
Thinking
in

Python
Design Patterns and

Problem-Solving
Techniques

Bruce Eckel
President, MindView, Inc.

Please note that this document is in its initial form, and much remains to
be done.

Thinking

in

Python

Design Patterns and Problem-Solving Techniques

Bruce Eckel

President, MindView, Inc.

#[BT_1]#Please note that this document is in its initial form, and much remains to be done. Contents

HYPERLINK \l "_Toc534420052" Preface	5

HYPERLINK \l "_Toc534420053" Introduction	7

HYPERLINK \l "_Toc534420054" The Y2K syndrome	8

HYPERLINK \l "_Toc534420055" Context and composition	9

HYPERLINK \l "_Toc534420056" A quick course in Python for programmers	11

HYPERLINK \l "_Toc534420057" Python overview	11

HYPERLINK \l "_Toc534420058" Built-in containers	12

HYPERLINK \l "_Toc534420059" Functions	13

HYPERLINK \l "_Toc534420060" Strings	14

HYPERLINK \l "_Toc534420061" Classes	16

HYPERLINK \l "_Toc534420062" The pattern concept	21

HYPERLINK \l "_Toc534420063" What is a pattern?	21

HYPERLINK \l "_Toc534420064" Pattern taxonomy	23

HYPERLINK \l "_Toc534420065" Design Structures	24

HYPERLINK \l "_Toc534420066" Design principles	25

HYPERLINK \l "_Toc534420067" The Singleton	27

HYPERLINK \l "_Toc534420068" Classifying patterns	32

HYPERLINK \l "_Toc534420069" The development challenge	33

HYPERLINK \l "_Toc534420070" Exercises	34

HYPERLINK \l "_Toc534420071" 2: Unit Testing	34

HYPERLINK \l "_Toc534420072" Write tests first	36

HYPERLINK \l "_Toc534420073" Simple Python testing	37

HYPERLINK \l "_Toc534420074" A very simple framework	38

HYPERLINK \l "_Toc534420075" Writing tests	39

HYPERLINK \l "_Toc534420076" White-box & black-box tests	42

HYPERLINK \l "_Toc534420077" Running tests	44

HYPERLINK \l "_Toc534420078" Automatically executing tests	47

HYPERLINK \l "_Toc534420079" Exercises	47

HYPERLINK \l "_Toc534420080" 3: Building application frameworks	47

HYPERLINK \l "_Toc534420081" Template method	48

HYPERLINK \l "_Toc534420082" Exercises	49

HYPERLINK \l "_Toc534420083" 4:Fronting for an implementation	49

HYPERLINK \l "_Toc534420084" Proxy	50

HYPERLINK \l "_Toc534420085" State	52

HYPERLINK \l "_Toc534420086" StateMachine	54

HYPERLINK \l "_Toc534420087" Table-Driven State Machine	61

HYPERLINK \l "_Toc534420088" The State class	63

HYPERLINK \l "_Toc534420089" Conditions for transition	63

HYPERLINK \l "_Toc534420090" Transition actions	64

HYPERLINK \l "_Toc534420091" The table	64

HYPERLINK \l "_Toc534420092" The basic machine	65

HYPERLINK \l "_Toc534420093" Simple vending machine	65

HYPERLINK \l "_Toc534420094" Testing the machine	70

HYPERLINK \l "_Toc534420095" Tools	70

HYPERLINK \l "_Toc534420096" Exercises	70

HYPERLINK \l "_Toc534420097" X: Decorators: dynamic type selection	72

HYPERLINK \l "_Toc534420098" Basic decorator structure	73

HYPERLINK \l "_Toc534420099" A coffee example	73

HYPERLINK \l "_Toc534420100" Class for each combination	73

HYPERLINK \l "_Toc534420101" The decorator approach	76

HYPERLINK \l "_Toc534420102" Compromise	79

HYPERLINK \l "_Toc534420103" Other considerations	82

HYPERLINK \l "_Toc534420104" Exercises	82

HYPERLINK \l "_Toc534420105" Y: Iterators: decoupling algorithms from containers	83

HYPERLINK \l "_Toc534420106" Type-safe iterators	84

HYPERLINK \l "_Toc534420107" 5: Factories: encapsulating object creation	85

HYPERLINK \l "_Toc534420108" Simple Factory method	86

HYPERLINK \l "_Toc534420109" Polymorphic factories	88

HYPERLINK \l "_Toc534420110" Abstract factories	90

HYPERLINK \l "_Toc534420111" Exercises	94

HYPERLINK \l "_Toc534420112" 6: Function objects	94

HYPERLINK \l "_Toc534420113" Command: choosing the operation at run-time	95

HYPERLINK \l "_Toc534420114" Strategy: choosing the algorithm at run-time	96

HYPERLINK \l "_Toc534420115" Chain of responsibility	98

HYPERLINK \l "_Toc534420116" Exercises	101

HYPERLINK \l "_Toc534420117" 7: Changing the interface	102

HYPERLINK \l "_Toc534420118" Adapter	102

HYPERLINK \l "_Toc534420119" Façade	104

HYPERLINK \l "_Toc534420120" Exercises	105

HYPERLINK \l "_Toc534420121" 8: Table-driven code: configuration flexibility	105

HYPERLINK \l "_Toc534420122" Table-driven code using anonymous inner classes	105

HYPERLINK \l "_Toc534420123" 10: Callbacks	107

HYPERLINK \l "_Toc534420124" Observer	107

HYPERLINK \l "_Toc534420125" Observing flowers	109

HYPERLINK \l "_Toc534420126" A visual example of observers	116

HYPERLINK \l "_Toc534420127" Exercises	122

HYPERLINK \l "_Toc534420128" 11: Multiple dispatching	122

HYPERLINK \l "_Toc534420129" Visitor, a type of multiple dispatching	127

HYPERLINK \l "_Toc534420130" Exercises	128

HYPERLINK \l "_Toc534420131" 12: Pattern refactoring	130

HYPERLINK \l "_Toc534420132" Simulating the trash recycler	130

HYPERLINK \l "_Toc534420133" Improving the design	134

HYPERLINK \l "_Toc534420134" “Make more objects”	135

HYPERLINK \l "_Toc534420135" A pattern for prototyping creation	137

HYPERLINK \l "_Toc534420136" Trash subclasses	142

HYPERLINK \l "_Toc534420137" Parsing Trash from an external file	143

HYPERLINK \l "_Toc534420138" Recycling with prototyping	146

HYPERLINK \l "_Toc534420139" Abstracting usage	147

HYPERLINK \l "_Toc534420140" Multiple dispatching	151

HYPERLINK \l "_Toc534420141" Implementing the double dispatch	152

HYPERLINK \l "_Toc534420142" The Visitor pattern	158

HYPERLINK \l "_Toc534420143" A Reflective Decorator	161

HYPERLINK \l "_Toc534420144" More coupling?	166

HYPERLINK \l "_Toc534420145" RTTI considered harmful?	166

HYPERLINK \l "_Toc534420146" Summary	169

HYPERLINK \l "_Toc534420147" Exercises	171

HYPERLINK \l "_Toc534420148" 13: Projects	171

HYPERLINK \l "_Toc534420149" Rats & Mazes	171

HYPERLINK \l "_Toc534420150" Other maze resources	176

HYPERLINK \l "_Toc534420151" XML Decorator	176

Preface

The material in this book began in conjunction with a Java seminar that I have given for several years, a couple of times with Larry O’Brien, then with Bill Venners. Bill and I have given many iterations of this seminar and we’ve changed it many times over the years as we both have learned more about patterns and about giving the seminar. Add Comment

In the process we’ve both produced more than enough information for us each to have our own seminars, an urge that we’ve both strongly resisted because we have so much fun giving the seminar together. We’ve given the seminar in numerous places in the US, as well as in Prague (where we try to have a mini-conference every Spring together with a number of other seminars). We’ve occasionally given it as an on-site seminar, but this is expensive and difficult to schedule, because there are two of us. Add Comment

A great deal of appreciation goes to the people who have participated in these seminars over the years, and to Larry and Bill, as they have helped me work through these ideas and to refine them. I hope to be able to continue to form and develop these kinds of ideas through this book and seminar for many years to come. Add Comment

This book will not stop here, either. Originally, this material was part of a C++ book, then a Java book, then it broke off into its own Java-based book, and finally, after much pondering, I decided that the best way to initially create my design patterns treatise is to write it in Python first (since we know Python makes an ideal prototyping language!) and then translate the relevant parts of the book back into the Java version. I’ve had the experience before of casting an idea in a more powerful language, then translating it back into another language, and I’ve found that it’s much easier to gain insights and keep the idea clear. Add Comment

So Thinking in Python is, initially, a translation of Thinking in Patterns with Java, rather than an introduction to Python (there are already plenty of fine introductions to that superb language). I find this prospect to be much more exciting than the idea of struggling through another language tutorial (my apologies to those who were hoping for that). Add Comment

#[BT_2]#

Introduction

This is a book about design that I have been working on for years, basically ever since I first started trying to read Design Patterns (Gamma, Helm, Johnson & Vlissides, Addison-Wesley, 1995), commonly referred to as the Gang of Four This is a tongue-in-cheek reference to an event in China after the death of Mao-Tze Tung, when four persons including Mao’s widow made a power play, and were demonized by the Chinese Communist Party under that name. or just GoF). Add Comment

There is a chapter on design patterns in the first edition of Thinking in C++, which has evolved in Volume 2 of the second edition of Thinking in C++, and you’ll also find a chapter on patterns in the first edition of Thinking in Java. I took that chapter out of the second edition of Thinking in Java because that book was getting too big, and also because I had decided to write Thinking in Patterns. That book, still to be finished, has become this one. The ease of expressing these more complex ideas in Python will, I think, finally allow me to get it all out. Add Comment

This is not an introductory book. I am assuming that you have worked your way through at least Learning Python (by Mark Lutz & David Ascher; OReilly, 1999) or an equivalent text before coming to this book. Add Comment

In addition, I assume you have more than just a grasp of the syntax of Python. You should have a good understanding of objects and what they’re about, including polymorphism. Add Comment

On the other hand, by going through this book you’re going to learn a lot about object-oriented programming by seeing objects used in many different situations. If your knowledge of objects is rudimentary, it will get much stronger in the process of understanding the designs in this book. Add Comment

The Y2K syndrome

In a book that has “problem-solving techniques” in its subtitle, it’s worth mentioning one of the biggest pitfalls in programming: premature optimization. Every time I bring this concept forward, virtually everyone agrees to it. Also, everyone seems to reserve in their own mind a special case “except for this thing that I happen to know is a particular problem.” Add Comment

The reason I call this the Y2K syndrome has to do with that special knowledge. Computers are a mystery to most people, so when someone announced that those silly computer programmers had forgotten to put in enough digits to hold dates past the year 1999, then suddenly everyone became a computer expert – “these things aren’t so difficult after all, if I can see such an obvious problem.” For example, my background was originally in computer engineering, and I started out by programming embedded systems. As a result, I know that many embedded systems have no idea what the date or time is, and even if they do that data often isn’t used in any important calculations. And yet I was told in no uncertain terms that all the embedded systems were going to crash on January 1, 2000 These same people were also convinced that all the computers were going to crash then, too. But since virtually everyone had the experience of their Windows machine crashing all the time without particularly dire results, this didn’t seem to carry the same drama of impending doom.. As far as I can tell the only memory that was lost on that particular date was that of the people who were predicting doom – it’s as if they had never said any of that stuff. Add Comment

The point is that it’s very easy to fall into a habit of thinking that the particular algorithm or piece of code that you happen to partly or thoroughly understand is naturally going to be the bottleneck in your system, simply because you can imagine what’s going on in that piece of code and so you think that it must somehow be much less efficient than all the other pieces of code that you don’t know about. But unless you’ve run actual tests, typically with a profiler, you can’t really know what’s going on. And even if you are right, that a piece of code is very inefficient, remember that most programs spend something like 90% of their time in less than 10% of the code in the program, so unless the piece of code you’re thinking about happens to fall into that 10% it isn’t going to be important. Add Comment

“Premature optimization is the root of all evil.” is sometimes referred to as “Knuth’s law” (from Donald E. Knuth). Add Comment

Context and composition

One of the terms you will see used over and over in design patterns literature is context. In fact, one common definition of a design pattern is “a solution to a problem in a context.” The GoF patterns often have a “context object” that the client programmer interacts with. At one point it occurred to me that such objects seemed to dominate the landscape of many patterns, and so I began asking what they were about. Add Comment

The context object often acts as a little façade to hide the complexity of the rest of the pattern, and in addition it will often be the controller that manages the operation of the pattern. Initially, it seemed to me that these were not really essential to the implementation, use and understanding of the pattern. However, I remembered one of the more dramatic statements made in the GoF: “prefer composition to inheritance.” The context object allows you to use the pattern in a composition, and that may be its primary value. Add CommentA quick course in Python for programmers

This book assumes you’re an experienced programmer, and it’s best if you have learned Python through another book. For everyone else, this chapter gives a fast introduction to the language. Add Comment

Python overview

This#[BT_266]#This brief introduction is for the experienced programmer (which is what you should be if you’re reading this book). You can refer to the full documentation at www.Python.org (especially the incredibly useful HTML page A Python Quick Reference), and also numerous books such as Learning Python by Mark Lutz and David Ascher (O’Reilly, 1999). Add Comment

#[BT_267]#Python is often referred to as a scripting language, but scripting languages tend to be limiting, especially in the scope of the problems that they solve. Python, on the other hand, is a programming language that also supports scripting. It is marvelous for scripting, and you may find yourself replacing all your batch files, shell scripts, and simple programs with Python scripts. But it is far more than a scripting language. Add Comment

#[BT_268]#Python is designed to be very clean to write and especially to read. You will find that it’s quite easy to read your own code long after you’ve written it, and also to read other people’s code. This is accomplished partially through clean, to-the-point syntax, but a major factor in code readability is indentation – scoping in Python is determined by indentation. For example: Add Comment

#: c01:if.py

response = "yes"

if response == "yes":

 print "affirmative"

 val = 1

print "continuing..."

#:~

#[BT_269]#The ‘#’ denotes a comment that goes until the end of the line, just like C++ and Java ‘//’ comments. Add Comment

#[BT_270]#First notice that the basic syntax of Python is C-ish as you can see in the if statement. But in a C if, you would be required to use parentheses around the conditional, whereas they are not necessary in Python (it won’t complain if you use them anyway). Add Comment

#[BT_271]#The conditional clause ends with a colon, and this indicates that what follows will be a group of indented statements, which are the “then” part of the if statement. In this case, there is a “print” statement which sends the result to standard output, followed by an assignment to a variable named val. The subsequent statement is not indented so it is no longer part of the if. Indenting can nest to any level, just like curly braces in C++ or Java, but unlike those languages there is no option (and no argument) about where the braces are placed – the compiler forces everyone’s code to be formatted the same way, which is one of the main reasons for Python’s consistent readability. Add Comment

#[BT_272]#Python normally has only one statement per line (you can put more by separating them with semicolons), thus no terminating semicolon is necessary. Even from the brief example above you can see that the language is designed to be as simple as possible, and yet still very readable. Add Comment

Built-in containers

#[BT_273]#With languages like C++ and Java, containers are add-on libraries and not integral to the language. In Python, the essential nature of containers for programming is acknowledged by building them into the core of the language: both lists and associative arrays (a.k.a. maps, dictionaries, hash tables) are fundamental data types. This adds much to the elegance of the language. Add Comment

#[BT_274]#In addition, the for statement automatically iterates through lists rather than just counting through a sequence of numbers. This makes a lot of sense when you think about it, since you’re almost always using a for loop to step through an array or a container. Python formalizes this by automatically making for use an iterator that works through a sequence. Here’s an example: Add Comment

#: c01:list.py

list = [1, 3, 5, 7, 9, 11]

print list

list.append(13)

for x in list:

 print x

#:~

#[BT_275]#The first line creates a list. You can print the list and it will look exactly as you put it in (in contrast, remember that I had to create a special Arrays2 class in Thinking in Java, 2nd Edition in order to print arrays in Java). Lists are like Java containers – you can add new elements to them (here, append() is used) and they will automatically resize themselves. The for statement creates an iterator x which takes on each value in the list. Add Comment

#[BT_276]#You can create a list of numbers with the range() function, so if you really need to imitate C’s for, you can. Add Comment

#[BT_277]#Notice that there aren’t any type declarations – the object names simply appear, and Python infers their type by the way that you use them. It’s as if Python is designed so that you only need to press the keys that absolutely must. You’ll find after you’ve worked with Python for a short while that you’ve been using up a lot of brain cycles parsing semicolons, curly braces, and all sorts of other extra verbiage that was demanded by your non-Python programming language but didn’t actually describe what your program was supposed to do. Add Comment

Functions

#[BT_278]#To create a function in Python, you use the def keyword, followed by the function name and argument list, and a colon to begin the function body. Here is the first example turned into a function: Add Comment

#: c01:myFunction.py

def myFunction(response):

 val = 0

 if response == "yes":

 print "affirmative"

 val = 1

 print "continuing..."

 return val

print myFunction("no")

print myFunction("yes")

#:~

#[BT_279]#Notice there is no type information in the function signature – all it specifies is the name of the function and the argument identifiers, but no argument types or return types. Python is a weakly-typed language, which means it puts the minimum possible requirements on typing. For example, you could pass and return different types from the same function: Add Comment

#: c01:differentReturns.py

def differentReturns(arg):

 if arg == 1:

 return "one"

 if arg == "one":

 return 1

print differentReturns(1)

print differentReturns("one")

#:~

#[BT_280]#The only constraints on an object that is passed into the function are that the function can apply its operations to that object, but other than that, it doesn’t care. Here, the same function applies the ‘+’ operator to integers and strings: Add Comment

#: c01:sum.py

def sum(arg1, arg2):

 return arg1 + arg2

print sum(42, 47)

print sum('spam ', "eggs")

#:~

#[BT_281]#When the operator ‘+’ is used with strings, it means concatenation (yes, Python supports operator overloading, and it does a nice job of it). Add Comment

Strings

#[BT_282]#The above example also shows a little bit about Python string handling, which is the best of any language I’ve seen. You can use single or double quotes to represent strings, which is very nice because if you surround a string with double quotes, you can embed single quotes and vice versa: Add Comment

#: c01:strings.py

print "That isn't a horse"

print 'You are not a "Viking"'

print """You're just pounding two

coconut halves together."""

print '''"Oh no!" He exclaimed.

"It's the blemange!"'''

print r'c:\python\lib\utils'

#:~

#[BT_283]#Note that Python was not named after the snake, but rather the Monty Python comedy troupe, and so examples are virtually required to include Python-esque references. Add Comment

#[BT_284]#The triple-quote syntax quotes everything, including newlines. This makes it particularly useful for doing things like generating web pages (Python is an especially good CGI language), since you can just triple-quote the entire page that you want without any other editing. Add Comment

#[BT_285]#The ‘r’ right before a string means “raw,” which takes the backslashes literally so you don’t have to put in an extra backslash in order to insert a literal backslash. Add Comment

#[BT_286]#Substitution in strings is exceptionally easy, since Python uses C’s printf() substitution syntax, but for any string at all. You simply follow the string with a ‘%’ and the values to substitute: Add Comment

#: c01:stringFormatting.py

val = 47

print "The number is %d" % val

val2 = 63.4

s = "val: %d, val2: %f" % (val, val2)

print s

#:~

#[BT_287]#As you can see in the second case, if you have more than one argument you surround them in parentheses (this forms a tuple, which is a list that cannot be modified – you can also use regular lists for multiple arguments, but tuples are typical). Add Comment

#[BT_288]#All the formatting from printf() is available, including control over the number of decimal places and alignment. Python also has very sophisticated regular expressions. Add Comment

Classes

#[BT_289]#Like everything else in Python, the definition of a class uses a minimum of additional syntax. You use the class keyword, and inside the body you use def to create methods. Here’s a simple class: Add Comment

#: c01:SimpleClass.py

class Simple:

 def __init__(self, str):

 print "Inside the Simple constructor"

 self.s = str

 # Two methods:

 def show(self):

 print self.s

 def showMsg(self, msg):

 print msg + ':',

 self.show() # Calling another method

if __name__ == "__main__":

 # Create an object:

 x = Simple("constructor argument")

 x.show()

 x.showMsg("A message")

#:~

#[BT_290]#Both methods have “self” as their first argument. C++ and Java both have a hidden first argument in their class methods, which points to the object that the method was called for and can be accessed using the keyword this. Python methods also use a reference to the current object, but when you are defining a method you must explicitly specify the reference as the first argument. Traditionally, the reference is called self but you could use any identifier you want (if you do not use self you will probably confuse a lot of people, however). If you need to refer to fields in the object or other methods in the object, you must use self in the expression. However, when you call a method for an object as in x.show(), you do not hand it the reference to the object – that is done for you. Add Comment

#[BT_291]#Here, the first method is special, as is any identifier that begins and ends with double underscores. In this case, it defines the constructor, which is automatically called when the object is created, just like in C++ and Java. However, at the bottom of the example you can see that the creation of an object looks just like a function call using the class name. Python’s spare syntax makes you realize that the new keyword isn’t really necessary in C++ or Java, either. Add Comment

#[BT_292]#All the code at the bottom is set off by an if clause, which checks to see if something called __name__ is equivalent to __main__. Again, the double underscores indicate special names. The reason for the if is that any file can also be used as a library module within another program (modules are described shortly). In that case, you just want the classes defined, but you don’t want the code at the bottom of the file to be executed. This particular if statement is only true when you are running this file directly; that is, if you say on the command line: Add Comment

Python SimpleClass.py

#[BT_293]#However, if this file is imported as a module into another program, the __main__ code is not executed. Add Comment

#[BT_294]#Something that’s a little surprising at first is that you define fields inside methods, and not outside of the methods like C++ or Java (if you create fields using the C++/Java style, they implicitly become static fields). To create an object field, you just name it – using self – inside of one of the methods (usually in the constructor, but not always), and space is created when that method is run. This seems a little strange coming from C++ or Java where you must decide ahead of time how much space your object is going to occupy, but it turns out to be a very flexible way to program. Add Comment

Inheritance

#[BT_295]#Because Python is weakly typed, it doesn’t really care about interfaces – all it cares about is applying operations to objects (in fact, Java’s interface keyword would be wasted in Python). This means that inheritance in Python is different from inheritance in C++ or Java, where you often inherit simply to establish a common interface. In Python, the only reason you inherit is to inherit an implementation – to re-use the code in the base class. Add Comment

#[BT_296]#If you’re going to inherit from a class, you must tell Python to bring that class into your new file. Python controls its name spaces as aggressively as Java does, and in a similar fashion (albeit with Python’s penchant for simplicity). Every time you create a file, you implicitly create a module (which is like a package in Java) with the same name as that file. Thus, no package keyword is needed in Python. When you want to use a module, you just say import and give the name of the module. Python searches the PYTHONPATH in the same way that Java searches the CLASSPATH (but for some reason, Python doesn’t have the same kinds of pitfalls as Java does) and reads in the file. To refer to any of the functions or classes within a module, you give the module name, a period, and the function or class name. If you don’t want the trouble of qualifying the name, you can say

#[BT_297]#from module import name(s)

#[BT_298]#Where “name(s)” can be a list of names separated by commas. Add Comment

#[BT_299]#You inherit a class (or classes – Python supports multiple inheritance) by listing the name(s) of the class inside parentheses after the name of the inheriting class. Note that the Simple class, which resides in the file (and thus, module) named SimpleClass is brought into this new name space using an import statement: Add Comment

#: c01:Simple2.py

from SimpleClass import Simple

class Simple2(Simple):

 def __init__(self, str):

 print "Inside Simple2 constructor"

 # You must explicitly call

 # the base-class constructor:

 Simple.__init__(self, str)

 def display(self):

 self.showMsg("Called from display()")

 # Overriding a base-class method

 def show(self):

 print "Overridden show() method"

 # Calling a base-class method from inside

 # the overridden method:

 Simple.show(self)

class Different:

 def show(self):

 print "Not derived from Simple"

if __name__ == "__main__":

 x = Simple2("Simple2 constructor argument")

 x.display()

 x.show()

 x.showMsg("Inside main")

 def f(obj): obj.show() # One-line definition

 f(x)

 f(Different())

#:~

#[BT_300]#Simple2 is inherited from Simple, and in the constructor, the base-class constructor is called. In display(), showMsg() can be called as a method of self, but when calling the base-class version of the method you are overriding, you must fully qualify the name and pass self in as the first argument, as shown in the base-class constructor call. This can also be seen in the overridden version of show(). Add Comment

#[BT_301]#In __main__, you will see (when you run the program) that the base-class constructor is called. You can also see that the showMsg() method is available in the derived class, just as you would expect with inheritance. Add Comment

#[BT_302]#The class Different also has a method named show(), but this class is not derived from Simple. The f() method defined in __main__ demonstrates weak typing: all it cares about is that show() can be applied to obj, and it doesn’t have any other type requirements. You can see that f() can be applied equally to an object of a class derived from Simple and one that isn’t, without discrimination. If you’re a C++ programmer, you should see that the objective of the C++ template feature is exactly this: to provide weak typing in a strongly-typed language. Thus, in Python you automatically get the equivalent of templates – without having to learn that particularly difficult syntax and semantics. Add Comment

[[Suggest Further Topics for inclusion in the introductory chapter]][Add Comment

#[BT_4]#

The pattern concept

“Design patterns help you learn from others' successes instead of your own failures From Mark Johnson..” Add Comment

#[BT_6]#Probably the most important step forward in object-oriented design is the “design patterns” movement, chronicled in design patternspatterns, design patternsDesign Patterns (ibid) #[BT_F1]#But be warned: the examples are in C++.. That book shows 23 different solutions to particular classes of problems. In this book, the basic concepts of design patterns will be introduced along with examples. This should whet your appetite to read Design Patterns by Gamma, et. al., a source of what has now become an essential, almost mandatory, vocabulary for OOP programmers. Add Comment

#[BT_7]#The latter part of this book contains an example of the design evolution process, starting with an initial solution and moving through the logic and process of evolving the solution to more appropriate designs. The program shown (a trash sorting simulation) has evolved over time, and you can look at that evolution as a prototype for the way your own design can start as an adequate solution to a particular problem and evolve into a flexible approach to a class of problems. Add Comment

What is a pattern?

