Is XPath Used?
 5.3 Location Paths
 5.4 XPath Arithmetic Operators
 5.5 XPath Functions
 5.6 Compiling XPath Expressions

IT-SC book
3

6. Transforming XML with XSLT
 6.1 The XSLT Specification
 6.2 XSLT Processors
 6.3 Defining Stylesheets
 6.4 Using XSLT from the Command Line
 6.5 XSLT Elements
 6.6 A More Complex Example
 6.7 Embedding XSLT Transformations in Python
 6.8 Choosing a Technique

7. XML Validation and Dialects
 7.1 Working with DTDs
 7.2 Validation at Runtime
 7.3 The BillSummary Example
 7.4 Dialects, Frameworks, and Workflow
 7.5 What Does ebXML Offer?

8. Python Internet APIs
 8.1 Connecting Web Sites
 8.2 Working with URLs
 8.3 Opening URLs
 8.4 Connecting with HTTP
 8.5 Using the Server Classes

9. Python, Web Services, and SOAP
 9.1 Python Web Services Support
 9.2 The Emerging SOAP Standard
 9.3 Python SOAP Options
 9.4 Example SOAP Server and Client
 9.5 What About XML-RPC?

10. Python and Distributed Systems Design
 10.1 Sample Application and Flow Analysis
 10.2 Understanding the Scope
 10.3 Building the Database
 10.4 Building the Profiles Access Class
 10.5 Creating an XML Data Store
 10.6 The XML Switch
 10.7 Running the XML Switch
 10.8 A Web Application

A. Installing Python and XML Tools
 A.1 Installing Python
 A.2 Installing PyXML
 A.3 Installing 4Suite

B. XML Definitions
 B.1 XML Definitions

C. Python SAX API

D. Python DOM API
 D.1 4DOM Extensions

IT-SC book
4

E. Working with MSXML3.0
 E.1 Setting Up MSXML3.0
 E.2 Basic DOM Operations
 E.3 MSXML3.0 Support for XSLT
 E.4 Handling Parsing Errors
 E.5 MSXML3.0 Reference

F. Additional Python XML Tools
 F.1 Pyxie
 F.2 Python XML Tools
 F.3 XML Schema Validator
 F.4 Sab-pyth
 F.5 Redfoot
 F.6 XML Components for Zope
 F.7 Online Resources

Colophon

IT-SC book
5

Dedication

We would like to dedicate this book to Frank Willison, O'Reilly Editor-
in-Chief and Python Champion

——Christopher A. Jones and Fred L. Drake, Jr.

Frank will be remembered in the Python community for the several
great Python books that he made possible, memories of his
participation in many Python conferences, and his Frankly Speaking
columns. The Python world (and the world at large) won't be the same
without Frank.

——Guido van Rossum, Python creator

IT-SC book
6

Preface

This book comes to you as a result of the collaboration of two authors who became interested in
the topic in very different ways. Hopefully our motivations will help you understand what we
each bring to the book, and perhaps prove to be at least a little entertaining as well.

Chris Jones started using XML several years ago, and began using Python more recently. As a
consultant for major companies in the Seattle area, he first used XML as the core data format for
web site content in a home-grown publishing system in 1997. But he really became an XML
devotee when developing an open source engine, which eventually became the key technology
for Planet 7 Technologies. As a consultant, he continues to use XML on an almost daily basis for
everything from configuration files to document formats.

Chris began dabbling in Python because he thought it was a clean, object-oriented alternative to
Perl. A long-time Unix user (but one who frequently finds himself working with Windows in
Seattle), he has grown accustomed to scripting languages that place the full Unix API in the
hands of developers. Having used far too much Java and ASP in web development over the years,
he found Python a refreshing way to keep object-orientation while still accessing Unix sockets
and threads—all with the convenience of a scripting language.

The combination of Python and XML brings great power to the developer. While XML is a
potent technology, it requires the programmer to use objects, interfaces, and strings. Python does
so as well, and therefore provides an excellent playpen for XML development. The number of
XML tools for Python is growing all the time, and Chris can produce an XML solution in far less
time using Python than he can with Java or C++. Of course, the cross-platform nature of Python
keeps our work consistently usable whether we're developing on Windows, Linux, or a Unix
variant—the combination of which we both seem to find powerful.

Fred Drake came to Python and XML from a different avenue, arriving at Python before XML.
He discovered Python while in graduate school experimenting with a number of programming
languages. After recognizing Python as an excellent language for rapid development, he
convinced his advisors that he should be able to write his masters project using Python. In the
course of developing the project, he became increasingly interested in the Python community. He
then made his first contributions to the Python standard library, and in so doing became noticed
by a group of Python programmers working on distributed systems projects at the research
organization of CNRI. The group was led by Guido van Rossum, the creator of Python. Fred
joined the team and learned more about distributed systems and gluing systems together than he
ever expected possible, and he loved it.

While still in graduate school, Fred argued that Python's documentation should be converted to a
more structured language called SGML. After a few years at CNRI, he began to do just that, and
was able to sink his teeth into the documentation more vigorously. The SGML migration path
eventually changed to an XML migration path as XML acceptance grew. Though that goal has
not yet been achieved (he is still working on it), Fred has substantially changed the way the
documentation is maintained, and it now represents one of the most structured applications of the
typesetting and document markup system developed by Donald Knuth and Leslie Lamport.

Over time, the team from CNRI became increasingly focused on the development of Python, and
moved on to form PythonLabs. Fred remained active in XML initiatives around Python and

IT-SC book
7

pushed to add XML support to the standard library. Once this was achieved, he returned to the
task of migrating the Python documentation to XML, and hopes to complete this project soon.

Audience

This book is for anyone interested in learning about using Python to build XML applications. The
bulk of the material is suited for programmers interested in using XML as a data interchange
format or as a transformable format for web content, but the first half of the book is also useful to
those interested in building more document-oriented applications.

We do not assume that you know anything about XML, but we do assume that you have looked at
Python enough that you are comfortable reading straightforward Python code; however, you do
not need to be a Python guru. If you do not know at least a little Python, please consult one of the
many excellent books that introduce the language, such as Learning Python, by Mark Lutz and
David Ascher and Lutz (O'Reilly, 1999). For the sections where web applications are developed,
it helps to be familiar with general concepts related to web operations, such as HTTP and HTML
forms, but sufficient information is included to get you started with basic CGI scripting.

Organization

This book is divided into ten chapters and six appendixes, as follows:

Chapter 1

This chapter offers a broad overview of XML and why Python is particularly
well-suited to XML processing.

Chapter 2

This chapter provides a good introduction to XML for newcomers and a
refresher for programmers who have some familiarity with the standard.

Chapter 3

This chapter gives a detailed introduction to using Python with the SAX
interface, for generating parse events from an XML data stream.

Chapter 4

This chapter provides an introduction to working with DOM, which is the
dominant object-oriented, tree-based API to an XML document.

Chapter 5

This chapter discusses using a traversal language to extract portions of
documents that meet your application's requirements.

Chapter 6

This chapter details using XSLT to perform transformations on XML
documents.

IT-SC book
8

Chapter 7

This chapter discusses validating XML generated from other sources.

Chapter 8

This chapter provides an overview of Python's high-level support for Internet
protocols, including tools for building both clients and servers for HTTP.

Chapter 9

This chapter offers discussion of and examples showing how to build and use
web services with Python.

Chapter 10

This chapter is an extended example that shows a variety of approaches to
applying Python in constructing an XML-based distributed system.

Appendix A

This appendix provides instructions on installing Python and the major XML
packages used throughout this book.

Appendix B

This appendix gives a list of definitions from the XML specification and a
Python script to extract them from the specification itself.

Appendix C

This appendix offers detailed API information for using the dominant event-
based XML interface in Python.

Appendix D

This appendix provides detailed interface documentation for using the
standard tree-oriented API for XML from Python.

Appendix E

This appendix gives information on Microsoft's XML libraries available for
Python.

Appendix F

This appendix is a summary of the many additional tools that are available for
using XML with Python, and a list of starting points for additional information
on the Web.

Conventions Used in This Book

IT-SC book
9

The following typographical conventions are used throughout this book:

Bold

Used for the occasional reference to labels in graphical user interfaces, as well
as user input.

Italic

Used for commands, URLs, filenames, file extensions, directory or folder
names, emphasis, and new terms where they are defined.

Constant width

Used for constructs from programming languages, HTML, and XML, both
within running text and in listings.

Constant width italic

Used for general placeholders that indicate that an item should be replaced by
some actual value in your own program. Most importantly, this font is used
for formal parameters when discussing the signatures of API methods.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you
may find that features have changed or that we have let errors slip through the production of the
book. Please let us know of any errors that you find, as well as suggestions for future editions, by
writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

1-800-998-9938 (in the United States or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or to request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

IT-SC book
10

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/pythonxml/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/

IT-SC book
11

Acknowledgments

While it is impossible to individually acknowledge everyone that had a hand in getting this book
from an idea to the printed work you now hold in your hand, we would like to recognize and
thank a few of these special people.

We are both very grateful for the support of our families, without which this would not have even
gotten started. Chris would like to thank his family (Barb, Miles, and Katherine); without their
support he would never get any writing completed, ever. Fred owes a great deal of gratitude to his
wife (Cathy), who spent many a lonely evening wondering if he'd remember to come to bed. His
children (William, Christopher, and Erin) made sure he didn't forget why he spends so much time
on all this. Those late-night trips to the coffee shop with Erin will never be forgotten!

We'd especially like to thank Guido van Rossum and Fred's compatriots at PythonLabs (Tim
Peters, Jeremy Hylton, and Barry Warsaw) for making sure Python could grow to be such a
wonderful tool for building applications, and for leading the incredible community efforts which
have gone into both Python itself and the excellent selection of additional packages of Python
code.

Python's development has been beleaguered by regular employment changes, but we all owe a
debt of gratitude to the employers of the contributors and the PythonLabs team. Now at Zope
Corporation (formerly Digital Creations), PythonLabs has finally found a home that offers both a
rich environment for Python and comfortable place to settle down. Previous employers of
Python's lead developers, including the Corporation for National Research Initiatives (CNRI) and
Stichting Mathematisch Centrum, deserve credit for allowing Python to germinate and blossom.

Our reviewers' efforts were invaluable and made this book what it is today. (They were helpful,
and showed great faith in our ability to pull this off, even when we weren't so sure.) Martin von
Löwis, Paul Prescod, Simon St.Laurent, Greg Wilson, and Frank Willison all contributed
generously of their time and helped to ensure that our mistakes were noticed. The feedback they
provided, both from a development and from a technical support perspective, was invaluable.
Any mistakes in the finished book are our own. Fred Drake, who began working on this project as
a technical reviewer, must still answer for any mistakes he's introduced!

Many people at O'Reilly played an important part in the development of this book, and without
the help of their editorial staff, this book would seem rambling and incoherent (well, more so at
least!). Laura Lewin deserves special recognition. Without her editorial skill and faith in our
ability to present the important aspects of our subject, you wouldn't be reading this; her penchant
for reminding us of the big picture when we became mired in the particulars of topics kept us on
track and focused. Frank Willison deserves a great deal of credit not only for bringing Laura to
O'Reilly, but in shepherding O'Reilly's efforts to bring together their line of books on Python;
we'll all miss him. Finally, we'd like to thank the production staff at O'Reilly for their hard work
in getting the book to print.

IT-SC book
12

Chapter 1. Python and XML

Python and XML are two very different animals, each with a rich history. Python is a full-scale
programming language that has grown from scripting world roots in a very organic way, through
the vision and guidance of Python's inventor, Guido van Rossum. Guido continues to take into
account the needs of Python developers as Python matures. XML, on the other hand, though
strongly impacted by the ideas of a small cadre of visionaries, has grown from standards-
committee roots. It has seen both quiet adoption and wrenching battles over its future. Why
bother putting the two technologies together?

Before the Python/XML combination, there seemed no easy or effective way to work with XML
in a distributed environment. Developers were forced to rely on a variety of tools used in
awkward combination with one other. We used shell scripting and Perl to process text and
interact with the operating system, and then used Java XML API's for processing XML and
network programming. The shell provided an excellent means of file manipulation and interaction
with the Unix system, and Perl was a good choice for simple text manipulation, providing access
to the Unix APIs. Unfortunately, neither sported a sophisticated object model. Java, on the other
hand, featured an object-oriented environment, a robust platform API for network programming,
threads, and graphical user interface (GUI) application development. But with Java, we found an
immediate lack of text manipulation power; scripting languages typically provided strong text
processing. Python presented a perfect solution, as it combines the strengths of all of these
various options.

Like most scripting languages, Python features excellent text and file manipulation capabilities.
Yet, unlike most scripting languages, Python sports a powerful object-oriented environment with
a robust platform API for network programming, threads, and graphical user interface
development. It can be extended with components written in C and C++ with ease, allowing it to
be connected to most existing libraries. To top it off, Python has been shown to be more portable
than other popular interpreted languages, running comfortably on platforms ranging from massive
parallel Connection Machines to personal digital assistants and other embedded systems. As a
result, Python is an excellent choice for XML programming and distributed application
development.

It could be said that Python brings sanity and robustness to the scripting world, much in the same
way that Java once did to the C++ world. As always, there are trade-offs. In moving from C++ to
Java, you find a simpler language with stronger object-oriented underpinnings. Changing to a
simpler language further removed from the low-level details of memory management and the
hardware, you gain robustness and an improved ability to locate coding errors. You also
encounter a rich API equipped with easy thread management, network programming, and support
for Internet technologies and protocols. As may be expected, this flexibility comes at a cost: you
also encounter some reduced performance when comparing it with languages such as C and
C++.

Likewise, when choosing a scripting language such as Python over C, C++, or even Java, you do
make some concessions. You trade performance for robustness and for the ability to develop
more rapidly. In the area of enterprise and Internet systems development, choosing reliable
software, flexible design, and rapid growth and deployment are factors that outweigh the
performance gains you might get by using a language such as C++. If you do need some of the
performance back, you can still implement speed-sensitive components of your application in C
or C++, but you can avoid doing so until you have profiling data to help you pinpoint what is

IT-SC book
13

really a problem and what only might be a problem. (How to perform the analysis and write
extensions in C/C++ is a topic for other books.)

Regardless of your feelings on scripting languages, Java, or C++, this book focuses on XML and
the Python language. For those who are new to XML, we will start with an overview of why it is
interesting, and then we'll move on to using it from Python and seeing how we make our XML
applications easier to create.

1.1 Key Advantages of XML

XML has a few key advantages that make it the data language of choice on the Internet. These
advantages were designed into XML from the beginning, and, in fact, are what make it so
appealing to Internet developers.

1.1.1 Application Neutrality

First, XML is both human- and machine-readable. This is not a subtle point. Have you ever tried
to read a Microsoft Word document with a text editor? You can't if it was saved as a .doc file,
because the information in a .doc document is in a binary (computer readable only) format, even
though most Word documents primarily consist of text. A Word document cannot be shared with
any other application besides Word—unless that application has been taught the intricacies of
Word's binary format. In this case, the application must also be taught to expect changes in
Word's format each time there is a new release from Microsoft.

This sounds annoying for the developer, but how bad is it, really? After all, Word is incredibly
popular, so it must not be too hard to figure out. Let's look at the top of the Word file that
contains this chapter:

Ï_à¡±_á > _ ÿ _ _ B_ _ D_ _

ÿÿÿ ?_ @_ A_ ÿÿ

ÿÿÿ

ÿÿÿ

ÿÿÿ

ÿÿÿ

ÿÿÿ

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì¥Á 7 _ _¿ _ _ >_ _

bjbjU_U_ __ 0¸_ 7| 7| W_ _ C

 ÿÿ_ ÿÿ_ ÿÿ_ l Ê_

Ê_ Ê_ Ê_ Ê_ Ê_ Ê_ ¶ _

This certainly looks familiar to anyone who has ever opened a Word file with a text editor. We
don't see our recognizable text (the content we intended) so we must assume it is buried deep in

IT-SC book
14

the file. Determining what the true content is and where it is can be difficult, but it shouldn't be. It
is our data, after all. Let's try another supported format: "Rich Text Format," or RTF. Unlike
the .doc file, this format is text-based, and should therefore be a bit easier to decipher. We search
down in the file to find the start of our text:

\par }\pard \s34\qr

\li0\ri0\sb80\sa480\sl240\slmult0\widctlpar\aspalpha\aspnum\faauto\out

linelevel0\widctlpar\aspalpha\aspnum\faauto\outlinelevel0\pnrauth1\pnr

date-967302179\pnrnot1\adjustright\rin0\lin0\itap0 {\b0\fs48 Combining

Python and XML}{

\b0\deleted\fs48\revauthdel1\revdttmdel-2041034726 Fundamentals}{\b0\f

s48\revised\revauth1\revdttm-2041034726 ?}{\b0\fs48

\par }\pard\plain \qj

This is better. The chapter title is visible, so we can try to decipher the structure from that point
forward. The markup appears to be complex, and there's a hint of an old version of the chapter
title. To extract the text we actually want, we need to understand the Word model for revision
tracking, which still presents many challenges.

XML, on the other hand, is application-neutral. In other words, an XML document is usually
processed by an XML parser or processor, but if one is not available, an XML document can be
easily read and parsed. Data kept in XML is not trapped within the constraints of one particular
software application. The ability to read rich data files can become very valuable when, for
example, 20 years from now, you dig up a CD-ROM of old business forms that you suddenly find
you need again. Will QuickBooks still allow you to extract this same data in 2021? With XML,
you can read the data with any text editor.

Let's look at this chapter in XML. Using markup from a common document type for software
manuals and documentation (DocBook), it appears somewhat verbose, and doesn't include
change-tracking information, but we can identify the text quite easily now:

<chapter>

 <title>Python and XML</title>

 <para>Python and XML are two very different animals, each with a

 rich history. Python is a full-scale programming language that has
grown

 from scripting world roots, and has done so in a very organic way

Note that additional characters appear in the document (other than the document content); these
are called markup (or tags). We saw this in the RTF version of the document as well, but there
were many more bits of text that were difficult to decipher, and we can reasonably surmise that
the strange data in the MS Word document would correspond to this in some way. Were this a

IT-SC book
15

book on RTF, you would quickly surmise two things: RTF is much more like a printer control
language than the example of XML we just looked at, and writing a program that understands
RTF would be quite difficult. In this book, we're going to show you that XML can be used to
define languages that fit your application, and that creating programs that can decipher XML is
not a difficult task, especially with the help of Python.

1.1.2 Hierarchical Structure

XML is hierarchical, and allows you to choose your own tag names. This is quite different from
HTML. In XML, you are free to create elements of any type, and stack other elements within
those elements. For example, consider an address entry:

<?xml version="1.0"?>

<address>

 <name>Bubba McBubba</name>

 <street>123 Happy Go Lucky Ln.</street>

 <city>Seattle</city><state>WA</state><zip>98056</zip>

</address>

In the above well-formed XML code, I came up with a few record names and then lumped them
together with data. XML processing software, such as a parser (which you use to interpret the
syntactic constructs in an XML document), would be able to represent this data in many ways,
because its structure has been communicated. For example, if we were to look at what an
application programmer might write in source code, we could turn this record into an object
initialized this way:

addr = Address()

addr.name = "Bubba McBubba"

addr.street = "123 Happy Go Lucky Ln."

addr.city = "Seattle"

addr.state = "WA"

addr.zip = "98056"

This approach makes XML well-suited as a format for many serialized objects. (There are some
constructs for which XML is not so well suited, including many formats for large numerical
datasets used in scientific computing.) XML's hierarchical structure makes it easy to apply the
concept of object interfaces to documents—it's quite simple to build application-specific objects
directly from the information stream, given mappings from element names to object types. We
later see that we can model more than simple hierarchical structures with XML.

1.1.3 Platform Neutrality

IT-SC book
16

Remember that XML is cross-platform. While this is mainly a feature of its text-based format, it's
still very much true. The use of certain text encodings ensures that there are no misconceptions
among platforms as to the arrangement of an XML document. Therefore, it's easy to pass an
XML purchase order from a Unix machine to a wireless personal digital assistant. XML is
designed for use in conjunction with existing Internet infrastructure using HTTP, SSL, and other
messaging protocols as they evolve. These qualities make XML lend itself to distributed
applications; it has been successfully used as a foundation for message queuing systems, instant
messaging applications, and remote procedure call frameworks. We examine these applications
further in Chapter 9 and Chapter 10. It also means that the document example given earlier is
more than simply application-neutral, and can be readily moved from one type of machine to
another without loss of information. A chapter of a technical book can be written by a
programmer on his or her favorite flavor of Unix, and then sent to a publisher using book
composition software on a Macintosh. The many difficult format conversions can be avoided.

1.1.4 International Language Support

As the Internet becomes increasingly pervasive in our daily lives, we become more aware of the
world around us — it is a culture-rich and diversified place. As technologists, however, we are
still learning the significance of making our software work in ways that supports more than one
language at a time; making our text-processing routines "8-bit safe" is not only no longer
sufficient, it's no longer even close.

Standards bodies all over the world have come up with ways that computers can interchange text
written in their national languages, and sometimes they've come up with several, each having
varying degrees of acceptance. Unfortunately, most applications do not include information about
which language or interchange standard their data is written in, so it is difficult to share
information across the cultural and linguistic boundaries the different standards represent.
Sometimes it is difficult to share information within such boundaries if multiple standards are
prominent.

The difficulties are compounded by very substantial cultural differences that present themselves
about how text is handled. There are many different writing systems in addition to the western
European left-to-right, top-to-bottom style in which this book is written; right-to-left is not
uncommon, and top-to-bottom "lines" of text arranged right-to-left on the page is used in China.
Hebrew uses a right-to-left writing system, but numbers are written using Arabic numerals from
left to right. Other systems support textual annotations written in parallel with the text. Consider
what happens when a document includes text from different writing systems!

Standards bodies are aware of this problem, and have been working on solutions for years. The
editors of the XML specification have wisely avoided proposing new solutions to most of these
issues, and are instead choosing to build on the work of experts on the topic and existing
standards.

The International Organization for Standardization (ISO) and the Unicode Consortium
(http://www.unicode.org/) have arrived at a single standard that, while not perfect, is perhaps
the most capable standard attempting to unify the world's text representations, with the intent that
all languages and alphabets (including ideographic and hieroglyphic character sets) are
representable. The standard is known as ISO/IEC 10646, or more commonly, Unicode. Not all
national standards bodies have agreed that Unicode is the standard for all future text interchange
applications, especially in Asia, but there is widespread belief that Unicode is the best thing
available to serve everyone. The standard deals with issues including multidirectional text,

IT-SC book
17

capitalization rules, and encoding algorithms that can be used to ensure various properties of data
streams. The standard does not deal specifically with language issues that are not tied intimately
to character issues. Software sensitive to natural language may still need to do a lot beyond using
Unicode to ensure proper collation of names in a particular language (or multiple languages!).
Some languages will require substantial additional support for proper text rendering (Arabic, for
instance, which requires different letterforms for characters based on their position within a word
and based on neighboring letterforms).

The World Wide Web Consortium (W3C) made a simple and masterful stroke to make it easier to
use both the older interchange standards and Unicode. It required that all XML documents be
Unicode, and specified that they must describe their own encoding in such a way that all XML
processors were able to determine what encoding the document was written in. A few specific
encodings must be recognized by all processors, so that it is always possible to generate XML
that can be read anywhere and represent all of the world's characters. There is also a feature that
allows the content of XML documents to be labeled with the actual language it is written in, but
that's not used as much as it could be at this time.

Since XML documents are Unicode documents, the languages of the world are supported. The
use of Unicode and encodings in XML are discussed in some detail in Chapter 2. Unicode
strings have been a part of Python since Version 2.0, and the Python standard library includes
support for a large number of encodings.

1.2 The XML Specifications

In the trade press, we often see references about how XML "now supports" some particular
industry-specific application. The article that follows is often confused, offering some small
morsel of information about an industry consortium that has released a new specification for an
XML-based language to support interoperability of data within the consortium's industry. As
technical people, we usually note that it doesn't apply to the industries we're involved in, or else it
does, but the specification is too early a draft to be useful. In fact, our managers will probably
agree with us most of the time, or they'll be privy to some relevant information that causes them
to disagree. If we step up the corporate ladder a couple more rungs, however, we often find an
increase in the level of confusion over XML. Sometimes, this is accompanied by either a call to
"adopt XML" (too often with a list of particular specifications that are not intended to be used
together), or a reaction that XML is too immature to use at all.

So we need to think about just what we can work with that will meet the following criteria:

It must make technical sense for our application.

It should be sufficiently well-defined that implementation is possible.

It must be able to be explained and justified to (at least) our direct managers.

It won't freak out the upper management.

Ok, we're technical people, so we may have to ignore that last item; it certainly won't be covered
in this book. In fact, most of this really can't be covered in technical material. There are many
specifications in various stages of maturity, and most are specific to one industry or another.
However, we can point out what the foundation specifications are, because those you will need
regardless of your industry or other requirements.

IT-SC book
18

1.2.1 XML 1.0 Recommendation

The XML specification itself is a document created and maintained by the W3C. As of this
writing, the current version is Extensible Markup Language (XML) 1.0 (Second Edition), and
is available from the W3C web site at http://www.w3.org/TR/REC-xml. (The second edition
differs from the first only in that some editorial corrections and clarifications have been made; the
specification is stable.)

XML itself is not a markup language, but a meta-language that can be used to define specific
markup languages. In this, it inherits much from SGML. The specification covers five aspects of
markup languages:

Range of structural forms which can be marked

Specific syntax of markup components

A schema language used to define specific languages

Definition of validity constraints

Minimum requirements for processing tools

Unlike SGML, XML allows itself to be used without defining an explicit markup language in any
formal way. Whether or not this is useful for your applications, it has greatly accelerated the
acceptance of XML-based technologies in some developer communities. This can happen
because of the lower cost of entrance to the XML space. It is possible to adopt XML without
learning some of the more esoteric corners of the specification, and development prototypes can
start using XML technologies without a lot of advance planning.

Chapter 2 presents the most widely used parts of the specification and goes into more depth on
what are the most important items to most readers of this book. If any of the details are of
particular interest to you, please spend some time reading relevant parts of the specification.
While it is at times a bit convoluted, it is not generally a difficult specification to read.

1.2.2 Namespaces in XML

While the XML 1.0 recommendation defines specific syntactic aspects of XML and one way of
creating document types, it does not discuss how to combine components from multiple
document types. The Namespaces in XML recommendation, available at
http://www.w3.org/TR/REC-xml-names (referred to as Namespaces from now on), deals
with the syntactic and structural mechanics of combining structured components from different
specifications, but is largely silent on the meaning of resulting combinations. For this, it defers to
specifications that had not been written when Namespaces was published.

This recommendation places some additional constraints on the syntactic construction of
conformant documents. It allows a document to specify the source of each element or attribute by
placing it in a namespace. Each namespace provides definitions for elements and attributes. How
the elements and attributes are defined is not covered in this specification, so the concept of
validation of an arbitrary document that uses namespaces is not entirely clear. It is possible to
create a document type using XML 1.0 that has some support for namespaces, but such a schema
loses much of the flexibility offered by the Namespaces specification. For example, the document

IT-SC book
19

type would have to specify the particular prefixes to which each namespace is bound, while the
Namespaces specification allows prefixes to be determined by the document rather than the
schema. Alternate schema languages that have better support for Namespaces have been defined;
these are discussed briefly in Chapter 2.

1.2.3 XML as a Foundation

Like its predecessor SGML, XML provides a way to define languages that fit the requirements of
your application. By specifying the exact syntax of the grammatical elements (such as the
characters used to mark the start of an element), it has reduced the effort required to build
conforming software—the components needed to extract an application's data from XML are far
smaller and simpler to use than the corresponding components are for SGML.

The additional specifications, which the trade press so enjoy discussing every time a news release
comes out, are generally built by defining new languages using the base XML and Namespaces
recommendations. These are often documented by schema definitions (the forms that these take
are described in Chapter 2) as well as committee-driven documents that attempt to explain how
the language should be used. Since every industry has at least one consortium that deals in part
with data interchange between different components of the industry (think of doctors, pharmacies,
and hospitals in the health care field), many standards take this form. Many of the standards for
XML are derived from earlier efforts using older SGML industry-specific languages, and many
are new.

Locating information about the languages that have been defined for your industry may be easy
or it may be difficult. There are many resources you can use to locate relevant specifications:

http://www.schema.net/

This web site contains information on a range of standards based on XML,
including general business-oriented specifications, industry-specific standards,
interoperable languages for academic research, and general Internet-related
specifications.

http://www.biztalk.com/

Information about the Microsoft-sponsored "BizTalk" range of business
interoperability specifications can be found at this web site.

http://www.ebxml.org/

The "e-business XML" initiative, or ebXML, grows out of the EDI community,
and generally competes with BizTalk.

http://www.w3.org/

For general Internet-related specifications, the World Wide Web Consortium is
perhaps the best place to look; the working groups there have a broad
constituency and the results of their efforts have a high level of uptake
wherever they apply.

http://www.google.com/

IT-SC book
20

If all else fails, try searching here for "XML" and various keywords related to
your industry (especially the names of major industry consortia).

1.3 The Power of Python and XML

Now that we've introduced you to the world of XML, we'll look at what Python brings to the table.
We'll review the Python features that apply to XML, and then we'll give some specific examples
of Python with XML. As a very high-level language, Python includes many powerful data
structures as part of the core language and libraries. The more recent versions of Python, from 2.0
onward, include excellent support for Unicode and an impressive range of encodings, as well as
an excellent (and fast!) XML parser that provides character data from XML as Unicode strings.
Python's standard library also contains implementations of the industry-standard DOM and SAX
interfaces for working with XML data, and additional support for alternate parsers and interfaces
is available.

Of course, this much could be said of other modern high-level languages as well. Java certainly
includes an impressive library of highly usable data structures, and Perl offers equivalent data
structures also. What makes Python preferable to those languages and their libraries? There are
several features, of which we briefly discuss the most important:

Python source code is easy to read and maintain.

The interactive interpreter makes it simple to try out code fragments.

Python is incredibly portable, but does not restrict access to platform-specific capabilities.

The object-oriented features are powerful without being obscure.

There are many languages capable of doing what can be done with Python, but it is rare to find all
of the "peripheral" qualities of Python in any single language. These qualities do not so much
make Python more capable, but they make it much easier to apply, reducing programming hours.
This allows more time to be spent finding better ways to solve real problems or just allows the
programmer to move on to the next problem. Here we discuss these features in more detail.

Easy to read and maintain

As a programming language, Python exhibits a remarkable clarity of
expression. Though some programmers accustomed to other languages view
Python's use of significant whitespace with surprise, everyone seems to think
it makes Python source code significantly more readable than languages that
require more special characters to be introduced to mark structure in the
source. Python's structures are not simpler than those of other languages, but
the different syntax makes source code "feel" much cleaner in Python.

The use of whitespace also helps avoid having minor stylistic differences, such
as the placement of structural braces, so there's a greater degree of visual
consistency across code by different programmers. While this may seem like
a minor thing to many programmers, the effect is that maintaining code
written by another programmer becomes much easier simply because its
easier to concentrate on the actual structure and algorithms of the code. For

IT-SC book
21

the individual programmer, this is a nice side benefit, but for a business, this
results in lower expenses for code maintenance.

Exploratory programming in an interactive interpreter

Many modern high-level programming languages offer interpreters, but few
have proved as successful at doing so as Python. Others, such as Java, do not
generally offer interpreters at all. If we consider Perl, a language that is
arguably very capable when used from a command line, we see that it is not
equipped with a rich interpreter. If we start the Perl interpreter without
naming a script, it simply waits for us to type a complete script at the console,
and then interprets the script when we're done. It does allow us to enter a
few commands on the command line directly, but there's no ability to run one
statement at a time and inspect the results as we go in order to determine if
each bit of code is doing exactly what we expect. With Python, the interactive
interpreter provides a rich environment for executing individual statements
and testing the results.

Portability without restrictions

The Python interpreter is one of the most portable language interpreters
available. It is known to run on platforms ranging from PDAs and other
embedded systems to some of the most powerful multiprocessor platforms
ever built. It can run on more operating systems than perhaps any other
interpreter. Moreover, carefully written application code can share much of
this portability. Python provides a great array of abstractions that do just
enough to hide platform differences while allowing the programmer to use the
services of specific platforms when necessary.

When an application requires access to facilities or libraries that Python does
not provide, Python also makes it easy to add extensions that take advantage
of these additional facilities. Additional modules can be created (usually in C
or C++, but other languages can be used as well) that allow Python code to
call on external facilities efficiently.

Powerful but accessible object-orientation

At one time, it was common to hear about how object-oriented programming (OOP)
would solve most of the technical problems programmers had to deal with in their code.
Of course, programmers knew better, pushed back, and turned the concepts into useful
tools that could be applied when appropriate (though how and when it should be applied
may always be the subject of debate). Unfortunately, many languages that have strong
support for OOP are either very tedious to work with (such as C++ or, to a lesser extent,
Java), or they have not been as widely accepted for general use (such as Eiffel).

Python is different. The language supports object orientation without much of
the syntactic overhead found in many widely used object-oriented languages,
making it very easy to define new object types. Unlike many other languages,
Python is highly polymorphic; interfaces are defined in much less stringent
ways than in languages such as C++ and Java. This makes it easy to create
useful objects without having to write code that exists only to conform to an
interface, but that will not actually be used in a particular application. When
combined with the excellent advantage taken by Python's standard library of

IT-SC book
22

a variety of common interfaces, the value of creating reusable objects is
easily recognized, all while the ease of implementing useful interfaces is
maintained.

1.3.1 Python Tools for XML

Three major packages provide Python tools for working with XML. These are, from the most
commonly used to the largest:

The Python standard library

PyXML, produced by the Python XML Special Interest Group

4Suite, provided by Fourthought, Inc.

The Python standard library provides a minimal but useful set of interfaces to work with XML,
including an interface to the popular Expat XML parser, an implementation of the lightweight
Simple API for XML (SAX), and a basic implementation of the core Document Object Model
(DOM). The DOM implementation supports Level 1 and much of Level 2 of the DOM
specification from the W3C, but does not implement most of the optional features. The material
in the standard library was drawn from material originally in the PyXML package, and additional
material was contributed by leading Python XML developers.

PyXML is a more feature-laden package; it extends the standard library with additional XML
parsers, has a much more substantial DOM implementation (including more optional features),
has adapters to allow more parsers to support the SAX interface, XPath expression parsing and
evaluation, XSLT transformations, and a variety of other helper modules. The package is
maintained as a community effort by many of the most active Python/XML programmers.

4Suite is not a superset of the other packages, but is intended to be used in addition to PyXML. It
offers additional DOM implementations tailored for different applications, support for the XLink
and XPointer specifications, and tools for working with Resource Description Framework (RDF)
data.

These are the packages used throughout the book; see Appendix A for more information on
obtaining and installing them. Still more are available; see Appendix F for brief descriptions of
several of these and references to more information online.

1.3.2 The SAX and DOM APIs

The two most basic and broadly used APIs to XML data are the SAX and DOM interfaces. These
interfaces differ substantially; learning to determine which of these is appropriate for your
application is an important step to learn.

SAX defines a relatively low-level interface that is easy for XML parsers to support, but requires
the application programmer to manage more details of using the information in the XML
documents and performing operations on it. It offers the advantage of low overhead: no large data
structures are constructed unless the application itself actually needs them. This allows many
forms of processing to proceed much more quickly than could occur if more overhead were
required, and much larger documents can be processed efficiently. It achieves this by being an
event-oriented interface; using SAX is more like processing user-input events in a graphical

IT-SC book
23

user interface than manipulating a pre-constructed data structure. So how do you get "events"
from an XML parser, and what kind of events might there be?

SAX defines a number of handler interfaces that your application can implement to receive events.
The methods of these objects are called when the appropriate events are encountered in the XML
document being parsed; each method can be thought of as the actual event, which fits well with
object-oriented approaches to parsing. Events are categorized as content, document type, lexical,
and error events; each category of events is handled using a distinct interface. The application can
specify exactly which categories of events it is interested in receiving by providing the parser
with the appropriate handlers and omitting those it does not need. Python's XML support provides
base classes that allow you to implement only the methods you're interested in, just inheriting do-
nothing methods for events you don't need.

The most commonly used events are the content-related events, of which the most important are
startElement, characters, and endElement. We look at SAX in depth in Chapter 3, but
now let's take a quick look at how we might use SAX to extract some useful information from a
document. We'll use a simple document; it's easy to see how this would extend to something more
complex. The document is shown here:

<catalog>

 <book isbn="1-56592-724-9">

 <title>The Cathedral & the Bazaar</title>

 <author>Eric S. Raymond</author>

 </book>

 <book isbn="1-56592-051-1">

 <title>Making TeX Work</title>

 <author>Norman Walsh</author>

 </book>

 <!-- imagine more entries here... -->

</catalog>

If we want to create a dictionary that maps the ISBN numbers given in the isbn attribute of the
book elements to the titles of the books (the content of the title elements), we would create a
content handler (as shown in Example 1-1) that looks at the three events listed previously.

Example 1-1. bookhandler.py

import xml.sax.handler

class BookHandler(xml.sax.handler.ContentHandler):

IT-SC book
24

 def __init__(self):

 self.inTitle = 0

 self.mapping = {}

 def startElement(self, name, attributes):

 if name == "book":

 self.buffer = ""

 self.isbn = attributes["isbn"]

 elif name == "title":

 self.inTitle = 1

 def characters(self, data):

 if self.inTitle:

 self.buffer += data

 def endElement(self, name):

 if name == "title":

 self.inTitle = 0

 self.mapping[self.isbn] = self.buffer

Extracting the information we're looking for is now trivial. If the code above is in
bookhandler.py and our sample document is in books.xml, we could do this in an interactive
session:

>>> import xml.sax

>>> import bookhandler

>>> import pprint

>>>

>>> parser = xml.sax.make_parser()

>>> handler = bookhandler.BookHandler()

>>> parser.setContentHandler(handler)

IT-SC book
25

>>> parser.parse("books.xml")

>>> pprint.pprint(handler.mapping)

{u'1-56592-051-1': u'Making TeX Work',

 u'1-56592-724-9': u'The Cathedral & the Bazaar'}

For reference material on the handler object methods, refer to Appendix C.

The DOM is quite the opposite of SAX. SAX offers a very small window of view that passes
over the input document, relying on the application to infer the whole; the DOM gives the whole
document to the application, which must then extract the finer details for itself. Instead of
reporting individual events to the application as the parser handles the corresponding syntax in
the document, the application creates an object that represents the entire document as a
hierarchical structure. Although there is no requirement that the document be completely parsed
and stored in memory when the object is provided to the application, most implementations work
that way for simplicity. Some implementations avoid this; it is certainly possible to create a DOM
implementation that parses the document lazily or uses some kind of persistent storage to keep
the parsed document instead of an in-memory structure.

The DOM provides objects called nodes that represent parts of a document to the application.
There are several types of nodes, each used for a different kind of construct. It is important to
understand that the nodes of the DOM do not directly correspond to SAX events, although many
are similar. The easiest way to see the difference is to look at how elements and their content are
represented in both APIs. In SAX, an element is represented by start and end events, and its
content is represented by all the events that come between the start and the end. The DOM
provides a single object that represents the element, and it provides methods that allow the
application to get the child nodes that represent the content of the element. Different node types
are provided for elements, text, and just about everything else that can exist in an XML document.

We go into more detail and see some extended examples using the DOM in Chapter 4, and a
detailed reference to the DOM API is given in Appendix D. For a quick taste of the DOM, let's
write a snippet of code that does the same thing we do with SAX in Example 1-1, but using the
basic DOM implementation from the Python standard library, as shown in Example 1-2.

Example 1-2. dombook.py

import pprint

import xml.dom.minidom

from xml.dom.minidom import Node

doc = xml.dom.minidom.parse("books.xml")

mapping = {}

IT-SC book
26

for node in doc.getElementsByTagName("book"):

 isbn = node.getAttribute("isbn")

 L = node.getElementsByTagName("title")

 for node2 in L:

 title = ""

 for node3 in node2.childNodes:

 if node3.nodeType == Node.TEXT_NODE:

 title += node3.data

 mapping[isbn] = title

mapping now has the same value as in the SAX example:

pprint.pprint(mapping)

It should be clear that we're dealing with something very different here! While there's about the
same amount of code in the DOM example, it can be very difficult to develop reusable
components, while experience with SAX often points the way to reusable components with only a
small bit of refactoring. It is possible to reuse DOM code, but the mindset required is very
different. What the DOM provides to compensate is that a document can be manipulated at
arbitrary locations with full knowledge of the complete document, and the document contents can
be extracted in different ways by different parts of an application without having to parse the
document more than once. For some applications, this proves to be a highly motivating reason to
use the DOM instead of SAX.

1.3.3 More Ways to Extract Information

SAX and the DOM give us some powerful tools for working with XML, but they clearly require a
lot of code and attention to detail to use effectively in a large application. In both cases, working
with complex data requires a great deal of work just to extract the interesting bits from the XML
documents that contain the data. Now, what sorts of tools would we normally turn to when
dealing with complex data sets? Two that come to mind are higher-level abstractions (such as
APIs that do more work, and specialized task-oriented languages), and preprocessing techniques
(transforming data from one form to another more suitable to the task at hand). Fortunately, both
of these are available to us when working with XML from Python.

When an XML user wants to specify a portion of a document based on possibly complex criteria,
she uses a language which lets her write the specification concisely; that language is called the
XML Path Language, or XPath. Support for XPath is available in the 4Suite package, and has
recently been added to the PyXML package as well. Using XPath, a query can be written that
selects nodes from a DOM tree based on the element names, attribute values, textual content, and

IT-SC book
27

relationships between the nodes. We cover XPath in some detail, including how to use it with a
DOM tree in Python, in Chapter 5.

Other times, what we'd really like is a new document that either contains less information or
arranges it very differently. For this, we need a way to specify a transformation of a document
that generates another document. This is provided by XML Stylesheet Language Transformations
(XSLT). Originally developed as part of a new specification for stylesheets, XSLT is an XML-
based language that is used to define transformations from XML to other formats. XSLT is most
commonly used with XML or HTML as the output format. Chapter 6 describes this language
and shows how to use it in Python.

1.4 What Can We Do with It?

Now that we've looked at how we can use XML with Python, we need to look at how we can
apply our knowledge of XML and Python to real applications. In the Internet age, this means
widely distributed systems operating across the Internet.

There's a lot to working with the Internet beyond XML and the CGI programming done in many
of the examples in the book. In case you're not already familiar with this topic, we include an
introduction to the facilities in the Python standard library that help create clients and servers for
the Internet in Chapter 8. We review how to retrieve data from remote servers, and how to
submit form-based requests programmatically and read the result. We then learn to build custom
web servers that respond to HTTP requests, allowing us to build servers that do exactly what we
need them to.

With these skills under our hat, we proceed to look at the emerging world of "web services."
Chapter 9 describes what we mean by web services and introduces the specifications coming out
in that area. We look at two packages that allow us to use SOAP to call on web services and
demonstrate how to create one in Python.

In Chapter 10, we pull together much of what we've learned with an extended example that
demonstrates how it all works together. Using XML as a communications medium, we are able to
build an application that uses a variety of technologies and operates in diverse environments.

IT-SC book
28

Chapter 2. XML Fundamentals

XML is not new! XML, the Extensible Markup Language, began development in 1996 and
became an official World Wide Web Consortium (W3C) standard in 1998. XML is derived from
the Standard Generalized Markup Language (SGML), which has been around for a great while.
SGML has long been used as a means of document management, and is the parent of HTML.
XML, on the other hand, is an outgrowth of these earlier markup languages intended for
information sharing on the Internet. While HTML is effective for communicating how a page
should look inside a web browser, XML speaks more to how information should be structured or
used between or among applications (including web browsers) running on the Internet.

2.1 XML Structure in a Nutshell

The basic structure of an XML document is simple. Most can be reduced to a few simple
components. Consider the following:

<?xml version="1.0"?>

<PurchaseOrder>

 <account refnum="2390094"/>

 <item sku="33-993933" qty="4">

 <name>Potato Smasher</name>

 <description>Smash Potatoes like never before.</description>

 </item>

</PurchaseOrder>

In this example, the first line, starting with the <? characters, is the XML declaration. It states
which version of XML is being used and can also include information about the character
encoding of the document. The text starting with <PurchaseOrder> and ending with
</PurchaseOrder> is an XML element. An element must have an opening and closing tag,
or the opening tag must end with the characters /> if it is to be empty. The account element
shown here is an example of an empty element that ends with a />. The item element opens,
contains two other elements, and then closes. The sku="33-993933" expression is an attribute
named sku with its value 33-993933 in quotes. An element can have as many attributes as
needed. Both the name and description elements are followed by character data or text.
Finally, the elements are closed and the document terminates.

In the remainder of this chapter, we walk through the relevant parts of the XML specification,
highlighting the most important items for you to be aware of as you embark on coding with
Python and XML.

2.2 Document Types and Schemas

IT-SC book
29

When we talk about document types, we are speaking of something very similar to the notion
of types in a programming language. Programming language types are used to describe structures
that can be composed in particular ways, and document types do the same thing. The primitive
components and the types of composition that are allowed differ, but they are conceptually
aligned. A document type is commonly referred to as a schema. The difference between a
document type and a database schema can be shallow in many applications, though the similarity
is not always relevant. We often use schema to refer to a document type when it is not important
how it was defined, because the phrase "document type" has historical associations with a
particular schema language.

Schemas are valuable for several reasons, but two dominate: they require critical thinking about
the applications and data to design, and they can be used to help specify how documents should
constructed and interpreted when exchanged across organizational boundaries. The latter can be
especially critical in applications such as supply-chain integration, where the automated exchange
of dynamically generated documents can incur contractual obligations—it becomes very
important that everyone agree what the documents mean, because misinterpretation can be very
costly!

Document types are built on top of data types as well as on top of structuring rules, in which
data types are very analogous to the primitive types provided by most programming languages.
Different schema languages use different sets of data types, some being extensible and others
allowing the use of arbitrary typing systems rather than providing their own. Some schema
languages allow data types to be specified for any document content, and others limit the ability
to apply data types to specific constructs.

All schema languages let the allowed ordering and nesting of elements be defined, and let
attributes be associated with element types. Everything else is open to variation, so it helps to be
aware of the general differences and select a schema language based on the requirements of the
application, the availability of tools, and interoperability requirements.

2.2.1 Document Type Definitions

The XML 1.0 recommendation specifies one way to define a document type known as a
Document Type Definition, or DTD. The language used to specify a DTD is really just part of
XML itself, but is also informally known as the DTD language. This is a subset of XML that has
a slightly different set of syntactic rules and does not allow arbitrary content to mix with the
markup.

The DTD language for XML is derived from the DTD language for SGML, but drops many of
the less commonly used constructs in favor of simplicity. The newfound simplicity pertains both
for the language itself and for processing tools. The specific features that were omitted are only of
interest if you already know the SGML version of the language, and so are not discussed in this
book. Please refer to the XML recommendation and books focused on document type
development to learn more about the differences.

We discuss the specific construction and interpretation of DTDs later in this chapter, but it is
interesting to note that while the DTD language allows fairly flexible composition of elements, it
defines very few data types that can be used to specify the types of attribute content, and provides
almost no way to extend the set of data types. In spite of the limitations of DTDs, they are still an
important type of schema due to their early specification as part of the XML 1.0 recommendation,

IT-SC book
30

their similarity to SGML DTDs, the widespread availability of tools, and the relative ease of
learning how to create and use them.

2.2.2 Alternate Schema Languages

The XML sublanguage used to specify document types is largely inherited from the SGML roots
of XML, and is perhaps the least appreciated aspect of the specification. The use of this language
does represent a trade-off, no matter how useful it may be to particular projects. While there is no
doubt that it is better than having only well-formed XML defined by the XML specification, there
is a broadly perceived need for something better. As with all standards, however, one size does
not fit all, so a number of alternate languages have been developed for specifying document types.
Together, these are known as schema languages.

The application of each language varies, as does the level of complexity and availability of tool
support. In this section, we examine some of the more popular languages and describe the
intended uses for each of these, as well as what form of support is available for Python
programmers. Two common aspects of the schema languages described here involve the fact that
they all use XML to provide their own syntax, and they all are namespace-aware: the schema they
can specify can contain elements and attributes from multiple namespaces. Both are significantly
different from the DTD language, and both can easily be argued to be significant improvements.

2.2.2.1 XML Schema

The World Wide Web Consortium has been active in efforts to develop and standardize a schema
language that was intended to work for everyone, and XML Schema is the result. As with all
committee-driven designs, there is widespread dissatisfaction with XML Schema, not because it
is not powerful enough, but because it is considered by many practitioners to be too complex. It
defines ways to describe the allowed structures for a document type, as well as describe data
types that can be used to describe both element and attribute content much more precisely and
flexibly than what the DTD language supports.

XML Schema does offer the advantage that it provides ways to define both document types and
data types, and includes a selection of basic data types to build on. These types range from
numbers to strings that must match some regular expression, to more complex types such as dates
or times. XML Schema data types are very rich compared to the data types supported by the DTD
language. Schemas may be defined that constrain values of attributes or element content to be of
these types, making it possible to describe larger document types much more precisely than the
DTD language allows. This makes it possible to build tools that can validate a document against a
schema, allowing application code to deal with far less specialized error-checking code. XML
Schema data types are used briefly in Chapter 9, but are not discussed in detail.

There is an XML Schema validator for Python; see Appendix F for more information.

2.2.2.2 TREX

Tree Regular Expressions for XML (TREX) is a schema language designed by the notable James
Clark, who has been active in developing usable XML standards for as long as XML has been
around, and is known for his significant contributions to the SGML community before XML.
TREX does not define fine-grain data types the way XML Schema does. It is intended to be used

IT-SC book
31

in conjunction with data types defined using external specifications, which can include XML
Schema-defined data types.

The PyXML package includes a TREX validator in the xml.schema.trex module; this was
added in PyXML Version 0.7.0.

2.2.2.3 RELAX-NG

RELAX-NG is a language derived from two well-received schema languages, TREX and
RELAX; the specification is still under active development at the time of this writing. This
specification is the combined effort of James Clark and Makoto Murata, the authors of TREX and
RELAX, and is sponsored by the Organization for the Advancement of Structured Information
Standards (OASIS). RELAX-NG takes the same approach to data types as TREX. Complete
information on RELAX-NG is available at http://www.oasis-open.org/committees/relax-
ng/. An alternate, non-XML syntax has also been proposed.

2.2.2.4 Schematron

The Schematron Assertion Language defined by Rick Jelliffe is a bit different from the other
schema languages. Instead of defining what elements are allowed, their content models, and their
attributes, Schematron makes assertions about the relationships among elements and attributes.
Extensive documentation is available online at http://schematron.sourceforge.net/, and a
Python validator is available from Fourthought, Inc. (http://www.fourthought.com/).

2.3 Types of Conformance

As with any specification, the primary reason for the XML specification's existence is to hold
documents against it and make sure they conform to the specification. If so, then the rules within
the specification can be used in reading, transforming, or applying the document. However, we
must remember that XML defines two things: syntax for document instances, and a way to define
new language using XML. It also tells us that we can use the former without the latter, so it must
define what it means to conform to the specification in both cases.

If a document uses the XML syntax but does not depend on a specific markup language defined
using the means provided by the XML recommendation, it needs to be well-formed in order to
conform with XML. This is a form of conformance introduced by XML rather than inherited
from SGML. On the other hand, a document that declares that it uses a specific markup language
defined by a DTD is said to be valid if it is both well-formed and the elements and character data
are arranged in a way that complies with the rules given by the specified Document Type
Definition.

The XML specification defines a collection of text to be an XML document if it is well-formed
according to the rules of the specification. The term well-formed is widely used in XML, and it
refers to a document that is syntactically acceptable. For example:

<?xml version="1.0"?>

<book>

 <title>Python and XML</title>

IT-SC book
32

</book>

The preceding document is well-formed. That is, beyond the XML declaration (described in
more detail in Section 2.5.6, later in this chapter) pointing out that the document uses Version
1.0 of XML, both the book and title elements are opened and closed so that elements nest
within each other in a strictly hierarchical way. You can't open a book and close a magazine.

Being well-formed is required but not sufficient to describe the concept of validity, which deals
with the conformance of a document to a Document Type Definition. It's one thing to have the
structure arranged such that it is syntactically acceptable, but quite another to ensure that the
information contained within the document is organized in the appropriate fashion and contains
all of the necessary elements to be of use in an application or transaction.

The XML specification describes all XML processors as belonging to two classes: validating and
nonvalidating. Regardless of validation, both types of processors must report violations of the
specification's well-formedness constraints; otherwise, an XML document may be impossible to
parse. A validating processor must be able to report violations of the DTD to the application. This
requires that a validating processor read the entire DTD, and resolve and parse any external
entities (described in the next section) referenced within the DTD itself and in the document
instance. In contrast, nonvalidating processors need check only the document and internal DTD
subset for well-formedness. Checking that a document is well-formed does not require accessing
any external entities.

Since the arrival of alternate schema languages, a third form of conformance has been described
informally. A document is said to be schema valid with respect to a particular schema, regardless
of the language in which the schema is expressed, if the document is well-formed and the
structure of the document conforms to the specific schema using the rules defined for that specific
schema language. This is a generalization of the concept of validity given by the XML
recommendation; all valid documents are also schema valid for the schema defined by their DTD
(though they may be invalid for other schema).

2.4 Physical Structures

XML text is stored in entities. Entities are identified in various ways, but most commonly by
filename or URI. There is no constraint on this, however, and many systems do use alternate
means for entity storage — for example, many live happily in large databases. Many XML
documents involve more than one entity; perhaps the most common arrangement is that the
document is in one entity and its type definition is in another. As documents get larger, increasing
numbers of entities are often involved with each document. This may be more common with
document-centric applications than with data-communication applications of XML.

Entities are typically given names in one or more global namespaces. XML requires that entities
be given system identifiers, which are always URIs. The term has roots in the SGML community,
where system identifiers were used to refer to storage locations using whatever syntax the tools in
use happened to understand. An additional global namespace is shared with the SGML world; the
identifiers in that space are called formal public identifiers (FPIs). Use of this namespace is very
limited in the XML world, as it is not always easily mapped to URLs that can be used to retrieve
arbitrary resources, although there are ways to do it. They do see some use, and extensible
support for FPIs is available in the PyXML toolkit.

Entities are used for several things in XML:

IT-SC book
33

Document entities

Regardless of the application, all documents start somewhere. With XML, they are also
guaranteed to end in the same entity. The entity containing the start of the document is
called the document entity. The document entity is interesting because it is the only
entity that may be completely anonymous. An application can provide the content of the
entity directly to the XML parser, allowing it to operate without extracting the text from a
disk file or another local or remote data source.

External entities

Other physical storage units that contribute to a document are external entities. These
entities may contain all or part of the type specification for the document, or they may
contain document content. While external entities are defined by their system and formal
public identifiers, most are given local names for easy reference.

External DTD subset

If a document contains a document type declaration that specifies an external
document type subset, that subset is given in an entity. This entity is special
in that it is not given a local name, but otherwise is simply an external entity.

Linked resources

Some documents refer to other documents without making them a part of themselves.
Whether or not these external resources are really entities is not always clear if they are
not referenced via a name defined in an entity declaration. One typical example of this is
the resources identified by URI in the href attribute of HTML's a element—it is not
referenced by a named entity, and it is not always known just what the linked resource
will contain when the reference is created. The fact that the external resource is identified
as the target of a link is important to the linking document.

2.5 Constructing XML Documents

Documents are the heart of XML. Any amount of usable XML is presented as a document, often
stored in a file. One of the very first things you must understand in order to use XML is how to
create a well-formed document. In this section, we examine the syntactic components of a
document, starting with the individual characters and looking at how they are viewed when
building larger syntactic constructs. Then we look at the constructs defined for all documents by
the XML recommendation.

2.5.1 Characters in XML Documents

The XML Specification defines a character as "an atomic unit of text as specified by ISO/IEC
10646." (Remember, ISO/IEC 10646 is more commonly referred to as Unicode.) Of course, this
explanation is exactly what you should say at a party if someone asks. One of the goals of both
standardization and XML is to make documents easily understandable by platforms around the
globe. As such, simple things like ASCII characters can become quite complex.

Regardless, the specification states that legal characters are "tab, carriage return, line feed," as
well as belonging to the aforementioned Unicode specification. If you were to write an XML

IT-SC book
34

parser, the topic of characters and standardization would be of incredible importance to you. For
the rest of us, it's usually enough to choose an XML parser that gets it right.

You can declare the character encoding used in an XML document using the optional XML
declaration:

<?xml version="1.0" encoding="UTF-8"?>

For an external entity that is not a document itself, a variation of the XML declaration, called an
encoding declaration, is used:

<?xml encoding="UTF-8"?>

More information on the XML declaration is provided in "The Document Prolog" later in this
chapter. For now, let's look at some of the most widely used character sets and encodings. (A
character set that can be mapped into Unicode can be considered an encoding of Unicode, even if
it does not directly support everything defined in Unicode.)

2.5.1.1 The ASCII character set

The American Standard Code for Information Interchange (ASCII) is a 7-bit text format
(meaning that it takes a sequence of seven 1's and 0's to form a character). ASCII is understood
by virtually ever computer in use. Unicode extends ASCII, so the first 128 characters of Unicode
coincide with the first 128 characters of ASCII.

2.5.1.2 The ISO-8859-1 character set

The character set ISO-8859-1 is also known as Latin-1. The ISO-8859-1 set is very widely used
as it contains support for most (but not all) Western European languages. The first 256 characters
of Unicode are identical to ISO-8859-1 for compatibility reasons. The first 128 characters of ISO-
8859-1 are identical to ASCII. The second 128 are a combination of control characters, special
characters, and accented letters. ISO-8859-1 was inspired by DEC Multinational Character Set,
but there are a few differences. There are also various ISO-8859-X sets with support for
additional languages and characters.

2.5.1.3 UTF-8 Encoding

Universal Transformation Format, 8-bit (UTF-8), is documented in IETF RFC 2279 by F.
Yergeau. UTF-8 is the most popular complete encoding of Unicode.

UTF-8 extends ASCII to some degree. The first 128 positions of UTF-8 are transparently
encoded to their ASCII counterparts. Since Unicode can supposedly support over 2 billion
characters (way beyond 128), getting it to fit in a stream of discrete 8-bit bytes requires some
encoding. UTF-8 solves this problem by representing each Unicode character with a unique
sequence of bytes. In a UTF-8 stream, ASCII characters occupy only one byte in the stream,
whereas all other characters are represented by two or more bytes the stream. Your XML
declaration using UTF-8 appears as follows:

<?xml version="1.0" encoding="UTF-8"?>

The most detailed information for dealing with UTF-8 encoding comes from the RFC.

IT-SC book
35

2.5.2 Text, Character Data, and Markup

The specification states "text consists of intermingled character data and markup." The main point
here is that every character within an XML document is either character data (the actual
information content we're most interested in, such as an address or item quantity), or it is
markup (containing all of the special characters needed to create start tags, end tags, entities,
comments, CDATA delimiters, DTDs, processing instructions, and declarations). All the
characters together constitute text.

Character data in the content of elements is "any string of characters that does not
contain the start-delimiter of any markup." Clearly, it is important to know the
difference between the two, since it is markup that allows our programs to interpret
the character data correctly.

All markup begins with one of two characters: the less-than sign (<) and the ampersand (&). All
markup that begins with the less-than sign ends with the greater-than sign (>), and markup that
begins with an ampersand ends with a semi-colon (;). These are the only special characters you
need to be aware of most of the time. In some situations, the single-quote (') and double-quote (")
characters need special attention. This does not mean that your documents and data cannot
include these characters, only that they require some special encoding in the XML text. Any
Unicode character can be part of the character data.

One result is you're unable to use literal special characters such as ampersands (&), or angle
brackets (<, >) within your text. For example, the following would confound an XML processor:

<question>Is 5 < 7 9?</question>

The text of the question element contains characters not allowed by the specification. The < is
expected to start a new markup component, so the following space is interpreted as a syntax error.
The less-than sign is used to start a variety of markup constructs, the most common of which are
the element start and end tags. The ampersand is used to mark entity references.

In order to use these special characters within your XML document, you'll need to
encode them using entity or character references. To turn the example into proper
XML, we need to use this:

<question>Is 5 < 7 ≣ 9?</question>

Entity references are discussed later in this chapter, although many of you who have worked
with HTML will find them familiar as they include ' ('), " ("), < (<), and >
(>). XML allows you to define your own entities as well, and they can contain more than a single
character, but those four are defined by the XML specification and do not need to be defined
specially for your documents. Character references are slightly different in that they specify
individual Unicode characters without attempting to use mnemonic identifiers for them. A
character reference you might have seen used in HTML would be something like ® (®, the
registered trademark symbol). In XML, the numeric portion of the reference may be given using
hexadecimal digits as well if the letter x is inserted between the sharp sign and the first digit. The
reference ® also refers to the registered trademark symbol. Character references cannot be
defined by authors, and they always refer to Unicode characters by the ordinal value assigned to
them in the Unicode specification.

IT-SC book
36

2.5.2.1 Names

The XML specification defines several small lexical details, but perhaps one of the most
important is the name. Names are tokens composed of some combination of legal characters
including letters, digits, underscores, hyphens, or colons; the first character of a name cannot be a
digit. Name tokens are used for naming anything that needs a name in XML, including element
types, attributes, and entities. Some names cannot be used in day-to-day XML markup. First,
names beginning with the string xml (in any mixture of upper- and lowercase) are "reserved for
standardization in [the XML specification] or future versions of this specification." Secondly,
when naming your elements, you must avoid use of the colon (:), as it is the basis for XML
namespaces (a method of prefixing element names with tokens to give them domain context).
While the XML 1.0 specification allows colons in element and attribute names, the more recent
Namespaces specification assigns a particular syntactic significance that constrains their use. In
other words, if you're defining a whole class of elements related specifically to books, such as
bookTitle or bookAuthor, its better to use capitalization, hyphenation, or underscores to
separate the words (such as book_title, book-title, or bookTitle) as opposed to using the
colon, such as book:Title. Using an expression like book:Title leads XML processors to
believe that you are referring to a Title element within the namespace URI attached to the local
name book. Of course, it may be that Namespaces are appropriate for your application, in which
case you should take the time to read the Namespaces specification very carefully and define any
that are needed.

2.5.3 Whitespace in Character Data

When working with XML-based markup languages, it can be difficult to know how to
treat whitespace. For many applications, whitespace can be handled as just more
normal character data, while this is not sufficient for others. The problem most often
manifests itself when presentation to the user is being controlled by the application.
While the XML specification does not attempt to solve the problem, it does provide a
way to include a hint for processing tools and applications that the whitespace in a
particular element should be preserved as given, rather than treated as malleable
space.

The easiest way to visualize the problem is to consider the way program source code is most
commonly presented in HTML. Most HTML authors wrap source code in a pre element:

<pre>

def hello():

 print "Hello, world!"

</pre>

This is certainly the easiest way to present source code in HTML. Now consider what happens if,
instead of using a pre element, we use a paragraph, or p, element:

<p>

def hello():

IT-SC book
37

 print "Hello, world!"

</p>

This creates a very different effect in most web browsers, typically causing the entire
program text to be shown on a single line with only a single space separating each
word, even though the example includes multiple lines and multiple adjacent spaces.

The solution looks simple, at least for HTML. Simply use a pre element when we want to
preserve whitespace. This obvious solution unfortunately has an equally obvious problem—it
only works for HTML, not for arbitrary XML-based markup languages. A solution is needed that
also works for a non-HTML document like this:

<Poem>

 Ode to a node,

 Nested beneath its tree,

 Snug as a bug in its XML rug

 Dreaming of the W3C.

</Poem>

How is an XML tool to know that the line breaks and other presentation for a poem
are significant?

The XML specification defines an attribute called xml:space that you can attach to an element
to communicate to the application that whitespace should be preserved. It is the responsibility of
the client application to act on this information and indeed preserve whitespace when handling or
formatting the data. A typical compliant XML parser passes the whitespace from the document
through to the application regardless of whether the xml:space attribute has been seen (in either
the document or the schema). An application can use the attribute to determine just what
manipulations it can perform on the document content.

The value of the xml:space attribute can be either default or preserve. If the value is
default, the application is allowed to treat the whitespace in whatever way it normally would;
the XML specification imposes no limitations on how the whitespace is affected in this case. If,
however, the value is preserve, the application is expected to avoid interfering with the
whitespace in the element to which the attribute applies, as well as all child elements, until it
encounters a child that specifies a value for xml:space. At that point, the child's value for
xml:space takes precedence for itself and it's descendents.

The xml:space attribute can be used in a couple of different ways. The first is to simply include
it in the document instance, which is sufficient for well-formed XML. The first line of our poem
becomes:

<Poem xml:space="preserve">

While this seems reasonable for small quantities of XML text, it proves unworkable for large
volumes of documents that are edited by humans. Think about what HTML would be like if we

IT-SC book
38

had to always include a special attribute to get the effect of the pre element! For this reason, the
xml:space attribute is most often used by including it in the document schema. In a DTD, we
would write something like this:

<!ATTLIST Poem xml:space (default|preserve) 'preserve'>

Attribute list declarations will be discussed in more detail in Section 2.6.3 later in this chapter.

From a practical point of view, most applications that parse XML look at the names of the
elements to determine what to do with the character data contained therein. For example, while
parsing the text of a book formatted in XML, you may come across a code element that tells you
to preserve the whitespace within that section. If you look carefully, however, often the document
type specifies that xml:space has a default value of preserve for those elements.

2.5.4 End-of-Line Handling

The specification is straightforward where end-of-line handling is concerned. An XML parser
must pass characters to applications with normalized line endings. That is, any combination of the
hexadecimal characters 0x0D and 0x0A, or a standalone 0x0D character not followed by 0x0A, is
converted to a single 0x0A character. For the less hexadecimal among us, it means that typical
formatting codes such as \r\n and \r are converted to \n. And for those of you who have never
used those weird backslash characters, it means that text coming from platforms that commonly
use carriage-returns plus linefeed characters to terminate lines (such as Windows) is converted to
use only linefeed characters.

2.5.5 Language Identification

An attribute named xml:lang is provided by the specification and can be placed inside
documents to indicate the language used in the content. Again, this attribute must be declared in
valid documents, much like xml:space. The values that can be used within this attribute are
defined in IETF RFC 1766, or in a later version. Most language character codes have two letters,
such as en for English, but dialects may be specified using an underscore character and an
additional two-letter code; United States English can be specified as en_US, while the Queen's
English can be specified as en_GB.

2.5.6 The Document Prolog

An XML document contains a prolog, which includes everything that precedes the single element
that is the document content. The prolog consists of an optional declaration called the XML
declaration, followed by an optional Document Type Declaration, followed by any number
(including zero!) of comments and processing instructions. So the prolog may completely empty,
but often contains the XML declaration as a matter of good form. The Document Type
Declaration is required if the document is intended to conform to a DTD.

The XML declaration looks much like a processing instruction, but is slightly different because of
a special purpose it serves. Since XML requires that all documents are Unicode — but does not
constrain the encoding of the Unicode characters to bytes in the data stream that contains the
document — there must be a way to determine that encoding. Some encodings can be recognized
by the leading bytes of the data stream. A set of specific rules for determining the encoding from
the leading bytes of the data stream is given as part of the XML recommendation. For many

IT-SC book
39

encodings however, that is not possible. The XML specification states that in those cases where
the encoding is not known a priori (as when the encoding is returned in the headers of an HTTP
response), the document must be encoded in UTF-8 or include an XML declaration that specifies
the encoding. The declaration always includes the version of the XML specification with which
the document conforms (only XML 1.0 has been defined at this time). A typical XML declaration
would look like:

<?xml version="1.0" encoding="iso-8859-1"?>

This declares that the document is encoded in the character set ISO 8859-1, more
commonly known as Latin-1. It's entirely legal to omit the encoding from the
declaration as well, so the minimal declaration looks like this:

<?xml version="1.0"?>

I'm sure this already appears on coffee mugs.

After the XML declaration, a Document Type Declaration may appear. Note that this
is different from the Document Type Definition, although the first two words and
obvious abbreviations are the same. To avoid confusion, the acronym "DTD" is never
used to refer to this; it is usually called the "DOCTYPE declaration." If given, this
declaration specifies the name of the document element, and may specify both
internal and external components of the DTD. Let's look at the simplest form of this
declaration:

<!DOCTYPE book>

This tells us that the document element is of the type named book, but nothing else; this is not
very useful by itself. There are actually two additional components to this declaration, each of
which is optional, but one or both must be provided for the declaration to be particularly useful.
Let's look at an example that contains both of these components:

<!DOCTYPE book SYSTEM "http://xml.example.com/dtds/book.dtd" [

 <!ENTITY myCompany "Super Mega Ultra Corporation">

]>

Here, we include a specification for an external subset of the DTD (the SYSTEM and the quoted
string), and an internal subset enclosed in brackets.

If the Document Type Declaration is given, the name of the document type must match the name
of the root element. If you declare your document type as <!DOCTYPE Tool [...]>, then your
root element must be Tool. Furthermore, all the specific relationships in the DTD concerning
nesting, character data, and attributes must be enforced against the document if it is to pass the
test for validity.

If you decide to use both the internal and external subsets, the internal subset
overrules the external. That is, the rules contained within the DTD inside your XML
document prevails over rules for the same construct in an external DTD subset.

2.5.7 Start, End, and Empty Element Tags

IT-SC book
40

An element's name communicates its type. The attributes contained within a start tag are not
recognized in any particular order. The specification sees no difference between <name
first="Chris" last="Jones"> and <name last = "Jones" first = "Chris">.

There are several constraints to keep in mind when working with tags. First, there is a constraint
on attributes: they must be unique. No attribute name can appear twice in the same start tag. Next,
if the document is to be considered valid, the attributes must have been declared, and the values
must be of the types specified. Additionally, attribute values cannot be, nor can they contain,
external entity references. Finally, an attribute of a start tag, or its entity replacement text, must
not contain the character <. As for end tags, the specification requires only that they exactly
match the start tag's name. Attributes are not allowed in end tags.

Elements can contain just about any type of character data, as long as it is not
confused with surrounding XML markup itself. This has been addressed earlier in this
chapter in Section 2.5.2.

Empty elements are elements without content. They may contain attributes as
shown in this example:

<names>

 <name first="Chris" last="Jones"/>

 <name/>

</names>

This XML represents two well-formed name elements. Both are empty, but the first expresses
two attributes as well.

2.5.7.1 Quotes around attribute values

The specification defines literals as "any quoted string not containing the quotation mark used as
a delimiter for that string." Functionally, literals are used to indicate the content for an internal
entity and the values of attributes. Typically, attribute and value combinations look like this:

<account refnum="23908403"/>

In this example, refnum is an attribute of the account element and has a value of 23908403.
Either single or double quotation marks may be used, with the restriction that whichever is used
to quote the value may not be directly used in the value, though it may be included using entity
references or numeric character references.