#[BT_8]#Initially, you can think of a pattern as an especially clever and insightful way of solving a particular class of problems. That is, it looks like a lot of people have worked out all the angles of a problem and have come up with the most general, flexible solution for it. The problem could be one you have seen and solved before, but your solution probably didn’t have the kind of completeness you’ll see embodied in a pattern. Add Comment

#[BT_9]#Although they’re called “design patterns,” they really aren’t tied to the realm of design. A pattern seems to stand apart from the traditional way of thinking about analysis, design, and implementation. Instead, a pattern embodies a complete idea within a program, and thus it can sometimes appear at the analysis phase or high-level design phase. This is interesting because a pattern has a direct implementation in code and so you might not expect it to show up before low-level design or implementation (and in fact you might not realize that you need a particular pattern until you get to those phases). Add Comment

#[BT_10]#The basic concept of a pattern can also be seen as the basic concept of program design: adding a layer of abstraction in program designdesign abstraction in program designabstraction. Whenever you abstract something you’re isolating particular details, and one of the most compelling motivations behind this is to separate things that change from things that stay the same. Another way to put this is that once you find some part of your program that’s likely to change for one reason or another, you’ll want to keep those changes from propagating other changes throughout your code. Not only does this make the code much cheaper to maintain, but it also turns out that it is usually simpler to understand (which results in lowered costs). Add Comment

#[BT_11]#Often, the most difficult part of developing an elegant and cheap-to-maintain design is in discovering what I call “the vector of changechange vector of changedesign patterns vector of changevector of change.” (Here, “vector” refers to the maximum gradient and not a container class.) This means finding the most important thing that changes in your system, or put another way, discovering where your greatest cost is. Once you discover the vector of change, you have the focal point around which to structure your design. Add Comment

#[BT_12]#So the goal of design patterns is to isolate changes in your code. If you look at it this way, you’ve been seeing some design patterns already in this book. For example, inheritance and design patternsinheritance can be thought of as a design pattern (albeit one implemented by the compiler). It allows you to express differences in behavior (that’s the thing that changes) in objects that all have the same interface (that’s what stays the same). compositionand design patternsComposition can also be considered a pattern, since it allows you to change—dynamically or statically—the objects that implement your class, and thus the way that class works. Add Comment

#[BT_13]#Another pattern that appears in Design Patterns is the iteratoriterator, which has been implicitly available in for loops from the beginning of the language, and was introduced as an explicit feature in Python 2.2. An iterator allows you to hide the particular implementation of the container as you’re stepping through and selecting the elements one by one. Thus, you can write generic code that performs an operation on all of the elements in a sequence without regard to the way that sequence is built. Thus your generic code can be used with any object that can produce an iterator. Add Comment

Pattern taxonomy

#[BT_14]#One of the events that’s occurred with the rise of design patterns is what could be thought of as the “pollution” of the term – people have begun to use the term to mean just about anything synonymous with “good.” After some pondering, I’ve come up with a sort of hierarchy describing a succession of different types of categories: Add Comment

#[BT_15]#Idiom: how we write code in a particular language to do this particular type of thing. This could be something as common as the way that you code the process of stepping through an array in C (and not running off the end). Add Comment

#[BT_16]#Specific Design: the solution that we came up with to solve this particular problem. This might be a clever design, but it makes no attempt to be general. Add Comment

#[BT_17]#Standard Design: a way to solve this kind of problem. A design that has become more general, typically through reuse. Add Comment

#[BT_18]#Design Pattern: how to solve an entire class of similar problem. This usually only appears after applying a standard design a number of times, and then seeing a common pattern throughout these applications. Add Comment

#[BT_19]#I feel this helps put things in perspective, and to show where something might fit. However, it doesn’t say that one is better than another. It doesn’t make sense to try to take every problem solution and generalize it to a design pattern – it’s not a good use of your time, and you can’t force the discovery of patterns that way; they tend to be subtle and appear over time. Add Comment

#[BT_20]#One could also argue for the inclusion of Analysis Pattern and Architectural Pattern in this taxonomy. Add Comment

Design Structures

One of the struggles that I’ve had with design patterns is their classification – I’ve often found the GoF approach to be too obscure, and not always very helpful. Certainly, the Creational patterns are fairly straightforward: how are you going to create your objects? This is a question you normally need to ask, and the name brings you right to that group of patterns. But I find Structural and Behavioral to be far less useful distinctions. I have not been able to look at a problem and say “clearly, you need a structural pattern here,” so that classification doesn’t lead me to a solution (I’ll readily admit that I may be missing something here). Add Comment

I’ve labored for awhile with this problem, first noting that the underlying structure of some of the GoF patterns are similar to each other, and trying to develop relationships based on that similarity. While this was an interesting experiment, I don’t think it produced much of use in the end because the point is to solve problems, so a helpful approach will look at the problem to solve and try to find relationships between the problem and potential solutions. Add Comment

To that end, I’ve begun to try to collect basic design structures, and to try to see if there’s a way to relate those structures to the various design patterns that appear in well thought-out systems. Currently, I’m just trying to make a list, but eventually I hope to make steps towards connecting these structures with patterns (or I may come up with a different approach altogether – this is still in its formative stages). Add Comment

Here This list includes suggestions by Kevlin Henney, David Scott, and others. is the present list of candidates, only some of which will make it to the final list. Feel free to suggest others, or possibly relationships with patterns. Add Comment

		Encapsulation: self containment and embodying a model of usage

		Gathering Add CommentBruce Eckel�
TIPython.rtf�

Contents
Preface 5

Introduction 7
The Y2K syndrome..............8
Context and composition9

A quick course in Python for programmers 11
Python overview11

Built-in containers12
Functions13
Strings ...14
Classes ...16

The pattern concept 21
What is a pattern? 21
Pattern taxonomy..............23
Design Structures24
Design principles...............25
The Singleton..................... 27
Classifying patterns...........32
The development challenge33
Exercises34

2: Unit Testing 34
Write tests first36
Simple Python testing 37
A very simple framework ..38
Writing tests39
White-box & black-box tests42
Running tests.....................44
Automatically executing tests47
Exercises 47

3: Building application frameworks 47
Template method48
Exercises49

4:Fronting for an implementation 49
Proxy50
State52
StateMachine.....................54
Table-Driven State Machine61

The State class63
Conditions for transition..............63
Transition actions.........................64
The table64
The basic machine 65
Simple vending machine 65
Testing the machine70

Tools...................................70
Exercises70

X: Decorators: dynamic type selection 72
Basic decorator structure ..73
A coffee example................73
Class for each combination73
The decorator approach76
Compromise79
Other considerations.........82
Exercises82

Y: Iterators: decoupling algorithms from containers 83
Type-safe iterators.............84

5: Factories: encapsulating object creation 85
Simple Factory method86
Polymorphic factories 88
Abstract factories.............. 90
Exercises93

6: Function objects 94
Command: choosing the operation at run-time 94
Strategy: choosing the algorithm at run-time 96
Chain of responsibility97
Exercises 101

7: Changing the interface 101
Adapter 101
Façade..............................103
Exercises104

8: Table-driven code: configuration flexibility 105
Table-driven code using anonymous inner classes 105

10: Callbacks 107
Observer 107

Observing flowers 109
A visual example of observers 116
Exercises 122

11: Multiple dispatching 122
Visitor, a type of multiple dispatching 127
Exercises 128

12: Pattern refactoring 130
Simulating the trash recycler130
Improving the design 134

“Make more objects”135
A pattern for prototyping creation 137

Trash subclasses142
Parsing Trash from an external file143
Recycling with prototyping.........146

Abstracting usage 147
Multiple dispatching151

Implementing the double dispatch152
The Visitor pattern.......... 158

A Reflective Decorator 161
More coupling?166

RTTI considered harmful?166
Summary 169
Exercises171

13: Projects 171
Rats & Mazes171

Other maze resources..................176
XML Decorator................ 176

Preface
The material in this book began in conjunction with a
Java seminar that I have given for several years, a couple
of times with Larry O’Brien, then with Bill Venners. Bill

and I have given many iterations of this seminar and
we’ve changed it many times over the years as we both
have learned more about patterns and about giving the
seminar. Add Comment

In the process we’ve both produced more than enough information for us
each to have our own seminars, an urge that we’ve both strongly resisted
because we have so much fun giving the seminar together. We’ve given the
seminar in numerous places in the US, as well as in Prague (where we try
to have a mini-conference every Spring together with a number of other
seminars). We’ve occasionally given it as an on-site seminar, but this is
expensive and difficult to schedule, because there are two of us. Add
Comment

A great deal of appreciation goes to the people who have participated in
these seminars over the years, and to Larry and Bill, as they have helped
me work through these ideas and to refine them. I hope to be able to
continue to form and develop these kinds of ideas through this book and
seminar for many years to come. Add Comment

This book will not stop here, either. Originally, this material was part of a
C++ book, then a Java book, then it broke off into its own Java-based
book, and finally, after much pondering, I decided that the best way to
initially create my design patterns treatise is to write it in Python first
(since we know Python makes an ideal prototyping language!) and then
translate the relevant parts of the book back into the Java version. I’ve
had the experience before of casting an idea in a more powerful language,
then translating it back into another language, and I’ve found that it’s
much easier to gain insights and keep the idea clear. Add Comment

So Thinking in Python is, initially, a translation of Thinking in Patterns
with Java, rather than an introduction to Python (there are already plenty
of fine introductions to that superb language). I find this prospect to be
much more exciting than the idea of struggling through another language
tutorial (my apologies to those who were hoping for that). Add Comment

Introduction
This is a book about design that I have been working on
for years, basically ever since I first started trying to read
Design Patterns (Gamma, Helm, Johnson & Vlissides,
Addison-Wesley, 1995), commonly referred to as the
Gang of Four1 or just GoF). Add Comment

There is a chapter on design patterns in the first edition of Thinking in
C++, which has evolved in Volume 2 of the second edition of Thinking in
C++, and you’ll also find a chapter on patterns in the first edition of
Thinking in Java. I took that chapter out of the second edition of
Thinking in Java because that book was getting too big, and also because
I had decided to write Thinking in Patterns. That book, still to be finished,
has become this one. The ease of expressing these more complex ideas in
Python will, I think, finally allow me to get it all out. Add Comment

This is not an introductory book. I am assuming that you have worked
your way through at least Learning Python (by Mark Lutz & David
Ascher; OReilly, 1999) or an equivalent text before coming to this book.
Add Comment

In addition, I assume you have more than just a grasp of the syntax of
Python. You should have a good understanding of objects and what
they’re about, including polymorphism. Add Comment

On the other hand, by going through this book you’re going to learn a lot
about object-oriented programming by seeing objects used in many
different situations. If your knowledge of objects is rudimentary, it will get
much stronger in the process of understanding the designs in this book.
Add Comment

1 This is a tongue-in-cheek reference to an event in China after the death of Mao-
Tze Tung, when four persons including Mao’s widow made a power play, and
were demonized by the Chinese Communist Party under that name.

The Y2K syndrome
In a book that has “problem-solving techniques” in its subtitle, it’s worth
mentioning one of the biggest pitfalls in programming: premature
optimization. Every time I bring this concept forward, virtually everyone
agrees to it. Also, everyone seems to reserve in their own mind a special
case “except for this thing that I happen to know is a particular problem.”
Add Comment

The reason I call this the Y2K syndrome has to do with that special
knowledge. Computers are a mystery to most people, so when someone
announced that those silly computer programmers had forgotten to put in
enough digits to hold dates past the year 1999, then suddenly everyone
became a computer expert – “these things aren’t so difficult after all, if I
can see such an obvious problem.” For example, my background was
originally in computer engineering, and I started out by programming
embedded systems. As a result, I know that many embedded systems have
no idea what the date or time is, and even if they do that data often isn’t
used in any important calculations. And yet I was told in no uncertain
terms that all the embedded systems were going to crash on January 1,
20002. As far as I can tell the only memory that was lost on that particular
date was that of the people who were predicting doom – it’s as if they had
never said any of that stuff. Add Comment

The point is that it’s very easy to fall into a habit of thinking that the
particular algorithm or piece of code that you happen to partly or
thoroughly understand is naturally going to be the bottleneck in your
system, simply because you can imagine what’s going on in that piece of
code and so you think that it must somehow be much less efficient than all
the other pieces of code that you don’t know about. But unless you’ve run
actual tests, typically with a profiler, you can’t really know what’s going
on. And even if you are right, that a piece of code is very inefficient,
remember that most programs spend something like 90% of their time in
less than 10% of the code in the program, so unless the piece of code
you’re thinking about happens to fall into that 10% it isn’t going to be
important. Add Comment

2 These same people were also convinced that all the computers were going to
crash then, too. But since virtually everyone had the experience of their Windows
machine crashing all the time without particularly dire results, this didn’t seem to
carry the same drama of impending doom.

“Premature optimization is the root of all evil.” is sometimes referred to as
“Knuth’s law” (from Donald E. Knuth). Add Comment

Context and composition
One of the terms you will see used over and over in design patterns
literature is context. In fact, one common definition of a design pattern is
“a solution to a problem in a context.” The GoF patterns often have a
“context object” that the client programmer interacts with. At one point it
occurred to me that such objects seemed to dominate the landscape of
many patterns, and so I began asking what they were about. Add
Comment

The context object often acts as a little façade to hide the complexity of the
rest of the pattern, and in addition it will often be the controller that
manages the operation of the pattern. Initially, it seemed to me that these
were not really essential to the implementation, use and understanding of
the pattern. However, I remembered one of the more dramatic statements
made in the GoF: “prefer composition to inheritance.” The context object
allows you to use the pattern in a composition, and that may be its
primary value. Add Comment

A quick course in
Python for
programmers

This book assumes you’re an experienced programmer,
and it’s best if you have learned Python through another
book. For everyone else, this chapter gives a fast
introduction to the language. Add Comment

Python overview
This brief introduction is for the experienced programmer (which is what
you should be if you’re reading this book). You can refer to the full
documentation at www.Python.org (especially the incredibly useful
HTML page A Python Quick Reference), and also numerous books such as
Learning Python by Mark Lutz and David Ascher (O’Reilly, 1999). Add
Comment

Python is often referred to as a scripting language, but scripting languages
tend to be limiting, especially in the scope of the problems that they solve.
Python, on the other hand, is a programming language that also supports
scripting. It is marvelous for scripting, and you may find yourself
replacing all your batch files, shell scripts, and simple programs with
Python scripts. But it is far more than a scripting language. Add Comment

Python is designed to be very clean to write and especially to read. You
will find that it’s quite easy to read your own code long after you’ve written
it, and also to read other people’s code. This is accomplished partially
through clean, to-the-point syntax, but a major factor in code readability
is indentation – scoping in Python is determined by indentation. For
example: Add Comment

#: c01:if.py

response = "yes"
if response == "yes":
 print "affirmative"
 val = 1
print "continuing..."
#:~
The ‘#’ denotes a comment that goes until the end of the line, just like
C++ and Java ‘//’ comments. Add Comment

First notice that the basic syntax of Python is C-ish as you can see in the if
statement. But in a C if, you would be required to use parentheses around
the conditional, whereas they are not necessary in Python (it won’t
complain if you use them anyway). Add Comment

The conditional clause ends with a colon, and this indicates that what
follows will be a group of indented statements, which are the “then” part
of the if statement. In this case, there is a “print” statement which sends
the result to standard output, followed by an assignment to a variable
named val. The subsequent statement is not indented so it is no longer
part of the if. Indenting can nest to any level, just like curly braces in C++
or Java, but unlike those languages there is no option (and no argument)
about where the braces are placed – the compiler forces everyone’s code to
be formatted the same way, which is one of the main reasons for Python’s
consistent readability. Add Comment

Python normally has only one statement per line (you can put more by
separating them with semicolons), thus no terminating semicolon is
necessary. Even from the brief example above you can see that the
language is designed to be as simple as possible, and yet still very
readable. Add Comment

Built-in containers
With languages like C++ and Java, containers are add-on libraries and not
integral to the language. In Python, the essential nature of containers for
programming is acknowledged by building them into the core of the
language: both lists and associative arrays (a.k.a. maps, dictionaries, hash
tables) are fundamental data types. This adds much to the elegance of the
language. Add Comment

In addition, the for statement automatically iterates through lists rather
than just counting through a sequence of numbers. This makes a lot of
sense when you think about it, since you’re almost always using a for loop
to step through an array or a container. Python formalizes this by

automatically making for use an iterator that works through a sequence.
Here’s an example: Add Comment

#: c01:list.py
list = [1, 3, 5, 7, 9, 11]
print list
list.append(13)
for x in list:
 print x
#:~
The first line creates a list. You can print the list and it will look exactly as
you put it in (in contrast, remember that I had to create a special Arrays2
class in Thinking in Java, 2nd Edition in order to print arrays in Java).
Lists are like Java containers – you can add new elements to them (here,
append() is used) and they will automatically resize themselves. The for
statement creates an iterator x which takes on each value in the list. Add
Comment

You can create a list of numbers with the range() function, so if you
really need to imitate C’s for, you can. Add Comment

Notice that there aren’t any type declarations – the object names simply
appear, and Python infers their type by the way that you use them. It’s as
if Python is designed so that you only need to press the keys that
absolutely must. You’ll find after you’ve worked with Python for a short
while that you’ve been using up a lot of brain cycles parsing semicolons,
curly braces, and all sorts of other extra verbiage that was demanded by
your non-Python programming language but didn’t actually describe what
your program was supposed to do. Add Comment

Functions
To create a function in Python, you use the def keyword, followed by the
function name and argument list, and a colon to begin the function body.
Here is the first example turned into a function: Add Comment

#: c01:myFunction.py
def myFunction(response):
 val = 0
 if response == "yes":
 print "affirmative"
 val = 1
 print "continuing..."
 return val

print myFunction("no")
print myFunction("yes")
#:~
Notice there is no type information in the function signature – all it
specifies is the name of the function and the argument identifiers, but no
argument types or return types. Python is a weakly-typed language, which
means it puts the minimum possible requirements on typing. For
example, you could pass and return different types from the same
function: Add Comment

#: c01:differentReturns.py
def differentReturns(arg):
 if arg == 1:
 return "one"
 if arg == "one":
 return 1

print differentReturns(1)
print differentReturns("one")
#:~
The only constraints on an object that is passed into the function are that
the function can apply its operations to that object, but other than that, it
doesn’t care. Here, the same function applies the ‘+’ operator to integers
and strings: Add Comment

#: c01:sum.py
def sum(arg1, arg2):
 return arg1 + arg2

print sum(42, 47)
print sum('spam ', "eggs")
#:~
When the operator ‘+’ is used with strings, it means concatenation (yes,
Python supports operator overloading, and it does a nice job of it). Add
Comment

Strings
The above example also shows a little bit about Python string handling,
which is the best of any language I’ve seen. You can use single or double
quotes to represent strings, which is very nice because if you surround a
string with double quotes, you can embed single quotes and vice versa:
Add Comment

#: c01:strings.py
print "That isn't a horse"
print 'You are not a "Viking"'
print """You're just pounding two
coconut halves together."""
print '''"Oh no!" He exclaimed.
"It's the blemange!"'''
print r'c:\python\lib\utils'
#:~
Note that Python was not named after the snake, but rather the Monty
Python comedy troupe, and so examples are virtually required to include
Python-esque references. Add Comment

The triple-quote syntax quotes everything, including newlines. This makes
it particularly useful for doing things like generating web pages (Python is
an especially good CGI language), since you can just triple-quote the
entire page that you want without any other editing. Add Comment

The ‘r’ right before a string means “raw,” which takes the backslashes
literally so you don’t have to put in an extra backslash in order to insert a
literal backslash. Add Comment

Substitution in strings is exceptionally easy, since Python uses C’s
printf() substitution syntax, but for any string at all. You simply follow
the string with a ‘%’ and the values to substitute: Add Comment

#: c01:stringFormatting.py
val = 47
print "The number is %d" % val
val2 = 63.4
s = "val: %d, val2: %f" % (val, val2)
print s
#:~
As you can see in the second case, if you have more than one argument
you surround them in parentheses (this forms a tuple, which is a list that
cannot be modified – you can also use regular lists for multiple
arguments, but tuples are typical). Add Comment

All the formatting from printf() is available, including control over the
number of decimal places and alignment. Python also has very
sophisticated regular expressions. Add Comment

Classes
Like everything else in Python, the definition of a class uses a minimum of
additional syntax. You use the class keyword, and inside the body you use
def to create methods. Here’s a simple class: Add Comment

#: c01:SimpleClass.py
class Simple:
 def __init__(self, str):
 print "Inside the Simple constructor"
 self.s = str
 # Two methods:
 def show(self):
 print self.s
 def showMsg(self, msg):
 print msg + ':',
 self.show() # Calling another method

if __name__ == "__main__":
 # Create an object:
 x = Simple("constructor argument")
 x.show()
 x.showMsg("A message")
#:~
Both methods have “self” as their first argument. C++ and Java both have
a hidden first argument in their class methods, which points to the object
that the method was called for and can be accessed using the keyword
this. Python methods also use a reference to the current object, but when
you are defining a method you must explicitly specify the reference as the
first argument. Traditionally, the reference is called self but you could use
any identifier you want (if you do not use self you will probably confuse a
lot of people, however). If you need to refer to fields in the object or other
methods in the object, you must use self in the expression. However,
when you call a method for an object as in x.show(), you do not hand it
the reference to the object – that is done for you. Add Comment

Here, the first method is special, as is any identifier that begins and ends
with double underscores. In this case, it defines the constructor, which is
automatically called when the object is created, just like in C++ and Java.
However, at the bottom of the example you can see that the creation of an
object looks just like a function call using the class name. Python’s spare
syntax makes you realize that the new keyword isn’t really necessary in
C++ or Java, either. Add Comment

All the code at the bottom is set off by an if clause, which checks to see if
something called __name__ is equivalent to __main__. Again, the
double underscores indicate special names. The reason for the if is that
any file can also be used as a library module within another program
(modules are described shortly). In that case, you just want the classes
defined, but you don’t want the code at the bottom of the file to be
executed. This particular if statement is only true when you are running
this file directly; that is, if you say on the command line: Add Comment

Python SimpleClass.py
However, if this file is imported as a module into another program, the
__main__ code is not executed. Add Comment

Something that’s a little surprising at first is that you define fields inside
methods, and not outside of the methods like C++ or Java (if you create
fields using the C++/Java style, they implicitly become static fields). To
create an object field, you just name it – using self – inside of one of the
methods (usually in the constructor, but not always), and space is created
when that method is run. This seems a little strange coming from C++ or
Java where you must decide ahead of time how much space your object is
going to occupy, but it turns out to be a very flexible way to program. Add
Comment

Inheritance
Because Python is weakly typed, it doesn’t really care about interfaces –
all it cares about is applying operations to objects (in fact, Java’s
interface keyword would be wasted in Python). This means that
inheritance in Python is different from inheritance in C++ or Java, where
you often inherit simply to establish a common interface. In Python, the
only reason you inherit is to inherit an implementation – to re-use the
code in the base class. Add Comment

If you’re going to inherit from a class, you must tell Python to bring that
class into your new file. Python controls its name spaces as aggressively as
Java does, and in a similar fashion (albeit with Python’s penchant for
simplicity). Every time you create a file, you implicitly create a module
(which is like a package in Java) with the same name as that file. Thus, no
package keyword is needed in Python. When you want to use a module,
you just say import and give the name of the module. Python searches
the PYTHONPATH in the same way that Java searches the CLASSPATH
(but for some reason, Python doesn’t have the same kinds of pitfalls as
Java does) and reads in the file. To refer to any of the functions or classes
within a module, you give the module name, a period, and the function or

class name. If you don’t want the trouble of qualifying the name, you can
say

from module import name(s)

Where “name(s)” can be a list of names separated by commas. Add
Comment

You inherit a class (or classes – Python supports multiple inheritance) by
listing the name(s) of the class inside parentheses after the name of the
inheriting class. Note that the Simple class, which resides in the file (and
thus, module) named SimpleClass is brought into this new name space
using an import statement: Add Comment

#: c01:Simple2.py
from SimpleClass import Simple

class Simple2(Simple):
 def __init__(self, str):
 print "Inside Simple2 constructor"
 # You must explicitly call
 # the base-class constructor:
 Simple.__init__(self, str)
 def display(self):
 self.showMsg("Called from display()")
 # Overriding a base-class method
 def show(self):
 print "Overridden show() method"
 # Calling a base-class method from inside
 # the overridden method:
 Simple.show(self)

class Different:
 def show(self):
 print "Not derived from Simple"

if __name__ == "__main__":
 x = Simple2("Simple2 constructor argument")
 x.display()
 x.show()
 x.showMsg("Inside main")
 def f(obj): obj.show() # One-line definition
 f(x)
 f(Different())
#:~

Simple2 is inherited from Simple, and in the constructor, the base-class
constructor is called. In display(), showMsg() can be called as a
method of self, but when calling the base-class version of the method you
are overriding, you must fully qualify the name and pass self in as the
first argument, as shown in the base-class constructor call. This can also
be seen in the overridden version of show(). Add Comment

In __main__, you will see (when you run the program) that the base-
class constructor is called. You can also see that the showMsg() method
is available in the derived class, just as you would expect with inheritance.
Add Comment

The class Different also has a method named show(), but this class is
not derived from Simple. The f() method defined in __main__
demonstrates weak typing: all it cares about is that show() can be
applied to obj, and it doesn’t have any other type requirements. You can
see that f() can be applied equally to an object of a class derived from
Simple and one that isn’t, without discrimination. If you’re a C++
programmer, you should see that the objective of the C++ template
feature is exactly this: to provide weak typing in a strongly-typed
language. Thus, in Python you automatically get the equivalent of
templates – without having to learn that particularly difficult syntax and
semantics. Add Comment

[[Suggest Further Topics for inclusion in the introductory chapter]] Add
Comment

The pattern
concept

“Design patterns help you learn from others' successes
instead of your own failures3.” Add Comment

Probably the most important step forward in object-oriented design is the
“design patterns” movement, chronicled in Design Patterns (ibid)4. That
book shows 23 different solutions to particular classes of problems. In this
book, the basic concepts of design patterns will be introduced along with
examples. This should whet your appetite to read Design Patterns by
Gamma, et. al., a source of what has now become an essential, almost
mandatory, vocabulary for OOP programmers. Add Comment

The latter part of this book contains an example of the design evolution
process, starting with an initial solution and moving through the logic and
process of evolving the solution to more appropriate designs. The
program shown (a trash sorting simulation) has evolved over time, and
you can look at that evolution as a prototype for the way your own design
can start as an adequate solution to a particular problem and evolve into a
flexible approach to a class of problems. Add Comment

What is a pattern?
Initially, you can think of a pattern as an especially clever and insightful
way of solving a particular class of problems. That is, it looks like a lot of
people have worked out all the angles of a problem and have come up with
the most general, flexible solution for it. The problem could be one you
have seen and solved before, but your solution probably didn’t have the
kind of completeness you’ll see embodied in a pattern. Add Comment

3 From Mark Johnson.

4 But be warned: the examples are in C++.

Although they’re called “design patterns,” they really aren’t tied to the
realm of design. A pattern seems to stand apart from the traditional way
of thinking about analysis, design, and implementation. Instead, a pattern
embodies a complete idea within a program, and thus it can sometimes
appear at the analysis phase or high-level design phase. This is interesting
because a pattern has a direct implementation in code and so you might
not expect it to show up before low-level design or implementation (and in
fact you might not realize that you need a particular pattern until you get
to those phases). Add Comment

The basic concept of a pattern can also be seen as the basic concept of
program design: adding a layer of abstraction. Whenever you abstract
something you’re isolating particular details, and one of the most
compelling motivations behind this is to separate things that change
from things that stay the same. Another way to put this is that once you
find some part of your program that’s likely to change for one reason or
another, you’ll want to keep those changes from propagating other
changes throughout your code. Not only does this make the code much
cheaper to maintain, but it also turns out that it is usually simpler to
understand (which results in lowered costs). Add Comment

Often, the most difficult part of developing an elegant and cheap-to-
maintain design is in discovering what I call “the vector of change.” (Here,
“vector” refers to the maximum gradient and not a container class.) This
means finding the most important thing that changes in your system, or
put another way, discovering where your greatest cost is. Once you
discover the vector of change, you have the focal point around which to
structure your design. Add Comment

So the goal of design patterns is to isolate changes in your code. If you
look at it this way, you’ve been seeing some design patterns already in this
book. For example, inheritance can be thought of as a design pattern
(albeit one implemented by the compiler). It allows you to express
differences in behavior (that’s the thing that changes) in objects that all
have the same interface (that’s what stays the same). Composition can
also be considered a pattern, since it allows you to change—dynamically or
statically—the objects that implement your class, and thus the way that
class works. Add Comment

Another pattern that appears in Design Patterns is the iterator, which has
been implicitly available in for loops from the beginning of the language,
and was introduced as an explicit feature in Python 2.2. An iterator allows
you to hide the particular implementation of the container as you’re
stepping through and selecting the elements one by one. Thus, you can

write generic code that performs an operation on all of the elements in a
sequence without regard to the way that sequence is built. Thus your
generic code can be used with any object that can produce an iterator. Add
Comment

Pattern taxonomy
One of the events that’s occurred with the rise of design patterns is what
could be thought of as the “pollution” of the term – people have begun to
use the term to mean just about anything synonymous with “good.” After
some pondering, I’ve come up with a sort of hierarchy describing a
succession of different types of categories: Add Comment

1. Idiom: how we write code in a particular language to do this
particular type of thing. This could be something as common as
the way that you code the process of stepping through an array in
C (and not running off the end). Add Comment

2. Specific Design: the solution that we came up with to solve this
particular problem. This might be a clever design, but it makes no
attempt to be general. Add Comment

3. Standard Design: a way to solve this kind of problem. A design
that has become more general, typically through reuse. Add
Comment

4. Design Pattern: how to solve an entire class of similar problem.
This usually only appears after applying a standard design a
number of times, and then seeing a common pattern throughout
these applications. Add Comment

I feel this helps put things in perspective, and to show where something
might fit. However, it doesn’t say that one is better than another. It
doesn’t make sense to try to take every problem solution and generalize it
to a design pattern – it’s not a good use of your time, and you can’t force
the discovery of patterns that way; they tend to be subtle and appear over
time. Add Comment

One could also argue for the inclusion of Analysis Pattern and
Architectural Pattern in this taxonomy. Add Comment

Design Structures
One of the struggles that I’ve had with design patterns is their
classification – I’ve often found the GoF approach to be too obscure, and
not always very helpful. Certainly, the Creational patterns are fairly
straightforward: how are you going to create your objects? This is a
question you normally need to ask, and the name brings you right to that
group of patterns. But I find Structural and Behavioral to be far less
useful distinctions. I have not been able to look at a problem and say
“clearly, you need a structural pattern here,” so that classification doesn’t
lead me to a solution (I’ll readily admit that I may be missing something
here). Add Comment

I’ve labored for awhile with this problem, first noting that the underlying
structure of some of the GoF patterns are similar to each other, and trying
to develop relationships based on that similarity. While this was an
interesting experiment, I don’t think it produced much of use in the end
because the point is to solve problems, so a helpful approach will look at
the problem to solve and try to find relationships between the problem
and potential solutions. Add Comment

To that end, I’ve begun to try to collect basic design structures, and to try
to see if there’s a way to relate those structures to the various design
patterns that appear in well thought-out systems. Currently, I’m just
trying to make a list, but eventually I hope to make steps towards
connecting these structures with patterns (or I may come up with a
different approach altogether – this is still in its formative stages). Add
Comment

Here5 is the present list of candidates, only some of which will make it to
the final list. Feel free to suggest others, or possibly relationships with
patterns. Add Comment

• Encapsulation: self containment and embodying a model of
usage

• Gathering Add Comment

• Localization Add Comment

5 This list includes suggestions by Kevlin Henney, David Scott, and others.

• Separation Add Comment

• Hiding Add Comment

• Guarding Add Comment

• Connector Add Comment

• Barrier/fence Add Comment

• Variation in behavior Add Comment

• Notification Add Comment

• Transaction Add Comment

• Mirror: “the ability to keep a parallel universe(s) in step with the
golden world” Add Comment

• Shadow “follows your movement and does something different in
a different medium” (May be a variation on Proxy). Add Comment

Design principles
When I put out a call for ideas in my newsletter6, a number of suggestions
came back which turned out to be very useful, but different than the above
classification, and I realized that a list of design principles is at least as
important as design structures, but for a different reason: these allow you
to ask questions about your proposed design, to apply tests for quality.
Add Comment

• Principle of least astonishment (don’t be astonishing). Add
Comment

• Make common things easy, and rare things possible Add
Comment

• Consistency. One thing has become very clear to me, especially
because of Python: the more random rules you pile onto the
programmer, rules that have nothing to do with solving the

6 A free email publication. See www.BruceEckel.com to subscribe.

problem at hand, the slower the programmer can produce. And
this does not appear to be a linear factor, but an exponential one.
Add Comment

• Law of Demeter: a.k.a. “Don’t talk to strangers.” An object
should only reference itself, its attributes, and the arguments of its
methods. Add Comment

• Subtraction: a design is finished when you cannot take anything
else away7. Add Comment

• Simplicity before generality8. (A variation of Occam’s Razor,
which says “the simplest solution is the best”). A common problem
we find in frameworks is that they are designed to be general
purpose without reference to actual systems. This leads to a
dizzying array of options that are often unused, misused or just not
useful. However, most developers work on specific systems, and
the quest for generality does not always serve them well. The best
route to generality is through understanding well-defined specific
examples. So, this principle acts as the tie breaker between
otherwise equally viable design alternatives. Of course, it is
entirely possible that the simpler solution is the more general one.
Add Comment

• Reflexivity (my suggested term). One abstraction per class, one
class per abstraction. Might also be called Isomorphism. Add
Comment

• Independence or Orthogonality. Express independent ideas
independently. This complements Separation, Encapsulation and
Variation, and is part of the Low-Coupling-High-Cohesion
message. Add Comment

• Once and once only: Avoid duplication of logic and structure
where the duplication is not accidental, ie where both pieces of
code express the same intent for the same reason. Add Comment

7 This idea is generally attributed to Antoine de St. Exupery from The Little
Prince: "La perfection est atteinte non quand il ne reste rien à ajouter, mais
quand il ne reste rien à enlever," or: "perfection is reached not when there's
nothing left to add, but when there's nothing left to remove".

8 From an email from Kevlin Henney.

In the process of brainstorming this idea, I hope to come up with a small
handful of fundamental ideas that can be held in your head while you
analyze a problem. However, other ideas that come from this list may end
up being useful as a checklist while walking through and analyzing your
design. Add Comment

The Singleton
Possibly the simplest design pattern is the singleton, which is a way to
provide one and only one object of a particular type. To accomplish this,
you must take control of object creation out of the hands of the
programmer. One convenient way to do this is to delegate to a single
instance of a private nested inner class: Add Comment

#: c01:SingletonPattern.py

class OnlyOne:
 class __OnlyOne:
 def __init__(self, arg):
 self.val = arg
 def __str__(self):
 return `self` + self.val
 instance = None
 def __init__(self, arg):
 if not OnlyOne.instance:
 OnlyOne.instance = OnlyOne.__OnlyOne(arg)
 else:
 OnlyOne.instance.val = arg
 def __getattr__(self, name):
 return getattr(self.instance, name)

x = OnlyOne('sausage')
print x
y = OnlyOne('eggs')
print y
z = OnlyOne('spam')
print z
print x
print y
print `x`
print `y`
print `z`
output = '''

<__main__.__OnlyOne instance at 0076B7AC>sausage
<__main__.__OnlyOne instance at 0076B7AC>eggs
<__main__.__OnlyOne instance at 0076B7AC>spam
<__main__.__OnlyOne instance at 0076B7AC>spam
<__main__.__OnlyOne instance at 0076B7AC>spam
<__main__.OnlyOne instance at 0076C54C>
<__main__.OnlyOne instance at 0076DAAC>
<__main__.OnlyOne instance at 0076AA3C>
'''
#:~
Because the inner class is named with a double underscore, it is private so
the user cannot directly access it. The inner class contains all the methods
that you would normally put in the class if it weren’t going to be a
singleton, and then it is wrapped in the outer class which controls creation
by using its constructor. The first time you create an OnlyOne, it
initializes instance, but after that it just ignores you. Add Comment

Access comes through delegation, using the __getattr__() method to
redirect calls to the single instance. You can see from the output that even
though it appears that multiple objects have been created, the same
__OnlyOne object is used for both. The instances of OnlyOne are
distinct but they all proxy to the same __OnlyOne object. Add Comment

Note that the above approach doesn’t restrict you to creating only one
object. This is also a technique to create a limited pool of objects. In that
situation, however, you can be confronted with the problem of sharing
objects in the pool. If this is an issue, you can create a solution involving a
check-out and check-in of the shared objects. Add Comment

A variation on this technique uses the class method __new__ added in
Python 2.2:

#: c01:NewSingleton.py

class OnlyOne(object):
 class __OnlyOne:
 def __init__(self):
 self.val = None
 def __str__(self):
 return `self` + self.val
 instance = None
 def __new__(cls): # __new__ always a classmethod
 if not OnlyOne.instance:
 OnlyOne.instance = OnlyOne.__OnlyOne()
 return OnlyOne.instance

 def __getattr__(self, name):
 return getattr(self.instance, name)
 def __setattr__(self, name):
 return setattr(self.instance, name)

x = OnlyOne()
x.val = 'sausage'
print x
y = OnlyOne()
y.val = 'eggs'
print y
z = OnlyOne()
z.val = 'spam'
print z
print x
print y
#<hr>
output = '''
<__main__.__OnlyOne instance at 0x00798900>sausage
<__main__.__OnlyOne instance at 0x00798900>eggs
<__main__.__OnlyOne instance at 0x00798900>spam
<__main__.__OnlyOne instance at 0x00798900>spam
<__main__.__OnlyOne instance at 0x00798900>spam
'''
#:~
Alex Martelli makes the observation that what we really want with a
Singleton is to have a single set of state data for all objects. That is, you
could create as many objects as you want and as long as they all refer to
the same state information then you achieve the effect of Singleton. He
accomplishes this with what he calls the Borg9, which is accomplished by
setting all the __dict__s to the same static piece of storage: Add
Comment

#: c01:BorgSingleton.py
Alex Martelli's 'Borg'

class Borg:
 _shared_state = {}
 def __init__(self):
 self.__dict__ = self._shared_state

9 From the television show Star Trek: The Next Generation. The Borg are a hive-
mind collective: “we are all one.”

class Singleton(Borg):
 def __init__(self, arg):
 Borg.__init__(self)
 self.val = arg
 def __str__(self): return self.val

x = Singleton('sausage')
print x
y = Singleton('eggs')
print y
z = Singleton('spam')
print z
print x
print y
print `x`
print `y`
print `z`
output = '''
sausage
eggs
spam
spam
spam
<__main__.Singleton instance at 0079EF2C>
<__main__.Singleton instance at 0079E10C>
<__main__.Singleton instance at 00798F9C>
'''
#:~
This has an identical effect as SingletonPattern.py does, but it’s more
elegant. In the former case, you must wire in Singleton behavior to each of
your classes, but Borg is designed to be easily reused through inheritance.
Add Comment

Two other interesting ways to define singleton10 include wrapping a class
and using metaclasses. The first approach could be thought of as a class
decorator (decorators will be defined later in the book), because it takes
the class of interest and adds functionality to it by wrapping it in another
class:

#: c01:SingletonDecorator.py

10 Suggested by Chih-Chung Chang.

class SingletonDecorator:
 def __init__(self,klass):
 self.klass = klass
 self.instance = None
 def __call__(self,*args,**kwds):
 if self.instance == None:
 self.instance = self.klass(*args,**kwds)
 return self.instance

class foo: pass
foo = SingletonDecorator(foo)

x=foo()
y=foo()
z=foo()
x.val = 'sausage'
y.val = 'eggs'
z.val = 'spam'
print x.val
print y.val
print z.val
print x is y is z
#:~
[[Description]] Add Comment

The second approach uses metaclasses, a topic I do not yet understand but
which looks very interesting and powerful indeed (note that Python 2.2
has improved/simplified the metaclass syntax, and so this example may
change):

#: c01:SingletonMetaClass.py
class SingletonMetaClass(type):
 def __init__(cls,name,bases,dict):
 super(SingletonMetaClass,cls)\
 .__init__(name,bases,dict)
 original_new = cls.__new__
 def my_new(cls,*args,**kwds):
 if cls.instance == None:
 cls.instance = \
 original_new(cls,*args,**kwds)
 return cls.instance
 cls.instance = None
 cls.__new__ = staticmethod(my_new)

class bar(object):

 __metaclass__ = SingletonMetaClass
 def __init__(self,val):
 self.val = val
 def __str__(self):
 return `self` + self.val

x=bar('sausage')
y=bar('eggs')
z=bar('spam')
print x
print y
print z
print x is y is z
#:~
[[Long, detailed, informative description of what metaclasses are and
how they work, magically inserted here]] Add Comment

Exercise:
Modify BorgSingleton.py so that it uses a class __new__() method.
Add Comment

Classifying patterns
The Design Patterns book discusses 23 different patterns, classified under
three purposes (all of which revolve around the particular aspect that can
vary). The three purposes are: Add Comment

1. Creational: how an object can be created. This often involves
isolating the details of object creation so your code isn’t dependent
on what types of objects there are and thus doesn’t have to be
changed when you add a new type of object. The aforementioned
Singleton is classified as a creational pattern, and later in this book
you’ll see examples of Factory Method and Prototype. Add
Comment

2. Structural: designing objects to satisfy particular project
constraints. These work with the way objects are connected with
other objects to ensure that changes in the system don’t require
changes to those connections. Add Comment

3. Behavioral: objects that handle particular types of actions within
a program. These encapsulate processes that you want to perform,
such as interpreting a language, fulfilling a request, moving
through a sequence (as in an iterator), or implementing an
algorithm. This book contains examples of the Observer and the
Visitor patterns. Add Comment

The Design Patterns book has a section on each of its 23 patterns along
with one or more examples for each, typically in C++ but sometimes in
Smalltalk. (You’ll find that this doesn’t matter too much since you can
easily translate the concepts from either language into Python.) This book
will not repeat all the patterns shown in Design Patterns since that book
stands on its own and should be studied separately. Instead, this book will
give some examples that should provide you with a decent feel for what
patterns are about and why they are so important. Add Comment

After years of looking at these things, it began to occur to me that the
patterns themselves use basic principles of organization, other than (and
more fundamental than) those described in Design Patterns. These
principles are based on the structure of the implementations, which is
where I have seen great similarities between patterns (more than those
expressed in Design Patterns). Although we generally try to avoid
implementation in favor of interface, I have found that it’s often easier to
think about, and especially to learn about, the patterns in terms of these
structural principles. This book will attempt to present the patterns based
on their structure instead of the categories presented in Design Patterns.
Add Comment

The development
challenge

Issues of development, the UML process, Extreme Programming. Add
Comment

Is evaluation valuable? The Capability Immaturity Model:

Wiki Page: http://c2.com/cgi-bin/wiki?CapabilityImMaturityModel
Article: http://www.embedded.com/98/9807br.htm

 Add Comment

Pair programming research:

http://collaboration.csc.ncsu.edu/laurie/

 Add Comment

Exercises
1. SingletonPattern.py always creates an object, even if it’s never

used. Modify this program to use lazy initialization, so the
singleton object is only created the first time that it is needed. Add
Comment

2. Using SingletonPattern.py as a starting point, create a class
that manages a fixed number of its own objects. Assume the
objects are database connections and you only have a license to use
a fixed quantity of these at any one time. Add Comment

2: Unit Testing
This chapter has not had any significant translation yet.

One of the important recent realizations is the dramatic
value of unit testing. Add Comment

This is the process of building integrated tests into all the code that you
create, and running those tests every time you do a build. It’s as if you are
extending the compiler, telling it more about what your program is
supposed to do. That way, the build process can check for more than just
syntax errors, since you teach it how to check for semantic errors as well.
Add Comment

C-style programming languages, and C++ in particular, have typically
valued performance over programming safety. The reason that developing
programs in Java is so much faster than in C++ (roughly twice as fast, by
most accounts) is because of Java’s safety net: features like better type
checking, enforced exceptions and garbage collection. By integrating unit
testing into your build process, you are extending this safety net, and the

result is that you can develop faster. You can also be bolder in the changes
that you make, and more easily refactor your code when you discover
design or implementation flaws, and in general produce a better product,
faster. Add Comment

Unit testing is not generally considered a design pattern; in fact, it might
be considered a “development pattern,” but perhaps there are enough
“pattern” phrases in the world already. Its effect on development is so
significant that it will be used throughout this book, and thus will be
introduced here. Add Comment

My own experience with unit testing began when I realized that every
program in a book must be automatically extracted and organized into a
source tree, along with appropriate makefiles (or some equivalent
technology) so that you could just type make to build the whole tree. The
effect of this process on the code quality of the book was so immediate and
dramatic that it soon became (in my mind) a requisite for any
programming book—how can you trust code that you didn’t compile? I
also discovered that if I wanted to make sweeping changes, I could do so
using search-and-replace throughout the book, and also bashing the code
around at will. I knew that if I introduced a flaw, the code extractor and
the makefiles would flush it out. Add Comment

As programs became more complex, however, I also found that there was
a serious hole in my system. Being able to successfully compile programs
is clearly an important first step, and for a published book it seemed a
fairly revolutionary one—usually due to the pressures of publishing, it’s
quite typical to randomly open a programming book and discover a coding
flaw. However, I kept getting messages from readers reporting semantic
problems in my code (in Thinking in Java). These problems could only be
discovered by running the code. Naturally, I understood this and had
taken some early faltering steps towards implementing a system that
would perform automatic execution tests, but I had succumbed to the
pressures of publishing, all the while knowing that there was definitely
something wrong with my process and that it would come back to bite me
in the form of embarrassing bug reports (in the open source world,
embarrassment is one of the prime motivating factors towards increasing
the quality of one’s code!). Add Comment

The other problem was that I was lacking a structure for the testing
system. Eventually, I started hearing about unit testing and JUnit11, which

11 http://www.junit.org

provided a basis for a testing structure. However, even though JUnit is
intended to make the creation of test code easy, I wanted to see if I could
make it even easier, applying the Extreme Programming principle of “do
the simplest thing that could possibly work” as a starting point, and then
evolving the system as usage demands (In addition, I wanted to try to
reduce the amount of test code, in an attempt to fit more functionality in
less code for screen presentations). This chapter is the result. Add
Comment

Write tests first
As I mentioned, one of the problems that I encountered—that most people
encounter, it turns out—was submitting to the pressures of publishing and
as a result letting tests fall by the wayside. This is easy to do if you forge
ahead and write your program code because there’s a little voice that tells
you that, after all, you’ve got it working now, and wouldn’t it be more
interesting/useful/expedient to just go on and write that other part (we
can always go back and write the tests later). As a result, the tests take on
less importance, as they often do in a development project. Add Comment

The answer to this problem, which I first found described in Extreme
Programming Explained, is to write the tests before you write the code.
This may seem to artificially force testing to the forefront of the
development process, but what it actually does is to give testing enough
additional value to make it essential. If you write the tests first, you: Add
Comment

1. Describe what the code is supposed to do, not with some external
graphical tool but with code that actually lays the specification
down in concrete, verifiable terms. Add Comment

2. Provide an example of how the code should be used; again, this is a
working, tested example, normally showing all the important
method calls, rather than just an academic description of a library.
Add Comment

3. Provide a way to verify when the code is finished (when all the tests
run correctly). Add Comment

Thus, if you write the tests first then testing becomes a development tool,
not just a verification step that can be skipped if you happen to feel

comfortable about the code that you just wrote (a comfort, I have found,
that is usually wrong). Add Comment

You can find convincing arguments in Extreme Programming Explained,
as “write tests first” is a fundamental principle of XP. If you aren’t
convinced you need to adopt any of the changes suggested by XP, note
that according to Software Engineering Institute (SEI) studies, nearly 70%
of software organizations are stuck in the first two levels of SEI's scale of
sophistication: chaos, and slightly better than chaos. If you change
nothing else, add automated testing. Add Comment

Simple Python testing
Sanity check for a quick test of the programs in this book, and to append
the output of each program (as a string) to its listing: Add Comment

#: SanityCheck.py
import string, glob, os
Do not include the following in the automatic
tests:
exclude = ("SanityCheck.py", "BoxObserver.py",)

def visitor(arg, dirname, names):
 dir = os.getcwd()
 os.chdir(dirname)
 try:
 pyprogs = [p for p in glob.glob('*.py')
 if p not in exclude]
 if not pyprogs: return
 print '[' + os.getcwd() + ']'
 for program in pyprogs:
 print '\t', program
 os.system("python %s > tmp" % program)
 file = open(program).read()
 output = open('tmp').read()
 # Append output if it's not already there:
 if file.find("output = '''") == -1 and \
 len(output) > 0:
 divider = '#' * 50 + '\n'
 file = file.replace('#' + ':~', '#<hr>\n')
 file += "output = '''\n" + \
 open('tmp').read() + "'''\n"
 open(program,'w').write(file)

 finally:
 os.chdir(dir)

if __name__ == "__main__":
 os.path.walk('.', visitor, None)
#:~
Just run this from the root directory of the code listings for the book; it
will descend into each subdirectory and run the program there. An easy
way to check things is to redirect standard output to a file, then if there are
any errors they will be the only thing that appears at the console during
program execution. Add Comment

A very simple framework
As mentioned, a primary goal of this code is to make the writing of unit
testing code very simple, even simpler than with JUnit. As further needs
are discovered during the use of this system, then that functionality can be
added, but to start with the framework will just provide a way to easily
create and run tests, and report failure if something breaks (success will
produce no results other than normal output that may occur during the
running of the test). My intended use of this framework is in makefiles,
and make aborts if there is a non-zero return value from the execution of
a command. The build process will consist of compilation of the programs
and execution of unit tests, and if make gets all the way through
successfully then the system will be validated, otherwise it will abort at the
place of failure. The error messages will report the test that failed but not
much else, so that you can provide whatever granularity that you need by
writing as many tests as you want, each one covering as much or as little
as you find necessary. Add Comment

In some sense, this framework provides an alternative place for all those
“print” statements I’ve written and later erased over the years. Add
Comment

To create a set of tests, you start by making a static inner class inside the
class you wish to test (your test code may also test other classes; it’s up to
you). This test code is distinguished by inheriting from UnitTest: Add
Comment

test:UnitTest.py
The basic unit testing class

class UnitTest:

 static String testID
 static List errors = ArrayList()
 # Override cleanup() if test object
 # creation allocates non-memory
 # resources that must be cleaned up:
 def cleanup(self):
 # Verify the truth of a condition:
 protected final void affirm(boolean condition){
 if(!condition)
 errors.add("failed: " + testID)

:~
The only testing method [[So far]] is affirm()12, which is protected so
that it can be used from the inheriting class. All this method does is verify
that something is true. If not, it adds an error to the list, reporting that
the current test (established by the static testID, which is set by the test-
running program that you shall see shortly) has failed. Although this is
not a lot of information—you might also wish to have the line number,
which could be extracted from an exception—it may be enough for most
situations. Add Comment

Unlike JUnit (which uses setUp() and tearDown() methods), test
objects will be built using ordinary Python construction. You define the
test objects by creating them as ordinary class members of the test class,
and a new test class object will be created for each test method (thus
preventing any problems that might occur from side effects between
tests). Occasionally, the creation of a test object will allocate non-memory
resources, in which case you must override cleanup() to release those
resources. Add Comment

Writing tests
Writing tests becomes very simple. Here’s an example that creates the
necessary static inner class and performs trivial tests: Add Comment

c02:TestDemo.py
Creating a test

12 I had originally called this assert(), but that word became reserved in JDK 1.4
when assertions were added to the language.

class TestDemo:
 private static int objCounter = 0
 private int id = ++objCounter
 public TestDemo(String s):
 print (s + ": count = " + id)

 def close(self):
 print ("Cleaning up: " + id)

 def someCondition(self): return 1
 public static class Test(UnitTest):
 TestDemo test1 = TestDemo("test1")
 TestDemo test2 = TestDemo("test2")
 def cleanup(self):
 test2.close()
 test1.close()

 def testA(self):
 print “TestDemo.testA“
 affirm(test1.someCondition())

 def testB(self):
 print “TestDemo.testB“
 affirm(test2.someCondition())
 affirm(TestDemo.objCounter != 0)

 # Causes the build to halt:
 #! public void test3(): affirm(0)

:~
The test3() method is commented out because, as you’ll see, it causes
the automatic build of this book’s source-code tree to stop. Add Comment

You can name your inner class anything you’d like; the only important
factor is that it extends UnitTest. You can also include any necessary
support code in other methods. Only public methods that take no
arguments and return void will be treated as tests (the names of these
methods are also not constrained). Add Comment

The above test class creates two instances of TestDemo. The TestDemo
constructor prints something, so that we can see it being called. You could
also define a default constructor (the only kind that is used by the test
framework), although none is necessary here. The TestDemo class has a

close() method which suggests it is used as part of object cleanup, so this
is called in the overridden cleanup() method in Test. Add Comment

The testing methods use the affirm() method to validate expressions,
and if there is a failure the information is stored and printed after all the
tests are run. Of course, the affirm() arguments are usually more
complicated than this; you’ll see more examples throughout the rest of
this book. Add Comment

Notice that in testB(), the private field objCounter is accessible to the
testing code—this is because Test has the permissions of an inner class.
Add Comment

You can see that writing test code requires very little extra effort, and no
knowledge other than that used for writing ordinary classes. Add
Comment

To run the tests, you use RunUnitTests.py (which will be introduced
shortly). The command for the above code looks like this: Add Comment

java com.bruceeckel.test.RunUnitTests TestDemo

It produces the following output:

test1: count = 1
test2: count = 2
TestDemo.testA
Cleaning up: 2
Cleaning up: 1
test1: count = 3
test2: count = 4
TestDemo.testB
Cleaning up: 4
Cleaning up: 3
All the output is noise as far as the success or failure of the unit testing is
concerned. Only if one or more of the unit tests fail does the program
returns a non-zero value to terminate the make process after the error
messages are produced. Thus, you can choose to produce output or not, as
it suits your needs, and the test class becomes a good place to put any
printing code you might need—if you do this, you tend to keep such code
around rather than putting it in and stripping it out as is typically done
with tracing code. Add Comment

If you need to add a test to a class derived from one that already has a test
class, it’s no problem, as you can see here:

c02:TestDemo2.py
Inheriting from a class that
already has a test is no problem.

class TestDemo2(TestDemo):
 public TestDemo2(String s): .__init__(s)
 # You can even use the same name
 # as the test class in the base class:
 public static class Test(UnitTest):
 def testA(self):
 print “TestDemo2.testA“
 affirm(1 + 1 == 2)

 def testB(self):
 print “TestDemo2.testB“
 affirm(2 * 2 == 4)

:~
Even the name of the inner class can be the same. In the above code, all
the assertions are always true so the tests will never fail. Add Comment

White-box & black-box
tests

The unit test examples so far are what are traditionally called white-box
tests. This means that the test code has complete access to the internals of
the class that’s being tested (so it might be more appropriately called
“transparent box” testing). White-box testing happens automatically when
you make the unit test class as an inner class of the class being tested,
since inner classes automatically have access to all their outer class
elements, even those that are private. Add Comment

A possibly more common form of testing is black-box testing, which refers
to treating the class under test as an impenetrable box. You can’t see the
internals; you can only access the public portions of the class. Thus,
black-box testing corresponds more closely to functional testing, to verify
the methods that the client programmer is going to use. In addition,
black-box testing provides a minimal instruction sheet to the client
programmer – in the absence of all other documentation, the black-box
tests at least demonstrate how to make basic calls to the public class
methods. Add Comment

To perform black-box tests using the unit-testing framework presented in
this book, all you need to do is create your test class as a global class
instead of an inner class. All the other rules are the same (for example, the
unit test class must be public, and derived from UnitTest). Add
Comment

There’s one other caveat, which will also provide a little review of Java
packages. If you want to be completely rigorous, you must put your black-
box test class in a separate directory than the class it tests, otherwise it
will have package access to the elements of the class being tested. That is,
you’ll be able to access protected and friendly elements of the class
being tested. Here’s an example: Add Comment

c02:Testable.py

class Testable:
 private void f1():
 def f2(self): # "Friendly": package access
 def f3(self): # Also package access
 def f4(self):
:~
Normally, the only method that should be directly accessible to the client
programmer is f4(). However, if you put your black-box test in the same
directory, it automatically becomes part of the same package (in this case,
the default package since none is specified) and then has inappropriate
access: Add Comment

c02:TooMuchAccess.py

class TooMuchAccess(UnitTest):
 Testable tst = Testable()
 def test1(self):
 tst.f2() # Oops!
 tst.f3() # Oops!
 tst.f4() # OK

:~
You can solve the problem by moving TooMuchAccess.py into its own
subdirectory, thereby putting it in its own default package (thus a
different package from Testable.py). Of course, when you do this, then
Testable must be in its own package, so that it can be imported (note
that it is also possible to import a “package-less” class by giving the class
name in the import statement and ensuring that the class is in your
CLASSPATH): Add Comment

c02:testable:Testable.py
package c02.testable

class Testable:
 private void f1():
 def f2(self): # "Friendly": package access
 def f3(self): # Also package access
 def f4(self):
:~
Here’s the black-box test in its own package, showing how only public
methods may be called: Add Comment

c02:test:BlackBoxTest.py

class BlackBoxTest(UnitTest):
 Testable tst = Testable()
 def test1(self):
 #! tst.f2() # Nope!
 #! tst.f3() # Nope!
 tst.f4() # Only public methods available

:~
Note that the above program is indeed very similar to the one that the
client programmer would write to use your class, including the imports
and available methods. So it does make a good programming example. Of
course, it’s easier from a coding standpoint to just make an inner class,
and unless you’re ardent about the need for specific black-box testing you
may just want to go ahead and use the inner classes (with the knowledge
that if you need to you can later extract the inner classes into separate
black-box test classes, without too much effort). Add Comment

Running tests
The program that runs the tests makes significant use of reflection so that
writing the tests can be simple for the client programmer. Add Comment

test:RunUnitTests.py
Discovering the unit test
class and running each test.

class RunUnitTests:
 public static void
 require(boolean requirement, String errmsg):

 if(!requirement):
 System.err.println(errmsg)
 System.exit(1)

 def main(self, String[] args):
 require(args.length == 1,
 "Usage: RunUnitTests qualified-class")
 try:
 Class c = Class.forName(args[0])
 # Only finds the inner classes
 # declared in the current class:
 Class[] classes = c.getDeclaredClasses()
 Class ut = null
 for(int j = 0 j < classes.length j++):
 # Skip inner classes that are
 # not derived from UnitTest:
 if(!UnitTest.class.
 isAssignableFrom(classes[j]))
 continue
 ut = classes[j]
 break # Finds the first test class only

 # If it found an inner class,
 # that class must be static:
 if(ut != null)
 require(
 Modifier.isStatic(ut.getModifiers()),
 "inner UnitTest class must be static")
 # If it couldn't find the inner class,
 # maybe it's a regular class (for black-
 # box testing:
 if(ut == null)
 if(UnitTest.class.isAssignableFrom(c))
 ut = c
 require(ut != null,
 "No UnitTest class found")
 require(
 Modifier.isPublic(ut.getModifiers()),
 "UnitTest class must be public")
 Method[] methods = ut.getDeclaredMethods()
 for(int k = 0 k < methods.length k++):
 Method m = methods[k]
 # Ignore overridden UnitTest methods:
 if(m.getName().equals("cleanup"))

 continue
 # Only public methods with no
 # arguments and void return
 # types will be used as test code:
 if(m.getParameterTypes().length == 0 &&
 m.getReturnType() == void.class &&
 Modifier.isPublic(m.getModifiers())):
 # The name of the test is
 # used in error messages:
 UnitTest.testID = m.getName()
 # A instance of the
 # test object is created and
 # cleaned up for each test:
 Object test = ut.newInstance()
 m.invoke(test, Object[0])
 ((UnitTest)test).cleanup()

 catch(Exception e):
 e.printStackTrace(System.err)
 # Any exception will return a nonzero
 # value to the console, so that
 # 'make' will abort:
 System.err.println("Aborting make")
 System.exit(1)

 # After all tests in this class are run,
 # display any results. If there were errors,
 # abort 'make' by returning a nonzero value.
 if(UnitTest.errors.size() != 0):
 Iterator it = UnitTest.errors.iterator()
 while(it.hasNext())
 System.err.println(it.next())
 System.exit(1)

:~

Automatically executing
tests

Exercises
1. Install this book’s source code tree and ensure that you have a

make utility installed on your system (Gnu make is freely
available on the internet at various locations). In TestDemo.py,
un-comment test3(), then type make and observe the results.
Add Comment

2. Modify TestDemo.java by adding a new test that throws an
exception. Type make and observe the results. Add Comment

3. Modify your solutions to the exercises in Chapter 1 by adding unit
tests. Write makefiles that incorporate the unit tests. Add
Comment

3: Building
application
frameworks

An application framework allows you to inherit from a class or set of
classes and create a new application, reusing most of the code in the
existing classes and overriding one or more methods in order to customize
the application to your needs. A fundamental concept in the application
framework is the Template Method which is typically hidden beneath the
covers and drives the application by calling the various methods in the
base class (some of which you have overridden in order to create the
application). Add Comment

For example, whenever you create an applet you’re using an application
framework: you inherit from JApplet and then override init(). The
applet mechanism (which is a Template Method) does the rest by drawing
the screen, handling the event loop, resizing, etc. Add Comment

Template method
An important characteristic of the Template Method is that it is defined in
the base class and cannot be changed. It’s sometimes a private method
but it’s virtually always final. It calls other base-class methods (the ones
you override) in order to do its job, but it is usually called only as part of
an initialization process (and thus the client programmer isn’t necessarily
able to call it directly). Add Comment

#: c03:TemplateMethod.py
Simple demonstration of Template Method.

class ApplicationFramework:
 def __init__(self):
 self.__templateMethod()
 def __templateMethod(self):
 for i in range(5):
 self.customize1()
 self.customize2()

Create a "application":
class MyApp(ApplicationFramework):
 def customize1(self):
 print "Nudge, nudge, wink, wink! ",
 def customize2(self):
 print "Say no more, Say no more!"