As an example of an attribute value that contains both types of quotation marks,
let's use this phrase:

The cat said "The dog yelled `Help!,' then I pounced."

Encoded as an attribute, we end up with this:

<talltale text=

IT-SC book
41

 'The cat said "The dog yelled 'Help!,' then I pounced."'

 />

2.5.8 Comments

Comments in XML are similar to comments in HTML. The specification states that comments
can reside anywhere outside of other markup. A simple XML comment looks like this:

<!-- This is a comment. -->

Since comments are not allowed inside other markup, you can't embed a comment
inside an XML start tag:

<book name="Python and XML" <!--comment here-->>

This type of expression is not allowed by the XML specification. Interestingly enough, comments
can appear inside a DTD. In addition, comments are not considered part of the document's
character data. A couple of other caveats are that the double-hyphen (--) cannot be used inside
the text of a comment as the characters --> are used to indicate that the comment is being closed.
Since one of the goals of XML is to avoid the syntactic difficulties of preceding markup
languages, XML simply does not allow a double-hyphen within the body of comments. Entities
and other markup are not handled within the text of a comment, so you can use the characters
special to the rest of XML in your comments without worry that they'll cause syntax errors in
your data. The correct version of the earlier comment element is as follows:

<book name="Python and XML">

This book is about the Python programming language

and XML markup language.

<!--comment here-->

</book>

By placing the comment inside the element instead of in the start tag, we've made it
follow the rules.

2.5.9 Processing Instructions

Processing Instructions (PI) allow an XML document to pass instructions to a
handling application. The XML processor does not consider Processing Instructions to
be part of the document's character data. The point of PIs is to hand information to
an application. For example, if you are communicating an urgent piece of news and
want the receiving application to present some sort of alert to the user, you might
place the following instruction within the XML, so that varying applications can act
accordingly (i.e., a Palm VII could beep, an X Window application could raise an alert
box, and so on):

<?newsAlert title="Martians Invade"?>

IT-SC book
42

In this example, newsAlert is commonly referred to as the target; the rest of the text does not
have a special name. The distinction between the two portions of the processing instruction is
entirely a matter on convention; the specification mandates only the leading <?, trailing ?>, and
the lack of the character pair ?> within the PI. (Note that most of the APIs used to work with PIs
refer to the two parts as the target and the data.) There is no specific syntax associated with the
content of processing instructions, though it is recommended practice to begin each with a target
(usually the name of the tool expected to handle it). It is becoming common for applications to
expect the content following the target to look much like a series of attributes with values, which
are commonly referred to as pseudo-attributes. Clients of this XML document are able to
handle or ignore the PI in whatever way is appropriate to them. Processing Instructions are useful
because they provide an XML-oriented way of passing events between applications or adding
annotations to the data that are specific to particular applications. Historically, PIs were used in
the SGML community to encode instructions to formatting applications, with semantics such as
"add a page break here."

2.5.10 CDATA Sections

A CDATA section is used to escape special characters in character data in your document. For
example:

<![CDATA[The <ool <utter Knife & Sharpening Set]]>

This is actually an encoding of the character data:

The <ool <utter Knife & Sharpening Set

Without using a CDATA section, this must be encoded using general entities or
character references:

The <ool <utter Knife & Sharpening Set

The CDATA section is a good way to escape longer stretches of text that contain many characters
that would otherwise be treated as markup if included directly in the text. Note that a CDATA
section starts with the markup '<![CDATA['; no whitespace is allowed around the word CDATA.
Once inside a CDATA section, no XML syntax is recognized until the characters ']]>' are
encountered. Entity and character references aren't resolved or recognized, so the text ­
does not resolve to the trademark registration symbol, though it would in normal character data or
in a CDATA attribute value.

2.6 Document Type Definitions

As discussed earlier, Document Type Definitions, or DTDs, are the form of document
types specified by the XML 1.0 recommendation. Though there are alternatives,
DTDs remain one of the most common ways of specifying a document type. In this
section, we discuss the syntax of the various declarations that can occur in the
Document Type Declaration; these can all appear in both the internal and external
subsets.

2.6.1 Entity Declarations

IT-SC book
43

Entities are sources of data that are used to compose a larger construct. Most, called general
entities, are used to construct documents, but some, known as parameter entities, are used to
construct the document type itself. Both are defined using an entity declaration in the
Document Type Definition. Each kind of entity is defined in a separate namespace; there can be a
general entity named myEntity and a parameter entity of the same name, and the names do not
clash.

Entities can be declared more than once — the first definition for a name takes
precedence. This allows the internal subset to override a definition provided in the
external subset; when used with parameter entities, this mechanism can be used to
extend DTDs. Document type extension generally works best when the DTD being
extended has been carefully designed with this in mind. The DocBook DTD for
technical documentation is an excellent example of this.

General entities can take a variety of forms: they may be parsed entities, consisting of XML text,
or unparsed, such as an image stored as a Portable Network Graphics (PNG) file. The text of a
parsed entity may be included in the entity declaration, or it may reside in an external source. The
body of an unparsed entity is always stored externally. Most entities used with XML are parsed
entities; unparsed constructs, such as images, are typically referenced using an absolute or
relative URL rather than by a named entity.

Parsed general entities are used to define substitution text for a (typically) shorter
name. Recall that in XML, text includes not only character data, but markup as well,
so the substitution can actually insert additional structure into the document as long
as all structures are complete within the substitution. At production time, a parser
resolves the entity into its substitution text, and evaluates the document based on
how it looks after the entities have been resolved. A simple internal entity is as easy
to create as a symbol and its replacement text:

<!ENTITY sandwich "Crabby Patty">

In your document, any reference to &sandwich; yields the replacement text of "Crabby Patty"
into the document. For example:

I am hungry for a &sandwich;.

This sentence renders as:

I am hungry for a Crabby Patty.

External entities are defined using an entity declaration that gives a URL to an
external resource containing the replacement text:

<!ENTITY legal SYSTEM "http://www.example.com/legal.xml">

Any reference to &legal; within a document yields:

<legal>Copyright 2001, Example Corporation</legal>.

Like internal entities, external entities replace symbols with the appropriate text. Sometimes this
must be done when the text uses characters that would otherwise be considered markup (such as

IT-SC book
44

the use of special characters like <, >, and & in your XML). Other times, entities are used to keep
boilerplate information that is normally maintained somewhere else available to the document.

Parameter entities are different in both usage and applicability. They can only be used to create
the Document Type Definition, and not to directly compose the document. The syntax of an XML
document does not allow parameter entities to be referred to from within the document content,
but only allows their use with the internal and external DTD subsets. There are no unparsed
parameter entities, though a nonvalidating parser may ignore them. Validating parsers are
required to parse all referenced parameter entities.

The declaration for a parameter entity looks much like the declaration for a general
entity, with just a couple of additional characters added:

<!ENTITY % node-decls SYSTEM "node-decls.dtd">

What this declaration has that the general entity declaration doesn't is a percent sign (%) between
the keyword ENTITY and the name of the entity, with whitespace on both sides to set it off (the
whitespace is required). This parameter entity would be used like this:

%node-decls;

Note that the reference to the parameter entity uses the percent sign instead of the
ampersand to mark the beginning of the name; this is necessary since the two sets
of names may overlap.

The effect of entity replacement is much like the use of general entities. The
replacement text effectively replaces the entity reference, and interpretation of the
document type continues using the modified text.

The usefulness of parameter entities is highest when working with modularized
document types, which can provide carefully designed extension mechanisms using
parameter entities. A large DTD, such as the industry-standard DocBook DTD for
software documentation, can be customized by creating a new document type that
simply defines several parameter entities and then incorporates the standard
DocBook definition. Since the entity declarations in the customization layer override
the definitions provided by DocBook, this mechanism can be used to either extend or
restrict the specific document type in ways that are suitable for a specific project.

2.6.2 Element Type Declarations

Element type declarations are used to constrain an element's content. They indicate what
element types can be used as children of the element, and show how the children may be arranged.
Element type declarations may look like this:

<!ELEMENT br EMPTY>

<!ELEMENT generic ANY>

<!ELEMENT name (address+)>

<!ELEMENT para (#PCDATA | list | picture)*>

IT-SC book
45

We can break up the declaration in particular systactic components, each with a
specific purpose:

<!ELEMENT name content-model>

The text <!ELEMENT tells the parser that this is an element type declaration. name gives a name
to the element type; this allows it to be referenced from elsewhere in the Document Type
Definition. The content-model is used to specify what can appear as content of the element,
whether it can contain character data, other elements, or both. No element type may be declared
more than once.

It is interesting to note that there is not a place for attributes to be declared. While attributes are
associated with element types, they are defined using attribute declarations, described later in this
chapter, in Section 2.6.3.

2.6.2.1 Content models

A content model describes what elements are allowed as children of the declared element type,
in what order and combination they are allowed, and whether arbitrary character data is allowed.

The content models of all elements can be broken into two categories:

Element Content

This describes content made up only of elements. That is, you define an
address element that requires no character data, but instead requires child
elements. The specification defines content particles that "consist of names,
choice lists of content particles, or sequence lists of content particles."

Mixed Content

This content may contain character data. This is the most common
arrangement in text documents:

<news title="XML from Outer Space">

 This article describes XML transmissions from outer space.

 <h1>Not a Meteor</h1>

 <para>Contrary to earlier reports, the XML that has landed
from

 outer space is not a meteor.</para>

</news>

In this example, elements and character data are mixed beneath the news element.
Elements that have a mixed content model are not required to allow other elements as
content. In fact, an element type with only character data in the content model may be
completely empty; there is no way to specify that there must be characters in the
character data.

IT-SC book
46

Let's take another look at our example element declarations:

<!ELEMENT br EMPTY>

These element type declarations are simple. The content model of the first, EMPTY, can be used to
describe an empty br element as found in XHTML. It can contain no child elements and no
character data. It can still contain noncontent constructs, such as comments or processing
instructions. An element type declared as EMPTY is considered a degenerate special case of
element content.

<!ELEMENT generic ANY>

Next, we have an element named generic that can contain any kind of element defined in the
document type (this does not allow undefined element types!). In addition to other elements,
character data is allowed as well, so a content model of ANY is mixed content.

<!ELEMENT name (address+)>

The third example is simple, but very different from the others. Instead of a simple name such as
ANY or EMPTY, the model is described by something that closely resembles a regular expression.
In this particular example, we have a name element that requires one or more address elements
to be included. This form of content model is perhaps the most commonly used and allows for
fine control. Content models can take on varying levels of complexity, but the goal is always the
same: to define the content that is allowed or expected within the element.

The content model is specified with parentheses, as well as with commas indicating a sequence.
Vertical bar characters (|) indicate a choice. For example:

<!ELEMENT name (first, last)>

This element type requires a first child element followed by a last child element, and nothing
else. If you want to offer a choice between first or last, but not allow both, use a vertical bar:

<!ELEMENT name (first | last)>

These expressions can be nested within each other as well:

<!ELEMENT order (sku, quantity, (account | name), price)>

The above order element requires a child sku element, followed by a quantity element, then
followed by either an account or a name element, and finally followed by a price element.

Additionally, the operators +, *, and ? can be tacked onto the end of content expressions to
indicate the number of times an element or sequence must occur, or whether it is repeatable or
even required. Without a modifier, the element must appear exactly once in that location. They
are explained in the following list:

+

Content must appear one or more times.

*

IT-SC book
47

Content may appear zero or more times.

?

Content may appear zero times or one time.

For example, to require an order element to have only one account, followed by at least one or
more skus, contain one or more price elements, and optionally provide a shipping address
(ship) once only, you could use an Element type such as the following:

<!ELEMENT order (account, sku+, price+, ship?)>

To mix a combination of character data or elements, you can use the or operator to specify your
mixed content, as shown here:

<!ELEMENT paragraph (#PCDATA | list | picture)*>

This paragraph element type allows for repeatable sequences of character data (denoted by the
asterisk), list elements, or picture elements within paragraph elements. #PCDATA can only
be combined with elements using the or operator in a group that has a * modifier, and it can only
occur in the outermost parenthesized group of a content model.

2.6.3 Attribute Declarations

As discussed earlier, attributes are used to provide name/value combinations as properties of
elements. Attributes can appear only in start tags and empty element tags. An attribute-list
declaration would be a part of a DTD, used to validate the XML document. An example follows:

<!ATTLIST news

 title CDATA #REQUIRED

 author CDATA #IMPLIED>

This is an attribute-list declaration that indicates that any news element is required to have a
title attribute consisting of character data, and may optionally have an author attribute, also
consisting of character data.

2.6.3.1 Attribute data types

The specification states that attribute types are of three kinds: string, tokenized, and
enumerated. In the earlier attribute list example, you saw that a news element required a title
attribute with the string type CDATA.

There are several tokenized attribute types:

ID

A unique identifier for this element. The identifier must be a name unique in
the current document instance.

IT-SC book
48

IDREF

Must match an ID somewhere in the XML document.

IDREFS

A list of one or more names, separated by spaces. Each must match an ID in the
document.

ENTITY

Matches the name of an unparsed entity declared in the document.

ENTITIES

A space-separated list containing one or more entity names.

NMTOKEN

The most seldom used, this matches an NMTOKEN production as defined in the XML
recommendation; refer to the recommendation for more information.

NMTOKENS

A list of one or more space-separated NMTOKEN values; this is the least used attribute type.

The remaining attribute types, the enumerated types, are defined in the attribute list
itself. An enumerated type is a type that takes a name from a defined list of names,
in which the list is given in an attribute declaration. Each distinct set of names forms
a separate type, but these types do not have names of their own. An example should
help clarify this:

<!ATTLIST ship

 type (sloop | frigate | dinghy) #IMPLIED>

This declaration defines an attribute type that may have a value of dinghy, frigate, or sloop,
but no other value. The element <ship type="yacht"/> would trigger a validation failure.

2.6.3.2 Attribute values and constraints

An attribute declaration allows the document type to specify a default value for an
attribute if the attribute is missing. It can also indicate whether the attribute may be
omitted from the document. Let's look at a more interesting example of an attribute
declaration:

<!ATTLIST chapter

 synopsis CDATA #IMPLIED

 author CDATA #REQUIRED

 email CDATA "info@example.com"

IT-SC book
49

 version CDATA #FIXED "1.0"

 type (normal|reference|appendix) "normal">

The synopsis attribute is required to be a string (CDATA) if it is given at all, but it is not required,
and does not have a default value because it is marked as #IMPLIED. (Most of the attributes in
HTML are declared this way.) The #REQUIRED constraint means just what it says; the author
attribute must be specified in the document. Because it is a string, it may be empty. If a string
value is specified instead of #IMPLIED or #REQUIRED, as with the email attribute in our
example attribute list, it becomes the default value that is used if no value is given in the
document.

The #FIXED constraint can only be used in conjunction with a default value, which we see for the
version attribute. When this constraint is used, the document is allowed to include the attribute,
but the value must match that given by the default exactly, though it may be encoded using a
different mixture of characters, entity references, and character references. If the value differs, an
error is reported by the parser.

The type attribute is an example of an enumerated type, similar to what we looked at earlier.
Default values and constraints are specified for enumerated types in the same way as for other
types, with the additional constraint that if a value is specified, it must be one of the names
included in the enumeration.

ID attributes offer some unique behavior. Let's create an attribute for the news
element we defined previously:

<!ATTLIST news

 newsID ID #REQUIRED>

With this attribute list, news elements are required to have a newsID attribute. The allowed
values are governed by the rules of the ID tokenized type. Specifically, the ID value is a name (as
defined in this chapter in Section 2.5.2.1) and must not appear more than once in an XML
document as the value of any attribute of type ID. In other words, ID values must uniquely
represent an element within the document. Consider a legal example:

<news newsID="id39">Text</news>

<news newsID="id40">Text</news>

Since the values of ID attributes are required to be unique within a document, the following is
illegal:

<news newsID="id39">Text</news>

<news newsID="id39">Text</news>

Additionally, no element may have more than one ID attribute specified. An element type may
define more than one attribute of the ID type, but at most, one ID value may be specified for any
element. As a result, some of the programming APIs can use the values of ID attributes to
retrieve specific elements from a document.

IT-SC book
50

What is most interesting about ID attributes, however, is not the attributes themselves, but the
IDREF attribute type. While a particular value may only appear once in a document as an ID type,
it may appear any number of times as the value of an IDREF or IDREFS attribute. In particular,
attributes of those types may only take values that also appear as the value of an ID attribute
somewhere in the same document. (An IDREFS attribute can take a value that is a space-
separated list of ID values, each of which must exist in the document.) These values can be used
to forge internal links between elements that a validating parser must check. This can be very
convenient when a basic tree structure is not sufficient to model your data; the ID, IDREF, and
IDREFS attributes can be used to extend the data model to include connected, directed graphs
with typed arcs.

2.7 Canonical XML

The term canonicalization originally was "borrowed" loosely from its more ancient
context to indicate that one structure of an instance document is the same as the
master, or commonly accepted, structure of the document. Canonicalization is
sometimes referred to as C14N for brevity; this is similar to the more common use of
I18N for internationalization.

Canonical XML is an emerging W3C recommendation that allows you to see if one
physical representation of a document is equivalent to another physical
representation of the same document in order to determine if they are "canonically"
equivalent. In this section, we explore some of the technical features of Canonical
XML to gain a better understanding of its application to suit your needs.

2.7.1 The Canonical XML Data Model

To begin the process of converting a document to canonical form, you, or rather your
Canonical XML processor, must start with some form of XML that it can understand.
Therefore, your first parameter to a canonical translator should be an XPath node set,
or a serialized XML document. The second parameter is a Boolean value, which
indicates whether comments should be analyzed.

In the case of a node set, it must have normalized line feeds, normalized attribute
values, substituted CDATA sections with their character content, and resolved
character and parsed entity references. In other words, each node must be fully
cooked. No stranded entities and no superfluous whitespace are allowed. All
whitespace within the root element must be preserved with the exception of line-
delimiter normalization. The whole approach leads you to think that the document is
being worked over—flattened, stretched, and pulled like pizza dough just prior to
being cooked.

2.7.2 Document Order

Although Canonical XML depends on XPath, it imposes a few rules on the XPath node
sets that are sent into any Canonical XML processor.

An element's namespace and attribute nodes must follow the element but precede any children.

Namespace nodes must exist prior to attribute nodes.

IT-SC book
51

Namespace nodes for an element are sorted lexicographically by local name.

Attribute nodes for an element are sorted lexicographically with the namespace URI as a primary
key and the local name as a secondary key.

2.7.3 Canonical XML Structure

Canonical XML does away with the XML declaration and DTD, and also normalizes whitespace
outside of the root element. Abbreviated empty elements (in the style of <element-name/>) are
converted to start- and end-tag pairs (<element-name></element-name>). Namespace and
attributes may be lexicographically reorganized to comply with canonical expectations as
described in Section 2.7.2. In addition to these modifications, a canonical representation
replaces CDATA sections with their actual characters, and applies character reference
replacement when appropriate. Attribute values and text also have their special characters
replaced with references.

Canonical XML is quite new, and we have yet to see significant amounts of Python
software developed for Canonical XML processing. The vision of Canonical XML is
blurry, but it is a method for checking two instances (regardless of DTD or Schema)
and working them over like cleaned fish to see if they share the same skeletons.
Version 0.7 of PyXML will include support for rendering XML in canonical form.

2.8 Going Beyond the XML Specification

The standards developed at the W3C ensure interoperability between distributed
systems and the applications developers around the world. As we progress in this
book from XML tools and strategies in your local applications to distributed
application development, several new XML terms and issues come into the forefront.

2.8.1 XML Namespaces

As discussed in Section 1.2.2 in Chapter 1, namespaces provide a means to combine elements
from different knowledge domains or schemas. The Namespaces specification accomplishes this
by allowing element and attribute names to be qualified with a URI; every URI corresponds to a
unique namespace. Namespaces are used for several purposes in practice, but the most important
is to allow a document to contain elements defined by different schema (possibly originating from
different organizations) without having naming conflicts.

Namespaces are used by associating a named xmlns attribute with a URI. Namespaces are
communicated in an XML document using the reserved colon character in an element name,
prefixed with the xmlns symbol. For example:

<sumc:purchaseOrder refnum="389473984-38844"

 xmlns:sumc="http://www.superultramegacorp.com">

 <sumc:product name="Magical Widget" sku="398-4993833">

 <sumc:qty value="24">One Case Order</sumc:qty>

 <sumc:amount value="34.56">34.56</sumc:amount>

IT-SC book
52

 <sumc:shipping value="overnight">Next-day</sumc:shipping>

 </sumc:product>

</sumc:purchaseOrder>

In this document, the namespace of SuperUltraMegaCorp is defined. The prefix sumc has been
associated with it in the xmlns:sumc attribute. Elements prefixed with sumc: are within this
namespace. This purchaseOrder now has a context that can set it apart from a similarly
structured purchase order intended for a different business domain.

2.8.2 Extracting Information Using XPath

XPath is discussed at length in Chapter 5. For now it is worth a mention, lest you start to
develop your own method for querying XML without understanding what standards are offered.
XPath offers a standardized method of querying XML for specific information, whether it's a
single element or node, or a collection of elements. The standardization is of value not when
you're writing the backend part of your application, but rather when you need to expose search
capabilities either programmatically or via the web.

2.8.3 Using XLink to Link XML Documents

The XLink language allows for the insertion of elements into XML documents to
create and describe links between different resources. XLink uses XML syntax to
create structures representing links similar to hyperlinks used in HTML, as well as
more complex linking structures. Link specifications are encoded in the attributes of
the source document, or in supplemental documents that can describe links among
other documents. The most common applications embed link information at the link
source. The target of a link is described using a URI and an XPath expression; the
URI specifies the target resource, and the XPath expression specifies a specific
location in the linked resource. XLink is still a young specification and is not
discussed further in this book.

2.8.4 Communicating with XML Protocols

The XML Protocol working group is a W3C group tasked with investigating the development of
XML-based messaging and communications standards. These standards are attempting to define a
method of packaging information and sending it across the Internet. Some are focused on
transactions, some are focused on guaranteed delivery, and others are focused on routing and
enveloping mechanisms. The Protocol Activity page (http://www.w3.org/2000/03/29-XML-
protocol-matrix) is an excellent online resource for comparing these different protocols when
developing distributed systems. The Web Distributed Authoring and Versioning specifications
from the IETF, collectively known as WebDAV, use XML to support interoperable tools for web
site management and authoring. Chapter 9 covers such items as remote procedure calls and web
services (including SOAP) in greater detail. Additional specifications deal with other aspects of
distributed computing, especially topics such as authentication and secure communications.

2.8.5 Replacing HTML with XHTML

IT-SC book
53

The Extensible Hypertext Markup Language, or XHTML (http://www.w3.org/TR/xhtml1/),
is a welcome gift to those of us who have had to struggle with parsing HTML. Though there is a
W3C specification for HTML, most implementations conform only partially. This is due in part
to the growth of HTML from some early implementations rather than a formal specification, and
also to the browser implementers' attempts to do "the right thing" even with badly broken markup.
The attempts to force HTML to fit into an SGML mold after the fact probably hindered
compliance further, if only because the rules for parsing it became more complex and
implementers' don't like to start over. When a browser parses HTML, it concerns itself with
display attributes, not organization of the information in the document. While XHTML doesn't
change the focus on appearance, it is an XML-based markup language, allowing you to parse it
with an XML parser. This can drastically reduce the handling time of XHTML. It also allows you
to leverage XHTML into other XML applications, as well as use XML Namespaces in
conjunction with XHTML that has migrated into other domains and systems.

The first version of the XHTML specification, XHTML 1.0, defines a monolithic
document type that corresponds closely with the HTML 4 specification. Future
versions of XHTML, starting with XHTML 1.1, are moving toward a modular approach;
different aspects of the language will be defined in separate components, and
different applications will have the flexibility to determine which components they
support. Part of the intent is to allow browsers with simpler displays, such as mobile
phones, to avoid having to implement portions of XHTML that do not make sense for
the application (such as tables for very small textual displays). An additional benefit
is that application developers can define new modules that allow documents to be
created that can be used for both presentation to people and improved computer-to-
computer communications.

2.8.6 Transforming XML with XSLT

The XML Stylesheet Language, or XSL, consists of two component specifications: XSL
Transformations (XSLT) and XSL Formatting Objects (XSL-FO). The transformation language is
used to translate XML documents from their original form to some other form, which may be
XML, HTML, or anything else (including plain text). XSLT is covered in more detail in Chapter
6. The XSL-FO specification describes specific presentational styling and is used to describe a
formatted document that could be printed to a typesetting device or displayed on a screen. It is not
as widely implemented as XSLT and is not covered further in this book.

IT-SC book
54

Chapter 3. The Simple API for XML

The Simple API for XML, otherwise known as SAX, is a popular interface for working
with XML data. Let's start by looking at the background and history of SAX, after
which we'll describe the major components of the interface. Once the overview is
complete, we can look at several examples to help you see how to use it in your own
applications.

3.1 The Birth of SAX

Before SAX, almost every XML parser offered its own interface, so applications were
built to use specific parsers. The interfaces were low-level and generally similar in
structure; the differences were mostly in the details. When new parsers were made
available, applications had to be modified extensively to work with the different
interface in order to take advantage of the new parser, even though the fundamental
structure was essentially unchanged.

As is so often the case, the solution lay in introducing another layer of indirection. A group of
XML developers using Java, led by David Megginson on the XML-DEV mailing list, defined a
set of Java interfaces that allowed an application to work with any parser. The only requirement
was that there be a driver for the new API for each parser. The driver was a class that used the
parser-specific interface to make calls back to the application using the new, general interface.
The application would create handler objects that implemented methods the driver would use to
call back to the application. When Megginson released the specification, he also released a set of
drivers for many of the more popular Java XML parsers. The initial specification supported the
XML 1.0 recommendation, but not any of the more complex layers that have been built on top of
it; the initiatives to create those were largely in their infancy at the time. The group of developers
called the new API the "Simple API for XML," or SAX, because it was actually simpler than
most of the parser-specific interfaces it was designed to abstract away.

The new API was widely received as a major step forward for application writers—it
was easy to use, allowed the use of arbitrary parsers with an application, and was
carefully defined before any other common APIs were available. Java programmers
became extremely happy as the stress levels dropped in their professional lives.
Developers in other languages adapted the specification in ways that allowed SAX to
remain an identifiable API even as it was made to work with the native conventions
used in those languages. Python programmers in the XML-SIG, led by Lars Marius
Garshol, created an adaptation of the API and implemented drivers for several
parsers. This implementation was accepted as part of the PyXML package.

The W3C then released the Namespaces recommendation. This recommendation changed the
very concept of what constituted a name. While there was great debate over the value of the new
recommendation, most people recognized that it did solve real problems and that it was here to
stay. No one wanted a return of having to chase incompatible APIs, so the SAX developers
quickly dug in and worked on a version of SAX that could support Namespaces. The revised API
is known as SAX2. It is interesting to note that some of the first implementations of namespaces
were filters written as SAX handlers; the SAX events were used to drive the SAX2 handlers with
a little bit of processing in the middle to add the Namespaces support. Information on the Java
version of SAX2 and links to additional SAX resources can be found at the SAX home page at
http://www.saxproject.org/.

IT-SC book
55

Python developers rapidly adopted the SAX2 interface, taking the opportunity to
clean up some warts of the early mapping of SAX from the Java-based specification.
The SAX2 API rapidly became part of PyXML and was adopted for use in the Python
standard library. When Python programmers speak of the SAX API, they are
generally referring to the second version.

3.2 Understanding SAX

The first job of using SAX is to design and implement a handler that works with your
specific XML documents. When dealing with a large project or working with a vast
catalogue of valid documents, it may make sense to implement a few comprehensive
handlers to deal with multiple document types. However, for smaller projects, it may
be more desirable to implement handlers for each specific document type that you
encounter. As you start to build more complex applications, you will see that the
things you're attempting to do with the XML as well as the XML documents
themselves can drive the way you develop your document handlers. Often, the SAX
methods that you implement extract data from the event stream, which you can
then hand off to another application (such as a database). Or you might want to
apply intelligent business logic to it. It's likely that the task will drive your
development strategy.

In all practical use, SAX is a callback-based API in which you implement handler
objects to process XML. You pass a reference to your SAX handler objects to a SAX-
capable parser (or driver; we'll use "parser" to refer to either). When parsing begins,
the parser calls the methods on your handler objects and allows you to process the
XML, so that you can do something useful with it in your applications and distributed
systems.

SAX is an excellent stream-based API. It allows for faster processing of documents,
as well as handling of documents that are simply too large to load into memory.
Additionally, the event-based API allows you to react to parsing events and errors in
"real-time," as they occur, while parsing the document, rather than waiting for the
entire document to load. This can be especially valuable when used in a graphical
application that needs to remain responsive to the user. Another huge win for many
applications is the lower memory consumption when compared to DOM-based code;
by allowing the application control over any objects created during parsing, the
application can minimize the needed storage overhead and discard objects as soon
as they are no longer required.

SAX is the interface to use when you need to construct some application-specific
data structures from one or more documents, but you don't need to maintain the
XML structure within your application. Since SAX reports low-level events to the
handlers installed by the application, the programmer needs to be careful about
keeping track of the application state during parsing—it lends itself toward modeling
the application as a state machine. Fortunately, the programmer is not required to
pay a high memory or a performance penalty, which is often associated with loading
potentially large documents. This would be difficult to avoid when using the DOM
interface, which usually keeps the entire document tree in memory until the tree is
discarded. (We look at the DOM in detail in the next chapter.)

3.2.1 Using SAX in an Application

IT-SC book
56

When an application is built using SAX, it can be helpful to think of the application as a set of
components. The XML parser itself, including the SAX driver, is a black-box component that
only needs a small amount of control information from the application. The handler objects are
the only way for the XML parser to communicate with the application, but the logic they contain
should be more concerned with interpreting the events reported by the parser than in
implementing the application—these often form a separate layer that provides the application
with the data model it needs. The application itself uses the derived data structures and higher-
level events from the handler objects to perform the real work of the application. The relationship
of these components is shown in Figure 3-1.

Figure 3-1. Components of a SAX application

For smaller applications, it is common for the application and the handlers to be the
same objects, often with the application code in the callback methods. While this
does not work well for larger applications, it is a reasonable approach for simple
applications. While learning about SAX, it offers excellent pedagogical side effects as
well, so our examples embed the application code directly in the handler
implementations. It is not difficult to see how to create abstractions between the SAX
handler objects and a larger application.

SAX refers to the parser object as a reader. It reads input from some source and generates calls
to the handler methods for particular events in the input. (There isn't any requirement that the
source be an XML document, though it usually is.) The application registers handler objects using
methods on the reader, and may set some additional properties of the parser. In our overview of
the API, we start by examining the handler objects that can be provided to the parser and then
take a quick look at the reader interface.

3.2.2 SAX Handler Objects

SAX is composed of four primary interfaces that are called by parsers for the different events that
are encountered during the parsing phase. Python has tailored these methods slightly (mostly by
using Python's more powerful native data types) from its native Java to faithfully implement SAX
in the Python environment. By implementing the different interfaces of the callback API, you can
receive all the events generated by the parser as it encounters the different parts of the XML
document. Let's take a quick look at the different handler objects that can be implemented.
(Complete reference information on the methods invoked by the parser for each object is given in
Appendix C.)

3.2.2.1 ContentHandler

IT-SC book
57

The ContentHandler interface is the most commonly used of all SAX interfaces, and is the
primary way in which your applications receive parsing events. Parsing events are geared towards
the primary markup and character data present in documents. Tell your SAX-capable parser about
your implementation of this interface via the setContentHandler method.

The callback API is the part of SAX that users of XML are most interested in. This is the API that
you implement to receive the stream of events generated by the parser. As each element comes
through, it triggers the parser to call a startElement method on the handler you implemented.
The startElement handler, designed for the XML in use, must know what to do with any
element it encounters in the document:

 def startElement(self, name, attrs):

 if name == "webArticle":

 subcat = attrs["subcategory"]

 if subcat.find("tech") > -1:

 self.inArticle = 1

 self.isMatch = 1

 elif self.inArticle:

 if name == "header":

 self.title = attrs["title"]

 self.inBody = 1

 if name == "body":

 self.inBody = 1

3.2.2.2 ErrorHandler

The ErrorHandler interface allows applications to respond to errors encountered by the parser
at runtime. This object must be registered with the reader object (using setErrorHandler) to
be effective. All parse errors are classified into three categories based on their severity; the
handler object implements a different method for each level of severity. The least severe errors
are passed to the warning method, while real violations of the specifications are passed to the
error method if the parser can continue to look for additional errors in the input. They are
passed to fatalError if this is not possible.

Each of these methods receives a single parameter, which is always an instance of the
SAXException interface. This interface offers a number of methods to allow information about
the error to be retrieved, including where the error occurred and in which input source. If the
handler decides to terminate processing, the SAXException object can simply be raised as an
exception.

IT-SC book
58

If you do not supply an error handler, the default behavior is to print an error message to
sys.stdout for warnings, and to raise the exception for both normal and fatal errors.

If you have installed the PyXML package, a couple of convenient implementations are provided
in the xml.sax.saxutils module. The ErrorPrinter class is an error handler that prints a
report of the error on standard output, regardless of the severity. The ErrorRaiser simply raises
the exception, so errors always terminate processing.

3.2.2.3 DTDHandler

When an application needs to know about notations and unparsed entities, it can use the SAX
parser's setDTDHandler method to specify a DTDHandler object to receive this information.
Objects with this interface need only implement two interfaces—one to receive notation
definitions, and one to receive entity definitions. Only definitions of unparsed entities (entities
with specified notations) are passed to this interface.

While this doesn't sound like it covers much of the information specified in a DTD, it
does cover what an application is normally expected to need if using unparsed
entities. Remember, the "S" in SAX stands for "Simple"—most applications do not
actually need the details of the content models and other entity definitions. If you do
need more information from the DTD, many mechanisms are available:

The optional SAX DeclHandler handler, which may not be supported by all parsers

The native interface of the Expat parser; see the documentation for the standard library module
xml.parsers.expat

The xml.parsers.xmlproc.dtdparser module from PyXML

3.2.2.4 EntityResolver

This handler, if implemented, must also be registered with the parser prior to parsing, using the
parser's setEntityResolver method. When the parser encounters external entities, it calls the
resolveEntity method in your implementation. Application developers can use this method to
point the parser at an alternative location to resolve entities, such as a cache. If it returns None or
a system identifier, the parser tries to load the entity using the basic facilities for HTTP and FTP
provided by the Python standard library.

3.2.2.5 Other handler objects

There are actually two more handler objects defined for use with SAX, but these are
considered optional and do no have methods on the parser to set them as
conveniently. Most applications will not need these, but being aware of them helps
when they are needed.

DeclHandler

An object with methods that are called when the parser encounters definitions
of the structural model of the document. The methods are called for element
and attribute declarations, and for declarations of both internal and external
entities.

IT-SC book
59

LexicalHandler

The methods of this object are called for events that applications are not
supposed to care about, but that can be useful when performing a transform
that should not affect the document any more than necessary. The events
reported to this handler include comments, entity boundaries, the start and
end of the DTD, and CDATA section boundaries.

There are no setDeclHandler or setLexicalHandler methods on a SAX parser. These
handlers are installed using the property interface of the parser, which we discuss shortly.

3.2.3 SAX Reader Objects

To use the handler objects, we must register them with a SAX reader, or parser. All parsers are
required to support the four most commonly needed handlers, and convenient methods are
defined to set and retrieve the values of each of these. The routines setContentHandler,
setDTDHandler, setEntityResolver, and setErrorHandler all have matching routines to
retrieve the current handler; these methods have names that start with get instead of set. There
is an additional method, setLocale, which can be used to specify the locale for errors and
warnings.

In addition to these configuration methods, SAX provides the concepts of features and properties.
A feature is some bit of functionality that may be turned on or off, and a property is a named
value associated with the parser's state. Depending on the specific feature or property and the
parser implementation, each may be either read-only or modifiable, or perhaps modifiable only
when a parse is not in progress. The DeclHandler and LexicalHandler discussed previously
are configured by setting properties on the parser. Most applications will not need to use
properties or features.

3.3 Reading an Article

In this example, we look at how we can extract and use information from an XML
document using SAX. The particular documents our script works with are simple
news articles, but we'll see how to work with elements, attributes, and textual
content.

Some of the trade-offs of using SAX depend on what you're trying to accomplish, and how the
XML is structured. SAX treats XML as a continuous stream, firing events to your handler as they
happen. Example 3-1 shows article.xml.

Example 3-1. article.xml

<?xml version="1.0"?>

<webArticle category="news" subcategory="technical">

 <header title="NASA Builds Warp Drive"

 length="3k"

 author="Joe Reporter"

IT-SC book
60

 distribution="all"/>

 <body>Seattle, WA - Today an anonymous individual

 announced that NASA has completed building a

 Warp Drive and has parked a ship that uses

 the drive in his back yard. This individual

 claims that although he hasn't been contacted by

 NASA concerning the parked space vessel, he assumes

 that he will be launching it later this week to

 mount an exhibition to the Andromeda Galaxy.

 </body>

</webArticle>

Example 3-1 contains markup that is structured in a few different ways, and can be interesting
to parse via SAX. A document such as article.xml requires that we understand how the
document is structured prior to writing a handler to parse it. Therefore, the handler is tightly
coupled to the document's structure.

3.3.1 Writing a Simple Handler

You can write the ArticleHandler class to a new file, handlers.py; we'll keep adding new
handlers to this file throughout the chapter. Keep it simple at first, just to see how SAX works:

- ArticleHandler (add to handlers.py file)

class ArticleHandler(ContentHandler):

 """

 A handler to deal with articles in XML

 """

 def startElement(self, name, attrs):

 print "Start element:", name

Now we need to create a script to instantiate the parser, assign the handler, and do
the actual work.

3.3.2 Creating the Main Program

No matter how complex your handler objects become, there is rarely much code involved in
setting up the parser. Let's look at Example 3-2, in which we use only the ArticleHandler

IT-SC book
61

class just created, and parse what we find on the standard input stream. The file art.py, shown in
Example 3-2, demonstrates how to do this.

Example 3-2. art.py

#!/usr/bin/env python

art.py

import sys

from xml.sax import make_parser

from handlers import ArticleHandler

ch = ArticleHandler()

saxparser = make_parser()

saxparser.setContentHandler(ch)

saxparser.parse(sys.stdin)

Once created, you can run the code from the command line using file redirection to
populate standard input (both Unix and Windows):

$> python art.py < article.xml

The output using the simple article handler appears as:

Start element: webArticle

Start element: header

Start element: title

Start element: body

The output reflects the simple rule in your ArticleHandler class, which just prints out the
name of each tag it encounters. To really use the XML, you have to add more functionality to the
handler class in the handlers.py file.

3.3.3 Adding Intelligence

IT-SC book
62

XML allows information to be parsed for different purposes. If you create a news
article in XML, one application can grab it and display it as HTML, while another can
index it to a search database. It's easy to imagine that a service might like to offer
intelligent agents to scour Internet sources for news items, special offers, and other
items of interest for you based on preferences that you set up. XML makes this
process manageable, as opposed to the alternative of reliably parsing HTML for
structured information, which is nearly impossible. HTML only communicates the
appearance of a document and not its organizational structure. In HTML, two
documents may look exactly alike in the browser, but use wildly different tags under
the hood. Parsing the HTML for its information won't work, unless of course the page
designer had that goal in mind when setting out to create the page.

Your news agent is configured to go after technology stories, especially ones that
relate to space travel. When it discovers such an article, it displays a message, the
headline, and the first few words of the body text. You can add functionality to your
handler class to support this.

Since SAX is stream-based, it's sometimes necessary to set flags so that you can
track when you've entered certain elements in and when you haven't. If you find that
you're setting too many different flags, you might consider using a DOM approach as
opposed to SAX. SAX is perfect when doing bulk operations on a lengthy XML stream.
However, if you are trying to pull a complex data structure out of the document, you
may be better off using the DOM.

To keep our example simple, set a few flags as the events are propagated, and go after the desired
information. In the startElement method, check to see if you're indeed inside a news article
and if your article is indeed technical. If it satisfies both of these requirements, change a Boolean
data member so that other methods start paying attention to the data they receive. Also set a
property on the handler itself so that the main application knows the handler has found a technical
article, as that was its assignment:

def startElement(self, name, attrs):

 if name == "webArticle":

 subcat = attrs.get("subcategory", "")

 if subcat.find("tech") > -1:

 self.inArticle = 1

 self.isMatch = 1

 elif self.inArticle:

 if name == "header":

 self.title = attrs.get("title", "")

 if name == "body":

 self.inBody = 1

IT-SC book
63

The last conditional test is to see if the parser has entered the body element of a relevant article. If
so, the characters method now knows to begin buffering data as the it is called:

def characters(self, characters):

 if self.inBody:

 if len(self.body) < 80:

 self.body += characters

 if len(self.body) > 80:

 self.body = self.body[:78] + "..."

 self.inBody = 0

Finally, look for the close of the body tag to indicate to the characters method that it no longer
needs to pay attention to character data:

def endElement(self, name):

 if name == "body":

 self.inBody = 0

Beyond implementing these three methods, the class is also modified to initialize data members,
and to provide an isMatch data member to indicate to the main application whether this handler
has found something worth keeping. The complete class (replacing the earlier class of the same
name) is shown in Example 3-3.

Example 3-3. Enhanced ArticleHandler

from XML.sax.handler import ContentHandler

class ArticleHandler(ContentHandler):

 """

 A handler to deal with articles in XML

 """

 inArticle = 0

 inBody = 0

 isMatch = 0

 title = ""

 body = ""

IT-SC book
64

 def startElement(self, name, attrs):

 if name == "webArticle":

 subcat = attrs.get("subcategory", "")

 if subcat.find("tech") > -1:

 self.inArticle = 1

 self.isMatch = 1

 elif self.inArticle:

 if name == "header":

 self.title = attrs.get("title", "")

 if name == "body":

 self.inBody = 1

 def characters(self, characters):

 if self.inBody:

 if len(self.body) < 80:

 self.body += characters

 if len(self.body) > 80:

 self.body = self.body[:78] + "..."

 self.inBody = 0

 def endElement(self, name):

 if name == "body":

 self.inBody = 0

3.3.4 Using the Additional Information

Now that the handler has been modified to collect more information and determine if the article is
interesting, we can add a little more code to art.py so that when an interesting article is found, it

IT-SC book
65

prints a report for the user and ignores everything else. To do this, we need only append this code
to the end of art.py, which was originally shown in Example 3-2:

if ch.isMatch:

 print "News Item!"

 print "Title:", ch.title

 print "Body:", ch.body

With article.xml as input, you should see the following output:

$> python art.py

 < article.xml

News Item!

Title: NASA Builds Warp Drive

Body: Seattle, WA - Today an anonymous individual

 announced that NASA has completed building a...

3.4 Searching File Information

In this section, we create a file indexing script that can generate an XML document representing
your entire filesystem or a specific portion of it. Indexing files with XML is a powerful way to
keep track of information, or perform bulk operations on groups of particular files on a disk. You
can create an XML-generating indexing routine easily in Python. The index.py program in
Example 3-4 (which shows up a little later in the chapter) starts in any directory you specify and
generates an element for each file or directory that exists beneath the starting point. Once we have
the index of file information, we look at how to use SAX to search the information to filter the list
of files for whatever criteria interests us at the time.

3.4.1 Creating the Index Generator

The main part of this routine works by just checking each file in a starting directory, and then
recursing into any directories it finds beneath the starting directory. Recursion allows it to index
an entire filesystem if you choose. On Unix, the program performs a lot of work, as it does
content checking via a popen call to the file command for each file. (While this could be made
more efficient by calling find less often and requiring it to operate on more than one file at a
time, that isn't the topic of this book.) One of the key methods of this class is
indexDirectoryFiles:

def indexDirectoryFiles(self, dir):

 """Index a directory structure and creates an XML output file."""

IT-SC book
66

 # prepare output XML file

 self.__fd = open(self.outputFile, "w")

 self.__fd.write('<?xml version="1.0" encoding="' +

 XML_ENC + '"?>\n')

 self.__fd.write("<IndexedFiles>\n")

 # do actual indexing

 self.__indexDir(dir)

 # close out XML file

 self.__fd.write("</IndexedFiles>\n")

 self.__fd.close()

An XML file is created with the name given in outputFile and an XML declaration and root
element are added. The indexDirectoryFiles method calls its internal _ _indexDir
method—this is the real worker method. It is a recursive method that descends the file hierarchy,
indexing files along the way.

def __indexDir(self, dir):

 """Recursive function to do the actual indexing."""

 # Create an indexFile for each regular file,

 # and call the function again for each directory

 files = listdir(dir)

 for file in files:

 fullname = os.path.join(dir, file)

 st_values = stat(fullname)

 # check if its a directory

 if S_ISDIR(st_values[0]):

 print file

IT-SC book
67

 # create directory element

 self.__fd.write("<Directory ")

 self.__fd.write(' name="' + escape(fullname) + '">\n')

 self.__indexDir(fullname)

 self.__fd.write("</Directory>\n")

 else:

 # create regular file entry

 print dir + file

 lf = IndexFile(fullname, st_values)

 self.__fd.write(lf.getXML())

The actual work is just determining those files that are directories and those that are regular files.
XML is created accordingly during this process, and written to the output file. When all of the
__indexDir calls eventually return, the XML file is closed.

Now the program is essentially finished. A helper function named escape is imported from the
xml.sax.saxutils module to perform entity substitution against some common characters
within XML character data to ensure they do not appear to be markup in the resulting XML.

3.4.1.1 Creating the IndexFile class

The IndexFile class is used for an XML representation of file information. This information is
derived primarily from the os.stat system call. The class copies information from the stat call
into its member variables in its __init__ method, as shown here:

def __init__(self, filename, st_vals):

 """Extract properties from supplied stat object."""

 self.filename = filename

 self.uid = st_vals[4]

 self.gid = st_vals[5]

 self.size = st_vals[6]

 self.accessed = ctime(st_vals[7])

 self.modified = ctime(st_vals[8])

 self.created = ctime(st_vals[9])

IT-SC book
68

 # try for filename extension

 self.extension = os.path.splitext(filename)[1]

In this method, important file information is extracted from the tuple st_vals. This contains the
filesystem information returned by the stat call. The __init__ method also tries for a filename
extension if possible by checking for the "." character. If you are running Unix, the script tries to
use the os.popen function to call the file command, which returns a human-readable
description of the content of both text and binary files. It can take much longer to generate, but
once in, the XML is valuable and does not need to be regenerated every time we want it:

check contents using file command on linux

if os.name == "posix":

 # Open a process to check file contents

 fd = popen("file \"" + filename + "\"")

 self.contents = fd.readline().rstrip()

 fd.close()

else:

 # No content information

 self.contents = self.extension

If you're not using Unix, the file command is unavailable, and so the contents information is
given the file extension. For example, in a Word file, the XML is
<contents>.doc</contents>. On Unix, however, the call to popen returns a file object. The
output text of the command is read in using the readline method of the file object. The results
are then stripped and used as a description of the files contents. The class features a single method,
getXML, which returns the file information as a single XML element in string format:

def getXML(self):

 """Returns XML version of all data members."""

 return ("<file name=\"" + escape(self.filename) + "\">" +

 "\n\t<userID>" + str(self.uid) + "</userID>" +

 "\n\t<groupID>" + str(self.gid) + "</groupID>" +

 "\n\t<size>" + str(self.size) + "</size>" +

 "\n\t<lastAccessed>" + self.accessed +

 "</lastAccessed>" +

IT-SC book
69

 "\n\t<lastModified>" + self.modified +

 "</lastModified>" +

 "\n\t<created>" + self.created + "</created>" +

 "\n\t<extension>" + self.extension +

 "</extension>" +

 "\n\t<contents>" + escape(self.contents) +

 "</contents>" +

 "\n</file>")

In the preceding code, the XML is thrown together as a series of strings. Another way is to use a
DOMImplementation object to create individual elements and insert them into the document's
structure (illustrated in Chapter 10).

Both of these classes are used to develop a lengthy XML document representing files and
metadata for any given section of your filesystem. The complete listing of index.py is shown in
Example 3-4

Example 3-4. index.py

#!/usr/bin/env python

"""

index.py

usage: python index.py <starting-dir> <output-file>

"""

import os

import sys

from os import stat

from os import listdir

from os import popen

from stat import S_ISDIR

from time import ctime

IT-SC book
70

from xml.sax.saxutils import escape

XML_ENC = "ISO-8859-1"

"""

 Class: Index(startingDir, outputFile)

"""

class Index:

 """

 This class indexes files and builds

 a resultant XML document.

 """

def __init__(self, startingDir, outputFile):

 """ init: sets output file """

 self.outputFile = outputFile

 self.startingDir = startingDir

 def indexDirectoryFiles(self, dir):

 """Index a directory structure and creates an XML output file."""

 # prepare output XML file

 self.__fd = open(self.outputFile, "w")

 self.__fd.write('<?xml version="1.0" encoding="' +

 XML_ENC + '"?>\n')

 self.__fd.write("<IndexedFiles>\n")

 # do actual indexing

 self.__indexDir(dir)

IT-SC book
71

 # close out XML file

 self.__fd.write("</IndexedFiles>\n")

 self.__fd.close()

 def __indexDir(self, dir):

 """Recursive function to do the actual indexing."""

 # Create an indexFile for each regular file,

 # and call the function again for each directory

 files = listdir(dir)

 for file in files:

 fullname = os.path.join(dir, file)

 st_values = stat(fullname)

 # check if its a directory

 if S_ISDIR(st_values[0]):

 print file

 # create directory element

 self.__fd.write("<Directory ")

 self.__fd.write(' name="' + escape(fullname) + '">\n')

 self.__indexDir(fullname)

 self.__fd.write("</Directory>\n")

 else:

 # create regular file entry

 print dir + file

 lf = IndexFile(fullname, st_values)

IT-SC book
72

 self.__fd.write(lf.getXML())

"""

 Class: IndexFile(filename, stat-tuple)

"""

class IndexFile:

 """

 Simple file representation object with XML

 """

 def __init__(self, filename, st_vals):

 """Extract properties from supplied stat object."""

 self.filename = filename

 self.uid = st_vals[4]

 self.gid = st_vals[5]

 self.size = st_vals[6]

 self.accessed = ctime(st_vals[7])

 self.modified = ctime(st_vals[8])

 self.created = ctime(st_vals[9])

 # try for filename extension

 self.extension = os.path.splitext(filename)[1]

 # check contents using file command on linux

 if os.name == "posix":

 # Open a process to check file

 # contents

 fd = popen("file \"" + filename + "\"")

 self.contents = fd.readline().rstrip()

IT-SC book
73

 fd.close()

 else:

 # No content information

 self.contents = self.extension

 def getXML(self):

 """Returns XML version of all data members."""

 return ("<file name=\"" + escape(self.filename) + "\">" +

 "\n <userID>" + str(self.uid) + "</userID>" +

 "\n <groupID>" + str(self.gid) + "</groupID>" +

 "\n <size>" + str(self.size) + "</size>" +

 "\n <lastAccessed>" + self.accessed +

 "</lastAccessed>" +

 "\n <lastModified>" + self.modified +

 "</lastModified>" +

 "\n\t<created>" + self.created + "</created>" +

 "\n\t<extension>" + self.extension +

 "</extension>" +

 "\n\t<contents>" + escape(self.contents) +

 "</contents>" +

 "\n</file>")

"""

Main

"""

if __name__ == "__main__":

 index = Index(sys.argv[1], sys.argv[2])

 print "Starting Dir:", index.startingDir

IT-SC book
74

 print "Output file:", index.outputFile

 index.indexDirectoryFiles(index.startingDir)

3.4.1.2 Running index.py

Running index.py from the command line requires supplying both a starting directory and an
XML filename to use as output:

$> python index.py /usr/bin/ usrbin.xml

The script prints directory names similar to the find command, but after completion, the file
usrbin.xml contains something similar to the following:

<?xml version="1.0" encoding=" ISO-8859-1"?>

<IndexedFiles>

<Directory name="/usr/bin/X11">

<file name="/usr/bin/X11/Magick-config">

 <userID>0</userID>

 <groupID>0</groupID>

 <size>1786</size>

 <lastAccessed>Fri Jan 19 22:29:34 2001</lastAccessed>

 <lastModified>Mon Aug 30 20:49:06 1999</lastModified>

 <created>Mon Sep 11 17:22:01 2000</created>

 <extension>None</extension>

 <contents>/usr/bin/X11/Magick-config: Bourne shell script
text</contents>

</file><file name="/usr/bin/X11/animate">

 <userID>0</userID>

 <groupID>0</groupID>

 <size>16720</size>

 <lastAccessed>Fri Jan 19 22:29:34 2001</lastAccessed>

 <lastModified>Mon Aug 30 20:49:09 1999</lastModified>

 <created>Mon Sep 11 17:22:01 2000</created>

IT-SC book
75

 <extension>None</extension>

 <contents>/usr/bin/X11/animate: ELF 32-bit LSB executable,

 Intel 80386,version 1, dynamically linked (uses

 shared libs), stripped</contents>

</file>

The XML file's size depends on the particular directory it originated in. By default, the
program follows symbolic links (on Unix, symbolic links allow one directory or
filename to refer to another), introducing the possibility of forming infinite recursion,
so beware! Indexing your home directory or indexing a directory of open source
software that you've downloaded is probably the most effective thing to do in this
case.

3.4.2 Searching the Index

Now that your file data has been abstracted to XML, you can write a SAX event
handler to search for items within the file list. SAX is a good choice here, because
this document could easily be several megabytes in size, and interpreting it as it is
being read is the least resource-intensive approach.

The saxfinder.py script takes a single argument (the search text) and parses the supplied XML file
checking via its SAX handler interfaces, in order to see if any of the files are of interest to you.

The script expects to work on XML as created earlier with index.py.

If the contents element of your XML file contains the character data that you supplied on the
command line, the file is considered a match and the script prints a message accordingly. If you
are running Windows, your contents tags only have the file extension, so your searches are
limited to file extensions, unless you alter the code to watch something besides just the
contents element.

Use three methods of the SAX interface to implement your metadata finder. First,
startElement is implemented to both capture the name of the current file element as well as
mark when you've entered the character data portion following a contents tag:

def startElement(self, name, attrs):

 if name == "file":

 self.filename = attrs.get('name', "")

 elif name == "contents":

 self.getCont = 1

If you're entering a content element, a flag (self.getCont) is set so that the characters
method knows when to gobble up character data and store it in another member variable:

IT-SC book
76

def characters(self, ch):

 if self.getCont:

 self.contents += ch

When an endElement event rolls around, the script examines the contents that have been
captured (if any) to see if they match the original command-line parameter. If so, the filename is
printed; if not, SAX happily moves on to the next file element within the XML document:

def endElement(self, name):

 if name == "contents":

 self.getCont = 0

 if self.contents.find(self.contentType) > -1:

 print self.filename, "has", self.contentType, "content."

 self.contents = ""

In addition, the self.getCont flag is disabled after leaving a contents element, to instruct the
characters method not to capture data.

SAX helps you here by allowing you to process an XML index file that represents an
entire filesystem and easily takes up 20 megabytes on your disk. Parsing such a
gigantic document with the DOM can be difficult and unbearably slow.

Example 3-5 shows the complete listing of saxfinder.py.

Example 3-5. saxfinder.py

"""

saxfinder.py - generates HTML from pyxml.xml

"""

import sys

from xml.sax import make_parser

from xml.sax import ContentHandler

class FileHandler(ContentHandler):

 def __init__(self, contentType):

 self.getCont = 0

IT-SC book
77

 self.contents = ""

 self.filename = ""

 self.contentType = contentType

 def startElement(self, name, attrs):

 if name == "file":

 self.filename = attrs.get('name', "")

 elif name == "contents":

 self.getCont = 1

 def characters(self, ch):

 if self.getCont:

 self.contents += ch

 def endElement(self, name):

 if name == "contents":

 self.getCont = 0

 if self.contents.find(self.contentType) > -1:

 print self.filename, "has", self.contentType, "content."

 self.contents = ""

Main

fh = FileHandler(sys.argv[1])

parser = make_parser()

parser.setContentHandler(fh)

parser.parse(sys.stdin)

IT-SC book
78

You can run saxfinder.py from the command line on both Unix and Windows. You need to
supply a search string as the first parameter, and be sure and redirect or pipe an XML document
(created with index.py) into standard input:

$> python saxfinder.py "C program" < nard.xml

The result should be something like this:

/home/shm00/nard/xd/server.cpp has C program content.

/home/shm00/nard/xd/shmoo.cpp has C program content.

/home/shm00/nard/gl-misc/array.cpp has C program content.

/home/shm00/nard/gl-misc/vertex.cpp has C program content.

/home/shm00/nard/gl-misc/mecogl.cpp has C program content.

/home/shm00/nard/gl-misc/drewgl/smugl.cpp has C program content.

/home/shm00/nard/gl-misc/drewgl/pal.cpp has C program content.

/home/shm00/nard/gl-misc/drewgl/pal.h has C program content.

/home/shm00/nard/gl-misc/drewgl/gl.cpp has C program content.

3.5 Building an Image Index

If you've ever visited an image library on the Internet, you've probably enjoyed (even taken for
granted) the way a collection of small thumbnail images acts as links for full-sized counterparts.
Many artists, when presenting a portfolio online, adopt this effective approach to displaying their
work. With the rise of digital cameras and scanners, more and more people are finding
themselves pulling directories full of images onto the Web in a format that makes for easy
browsing. In the next section, we build a Python script that takes a full directory of images and
thumbnail images and creates a master HTML page with the thumbnails acting as links to the
full-size image. The saxthumbs.py program expects you to have a pre-existing directory of images
and thumbnails, and operates on the output of the index.py script we created earlier.

In order for the saxthumbs.py SAX handler to correctly process a thumbnail directory, the images
need to follow a naming convention (easily changeable by editing the code). Currently, the
saxthumbs.py handler expects to find file elements within the XML document that have a
corresponding <imagename>.jpg file that is the entire image, and a t-<imagename>.jpg file that
is a thumbnail-size image.

When using index.py to create a list of your image files, point it to a directory that has image
files named accordingly:

$> ls -l *newimage*

-rw-rw-r-- 1 shm00 shm00 98197 Jan 18 11:08 newimage.jpg

-rw-rw-r-- 1 shm00 shm00 5272 Jan 18 11:42 t-newimage.jpg

IT-SC book
79

In this manner, every file that ends in .jpg and has a corresponding t-<imagename>.jpg file
(note the size differences) is assimilated into the thumbnail index.

3.5.1 Creating Thumbnail Images

There is an easy way to set up your image files on Unix systems, using the convert command.
This command is part of the ImageMagick package, and is installed by default by most modern
Linux distributions. For other Unix systems, the package is available at
http://www.imagemagick.org/.

$> convert image.jpg -geometry 192x128 t-image.jpg

This will take image.jpg, no matter how large it is, and make a 192x128 size thumbnail in JPEG
format. Of course, if the image is a Windows bitmap image (with the .bmp extension), you can
do a two-step operation to get JPEG files:

$> convert image.bmp image.jpg

$> convert image.jpg -geometry 192x128 t-image.jpg

Now that you understand how convert works, you can use a simple shell loop to produce small
thumbnail images for every .jpg in your image directory:

$> for each in *jpg

> do

> convert $each -geometry 192x128 t-$each

> echo $each

> done

You should end up with the following:

-rwxrwxr-x 1 shm00 shm00 97003 Jan 16 22:40 mvc-001s.jpg

-rwxrwxr-x 1 shm00 shm00 93373 Jan 16 22:40 mvc-002s.jpg

-rwxrwxr-x 1 shm00 shm00 86619 Jan 16 22:40 mvc-003s.jpg

-rwxrwxr-x 1 shm00 shm00 94894 Jan 16 22:40 mvc-004s.jpg

-rwxrwxr-x 1 shm00 shm00 76210 Jan 16 22:40 mvc-005s.jpg

-rwxrwxr-x 1 shm00 shm00 73704 Jan 16 22:40 mvc-006s.jpg

-rwxrwxr-x 1 shm00 shm00 80292 Jan 16 22:40 mvc-007s.jpg

-rw-rw-r-- 1 shm00 shm00 4434 Jan 21 11:46 t-mvc-001s.jpg

-rw-rw-r-- 1 shm00 shm00 4181 Jan 21 11:46 t-mvc-002s.jpg

IT-SC book
80

-rw-rw-r-- 1 shm00 shm00 3604 Jan 21 11:46 t-mvc-003s.jpg

-rw-rw-r-- 1 shm00 shm00 4634 Jan 21 11:46 t-mvc-004s.jpg

-rw-rw-r-- 1 shm00 shm00 3339 Jan 21 11:46 t-mvc-005s.jpg

-rw-rw-r-- 1 shm00 shm00 2777 Jan 21 11:46 t-mvc-006s.jpg

-rw-rw-r-- 1 shm00 shm00 2996 Jan 21 11:46 t-mvc-007s.jpg

This listing represents the convert program applied against mvc-00*.jpg files taken with a
digital camera. The saxthumbs.py script produces markup to display both the thumbnails and each
individual image.

If you run index.py against this directory, you create an XML file that we are able to use a little
later in the chapter when we go over the saxthumbs.py process:

$> ./index.py /home/shm00/images/ img.xml

The new file, img.xml, contains file elements that detail your image files in a format appropriate
for the script to manipulate.

3.5.1.1 Creating thumbnails on Windows

If you don't have access to Unix (or a scriptable image processor for your operating system), you
can create your own image directory on Windows. Just be sure to resize originals and prefix the
thumbnails with t-, and make sure that all of the images to be displayed on the Web are in JPEG
format (ending with .jpg). For example, if you open the My Pictures directory in Photoshop, you
can take each image, resize it to 192x128, and save it as a t- version of its original self.

To come back around to our example, once you prepare the directory, you can point index.py at it
and generate an XML index file for the images.

3.5.2 Implementing the SAXThumbs Handler

The SAXThumbs handler creates an anchor for each thumbnail in the HTML output file, and
creates a standalone HTML document to display the full size image. Then, SAXThumbs leaves
you with an HTML page showing all of your thumbnails, as well as an HTML page for each full
size image.

The SAXThumbs handler is implemented as a class inheriting from ContentHandler. The name
of the output file, which should contain a preview of all of the thumbnails, is supplied as a
command-line parameter and passed to the constructor:

def __init__(self, thumbsFilename):

 self.filename = thumbsFilename

def startDocument(self):

IT-SC book
81

 self.fd = open(self.filename, "w")

 self.fd.write("<html><body>\n")

def endDocument(self):

 self.fd.write("</body></html>\n")

 self.fd.close()

When the end of the XML document is reached, it's assumed that there are no more
image files to process, and the thumbnails document is closed.

The rest of the work is done in the startElement method. First, the image name is copied
without its path information:

def startElement(self, name, attrs):

 if name == "file":

 filename = attrs.get("name", "")

 # pull out just the filename

 dir, localname = os.path.split(filename)

 localname, ext = os.path.splitext(localname)

Then, the file is examined to determine whether it's a thumbnail or a full image.
Thumbnails have HTML anchors around them, which are then added to the
thumbnails output file:

 if localname.startswith("t-") and ext == ".jpg":

 # create anchor tag in thumbs.html

 fullImgLink = localname[2:] + ".html"

 self.fd.write('
\n'

 % (fullImgLink, localname, ext))

If the image is not a thumbnail, but a full image, then a separate HTML file is created
that displays the image:

 fullImageFile = os.path.join(dir, localname) + ".html"

 print "Will create:", fullImageFile

IT-SC book
82

 fullImageHTML = ('<html><body></body></html>\n'

 % (localname, ext))

 lfd = open(fullImageFile, "w")

 lfd.write(fullImageHTML)

 lfd.close()

The full-image HTML file is created in the same directory that holds the image. The thumbnails
file is created in the same directory from which you're running thumbmaker.py. Example 3-6
shows saxthumbs.py.

Example 3-6. saxthumbs.py

from xml.sax import ContentHandler

class SAXThumbs(ContentHandler):

 """

 This is the SAX handler that generates a full-

 image display (an .html page) for each image file

 contained in the XML file.

 It also adds an anchor on the thumbs page showing

 the thumbnail, and linking to the big image page

 that was created first.

 """

 def __init__(self, thumbsFilename):

 self.filename = thumbsFilename

 def startDocument(self):

 self.fd = open(self.filename, "w")

 self.fd.write("<html><body>\n")

IT-SC book
83

 def endDocument(self):

 self.fd.write("</body></html>\n")

 self.fd.close()

 def startElement(self, name, attrs):

 if name == "file":

 filename = attrs.get("name", "")

 # slice out just the filename

 dir, localname = os.path.split(filename)

 localname, ext = os.path.splitext(localname)

 if localname.startswith("t-") and ext == ".jpg":

 # create anchor tag in thumbs.html

 fullImgLink = localname[2:] + ".html"

 self.fd.write('
\n'

 % (fullImgLink, localname, ext))

 fullImageFile = os.path.join(dir, localname) + ".html"

 print "Will create:", fullImageFile

 fullImageHTML = ('<html><body></body><html>\n'

 % (localname, ext))

 lfd = open(fullImageFile, "w")

 lfd.write(fullImageHTML)

 lfd.close()

The thumbmaker.py file is a script that loads the XML from standard input, and registers the
SAXThumbs class as the chosen handler to use with the SAX parser. Example 3-7 shows
thumbmaker.py in its entirety.

IT-SC book
84

Example 3-7. thumbmaker.py

#!/usr/bin/env python

thumbmaker.py

import sys

from xml.sax import make_parser

from saxthumbs import SAXThumbs

Main

ch = SAXThumbs(sys.argv[1])

parser = make_parser()

parser.setContentHandler(ch)

parser.parse(sys.stdin)

It is interesting to note the similarity to the first script that we wrote in Example 3-2.

To run thumbmaker.py, you first need to make sure you have created the right type of directory
containing image files and that you've run index.py across the directory to generate an XML file
containing the list of files. Once you have these items, you can pick a name for the index file
(such as mythumbs.html) and pass it to the script:

$> python thumbmaker.py mythumbs.html < img.xml

In this case, mythumbs.html is the output file, and the XML source is received from the file
img.xml.

3.5.3 Viewing Your Thumbnails

After executing thumbmaker.py, you are left with a thumbnails file that is sitting in your
current working directory. You should move this file to the directory that is holding your images:

$> mv mythumbs.html /home/shm00/tw/zero/images/

3.6 Converting XML to HTML

IT-SC book
85

The PyXML package contains XML parsers, including PyExpat, as well as support for
SAX and DOM, and much more. While learning the ropes of the PyXML package, it
would be nice to have a comprehensive list of all the classes and methods. Since this
is a programming book, it seems appropriate to write a Python program to extract
the information we need—and in XML, no less!

Let's generate an XML file that details each of the files in the PyXML package, the classes
therein, and the methods of the class. This process allows us to generate quick, usable XML.
Rather than a replacement for all the snazzy code-to-documentation generators out there,
Example 3-8 shows a simple, quick way to generate XML that we can experiment with and use
throughout the examples in this chapter. After all, when manipulating XML, it helps to have a
few hundred thousand bytes of it sitting around to play with. (This program also demonstrates the
simplicity of examining all the files in a directory tree in using the os.path.walk function.)

Example 3-8. genxml.py

"""

genxml.py

Descends PyXML tree, indexing source files and creating

XML tags for use in navigating the source.

"""

import os

import sys

from xml.sax.saxutils import escape

def process(filename, fp):

 print "* Processing:", filename,

 # parse the file

 pyFile = open(filename)

 fp.write("<file name=\"" + filename + "\">\n")

IT-SC book
86

 inClass = 0

 line = pyFile.readline()

 while line:

 line = line.strip()

 if line.startswith("class") and line[-1] == ":":

 if inClass:

 fp.write(" </class>\n")

 inClass = 1

 fp.write(" <class name='" + line[:-1] + "'>\n")

 elif line.find("def") > 0 and line[:-1] == ":" and inClass:

 fp.write(" <method name='" + escape(line[:-1]) + "'/>\n")

 line = pyFile.readline()

 pyFile.close()

 if inClass:

 fp.write(" </class>\n")

 inClass = 0

 fp.write("</file>\n")

def finder(fp, dirname, names):

 """Add files in the directory dirname to a list."""

 for name in names:

 if name.endswith(".py"):

 path = os.path.join(dirname, name)

 if os.path.isfile(path):

IT-SC book
87

 process(path, fp)

def main():

 print "[genxml.py started]"

 xmlFd = open("pyxml.xml", "w")

 xmlFd.write("<?xml version=\"1.0\"?>\n")

 xmlFd.write("<pyxml>\n")

 os.path.walk(sys.argv[1], finder, xmlFd)

 xmlFd.write("</pyxml>")

 xmlFd.close()

 print "[genxml.py finished]"

if __name__ == "__main__":

 main()

The main function in Example 3-8 uses the os.path.walk function to search your PyXML
directory for Python files. For each Python source file that exists beneath the starting directory
(the argument to the script), the process function is called to extract class information. That
function writes the extracted information into the open XML file.

At this point, the script proceeds to parse each Python source file, highlighting each of the classes
and methods contained within them by parsing each line for relevant keywords such as class
and def:

def process(filename, fp):

 print "* Processing:", filename,

 # parse the file

 pyFile = open(filename)

IT-SC book
88

 fp.write("<file name='" + filename + "'>\n")

 inClass = 0

 line = pyFile.readline()

 while line:

 line = line.strip()

When the program finds a class declaration, it creates the appropriate class tag and attributes
within the XML document:

 if line.startswith("class") and line[-1] == ":":

 if inClass:

 fp.write(" </class>\n")

 inClass = 1

 fp.write(" <class name='" + line[:-1] + "'>\n")

When the program encounters a method definition, it replaces special characters
with entities so they don't cause problems in the XML. The method definition string is
trimmed, and then surrounded with the appropriate markup:

 elif line.find("def") > 0 and line[:-1] == ":" and inClass:

 fp.write(" <method name='" + escape(line[:-1]) + "'/>\n")

 line = pyFile.readline()

After a file is complete, the program closes out the last class it was in, if any, and
closes out the file tag as well:

 pyFile.close()

 if inClass:

 fp.write(" </class>\n")

 inClass = 0

 fp.write("</file>\n")

Python simplifies the work of parsing the text. Each line is manipulated quite a bit, quotation
marks are escaped with entities (using the escape function from the xml.sax.saxutils
module), and XML tags are placed around class definitions and method names.

IT-SC book
89

To run this program from the shell:

$> python genxml.py /home/chris/PyXML/xml

The parameter to the script is the path to your PyXML source directory (including the xml
subdirectory).

3.6.1 The Generated Document

The XML that is generated is placed in a file called pyxml.xml. Each file element looks
something like this:

<file name="../xml/dom/ext/reader/Sax2Lib.py">

 <class name="class LexicalHandler">

 <method name="def xmlDecl(self, version, encoding, standalone)"/>

 <method name="def startDTD(self, doctype, publicID, systemID)"/>

 <method name="def endDTD(self)"/>

 <method name="def startEntity(self, name)"/>

 <method name="def endEntity(self, name)"/>

 <method name="def comment(self, text)"/>

 <method name="def startCDATA(self)"/>

 <method name="def endCDATA(self)"/>

 </class>

 <class name="class EntityRefList">

 <method name="def getLength(self)"/>

 <method name="def getEntityName(self, index)"/>

 <method name="def getEntityRefStart(self, index)"/>

 <method name="def getEntityRefEnd(self, index)"/>

 <method name="def __len__(self)"/>

 </class>

 <class name="class NamespaceHandler">

 <method name="def startNamespaceDeclScope(prefix, uri)"/>

 <method name="def endNamespaceDeclScope(prefix)"/>

IT-SC book
90

 </class>

 <class name="class SAXNotSupportedException(Exception)">

 </class>

</file>

Note that the name attribute of the file tag varies depending upon what your parameter is to the
script (your PyXML source path). Functions not defined as methods in a class are not included by
the simple parsing loop (hey, this isn't a compiler!), but you should be aware that the XML
support provided by both the standard library and the PyXML package includes many useful
functions—read the reference documentation for more information on those. The escape
function we use in this script is a perfect example of this. If you're new to Python, you'll find that
little helper functions are characteristic of Python libraries; most of the small utilities needed to
make the larger facilities easier to use have already been included, allowing you to concentrate on
your application.

If you spend some time reviewing this XML file, you will start to become familiar with the scope
of the PyXML toolkit. A script is provided a little later in this chapter that converts this XML to
HTML using the SAX API and Python string manipulation features. Figure 3-2 shows the XML
within a browser.

Figure 3-2. genhtml.py output in a browser

IT-SC book
91

3.6.2 The Conversion Handler

You can finish off this program by implementing the PyXMLConversionHandler class. This
class generates HTML from the XML file we created earlier. The process allows you to load the
HTML file into your browser and see all of the files, classes, and methods within PyXML in
formatted text. Create this class, as shown in Example 3-9, in the file handlers.py.

Example 3-9. handlers.py

from xml.sax import ContentHandler

class PyXMLConversionHandler(ContentHandler):

 """A simple handler implementing 3 methods of

 the SAX interface."""

 def __init__(self, fp):

IT-SC book
92

 """Save the file object that we generate HTML into."""

 self.fp = fp

 def startDocument(self):

 """Write out the start of the HTML document."""

 self.fp.write("<html><body>\n")

 def startElement(self, name, attrs):

 if name == "file":

 # generate start of HTML

 s = attrs.get('name', "")

 self.fp.write("<p>File: %s
\n" % s)

 print "* Processing:", s

 elif name == "class":

 self.fp.write(" " * 3 + "Class: "

 + attrs.get('name', "") + "
\n")

 elif name == "method":

 self.fp.write(" " * 6 + "Method: "

 + attrs.get('name', "") + "
\n")

 def endDocument(self):

 """End the HTML document we're generating."""

 self.fp.write("</body></html>")

While the conversion itself is very straightforward, one interesting thing to note is that this class
writes its output to a file object passed to the constructor instead of building a string of XML text
in memory. This avoids storing a potentially large buffer in memory and building it incrementally
with many memory copies. If the string is required to be in memory when the process is complete,
the creator can provide a StringIO instance as the file to write to; the StringIO

IT-SC book
93

implementation is more efficient at building a large string than many string concatenations. This
is a Python idiom that has proven its utility over a wide range of projects.

3.6.3 Driving the Conversion Handler

The main script really isn't any different from the others we've looked at so far. We create the
parser and instantiate our handler class, register the handler, and set the parser in motion. This
process is shown in Example 3-10.

Example 3-10. genhtml.py

#!/usr/bin/env python

generates HTML from pyxml.xml

import sys

from xml.sax import make_parser

from handlers import PyXMLConversionHandler

dh = PyXMLConversionHandler(sys.stdout)

parser = make_parser()

parser.setContentHandler(dh)

parser.parse(sys.stdin)

The output from this script is written to the standard output stream.

3.7 Advanced Parser Factory Usage

PyXML features several parsers, and multiple ways to instantiate them, depending on whether
you're using SAX, trying to create a DOM tree, or doing something completely different.
Designed for portable code, a ParserFactory class is provided that supplies a SAX-ready
parser guaranteed available in your runtime environment. Additionally, you can explicitly create a
parser (or SAX driver) by dipping into any specific package, such as PyExpat. We illustrate an
example of both, but normally you should rely on the parser factory to instantiate a parser.

The make_parser function (imported from xml.sax) returns a SAX driver for the first
available parser in the list that you supply, or returns an available parser if no list is specified or if

IT-SC book
94

the list contains parsers that are not found or cannot be loaded. The make_parser function has
its roots as part of the xml.sax.saxexts.ParserFactory class, but it is better to import the
method from xml.sax (more on this in a bit). For example:

from xml.sax import make_parser

parser = make_parser()

At the time of this writing, if you have PyXML installed, a call to make_parser without an
argument is sure to return either a PyExpat or xmlproc driver. If you dig into the source of the
xml.sax module, you will see this list supplied to the ParserFactory class. If you instantiate a
parser factory directly out of xml.sax.saxexts, you need to be sure to supply a list containing
the name of at least one valid parser, or it won't be able to create a parser:

>>> from xml.sax.saxexts import ParserFactory

>>> p = ParserFactory()

>>> parser = p.make_parser()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

 File "/usr/local/lib/python2.0/site-packages/_xmlplus/sax/saxexts.py",

 line 77, in make_parser

 raise SAXReaderNotAvailable("No parsers found", None)

xml.sax._exceptions.SAXReaderNotAvailable: No parsers found

If you supply a list of parsers or drivers, you get what you're after:

>>> from xml.sax.saxexts import ParserFactory

>>> p = ParserFactory(["xml.sax.drivers.drv_pyexpat"])

>>> parser = p.make_parser()

In most cases, it's a good idea to use the make_parser function from xml.sax, but it's also
valuable to know what is going on under the hood. Several factory classes are available, with
variations for HTML, SGML, non-validating XML, and validating XML parsers.

3.8 Native Parser Interfaces

Now that we've looked at how SAX can be used and have seen just how regular the code is to set
up the parser and the ContentHandler, you may be wondering how much of that ease comes
from using SAX and how much is a matter of convenience functions in the Python libraries.
While we won't delve deeply into the native interfaces of the individual parsers, this is a good
question, and can lead to some interesting observations.

IT-SC book
95

The key advantage to using SAX is that the callback methods have the same names
and significance regardless of the actual parser you use. There are at least two nice
results of this: changing parsers does not affect your application, and your code is
more maintainable because someone new to the code is more likely to know the SAX
interface than any particular parser-specific interface.

So just how do the native interfaces to the individual parsers differ from SAX, and
why would we choose to use them instead? Let's take a quick look at the PyExpat
parser to get a taste of the differences.

3.8.1 Using PyExpat Directly

Of course, to use PyExpat, you need to have it installed. It is included as part of the
Python installer for Windows, and is built automatically on Unix if you have the Expat
library installed. If you did not install PyExpat as part of Python, it is installed as part
of the PyXML package.

PyExpat resides in the xml.parsers.expat module. If we want to modify our last example to
use PyExpat directly, we don't have a lot of work to do, but there are a few changes. Since the
PyExpat handler methods closely match the SAX handlers, at least for the basic use we
demonstrate here, we can use the same handler class we've already written. The imports won't
need to change much:

#!/usr/bin/env python

import sys

from xml.parsers import expat

from handlers import PyXMLConversionHandler

Once the parser is imported, it can be created and used:

parser = expat.ParserCreate()

Were we to do this at the interactive prompt, we could poke at the parser object to
see what attributes it has:

>>> from xml.parsers import expat

>>> parser = expat.ParserCreate()

>>> dir(parser)

['CharacterDataHandler', 'CommentHandler', 'DefaultHandler',
'DefaultHandlerExpa

nd', 'EndCdataSectionHandler', 'EndElementHandler',
'EndNamespaceDeclHandler', '

IT-SC book
96

ErrorByteIndex', 'ErrorCode', 'ErrorColumnNumber', 'ErrorLineNumber',
'ExternalE

ntityParserCreate', 'ExternalEntityRefHandler', 'GetBase',
'NotStandaloneHandler

', 'NotationDeclHandler', 'Parse', 'ParseFile',
'ProcessingInstructionHandler',

'SetBase', 'StartCdataSectionHandler', 'StartElementHandler',
'StartNamespaceDec

lHandler', 'UnparsedEntityDeclHandler', 'ordered_attributes',
'returns_unicode',

 'specified_attributes']

That certainly doesn't look like a SAX parser!

There is no setContentHandler method, nor is there anything that takes its place. To register
our content handler, we need to set various attributes to the methods of a content handler instance:

dh = PyXMLConversionHandler(sys.stdout)

parser.StartElementHandler = dh.startElement

parser.EndElementHandler = dh.endElement

parser.CharacterDataHandler = dh.characters

This isn't hard, but it is certainly more tedious than the SAX setContentHandler method, and
the code actually needs to be changed, as we need to use more methods on the handler object.

Once we've initialized the handler methods we're interested in using, we can start
the parse. Again, this is a little different from the SAX version:

parser.Parse(sys.stdin.read(), 1)

We know what sys.stdin.read() does, but the 1 used for the second parameter looks
suspiciously like a magic number in our source code. It is actually a Boolean value indicating that
the string being passed to the Parse method is the final chunk of the input; Parse can be called
multiple times with smaller portions of the input and the flag set to 0, and then called with an
indicator of 1 for the final chunk of data. This can be useful when reading data asynchronously
from a network connection.

When parsing XML from a file object, the following method is also available:

parser.ParseFile(sys.stdin)

The complete script that uses the handler with PyExpat is shown in Example 3-11.

Example 3-11. genhtml2.py with PyExpat

IT-SC book
97

"""

genhtml2.py - generates HTML from pyxml.xml

"""

import sys

from xml.parsers import expat

from handlers import PyXMLConversionHandler

dh = PyXMLConversionHandler(sys.stdout)

parser = expat.ParserCreate()

parser.StartElementHandler = dh.startElement

parser.EndElementHandler = dh.endElement

parser.CharacterDataHandler = dh.characters

parser.ParseFile(sys.stdin)

The output is to the standard output stream. If opened in your browser, it shows you
all of the classes of the PyXML package and their methods, exactly as the pure SAX
version of this example did.

IT-SC book
98

Chapter 4. The Document Object Model

The Document Object Model (DOM) is an interface that exposes document structure
programmatically to developers. Perhaps the most common application of the DOM is
"Dynamic HTML" (DHTML), where an HTML document can be modified
programmatically within the browser using an embedded scripting language.
Typically, the scripting language is some flavor of ECMAScript (such as JavaScript or
JScript), since most browsers support it, but others can be used as well. (For
browsers on Windows, this can even be Python!) This allows you to change the
background color of a table cell, or dynamically change font faces after the page is in
the browser. The DOM defines the interface for vendors to offer compatible APIs.

The DOM is also extremely useful when exposed by a library such as the Python
Standard Library or PyXML. It can allow you to use Python to manipulate an XML
document already in memory. With the DOM interfaces, you can either change or
extract portions of the document.

4.1 The DOM Specifications

The Document Object Model is defined in a series of recommendations from the W3C.
The specifications clearly cover XML (or we would not be describing them in this
book), but they cover other things as well. The initial version of the DOM actually
came from the HTML world; browser vendors invented it in various flavors as part of
the APIs available to client-side scripts embedded in web pages. Since the vendors
each implemented different interfaces, there was a call from content creators to have
a standardized interface so their pages would work in at least roughly equivalent
ways on the different browsers. Since the W3C is the best available shared ground
on which the vendors could build a common specification, the DOM specifications are
developed there.

All standards organizations face issues regarding the longevity of their specifications,
and the W3C is no exception, no matter that it is quite young compared to more
traditional standards groups such as ANSI and ISO. Given the relative youth of the
W3C, it has had to deal with these issues almost from the start due to the rapid pace
of development and the way standards are applied on the Internet. It does follow a
traditional model however, rather than following the less formal (though highly
effective) model of the Internet Engineering Task Force (IETF).

Most of the W3C recommendations provide a version number of the major.minor style favored
by software developers, perhaps due to the origins of the organization. This is probably most
prominent when we look at the HTML specifications; many versions have been released, and
each is distinct from the others. Documents that contain anything beyond the simplest content
cannot hope to comply with more than one version of the recommendation. This seems difficult
to avoid for a markup language, but the effect is often that the standards are not as valuable as
they could be if it were possible to maintain a higher degree of version independence.

The W3C is doing something different with the DOM. The specifications for the DOM
do not have versions in the same sense that the HTML specification does. The new
versioning model is also being used with the Cascading Style Sheets (CSS)
recommendations, although those specifications are outside the scope of this book.

IT-SC book
99

The DOM specification has been developed as a family of individual specifications, and the
family can be described along two different axes: breadth and depth. When we think about the
breadth of the recommendations, we can describe a broad family as including many features. For
depth, we can describe a deep family as reaching further into the details as well as covering basic
functionality. A broad family does many things, while a deep family tree covers many details.
The W3C describes functional areas as features, while it describes depth of detail as levels.

4.1.1 Levels of the Specification

The levels of a specification are interesting to discuss first because they can be most confusing
for many people. It is common to hear levels described as being just a strange name for the
traditional notion of versions, but they are quite different. (Unfortunately, the DOM specifications
themselves are not always clear about this.) As each feature of the DOM is enhanced, new levels
are defined. This similarity to traditional versions certainly makes it easy to confuse the two
concepts, but there is an important difference: an implementation of the second level must include
an implementation of the first; advancing beyond the first level does not break compatibility for
code that only expects to work with the older variant of the specification.

Each level of the DOM specifications cuts across the entire breadth of the DOM family,
as it existed when it was defined (with one exception). Successive levels have
introduced new features as well. Implementations are not required to implement all
the features of the DOM, but generally need to implement the features they include
at the same level.

At the time of this writing, two levels of the DOM have been defined by W3C
recommendations, with a third level being developed by working groups within the
W3C. The primordial interfaces defined by browser implementations before the DOM
standardization began are often described as "Level 0." The Level 1 specification
from the W3C consists of a single recommendation that defines only two features,
Core and HTML. This level provides general support for HTML and the XML 1.0
recommendation, but nothing else. For Level 2, the W3C broke the specification into
six different documents. The Core feature was split into the Core and XML features,
and support for Namespaces was added. New features added in Level 2 include an
events model (mostly, but not entirely, for use in browsers), Cascading Style Sheets,
document traversal, range specifications, and a vague concept of document views.
Oddly, the HTML feature for Level 2 has not been completed and there has been no
visible progress for quite some time.

The third level of the DOM, still only available as a set of working drafts, contains
just four documents at this time. The Core, XML, and Events features are further
refined, but most of the interesting work is taking place in new features. The current
plans include new features for schemas (supporting at least the DTD and XML
Schema languages), loading and saving XML documents, and an object model for
XPath expressions. (We look at XPath in the next chapter, but it's too early to
consider that the XPath feature of the DOM is ready.)

4.1.2 Feature Specifications

The features defined by the DOM vary from level to level, with new features being added and
old features being split into separate features. The former is not a problem because code that
works with an implementation of earlier levels simply will not need the newer features. In

IT-SC book
100

practice, the second has not been demonstrated to introduce any difficulty either, if only because
Level 2 implementations always implement both the Core and XML features. For any
implementation, the only required feature is the Core.

Since most Python implementations of the DOM provide at least some features from
Level 2, and Level 3 exists only in draft form, let's take a look at what each feature
defined for Level 2 provides to the application developer.

Core

This includes basic structures required to expose well-formed XML documents
without exposing any DTD information. In particular, entities, notations,
entity references, and processing instructions are not provided. These are the
interfaces with which we are concerned with in this chapter.

XML

This feature set adds additional interfaces used to represent entity and
notation declarations provided by the document type declaration (though not
the document type itself), and some lexical information helpful in generating
a modified document, including CDATA sections, entity references, and
processing instructions.

Events

This feature is interesting in that it is broken down into several specific
subfeatures. All implementations that support any type of events must
support the basic Events feature, but only need to support the specific
subfeatures which make sense for the implementation. The subfeatures
include support for various classes of user-interface events and document-
modification events.

Range

The range feature provides interfaces that make it possible to describe a
portion of a document that cannot be represented as a sequence of nodes;
this can be especially useful when describing a selection from the document
as might be highlighted by the user.

Traversal

This provides support for traversal over the nodes of a document (or part of a
document) in either the order in which they are found in the document, or as
a tree-based traversal where the application guides a cursor to visit child
nodes, parent nodes, or siblings during the traversal. Nodes can be filtered so
the application need not deal with nodes it is not interested in.

Views

A vague specification that deals with providing multiple types of views on a
document. This is not clearly useful.

StyleSheets

IT-SC book
101

An abstract interface used to represent stylesheets. This is not specifically
bound to Cascading Style Sheets, but may be used to represent other kinds of
stylesheets as well. Since each stylesheet language is substantially different,
this does not provide much styling information.

CSS

The CSS feature includes extensions of the Style Sheets interfaces that
provide substantially more style information. These interfaces provide a great
deal of information about CSS Level 2 stylesheets. This is intended to be used
in browsers and editors, which are expected to update their presentation
based on changes to the stylesheets using these interfaces.

Additional DOM features are being prepared outside the DOM working group for specific XML-
based languages. Information about these and the specifications from the DOM working group is
available online at http://www.w3.org/DOM/DOMTR.

4.2 Understanding the DOM

The DOM structure is essentially a hierarchy of node objects. Beginning with the root of the
document (not the same as the document element), all constructs in the document are represented
by nodes of various types, whether an element, text, attributes of elements, or other less common
node types. Each node contains a list of references to child nodes, which can in turn be of the
same types as those contained by the parent node. Therefore, a complete document looks just like
a tree, all the way from the "trunk" (or root element of the tree) out to the leaf nodes representing
text, childless elements, comments, processing instructions, and possibly other constructs. Figure
4-1 shows a very simple DOM hierarchy including a root element, two child elements, and their
respective child text elements. Usually the character data of an element consists of multiple text
nodes depending on the parser in use. Contiguous strings of textual data become sequences of text
nodes.

Figure 4-1. A simple DOM hierarchy

When a document is represented by the DOM, an object hierarchy represents the
entire document. As with other nodes, it can contain children; the outermost element
of the document is simply a child of the document node. The document can have
other children; comments and processing instructions can precede or succeed the

IT-SC book
102

document element and appear in the proper order as children of the document. The
document type declaration is also represented as a child of the document.

The W3C was careful to specify the DOM in a language-independent way, and each
programming language has its own way to present the interfaces to the application programmer;
each of these mappings of the DOM into the idioms of the target language is called a binding of
the DOM. The W3C includes bindings for Java and ECMAScript as part of the DOM
specifications. For Python, the official source of the DOM binding is the Python XML-SIG. The
binding developed by the SIG members has been documented in the Python Library Reference,
which is part of the standard documentation package for Python. Reference material for the DOM
has been included in Appendix D of this book, but the standard documentation should be
considered the authoritative document for this binding.

The DOM specifications provide the interfaces as CORBA IDL modules and Java
interfaces, but does not specify (or even recommend) that the language-specific IDL
mappings adopted by the Object Management Group (OMG) be used. In fact, the
Java interfaces provided by the W3C do not match the IDL-to-Java mapping. For
Python, the XML-SIG decided that a somewhat more Python-friendly mapping would
be used, with some concessions made to the IDL-to-Python mapping. Since no one
seems to be using the IDL-derived form of the binding, we cover only the Python-
centric version of the DOM binding in this book.

4.3 Python DOM Offerings

Python has several different ways for working with the DOM. The one you choose should best fit
your needs. minidom is smaller and faster than a fully compliant DOM, but suits the needs of
most users. pulldom provides a way to build only the portion of the DOM needed for a particular
application, allowing the DOM to be more easily used when working with large documents or
tight memory constraints. 4DOM is a full-fledged DOM Level 2 implementation. While these are
the dominant implementations of the DOM for Python, and the only implementations described
here, realize that there are additional implementations available that may be more tailored to your
requirements.

4.3.1 Streamlining with Minidom

minidom , part of the xml.dom package included with both the Python standard library and
PyXML, is a lightweight DOM implementation. Its goal is to provide a simple implementation
and smaller memory footprint than a full DOM implementation. The methods for creating the
DOM are simple as well. minidom also supports functions for working with string-length XML
chunks and methods for extracting them.

Overall, minidom may be best for loading simple (not necessarily small) configuration files for
your applications, dealing with form submissions from web pages, handling user authorization,
and using it anywhere a "little" bit of XML is needed. You can reduce memory and time overhead
by using minidom. These are two elements of significant importance in web application
development.

4.3.2 Using Pulldom

IT-SC book
103

pulldom , which also may be imported from the xml.dom package, may be just the thing to save
your life when faced with the task of taking a portion of a large XML document and creating a
DOM instance of the subset for manipulation. pulldom essentially allows for the construction of
selected portions of a DOM based on SAX events. The module uses minidom for the actual
nodes it returns.

pulldom seeks to be a middle ground between the DOM and SAX. pulldom wants to overcome
the state-management (the place-marking mentioned earlier) of SAX, but also preserve its stream-
based processing for speed and efficiency. pulldom also seeks to simplify the self-similar,
intricately complex nature of a complete DOM tree, its many nodes and lists, and its memory-
gobbling nature.

4.3.3 4DOM: A Full Implementation

Both minidom and pulldom have their specific fits, but for the remainder of this book, we work
with 4DOM. This is a DOM implementation that implements most of the Level 2 features that
actually make sense outside a browser.

After your experience with SAX earlier in this chapter, interacting with the DOM may
seem incredibly easy by comparison. However, dealing with a seemingly endless
intricacy of stacked node classes may send you running back to SAX to do your
string comparisons. However you fare, the next sections seek to introduce you to
working with the DOM in Python, and to provide a reference to its interfaces.

Regardless of the implementation you use, there are two basic types of operations
you can perform with the DOM. The most common operations involve retrieving
information from the document, which we discuss first. Once we cover that, we move
on to explain how to use the DOM to modify and create documents.

4.4 Retrieving Information

Retrieving information from a document is easy using the DOM. Most of the work lies
in traversing the document tree and selecting the nodes that are actually interesting
for the application. Once that is done, it is usually trivial to call a method of the node
(or nodes), or to retrieve the value of an attribute of the node. In order to extract
information using the DOM, however, we first need to get a DOM document object.

4.4.1 Getting a Document Object

Perhaps the most glaring hole in the DOM specifications is that there is no facility in
the API for retrieving a document object from an existing XML document. In a
browser, the document is completely loaded before the DOM client code in the
embedded or linked scripts can get to the document, so the document object is
placed in a well-known location in the script's execution environment. For
applications that do not live in a web browser, this approach simply does not work,
so we need another solution.

Our solution depends on the particular DOM implementation we use. We can always
create a document object from a file, a string, or a URL.

IT-SC book
104

4.4.1.1 Loading a document using 4DOM

Creating a DOM instance to work with is easy in Python. Using 4DOM, we need call
only one function to load a document from an open file:

from xml.dom.ext.reader.Sax2 import FromXmlStream

doc = FromXmlStream(sys.stdin)

4.4.1.2 Loading a document using minidom

There are two convenient functions in the xml.dom.minidom module that can be used to load a
document. The parse function takes a parameter that can be a string containing a filename or
URL, or it can be a file object open for reading:

import xml.dom.minidom

doc = xml.dom.minidom.parse(sys.stdin)

Another function, parseString, can be used to load a document from a buffer containing XML
text that has already been loaded into memory:

doc = xml.dom.minidom.parseString("<doc>My tiny document.</doc>")

4.4.2 Determining a Node's Type

You can use the constants built in to the DOM to see what type of node you are dealing with. It
may be an element, an attribute, a CDATA section, or a host of other things. (All the node type
constants are listed in Appendix D.)

To test a node's type, compare its nodeType attribute to the particular constant you're looking for.
For example, a CDATASection instance has a nodeType equal to CDATA_SECTION_NODE. An
Element (with potential children) has a nodeType equal to ELEMENT_NODE. When traversing a
DOM tree, you can test a node at any point to determine whether it is what you're looking for:

for node in nodes.childNodes:

 if node.nodeType == node.ELEMENT_NODE:

 print "Found it!"

The Node interface has other identifying properties, such as its value and name. The nodeName
value represents the tag name for elements, while in a text node the nodeName is simply #text.
The nodeValue attribute may be null for elements, and should be the actual character data of a
text element or other leaf-type element.

4.4.3 Getting a Node's Children

When dealing with a DOM tree, you primarily use nodes and node lists. A node list is a collection
of nodes. Any level of an XML document can be represented as a node list. Each node in the list

IT-SC book
105

can in turn contain other node lists, representing the potential for infinite complexity of an XML
document.

The Node interface features two methods for quickly getting to a specific child node, as well as a
method to get a node list containing a node's children. firstChild refers to the first child node
of any given node. The interface shows None if the node has no children. This is handy when you
know exactly the structure of the document you're dealing with. If you are working with a strict
content model enforced by a schema or DTD, you may be able to count on the fact that the
document is organized in a certain way (provided you included a validation step). But for the
most part, it's best to leverage the spirit of XML and actually traverse the document for the data
you're looking for, rather than assume there is logic to the location of the data. Regardless,
firstChild can be very powerful, and is often used to retrieve the first element beneath a
document element.

The lastChild attribute is similar to firstChild, but returns the last child node of any given
node. Again, this can be handy if you know the exact structure of the document you're working
with, or if you're trying to just get the last child regardless of the significance of that child.

The childNodes attribute contains a node list containing all the children of the given node. This
attribute is used frequently when working with the DOM. When iterating over children of an
element, the childNodes attributes can be used for simple iteration in the same way that you
would iterate over a list:

for child in node.childNodes:

 print "Child:", child.nodeName

The value of the childNodes attribute is a NodeList object. For the purpose of retrieving
information from the DOM, it behaves like a Python list, but does not support "slicing."
NodeList objects should not be used to modify the content of the DOM as the specific behaviors
may differ among DOM implementations.

The NodeList interface features some additional interfaces beyond those provided by lists.
These are not commonly used with Python, but are available since the DOM specifies their
presence and behavior. The length attribute indicates the number of nodes in the list. Note that
the length returns the total number, but that indexing begins at zero. For example, a NodeList
with a length of 3 has nodes at indices 0, 1, and 2 (which mirrors the way an array is normally
indexed in Python). Most Python programmers prefer to use the len built-in function, which
works properly with NodeList objects.

The item method returns the item at the specific index passed in as a parameter. For example,
item(1) returns the second node in the NodeList, or None if there are fewer than two nodes.
This is distinct from the Python indexing operation, for which a NodeList raises IndexError
for an index that is out of bounds.

4.4.4 Getting a Node's Siblings

Since XML documents are hierarchical and the DOM exposes them as a tree, it is reasonable to
want to get the siblings of a node as well as its children. This is done using the
previousSibling and nextSibling attributes. If a node is the first child of its parent, its

IT-SC book
106

previousSibling is None; likewise, if it is the last child, its nextSibling is None. If a node
is the only child of its parent, both of these attributes are None, as expected.

When combined with the firstChild or lastChild attributes, the sibling attributes can be
used to iterate over an element's children. The required code is slightly more verbose, but is also
better suited for use when the document tree is being modified in certain ways, especially when
nodes are being added to or removed from the element whose children are being iterated over.

For example, consider how Directory elements could be removed from another
Directory element to leave us with a Directory containing only files. If we iterate over the
top element using its childNodes attribute and remove child Directory elements as we see
them, some nodes are not properly examined. (This happens because Python's for loops use the
index into the list, but we're also shifting remaining children to the left when we remove one, so it
is skipped as the loop advances.) There are many ways to avoid skipping elements, but perhaps
the simplest is to use nextSibling to iterate:

child = node.firstChild

while child is not None:

 next = child.nextSibling

 if (child.nodeType == node.ELEMENT_NODE

 and child.tagName == "Directory"):

 node.removeChild(child)

 child = next

4.4.5 Extracting Elements by Name

The DOM can provide some advantages over SAX, depending on what you're trying to do. For
starters, when using the DOM, you don't have to write a separate handler for each type of event,
or set flags to group events together as was done earlier with SAX in Example 3-3. Imagine that
you have a long record of purchase orders stacked up in XML. Someone has approached you
about pulling part numbers, and only part numbers, out of the document for reporting purposes.
With SAX, you can write a handler to look for elements with the name used to identify part
numbers (sku in the example), and then set a flag to gobble up character events until the parser
leaves the part number element. With the DOM, you have a different approach using the
getElementsByTagName method of the Document interface.

To show how easy this can make some operations, let's look at a simple example. Create a new
XML file as shown in Example 4-1, po.xml. This document is the sample purchase order for the
next script:

Example 4-1. po.xml

<?xml version="1.0"?>

<purchaseOrder>

IT-SC book
107

 <item>

 <name>Mushroom Lamp</name>

 <sku>229-987488</sku>

 <price>$34.99</price>

 <qty>1</qty>

 </item>

 <item>

 <name>Bass Drum</name>

 <sku>228-988347</sku>

 <price>$199.99</price>

 <qty>1</qty>

 </item>

 <item>

 <name>Toy Steam Engine</name>

 <sku>221-388833</sku>

 <price>$19.99</price>

 <qty>1</qty>

 </item>

</purchaseOrder>

Using the DOM, you can easily create a list of nodes that references all nodes of a single element
type within the document. For example, you could pull all of the sku elements from the
document into a new list of nodes. This list can be used like any other NodeList object, with the
difference that the nodes in the list may not share a single parent, as is the case with the
childNodes value. Since the DOM works with the structural tree of the XML document, it is
able to provide a simple method call to pull a subset of the document out into a separate node list.
In Example 4-2, the getElementsByTagName method is used to create a single NodeList of
all the sku elements within the document. Our example shows that sku elements have text nodes
as children, but we know that a string of text in the document may be presented in the DOM as
multiple text nodes. To make the tree easier to work with, you can use the normalize method of
the Node interface to convert all adjacent text nodes into a single text node, making it easy to use
the firstChild attribute of the Element class to retrieve the complete text value of the sku
elements reliably.

Example 4-2. po.py

IT-SC book
108

#!/usr/bin/env python

from xml.dom.ext.reader.Sax2 import FromXmlStream

import sys

doc = FromXmlStream(sys.stdin)

for sku in doc.getElementsByTagName("sku"):

 sku.normalize()

 print "Sku: " + sku.firstChild.data

Example 4-2 requires considerably less code than what is required if you are implementing a
SAX handler for the same task. The extraction can operate independently of other tasks that work
with the document. When you run the program, again using po.xml, you receive something
similar to the following on standard output:

Sku: 229-987488

Sku: 228-988347

Sku: 221-388833

You can see something similar being done using SAX in Example 3-3.

4.4.6 Examining NodeList Members

Let's look at a program that puts many of these concepts together, and uses the article.xml file
from the previous chapter (Example 3-1). Example 4-3 shows a recursive function used to
extract text from a document's elements.

Example 4-3. textme.py

#!/usr/bin/env python

from xml.dom.ext.reader.Sax2 import FromXmlStream

import sys

def findTextNodes(nodeList):

IT-SC book
109

 for subnode in nodeList:

 if subnode.nodeType == subnode.ELEMENT_NODE:

 print "element node: " + subnode.tagName

 # call function again to get children

 findTextNodes(subnode.childNodes)

 elif subnode.nodeType == subnode.TEXT_NODE:

 print "text node: ",

 print subnode.data

doc = FromXmlStream(sys.stdin)

findTextNodes(doc.childNodes)

You can run this script passing article.xml as standard input:

$> python textme.py < article.xml

It should produce output similar to the following:

element node: webArticle

text node:

element node: header

text node:

element node: body

text node: Seattle, WA - Today an anonymous individual

 announced that NASA has completed building a

 Warp Drive and has parked a ship that uses

 the drive in his back yard. This individual

 claims that although he hasn't been contacted by

IT-SC book
110

 NASA concerning the parked space vessel, he assumes

 that he will be launching it later this week to

 mount an exhibition to the Andromeda Galaxy.

text node:

You can see in the output how whitespace is treated as its own text node, and how
contiguous strings of character data are kept together as text nodes as well. The
exact output you see may vary from that presented here. Depending on the specific
parser you use (consider different versions or different platforms as different parsers
since the buffering interactions with the operating system can be relevant), the
specific boundaries of text nodes may differ, and you may see contiguous blocks of
character data presented as more than one text node.

4.4.7 Looking at Attributes

Now that we've seen how to examine the hierarchical content of an XML document
using the DOM, we need to take a look at how we can use the DOM to retrieve XML's
only nonhierarchical component: attributes. As with all other information in the DOM,
attributes are described as nodes. Attribute nodes have a very special relationship
with the tree structure of an XML document; we find that the interfaces that allow us
to work with them are different as well.

When we looked at the child nodes of elements earlier (as in Example 4-3), we only saw nodes
for child elements and textual data. From this, we can reasonably surmise that attributes are not
children of the element on which they are included. They are available, however, using some
methods specific to Element nodes. There is an attribute of the Node interface that is used only
for attributes of elements.

The easiest way to get the value of an attribute is to use the getAttribute method of the
element node. This method takes the name of the attribute as a string and returns a string giving
the value of the attribute, or an empty string if the attribute is not present. To retrieve the node
object for the attribute, use the getAttributeNode method instead; if the attribute does not
exist, it returns None. If you need to test for the presence of an attribute without retrieving the
node or attribute value, the hasAttribute method will prove useful.

Another way to look at attributes is using a structure called a NamedNodeMap. This
object is similar in function to a dictionary, and the Python version of this structure shares much
of the interface of a dictionary. The Node interface includes an attribute named attributes that
is only used for element nodes; it is always set to None for other node types. While the
NamedNodeMap supports the item method and length attribute much as the NodeList
interface does, the normal way of using it in Python is as a mapping object, which supports most
of the interfaces provided by dictionary objects. The keys are the attribute names and the values
are the attribute nodes.

4.5 Changing Documents

IT-SC book
111

Now that we've looked at how we can extract information from our documents using
the DOM, we probably want to be able to change them. There are really just a few
things we need to know to make changes, so we describe the basic operations and
then show a few examples. The basic operations involved in modifying a document
center around creating new nodes, adding, moving, and removing nodes, and
modifying the contents of nodes. Since we often want to add new elements and
textual content, we start by looking at creating new nodes.

4.5.1 Creating New Nodes

Most of the time, new nodes need to be created explicitly. Since the DOM is defined
as a set of interfaces rather than as concrete classes, the only way to create new
nodes is to make call methods on the objects we already have in hand. Fortunately,
the Document interface includes a large selection of factory methods we can use to
create new nodes of most types. (Methods for creating entity and notation nodes are
noticeably absent, but most applications should not find themselves constrained by
that.)

The most used of these factory methods are very simple, and are used to create new element and
text nodes. For elements, use the createElement method, with the tag name of the element to
create as the only parameter. Text nodes can be created using the createTextNode method,
passing the text of the new node as the parameter. For the details on the other node factory
methods, see the reference material in Appendix D.

4.5.2 Adding and Moving Nodes

There are some very handy methods available for moving nodes to different locations on the tree.
These methods appear on the basic Node interface, so all DOM nodes provide these. There are
constraints on the use of these nodes: you cannot use them to construct documents which do not
make sense structurally, and well-formedness of the document is ensured at all times. For
example, an exception is raised if you attempt to add a child to a text node, or if you try to add a
second child element to the document object.

appendChild(newChild)

Takes a newChild node argument and appends it to the end of the list of children of the
node.

insertBefore(newChild, refChild)

Takes the node newChild and inserts it immediately before the refChild node you
supply.

replaceChild(newChild, oldChild)

Replaces the oldChild with the newChild, and oldChild is returned to the caller.

removeChild(oldChild)

Removes the node oldChild from the list of children of the node this is called on.

IT-SC book
112

The brief descriptions do not replace the reference documentation for these methods; see
Appendix D for more complete information.

4.5.3 Removing Nodes

Let's look at how to examine a tree, and how to remove specific nodes on the tree. Example 4-4
uses a few nested loops to dive three levels deep into an XML document created using the
index.py script from Example 3-4. The design has its limitations, as it assumes you are only
dealing with elements no more than three levels deep, but demonstrates the DOM methods we're
interested in.

Example 4-4. domit.py

#!/usr/bin/env python

import sys

from xml.dom.ext.reader.Sax2 import FromXmlStream

from xml.dom.ext import PrettyPrint

get DOM object

doc = FromXmlStream(sys.stdin)

remove unwanted nodes by traversing Node tree

for node1 in doc.childNodes:

 for node2 in node1.childNodes:

 node3 = node2.firstChild

 while node3 is not None:

 next = node3.nextSibling

 name = node3.nodeName

 if name in ("contents", "extension", "userID", "groupID"):

 # remove unwanted nodes here via the parent

 node2.removeChild(node3)

 node3 = next

IT-SC book
113

PrettyPrint(doc)

After getting a document from standard input, a few nested for loops are executed to descend
three levels deep into the tree and look for specific tag names. When running the script against the
XML document we created with index.py, your file elements should look like this:

<file name='c:\windows\desktop\G-Force\G-Force.doc'>

 <size>12570</size>

 <lastAccessed>Tue May 09 00:00:00 2000</lastAccessed>

 <lastModified>Tue May 09 11:56:14 2000</lastModified>

 <created>Wed Jan 17 23:31:23 2001</created>

</file>

The whitespace around the removed elements remains in place as you can see by the gaps
between elements; we did not look for adjacent text nodes, so they remain unaffected. This text
was the result of a call to the PrettyPrint function at the end of the script. Of course, the
element looks the same regardless of hierarchical position within the document. When writing
DOM processing code, you should try to keep it independent from the structure of the document.
Instead of using firstChild to get what you're after, consider enumerating the children and
examining each one. This may cost some processing time, but it does give the document's
structure more flexibility. As long as the target element appears beneath the parent node, the child
will be found. When you use firstChild, you might be setting yourself up for trouble if
someone gives you a document with a slightly different structure, such as a peer element coming
before another in the document. You can write this type of operation using a recursive function,
so that you can handle similar structures, regardless of position in the document. If you really
don't care where within the subtree an element is found, you can use the
getElementsByTagName method described earlier.

Another common requirement is to locate a node that you know must be a child of a
particular node, but not require a specific ordering of the child nodes. A simple loop
in a utility function handles this nicely:

from xml.dom import Node

def findChildrenByTagName(parent, tagname):

IT-SC book
114

 """Return a list of 'tagname' children of 'parent'."""

 L = []

 for child in parent.childNodes:

 if (child.nodeType == Node.ELEMENT_NODE

 and child.tagName == tagname):

 L.append(child)

 return L

An even simpler helper function that can come in handy is a function that finds the
first child element with a particular tag name, or the first to have one of several tag
names. These are all minor variations of the function just presented.

4.5.4 Changing a Document's Structure

In addition to doing replacements and additions, you can also restructure a
document entirely using the DOM.

In Example 4-5, we take the nested loops from the last section, and replace them with a
traveling recursive function. The script can also work with XML output from the index.py script
we worked with earlier in this chapter. In this version however, the file element's size child is
used as a replacement for itself. This process leaves the document filled with directory and
size elements only.

Example 4-5 shows domit2.py using a recursive function.

Example 4-5. domit2.py

#!/usr/bin/env python

from xml.dom.ext.reader.Sax2 import FromXmlStream

from xml.dom.ext import PrettyPrint

import sys

def makeSize(nodeList):

 for subnode in nodeList:

 if subnode.nodeType == subnode.ELEMENT_NODE:

IT-SC book
115

 if subnode.nodeName == "size":

 subnode.parentNode.parentNode.replaceChild(

 subnode, subnode.parentNode)

 else:

 makeSize(subnode.childNodes)

get DOM object

doc = FromXmlStream(sys.stdin)

call func

makeSize(doc.childNodes)

display altered document

PrettyPrint(doc)

You can run the script from the command line:

$> python domit2.py < wd.xml

The file wd.xml is an XML file created with the index.py script—you can use any file you like,
as long as has the same structure as the files created by index.py. The output should be
something like this:

<Directory name='c:\windows\desktop\gl2'>

<size>230444</size>

 <size>3035</size>

 <size>8904</size>

 <size>722</size>

 <Directory name='c:\windows\desktop\gl2/Debug'>

<size>156672</size>

 <size>86016</size>

 <size>3779068</size>

 <size>25685</size>

IT-SC book
116

 <size>17907</size>

 <size>250508</size>

 <size>208951</size>

 <size>402432</size>

 </Directory>

<size>3509</size>

 <size>33792</size>

 <size>722</size>

 <size>48640</size>

 <size>533</size>

 </Directory>

4.6 Building a Web Application

Now you can use your new knowledge of the DOM to create a simple web application.
Let's build one that allows for the posting and viewing of articles. The articles are
submitted and viewed via a web browser, but stored by the web server as XML,
which allows the articles to be leveraged into different information systems that
process XML. HTML articles, on the other hand, are unusable outside of a web
browser.

4.6.1 Preparing the Web Server

In order to run the examples in this chapter, you must have a web server available that lets you
execute CGI scripts. These examples were designed on Apache, so the CGI scripts contain a sh-
bang line that specified the path to the Python executable (the #!/usr/bin/python expression
at the top of the file) so that Apache can run them just like any other CGI script. (Understanding
the term "sh-bang" requires a little bit of knowledge of Unix history. The traditional command-
line environment for Unix was originally implemented using the sh program. The exclamation
point was named the "bang" character because it was always used after words such as "bang" and
"pow" in comic books and cartoons. Since the lines at the top of scripts that started with #! were
interpreted by the sh program, they came to be known as sh-bang lines.)

4.6.1.1 Ensuring the script's execution

You must enable the execution of your Python scripts on your web server. On Apache, this means
enabling CGI within the web directory, ensuring that the actual CGI scripts contain the pointer to
the Python interpreter so they run correctly, and setting the "execute" permission on the script.
This last item can be accomplished using the chmod program:

IT-SC book
117

$> chmod +x start.cgi

On other web servers and on Windows, you need to assign a handler to your CGI scripts so that
they are executed by the Python interpreter. This may require that you name your scripts with
a .py extension, as opposed to a .cgi extension, if .cgi is already assigned to another handler.

4.6.1.2 Enabling write permission

Beyond just being able to execute scripts within a web directory, the web user must
also have write access to the directory for the examples to work. The examples are
meant to illustrate the manipulation of XML and the ability to repurpose accessible
XML into different applications.

To avoid dependency on a database in this chapter, and to provide easy access to the XML, these
examples use the filesystem directly for storage. Articles are stored to disk as .xml files.

For Apache, you must give the user nobody write access to the specific web directory. If you are
serving pages out of /home/httpd/myXMLApplication, you need to set up something like the
following:

$> mkdir /home/httpd/myXMLApplication

$> chown nobody /home/httpd/myXMLApplication

$> chmod 755 /home/httpd/myXMLApplication

This gives the user nobody (the user ID that Apache runs under) write access to the directory.
There are many other ways to securely set this up; this is simply one option. In general, for
production web applications, it's a good idea not to give write access to web users.

4.6.2 The Web Application Structure

The web application is driven mainly by one script, start.cgi. The script does most of the
processing, serves the content templates, and invokes the objects capable of storing and retrieving
your XML articles. The primary components consist of the article object, the storage object, the
article manager, the SAX-based article handler, and the start.cgi script that manages the whole
process. Figure 4-2 shows a diagram of the major components.

Figure 4-2. The site architecture

IT-SC book
118

In the next few sections, we examine the code and operation of the CGI components
in detail.

4.6.2.1 The Article class

The Article class represents an article as XML information. It's a thin class with methods only
for creating an article from existing XML, or for retrieving the XML that makes up the article as
a string. In addition, it has modifiable attributes that allow you to manipulate the content of the
article:

 def __init__(self):

 """Set initial data attributes."""

 self.reset()

 def reset(self):

 self.title = ""

 self.size = 0

 self.time = "" # pretty-printing time string

 self.author = ""

 self.contributor = ""

 self.contents = ""

The attributes can be modified during the life of an article to keep you from having to
create XML in your program. For example:

>>> from article import Article

>>> art = Article()

>>> art.title = "FirstPost"

>>> art.contents = "This is the first article."

>>> print art.getXML()

<?xml version="1.0"?>

<article title="FirstPost">

 <contents>

This is the first article.

 </contents>

IT-SC book
119

</article>

The getXML method call has the logic to recreate the XML when necessary. You can create
articles with a well-formed string of XML, or by loading a string of XML from a disk file. The
getXML method exists as a means for you to pull the XML back out of the object. Note the use of
the escape function, which we imported from the xml.sax.saxutils module; this ensures
that characters that are syntactically significant to XML are properly encoded in the result.

 def getXML(self):

 """Returns XML after re-assembling from data

 members that may have changed."""

 attr = ''

 if self.title:

 attr = ' title="%s"' % escape(self.title)

 s = '<?xml version="1.0"?>\n<article%s>\n' % attr

 if self.author:

 s = '%s <author name="%s" />\n' % (s, escape(self.author))

 if self.contributor:

 s = '%s <contributor name="%s" />\n' % (s,
escape(self.contributor))

 if self.contents:

 s = ('%s <contents>\n%s\n </contents>\n'

 % (s, escape(self.contents)))

 return s + "</article>\n"

The fromXML method of the article class populates the current XML article object with the values
from the supplied string. This method uses the convenience function parseString, from
xml.dom.minidom, to load the XML data into a document object, and then uses the content
retrieval methods of the DOM to collect the required information:

 def fromXML(self, data):

 """Initialize using an XML document passed as a string."""

 self.reset()

 dom = xml.dom.minidom.parseString(data)

IT-SC book
120

 self.title = get_attribute(dom, "article", "title")

 self.size = int(get_attribute(dom, "size", "bytes") or 0)

 self.time = get_attribute(dom, "time", "stime")

 self.author = get_attribute(dom, "author", "name")

 self.contributor = get_attribute(dom, "contributor", "name")

 nodelist = dom.getElementsByTagName("contents")

 if nodelist:

 assert len(nodelist) == 1

 contents = nodelist[0]

 contents.normalize()

 if contents.childNodes:

 self.contents = contents.firstChild.data.strip()

This method uses a convenience function defined elsewhere in the module. The function
get_attribute looks into the document for an attribute and returns the value it finds; if the
attribute it is looking for does not exist (or the element it expects to find it on does not exist), it
returns an empty string instead. If it finds more than one element that matches the requested
element type, it complains loudly using the assert statement. (For a real application, you would
not use assert in this way, but this is sufficient for our examples since we're mainly interested
in the XML aspect.)

When working with the web site logic, most manipulation on article objects occurs by either
using the Storage class to load an article from disk, or by parsing a form submission to create an
article for a user and then using the Storage class to save the XML file to disk. Example 4-6
shows the complete listing of the Article class.

Example 4-6. Article class from article.py

import xml.dom.minidom

from xml.sax.saxutils import escape

class Article:

 """Represents a block of text and metadata created from XML."""

 def __init__(self):

IT-SC book
121

 """Set initial data properties."""

 self.reset()

 def reset(self):

 """Re-initialize data properties."""

 self.title = ""

 self.size = 0

 self.time = "" # pretty-printing time string

 self.author = ""

 self.contributor = ""

 self.contents = ""

 def getXML(self):

 """Returns XML after re-assembling from data

 members that may have changed."""

 attr = ''

 if self.title:

 attr = ' title="%s"' % escape(self.title)

 s = '<?xml version="1.0"?>\n<article%s>\n' % attr

 if self.author:

 s = ('<?xml version="1.0"?>\n'

 '<article%s>\n' % attr)

 if self.author:

 s = '%s <author name="%s" />\n' % (s, escape(self.author))

 if self.contributor:

 s = '%s <contributor name="%s" />\n' % (s,
escape(self.contributor))

IT-SC book
122

 if self.contents:

 s = ('%s <contents>\n%s\n </contents>\n'

 % (s, escape(self.contents)))

 return s + "</article>\n"

 def fromXML(self, data):

 """Initialize using an XML document passed as a string."""

 self.reset()

 dom = xml.dom.minidom.parseString(data)

 self.title = get_attribute(dom, "article", "title")

 self.size = int(get_attribute(dom, "size", "bytes") or 0)

 self.time = get_attribute(dom, "time", "stime")

 self.author = get_attribute(dom, "author", "name")

 self.contributor = get_attribute(dom, "contributor", "name")

 nodelist = dom.getElementsByTagName("contents")

 if nodelist:

 assert len(nodelist) == 1

 contents = nodelist[0]

 contents.normalize()

 if contents.childNodes:

 self.contents = contents.firstChild.data.strip()

Helper function:

def get_attribute(dom, tagname, attrname):

 """Return the value of a solitary element & attribute,

 if available."""

 nodelist = dom.getElementsByTagName(tagname)

IT-SC book
123

 if nodelist:

 assert len(nodelist) == 1

 node = nodelist[0]

 return node.getAttribute(attrname).strip()

 else:

 return ""

4.6.2.2 The Storage class

The Storage class is used to place an article on disk as an XML file, and to create article objects
from XML files that are already on disk:

>>> from article import Article

>>> from storage import Storage

>>> a = Article()

>>> a.title = "FirstPost"

>>> a.contents = "This is the FirstPost."

>>> a.author = "Fred L. Drake, Jr."

>>> s = Storage()

>>> s.save(a)

>>>

>>> b = s.load("FirstPost.xml")

>>> print b.getXML()

<?xml version="1.0"?>

<article title="FirstPost">

 <author name="Fred L. Drake, Jr." />

 <contents>

This is the FirstPost.

 </contents>

</article>

IT-SC book
124

Here, you create an article from scratch as a, store it to disk using the Storage object, and then
reincarnate the article as b using Storage's load method. Note that the load method takes the
actual filename that is a concatenation of the article.title and the .xml extension.

The Storage.save method takes an article instance as the only parameter and saves the article
to disk as an XML file using the form article.title.xml:

 sFilename = article.title + ".xml"

 fd = open(sFilename, "w")

 # write file to disk with data from getXML() call

 fd.write(article.getXML())

 fd.close()

The getXML method is used to retrieve an XML string containing an XML version of the article;
the string is then saved to the disk file. The Storage.load method takes an XML file from disk,
reads in the data from the file, and then creates an article using the fromXML method of the
Article class:

 fd = open(sName, "r")

 sxml = fd.read()

 fd.close()

 # create an article instance

 a = Article()

 a.fromXML(sxml)

 # return article object to caller

 return a

The return result is an Article instance. Example 4-7 shows storage.py in its entirety.

Example 4-7. storage.py

storage.py

from article import Article

IT-SC book
125

class Storage:

 """Stores and retrieves article objects as XML files

 -- should be easy to migrate to a database."""

 def save(self, article):

 """Save as <article.title>.xml."""

 sFilename = article.title + ".xml"

 fd = open(sFilename, "w")

 # write file to disk with data from getXML() call

 fd.write(article.getXML())

 fd.close()

 def load(self, sName):

 """Name must be filename.xml--Returns an article object."""

 fd = open(sName, "r")

 sxml = fd.read()

 # create an article instance

 a = Article()

 # use fromXML to create an article object

 # from the file's XML

 a.fromXML(sxml)

 fd.close()

 # return article object to caller

 return a

IT-SC book
126

4.6.3 Implementing Site Logic

The Article and Storage classes are not web-oriented. They could be used in any type of
application, as the articles are represented in XML, and the Storage class just handles their I/O
to disk. Conceptually at least, you could use these classes anywhere to create an XML-based
information store.

On the other hand, you could write a single CGI script that has all of the logic to store articles to
disk and read them, as well as parse the XML, but then your articles and their utility would be
trapped within the CGI script. By breaking core functionality off into discrete components, you're
free to use the Article and Storage classes from any type of application you envision.

In order to manage web interaction with the article classes, we will create one
additional class (ArticleManager) and one additional script (start.cgi). The
ArticleManager class builds a web interface for article manipulation. It has the ability to
display articles as HTML, to accept posted articles from a web form, and to handle user
interaction with the site. The start.cgi script handles I/O from the web server and drives the
ArticleManager.

4.6.3.1 The ArticleManager class

The ArticleManager class contains four methods for dealing with articles. The manager acts as
a liaison between the article objects and the actual CGI script that interfaces with the web server
(and, indirectly the user's browser).

The viewAll method picks all of the XML articles off the disk and creates a section of HTML
hyperlinks linking to the articles. This method is called by the CGI script to create a page
showing all of the article titles as links:

def viewAll(self):

 """Displays all XML files in the current

 working directory."""

 print "<p>View All

"

 # grab list of files in current directory

 fl = os.listdir(".")

 for xmlFile in fl:

 # weed out XML files

 tname, ext = os.path.splitext(xmlFile)

 if ext == ".xml":

 # create HTML link surrounding article name

IT-SC book
127

 print '
%s
'

 % (quote(xmlFile), tname)

The method is not terribly elegant. It simply reads the contents of the current directory, picks out
the XML files, and strips the .xml extension off the name before displaying it as a link. The link
connects back again to the same page (start.cgi), but this time with query string parameters that
instruct start.cgi to invoke the viewOne method to view the content of a single article. The
quote function imported from urllib is used to escape special characters in the filename that
may cause problems for the browser. URL construction and quoting is discussed in more detail in
Chapter 8.

The viewOne method uses the storage object to reanimate an article stored on disk. Once the
article instance is created, its data members are mined (one by one), and wrapped with HTML for
display in the browser:

def viewOne(self, articleFile):

 """ takes an article file name as a parameter and

 creates and displays an article object for it.

 """

 # create storage and article objects

 store = Storage()

 art = store.load(articleFile)

 # Write HTML to browser (standard output)

 print "<p>Title: " + art.title + "
"

 print "Author: " + art.author + "
"

 print "Date: " + art.time + "
"

 print "<table width=500><tr><td>" + art.contents

 print "</td></tr></table></p>"

It's important to note here that the parameter handed to viewOne is a real filename, not just the
title of the XML document.

The postArticle method is probably the simplest method discussed yet, as its job is simply to
create HTML. The HTML represents a submittal form whereby users can write new articles and
present them to the server for ultimate storage in XML. Since the HTML form does not change,
this method can simply print the value of a constant that contains the form as a string.

IT-SC book
128

The postArticleData method is slightly more complicated. Its job is to extract key/value
pairs from a submitted HTTP form, and create an XML article based on the obtained values.
Once the XML is created, it must be stored to disk. It does this by creating an article object and
setting the members to values retrieved from the form, then using the Storage class to save the
article.

def postArticleData(self, form):

 """Accepts actual posted form data, creates and

 stores an article object."""

 # populate an article with information from the form

 art = Article()

 art.title = form["title"].value

 art.author = form["author"].value

 art.contributor = form["contrib"].value

 art.contents = form["contents"].value

 # store the article

 store = Storage()

 store.save(art)

Example 4-8 shows ArticleManager.py in its entirety.

Example 4-8. ArticleManager.py

ArticleManager.py

import os

from urllib import quote

from article import Article

from storage import Storage

class ArticleManager:

 """Manages articles for the web page.

IT-SC book
129

 Responsible for creating, loading, saving, and displaying

 articles."""

 def viewAll(self):

 """Displays all XML files in the current working directory."""

 print "<p>View All

"

 # grab list of files in current directory

 fl = os.listdir(".")

 for xmlFile in fl:

 # weed out XML files

 tname, ext = os.path.splitext(xmlFile)

 if ext == ".xml":

 # create HTML link surrounding article name

 print '
%s
' \

 % (quote(xmlFile), tname)

 def viewOne(self, articleFile):

 """Takes an article file name as a parameter and

 creates and displays an article object for it.

 """

 # create storage and article objects

 store = Storage()

 art = store.load(articleFile)

 # Write HTML to browser (standard output)

 print "<p>Title: " + art.title + "
"

 print "Author: " + art.author + "
"

IT-SC book
130

 print "Date: " + art.time + "
"

 print "<table width=500><tr><td>" + art.contents

 print "</td></tr></table></p>"

 def postArticle(self):

 """Displays the article posting form."""

 print POSTING_FORM

 def postArticleData(self,form):

 """Accepts actual posted form data, creates and

 stores an article object."""

 # populate an article with information from the form

 art = Article()

 art.title = form["title"].value

 art.author = form["author"].value

 art.contributor = form["contrib"].value

 art.contents = form["contents"].value

 # store the article

 store = Storage()

 store.save(art)

POSTING_FORM = '''\

<form method="POST" action="start.cgi?cmd=pd">

<p>

Title:
<input type="text" length="40" name="title">

Contributor:
<input type="text" length="40" name="contrib">

Author:
<input type="text" length="40" name="author">

IT-SC book
131

Contents:
<textarea rows="15" cols="80"
name="contents"></textarea>

<input type="submit">

</form>

'''

4.6.4 Controlling the Application

The CGI script is the main program for the web application. It is also the only "page" that will
ever be in the browser. When the user types start.cgi in the address bar, Apache runs the script on
the server.

The script begins by importing the cgi and os modules:

import cgi

import os

The script then prints the content header, as well as the opening HTML. This HTML is the same
regardless of the type of operation start.cgi is performing; therefore, it is defined as the constant
HEADER (not shown) and printed for every request:

content-type header

print "Content-type: text/html"

print

print HEADER

After the common portion of the result page is printed, the query string is checked for the cmd
parameter, which specifies what actions start.cgi should perform. The hyperlinks produced and
sent to the browser by start.cgi are all fitted with this same parameter indicating a specific
instruction such as view or post. The query string is checked using the cgi module. It is
inspected to see if it contains the cmd parameter. If so, processing continues; if not, the user is
presented with an error message.

query = cgi.FieldStorage()

if query.has_key("cmd"):

 cmd = query["cmd"][0].value

 # instantiate an ArticleManager

 am = ArticleManager()

IT-SC book
132

The ArticleManager is instantiated as am, and command processing continues by checking
cmd for its four possible values. For viewing article titles, the command sequence va is used:

Command: viewAll - list all articles

if cmd == "va":

 am.viewAll()

For viewing a specific article, the command sequence v1a is used:

Command: viewOne - view one article

if cmd == "v1a":

 aname = query["af"].value

 am.viewOne(aname)

For posting articles, a form is displayed. The CGI script looks for the pa sequence:

Command: postArticle - view the post-article page

 if cmd == "pa":

 am.postArticle()

When the user submits the article form, the data is posted to the web server. The CGI script looks
for the command sequence pd to indicate that the article data is posted. It then passes the CGI
form to the ArticleManager's postArticleData method:

Command: postData - take an actual article post

if cmd == "pd":

 print "<p>Thank you for your post!</p>"

 am.postArticleData(query)

If cmd is not present in the query string, or if cmd has a value that is not one of the four, an error
message is presented as the else clause to the first if statement:

else:

 # Invalid selection

 print "<p>Your selection was not recognized</p>"

The HTML is then closed by a final print statement:

close the HTML

print "</body></html>"

IT-SC book
133

The complete listing of start.cgi is shown in Example 4-9.

Example 4-9. start.cgi

#!/usr/local/bin/python

start.cgi - a Python CGI script

import cgi

import os

from ArticleManager import ArticleManager

HEADER = """\

<html>

<body>

<p>

<table cellspacing="0" cellpadding="1">

 <tr><td>

 <h1>XML Articles</h1>

 </td></tr>

 <tr><td>

 <h3>View All |

 Post Article</h3>

 </td></tr>

</table>

"""

MAIN

IT-SC book
134

content-type header

print "Content-type: text/html"

print

print HEADER

retrieve query string

query = cgi.FieldStorage()

if query.has_key("cmd"):

 cmd = query["cmd"].value

 # instantiate an ArticleManager

 am = ArticleManager()

 # do something for each command

 # Command: viewAll - list all articles

 if cmd == "va":

 am.viewAll()

 # Command: viewOne - view one article

 if cmd == "v1a":

 aname = query["af"].value

 am.viewOne(aname)

 # Command: postArticle - view the post-article page

 if cmd == "pa":

IT-SC book
135

 am.postArticle()

 # Command: postData - take an actual article post

 if cmd == "pd":

 print "<p>Thank you for your post!</p>"

 am.postArticleData(query)

else:

 # Invalid selection

 print "<p>Your selection was not recognized.</p>"

close the HTML

print "</body></html>"

Take note of the initial #!/usr/local/bin/python expression. As this is a CGI script,
the operating system needs a hint on how to run it. If it is compiled C code, it could
be executed by the web server; however, if it is a script, it likely needs to be handed
off to the services of a script interpreter. Such is the case with Python. Note that we
did not use the sh-bang line #!/usr/bin/env python; that could open a security
hole when used with CGI scripts. See the documentation of Python's cgi module for
more information about CGI security issues and how to address them properly when
using Python.

4.7 Going Beyond SAX and DOM

In this chapter, we discussed the DOM and how it differs from SAX. In the next
chapter, we explore another method of extracting interesting portions of an XML
document using a basic traversal language called XPath. Once you've learned a little
about XPath, we move on in Chapter 6 to a transformation technology called XSLT.

IT-SC book
136

Chapter 5. Querying XML with XPath

The XML Path Language (XPath) is a language that allows you to easily perform
searches against XML documents using a path-like string. XPath searches return
individual nodes or collections of nodes based on expressions. XPath does not use
XML syntax. In fact, it is not a procedural programming language in the normal
sense; there is no concept of control flow. XPath expressions are usually single
strings. XPath does, however, support some functional manipulation (usually found
in programming languages) but one doesn't write XPath scripts or programs. Instead,
one writes XPath expressions that are evaluated against XML documents and result
in node lists being returned. In this chapter, we discuss the origin of XPath, as well
as its syntax, capabilities, and how it is used from within Python.

5.1 XPath at a Glance

XPath 1.0 is a W3C recommendation available for your perusal from the W3C web
site (http://www.w3.org/TR/xpath). XPath allows for the retrieval of portions of an
XML document via XPath expressions. The specification defines a concrete syntax for
expressions and offers a well-defined meaning for the expressions when interpreted.
When an XPath expression is processed with a DOM, the nodes that match the
expression are returned to the caller. XPath expressions target a specific node, or
groups of nodes, within an XML document. The result is one of four types:

• A collection of nodes
• A Boolean value
• A floating-point number
• A string

In XPath, the term context refers to the location in the document where the XPath
expression is being applied. You may start from the document element (the root
element) or from any descendent element. XPath may inform you of the current
context node (representing the current location in the document). A pair of integers
may represent context position and context size. There may also be variable bindings
in the context, available functions, and a namespace relevant to the current position.

5.2 Where Is XPath Used?

XPath is not stored within a particular type of document. Instead, XPath expressions
are used primarily in XSLT (a transformation language used with XML), but can be
used elsewhere as well. (XSLT is covered in more detail in Chapter 6.) In the case of
APIs such as 4XPath, expressions can be used against a DOM to return results
programmatically in your Python programs. Microsoft's MSXML3.0 (covered in
Appendix E) processes XPath expressions as well.

5.3 Location Paths

The most commonly used type of XPath expression is the location path. A location
path can be thought of as similar to a path for a file on a disk, but on steroids.
Where a path for a filesystem contains only names of directories and a file, an XPath

IT-SC book
137

location path can specify much more. At each step along the path, it can perform
selection based on complex tests of the nodes in a document, and the result may be
several nodes. The tests, or predicates, for each step of the path can match based
on element name, attribute presence or value, or textual content.

The full syntax of location paths is complex, but the specification is considerate
enough to define abbreviated forms for the most commonly used tests; these are
called abbreviated location paths. All of the location paths we describe in this chapter
use the abbreviated syntax; for more information on the full syntax and selection
capabilities of XPath, please refer to the specification.

Location paths are used within XSLT elements, but may also be used
programmatically with an XPath API to return node sets from an XML document at
runtime. The latter technique will come into greater focus as you read this chapter;
the former is covered in Chapter 6.

5.3.1 An Example Document

Let's start with an example document that represents data records. The records are
all fairly similar, but of course the field values are different in each one. This is
typical of the type of documents you might mine with XPath. In Example 5-1, we
apply XPath expressions against an XML document representing starships from some
popular science-fiction television series.

Example 5-1. ships.xml

<?xml version="1.0" encoding="UTF-8"?>

<shiptypes

 name="United Federation of Planets">

 <ship name="USS Enterprise">

 <class>Sovereign</class>

 <captain>Jean-Luc Picard</captain>

 <registry-code>NCC-1701-E</registry-code>

 </ship>

 <ship name="USS Voyager">

 <class>Intrepid</class>

 <captain>Kathryn Janeway</captain>

 <registry-code>NCC-74656</registry-code>

 </ship>

 <ship name="USS Enterprise">

IT-SC book
138

 <class>Galaxy</class>

 <captain>Jean-Luc Picard</captain>

 <registry-code>NCC-1701-D</registry-code>

 </ship>

 <ship name="USS Enterprise">

 <class>Constitution</class>

 <captain>James T. Kirk</captain>

 <registry-code>NCC-1701</registry-code>

 </ship>

 <ship name="USS Sao Paulo">

 <class>Defiant</class>

 <captain>Benjamin L. Sisko</captain>

 <registry-code>NCC-75633</registry-code>

 </ship>

</shiptypes>

5.3.2 A Path Hosting Script

The ships.xml file provides a good stretch of XML data to write paths against. Now
you can write a small program to apply path expressions to the document, and
report on the nodes that are returned. In Example 5-2, we create a small script,
xp.py, which invokes the xml.xpath.Evaluate function provided with 4Suite and
more recent versions of PyXML.

Example 5-2. xp.py

"""

xp.py (requires xml doc on stdin)

"""

import sys

from xml.dom.ext.reader import PyExpat

from xml.xpath import Evaluate

IT-SC book
139

path0 = "ship/captain" # all captain elements

reader = PyExpat.Reader()

dom = reader.fromStream(sys.stdin)

captain_elements = Evaluate(path0, dom.documentElement)

for element in captain_elements:

 print "Element: ", element

To run this program, you need to supply the previously created ships.xml from
Example 5-1 as input:

$ python xp.py < ships.xml

In Example 5-2, the path ship/captain is used to extract all captain elements from
the ships.xml document. The result is a node list containing the following:

<captain>Jean-Luc Picard</captain>

<captain>Kathryn Janeway</captain>

<captain>Jean-Luc Picard</captain>

<captain>James T. Kirk</captain>

<captain>Benjamin L. Sisko</captain>

Of course, this is not a complete or standalone document, but rather a node list.
These nodes are processed by the remaining code in the program:

captain_elements = Evaluate(path0, dom.documentElement)

for element in captain_elements:

 print "Element: ", element

The path ship/captain is a relative location path, as it does not specify an exact
location from the root of the document to the element, as does
/shiptypes/ship/captain. The ship/captain expression returns captain elements
that are children of a ship element, relative to the document node passed to
Evaluate.

5.3.3 Getting Character Data

IT-SC book
140

You will often want to target text beneath an element. For example, you may want
to search just for the captain's name, rather than the element node. You could
append the XPath text function to your expression:

path1 = "ship/captain/text()"

This addition to the path expression selects all text nodes beneath the captain
element. If you replace the original production lines with the following code:

captainnodes = Evaluate(path1, dom.documentElement)

for captainnode in captainnodes:

 print "Starfleet Captain: ", captainnode.nodeValue

you see the following result:

$ python xp.py < ships.xml

Starfleet Captain: Jean-Luc Picard

Starfleet Captain: Kathryn Janeway

Starfleet Captain: Jean-Luc Picard

Starfleet Captain: James T. Kirk

Starfleet Captain: Benjamin L. Sisko

5.3.4 Specifying an Index

Often, when working with data, you become interested in the ordinal positions of
elements within columns, rows, or arrays. XML is no different in this regard. XPath
provides indexed elements with syntax similar to array indexes, but it is important to
know that XPath indexes are one-based, while Python sequence indexes are zero-
based. To target an element using an index, use brackets next to the element name:

path2 = "ship[2]/captain/text()"

In this case, ship[2] indicates that the second ship element for each parent of any
ship element should have the text nodes beneath its captain element selected. To
see the output, change the processing code:

capnode = Evaluate(path2, dom.documentElement)

print "Captain of ship[2] is: ", capnode[0].nodeValue

Using path2, the output is:

$ python xp.py < ships.xml

Captain of ship[2] is: Kathryn Janeway

IT-SC book
141

It is important not to allow the visual similarity between ship[2] and Python
sequence indexing to confuse you; they are very different. The notation is actually
shorthand for ship[position()=2], which indicates that the second ship child
element of some other element will match. Consider the following XML fragment:

<fleet name="Atlantic">

 <ship id="id1"/>

 <lifeboat id="id2"/>

 </fleet>

<fleet name="Pacific">

 <lifeboat id="id3"/>

 <ship id="id4"/>

 <ship id="id5"/>

</fleet>

The XPath expression ship[2] matches only the ship element with an id attribute of
id5. This is not a trick, but it is an excellent reason to keep a copy of the XPath
specification close by.