MyApp()
#:~
The base-class constructor is responsible for performing the necessary
initialization and then starting the “engine” (the template method) that
runs the application (in a GUI application, this “engine” would be the
main event loop). The client programmer simply provides definitions for
customize1() and customize2() and the “application” is ready to run.
Add Comment

We’ll see Template Method numerous other times throughout the book.
Add Comment

Exercises
1. Create a framework that takes a list of file names on the command

line. It opens each file except the last for reading, and the last for
writing. The framework will process each input file using an
undetermined policy and write the output to the last file. Inherit to
customize this framework to create two separate applications:
1) Converts all the letters in each file to uppercase.
2) Searches the files for words given in the first file. Add Comment

4:Fronting for an
implementation

Both Proxy and State provide a surrogate class that you use in your code;
the real class that does the work is hidden behind this surrogate class.
When you call a method in the surrogate, it simply turns around and calls
the method in the implementing class. These two patterns are so similar
that the Proxy is simply a special case of State. One is tempted to just
lump the two together into a pattern called Surrogate, but the term
“proxy” has a long-standing and specialized meaning, which probably
explains the reason for the two different patterns. Add Comment

The basic idea is simple: from a base class, the surrogate is derived along
with the class or classes that provide the actual implementation: Add
Comment

Interface

Surrogate Implementation

Surrogate Implementation1 Implementation2 Etc.

When a surrogate object is created, it is given an implementation to which
to send all of the method calls. Add Comment

Structurally, the difference between Proxy and State is simple: a Proxy
has only one implementation, while State has more than one. The
application of the patterns is considered (in Design Patterns) to be
distinct: Proxy is used to control access to its implementation, while State
allows you to change the implementation dynamically. However, if you
expand your notion of “controlling access to implementation” then the
two fit neatly together. Add Comment

Proxy
If we implement Proxy by following the above diagram, it looks like this:
Add Comment

#: c04:ProxyDemo.py
Simple demonstration of the Proxy pattern.

class Implementation:
 def f(self):
 print "Implementation.f()"
 def g(self):
 print "Implementation.g()"
 def h(self):
 print "Implementation.h()"

class Proxy:
 def __init__(self):
 self.__implementation = Implementation()
 # Pass method calls to the implementation:

 def f(self): self.__implementation.f()
 def g(self): self.__implementation.g()
 def h(self): self.__implementation.h()

p = Proxy()
p.f(); p.g(); p.h()
#:~
It isn’t necessary that Implementation have the same interface as
Proxy; as long as Proxy is somehow “speaking for” the class that it is
referring method calls to then the basic idea is satisfied (note that this
statement is at odds with the definition for Proxy in GoF). However, it is
convenient to have a common interface so that Implementation is
forced to fulfill all the methods that Proxy needs to call. Add Comment

Of course, in Python we have a delegation mechanism built in, so it makes
the Proxy even simpler to implement: Add Comment

#: c04:ProxyDemo2.py
Simple demonstration of the Proxy pattern.

class Implementation2:
 def f(self):
 print "Implementation.f()"
 def g(self):
 print "Implementation.g()"
 def h(self):
 print "Implementation.h()"

class Proxy2:
 def __init__(self):
 self.__implementation = Implementation2()
 def __getattr__(self, name):
 return getattr(self.__implementation, name)

p = Proxy2()
p.f(); p.g(); p.h();
#:~
The beauty of using __getattr__() is that Proxy2 is completely
generic, and not tied to any particular implementation (in Java, a rather
complicated “dynamic proxy” has been invented to accomplish this same
thing). Add Comment

State
The State pattern adds more implementations to Proxy, along with a way
to switch from one implementation to another during the lifetime of the
surrogate: Add Comment

#: c04:StateDemo.py
Simple demonstration of the State pattern.

class State_d:
 def __init__(self, imp):
 self.__implementation = imp
 def changeImp(self, newImp):
 self.__implementation = newImp
 # Delegate calls to the implementation:
 def __getattr__(self, name):
 return getattr(self.__implementation, name)

class Implementation1:
 def f(self):
 print "Fiddle de dum, Fiddle de dee,"
 def g(self):
 print "Eric the half a bee."
 def h(self):
 print "Ho ho ho, tee hee hee,"

class Implementation2:
 def f(self):
 print "We're Knights of the Round Table."
 def g(self):
 print "We dance whene'er we're able."
 def h(self):
 print "We do routines and chorus scenes"

def run(b):
 b.f()
 b.g()
 b.h()
 b.g()

b = State_d(Implementation1())
run(b)
b.changeImp(Implementation2())

run(b)
#:~
You can see that the first implementation is used for a bit, then the second
implementation is swapped in and that is used. Add Comment

The difference between Proxy and State is in the problems that are solved.
The common uses for Proxy as described in Design Patterns are: Add
Comment

1. Remote proxy. This proxies for an object in a different address
space. A remote proxy is created for you automatically by the RMI
compiler rmic as it creates stubs and skeletons. Add Comment

2. Virtual proxy. This provides “lazy initialization” to create
expensive objects on demand. Add Comment

3. Protection proxy. Used when you don’t want the client
programmer to have full access to the proxied object. Add
Comment

4. Smart reference. To add additional actions when the proxied
object is accessed. For example, or to keep track of the number of
references that are held for a particular object, in order to
implement the copy-on-write idiom and prevent object aliasing. A
simpler example is keeping track of the number of calls to a
particular method. Add Comment

You could look at a Python reference as a kind of protection proxy, since it
controls access to the actual object on the heap (and ensures, for example,
that you don’t use a null reference). Add Comment

[[Rewrite this: In Design Patterns, Proxy and State are not seen as
related to each other because the two are given (what I consider
arbitrarily) different structures. State, in particular, uses a separate
implementation hierarchy but this seems to me to be unnecessary unless
you have decided that the implementation is not under your control
(certainly a possibility, but if you own all the code there seems to be no
reason not to benefit from the elegance and helpfulness of the single base
class). In addition, Proxy need not use the same base class for its
implementation, as long as the proxy object is controlling access to the
object it “fronting” for. Regardless of the specifics, in both Proxy and
State a surrogate is passing method calls through to an implementation
object.]]] Add Comment

StateMachine
While State has a way to allow the client programmer to change the
implementation, StateMachine imposes a structure to automatically
change the implementation from one object to the next. The current
implementation represents the state that a system is in, and the system
behaves differently from one state to the next (because it uses State).
Basically, this is a “state machine” using objects. Add Comment

The code that moves the system from one state to the next is often a
Template Method, as seen in the following framework for a basic state
machine. Add Comment

Each state can be run() to perform its behavior, and (in this design) you
can also pass it an “input” object so it can tell you what new state to move
to based on that “input”. The key distinction between this design and the
next is that here, each State object decides what other states it can move
to, based on the “input”, whereas in the subsequent design all of the state
transitions are held in a single table. Another way to put it is that here,
each State object has its own little State table, and in the subsequent
design there is a single master state transition table for the whole system.
Add Comment

#: c04:statemachine:State.py
A State has an operation, and can be moved
into the next State given an Input:

class State:
 def run(self):
 assert 1, "run not implemented"
 def next(self, input):
 assert 1, "next not implemented"
#:~
This class is clearly unnecessary, but it allows us to say that something is a
State object in code, and provide a slightly different error message when
all the methods are not implemented. We could have gotten basically the
same effect by saying: Add Comment

class State: pass
because we would still get exceptions if run() or next() were called for a
derived type, and they hadn’t been implemented. Add Comment

The StateMachine keeps track of the current state, which is initialized
by the constructor. The runAll() method takes a list of Input objects.
This method not only moves to the next state, but it also calls run() for
each state object – thus you can see it’s an expansion of the idea of the
State pattern, since run() does something different depending on the
state that the system is in. Add Comment

#: c04:statemachine:StateMachine.py
Takes a list of Inputs to move from State to
State using a template method.

class StateMachine:
 def __init__(self, initialState):
 self.currentState = initialState
 self.currentState.run()
 # Template method:
 def runAll(self, inputs):
 for i in inputs:
 print i
 self.currentState = self.currentState.next(i)
 self.currentState.run()
#:~
I’ve also treated runAll() as a template method. This is typical, but
certainly not required – you could concievably want to override it, but
typically the behavior change will occur in State’s run() instead. Add
Comment

At this point the basic framework for this style of StateMachine (where
each state decides the next states) is complete. As an example, I’ll use a
fancy mousetrap that can move through several states in the process of
trapping a mouse13. The mouse classes and information are stored in the
mouse package, including a class representing all the possible moves that
a mouse can make, which will be the inputs to the state machine: Add
Comment

#: c04:mouse:MouseAction.py

class MouseAction:
 def __init__(self, action):
 self.action = action
 def __str__(self): return self.action

13 No mice were harmed in the creation of this example.

 def __cmp__(self, other):
 return cmp(self.action, other.action)
 # Necessary when __cmp__ or __eq__ is defined
 # in order to make this class usable as a
 # dictionary key:
 def __hash__(self):
 return hash(self.action)

Static fields; an enumeration of instances:
MouseAction.appears = MouseAction("mouse appears")
MouseAction.runsAway = MouseAction("mouse runs away")
MouseAction.enters = MouseAction("mouse enters trap")
MouseAction.escapes = MouseAction("mouse escapes")
MouseAction.trapped = MouseAction("mouse trapped")
MouseAction.removed = MouseAction("mouse removed")
#:~

You’ll note that __cmp__() has been overidden to implement a
comparison between action values. Also, each possible move by a mouse
is enumerated as a MouseAction object, all of which are static fields in
MouseAction. Add Comment

For creating test code, a sequence of mouse inputs is provided from a text
file: Add Comment

#:! c04:mouse:MouseMoves.txt
mouse appears
mouse runs away
mouse appears
mouse enters trap
mouse escapes
mouse appears
mouse enters trap
mouse trapped
mouse removed
mouse appears
mouse runs away
mouse appears
mouse enters trap
mouse trapped
mouse removed
#:~
With these tools in place, it’s now possible to create the first version of the
mousetrap program. Each State subclass defines its run() behavior, and
also establishes its next state with an if-else clause: Add Comment

#: c04:mousetrap1:MouseTrapTest.py
State Machine pattern using 'if' statements
to determine the next state.
import string, sys
sys.path += ['../statemachine', '../mouse']
from State import State
from StateMachine import StateMachine
from MouseAction import MouseAction
A different subclass for each state:

class Waiting(State):
 def run(self):
 print "Waiting: Broadcasting cheese smell"

 def next(self, input):
 if input == MouseAction.appears:
 return MouseTrap.luring
 return MouseTrap.waiting

class Luring(State):
 def run(self):
 print "Luring: Presenting Cheese, door open"

 def next(self, input):
 if input == MouseAction.runsAway:
 return MouseTrap.waiting
 if input == MouseAction.enters:
 return MouseTrap.trapping
 return MouseTrap.luring

class Trapping(State):
 def run(self):
 print "Trapping: Closing door"

 def next(self, input):
 if input == MouseAction.escapes:
 return MouseTrap.waiting
 if input == MouseAction.trapped:
 return MouseTrap.holding
 return MouseTrap.trapping

class Holding(State):
 def run(self):
 print "Holding: Mouse caught"

 def next(self, input):
 if input == MouseAction.removed:
 return MouseTrap.waiting
 return MouseTrap.holding

class MouseTrap(StateMachine):
 def __init__(self):
 # Initial state
 StateMachine.__init__(self, MouseTrap.waiting)

Static variable initialization:
MouseTrap.waiting = Waiting()
MouseTrap.luring = Luring()
MouseTrap.trapping = Trapping()
MouseTrap.holding = Holding()

moves = map(string.strip,
 open("../mouse/MouseMoves.txt").readlines())
MouseTrap().runAll(map(MouseAction, moves))
#:~
The StateMachine class simply defines all the possible states as static
objects, and also sets up the initial state. The UnitTest creates a
MouseTrap and then tests it with all the inputs from a
MouseMoveList. Add Comment

While the use of if statements inside the next() methods is perfectly
reasonable, managing a large number of these could become difficult.
Another approach is to create tables inside each State object defining the
various next states based on the input. Add Comment

Initially, this seems like it ought to be quite simple. You should be able to
define a static table in each State subclass that defines the transitions in
terms of the other State objects. However, it turns out that this approach
generates cyclic initialization dependencies. To solve the problem, I’ve had
to delay the initialization of the tables until the first time that the next()
method is called for a particular State object. Initially, the next()
methods can appear a little strange because of this. Add Comment

The StateT class is an implementation of State (so that the same
StateMachine class can be used from the previous example) that adds a
Map and a method to initialize the map from a two-dimensional array.
The next() method has a base-class implementation which must be

called from the overridden derived class next() methods after they test
for a null Map (and initialize it if it’s null): Add Comment

#: c04:mousetrap2:MouseTrap2Test.py
A better mousetrap using tables
import string, sys
sys.path += ['../statemachine', '../mouse']
from State import State
from StateMachine import StateMachine
from MouseAction import MouseAction

class StateT(State):
 def __init__(self):
 self.transitions = None
 def next(self, input):
 if self.transitions.has_key(input):
 return self.transitions[input]
 else:
 raise "Input not supported for current state"

class Waiting(StateT):
 def run(self):
 print "Waiting: Broadcasting cheese smell"
 def next(self, input):
 # Lazy initialization:
 if not self.transitions:
 self.transitions = {
 MouseAction.appears : MouseTrap.luring
 }
 return StateT.next(self, input)

class Luring(StateT):
 def run(self):
 print "Luring: Presenting Cheese, door open"
 def next(self, input):
 # Lazy initialization:
 if not self.transitions:
 self.transitions = {
 MouseAction.enters : MouseTrap.trapping,
 MouseAction.runsAway : MouseTrap.waiting
 }
 return StateT.next(self, input)

class Trapping(StateT):
 def run(self):

 print "Trapping: Closing door"
 def next(self, input):
 # Lazy initialization:
 if not self.transitions:
 self.transitions = {
 MouseAction.escapes : MouseTrap.waiting,
 MouseAction.trapped : MouseTrap.holding
 }
 return StateT.next(self, input)

class Holding(StateT):
 def run(self):
 print "Holding: Mouse caught"
 def next(self, input):
 # Lazy initialization:
 if not self.transitions:
 self.transitions = {
 MouseAction.removed : MouseTrap.waiting
 }
 return StateT.next(self, input)

class MouseTrap(StateMachine):
 def __init__(self):
 # Initial state
 StateMachine.__init__(self, MouseTrap.waiting)

Static variable initialization:
MouseTrap.waiting = Waiting()
MouseTrap.luring = Luring()
MouseTrap.trapping = Trapping()
MouseTrap.holding = Holding()

moves = map(string.strip,
 open("../mouse/MouseMoves.txt").readlines())
mouseMoves = map(MouseAction, moves)
MouseTrap().runAll(mouseMoves)
#:~
The rest of the code is identical – the difference is in the next() methods
and the StateT class. Add Comment

If you have to create and maintain a lot of State classes, this approach is
an improvement, since it’s easier to quickly read and understand the state
transitions from looking at the table. Add Comment

Table-Driven State
Machine

The advantage of the previous design is that all the information about a
state, including the state transition information, is located within the state
class itself. This is generally a good design principle. Add Comment

However, in a pure state machine, the machine can be completely
represented by a single state-transition table. This has the advantage of
locating all the information about the state machine in a single place,
which means that you can more easily create and maintain the table based
on a classic state-transition diagram. Add Comment

The classic state-transition diagram uses a circle to represent each state,
and lines from the state pointing to all states that state can transition into.
Each transition line is annotated with conditions for transition and an
action during transition. Here’s what it looks like: Add Comment

(Simple State Machine Diagram) Add Comment

Goals:

• Direct translation of state diagram Add Comment

• Vector of change: the state diagram representation Add Comment

• Reasonable implementation Add Comment

• No excess of states (you could represent every single change with a
new state) Add Comment

• Simplicity and flexibility Add Comment

Observations:

• States are trivial – no information or functions/data, just an
identity Add Comment

• Not like the State pattern! Add Comment

• The machine governs the move from state to state Add Comment

• Similar to flyweight Add Comment

• Each state may move to many others Add Comment

• Condition & action functions must also be external to states Add
Comment

• Centralize description in a single table containing all variations,
for ease of configuration Add Comment

Example: Add Comment

• State Machine & Table-Driven Code Add Comment

• Implements a vending machine Add Comment

• Uses several other patterns Add Comment

• Separates common state-machine code from specific application
(like template method) Add Comment

• Each input causes a seek for appropriate solution (like chain of
responsibility) Add Comment

• Tests and transitions are encapsulated in function objects (objects
that hold functions) Add Comment

• Java constraint: methods are not first-class objects Add Comment

Collecting

UnavailableSelecting

More?

*1st digit of selection/
Show digit

Money Added/
Show Total

*

Money Added/
Show Total

2nd digit & Not available/
Message, clear selectionQuit/

Return Change

Quit/
Return Change

Q
ui

t/
R

et
ur

n
C

ha
ng

e

Quit/
Return Change

2nd digit & Available/
Dispense *

2nd digit & not enough/
message, clear selection

No Change Makes
Change

Enough Change/
Message Off

Not Enough Change/
Message On

The State class
The State class is distinctly different from before, since it is really just a
placeholder with a name. Thus it is not inherited from previous State
classes: Add Comment

c04:statemachine2:State.py

class State:
 def __init__(self, name): self.name = name
 def __str__(self): return self.name
:~

Conditions for transition
In the state transition diagram, an input is tested to see if it meets the
condition necessary to transfer to the state under question. As before, the
Input is just a tagging interface: Add Comment

c04:statemachine2:Input.py
Inputs to a state machine

class Input: pass
:~
The Condition evaluates the Input to decide whether this row in the
table is the correct transition: Add Comment

c04:statemachine2:Condition.py
Condition function object for state machine

class Condition:
 boolean condition(input) :
 assert 1, "condition() not implemented"
:~

Transition actions
If the Condition returns true, then the transition to a new state is made,
and as that transition is made some kind of action occurs (in the previous
state machine design, this was the run() method): Add Comment

c04:statemachine2:Transition.py
Transition function object for state machine

class Transition:
 def transition(self, input):
 assert 1, "transition() not implemented"
:~

The table
With these classes in place, we can set up a 3-dimensional table where
each row completely describes a state. The first element in the row is the
current state, and the rest of the elements are each a row indicating what
the type of the input can be, the condition that must be satisfied in order
for this state change to be the correct one, the action that happens during
transition, and the new state to move into. Note that the Input object is
not just used for its type, it is also a Messenger object that carries
information to the Condition and Transition objects: Add Comment

{(CurrentState, InputA) : (ConditionA, TransitionA, NextA),
 (CurrentState, InputB) : (ConditionB, TransitionB, NextB),
 (CurrentState, InputC) : (ConditionC, TransitionC, NextC),
 ...

}

The basic machine
c04:statemachine2:StateMachine.py
A table-driven state machine

class StateMachine:
 def __init__(self, initialState, tranTable):
 self.state = initialState
 self.transitionTable = tranTable

 def nextState(self, input):

 Iterator it=((List)map.get(state)).iterator()
 while(it.hasNext()):
 Object[] tran = (Object[])it.next()
 if(input == tran[0] ||
 input.getClass() == tran[0]):
 if(tran[1] != null):
 Condition c = (Condition)tran[1]
 if(!c.condition(input))
 continue # Failed test

 if(tran[2] != null)
 ((Transition)tran[2]).transition(input)
 state = (State)tran[3]
 return

 throw RuntimeException(
 "Input not supported for current state")

:~

Simple vending machine
c04:vendingmachine:VendingMachine.py
Demonstrates use of StateMachine.py
import sys
sys.path += ['../statemachine2']
import StateMachine

class State:

 def __init__(self, name): self.name = name
 def __str__(self): return self.name

State.quiescent = State("Quiesecent")
State.collecting = State("Collecting")
State.selecting = State("Selecting")
State.unavailable = State("Unavailable")
State.wantMore = State("Want More?")
State.noChange = State("Use Exact Change Only")
State.makesChange = State("Machine makes change")

class HasChange:
 def __init__(self, name): self.name = name
 def __str__(self): return self.name

HasChange.yes = HasChange("Has change")
HasChange.no = HasChange("Cannot make change")

class ChangeAvailable(StateMachine):
 def __init__(self):
 StateMachine.__init__(State.makesChange, {
 # Current state, input
 (State.makesChange, HasChange.no) :
 # test, transition, next state:
 (null, null, State.noChange),
 (State.noChange, HasChange.yes) :
 (null, null, State.noChange)
 })

class Money:
 def __init__(self, name, value):
 self.name = name
 self.value = value
 def __str__(self): return self.name
 def getValue(self): return self.value

Money.quarter = Money("Quarter", 25)
Money.dollar = Money("Dollar", 100)

class Quit:
 def __str__(self): return "Quit"

Quit.quit = Quit()

class Digit:
 def __init__(self, name, value):
 self.name = name
 self.value = value
 def __str__(self): return self.name
 def getValue(self): return self.value

class FirstDigit(Digit): pass
FirstDigit.A = FirstDigit("A", 0)
FirstDigit.B = FirstDigit("B", 1)
FirstDigit.C = FirstDigit("C", 2)
FirstDigit.D = FirstDigit("D", 3)

class SecondDigit(Digit): pass
SecondDigit.one = SecondDigit("one", 0)
SecondDigit.two = SecondDigit("two", 1)
SecondDigit.three = SecondDigit("three", 2)
SecondDigit.four = SecondDigit("four", 3)

class ItemSlot:
 id = 0
 def __init__(self, price, quantity):
 self.price = price
 self.quantity = quantity
 def __str__(self): return `ItemSlot.id`
 def getPrice(self): return self.price
 def getQuantity(self): return self.quantity
 def decrQuantity(self): self.quantity -= 1

class VendingMachine(StateMachine):
 changeAvailable = ChangeAvailable()
 amount = 0
 FirstDigit first = null
 ItemSlot[][] items = ItemSlot[4][4]

 # Conditions:
 def notEnough(self, input):
 i1 = first.getValue()
 i2 = input.getValue()
 return items[i1][i2].getPrice() > amount

 def itemAvailable(self, input):
 i1 = first.getValue()
 i2 = input.getValue()

 return items[i1][i2].getQuantity() > 0

 def itemNotAvailable(self, input):
 return !itemAvailable.condition(input)
 #i1 = first.getValue()
 #i2 = input.getValue()
 #return items[i1][i2].getQuantity() == 0

 # Transitions:
 def clearSelection(self, input):
 i1 = first.getValue()
 i2 = input.getValue()
 ItemSlot is = items[i1][i2]
 print (
 "Clearing selection: item " + is +
 " costs " + is.getPrice() +
 " and has quantity " + is.getQuantity())
 first = null

 def dispense(self, input):
 i1 = first.getValue()
 i2 = input.getValue()
 ItemSlot is = items[i1][i2]
 print ("Dispensing item " +
 is + " costs " + is.getPrice() +
 " and has quantity " + is.getQuantity())
 items[i1][i2].decrQuantity()
 print ("Quantity " +
 is.getQuantity())
 amount -= is.getPrice()
 print("Amount remaining " +
 amount)

 def showTotal(self, input):
 amount += ((Money)input).getValue()
 print "Total amount = " + amount

 def returnChange(self, input):
 print "Returning " + amount
 amount = 0

 def showDigit(self, input):
 first = (FirstDigit)input
 print "First Digit= "+ first

 def __init__(self):
 StateMachine.__init__(self, State.quiescent)
 for(int i = 0 i < items.length i++)
 for(int j = 0 j < items[i].length j++)
 items[i][j] = ItemSlot((j+1)*25, 5)
 items[3][0] = ItemSlot(25, 0)
 buildTable(Object[][][]{
 ::State.quiescent, # Current state
 # Input, test, transition, next state:
 :Money.class, null,
 showTotal, State.collecting,
 ::State.collecting, # Current state
 # Input, test, transition, next state:
 :Quit.quit, null,
 returnChange, State.quiescent,
 :Money.class, null,
 showTotal, State.collecting,
 :FirstDigit.class, null,
 showDigit, State.selecting,
 ::State.selecting, # Current state
 # Input, test, transition, next state:
 :Quit.quit, null,
 returnChange, State.quiescent,
 :SecondDigit.class, notEnough,
 clearSelection, State.collecting,
 :SecondDigit.class, itemNotAvailable,
 clearSelection, State.unavailable,
 :SecondDigit.class, itemAvailable,
 dispense, State.wantMore,
 ::State.unavailable, # Current state
 # Input, test, transition, next state:
 :Quit.quit, null,
 returnChange, State.quiescent,
 :FirstDigit.class, null,
 showDigit, State.selecting,
 ::State.wantMore, # Current state
 # Input, test, transition, next state:
 :Quit.quit, null,
 returnChange, State.quiescent,
 :FirstDigit.class, null,
 showDigit, State.selecting,
)

:~

Testing the machine
c04:vendingmachine:VendingMachineTest.py
Demonstrates use of StateMachine.py

vm = VendingMachine()
for input in [
 Money.quarter,
 Money.quarter,
 Money.dollar,
 FirstDigit.A,
 SecondDigit.two,
 FirstDigit.A,
 SecondDigit.two,
 FirstDigit.C,
 SecondDigit.three,
 FirstDigit.D,
 SecondDigit.one,
 Quit.quit]:
 vm.nextState(input)