5.3.5 Testing Descendent Nodes

You may also want to query the text content beneath an element name. Say you
have a structure of book chapters, each containing headings and paragraphs. You
may want to search for text that appears underneath a certain heading. XPath
provides a convenient way for you to check the character data of a text node that is
the child of an element. If you are searching for a <ship> element with a <class>
element beneath it that contains the word Intrepid, you could use the following
path:

path3 = 'ship[class="Intrepid"]'

This expression selects ship elements that have a child class element with child
character data of Intrepid. You can further explore the returned node list with a
processing code:

shipnodes = Evaluate(path3, dom.documentElement)

for shipnode in shipnodes:

 shipname = shipnode.getAttribute("name")

 captain = Evaluate("captain/text()", shipnode)

 print "------------ Intrepid Class Ship ------------"

IT-SC book
142

 print "Name: ", shipname

 print "Captain: ", captain[0].nodeValue

In this code, we select all ship nodes that have a child class element indicating that
they are Intrepid class ships. We can then reprocess this node to further select ship
names and captains to generate the following output:

$ python xp.py < ships.xml

------------ Intrepid Class Ship ------------

Name: USS Voyager

Captain: Kathryn Janeway

Instead of just checking that a descendent element contains necessary information
as in path3, you can continue building the path expression to grab something
specific beneath the matching element:

path4 = 'ship[class="Constitution"]/@name'

In this path, you drill down further. First, a ship element is selected only if its child
class element contains the character data Constitution. This path is further
extended when we select the name attribute of the ship element that contains the
specific child character data (the @ symbol is used to indicate that we're interested in
an attribute rather than a child element). Again, we change the processing code a
little to use the new node list:

ship = Evaluate(path4, dom.documentElement)

print "Name of Constitution Class Ship: ", ship[0].nodeValue

The output follows:

$ python xp.py < ships.xml

Name of Constitution Class Ship: USS Enterprise

5.3.6 Testing Attributes

Of course, evaluating XML attributes and their contents involves a slightly different
process than evaluating element names and text node character data. In XPath, the
@ character is used to indicate an attribute. Brackets are also used to surround the
node when it is being tested against character data. In order to test the character
contents of an attribute, use a path such as the following:

path5 = 'ship[@name="USS Enterprise"]'

This expression selects all ship elements that have a name attribute containing the
word Enterprise. In your ships.xml file, there are three starships named Enterprise,
each with slightly different registry codes. You can mine the node list for more
information:

IT-SC book
143

ships = Evaluate(path5, dom.documentElement)

for shipnode in ships:

 registry = Evaluate("registry-code/text()", shipnode)

 captain = Evaluate("captain/text()", shipnode)

 print "Found Enterprise with registry: ", registry[0].nodeValue

 print "Captain: ", captain[0].nodeValue

These subsequent expressions are relative paths that select captain and registry-
code text from the current element with each hop through the node list. This time
using the preceding code, the output appears as:

$ python xp.py < ships.xml

Found Enterprise with registry: NCC-1701-E

Captain: Jean-Luc Picard

Found Enterprise with registry: NCC-1701-D

Captain: Jean-Luc Picard

Found Enterprise with registry: NCC-1701

Captain: James T. Kirk

5.3.7 Selecting Elements

As with any ordered data set, you are usually interested in pulling one specific type
of information out from the entire document. You may only be interested in the
names of employees in a human resources database. Or you may have heavily
nested data that you want to make sure you pull out with each occurrence of a given
data type, regardless of its position in the document. With XPath, you can use the
path expression // to indicate that all matching elements beneath the root should be
selected:

path6 = "/shiptypes//captain"

This expression selects all captain elements beneath the route, regardless of where
they appear. Since you are working with elements, obtaining character data requires
some of the work shown earlier, or a traversal of the node structure:

captains = Evaluate(path6, dom.documentElement)

for captain in captains:

 print "Captain: ", captain.firstChild.nodeValue

Running path6 generates the following output:

IT-SC book
144

$ python xp.py < ships.xml

Captain: Jean-Luc Picard

Captain: Kathryn Janeway

Captain: Jean-Luc Picard

Captain: James T. Kirk

Captain: Benjamin L. Sisko

5.3.8 Additional Operators

If you are familiar with filesystem paths on Windows or Unix, you may have seen
the . and .. operators. The . operator indicates the current directory (or current
element in XPath) while .. refers to the parent directory (or parent element in
XPath). Using ships.xml, shown in Example 5-1, we can search for a specific ship's
name and then reference the parent element to see which organization the ship
belongs to.

path7 = "ship[@name='USS Voyager']/../@name"

This expression searches for a ship element that has a name attribute of "USS
Voyager." The path then continues to select the name attribute of this ship element's
parent. In ships.xml, this is the name attribute of the shiptypes element. To
generate output, change your processing code in xp.py:

org = Evaluate(path7, dom.documentElement)

print "USS Voyager is owned by", org[0].nodeValue

This time xp.py generates output attributing the Voyager to the Federation of Planets:

$ python xp.py < ships.xml

USS Voyager is owned by United Federation of Planets

5.4 XPath Arithmetic Operators

In addition to selecting elements by location paths, XPath also provides capability for
data manipulation. The numerical parts of an XML document can be added, divided,
subtracted, and multiplied. Likewise, strings can be compared for equality.

XPath provides arithmetic operators for use within XPath expressions. This capability
comes in very handy in XSL transformations that involve totaling an item list or
applying discounts to product prices for display in HTML. The operators available in
XPath are +, -, *, div, and mod (addition, subtraction, multiplication, division, and
modulus, respectively.) There are also functions such as sum that allow you to total
sets of numbers and perform other tasks. We cover functions in the next section.

IT-SC book
145

Imagine that you have an XML file containing a list of products, and you want to
display these products in another application (such as your web site) but need to
apply a 20% discount to all retail prices. You can use the XPath arithmetic operators
to solve this problem. Let's turn to the source XML document (products.xml) shown
in Example 5-3.

Example 5-3. products.xml

<?xml version="1.0" encoding="UTF-8"?>

<products>

 <item name="bowl" price="19.95"/>

 <item name="spatula" price="4.95"/>

 <item name="power mixer" price="149.95"/>

 <item name="chef hat" price="39.95"/>

</products>

To apply a blanket 20% discount to all products, you can use XPath from within an
XSLT document. The XSLT shown in Example 5-4 (products.xsl) does the trick.

Example 5-4. products.xsl

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <xsl:apply-templates/>

 </body>

 </html>

</xsl:template>

<xsl:template match="item">

 <p>Item: <xsl:value-of select="@name"/>

 Orig. Price: <xsl:value-of select="@price"/>, Our Price:

IT-SC book
146

 <xsl:value-of select="@price * 0.8"/>

 </p>

</xsl:template>

</xsl:stylesheet>

The XPath numerical expressions are in the xsl:value-of elements. The discount is
achieved by multiplying the value of the price attribute by 0.8. You can run the
transformation using the 4xslt tool illustrated in the previous chapter:

$ 4xslt.bat products.xml products.xsl

<html>

 <body>

 <p>

 Item: bowl

 Orig. Price: 19.95, Our Price: 15.96</p>

 <p>

 Item: spatula

 Orig. Price: 4.95, Our Price: 3.96</p>

 <p>

 Item: power mixer

 Orig. Price: 149.95, Our Price: 119.96</p>

 <p>

 Item: chef hat

 Orig. Price: 39.95, Our Price: 31.96</p>

 </body>

</html>

The div and mod operators work as the others do. For example, @price div 2
divides all prices designated by 2.

5.5 XPath Functions

IT-SC book
147

XPath provides numerous functions for working with numbers and strings, and allows
you to complete transformations and mine XML data without having to constantly
bridge other APIs or technologies to do simple string and arithmetic operations.
Adding, simple division, multiplication, and string searching are available as built-in
functions of XPath.

5.5.1 Working with Numbers

Several XPath functions are available to you. In Example 5-4, multiplication is used
to apply a 20% discount to products. If you need to total a list of products, you can
use the sum function, working with the same products data again:

<?xml version="1.0" encoding="UTF-8"?>

<products>

 <item name="bowl" price="19.95"/>

 <item name="spatula" price="4.95"/>

 <item name="power mixer" price="149.95"/>

 <item name="chef hat" price="39.95"/>

</products>

This time, in Example 5-5, you can use a single XPath expression to generate a total.
The expression sum(//@price) returns the sum of the values of all price elements in
the products document. Now go back and modify the stylesheet you created to
discount the products, but this time add in an xsl:value-of element to generate a
total.

Example 5-5. products.xsl

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <table>

 <xsl:apply-templates/>

 </table>

 <p>Your Total:

IT-SC book
148

 <xsl:value-of select="sum(//@price)"/>

 </p>

 </body>

 </html>

</xsl:template>

<xsl:template match="item">

 <tr><td>Item: <xsl:value-of select="@name"/></td>

 <td>Price: <xsl:value-of select="@price"/></td>

 </tr>

</xsl:template>

</xsl:stylesheet>

Figure 5-1 shows the result of the transformation (the HTML) in a browser.

Figure 5-1. Using the sum() XPath function

In addition to sum, several other functions exist for working with numbers. The floor
function returns the largest integer that is not greater than the argument. In other
words, floor(3.4) returns 3. The ceiling function, floor's counterpart, returns
the smallest integer that is greater than the argument, e.g., ceiling(3.4) returns 4.

IT-SC book
149

The round function does exactly what you think it should: round your decimal-ridden
number to its closest integer. For example, round(3.4) returns 3, while round(3.8)
returns 4.

5.5.2 Working with Strings

In addition to functions for numbers, XPath supports functions for manipulating text.
Most of these are valuable when doing conditional testing. Earlier you checked
character data of child attributes with syntax such as:

ship[class="Intrepid"]

This expression returns any ship element with a class element beneath it
containing the character data Intrepid. This is a fine approach for exact comparisons,
but sometimes you'll want finer control.

For example, the starts-with function takes two arguments. The first argument is
what you're looking for: the letters the string may start with. The second argument
is the node to evaluate. The function returns true or false. For example, to get a
true or false return (in XSL) on whether a ship element has a registry code that
starts with NCC, you can try the following expression:

<xsl:value-of select="starts-with('NCC', ./registry-code/text())"/>

This expression returns true for every ship in the ships.xml file. This type of Boolean
return may be of most benefit in XSLT, where you can use its if-then-else
language features for conditional processing. A variation on this theme is the
contains function, which returns true if the second argument contains the first
argument.

If you know you have the string you want and are looking to slice and dice it, the
substring and string-length functions can help you out. The substring function
takes up to three arguments. The first argument is the string to manipulate; the
second argument is the starting index within the string; the third argument is the
ending index. If the third argument is omitted, it's assumed to be the end of the
string. The string-length function is straightforward, and returns the total length of
the string as a number.

The translate function takes a string parameter, as well as a list of characters to
replace and a list of corresponding replacement characters. Each character in the
second argument is replaced by the corresponding character in the same position in
the third argument. For example, the expression translate("Wee Willy Winky",
"eily", "oaps") returns the string Woo Wapps Wanks. The concat function returns
the concatenation of its two arguments.

5.5.3 Working with Nodes

Some functions in XPath are designed to work with elements and element traversal
itself. These functions supply information related to XPath's current position, and
other positional type of information such as first matching element and last matching
element. Node functions are fairly straightforward.

IT-SC book
150

The position function returns a number equal to the context position from the
expression evaluation context. For example, to create a numbered list for the ships
of ships.xml, you could use the position function as shown in the following
stylesheet:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="shiptypes">

 <html>

 <body>

 <xsl:apply-templates select="ship"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="ship">

 <p>

 <xsl:value-of select="position()"/>.

 <xsl:value-of select="@name"/>

 </p>

 </xsl:template>

</xsl:stylesheet>

This code generates the following HTML output:

<html>

 <body>

 <p>1.

 USS Enterprise</p>

 <p>2.

 USS Voyager</p>

 <p>3.

IT-SC book
151

 USS Enterprise</p>

 <p>4.

 USS Enterprise</p>

 <p>5.

 USS Sao Paulo</p>

 </body>

</html>

The count function returns the number of nodes in the node set matching the
argument. In other words, count(//@name) returns the total number of name
attributes within a document. The last function returns a number equal to the
context size (the number of nodes) in the current expression.

The id function returns a node by specific id. If you create an element <name
id="a345">Chris Jones</name> and then use id('a345') in your expression, this
node is returned. The localname and name functions return both the local name and
the qualified name of the node in the current node set that appears first in document
order.

5.6 Compiling XPath Expressions

In this chapter, we use the Evaluate function from the 4XPath API to apply XPath
expressions against node sets. For programmatic use of XPath within Python, the
4XPath API is readily available and offers considerable power.

Most of the XPath API is geared towards supporting XPath expressions, as XPath is a
standard. But for the programmer embedding XPath processing functionality into
their applications, there is some optimization found in 4XPath.

The Compile and Context functions aid the developer to create compiled XPath
expressions for repeated use against multiple documents. For example, if you are
accepting large numbers of XML documents from customers or suppliers, you may
want to apply an XPath expression to each one (as it arrives) to figure out what to
do with it, or where to route it within your organization. Having your XPath
expression readily compiled and applied against each unique document adds speed
to your application, as you've done away with the need to parse the XPath
expression.

The Compile function returns an expression object that supports an evaluate
method similar to the Evaluate function used thus far in this chapter. However, the
method expects a Context object, not a node. The task of compiling an expression,
and then using the compiled version, is fairly simple:

expression = Compile("ship/@name")

context = Context(dom.documentElement)

IT-SC book
152

nodes = expression.evaluate(context)

The first step is to generate an expression; the second step is to generate context for
the document or node set you're working with. You can run the expression by calling
the evaluate method of the compiled expression object, as demonstrated in
Example 5-6 (which makes use of the ships.xml file).

Example 5-6. xp.py

#!/usr/local/bin/python

import sys

from xml.dom.ext.reader import PyExpat

from xml.xpath import Compile

from xml.xpath.Context import Context

reader = PyExpat.Reader()

dom = reader.fromStream(sys.stdin)

expression = Compile("ship/@name")

context = Context(dom.documentElement)

nodes = expression.evaluate(context)

print "Nodes: ", nodes

When executed from the command line with ships.xml as input, the program
generates the following output:

$ python compx.py < ships.xml

Nodes: [<Attribute Node at a1cd9c: Name="name", Value="USS
Enterprise">,

<Attribute Node at a2305c: Name="name", Value="USS Voyager">,

<Attribute Node at a2b7fc: Name="name", Value="USS Enterprise">,

<Attribute Node at a33fdc: Name="name", Value="USS Enterprise">,

IT-SC book
153

<Attribute Node at a3a30c: Name="name", Value="USS Sao Paulo">]

Your Python and XML toolkit is almost complete; we look at one more core
technology in the next chapter. After that, we delve into topics that deal with
actually integrating XML with your existing systems and building new systems using
Python and XML.

IT-SC book
154

Chapter 6. Transforming XML with XSLT

We've covered using SAX to capture XML parsing events and output corresponding
HTML for display in a web browser. XML's power lies in its ability to represent data
for data's sake. XML is not concerned with displays such as web pages, handheld
devices, PostScript files, etc. Instead, XML is concerned only with the structure of
your information. For this reason, we frequently parse XML and convert it to another
format for viewing, such as HTML.

In this chapter, we discuss Extensible Stylesheet Language Transformations (XSLT).
One of the simplest things that XSLT does is transform your XML documents into
HTML documents for consumption by browsers. We go over how to construct an
XSLT stylesheet that performs the same transformation for you that SAX did earlier,
but with considerably less effort. Keep in mind, however, that XSLT is more powerful
than mere HTML production as it transforms one XML document written for a specific
DTD or dialect into another dialect. These XML to XML transformations can be very
powerful when exchanging business documents between Internet domains that use
different dialects. Dialects and validation are covered in Chapter 7.

6.1 The XSLT Specification

The XSLT specification is available from the World Wide Web Consortium web site at
http://www.w3.org/TR/xslt.html. Reading the specification is a perfect cure for
insomnia, so to keep you awake, I summarize key parts of XSLT here as they relate
to Python.

In any working XSLT setup, three distinct files exist and at least one piece of
software is utilized. The first is the source XML file, which is your original document.
The next is the XSL stylesheet, which represents the rules of the transformation and
is itself an XML-compliant document. The third and final document is the result of the
transformation. This is most likely either HTML or XML. The essential software used
to create the transformation is the XSLT processor. This software loads the original
XML document, applies the transformation rules, and spits out the result of the
transformation. Figure 6-1 shows an example of this arrangement.

Figure 6-1. The XSLT transformation process

The XSLT language is an XML-based language. It is defined as a set of elements and
attributes with carefully defined semantics. XSLT is very straightforward, as you'll
discover.

IT-SC book
155

6.2 XSLT Processors

There are a variety of XSLT processors available on the market, both free and
commercial. The power of XSLT is in the transformations that the language allows,
but the actual work is completed by the processor. Depending on your environment,
you may choose a processor based on speed or on accessibility from a particular
platform such as Python. Alternatively, you may choose a processor that you can
drive programmatically.

The XSLT processor's job is to take an XSL stylesheet and perform its transformation
rules against an existing XML document to produce a new transformed document.
The W3C states that XSLT is for transforming XML to XML, which is true, but it can
be used to generate HTML or other formats as well. It is frequently used to transform
XML to HTML or XHTML for viewing in a web browser.

XSLT is a language unto itself, and has nothing in particular to do with Python. As
such, you can convert documents for use in your Python programs with any XSLT
processor. However, if you are hoping to embed XSLT functionality within your
Python programs, you need a processor accessible from Python either natively (such
as 4XSLT) or by a bridge mechanism (such as using MSXML3.0 from Python, as
covered in Appendix E).

For Python, the 4XSLT package is an open source XSLT processor that can be driven
from the command line as well as embedded in your Python programs—it is primarily
implemented in Python, but includes some modules written in C for improved
performance. 4XSLT is available from Fourthought, Inc. as part of the 4Suite
package (see http://www.4suite.org/).

Other XSLT processors exist for other languages and platforms, but can still batch
process transformations for use in your Python applications. Microsoft's Internet
Explorer has an XSLT processor embedded within it, and can transform an XML
document into HTML in the client's browser (though versions prior to 6.0 are horribly
noncompliant). SAXON is a collection of XML tools, including a Java-based XSLT
processor capable of running in any Java virtual machine. Sablotron is a fast C++
XSLT processor. The W3C's XSLT site (http://www.w3.org/Style/XSL/) contains
numerous links to XSLT processing software.

For the remainder of this chapter, we use the 4XSLT processor as it's completely
Python-based, and its functionality is accessible at runtime from your Python
applications.

6.3 Defining Stylesheets

If you are familiar with the Cascading Style Sheets (CSS) specification often used on
the Web, you are probably aware that CSS stylesheets can be stored in a separate
file, or embedded as a special element within an HTML document. Also, specific
styling information can be attached to individual attributes within the document. In
this section, we examine the corresponding approaches to using XSLT.

Each of the three ways of using CSS have an analogous technique using XSLT, but
the XSLT stylesheets are substantially more powerful. While this discussion refers to
some specific XSLT elements and shows several in the examples, it does not expect

IT-SC book
156

that you know anything about them. These elements are described in more detail
later in this chapter; this section simply introduces you to the ways stylesheets can
be written and how that relates to the documents being processed.

6.3.1 Simplified Stylesheets

Simplified stylesheets are more like using the STYLE attribute in HTML documents
than anything else, but the similarity is minimal. This approach is somewhat less
powerful than using embedded or standalone stylesheets; the xsl:stylesheet
element is not allowed since the entire stylesheet is interpreted as the body of an
xsl:template element. Many features of XSLT require using additional "top-level"
elements (peers of the xsl:template element), so they are not allowed in this
context. This kind of stylesheet is more difficult to use when the basic structure of
the source document needs to be preserved, but is perfectly able to make queries
about the structure and content of the source document. Simplified stylesheets are
most often applied when the output documents are very regular and only need to
extract very specific portions of the input document.

Since simplified stylesheets are also about the easiest to start with when learning
XSLT, let's take a look at one. In the previous chapter, we use a list of spaceships
from a group of well-known television shows to provide input data (see Example 5-1);
we use that input here as well. Instead of using the DOM and XPath to retrieve a list
of nodes, we use XSLT to create a list of spaceships sorted by their registry numbers,
nicely presented as an HTML table. Example 6-1 shows the stylesheet. Notice the
root element of the stylesheet document declares the namespace for XSLT and
specifies the XSLT version that is being used; these are required for the use of
simplified stylesheets.

Example 6-1. ships-template.html

<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

 <head>

 <title>Ships of the

 <xsl:value-of select="/shiptypes/@name" /></title>

 </head>

 <body>

 <table border="1">

 <tr><th>Ship</th>

 <th>Class</th>

 <th>Registration</th>

 <th>Captain</th>

IT-SC book
157

 </tr>

 <xsl:for-each select="/shiptypes/ship">

 <xsl:sort select="registry-code" />

 <tr><td><xsl:value-of select="@name" /></td>

 <td><xsl:value-of select="class" /></td>

 <td><xsl:value-of select="registry-code" /></td>

 <td><xsl:value-of select="captain" /></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

</html>

The result of processing the ships.xml file from Example 5-1 with the stylesheet
ships-template.html in Example 6-1 is given in ships.html, shown in Example 6-2.
The transformation was performed using 4XSLT.

Example 6-2. ships.html

<html>

 <head>

 <meta http-equiv='Content-Type' content='text/html; charset=iso-
8859-1'>

 <title>Ships of the

 United Federation of Planets</title>

 </head>

 <body>

 <table border="1">

 <tr>

 <th>Ship</th>

 <th>Class</th>

 <th>Registration</th>

IT-SC book
158

 <th>Captain</th>

 </tr>

 <tr>

 <td>USS Enterprise</td>

 <td>Constitution</td>

 <td>NCC-1701</td>

 <td>James T. Kirk</td>

 </tr>

 <tr>

 <td>USS Enterprise</td>

 <td>Galaxy</td>

 <td>NCC-1701-D</td>

 <td>Jean-Luc Picard</td>

 </tr>

 <tr>

 <td>USS Enterprise</td>

 <td>Sovereign</td>

 <td>NCC-1701-E</td>

 <td>Jean-Luc Picard</td>

 </tr>

 <tr>

 <td>USS Voyager</td>

 <td>Intrepid</td>

 <td>NCC-74656</td>

 <td>Kathryn Janeway</td>

 </tr>

 <tr>

 <td>USS Sao Paulo</td>

IT-SC book
159

 <td>Defiant</td>

 <td>NCC-75633</td>

 <td>Benjamin L. Sisko</td>

 </tr>

 </table>

 </body>

</html>

Note that the transformation added a meta element near the top of the generated
HTML, and that the indentation and whitespace inside the replacement for the
xsl:for-each element has been adjusted somewhat. Figure 6-2 shows what the
resulting HTML document looks like in a web browser.

Figure 6-2. ships.html in a browser

6.3.2 Standalone Stylesheets

Stylesheets stored in separate files are perhaps the most commonly used form of
stylesheets for both CSS and XSLT. The root element of the stylesheet must be an
xsl:stylesheet or xsl:transform element. This is what we use for most of the
examples in this book. Standalone stylesheets offer more power and flexibility than
simplified stylesheets, and lend themselves to better modularization, allowing use of
a powerful import mechanism as well as strong pattern matching abilities.

Let's look at the previous example expressed as a standalone stylesheet. We could
use a trivial wrapper around the template document to create a stylesheet that is
technically correct, but let's go ahead and change it to reflect a more typical way of
structuring a stylesheet. This particular version no longer sorts the table of ships, but
maintains their order from the original document. This is a common way of
structuring a stylesheet for a document-oriented application. Our new stylesheet is
shown in Example 6-3. Notice that the XSLT namespace is declared here as well,

IT-SC book
160

along with the version attribute, but we need not include the namespace prefix
when the attribute is attached to an xsl:stylesheet element.

Example 6-3. ships.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:template match="/">

<html>

 <head>

 <title>Ships of the

 <xsl:apply-templates mode="head" /></title>

 </head>

 <body>

 <xsl:apply-templates />

 </body>

</html>

</xsl:template>

<xsl:template match="shiptypes" mode="head">

<xsl:value-of select="@name" />

</xsl:template>

<xsl:template match="shiptypes">

<table border="1">

 <tr><th>Ship</th>

 <th>Class</th>

 <th>Registration</th>

 <th>Captain</th>

IT-SC book
161

 </tr>

 <xsl:apply-templates />

</table>

</xsl:template>

<xsl:template match="ship">

 <tr><td><xsl:value-of select="@name" /></td>

 <td><xsl:value-of select="class" /></td>

 <td><xsl:value-of select="registry-code" /></td>

 <td><xsl:value-of select="captain" /></td>

 </tr>

</xsl:template>

</xsl:stylesheet>

This version is structured as a set of templates that match particular constructs in
the input document; the matched constructs are specified by the match attribute of
the xsl:template elements. The XSLT constructs used in this stylesheet are
explained in detail later in this chapter. Example 6-4 shows the result of
transforming ships.xml (see Example 5-1) using ships.xsl (see Example 6-3).

Example 6-4. ships2.html

<html>

 <head>

 <meta http-equiv='Content-Type' content='text/html; charset=iso-
8859-1'>

 <title>Ships of the

 United Federation of Planets</title>

 </head>

 <body>

 <table border="1">

 <tr>

IT-SC book
162

 <th>Ship</th>

 <th>Class</th>

 <th>Registration</th>

 <th>Captain</th>

 </tr>

 <tr>

 <td>USS Enterprise</td>

 <td>Sovereign</td>

 <td>NCC-1701-E</td>

 <td>Jean-Luc Picard</td>

 </tr>

 <tr>

 <td>USS Voyager</td>

 <td>Intrepid</td>

 <td>NCC-74656</td>

 <td>Kathryn Janeway</td>

 </tr>

 <tr>

 <td>USS Enterprise</td>

 <td>Galaxy</td>

 <td>NCC-1701-D</td>

 <td>Jean-Luc Picard</td>

 </tr>

 <tr>

 <td>USS Enterprise</td>

 <td>Constitution</td>

 <td>NCC-1701</td>

 <td>James T. Kirk</td>

IT-SC book
163

 </tr>

 <tr>

 <td>USS Sao Paulo</td>

 <td>Defiant</td>

 <td>NCC-75633</td>

 <td>Benjamin L. Sisko</td>

 </tr>

 </table>

 </body>

</html>

The only difference between this output and Example 6-2 is that the table is not
sorted in this version.

6.3.3 Embedded Stylesheets

XSLT stylesheets can be embedded within other documents in much the same way
that CSS stylesheets can be embedded in an HTML document. When embedding an
XSLT stylesheet, it is typically embedded in the document to which it applies. The
embedded element must be the xsl:stylesheet (or xsl:transform) element. This
usage pattern is not commonly used since it doesn't allow the stylesheet to be re-
used as easily with other documents, and few XSLT processors support embedded
stylesheets. Given the lack of broad tool support for embedded stylesheets, we won't
bother showing any examples.

6.4 Using XSLT from the Command Line

Before we learn how to embed XSLT transformations in Python programs, we need to
concentrate on learning more about XSLT itself. As we're learning, it will generally be
easier to run our transformations from the command line than from a Python script.
Many of the processors provide a command-line tool for performing transformations.
We use the 4XSLT package provided as part of 4Suite; if you choose to use a
different tool, please consult its documentation to determine how to use it.

4XSLT includes a script that performs transformations from the command line. On
Windows, the 4xslt.bat script is installed in the Scripts directory of your Python
installation by the 4Suite installer. To make the script more easily usable, either add
the Scripts directory to your PATH environment variable or copy the 4xslt.bat file to a
directory that is already included in the PATH.

The basic operation of 4xslt simply requires two parameters: the XML document to
transform, and the stylesheet to apply. This example was used to apply the
stylesheet from Example 6-3 to produce the output shown in Example 6-4:

IT-SC book
164

C:\my-dir> 4xslt ships.xml ships.xsl > ships2.html

Output redirection is used to save the result of the transformation to a file.

4XSLT and the 4xslt script support the use of both simplified and standalone
stylesheets. Embedded stylesheets are not supported.

6.5 XSLT Elements

Much of XSLT's functionality is exercised in the form of elements that perform
functions and tasks. In fact, the whole language is XML-based and describing its
features is already the subject of several books. This section presents some of the
XSLT elements and fundamentals so you can begin using it in your daily work.

6.5.1 The Stylesheet Element

The xsl:stylesheet element is always the root element of standalone stylesheets,
and is also used for embedded stylesheets. The stylesheet element contains some
optional and mandatory attributes that provide more details about the stylesheet to
the XSLT processor. The specification defines a second root element in the XSLT
namespace, called xsl:transform. This element is identical to xsl:stylesheet in
every way but name, and can be used in place of xsl:stylesheet with no change in
meaning.

The id attribute is optional. However, an identifier would certainly come in handy if
this stylesheet were part of a larger XML document (as would be the case for an
embedded stylesheet). The XML specification states that any attribute of type ID (not
necessarily named id, but of the data type ID declared in the DTD) must be unique
within any XML document. Use of an ID attribute on a stylesheet is powerful if you
are dynamically generating several stylesheets collected together in a larger
composite document.

The version attribute is required as it indicates which version of XSLT is being used.
All xsl:stylesheet elements must have the version attribute. The root element of
simplified stylesheets must also have a version attribute explicitly associated with
the XSLT namespace, as shown in Example 6-1.

It is strongly recommended that you give a namespace prefix to the stylesheet
elements to distinguish it from other elements that are part of the transformation or
part of a larger document that contains the stylesheet. The URI of the namespace
must be the W3C URI http://www.w3.org/1999/XSL/Transform.

A typical stylesheet element may start like this:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

IT-SC book
165

In this example, the namespace and the version have been presented, but no id
attribute is present.

Since XSLT can generate output, which is XML, HTML, or any other format, it is
important to specify which form the output should take. This is done using the
xsl:output element, which requires a single attribute:

<xsl:output method="xml"/>

The value of the method attribute can be xml, html, or text. The meaning of each of
these values is roughly what you would expect. If the output should be XHTML, use
the xml value. For all formats that are not XML or HTML, the text method allows
control over each byte of the output, but the intended use is to generate text-based
formats. If you need to generate formats such as RTF or any of the TeX-based
languages, text is the right value to use. Many applications that require other
formats can be satisfied by generating an XSL-FO document and then processing it
using a processor that has a lot of information about details of the target format.

If the stylesheet does not contain an xsl:output element, or if the method attribute
is not specified, the output is XML.

6.5.2 Creating a Template Element

The xsl:template element is regularly used to accomplish a great deal of work in
the transformation process. This element is an XSLT instruction, and usually specifies
a pattern for its invocation or defines a name so that it can be called by other parts
of the XSL document. The body of the xsl:template element contains the output
markup for when the template is either called or matched by the XSLT processor.

The attributes of the template element define optionally its name and matching rule
(match). In addition to these attributes, mode and priority are available as well.
The mode is used to indicate a namespace prefix to be considered by the XSLT
processor when the xsl:apply-templates instruction (described in the next section)
is used with a specific mode. The priority attribute is used to define a priority when
the template is part of a collection of template elements that match the same
pattern. In other words, when the XSLT processor has multiple templates to choose
from, it defers to priority if specified.

The most important attribute here is match. The match attribute contains an XPath
expression used to determine when the processor has hit the target element in the
source XML document. For example, in the earlier address record, rather than
parsing the document with SAX waiting for your event, use the following match
attribute and XPath syntax to hit the first address line:

<xsl:template match="/addr-record/address1">

This expression starts with the root element addr-record and then further selects its
child address1. To display the contents of this field, you could use the same
expression in your select attribute (covered a little later in this chapter).

IT-SC book
166

Earlier we created a template element to match an entire XML document and
produce a complete HTML document. You can also use the template elements to
match any element within the XML source document:

<xsl:template match="/addr-record/address1">

<html>

<head>

 <title>Transformed Address Record</title>

</head>

<body>

 <p>We have matched /addr-record/address1</p>

 <p><xsl:value-of select="/addr-record/address1"/></p>

</body>

</html>

</xsl:template>

In this example, you are matching an element address1 that is a child of the root
addr-record element and then processing several rules and content. When the
template is instantiated by the XSLT processor, it outputs the child elements of the
template (in this case HTML) and processes any other XSLT elements contained
therein. The result is the HTML written to standard output by the XSLT processor. If
you run this modified version of the stylesheet against the XML document, you get
the HTML expected in the previous code listing, but you also get the rest of the XML
document's character data trailing the HTML. This is because no instructions were
given for the rest of the character data, so it is simply dumped out. The xsl:apply-
templates element allows you to nest rules within each other to produce deeply
nested documents that are transformed as expected.

6.5.3 Applying Templates

When you have a document that contains nested structures, the apply-templates
element is used to recursively apply transformation rules throughout the document.
An easy example that demonstrates the concept of nested structures is formatted
text, wherein paragraphs may contain sentences with bold typeface of multiple colors,
code examples, or other formatting structures that may appear nested within
themselves.

Another deeply nested structure is a filesystem. A directory can contain any number
of files and subdirectories. Each subdirectory follows the same content rule as any
other and may contain any number of files and subdirectories. The resultant tree can
become quite complex.

IT-SC book
167

When dealing with XML documents containing nested structures, it may be desirable
to establish a set of rules (templates) for specific tags, but allow those tags and rules
to be nested inside each other. You can use the apply-templates elements to
accomplish this. Consider the following XML:

<deep-nest>

 <title>Sample Text</title>

 <big>T</big>his is an example of

 <red>Fancy Text</red> that comes in

 <blue>m<big>u</big></blue><green>l<big>

 t</big></green><blue>i<big>p</big>

 </blue><green>l<big>e</big></green>

 colors. Many of <bold>these</bold>

 elements are <big><green>N</green>

 <blue>E</blue><green>S</green><blue>T</blue>

 <green>E</green><blue>D</blue></big> within

 each other.

</deep-nest>

This XML fragment contains elements with other elements within them. There is no
set order as to which tags can be embedded within others, as there is not a specified
DTD. To account for this nesting in your template elements, use the xsl:apply-
templates instruction. For example, the big element can occur within a color
element, a bold element, or a title element. Therefore, its template element is:

<xsl:template match="big">

 <xsl:apply-templates/>

</xsl:template>

Wherever there is a big element, it is replaced with the font tag. Furthermore, any
content within the big tag is processed against any other template patterns since the
xsl:apply-templates instruction is specified. Now let's take a look at the whole
stylesheet used to process the XML:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

IT-SC book
168

<xsl:output method="html"/>

<xsl:template match="deep-nest">

 <html><body><xsl:apply-templates/></body></html>

</xsl:template>

<xsl:template match="title">

 <h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="big">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="red">

 <u>

 <xsl:apply-templates/></u>

</xsl:template>

<xsl:template match="blue">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="green">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="bold">

 <i><xsl:apply-templates/></i>

IT-SC book
169

</xsl:template>

</xsl:stylesheet>

The key to this stylesheet is well-formedness. Every XML element in the source
document is accounted for in the stylesheet, and each defers to further processing
by placing xsl:apply-templates square in the middle. If you run the XML and
stylesheet through your XSLT processor, you get the following HTML:

<html>

 <body>

 <h1>Sample Text</h1>

 This is an example of

 <u>Fancy Text</u>

 that comes in

 mu

 l

 t

 ip

 le

 colors. Many of <i>these</i>

 elements are

 N

IT-SC book
170

 E

 S

 T

 E

 D

 within

 each other.

</body>

</html>

6.5.4 Getting the Value of a Node

The xsl:value-of element generates output from an expression. It has two possible
attributes: select and disable-output-escaping. The select attribute is
mandatory as it's used to generate the replacement content. The select attribute
takes an XPath expression. Given the XML <a><c id="c">content</c>,
the following expression produces the word "content."

<xsl:value-of select="/a/b/c"/>

To retrieve an attribute of an element, use the @ symbol in your select attribute:

<xsl:value-of select="/a/b/c/@id"/>

The disable-output-escaping attribute causes the XSLT processor to suppress
encoding of characters that could be confused with markup. This can be useful when
generating text output. For example, consider the document:

<doc>A & B</doc>

and this template:

IT-SC book
171

<xsl:template match="doc">

 <xsl:value-of select="text()" disable-output-escaping="yes"/>

</xsl:template>

If disable-output-escaping were allowed to have its default value of no, the result
of the template would be presented as A & B — but when the attribute is set to
yes, the presentation is A & B. This is not needed if the output method is set to text
using the xsl:output element.

We have already used the xsl:value-of element in the previous examples in this
chapter, as it is core to XSLT.

6.5.5 Iterating over Elements

The xsl:for-each element allows you to iterate through certain element types
inside a template match. It has a mandatory select attribute that defines the node
set to be iterated. The select attribute can contain anything that results in a
collection of elements or nodes, and can be as simple as an element name or
another type of path expression.

The xsl:for-each element is helpful when you are working with mixed content and
want only to transform a subset of elements within a document. For example, the
following purchases XML document describes multiple types of purchases:

<?xml version="1.0"?>

<purchases>

 <product name="floppy disk" price="3.50"/>

 <service name="web updates" price="6.95"/>

 <product name="ink-jet cartridge" price="19.95"/>

 <service name="consulting" price="150h"/>

</purchases>

If you are interested only in the product purchases and not services, you could use
the for-each element to select only the product elements:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">

IT-SC book
172

 <html><body><xsl:apply-templates/>

 </body></html>

</xsl:template>

<xsl:template match="purchases">

 <xsl:for-each select="product">

 <p>Product: <xsl:value-of select="./@name"/>

 Price: <xsl:value-of select="./@price"/></p>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

This stylesheet generates HTML detailing information about products, but not about
services.

XSLT is a substantial programming language and extends well beyond the scope of
this book. In addition to the elements covered here that allow you to select, search,
and iterate source XML, XSLT features all sorts of standard language features such
as control structures, conditionals, variables, and functions. There are several
resources available from which you can learn more about XSLT; if you are
considering using XSLT for your projects, a good tutorial introduction is well worth
the time.

6.6 A More Complex Example

In Chapter 3, we created an XML document that represents the Python classes in the
PyXML package (index.py). The pyxml.xml file from Chapter 3 is a lengthy XML
document, and makes a good test subject.

In this section, we convert the pyxml.xml file back to HTML, but this time using XSLT
instead of a SAX driver. After using XSLT to perform this, the SAX and string
approach from Chapter 2 will not seem nearly as powerful. However, this type of
conversion work is exactly what XSLT is designed to accomplish. The basic structure
of the pyxml.xml document consists of a file element, followed by one or more
class elements, followed by one or more method definition elements:

<file name="../xml/dom/ext/reader/HtmlLib.py">

 <class name="class HtmlToDomParser(SGMLParser):">

 <method name="def __init__(self):"/>

 <method name="def unknown_starttag(self,tag,attrs):"/>

 <method name="def unknown_endtag(self, tag):"/>

IT-SC book
173

 <method name="def handle_data(self, data):"/>

 <method name="def handle_comment(self, comment):"/>

 <method name="def handle_generic_node(self, node):"/>

 <method name="def report_unbalanced(self, tag):"/>

 <method name="def toDom(self, st, ownerDoc=None):"/>

 </class>

</file>

The above XML represents only a few lines of the 2600 line file. The stylesheet used
to convert this XML to HTML uses a combination of apply-templates and value-of
elements to traverse the structure and generate appropriate output.

The stylesheet starts by creating the HTML opening and closing elements, and calling
apply-templates to fill in the content:

<xsl:template match="pyxml">

 <html>

 <body bgcolor="#FFFFFF" text="#3333FF">

 <xsl:apply-templates/>

 </body>

 </html>

</xsl:template>

Three separate templates, one for each of the element types generated by index.py,
are defined in the next section and catch the content and generate the appropriate
HTML output.

6.6.1 File Template

To catch file elements in pyxml.xml, create a template that uses the element's
name as a match. Once found, HTML is formatted to produce the name of the file in
red text in a new table row:

<xsl:template match="file">

 <p>

 <table cellpadding="0" cellspacing="0" border="1"

 bordercolor="#000000" width="540">

 <tr>

IT-SC book
174

 <td align="center">Source File:

 <b class="filename"><xsl:value-of select="./@name"/>

 </td>

 </tr>

 <xsl:apply-templates/>

 </table></p>

</xsl:template>

Inside the template, a value-of element is used with a path expression that targets
the name attribute. After the table row is complete, apply-templates is used to fill in
the content beneath this element, which may consist of multiple class and method
elements.

6.6.2 Class Template

The class template creates a new table row with the classname, then simply prints
out the classname:

<xsl:template match="class">

 <tr>

 <td>Class:

 <b class="classname"><xsl:value-of select="./@name"/>

 </td>

 </tr>

 <xsl:apply-templates/>

</xsl:template>

As shown earlier, the apply-templates instruction is used to further fill in the
content beneath this element.

6.6.3 Method Template

The method template follows suit and creates its own unique HTML to display method
names, this time in black text:

<xsl:template match="method">

 <tr>

 <td align="left">

IT-SC book
175

 <span class="methodname"

 ><xsl:value-of select="./@name"/>

 </td>

 </tr>

</xsl:template>

Here apply-templates is not used because there are no child elements of a method
element in the pyxml.xml document.

Example 6-5 shows the complete listing of pyxml.xsl.

Example 6-5. pyxml.xsl

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="html"/>

<xsl:template match="pyxml">

<html>

 <body bgcolor="#FFFFFF" text="#3333FF">

 <xsl:apply-templates/>

 </body>

</html>

</xsl:template>

<xsl:template match="file">

 <p><table cellpadding="0" cellspacing="0" border="1"

 bordercolor="#000000" width="540">

 <tr>

IT-SC book
176

 <td align="center">Source File:

 <xsl:value-of select="./@name"/>

 </td>

 </tr>

 <xsl:apply-templates/>

 </table></p>

</xsl:template>

<xsl:template match="class">

 <tr>

 <td>Class: <xsl:value-of

 select="./@name"/>

 </td>

 </tr>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="method">

 <tr>

 <td align="left">

 <xsl:value-of select="./@name"/>

 </td>

 </tr>

</xsl:template>

IT-SC book
177

</xsl:stylesheet>

When you run the transformation in Example 6-5, you produce a pyxml.html
document that shows all of the classes in the PyXML package.

C:\my-dir> 4xslt pyxml.xml pyxml.xsl > pyxml.html

6.7 Embedding XSLT Transformations in Python

XML is frequently used to store the "core" version of a document while
transformations are used to integrate the data into other systems. For example, you
may receive a purchase order as XML over the Web and dispatch it in several
different directions (and in different formats) to your other data systems. You may
parse the XML inserting the data into Oracle tables, transform it to HTML, add it to
an internal web site, transform the purchase order into another flavor of XML, and
pass it on to your suppliers.

Regardless of where you're sending your XML, the ability to perform XSLT
transformations at runtime is critical. The 4XSLT package works nicely from inside
your Python programs. In this section, we create a Python CGI executable for use
within Linux and Apache, or in any web server that is configured to run external CGI
programs.

The process involves two stylesheets, one XML document, and one CGI executable.
The first stylesheet converts the XML document into HTML for your browser. The
second stylesheet converts the XML document into HTML for your browser, but adds
additional HTML allowing you to edit the text of the XML document and update it on
the server. The Python CGI script exists to run the XML through the appropriate
stylesheet based on your actions. The script also takes care of updating the source
XML on disk. In order for the script to run correctly, it must be placed in a directory
where the web user (user nobody on Apache and Unix) has permission to write a
new XML file.

6.7.1 Creating the Source XML

For starters, we need to create an XML document. Further updates to the XML can be
accomplished through the web browser once you've created the CGI script. For now,
you can get by with the following code saved to disk as story.xml:

<?xml version="1.0"?>

<story>

 <title>Web Sites Use XML</title>

 <body>

 It is no surprise, web sites are using XML these days.

 </body>

IT-SC book
178

</story>

Be sure to save the document as story.xml so that the CGI script can find it when
applying stylesheets.

6.7.2 Creating a Simple Stylesheet

The first stylesheet used by the CGI script displays the XML as simple HTML in the
browser. It uses the XSLT apply-templates method, and contains a form button
labeled Edit Me that reloads the CGI script. When the CGI executes in edit mode, it
uses the second stylesheet to present the edit form. The simple stylesheet is shown
below in Example 6-6. Be sure and save it to disk as story.xsl.

Example 6-6. story.xsl

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="story">

 <html>

 <head><title>The Story Page</title></head>

 <body><xsl:apply-templates/>

 </body>

 </html>

</xsl:template>

<xsl:template match="title">

 <h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="body">

 <p><xsl:apply-templates/></p>

 <p>

 <form action="xslt.cgi" method="get">

IT-SC book
179

 <input type="hidden" name="mode" value="edit"/>

 <input type="submit" value="Edit Me"/>

 </form>

 </p>

</xsl:template>

</xsl:stylesheet>

Figure 6-3 shows the transformed XML within a web browser.

Figure 6-3. Transformation using a simple stylesheet

6.7.3 Creating a Stylesheet with Edit Functions

The second stylesheet is similar to the first, except this time the contents of the XML
are placed within form fields that are editable within your browser. When the form is
submitted, the CGI script updates the XML file on disk, and then reprocesses it
through the simple stylesheet sending the result back to the browser.

The editing stylesheet is shown in Example 6-7. Be sure to save this to disk as
edstory.xsl.

Example 6-7. edstory.xsl

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

IT-SC book
180

<xsl:template match="story">

 <html>

 <head><title>The Story Page</title></head>

 <body>

 <form action="xslt.cgi" method="get">

 <xsl:apply-templates/>

 </form>

 </body>

 </html>

</xsl:template>

<xsl:template match="title">

 <h1><xsl:value-of select="."/></h1>

 <p>New Title:

 <input type="text" name="title" length="20"/>

 </p>

</xsl:template>

<xsl:template match="body">

 <p>New Body:

 <textarea rows="10" cols="50" name="body">

 <xsl:value-of select="."/>

 </textarea>

 <input type="hidden" name="mode" value="change"/>

 <p><input type="submit"/></p>

 </p>

</xsl:template>

IT-SC book
181

</xsl:stylesheet>

Figure 6-4 shows the edit form displayed in a web browser. Selecting the submit
button updates the XML file on disk and reapplies the simple transformation.

Figure 6-4. Editing the XML inside a web browser

6.7.4 Creating the CGI Script

The xslt.cgi script pulls the stylesheets together and coordinates the processing and
updating of the XML on disk. While this application lets you edit and display XML in
your browser, it only consists of a single CGI script and two XSL sheets. The source
data that may constantly change is also stored on disk as XML.

XSLT transformations can be done programmatically using the
xml.xslt.processor.Processor class (provided 4XSLT is installed, as shown
earlier). When the CGI script launches, it imports and instantiates the XSLT
processor:

#!/usr/local/bin/python

xlst.cgi

import cgi

import os

import sys

from xml.xslt.Processor import Processor

IT-SC book
182

parse query string & instantiate xlst proc

query = cgi.FieldStorage()

xsltproc = Processor()

Using the XSLT processor in the CGI is simple. Two methods are exposed to establish
a stylesheet and perform a transformation returning the result as a string:

xsltproc.appendStylesheetUri("story.xsl")

html = xsltproc.runUri("story.xml")

The appendStylesheetUri method is used to establish which stylesheet is used
during a transformation. The runUri method performs the transformation against a
source XML document and returns the result as a string.

The CGI script does not get around to transformations until it figures out what you're
trying to do. Your choices are communicated to the script using a query string
passed to the server as part of the request.

6.7.5 Selecting a Mode

After the CGI has fetched the QUERY_STRING, it's used to determine which mode (edit,
change, or display) you are selecting. In the case of no mode whatsoever, the script
sends back a complaint and exits:

mode = query.getvalue("mode", "")

if not mode:

 print "<html><body>"

 print "<p>No mode given</p>"

 print "</html></body>"

 sys.exit(0)

In the case of a show command, the simple stylesheet and source XML are loaded by
the XSLT processor and the resultant HTML is sent to the browser:

if mode[0] == "show":

 # run XML through simple stylesheet

 xsltproc.appendStylesheetUri("story.xsl")

 html = xsltproc.runUri("story.xml")

 print html

IT-SC book
183

In the case of an edit command, the XML is processed through the editing
stylesheet, which adds the necessary form markup. This is nearly identical to a show
command, but this time the name of the stylesheet is different.

elif mode[0] == "edit":

 # run XML through form-based stylesheet

 xsltproc.appendStylesheetUri("edstory.xsl")

 html = xsltproc.runUri("story.xml")

 print html

If you were to press the submit button after editing the XML, the result would be
sent to the server along with a change command. The script would then update the
XML file on disk, reapply the transformation, and send the results back to your
browser.

elif mode[0] == "change":

 # change XML source file, rerun stylesheet and show

 newXML = '<?xml version="1.0"?>\n'

 newXML += "\t<story>\n\t<title>"

 newXML += query.getvalue("title")[0] + "</title>\n"

 newXML += "\t<body>\n"

 newXML += query.getvalue("body")[0] + "\n\t</body>\n</story>\n"

 fd = open("story.xml", "w")

 fd.write(newXML)

 fd.close()

 # run updated XML through simple stylehseet

 xsltproc.appendStylesheetUri("story.xsl")

 html = xsltproc.runUri("story.xml")

 print html

If the script doesn't have write access when running as the web user, it fails.

Example 6-8 shows the complete listing of xslt.cgi.

Example 6-8. xslt.cgi

IT-SC book
184

#!/usr/local/bin/python

xlst.cgi

import cgi

import os

import sys

from xml.xslt.Processor import Processor

parse query string & instantiate xslt proc

query = cgi.FieldStorage()

xsltproc = Processor()

print "Content-type: text/html\r\n"

mode = query.getvalue("mode", "")

if not mode:

 print "<html><body>"

 print "<p>No mode given</p>"

 print "</html></body>"

 sys.exit()

if mode[0] == "show":

 # run XML through simple stylesheet

 xsltproc.appendStylesheetUri("story.xsl")

 html = xsltproc.runUri("story.xml")

 print html

IT-SC book
185

elif mode[0] == "change":

 # change XML source file, rerun stylesheet and show

 newXML = '<?xml version="1.0"?>\n'

 newXML += "\t<story>\n\t<title>"

 newXML += query.getvalue("title")[0] + "</title>\n"

 newXML += "\t<body>\n"

 newXML += query.getvalue("body")[0] + "\n\t</body>\n</story>\n"

 fd = open("story.xml", "w")

 fd.write(newXML)

 fd.close()

 # run updated XML through simple stylehseet

 xsltproc.appendStylesheetUri("story.xsl")

 html = xsltproc.runUri("story.xml")

 print html

elif mode[0] == "edit":

 # run XML through form-based stylesheet

 xsltproc.appendStylesheetUri("edstory.xsl")

 html = xsltproc.runUri("story.xml")

 print html

6.8 Choosing a Technique

XSLT is extremely powerful when you need to transform XML from one flavor to
another, or to convert XML to HTML for display in a web browser. If you have
converted your web site contents to XML on disk, you may want to use a fast XSLT
processor to batch convert all of your XML to HTML as the files change. Converting
your XML to HTML as a batch process allows your server to continue handling
requests for static HTML, which can provide a substantial performance improvement,

IT-SC book
186

especially if the stylesheets are large or complex. The performance aspect
improvements are accentuated by allowing the use of simpler web servers and easier
server configurations, which also makes it easier to take advantage of a variety of
caching and load balancing architectures.

Sometimes you may need to convert XML to HTML on a per-request basis, or at
runtime in your applications. When this is the case, you can embed XSLT
functionality in your application as shown earlier in the CGI example.

IT-SC book
187

Chapter 7. XML Validation and Dialects

When XML is used as the basis for a transaction between two parties, the ability to
know whether a document is properly formed is important when working across
organizational boundaries where contractual obligations are used to define the
responsibilities of each party. In this chapter, we work with structured XML formats,
convert non-XML information to structured XML, and validate XML documents against
their DTDs. We examine aspects of working with official XML dialects, the impact the
process of validation can have on your system design, and explore ebXML (Electronic
Business XML) at a high level.

Let's first look at the base technologies: Document Type Definitions (DTDs;
discussed in Chapter 2), validating parsers, and web forms. These technologies make
exchanging XML documents reliable and flexible. Afterwards, we'll dive into some in-
depth examples that touch on different aspects of working with validation.

7.1 Working with DTDs

Schemas and validation play a major role in reliable application communication.
Developing a firm understanding of how to express document relationships within a
schema is crucial to using them effectively. In this chapter, we concentrate on DTDs,
but the concepts presented here apply to all schema languages. See the discussion
of alternate schema languages in Chapter 2 for pointers to Python modules that
support schema languages other than the DTD language defined as part of XML 1.0.

The DTD is represented in the internal DTD subset, the external DTD subset, or the
combination of the two. As the name suggests, the internal subset rides along with
the XML document instance, whereas the external subset is stored as a link telling
the parser where to find the DTD.

The xmlproc package is a validating parser for Python. As of this writing, it is the
only validating parser available for Python that is also implemented in Python. If you
have the PyXML package installed, as we assume throughout this book, you already
have xmlproc available and may already use it in your programs. The xmlproc
package can be imported from the xml.parsers package:

>>> from xml.parsers import xmlproc

7.1.1 Validating with the Internal DTD Subset

There is a good chance that if you have been working with XML for a while, you are
able to easily pick up the basic syntax of DTDs just by seeing a few examples. The
xmlproc package features a command-line routine called xvcmd.py. This simple
utility tests documents for validity against their DTDs. You can use xvcmd.py to try
out a few simple DTDs, both external and internal. Be sure that you have xvcmd.py
in your path (typically located beneath your PyXML installation directory in
xmldoc/demo/xmlproc/xvcmd.py).

Here is a small XML document called product.xml (Example 7-1), which shows an
internal DTD subset. For illustration purposes, the document doesn't faithfully

IT-SC book
188

implement the DTD. You may not notice this just by glancing at the code; therefore
it's good that we have xvcmd.py handy to actually test for validation.

Example 7-1. product.xml with a bad product element

<?xml version="1.0"?>

<!DOCTYPE product [

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT price (#PCDATA)>

 <!ELEMENT product (name, price)>

]>

<product>

 <name>Bean Crusher</name>

</product>

Try out xvcmd.py (the validator) from your command line:

C:\>python c:\python20\xmldoc\demo\xmlproc\xvcmd.py product.xml

xmlproc version 0.70

Parsing 'product.xml'

E:product.xml:9:11: Element 'product' ended, but not finished

Parse complete, 1 error(s) and 0 warning(s)

As suspected, an error occurs. The problem is that in the DTD, we explicitly stated
the content model for a product element. We stated that it must contain exactly one
name element and one price element:

<!ELEMENT product (name, price)>

Furthermore, the DTD instructs that each of those elements (price and name) must
contain only character data as shown in the following element declarations:

<!ELEMENT name (#PCDATA)>

<!ELEMENT price (#PCDATA)>

We can correct the problem in your XML, as we show in Example 7-1. The product
element needs a price element inside of it, and this price element can only have

IT-SC book
189

character data. Let's change the document products.xml in Example 7-1 to the
following, by adding a price element:

<?xml version="1.0"?>

<!DOCTYPE product [

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT price (#PCDATA)>

 <!ELEMENT product (name, price)>

]>

<product>

 <name>Bean Crusher</name>

 <price>3.95</price>

</product>

Now, return to the command line to try out the xvcmd.py validator once again:

C:\>python c:\python20\xmldoc\demo\xmlproc\xvcmd.py product2.xml

xmlproc version 0.70

Parsing 'product.xml'

Parse complete, 0 error(s) and 0 warning(s)

This time Example 7-1 works just fine, because the XML instance document is now in
compliance with the DTD. The DTD places strict control over the content model of
basic XML constructs (elements, attributes, and character data) allowed with any
given XML document.

7.1.2 Validating with an External DTD Subset

We've looked at an internal DTD subset. Now let's explore an external DTD subset.
Typically, when dealing with a DTD that is applied to many document instances, the
DTD is stored externally. By keeping the DTD external, you can maintain one DTD
that can be applied to many documents. If you store your DTD within the document,
each document instance needs its own copy. With a large collection of instance
documents, reliably maintaining an internal DTD is problematic. An external DTD is
sometimes a better idea in these cases. Import the DTD into the document, as
shown in Example 7-2.

Example 7-2. order.xml with an external DTD

IT-SC book
190

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order>

 <customer_name>eDonkey Enterprises</customer_name>

 <sku>343-3940938</sku>

 <qty>4</qty>

 <unit_price>39.95</unit_price>

 <product_name>eDonkey Feed Bags</product_name>

</order>

Note that there is no internal DTD subset. The file order.dtd contains the Document
Type. The order.dtd file is shown in Example 7-3:

Example 7-3. order.dtd

<!ELEMENT customer_name (#PCDATA)>

<!ELEMENT sku (#PCDATA)>

<!ELEMENT qty (#PCDATA)>

<!ELEMENT unit_price (#PCDATA)>

<!ELEMENT product_name (#PCDATA)>

<!ELEMENT order (customer_name,

 sku,

 qty,

 unit_price,

 product_name)>

While the exact syntax of element type declarations is covered in the next section,
here it's relevant to explain the general composition of the DTD. In Example 7-3, five
XML elements are created, each with a character data content model. A sixth
element is created named order, but it takes precisely one of each of the other
elements within it as its content model. Any valid document using this DTD must
adhere to this structure. You can test the new document and DTD by running the
xvcmd.py command, as shown here:

C:\>python c:\python20\xmldoc\demo\xmlproc\xvcmd.py order.xml

xmlproc version 0.70

IT-SC book
191

Parsing 'order.xml'

Parse complete, 0 error(s) and 0 warning(s)

The document order.xml is valid. If you arbitrarily change the document, it breaks.
Let's modify your order.xml document to look like the one following by deleting the
qty and product_name elements. This ensures that the document breaks under the
eyes of validation:

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order>

 <customer_name>eDonkey Enterprises</customer_name>

 <sku>343-3940938</sku>

 <unit_price>39.95</unit_price>

</order>

In this case, the parser complains about the new document structure:

$ python c:\python20\xmldoc\demo\xmlproc\xvcmd.py order.xml

xmlproc version 0.70

Parsing 'badorder.xml'

E:badorder.xml:6:14: Element 'unit_price' not allowed here

E:badorder.xml:7:9: Element 'order' ended, but not finished

Parse complete, 2 error(s) and 0 warning(s)

Generally, it's a good idea to place the DTD externally. This is a far more flexible way
of doing things as it allows multiple document instances to be compared to one
single DTD. For example, a DTD is much better when your documents are published
on the Internet. You can easily have XML instance documents scattered all over the
world, but if their document type declarations point to a URL for a valid DTD, they
can still be validated. Using a URL to indicate the DTD allows you to keep a single
copy of a DTD online.

7.2 Validation at Runtime

IT-SC book
192

At runtime, one means of validating XML documents from Python is using xmlproc in
conjunction with its callback interfaces and parser API. By implementing both the
ErrorHandler and DTDConsumer interfaces, you can capture events about validity
errors within the document (via ErrorHandler) and events about the DTD's
structure (via DTDConsumer).

To catch errors in the validity of the document, you can implement the
ErrorHandler interface and provide it to the XMLValidator, all part of xmlproc.
Create the file xpHandlers.py and add the BadOrderErrorHandler class to it, as
shown in Example 7-4.

Example 7-4. A BadOrderErrorHandler class implements ErrorHandler in
xpHandlers.py

from xml.parsers.xmlproc.xmlapp import DTDConsumer

from xml.parsers.xmlproc.xmlapp import ErrorHandler

"""

BadOrderErrorHandler -- implement xmlproc's ErrorHandler Interface

"""

class BadOrderErrorHandler(ErrorHandler):

 def warning(self,msg):

 print "Warning received!:", msg

 def error(self,msg):

 print "Error received!: ", msg

 def fatal(self,msg):

 print "Fatal Error received!: ", msg

To catch events related to the construction of the DTD itself, you can implement the
DTDConsumer interface. In order to do this, add the class to xpHandlers.py, as shown
in Example 7-5.

Example 7-5. A DTDHandler class implements DTDConsumer in
xpHandlers.py

"""

IT-SC book
193

DTDHandler -- implements xmlproc's DTDConsumer Interface

"""

class DTDHandler(DTDConsumer):

 def __init__(self,parser):

 self.parser=parser

 def dtd_start(self):

 print "Starting DTD..."

 def dtd_end(self):

 print "Finished DTD..."

 def new_general_entity(self,name,val):

 print "General Entity Received: ", name

 def new_external_entity(self,ent_name,pub_id,sys_id,ndata):

 print "External Entity Received: ", ent_name

 def new_element_type(self,elem_name,elem_cont):

 print "New Element Type Declaration: ", elem_name, \

 "Content Model: ", elem_cont

 def new_attribute(self,elem,attr,a_type,a_decl,a_def):

 print "New Attribute Declaration: ", attr

Example 7-5 is self-explanatory. Each method represents an event related to the
parsing of the DTD. Your methods can capture and utilize this information in any way
you see fit.

Implementing the interfaces is where the real work happens. To actually do
productive work and use the validator, you can create an instance, provide it your

IT-SC book
194

interface objects, and set it to work on a particular resource. The file val.py, shown
in Example 7-6, contains the simple amount of code to parse a document.

Example 7-6. Command-line validator (val.py)

""" xml validation """

import sys

from xml.parsers.xmlproc import xmlval

from xpHandlers import BadOrderErrorHandler, DTDHandler

xv = xmlval.XMLValidator()

dt = DTDHandler(xv.parser)

bh = BadOrderErrorHandler(xv.app.locator)

xv.set_error_handler(bh)

xv.set_dtd_listener(dt)

xv.parse_resource(sys.argv[1])

You can use val.py to see if XML documents pass muster against their DTDs from the
command line:

$ python val.py order.xml

New Element Type Declaration: customer_name

Content Model: ('', [('#PCDATA', '')], '')

New Element Type Declaration: sku

Content Model: ('', [('#PCDATA', '')], '')

New Element Type Declaration: qty C

ontent Model: ('', [('#PCDATA', '')], '')

New Element Type Declaration: unit_price

Content Model: ('', [('#PCDATA', '')], '')

New Element Type Declaration: product_name

Content Model: ('', [('#PCDATA', '')], '')

IT-SC book
195

New Element Type Declaration: order

Content Model: (',', [('customer_name', ''), ('sku', ''), ('qty', ''),

 ('unit_price', ''), ('product_name', '')], '')

Finished DTD...

By supplying xmlproc's XMLValidator with handlers, you can capture the
information related to a document's validity to suit your needs. In the next section,
we put validation to the test by creating a translation and validation example that
runs on a web server.

7.3 The BillSummary Example

To pull together some of the validation techniques presented in this chapter, we
develop an example application that utilizes a DTD, flat-file conversion, and XML
validation.

In the following set of programs, we develop an Internet system that parses a flat
file submitted by a web browser, converts the flat text to XML, validates the XML,
stores the XML to disk under a unique ID for publishing, and communicates success
or failure back to the browser (or HTTP) client. Such an arrangement can act as an
HTTP-based interface for converting flat files to XML (and making the resultant XML
files available over HTTP) in a distributed system.

To accomplish this, use Python's CGI libraries to grab a flat file from an HTTP request.
Use string and file APIs to parse the flat file submitted by the browser, and a DOM
implementation to construct a document object based on the flat file's contents. A
validating parser is used to ensure that the constructed DOM faithfully adheres to the
established Bill Summary DTD.

All of the files for this example are available as part of the examples archive.

The files used in this example should be placed in a CGI-capable directory on your
web server. In this section, we create the following files:

flatfile.html

Allows you to send the flat file to CGI script using a browser. BillSummary.txt,
the flat file, is preloaded as the form submission.

FlatfileParser.py

A class that parses the flat file and returns a DOM document.

ValidityError.py

A class that handles validation errors for xmlproc.

BillSummary.dtd

IT-SC book
196

A DTD for validating converted XML.

flat2xml.cgi

A CGI that accepts the flat file, converts it to XML, validates it, publishes it to
disk (and therefore HTTP) and communicates the results back to the browser.

The CGI script flat2xml.cgi is the real workhorse and pulls everything together. It's
presented in its entirety at the end of the section.

7.3.1 The Flat File

The flat file we use in this application is a sample billing statement from a fictitious
consulting corporation. As a typical small business might, this particular imaginary
company has used spreadsheet software for invoices and exporting them as text.
Our job is to allow something useful to eventually happen with these invoices. Your
goal is to migrate the forms into XML for easier manipulation in the future.
Converting them to XML and making them available via HTTP is a good start. The
text shown in Example 7-7, BillSummary.txt, is used throughout this section
extensively.

Example 7-7. BillSummary.txt

Bill Summary

Bill Summary, Format 1.2

Section: Customer

customer-id: 34287-AUHE-39383947579

name: Zeropath Corporation

address1: 123 Zeropath Street

address2:

city: Redmond

state: WA

zip: 98052

phone: 425-555-1212

billing-contact: Larry Boberry

billing-contact-phone: 425-555-1212

IT-SC book
197

Section: Bill Highlights

bill-id: 3453439789-6454-77

customer: 34287-AUHE-39383947579

customer-name: Zeropath Corporation

total-hours: 80

hours-rate: 150

total-svcmtrls: 950

total-bill-amount: 12950

Section: Item

item-id: 8289893

bill-id: 3453439789-6454-77

item-name: Continued Project Work (Backend)

total-hours: 40

total-svcmtrls: 450

Section: Item

item-id: 8289894

bill-id: 3453439789-6454-77

item-name: Continued Project Work (UI)

total-hours: 40

total-svcmtrls: 500

Once we have this file on disk, we can begin the process of creating a web form that
sends this flat file over the wire via HTTP. We explore this particular application in
the remaining sections of this chapter.

7.3.2 The Web Form

We first develop a web form to let you submit your flat files for XML conversion. If a
company's invoices are uploaded onto a shared disk as flat files each day, a batch

IT-SC book
198

process can pick them all up, and submit them via HTTP to your conversion
application.

Choosing HTTP as your interface leaves communication pathways open for a variety
of clients (i.e., browsers across the Internet, applications speaking HTTP from behind
a firewall, etc.). You can have people submit text-based invoices directly from their
browsers, or they can send them programmatically using intelligent clients that know
how to speak HTTP.

The web form is a simple HTML document, as shown in Example 7-8. The area to pay
attention to is the form tag and its method and action. These elements define
where the browser sends the flat text when you press the submit button. A textarea
tag is used to contain the flat file, and the text from Example 7-7 is then present as
the default text when you load the form.

Example 7-8. The web form flatfile.html will post your flat file

<html>

<body bgcolor="#FFFFFF" text="#000000">

<h1>Flat File Selection</h1>

<p>Click the button below to post the flat file to

 the server. You may also edit the flat file to

 cause errors on the server and in the handling

 code.

</p>

<p>

<form action="flat2xml.cgi" method="POST">

<textarea name="flatfile" rows=20 cols=80>

Bill Summary

Bill Summary, Format 1.2

Section: Customer

customer-id: 34287-AUHE-39383947579

name: Zeropath Corporation

address1: 123 Zeropath Street

IT-SC book
199

address2:

city: Redmond

state: WA

zip: 98052

phone: 425-555-1212

billing-contact: Larry Boberry

billing-contact-phone: 425-555-1212

Section: Bill Highlights

bill-id: 3453439789-6454-77

customer: 34287-AUHE-39383947579

customer-name: Zeropath Corporation

total-hours: 80

hours-rate: 150

total-svcmtrls: 950

total-bill-amount: 12950

Section: Item

item-id: 8289893

bill-id: 3453439789-6454-77

item-name: Continued Project Work (Backend)

total-hours: 40

total-svcmtrls: 450

Section: Item

item-id: 8289894

bill-id: 3453439789-6454-77

item-name: Continued Project Work (UI)

IT-SC book
200

total-hours: 40

total-svcmtrls: 500

</textarea>

<input type=submit>

</form>

</p>

</body>

</html>

When loaded in a browser, the web page generated from the code in Example 7-8
appears as shown in Figure 7-1.

Figure 7-1. A web form hosts a flat text file

7.3.3 Starting the CGI

IT-SC book
201

You should now have two components of the example: a sample flat file representing
a billing summary, and an HTML web form that sends the flat file over HTTP to a
Python script named flatfile.cgi, as identified by the form element's action attribute.

Before we dive into the complex CGI complete with validation, let's simply test your
CGI waters and confirm that you're able to receive the flat file from your web
browser. Example 7-9 offers a good milestone for establishing CGI execution and
browser connectivity. Your CGI needs to capture the flat file out of the HTTP request
and send it back to the user to demonstrate that everything is working well. XML and
validation come afterward. The baseline CGI should look something like the early
version of flat2xml.cgi shown in Example 7-9.

Example 7-9. flatfile.cgi, a first step version of the CGI

#!/usr/local/bin/python

flat2xml.cgi

import cgi

import os

import sys

Start HTTP/HTML Output

print "Content-type: text/html"

print

print "<html><body>"

Parse query string for flat file

try:

 query = cgi.FieldStorage()

 flatfile = query.getvalue("flatfile", "")[0]

IT-SC book
202

except:

 print "Conversion request not found or incorrectly formatted."

 print "</body></html>"

 sys.exit(0)

Display flat file

print "<h1>Flat File</h1>"

print "<p>Flat file received:</p> "

print "<p><pre>" + flatfile + "</pre></p>"

print "</body></html>"

Most of Example 7-9 is fairly basic Python. The contents of the flat file are sent by
the browser in the form of a GET request as the variable flatfile inside the form. If
it is unavailable, an error occurs. When Example 7-9 is up and running, you should
see a screen similar to the one shown in Figure 7-2.

Figure 7-2. Base functionality of the CGI script

IT-SC book
203

In the following sections, we build on this base functionality and add conversion of
the flat file to XML. Validation of the XML follows to ensure that everything is going
as planned.

7.3.4 Conversion and Validation

To convert the flat file to XML, we first need to parse the file. While parsing a unique
flat file format may seem tedious, there is no getting around this aspect of XML
integration. In fact, the tediousness of having to parse every "one-off" flat file
structure is perhaps the leading impetus behind XML. XML enforces a format that is
easily parsed by all applications. The good news is that the flat files should take
essentially the same structure in any given system, and you can write a single chunk
of parsing routines for each type of flat file you encounter.

7.3.4.1 Converting text to XML

The flat file used in this example is organized into sections, with additional data
filling in each section. We cannot be completely sure how many sections there will
ultimately be in the document, as that number depends on the number of "consulting
hours" that are placed on the customer's bill. The FlatfileParser you create needs
to be flexible; it can't assume a rigid ordering of sections within the document, or
their uniqueness or grouping with other sections. To accomplish its goal of taking flat
text and organizing it into an XML document, the FlatfileParser uses the DOM

IT-SC book
204

implementation to create a DOM structure to hold the various pieces of text that the
FlatfileParser extracts:

FlatfileParser.py

from xml.dom import implementation

class FlatfileParser:

 def parseFile(self, fileAsString):

The class FlatfileParser has one method, named parseFile. This method takes a
single string representing the contents of a file. Python also features the StringIO
class, which allows a string to support read and write operations, such as a file.
StringIO is a good choice for this class, but to keep things simple, we work with a
complete string in this example.

The next couple of steps are critical. Here, we create a new DOM document as
BillSummary, and retrieve its root element. We append children to the element as
our FlatfileParser works the flat text:

Create DocType Declaration

doctype = implementation.createDocumentType('BillSummary', '',

 'BillSummary.dtd')

Create empty DOM Document and get root element

doc = implementation.createDocument('', 'BillSummary', doctype)

elemDoc = doc.documentElement

The implementation class is imported from xml.dom.implementation, and its
createDocumentType method is used to construct a BillSummary type referencing a
file called BillSummary.dtd (shown in Example 7-12). A document object is created
with the createDocument method adding the freshly created doctype as a parameter.
Finally the document's root element is retrieved via the doc.documentElement
method.

Now that the basis for the document is created, the code can loop over the lines in
the file, examining the contents. New sections result in new section elements, and
the data within these elements results in new children for the section elements. Here
is a cross-section of the structure of the flat file:

IT-SC book
205

Section: Bill Highlights

bill-id: 3453439789-6454-77

customer: 34287-AUHE-39383947579

customer-name: Zeropath Corporation

total-hours: 80

hours-rate: 150

total-svcmtrls: 950

total-bill-amount: 12950

In your FlatfileParser, encountering a "Section" string creates a new element.
This element is then added to the document and set as the "current" element. All
other lines of the document, such as bill-id and total-hours, are added to the
"current" element as children until a new "Section" is discovered. The first half of the
code checks to see if you're dealing with a Section element. If it finds that this is true,
the second half of the code dumps the current line to XML as an element and CDATA
pair:

Read in each line of flat file for processing

for line in fileAsString.splitlines():

 # Test to see if we're in a section or not

 if bInElement:

 # Check to see if we're leaving a section

 if ':' in line:

 # Append section element, reset section switch

 elemDoc.appendChild(elemCurrent)

 bInElement = 0

 else:

 # Parse a section line on ':'

 k,v = line.split(':', 1)

 # Create element name and child text from key/value pair

 elem = doc.createElement(k.strip())

 elem.appendChild(doc.createTextNode(v.strip()))

IT-SC book
206

 # append element to current section element

 elemCurrent.appendChild(elem)

The code first checks to see if you have encountered a blank line or completed a
Section. If it finds you have not, the current line is assumed to be a child of the
current section and is split upon its colon (:). The doc.createElement method is
then used to create the element and its tag name from the left half of the text string,
while the character data of the element is appended as a child, and is taken from the
right half of the text string. This process continues until there are no lines left in the
file.