:~

Tools
Another approach, as your state machine gets bigger, is to use an
automation tool whereby you configure a table and let the tool generate
the state machine code for you. This can be created yourself using a
language like Python, but there are also free, open-source tools such as
Libero, at http://www.imatix.com. Add Comment

Exercises
1. Create an example of the “virtual proxy.” Add Comment

2. Create an example of the “Smart reference” proxy where you keep
count of the number of method calls to a particular object. Add
Comment

3. Create a program similar to certain DBMS systems that only allow
a certain number of connections at any time. To implement this,
use a singleton-like system that controls the number of
“connection” objects that it creates. When a user is finished with a
connection, the system must be informed so that it can check that
connection back in to be reused. To guarantee this, provide a proxy
object instead of a reference to the actual connection, and design
the proxy so that it will cause the connection to be released back to
the system. Add Comment

4. Using the State, make a class called UnpredictablePerson
which changes the kind of response to its hello() method
depending on what kind of Mood it’s in. Add an additional kind of
Mood called Prozac. Add Comment

5. Create a simple copy-on write implementation. Add Comment

6. Apply TransitionTable.py to the “Washer” problem. Add
Comment

7. Create a StateMachine system whereby the current state along
with input information determines the next state that the system
will be in. To do this, each state must store a reference back to the
proxy object (the state controller) so that it can request the state
change. Use a HashMap to create a table of states, where the key
is a String naming the new state and the value is the new state
object. Inside each state subclass override a method nextState()
that has its own state-transition table. The input to nextState()
should be a single word that comes from a text file containing one
word per line. Add Comment

8. Modify the previous exercise so that the state machine can be
configured by creating/modifying a single multi-dimensional
array. Add Comment

9. Modify the “mood” exercise from the previous session so that it
becomes a state machine using StateMachine.java Add Comment

10. Create an elevator state machine system using StateMachine.java
Add Comment

11. Create a heating/air-conditioning system using StateMachine.java
Add Comment

12. A generator is an object that produces other objects, just like a
factory, except that the generator function doesn’t require any
arguments. Create a MouseMoveGenerator which produces
correct MouseMove actions as outputs each time the generator
function is called (that is, the mouse must move in the proper
sequence, thus the possible moves are based on the previous move
– it’s another state machine). Add a method iterator() to
produce an iterator, but this method should take an int argument
that specifies the number of moves to produce before hasNext()
returns false. Add Comment

X: Decorators:
dynamic type
selection

The use of layered objects to dynamically and
transparently add responsibilities to individual objects is
referred to as the decorator pattern. Add Comment

Used when subclassing creates too many (& inflexible) classes Add
Comment

All decorators that wrap around the original object must have the same
basic interface Add Comment

Dynamic proxy/surrogate? Add Comment

This accounts for the odd inheritance structure Add Comment

Tradeoff: coding is more complicated when using decorators Add
Comment

Basic decorator structure
Component

operation()

Decoratable

operation()

Decorator2

operation()
addedBehavior()

Decorator1

addedState

operation()

A coffee example
Consider going down to the local coffee shop, BeanMeUp, for a coffee.
There are typically many different drinks on offer -- espressos, lattes, teas,
iced coffees, hot chocolate to name a few, as well as a number of extras
(which cost extra too) such as whipped cream or an extra shot of espresso.
You can also make certain changes to your drink at no extra cost, such as
asking for decaf coffee instead of regular coffee. Add Comment

Quite clearly if we are going to model all these drinks and combinations,
there will be sizeable class diagrams. So for clarity we will only consider a
subset of the coffees: Espresso, Espresso Con Panna, Café Late,
Cappuccino and Café Mocha. We'll include 2 extras - whipped cream
("whipped") and an extra shot of espresso; and three changes - decaf,
steamed milk ("wet") and foamed milk ("dry"). Add Comment

Class for each combination
One solution is to create an individual class for every combination. Each
class describes the drink and is responsible for the cost etc. The resulting

menu is huge, and a part of the class diagram would look something like
this: Add Comment

CafeLatte CafeLatteDecaf CafeLatteDecafWhipped

CafeLatteExtraEspresso CafeLatteExtraEspressoWhipped

CafeLatteWet

CafeLatteWetWhipped

CafeLatteWhipped

CafeMocha CafeMochaDecaf CafeMochaDecafWhipped

CafeMochaExtraEspresso CafeMochaExtraEspressoWhipped

CafeMochaWet

CafeMochaWetWhipped

CafeMochaWhipped

Cappuccino CappuccinoDecaf CappuccinoDecafWhipped CappuccinoDry

CappuccinoExtraEspresso CappuccinoExtraEspressoWhipped CappuccinoDryWhipped

CappuccinoWhipped

CoffeeShop

Espresso DoubleEspresso

Here is one of the combinations, a simple implementation of a
Cappuccino: Add Comment

class Cappuccino:
 def __init__(self):
 self.cost = 1
 self.description = "Cappucino"
 def getCost(self):
 return self.cost
 def getDescription(self):
 return self.description

The key to using this method is to find the particular combination you
want. So, once you've found the drink you would like, here is how you
would use it, as shown in the CoffeeShop class in the following code: Add
Comment

#: cX:decorator:nodecorators:CoffeeShop.py
Coffee example with no decorators

class Espresso: pass
class DoubleEspresso: pass

class EspressoConPanna: pass

class Cappuccino:
 def __init__(self):
 self.cost = 1
 self.description = "Cappucino"
 def getCost(self):
 return self.cost
 def getDescription(self):
 return self.description

class CappuccinoDecaf: pass
class CappuccinoDecafWhipped: pass
class CappuccinoDry: pass
class CappuccinoDryWhipped: pass
class CappuccinoExtraEspresso: pass
class CappuccinoExtraEspressoWhipped: pass
class CappuccinoWhipped: pass

class CafeMocha: pass
class CafeMochaDecaf: pass
class CafeMochaDecafWhipped:
 def __init__(self):
 self.cost = 1.25
 self.description = \
 "Cafe Mocha decaf whipped cream"
 def getCost(self):
 return self.cost
 def getDescription(self):
 return self.description

class CafeMochaExtraEspresso: pass
class CafeMochaExtraEspressoWhipped: pass
class CafeMochaWet: pass
class CafeMochaWetWhipped: pass
class CafeMochaWhipped: pass

class CafeLatte: pass
class CafeLatteDecaf: pass
class CafeLatteDecafWhipped: pass
class CafeLatteExtraEspresso: pass
class CafeLatteExtraEspressoWhipped: pass
class CafeLatteWet: pass
class CafeLatteWetWhipped: pass

class CafeLatteWhipped: pass

cappuccino = Cappuccino()
print (cappuccino.getDescription() + ": $" +
 `cappuccino.getCost()`)

cafeMocha = CafeMochaDecafWhipped()
print (cafeMocha.getDescription()
 + ": $" + `cafeMocha.getCost()`)
#:~
And here is the corresponding output: Add Comment

Cappucino: $1.0Cafe Mocha decaf whipped cream: $1.25
You can see that creating the particular combination you want is easy,
since you are just creating an instance of a class. However, there are a
number of problems with this approach. Firstly, the combinations are
fixed statically so that any combination a customer may wish to order
needs to be created up front. Secondly, the resulting menu is so huge that
finding your particular combination is difficult and time consuming. Add
Comment

The decorator approach
Another approach would be to break the drinks down into the various
components such as espresso and foamed milk, and then let the customer
combine the components to describe a particular coffee. Add Comment

In order to do this programmatically, we use the Decorator pattern. A
Decorator adds responsibility to a component by wrapping it, but the
Decorator conforms to the interface of the component it encloses, so the
wrapping is transparent. Decorators can also be nested without the loss of
this transparency. Add Comment

Chocolate

CoffeeShop

Decaf

Decorator

Espresso FoamedMilk

Mug

SteamedMilk Whipped

«interface»
DrinkComponent

Methods invoked on the Decorator can in turn invoke methods in the
component, and can of course perform processing before or after the
invocation. Add Comment

So if we added getTotalCost() and getDescription() methods to the
DrinkComponent interface, an Espresso looks like this: Add Comment

class Espresso(Decorator):
 cost = 0.75f
 description = " espresso"
 public Espresso(DrinkComponent):
 Decorator.__init__(self, component)

 def getTotalCost(self):
 return self.component.getTotalCost() + cost

 def getDescription(self):
 return self.component.getDescription() +
 description

You combine the components to create a drink as follows, as shown in the
code below: Add Comment

#: cX:decorator:alldecorators:CoffeeShop.py
Coffee example using decorators

class DrinkComponent:
 def getDescription(self):
 return self.__class__.__name__
 def getTotalCost(self):
 return self.__class__.cost

class Mug(DrinkComponent):

 cost = 0.0

class Decorator(DrinkComponent):
 def __init__(self, drinkComponent):
 self.component = drinkComponent
 def getTotalCost(self):
 return self.component.getTotalCost() + \
 DrinkComponent.getTotalCost(self)
 def getDescription(self):
 return self.component.getDescription() + \
 ' ' + DrinkComponent.getDescription(self)

class Espresso(Decorator):
 cost = 0.75
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Decaf(Decorator):
 cost = 0.0
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class FoamedMilk(Decorator):
 cost = 0.25
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class SteamedMilk(Decorator):
 cost = 0.25
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Whipped(Decorator):
 cost = 0.25
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Chocolate(Decorator):
 cost = 0.25
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

cappuccino = Espresso(FoamedMilk(Mug()))
print cappuccino.getDescription().strip() + \

 ": $" + `cappuccino.getTotalCost()`

cafeMocha = Espresso(SteamedMilk(Chocolate(
 Whipped(Decaf(Mug())))))

print cafeMocha.getDescription().strip() + \
 ": $" + `cafeMocha.getTotalCost()`
#:~
This approach would certainly provide the most flexibility and the
smallest menu. You have a small number of components to choose from,
but assembling the description of the coffee then becomes rather arduous.
Add Comment

If you want to describe a plain cappuccino, you create it with

plainCap = Espresso(FoamedMilk(Mug()))
Creating a decaf Café Mocha with whipped cream requires an even longer
description. Add Comment

Compromise
The previous approach takes too long to describe a coffee. There will also
be certain combinations that you will describe regularly, and it would be
convenient to have a quick way of describing them. Add Comment

The 3rd approach is a mixture of the first 2 approaches, and combines
flexibility with ease of use. This compromise is achieved by creating a
reasonably sized menu of basic selections, which would often work exactly
as they are, but if you wanted to decorate them (whipped cream, decaf
etc.) then you would use decorators to make the modifications. This is the
type of menu you are presented with in most coffee shops. Add Comment

CafeLatteCafeMocha Cappuccino

CoffeeShop

Decaf

Decorator

Dry

Espresso

ExtraEspresso Wet Whipped

«interface»
DrinkComponent

Here is how to create a basic selection, as well as a decorated selection:

#: cX:decorator:compromise:CoffeeShop.py
Coffee example with a compromise of basic
combinations and decorators

class DrinkComponent:
 def getDescription(self):
 return self.__class__.__name__
 def getTotalCost(self):
 return self.__class__.cost

class Espresso(DrinkComponent):
 cost = 0.75

class EspressoConPanna(DrinkComponent):
 cost = 1.0

class Cappuccino(DrinkComponent):
 cost = 1.0

class CafeLatte(DrinkComponent):
 cost = 1.0

class CafeMocha(DrinkComponent):
 cost = 1.25

class Decorator(DrinkComponent):
 def __init__(self, drinkComponent):
 self.component = drinkComponent
 def getTotalCost(self):

 return self.component.getTotalCost() + \
 DrinkComponent.getTotalCost(self)
 def getDescription(self):
 return self.component.getDescription() + \
 ' ' + DrinkComponent.getDescription(self)

class ExtraEspresso(Decorator):
 cost = 0.75
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Whipped(Decorator):
 cost = 0.50
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Decaf(Decorator):
 cost = 0.0
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Dry(Decorator):
 cost = 0.0
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

class Wet(Decorator):
 cost = 0.0
 def __init__(self, drinkComponent):
 Decorator.__init__(self, drinkComponent)

cappuccino = Cappuccino()
print cappuccino.getDescription() + ": $" + \
 `cappuccino.getTotalCost()`

cafeMocha = Whipped(Decaf(CafeMocha()))
print cafeMocha.getDescription() + ": $" + \
 `cafeMocha.getTotalCost()`
#:~
You can see that creating a basic selection is quick and easy, which makes
sense since they will be described regularly. Describing a decorated drink
is more work than when using a class per combination, but clearly less
work than when only using decorators. Add Comment

The final result is not too many classes, but not too many decorators
either. Most of the time it's possible to get away without using any
decorators at all, so we have the benefits of both approaches. Add
Comment

Other considerations
What happens if we decide to change the menu at a later stage, such as by
adding a new type of drink? If we had used the class per combination
approach, the effect of adding an extra such as syrup would be an
exponential growth in the number of classes. However, the implications to
the all decorator or compromise approaches are the same - one extra class
is created. Add Comment

How about the effect of changing the cost of steamed milk and foamed
milk, when the price of milk goes up? Having a class for each combination
means that you need to change a method in each class, and thus maintain
many classes. By using decorators, maintenance is reduced by defining the
logic in one place. Add Comment

Exercises
1. Add a Syrup class to the decorator approach described above.

Then create a Café Latte (you'll need to use steamed milk with an
espresso) with syrup. Add Comment

2. Repeat Exercise 1 for the compromise approach. Add Comment

3. Implement the decorator pattern to create a Pizza restaurant,
which has a set menu of choices as well as the option to design
your own pizza. Follow the compromise approach to create a
menu consisting of a Margherita, Hawaiian, Regina, and
Vegetarian pizzas, with toppings (decorators) of Garlic, Olives,
Spinach, Avocado, Feta and Pepperdews. Create a Hawaiian pizza,
as well as a Margherita decorated with Spinach, Feta, Pepperdews
and Olives. Add Comment

Y: Iterators:
decoupling
algorithms from
containers

This chapter has not had any significant translation yet.

Alexander Stepanov thought for years about the problem
of generic programming techniques before creating the
STL (along with Dave Musser). He came to the conclusion
that all algorithms are defined on algebraic structures –
what we would call containers. Add Comment

In the process, he realized that iterators are central to the use of
algorithms, because they decouple the algorithms from the specific type of
container that the algorithm might currently be working with. This means
that you can describe the algorithm without worrying about the particular
sequence it is operating on. More generally, any code that you write using
iterators is decoupled from the data structure that the code is
manipulating, and thus your code is more general and reusable. Add
Comment

The use of iterators also extends your code into the realm of functional
programming, whose objective is to describe what a program is doing at
every step rather than how it is doing it. That is, you say “sort” rather than
describing the sort. The objective of the C++ STL was to provide this
generic programming approach for C++ (how successful this approach
will actually be remains to be seen). Add Comment

If you’ve used containers in Java (and it’s hard to write code without using
them), you’ve used iterators – in the form of the Enumeration in Java

1.0/1.1 and the Iterator in Java 2. So you should already be familiar with
their general use. If not, see Chapter 9, Holding Your Objects, under
Iterators in Thinking in Java, 2nd edition (freely downloadable from
www.BruceEckel.com). Add Comment

Because the Java 2 containers rely heavily on iterators they become
excellent candidates for generic/functional programming techniques. This
chapter will explore these techniques by converting the STL algorithms to
Java, for use with the Java 2 container library. Add Comment

Type-safe iterators
In Thinking in Java, 2nd edition, I show the creation of a type-safe
container that will only accept a particular type of object. A reader, Linda
Pazzaglia, asked for the other obvious type-safe component, an iterator
that would work with the basic java.util containers, but impose the
constraint that the type of objects that it iterates over be of a particular
type. Add Comment

If Java ever includes a template mechanism, this kind of iterator will have
the added advantage of being able to return a specific type of object, but
without templates you are forced to return generic Objects, or to require
a bit of hand-coding for every type that you want to iterate through. I will
take the former approach. Add Comment

A second design decision involves the time that the type of object is
determined. One approach is to take the type of the first object that the
iterator encounters, but this is problematic because the containers may
rearrange the objects according to an internal ordering mechanism (such
as a hash table) and thus you may get different results from one iteration
to the next. The safe approach is to require the user to establish the type
during construction of the iterator. Add Comment

Lastly, how do we build the iterator? We cannot rewrite the existing Java
library classes that already produce Enumerations and Iterators.
However, we can use the Decorator design pattern, and create a class that
simply wraps the Enumeration or Iterator that is produced, generating
a new object that has the iteration behavior that we want (which is, in this
case, to throw a RuntimeException if an incorrect type is encountered)
but with the same interface as the original Enumeration or Iterator, so
that it can be used in the same places (you may argue that this is actually a
Proxy pattern, but it’s more likely Decorator because of its intent). Here is
the code: Add Comment

util:TypedIterator.py

class TypedIterator(Iterator):
 private Iterator imp
 private Class type
 def __init__(self, Iterator it, Class type):
 imp = it
 self.type = type

 def hasNext(self):
 return imp.hasNext()

 def remove(self): imp.remove()
 def next(self):
 Object obj = imp.next()
 if(!type.isInstance(obj))
 throw ClassCastException(
 "TypedIterator for type " + type +
 " encountered type: " + obj.getClass())
 return obj
:~

5: Factories:
encapsulating
object creation

When you discover that you need to add new types to a system, the most
sensible first step is to use polymorphism to create a common interface to
those new types. This separates the rest of the code in your system from
the knowledge of the specific types that you are adding. New types may be
added without disturbing existing code … or so it seems. At first it would
appear that the only place you need to change the code in such a design is
the place where you inherit a new type, but this is not quite true. You must
still create an object of your new type, and at the point of creation you
must specify the exact constructor to use. Thus, if the code that creates
objects is distributed throughout your application, you have the same

problem when adding new types—you must still chase down all the points
of your code where type matters. It happens to be the creation of the type
that matters in this case rather than the use of the type (which is taken
care of by polymorphism), but the effect is the same: adding a new type
can cause problems. Add Comment

The solution is to force the creation of objects to occur through a common
factory rather than to allow the creational code to be spread throughout
your system. If all the code in your program must go through this factory
whenever it needs to create one of your objects, then all you must do when
you add a new object is to modify the factory. Add Comment

Since every object-oriented program creates objects, and since it’s very
likely you will extend your program by adding new types, I suspect that
factories may be the most universally useful kinds of design patterns. Add
Comment

Simple Factory method
As an example, let’s revisit the Shape system. One approach is to make
the factory a static method of the base class: Add Comment

#: c05:shapefact1:ShapeFactory1.py
A simple static factory method.
from __future__ import generators
import random

class Shape(object):
 # Create based on class name:
 def factory(type):
 #return eval(type + "()")
 if type == "Circle": return Circle()
 if type == "Square": return Square()
 assert 1, "Bad shape creation: " + type
 factory = staticmethod(factory)

class Circle(Shape):
 def draw(self): print "Circle.draw"
 def erase(self): print "Circle.erase"

class Square(Shape):
 def draw(self): print "Square.draw"
 def erase(self): print "Square.erase"

Generate shape name strings:
def shapeNameGen(n):
 types = Shape.__subclasses__()
 for i in range(n):
 yield random.choice(types).__name__

shapes = \
 [Shape.factory(i) for i in shapeNameGen(7)]

for shape in shapes:
 shape.draw()
 shape.erase()
#:~
The factory() takes an argument that allows it to determine what type of
Shape to create; it happens to be a String in this case but it could be any
set of data. The factory() is now the only other code in the system that
needs to be changed when a new type of Shape is added (the initialization
data for the objects will presumably come from somewhere outside the
system, and not be a hard-coded array as in the above example).Add
Comment

Note that this example also shows the new Python 2.2 staticmethod()
technique for creating static methods in a class. Add Comment

I have also used a tool which is new in Python 2.2 called a generator. A
generator is a special case of a factory: it’s a factory that takes no
arguments in order to create a new object. Normally you hand some
information to a factory in order to tell it what kind of object to create and
how to create it, but a generator has some kind of internal algorithm that
tells it what and how to build. It “generates out of thin air” rather than
being told what to create. Add Comment

Now, this may not look consistent with the code you see above: Add
Comment

for i in shapeNameGen(7)
looks like there’s an initialization taking place. This is where a generator is
a bit strange – when you call a function that contains a yield statement
(yield is a new keyword that determines that a function is a generator),
that function actually returns a generator object that has an iterator. This
iterator is implicitly used in the for statement above, so it appears that
you are iterating through the generator function, not what it returns. This
was done for convenience of use. Add Comment

Thus, the code that you write is actually a kind of factory, that creates the
generator objects that do the actual generation. You can use the generator
explicitly if you want, for example: Add Comment

gen = shapeNameGen(7)
print gen.next()
So next() is the iterator method that’s actually called to generate the next
object, and it takes no arguments. shapeNameGen() is the factory, and
gen is the generator. Add Comment

Inside the generator-factory, you can see the call to __subclasses__(),
which produces a list of references to each of the subclasses of Shape
(which must be inherited from object for this to work). You should be
aware, however, that this only works for the first level of inheritance from
Item, so if you were to inherit a new class from Circle, it wouldn’t show
up in the list generated by __subclasses__(). If you need to create a
deeper hierarchy this way, you must recurse the __subclasses__() list.
Add Comment

Also note that in shapeNameGen() the statement Add Comment

types = Shape.__subclasses__()
Is only executed when the generator object is produced; each time the
next() method of this generator object is called (which, as noted above,
may happen implicitly), only the code in the for loop will be executed, so
you don’t have wasteful execution (as you would if this were an ordinary
function). Add Comment

Polymorphic factories
The static factory() method in the previous example forces all the
creation operations to be focused in one spot, so that’s the only place you
need to change the code. This is certainly a reasonable solution, as it
throws a box around the process of creating objects. However, the Design
Patterns book emphasizes that the reason for the Factory Method pattern
is so that different types of factories can be subclassed from the basic
factory (the above design is mentioned as a special case). However, the
book does not provide an example, but instead just repeats the example
used for the Abstract Factory (you’ll see an example of this in the next
section). Here is ShapeFactory1.py modified so the factory methods are
in a separate class as virtual functions. Notice also that the specific Shape
classes are dynamically loaded on demand: Add Comment

#: c05:shapefact2:ShapeFactory2.py
Polymorphic factory methods.
from __future__ import generators
import random

class ShapeFactory:
 factories = {}
 def addFactory(id, shapeFactory):
 ShapeFactory.factories.put[id] = shapeFactory
 addFactory = staticmethod(addFactory)
 # A Template Method:
 def createShape(id):
 if not ShapeFactory.factories.has_key(id):
 ShapeFactory.factories[id] = \
 eval(id + '.Factory()')
 return ShapeFactory.factories[id].create()
 createShape = staticmethod(createShape)

class Shape(object): pass

class Circle(Shape):
 def draw(self): print "Circle.draw"
 def erase(self): print "Circle.erase"
 class Factory:
 def create(self): return Circle()

class Square(Shape):
 def draw(self):
 print "Square.draw"
 def erase(self):
 print "Square.erase"
 class Factory:
 def create(self): return Square()

def shapeNameGen(n):
 types = Shape.__subclasses__()
 for i in range(n):
 yield random.choice(types).__name__

shapes = [ShapeFactory.createShape(i)
 for i in shapeNameGen(7)]

for shape in shapes:
 shape.draw()

 shape.erase()
#:~
Now the factory method appears in its own class, ShapeFactory, as the
create() method. The different types of shapes must each create their
own factory with a create() method to create an object of their own type.
The actual creation of shapes is performed by calling
ShapeFactory.createShape(), which is a static method that uses the
dictionary in ShapeFactory to find the appropriate factory object based
on an identifier that you pass it. The factory is immediately used to create
the shape object, but you could imagine a more complex problem where
the appropriate factory object is returned and then used by the caller to
create an object in a more sophisticated way. However, it seems that much
of the time you don’t need the intricacies of the polymorphic factory
method, and a single static method in the base class (as shown in
ShapeFactory1.py) will work fine. Add Comment

Notice that the ShapeFactory must be initialized by loading its
dictionary with factory objects, which takes place in the static
initialization clause of each of the shape implementations. Add Comment

Abstract factories
The Abstract Factory pattern looks like the factory objects we’ve seen
previously, with not one but several factory methods. Each of the factory
methods creates a different kind of object. The idea is that at the point of
creation of the factory object, you decide how all the objects created by
that factory will be used. The example given in Design Patterns
implements portability across various graphical user interfaces (GUIs):
you create a factory object appropriate to the GUI that you’re working
with, and from then on when you ask it for a menu, button, slider, etc. it
will automatically create the appropriate version of that item for the GUI.
Thus you’re able to isolate, in one place, the effect of changing from one
GUI to another. Add Comment

As another example suppose you are creating a general-purpose gaming
environment and you want to be able to support different types of games.
Here’s how it might look using an abstract factory: Add Comment

#: c05:Games.py
An example of the Abstract Factory pattern.

class Obstacle:
 def action(self): pass

class Player:
 def interactWith(self, obstacle): pass

class Kitty(Player):
 def interactWith(self, obstacle):
 print "Kitty has encountered a",
 obstacle.action()

class KungFuGuy(Player):
 def interactWith(self, obstacle):
 print "KungFuGuy now battles a",
 obstacle.action()

class Puzzle(Obstacle):
 def action(self):
 print "Puzzle"

class NastyWeapon(Obstacle):
 def action(self):
 print "NastyWeapon"

The Abstract Factory:
class GameElementFactory:
 def makePlayer(self): pass
 def makeObstacle(self): pass

Concrete factories:
class KittiesAndPuzzles(GameElementFactory):
 def makePlayer(self): return Kitty()
 def makeObstacle(self): return Puzzle()

class KillAndDismember(GameElementFactory):
 def makePlayer(self): return KungFuGuy()
 def makeObstacle(self): return NastyWeapon()

class GameEnvironment:
 def __init__(self, factory):
 self.factory = factory
 self.p = factory.makePlayer()
 self.ob = factory.makeObstacle()
 def play(self):
 self.p.interactWith(self.ob)

g1 = GameEnvironment(KittiesAndPuzzles())
g2 = GameEnvironment(KillAndDismember())
g1.play()
g2.play()
#:~
In this environment, Player objects interact with Obstacle objects, but
there are different types of players and obstacles depending on what kind
of game you’re playing. You determine the kind of game by choosing a
particular GameElementFactory, and then the GameEnvironment
controls the setup and play of the game. In this example, the setup and
play is very simple, but those activities (the initial conditions and the state
change) can determine much of the game’s outcome. Here,
GameEnvironment is not designed to be inherited, although it could
very possibly make sense to do that. Add Comment

This also contains examples of Double Dispatching and the Factory
Method, both of which will be explained later. Add Comment

Of course, the above scaffolding of Obstacle, Player and
GameElementFactory (which was translated from the Java version of
this example) is unnecessary – it’s only required for languages that have
static type checking. As long as the concrete Python classes follow the
form of the required classes, we don’t need any base classes: Add
Comment

#: c05:Games2.py
Simplified Abstract Factory.

class Kitty:
 def interactWith(self, obstacle):
 print "Kitty has encountered a",
 obstacle.action()

class KungFuGuy:
 def interactWith(self, obstacle):
 print "KungFuGuy now battles a",
 obstacle.action()

class Puzzle:
 def action(self): print "Puzzle"

class NastyWeapon:
 def action(self): print "NastyWeapon"

Concrete factories:

class KittiesAndPuzzles:
 def makePlayer(self): return Kitty()
 def makeObstacle(self): return Puzzle()

class KillAndDismember:
 def makePlayer(self): return KungFuGuy()
 def makeObstacle(self): return NastyWeapon()

class GameEnvironment:
 def __init__(self, factory):
 self.factory = factory
 self.p = factory.makePlayer()
 self.ob = factory.makeObstacle()
 def play(self):
 self.p.interactWith(self.ob)

g1 = GameEnvironment(KittiesAndPuzzles())
g2 = GameEnvironment(KillAndDismember())
g1.play()
g2.play()
#:~
Another way to put this is that all inheritance in Python is implementation
inheritance; since Python does its type-checking at runtime, there’s no
need to use interface inheritance so that you can upcast to the base type.
Add Comment

You might want to study the two examples for comparison, however. Does
the first one add enough useful information about the pattern that it’s
worth keeping some aspect of it? Perhaps all you need is “tagging classes”
like this: Add Comment

class Obstacle: pass
class Player: pass
class GameElementFactory: pass
Then the inheritance serves only to indicate the type of the derived
classes. Add Comment

Exercises
1. Add a class Triangle to ShapeFactory1.py Add Comment

2. Add a class Triangle to ShapeFactory2.py Add Comment

3. Add a new type of GameEnvironment called
GnomesAndFairies to GameEnvironment.py Add Comment

4. Modify ShapeFactory2.py so that it uses an Abstract Factory to
create different sets of shapes (for example, one particular type of
factory object creates “thick shapes,” another creates “thin
shapes,” but each factory object can create all the shapes: circles,
squares, triangles etc.). Add Comment

6: Function objects
In Advanced C++:Programming Styles And Idioms (Addison-Wesley,
1992), Jim Coplien coins the term functor which is an object whose sole
purpose is to encapsulate a function (since “functor” has a meaning in
mathematics, in this book I shall use the more explicit term function
object). The point is to decouple the choice of function to be called from
the site where that function is called. Add Comment

This term is mentioned but not used in Design Patterns. However, the
theme of the function object is repeated in a number of patterns in that
book. Add Comment

Command: choosing the
operation at run-time

This is the function object in its purest sense: a method that’s an object14.
By wrapping a method in an object, you can pass it to other methods or
objects as a parameter, to tell them to perform this particular operation in
the process of fulfilling your request. Add Comment

#: c06:CommandPattern.py

class Command:

14 In the Python language, all functions are already objects and so the Command
pattern is often redundant.

 def execute(self): pass

class Loony(Command):
 def execute(self):
 print "You're a loony."

class NewBrain(Command):
 def execute(self):
 print "You might even need a new brain."

class Afford(Command):
 def execute(self):
 print "I couldn't afford a whole new brain."