What the previous code snippet doesn't show is what happens when bInElement is
false (zero in the case of Python). Based on the structure of the flat file, when
bInElement is false it's time to start a new section. The code then searches for
another "Section" string. When found, it is converted to an element and set as the
"current" element, and bInElement is flipped back to true.

Create a new element based on which section of

the flat file we are in...

if line.startswith("Section: Customer"):

 elemCustomer = doc.createElement("Customer")

 bInElement = 1

 # Set current working element for the Customer section

 elemCurrent = elemCustomer

if line.startswith("Section: Bill Highlights"):

 elemBillHighlights = doc.createElement("BillHighlights")

 bInElement = 1

 # Set current working element for the BillHighlights section

 elemCurrent = elemBillHighlights

if line.startswith("Section: Item"):

IT-SC book
207

 elemItem = doc.createElement("Item")

 bInElement = 1

 # Set current working element for the Item section

 elemCurrent = elemItem

For every line of code that you have in your file, the FlatfileParser assumes that
you are within a section or dealing with a section's children. If miscellaneous data
appears after a section and before a new one, it is ignored because the parsing loops
you have created only consider things based on what section they are in. Finally,
when the document has no more lines left within it, the new DOM document is
returned:

 return doc

Example 7-10 shows the complete listing of FlatfileParser.py. The CGI script shown
later in this section uses the FlatfileParser class.

Example 7-10. FlatfileParser.py

FlatfileParser.py

from xml.dom import implementation

class FlatfileParser:

 def parseFile(self, fileAsString):

 # Create DocType Declaration

 doctype = implementation.createDocumentType('BillSummary', '',

 'BillSummary.dtd')

 # Create empty DOM Document and get root element

 doc = implementation.createDocument('', 'BillSummary', doctype)

 elemDoc = doc.documentElement

IT-SC book
208

 # boolean text parsing switch to help

 # navigate flat file

 bInElement = 0

 # Read in each line of flat file for processing

 for line in fileAsString.splitlines():

 # Test to see if we're in a section or not

 if bInElement:

 # Check to see if we're leaving a section

 if ':' in line:

 # Append section element, reset section switch

 elemDoc.appendChild(elemCurrent)

 bInElement = 0

 else:

 # Parse a section line on ':'

 k,v = line.split(':')

 # Create element name and child text from key/value pair

 elem = doc.createElement(k.strip())

 elem.appendChild(doc.createTextNode(v.strip()))

 # append element to current section element

 elemCurrent.appendChild(elem)

 # Create a new element based on which section of

 # the flat file we are in...

 section = line.strip()

IT-SC book
209

 if section == "Section: Customer":

 elemCustomer = doc.createElement("Customer")

 bInElement = 1

 # Set current working element for the Customer section

 elemCurrent = elemCustomer

 if section == "Section: Bill Highlights":

 elemBillHighlights = doc.createElement("BillHighlights")

 bInElement = 1

 # Set current working element for the BillHighlights section

 elemCurrent = elemBillHighlights

 if section == "Section: Item":

 elemItem = doc.createElement("Item")

 bInElement = 1

 # Set current working element for the Item section

 elemCurrent = elemItem

 return doc

7.3.4.2 Validating the XML

You may be wondering what XML is produced by running the FlatfileParser
against the sample text shown in Example 7-7. If you apply FlatfileParser against
BillSummary.txt, you should wind up with a DOM that looks like BillSummary.xml,
shown in Example 7-11 (provided you display your DOM with PrettyPrint or the
like).

Example 7-11. A well-formed, converted, valid, BillSummary.xml

IT-SC book
210

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE BillSummary SYSTEM "BillSummary.dtd">

<BillSummary>

 <Customer>

 <customer-id>34287-AUHE-39383947579</customer-id>

 <name>Zeropath Corporation</name>

 <address1>123 Zeropath Street</address1>

 <address2>

 </address2>

 <city>Redmond</city>

 <state>WA</state>

 <zip>98052</zip>

 <phone>425-555-1212</phone>

 <billing-contact>Larry Boberry</billing-contact>

 <billing-contact-phone>425-555-1212</billing-contact-phone>

 </Customer>

 <BillHighlights>

 <bill-id>3453439789-6454-77</bill-id>

 <customer>34287-AUHE-39383947579</customer>

 <customer-name>Zeropath Corporation</customer-name>

 <total-hours>80</total-hours>

 <hours-rate>150</hours-rate>

 <total-svcmtrls>950</total-svcmtrls>

 <total-bill-amount>12950</total-bill-amount>

 </BillHighlights>

 <Item>

 <item-id>8289893</item-id>

 <bill-id>3453439789-6454-77</bill-id>

IT-SC book
211

 <item-name>Continued Project Work (Backend)</item-name>

 <total-hours>40</total-hours>

 <total-svcmtrls>450</total-svcmtrls>

 </Item>

 <Item>

 <item-id>8289894</item-id>

 <bill-id>3453439789-6454-77</bill-id>

 <item-name>Continued Project Work (UI)</item-name>

 <total-hours>40</total-hours>

 <total-svcmtrls>500</total-svcmtrls>

 </Item>

</BillSummary>

One important aspect missing from our example thus far is the actual DTD. In order
for flat files to convert to XML, and to subsequently have the XML deemed valid,
there must be a DTD. The DTD for the BillSummary document is straightforward. It
uses the concepts of content models and element ordering, discussed in Chapter 2.

You must have the DTD saved as BillSummary.dtd in order for validation to succeed.
BillSummary.dtd is presented in Example 7-12.

Example 7-12. BillSummary.dtd

<!ELEMENT customer-id (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address1 (#PCDATA)>

<!ELEMENT address2 (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT billing-contact (#PCDATA)>

<!ELEMENT billing-contact-phone (#PCDATA)>

IT-SC book
212

<!ELEMENT bill-id (#PCDATA)>

<!ELEMENT customer (#PCDATA)>

<!ELEMENT customer-name (#PCDATA)>

<!ELEMENT hours-rate (#PCDATA)>

<!ELEMENT total-bill-amount (#PCDATA)>

<!ELEMENT item-id (#PCDATA)>

<!ELEMENT item-name (#PCDATA)>

<!ELEMENT total-hours (#PCDATA)>

<!ELEMENT total-svcmtrls (#PCDATA)>

<!ELEMENT Customer (customer-id, name, address1, address2,

 city, state, zip, phone, billing-contact,

 billing-contact-phone)>

<!ELEMENT BillHighlights (bill-id, customer, customer-name,

 total-hours, hours-rate, total-svcmtrls,

 total-bill-amount)>

<!ELEMENT Item (item-id, bill-id, item-name, total-hours,

 total-svcmtrls)>

<!ELEMENT BillSummary (Customer, BillHighlights, Item*)>

If you turn back to val.py, presented in Example 7-6, you can use it to check the
validity of your freshly created BillSummary.dtd and your example BillSummary.xml
(that is if you typed it in, or extracted it from the FlatfileParser). If you have the
XML as a saved file, you can test it accordingly:

C:\pythonxml\c6>python val.py BillSummary.xml

7.3.4.3 Creating a validation handler

IT-SC book
213

Now that you have a FlatfileParser, a generated XML version, and a DTD to hold
it against, you need a validation handler for xmlproc. The XMLValidator class
features a method called set_error_handler. You can use this method to supply
XMLValidator with an error handler that does the things you need it to, such as
write errors to your HTTP/HTML client.

To implement the ErrorHandler, derive an object from its interface and override the
methods you wish to implement as part of your error scheme. Your error handler
writes simple text messages wrapped in HTML. Example 7-13 shows the complete
listing of ValidityError.py, which implements an ErrorHandler-compliant object.

Example 7-13. ValidityError.py

from xml.parsers.xmlproc.xmlapp import ErrorHandler

"""

ValidityErrorHandler -- implement xmlproc's ErrorHandler Interface

"""

class ValidityErrorHandler(ErrorHandler):

 def warning(self,msg):

 print "<p>Warning received!:"

 print "
" + msg + "</p>"

 self.errors = 0

 def error(self,msg):

 print "<p>Error received!:"

 print "
" + msg + "</p>"

 self.errors = 1

 def fatal(self,msg):

 print "<p>Fatal Error received!:"

 print "
" + msg + "</p>"

 self.errors = 1

IT-SC book
214

Each method of the error handler accepts a message. It writes the message to the
web page with verbiage describing what type of error it is (warning, error, or fatal).
Each method also flips a switch (self.errors) so that the CGI script can tell if errors
have occurred.

Now that the handlers, DTD, and XML files are in place, we can return to the CGI for
completion.

7.3.5 Completing the CGI

When we last left flat2xml.cgi, we instructed it to simply dump the flat file back out
as text to confirm that your CGI setup is working correctly. Now we go back and add
some real functionality to the setup. At the end of this section, the full listing of the
CGI is presented in Example 7-14.

7.3.5.1 Defining success and error functions

The CGI script is the great coordinator in this sample application. The web server
launches the CGI upon a page request, and the CGI in turn imports modules and
classes and begins the process of completing the task. In the beginning, however,
the CGI completes the imports and establishes success and failure methods:

#!/usr/local/bin/python

flat2xml.cgi

import cgi

import os

import sys

from FlatfileParser import FlatfileParser

from xml.dom.ext import PrettyPrint

from xml.parsers.xmlproc import xmlval

from ValidityError import ValidityErrorHandler

customer failure message

def failure(msg):

 print "<h1>Failure</h1>"

 print "<p>Post received, Failure called:"

IT-SC book
215

 print msg + "</p>"

customer success message

def success(msg):

 print "<p>XML Document Received, is valid, and "

 print "has been written to disk. "

 print "Message: " + msg + "</p>"

The success function is called after the document has been successfully converted,
validated, and stored to disk using the Customer ID number as part of the filename.
The failure function is called whenever the CGI encounters a fatal error, although it
is up to the caller to end the CGI when failure returns.

The next step is to prepare the HTTP/HTML output, and start communicating back to
the browser. The CGI script works on a series of conditions that either result in a
successful message sent to the browser, or a fatal error message stopping the script.
To get the HTML started, use a few print statements:

Start HTTP/HTML Output

print "Content-type: text/html"

print

print "<html><head>"

print "<link rel=stylesheet type=text/css href=bs.css>"

print "</head><body>"

The <head> element contains a link to a stylesheet that adds some text coloration to
the example.

7.3.5.2 Converting the flat file to XML

The code to convert the flat file to XML is primarily inside the FlatfileParser
created earlier. Use the Python CGI API to grab the flat file from the query string:

Parse query string for flat file

IT-SC book
216

try:

 querys = cgi.FieldStorage()

 flatfile = query.getvalue("flatfile", "")[0]

except:

 failure("Conversion request not found or incorrectly formatted.")

 print "</body></html>"

 sys.exit(0)

instatiate flat file parser & display file

ffp = FlatfileParser()

print "<h1>Flat File</h1>"

print "<p>Flat file received:</p> "

print "<p><pre>" + flatfile + "</pre></p>"

After instantiating the FlatfileParser, use the parseFile method to convert the
text to XML:

Convert flatfile to XML

print "<h1>Conversion</h1>"

BillSummaryDOM = ffp.parseFile(flatfile)

CustomerIdElement = BillSummaryDOM.getElementsByTagName("customer-id")

if CustomerIdElement:

 # go after the Customer Id

 CustomerId = CustomerIdElement[0].firstChild.data

 print "<p>Converted to XML...</p>"

else:

 # No id found, boot document now

 failure("Unable to detect customer-id in DOM instance.")

IT-SC book
217

 print "</body></html>"

 sys.exit(0)

Notice there is additional logic after the BillSummaryDOM, created to grab the
customer ID element. Before you go through the trouble of validating the document,
you need to save it to disk under a special identifier so that it's available to other
systems from the web server, including the validator. To do this, extract the
Customer ID character data from the customer-id element within the DOM. If it is
present, the code moves along; if it's absent, a fatal error occurs and the script exits.

7.3.5.3 Validating the converted XML

Provided the document was well-formed enough to extract the ID, you can begin the
process of validation. Validation gives the application a chance to ensure that the
document conforms to standards and will not cause problems in the system.
Assuming the ID is found, you can move into the validation step, which involves
saving the document to disk, as shown here:

Validate the DOM

print "<h1>Validation</h1>"

try:

 # Write document to disk based on Customer Id

 fd = open(CustomerId + ".xml", 'w')

 PrettyPrint(BillSummaryDOM, fd)

 fd.close()

except:

 # Problem writing document?

 failure("<p>Unable to write XML document to disk.</p>")

 print "</body></html>"

 sys.exit(1)

The PrettyPrint function is used to write the DOM into the file descriptor. The work
is carried out within a try and except block to catch any file I/O problems before
they propagate out of the script and cause an Internal Server Error for the browser
to see. Next comes the actual instantiation of XMLValidator:

instantiate parser

xv = xmlval.XMLValidator()

IT-SC book
218

instantiate the error handler

veh = ValidityErrorHandler(xv.app.locator)

set up parser, call parse method

xv.set_error_handler(veh)

xv.parse_resource(CustomerId + ".xml")

If there are any errors during the validation steps, your custom error handler,
ValidityErrorHandler, presents errors to the browser and continues to process.

7.3.5.4 Displaying the XML

Regardless of validity errors, the CGI script displays the XML to the browser in the
HTML page with the help of the <pre> and <xmp> tags. If you are not familiar with
these, the <pre> tag instructs the browser to display the text that follows the tag as
preformatted text, preserving whitespace. This is a good tag to use when showing
code snippets. But XML can be tricky, as the browser can mistake it for unsupported
HTML tags. This is where the <xmp> tag comes in handy—originally intended for
example HTML, it works to escape any text that is enclosed in `<' and `>' type
characters, as shown here:

Display XML Document

print "<h1>XML Document</h1><pre><xmp>"

PrettyPrint(BillSummaryDOM)

print "</xmp></pre>"

To make sure the DOM is displayed as raw XML in the HTTP stream, use the
PrettyPrint function imported from xml.dom.ext. This method "prints" the XML
into any file-like object you provide; however, if nothing is provided beyond the DOM,
then the file-like object is assumed to be sys.stdout.

If there are no validation errors during your script's execution, a successful end
occurs. However, if for some reason validation errors stack up, even when your flat
file and XML make it past all of the other hurdles, the script still fails. Remember that
the ValidityErrorHandler was configured with an error switch so that external
objects could track its success rate. The CGI script uses this error switch to
determine if there are any validation errors:

confirm response to user

if veh.errors:

IT-SC book
219

 failure("Validation Error(s).")

else:

 success("Success.")

Finish Up

print "</body></html>"

If any validation errors are riding in ValidityErrorHandler, the script calls the
failure method. Example 7-14 shows the complete version of flat2xml.cgi.

Example 7-14. flat2xml.cgi

#!/usr/local/bin/python

flat2xml.cgi

import cgi

import os

import sys

from FlatfileParser import FlatfileParser

from xml.dom.ext import PrettyPrint

from xml.parsers.xmlproc import xmlval

from ValidityError import ValidityErrorHandler

customer failure message

def failure(msg):

 print "<h1>Failure</h1>"

 print "<p>Post received, Failure called:"

 print msg + "</p>"

customer success message

IT-SC book
220

def success(msg):

 print "<p>XML Document Received, is valid, and "

 print "has been written to disk. "

 print "Message: " + msg + "</p>"

Start HTTP/HTML Output

print "Content-type: text/html"

print

print "<html>"

print "<body>"

Parse query string for flat file

try:

 query = cgi.FieldStorage()

 flatfile = query.getvalue("flatfile", "")[0]

except:

 failure("Conversion request not found or incorrectly formatted.")

 print "</body></html>"

 sys.exit(0)

instatiate flat file parser & display file

ffp = FlatfileParser()

print "<h1>Flat File</h1>"

print "<p>Flat file received:</p> "

IT-SC book
221

print "<p><pre>" + flatfile + "</pre></p>"

Convert flatfile to XML

print "<h1>Conversion</h1>"

BillSummaryDOM = ffp.parseFile(flatfile)

CustomerIdElement = BillSummaryDOM.getElementsByTagName("customer-id")

if CustomerIdElement:

 # go after the Customer Id

 CustomerId = CustomerIdElement[0].firstChild.data

 print "<p>Converted to XML...</p>"

else:

 # No id found, boot document now

 failure("Unable to detect customer-id in DOM instance.")

 print "</body></html>"

 sys.exit(0)

Validate the dom

print "<h1>Validation</h1>"

try:

 # Write document to disk based on Customer Id

 fd = open(CustomerId + ".xml", 'w')

 PrettyPrint(BillSummaryDOM, fd)

 fd.close()

except:

IT-SC book
222

 # Problem writing document?

 failure("<p>Unable to write XML document to disk.</p>")

 print "</body></html>"

 sys.exit(1)

instantiate parser

xv = xmlval.XMLValidator()

instantiate the error handler

veh = ValidityErrorHandler(xv.app.locator)

set up parser, call parse method

xv.set_error_handler(veh)

xv.parse_resource(CustomerId + ".xml")

Display XML Document

print "<h1>XML Document</h1><pre><xmp>"

PrettyPrint(BillSummaryDOM)

print "</xmp></pre>"

confirm response to user

if veh.errors:

 failure("Validation Error(s).")

else:

 success("Success.")

IT-SC book
223

Finish Up

print "</body></html>"

7.3.6 Running the Application in a Browser

The CGI script can have a variety of different outcomes based on whether you edit
the text before sending it. As is, the flat file is well-formed in the text box when you
load flatfile.html. It produces HTML output as shown in Figure 7-3.

Figure 7-3. A successful run of flat2xml.cgi

However, if you were to edit the text before sending it, you would see wildly different
results. For example, if you delete half of the Bill Highlights section and merge it into
the first section, you generate a mess of validity errors as shown in Figure 7-4.

Figure 7-4. A run of flat2xml.cgi with excessive validation errors

IT-SC book
224

The errors you just introduced were caused by your arbitrary deletions of large
swatches of content. The CGI captured the problems by using validation. The errors
shown in Figure 7-4 clearly illustrate the validity errors in the document, and can be
triggered to fire events in other parts of your system. In a real situation, you would
have a certain business logic that would dictate what to do if a piece of data is
missing. For example, in your business it might not be too bad if a document looks
good but is missing a date field. However, if the document is missing an account
number, it might be a fatal flaw requiring a different course of action. The level of
logic you enforce may have something to do with the complexity of the document
you're working with. This entire example is based around an XML document created
from scratch. When creating documents from scratch you are able to tailor them to
your exact situation (perhaps too much so). If you decide to work with a
standardized dialect, there are even more stringent considerations and requirements
for your documents, and your transactions may have to flow along the lines of
someone else's business logic.

7.4 Dialects, Frameworks, and Workflow

IT-SC book
225

Any cursory glance at a search engine tells you an XML dialect or framework exists
for just about every type of business or system on the planet. In order to choose a
fitting repository or dialect, you need to model your business or system processes.
You may decide that your business largely counts on support for transactions and a
reliable communications protocol. Choosing a dialect (or even inventing your own)
requires development and enforcement of DTDs or Schema. Additionally, an
understanding of the underlying XML technologies to support these activities is
warranted. Often, when transferring a human-intensive business process to
electronic form, you need to look at the workflow and then determine appropriate
integration steps to mimic the process electronically. If there are any analytical or
business logic steps involved, you need to incorporate those into the electronic
version as well.

Designing a workflow may involve citing a primary objective (such as "complete
sales transaction"), which can in turn involve many additional individual steps
("receive purchase order," "bill customer," "ship product," etc.) that can have their
own conditional outcomes ("no inventory," "invalid account number," etc.). It's the
goal of a system's architect to integrate the correct components to ensure the
desired outcome, or to handle any of the other conditions that may arise.

In small applications (or small organizations), a developer completes much of the
system logic. In more complex distributed systems, you frequently find third-party
consultants and expensive commercial software involved, but it still comes down to
the same technology building blocks. Understanding the objectives of your system
may aid in choosing the correct XML dialect and framework. Some of the choices
include ebXML, BizTalk, and commercial offerings such as Commerce One's and
Ariba's proprietary e-business languages.

7.5 What Does ebXML Offer?

Electronic Business XML (ebXML) was formed to improve upon the EDI standard, and
level the playing field between trading partners. The OASIS consortium, along with
the United Nation's UN/CEFACT body, formed ebXML as a collaborative effort, and
published information concerning ebXML at http://www.ebxml.org/.

So what does ebXML signify for programmers? In reality, it means a complex set of
documents and even more complex set up of transactional document flows. Adopting
ebXML means adopting not only a dialect of document instances, but a business
process modeling flow to connect things together.

7.5.1 ebXML Document Structure

The dialect portion of ebXML deals with message formats. The specification puts forth
guidelines that must be used when creating ebXML documents. Simple structure is
used in ebXML. The specification requires that element and attribute names follow a
standard capitalization arrangement, similar to Java names. Using a scheme
described as upper and lower camel-case, ebXML element and attribute names have
the following capitalization format:

<MyElementName myElementAttribute="..." myOtherElementAttr="...">

IT-SC book
226

Additionally, underscores (_), periods (.), and dashes (-) are not allowed in
element or attribute names, though they are legal in general XML.

7.5.2 Business Process and Modeling

In ebXML, business process and information modeling is not mandatory. But if it is
used, it is required to be UMM (UN/CEFACT Modeling Methodology). This is a
modeling language that uses UML (Universal Modeling Language), which is
commonly used in object-oriented programming design.

The UMM approach separates operational and functional views and relies on two
"view" constructs: the Business Operational View (BOV) and the Functional Service
View (FSV). The operational view covers such things as the semantics involved in a
transaction, as well as operational conventions, agreements, and arrangements. The
functional view covers logistical and technological items such as user interfaces, data
transfer interfaces, and capabilities for discovery and implementation runtime
scenarios.

It is not a requirement that all adopters of ebXML utilize every aspect of the business
modeling support. As a developer, you may choose to standardize upon a set of
documents, but choose not to implement the routing and business logic these
documents seem to suggest.

7.5.3 Phases of ebXML

Adopting new technology and business processes is a tough challenge. ebXML has
defined phases of adoption that include considerations for the changes businesses
usually undergo. Phases of ebXML are broken down into the Implementation phase,
the Discovery and Retrieval phase, and an operational Run Time phase.

Items in the Implementation phase deal directly with creating an application of the
ebXML infrastructure. In this scenario, a trading partner uses the Core and Business
Libraries, coupled with any business process information of the other trading
partners from the ebXML Registry.

Once you have implemented an ebXML business service interface, you can begin the
Discovery and Retrieval phase. The discovery process is an attempt to understand
the meaning of the information being requested and retrieving it as necessary.

The Run Time phase is where actual ebXML messages are being exchanged to
support a transaction.

IT-SC book
227

Chapter 8. Python Internet APIs

As the Internet continues to evolve, so do the toolboxes of the programmers who
code for it. Just a few years ago, most Internet-related development usually involved
tapping into a database or legacy system and presenting the information to the Web.
This type of development is still very popular and necessary. However, the notion of
exposing business processes and previously internal systems to the Internet as web
services is picking up speed. The type of data exposed by business processes is
meant for consumption by applications, not humans, and demands different solutions
from programmers. There is also a rising interest in peer-to-peer services in which
machines interrogate each other for available resources. This new evolution of the
Internet and the interconnecting of distributed systems requires that programmers
understand previously mysterious subsystems. Some of these new challenges
involve making web sites talk to each other without the involvement of humans. This
chapter shows you the programmatic APIs and Python modules you need to work
with XML and the Internet.

8.1 Connecting Web Sites

Let's take a trip back to 1999. An imaginary beverage distributor sees value in
allowing supermarkets to order beverage cases online. They hope this will replace
the process of accepting a fax and manually keying in order details. The beverage
company envisions a situation in which purchasing agents at the supermarkets could
use their web browsers to quickly key in current needs and submit orders to the
beverage company's system.

At this same time, the supermarkets are getting more and more interested in
automating their inventory control. Instead of having people pour over stock
statistics and sales numbers as they attempt to forecast demand, companies are
installing sophisticated point-of-sale software at registers that perform these
calculations for them. Once a week the system spits out printouts of the purchasers'
needs based on buying patterns. The purchasing agent is then supposed to send out
purchase orders as needed.

8.1.1 Continuing Improvement

Now let's go into the present. You are asked to take the information that is being
automatically generated by the supermarket's inventory and sales forecasting
system and plug it into the beverage company's order system without the
involvement of a human. Ideally, this process should allow for supermarket
computers to automatically send out purchase orders to suppliers when stock is low
and demand dictates.

In order to perform this new task, you need to know how to interrogate the
supermarket's inventory and forecasting system automatically, as well as how to
submit the data you come up with as a purchase order to the beverage company.
The ideal scenario, of course, is that both systems are web-enabled first. In this
scenario, Python and its Internet APIs come to the rescue, allowing you to easily
replace human-intensive browser operations with script and logic.

IT-SC book
228

8.1.2 Python to the Rescue

We will now dive into Python's support for the Internet, as well as explore how to
construct programs that mimic browsers or act like web servers, fetching URLs of all
types, including FTP and HTTP.

Python's Internet support includes modules for working with URLs (Universal
Resource Locators). Using the urllib module, you can build and deconstruct actual
URLs, as well as retrieve them at runtime in your Python programs. Python also
features an HTTP module that makes programmatic access to the HTTP protocol a
breeze. For example, if there is specific stock price you are rabid about, and you
know of a web site that retrieves live stock quotes, you can write a Python
application to query that site for you periodically. Your program can extract the
target stock quote and display it on your desktop instead of bringing up your browser
every few hours to fetch the information from a specific site.

While this chapter presents a good view of the technologies needed to creatively
develop Internet solutions, it's wise to start with the basics. The most fundamental
building block of the Internet is the URL.

8.2 Working with URLs

The URL contains a great deal of Internet information in a single string. It tells you
the name of the server, the name of the file on the server, any data that you are
supplying to generate a dynamic response, and even the protocol to use to retrieve
the information. In basic form, URLs look like this:

http://www.oreilly.com/oreilly/about.html

This URL has three elements. The first section tells you (or your software) the
protocol in use for this resource. In this case, it is HTTP, shown by http:. The next
section indicates the server name and its corresponding domain. In this case the
server is named www, and the domain is oreilly.com, coming together as
//www.oreilly.com. What follow are a pathname (/oreilly/) and a filename
(about.html). Your browser uses this information as it comes to the brilliant
conclusion to use HTTP in connecting with www in oreilly.com, and retrieves the
/oreilly/about.html file.

Of course, URLs can become more complicated. If you type "Python" into a search
box and click Submit, your browser may go after a URL similar to the following:

http://search.oreilly.com/cgi-bin/search?term=Python&category=All&pref=all

Now there are several more items to examine. First, the server has changed from
www to search. Second, the path has changed from /oreilly/ to /cgi-bin/. The
filename about.html has been replaced with a target named search. But most
interesting is the question mark and the data that follows:

?term=Python&category=All&pref=all

IT-SC book
229

This portion of the URL is known as the query string. If search is a CGI program (or
something similar inside an application server) the query string is supplied to it in
the form of an environment variable. The CGI program can pick the string apart to
realize that a variable named term is set to Python, and that category and pref are
equal to All and all respectively. As you can imagine, this information is relevant to
the O'Reilly database and appropriate product information is returned to your
browser.

However, suppose that instead of searching the O'Reilly site for "Python", you
searched it for "Python!". What does the URL look like now? Well, the only difference
is that the exclamation point is URL-encoded. That is, only a few special characters
are allowed within a URL, all others are escaped to their respective hexadecimal code
and delimited with a percent (%) sign. This time, the query string looks slightly
different:

?term=Python%21&category=All&pref=all

The exclamation point is now replaced with %21, which is its URL-encoded cousin.

8.2.1 Encoding URLs

If you are constructing a URL programmatically for submission to a web site, you find
yourself needing to supply parameters in the query string, as shown in the previous
section.

Programmatic construction of URLs may be necessary when integrating your Python
program with a dynamic web site expecting query parameters in the query string.

The Python urllib module features the method urlencode. This method accepts a
dictionary of key/value pairs and returns a properly formatted query string that you
could tag onto a URL. For example, if you have an arbitrarily sized dictionary, you
could call urlencode with the dictionary as a parameter, as shown here:

>>> from urllib import urlencode

>>> myDict = {

... "Name" : "Chris Jones",

... "Address" : "Woodinville, WA",

... "Favorite Characters" : "#, @, $, and %"

... }

>>> strUrl = urlencode(myDict)

>>> print strUrl

Address=Woodinville%2c+WA&Name=Chris+Jones&Favorite+Characters=

 %23%2c+%40%2c+%24%2c+and+%25

IT-SC book
230

What constitutes strURL here is not a complete URL. It's just the query data that
comes at the end of the URL. The first half of the URL needs to include the protocol,
as well as the server and domain pairing:

http://www.example.com/search.cgi?Address=Woodinville%2c+WA&Name=Chris+
Jones&Favorite+Characters=

 %23%2c+%40%2c+%24%2c+and+%25

The urlencode method takes care of escaping special characters as it translates #,
@, $, and % into %23%2c+%40%2c+%24%2c+and+%25. Not only are the special
characters translated, but the commas and spaces have also been converted to their
hexadecimal values.

8.2.2 Quoting URLs

The quote method of urllib that takes a single string of data and performs the
necessary encoding related to urlencode that takes a dictionary as a parameter. The
primary difference is quote does not automatically generate key/value pairings
based on a dictionary. The quote method exists to convert a single string into a URL-
compliant syntax. For example, if a URL you are constructing consists of
http://www.example.com/addQuotation.cgi?myquote=, but you need to add a URL-
compliant value to it, you could use the quote method to encode it:

>>> from urllib import quote

>>> quote('Famous Quote: "I think, therefore I am."')

'Famous%20Quote%3a%20%22I%20think%2c%20therefore%20I%20am.%22'

Perhaps the most important thing to remember is that quote should be used to
encode a single string, not a key/value pair. In any key=value combination, only the
value should be encoded with the quote command. If you were to include the
myquote= (or the key) portion of the query string when calling the quote method,
the equal sign would also be encoded rendering the URL worthless.

8.2.3 Unquoting URLs

What goes up must come down. If you are encoding URLs programmatically, the
odds are that you are going to need to decode one at some point or another. The
unquote method of urllib takes an encoded string (such as that generated by
quote) and returns the decoded version of it:

>>> from urllib import unquote

>>>
unquote("Famous%20Quote%3a%20%22I%20think%2c%20therefore%20I%20am.%22")

'Famous Quote: "I think, therefore I am."'

If you are constructing and deconstructing URLs programmatically, it follows that
actually connecting to these and retrieving their content is of value.

IT-SC book
231

8.3 Opening URLs

The protocol portion of the URL can consist of anything that processing software can
understand. Perhaps the most common URL protocols (also called schemes) are
HTTP, FTP, and FILE. HTTP is used to connect to web servers, FTP is used to retrieve
files, and FILE is used to retrieve a local file. All are easily accomplished using
Python's urllib module.

The urllib.urlopen function takes care of opening URLs of all kinds and can give
you back a file-like object to work with. To retrieve a local file, just use the filename.
For example, to open an XML document in the local directory, you can use the
following syntax:

>>> from urllib import urlopen

>>> fd = urlopen("order.xml")

>>> print fd.read()

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order>

 <customer_name>eDonkey Enterprises</customer_name>

 <sku>343-3940938</sku>

 <unit_price>39.95</unit_price>

</order>

>>> fd.close()

The urlopen function returns a file-like object. This object can then be treated as a
file to retrieve and display its contents. When the file object is closed, urlopen
cleans up its business as well, terminating its connection to the remote server or
local file.

8.3.1 Using FTP

The urlopen function works for remote files just as easily as it does for local files,
provided you're connected to the Internet. For example, if you supply a URL for an
FTP server's root directory, you may be able to pull back its contents, as shown here:

>>> fd = urlopen("ftp://ftp.oreilly.com")

>>> print fd.read()

total 64

IT-SC book
232

drwxr-xr-x 3 61 512 Aug 29 2000 bin

drwxr-xr-x 2 3 512 Aug 30 2000 dev

drwxr-xr-x 4 61 512 Oct 16 2000 etc

lrwxrwxrwx 1 1 12 Aug 31 2000 examples -> pub/examples

drwxrwx-wx 2 100 512 May 7 22:22 incoming

drwxrws--x 48 61 17408 May 6 04:00 intl

drwxr-xr-x 2 1 512 Sep 1 2000 lost+found

drwxrws--x 55 61 4608 May 7 22:22 outgoing

drwxrwsr-x 21 61 512 Mar 30 21:47 pub

drwxr-xr-x 2 61 512 Aug 31 2000 published

drwxr-sr-x 4 100 512 Apr 17 17:17 software

dr-xr-xr-x 5 61 512 Aug 30 2000 usr

>>> fd.close()

8.3.2 Retrieving URLs

urlretrieve is similar to urlopen. This function optionally accepts a filename if you
wish to store the remote file locally, and the function returns a tuple of the filename
and the actual data as a mime message, as shown here:

>>> from urllib import urlretrieve

>>> ob = urlretrieve("ftp://ftp.oreilly.com", "menu.txt")

>>> ob

('menu.txt', <mimetools.Message instance at 007F382C>)

The first argument is the actual URL to connect to, while the second argument is the
name of a local file to hold the data.

One of the most exciting features of urlretrieve is its callback functionality. When
retrieving a document, you can supply a callback method as an optional third
parameter to receive progress reports as the resource is downloaded.

If you supply a callback method, urlretrieve expects your callback method to take
three arguments. The first argument is the current block number on which the
retrieval is operating. The second argument is the size of the blocks being used, and
the third is the total size of the file. Example 8-1 shows a simple routine that reports
on its progress.

IT-SC book
233

Example 8-1. retrieve.py

"""

retrieve.py example

"""

from urllib import urlretrieve

def callback(blocknum, blocksize, totalsize):

 print "Downloaded " + str((blocknum * blocksize)),

 print " of ", totalsize

urlretrieve("http://www.example.com/pyxml.xml", "px.xml", callback)

print "Download Complete"

The running example shows you:

C:\WINDOWS\Desktop\oreilly\pythonxml\c8>python retrieve.py

Downloaded 0 of 116063

Downloaded 8192 of 116063

Downloaded 16384 of 116063

Downloaded 24576 of 116063

Downloaded 32768 of 116063

Downloaded 40960 of 116063

Downloaded 49152 of 116063

Downloaded 57344 of 116063

Downloaded 65536 of 116063

Downloaded 73728 of 116063

Downloaded 81920 of 116063

Downloaded 90112 of 116063

Downloaded 98304 of 116063

Downloaded 106496 of 116063

IT-SC book
234

Downloaded 114688 of 116063

Downloaded 122880 of 116063

Downloaded 131072 of 116063

Download Complete

The callback functionality is excellent for keeping track of FTP progress. The callback
functionality is also great anytime you need to keep tabs on a long download, or
communicate progress information to a frustrated, busy end-user.

8.4 Connecting with HTTP

While urllib is suitable for working with Internet files, you may still have the need
to perform more intricate communication with an HTTP server. For example, if you
are writing a Python program to communicate between two web sites, you may need
to adjust the headers to include any cookies the site may require. You may need to
emulate a certain browser type (by placing its name in your User-Agent header) if
the site requires the latest version of Internet Explorer. Working with httplib as
opposed to urllib in cases such as these allows for finer control.

8.4.1 HTTP Conversations

HTTP conversations between browsers and servers involve headers and data. The
interaction between a web browser and a web server reveals a great deal of
information about both parties. The HTTP headers that precede content from the
server and precede requests from the browser contain a lot of metadata about both
client and server. For example, when you type a URL into your browser and press
return, a complete HTTP request is sent to the remote server that can look
something like this:

GET /c7/favquote.cgi HTTP/1.1

Host: www.python.org

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)

Connection: Keep-Alive

The headers tell the web server a great deal about the capabilities of the client
browser. From the first line of the headers (GET /c7/favquote.cgi HTTP/1.1), we
can tell that the request type is a GET, the target file is /c7/favquote.cgi, and the
HTTP version in use is 1.1. Beyond this essential information is data telling the
server what file types the browser can accept, what the browser is, and what type of
HTTP connection to use. The Accept lines tell the server that your browser can

IT-SC book
235

handle .gif and .jpeg files, as well as any others. Notice there are three lines that
start with Accept in the HTTP headers. They show the browser accepts en-us as its
language, and both gzip and deflate as encoding:.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

Accept-Language: en-us

Accept-Encoding: gzip, deflate

The User-Agent informs the server which browser or HTTP client you're using. Every
browser (and every HTTP library) populates this field with one thing or another,
letting web sites know how people are visiting. Some web sites are designed to
specifically utilize the features of either Netscape Navigator or Internet Explorer and
may redirect browsers to one set of pages or another based on what it sees in the
User-Agent string:

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)

This User-Agent is Internet Explorer 5.5 running on Microsoft's desktop platform. The
last header in the previous example tells the server what type of connection to use.
In this case, it's Keep-Alive:

Connection: Keep-Alive

The Keep-Alive connection type tells the server to keep the socket between the
client and the server open for additional resources. Typically, when downloading a
web page, an initial request is made to retrieve the HTML page itself, and then a
series of subsequent requests are made to retrieve images referenced with the
 tag, as well as linked stylesheets and framesets. Initiating a new connection
for each one of these resources would be very time-consuming, especially
considering the graphics-laden web pages in use today. The Keep-Alive option lets
the browser use the same channel it has already established to bring down all of the
additional resources.

8.4.2 Request Types

In addition to the GET request, three other request types exist. Basically, a browser
can do four things with a web server. It can GET a file. It can POST data to a file as
well, such as sending a form to a CGI script. The two other lesser-known methods
are HEAD and PUT. HEAD is used just to retrieve web server headers, and PUT is used
to actually send a file to the server.

GET

Requests a file, and optionally contains a query string used by the file (if it's a
CGI or other executable) to generate dynamic data.

POST

Sends URL-encoded data to the server in a large chunk. Frequently used to
send form fields to the server. Anything POSTed can also be sent via GET, but

IT-SC book
236

the difference is the query string becomes large and may look unsightly or be
unmanageable in the browser when doing a GET. A POST is not carried on the
query string, and so is not visible to an end user. Some servers may allow
less data on a query string, and accept bigger chunks of data in a POST
request.

HEAD

Similar to GET, but returns only the headers.

PUT

A seldom-used HTTP method to place files on the server. When using this
method, the filename that normally goes after a GET or a POST request is used
as the filename for the content being delivered to the server. In other words,
instead of telling the server you want to GET a page called /index.html, tell it
you are going to PUT a file named /index.html on the server. During a PUT
operation, the contents of the file are sent after the headers, just like in a
POST operation.

8.4.3 Getting a Document with Python

To manually use HTTP from Python, use httplib. The httplib module is standard
and ships with Python 2.x. The HTTP class within httplib features several import
methods for connecting to the server:

Req = HTTP(address, [port])

Returns an instance of the HTTP class for use as a request object in this
connection. The connection is also made to the given address and optional
port. Most web servers run on port 80, and you would not need to supply this
argument. However, some web sites are kept on different ports and this
option then gives you the ability to select a specific port.

Req.putrequest(method, file)

Performs the initial HTTP request method with its accompanying filename and
HTTP version indicator. This is the first line of the headers, as in:

GET /c7/favquote.cgi HTTP/1.1

Req.putheader(header-type, value)

Adds a new header to the request. This method would be used to add your
custom User-Agent string, Accept-Types, or cookies.

Req.endheaders()

Instructs the module to finish off the headers sent to the server. In HTTP, the
headers are separated from data with a blank line. That is, when the server is
sending back an HTML page, it gives the browser its headers, followed by a
blank line, followed by the HTML document. Conversely, when the browser is

IT-SC book
237

making a form POST to a server, it does the same thing and separates its
request headers from its post data with a blank line.

Req.send(data)

Sends data after your request. The send method must be called after
endheaders to speak proper HTTP. You use this method when making a POST
or PUT.

ErrorCode, ErrorMessage, Headers = Req.getreply()

Gives you the server's headers and response code in one swoop. Both
ErrorCode and ErrorMessage should be 200 and OK respectively if
everything is going well. The Headers object is actually an instance of
mimetools.Message.

fp. = Req.getfile()

Returns a file-like object that you can use to access the actual HTML (or other)
document.

Using the HTTP class from httplib is simple. Example 8-2 shows how to connect to
a server and retrieve the index.html page.

Example 8-2. Making an HTTP Request

>>> from httplib import HTTP

>>> req = HTTP("www.example.com")

>>> req.putrequest("GET", "/index.html")

>>> req.putheader("Accept", "text/html")

>>> req.putheader("User-Agent", "MyPythonScript")

>>> req.endheaders()

>>> ec, em, h = req.getreply()

>>> print ec, em

200 OK

>>> fd = req.getfile()

>>> textlines = fd.read()

>>> fd.close()

The steps taken in Example 8-2 are straightforward. The HTTP class is called with an
argument indicating the server, www.example.com. Next, headers are added
describing some minimal information for the server including the type of data

IT-SC book
238

expected and the name of your user agent as MyPythonScript. The error code and
error message are retrieved with a call to getreply and the result is printed to the
console:

>>> print ec, em

200 OK

Next, getfile is used to retrieve the file-like object containing the document
contents. The getfile method returns a file descriptor that you can read with. After
a call to read, the return result is assigned to the variable textlines that now
contains the actual document. Calling close finishes off the request. You can print
textlines to see what you have retrieved:

>>> print textlines

<html>

<head>

<link rel="stylesheet" type="text/css" href="/zpath.css">

</head>

<body BGCOLOR="#CDFF00">

<p>

<table WIDTH=100% height=100%>

 <tr>

 <td VALIGN="top" ALIGN="left">

 <img SRC="images/zplogo.gif" WIDTH=457

 HEIGHT=144 BORDER=0>

 </td>

 </tr>

</table>

</p>

</body>

</html>

IT-SC book
239

Of special note in this request is the User-Agent string. Most web site administrators
run access reports and generate neat sets of statistics detailing the browser types in
use. By writing your own Python Internet programs, you can add to the statistics. In
Example 8-2, we set the User-Agent string to MyPythonScript by calling:

req.putheader("User-Agent", "MyPythonScript")

This is captured in the server logs, and most likely show up in the less-than-one-
percent category of the site administrator's browser statistics.

8.4.4 Building a Query String with httplib

Example 8-2 shows how to request a specific file. Say you'd like to also add a query
string to your GET request. The second argument to HTTP.putrequest is the
filename you're after. To add a query string to the HTTP request, you could couple
the filename with your data, as shown here, properly URL-encoded:

req.putrequest("GET", "/handler.cgi?id=12345")

If you need to encode your data because it contains special characters, you could
use the urllib's quote function described earlier in this chapter, in Section 8.2.2.

req.putrequest("GET", "/handler.cgi?" + quote("numbers=1/2/3/4/5"))

8.4.5 Baking Cookies for the Server

Any hungry server administrator may be disappointed to learn that the cookies your
browser sends to his web site are electronic. Cookies are frequently delivered to web
servers by browsers to indicate a special identification for your browser. Your
browser keeps the cookie and returns it whenever the same web site or document is
requested. This lets the web server personalize site content for you, or connect you
with some specific data that may be held in a database, such as your profile
information or virtual shopping cart. If you are writing Python scripts to go between
web sites, you may need to send cookies in your headers. You use the putheader
method of the HTTP class to do so, as shown here:

req.putheader("Cookie", "key=value")

Conversely, when the server is sending cookies to your browser a set-cookie
header is thrown in the mix with the other headers and digested by your browser.

8.4.6 Performing a POST Operation

If you are manually using HTTP from Python, odds are you're moving documents
around. You may be hitting one URL to get information from a database, constructing
a form, and submitting that data to another web site via the POST operation.
Creating a POST with httplib is straightforward, but more intricate than the
examples shown thus far in this chapter.This method is detailed in the following
sections.

8.4.6.1 Creating a POST catcher

IT-SC book
240

Any example illustrating a POST is of no value without something to post to. So, for
the purpose of this example, you can create a simple CGI script that echoes back
your posted data. To use, place this ten-line file in a CGI-capable directory of your
web server as favquote.cgi, shown in Example 8-3.

Example 8-3. favquote.cgi

#!/usr/bin/python

import cgi

form = cgi.FieldStorage()

favquote = form["favquote"].value

print "Content-type: text/html"

print ""

print "<html><body>"

print "Your quote is: "

print favquote

print "</body></html>"

This simple CGI uses the cgi module to retrieve the data sent in the post. We make
a post to this CGI in the next section.

8.4.6.2 Ensuring proper URL encoding

One of the more interesting points of making a POST is ensuring that your data is
properly URL-encoded. This means ensuring the favquote key is not encoded in the
data if your CGI script is looking for a variable named favquote. For example, a
proper key=value pair should be:

favquote=This%20is%20my%20quote%3a%20%22I%20think%20therefore%20I%20am.
%22

However, if in your enthusiasm you quote the entire string and not just the value
portion, you wind up with:

favquote%3dThis%20is%20my%20favorite%20quote%3a%20...

Unfortunately, the server will not know what to do with the second flawed scenario,
as there is no key to associate the value with, as favquote= has been transformed
into favquote%3d.

IT-SC book
241

8.4.6.3 Performing a POST with httplib

In Example 8-3, we created a GET request using the methods of httplib. Performing
a POST requires a couple of extra method calls, and very precise order of events. The
sequence of the HTTP calls is important, and making a post requires extra headers.
The start of a POST request is similar to a GET, as shown here:

req = HTTP("192.168.1.23")

req.putrequest("POST", "/c7/favquote.cgi")

req.putheader("Accept", "text/html")

req.putheader("User-Agent", "MyPythonScript")

Note that this time, the first argument to putrequest is POST. Beyond the change
from GET to POST, the call to putrequest looks the same. When posting data to the
server, it's important that the server know exactly how many bytes of data the HTTP
client is sending. While the HTTP headers rely on line breaks and a blank line as field
delimiters, posted data may contain all sorts of special characters, binary data, or
other nonprintable characters. Therefore, instead of relying on line breaks, the server
requires that you specify how many bytes you're sending, and then reads that
number of bytes from your request. Specify the content length using putheader
(note that you must know the number of bytes):

myquote = 'This is my quote: "I think therefore I am."'

postdata = "favquote=" + quote(myquote)

req.putheader("Content-Length", str(len(postdata)))

In these calls, you assemble the post data by concatenating the key portion
(favquote=) with the quoted value. Use the len function to size up your URL-
encoded string named postdata. Finally, since putheader expects a string as a
second argument and not a number, convert the length with the str function.

The HTTP.send method is used to submit the data after ending the headers:

req.endheaders()

req.send(postdata)

Now, you can get the reply and read the results as you did with your GET request
earlier in Example 8-3. The result of the POST may be dynamically generated data
such as search results, or it could be an HTML page detailing a problem associated
with the POST.

8.4.6.4 Illustrating a complete POST operation

As you can see, performing a POST (rather than a GET) requires learning a few more
steps. The file post.py, shown in Example 8-4, pulls these ideas together and
illustrates a complete POST operation. If you copied Example 8-3, favquote.cgi, to a

IT-SC book
242

CGI-capable directory on your web server, you should be able to run post.py from
the command line. Be sure and put the appropriate IP address or localhost in the
call to the HTTP constructor!

Example 8-4. post.py

"""

post.py

"""

from httplib import HTTP

from urllib import quote

establish POST data

myquote = 'This is my quote: "I think therefore I am."'

be sure not to quote the key= sequence...

postdata = "favquote=" + quote(myquote)

print "Will POST ", len(postdata), "bytes:"

print postdata

begin HTTP request

req = HTTP("192.168.1.23") # change to your IP or localhost

req.putrequest("POST", "/c7/favquote.cgi")

req.putheader("Accept", "text/html")

req.putheader("User-Agent", "MyPythonScript")

Set Content-length to length of postdata

req.putheader("Content-Length", str(len(postdata)))

req.endheaders()

IT-SC book
243

send post data after ending headers,

CGI script will receive it on STDIN

req.send(postdata)

ec, em, h = req.getreply()

print "HTTP RESPONSE: ", ec, em

get file-like object from HTTP response

and print received HTML to screen

fd = req.getfile()

textlines = fd.read()

fd.close()

print "\nReceived following HTML:\n"

print textlines

The raw HTTP headers and post data that post.py produces are shown below:

POST /c7/favquote.cgi HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)

Host: 192.168.1.45

Content-Length: 70

Connection: Keep-Alive

favquote=This+is+my+favorite+quote%3A+%22I+think%2C+therefore+I+am.%22

IT-SC book
244

As you can see, the content length is specified and the data follows exactly one blank
line after the headers.

Thus far in this chapter, we've encountered urllib and httplib, and have retrieved
generic URLs and created custom HTTP requests. Now we are going to take a look at
Python's support for implementing the server side of the connection.

8.5 Using the Server Classes

Armed with an understanding of sockets, you are now ready to code your own
network servers. But before you go out and try to implement an HTTP server, you
should see what Python already offers in terms of modules.

Python features a base HTTP server, a simple HTTP server, and a CGI HTTP server.
As for the simple server, the main task is returning files from the local directory to
clients that ask for them over HTTP. The CGI server is similar, but is prepared to run
CGI scripts and equip them with the environment variables they need, in order to be
interactive with their browser clients. But the most interesting of all in this area is
the BaseHTTPServer.

The BaseHTTPServer module contains a simple socket server (the HTTPServer class)
that accepts HTTP requests. You can implement a few methods of the
BaseHTTPRequestHandler to work with the request. The advantage to using these
two classes is the power it gives you when working with clients. Instead of simply
serving files or running external CGI programs, you have the ability to interpret URLs
any way you wish, and return anything you like back to the client. If you've ever
worked with application servers that offer their own inline scripting language (i.e.
PHP, Cold Fusion, Active Server Pages, etc.) then you have seen base HTTP servers
in practice. When an application server such as Cold Fusion is running with your web
server, your web server hands over any HTTP request that has a .cfm extension to
the Cold Fusion process. That is, the server does absolutely nothing with the request
if it is marked for Cold Fusion. Cold Fusion is then free to examine the request and
send back the appropriate data after executing any inline code placed in the file.

In this section, we implement a base HTTP server that can handle both GET and POST
requests. Running on port 2112, all HTTP traffic sent to port 2112 is completely
handled by the server—regardless of what filename is being requested. In fact there
won't be any files served at all, but instead there will be a default response that all
browsers receive, regardless of what information is in the URL.

8.5.1 BaseHTTPServer Module Classes

The BaseHTTPServer module features two classes: the HTTPServer and the
BaseHTTPRequestHandler. You'll likely only encounter four methods between the
two of these classes, as shown in this section.

The HTTPServer class constructor takes two arguments: an address tuple (hostname
and port), and a reference to a request handler. The HTTPServer class, once
instantiated, has two modes of operation. You can call serve_forever to handle an
infinite number of clients, or you can call handle_request to handle a single client.

IT-SC book
245

The BaseHTTPRequestHandler is a stub class, which you can override for custom
functionality. You'll likely only override do_GET and do_POST. These methods are
called whenever a fresh HTTP request has arrived and is asking for either a GET or
POST operation. The request handler does have some properties that are of
considerable importance:

rh.headers

A dictionary of header/value pairs.

rh.rfile

The "request" or "read" file descriptor of the socket. This allows you to read
data beyond the headers into the server as you would during a POST
operation.

rh.wfile

The "write" file descriptor of the socket. This attribute allows you to send data
to the HTTP requestor (back to the client or browser).

rh.path

The request and path portion of the query string.

rh.command

The type of HTTP request that is being asked for (GET, POST, HEAD, or PUT).

rh.request_version

A string representing the current HTTP version in use.

rh.client_address

A tuple representing the client address.

8.5.2 Server Core Concepts

The architecture of the base server class is quite simple. HTTP headers are given to
you as a dictionary; beyond that, a few simple functions exist allowing you to write
the different aspects of an HTTP request back down to the sender. At the core of the
classes are the rfile and wfile members of the BaseHTTPRequestHandler. These
two objects actually allow you to read and write directly from the client socket.

8.5.2.1 Instantiating a server class

To instantiate a server and start its operations, you can use the HTTPServer
constructor. For example:

myServer = HTTPServer(('', 2112), myRequestHandler)

IT-SC book
246

for lp in range(5):

 myServer.handle_request()

This code instructs the server to connect to localhost (via the blank line and port
number tuple) and to supply a custom request handler. In addition to
handle_request, the HTTPServer features a serve_forever method that never
returns. The method you choose is really just a matter of preference. Example 8-5,
presented later in this chapter, handles five requests and then exits. When choosing
serve_forever, you are committing to running the server for a very long time. You
will not be able to interrupt it from the command line. Basically, if you've chosen
serve_forever, you need to wire in a way of stopping your server—either by
sending a special command to it over the network, or by flipping a lock file or other
filesystem switch on the server. Of course, you can always just hunt down the
process and kill it (with a kill -9 on Unix or a quick trip to the Task Manager on
Windows).

8.5.2.2 Serving a GET

If you are indeed implementing a request handler, it's up to you to implement
do_GET and do_POST. A GET operation is easiest, as most of the information you may
need is in the headers.

class myRequestHandler(BaseHTTPRequestHandler):

 def do_GET(self):

For starters, you need to derive your request handler (myRequestHandler) from the
BaseHTTPServer.BaseHTTPRequestHandler class. After this first step, you can use
some of the methods of the HTTPServer to send a response back to the user.

self.send_response(200)

self.send_header("Content-type", "text/html")

self.end_headers()

After closing out the headers with a call to end_headers, you can use the write file
to send data to the browser.

self.wfile.write("<html><body>")

self.wfile.write("Hello")

self.wfile.write("</html></body>")

The actual URI requested would be present in the request handler's path attribute
(self.path in the previous example). You could use the path information to serve a
particular file, or to invoke a specific method on an object. All other client
information in the headers is held in the headers dictionary.

8.5.2.3 Serving a POST

IT-SC book
247

Implementing a POST is a little more intricate, and requires some knowledge of what
HTTP looks like during a POST operation. The most important difference is that after
reading the browser (or client) headers, the server must figure out how many bytes
to read off the client sockets that constitute a POST. To accomplish this, all POST
operations from a browser supply a Content-length header, from which the size of
the POST is retrieved.

The basic method calls used when dealing with a post are shown here:

def do_POST(self):

 self.send_response(200)

 self.send_header("Content-type", "text/html")

 self.end_headers()

 self.wfile.write("<html><body>")

 self.printBrowserHeaders()

 self.wfile.write("Post Data:
")

 if self.headers.dict.has_key("content-length"):

 content_length = string.atoi(self.headers.dict["content-length"])

 raw_post_data = self.rfile.read(content_length)

 self.wfile.write(raw_post_data)

As you can see, the length of the posted data is kept in the header named content-
length and is submitted along with the client headers. Of course the value of
content-length must be converted from a string to an integer before being used in
a read operation on the input file.

8.5.3 Building a Complete Server

An example is a great way to learn the steps necessary for implementing your own
server. In Example 8-5, writing the HTTP response and parsing the input headers for
return in HTML are relegated to function calls so that both the do_GET and do_POST
methods can have access to them. The printBrowserHeaders function simply

IT-SC book
248

iterates through the browser headers and formats them in HTML, writing them back
down the socket:

def printBrowserHeaders(self):

 # iterate through header dictionary and

 # display the name and value of each pair.

 self.wfile.write("<p>Headers:
")

 header_keys = self.headers.dict.keys()

 for key in header_keys:

 self.wfile.write("" + key + ": ")

 self.wfile.write(self.headers.dict[key] + "
")

The printCustomHTTPHeaders method sends a response code to the browser and
closes off the HTTP headers. If you want to add any additional headers, you should
do so here.

def printCustomHTTPResponse(self, respcode):

 # send back appropriate HTTP code

 self.send_response(respcode)

 # tell them we're sending HTML

 self.send_header("Content-type", "text/html")

 # describe the server software in use!

 self.send_header("Server", "myRequestHandler :-)")

 # close off headers

 self.end_headers()

Example 8-5, HTTPServer.py, shows the complete listing of the server, incorporating
the techniques presented thus far.

Example 8-5. HTTPServer.py

"""

IT-SC book
249

HTTPServer.py - an simple implementation

of the BaseHTTPServer module

"""

from BaseHTTPServer import HTTPServer

from BaseHTTPServer import BaseHTTPRequestHandler

import string

"""

class myRequestHandler - Handles any and all request

 coming in, regardless of path, file, or request

 method (GET/POST)

"""

class myRequestHandler(BaseHTTPRequestHandler):

 """

 do_GET will be called if the browser does a GET

 request.

 """

 def do_GET(self):

 # give them back a 200 OK every time.

 self.printCustomHTTPResponse(200)

 # start HTML output

 self.wfile.write("<html><body>")

 self.wfile.write("<p>Hello, I am a web server, sort of.</p>")

 self.wfile.write("<p>GET string: " + self.path + "</p>")

 # show browser headers

IT-SC book
250

 self.printBrowserHeaders()

 # finish off HTML

 self.wfile.write("</html></body>")

 """

 do_POST is called if the browser is POSTing data

 from a form

 """

 def do_POST(self):

 # send back a 200 OK

 self.printCustomHTTPResponse(200)

 # start HTML and show browser headers again

 self.wfile.write("<html><body>")

 self.printBrowserHeaders()

 self.wfile.write("Post Data:
")

 # track down length of the post, so that you

 # can read in the correct number of bytes. The

 # length of the post is in the browser header

 # named 'content-length'.

 if self.headers.dict.has_key("content-length"):

 # convert content-length from string to int

 content_length = string.atoi(self.headers.dict["content-length"])

 # read in the correct number of bytes from the client

 # connection and send it back to the browser

IT-SC book
251

 raw_post_data = self.rfile.read(content_length)

 self.wfile.write(raw_post_data)

 # finish off HTML

 self.wfile.write("</html></body>")

 """

 printBrowserHeaders - this method prints the HTTP

 headers sent by the client

 """

 def printBrowserHeaders(self):

 # iterate through header dictionary and

 # display the name and value of each pair.

 self.wfile.write("<p>Headers:
")

 header_keys = self.headers.dict.keys()

 for key in header_keys:

 self.wfile.write("" + key + ": ")

 self.wfile.write(self.headers.dict[key] + "
")

 """

 printCustomHTTPResponse - this method takes a response

 code and sends the code and custom headers

 back to the browser

 """

 def printCustomHTTPResponse(self, respcode):

 # send back appropriate HTTP code

 self.send_response(respcode)

IT-SC book
252

 # tell them we're sending HTML

 self.send_header("Content-type", "text/html")

 # describe the server software in use!

 self.send_header("Server", "myRequestHandler :-)")

 # close off headers

 self.end_headers()

start the server on port 2112, requires browser URLs

to be addressed as http://servername:2112/pathtofile

myServer = HTTPServer(('', 2112), myRequestHandler)

loop to handle 5 requests

for lp in range(5):

 myServer.handle_request()

8.5.3.1 Running a GET request

To launch your new server, simply supply its name to Python:

C:\WINDOWS\Desktop\oreilly\pythonxml\c8>python HTTPServer.py

The prompt won't return, as the server keeps running until it has handled five
requests. When running the server to test the GET functionality, just launch your
browser and type in the name of your server, plus port 2112
(http://hostname:2112), to get a response. It doesn't matter which path you use, as
it is ignored by the server. Figure 8-1 shows a browser making a GET request against
the server with an address of
http://localhost:2112/this/path/and/pagename/are/made.up?its=true. The only
critical piece of the URL is the host:port combination http://localhost:2112.

Figure 8-1. A browser connecting to the server with a GET request.

IT-SC book
253

8.5.3.2 Running a POST request

Performing a POST requires a web form. The simple HTML file testServer.html shown
in Example 8-6 should work. It does not need to be placed on a web server, but
rather loaded it in your browser, just as you would a file. When you press the submit
button, the form tries to POST its data to your HTTPServer.py running at port 2112.
Example 8-6 shows the markup for testServer.html.

Example 8-6. testServer.html

<html>

<body>

<form action="http://localhost:2112/this/part/doesnt/matter"
method="POST">

<textarea rows=10 cols=40 name="textdata">

This is some sample data for you to submit

if you like.

</textarea>

<input type=submit>

</form>

</body>

IT-SC book
254

</html>

Figure 8-2 shows the web form from Example 8-6 sitting in your browser with the
default text. The important thing to remember about the web form is that its action
attribute points to port 2112, instead of just port 80.

Figure 8-2. A web form to test the server

When you submit the form, as with the GET request, the path and filename are
ignored by the server, and instead HTTPServer.py simply uses the rfile to read
data in from your request. The content-length header is sent by the browser to tell
the server how many bytes to attempt to read from the socket. Figure 8-3 shows the
response from the server. It's similar to the GET response, but your POST data is also
presented, properly URL-encoded.

Figure 8-3. A response to a submitted form

IT-SC book
255

In this chapter, we tie together many of the Internet's subsystems available to you
from Python. When writing applications that work with XML in distributed systems,
it's important to understand how the different subsystems work together, beyond
just CGI. Having an understanding of how web servers operate, how URLs are
encoded and decoded, as well as understanding the nature of threads and sockets
and their role in network programming, equips you to glue together distributed
systems and XML with a more robust toolbox. XML is still very much a cutting-edge
technology, and leveraging it effectively means having an advanced understanding of
the distributed network environment in which its used including protocols, sockets,
threads, and other APIs. In the next chapter we explore web services and SOAP.
Given the nascent SOAP support in Python, the work done in this chapter will serve
you well.

IT-SC book
256

Chapter 9. Python, Web Services, and
SOAP

The Internet has opened many eyes to the possibilities of easily accessible digital
information. With systems connected together, there is no reason why an airline
ticket agent can't have an email sent to your hotel when you're boarding your flight
45 minutes late. Likewise, an Internet-enabled PDA and GPS should have no trouble
automatically updating driving directions for you when notified that your hotel has
changed due to overbooking. In other words, web services enable distributed
systems to communicate with each other, sharing relevant pieces of user information
to trigger the right kinds of events, alerts, and notices. However, web services hold a
great deal of promise for those other than end-users or business travelers. For
corporations, web services provide a greater degree of interoperability with trading
partners, allowing the automation of business transactions and tighter integration
between production and supply-chain systems. As previously mentioned, for humans,
web services hold the promise of tying together distributed information in such a way
that the Web can become a unified, seamless whole, regardless of a user's location
or device. Understanding the impact of such innovation can shed light on the current
interest in and excitement over web services. Understanding the technology behind
them can give you the tools to create more powerful, integrated, and dynamic web
applications.

Web services are distributed systems on the Web. When you visit a rich Internet
portal, chances are much of the content that you see there was derived from sites
talking to one another before the actual content is delivered to you; this is commonly
referred to as content syndication. The technology behind this distributed model is
just beginning to emerge and take hold. Typically, the components needed for
servers to talk to one another include a common wire protocol and a common
transactional protocol. If the wire protocol encapsulates external data formats, those
formats must also be agreed on. When these elements are in place, it becomes
possible for one service (such as a credit bureau) to talk to another (such as a
financial web site).

The Internet has given the world a common wire protocol. Transmission Control
Protocol/Internet Protocol (TCP/IP) has established itself as the common network
protocol used on the Internet. TCP/IP is taken for granted by applications that
establish higher-level, file-like communications with each other all the time. While
you may use a socket to connect to an HTTP server, the networking subsystems
eventually speak TCP/IP on the wire to ensure your stream of bits gets to the server
exactly as intended. On top of TCP/IP, there is a layer known as the Hypertext
Transport Protocol (HTTP); on top of that, there is the layer Simple Object Access
Protocol (SOAP). While SOAP can run over other communications protocols, HTTP
makes the most sense due to its widespread adoption and agility with firewalls.
SOAP is more of a transactional protocol giving response and request semantics to
developers. SOAP also provides a common data format, as it successfully defines an
encoding for data values in XML and can be shared easily shared between distributed
systems.

The bulk of these technologies, coupled with supporting players such as Web
Services Description Language (WSDL) and Universal Discovery, Description, and

IT-SC book
257

Integration (UDDI), constitutes web services for many industry analysts, though
alternative technologies are used as well.

9.1 Python Web Services Support

For Python, web services are a nascent arena. In fact, as of this writing, several
different SOAP implementations are in the works, yet none of them have reached
maturity. The most mature SOAP implementations exist for both Java and Microsoft
COM environments, and are supported by key industry heavyweights such as IBM
and Microsoft. It's likely that these implementations will drive the adoption of web
services, as well as help shape the standard. Fortunately, these implementations are
available to your Python applications.

9.2 The Emerging SOAP Standard

Understanding SOAP helps you better use SOAP implementations, and more
importantly allows you to adopt SOAP as a general XML messaging medium. SOAP is
a work in progress but is slated to become a W3C recommendation. As of this writing,
the latest SOAP specification is the W3C Note available from http://www.w3c.org.
W3C members from various companies, including DevelopMentor, IBM, UserLand,
Lotus Development, and Microsoft, develop SOAP.

SOAP is an XML-based protocol, and defines three basic concepts:

1. An envelope that describes a message and how to process it.
2. Encoding requirements that describe message data types.
3. Remote Procedure Call conventions that allow for distributed method

invocations.

9.2.1 SOAP Messages

In its most basic form, SOAP is used over HTTP to send a message to a SOAP server.
In turn, the server implements some specific functionality and returns a SOAP
response message back to the caller. This type of interaction uses HTTP's inherent
request/response design. The original SOAP message may be a method invocation
and parameters; the response may be the return values.

A SOAP request may take the form of:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <m:GetLocalTemperature xmlns:m="http://localhost/temperApp">

 <zipcode>90872</zipcode>

 </m:GetLocalTemperature>

IT-SC book
258

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This message is sent over HTTP, and can be posted to a specific URI capable of
interpreting and responding to the SOAP message. The return SOAP unit contains the
response to the query GetLocalTemperature.

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <SOAP-ENV:Body>

 <m:GetLocalTemperatureResponse

 xmlns:m="http://localhost/temperApp">

 <Farenheit>59</Farenheit>

 </m:GetLocalTemperatureResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In this return example, the result of the method invocation is returned to the caller
in a SOAP packet.

9.2.2 Exchanging SOAP Messages

The current SOAP specification places no constraints on how a SOAP message is sent
across the network. SOAP implementations are allowed to take advantage of any
special features of their communications medium, be it HTTP, SMTP, or something
yet to be imagined.

However, SOAP does define the concept of a Message Path. This critical concept
allows a SOAP packet to be dealt with at intermediate steps along the way to its final
destination. While it's simple to think of the message delivery process as one that
simply hops a message to its end-point, in reality this powerful concept mimics that
of routing. It's possible to add intelligence to a network to deal with SOAP packets,
and distribute them where they need to go. This addition of intelligence to the
network allows for a much greater level of scalability and traffic management by
allowing multiple, distributed systems to route packets where they need to go, as
opposed to forcing them through a central server.

SOAP requires intermediate processors to perform three steps in exact order:

1. The SOAP processor identifies any part of the SOAP message that's intended
for itself; that is, the application must understand which parts of the SOAP
message relate to its own operation, and which parts do not.

IT-SC book
259

2. The application must make a decision as to whether it can support all of the
required processing that the message expects of it. If the application cannot,
it must discard the message.

3. The application must remove the portions of the message that it has
processed if it isn't the end-point of the message, and is in fact just an
intermediary or routing point. The removal must occur prior to the application
forwarding the message to the next location.

For some middleware and routing applications, no parts of the SOAP message will be
intended for them specifically. In these cases, the application may just look at the
target URI or SoapAction value, and route the SOAP packet accordingly without
modifying it.

9.2.3 Encoding SOAP Messages

The SOAP specification requires that all SOAP messages are encoded using XML. In
addition, namespaces are used on elements and attributes, and any SOAP
application must understand these concepts. The specification also dictates that
messages with incorrect namespaces must be discarded—it defines two namespaces
for use in SOAP. For envelopes, the correct namespace is
http://schemas.xmlsoap.org/soap/envelope/.For serialization, the correct namespace
is: http://schemas.xmlsoap.org/soap/encoding/.

These namespaces are associated with local names and inserted into element and
attribute names per the W3C's Namespaces in XML document. Interestingly enough,
given their native development in XML, SOAP messages are not allowed to contain
either a Document Type Declaration or a Processing Instruction.

9.2.4 Constructing SOAP Envelopes

A composite SOAP message contains three broad parts. The first and outermost part
is the envelope. Beneath the envelope is the header. The header is the place where
routing information or other nonapplication metadata may be stored. It is
permissible in the eyes of the specification to temporarily modify SOAP headers
during a routing or transport period, leaving the message in its original state when it
finally reaches the destination. The SOAP body is the place where the application-
specific payload resides.

9.2.4.1 SOAP packet requirements

Let's consider the analogy of a physical package delivery. The envelope is obviously
the shipping container, and the header data may be added and removed by transport
stations regarding check-ins and checkouts. The body is the goods and materials
nicely secured inside the box, not to be touched by anyone but the recipient.

From these constructs, the envelope and body are mandatory, whereas the header is
optional. Furthermore, the specification requires that these additional constraints are
minded when constructing packets:

1. For envelopes, SOAP requires that the element names be Envelope, with no
exceptions. The Envelope element can optionally contain namespace

IT-SC book
260

declarations and additional, informative attributes. However, if any of these
exist, they must be namespace-qualified. The specification requires that SOAP
messages have an Envelope element marked with the
http://schemas.xmlsoap.org/soap/envelope/ namespace. If not within this
namespace context, the specification requires that the message is discarded.

2. For headers, SOAP requires element names to always be Header. The header
is allowed to have immediate child elements. Any child element must be
namespace-qualified.

3. For SOAP bodies, the element name must always be Body. The Body element
must be an immediate descendant of the Envelope element, and if a Header
element is present, it must immediately follow the header.

9.2.4.2 SOAP encoding style

SOAP allows for different serialization rules for SOAP messages. To that end, the
encodingStyle attribute is used to indicate which serialization techniques are used
in the message. The SOAP specification defines serialization rules within the
document, and utilizes the URI http://schemas.xmlsoap.org/soap/encoding/ to
indicate that this encoding style is in use.

9.2.5 Using SOAP Headers

SOAP allows for the extension of messages through optional header data. The
header data may never actually be seen by sending and receiving end-point
applications, but may actually only be used and seen by intermediary and
middleware applications along the message's path. However, there is no requirement
that forbids the use of headers by applications.