An object that holds commands:
class Macro:
 def __init__(self):
 self.commands = []
 def add(self, command):
 self.commands.append(command)
 def run(self):
 for c in self.commands:
 c.execute()

macro = Macro()
macro.add(Loony())
macro.add(NewBrain())
macro.add(Afford())
macro.run()
#:~
The primary point of Command is to allow you to hand a desired action to
a method or object. In the above example, this provides a way to queue a
set of actions to be performed collectively. In this case, it allows you to
dynamically create new behavior, something you can normally only do by
writing new code but in the above example could be done by interpreting a
script (see the Interpreter pattern if what you need to do gets very
complex). Add Comment

Design Patterns says that “Commands are an object-oriented replacement
for callbacks15.” However, I think that the word “back” is an essential part
of the concept of callbacks. That is, I think a callback actually reaches back

15 Page 235.

to the creator of the callback. On the other hand, with a Command object
you typically just create it and hand it to some method or object, and are
not otherwise connected over time to the Command object. That’s my take
on it, anyway. Later in this book, I combine a group of design patterns
under the heading of “callbacks.” Add Comment

Strategy: choosing the
algorithm at run-time

Strategy appears to be a family of Command classes, all inherited from
the same base. But if you look at Command, you’ll see that it has the same
structure: a hierarchy of function objects. The difference is in the way this
hierarchy is used. As seen in c12:DirList.py, you use Command to solve
a particular problem—in that case, selecting files from a list. The “thing
that stays the same” is the body of the method that’s being called, and the
part that varies is isolated in the function object. I would hazard to say
that Command provides flexibility while you’re writing the program,
whereas Strategy’s flexibility is at run time. Add Comment

Strategy also adds a “Context” which can be a surrogate class that
controls the selection and use of the particular strategy object—just like
State! Here’s what it looks like: Add Comment

#: c06:StrategyPattern.py

The strategy interface:
class FindMinima:
 # Line is a sequence of points:
 def algorithm(self, line) : pass

The various strategies:
class LeastSquares(FindMinima):
 def algorithm(self, line):
 return [1.1, 2.2] # Dummy

class NewtonsMethod(FindMinima):
 def algorithm(self, line):
 return [3.3, 4.4] # Dummy

class Bisection(FindMinima):
 def algorithm(self, line):

 return [5.5, 6.6] # Dummy

class ConjugateGradient(FindMinima):
 def algorithm(self, line):
 return [3.3, 4.4] # Dummy

The "Context" controls the strategy:
class MinimaSolver:
 def __init__(self, strategy):
 self.strategy = strategy

 def minima(self, line):
 return self.strategy.algorithm(line)

 def changeAlgorithm(self, newAlgorithm):
 self.strategy = newAlgorithm

solver = MinimaSolver(LeastSquares())
line = [
 1.0, 2.0, 1.0, 2.0, -1.0, 3.0, 4.0, 5.0, 4.0
]
print solver.minima(line)
solver.changeAlgorithm(Bisection())
print solver.minima(line)
#:~
Note similarity with template method – TM claims distinction that it has
more than one method to call, does things piecewise. However, it’s not
unlikely that strategy object would have more than one method call;
consider Shalloway’s order fulfullment system with country information
in each strategy. Add Comment

Strategy example from standard Python: sort() takes a second optional
argument that acts as a comparator object; this is a strategy. Add
Comment

Chain of responsibility
Chain of Responsibility might be thought of as a dynamic generalization
of recursion using Strategy objects. You make a call, and each Strategy in
a linked sequence tries to satisfy the call. The process ends when one of
the strategies is successful or the chain ends. In recursion, one method
calls itself over and over until a termination condition is reached; with
Chain of Responsibility, a method calls itself, which (by moving down the

chain of Strategies) calls a different implementation of the method, etc.,
until a termination condition is reached. The termination condition is
either the bottom of the chain is reached (in which case a default object is
returned; you may or may not be able to provide a default result so you
must be able to determine the success or failure of the chain) or one of the
Strategies is successful. Add Comment

Instead of calling a single method to satisfy a request, multiple methods in
the chain have a chance to satisfy the request, so it has the flavor of an
expert system. Since the chain is effectively a linked list, it can be
dynamically created, so you could also think of it as a more general,
dynamically-built switch statement. Add Comment

In the GoF, there’s a fair amount of discussion of how to create the chain
of responsibility as a linked list. However, when you look at the pattern it
really shouldn’t matter how the chain is maintained; that’s an
implementation detail. Since GoF was written before the Standard
Template Library (STL) was incorporated into most C++ compilers, the
reason for this is most likely (1) there was no list and thus they had to
create one and (2) data structures are often taught as a fundamental skill
in academia, and the idea that data structures should be standard tools
available with the programming language may not have occurred to the
GoF authors. I maintain that the implementation of Chain of
Responsibility as a chain (specifically, a linked list) adds nothing to the
solution and can just as easily be implemented using a standard Python
list, as shown below. Furthermore, you’ll see that I’ve gone to some effort
to separate the chain-management parts of the implementation from the
various Strategies, so that the code can be more easily reused. Add
Comment

In StrategyPattern.py, above, what you probably want is to
automatically find a solution. Chain of Responsibility provides a way to do
this by chaining the Strategy objects together and providing a mechanism
for them to automatically recurse through each one in the chain: Add
Comment

#: c06:ChainOfResponsibility.py

Carry the information into the strategy:
class Messenger: pass

The Result object carries the result data and
whether the strategy was successful:
class Result:

 def __init__(self):
 self.succeeded = 0
 def isSuccessful(self):
 return self.succeeded
 def setSuccessful(self, succeeded):
 self.succeeded = succeeded

class Strategy:
 def __call__(messenger): pass
 def __str__(self):
 return "Trying " + self.__class__.__name__ \
 + " algorithm"

Manage the movement through the chain and
find a successful result:
class ChainLink:
 def __init__(self, chain, strategy):
 self.strategy = strategy
 self.chain = chain
 self.chain.append(self)

 def next(self):
 # Where this link is in the chain:
 location = self.chain.index(self)
 if not self.end():
 return self.chain[location + 1]

 def end(self):
 return (self.chain.index(self) + 1 >=
 len(self.chain))

 def __call__(self, messenger):
 r = self.strategy(messenger)
 if r.isSuccessful() or self.end(): return r
 return self.next()(messenger)

For this example, the Messenger
and Result can be the same type:
class LineData(Result, Messenger):
 def __init__(self, data):
 self.data = data
 def __str__(self): return `self.data`

class LeastSquares(Strategy):

 def __call__(self, messenger):
 print self
 linedata = messenger
 # [Actual test/calculation here]
 result = LineData([1.1, 2.2]) # Dummy data
 result.setSuccessful(0)
 return result

class NewtonsMethod(Strategy):
 def __call__(self, messenger):
 print self
 linedata = messenger
 # [Actual test/calculation here]
 result = LineData([3.3, 4.4]) # Dummy data
 result.setSuccessful(0)
 return result

class Bisection(Strategy):
 def __call__(self, messenger):
 print self
 linedata = messenger
 # [Actual test/calculation here]
 result = LineData([5.5, 6.6]) # Dummy data
 result.setSuccessful(1)
 return result

class ConjugateGradient(Strategy):
 def __call__(self, messenger):
 print self
 linedata = messenger
 # [Actual test/calculation here]
 result = LineData([7.7, 8.8]) # Dummy data
 result.setSuccessful(1)
 return result

solutions = []
solutions = [
 ChainLink(solutions, LeastSquares()),
 ChainLink(solutions, NewtonsMethod()),
 ChainLink(solutions, Bisection()),
 ChainLink(solutions, ConjugateGradient())
]

line = LineData([

 1.0, 2.0, 1.0, 2.0, -1.0,
 3.0, 4.0, 5.0, 4.0
])

print solutions[0](line)
#:~

Exercises
1. Use Command in Chapter 3, Exercise 1. Add Comment

2. Implement Chain of Responsibility to create an "expert system"
that solves problems by successively trying one solution after
another until one matches. You should be able to dynamically add
solutions to the expert system. The test for solution should just be
a string match, but when a solution fits, the expert system should
return the appropriate type of ProblemSolver object. What
other pattern/patterns show up here? Add Comment

7: Changing the
interface

Sometimes the problem that you’re solving is as simple as “I don’t have
the interface that I want.” Two of the patterns in Design Patterns solve
this problem: Adapter takes one type and produces an interface to some
other type. Façade creates an interface to a set of classes, simply to
provide a more comfortable way to deal with a library or bundle of
resources. Add Comment

Adapter
When you’ve got this, and you need that, Adapter solves the problem. The
only requirement is to produce a that, and there are a number of ways you
can accomplish this adaptation. Add Comment

#: c07:Adapter.py
Variations on the Adapter pattern.

class WhatIHave:
 def g(self): pass
 def h(self): pass

class WhatIWant:
 def f(self): pass

class ProxyAdapter(WhatIWant):
 def __init__(self, whatIHave):
 self.whatIHave = whatIHave

 def f(self):
 # Implement behavior using
 # methods in WhatIHave:
 self.whatIHave.g()
 self.whatIHave.h()

class WhatIUse:
 def op(self, whatIWant):
 whatIWant.f()

Approach 2: build adapter use into op():
class WhatIUse2(WhatIUse):
 def op(self, whatIHave):
 ProxyAdapter(whatIHave).f()

Approach 3: build adapter into WhatIHave:
class WhatIHave2(WhatIHave, WhatIWant):
 def f(self):
 self.g()
 self.h()

Approach 4: use an inner class:
class WhatIHave3(WhatIHave):
 class InnerAdapter(WhatIWant):
 def __init__(self, outer):
 self.outer = outer
 def f(self):
 self.outer.g()
 self.outer.h()

 def whatIWant(self):
 return WhatIHave3.InnerAdapter(self)

whatIUse = WhatIUse()
whatIHave = WhatIHave()
adapt= ProxyAdapter(whatIHave)
whatIUse2 = WhatIUse2()
whatIHave2 = WhatIHave2()
whatIHave3 = WhatIHave3()
whatIUse.op(adapt)
Approach 2:
whatIUse2.op(whatIHave)
Approach 3:
whatIUse.op(whatIHave2)
Approach 4:
whatIUse.op(whatIHave3.whatIWant())
#:~
I’m taking liberties with the term “proxy” here, because in Design
Patterns they assert that a proxy must have an identical interface with the
object that it is a surrogate for. However, if you have the two words
together: “proxy adapter,” it is perhaps more reasonable. Add Comment

Façade
A general principle that I apply when I’m casting about trying to mold
requirements into a first-cut object is “If something is ugly, hide it inside
an object.” This is basically what Façade accomplishes. If you have a
rather confusing collection of classes and interactions that the client
programmer doesn’t really need to see, then you can create an interface
that is useful for the client programmer and that only presents what’s
necessary. Add Comment

Façade is often implemented as singleton abstract factory. Of course, you
can easily get this effect by creating a class containing static factory
methods: Add Comment

c07:Facade.py
class A:
 def __init__(self, x): pass
class B:
 def __init__(self, x): pass
class C:
 def __init__(self, x): pass

Other classes that aren't exposed by the
facade go here ...

class Facade:
 def makeA(x): return A(x)
 makeA = staticmethod(makeA)
 def makeB(x): return B(x)
 makeB = staticmethod(makeB)
 def makeC(x): return C(x)
 makeC = staticmethod(makeC)

The client programmer gets the objects
by calling the static methods:
a = Facade.makeA(1);
b = Facade.makeB(1);
c = Facade.makeC(1.0);
:~
[rewrite this section using research from Larman’s book]Add Comment

Exercises
1. Create an adapter class that automatically loads a two-dimensional

array of objects into a dictionary as key-value pairs. Add Comment

8: Table-driven
code:
configuration
flexibility

Table-driven code using
anonymous inner
classes

See ListPerformance example in TIJ from Chapter 9 Add Comment

Also GreenHouse.py

10: Callbacks
Decoupling code behavior

Observer, and a category of callbacks called “multiple dispatching (not in
Design Patterns)” including the Visitor from Design Patterns. Add
Comment

Observer
Like the other forms of callback, this contains a hook point where you can
change code. The difference is in the observer’s completely dynamic
nature. It is often used for the specific case of changes based on other
object’s change of state, but is also the basis of event management.
Anytime you want to decouple the source of the call from the called code
in a completely dynamic way. Add Comment

The observer pattern solves a fairly common problem: What if a group of
objects needs to update themselves when some object changes state? This
can be seen in the “model-view” aspect of Smalltalk’s MVC (model-view-
controller), or the almost-equivalent “Document-View Architecture.”
Suppose that you have some data (the “document”) and more than one
view, say a plot and a textual view. When you change the data, the two
views must know to update themselves, and that’s what the observer
facilitates. It’s a common enough problem that its solution has been made
a part of the standard java.util library. Add Comment

There are two types of objects used to implement the observer pattern in
Python. The Observable class keeps track of everybody who wants to be
informed when a change happens, whether the “state” has changed or not.
When someone says “OK, everybody should check and potentially update
themselves,” the Observable class performs this task by calling the
notifyObservers() method for each one on the list. The
notifyObservers() method is part of the base class Observable. Add
Comment

There are actually two “things that change” in the observer pattern: the
quantity of observing objects and the way an update occurs. That is, the

observer pattern allows you to modify both of these without affecting the
surrounding code. Add Comment

Observer is an “interface” class that only has one member function,
update(). This function is called by the object that’s being observed,
when that object decides its time to update all its observers. The
arguments are optional; you could have an update() with no arguments
and that would still fit the observer pattern; however this is more
general—it allows the observed object to pass the object that caused the
update (since an Observer may be registered with more than one
observed object) and any extra information if that’s helpful, rather than
forcing the Observer object to hunt around to see who is updating and to
fetch any other information it needs. Add Comment

The “observed object” that decides when and how to do the updating will
be called the Observable. Add Comment

Observable has a flag to indicate whether it’s been changed. In a simpler
design, there would be no flag; if something happened, everyone would be
notified. The flag allows you to wait, and only notify the Observers when
you decide the time is right. Notice, however, that the control of the flag’s
state is protected, so that only an inheritor can decide what constitutes a
change, and not the end user of the resulting derived Observer class.
Add Comment

Most of the work is done in notifyObservers(). If the changed flag has
not been set, this does nothing. Otherwise, it first clears the changed flag
so repeated calls to notifyObservers() won’t waste time. This is done
before notifying the observers in case the calls to update() do anything
that causes a change back to this Observable object. Then it moves
through the set and calls back to the update() member function of each
Observer. Add Comment

At first it may appear that you can use an ordinary Observable object to
manage the updates. But this doesn’t work; to get an effect, you must
inherit from Observable and somewhere in your derived-class code call
setChanged(). This is the member function that sets the “changed” flag,
which means that when you call notifyObservers() all of the observers
will, in fact, get notified. Where you call setChanged() depends on the
logic of your program. Add Comment

Observing flowers
Since Python doesn’t have standard library components to support the
observer pattern (like Java does), we must first create one. The simplest
thing to do is translate the Java standard library Observer and
Observable classes. This also provides easier translation from Java code
that uses these libraries. Add Comment

In trying to do this, we encounter a minor snag, which is the fact that Java
has a synchronized keyword that provides built-in support for thread
synchronization. We could certainly accomplish the same thing by hand,
using code like this: Add Comment

import threading
class ToSynch:
 def __init__(self):
 self.mutex = threading.RLock()
 self.val = 1
 def aSynchronizedMethod(self):
 self.mutex.acquire()
 try:
 self.val += 1
 return self.val
 finally:
 self.mutex.release()
But this rapidly becomes tedious to write and to read. Peter Norvig
provided me with a much nicer solution: Add Comment

#: util:Synchronization.py
'''Simple emulation of Java's 'synchronized'
keyword, from Peter Norvig.'''
import threading

def synchronized(method):
 def f(*args):
 self = args[0]
 self.mutex.acquire();
 # print method.__name__, 'acquired'
 try:
 return apply(method, args)
 finally:
 self.mutex.release();
 # print method.__name__, 'released'
 return f

def synchronize(klass, names=None):
 """Synchronize methods in the given class.
 Only synchronize the methods whose names are
 given, or all methods if names=None."""
 if type(names)==type(''): names = names.split()
 for (name, val) in klass.__dict__.items():
 if callable(val) and name != '__init__' and \
 (names == None or name in names):
 # print "synchronizing", name
 klass.__dict__[name] = synchronized(val)

You can create your own self.mutex, or inherit
from this class:
class Synchronization:
 def __init__(self):
 self.mutex = threading.RLock()
#:~
The synchronized() function takes a method and wraps it in a function
that adds the mutex functionality. The method is called inside this
function: Add Comment

return apply(method, args)
and as the return statement passes through the finally clause, the mutex
is released. Add Comment

This is in some ways the Decorator design pattern, but much simpler to
create and use. All you have to say is:

myMethod = synchronized(myMethod)
To surround your method with a mutex. Add Comment

synchronize() is a convenience function that applies synchronized()
to an entire class, either all the methods in the class (the default) or
selected methods which are named in a string as the second argument.
Add Comment

Finally, for synchronized() to work there must be a self.mutex
created in every class that uses synchronized(). This can be created by
hand by the class author, but it’s more consistent to use inheritance, so
the base class Synchronization is provided. Add Comment

Here’s a simple test of the Synchronization module.

#: util:TestSynchronization.py
from Synchronization import *

To use for a method:
class C(Synchronization):
 def __init__(self):
 Synchronization.__init__(self)
 self.data = 1
 def m(self):
 self.data += 1
 return self.data
 m = synchronized(m)
 def f(self): return 47
 def g(self): return 'spam'

So m is synchronized, f and g are not.
c = C()

On the class level:
class D(C):
 def __init__(self):
 C.__init__(self)
 # You must override an un-synchronized method
 # in order to synchronize it (just like Java):
 def f(self): C.f(self)

Synchronize every (defined) method in the class:
synchronize(D)
d = D()
d.f() # Synchronized
d.g() # Not synchronized
d.m() # Synchronized (in the base class)

class E(C):
 def __init__(self):
 C.__init__(self)
 def m(self): C.m(self)
 def g(self): C.g(self)
 def f(self): C.f(self)
Only synchronizes m and g. Note that m ends up
being doubly-wrapped in synchronization, which
doesn't hurt anything but is inefficient:
synchronize(E, 'm g')
e = E()
e.f()
e.g()
e.m()

#:~
You must call the base class constructor for Synchronization, but that’s
all. In class C you can see the use of synchronized() for m, leaving f
and g alone. Class D has all it’s methods synchronized en masse, and class
E uses the convenience function to synchronize m and g. Note that since
m ends up being synchronized twice, it will be entered and left twice for
every call, which isn’t very desirable [there may be a fix for this] Add
Comment

#: util:Observer.py
Class support for "observer" pattern.
from Synchronization import *

class Observer:
 def update(observable, arg):
 '''Called when the observed object is
 modified. You call an Observable object's
 notifyObservers method to notify all the
 object's observers of the change.'''
 pass

class Observable(Synchronization):
 def __init__(self):
 self.obs = []
 self.changed = 0
 Synchronization.__init__(self)

 def addObserver(self, observer):
 if observer not in self.obs:
 self.obs.append(observer)

 def deleteObserver(self, observer):
 self.obs.remove(observer)

 def notifyObservers(self, arg = None):
 '''If 'changed' indicates that this object
 has changed, notify all its observers, then
 call clearChanged(). Each observer has its
 update() called with two arguments: this
 observable object and the generic 'arg'.'''

 self.mutex.acquire()
 try:
 if not self.changed: return

 # Make a local copy in case of synchronous
 # additions of observers:
 localArray = self.obs[:]
 self.clearChanged()
 finally:
 self.mutex.release()
 # Updating is not required to be synchronized:
 for observer in localArray:
 observer.update(self, arg)

 def deleteObservers(self): self.obs = []
 def setChanged(self): self.changed = 1
 def clearChanged(self): self.changed = 0
 def hasChanged(self): return self.changed
 def countObservers(self): return len(self.obs)

synchronize(Observable,
 "addObserver deleteObserver deleteObservers " +
 "setChanged clearChanged hasChanged " +
 "countObservers")
#:~
Using this library, here is an example of the observer pattern: Add
Comment

#: c10:ObservedFlower.py
Demonstration of "observer" pattern.
import sys
sys.path += ['../util']
from Observer import Observer, Observable

class Flower:
 def __init__(self):
 self.isOpen = 0
 self.openNotifier = Flower.OpenNotifier(self)
 self.closeNotifier= Flower.CloseNotifier(self)
 def open(self): # Opens its petals
 self.isOpen = 1
 self.openNotifier.notifyObservers()
 self.closeNotifier.open()
 def close(self): # Closes its petals
 self.isOpen = 0
 self.closeNotifier.notifyObservers()
 self.openNotifier.close()
 def closing(self): return self.closeNotifier

 class OpenNotifier(Observable):
 def __init__(self, outer):
 Observable.__init__(self)
 self.outer = outer
 self.alreadyOpen = 0
 def notifyObservers(self):
 if self.outer.isOpen and \
 not self.alreadyOpen:
 self.setChanged()
 Observable.notifyObservers(self)
 self.alreadyOpen = 1
 def close(self):
 self.alreadyOpen = 0

 class CloseNotifier(Observable):
 def __init__(self, outer):
 Observable.__init__(self)
 self.outer = outer
 self.alreadyClosed = 0
 def notifyObservers(self):
 if not self.outer.isOpen and \
 not self.alreadyClosed:
 self.setChanged()
 Observable.notifyObservers(self)
 self.alreadyClosed = 1
 def open(self):
 alreadyClosed = 0

class Bee:
 def __init__(self, name):
 self.name = name
 self.openObserver = Bee.OpenObserver(self)
 self.closeObserver = Bee.CloseObserver(self)
 # An inner class for observing openings:
 class OpenObserver(Observer):
 def __init__(self, outer):
 self.outer = outer
 def update(self, observable, arg):
 print "Bee " + self.outer.name + \
 "'s breakfast time!"
 # Another inner class for closings:
 class CloseObserver(Observer):
 def __init__(self, outer):
 self.outer = outer

 def update(self, observable, arg):
 print "Bee " + self.outer.name + \
 "'s bed time!"

class Hummingbird:
 def __init__(self, name):
 self.name = name
 self.openObserver = \
 Hummingbird.OpenObserver(self)
 self.closeObserver = \
 Hummingbird.CloseObserver(self)
 class OpenObserver(Observer):
 def __init__(self, outer):
 self.outer = outer
 def update(self, observable, arg):
 print "Hummingbird " + self.outer.name + \
 "'s breakfast time!"
 class CloseObserver(Observer):
 def __init__(self, outer):
 self.outer = outer
 def update(self, observable, arg):
 print "Hummingbird " + self.outer.name + \
 "'s bed time!"

f = Flower()
ba = Bee("Eric")
bb = Bee("Eric 0.5")
ha = Hummingbird("A")
hb = Hummingbird("B")
f.openNotifier.addObserver(ha.openObserver)
f.openNotifier.addObserver(hb.openObserver)
f.openNotifier.addObserver(ba.openObserver)
f.openNotifier.addObserver(bb.openObserver)
f.closeNotifier.addObserver(ha.closeObserver)
f.closeNotifier.addObserver(hb.closeObserver)
f.closeNotifier.addObserver(ba.closeObserver)
f.closeNotifier.addObserver(bb.closeObserver)
Hummingbird 2 decides to sleep in:
f.openNotifier.deleteObserver(hb.openObserver)
A change that interests observers:
f.open()
f.open() # It's already open, no change.
Bee 1 doesn't want to go to bed:
f.closeNotifier.deleteObserver(ba.closeObserver)

f.close()
f.close() # It's already closed; no change
f.openNotifier.deleteObservers()
f.open()
f.close()
#:~
The events of interest are that a Flower can open or close. Because of the
use of the inner class idiom, both these events can be separately
observable phenomena. OpenNotifier and CloseNotifier both inherit
Observable, so they have access to setChanged() and can be handed
to anything that needs an Observable. Add Comment

The inner class idiom also comes in handy to define more than one kind of
Observer, in Bee and Hummingbird, since both those classes may
want to independently observe Flower openings and closings. Notice
how the inner class idiom provides something that has most of the
benefits of inheritance (the ability to access the private data in the outer
class, for example) without the same restrictions. Add Comment

In main(), you can see one of the prime benefits of the observer pattern:
the ability to change behavior at run time by dynamically registering and
un-registering Observers with Observables. Add Comment

If you study the code above you’ll see that OpenNotifier and
CloseNotifier use the basic Observable interface. This means that you
could inherit other completely different Observer classes; the only
connection the Observers have with Flowers is the Observer interface.
Add Comment

A visual example of
observers

The following example is similar to the ColorBoxes example from
Chapter 14 in Thinking in Java, 2nd Edition. Boxes are placed in a grid on
the screen and each one is initialized to a random color. In addition, each
box implements the Observer interface and is registered with an
Observable object. When you click on a box, all of the other boxes are
notified that a change has been made because the Observable object
automatically calls each Observer object’s update() method. Inside this
method, the box checks to see if it’s adjacent to the one that was clicked,
and if so it changes its color to match the clicked box. Add Comment

[[NOTE: this example has not been converted. See further down for a
version that has the GUI but not the Observers, in PythonCard.]]

c10:BoxObserver.py
Demonstration of Observer pattern using
Java's built-in observer classes.