According to the SOAP specification, headers must follow a few rules. First, a header
entry must utilize a fully qualified element name within a namespace URI context.
Second, the SOAP encodingStyle attribute may be used to denote the encoding
style for header members. Third, the SOAP mustUnderstand attribute and actor
attribute may also be used to indicate processing directions.

SOAP actor Attribute

The SOAP actor attribute names the recipient of a header element. The
recipient is identified by URI.

SOAP mustUnderstand Attribute

The mustUnderstand attribute tells an application whether it is required to
process the information contained within the element. The mustUnderstand
element can have a value of either 1 or 0, with 1 indicating a positive
condition requiring the application to understand the element. A nonexistent
mustUnderstand attribute is the same has having it set to 0, or otherwise
represents a false condition.

9.2.6 SOAP Body Elements

IT-SC book
261

The Body element is the primary piece of a SOAP packet with which an end-point
application is concerned. The Body element represents the SOAP packet's payload.

Child elements of the Body element are called body entries. Each body entry is
encoded as an independent element within the SOAP body element. A body entry
requires a namespace URI and local name. The encodingStyle attribute can be used
within body entries to indicate their encoding style.

9.2.7 Error Message and SOAP Fault

The SOAP Fault element is used to communicate error conditions back to a calling
application. The SOAP Fault may be used to communicate any type of failure
relevant to your application.

9.2.7.1 Fault element

A Fault element may have the following four children elements:

faultcode

The faultcode element is required to appear within Fault elements, and
provides a numeric code to applications for easier management of error
messages. The SOAP specification defines a few fault codes automatically,
covered in the Section 9.2.7.2 section.

faultstring

The faultstring element is required within Fault elements, and can be any
type of description appropriate for the error.

faultactor

The faultactor element is used to pinpoint which actor caused the fault if
the message followed along a message path. If present, this element
indicates the origin of the fault. If an intermediary application causes a fault,
the specification requires that the intermediary shows itself in the faultactor
element. The value of a faultactor element is a URI.

detail

The detail element allows for application-specific information associated with
the XML payload in the Body element. For example, if a business logic error
occurs in your distributed SOAP-powered application, the business error detail
rides in the detail element. On the other hand, if an intermediary causes a
problem during the routing process, the detail element is not used to
communicate the information. Like the Body element, the detail element
allows for detail entries to be present as immediate children of the detail
element.

9.2.7.2 Fault codes

IT-SC book
262

The fault codes defined by the SOAP specification list four different error conditions.
If one of these conditions occurs, the following fault codes must be used. These fault
codes are in the space defined by the URI prefix
http://schemas.xmlsoap.org/soap/envelope/. The SOAP specification hopes the fault
codes are extensible and will be used by developers. By default, the specification
includes:

VersionMismatch

Used when an invalid namespace is used for the SOAP Envelope.

MustUnderstand

Used when an element is not understood or processed by an application, but
its mustUnderstand attribute is set to 1.

Client

Used when the message is not well formed, or did not contain required
information for success.

Server

Used when the message cannot be processed by the server for reasons other
than physical makeup. That is, you may have formatted your
GetLocalTemperature call correctly, however the server could be offline
momentarily. When this error comes up, it is possible that the application
may try again at a later time.

The Client and Server classes of errors are meant to be extensible, so that a
programmer could define a fault such as Client.AccessDenied or Server.Unavailable.
The complete URI for Client.AccessDenied is
http://schemas.xmlsoap.org/soap/envelope/Client.AccessDenied.

For faults that are not described by the SOAP specification, it is legal to use URIs
that begin with a different prefix.

9.2.8 SOAP Encoding Techniques

SOAP encoding defines a format for data types communicated in SOAP packets. If
SOAP is to be used for Remote Procedure Calls (RPC) between applications, then
application-specific data must be marshaled to and from the involved parties. These
applications must be able to understand the types of data—to be able to distinguish,
for example, arrays from strings and numbers from letters.

In the world of SOAP encoding, the SOAP specification sees two types of data.
Simple scalar types (dog = "foo") and compound types (dog = {"foo" : "bar",
"bar" : "foo"}). SOAP encoding uses the namespace URI
http://schemas.xmlsoap.org/soap/encoding/.

SOAP does acknowledge that other types of encoding schemes may be used, but for
applications to be interoperable, it's easiest if they use the same encoding.

IT-SC book
263

9.2.9 SOAP Encoding Rules

There are nine golden rules for data serialization using SOAP. These rules establish
guidelines for both simple and complex data types and data representation. These
nine rules are explored and illustrated in practice following these simple guidelines.

1. All data values must be represented as element content. This means that data
is inside elements, not inside attributes as in:

<specialSymbol>DataValues</specialSymbol>

and not:

<specialSymbols symbol1="DataValue1" symbol2="DataValue2"/>

2. When an element contains a data value, the value must have one of the
following features:

o Have an xsi:type attribute
o Be contained within an element with a SOAP-ENC:arrayType attribute
o Have a type determinable from a schema

3. Simple values are represented as character data without any child elements.
Simple values must have a type referenced in the XML Schemas Specification.

4. Compound values are represented as a sequence of elements. Access
methods are represented by an element with a matching name. Qualified
names must be used unless the access names are local to their containing
types.

5. Multireference simple or compound values are represented as independent
elements with a local attribute ID of type ID (the ID type listed in the XML
Specification, which must be unique within any XML document instance). Any
access to this simple or compound value must have an attribute named href
that points to a URI fragment identifier referencing the element.

6. Strings and byte arrays should be multireference simple types, but rules exist
for efficient representation in common cases. See the specification at
http://www.w3.org for details.

7. Multiple references to a value can all be encoded separately, but only if the
meaning of the XML instance is unaltered as a result.

8. Arrays are compound values. Arrays must have a type of SOAP-ENC:Array or
a derived type. SOAP arrays may be multidimensional, with the rightmost
index advancing first. SOAP arrays need a SOAP-ENC:arrayType attribute that
indicates the contained element's type and dimensions. In its simplest form,
the attribute may appear as:

9. arrayTypeValue:

array-type array-size

where <array-type> is an XML Schema-defined type, and <array-size> is
an integer indicating the size of the array. Things get trickier when encoding a
multidimensional array. In the case of multidimensionality, <array-size> is a
comma-separated list of integers.

IT-SC book
264

10. A null value doesn't require an accessor element. However, a null value may
be present and represented with an accessor with an xsi:null attribute set
to 1.

While these rules may seem quite complicated, learning more about types helps
demystify them. When working with some SOAP APIs (and hopefully all SOAP APIs),
such strict data typing is not manually required, and is taken care of by the API.

9.2.10 Simple Types

The SOAP specification declares that it adopts the types found in the XML Schema
Part 2: Datatypes specification. In other words, the SOAP drafters are not
reinventing the wheel, but utilizing the work done for the XML Schema effort.

Using established data typing makes data encoding far simpler to understand than
the list of nine rules presented in the previous section. For example:

<element name="FirstName" type="xsd:string"/>

<element name="LastName" type="xsd:string"/>

<element name="Address1" type="xsd:string"/>

<element name="City" type="xsd:string"/>

<element name="State" type="xsd:string"/>

<element name="Zip" type="int"/>

<element name="BalanceDue" type="float"/>

9.2.11 Compound Types

The SOAP specification recognizes two primary types of compound data: structs and
arrays. A struct is a compound type in which members are given names, and the
names are used to access the values. An array, on the other hand, is an ordered list
in which an integer index is used to access the values.

9.2.12 SOAP over HTTP

SOAP fits naturally over HTTP. SOAP's request/response RPC-style transactions are
perfect for HTTP's request/response protocol. When sending SOAP over HTTP, the
content-type must be text/xml.

9.2.12.1 The SOAPAction header

The SOAPAction HTTP request header field is used to indicate the "intent" of the
SOAP request. A client is required to supply this header in a request. The value of
the header is a URI, but the specification places no restrictions on what the URI
represents.

IT-SC book
265

9.2.12.2 SOAP HTTP responses

SOAP over HTTP uses a hybrid combination of traditional HTTP response codes
coupled with their equivalent meanings for the fate of the SOAP packet. That is, even
if the HTTP request itself is okay, if for some reason there is an error on the server
side while processing the request, the server must send back an HTTP 500 Internal
Server Error. This is a slightly different process than that of HTTP, which only gives
such a response when a CGI or ASP page ungracefully bails out of its execution. With
SOAP, the execution of the SOAP server may proceed just fine, but if the logical
execution of the SOAP message fails, the HTTP 500 error is returned.

9.2.13 SOAP for RPC

Using SOAP for RPC-style development is really nothing different from using SOAP
for any other purpose. The semantics of request/response are still present. A SOAP
method invocation is just a SOAP envelope with a method name as payload,
accompanied by any data parameters. The response is either the return value or the
error status, also within a SOAP envelope.

When performing RPC with SOAP, the method calls and return values are stored in
the SOAP body.

9.3 Python SOAP Options

Support for web services in Python is emerging, but is not complete. At the time of
this writing, there is lively debate in the XML-SIG (Python XML Special Interest
Group; see http://www.python.org/sigs/xml-sig/) concerning SOAP client and server
implementations and their ability to interoperate.

SOAP and WSDL, and therefore web services, are being driven largely by companies
such as IBM and Microsoft. Microsoft has robust client and server support for web
services in their SOAP Toolkit, while IBM is making headway contributing to the
Apache SOAP project. Both camps feature support for two common styles of web
service access: RPC-like proxy access, and SOAP Serialization access.

You can implement Python web service clients easily today by using one of Python's
bridge mechanisms into subsystems such as COM and Java. Python's COM support is
excellent and is enabled by installing PythonCOM (part of the win32all.exe package
from the ActiveState web site). Detailed instructions are provided in Section 9.4.1
later in this chapter.

Through the accepted APIs of web services today, you'll likely be able to quickly
adapt your Python code to use native Python web service support when it matures,
although it may be more desirable to write your logic in Python but utilize APIs from
Python that are implemented in faster C++. Python makes a great glue language
due to its robust object model, sophisticated text and file manipulation, and
component access. Utilizing components that are resource intensive (such as Parsers
or SOAP clients) may work better if the components are written in fast native code
and are driven by your Python code.

With one cross-platform exception, the Python client examples in this chapter rely
primarily on using COM to bridge Microsoft's mature SOAP Serializer and SOAP

IT-SC book
266

Connector. Therefore, the Python examples in this section primarily run on Windows
platforms, due to their utilization of COM. However, the SOAPy API is covered as well.
This is a native Python RPC-like SOAP client implementation. SOAPy should run
anywhere Python runs.

9.3.1 Working with SOAPy

As of this writing, SOAPy provides support for RPC-like interaction with WSDL-
published web services. SOAPy is currently available on SourceForge
(http://soapy.sourceforge.net). SOAPy is inherently cross-platform because it is a
native Python implementation.

Working with SOAPy is very simple, as it's designed to transparently present a
remote web service as if it were a local Python object. If you download one of the
source distributions of SOAPy, you get a few examples that allow SOAPy to strut its
stuff. For instance, the get_temperature example that ships with SOAPy allows you
to enter a zip code and query a remote weather service for the current temperature.
So, to check the temperature in Woodinville, Washington:

C:\c9>python get_temperature.py 98072

Temperature for 98072 = 53.0 degrees F

While this application is impressive, it immediately inspires curiosity as to how
SOAPy works. SOAPy performs this trick in three lines of code:

import soap

server =
soap.get_proxy('http://www.xmethods.net/sd/TemperatureService.wsdl')

temperature = server.getTemp(zipcode=zip)

The secret is that SOAPy interprets the WSDL file, and creates a local stub object for
you to work with that seemingly has all of the methods of the remote service.

Ideally, when working with SOAPy, the only method you call is get_proxy.
Afterwards, you should be able to use the methods described in the WSDL file
located at the remote service.

9.3.2 Working with MSSOAP

When working with MSSOAP, you have the option of using an RPC client or a
Serialization client.

The RPC client works essentially the same way that SOAPy does; however, there are
some subtle differences. For example, to initialize a connection with remote service
description, use the mssoapinit method as opposed to SOAPy's get_proxy, but the
net effect is the same as shown here:

IT-SC book
267

import win32com.client

sc = win32com.client.Dispatch("MSSOAP.SoapClient")

sc.mssoapinit("http://WebServiceDomain/service.wsdl")

response = sc.methodName(param, param)

print(response)

Again, the net effect of web service RPC implementations is to allow you to work with
a remote object as if it were local. The Serialization method works slightly differently,
but gives you finer control over how an actual SOAP request is structured, and allows
you to work with a service without necessarily relying upon a service description
WSDL file.

9.3.3 MSSOAP Serialization Basics

Using serialization is more involved than using RPC, but it has its own advantages as
well as drawbacks. Serialization gives you fine control over exactly how a SOAP XML
request appears. Implementing serialization also allows you to interact with a web
service without having to understand WSDL, something that may be of considerable
value as SOAP implementations (both client and server) mature.

The main trade-off between RPC and Serialization is the WSDL file. The WSDL file
provides an RPC implementation with the information it needs about the service end-
point, such as the URIs and namespaces involved, or the parameters and their types.
Without RPC and WSDL, you'd need to supply these extra details manually.

9.3.3.1 Adding URIs and namespaces

Creating a SOAP packet with MSSOAP requires a few objects, but start with the
connector and the serializer. You must give the connector information that is
normally held in a WSDL file. For example, you need to supply the end-point, the
SOAP Action URI, and the namespace:

import win32com.client

SoapActionUri = "http://tempuri.org/action/Calc.Add"

ElementNamespace = "http://tempuri.org/message/"

EndPointUrl =
\"http://centauri/MSSoapSamples/Calc/Service/SrSz/AspVbs/Calc.asp"

IT-SC book
268

connector = win32com.client.Dispatch("MSSOAP.HttpConnector")

connector.SetProperty("EndPointURL", EndPointUrl)

connector.SetProperty("SoapAction", SoapActionUri)

connector.BeginMessage()

The connector is now prepared to connect to the service. All that is left to do is to
prepare the SOAP envelope and execute the call. The SOAP envelope is also
prepared manually.

serializer = win32com.client.Dispatch("MSSOAP.SoapSerializer")

serializer.Init(connector.InputStream)

Once the serializer is created, it is attached to the connector for writing to the
service.

9.3.3.2 Creating the SOAP envelope

You use the serializer's methods to actually construct the SOAP packet, including
the method you are targeting, as well as to supply the parameters. The following
lines prepare a SOAP packet for delivery to a calculator service expecting that
parameters A and B are integer parameters to a method named Add:

Create SOAP Envelope

serializer.startEnvelope()

serializer.startBody()

serializer.startElement("Add", ElementNamespace, '', "m")

serializer.startElement("A")

serializer.writeString("4")

serializer.endElement()

serializer.startElement("B")

serializer.writeString("5")

serializer.endElement()

serializer.endElement()

serializer.endBody()

serializer.endEnvelope()

IT-SC book
269

Finish SOAP message

connector.EndMessage()

As shown in the previous code, the connector is then instructed that the complete
SOAP message has been prepared with a call to EndMessage.

9.3.3.3 Making the call

After you've completed constructing your serializer and connector, a final step is
to instantiate a reader object to check for errors with the service and to retrieve the
result of the call.

reader = win32com.client.Dispatch("MSSOAP.SoapReader")

reader.Load(connector.OutputStream)

Here, the reader is associated with the connector's output stream in order to
retrieve the result of the call to the service. The Fault attribute of the reader
indicates success or failure.

if reader.Fault:

 print("Error: ", reader.faultstring.Text)

print reader.RPCResult.Text

The response from the service is contained in the reader.RPCResult object. In this
particular case, the response from the calculator service is "9," and the sum of the
supplied parameters is 4 and 5.

9.4 Example SOAP Server and Client

As of this writing, server-side implementations of SOAP services are virtually
nonexistent. The few that do exist stray from the emerging standards and are likely
to continue to morph as they discover what the users really want.

The most stable web service sample implementations come from Microsoft and IBM.
In this section, we create a Python client that utilizes the calculator service that ships
with Microsoft's free SOAP Toolkit 2.0, available from http://msdn.microsoft.com. As
such, the service must run on either Windows NT Server 4.0 or Windows 2000
Server. The clients may run anywhere COM runs. The toolkit sets up very easily on
these platforms, and is ready to go after the install script is finished.

The Python client created in this section uses COM to connect with the MSSOAP type
library objects, and interacts with the service. The clients can run on virtually all
flavors of Windows, provided they have access to the services and WSDL files

IT-SC book
270

residing on the server. Note that the clients can easily (and probably most
conveniently) run on the same machine as the servers.

9.4.1 Requirements for Using MSSOAP

SOAP and web services are new, and as such require the installation of software for
developers who wish to experiment the technology. The rest of this chapter relies on
COM; therefore, if you are not familiar with the workings of COM and Python, this
section helps to get things set up.

The following steps are required in order to run the Python client example in this
section.

1. The Microsoft SOAP Toolkit 2.0 must be installed on a server.
2. The WSDL and service implementations that ship with the SOAP Toolkit must

be visible via HTTP on your network, per the installation examples that ship
with the toolkit. This is true even if you are running the client and server on
the same machine.

3. Python clients must have win32all.exe (Python COM Support available from
http://aspn.activestate.com and developed by Mark Hammond) installed, and
the utility script makepy.py must be applied against the SOAP Type Library.
Additionally, if running the clients on a different machine, the SOAP Toolkit, or
at least the COM object .dll files, must be installed.

9.4.1.1 Getting Microsoft SOAP Toolkit 2.0

Microsoft has made available client DLLs and robust client and server example
implementations in their SOAP Toolkit 2.0. This is a free download, fully supported as
well as available from http://msdn.microsoft.com/downloads/default.asp.

When installing the toolkit, you automatically receive an updated MSXML 3.0
package, which fully supports XSLT. Appendix E covers working with Python and the
MSXML parser.

9.4.1.2 Making the samples web-visible

When you install the samples, you need to follow the instructions for creating a
virtual directory in IIS (Internet Information Server, the default HTTP
implementation on Windows servers) that can point to the samples. The instructions
call for putting an entry for MSSOAPSampleServer in your hosts file
(c:\winnt\system32\hosts), but this step is optional, and is only required if you
intend to run the Microsoft sample clients. For the purpose of this chapter, you are
writing a Python client from scratch; therefore, your existing hostname is fine. You
need to be able to see the samples directory via HTTP, as the instructions indicate.

If you plan on running the Python client from the same machine that hosts the
samples, you won't need to install anything else (except perhaps Python COM
support) to proceed.

9.4.1.3 Getting Python COM support

IT-SC book
271

If you have not used COM from Python (and we haven't yet in this book), you need
to download and install Python COM support. Start by retrieving the appropriate
installer from the Web available at
http://aspn.activestate.com/ASPN/Downloads/ActivePython/Extensions/Win32all.

There are links and instructions to download win32all.exe for your version of Python;
read the information on this web page carefully to be sure you get the right version.
This installer provides full support for COM from your Python programs, and allows
you to implement COM servers from other languages to use.

9.4.1.4 Fixing MSSOAP with makepy.py

Even if you already have Python COM support (or just installed it), you need to
tweak Python's access to the SOAP Type Library. Unfortunately, the authors of the
SOAP Toolkit objects rely on Visual Basic's and Windows Scripting's ability to set
object properties like this:

Object.Property("PropertyName") = NewPropertyValue

That's not even legal syntax in Python! Visual C++ uses a slightly different syntax,
allowing an overloaded operator to provide syntax that matches Python's dictionary
assignment syntax:

Object.Property["PropertyName"] = NewPropertyValue

Great! This syntax works just fine in Python if you are assigning a value to an
element of a member dictionary. Unfortunately, the COM API does not automatically
convert this COM construct to Python member dictionaries. For this specific object,
Property is a method, and there is no way to assign a value in Python to an object
method. Typically, components implement access methods, or at the minimum,
implement SetProperty and GetProperty type constructs. Thankfully, the
makepy.py script that ships with win32all.exe wraps another Python interface on top
of the COM objects and uses a lower-level API to access them correctly, allowing you
to overcome this aspect.

To run makepy.py, launch it from within the win32com\client directory of your
Python installation (typically, C:\Python20\win32com\client):

C:\Python20\win32com\client>python makepy.py

A dialog GUI pops up that displays all of the different type libraries registered on
your system. Find Microsoft SOAP Type Library (1.0) and click Ok. The script
suddenly produces a flurry of activity (evidenced by frequent text output) and writes
a .py file with a monstrously long name inside the folder
C:\Python20\win32com\gen_py. You probably will not need to see that file again, as
you can use a standard call to win32com.client.Dispatch to invoke the object and
it will seek out the updated Python-friendly interface that makepy.py created. Figure
9-1 shows the dialog in action with Microsoft SOAP Type Library (1.0) highlighted.

Figure 9-1. Selecting the SOAP Type Library with makepy.py

IT-SC book
272

Once you've created the Python interface for the object by selecting Ok, you may go
about instantiating the object normally, but now you can call constructs such as:

Object.SetProperty("PropertyName", "NewValue")

The makepy.py accomplishes more than just correcting property assignments for
Python syntax, as it can also be used to smooth out parameter types and properties
for all sorts of COM objects. See the makepy documentation for more information.

9.4.2 Server Setup

Before we get into developing the client, it's important to understand the server
setup. SOAP and web services are inherently cross-platform. While you are running
services implemented on Windows, clients can conceivably be written on any
platform, provided they can either create the correct kind of SOAP packet to invoke
the services, or interpret the published WSDL to wrap the services with a local stub
object.

The Python client implemented here uses COM access to a SOAP connector and
serializer; however any SOAP implementation should be able to connect to these
services and utilize them.

The server setup that ships with the toolkit is merely a collection of WSDL files
describing services, as well as service end-points that implement them. The end-
points are in a variety of languages and techniques, ranging from Active Server
Pages to ISAPI plug-ins. The interface to these services is purely SOAP.

9.4.3 A Python SOAP Client

The SOAP Toolkit ships with a Calculator service. This service offers four different
operations that it performs on two supplied parameters, much like a basic calculator.
This example is similar in functionality to the VBScript sample client that ships with
the Toolkit. The most significant difference between the two is that your client is
implemented entirely in Python from scratch, not in VBScript.

IT-SC book
273

The calculator operations are add, subtract, multiply, and divide. If your SOAP
Toolkit is freshly installed, it's a good idea to verify that the calculator service is
running properly by testing it with one of the sample clients that ships with the
toolkit—it certainly aids in the debugging phase of things (if you need to debug!) In
other words, knowing that your web server and SOAP implementations are working
helps to isolate any problems or errors that may occur when running your Python
client.

9.4.3.1 Defining reusable basics

To properly build the SOAP packet, define a portion of the SOAP Action URI, allowing
for the appending of different method names. You also want to reuse the namespace
URI between method invocations. These two reused items, along with the service
end-point, are defined up front as global variables:

import win32com.client

SOAP Action URI

BaseSoapActionUri = "http://tempuri.org/action/Calc."

Namespace

WrapperElementNamespace = "http://tempuri.org/message/"

Service End Point

EndPointUrl = \

 "http://centauri/MSSoapSamples/Calc/Service/SrSz/AspVbs/Calc.asp"

You can take calculator functionality and embed it within a method, allowing the
method to take a string representing the operation you wish to perform, along with
the parameters. This method can then repeatedly be called to generate answers:

def Calculate(Op, Val1, Val2):

 """Return a result based on the operator 'Op' and two input
values."""

 # Instantiate HttpConnector

 connector = win32com.client.Dispatch("MSSOAP.HttpConnector")

Immediately as the function begins, the HTTP SOAP connector is created as shown in
the preceding code. The connector is then handed some critical information
regarding the location of the service:

IT-SC book
274

Set properties (will fail if makepy.py wasn't run

on SOAP type library)

connector.SetProperty("EndPointURL", EndPointUrl)

connector.SetProperty("SoapAction", BaseSoapActionUri + Op)

Start SOAP message

connector.BeginMessage()

What's critical in this code snippet is the SetProperty call to change the value of
SoapAction. If you note, the BaseSoapActionUri is concatenated with the desired
operation Op. If using the add method, create a SoapAction string similar to:

http://tempuri.org/action/Calc.Add

Now the task turns to actually creating the SOAP envelope.

Create a serialization object

serializer = win32com.client.Dispatch("MSSOAP.SoapSerializer")

Attach it to the connector created earlier

serializer.Init(connector.InputStream)

The serializer is bound to the connector's input stream, so that the SOAP packet
actually finds its way to the service end-point. Creating the rest of the packet follows
the same pattern shown earlier, with methods representing the starting and ending
of elements:

Create SOAP Envelope

serializer.startEnvelope()

serializer.startBody()

serializer.startElement(Op, WrapperElementNamespace, '', "m")

serializer.startElement("A")

serializer.writeString(Val1)

serializer.endElement()

serializer.startElement("B")

serializer.writeString(Val2)

IT-SC book
275

serializer.endElement()

serializer.endElement()

serializer.endBody()

serializer.endEnvelope()

Finish SOAP message

connector.EndMessage()

The reader is brought in to read and interpret the result of the call to the service. As
discussed earlier, in Section 9.2, the reader is attached to the connector's output
stream, and digests the information as it is returned:

Create SOAP reader object

reader = win32com.client.Dispatch("MSSOAP.SoapReader")

reader.Load(connector.OutputStream)

check for errors

if reader.Fault:

 print "Error: ", reader.faultstring.Text

Return calculation value

return reader.RPCResult.Text

If there has been an error, it is reflected in the reader.Fault property. When a
SOAP call fails, the SOAP server sends a fault entry back to the client. SOAP uses
many of the same semantics as HTTP regarding propagating error conditions back to
the caller. In fact, when using SOAP over HTTP, SOAP is bound to some of the same
exact error conditions—SOAP must send back an HTTP 500 Internal Server Error,
even if the web server behaves as expected but the code handling the SOAP request
fails. (This is required to ensure that knowledge of the implementation details of the
server is not needed by the client; it is not a failing of the SOAP or HTTP protocols.)

Example 9-1 shows the complete listing of PyCalcSerial.py.

Example 9-1. PyCalcSerial.py

"""

Python MSSOAP Serializer Example

IT-SC book
276

"""

import support for COM

import win32com.client

SOAP Action URI

BaseSoapActionUri = "http://tempuri.org/action/Calc."

Namespace

WrapperElementNamespace = "http://tempuri.org/message/"

Service End Point

EndPointUrl = \

 "http://centauri/MSSoapSamples/Calc/Service/SrSz/AspVbs/Calc.asp"

Calculate(operation, value1, value2)

Takes an operator (as a word like "Add") along

with two values and returns the result

def Calculate(Op, Val1, Val2):

 # Instantiate HttpConnector

 connector = win32com.client.Dispatch("MSSOAP.HttpConnector")

 # Set properties (will fail if makepy.py wasn't run

 # on SOAP type library)

 connector.SetProperty("EndPointURL", EndPointUrl)

 connector.SetProperty("SoapAction", BaseSoapActionUri + Op)

 # Start SOAP message

 connector.BeginMessage()

IT-SC book
277

 # Create a serialization object

 serializer = win32com.client.Dispatch("MSSOAP.SoapSerializer")

 # Attach it to the connector created earlier

 serializer.Init(connector.InputStream)

 # Create SOAP Envelope

 serializer.startEnvelope()

 serializer.startBody()

 serializer.startElement(Op, WrapperElementNamespace, '', "m")

 serializer.startElement("A")

 serializer.writeString(Val1)

 serializer.endElement()

 serializer.startElement("B")

 serializer.writeString(Val2)

 serializer.endElement()

 serializer.endElement()

 serializer.endBody()

 serializer.endEnvelope()

 # Finish SOAP message

 connector.EndMessage()

 # Create SOAP reader object

 reader = win32com.client.Dispatch("MSSOAP.SoapReader")

 reader.Load(connector.OutputStream)

IT-SC book
278

 # check for errors

 if reader.Fault:

 print "Error: ", reader.faultstring.Text

 # Return calculation value

 return reader.RPCResult.Text

Main line-- do some calculations

print "Using Service:", EndPointUrl

print "Calculate 3 * 4: \t",

print Calculate("Multiply", 3, 4)

print "Calculate 4 - 3: \t",

print Calculate("Subtract", 4, 3)

print "Calculate 345 + 1004: \t",

print Calculate("Add", 345, 1004)

print "Calculate 115 / 5: \t",

print Calculate("Divide", 115, 5)

To run the example, just launch it from your command line. You should then see
output similar to the following:

C:\my-dir> python PyCalcSerial.py

Using Service:
http://centauri/MSSoapSamples/Calc/Service/SrSz/AspVbs/Calc.asp

Calculate 3 * 4: 12

Calculate 4 - 3: 1

Calculate 345 + 1004: 1349

Calculate 115 / 5: 23

IT-SC book
279

SOAP is the heart of web services, at least as they are being described by most of
the big players. WSDL, if implemented correctly, is seldom even seen by developers
as it can be automatically generated from object source files. When support for
WSDL matures, most languages (most likely including Python) will have WSDL
generators that generate WSDL directly from class code. Of course, these tools can
also be provided by SOAP server implementations, or by Python object servers such
as Zope.

9.5 What About XML-RPC?

Before the first version of the SOAP specification was completed, a simpler
specification for a remote procedure call mechanism employing XML over HTTP was
created by Dave Winer of UserLand Software; this specification is known as XML-RPC.
This specification builds in less support for complex data types, but has the
advantage of simplicity. Uptake among the developer community has been very
rapid, in part because it filled a void before SOAP was available, and in part because
the simpler specification allowed implementations to be easy to work with.

The simplicity of XML-RPC comes largely from the willingness of the authors of the
specification to nail down many of the details required to implement the specification.
Where SOAP allows the use of alternate transport protocols and data serialization
rules, XML-RPC specifies HTTP POST requests and a single set of serialization rules.
Though the flexibility offered by SOAP can be valuable for some projects, many
developers suspect that this will be used to bloat middleware components and
achieve vendor lock-in, which is something many XML users are trying to avoid.

Fredrik Lundh's xmlrpclib module, which will be part of the Python standard library
as of Python Version 2.2, is available for older versions of Python at
http://www.pythonware.com/. It presents a proxy interface very similar to that of
SOAPy for clients to use, and provides support for basic server implementations as
well.

For more information on XML-RPC, refer to Programming Web Services with XML-
RPC by Simon St.Laurent, Joe Johnston, and Edd Dumbill (O'Reilly, 2001). This book
includes information on using XML-RPC with Python.

IT-SC book
280

Chapter 10. Python and Distributed
Systems Design

In this chapter, we pull all of the techniques and knowledge illustrated thus far into a
distributed sample application. In addition to exercising what you've learned, this
chapter blazes new ground with an analysis of XML network flow—a key to creating
scalable, flexible XML applications. This chapter can be used as a design catalog and
tutorial reference for interfacing XML with all sorts of distributed systems.

Thus far, you've learned about: XML DOM, and SAX manipulation; XSLT for
transformation; XPath for searches and extraction, validation and dialects; Internet
APIs; and finally SOAP and web services. In this chapter, we put many of these
technologies to work.

One aspect of distributed XML development that you haven't touched on yet is the
best way to move XML between distributed systems. As this chapter shows, a poor
traffic design in your distributed systems can mean the difference between an eight-
lane expressway and a bogged-down two-lane highway.

10.1 Sample Application and Flow Analysis

We will create a large sample application to illustrate many different concepts and
show how they can be used together. An intelligent XML switch that knows how to
move XML in the right direction holds the distributed application together. We also
discuss how these switches can be daisy-chained together to form scalable networks
of XML data. The components that are connected to the switch include a user input
application, a customer profile SQL database, and an XML information store. Figure
10-1 shows a diagram of the application.

Figure 10-1. The sample distributed application

This application is meant to illustrate how several different applications that may
have different purposes can utilize the same flow of XML traffic in the network by
building intelligence between them, and not retrofitting them. The key to this
application's success is in the way the XML is moved between the applications in a
decoupled fashion. From a high-level, the application appears as a portal web site to

IT-SC book
281

end-users. Backend systems of different types are integrated by exposing XML
messaging APIs, allowing the portal to work. Other applications connect along the
peripheral boundary of the main processing, to participate in the flow of XML
information.

10.1.1 Decoupling Application Systems

Take for instance the Web/CGI application on the righthand side of Figure 10-1.
Typically, it is connected directly to a database that contains the information it needs.
However, in this scenario, the database is decoupled from the Web/CGI application
by the XML switch. The Web/CGI application only submits an XML packet (a SOAP-
like packet in this chapter) asking for relevant data. The switch interprets this packet
and forwards it to the right location (in this particular case, a Python class that can
perform the appropriate work). When the database responds, the information is
"routed" back to the original caller. This allows for flexibility in the location or design
of the database. In fact, it lets distributed systems commit to XML interfaces as they
expose their functionality, instead of committing to the intricacies of table design or
specific stored-procedure names.

10.1.2 Routing Adds Flexibility

This type of design is similar in architecture to message queuing designs, with some
subtle and powerful differences. By decoupling different pieces of an enterprise,
you're able to share their functionality more broadly, and enjoy the independence of
not being tightly bound to any specific application that consumes the data. In
addition, by placing an intermediary between data sources and data consumers, you
allow for business logic to exist at a level above and between applications, and not
programmed directly into them. For example, in Figure 10-1, you could conceivably
swap out the Profiles database, and instead use a third-party service on the Internet
that contains customer data. That is, if you find that a web service provides better
personalization and consumer data than you, you can connect with the service,
develop an XML interface that is familiar to your network, and swap out the old
database for the new service partner. The local applications as consumers of the
information would be none the wiser, as the XML switch is still accepting their XML
requests and results are still being routed back to the applications.

10.1.3 Routing Adds Scalability

In addition to flexibility in system components, routing also adds another degree of
scalability to a system. By routing XML requests for information around your network,
you enable the ability to manage them as you would other types of network traffic.
For example, you can replace individual systems with system farms consisting of
multiple servers, and load balance the XML packets that are sent between them. In
another case, XML switches could be daisy-chained together, much like routers and
hubs are chained together for TCP/IP traffic. This concept enables you to do things
such as broadcasting and duplication of read-only signals. It also allows you to
create redundancy and multiple network paths to the same location.

10.2 Understanding the Scope

IT-SC book
282

The sample application is the most ambitious example presented in this book yet. As
such, it's a good idea to create a checklist and breakdown of what is involved and
what dependencies exist.

This application can be created on one machine, but that machine needs to have all
the different components installed. Ideally, two machines are a better fit. Regardless,
the five pieces involved are as follows:

• A simple relational database that hosts one simple table. I used SQL
Server, but MySQL or Postgres should work just fine.

• Data Access Object. This native Python class will encapsulate the data held
within the SQL database behind an XML-friendly interface.

• An XML data store. This is a flat file that you create, coupled with an object
to access the data using XML for both input and output.

• The XML Switch. The XML Switch itself is a Python-based interpretive XML-
routing and object-brokering mechanism. If loaded with a routing table, it
could analyze an incoming XML SOAP packet with XPath and determine which
destination it should travel to. It could send a SOAP packet anywhere,
including to web servers. In this example, the switch uses XML messages as
RPC calls into the objects it hosts.

• Web/CGI Application. This a Python-based CGI script and accompanying
web page similar to the CGI scripts created earlier in this book. It should run
on any web server (IIS, Apache) that has been configured for CGI.

The code used in these examples is intended as a starting point for educational
purposes. Understand that it does not have the necessary error handling or
robustness to be used directly in applications. This chapter should be considered a
design exercise showing a collection of different techniques for doing a whole scope
of the things required in integrating distributed systems with XML.

10.3 Building the Database

Explaining the installation of a specific database is outside the scope of this book.
However, if you are completely new to databases, we provide a quick overview of
how this particular database was set up and used in this example. This overview
broadly applies to any database systems, including SQL Server, Postgres, and MySQL.
As a Python XML developer gluing together applications, understanding at least the
fundamentals of working with databases will serve you well.

We used Microsoft SQL Server during the creation of this example as our relational
database. However, only one simple table is created, and any database that supports
SQL queries should be fine. A SQL table creation script is provided that should work
on just about any SQL platform. However, the Python connectivity code presented
here uses ODBC for access. If you choose to use a different database than SQL
Server, you may need to download a Python API to access it. For example, the
MySQLdb API is available at http://sourceforge.net/projects/mysql-python/ to
provide access from Python to MySQL databases. Regardless of your connectivity API,
the SQL calls shown in this chapter should be identical.

10.3.1 Creating a Profiles Database

IT-SC book
283

If you've installed your database of choice, your first task is to create a database
inside of the system. If you are using SQL Server or your database offers an
administrative GUI, this process may be as easy as typing a database name into a
dialog box. For example, if using SQL Server, just browse to the databases folder
using SQL Enterprise Manager. Once there, right-click and choose New Database.
The name of the database should be Profiles. If you don't have a GUI, a SQL
statement as simple as the following should suffice:

CREATE DATABASE Profiles

Once created, you may want to enable an account that has read and write privileges
to this database, but to no others. Consult your database's documentation for details
on creating specific user accounts. For the purposes of this example, in SQL Server
the user webuser has been created, with a password of w3bus3r. The authentication
information is required in the ODBC connectivity code.

10.3.2 Creating a Customer Table

Once you've created a database using either a GUI or SQL statements, create one
simple table named Customer. This table represents some basic user information. It
will be used by the different distributed applications as the one and only customer
information record. While the fields in this table only cover the basics, you could
easily expand them with other types of information related to the system.

The Customer table can be created with a GUI in SQL Enterprise Manager for SQL
Server, or with the following SQL in any database:

CREATE TABLE Customer (

 firstname varchar (255) NULL,

 lastname varchar (255) NULL,

 address1 varchar (255) NULL,

 address2 varchar (255) NULL,

 city varchar (255) NULL,

 state varchar (2) NULL,

 zip varchar (10) NULL,

 customerId varchar (40) NULL)

The table is very simple. All of the data types are varchar and can easily be handled
in Python as strings and integers. One thing to note about the Customer table is the
varying length of the different fields. For example, most of the customer information
may be zero to 256 characters in length. However, others in the table must conform
to constraints such as two characters for a state abbreviation, and a 10-digit
requirement on the zip code.

IT-SC book
284

If you are using SQL Server, remember to expose your new database as an ODBC
source on the machine you're running any database clients on—in this example
application, only the XML Switch, which loads the CustomerProfile class, needs
database connectivity. To enable connectivity to SQL Server, use the ODBC manager
in the Windows' Control Panel to choose your database. Once this step is completed,
the ODBC code presented here will work.

10.3.3 Populating the Database

You can populate the fields in your new table with an SQL statement similar to the
following:

insert into Customer values('John',

 'Smith',

 '123 Evergreen Terrace',

 '',

 'Podunk',

 'WA',

 '98072',

 '234-E838839')

This statement creates a new row in the database table with the corresponding
values contained in quotes. If you want to fill your database with several rows, you
can resort to good, old-fashioned data entry with the popdb.py script shown in
Example 10-1. This simple script just reads input from the command line and inserts
it into the database. It's designed for use with the ODBC module and SQL Server, so
if using another database, you need to adapt the connectivity code.

Example 10-1. popdb.py

"""

popdb.py - populate the Profiles/Customer DB with ODBC calls

"""

import dbi, odbc

conn = odbc.odbc("Profiles/webuser/w3bus3r")

cmd = conn.cursor()

loop to get input values.

IT-SC book
285

while 1:

 firstname = raw_input("firstname:")

 lastname = raw_input("lastname:")

 address1 = raw_input("address1:")

 address2 = raw_input("address2:")

 city = raw_input("city:")

 state = raw_input("state, 2 letter max:")

 zip = raw_input("zip, 10 digit max:")

 customerId = raw_input("Customer ID, 40 character max length:")

 # execute SQL statement

 cmd.execute("insert into Customer values('"

 + firstname + "', '"

 + lastname + "', '"

 + address1 + "', '"

 + address2 + "', '"

 + city + "', '"

 + state + "', '"

 + zip + "', '"

 + customerId + "')")

 # ask for additional entries

 finished = raw_input("another? [y/n]:")

 if (finished == "n"):

 break

There is no error checking in popdb.py, so if you violate one of the table constraints,
you get an exception, and that particular row won't be inserted.

10.4 Building the Profiles Access Class

IT-SC book
286

In addition to the Profiles database is the CustomerProfile Python class. This
object performs XML input and output against the database, and exposes methods
for use by the XML Switch. The basic profile actions allow you to retrieve, insert,
update, and delete profiles. Arguments to these methods are XML versions of profile
data. By making the customer profile packets in XML, it's easy for other applications
to generate and consume the packets without any concern for the structure of the
database, or even how to access it directly. In fact, a CustomerProfile can easily
become the payload of a SOAP message. A profile packet appears as:

<CustomerProfile id="555-99JKK39">

 <firstname>John</firstname>

 <lastname>Doolittle</lastname>

 <address1>396 Evergreen Terrace</address1>

 <address2/>

 <city>Springfield</city>

 <state>WA</state>

 <zip>98072</zip>

</CustomerProfile>

Note that the address2 element exists, even though it is empty. The DTD for such a
document appears as:

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT address1 (#PCDATA)>

<!ELEMENT address2 (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ATTLIST CustomerProfile

 id CDATA #REQUIRED>

<!ELEMENT CustomerProfile

 (firstname, lastname,

 address1, address2,

IT-SC book
287

 city, state, zip)>

An instance of the document using the DTD needs to have the declaration within the
document as well:

<?xml version="1.0"?>

<!DOCTYPE CustomerProfile SYSTEM "CustomerProfile.dtd">

<CustomerProfile id="555-99JKK39">

 <firstname>John</firstname>

In order to keep things within the scope of this chapter, DTD enforcement is not a
part of the CustomerProfile Python class, although the DTD rides along with the
document and may be utilized at a later date. When embedding CustomerProfile
elements within an XML message, the prolog is stripped out, and only the
CustomerProfile element is inserted into the XML message.

10.4.1 The Interfaces

The CustomerProfile class supports four distinct operations. These operations allow
for retrieval, insertion, updates, and deletes. This class is used by the XML switch to
manage the insertion and retrieval of CustomerProfile information at runtime in the
distributed system. All communication to and from this class takes the form of XML—
this enables greater flexibility in how the data is stored on the backend. This also
alleviates the burden of requiring distributed applications to connect directly to the
database and understand the structure of its tables. In this scenario, distributed
applications only need to understand structure of a CustomerProfile document.

getProfile(id)

This method accepts a customer profile ID and returns the corresponding
information in a well-formed, valid CustomerProfile document in the form of
a string.

getProfileAsDom(id)

This method is identical to getProfile, except that the return value is not a
string of XML, but rather a DOM instance. The DOM can then be used for
further manipulation.

insertProfile(strXML)

The insertProfile method takes a valid, well-formed CustomerProfile
document as a string and inserts it into the database.

updateProfile(strXML)

Similar to insertProfile, this method takes a fresh XML CustomerProfile
chunk and updates the existing record in the database based on the customer
ID. Under the covers, it performs a delete and insert respectively.

IT-SC book
288

deleteProfile(id)

This method takes a customer ID as a parameter, and deletes the
corresponding record from the database.

With the exception of the getProfile and getProfileAsDom methods, these
methods return either 1 or 0 (true or false) to the caller, enabling them to be used
as arguments to if statements.

10.4.2 Getting Profiles

The CustomerProfile class for retrieving profiles exposes two methods: getProfile
and getProfileAsDom. Both methods take a customerId as an argument. In a
simple test case, you could use the methods as follows:

from CustomerProfile import CustomerProfile

from xml.dom.ext import PrettyPrint

cp = CustomerProfile()

print "String of XML:"

print cp.getProfile("234-E838839")

print "Or retrieve a DOM:"

dom = cp.getProfileAsDom("234-E838839")

PrettyPrint(dom)

This assumes that you have populated a record in the database with a customerId of
234-E838839. The result of running this code is the output of two identical XML
representations:

G:\pythonxml\c9>python runcp.py

String of XML:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE CustomerProfile SYSTEM "CustomerProfile.dtd">

<CustomerProfile id='234-E838839'>

 <firstname>John</firstname>

IT-SC book
289

 <lastname>Smith</lastname>

 <address1>123 Evergreen Terrace</address1>

 <address2>

 </address2>

 <city>Podunk</city>

 <state>WA</state>

 <zip>98072</zip>

</CustomerProfile>

Or retrieve a DOM:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE CustomerProfile SYSTEM "CustomerProfile.dtd">

<CustomerProfile id='234-E838839'>

 <firstname>John</firstname>

 <lastname>Smith</lastname>

 <address1>123 Evergreen Terrace</address1>

 <address2>

 </address2>

 <city>Podunk</city>

 <state>WA</state>

 <zip>98072</zip>

</CustomerProfile>

Whether you would like a raw XML string or a DOM really depends on what you want
to do with the record after you obtain it. If passing it back to another application, it's
wise to send the string, or make the string a piece of another document such as a
SOAP packet (extracting the prolog declarations, of course). If you wish to
manipulate the result, and perhaps insert it into the database once again, a DOM
may be more convenient to work with.

10.4.2.1 Connecting with the database

IT-SC book
290

The code for getProfile is straightforward. First, some simple validation is
performed on the parameters, and then a database connection is prepared with a
simple SQL statement:

def getProfile(self, strId, dom=0):

 """

 getProfile - returns an XML profile chunk based on

 the supplied id. Returns None if not found.

 """

 if not strId:

 return None

 # generate connection

 conn = odbc.odbc(CONNECTION_STRING)

 cmd = conn.cursor()

 cmd.execute("select * from customer where " +

 "customerId = '" + strId + "'")

 conn.close()

In this code, that strId is inspected before anything else occurs, and the database
command is of a simple select * variety. Of note is the third default parameter,
dom=0, present in the method definition. This is flipped on by getProfileAsDom to
require that getProfile return a DOM instance instead of a string.

10.4.2.2 Building the XML document

Next, the record is retrieved, and an XML document is prepared using the
DOMImplementation class.

get data record

prof_fields = cmd.fetchone()

if prof_fields is None:

 return None

generate XML from fields

IT-SC book
291

generate CustomerProfile doctype

doctype = implementation.createDocumentType(

 "CustomerProfile", "", "CustomerProfile.dtd")

generate new document with doctype

newdoc = implementation.createDocument(

 "", "CustomerProfile", doctype)

rootelem = newdoc.documentElement

create root element id attribute

rootelem.setAttribute("id", prof_fields[CUSTOMER_ID])

In this code, the DOMImplementation class is used to build an XML document. In the
beginning of the snippet, prof_fields is populated with the raw list of values from
the database using the fetchone method, which returns one row. The indexes into
prof_fields are given as named constants defined in the CustomerProfile module;
the definitions are listed in the complete source listing for the module in Example 10-
2, later in this chapter. Next, a document type object is created, citing the
CustomerProfile.dtd file created earlier. This object is then used in the call to
implementation.createDocument to generate an empty XML document element.

At this point, the simplicity of using the DOMImplementation to build your XML
document (as opposed to manually constructing a string of XML, which is done later)
is illustrated when we construct the elements in a simple loop:

create list with field values

fields = ["firstname", prof_fields[FIRSTNAME],

 "lastname", prof_fields[LASTNAME],

 "address1", prof_fields[ADDRESS1],

 "address2", prof_fields[ADDRESS2],

 "city", prof_fields[CITY],

 "state", prof_fields[STATE],

 "zip", prof_fields[ZIP],

]

loop through list adding elements and element text

IT-SC book
292

for pos in range(0, len(fields), 2):

 # create the element

 thisElement = newdoc.createElement(fields[pos])

 # check for empty values and convert to soft nulls

 if fields[pos + 1] is None:

 fields[pos + 1] = ""

 thisElement.appendChild(newdoc.createTextNode(fields[pos+1]))

 rootelem.appendChild(thisElement)

What is interesting about this code is that you place all of the database values in a
list, and then iterate the list creating and appending elements as you go. Use a list to
hold the data values instead of a dictionary, because you need to create elements in
the XML document in a specific order or it won't comply with the DTD. (Python
dictionaries return their keys in an unpredictable order, and certainly do not maintain
the order you in which you inserted them).

Using a list over a dictionary poses no big feat, as the Python range function is used
to hop through the list in steps of two, allowing the code to use the current list
member as the element name, and the next list member as the element's character
data content.

With the XML in hand, a decision is made whether to return a string of XML or a DOM,
based on how the method was called (remember, getProfileAsDom calls
getProfile with additional parameters):

return DOM or String based on how we were called...

if dom:

 return newdoc

else:

 # return string

 strXML = StringIO.StringIO()

 PrettyPrint(newdoc, strXML)

 return strXML.getvalue()

At this point, the caller's request has been satisfied. If a string is returned, the
StringIO class is used in conjunction with the PrettyPrint method to write the XML
into the string as if it were a file. Using a DOMImplementation to create your
document, as opposed to manually constructing one with a string, offers several

IT-SC book
293

benefits. First, it removes tricky details such as preparing a DTD and encoding
declarations from inside string assignment statements. It's far easier to maintain the
code if you can programmatically alter the encoding or Document Type, without
resorting to editing XML by hand inside string assignment statements. Second,
greater flexibility is enabled if you need to change the structure of the document. It's
easier in the long run to manipulate nodes and their position in the document with a
DOM than to parse and manipulate a text string. However, there are many times
when you may want to concatenate a string of XML together and create a fresh DOM
(in this case, you still wind up with a programmatically accessible DOM
representation of the XML).

10.4.2.3 Returning a DOM instead of a string

Using getProfileAsDom works the same as getProfile, but a DOM instance is
returned to you instead of a string of XML.

def getProfileAsDom(self, strId):

 """

 This method calls getProfile with the

 dom option set on, which causes getProfile

 to return its created DOM object, and not

 an XML string

 """

 return self.getProfile(strId, 1)

This approach was taken because it's often easier to provide intuitive convenience
functions as opposed to loading down a method with conditional parameters that a
user must learn.

10.4.3 Inserting and Deleting Profiles

The insertProfile method is the other workhorse method of the CustomerProfile
class. Whereas getProfile builds a DOM, insertProfile deconstructs a DOM to
place its values in the database. Deleting profiles is relatively easy as just a single
SQL statement is sent straight to the database with a supplied customer ID.

The insertProfile method is used to add new XML CustomerProfile documents to
the database. This interface prevents client applications from having to connect to
the database or understand the table structure. Arguably, sharing the structure of
XML documents among distributed applications is easier than sharing database
structure and potentially having to require support for proprietary data types.

Use insertProfile with a string of XML such as the following:

cp = CustomerProfile()

IT-SC book
294

cp.insertProfile("<string of XML>")

The method returns true on success, and false on failure. Additionally, exceptions
may be propagated if they occur in handling code.

10.4.3.1 Inserting a profile

The code for insertProfile is simple as well, but touches on some intricate DOM
manipulation. It starts off, as does getProfile, with some simple validation and the
retrieval of a DOM instance (as opposed to a DOMImplementation in getProfile):

def insertProfile(self, strXML):

 """

 insertProfile takes an XML chunk as a string,

 parses down its fields, and inserts it into the

 profile database. Raises an exception if XML is

 not well-formed, or customer Id is missing, or if

 SQL execution fails. Returns 1 on success, 0 on failure.

 """

 if not strXML:

 return 0

 # Begin parsing XML

 try:

 doc = FromXml(strXML)

 except:

 print "Error parsing document."

 return 0

 # Normalize white space and retrieve root element

 doc.normalize()

 elem = doc.documentElement

IT-SC book
295

Probably the most important things in the preceding code are the calls to FromXml
and the call to the normalize method of the instantiated document object. The
FromXml method is part of the Sax2 reader package, and allows for the construction
of a DOM object from a raw string of XML data.

The call to the doc.normalize method is important as well. The structure of a
CustomerProfile XML chunk is quite simple. The character data residing in the
elements is short, and needs no peripheral whitespace. That is, if a web form or GUI
has placed carriage returns inside the elements, they can be safely eliminated. This
step is critical to how the elements are processed inside insertProfile. Without the
normalization call, it's possible that the text contained in the element may be
contained in multiple nodes, and the firstChild attribute provides only the first of
these; the call to normalize ensures that all adjacent text nodes are collapsed into a
single node.

Next, the values are extracted out of the fresh XML DOM and used to populate a SQL
statement.

Extract values from XML packet

customerId = elem.getAttributeNS(None, 'id')

firstname = self.extractNodeValue(elem, "firstname")

lastname = self.extractNodeValue(elem, "lastname")

address1 = self.extractNodeValue(elem, "address1")

address2 = self.extractNodeValue(elem, "address2")

city = self.extractNodeValue(elem, "city")

state = self.extractNodeValue(elem, "state")

zip = self.extractNodeValue(elem, "zip")

prepare SQL statement

strSQL = ("insert into Customer values ("

 "'" + firstname + "', "

 "'" + lastname + "', "

 "'" + address1 + "', "

 "'" + address2 + "', "

 "'" + city + "', "

 "'" + state + "', "

IT-SC book
296

 "'" + zip + "', "

 "'" + customerId + "')")

Here, the customerId attribute is extracted from the root element, and then a series
of calls to the extractNodeValue helper method are issued. This small method
(shown next) takes the current element and attempts to extract a target's text value
beneath itself. Since this step is repeated for every element you need, it's easier to
relegate it to an internal function rather than duplicate the code in each method that
uses it. The preparation of the SQL statement takes the results of the calls to
extractNodeValue and assembles a SQL insert statement. The work of
extractNodeValue is shown as follows:

def extractNodeValue(self, elem, elemName):

 """

 Internal method to parse UNIQUE elements for text value or

 substitute empty strings.

 """

 e = elem.getElementsByTagName(elemName)[0].firstChild

 if e is not None:

 return e.nodeValue

 else:

 return ""

This method attempts to extract a child element from the element it is given, and
also tests for its character data content. If not available, an empty string is returned.

Now that the SQL statement is prepared, it can be sent to the database:

generate connection

conn = odbc.odbc(CONNECTION_STRING)

cmd = conn.cursor()

execute SQL statement

if not cmd.execute(strSQL):

 return 0

IT-SC book
297

conn.close()

return 1

If communication with the database proceeds as expected, the method returns a
positive 1 to the caller.

10.4.3.2 Deleting a profile

The code to delete a profile from the database is easy, and relies mainly on taking
the supplied customer ID and using it as a parameter in a SQL delete statement:

def deleteProfile(self, strId):

 """

 deleteProfile accepts a customer profile ID

 and deletes the corresponding record in the database.

 Returns 1 on success, 0 on failure.

 """

 if not strId:

 return 0

 # generate database connection

 conn = odbc.odbc(CONNECTION_STRING)

 cmd = conn.cursor()

 ok = cmd.execute("delete from customer where customerId = '"

 + strId + "'"):

 conn.close()

 return ok and 1 or 0

The result of the SQL operation is indicated to the caller by either a 1 or 0 return
value.

10.4.4 Updating Profiles

The process of updating a profile using the CustomerProfile class is simple. When
calling updateProfile, you supply a new chunk of XML data. The customerId of this
XML chunk must match an existing ID in the database. If so, the old record is
deleted, and the new one is inserted.

IT-SC book
298

As mentioned earlier, the updateProfile method uses insertProfile and
deleteProfile internally, but is exposed to make the CustomerProfile class easier
to use.

In order to extract the customerId from the supplied chunk of XML, a DOM object is
briefly instantiated to parse the data:

def updateProfile(self, strXML):

 """

 This convenience function accepts a new customer

 profile XML packet. It extracts the customer ID

 and then calls deleteProfile and insertProfile using

 the new XML. The return value for the insert is propagated

 back to the caller, unless the delte fails, in which case

 it is propagated back and insert is never called.

 """

 # parse document for customer Id

 try:

 doc = FromXml(strXML)

 customerId = doc.documentElement.getAttributeNS(None,'id')

 except:

 print "Error parsing document."

 return 0

As the preceding code shows, FromXml is used once again to convert the string-
based XML data into a DOM object. The customerId is then extracted using a call to
getAttributeNS. Since the reader.Sax2 package is used, you must use a
namespace-oriented DOM method as opposed to the normal getAttribute method
(this is a debated bug in the implementation that will hopefully be removed by the
time of this printing, at which point getAttribute will work as well. To participate in
the lively commentary, join the XML-SIG at http://www.python.org). With the
customerId in hand, you can utilize the existing insert and delete methods:

attempt to delete and insert based on customerId

if self.deleteProfile(customerId):

 return self.insertProfile(strXML)

IT-SC book
299

else:

 return 1

Here returns from these functions are propagated back to the caller as the return
value of a call to this function.

10.4.5 The Complete CustomerProfile Class

The CustomerProfile class is quite a workhorse. It allows customer information to
be stored on the network as XML. Any distributed application that can access the
CustomerProfile class can utilize its functionality without knowing anything about
the underlying database or storage medium. Additionally, it's possible to route XML
to an application hosting the CustomerProfile class to perform an update. In this
best-case scenario, the calling application need not even know of the
CustomerProfile class, but instead just construct the appropriate SOAP or XML
message format, and submit it to the network. We perform this operation later in
this chapter after building the XML switch, in Section 10.6.5 and Section 10.8.5.

The complete listing of the CustomerProfile class is shown in Example 10-2.

Example 10-2. CustomerProfile.py

"""

CustomerProfile.py

"""

import dbi

import odbc

import StringIO

from xml.dom import implementation

from xml.dom.ext import PrettyPrint

from xml.dom.ext.reader.Sax2 import FromXml

define some global members for the class

CONNECTION_STRING = "Profiles/webuser/w3bus3r"

FIRSTNAME = 0

LASTNAME = 1

IT-SC book
300

ADDRESS1 = 2

ADDRESS2 = 3

CITY = 4

STATE = 5

ZIP = 6

CUSTOMER_ID = 7

class CustomerProfile:

 """

 CustomerProfile - manages the storage and retrieval

 of XML customer profiles from a relational database.

 """

 def getProfileAsDom(self, strId):

 """

 This method calls getProfile with the

 dom option set on, which causes getProfile

 to return its created DOM object, and not

 an XML string

 """

 return self.getProfile(strId, 1)

 def getProfile(self, strId, dom=0):

 """

 getProfile - returns an XML profile chunk based on

 the supplied id. Returns None if not found.

 """

 if not strId:

 return None

IT-SC book
301

 # generate connection

 conn = odbc.odbc(CONNECTION_STRING)

 cmd = conn.cursor()

 cmd.execute("select * from customer where " +

 "customerId = '" + strId + "'")

 conn.close()

 # get data record

 prof_fields = cmd.fetchone()

 if prof_fields is None:

 return None

 # generate XML from fields

 # generate CustomerProfile doctype

 doctype = implementation.createDocumentType(

 "CustomerProfile", "", "CustomerProfile.dtd")

 # generate new document with doctype

 newdoc = implementation.createDocument(

 "", "CustomerProfile", doctype)

 rootelem = newdoc.documentElement

 # create root element id attribute

 rootelem.setAttribute("id",prof_fields[CUSTOMER_ID])

 # create list with field values

 fields = ["firstname", prof_fields[FIRSTNAME],

IT-SC book
302

 "lastname", prof_fields[LASTNAME],

 "address1", prof_fields[ADDRESS1],

 "address2", prof_fields[ADDRESS2],

 "city", prof_fields[CITY],

 "state", prof_fields[STATE],

 "zip", prof_fields[ZIP],

]

 # loop through list adding elements and element text

 for pos in range(0, len(fields), 2):

 # create the element

 thisElement = newdoc.createElement(fields[pos])

 # check for empty values and convert to soft nulls

 if fields[pos + 1] is None:

 fields[pos + 1] = ""

 thisElement.appendChild(newdoc.createTextNode(fields[pos+1]))

 rootelem.appendChild(thisElement)

 # return DOM or String based on how we were called...

 if dom:

 return newdoc

 else:

 # return string

 strXML = StringIO.StringIO()

 PrettyPrint(newdoc, strXML)

 return strXML.getvalue()

 def insertProfile(self, strXML):

IT-SC book
303

 """

 insertProfile takes an XML chunk as a string,

 parses down its fields, and inserts it into the

 profile database. Raises an exception if XML is

 not well-formed, or customer Id is missing, or if

 SQL execution fails. Returns 1 on success, 0 on failure.

 """

 if not strXML:

 raise Exception("XML String not provided.")

 # Beign parsing XML

 try:

 doc = FromXml(strXML)

 except:

 print "Error parsing document."

 return 0

 # Normalize whitespace and retrive root element

 doc.normalize()

 elem = doc.documentElement

 # Extract values from XML packet

 customerId = elem.getAttributeNS(None, 'id')

 firstname = self.extractNodeValue(elem, "firstname")

 lastname = self.extractNodeValue(elem, "lastname")

 address1 = self.extractNodeValue(elem, "address1")

 address2 = self.extractNodeValue(elem, "address2")

 city = self.extractNodeValue(elem, "city")

IT-SC book
304

 state = self.extractNodeValue(elem, "state")

 zip = self.extractNodeValue(elem, "zip")

 # prepare SQL statement

 strSQL = ("insert into Customer values ("

 "'" + firstname + "', "

 "'" + lastname + "', "

 "'" + address1 + "', "

 "'" + address2 + "', "

 "'" + city + "', "

 "'" + state + "', "

 "'" + zip + "', "

 "'" + customerId + "')")

 # create connection

 conn = odbc.odbc(CONNECTION_STRING)

 cmd = conn.cursor()

 # execute SQL statement

 if not cmd.execute(strSQL):

 raise exception.Exceptions("SQL Exec failed.")

 conn.close()

 return 1

 def extractNodeValue(self, elem, elemName):

 """

 Internal method to parse UNIQUE elements for text value or

IT-SC book
305

 substitute empty strings.

 """

 e = elem.getElementsByTagName(elemName)[0].firstChild

 if e is None:

 return ""

 else:

 return e.nodeValue

 def updateProfile(self, strXML):

 """

 This convenience function accepts a new customer

 profile XML packet. It extracts the customer ID

 and then calls deleteProfile and insertProfile using

 the new XML. The return value for the insert is propagated

 back to the caller, unless the delte fails, in which case

 it is propagated back and insert is never called.

 """

 # parse document for customer Id

 try:

 doc = FromXml(strXML)

 customerId = doc.documentElement.getAttributeNS(None,'id')

 except:

 print "Error parsing document."

 return 0

 # attempt to delete and insert based on customerId

 if self.deleteProfile(customerId):

 return self.insertProfile(strXML)

IT-SC book
306

 else:

 return 1

 def deleteProfile(self, strId):

 """

 deleteProfile accepts a customer profile ID

 and deletes the corresponding record in the database.

 Returns 1 on success, 0 on failure.

 """

 if not strId:

 return 0

 # generate database connection

 conn = odbc.odbc(CONNECTION_STRING)

 cmd = conn.cursor()

 ok = cmd.execute("delete from customer where customerId = '"

 + strId + "'"):

 conn.close()

 return ok and 1 or 0

One thing of note in CustomerProfile.py is the use of constants defined at the top of
the file as field markers in the database record set. By defining constants, it's far
easier to work with the different fields in the record set array.

10.5 Creating an XML Data Store

The third component of the distributed application built in this chapter is an "Offers
XML Data Store." This is a content-based repository of "special offers" that retailers
commonly offer to their customers. In this imaginary application, the Offers Data
Store holds various offers, which are retrievable from the network at runtime.
Different distributed applications can access the offers for different reasons.

For example, a web-based application may want to access the offers dynamically to
present offers to users based on their recent purchases or spending habits. The web
application applies a stylesheet to the offer information prior to displaying on a web

IT-SC book
307

page. Or, it's possible that an Intranet application may access the offers as part of
management functionality in order to change or edit offers.

To that end, in this section, we construct an XML Offers Data Store. In the following
section, we construct another Python class similar to CustomerProfile, which allows
us to access the XML data store on the network rather transparently.

10.5.1 A Large XML File

The Offers Data Store consists of a large XML document residing on disk. The
aforementioned access component developed later will take care of traversing this
file and returning the correct offers back to the caller. The basic structure of an offer
as empty elements is:

<offer>

 <id/>

 <internal-name/>

 <heading/>

 <description/>

 <discount/>

 <discount-type/>

 <expires/>

 <disclaimer/>

</offer>

A complete starting XML store is presented in Example 10-3, with just two offers. If
you feel the need to add your own, please do so.

Example 10-3. OfferXMLStore.xml

<?xml version="1.0" encoding="UTF-8"?>

<OfferXMLStore>

 <offer>

 <id>9908d093j4p3j33</id>

 <internal-name>DiscountOver1000</internal-name>

 <heading>20% Off All Orders Over $1000.00</heading>

 <description>

IT-SC book
308

 As an incentive for you to purchase more,

 we're offering a 20% volume discount on all

 orders totaling $1000 or more! This amazing

 discount is being brought to you because you

 are such an important customer to us. We love

 you so much!

 </description>

 <discount>20</discount>

 <discount-type>percent</discount-type>

 <expires>2002-11-21</expires>

 <disclaimer>

 Discount subject to certain restrictions. Merchandise

 must not be under any other discounts, and discount is

 taken from MSRP only. Discount may not be applied in

 some cases if we think you are likely to buy the product

 without a discount. We may revoke this discount whenever

 we want, including after you place your order. Sorry.

 </disclaimer>

 </offer>

 <offer>

 <id>222833fgjQZ3j30</id>

 <internal-name>Clearance</internal-name>

 <heading>20% Off All Clearance Items</heading>

 <description>

 In an effort to reduce our inventory of the items

 that just don't seem to sell as well as our other

 merchandise, we're offering a 20% deduction on all

 items marked clearance! This is because you are

IT-SC book
309

 such an important customer to us. We love you so

 much.

 </description>

 <discount>20</discount>

 <discount-type>percent</discount-type>

 <expires>2002-11-21</expires>

 <disclaimer>

 Discount subject to certain restrictions. Merchandise

 must be marked clearance. In some cases, some items

 marked clearance may have the mark removed at time of

 purchase. If this happens to you, the full price of the

 product will be charged to your card. Sorry.

 </disclaimer>

 </offer>

</OfferXMLStore>

These two offers are enough to get started. The OfferXMLStore is just a large XML
file on disk. The larger the file gets, the overhead of parsing and manipulating the
file increases. At a certain point, it is better to migrate the OfferXMLStore into a
database. While an XML representation of the data is critical, using an actual
database for the physical storage to disk is far more efficient then processing a large
text file. XML is at its strongest as a document format and glue language. In other
words, you don't want a gigabyte XML document full of information, you want a
gigabyte of XML documents inside your database. Given the flexibility of the XML
access object created in the next section, it is simple to change the underlying
storage mechanism of the XML offers without affecting the XML information passing
in and out.

10.5.2 Creating an XML Access Object

In this section, we create another access component to access data from the XML
data store. This type of object comes in handy when encapsulating a data source
from a user of the data source. This was done with the CustomerProfile object
earlier when it hid the ODBC data source from view behind a veil of XML. The
XMLOffer class puts forth several methods for storing, retrieving, and modifying
offers maintained in the XML data store.

10.5.2.1 The interfaces

IT-SC book
310

The interfaces for the XMLOffer class are very similar to the ones for
CustomerProfile, with the notable addition of a getAllOffers method. These
methods are intended to allow network applications the ability to interact with the
XML data store using only XML, without needing to know or be concerned with what
type of underlying storage mechanism the store is using. In fact, by sticking to the
interface but rewriting the implementation, you could change the XMLOffer class to
speak with a database rather than an XML file. This change is completely transparent
to the clients who would have no visibility of it whatsoever.

getOffer(id)

This method takes an ID as a string, and retrieves the corresponding XML
offer within the Data Store as a single XML chunk contained in a string.

getOfferAsDomElement(id)

As you might suspect, this method works identically to the analogous method
in CustomerProfile, returning a DOM Element object instead of a string.

getAllOffers()

This method returns the entire OfferXMLStore as a string.

insertOffer(strXML)

This method takes an XML offer chunk as an argument, and places it inside
the XML data store.

updateOffer(strXML)

Similar to CustomerProfile.updateProfile, this method takes an offer as
XML, deletes the corresponding offer from the store, and adds this one.

deleteOffer(id)

As you may realize, this method takes an ID as an argument and removes the
corresponding offer from the XML data store.

The interfaces exposed are meant to make working with the XML offers as easy as
possible for applications running on the network.

This class will be hosted, alongside CustomerProfile, within the XML Switch. Of
course, they could easily be placed behind the web server or CORBA servers, but for
brevity, in this chapter they are accessible as loadable classes to the XML Switch.

10.5.2.2 Using the XMLOffer class

Use of the XMLOffer class is simple. Provided you have OfferXMLStore.xml available
on disk (as shown in Example 10-3), you can begin using the XMLOffer class:

from XMLOffer import XMLOffer

IT-SC book
311

xo = XMLOffer()

print xo.getOffer('9908d093j4p3j33')

The result is retrieval of the offer element with a matching ID child. Likewise, if your
web site posted an offer to you, or your GUI app returned a text area's XML content
as a string, you could use the insertOffer method:

xo.insertOffer(strXMLOffer)

The interfaces are all straightforward.

10.5.2.3 Creating the XMLOffer class

The XMLOffer class is simple, but relies heavily on use of the DOM and XPath to
support its functionality. As with CustomerProfile, the XMLOffer class typically
returns a 1 or a 0 after each method call. The exceptions are, of course, the methods
that return XML.

To understand how the XMLOffer class wraps the large OfferXMLStore with
convenience functions, such as get, insert, update, or delete, is to understand many
different ways to manipulate XML. Implementing the XMLOffer class illustrates DOM
usage as well as XPath.

10.5.2.3.1 Retrieval methods

When obtaining an offer, the class accepts an ID string from the caller, and uses
XPath to find the offer with the corresponding ID in the store:

offerdoc = FromXmlStream("OfferXMLStore.xml")

offer = Evaluate("offer[id='" + strId + "']",

 offerdoc.documentElement)

The XPath looks for the supplied ID string (strId) within offer elements inside the
XML store. When it hits the target, it is returned as the offer element. If you
requested an element node (offer), you could call getOfferAsDomElement; however,
for a string, you call getOffer:

if dom:

 return offer[0]

else:

 strXML = StringIO.StringIO()

 PrettyPrint(offer[0], strXML)

 return strXML.getvalue()

IT-SC book
312

Of course, getOfferAsDomElement works in the same fashion as getProfile in the
CustomerProfile class. The method simply calls its shorter-named cousin with an
optional parameter and indicates to return the node rather than a string.

The getAllOffers method uses a simple direct approach to delivering the XML
store—it just writes the whole file back to you as a string.

scoop up offers file

fd = open("OfferXMLStore.xml", "r")

doc = fd.read()

fd.close()

return big string

return doc

10.5.2.3.2 Modification methods

Several methods exist for modifying and managing offers within the XML store. The
insertOffer method allows you to put new offers in the store. The methods
updateOffer and deleteOffer allow for additional maintenance.

The insertOffer method creates a DOM instance out of the submitted XML to verify
well-formedness (and potentially validity, if you put in the effort). It's converted to a
string and swapped out with the OfferXMLStore's end element tag. This is a quick
and easy way to add the new element to the document. You can work with strings
because the submitted XML was at first a DOM instance, and could be validated while
in that state.