You must inherit a type of Observable:
class BoxObservable(Observable):
 def notifyObservers(self, Object b):
 # Otherwise it won't propagate changes:
 setChanged()
 super.notifyObservers(b)

class BoxObserver(JFrame):
 Observable notifier = BoxObservable()
 def __init__(self, int grid):
 setTitle("Demonstrates Observer pattern")
 Container cp = getContentPane()
 cp.setLayout(GridLayout(grid, grid))
 for(int x = 0 x < grid x++)
 for(int y = 0 y < grid y++)
 cp.add(OCBox(x, y, notifier))

 def main(self, String[] args):
 int grid = 8
 if(args.length > 0)
 grid = Integer.parseInt(args[0])
 JFrame f = BoxObserver(grid)
 f.setSize(500, 400)
 f.setVisible(1)
 # JDK 1.3:
 f.setDefaultCloseOperation(EXIT_ON_CLOSE)
 # Add a WindowAdapter if you have JDK 1.2

class OCBox(JPanel) implements Observer:
 Observable notifier
 int x, y # Locations in grid
 Color cColor = newColor()
 static final Color[] colors =:
 Color.black, Color.blue, Color.cyan,
 Color.darkGray, Color.gray, Color.green,
 Color.lightGray, Color.magenta,
 Color.orange, Color.pink, Color.red,
 Color.white, Color.yellow

 static final Color newColor():
 return colors[
 (int)(Math.random() * colors.length)
]

 def __init__(self, int x, int y, Observable
notifier):
 self.x = x
 self.y = y
 notifier.addObserver(self)
 self.notifier = notifier
 addMouseListener(ML())

 def paintComponent(self, Graphics g):
 super.paintComponent(g)
 g.setColor(cColor)
 Dimension s = getSize()
 g.fillRect(0, 0, s.width, s.height)

 class ML(MouseAdapter):
 def mousePressed(self, MouseEvent e):
 notifier.notifyObservers(OCBox.self)

 def update(self, Observable o, Object arg):
 OCBox clicked = (OCBox)arg
 if(nextTo(clicked)):
 cColor = clicked.cColor
 repaint()

 private final boolean nextTo(OCBox b):
 return Math.abs(x - b.x) <= 1 &&
 Math.abs(y - b.y) <= 1

:~

When you first look at the online documentation for Observable, it’s a
bit confusing because it appears that you can use an ordinary
Observable object to manage the updates. But this doesn’t work; try it—
inside BoxObserver, create an Observable object instead of a
BoxObservable object and see what happens: nothing. To get an effect,
you must inherit from Observable and somewhere in your derived-class
code call setChanged(). This is the method that sets the “changed” flag,

which means that when you call notifyObservers() all of the observers
will, in fact, get notified. In the example above setChanged() is simply
called within notifyObservers(), but you could use any criterion you
want to decide when to call setChanged(). Add Comment

BoxObserver contains a single Observable object called notifier, and
every time an OCBox object is created, it is tied to notifier. In OCBox,
whenever you click the mouse the notifyObservers() method is called,
passing the clicked object in as an argument so that all the boxes receiving
the message (in their update() method) know who was clicked and can
decide whether to change themselves or not. Using a combination of code
in notifyObservers() and update() you can work out some fairly
complex schemes. Add Comment

It might appear that the way the observers are notified must be frozen at
compile time in the notifyObservers() method. However, if you look
more closely at the code above you’ll see that the only place in
BoxObserver or OCBox where you're aware that you’re working with a
BoxObservable is at the point of creation of the Observable object—
from then on everything uses the basic Observable interface. This means
that you could inherit other Observable classes and swap them at run
time if you want to change notification behavior then. Add Comment

Here is a version of the above that doesn’t use the Observer pattern,
written by Kevin Altis using PythonCard, and placed here as a starting
point for a translation that does include Observer:

#: c10:BoxObserver.py
""" Written by Kevin Altis as a first-cut for
converting BoxObserver to Python. The Observer
hasn't been integrated yet.
To run this program, you must:
Install WxPython from
http://www.wxpython.org/download.php
Install PythonCard. See:
http://pythoncard.sourceforge.net
"""

from PythonCardPrototype import log, model
import random

GRID = 8

class ColorBoxesTest(model.Background):
 def on_openBackground(self, target, event):

 self.document = []
 for row in range(GRID):
 line = []
 for column in range(GRID):
 line.append(self.createBox(row, column))
 self.document.append(line[:])
 def createBox(self, row, column):
 colors = ['black', 'blue', 'cyan',
 'darkGray', 'gray', 'green',
 'lightGray', 'magenta',
 'orange', 'pink', 'red',
 'white', 'yellow']
 width, height = self.panel.GetSizeTuple()
 boxWidth = width / GRID
 boxHeight = height / GRID
 log.info("width:" + str(width) +
 " height:" + str(height))
 log.info("boxWidth:" + str(boxWidth) +
 " boxHeight:" + str(boxHeight))
 # use an empty image, though some other
 # widgets would work just as well
 boxDesc = {'type':'Image',
 'size':(boxWidth, boxHeight), 'file':''}
 name = 'box-%d-%d' % (row, column)
 # There is probably a 1 off error in the
 # calculation below since the boxes should
 # probably have a slightly different offset
 # to prevent overlaps
 boxDesc['position'] =
 (column * boxWidth, row * boxHeight)
 boxDesc['name'] = name
 boxDesc['backgroundColor'] =
 random.choice(colors)
 self.components[name] = boxDesc
 return self.components[name]

 def changeNeighbors(self, row, column, color):

 # This algorithm will result in changing the
 # color of some boxes more than once, so an
 # OOP solution where only neighbors are asked
 # to change or boxes check to see if they are
 # neighbors before changing would be better
 # per the original example does the whole grid

 # need to change its state at once like in a
 # Life program? should the color change
 # in the propogation of another notification
 # event?

 for r in range(max(0, row - 1),
 min(GRID, row + 2)):
 for c in range(max(0, column - 1),
 min(GRID, column + 2)):
 self.document[r][c].backgroundColor=color

 # this is a background handler, so it isn't
 # specific to a single widget. Image widgets
 # don't have a mouseClick event (wxCommandEvent
 # in wxPython)
 def on_mouseUp(self, target, event):
 prefix, row, column = target.name.split('-')
 self.changeNeighbors(int(row), int(column),
 target.backgroundColor)

if __name__ == '__main__':
 app = model.PythonCardApp(ColorBoxesTest)
 app.MainLoop()
#:~
This is the resource file for running the program (see PythonCard for
details):

#: c10:BoxObserver.rsrc.py
{'stack':{'type':'Stack',
 'name':'BoxObserver',
 'backgrounds': [
 { 'type':'Background',
 'name':'bgBoxObserver',
 'title':'Demonstrates Observer pattern',
 'position':(5, 5),
 'size':(500, 400),
 'components': [

] # end components
} # end background
] # end backgrounds
} }
#:~

Exercises
1. Using the approach in Synchronization.py, create a tool that

will automatically wrap all the methods in a class to provide an
execution trace, so that you can see the name of the method and
when it is entered and exited. Add Comment

2. Create a minimal Observer-Observable design in two classes. Just
create the bare minimum in the two classes, then demonstrate
your design by creating one Observable and many Observers,
and cause the Observable to update the Observers. Add
Comment

3. Modify BoxObserver.py to turn it into a simple game. If any of
the squares surrounding the one you clicked is part of a contiguous
patch of the same color, then all the squares in that patch are
changed to the color you clicked on. You can configure the game
for competition between players or to keep track of the number of
clicks that a single player uses to turn the field into a single color.
You may also want to restrict a player's color to the first one that
was chosen. Add Comment

11: Multiple
dispatching

When dealing with multiple types which are interacting, a program can
get particularly messy. For example, consider a system that parses and
executes mathematical expressions. You want to be able to say Number
+ Number, Number * Number, etc., where Number is the base class
for a family of numerical objects. But when you say a + b, and you don’t
know the exact type of either a or b, so how can you get them to interact
properly? Add Comment

The answer starts with something you probably don’t think about: Python
performs only single dispatching. That is, if you are performing an

operation on more than one object whose type is unknown, Python can
invoke the dynamic binding mechanism on only one of those types. This
doesn’t solve the problem, so you end up detecting some types manually
and effectively producing your own dynamic binding behavior. Add
Comment

The solution is called multiple dispatching. Remember that
polymorphism can occur only via member function calls, so if you want
double dispatching to occur, there must be two member function calls: the
first to determine the first unknown type, and the second to determine the
second unknown type. With multiple dispatching, you must have a
polymorphic method call to determine each of the types. Generally, you’ll
set up a configuration such that a single member function call produces
more than one dynamic member function call and thus determines more
than one type in the process. To get this effect, you need to work with
more than one polymorphic method call: you’ll need one call for each
dispatch. The methods in the following example are called compete()
and eval(), and are both members of the same type. (In this case there
will be only two dispatches, which is referred to as double dispatching). If
you are working with two different type hierarchies that are interacting,
then you’ll have to have a polymorphic method call in each hierarchy. Add
Comment

Here’s an example of multiple dispatching:

#: c11:PaperScissorsRock.py
Demonstration of multiple dispatching.
from __future__ import generators
import random

An enumeration type:
class Outcome:
 def __init__(self, value, name):
 self.value = value
 self.name = name
 def __str__(self): return self.name
 def __eq__(self, other):
 return self.value == other.value

Outcome.WIN = Outcome(0, "win")
Outcome.LOSE = Outcome(1, "lose")
Outcome.DRAW = Outcome(2, "draw")

class Item(object):

 def __str__(self):
 return self.__class__.__name__

class Paper(Item):
 def compete(self, item):
 # First dispatch: self was Paper
 return item.evalPaper(self)
 def evalPaper(self, item):
 # Item was Paper, we're in Paper
 return Outcome.DRAW
 def evalScissors(self, item):
 # Item was Scissors, we're in Paper
 return Outcome.WIN
 def evalRock(self, item):
 # Item was Rock, we're in Paper
 return Outcome.LOSE

class Scissors(Item):
 def compete(self, item):
 # First dispatch: self was Scissors
 return item.evalScissors(self)
 def evalPaper(self, item):
 # Item was Paper, we're in Scissors
 return Outcome.LOSE
 def evalScissors(self, item):
 # Item was Scissors, we're in Scissors
 return Outcome.DRAW
 def evalRock(self, item):
 # Item was Rock, we're in Scissors
 return Outcome.WIN

class Rock(Item):
 def compete(self, item):
 # First dispatch: self was Rock
 return item.evalRock(self)
 def evalPaper(self, item):
 # Item was Paper, we're in Rock
 return Outcome.WIN
 def evalScissors(self, item):
 # Item was Scissors, we're in Rock
 return Outcome.LOSE
 def evalRock(self, item):
 # Item was Rock, we're in Rock
 return Outcome.DRAW

def match(item1, item2):
 print "%s <--> %s : %s" % (
 item1, item2, item1.compete(item2))

Generate the items:
def itemPairGen(n):
 # Create a list of instances of all Items:
 Items = Item.__subclasses__()
 for i in range(n):
 yield (random.choice(Items)(),
 random.choice(Items)())

for item1, item2 in itemPairGen(20):
 match(item1, item2)
#:~
This was a fairly literal translation from the Java version, and one of the
things you might notice is that the information about the various
combinations is encoded into each type of Item. It actually ends up being
a kind of table, except that it is spread out through all the classes. This is
not very easy to maintain if you ever expect to modify the behavior or to
add a new Item class. Instead, it can be more sensible to make the table
explicit, like this: Add Comment

#: c11:PaperScissorsRock2.py
Multiple dispatching using a table
from __future__ import generators
import random

class Outcome:
 def __init__(self, value, name):
 self.value = value
 self.name = name
 def __str__(self): return self.name
 def __eq__(self, other):
 return self.value == other.value

Outcome.WIN = Outcome(0, "win")
Outcome.LOSE = Outcome(1, "lose")
Outcome.DRAW = Outcome(2, "draw")

class Item(object):
 def compete(self, item):
 # Use a tuple for table lookup:

 return outcome[self.__class__, item.__class__]
 def __str__(self):
 return self.__class__.__name__

class Paper(Item): pass
class Scissors(Item): pass
class Rock(Item): pass

outcome = {
 (Paper, Rock): Outcome.WIN,
 (Paper, Scissors): Outcome.LOSE,
 (Paper, Paper): Outcome.DRAW,
 (Scissors, Paper): Outcome.WIN,
 (Scissors, Rock): Outcome.LOSE,
 (Scissors, Scissors): Outcome.DRAW,
 (Rock, Scissors): Outcome.WIN,
 (Rock, Paper): Outcome.LOSE,
 (Rock, Rock): Outcome.DRAW,
}

def match(item1, item2):
 print "%s <--> %s : %s" % (
 item1, item2, item1.compete(item2))

Generate the items:
def itemPairGen(n):
 # Create a list of instances of all Items:
 Items = Item.__subclasses__()
 for i in range(n):
 yield (random.choice(Items)(),
 random.choice(Items)())

for item1, item2 in itemPairGen(20):
 match(item1, item2)
#:~
It’s a tribute to the flexibility of dictionaries that a tuple can be used as a
key just as easily as a single object. Add Comment

Visitor, a type of multiple
dispatching

The assumption is that you have a primary class hierarchy that is fixed;
perhaps it’s from another vendor and you can’t make changes to that
hierarchy. However, you’d like to add new polymorphic methods to that
hierarchy, which means that normally you’d have to add something to the
base class interface. So the dilemma is that you need to add methods to
the base class, but you can’t touch the base class. How do you get around
this? Add Comment

The design pattern that solves this kind of problem is called a “visitor”
(the final one in the Design Patterns book), and it builds on the double
dispatching scheme shown in the last section. Add Comment

The visitor pattern allows you to extend the interface of the primary type
by creating a separate class hierarchy of type Visitor to virtualize the
operations performed upon the primary type. The objects of the primary
type simply “accept” the visitor, then call the visitor’s dynamically-bound
member function. Add Comment

#: c11:FlowerVisitors.py
Demonstration of "visitor" pattern.
from __future__ import generators
import random

The Flower hierarchy cannot be changed:
class Flower(object):
 def accept(self, visitor):
 visitor.visit(self)
 def pollinate(self, pollinator):
 print self, "pollinated by", pollinator
 def eat(self, eater):
 print self, "eaten by", eater
 def __str__(self):
 return self.__class__.__name__

class Gladiolus(Flower): pass
class Runuculus(Flower): pass
class Chrysanthemum(Flower): pass

class Visitor:

 def __str__(self):
 return self.__class__.__name__

class Bug(Visitor): pass
class Pollinator(Bug): pass
class Predator(Bug): pass

Add the ability to do "Bee" activities:
class Bee(Pollinator):
 def visit(self, flower):
 flower.pollinate(self)

Add the ability to do "Fly" activities:
class Fly(Pollinator):
 def visit(self, flower):
 flower.pollinate(self)

Add the ability to do "Worm" activities:
class Worm(Predator):
 def visit(self, flower):
 flower.eat(self)

def flowerGen(n):
 flwrs = Flower.__subclasses__()
 for i in range(n):
 yield random.choice(flwrs)()

It's almost as if I had a method to Perform
various "Bug" operations on all Flowers:
bee = Bee()
fly = Fly()
worm = Worm()
for flower in flowerGen(10):
 flower.accept(bee)
 flower.accept(fly)
 flower.accept(worm)
#:~
 Add Comment

Exercises
1. Create a business-modeling environment with three types of

Inhabitant: Dwarf (for engineers), Elf (for marketers) and

Troll (for managers). Now create a class called Project that
creates the different inhabitants and causes them to interact()
with each other using multiple dispatching. Add Comment

2. Modify the above example to make the interactions more detailed.
Each Inhabitant can randomly produce a Weapon using
getWeapon(): a Dwarf uses Jargon or Play, an Elf uses
InventFeature or SellImaginaryProduct, and a Troll uses
Edict and Schedule. You must decide which weapons “win” and
“lose” in each interaction (as in PaperScissorsRock.py). Add a
battle() member function to Project that takes two
Inhabitants and matches them against each other. Now create a
meeting() member function for Project that creates groups of
Dwarf, Elf and Manager and battles the groups against each
other until only members of one group are left standing. These are
the “winners.” Add Comment

3. Modify PaperScissorsRock.py to replace the double
dispatching with a table lookup. The easiest way to do this is to
create a Map of Maps, with the key of each Map the class of each
object. Then you can do the lookup by saying:
((Map)map.get(o1.getClass())).get(o2.getClass())
Notice how much easier it is to reconfigure the system. When is it
more appropriate to use this approach vs. hard-coding the
dynamic dispatches? Can you create a system that has the
syntactic simplicity of use of the dynamic dispatch but uses a table
lookup? Add Comment

4. Modify Exercise 2 to use the table lookup technique described in
Exercise 3. Add Comment

12: Pattern
refactoring

This chapter has not had any significant translation yet.
Add Comment

This chapter will look at the process of solving a problem by applying
design patterns in an evolutionary fashion. That is, a first cut design will
be used for the initial solution, and then this solution will be examined
and various design patterns will be applied to the problem (some of which
will work, and some of which won’t). The key question that will always be
asked in seeking improved solutions is “what will change?” Add Comment

This process is similar to what Martin Fowler talks about in his book
Refactoring: Improving the Design of Existing Code16 (although he tends
to talk about pieces of code more than pattern-level designs). You start
with a solution, and then when you discover that it doesn’t continue to
meet your needs, you fix it. Of course, this is a natural tendency but in
computer programming it’s been extremely difficult to accomplish with
procedural programs, and the acceptance of the idea that we can refactor
code and designs adds to the body of proof that object-oriented
programming is “a good thing.” Add Comment

Simulating the trash
recycler

The nature of this problem is that the trash is thrown unclassified into a
single bin, so the specific type information is lost. But later, the specific
type information must be recovered to properly sort the trash. In the
initial solution, RTTI (described in Chapter 12 of Thinking in Java, 2nd
edition) is used. Add Comment

16 Addison-Wesley, 1999.

This is not a trivial design because it has an added constraint. That’s what
makes it interesting—it’s more like the messy problems you’re likely to
encounter in your work. The extra constraint is that the trash arrives at
the trash recycling plant all mixed together. The program must model the
sorting of that trash. This is where RTTI comes in: you have a bunch of
anonymous pieces of trash, and the program figures out exactly what type
they are. Add Comment

c12:recyclea:RecycleA.py
Recycling with RTTI.

class Trash:
 private double weight
 def __init__(self, double wt): weight = wt
 abstract double getValue()
 double getWeight(): return weight
 # Sums the value of Trash in a bin:
 static void sumValue(Iterator it):
 double val = 0.0f
 while(it.hasNext()):
 # One kind of RTTI:
 # A dynamically-checked cast
 Trash t = (Trash)it.next()
 # Polymorphism in action:
 val += t.getWeight() * t.getValue()
 print (
 "weight of " +
 # Using RTTI to get type
 # information about the class:
 t.getClass().getName() +
 " = " + t.getWeight())

 print "Total value = " + val

class Aluminum(Trash):
 static double val = 1.67f
 def __init__(self, double wt): .__init__(wt)
 double getValue(): return val
 static void setValue(double newval):
 val = newval

class Paper(Trash):
 static double val = 0.10f
 def __init__(self, double wt): .__init__(wt)

 double getValue(): return val
 static void setValue(double newval):
 val = newval

class Glass(Trash):
 static double val = 0.23f
 def __init__(self, double wt): .__init__(wt)
 double getValue(): return val
 static void setValue(double newval):
 val = newval

class RecycleA(UnitTest):
 Collection
 bin = ArrayList(),
 glassBin = ArrayList(),
 paperBin = ArrayList(),
 alBin = ArrayList()
 def __init__(self):
 # Fill up the Trash bin:
 for(int i = 0 i < 30 i++)
 switch((int)(Math.random() * 3)):
 case 0 :
 bin.add(new
 Aluminum(Math.random() * 100))
 break
 case 1 :
 bin.add(new
 Paper(Math.random() * 100))
 break
 case 2 :
 bin.add(new
 Glass(Math.random() * 100))

 def test(self):
 Iterator sorter = bin.iterator()
 # Sort the Trash:
 while(sorter.hasNext()):
 Object t = sorter.next()
 # RTTI to show class membership:
 if(t instanceof Aluminum)
 alBin.add(t)
 if(t instanceof Paper)
 paperBin.add(t)
 if(t instanceof Glass)

 glassBin.add(t)

 Trash.sumValue(alBin.iterator())
 Trash.sumValue(paperBin.iterator())
 Trash.sumValue(glassBin.iterator())
 Trash.sumValue(bin.iterator())

 def main(self, String args[]):
 RecycleA().test()

:~
In the source code listings available for this book, this file will be placed in
the subdirectory recyclea that branches off from the subdirectory c12
(for Chapter 12). The unpacking tool takes care of placing it into the
correct subdirectory. The reason for doing this is that this chapter rewrites
this particular example a number of times and by putting each version in
its own directory (using the default package in each directory so that
invoking the program is easy), the class names will not clash. Add
Comment

Several ArrayList objects are created to hold Trash references. Of
course, ArrayLists actually hold Objects so they’ll hold anything at all.
The reason they hold Trash (or something derived from Trash) is only
because you’ve been careful to not put in anything except Trash. If you do
put something “wrong” into the ArrayList, you won’t get any compile-
time warnings or errors—you’ll find out only via an exception at run time.
Add Comment

When the Trash references are added, they lose their specific identities
and become simply Object references (they are upcast). However,
because of polymorphism the proper behavior still occurs when the
dynamically-bound methods are called through the Iterator sorter,
once the resulting Object has been cast back to Trash. sumValue()
also takes an Iterator to perform operations on every object in the
ArrayList. Add Comment

It looks silly to upcast the types of Trash into a container holding base
type references, and then turn around and downcast. Why not just put the
trash into the appropriate receptacle in the first place? (Indeed, this is the
whole enigma of recycling). In this program it would be easy to repair, but
sometimes a system’s structure and flexibility can benefit greatly from
downcasting. Add Comment

The program satisfies the design requirements: it works. This might be
fine as long as it’s a one-shot solution. However, a useful program tends to
evolve over time, so you must ask, “What if the situation changes?” For
example, cardboard is now a valuable recyclable commodity, so how will
that be integrated into the system (especially if the program is large and
complicated). Since the above type-check coding in the switch statement
could be scattered throughout the program, you must go find all that code
every time a new type is added, and if you miss one the compiler won’t
give you any help by pointing out an error. Add Comment

The key to the misuse of RTTI here is that every type is tested. If you’re
looking for only a subset of types because that subset needs special
treatment, that’s probably fine. But if you’re hunting for every type inside
a switch statement, then you’re probably missing an important point, and
definitely making your code less maintainable. In the next section we’ll
look at how this program evolved over several stages to become much
more flexible. This should prove a valuable example in program design.
Add Comment

Improving the design
The solutions in Design Patterns are organized around the question
“What will change as this program evolves?” This is usually the most
important question that you can ask about any design. If you can build
your system around the answer, the results will be two-pronged: not only
will your system allow easy (and inexpensive) maintenance, but you might
also produce components that are reusable, so that other systems can be
built more cheaply. This is the promise of object-oriented programming,
but it doesn’t happen automatically; it requires thought and insight on
your part. In this section we’ll see how this process can happen during the
refinement of a system. Add Comment

The answer to the question “What will change?” for the recycling system is
a common one: more types will be added to the system. The goal of the
design, then, is to make this addition of types as painless as possible. In
the recycling program, we’d like to encapsulate all places where specific
type information is mentioned, so (if for no other reason) any changes can
be localized to those encapsulations. It turns out that this process also
cleans up the rest of the code considerably. Add Comment

“Make more objects”
This brings up a general object-oriented design principle that I first heard
spoken by Grady Booch: “If the design is too complicated, make more
objects.” This is simultaneously counterintuitive and ludicrously simple,
and yet it’s the most useful guideline I’ve found. (You might observe that
“making more objects” is often equivalent to “add another level of
indirection.”) In general, if you find a place with messy code, consider
what sort of class would clean that up. Often the side effect of cleaning up
the code will be a system that has better structure and is more flexible.
Add Comment

Consider first the place where Trash objects are created, which is a
switch statement inside main(): Add Comment

 for(int i = 0 i < 30 i++)
 switch((int)(Math.random() * 3)):
 case 0 :
 bin.add(new
 Aluminum(Math.random() * 100))
 break
 case 1 :
 bin.add(new
 Paper(Math.random() * 100))
 break
 case 2 :
 bin.add(new
 Glass(Math.random() * 100))

This is definitely messy, and also a place where you must change code
whenever a new type is added. If new types are commonly added, a better
solution is a single method that takes all of the necessary information and
produces a reference to an object of the correct type, already upcast to a
trash object. In Design Patterns this is broadly referred to as a creational
pattern (of which there are several). The specific pattern that will be
applied here is a variant of the Factory Method. Here, the factory method
is a static member of Trash, but more commonly it is a method that is
overridden in the derived class. Add Comment

The idea of the factory method is that you pass it the essential information
it needs to know to create your object, then stand back and wait for the
reference (already upcast to the base type) to pop out as the return value.
From then on, you treat the object polymorphically. Thus, you never even
need to know the exact type of object that’s created. In fact, the factory

method hides it from you to prevent accidental misuse. If you want to use
the object without polymorphism, you must explicitly use RTTI and
casting. Add Comment

But there’s a little problem, especially when you use the more complicated
approach (not shown here) of making the factory method in the base class
and overriding it in the derived classes. What if the information required
in the derived class requires more or different arguments? “Creating more
objects” solves this problem. To implement the factory method, the Trash
class gets a new method called factory. To hide the creational data,
there’s a new class called Messenger that carries all of the necessary
information for the factory method to create the appropriate Trash
object (we’ve started referring to Messenger as a design pattern, but it’s
simple enough that you may not choose to elevate it to that status). Here’s
a simple implementation of Messenger: Add Comment

class Messenger:
 int type
 # Must change this to add another type:
 static final int MAX_NUM = 4
 double data
 def __init__(self, int typeNum, double val):
 type = typeNum % MAX_NUM
 data = val

A Messenger object’s only job is to hold information for the factory()
method. Now, if there’s a situation in which factory() needs more or
different information to create a new type of Trash object, the factory()
interface doesn’t need to be changed. The Messenger class can be
changed by adding new data and new constructors, or in the more typical
object-oriented fashion of subclassing. Add Comment

The factory() method for this simple example looks like this:

 static Trash factory(Messenger i):
 switch(i.type):
 default: # To quiet the compiler
 case 0:
 return Aluminum(i.data)
 case 1:
 return Paper(i.data)
 case 2:
 return Glass(i.data)
 # Two lines here:
 case 3:

 return Cardboard(i.data)

Here, the determination of the exact type of object is simple, but you can
imagine a more complicated system in which factory() uses an elaborate
algorithm. The point is that it’s now hidden away in one place, and you
know to come to this place when you add new types. Add Comment

The creation of new objects is now much simpler in main():

 for(int i = 0 i < 30 i++)
 bin.add(
 Trash.factory(
 Messenger(
 (int)(Math.random() * Messenger.MAX_NUM),
 Math.random() * 100)))
A Messenger object is created to pass the data into factory(), which in
turn produces some kind of Trash object on the heap and returns the
reference that’s added to the ArrayList bin. Of course, if you change the
quantity and type of argument, this statement will still need to be
modified, but that can be eliminated if the creation of the Messenger
object is automated. For example, an ArrayList of arguments can be
passed into the constructor of a Messenger object (or directly into a
factory() call, for that matter). This requires that the arguments be
parsed and checked at run time, but it does provide the greatest flexibility.
Add Comment

You can see from this code what “vector of change” problem the factory is
responsible for solving: if you add new types to the system (the change),
the only code that must be modified is within the factory, so the factory
isolates the effect of that change. Add Comment

A pattern for prototyping
creation

A problem with the design above is that it still requires a central location
where all the types of the objects must be known: inside the factory()
method. If new types are regularly being added to the system, the
factory() method must be changed for each new type. When you
discover something like this, it is useful to try to go one step further and
move all of the information about the type—including its creation—into

the class representing that type. This way, the only thing you need to do to
add a new type to the system is to inherit a single class. Add Comment

To move the information concerning type creation into each specific type
of Trash, the “prototype” pattern (from the Design Patterns book) will be
used. The general idea is that you have a master sequence of objects, one
of each type you’re interested in making. The objects in this sequence are
used only for making new objects, using an operation that’s not unlike the
clone() scheme built into Java’s root class Object. In this case, we’ll
name the cloning method tClone(). When you’re ready to make a new
object, presumably you have some sort of information that establishes the
type of object you want to create, then you move through the master
sequence comparing your information with whatever appropriate
information is in the prototype objects in the master sequence. When you
find one that matches your needs, you clone it. Add Comment

In this scheme there is no hard-coded information for creation. Each
object knows how to expose appropriate information and how to clone
itself. Thus, the factory() method doesn’t need to be changed when a
new type is added to the system. Add Comment

One approach to the problem of prototyping is to add a number of
methods to support the creation of new objects. However, in Java 1.1
there’s already support for creating new objects if you have a reference to
the Class object. With Java 1.1 reflection (introduced in Chapter 12 of
Thinking in Java, 2nd edition) you can call a constructor even if you have
only a reference to the Class object. This is the perfect solution for the
prototyping problem. Add Comment

The list of prototypes will be represented indirectly by a list of references
to all the Class objects you want to create. In addition, if the prototyping
fails, the factory() method will assume that it’s because a particular
Class object wasn’t in the list, and it will attempt to load it. By loading the
prototypes dynamically like this, the Trash class doesn’t need to know
what types it is working with, so it doesn’t need any modifications when
you add new types. This allows it to be easily reused throughout the rest of
the chapter. Add Comment

c12:trash:Trash.py
Base class for Trash recycling examples.