The updateOffer extracts the ID, and then performs a delete followed by an insert.
The deleteOffer method extracts an ID, and then removes the node from a DOM
instance:

try:

 targetNode = Evaluate("offer[id=\"" + strId + "\"]",

 xmlstore.documentElement)

except:

 print "Bad XPath Evaluation."

 return 0

use Node.removeChild(XPathResult)

IT-SC book
313

try:

 xmlstore.documentElement.removeChild(targetNode[0])

except:

 # either it didn't exist, or

 # the XPath call turned up nothing...

 return 0

XPath is used to target the specific ID, and the Evaluate call returns the actual node.
The node is then handed off to the documentElement node's removeChild()
method. At this point, the rest of the code writes the file back to disk. Example 10-4
shows XMLOffer.py.

Example 10-4. XMLOffer.py

"""

XMLOffer.py

"""

import StringIO

from xml.dom.ext.reader.Sax2 import FromXmlStream

from xml.dom.ext.reader.Sax2 import FromXml

from xml.dom.ext import PrettyPrint

from xml.xpath import Evaluate

class XMLOffer:

 def getOffer(self, strId, dom=0):

 """

 getOffer takes an ID as a parameter and returns

 the corresponding offer from the XML Data Store

 as a string of XML, or as a DOM if the third param

 flag has been set.

 """

IT-SC book
314

 # create document from data store

 offerdoc = FromXmlStream("OfferXMLStore.xml")

 # use XPath to target specific offer element

 # by child ID character data

 offer = Evaluate("offer[id='" + strId + "']",

 offerdoc.documentElement)

 # decide which version to return, DOM or string

 if dom:

 # return offer element

 return offer[0]

 else:

 # convert to string

 strXML = StringIO.StringIO()

 PrettyPrint(offer[0], strXML)

 return strXML.getvalue()

 def getOfferAsDomElement(self, strId):

 """

 getOfferAsDomElement works the same as getOffer

 but returns a DOM element instance, as opposed to

 a string. This method just calls getOffer with the

 dom flag (the third parameter) set to 1.

 """

 return self.getOffer(strId, 1)

 def getAllOffers(self):

IT-SC book
315

 """

 getAllOffers returns the whole store

 as a string.

 """

 # scoop up offers file

 fd = open("OfferXMLStore.xml", "r")

 doc = fd.read()

 fd.close()

 # return big string

 return doc

 def insertOffer(self, strOfferXML):

 """

 insertOffer takes a string of XML and adds it to the

 XML store.

 """

 if not strOfferXML:

 return None

 # generate DOM from input data

 newoffer = FromXml(strOfferXML)

 #----

 # Optional: you could validate here using

 # your new dom object and offer.dtd; see

 # chapter 7 for details on using xmlproc for

 # validation...

IT-SC book
316

 #----

 # Pour DOM into String

 newXmlOffer = StringIO.StringIO()

 PrettyPrint(newoffer.documentElement, newXmlOffer)

 # grab contents into buffer

 rd = open("OfferXMLStore.xml", "r")

 bf = rd.readlines()

 rd.close()

 # search and replace in buffer

 wd = open("OfferXMLStore.xml", "w")

 for lp in range(len(bf)):

 if (bf[lp].rfind("</OfferXMLStore>") > -1):

 # replace root element end tag with fresh offer

 # and root element end tag

 bf[lp] = bf[lp].replace("</OfferXMLStore>",

 newXmlOffer.getvalue() + "</OfferXMLStore>")

 # write new buffer to disk

 wd.writelines(bf)

 wd.close()

 return 1

 def deleteOffer(self, strId):

 """

IT-SC book
317

 deleteOffer takes an ID string and deletes that offer Node

 from the OfferXMLStore.xml document

 """

 # read store into DOM, close store

 try:

 xmlstore = FromXmlStream("OfferXMLStore.xml")

 except:

 print "Unable to open xmlstore."

 return 0

 # use XPath to return the id Node

 # offer/[id='<id>']

 try:

 targetNode = Evaluate("offer[id=\"" + strId + "\"]",

 xmlstore.documentElement)

 except:

 print "Bad XPath Evaluation."

 return 0

 # use Node.removeChild(XPathResult)

 try:

 xmlstore.documentElement.removeChild(targetNode[0])

 except:

 # either it didn't exist, or

 # the XPath call turned up nothing...

 return 0

 # reopen store,w

IT-SC book
318

 # PrettyPrint the DOM in

 # close the store

 fd = open("OfferXMLStore.xml", "w")

 PrettyPrint(xmlstore, fd)

 fd.close()

 return 1

 def updateOffer(self, strOfferXML):

 if not strOfferXML:

 return 0

 else:

 try:

 offerId = Evaluate("id/text()",

 FromXml(strOfferXML).documentElement)

 if (not self.deleteOffer(offerId[0].nodeValue)

 or not self.insertOffer(strOfferXML)):

 print "could not delete or insert."

 return 0

 except:

 print "unable to update offer."

 return 0

 return 1

The XMLOffer class is easy to use. The next component of the distributed system is
the XML Switch, which brokers the individual messages among the different
applications.

10.6 The XML Switch

IT-SC book
319

The XML Switch is the centerpiece of the distributed system. It's the grand
intermediary between information consumers and information suppliers. Overall, the
XML Switch is about two things:

1. It is meant to act as an intermediary between frontend application systems
and backend information systems.

2. It has a fundamental XML messaging structure for greater flexibility between
the message sender and the message receiver.

10.6.1 XML Architecture

The overall architecture of the XML Switch is about messaging and RPC. The switch is
an intermediary between frontend system applications, such as web servers and
desktop applications, to backend systems, such as databases and remote services.
By using a messaging paradigm rather than wiring the systems directly to each other,
you gain a traffic pattern that is decoupled from the applications, and one that is
manageable independently.

If you were to patch a CGI script directly into a database, you must use a specialized
object to attach to the database as well as understand its schema and data types. By
moving to XML, on the other hand, your application and others need only become
familiar with an XML data structure. This data structure is produced by the database
when asked with the right XML message. The main difference here is that these
types of messages can be interpreted by any type of system that may need to
understand them either today or years into the future. This sort of flexibility pays off
greatly in the design of distributed systems that must evolve over long periods.

The XML Switch presented here is a simple messaging prototype to facilitate the use
of XML messages in distributed Python systems. Ideally, your message format should
be SOAP, or some other format that is easily shared between emerging commercial
systems. The confines of this book do not allow for the complete development of a
SOAP messaging server and example client applications, so instead a simple XML
message format has been chosen that supports the same type of RPC and messaging
functionality.

10.6.2 Core XML Switch Classes

The XML Switch is composed of three main pieces. First, there is the XMLMessage.
This class is the base unit of the system. This class and its associated XML message
structure are used as the basis of communication between the XML Switch and its
neighboring applications. Any client, on any platform, can conceivably create the
right kind of XML message for the switch to understand. The message format is
paramount in allowing the system to work.

Of equal importance in the trilogy of supporting players is the actual
XMLSwitchHandler. This class implements the HTTP handler used to catch calls
against the server. It is the XMLSwitchHandler's duty to ensure that RPC messages
are properly parsed and executed, and that their return results are quickly sent back
to the caller in XML.

All of this messaging between the Switch and the backend systems that it's
connected to (via objects) is initiated by clients. Clients of the XML Switch use the

IT-SC book
320

xsc class to send XML messages to the switch. True to their black-box designs, the
messages disappear into the switch and information comes back out in XML format!

XMLMessage

This class is defined in XMLMessage.py, shown in Example 10-7. This class
encapsulates developers from the standard message format of the application.
An example message (message.xml) is shown in Example 10-5.

XMLSwitchHandler

This class is defined in XMLSwitchHandler.py, shown in Example 10-12, later
in this chapter. This class runs the XML switching server that accepts XML
messages from the end- user applications and pairs them with backend
resources. The results returned by these resources are delivered back to the
originating application in another XML message.

xsc

This class offers a one-method client API to send messages into the XML
Switch. The sendMessage method expects a well-formed XML message string
as an argument, and sends the XML to the switch. If everything goes well, the
server invokes the method and parameters on one of the hosted objects, and
returns the result back to you.

10.6.3 The XMLMessage Class

In this distributed system, messages are sent between systems in a simple XML
envelope. This envelope is similar in structure to SOAP. But given the nascent SOAP
support in Python and the limited space available in a book such as this, the
distributed system in this chapter uses the following simple message structure (in
empty form):

<message>

 <header></header>

 <body></body>

</message>

As long as the document is organized this way, the elements can contain anything
you like, including SOAP fragments, web pages, data records, or whatever you can
place XML tags around.

10.6.3.1 XMLMessage format

Example 10-5 shows a complete, well-formed XML message:

Example 10-5. An example message.xml file

<message>

IT-SC book
321

 <header><rpc/></header>

 <body>

 <object class="CustomerProfile"

 method="getProfile">

 <param>234-E838839</param>

 </object>

 </body>

</message>

The message format is really a thin envelope consisting of a message, a header, and
a body. The message in Example 10-5 is an RPC call. When the server receives
Example 10-5, it first examines the header to see that it's an RPC call. Next, it
extracts the payload and invokes the correct object, method, and parameters. It
then changes the XML message and sends it back to the original caller through the
XML Switch.

10.6.3.2 XMLMessage class

Using the XMLMessage class is simple. Messages can either be created from an XML
string, an XML document object, or loaded from a file. Once created, access
functions allow you to get at specific parts of the message document more quickly.
The methods getHeader and getBody allow you to quickly extract header or body
data. The method setHeader and setBody allow you to manipulate an XML message
before sending it to another system for processing. The whole message can be
swapped in and out as either a string or a DOM object using getXMLMessage and
setXMLMessage, along with their DOM counterparts getXMLMessageDom and
setXMLMessageDom. The methods typically used to load and inspect an XML message
(like the message.xml shown in Example 10-5) are shown in the short script
illustrated in Example 10-6.

Example 10-6. runxm.py -- using the XMLMessage object

"""

runxm.py - run xml message object

"""

import XMLMessage

from xml.dom.ext import PrettyPrint

#from xml.dom.ext.reader.Sax2 import FromXml

IT-SC book
322

xm = XMLMessage.XMLMessage()

xm.loadXMLMessage("message.xml")

from xml.dom.ext import PrettyPrint

PrettyPrint(xm.getXMLMessageDom())

print "Change the body to: <body>Hello!</body>"

if xm.setBody("<body>Hello!</body>"):

 print xm.getXMLMessage()

This code produces the following output:

G:\pythonxml\c10>python runxm.py

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE message>

<message>

 <header>

 <rpc/>

 </header>

 <body>

 <!-- cp.getProfile("234-E838839") -->

 <object method='getProfile' class='CustomerProfile'>

 <param>234-E838839</param>

 </object>

 </body>

</message>

Change the body to: <body>Hello!</body>

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE message>

IT-SC book
323

<message>

 <header>

 <rpc/>

 </header>

 <body>Hello!</body>

</message>

This output shows the successful loading of the original XML message, and the
successful modification of its body element. The methods of the XMLMessage class
are simple, and most behave the same. Here is a quick reference of the methods
implemented by the XMLMessage class:

setBody(strXML)

setBody takes a string of XML representing a well-formed body element and
replaces the existing message's body element with the new content.

getBody()

Returns the body element as a string of XML (held in self._body).

setHeader(strXML)

Replaces the existing header element with the supplied XML string.

getHeader()

Returns the header element as a string (held in self._header).

setXMLMessage(strXMLMessage)

Takes an XML message document as a string. The supplied parameter is then
used as the entire XML message. The new content is returned in all other calls
to getBody, getHeader, and getXMLMessage.

setXMLMessageDom(xmldom)

Identical to setXMLMessage but takes an XML DOM object representing a well-
formed message instead of a string of XML.

loadXMLMessage(file)

Sets the contents of the current XML message with the contents of file,
provided they are well-formed.

getXMLMessage()

IT-SC book
324

Returns the entire message XML document as a string.

getXMLMessageDom()

Returns the entire message XML document as a DOM instance.

The implementation process in creating these methods utilized much of the DOM
work done in this book thus far. However, there are a few notable new techniques,
mentioned in the next section.

10.6.3.3 XML message code architecture

Most of the work of the XMLMessage class is done by the setXMLMessage method.
This method takes a hidden DOM parameter that indicates whether the new message
is a string of XML or a DOM instance.

The complete document is created, and then the member elements are populated by
extracting their respective element names from the document. This enables the
XMLMessage class to expose access methods for the message's two most common
elements: the header and the body.

if dom:

 self._dom = strXMLMessage

 Holder = StringIO.StringIO()

 PrettyPrint(self._dom, Holder)

 self._xml = Holder.getvalue()

else:

 dom = FromXml(strXMLMessage)

 self._dom = dom

 self._xml = strXMLMessage

header as string

Holder = StringIO.StringIO()

PrettyPrint(self._dom.getElementsByTagName("header")[0],

 Holder)

self._header = Holder.getvalue()

body as string

IT-SC book
325

Holder = StringIO.StringIO()

PrettyPrint(self._dom.getElementsByTagName("body")[0],

 Holder)

self._body = Holder.getvalue()

By populating the member elements at the initial time of parsing, the data they
represent are stored as strings and are immediately accessible to any caller. It's
worthy of noting however, that when you replace an element such as the body or
header, it's reconstituted, so to speak, and the document is reprocessed as a string:

def setBody(self, strXML):

 """

 setBody(strXML) - The supplied XML

 is used for the body of the XML message.

 """

 xmlstr = FromXml(str("<message>" +

 self._header + strXML + "</message>"))

 return self.setXMLMessageDom(xmlstr)

This shortcut requires reparsing the entire document. Another approach is to parse
the document out into a collection of nodes, each made read-and-write capable by
access functions. However, this DOM-friendly approach requires considerably more
code than what is presented here.

10.6.3.4 XMLMessage code listing

Example 10-7 shows the complete listing of XMLMessage.py.

Example 10-7. XMLMessage.py

"""

 XMLMessage.py - a wrapper for message.xml

 documents

"""

import StringIO

from xml.dom.ext import PrettyPrint

IT-SC book
326

from xml.dom.ext.reader.Sax2 import FromXmlStream, FromXml

class XMLMessage:

 """

 XMLMessage encapsulates a message.xml document

 from class users.

 """

 def __init__(self):

 self._dom = ""

 self._xml = ""

 def setBody(self, strXML):

 """

 setBody(strXML) - The supplied XML

 is used for the body of the XML message.

 """

 xmlstr = FromXml(str("<message>" + \

 self._header + strXML + "</message>"))

 return self.setXMLMessageDom(xmlstr)

 def getBody(self):

 """ return body as string

 """

 return self._body

 def setHeader(self, strXML, dom=0):

 """

 setHeader(strXML) - The supplied XML

IT-SC book
327

 is used for the header of the XML message.

 """

 xmlstr = FromXml(str("<message>" + strXML + self._body +
"</message>"))

 return self.setXMLMessageDom(xmlstr)

 def getHeader(self):

 """ return header as string

 """

 return self._header

 def setXMLMessage(self, strXMLMessage, dom=0):

 """

 setXMLMessage - uses supplied XML as entire

 XML message

 """

 try:

 if dom:

 # assign dom directly with parameter

 self._dom = strXMLMessage

 # populate StringIO object for self._xml

 Holder = StringIO.StringIO()

 PrettyPrint(self._dom, Holder)

 # assign string value of dom to self._xml

 self._xml = Holder.getvalue()

 else:

IT-SC book
328

 # create dom from supplied string XML

 dom = FromXml(strXMLMessage)

 # set member dom property

 self._dom = dom

 # set member string property

 self._xml = strXMLMessage

 # header as DOM

 self._headerdom = self._dom.getElementsByTagName("header")[0]

 # header as string

 Holder = StringIO.StringIO()

 PrettyPrint(self._dom.getElementsByTagName("header")[0],

 Holder)

 self._header = Holder.getvalue()

 # body as DOM

 self._bodydom = self._dom.getElementsByTagName("body")[0]

 # body as string

 Holder = StringIO.StringIO()

 PrettyPrint(self._dom.getElementsByTagName("body")[0],

 Holder)

 self._body = Holder.getvalue()

 except:

IT-SC book
329

 print "Could not create dom from message!"

 return 0

 return 1

 def setXMLMessageDom(self, xmldom):

 """ call setXMLMessage with dom flag

 """

 return self.setXMLMessage(xmldom, dom=1)

 def loadXMLMessage(self, file):

 """

 loadXMLMessage - build an XML message from

 a file or URL

 """

 try:

 dom = FromXmlStream(file)

 except:

 print "Could not load XML Message."

 return 0

 return self.setXMLMessageDom(dom)

 def getXMLMessage(self, dom=0):

 """

 getXMLMessage - returns the entire message

 as either string of XML or Dom

 """

IT-SC book
330

 if(dom):

 return self._dom

 else:

 return self._xml

 def getXMLMessageDom(self):

 """ return XML message dom property

 """

 return self.getXMLMessage(dom=1)

The XMLMessage class encapsulates a simple XML message format from developers
with access methods. This approach can be used to wrap messages more complex
than these, such as SOAP. This allows you to build parts of your distributed system
to speak SOAP, or to begin migrating your distributed integration project to SOAP
and Python.

10.6.4 The XML Switch Service

The XML Switch is a server process and client API that allow objects to have their
methods and properties exposed over the Web. XML messages similar to SOAP calls
are used to invoke methods on the server objects. Since SOAP support for Python is
thin, and this book has limited space, a simple XML message format (described in
the last section) was designed for this application. These messages, if marked with
an rpc element in their header, are used by the XML Switch to invoke methods on an
object, and return the results in another XML message.

The XML Switch service is provided in large part by the XMLSwitchHandler class,
developed later in Example 10-12. The client applications developed in later portions
of this chapter create XML messages and forward them to the server. The server
then inspects these XML messages to see if they are RPC calls—if so, the correct
object is loaded, the method executed, and the return results framed in another XML
message and sent back to the caller.

There is no reason why a lookup table could not be built, and have routing rules
applied to the XML messages as they arrive. There is also no reason why an XML
Switch can't route an XML message to another XML Switch—letting it hop its way to
its final destination. This enables message delivery to be decoupled between the
sender and receiver. By chaining XML Switch units together, you can create a
scalable, routed XML network.

10.6.5 The XML Switch Client

IT-SC book
331

There are two primary clients of the XML Switch. The first, postMsg.html, is simply a
web page that posts to the correct server and URL. The switch responds with raw
XML that the browser (if Internet Explorer) displays in a tree-view, or with something
like Netscape, uses the content handler specified or shows you the file as plain text.

The XML Switch client is a Python API that also can be used as a command-line tool.
The API features a single method to submit XML messages to the server, and get
back the responses. In this section, we look at the clients of the XML Switch;
afterward, we build the server itself.

10.6.5.1 Using postMsg.html to send back XML

The postMsg.html file allows you to post to the server and invoke the echoReponse
method to test your server's functionality. The postMsg.html source is shown in
Example 10-8.

Example 10-8. The postMsg.html file

<html>

<body>

<form action="http://centauri:2112/" method="POST">

<p>Input here:</p>

<p><textarea name="n" rows=20 cols=80>

 <message>

 <header><non-rpc/></header>

 <body><!-- cp.getProfile("234-E838839") -->

 <object class="CustomerProfile"

 method="getProfile">

 <param>234-E838839</param>

 </object>

 </body>

</message>

 </textarea>

</p>

<p><input type="submit" value=" submit data ">

</p>

IT-SC book
332

</form>

</body>

</html>

Using the echoResponse method is a good way to test the server's functionality. If
you use the postMsg.html file created in Example 10-8, you can post a sample
message and get a response from the XML Switch, as shown in Figure 10-2.

Figure 10-2. Using postMsg.html to connect to the server

If you create a message with a header that says <rpc/> instead of <non-rpc/>, you
actually get the XML response that the message generates when the RPC is invoked
by the server.

For example, if you enter the following XML in postMsg.html:

<message>

 <header><rpc/></header>

 <body>

 <object class="CustomerProfile"

 method="getProfile">

 <param>983-E2229J3</param>

 </object>

IT-SC book
333

 </body>

</message>

and hit submit data, you get back the raw XML packet from the server. With a
browser like Internet Explorer, it is shown with the default stylesheet, as shown in
Figure 10-3. This only works if you have a profile with the ID number 983-E2229J3
in your database. If not, just substitute the ID value with a value that exists in your
database and things should work just fine.

Figure 10-3. Posting an RPC call with postMsg.html

In fact, postMsg.html should work for any valid XML message submitted to the
server. To witness some real API work first hand, you need to run the xsc client from
the command line or from Python code.

10.6.5.2 Using the XSC client

The xsc client xsc.py, shown in Example 10-11, allows you to make calls against the
XML Switch and inspect the XML messages that are sent back in return. The XML
messages must be kept in a local file if using xsc as a command-line tool.

The XML file is just a message document. Example 10-9 shows a sample message
(msgGetProfile.xml) you can use with xsc.

IT-SC book
334

Example 10-9. msgGetProfile.xml

<message>

 <header><rpc/></header>

 <body>

 <object class="CustomerProfile"

 method="getProfile">

 <param>983-E2229J3</param>

 </object>

 </body>

</message>

Run the file with the message file as a parameter, as shown in Example 10-10.

Example 10-10. Running xcs.py from the command line

G:\pythonxml\c10> python xsc.py msgGetProfile.xml

XMLSwitch Server: localhost:2112

[200 OK 522 bytes]

Response:

<message>

 <header>

 <rpc-response/>

 </header>

 <body>

 <object method='getProfile' class='CustomerProfile'>

 <response>

 <CustomerProfile id='983-E2229J3'>

 <firstname>Larry</firstname>

 <lastname>BoBerry</lastname>

IT-SC book
335

 <address1>Northpoint Apartments</address1>

 <address2>Apt. 2087</address2>

 <city>Lemmonville</city>

 <state>MD</state>

 <zip>12345</zip>

 </CustomerProfile>

 </response>

 </object>

 </body>

</message>

The xsc command-line operation prints out a status line indicating the server used, a
line indicating the HTTP response code and message, as well as the size of the
returned XML document. The returned XML is then dumped out to the command line.

10.6.5.3 Using the XSC API

You can also make calls to the XML Switch from your own programs. In fact, the
client applications presented later in this chapter communicate with other systems
via the xsc client and small XML rpc message invocations.

To use the xsc API, you must import xsc into your class.

import sys

import xsc

xc = xsc.xsc()

Next you need to indicate the server and port combination where the XML Switch is
running:

xc.server = "localhost:2112"

You also need some XML to send to the server. It never hurts to load the message
from a file.

fd = open(sys.argv[1], "r")

xmlmsg = fd.read()

fd.close()

IT-SC book
336

Finally, one method call is enough to send your XML message to the server and get
the return result:

response = xc.sendMessage(xmlmsg)

print response

That is all it takes to invoke remote Python objects that peer into SQL databases and
inspect XML stores for relevant information. The XML Switch acts as a broker, taking
in your XML requests, and sending you back XML information.

The complete code to xsc.py, the file needed to do both command-line queries
against the XML Switch as well as to use it programmatically, is shown in Example
10-11.

Example 10-11. xsc.py, the client to the XML Switch

"""

 xsc.py - XMLSwitch Client

 usage:

 python xsc.py myRequestFile.xml

"""

import sys

import httplib

from urllib import quote_plus

class xsc:

 """

 xsc - XMLSwitch Client

 This class is both the command line and module

 interface to the XMLSwitch.

 From the cmd line:

 $> python xsc.py msgFile.xml

IT-SC book
337

 The third parameter is an XML file with a valid

 <message> within it. The response <message> will

 be written back to the console.

 As an API:

 import xsc

 responseXML = xsc.sendMessage(strXMLMessage)

 The result is now in responseXML.

 """

 def __init__(self):

 """

 init - establish some public props

 """

 self.server = "localhost:2112" # host:port (80 is http)

 self.stats = ""

 def sendMessage(self, strXMLMessage):

 """

 sendMessage(strXML) - this method sends the

 supplied XML message to the server in self.server.

 The XML response is returned to the caller.

 """

 # prepare XML message by url encoding...

 strXMLRequest = quote_plus(strXMLMessage)

 # connect with server...

IT-SC book
338

 req = httplib.HTTP(self.server)

 # add HTTP headers, including content-length

 # as size of our XML message

 req.putrequest("POST", "/")

 req.putheader("Accept", "text/html")

 req.putheader("Accept", "text/xml")

 req.putheader("User-Agent", "xsc.py")

 req.putheader("Content-length", str(len("n=" + strXMLRequest)))

 req.endheaders()

 # send XML as POST data

 req.send("n=" + strXMLRequest)

 # get HTTP response

 ec, em, h = req.getreply()

 # content-length indicates number of

 # bytes in response XML message

 cl = h.get("content-length", "0")

 # stats us [http-code, http-msg, content-length]

 self.stats = ("[" + str(ec) + " " +

 str(em) + " " +

 str(cl) + " bytes]")

 # attempt to read XML resonse

 nfd = req.getfile()

IT-SC book
339

 try:

 textlines = nfd.read()

 nfd.close()

 # return XML data

 return textlines

 except:

 nfd.close()

 return ""

cmd line operation

if __name__ == "__main__":

 # instantiate server

 xc = xsc()

 xc.server = "localhost:2112"

 # read in the message file

 fd = open(sys.argv[1], "r")

 xmlmsg = fd.read()

 fd.close()

 # make call to server and print stats, and response

 print "XMLSwitch Server: ", xc.server

 response = xc.sendMessage(xmlmsg)

 print xc.stats

 print "Reponse: "

 print response

10.6.6 The XMLSwitchHandler Server Class

IT-SC book
340

The XMLSwitchHandler class is a BaseHTTPRequestHandler. The entire
XMLSwitchHandler class is shown in Example 10-12. You can use the additional
script runxs.py to actually run the server from the command line. The runxs.py script
is shown in Example 10-13 (in the section Section 10.7).

10.6.6.1 XMLSwitchHandler code architecture

The architecture behind the XMLSwitchHandler involves a great deal of XML.
Probably the best method to highlight is processXMLMessagePost. This method is
the real workhorse. The messages come in as URL-encoded data. To understand the
message sent by the client, it's necessary to decode the data and try to get a DOM-
friendly XMLMessage object from the results:

def processXMLMessagePost(self, strPostData):

 """

 processXMLMessagePost(strXMLMessage) - this

 method creates an XMLMessage from the supplied

 data and looks up a mapping from XMLMapping.xml

 to determine what object and method pair to

 invoke.

 """

 # create message by unquoting post data

 xmsg = XMLMessage()

 xmsg.setXMLMessage(

 unquote_plus(strPostData).replace("n=", ""))

At this point, xmsg is a new XMLMessage object encapsulating the client's request.
The header is inspected. If the header's text content is <rpc/>, then the server
knows to process it as an rpc call. However, if it's anything else, it's considered non-
rpc and is sent to the echoResponse method that uses HTML to send the request
back to the client.

check header for <rpc/> element

strHeader = xmsg.getHeader()

if strHeader.rfind("<rpc/>") < 0:

 # send back an HTML echo resonse

 self.echoResponse(strPostData)

IT-SC book
341

 return 0

If indeed the message is an RPC candidate, it's important to extract out the object
name, the method name, and the parameters being supplied to the method
invocation. This is not easy work, as the following code shows:

eval out object.method(params)

msgDom = xmsg.getXMLMessageDom()

objElem = msgDom.getElementsByTagName("object")[0]

object = objElem.getAttributeNS('',"class")

method = objElem.getAttributeNS('',"method")

params = []

paramElems = msgDom.getElementsByTagName("param")

Get parameters as strings

for thisparam in paramElems:

 strParam = StringIO.StringIO()

 PrettyPrint(thisparam, strParam)

 parameter = strParam.getvalue().strip()

 parameter = parameter.replace("<param>", "")

 parameter = parameter.replace("</param>", "")

 params.append(parameter)

After extracting the data necessary for the command, you can begin preparing the
command string. The command string holds the name of the local object instance,
along with the name of the method to invoke, as well as the parameters supplied.
The command is prepared accordingly:

instantiate correct object

if object == "CustomerProfile":

 from CustomerProfile import CustomerProfile

 inst = CustomerProfile()

 if object == "XMLOffer":

 from XMLOffer import XMLOffer

IT-SC book
342

 inst = XMLOffer()

'''

add additional object instantiations here

'''

prepare cmd string

cmd = "inst." + method + "("

add parameters to command if necessary, separated

by """ and commas

if len(params) == 1:

 cmd += '"""' + params[0] + '""")'

elif len(params) > 1:

 for pmIndex in range(len(params) - 1):

 cmd += '"""' + params[pmIndex] + '""", '

 cmd += '"""' + params[len(params)-1] + '""")'

if no params, just close off parens: ()

if not params:

 cmd += ")"

The preceding code shows the careful process of using the DOM to extract the
necessary command values from the XML message. These different values are then
combined to make a single cmd string. The highlighted lines of code show where the
cmd value is being altered to fill out the command. The command for the previous
msgGetProfile.xml calls would have to have been compiled by the XMLSwitchHandler
to look like this:

inst.getProfile("983-E2229J3")

The triple quotes are used to escape any single or double quotations that may be
enclosed in the parameters. Of course, if triple quotes are used in the argument,
then the process breaks down!

After preparing the methods, we can use the Python eval command to actually hit
the objects and invoke the appropriate methods:

result = eval(cmd)

IT-SC book
343

After method invocation, the results are then used to build a response XML message.
This is done by constructing a temporary DOM with the new values, and then writing
a serialized form of that DOM to the socket connection to the client. Of course, once
in DOM form it can be validated if you choose to, as well as be modified to remove a
document prolog or other type of information that might not be appropriate for
embedding inside another XML document.

10.6.6.2 XMLSwitchHandler listing

Example 10-12 shows the full listing of XMLSwitchHandler.py:

Example 10-12. XMLSwitchHandler.py

"""

 XMLSwitchHandler.py

"""

import sys

import BaseHTTPServer

import StringIO

from urllib import unquote_plus

from XMLMessage import XMLMessage

from xml.dom.ext import PrettyPrint

from xml.dom.ext.reader.Sax2 import FromXml

class XMLSwitchHandler(BaseHTTPServer.BaseHTTPRequestHandler):

 def do_GET(self):

 """

 do_GET processes HTTP GET requests on the

 server port.

 """

 # send generic HTML response

 self.send_response(200)

 self.send_header("Content-type", "text/html")

IT-SC book
344

 self.end_headers()

 self.wfile.write("<html><body>")

 self.wfile.write("")

 self.wfile.write("Hello from XMLSwitchHandler!")

 self.wfile.write("</body></html>")

 def do_POST(self):

 """

 do_POST processes HTTP POST requests and XML

 packets.

 """

 if self.headers.dict.has_key("content-length"):

 # convert content-length from string to int

 content_length = int(self.headers.dict["content-length"])

 # read in the correct number of bytes from the client

 # and process the data

 raw_post_data = self.rfile.read(content_length)

 self.processXMLMessagePost(raw_post_data)

 return 1

 else:

 # bad post

 self.send_reponse(500)

 return 0

 def processXMLMessagePost(self, strPostData):

 """

IT-SC book
345

 processXMLMessagePost(strXMLMessage) - this

 method creates an XMLMessage from the supplied

 data and looks up a mapping from XMLMapping.xml

 to determine what object and method pair to

 invoke.

 """

 # create message by unquoting post data

 xmsg = XMLMessage()

 xmsg.setXMLMessage(

 unquote_plus(strPostData).replace("n=", ""))

 # check header for <rpc/> element

 strHeader = xmsg.getHeader()

 if strHeader.rfind("<rpc/>") < 0:

 # send back an HTML echo resonse

 self.echoResponse(strPostData)

 return 0

 # eval out object.method(params)

 msgDom = xmsg.getXMLMessageDom()

 objElem = msgDom.getElementsByTagName("object")[0]

 object = objElem.getAttributeNS('',"class")

 method = objElem.getAttributeNS('',"method")

 params = []

 paramElems = msgDom.getElementsByTagName("param")

 # Get parameters as strings

 for thisparam in paramElems:

IT-SC book
346

 strParam = StringIO.StringIO()

 PrettyPrint(thisparam, strParam)

 parameter = strParam.getvalue().strip()

 parameter = parameter.replace("<param>", "")

 parameter = parameter.replace("</param>", "")

 params.append(parameter)

 # instantiate correct object

 if object == "CustomerProfile":

 from CustomerProfile import CustomerProfile

 inst = CustomerProfile()

 if object == "XMLOffer":

 from XMLOffer import XMLOffer

 inst = XMLOffer()

 # '''

 # add additional object instantiations here

 # '''

 # prepare cmd string

 cmd = "inst." + method + "("

 # add parameters to command if necessary, separated

 # by """ and commas

 if len(params) == 1:

 cmd += "\"\"\"" + params[0] + "\"\"\"" + ")"

 elif(len(params) > 1):

IT-SC book
347

 for pmIndex in range(0, (len(params) - 1)):

 cmd += "\"\"\"" + params[pmIndex] + "\"\"\"" + ", "

 cmd += "\"\"\"" + params[len(params)-1] + "\"\"\")"

 # if no params, just close off parens: ()

 if not params:

 cmd += ")"

 # execute cmd and capture result

 rezult = ""

 rezult = eval(cmd)

 # build response XML

 returnDom = FromXml(

 "<message>\n\t<header>\n\t\t<rpc-response/>\n\t</header>\n" +

 "\t<body>\n\t\t<object class=\"" + str(object) + "\" method=\"" +

 str(method) + "\">\n\n\t\t\t<response>" + str(rezult) +

 "</response>\n\t\t</object>\n\t</body>\n</message>\n")

 # optional hook: validate against return dom or

 # any other special logic

 # prepare string of document element

 # (cut out prolog for xml message)

 strReturnXml = StringIO.StringIO()

 PrettyPrint(returnDom.documentElement, strReturnXml)

 xmlval = strReturnXml.getvalue()

IT-SC book
348

 # return XML over HTTP to caller

 self.send_response(200)

 self.send_header("Content-type", "text/xml")

 self.send_header("Content-length", str(len(xmlval)))

 self.end_headers()

 self.wfile.write(str(xmlval))

 return 1

 def echoResponse(self, strPostData):

 """

 echoResponse(postData) - returns the post data

 parsed into a header and body chunk.

 """

 # send response

 self.send_response(200)

 self.send_header("Content-type", "text/html")

 self.end_headers()

 # send HTML text

 self.wfile.write("<html><body>"

 ""

 "Hello from
XMLSwitchHandler!

"

 ""

 "Attempting to create XML Message "

 "from source...

Header:
<xmp>")

IT-SC book
349

 msg = XMLMessage()

 msg.setXMLMessage(unquote_plus(strPostData).replace("n=", ""))

 # parse message into header and body, display as

 # example on web page

 self.wfile.write(msg.getHeader())

 self.wfile.write("</xmp><font face="arial,verdana,helvetica"

 " size="4">Body:
<xmp>")

 self.wfile.write(msg.getBody())

 self.wfile.write("</xmp></body></html>")

10.7 Running the XML Switch

The file runxs.py is shown in Example 10-13, and actually is the primary script for
the XML Switch service. The XMLSwitchServer object is an instance of the
BaseHTTPServer.HTTPServer, so it is launched accordingly:

import XMLSwitchHandler

import BaseHTTPServer

XMLSwitchServer = BaseHTTPServer.HTTPServer(

 ('', 2112), XMLSwitchHandler.XMLSwitchHandler)

XMLSwitchServer.handle_request()

The XMLSwitchHandler is passed in at construction time along with the port number
to listen to. Whenever a request comes in, the HTTPServer just launched invokes its
XMLSwitchHandler to manage the request.

In this example, however, the handle_request method is used. Now the server runs
only until it services one request. You can change this by calling
XMLSwitchServer.serve_forever. Regardless, you can always use runxs.py, shown
in Example 10-13, to start your server.

Example 10-13. The XML Switch launching script: runxs.py

IT-SC book
350

"""

 runxs.py

"""

import XMLSwitchHandler

import BaseHTTPServer

start up

print "XMLSwitch starting..."

XMLSwitchServer = BaseHTTPServer.HTTPServer(

 ('', 2112), XMLSwitchHandler.XMLSwitchHandler)

run server

print "Running..."

for x in range(10):

 XMLSwitchServer.handle_request()

To launch the server, use a spare command or shell prompt:

G:\pythonxml\c10> python runxs.py

XMLSwitch starting...

Running...

The server outputs requests as they happen:

centauri - - [03/Jun/2001 15:12:02] "POST / HTTP/1.0" 200 -

centauri - - [03/Jun/2001 15:12:04] "POST / HTTP/1.0" 200 -

Beyond this, the only interaction you have with the server is by running xcs.py as
shown in Example 10-10.

10.8 A Web Application

In this section, you develop a web site that is integrated with the XML Switch and the
other systems running on your network (even if you're putting this all on one
machine). In this web application, a user navigates through some HTML on the
server, allowing them to login (in other words, retrieve their profile), edit their profile

IT-SC book
351

information, or view special offers. A CGI script runs next to the HTML, and is called
by the HTML forms and other items to retrieve the information.

Typically, a web site or CGI script accesses a database directly to pull information
out on behalf of a user. However, this application is different. In this web site
example, the CGI script uses the xsc client created earlier to talk directly with the
XML Switch. So instead of SQL queries, the web site submits XML messages to the
switch. The switch then maps these to objects and invokes the correct method,
resulting in the right information being either inserted or pulled back from the XML
Switch. The returned information is then parsed and formatted into HTML, and
displayed back to the user.

10.8.1 Connecting to a Web Service

This is how many web services may first be implemented. For example, with
Microsoft's forthcoming web services (codenamed HailStorm), an independent
business should be able to create a web site, as well as retrieve your user's
HailStorm calendar by issuing SOAP calls from your web server (or the client) to
Microsoft's services. The returned XML is then formatted by your web site (even
"branded" with your logo) and returned to your user's browser. The application
presented here follows the same type of bridged-services scenario, minus some
considerable security and error handling.

Figure 10-4 shows a diagram focusing on the web site, and its relation to the XML
Switch as well as the rest of the network.

Figure 10-4. A detail of the web application

What Figure 10-4 doesn't show, and perhaps shouldn't, is that the XML Switch is in
turn connected to other network resources, acting in effect as a black box to the CGI
and HTML that just ask the Switch for data.

10.8.2 The Components

The Web/CGI application presented here is a standalone web application. It's fully
integrated into the XML Switching-network built thus far. This web site uses an HTML
page and a Python script on the server to generate dynamic data. The CGI script
uses the XML Switch client to retrieve information from the switch and its backend
resources. This web site has no idea that profiles are kept in SQL Server and that
offers are kept in a big flat file. It only know that it formats an XML message a

IT-SC book
352

certain way, and that tossing the message to the XML Switch usually results in the
right information being returned.

We deployed the HTML and CGI scripts to a five-line CGI server we wrote in Python.
Having used Apache and IIS throughout this book, we sought some cross-platform
simplicity in this chapter and used a very simple CGIHTTPServer in Python. The
HTML page intro.html, and CGI script sp.py, should run under any CGI-capable web
server.

In this section, we develop the following pieces:

intro.html

This is a simple login page that accepts a user ID and posts you over to sp.py.
The login box expects an ID that is valid within the database connected to the
XML Switch. In other words, you need to put a valid ID here that corresponds
to a record that you created in your database in Section 10.3, earlier this
chapter.

sp.py

This is a Python CGI script that retrieves information from the XML Switch and
formats it for display. It is not named .cgi, although you should rename it that
if your CGI server is only going to run .cgi files. This script is the main
workhorse of the application, as it not only retrieves the data for you, it
formats it into HTML and sends it back to the browser.

When putting these finished files in your web server area, remember to put sp.py in
a cgi-bin directory beneath intro.html. The web form used in intro.html and sp.py
expects sp.py to live at /cgi-bin/sp.py.

Additionally, you should copy over xsc.py and XMLMessage.py (created in Section
10.6, earlier this chapter) into the cgi-bin directory so that sp.py is able to load them
as modules.

10.8.3 The Topology

As shown earlier in Figure 10-4, the CGI application is primarily a series of
transactions between itself and a web browser. However, when the user requests
dynamic information, the CGI script uses the XML Switch client to talk to the XML
Switch on the network. This example has broad network implications: intro.html and
sp.py are served up by your web server; the sp.py script uses the XML Switch client
(xsc, created in Example 10-11) to connect back to wherever you are running the
XML Switch server process. As long as the site's CGI script tells the Switch client
where to find the Switch server, it gets the information it needs. Of course, an end
user's browser needs only to point to the web site.

In the next few sections, we highlight some of the more XML-centric code used in
building the site, and present full listings of the three primary files.

10.8.4 The Code Architecture

IT-SC book
353

When creating any web site, the very first thing to do might be to code a start page.
For the purposes of this chapter, the start page is intro.html. The intro.html file is a
simple page that politely asks for an ID. Use the submit button to send your ID off to
the server, and the information is returned and formatted by the CGI script, which
presents you with additional, but dynamically created, HTML. Figure 10-5 shows
intro.html loaded in a web browser.

Figure 10-5. intro.html is the start page for the CGI example

As Figure 10-5 shows, intro.html is straightforward. Probably the most difficult part
is tracking down a valid ID from your Profiles database. Example 10-14 shows the
intro.html.

Example 10-14. intro.html

<HTML>

<HEAD>

<TITLE>SuperUltraMegaCorp Shopping Portal</TITLE>

</HEAD>

<BODY>

<P align="center"><h1>SuperUltraMegaCorp Shopping Portal</h1></P>

IT-SC book
354

<P>Greetings, if you haven't logged in, please take a minute

 to do so. This site is personalized, and your personal

 information along with special offers are made available

 thanks to our XML processing infrastructure built and

 powered by Python. This web site dispatches little XML messages

 to and from an XML Switch. The switch directs the XML message

 to the right resource, submits the message to the handler, and

 then returns the XML back to this web site. The XML can then

 be displayed to you as profile information and speical offers.

<P>

 <h1>Welcome</h1>

 <form name=login action="/cgi-bin/sp.py"

 method="GET">

 Please enter a valid Customer ID*

 <input type="text" size="15" name="id">

 <input type=submit value=" login ">

 <input type="hidden" name="mode" value="login">

 </form>

</P>

<p>*this ID must exist in your Profiles database!</p>

</BODY>

</HTML>

It's important to point out that in Example 10-14 the form features a hidden variable
named mode, which is set to login. This is used as the primary indicator for the CGI
script.

<input type="hidden" name="mode" value="login">

The CGI script encounters a mode of login, and executes the correct code
accordingly.

IT-SC book
355

The file intro.html and its stylesheet are of no value without somewhere to send
them. The login box only takes an ID, but obviously doesn't do anything. The CGI
script, on the other hand, takes the ID and runs with it.

10.8.5 The CGI Functionality

The CGI for this web application is sp.py, shown in Example 10-15, later in this
chapter. The script has four primary purposes. The first is to take your customer ID
and use it to extract your profile information from somewhere behind the XML Switch.
The second purpose is to allow you to edit your profile information on the same page
that it's presented on. The third purpose is to accept your update form and send the
correct message back to the Switch. The fourth purpose is to display all offers
currently in the OfferXMLStore. Of course, before any of this can begin, the script
needs to import its dependencies. As mentioned earlier, the script needs access to
both the XML Switch client (xsc) and the XMLMessage class. The script also imports
some standard XML functionality:

import os

import cgi

from xsc import xsc

from XMLMessage import XMLMessage

from xml.dom.ext.reader.Sax2 import FromXml

Before the server can do any of its four purposes, it must also do some common
housecleaning, such as extracting the right data from the query string and figuring
out which method it needs to call:

''

MAIN

qs = cgi.parse_qs(os.environ["QUERY_STRING"])

mode = qs.get("mode", "")

id = qs.get("id", "")

print "Content-type: text/html"

print ""

print "<html>"

print """<HEAD><TITLE>SuperUltraMegaCorp Shopping Portal (intro.html)

IT-SC book
356

 </TITLE></HEAD><BODY>"""

print """<P align="center"><h1>SuperUltraMegaCorp Shopping
Portal</h1></P>"""

print """<p><h3>click here to login</h3>"""

print """<h3>click here to

 review offers</h3></p>"""

if mode[0] == "updateProf":

 doUpdateProfile()

elif mode[0] == "login":

 doLogin(id[0])

elif mode[0] == "getOffers":

 doGetOffers()

print "</body></html>"

As you can see, most of the work is done by three methods, doUpdateProf, doLogin,
and doGetOffers. Let's examine each of these methods in greater detail, as that is
where the XML action is.

10.8.5.1 Extracting profile information

When you hit the login button, the intro.html web form sends your user ID and
mode to the server. As shown earlier, the script calls a doLogin method right off the
bat when it encounters a login mode. The login method accepts an ID as a
parameter and builds the appropriate getProfile XML message:

def doLogin(id):

 """

 doLogin(id) - this method grabs a user's profile

 and displays it as XML on the browser, and also

 provides a form that allows the user to edit their

IT-SC book
357

 own data.

 """

 # Bring up XML Switch client

 xs = xsc()

 xs.server = "centauri:2112"

 # prepare an XML message for the server

 xmlmsg = XMLMessage()

 # format a getProfile message

 xmlmsg.setXMLMessage("""

 <message>

 <header><rpc/></header>

 <body>

 <object class="CustomerProfile"

 method="getProfile">

 <param>""" + id + """</param>

 </object>

 </body>

 </message>

 """)

As the preceding code shows, the first thing that occurs is the instantiation of the
XML Switch client, as well as assignment of the xsc.server property to
centauri:2112. This means we're running the XML Switch at a host named
centauri, on port 2112. After instantiating the XML Switch client, a message is
prepared as shown in the previous code. This message has the current user's ID
placed within it, so the server presents the correct information.

What follows is the submission of your getProfile request, using the xsc class
instantiated as xs:

make the call to the XML Switch

IT-SC book
358

xmlresp = xs.sendMessage(xmlmsg.getXMLMessage())

display response

print "<P>Response received on your behalf:
<xmp>"

print xmlresp

print "</xmp></p>"

setup profile XML Message and retrieve response DOM

xmlmsg.setXMLMessage(xmlresp)

msgdom = xmlmsg.getXMLMessageDom()

After the doLogin method has correctly formatted your message and sent it off to
the server with a call to xs.sendMessage, it's time to parse the result.

CustProfElement = msgdom.getElementsByTagName("CustomerProfile")[0]

CustProfElement.normalize()

pick out ID number

id = CustProfElement.getAttributeNS('', "id")

print "<tr>"

print " <td colspan=2>Greetings " + id + "</td>"

print "</tr>"

iterate through children, creating pre-populated

form as we go...

nodes = CustProfElement.childNodes

for node in nodes:

 if node.nodeType == node.ELEMENT_NODE:

 print "<tr><td>"

 print "" + node.nodeName + ""

IT-SC book
359

 print "</td><td>"

 for ec in node.childNodes:

 print "<input type=text size=20 name='" + node.nodeName + "' "

 print " value='" + ec.nodeValue + "'>"

 print "</td></tr>"

At this point, a new form is created allowing you to update and change fields within
your profile. Figure 10-6 shows the prepopulated form sitting in the browser.

Figure 10-6. The profile-editing form

If you hit Submit, you would trigger a different event on the server sp.py script. Also,
your mode changes to updateProf, and a different call is made to the XML Switch.
Your ID and mode are ready and waiting for the next form submission via hidden
fields in the form markup:

 print "<input type='submit' value='update profile'>"

IT-SC book
360

 print "<input type='hidden' name='id' value='" + id + "'>"

 print "<input type='hidden' name='mode' value='updateProf'>"

Although the hidden input fields don't show up in the browser, they are still
submitted during a GET or POST operation.

10.8.5.2 Updating profile information

When you submit your profile-editing form, the same sp.py is called again, but this
time your mode has been flipped to updateProf. As you saw earlier, depending on
the mode, a corresponding function is called. In this case, it's the doUpdateProfile
function.

To create the necessary XML message, the first thing the script does is attempt to
extract the form values out of the query string and create valid XML message:

 xmlmsg = "<message><header><rpc/></header>\n"

 xmlmsg += "<body><object class='CustomerProfile'
method='updateProfile'>\n"

 xmlmsg += "<param><CustomerProfile id="

 xmlmsg += "'" + id[0] + "'>\n"

 xmlmsg += "<firstname>" + qs.get("firstname","")[0].strip() +
"</firstname>\n"

 xmlmsg += "<lastname>" + qs.get("lastname","")[0].strip() +
"</lastname>\n"

 xmlmsg += "<address1>" + qs.get("address1","")[0].strip() +
"</address1>\n"

 xmlmsg += "<address2>" + qs.get("address2","")[0].strip() +
"</address2>\n"

 xmlmsg += "<city>" + qs.get("city","")[0].strip() +
"</city>\n"

 xmlmsg += "<state>" + qs.get("state","")[0].strip()
+"</state>\n"

 xmlmsg += "<zip>" + qs.get("zip","")[0].strip()
+"</zip>\n"

 xmlmsg += "</CustomerProfile></param></object></body></message>"

 print xmlmsg

 print "</xmp></p>"

IT-SC book
361

In this code, each required field of an updateProfile XML request is populated with
something from the web form that was just submitted. With the XML message
freshly created, the doUpdateProfile method moves on to actually submit the
message to the XML Switch:

xs = xsc()

xs.server = "centauri:2112"

resp = xs.sendMessage(xmlmsg)

print "<P>Response received:
<xmp>"

print resp

print "</xmp></p>"

print "<h1>Log Back In?</h1>"

print "<form name=login action='/cgi-bin/sp.py' method='GET'>"

print "Use Current Customer ID:
"

print "<input type='text' size='15' name='id'"

print " value='" + id[0] + "'> "

print "<input type=submit value=' login '>"

print "<input type='hidden' name='mode' value='login'>"

print "</form>"

In addition to submitting the request and displaying the confirmation, the script also
creates a new HTML form with your ID preloaded, allowing you to log back in and
see your modified information.

10.8.5.3 Displaying all offers

The code to display offers is some hairy XML, but is not the most difficult if you've
been following along thus far. At first, an XML message must be prepared that the
CGI script will send off to the XML Switch:

xs = xsc()

xs.server = "centauri:2112"

xmlmsg = str("""<message>

 <header><rpc/></header>

IT-SC book
362

 <body>

 <object class="XMLOffer"

 method="getAllOffers">

 </object>

 </body>

 </message>""")

resp = xs.sendMessage(xmlmsg)

As you can see, as soon as it is prepared it is immediately submitted. If everything
went okay, the doGetOffers method attempts to display all valid offers:

offdom = FromXml(resp)

offers = offdom.getElementsByTagName("offer")

for offer in offers:

 offer.normalize()

 for node in offer.childNodes:

 if (node.nodeType == node.ELEMENT_NODE):

 if (node.nodeName == "heading"):

 print "<h3>" + node.firstChild.nodeValue + "</h3>"

 if (node.nodeName == "description"):

 print "<p>" + node.firstChild.nodeValue + "</p>"

Here you use some familiar methods and operations from the DOM. In this case, a
node is traversed for its heading and description nodes. Once they are found, they
are descended and their text extracted.

10.8.6 The Complete sp.py Listing

Example 10-15 shows the complete listing of sp.py.

Example 10-15. sp.py

"""

 sp.py - a series of web pages and forms that send messages

 to the XML Switch for data access.

IT-SC book
363

"""

import os

import cgi

from xsc import xsc

from XMLMessage import XMLMessage

from xml.dom.ext.reader.Sax2 import FromXml

def doLogin(id):

 """

 doLogin(id) - this method grabs a user's profile

 and displays it as XML on the browser, and also

 provides a form that allows the user to edit their

 own data.

 """

 # Bring up XML Switch client

 xs = xsc()

 xs.server = "centauri:2112"

 # prepare an XML message for the server

 xmlmsg = XMLMessage()

 # format a getProfile message

 xmlmsg.setXMLMessage("""

 <message>

 <header><rpc/></header>

 <body>

 <object class="CustomerProfile"

IT-SC book
364

 method="getProfile">

 <param>""" + id + """</param>

 </object>

 </body>

 </message>

 """)

 # Display how CGI is contacting XML switch

 print "<p>Message to be sent on your behalf:
<xmp>"

 print xmlmsg.getXMLMessage()

 print "</xmp></p>"

 # make the call to the XML Switch

 xmlresp = xs.sendMessage(xmlmsg.getXMLMessage())

 # display response

 print "<P>Response received on your behalf:
<xmp>"

 print xmlresp

 print "</xmp></p>"

 # setup profile XML Message and retrieve response DOM

 xmlmsg.setXMLMessage(xmlresp)

 msgdom = xmlmsg.getXMLMessageDom()

 # Create a form to edit this new profile data

 print "<h1>Edit your profile</h1>"

 print "<form action='sp.py' method='GET'>"

 print "<table width=450 border=1>"

IT-SC book
365

 # parse result

 try:

 CustProfElement = msgdom.getElementsByTagName("CustomerProfile")[0]

 CustProfElement.normalize()

 # pick out ID number

 id = CustProfElement.getAttributeNS('', "id")

 print "<tr>"

 print " <td colspan=2>Greetings " + id + "</td>"

 print "</tr>"

 # iterate through children, creating pre-populated

 # form as we go...

 nodes = CustProfElement.childNodes

 for node in nodes:

 if (node.nodeType == node.ELEMENT_NODE):

 print "<tr><td>"

 print "" + node.nodeName + ""

 print "</td><td>"

 for ec in node.childNodes:

 print "<input type=text size=20 name='" + node.nodeName + "'
"

 print " value='" + ec.nodeValue + "'>"

 print "</td></tr>"

 except:

 print "<tr><td>Exception</td><td>Encountered</td></tr>"

IT-SC book
366

 # finish up the form

 print "<tr><td colspan=2>"

 print "<input type=submit value='update profile'>"

 print "<input type=hidden name='id' value='" + id + "'>"

 print "<input type=hidden name='mode' value='updateProf'>"

 print "</td></tr>"

 print "</table>"

 print "</form>"

def doUpdateProfile():

 """

 doUpdateProfile() - this method is called to update a profile

 using the updateProfile XML message.

 """

 print "<p>Update message on your behalf:
<xmp>"

 xmlmsg = "<message><header><rpc/></header>\n"

 xmlmsg += "<body><object class='CustomerProfile'
method='updateProfile'>\n"

 xmlmsg += "<param><CustomerProfile id="

 xmlmsg += "'" + id[0] + "'>\n"

 xmlmsg += "<firstname>" + qs.get("firstname","")[0].strip() +
"</firstname>\n"

 xmlmsg += "<lastname>" + qs.get("lastname","")[0].strip() +
"</lastname>\n"

 xmlmsg += "<address1>" + qs.get("address1","")[0].strip() +
"</address1>\n"

 xmlmsg += "<address2>" + qs.get("address2","")[0].strip() +
"</address2>\n"

 xmlmsg += "<city>" + qs.get("city","")[0].strip() +
"</city>\n"

IT-SC book
367

 xmlmsg += "<state>" + qs.get("state","")[0].strip() +
"</state>\n"

 xmlmsg += "<zip>" + qs.get("zip","")[0].strip() +
"</zip>\n"

 xmlmsg += "</CustomerProfile></param></object></body></message>"

 print xmlmsg

 print "</xmp></p>"

 print "Update in progress..."

 xs = xsc()

 xs.server = "centauri:2112"

 resp = xs.sendMessage(xmlmsg)

 print "<P>Response received:
<xmp>"

 print resp

 print "</xmp></p>"

 print "<h1>Log Back In?</h1>"

 print "<form name=login action='/cgi-bin/sp.py' method='GET'>"

 print "Use Current Customer ID:
"

 print "<input type='text' size='15' name='id'"

 print " value='" + id[0] + "'> "

 print "<input type=submit value=' login '>"

 print "<input type='hidden' name='mode' value='login'>"

 print "</form>"

def doGetOffers():

 print "<p>Retrieving all offers...</p>"

 xs = xsc()

IT-SC book
368

 xs.server = "centauri:2112"

 xmlmsg = str("""<message>

 <header><rpc/></header>

 <body>

 <object class="XMLOffer"

 method="getAllOffers">

 </object>

 </body>

 </message>""")

 resp = xs.sendMessage(xmlmsg)

 print "<p>Fromatting response from server..."

 print "<h1>Offers!</h1>"

 offdom = FromXml(resp)

 offers = offdom.getElementsByTagName("offer")

 for offer in offers:

 offer.normalize()

 for node in offer.childNodes:

 if (node.nodeType == node.ELEMENT_NODE):

 if (node.nodeName == "heading"):

 print "<h3>" + node.firstChild.nodeValue + "</h3>"

 if (node.nodeName == "description"):

 print "<p>" + node.firstChild.nodeValue + "</p>"

''

IT-SC book
369

MAIN

qs = cgi.parse_qs(os.environ["QUERY_STRING"])

mode = qs.get("mode", "")

id = qs.get("id", "")

print "Content-type: text/html"

print ""

print "<html>"

print """<HEAD><TITLE>SuperUltraMegaCorp Shopping Portal (intro.html)

 </TITLE></HEAD><BODY>"""

print """<P align="center"><h1>SuperUltraMegaCorp Shopping
Portal</h1></P>"""

print """<p><h3>click here to login</h3>"""

print """ <h3>click here
to review offers

</h3></p>"""

if mode[0] == "updateProf":

 doUpdateProfile()

if mode[0] == "login":

 doLogin(id[0])

if mode[0] == "getOffers":

 doGetOffers()

print "</body></html>"

10.8.7 Running the Site as a User

IT-SC book
370

Once you have completed all of the prerequisites for this mammoth web site and
XML integration, you'll likely want to test it with a browser. There are eight steps to
get things going:

1. Make sure your web server is running, and that intro.html and sp.py are
functioning properly.

2. Make sure your XML Switch is running (runxs.py).
3. Make sure your web forms point to your web server and that your xsc calls

point to your XML Switch server.
4. Browse to intro.html and place a valid ID from your database in the text box.

Click Login.
5. You can review your profile, and edit it in the form at the bottom of the page.
6. If you've changed some items, click the Submit button on the new form to

login again.
7. Verify that your data has changed, then click on the link to check your offers.
8. The offers should be presented as formatted HTML.

The Web/CGI application presented here is the tip of an iceberg of integration. The
browser talks to the web site. The web site talks to the XML Switch. The XML Switch
uses local objects to retrieve information from relational databases and flat files. By
standardizing on XML messages between distributed systems and creating an
intermediary routing capability between these applications, a much greater level of
integration is afforded, with a greater capacity for scaling.

IT-SC book
371

Appendix A. Installing Python and XML
Tools

This appendix helps you get started with Python and the additional XML packages we
use in this book. You will want to have an Internet connection in order to download
the packages you'll be installing. Some packages may have additional installation
notes online, which you'll want to look over as we'll generally be installing the latest
versions. The online notes may well be more recent than this book, so please don't
ignore them.

A.1 Installing Python

While this book is not an introductory text on Python, we review the installation
process since you may be upgrading an older system to use Python 2; using one of
the more recent versions of Python is strongly recommended if you'll be doing much
work with XML. If you already have Python Version 2.0 or newer installed, you do
not need to install a new version to use the examples in this book.

Python is available from http://www.python.org/ for both Windows and Unix
platforms. If you follow the download links on the Python web site, you are prompted
to select a version. After selecting the most recent stable version, you are presented
with selections for the Windows Installer, source code, and possibly installable
packages for Linux or other platforms. (Version 2.1.1 is the most recent version
available as this book goes to press, but Python 2.2 is expected to be available
shortly thereafter and is expected to be fully compatible with everything in this book.)

A.1.1 Windows

If you are installing on Windows, download the Windows Installer and run it. The
remainder of the installation process will seem very familiar to you as a standard
Windows installation procedure. When the process is complete, the Python
executable will be available to you in the C:\Python21 directory unless you have
elected a different location during the installation process. The trailing version
number in the directory name may be different depending on the version of Python
you install, but will never be more than two digits long.

You can run Python programs on Windows either by double-clicking the icon of the
executable, or at the command line by typing:

C:\my-dir> c:\python21\python myProgram.py

If you want to run Python from the command line, you probably want to add
Python's installation directory to your Path environment variable. If you're using
Windows 2000, this needs to be done using the Control Panel. From Start, select
Settings Control Panel to open the System panel. Select the Advanced tab, and
then choose Environment Variables. In the lower portion of the dialog, labeled
System Variables, locate and select the Path variable, then choose Edit. In the
Variable Value entry field, add the full name of the installation directory to the list
of directories, separated from the others by a semi-colon (;). When you're done
editing the Path value, click the Ok button for each of the three open dialogs. For

IT-SC book
372

other versions of Windows, you can edit the setting for the Path variable in your
autoexec.bat file.

A.1.2 Linux and Unix

If you are installing on Linux or Unix (collectively referred to as Unix from now on),
we suggest downloading the source code in .tar.gz format. You can unpack the
package with something along the lines of:

$> gzip -dc Python-2.1.1.tgz | tar xf -

Either way, you wind up with a fresh new Python directory. Once created, use the cd
command to go inside. On most Unix machines, all that is needed to build Python is:

$> ./configure

$> make

$> su

password:

$> make install

The Python-2.1.1.tgz archive installs Python in /usr/local/bin/python. Depending on
the security of your system, you'll likely need to be user root in order to install
Python.

If you have an existing Python 1.x installation, after running make install, you may
want to check that the new version of Python is in your execution path:

$> which python

/usr/local/bin/python

If you get back the following:

/usr/bin/python

you may want to consider adding /usr/local/bin to your PATH environment variable
before /usr/bin. Some Linux installations require an older version of Python; until
those installations are updated by the vendors, it may be better to install multiple
versions than to replace an installation provided as part of the Linux distribution.

Other options include removing older versions before installing the latest and
greatest, or deploying the new version into the same base path as the old. Unless
your operating system requires the older version, their should be no conflicts aside
from the executable loaded when you run python from the command line; older
versions remain in place if installing from source. You can still run the older version
by including the major.minor portion of the version number in the command line (for
example, python2.1). In either case, if upgrading is an issue for you, the
documentation included with the source distribution itself (the README file,

IT-SC book
373

Misc/NEWS, and other documents), as well as the release notes on
http://www.python.org/ should be consulted.

A.2 Installing PyXML

Once Python is installed, additional packages may be added with relative ease.
PyXML takes advantage of the Python Distribution Utilities, or distutils. To get the
PyXML package, visit the project's SourceForge project page and look at the
available downloads for the most recent version (0.6.6 at the time of this writing).
The web page is at http://pyxml.sourceforge.net/.

For Windows, there is a selection of installers; one for each supported Python version.
For bug-fix releases of Python (such as 2.1.1), use the installer for the corresponding
feature enhancement for Python (2.1 for this example), as binary compatibility is
maintained. Download the installer and run it like any other Windows installer; it
locates all the Python installations of the appropriate version as you select the
installation to which you want to add PyXML. Once you've done so, installation
proceeds and PyXML is available for that Python interpreter.

For Unix, retrieve the .tar.gz archive containing the version of PyXML you've selected
and unpack it just as you did the Python source distribution. Change your working
directory to be the top-level directory of the unpacked distribution. That directory
contains a Python script named setup.py; run that with the Python interpreter for
which you're installing PyXML and the command-line parameter build:

$> python setup.py build

This builds all the components of PyXML from their Python or C source code. Once
this is complete, install the package so that Python can use it; this usually needs to
be done by a privileged user:

$> su

Password:

%> python setup.py install

Be sure that the privileged user is using the same Python interpreter as the user who
built the PyXML package.

A.3 Installing 4Suite

4Suite includes a variety of DOM implementations optimized for different types of
applications, and includes support for XPath, XLink, XPointer, XSLT, and RDF. It is
offered by Fourthought, Inc., and is available from a dedicated web site at
http://www.4suite.org/. There are source and binary packages available for both
Windows and Linux. For Windows, download the Windows installation binary of
4Suite and follow the on-screen instructions as they walk you through the process. If
you add the new location to your path (visit autoexec.bat or your NT environment
variables), use the 4xslt script to perform XSLT transformations from the command
line. You can download either a source or binary package for Linux systems. The
README file contains the latest install instructions, but as with most new Python

IT-SC book
374

source packages, you can use the Distribution Utilities; see the description of the
PyXML installation for details.

Once completed, the 4xslt script will be available for you to perform transformations
from the command line (provided you've added the directory it lives in to your PATH
environment variable).

IT-SC book
375

Appendix B. XML Definitions

This appendix details the definitions spelled out in the XML Specification. These
terms are used frequently in connection with the DOM, and with XML technology in
general. All of the terms are defined here for reference purposes. This appendix
should serve as a companion to the previous specification walkthrough from Chapter
2. In order to extract the XML terms and definitions out of the specification, we
thought it appropriate to write an XML-processing script that operates on the XML
version of the W3C Recommendation. For a good example of how to reveal the utility
of Python and XML, use the program in Example B-1 to parse terms out of the
specification's XML.

Example B-1. gen-td.py—a script to print XML definitions

"""Generate HTML for terms and definitions

directly from XML specification.

XML source must come from standard input.

"""

import sys

from xml.sax import ContentHandler

from xml.sax import make_parser

class XMLSpecHandler(ContentHandler):

 """

 Class implements part of SAX API to pull term

 definitions out of the XML Specification source file.

 """

 inTermDef = 0

 def startElement(self, name, attrs):

 if name == "termdef":

IT-SC book
376

 self.inTermDef = 1

 self.strTermDefContents = ""

 print "<p>" + attrs.get('term', "") + "
"

 def characters(self, ch):

 if self.inTermDef:

 self.strTermDefContents += ch

 def endElement(self, name):

 if name == "termdef":

 self.inTermDef = 0

 self.strTermDefContents += "</p>"

 print self.strTermDefContents

Main

if __name__ == "__main__":

 dh = XMLSpecHandler()

 parser = make_parser()

 parser.setContentHandler(dh)

 print "<html><head>"

 print "<style type='text/css'>"

 print "body { font-family: sans-serif; }"

 print "</style>"

 print "</head><body>"

 parser.parse(sys.stdin)

 print "</body></html>"

IT-SC book
377

You can download the XML specification as an XML document from the W3C web site
(http://www.w3.org/TR/). You can then run the script in Example B-1 against it to
generate very simple HTML from the command line:

$[chris@spindle]> python gen-td.py < XMLSpec.py > termdef.html

If you load the termdef.html file in your web browser, you'll see all of the term
definitions from the XML Specification neatly presented in simple HTML. Figure B-1
shows the termdef.html output running in a browser.

Figure B-1. termdef.html loaded in a browser

One note: the architects of the XML version of the specification didn't neatly keep the
full text of each definition within the confines of the termdef tags. So, a little human
intervention was necessary to truly present them accurately in this text. The
definitions presented here are a subset of what appears in the specification, as

IT-SC book
378

definitions related only to the specification itself (and not to XML) have been
removed, and the list has been alphabetized to be more human-friendly.

B.1 XML Definitions

Attribute

The Name-AttValue pairs are referred to as the attribute specifications of the
element.

Attribute Default

If the declaration is neither #REQUIRED nor #IMPLIED, then the AttValue
value contains the declared default value; the #FIXED keyword states that the
attribute must always have the default value. If a default value is declared,
when an XML processor encounters an omitted attribute, it behaves as though
the attribute is present with the declared default value.

Attribute-List Declaration

Attribute-list declarations specify the name, data type, and default value (if
any) of each attribute associated with a given element type.

Attribute Name

The name in each pair is referred to as the attribute name.

Attribute Value

The content of the AttValue (the text between the ' or " delimiters).

CDATA Section

May occur anywhere character data may occur; used to escape blocks of text
containing characters that would otherwise be recognized as markup.

Character

An atomic unit of text as specified by ISO/IEC 10646. Legal characters are
tab, carriage return, line feed, and the legal graphic characters of Unicode
and ISO/IEC 10646. The versions of these standards were current at the time
of this writing. New characters may be added to these standards by
amendments or new editions. Consequently, XML processors must accept any
character in the range specified for Char. The use of compatibility characters
is discouraged.

Character Data

All text that is not markup constitutes the character data of the document.

Character Reference

IT-SC book
379

Refers to a specific character in the ISO/IEC 10646 character set—for
example, one not directly accessible from available input devices.

Comment

Comments may appear anywhere in a document outside other markup; in
addition, they may appear within the Document Type Declaration at places
allowed by the grammar. They are not part of the document's character data;
an XML processor may, but need not, make it possible for an application to
retrieve the text of comments. For compatibility, the string must not occur
within comments.

Conditional Section

Portions of the Document Type Declaration external subset, which are
included in, or excluded from, the logical structure of the DTD, based on the
keyword that governs them.

Content

The text between the start tag and end tag.

Content Model

In this case, the constraint includes a content model, a simple grammar
governing the allowed types of the child elements and the order in which they
may appear.

Document Entity

Serves as the root of the entity tree and as a starting point for an XML
processor.

Document Type Declaration

The XML Document Type Declaration contains or points to markup
declarations that provide a grammar for a class of documents. This grammar
is known as a Document Type Definition (DTD). The Document Type
Declaration can point to an external subset (a special kind of external entity)
containing markup declarations, can contain the markup declarations directly
in an internal subset, or can do both. The DTD for a document consists of
both subsets taken together.

Element

Each XML document contains one or more elements, the boundaries of which
are either delimited by start tags and end tags, or for empty elements, by an
empty-element tag. Each element has a type, identified by name, which is
sometimes called its generic identifier (GI), and may have a set of attribute
specifications.

Element Content

IT-SC book
380

An element type has element content when elements of that type must
contain only child elements (no character data), optionally separated by
whitespace (characters matching the nonterminal S).

Empty

An element with no content.

Empty-Element Tag

An empty-element tag takes a special form: <tagName/>.

End Tag

The end of every element that begins with a start tag must be marked by an
end tag containing a name that echoes the element's type, as given in the
start tag.

Entity

An XML document may consist of one or many storage units. These are called
entities; all have content and all (except for the document entity and the
external DTD subset) are identified by entity name.

Entity Reference

Refers to the content of a named entity.

Enumerated Attribute Values

Enumerated attributes can take one of a list of values provided in the
declaration.

Error

A violation of the rules of the XML specification; results are undefined.
Conforming software may detect and report an error and may recover from it.

Escape

Entity and character references can both be used to escape the left-angle
bracket, ampersand, and other delimiters. A set of general entities (amp, lt,
gt, apos, quot) is specified for this purpose. Numeric character references
may also be used; they are expanded immediately when recognized and must
be treated as character data, so the numeric character references #60; and
& may be used to escape < and & when they occur in character data.

External Entity

If the entity is not internal, it is an external entity.

External Markup Declaration

IT-SC book
381

Defined as a markup declaration occurring in the external subset or in a
parameter entity (external or internal—the latter being included because
nonvalidating processors are not required to read them).

Fatal Error

An error that a conforming XML processor must detect and report to the
application. After encountering a fatal error, the processor may continue
processing the data to search for further errors and may report such errors to
the application. In order to support correction of errors, the processor may
make unprocessed data from the document (with intermingled character data
and markup) available to the application. Once a fatal error is detected,
however, the processor must not continue normal processing (i.e., it must not
continue to pass character data and information about the document's logical
structure to the application in the normal way).

General Entity

Entities for use within the document content. In this specification, general
entities are sometimes referred to with the unqualified term entity, if this
leads to no ambiguity.

General Entity Reference

References to parsed general entities use ampersands (&) and semicolons (;)
as delimiters.

Include

An entity is included when its replacement text is retrieved and processed in
place of the reference itself, as though it is part of the document at the
location the reference is recognized.

Internal Entity Replacement Text

If the entity definition is an EntityValue, the defined entity is called an
internal entity. There is no separate physical storage object, and the content
of the entity is given in the declaration.

Literal Entity Value

The quoted string actually present in the entity declaration, corresponding to
the nonterminal Entity Value.

Markup

Markup takes the form of start tags, end tags, empty-element tags, entity
references, character references, comments, CDATA section delimiters,
Document Type Declarations, processing instructions, XML declarations, text
declarations, and any whitespace that is at the top level of the document
entity (that is, outside the document element and not inside any other
markup).

IT-SC book
382

Markup Declaration

An element type declaration, an attribute-list declaration, an entity
declaration, or a notation declaration.

Mixed Content

An element type has mixed content when elements of that type may contain
character data, optionally interspersed with child elements.

Name

A token beginning with a letter or one of a few punctuation characters, and
continuing with letters, digits, hyphens, underscores, colons, or full stops.
Together, these are known as name characters.

Notation

Identifies by name the format of unparsed entities, the format of elements
that bear a notation attribute, or the application to which a processing
instruction is addressed.

Notation Declaration

Provide a name for the notation, for use in entity and attribute-list
declarations and in attribute specifications, and an external identifier for the
notation, which may allow an XML processor or its client application to locate
a helper application capable of processing data in the given notation.

Parameter Entity

Parsed entities for use within the DTD.

Parameter-Entity Reference

Parameter-entity references use percent-signs (%) and semicolons (;) as
delimiters.

Parent/Child

For each nonroot element C in the document, there is one other element P in
the document, such that C is in the content of P, but is not in the content of
any other element that is in the content of P. P is referred to as the parent of
C, and C as a child of P.

Process Declarations

While these are not required to check the document for validity, they are
required to process all the declarations they read in the internal DTD subset
and in any parameter entity that they read, up to the first reference to a
parameter entity that they do not read. That is, they must use the
information in those declarations to normalize attribute values, include the
replacement text of internal entities, and supply default attribute values.

IT-SC book
383

Processing Instruction

Processing instructions (PIs) allow documents to contain instructions for
applications.

Public Identifier

In addition to a system identifier, an external identifier may include a public
identifier.

Replacement Text

The content of the entity, after replacement of character references and
parameter-entity references.

Root Element

There is exactly one element, called the root or document element, of which
no part appears in the content of any other element.

Start Tag

Marks the beginning of every nonempty XML element.

System Identifier

The SystemLiteral is called the entity's system identifier. It is a URI
reference (as defined in IETF RFC 2396 and updated by IETF RFC 2732),
meant to be dereferenced to obtain input for the XML processor to construct
the entity's replacement text.

Text

A parsed entity contains text (a sequence of characters), which may
represent markup or character data.

Text Entity

A parsed entity's contents are referred to as its replacement text; this text is
considered an integral part of the document.

Unparsed Entity

An unparsed entity is a resource whose contents may or may not be text, and
if text, may be other than XML. Each unparsed entity has an associated
notation, identified by name. Beyond the requirement that an XML processor
make the identifiers for the entity and notation available to the application,
XML places no constraints on the contents of unparsed entities.

Validity

An XML document is valid if it has an associated Document Type Declaration
and if the document complies with the constraints expressed in it.

IT-SC book
384

Validity Constraint

A rule that applies to all valid XML documents. Violations of validity
constraints are errors; they must, at user option, be reported by validating
XML processors.

Validating Processor

Must, at user option, report violations of the constraints expressed by the
declarations in the DTD, and failures to fulfill the validity constraints given in
this specification.

Well-Formed

A textual object is a well-formed XML document if:

1. Taken as whole, it matches the production labeled "document."

2. It meets all the well-formedness constraints given in the specification.

3. Each of the parsed entities referenced directly or indirectly within the
document is well-formed.

Well-Formedness Constraint

A rule that applies to all well-formed XML documents. Violations of well-
formedness constraints are fatal errors.

XML Declaration

XML documents should begin with an XML declaration that specifies the
version of XML being used.

XML Document

A data object is an XML document if it is well-formed, as defined in this
specification. In addition, a well-formed XML document may be valid if it
meets certain further constraints.

XML Processor

A software module used to read XML documents and provide access to their
content and structure.

IT-SC book
385

Appendix C. Python SAX API

The Simple API for XML (SAX), is essentially a collection of interfaces. Python
supports the second version of the SAX specification, often referred to as SAX 2.
There are several interfaces defined by the SAX API, and the Python implementation
includes convenient base classes that make it simple to define only the methods you
are actually interested in providing. Also included in the Python version of the
interface are some convenience functions that make working with SAX very easy for
most basic applications.

The SAX interface is discussed in Chapter 3; several examples are given in that
chapter. The official documentation for the Python version of SAX is part of the
Python Library Reference, available online and in downloadable formats from the
Python web site at http://www.python.org/doc/current/lib/markup.html.

Convenience Functions

Three important convenience functions make performing a SAX-based parse trivial.
These are sufficient for most applications, especially if the only handler that's needed
is the ContentHandler. These functions are provided in the xml.sax module and
work with both the standard library and PyXML.

make_parser([parser_list])

Returns a SAX XMLReader object. Most of the examples in Chapter 3 use this
function to create a reader. See also Section 3.7, in that chapter, for more
information on using the underlying parser factory objects.

parse(source, content_handler[, error_handler])

Creates a reader using make_parser, associates the provided content and
error handlers, and parses an XML document. The document is identified by
the source parameter, which may be a filename, URL, a file object open for
reading, or an InputSource instance.

parseString(text, content_handler[, error_handler])

Similar to parse, but the input document is the text given by text.

IT-SC book
386

XMLReader

This is the basic parser interface used in SAX 2. It provides methods to get and set
the handler objects and a control variety of configurable options.

parse(source)

Starts the parser working on the document in the entity identified by source.
The parameter may be a filename, a URL, or an InputSource object. The
InputSource interface is described later in this Appendix.

getContentHandler()

Returns the currently configured content handler, or None if there isn't one.

getDTDHandler()

Returns the currently configured DTD handler, or None if there isn't one.

getEntityResolver()

Returns the currently configured entity resolver, or None if there isn't one.

getErrorHandler()

Returns the currently configured error handler, or None if there isn't one.

getFeature(name)

Get the current Boolean value for the feature identified by name. This method
returns true if the feature is enabled, and false if it is disabled, or it raises
the SAXNotRecognized or SAXNotSupported exception if name is not known
or supported.

getProperty(name)

Returns the current value of the property identified by name. This method
returns whatever Python object is appropriate for the specific property; the
application must be written to follow the rules associated with that property.
If the specific property for which the value is requested is not known or
supported by the parser, the appropriate subclass of the SAXException is
raised as an exception.

IT-SC book
387

setContentHandler(handler)

Sets the content handler to handler, which must conform to the
ContentHandler interface (described next). If handler is None, content
events are not reported.

setDTDHandler(handler)

Sets the DTD handler to handler, which must conform to the DTDHandler
interface described later in this reference. If handler is None, information
about unparsed entities is not provided to the application.

setEntityResolver(resolver)

Sets the entity resolver to handler, which must conform to the
EntityResolver interface. This interface is described in more detail later in
this reference. If handler is None, the default behavior is to allow the parser
to determine whether and how external entities are accessed. Many parsers
have at least some ability to load external entities.

setErrorHandler(handler)

Sets the error handler to handler, which must conform to the ErrorHandler
interface. This interface is described in more detail later in this reference. If
handler is None, the default behavior is used.

setFeature(name, value)

Enables or disables the parser feature identified by name. The feature is
enabled if value is true, or disabled if it is false. If the feature is not known,
the exception SAXNotRecognized is thrown; if the particular value is not
supported, SAXNotSupported is raised. Some features must be set before the
parse begins, and others may be set at any time.

setLocale(locale)

Sets the locale for the error messages from the parser. If the parser does not
support the indicated locale, a SAX exception is raised. The application may
choose to catch and ignore the exception, but the locale does not change. The
application may change the locale at any time.

setProperty(name, value)

Sets the value of the property identified by name to value. The parser checks
that value is of the right type for the specific property and may raise an
exception if it is not. If the property name is not known or supported by the
parser, the appropriate exception is raised. Some properties must be set
before the parse begins, and others may be set at any time.

IT-SC book
388

ContentHandler

The ContentHandler is the most used of the SAX handler objects. It is this handler
that receives information about the elements being parsed, their attributes, and the
content between start and end tags. The parse and parseString convenience
functions described in the previous section require a ContentHandler
implementation to be passed in.

setDocumentLocator(locator)

SAX parsers are encouraged to supply a locator for finding the origin of
events within the document, so that you can determine the end position of
any document-related event. The locator object conforms to the Locator
interface, described later in this Appendix.

startDocument()

When the parser begins a document, it calls this method first and only once,
with the exception of setDocumentLocator, which is called first if
implemented.

endDocument()

This method is called only once as the very last method invoked by the parser.

startPrefixMapping(prefix, uri)

This method is called when a namespace declaration is encountered. The
prefix parameter is the prefix string used in the document, and uri refers to
the Universal Resource Indicator (URI) that the prefix represents.

endPrefixMapping(prefix)

This event occurs at the time the end element with the corresponding
startPrefixMapping is called, indicating that the declaration for prefix has
gone out of scope. It does not indicate that there is no mapping for prefix;
an outer declaration may still be in scope.

startElement(name, attrs)

This event is called each time an element's opening tag is encountered. The
name is the actual tag name of the element. The attrs parameter is a Python

IT-SC book
389

dictionary containing attribute names and values. This is called when
Namespace processing is not being used.

startElementNS(name, qname, attrs)

In this method, name is a tuple containing the URI and localname. The qname
parameter is the actual tag name used in the XML document. The attrs
variable is once again the Python dictionary containing the attribute name and
value pairs. This is called only when Namespaces are being used.

endElement(name)

This event is called when the end of an element is found, if the start of the
element was reported by startElement.

endElementNS(name, qname)

This is the corresponding method and event for startElementNS event.

characters(content)

This method is called for each section of character data that is not part of an
element or other markup. This method may be called multiple times in what
might appear to be a contiguous section of character data. In other words,
some parsers may call this method for each line of the document, or some
may choose to aggregate lines and call the method between other sections of
markup. Either way, all character data is passed through this method call.
The content parameter contains the actual character data.

ignorableWhitespace(whitespace)

This method is called by validating parsers when reporting whitespace in
element content. Similar to the characters method mentioned earlier, this
might be called multiple times depending on the parser. Validating parsers
must call this method. The whitespace parameter contains the actual
whitespace encountered.

processingInstruction(target, data)

This method is called once for each processing instruction found by the parser.
XML declarations and text declarations must not be reported in this fashion.
Both the target and data parameters are string types containing the
processing instruction's relevant information to the application.

skippedEntity(name)

The parser calls this method each time an entity reference is found and the
content of the entity is not parsed. Nonvalidating parsers may skip external
entities and any entities for which they have not seen a declaration.

IT-SC book
390

DTDHandler

This handler allows the application to receive some information that may be useful
when using unparsed external entities. This handler is not used often.

notationDecl(name, publicId, systemId)

This method is invoked when a notation declaration is encountered. At least
one of the ID parameters must be populated, and if the systemId is present
and is a URL, the parser must resolve it fully before passing it to the
application through this event.

unparsedEntityDecl(name, publicId, systemId, ndata)

The notation name corresponds to a notation reported by the aforementioned
notationDecl event. Again, if the systemId is a URL, then the parser must
fully resolve it prior to passing it to the application.

EntityResolver

This handler interface is used to allow the application to control how external entities
are loaded. This can be used to support the use of an application-level cache or use
one or more of the techniques for mapping public identifiers to system identifiers.

resolveEntity(publicId, systemId)

The parser calls this method to convert the identifiers for an external entity
into a system identifier to load. The systemId parameter is the URL provided
in an entity declaration, and publicId is the public identifier, or None if there
isn't one. This method should return a string giving a new system identifier as
a string or an object that supports the InputSource interface.

IT-SC book
391

InputSource

The application can use instances of the InputSource class, provided in the
xml.sax.xmlreader module, as return values from the resolveEntity method of
the EntityResolver interface, or as parameters to the parse convenience function
or XMLReader method. There should not normally be a reason to use an alternate
implementation of this class, but it is allowed. When the application prepares an
InputSource to provide to the parser, it should use the various set methods to
configure the object with as much information as it has about the input source.

When the parser receives the InputSource instance, it first attempts to use the
character stream if it is available; otherwise it uses the byte stream. If neither of
those is available, it uses the system identifier and attempts to open a byte stream
itself.

getByteStream()

Returns the byte stream associated with this input source. This is a stream
that returns raw bytes from the input source rather than decoded Unicode
characters.

getCharacterStream()

Returns the character stream associated with this input source. A character
stream provides the parser with decoded Unicode characters rather than raw
bytes.

getEncoding()

Returns the encoding of the byte stream if known. If it is not known, return
None. If the encoding is not known, the parser applies the rules for auto-
detection of the encoding based on the leading bytes of the input stream.

getPublicId()

Returns the public identifier of the input source, or None if there isn't one or if
it isn't known.

getSystemId()

Returns the system identifier of the input source, or None if there isn't one or
if it isn't known. The only time this should ever return None for a fully

IT-SC book
392

initialized input source is if the source is being used to provide the document
entity and the input source is provided by the user instead of a URL or
filename.

setByteStream(stream)

Sets the byte stream of the input source. This should be used if the bytes of
the entity can be referenced more efficiently than the parser would be able to
do based on the system identifier. This is appropriate when loading the
document from a cache rather than loading it across the network.

setCharacterStream(stream)

Sets the character stream for the input source. This should be used if the
source can provide Unicode characters directly.

setEncoding(encoding)

Sets the encoding of the byte stream to encoding. This may be known if the
resource is being loaded using a protocol that provides this information
directly. HTTP, for instance, can include information about the character
encoding as the charset parameter to the Content-Type header in the
response.

setPublicId(id)

Sets the public identifier to id.

setSystemId(id)

Sets the system identifier to id.

ErrorHandler

The way SAX deals with error conditions is described in Section 3.2.2 in Chapter 3.
For the methods of the ErrorHandler interface, each is called with a parameter
giving an SAXException instance as a parameter. The specific exception classes are
described in SAX Exceptions, later in this Appendix.

error(exception)

This method allows the application to respond to a recoverable error.

IT-SC book
393

fatalError(exception)

Similar to error, this method indicates that the parser has encountered an
error that is not recoverable. Applications are to assume that the document is
unusable at this point.

warning(exception)

This method is called to communicate conditions that are not fatal, and not
necessarily errors.

DeclHandler

The DeclHandler is used to receive information about the allowed structure of a
document based on the DTD. It is supported only using PyXML; the standard library
does not support it. A simple base class for this handler is available as the
DeclHandler class in the xml.sax.saxlib module. The DeclHandler can be set
using the setProperty method on the parser object, using the property constant
property_declaration_handler from the xml.sax.handler module.

attributeDecl(element, attribute, type, constraint, default)

The parser calls this method for each attribute declared. The call represents
the declaration of the attribute named attribute for the element type
element. The data type of the attribute, given as type, is provided as a string
with a value of CDATA, ENTITY, ENTITIES, ID, IDREF, IDREFS, NMTOKEN,
NMTOKENS, or NOTATION, or as a list of strings for enumerated types. The
constraint is given as a string or None, with the possible string values
#FIXED, #IMPLIED, and #REQUIRED. If the attribute has a default value, it is
provided as default; if no default is defined, default is None.

elementDecl(name, contentModel)

This method is called by the parser when it encounters an element declaration.
name is the name of the element type, and contentModel is its content model.
The content module is the string EMPTY, the string ANY, or a tuple containing
the model separator character, the list of element type names, and the
quantity modifier.

externalEntityDecl(name, publicId, systemId)

IT-SC book
394

When the parsers see the definition of an external parsed entity, it calls this
method to inform the application. The name is the name assigned to the entity,
publicId is the public identifier or None, and systemId is the system
identifier.

internalEntityDecl(name, value)

The parser calls this method when an internal general entity is defined. The
name is the name assigned to the entity and value is a string giving the
replacement text for the entity.

LexicalHandler

The LexicalHandler is used to receive information about syntactical events such as
CDATA section boundaries and comments in a document. It is only supported using
PyXML; the standard library does not provide this. A simple base class for this
handler is available as the LexicalHandler class in the xml.sax.saxlib module.
The LexicalHandler can be set using the setProperty method on the parser object,
using the property constant property_lexical_handler from the xml.sax.handler
module.

comment(text)

This method is called when the parser finds a comment in the document. The
body of the comment, between the two occurrences of --, is passed as the
text parameter.

startDTD()

This method is called before the parser starts reading any DTD information,
regardless of whether that information is in the internal or external subset.
This method is called at most once.

endDTD()

The parser calls this method after all DTD information is read; it is called at
most once.

startEntity(name)

This method is called when the parser begins parsing the entity associated
with the name name in the DTD. The only way to know about the names

IT-SC book
395

defined in the DTD is to provide a DeclHandler and implement the
externalEntityDecl and internalEntityDecl methods.

endEntity(name)

The parser calls this method when it is finished parsing the entity identified by
name. See startEntity for information about using entity names.

startCDATA()

This method is called at the start of a CDATA section.

endCDATA()

The parser calls this method at the end of a CDATA section.

Locator

Objects called locators are used to provide access to information about where events
occur in the document. The application receives a locator by implementing the
setDocumentLocator method on the content handler. Locator objects provide
methods that allow the application to determine which entity was being parsed when
the event occurred, and where in the entity the parse had reached. The
SAXParseException exception class also conforms to the Locator interface.

The information provided by these methods can be extremely valuable in reporting
problems with your documents in an application. For example, if a purchase order
document has a price that is out of range, or a part number that does not exist in
your database, you could aid in debugging by providing specific details about the
location in the XML document where the problem occurred. This could be used to
direct an editor widget to position the cursor where the problem is found so that the
user can correct the document.

getColumnNumber()

Returns the character offset within the line on which the parse event occurred.
The column is not adjusted for tab characters.

getLineNumber()

Returns the number of the line on which the parse event occurred. The first
line is numbered 1 rather than 0.

IT-SC book
396

getPublicId()

Returns the public identifier of the entity being parsed, if one is known. If
there isn't one, None is returned.

getSystemId()

Returns the system identifier of the entity being parsed when the event
occurred, if known. This may not be known, for instance, if the input data is
being fed directly to the parser for the document entity. If the system
identifier is not known, this returns None.

SAX Exceptions

SAX presents all errors, including exceptions raised by handler methods, to the
application as instances of the SAXException exception class or its subclasses.
Instances of this class have these methods:

getException()

Returns an exception caught by the SAX parser, if there was one, or None if
there wasn't one.

getMessage()

Returns an explanation of the problem encountered by the parser as a string
for human consumption. The message string may have been localized if the
XMLReader's setLocale method is called.

The following subclasses of SAXException are defined by SAX.

SAXParseException

This exception is raised when there is a problem parsing the document.
Instances of this exception also conform to the Locator interface.

SAXNotRecognizedException

When an application attempts to set or query a feature or property that is not
recognized by the parser, this exception is raised. Parsers are required to
recognize all features and properties defined as part of the SAX 2 specification,
even if they don't support them.

IT-SC book
397

SAXNotSupportedException

A parser raises this exception when the application attempts to set or query a
feature or property that is recognized but not supported, or when the
application attempts to set a feature or property to a value that is not
supported.

IT-SC book
398

Appendix D. Python DOM API

The DOM is essentially a collection of interfaces. All of the core interfaces are
implemented in Python including DOMException, DOMImplementation,
DocumentFragment, Document, Node, NodeList, NamedNodeMap, CharacterData,
Attr, Element, Text, Comment, CDATASection, DocumentType, Notation, Entity,
EntityReference, and ProcessingInstruction. These interfaces and their specific
implementation in Python are detailed for reference in this appendix.

DOMException

DOM operations may occasionally encounter a problem and raise an exception. The
abstract interface defined by the W3C DOM specification defines one exception and
several constants. In this interface, specific exceptions are detected by catching the
general exception and checking the code attribute of the exception object. Python
extends this to behave more like other Python exceptions: there is the DOMException
base class for the exceptions, and a derived class for each specific exception. The
code attribute still takes one of the defined constants as a value. Code that is
expecting to deal with only one particular exception should only name the specific
derived exception in an except clause but code that expects to handle any DOM
exception in a general way should name the DOMException base class. All of the
exception classes and constants are defined in the xml.dom module.

In this list, the first name is the name of the exception class, and the second name is
the name of the constant for the code attribute.

IndexSizeErr (INDEX_SIZE_ERR)

Raised if an index of size is negative or greater than the allowed value.

DOMStringSizeErr (DOMSTRING_SIZE_ERR)

Raised if the specified range of text does not fit into a DOMString.

HierarchyRequestErr (HIERARCHY_REQUEST_ERR)

Used if any node is inserted somewhere it doesn't belong.

WrongDocumentErr (WRONG_DOCUMENT_ERR)

IT-SC book
399

Used if a node is used in a different document than the one that created it
(which doesn't support it).

InvalidCharacterErr (INVALID_CHARACTER_ERR)

Used if an invalid or illegal character is specified, such as in a name. Illegal
characters are indicated in the XML specification.

NoDataAllowedErr (NO_DATA_ALLOWED_ERR)

Used if data is specified for a node that does not support data.

NoModificationAllowedErr (NO_MODIFICATION_ALLOWED_ERR)

Used if an attempt is made to modify an object where modifications are not
allowed.

NotFoundErr (NOT_FOUND_ERR)

Used if an attempt is made to reference a node in a context in which it does
not exist.

NotSupportedErr (NOT_SUPPORTED_ERR)

Used if the implementation does not support the requested type of object or
operation.

InuseAttributeErr (INUSE_ATTRIBUTE_ERR)

Used if an attempt is made to add an attribute that is already in use
elsewhere.

InvalidStateErr (INVALID_STATE_ERR)

Used if an attempt is made to use an object that is not, or is no longer, usable.

SyntaxErr (SYNTAX_ERR)

Used if an invalid or illegal string is specified.

InvalidModificationErr (INVALID_MODIFICATION_ERR)

Used if an attempt is made to modify the type of the underlying object.

NamespaceErr (NAMESPACE_ERR)

Used if an attempt is made to create or change an object in a way that is
incorrect with regard to namespaces.

InvalidAccessErr(INVALID_ACCESS_ERR)

Used if a parameter or an operation is not supported by the underlying object.

IT-SC book
400

DOMImplementation

The DOMImplementation interface provides a number of methods for performing
operations that are independent of any particular instance of the Document Object
Model.

hasFeature(feature, version)

Tests if the DOM implementation has a specific feature. The return is a
Boolean value.

createDocumentType(qualifiedName, publicId, systemId)

Creates and returns an empty DocumentType node. Entity declarations and
notations are not made available. It is expected that a future version of the
DOM will provide a way for populating a DocumentType.

createDocument(namespaceURI, qualifiedName, doctype)

Creates an XML Document object of the specified type and document element.
The return value should be a Document object. namespaceURI and doctype
may be None if they do not apply for the new document.

DocumentFragment Inherits Node

DocumentFragment is a minimal document object. It is meant to be a storage
container that applications can use when they want to isolate and deal separately
with a portion of another document, or to hold temporary fragments during complex
cut and paste operations. Document fragments can contain any type of nodes, and
have some special behavior when inserted into the document tree. Most interestingly
(and usefully), when a DocumentFragment is appended or inserted, the children of

IT-SC book
401

the fragment are inserted into the appropriate location, rather than the fragment
itself.

The DocumentFragment is an interface that inherits from Node, buts adds no
additional methods or attributes.

Document Inherits Node

The Document interface is the object representation of an entire XML document. It
contains all of the root elements, as well as the document type. The contained child
objects of the Document have their ownerDocument attribute associated with this
parent.

doctype

Contains the Document Type Declaration associated with the document. The
value is read-only, and cannot be modified in DOM Level 2.

documentElement

Represents the root element of the document. As you work with the DOM,
dealing with elements is a natural thing, and being able to quickly extract the
root element of any document object is desirable.

implementation

The DOMImplementation object that handles this document.

createAttribute(name)

Creates an Attr object with the name supplied. Support for namespaces is
provided with the createAttributeNS method.

createAttributeNS(namespaceURI, qualifiedName)

Does essentially the same task as createAttribute(name), however it
creates the attribute with the given namespaceURI.

createCDATASection(data)

Creates and returns a CDATA node section with the supplied data.

IT-SC book
402

createComment(data)

Creates and returns a comment node.

createDocumentFragment()

Creates and returns an empty DocumentFragment object.

createElement(tagname)

Creates an element with the given element tagname. Returns an Element
object.

createElementNS(namespaceURI, qualifiedName)

Same as createElement; however the namespaceURI is associated with the
element.

createEntityReference(name)

Creates and returns an EntityReference object; may raise an invalid
character exception if illegal characters are used.

createProcessingInstruction(target, data)

Creates and returns a ProcessingInstruction node with the supplied
target and data.

createTextNode(data)

Creates and returns a text node that contains the text given by data.

getElementById(elementId)

Returns an Element object with the corresponding ID. Returns None if there is
no such element. Remember that ID attributes must be specified in the DTD.
Simply creating a tag such as <account id="234"/> will not cause it to be
returned by this method unless the DTD included assigns the attribute to be
of the tokenized type ID. Additionally, the DOMImplementation object must be
aware of which attributes have been given the type ID. Attributes of type ID
must be unique within any given XML document.

getElementsByTagName(tagName)

Returns a NodeList containing all of the elements matching tagName. They
are returned in the order they were found when the original document is
parsed.

getElementsByTagNameNS(namespaceURI, localName)

IT-SC book
403

Returns a NodeList of the elements that match both the localName and
namespaceURI.

importNode(importedNode, deep)

This method imports a node from another document into the current one. The
Node has no parent. All attributes and the namespace of the imported Node
are the same. Given the broad variety of nodes that can be imported, certain
rules or side effects are applied.

• Imported nodes that are Attributes (Attr) have no owner element,
and all children are imported as well.

• DocumentFragment nodes have their children imported as well if the
deep parameter is set to true.

• Document nodes are not imported since a Document cannot contain
another Document.

• Element nodes are imported as expected, complete with attributes. If
the deep parameter is true, children of the element are imported as
well.

• EntityReference nodes have only themselves copied, regardless of
the deep parameter. If the entity has a value definition, it is imported
as well.

• Notation nodes can be imported, but the DOM currently does not
allow modification of the DocumentType.

• ProcessingInstruction nodes are imported as expected, in their
entirety. CharacterData (including CDATASection and Comment nodes)
are copied as expected with their data attribute.

Node

The granddaddy of much of the DOM, the Node class carries quite a lot of information.

Node Constants

IT-SC book
404

Node defines several constants that can be used by application writers to determine
the node's nodeType.

ELEMENT_NODE

An Element node

ATTRIBUTE_NODE

An Attr node

TEXT_NODE

A Text node

CDATA_SECTION_NODE

A CDATASection node

ENTITY_REFERENCE_NODE

An EntityReference node

ENTITY_NODE

An Entity node

PROCESSING_INSTRUCTION_NODE

A ProcessingInstruction node

COMMENT_NODE

A Comment node

DOCUMENT_NODE

A Document node

DOCUMENT_TYPE_NODE

A DocumentType node

DOCUMENT_FRAGMENT_NODE

A DocumentFragment node

NOTATION_NODE

A Notation node

Node Properties and Methods

IT-SC book
405

attributes

This contains a NamedNodeMap that contain the attributes of this node, or the
value is None.

childNodes

This contains a NodeList containing all children of this node. If no children
exist then the list is empty.

firstChild

The first child of the node. A convenient attribute if you know the structure of
the document. If the node has no children, this is None.

lastChild

Similar to its counterpart firstChild, but returns the last child node. If the
node has no children, this is None.

localName

Returns the local part of the qualified name of the node.

namespaceURI

The namespace URI of the node or None if none exists.

nextSibling

The node immediately following this node or None if none exists.

nodeName

The name of the node, depending on its type. nodes of type Text and
CharacterData do not have their own names, but rather just a string
indicating that they are that specific type. For Element nodes, it's the tag
name. For other named types, it returns their respective names.

nodeType

An integer representing the type of the node. This is directly correlated to the
defined constants of the Node class.

nodeValue

The value of this node depending on its type. For attributes, it is the assigned
value. For CDATASection, Comment, Text, and ProcessingInstruction nodes,
it is their contents respectively. However, for Element nodes, this value is not
the character data beneath the element, but None.

ownerDocument

IT-SC book
406

The Document object to which this node belongs.

parentNode

The immediate parent of the node. This may be None if the node has just
been created and has not been inserted as a child of another node. This is
always None for attribute nodes.

prefix

This is the namespace prefix, or None if the node does not have a namespace
prefix.

previousSibling

Similar to nextSibling, this attribute is associated with the node immediately
preceding this one, or None.

appendChild(newChild)

This method adds the newChild node the end of the NodeList contained
within this node. If the node already exists, it is removed and then added
back.

cloneNode(deep)

This method returns a duplicate of the node. The duplicate node is not
attached, and does not have a parent. The deep parameter, if true, indicates
that the entire tree beneath this node should be included in the copy
operation.

hasChildNodes()

Boolean method returns true or false depending on whether the node has
children.

insertBefore(newChild, refChild)

Inserts the new node immediately prior to the refChild within the node's
NodeList. If the newChild already exists within the list, it is deleted first and
added again.

supports(feature, level)

This method returns true or false depending on whether the DOM
implementation supports a specific feature for this particular node.

normalize()

This method descends to the full depth beneath this node, and ensures that
only markup structure such as elements, comments, and processing

IT-SC book
407

instructions separate Text nodes. This eliminates empty (or whitespace)
nodes existing in between chunks of text in your markup.

removeChild(childNode)

Returns and removes the childNode from the node's NodeList.

replaceChild(newChild, oldChild)

Replaces oldChild with newChild and returns oldChild to the caller. If
newChild is already a child of some element, it is removed.

NodeList

The NodeList interface is a generic list containing the child nodes of the node,
regardless of their specific subtype. In other words, Text nodes are in the list
alongside Element and ProcessingInstruction nodes. This interface is not defined
in terms of the Node interface.

length

This read-only attribute indicates the number of nodes in the list. If the length
is 10, then the actual indexes are 0 through 9.

item(index)

This method returns the node with the corresponding index in the NodeList.
If the index is out of range, None is returned.

NamedNodeMap

IT-SC book
408

This interface is similar to a NodeList, but its designed to allow the accessing of
nodes from the list by name. Nodes are not guaranteed to be in any particular order
within the map. This interface is not defined in terms of the Node interface.

length

The number of nodes in the map. As with the NodeList, if length is 10 then
actual indexes are 0 through 9.

getNamedItem(name)

This method retrieves the node specified by the parameter name. The node is
returned if found, or None is returned if not.

getNamedItemNS(namespaceURI, localName)

This method returns a node matching both the localName and namespaceURI
supplied as parameters.

item(index)

Returns the node at position index, or None if index is out of range.

removeNamedItem(name)

Removes the node specified by name. If the node is an Attr (XML attribute)
and has a default value (as specified in the DTD), the default value is then
substituted and keeps the same namespace URI, local name, and prefix. The
removed node is returned.

removeNamedItemNS(namespaceURI, localName)

Identical to removeNamedItem, with one exception: the search criteria
includes the namespaceURI as well as the localName to match a node from
the map. The removed node is returned.

setNamedItem(arg)

The first parameter, arg, is expected to be a node object. If a node with the
same name already exists, it is replaced with the new one, and the old one is
returned. A value of None is returned if nodes are added, but not replaced.

setNamedItemNS(arg)

This method is essentially the same as setNamedItem, with the addition of a
qualifying namespace URI as well as the local name (both taken from the arg
of type Node).

IT-SC book
409

CharacterData Inherits Node

The CharacterData interface is a subtype of Node that provides additional methods
for working with text data. This interface does not correspond to concrete node types,
but is used as a basis for defining the Text and Comment interfaces.

data

This string represents the character data held within the node.

length

The number of characters available through the data attribute and
substringData method. If the object is empty, the value may be 0.

appendData(arg)

This method appends the string arg to the end of the character data.

deleteData(offset, count)

Removes a given number of characters from the character data beginning at
offset and continuing through offset + count. If the supplied range
exceeds the length of the string, the contents from offset through the end of
the string are deleted.

insertData(offest, arg)

This method allows you to insert character data into the node beginning at
the position noted by offset.

replaceData(offset, count, arg)

This method replaces the data beginning at offset, with the supplied data of
arg, continuing through offset + count. If the length of the data is exceeded,
then the additional replacement text is appended to the data.

substringData(offset, count)

Extracts a portion of the data from the CharacterData node. If offset +
count exceed the length, then all characters through the end of the node are
returned.

IT-SC book
410

Attr Inherits Node

The Attr interface is the Node interface for attributes of an element. The DOM does
not consider an Attr part of the tree, and therefore the attributes parentNode,
previousSibling, and nextSibling are all None for Attr objects. Attributes should
be considered properties of elements. Attr nodes cannot be immediate children of a
DocumentFragment, but can be contained within an element of a document fragment.

The value for a node is its assigned value within the actual markup. Failing that, if a
default value is specified in the DTD, it is used. Child nodes of an Attr may be Text
nodes or of the type EntityReference.

name

The name of the attribute.

ownerElement

This property represents the Element node to which the attribute is attached.

specified

This Boolean property lets you know if the value was explicitly stated in the
markup (true), or if it is the default value as assigned by the DTD. The value
also returns true if the value has been manipulated or is explicitly assigned,
but still holds the default value. If the ownerElement attribute is None (if this
node is not currently associated with an element), then specified is also
true.

value

This is the actual value of the key/value pair that makes up the Attr within
any given Element.

Element Inherits Node

IT-SC book
411

The Element interface represents a markup element. In addition to its Node-like
methods, it supports access methods to get at contained attributes.

tagName

The name of the element type. In <stag drums="dale">, a string with the
value stag is returned.

getAttribute(name)

This method returns an attribute's value. This method bypasses retrieving the
Attr object directly and using its accessor methods. In some cases, using the
Attr node directly may be more appropriate, but the convenience methods
on the element node usually suffice.

getAttributeNS(namespaceURI, localName)

Similar to getAttribute, but selects the return attribute based on namespace
as well as name.

getAttributeNode(name)

This method returns the actual Attr object instead of its character value, as
is the case with getAttribute. Returns None if no such attribute is found.

getAttributeNodeNS(namespaceURI, localName)

Returns an Attr node that matches both the name and namespace URI
specified. Returns None if no such attribute is found.

getElementsByTagName(tagName)

This method returns a NodeList of descendant Element nodes that share the
same element type name. The special value * matches all tags.

getElementsByTagNameNS(namespaceURI, localName)

Returns a NodeList of all descendant elements who match both the name
and namespace URI supplied. The value * in either field matches all
namespaces URIs or all local names; using * for both fields matches all
elements in the tree rooted at this node.

hasAttribute(name)

This Boolean method returns true when an attribute with a given name is in
the element or has a default value in the DTD.

IT-SC book
412

hasAttributeNS(namespaceURI, localName)

This Boolean method returns true when an attribute of a specific name and
namespace exists within the element or has a default value stated in the DTD.

removeAttribute(name)

Removes an attribute by the name indicated in the name parameter. If the
removed attribute has a default value in the DTD, that value is immediately
substituted upon its removal.

removeAttributeNS(namespaceURI, localName)

Removes an attribute that matches both the local name and namespace
supplied. If the attribute had a default value specified in the DTD, that value
is immediately substituted upon removal.

removeAttributeNode(node)

This method removes the specified attribute node. This method takes a
complete Attr object as a parameter as opposed to a string name, as is the
case with the removeAttribute methods. Return value is the removed node.

setAttribute(name, value)

This method adds a new attribute to the Element with the supplied
name/value pair. It replaces any elements that already exist with the same
name. The text supplied as value is placed as a literal string, so any
EntityReference or other more complex Attr structures are not created
(see setAttributeNode instead).

setAttributeNS(namesapceURI, qualifiedName, value)

This method works essentially the same as setAttribute, except a
namespace URI and prefix are associated with the attribute.

setAttributeNode(node)

This method adds a new attribute to the Element. If the supplied node
parameter (of type Attr) contains any Text node or EntityReference
children, they are added as well. If an attribute with a matching nodeName
already exists within the element, it is replaced. Returns None unless an
attribute is replaced, in which case the old attribute is returned to the caller.

setAttributeNodeNS(node)

This method works essentially the same as setAttributeNode. If a node
already exists with the same namespace URI and local name, it is replaced
and returned to the caller. Otherwise, the new attribute is added and None is
returned.

IT-SC book
413

Text Inherits CharacterData

The Text method represents textual data within an Element or Attribute. Text
nodes are created for all chunks of text outside of regular markup within an XML
document. The normalize method merges adjacent Text nodes into a single node
for each chunk of Text. The methods of the CharacterData interface can be used on
this object to gain access and manipulation of the text data.

splitText(offset)

This method splits the node into two nodes at the point offset. All of the
data in the node prior to the offset remain as a node. The data after the
offset becomes part of a new, adjacent Text node, which is returned to the
caller.

Comment Inherits CharacterData

The Comment node holds the textual data of a Comment structure: <!-- Behold, a
comment -->. The methods of CharacterData are available for manipulation of the
Comment's data.

CDATASection Inherits Text

IT-SC book
414

This interface allows you to manipulate CDATASection nodes. Unlike Text nodes, the
normalize method does not merge adjacent CDATASection nodes. CDATASection
nodes are used to hold special characters that may be mistaken as XML by a parser.

DocumentType Inherits Node

This interface represents the DTD of your XML document, or it is None if one does not
exist. Its attributes are read-only, per the DOM specification, because the W3C is
uncertain about how the different XML schema efforts will impact DTD usage.

entities

This attribute returns a NamedNodeMap containing both external and internal
entities declared within the DTD. Parameter entities aren't included and
entities declared more than once are represented only by the first declaration.
The members of the NamedNodeMap implement the Entity interface. If the
information is not provided by the underlying parser, or if no entities are
defined, this may be None.

internalSubset

This attribute gives access to the internal DTD subset as a string, or None if
no internal subset is given. The value of this string does not include the
brackets that surround the internal subset.

name

The name of the root element as given in the DTD.

notations

This property represents a NamedNodeMap of the notations within the DTD.
Each member of the map implements the Notation interface. Notations
declared more than once are represented only by the first declaration. If the
information is not provided by the underlying parser, or if no notations are
defined, this may be None.

publicId

This is the public identifier of the external subset. If there is no public
identifier, this is None.

IT-SC book
415

systemId

This is the system identifier of the external subset. If there is no public
identifier, this is None.

Notation Inherits Node

This interface represents a Notation declared in the DTD. The nodeName attribute
inherited from Node is used as the declared name of the notation.

publicId

The public identifier of the notation, or None if not present.

systemId

The system identifier of this notation, or None if not present.

Entity Inherits Node

This interface represents both parsed and unparsed entities. A parser may choose to
expand entities before the structure model is passed to the DOM; in this case, there
are no EntityReference nodes in the document tree.

External entity values in nonvalidating parsers may not be available, since
nonvalidating parsers are not required to process external entities.

Entity nodes cannot be edited—they are read-only.

notationName

IT-SC book
416

This value is None for parsed entities, and is the name of the notation for
unparsed entities.

puclicId

The public identifier of the entity, or None if not present.

systemId

The system identifier of the entity, or None if not present.

EntityReference Inherits Node

This empty interface represents entity references in an XML document, or when you
want to insert an entity reference. Character references, as well as references to
predefined entities, may be expanded by the parser in creation of the DOM tree. In
this case, EntityReference objects may not be created by the parser.

ProcessingInstruction Inherits Node

This method represents a processing instruction. This straightforward interface has
two string data properties representing the data and target of the
ProcessingInstruction.

data

The content of the processing instruction.

target

The target of the processing instruction.

IT-SC book
417

D.1 4DOM Extensions

The 4DOM package that accompanies PyXML contains some proprietary extensions
that may eventually make their way into W3C offerings. These classes include
methods for reading streams of XML, "pretty printing," and convenient splitting
functions, among other things. These are documented in the
PyXML/doc/4DOM/extensions.html file that ships with PyXML, and are not available
using other DOM implementations.

IT-SC book
418

Appendix E. Working with MSXML3.0

This appendix focuses on techniques for using the Microsoft MSXML3.0 XML parser
from within Python. If you are working with the Windows platform and XML, chances
are you've worked with MSXML.

E.1 Setting Up MSXML3.0

Fortunately, when using Python for your XML development, you don't have to give
up MSXML3.0. The Microsoft parser is fully accessible from Python using Python's
COM support.

If you haven't already, you'll need to visit http://www.python.org/ and install
win32all.exe as a supplement to your Python installation. This Windows-specific
package provides support for Microsoft's Component Object Model (COM) framework.
The win32all.exe package must be installed prior to using COM objects. More details
of working with Python and COM can be found in Chapter 9, in which COM is used to
access the MSSOAP collection of objects.

Version 3.0 is the latest incarnation of Microsoft's parser. It provides full support for
XSLT, among other things. However, Version 3.0 might not be the version used in
other applications, such as Internet Explorer. This may or may not be of concern to
you. If you are somehow running Python inside an application, or using automation
from Python to talk to another application, you need to be aware that a foreign
application's parser may be an older version. Knowing the particular version of the
user's copy of MSXML is primarily of concern for those writing client-side script inside
Internet Explorer where the parser may be chosen for them (as in an XSLT
stylesheet linked in an XML file). Standalone applications, on the other hand, can
pick their own parser (as we do in this appendix).

If you are writing programs in Python, you typically use a program ID (ProgID) to
instantiate a COM object. When using the ProgID, you can explicitly state that you
wish to use 3.0 and not an earlier version. However, if you want to embed a
stylesheet within your XML document and want Internet Explorer to use MSXML 3.0,
you need to consult the documentation that ships with Microsoft's XML SDK for
installing MSXML3.0 in "replace mode." For the purposes of the Python examples in
this appendix, using the ProgID work just fine!

E.2 Basic DOM Operations

This section goes over different techniques for working with DOM, and highlights
some of the features that MSXML supports but PyXML does not. In addition to these
convenience functions added by Microsoft, working with MSXML means also working
with COM, so examples are shown here to work with the various types returned by
MSXML that may stray from your standard Python list types and tuples.

The Microsoft DOM supports the same operations as the PyXML DOM, but there are
differences in using them. For starters, MSXML is only accessible via COM, so your
Python needs to work as a COM client. Second, and related to the first, is MSXML is
not a native Python implementation and therefore doesn't use Python types like the

IT-SC book
419

lists and tuples you'd find in PyXML. This section shows you the basics of working
with this foreign parser from within Python.

To illustrate some node and document manipulation, you need some source XML to
manipulate. You'll want structured data like books.xml shown in Example E-1, and
try out your MSXML skills.

Example E-1. books.xml

<book name="Python and XML">

 <section name="Appendix E" type="Appendix">

 <chapterTitle>Appendix E</chapterTitle>

 <bodytext>This appendix focuses on techniques for using...

 </bodytext>

 </section>

</book>

Using MSXML, it's easy to take this document apart. But before you can work with
MSXML, you have to import the correct library to access COM objects
(win32com.client). Additionally, for the call to Dispatch, you need the ProgID of
the Microsoft XML parser. If you've installed the latest Microsoft XML SDK, you have
Version 3.0 of the MSXML parser. You may also have it if you're running Visual
Studio.NET or Internet Explorer 6. However, if you aren't sure, you can download the
XML SDK from Microsoft and install the newest version of the parser.

After importing the client package and calling Dispatch with the correct ProgID, use
MSXML's load method to actually load a document:

>>> import win32com.client

>>> msxml = win32com.client.Dispatch("MSXML2.DOMDocument.3.0")

>>> msxml.load("books.xml")

1

The returned 1 indicates success in Python terms, and allows for the syntax:

if (msxml.load("books.xml")):

 # success

else:

 # failure

IT-SC book
420

Now that the msxml instance is ready to go, you can begin plucking out nodes and
experimenting with them.

E.2.1 MSXML Nodes

The MSXML objects will feel familiar to you if you've been working with the PyXML
objects throughout this book. Retrieving a documentElement or getting a node's
nodeName works as you might suspect:

>>> docelem = msxml.documentElement

>>> print docelem.nodeName

book

>>> print docelem.getAttribute("name")

Python & XML

MSXML throws in the occasional convenience like the text attribute of its Node class.
This method returns all text content (or character data) beneath the current node:

>>> print docelem.text

Appendix E This appendix focuses on techniques for using...

This can come in handy when working with text-heavy documents. Related to the
text attribute is the xml attribute. The xml attribute returns a string of XML
representing the current node and its children:

>>> print docelem.xml

<book name="Python and XML">

 <section name="Appendix E" type="Appendix">

 <chapterTitle>Appendix E</chapterTitle>

 <bodytext>This appendix focuses on techniques for
using...

 </bodytext>

 </section>

</book>

This is a definite shortcut (for your typing at least) over using the PrettyPrint method in the
PyXML DOM extensions package. Of course, just like PyXML, some MSXML methods return
collections of nodes rather than single nodes. In these cases, use the MSXML NodeList
interface for dealing with the collections.

E.2.2 Using a NodeList

IT-SC book
421

MSXML3.0 has great support for node lists, and provides a NodeList object for use in their
manipulation. This is slightly different then the native and robust list type provided by Python and
PyXML. The NodeList object has a built-in iterator that you can take advantage of by calling
the nextNode method; note that this is different from the concept of iterators as they have been
implemented in Python 2.2 and newer versions.

node = NodeList.nextNode()

while node:

 # do something here...

 node = NodeList.nextNode()

A while loop can be used until the nextNode method fails to return a node. Example E-2,
people.xml, shows some sample XML describing workers and their job titles.

Example E-2. people.xml

<employees>

 <person title="Project Manager">Cal Ender</person>

 <person title="Development Lead">A. Buddy Codit</person>

 <person title="Customer Service Rep">Will Icare</person>

 <person title="Documentation Writer">E. Manual</person>

 <person title="Catering Specialist">Willy Eadit</person>

</employees>

In a structure such as this, a NodeList can be a convenient way to process all nodes of a certain
type. A NodeList can be returned with a call to getElementsByTagName, or by using a string
expression in one of the selectNodes and selectSingleNode methods of MSXML3.0.
Example E-3 shows the NodeList in use in nodelists.py:

Example E-3. nodelists.py

"""

 nodelists.py - using the NodeList object

 from MSXML3.0

"""

import win32com.client

source XML

IT-SC book
422

strSourceDoc = "people.xml"

instantiate parser

objXML = win32com.client.Dispatch("MSXML2.DOMDocument.3.0")

check for successful loading

if (not objXML.load(strSourceDoc)):

 print "Error loading", strSourceDoc

grab all person elements

peopleNodes = objXML.getElementsByTagName("person")

begin iteration of NodeList with nextNode()

node = peopleNodes.nextNode()

while node:

 # print value of text descendants

 print "Name: ", node.text,

 # print value of title attribute

 print "\tPosition: ", node.getAttribute("title")

 # continue iteration

node = peopleNodes.nextNode()

When you run nodelists.py from the command prompt, you'll get a textual version of its
contents:

C:\appD>c:\python21\python nodelists.py

Name: Cal Ender Position: Project Manager

Name: A. Buddy Codit Position: Development Lead

IT-SC book
423

Name: Will Icare Position: Customer Service Rep

Name: E. Manual Position: Documentation Writer

Name: Willy Eadit Position: Catering Specialist

E.3 MSXML3.0 Support for XSLT

MSXML3.0 provides support for XSL transformations without any additional software. The
parser features a transformNode method that usually accepts a stylesheet as a parameter (in
DOM form) and returns the result of processing the current document with the supplied stylesheet.
For example:

objXML = win32com.client.Dispatch("MSXML2.DOMDocument.3.0")

objXSL = win32com.client.Dispatch("MSXML2.DOMDocument.3.0")

strTransformedXML = objXML.transformNode(objXSL)

In the simplest case, as shown in the preceding code, two DOM instances are created. One DOM
instance is needed to hold the source document, the other contains the stylesheet. To get the result
of the transformation, call transformNode on the source DOM, providing the stylesheet DOM
as a parameter.

E.3.1 Source XML

Example E-4 shows 1999temps.xml, a document containing monthly average temperatures
for Woodinville, Washington. This is a simple XML document with a flat structure.

Example E-4. 1999 temps.xml

<CalendarYear value="1999" data="Average Monthly Highs">

 <Month name="January">45.0</Month>

 <Month name="February">49.5</Month>

 <Month name="March">52.7</Month>

 <Month name="April">57.2</Month>

 <Month name="May">63.9</Month>

 <Month name="June">69.9</Month>

 <Month name="July">75.2</Month>

 <Month name="August">75.2</Month>

 <Month name="September">69.3</Month>

 <Month name="October">59.7</Month>

IT-SC book
424

 <Month name="November">50.5</Month>

 <Month name="December">45.1</Month>

</CalendarYear>

There are attributes indicating the year on record, and the type of data displayed. The Month
elements have a name attribute, while the actual temperature is character data.

E.3.2 XSL Stylesheet

With your stylesheet, attempt to find the average yearly temperature, based on the average
monthly temperatures. Using a combination of XPath's sum function and div operator yields the
results needed. Example E-5 shows the stylesheet temps.xsl.

Example E-5. temps.xsl

<?xml version="1.0"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:variable name="average"

 select="sum(//CalendarYear/Month/text()) div 12"/>

<xsl:template match="/">

<html>

<body>

 <p>

 <xsl:value-of select="/CalendarYear/@data"/> for

 <xsl:value-of select="/CalendarYear/@value"/>:

 </p>

 <table border="1"

 bordercolor="#000000"

 cellpadding="5"

IT-SC book
425

 cellspacing="0"

 width="350">

 <xsl:apply-templates/>

 <tr>

 <td colspan="2" bgcolor="#88BBEE" width="350"

 align="right">

 <p>

 Average:

 <xsl:value-of select="format-number($average, '0.00')"/>

 </p>

 </td>

 </tr>

 </table>

</body>

</html>

</xsl:template>

<xsl:template match="Month">

 <tr>

 <td bgcolor="#CCCCCC" width="325" align="left">

 <p>

 Month: <xsl:value-of select="@name"/>

 </p>

IT-SC book
426

 </td>

 <td bgcolor="#CCCCCC" width="25" align="left">

 <p>

 <xsl:value-of select="./text()"/>

 </p>

 </td>

 </tr>

</xsl:template>

</xsl:stylesheet>

The stylesheet performs its computational work in two parts. First, a variable is created that holds
the average of the temperatures by using the sum function to add them together, then using the
div operator to divide between the total number of months in a year:

<xsl:variable name="average"

 select="sum(//CalendarYear/Month/text()) div 12"/>

Finally, some formatting is performed within a template by calling format-number, using
$average as a parameter:

<xsl:value-of select="format-number($average, '0.00')"/>

This ensures that the temperature figure contains at least two floating-point digits.

E.3.3 Running an MSXML Transformation

To apply the transformation from Python, create two instances of MSXML3.0, and supply one
with the source XML and one with the stylesheet. Then use transformNode to complete the
transformation process. Example E-6 shows transform.py, which completes the task.

Example E-6. transform.py

"""

 transform.py - using MSXML3.0

 XSLT support from Python

IT-SC book
427

"""

import win32com.client

strSourceDoc = "1999temps.xml"

strStyleDoc = "temps.xsl"

objXML = win32com.client.Dispatch("MSXML2.DOMDocument.3.0")

objXSL = win32com.client.Dispatch("MSXML2.DOMDocument.3.0")

if (not objXML.load(strSourceDoc)):

 print "Error loading", strSourceDoc

if (not objXSL.load(strStyleDoc)):

 print "Error loading", strStyleDoc

strTransformedXML = objXML.transformNode(objXSL)

print strTransformedXML

You can run the process from a command prompt, and write the output to an HTML file if you
want to view the results in a browser.

>c:\python21\python transform.py > temps.html

Figure E-1 shows the transformed XML residing in a browser.

Figure E-1. The result of the transformation

IT-SC book
428

E.4 Handling Parsing Errors

The parseError object contains the most recent errors encountered by the parser. For example,
consider loading a document that does not exist:

>>> msxml.load("NotReally.xml")

0

The return result of 0 is enough to indicate that something has gone wrong. At this point, you can
retrieve the parseError object to inspect for damage:

>>> pe = msxml.parseError

The parseError interface is detailed at the end of this appendix's reference section. The object
essentially encapsulates seven attributes of an XML parsing error and makes them available via
the ParseError object:

>>> print pe.errorCode

-2146697211

IT-SC book
429

>>> print pe.reason

The system cannot locate the resource specified.

The error conditions hint that it may be wise to also check the URL that the parser was using to
load the document:

>>> print pe.url

NotReally.xml

As you can see, the problem is that the parser is after a file that does not exist. In addition to a
reason and an errorCode, the parser also contains information concerning location within the
file of a parsing error (filepos, line, and linepos).

E.5 MSXML3.0 Reference

This section provides a reference for the method exposed by MSXML3.0 that is available for use
within Python. Based on the DOM, MSXML3.0 supports five main types of objects. A Node
object contains the DOM interface for a node, and some Microsoft-built convenience functions as
well. The Document supports the DOM interface for a Document, plus additional Microsoft
extensions. Furthermore, MSXML supports a NamedNodeMap, a NodeList, and a ParseError
object. This section lists the details of each object and its methods.

MSXML3.0 Document Object

The Document object supports the same functionality as the W3C DOM Document interface,
but also features some Microsoft convenience extensions. For example, with MSXML3.0, you
can use the validate method to validate your document against its DTD:

myDomDocument.validate()

In addition to validation, support for XSLT transformations is built into the MSXML3.0 as well
as with the transformNode method:

myDomDocument.transformNode(myXSLTDomDocument)

The transformNode method takes another DOM instance as a parameter that contains an XSLT
stylesheet. The transformation is applied against the current document, and the result is returned
to the caller. The following section is a reference for the different methods and properties of the
Document object.

IT-SC book
430

MSXML3.0 Document Object Methods

abort()

Aborts an asynchronous download operation, if in progress.

createAttribute(name)

Creates an attribute using the name supplied as a parameter.

createCDATASection(data)

Creates the character string data as a CDATA node and returns.

createComment(data)

Creates and returns a new comment using the supplied data as the contents.

createDocumentFragment()

Creates and returns a new and empty document fragment.

createElement(elementName)

Creates and returns a new element with the supplied name.

createEntityReference(name)

Creates and returns a new entity reference object.

createNode(type, name, namespaceURI)

Creates and returns a node of the given type, using the supplied name, within the given
namespace context.

createProcessingInstruction(target, data)

Creates and returns a new processing instruction with the given target and data.

createTextNode(data)

Creates and returns a text node with the provided data as its characters.

getElementsByTagName(elementName)

Returns a NodeList of elements matching the given name.

getProperty()

Returns the SelectionLanguage, ServerHTTPRequest, or SelectionNamespace
properties.

IT-SC book
431

load(url)

Loads the URL supplied as a parameter. If it is a filename, the parser
attempts to load the file; if it is a remote HTTP address, the parser attempts
to connect and load the document. The existing contents of the document are
discarded.

loadXML(strXML)

Creates a document object from a well-formed string of XML. Only UTF-16
and UCS-2 text are accepted. Any existing contents of the document are
discarded.

nodeFromID(id)

Returns the node from the document using the supplied unique ID value.

save(objTarget)

Attempts to save the XML document to the specified location.

setProperty()

Allows you to specify the value of the SelectionLanguage, ServerHTTPRequest, or
SelectionNamespace property.

validate()

Performs validation against the document based on the declared DTD.

MSXML3.0 Document Object Properties

async

This read/write property determines whether synchronous or asynchronous
document retrieval is used when downloading.

doctype

This read-only property contains the doctype associated with the XML document.

documentElement

This read/write property contains the XML document's root element.

implementation

This read-only property contains the DOMImplementation object for the document
instance.

namespaces

IT-SC book
432

This read-only property contains a collection of all of the namespaces used in
the document.

ondataavailable

This read/write property represents the event handler that is called when data
becomes available.

onreadystatechange

This read/write property represents the event handler that is called when the
readyState property changes.

ontransformnode

This read/write property is set to the event handler called when the transformnode
event is fired.

parseError

This read-only property contains the document's ParseError object.

preserveWhiteSpace

This read/write property determines whether whitespace is preserved during
document parsing.

readyState

This read-only property indicates the current state of the document instance.

resolvedExternals

This read/write property determines whether external definitions are resolved
during parsing.

url

This read-only property represents the canonical URL for the most recently
loaded XML document.

validateOnParse

This read/write Boolean property indicates whether the parser should validate
during its parsing pass.

MSXML3.0 Node Object

IT-SC book
433

The Node object is the fundamental object of the DOM and of MSXML3.0. This interface
supports the common methods used throughout this book when working with the DOM.

MSXML3.0 Node Object Methods

appendChild(newChildElement)

Appends the supplied node to child NodeList for this element.

cloneNode()

Creates a new node that is a complete copy of this particular node.

hasChildNodes()

Returns true if the node has children.

insertBefore(newChild, referenceChild)

Takes the node supplied as newChild and inserts it in this node's NodeList
immediately prior to the supplied referenceChild node, which must be an existing
child.

removeChild(oldChild)

Removes the supplied node from this element's NodeList.

replaceChild(newChild, oldChild)

Places newChild in the same location where oldChild was residing.

selectNodes(pattern)

Returns a list of nodes matching the given pattern.

selectSingleNode(pattern)

Returns the first node matching the given pattern.

transformNode(stylesheet)

Takes a stylesheet that has been loaded into a DOM instance, and applies its rules
against this node. The resulting transformation is returned to the caller of the method.

transformNodeToObject(stylesheet, outputObject)

IT-SC book
434

Works as transformNode does, but sends the output to the specified object.

MSXML3.0 Node Object Properties

attribute

This read-only property contains the list of attributes attached to this node.

baseName

This read-only property contains the base name for the name qualified within
the namespace.

childNodes

This read-only property represents a NodeList of descendent children.

dataType

This read/write property indicates the data type for this node.

definition

This read-only property contains the definition of the node in the DTD.

firstChild

This read-only property represents the first immediate descendent element of
the current node.

lastChild

This read-only property is similar to firstChild, but is the last node in the NodeList.

namespaceURI

This read-only property contains the URI for the namespace.

nextSibling

This read-only property returns the adjacent node in the list (in relation to
this node and its parent).

nodeName

The element name of the node.

nodeType

The type of the node as defined in the DOM recommendation.

nodeTypedValue

IT-SC book
435

A read/write property specifying the node's value as a defined data type.

nodeTypeString

This value is the node type in string format.

nodeValue

The data value of the node—for example, the text of a text node.

ownerDocument

This read-only property indicates which document owns this node.

parentNode

The node that is the parent of this one.

parsed

This Boolean value indicates whether the node and its descendants have been
successfully parsed.

prefix

This read/write property is the namespace prefix of the node.

previousSibling

This read-only property returns the node immediately preceding this node in
its parent's list of children.

specified

This read-only property represents whether an attribute node is explicitly
specified, or if it is derived from a default value in the DTD or schema.

text

This read/write property contains the text of the node and its descendants.

xml

This read-only property contains the node in XML format (including its
children).

MSXML3.0 NamedNodeMap Object

IT-SC book
436

The NamedNodeMap object is MSXML3.0's support for namespaces and attribute nodes.

getNamedItem(name)

This method retrieves the attribute with the given name.

getQualifiedItem(baseName, namespaceURI)

This method retrieves the attribute but within the given namespace context.

item(index)

This method returns the item at the given index. If there is no such item, None is
returned.

nextNode()

This method returns the next node in the collection.

removeNamedItem(name)

This method removes the given item from the node collection.

removeQualifiedItem(name, namespaceURI)

This method removes the item from the node collection that also is within the
supplied namespace.

reset()

This method resets the iteration count back to zero.

setNamedItem(newItem)

This method adds the supplied node into the collection.

length

The length attribute contains an integer representing the number of items in the
collection.

MSXML3.0 NodeList Object

IT-SC book
437

The NodeList is commonly returned by DOM methods that return a collection or list of Nodes.
The NodeList features some special methods and properties to make working the list easier.

item(index)

This method returns an item from the list at the given index (zero-based, as Python
sequence indexes). If there is no node at index, returns None.

nextNode()

This method returns the next node in the list, based on the internal iterator.

reset()

This method resets the internal iterator to zero.

length

This property indicates the number of items within the list.

MSXML3.0 ParseError Object

The ParserError object is a collection attributes populated when there is an error. The parser
populates this object at the time of runtime errors.

errorCode

The number representing the error.

filepos

This byte-oriented position within the file.

line

The line number of the error.

IT-SC book
438

linepos

The character position within the line that the error occurred on.

reason

This property contains the reason for the error, if known.

srcText

This property contains the full text of the line containing the error in the
document.

url

This property represents the URL of the document.

IT-SC book
439

Appendix F. Additional Python XML Tools

This appendix details some other options for working with Python and XML that didn't receive
much coverage in the book. Python and XML has tried to cover the popular API standards,
because they are most likely what is leveraged across multiple programming environments,
languages, and even jobs. If you are going to work with XML, you must understand the DOM.
Python happens to be a language where all of the standard APIs are available. For all of these
reasons, this book focuses on the DOM, XPath, XSLT, SOAP, and others.

In this section, explore some of the alternatives for working with XML from Python. Some of
these tools provide equivalent functionality to the tools used elsewhere in the book, but using an
implementation that may be more appropriate in another context.

F.1 Pyxie

The Pyxie package, developed by Sean McGrath, is available from
http://pyxie.sourceforge.net/ and is based around a line-oriented notation known as PYX.
PYX and Pyxie are an alternative to the SAX and DOM, and is, according to its author, geared
for pipeline processing, in which one application's output is fed as input to the next application.
This idiom is common among Unix tools, but is also used on Windows, though it is not common
there for end-user tools.

Pyxie can parse an XML document into a line-oriented format known as PYX, which give signals
as to the content of the document. It's similar to SAX in that it is event-driven; however, instead
of implementing callback interfaces, the events are dumped to standard output as PYX notation.
The PYX output can then be processed by other text manipulation tools such as grep, sed, and
awk, or fed into other text-aware scripts you might write with Python and Perl.

PYX output appears as individual lines representing different types of markup. Consider the
following XML:

<Book>

 <Name>Python and XML</Name>

 <Publisher>O'Reilly & Associates</Publisher>

</Book>

The above XML would be converted to the following PYX using Pyxie or other PYX aware
processors:

(Book

-\n

(Name

-Python and XML

)Name

IT-SC book
440

-\n

(Publisher

-O'Reilly & Associates

)Publisher

-\n

)Book

One thing to note about the PYX output is that each document construct that is being dealt with is
given its own line. This makes it very accommodating to Unix-style command-line processing
tools. Additionally, the PYX markup starts each line with a symbol giving an indication of the
node type encountered:

(

The left parenthesis is used to denote start elements.

)

The right parenthesis is used to denote the ends of elements

A

A capital A is used to mark attributes.

-

A dash (or minus) is used to mark character data.

?

A question mark is used to denote a processing instruction.

These symbols don't cover every type of construct in XML. For example, there is no support for
CDATA sections, DTDs, or comments.

Having experience with Unix system administration, we can honestly state that the line-oriented
markup of the PYX syntax would be of incredible value for those familiar with sed, awk, and
grep, and need to parse an XML document, but don't want to take the time to code with a parser
against the document.

Another powerful feature of PYX is the ability to quickly examine the contents of a document—
leading to searchable grep-like features. The line-oriented contents can easily be searched for
with a utility such as grep allowing for some complex operations on the document. For example,
using grep and PYX, you could invoke grep's options on the output of PYX data. For instance:

$> <PYX-generating-command> | grep -v "Celsius"

IT-SC book
441

If your PYX output is full of temperature reports with text such as "38 degrees Celsius" the
previous grep command ensures that Celsius temperatures are not included in the output. Such
filtering is far more complex with XPath and the DOM. Likewise, we don't think PYX will help
very much if your task is to convert SQL record sets to XML while at the same time adding
DTDs and Namespaces. In a complex case like that, working with the DOM is necessary.

F.2 Python XML Tools

The Python XML Tools collection is built on top of PyXML and features two GTK widgets:
XmlTree and XmlEditor. The Python XML Tools are available from
http://www.logilab.org/xmltools/. These packages are used to display XML files (XmlTree),
as well as edit them (XmlEditor).

XmlTree displays XML files in a tree-like form, familiar to those who've used file browsers on
Windows, KDE, or GNOME. This structure takes the form of a GTK widget—it's derived from
the GtkCTree Widget.

The API features several methods for setting the XML document for display, setting XPath filters
for the tree, and a class for generating metadata about the tree.

In addition to API methods, the tree features configurable key bindings. For example, pressing an
asterisk (*) recursively expands the selected node, while the / key closes them.

The XmlEditor is also a GTK widget, but XmlEditor allows for the editing of XML documents. It
uses the aforementioned XmlTree for display. The structure available for editing is currently
centered around a DTD, but may change to use schema at a later date.

In addition to a simple API for driving the editor, the XmlEditor also features an
add_change_listener method that allows you to supply a callback function. The callback
function is then executed whenever the Apply or Ok buttons are pressed on the editor.

F.3 XML Schema Validator

The XML Schema validator is available from http://www.ltg.ed.ac.uk/~ht/xsv-status.html.
While still cutting-edge (like XML Schema itself), the software is frequently updated and appears
to be making progress. XSV seeks to be one of the first open source Schema-aware XML
processors. This provides a nice complement to the TREX validator in PyXML and the
Schematron validator in 4Suite.

F.4 Sab-pyth

Sab-pyth is a module that interfaces with the Sablotron XSLT processor written in C++. Sab-pyth
allows your Python programs to call the Sablotron APIs. The API is small and effective, but has
its own quirks and special constants. Sablotron also allows for the addition of custom-written
handlers. By adding handlers, you can intercept messages generated by the processor.

The Sab-pyth documentation is available online at: http://www.ubka.uni-
karlsruhe.de/~guenter/Sab-pyth/doc/html/sabpyth/.

IT-SC book
442

F.5 Redfoot

James Tauber and Daniel Krech developed this toolkit for working with Resource Description
Framework (RDF) data. The tools include an RDF parser and serializer, RDF database, an API
for queries, a convenient user interface, and a web server that provides an interface for viewing
and editing RDF in the database. A number of sample applications built on top of Redfoot are
available as well.

More information is available at http://redfoot.sourceforge.net/, as well as the
implementation and complete documentation.

F.6 XML Components for Zope

Zope is an open source application server written in Python and C, developed by Zope
Corporation (http://www.zope.com/); the implementation and more information on Zope
itself can be found at the Zope users' web site at http://www.zope.org/. While not specifically
an XML project itself, there are a number of interesting components available that can be used in
building web sites that use XML.

F.6.1 Parsed XML

Parsed XML is an optional Zope component that can be used to store a persistent DOM in Zope's
object database. The project, started by Karl Anderson, is now led by Martijn Pieters. The
underlying DOM implementation is primarily the work of one of the authors of this book, Fred L.
Drake, Jr.. More information, including the plan for future development, is available at
http://dev.zope.org/Wikis/DevSite/Projects/ParsedXML/FrontPage. The package
includes an extensive test suite for DOM implementations.

F.6.2 Page Templates

Page Templates are another optional Zope component. This one is designed to apply presentation
to results of the operations of a web site that implement the business logic that forms the site's
underpinnings. The template language is defined so that the templates may continue to be edited
using the graphical tools that site designers love without breaking the linkages to the business
logic implemented by the site's programmers. The templates themselves may be written in HTML,
XML, or XHTML. The leadership for the project comes from Evan Simpson, who also provided
much of the expertise on creating Zope components. Fred L. Drake, Jr. (the co-author of this book)
and Guido van Rossum provided much of the non-Zope-specific portions of the package.

F.7 Online Resources

The Python/XML community is centered around the Python XML Special Interest Group, or
XML-SIG. The group has a web page at http://www.python.org/sigs/xml-sig/.

As with most Python SIGs, everything really happens on a mailing list. Information on the
mailing list, including both links to the list archives and a subscription form, is available at the
XML-SIG web page.

IT-SC book
443

The XML-SIG is not only responsible for maintaining the PyXML package used extensively in
this book, but also the Python/XML Topic Guide, containing overviews of what's available for
working with XML in Python and links to additional online and published resources. The Topic
Guide is available at http://pyxml.sourceforge.net/topics/.

IT-SC book
444

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animals on the cover of Python and XML are elephant shrews. Different types of elephant
shrews are found throughout Africa, most residing along the coast. The elephant shrew's long
nose, which resembles an elephant's trunk, is the source of its name. The shrew pokes this trunk
under leaves and, with its even longer tongue, flicks food into its mouth. It feeds mostly on
termites and ants, but also eats shoots, berries, and roots.

Elephant shrews have long, soft fur that is sandy brown on the surface, fading to pale orange or
gray. Their bodies range from 3.7 to 4 inches in length, and their tails, 3.7 to 5 inches. They
weigh between 1 and 1.7 ounces. Elephant shrews grow to full size in about 46 days, and leave
their shelters anywhere from 18 to 36 days after birth. Because they mature and leave their nests
so quickly, predators rarely invade the nests.

Most elephant shrews do not burrow, as their feet are not well adapted for digging, but instead
find depressions in the ground in which to nest. As they settle into these depressions, they pull
leaves and debris over their heads for cover. The elephant shrew is very territorial, as it is mainly
a solitary animal. When others approach, the shrew will break into a sudden flurry of kicking,
screaming, sparring, and snapping until it is alone once more.

Mary Brady was the production editor and copyeditor for Python and XML. David Futato was
the proofreader. Matt Hutchinson and Claire Cloutier provided quality control. Edith Shapiro and
Camilla Ammirati provided production support. Johnna VanHoose Dinse wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The
cover image is an original illustration from Mammalia. Emma Colby produced the cover layout
with Quark XPress 4.1, using Adobe's ITC Garamond font.

David Futato designed the interior layout. Mihaela Maier converted the files from Microsoft
Word to FrameMaker 5.5.6, using tools created by Mike Sierra. The text font is Linotype Birka;
the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning
icons were drawn by Christopher Bing. This colophon was written by Linley Dolby.