class Trash:
 private double weight
 def __init__(self, double wt): weight = wt

 def __init__(self):
 def getValue(self)
 def getWeight(self): return weight
 # Sums the value of Trash given an
 # Iterator to any container of Trash:
 def sumValue(self, Iterator it):
 double val = 0.0f
 while(it.hasNext()):
 # One kind of RTTI:
 # A dynamically-checked cast
 Trash t = (Trash)it.next()
 val += t.getWeight() * t.getValue()
 print (
 "weight of " +
 # Using RTTI to get type
 # information about the class:
 t.getClass().getName() +
 " = " + t.getWeight())

 print "Total value = " + val

 # Remainder of class provides
 # support for prototyping:
 private static List trashTypes =
 ArrayList()
 def factory(self, Messenger info):
 for(int i = 0 i < len(trashTypes) i++):
 # Somehow determine the type
 # to create, and create one:
 Class tc = (Class)trashTypes.get(i)
 if (tc.getName().index(info.id) != -1):
 try:
 # Get the dynamic constructor method
 # that takes a double argument:
 Constructor ctor = tc.getConstructor(
 Class[]{ double.class)
 # Call the constructor
 # to create a object:
 return (Trash)ctor.newInstance(
 Object[]{Double(info.data))
 catch(Exception ex):
 ex.printStackTrace(System.err)
 throw RuntimeException(
 "Cannot Create Trash")

 # Class was not in the list. Try to load it,
 # but it must be in your class path!
 try:
 print "Loading " + info.id
 trashTypes.add(Class.forName(info.id))
 catch(Exception e):
 e.printStackTrace(System.err)
 throw RuntimeException(
 "Prototype not found")

 # Loaded successfully.
 # Recursive call should work:
 return factory(info)

 public static class Messenger:
 public String id
 public double data
 public Messenger(String name, double val):
 id = name
 data = val

:~
The basic Trash class and sumValue() remain as before. The rest of the
class supports the prototyping pattern. You first see two inner classes
(which are made static, so they are inner classes only for code
organization purposes) describing exceptions that can occur. This is
followed by an ArrayList called trashTypes, which is used to hold the
Class references. Add Comment

In Trash.factory(), the String inside the Messenger object id (a
different version of the Messenger class than that of the prior
discussion) contains the type name of the Trash to be created; this
String is compared to the Class names in the list. If there’s a match, then
that’s the object to create. Of course, there are many ways to determine
what object you want to make. This one is used so that information read in
from a file can be turned into objects. Add Comment

Once you’ve discovered which kind of Trash to create, then the reflection
methods come into play. The getConstructor() method takes an
argument that’s an array of Class references. This array represents the
arguments, in their proper order, for the constructor that you’re looking

for. Here, the array is dynamically created using the Java 1.1 array-
creation syntax: Add Comment

Class[]:double.class
This code assumes that every Trash type has a constructor that takes a
double (and notice that double.class is distinct from Double.class).
It’s also possible, for a more flexible solution, to call getConstructors(),
which returns an array of the possible constructors. Add Comment

What comes back from getConstructor() is a reference to a
Constructor object (part of java.lang.reflect). You call the constructor
dynamically with the method newInstance(), which takes an array of
Object containing the actual arguments. This array is again created using
the Java 1.1 syntax: Add Comment

Object[]{Double(Messenger.data)
In this case, however, the double must be placed inside a wrapper class
so that it can be part of this array of objects. The process of calling
newInstance() extracts the double, but you can see it is a bit
confusing—an argument might be a double or a Double, but when you
make the call you must always pass in a Double. Fortunately, this issue
exists only for the primitive types. Add Comment

Once you understand how to do it, the process of creating a new object
given only a Class reference is remarkably simple. Reflection also allows
you to call methods in this same dynamic fashion. Add Comment

Of course, the appropriate Class reference might not be in the
trashTypes list. In this case, the return in the inner loop is never
executed and you’ll drop out at the end. Here, the program tries to rectify
the situation by loading the Class object dynamically and adding it to the
trashTypes list. If it still can’t be found something is really wrong, but if
the load is successful then the factory method is called recursively to try
again. Add Comment

As you’ll see, the beauty of this design is that this code doesn’t need to be
changed, regardless of the different situations it will be used in (assuming
that all Trash subclasses contain a constructor that takes a single double
argument). Add Comment

Trash subclasses
To fit into the prototyping scheme, the only thing that’s required of each
new subclass of Trash is that it contain a constructor that takes a double
argument. Java reflection handles everything else. Add Comment

Here are the different types of Trash, each in their own file but part of the
Trash package (again, to facilitate reuse within the chapter): Add
Comment

c12:trash:Aluminum.py
The Aluminum class with prototyping.

class Aluminum(Trash):
 private static double val = 1.67f
 def __init__(self, double wt): .__init__(wt)
 def getValue(self): return val
 def setValue(self, double newVal):
 val = newVal

:~
c12:trash:Paper.py
The Paper class with prototyping.

class Paper(Trash):
 private static double val = 0.10f
 def __init__(self, double wt): .__init__(wt)
 def getValue(self): return val
 def setValue(self, double newVal):
 val = newVal

:~
c12:trash:Glass.py
The Glass class with prototyping.

class Glass(Trash):
 private static double val = 0.23f
 def __init__(self, double wt): .__init__(wt)
 def getValue(self): return val
 def setValue(self, double newVal):
 val = newVal

:~
And here’s a new type of Trash: Add Comment

c12:trash:Cardboard.py
The Cardboard class with prototyping.

class Cardboard(Trash):
 private static double val = 0.23f
 def __init__(self, double wt): .__init__(wt)
 def getValue(self): return val
 def setValue(self, double newVal):
 val = newVal

:~
You can see that, other than the constructor, there’s nothing special about
any of these classes. Add Comment

Parsing Trash from an external file
The information about Trash objects will be read from an outside file.
The file has all of the necessary information about each piece of trash on a
single line in the form Trash:weight, such as: Add Comment

c12:trash:Trash.dat
c12.trash.Glass:54
c12.trash.Paper:22
c12.trash.Paper:11
c12.trash.Glass:17
c12.trash.Aluminum:89
c12.trash.Paper:88
c12.trash.Aluminum:76
c12.trash.Cardboard:96
c12.trash.Aluminum:25
c12.trash.Aluminum:34
c12.trash.Glass:11
c12.trash.Glass:68
c12.trash.Glass:43
c12.trash.Aluminum:27
c12.trash.Cardboard:44
c12.trash.Aluminum:18
c12.trash.Paper:91
c12.trash.Glass:63
c12.trash.Glass:50
c12.trash.Glass:80
c12.trash.Aluminum:81
c12.trash.Cardboard:12
c12.trash.Glass:12

c12.trash.Glass:54
c12.trash.Aluminum:36
c12.trash.Aluminum:93
c12.trash.Glass:93
c12.trash.Paper:80
c12.trash.Glass:36
c12.trash.Glass:12
c12.trash.Glass:60
c12.trash.Paper:66
c12.trash.Aluminum:36
c12.trash.Cardboard:22
:~
Note that the class path must be included when giving the class names,
otherwise the class will not be found. Add Comment

This file is read using the previously-defined StringList tool, and each
line is picked aparat using the String method indexOf() to produce the
index of the ‘:’. This is first used with the String method substring() to
extract the name of the trash type, and next to get the weight that is
turned into a double with the static Double.valueOf() method. The
trim() method removes white space at both ends of a string. Add
Comment

The Trash parser is placed in a separate file since it will be reused
throughout this chapter: Add Comment

c12:trash:ParseTrash.py
Parse file contents into Trash objects,
placing each into a Fillable holder.

class ParseTrash:
 def fillBin(String filename, Fillable bin):
 for line in open(filename).readlines():
 String type = line.substring(0,
 line.index(':')).strip()
 double weight = Double.valueOf(
 line.substring(line.index(':') + 1)
 .strip()).doubleValue()
 bin.addTrash(
 Trash.factory(
 Trash.Messenger(type, weight)))

 # Special case to handle Collection:
 def fillBin(String filename, Collection bin):
 fillBin(filename, FillableCollection(bin))

:~
In RecycleA.py, an ArrayList was used to hold the Trash objects.
However, other types of containers can be used as well. To allow for this,
the first version of fillBin() takes a reference to a Fillable, which is
simply an interface that supports a method called addTrash(): Add
Comment

c12:trash:Fillable.py
Any object that can be filled with Trash.

class Fillable:
 def addTrash(self, Trash t)
:~
Anything that supports this interface can be used with fillBin. Of course,
Collection doesn’t implement Fillable, so it won’t work. Since
Collection is used in most of the examples, it makes sense to add a
second overloaded fillBin() method that takes a Collection. Any
Collection can then be used as a Fillable object using an adapter class:
Add Comment

c12:trash:FillableCollection.py
Adapter that makes a Collection Fillable.

class FillableCollection(Fillable):
 private Collection c
 def __init__(self, Collection cc):
 c = cc

 def addTrash(self, Trash t):
 c.add(t)

:~
You can see that the only job of this class is to connect Fillable’s
addTrash() method to Collection’s add(). With this class in hand,
the overloaded fillBin() method can be used with a Collection in
ParseTrash.py: Add Comment

 public static void
 fillBin(String filename, Collection bin):
 fillBin(filename, FillableCollection(bin))

This approach works for any container class that’s used frequently.
Alternatively, the container class can provide its own adapter that

implements Fillable. (You’ll see this later, in DynaTrash.py.) Add
Comment

Recycling with prototyping
Now you can see the revised version of RecycleA.py using the
prototyping technique: Add Comment

c12:recycleap:RecycleAP.py
Recycling with RTTI and Prototypes.

class RecycleAP(UnitTest):
 Collection
 bin = ArrayList(),
 glassBin = ArrayList(),
 paperBin = ArrayList(),
 alBin = ArrayList()
 def __init__(self):
 # Fill up the Trash bin:
 ParseTrash.fillBin(
 "../trash/Trash.dat", bin)

 def test(self):
 Iterator sorter = bin.iterator()
 # Sort the Trash:
 while(sorter.hasNext()):
 Object t = sorter.next()
 # RTTI to show class membership:
 if(t instanceof Aluminum)
 alBin.add(t)
 if(t instanceof Paper)
 paperBin.add(t)
 if(t instanceof Glass)
 glassBin.add(t)

 Trash.sumValue(alBin.iterator())
 Trash.sumValue(paperBin.iterator())
 Trash.sumValue(glassBin.iterator())
 Trash.sumValue(bin.iterator())

 def main(self, String args[]):
 RecycleAP().test()

:~

All of the Trash objects, as well as the ParseTrash and support classes,
are now part of the package c12.trash, so they are simply imported. Add
Comment

The process of opening the data file containing Trash descriptions and
the parsing of that file have been wrapped into the static method
ParseTrash.fillBin(), so now it’s no longer a part of our design focus.
You will see that throughout the rest of the chapter, no matter what new
classes are added, ParseTrash.fillBin() will continue to work without
change, which indicates a good design. Add Comment

In terms of object creation, this design does indeed severely localize the
changes you need to make to add a new type to the system. However,
there’s a significant problem in the use of RTTI that shows up clearly here.
The program seems to run fine, and yet it never detects any cardboard,
even though there is cardboard in the list! This happens because of the
use of RTTI, which looks for only the types that you tell it to look for. The
clue that RTTI is being misused is that every type in the system is being
tested, rather than a single type or subset of types. As you will see later,
there are ways to use polymorphism instead when you’re testing for every
type. But if you use RTTI a lot in this fashion, and you add a new type to
your system, you can easily forget to make the necessary changes in your
program and produce a difficult-to-find bug. So it’s worth trying to
eliminate RTTI in this case, not just for aesthetic reasons—it produces
more maintainable code. Add Comment

Abstracting usage
With creation out of the way, it’s time to tackle the remainder of the
design: where the classes are used. Since it’s the act of sorting into bins
that’s particularly ugly and exposed, why not take that process and hide it
inside a class? This is the principle of “If you must do something ugly, at
least localize the ugliness inside a class.” It looks like this: Add Comment

TrashSorter
Aluminum ArrayList

Paper ArrayList

Glass ArrayList

ArrayList of
Trash Bins

The TrashSorter object initialization must now be changed whenever a
new type of Trash is added to the model. You could imagine that the
TrashSorter class might look something like this: Add Comment

class TrashSorter(ArrayList):
 def sort(self, Trash t): /* ... */

That is, TrashSorter is an ArrayList of references to ArrayLists of
Trash references, and with add() you can install another one, like so:
Add Comment

TrashSorter ts = TrashSorter()
ts.add(ArrayList())
Now, however, sort() becomes a problem. How does the statically-coded
method deal with the fact that a new type has been added? To solve this,
the type information must be removed from sort() so that all it needs to
do is call a generic method that takes care of the details of type. This, of
course, is another way to describe a dynamically-bound method. So
sort() will simply move through the sequence and call a dynamically-
bound method for each ArrayList. Since the job of this method is to grab
the pieces of trash it is interested in, it’s called grab(Trash). The
structure now looks like: Add Comment

boolean grab(Trash)

Aluminum ArrayList

boolean grab(Trash)

Paper ArrayList

boolean grab(Trash)

Glass ArrayList

TrashSorter

ArrayList of
Trash Bins

TrashSorter needs to call each grab() method and get a different result
depending on what type of Trash the current ArrayList is holding. That
is, each ArrayList must be aware of the type it holds. The classic
approach to this problem is to create a base “Trash bin” class and inherit
a new derived class for each different type you want to hold. If Java had a
parameterized type mechanism that would probably be the most
straightforward approach. But rather than hand-coding all the classes that

such a mechanism should be building for us, further observation can
produce a better approach. Add Comment

A basic OOP design principle is “Use data members for variation in state,
use polymorphism for variation in behavior.” Your first thought might be
that the grab() method certainly behaves differently for an ArrayList
that holds Paper than for one that holds Glass. But what it does is
strictly dependent on the type, and nothing else. This could be interpreted
as a different state, and since Java has a class to represent type (Class)
this can be used to determine the type of Trash a particular Tbin will
hold. Add Comment

The constructor for this Tbin requires that you hand it the Class of your
choice. This tells the ArrayList what type it is supposed to hold. Then the
grab() method uses Class BinType and RTTI to see if the Trash object
you’ve handed it matches the type it’s supposed to grab. Add Comment

Here is the new version of the program:

c12:recycleb:RecycleB.py
Containers that grab objects of interest.

A container that admits only the right type
of Trash (established in the constructor):
class Tbin:
 private Collection list = ArrayList()
 private Class type
 def __init__(self, Class binType): type = binType
 def grab(self, Trash t):
 # Comparing class types:
 if(t.getClass().equals(type)):
 list.add(t)
 return 1 # Object grabbed

 return 0 # Object not grabbed

 def iterator(self):
 return list.iterator()

class TbinList(ArrayList):
 def sort(self, Trash t):
 Iterator e = iterator() # Iterate over self
 while(e.hasNext())
 if(((Tbin)e.next()).grab(t)) return
 # Need a Tbin for this type:

 add(Tbin(t.getClass()))
 sort(t) # Recursive call

class RecycleB(UnitTest):
 Collection bin = ArrayList()
 TbinList trashBins = TbinList()
 def __init__(self):
 ParseTrash.fillBin("../trash/Trash.dat",bin)

 def test(self):
 Iterator it = bin.iterator()
 while(it.hasNext())
 trashBins.sort((Trash)it.next())
 Iterator e = trashBins.iterator()
 while(e.hasNext()):
 Tbin b = (Tbin)e.next()
 Trash.sumValue(b.iterator())

 Trash.sumValue(bin.iterator())

 def main(self, String args[]):
 RecycleB().test()

:~
Tbin contains a Class reference type which establishes in the
constructor what what type it should grab. The grab() method checks this
type against the object you pass it. Note that in this design, grab() only
accepts Trash objects so you get compile-time type checking on the base
type, but you could also just accept Object and it would still work. Add
Comment

TbinList holds a set of Tbin references, so that sort() can iterate
through the Tbins when it’s looking for a match for the Trash object
you’ve handed it. If it doesn’t find a match, it creates a new Tbin for the
type that hasn’t been found, and makes a recursive call to itself – the next
time around, the new bin will be found. Add Comment

Notice the genericity of this code: it doesn’t change at all if new types are
added. If the bulk of your code doesn’t need changing when a new type is
added (or some other change occurs) then you have an easily extensible
system.Add Comment

Multiple dispatching
The above design is certainly satisfactory. Adding new types to the system
consists of adding or modifying distinct classes without causing code
changes to be propagated throughout the system. In addition, RTTI is not
“misused” as it was in RecycleA.py. However, it’s possible to go one step
further and take a purist viewpoint about RTTI and say that it should be
eliminated altogether from the operation of sorting the trash into bins.
Add Comment

To accomplish this, you must first take the perspective that all type-
dependent activities—such as detecting the type of a piece of trash and
putting it into the appropriate bin—should be controlled through
polymorphism and dynamic binding. Add Comment

The previous examples first sorted by type, then acted on sequences of
elements that were all of a particular type. But whenever you find yourself
picking out particular types, stop and think. The whole idea of
polymorphism (dynamically-bound method calls) is to handle type-
specific information for you. So why are you hunting for types? Add
Comment

The answer is something you probably don’t think about: Python
performs only single dispatching. That is, if you are performing an
operation on more than one object whose type is unknown, Python will
invoke the dynamic binding mechanism on only one of those types. This
doesn’t solve the problem, so you end up detecting some types manually
and effectively producing your own dynamic binding behavior. Add
Comment

The solution is called multiple dispatching, which means setting up a
configuration such that a single method call produces more than one
dynamic method call and thus determines more than one type in the
process. To get this effect, you need to work with more than one type
hierarchy: you’ll need a type hierarchy for each dispatch. The following
example works with two hierarchies: the existing Trash family and a
hierarchy of the types of trash bins that the trash will be placed into. This
second hierarchy isn’t always obvious and in this case it needed to be
created in order to produce multiple dispatching (in this case there will be
only two dispatches, which is referred to as double dispatching). Add
Comment

Implementing the double dispatch
Remember that polymorphism can occur only via method calls, so if you
want double dispatching to occur, there must be two method calls: one
used to determine the type within each hierarchy. In the Trash hierarchy
there will be a new method called addToBin(), which takes an argument
of an array of TypedBin. It uses this array to step through and try to add
itself to the appropriate bin, and this is where you'll see the double
dispatch.

Trash

addToBin(TypedBin[])

Aluminum

addToBin(TypedBin[])

Paper

addToBin(TypedBin[])

Glass

addToBin(TypedBin[])

Cardboard

addToBin(TypedBin[])

TypedBin

add(Aluminum)
add(Paper)
add(Glass)
add(Cardboard)

AluminumBin

add(Aluminum)

PaperBin

add(Paper)

GlassBin

add(Glass)

CardboardBin

add(Cardboard)

The new hierarchy is TypedBin, and it contains its own method called
add() that is also used polymorphically. But here's an additional twist:
add() is overloaded to take arguments of the different types of trash. So
an essential part of the double dispatching scheme also involves
overloading.Redesigning the program produces a dilemma: it’s now
necessary for the base class Trash to contain an addToBin() method.
One approach is to copy all of the code and change the base class. Another
approach, which you can take when you don’t have control of the source
code, is to put the addToBin() method into an interface, leave Trash
alone, and inherit new specific types of Aluminum, Paper, Glass, and
Cardboard. This is the approach that will be taken here. Add Comment

Most of the classes in this design must be public, so they are placed in
their own files. Here’s the interface: Add Comment

c12:doubledispatch:TypedBinMember.py
An class for adding the double
dispatching method to the trash hierarchy
without modifying the original hierarchy.

class TypedBinMember:
 # The method:
 boolean addToBin(TypedBin[] tb)
:~
In each particular subtype of Aluminum, Paper, Glass, and
Cardboard, the addToBin() method in the interface
TypedBinMember is implemented, but it looks like the code is exactly
the same in each case: Add Comment

c12:doubledispatch:DDAluminum.py
Aluminum for double dispatching.

class DDAluminum(Aluminum)
 implements TypedBinMember:
 def __init__(self, double wt): .__init__(wt)
 def addToBin(self, TypedBin[] tb):
 for(int i = 0 i < tb.length i++)
 if(tb[i].add(self))
 return 1
 return 0

:~
c12:doubledispatch:DDPaper.py
Paper for double dispatching.

class DDPaper(Paper)
 implements TypedBinMember:
 def __init__(self, double wt): .__init__(wt)
 def addToBin(self, TypedBin[] tb):
 for(int i = 0 i < tb.length i++)
 if(tb[i].add(self))
 return 1
 return 0

:~
c12:doubledispatch:DDGlass.py
Glass for double dispatching.

class DDGlass(Glass)
 implements TypedBinMember:

 def __init__(self, double wt): .__init__(wt)
 def addToBin(self, TypedBin[] tb):
 for(int i = 0 i < tb.length i++)
 if(tb[i].add(self))
 return 1
 return 0

:~
c12:doubledispatch:DDCardboard.py
Cardboard for double dispatching.

class DDCardboard(Cardboard)
 implements TypedBinMember:
 def __init__(self, double wt): .__init__(wt)
 def addToBin(self, TypedBin[] tb):
 for(int i = 0 i < tb.length i++)
 if(tb[i].add(self))
 return 1
 return 0

:~
The code in each addToBin() calls add() for each TypedBin object in
the array. But notice the argument: this. The type of this is different for
each subclass of Trash, so the code is different. (Although this code will
benefit if a parameterized type mechanism is ever added to Java.) So this
is the first part of the double dispatch, because once you’re inside this
method you know you’re Aluminum, or Paper, etc. During the call to
add(), this information is passed via the type of this. The compiler
resolves the call to the proper overloaded version of add(). But since
tb[i] produces a reference to the base type TypedBin, this call will end
up calling a different method depending on the type of TypedBin that’s
currently selected. That is the second dispatch. Add Comment

Here’s the base class for TypedBin: Add Comment

c12:doubledispatch:TypedBin.py
A container for the second dispatch.

class TypedBin:
 Collection c = ArrayList()
 def addIt(self, Trash t):
 c.add(t)
 return 1

 def iterator(self):
 return c.iterator()

 def add(self, DDAluminum a):
 return 0

 def add(self, DDPaper a):
 return 0

 def add(self, DDGlass a):
 return 0

 def add(self, DDCardboard a):
 return 0

:~
You can see that the overloaded add() methods all return false. If the
method is not overloaded in a derived class, it will continue to return
false, and the caller (addToBin(), in this case) will assume that the
current Trash object has not been added successfully to a container, and
continue searching for the right container. Add Comment

In each of the subclasses of TypedBin, only one overloaded method is
overridden, according to the type of bin that’s being created. For example,
CardboardBin overrides add(DDCardboard). The overridden
method adds the trash object to its container and returns true, while all
the rest of the add() methods in CardboardBin continue to return
false, since they haven’t been overridden. This is another case in which a
parameterized type mechanism in Java would allow automatic generation
of code. (With C++ templates, you wouldn’t have to explicitly write the
subclasses or place the addToBin() method in Trash.) Add Comment

Since for this example the trash types have been customized and placed in
a different directory, you’ll need a different trash data file to make it work.
Here’s a possible DDTrash.dat: Add Comment

c12:doubledispatch:DDTrash.dat
DDGlass:54
DDPaper:22
DDPaper:11
DDGlass:17
DDAluminum:89
DDPaper:88
DDAluminum:76
DDCardboard:96

DDAluminum:25
DDAluminum:34
DDGlass:11
DDGlass:68
DDGlass:43
DDAluminum:27
DDCardboard:44
DDAluminum:18
DDPaper:91
DDGlass:63
DDGlass:50
DDGlass:80
DDAluminum:81
DDCardboard:12
DDGlass:12
DDGlass:54
DDAluminum:36
DDAluminum:93
DDGlass:93
DDPaper:80
DDGlass:36
DDGlass:12
DDGlass:60
DDPaper:66
DDAluminum:36
DDCardboard:22
:~
Here’s the rest of the program: Add Comment

c12:doubledispatch:DoubleDispatch.py
Using multiple dispatching to handle more
than one unknown type during a method call.

class AluminumBin(TypedBin):
 def add(self, DDAluminum a):
 return addIt(a)

class PaperBin(TypedBin):
 def add(self, DDPaper a):
 return addIt(a)

class GlassBin(TypedBin):
 def add(self, DDGlass a):
 return addIt(a)

class CardboardBin(TypedBin):
 def add(self, DDCardboard a):
 return addIt(a)

class TrashBinSet:
 private TypedBin[] binSet =:
 AluminumBin(),
 PaperBin(),
 GlassBin(),
 CardboardBin()

 def sortIntoBins(self, Collection bin):
 Iterator e = bin.iterator()
 while(e.hasNext()):
 TypedBinMember t =
 (TypedBinMember)e.next()
 if(!t.addToBin(binSet))
 System.err.println("Couldn't add " + t)

 public TypedBin[] binSet(): return binSet

class DoubleDispatch(UnitTest):
 Collection bin = ArrayList()
 TrashBinSet bins = TrashBinSet()
 def __init__(self):
 # ParseTrash still works, without changes:
 ParseTrash.fillBin("DDTrash.dat", bin)

 def test(self):
 # Sort from the master bin into
 # the individually-typed bins:
 bins.sortIntoBins(bin)
 TypedBin[] tb = bins.binSet()
 # Perform sumValue for each bin...
 for(int i = 0 i < tb.length i++)
 Trash.sumValue(tb[i].c.iterator())
 # ... and for the master bin
 Trash.sumValue(bin.iterator())

 def main(self, String args[]):
 DoubleDispatch().test()

:~

TrashBinSet encapsulates all of the different types of TypedBins, along
with the sortIntoBins() method, which is where all the double
dispatching takes place. You can see that once the structure is set up,
sorting into the various TypedBins is remarkably easy. In addition, the
efficiency of two dynamic method calls is probably better than any other
way you could sort. Add Comment

Notice the ease of use of this system in main(), as well as the complete
independence of any specific type information within main(). All other
methods that talk only to the Trash base-class interface will be equally
invulnerable to changes in Trash types. Add Comment

The changes necessary to add a new type are relatively isolated: you
modify TypedBin, inherit the new type of Trash with its addToBin()
method, then inherit a new TypedBin (this is really just a copy and
simple edit), and finally add a new type into the aggregate initialization for
TrashBinSet. Add Comment

The Visitor pattern
Now consider applying a design pattern that has an entirely different goal
to the trash sorting problem. Add Comment

For this pattern, we are no longer concerned with optimizing the addition
of new types of Trash to the system. Indeed, this pattern makes adding a
new type of Trash more complicated. The assumption is that you have a
primary class hierarchy that is fixed; perhaps it’s from another vendor and
you can’t make changes to that hierarchy. However, you’d like to add new
polymorphic methods to that hierarchy, which means that normally you’d
have to add something to the base class interface. So the dilemma is that
you need to add methods to the base class, but you can’t touch the base
class. How do you get around this? Add Comment

The design pattern that solves this kind of problem is called a “visitor”
(the final one in the Design Patterns book), and it builds on the double
dispatching scheme shown in the last section. Add Comment

The visitor pattern allows you to extend the interface of the primary type
by creating a separate class hierarchy of type Visitor to virtualize the
operations performed upon the primary type. The objects of the primary
type simply “accept” the visitor, then call the visitor’s dynamically-bound
method. It looks like this: Add Comment

Trash

accept(Visitor)

Aluminum

accept(Visitor v) {
 v.visit(this);
}

Visitor

visit(Aluminum)
visit(Paper)
visit(Glass)

PriceVisitor

visit(Aluminum) {
 // Perform Aluminum-
 // specific work
}
visit(Paper) {
 // Perform Paper-
 // specific work
}
visit(Glass) {
 // Perform Glass-
 // specific work
}

Paper

accept(Visitor v) {
 v.visit(this);
}

Glass

accept(Visitor v) {
 v.visit(this);
}

Etc.WeightVisitor

visit(Aluminum) {
 // Perform Aluminum-
 // specific work
}
visit(Paper) {
 // Perform Paper-
 // specific work
}
visit(Glass) {
 // Perform Glass-
 // specific work
}

Now, if v is a Visitable reference to an Aluminum object, the code: Add
Comment

PriceVisitor pv = PriceVisitor()
v.accept(pv)
uses double dispatching to cause two polymorphic method calls: the first
one to select Aluminum’s version of accept(), and the second one

within accept() when the specific version of visit() is called
dynamically using the base-class Visitor reference v. Add Comment

This configuration means that new functionality can be added to the
system in the form of new subclasses of Visitor. The Trash hierarchy
doesn’t need to be touched. This is the prime benefit of the visitor pattern:
you can add new polymorphic functionality to a class hierarchy without
touching that hierarchy (once the accept() methods have been installed).
Note that the benefit is helpful here but not exactly what we started out to
accomplish, so at first blush you might decide that this isn’t the desired
solution. Add Comment

But look at one thing that’s been accomplished: the visitor solution avoids
sorting from the master Trash sequence into individual typed sequences.
Thus, you can leave everything in the single master sequence and simply
pass through that sequence using the appropriate visitor to accomplish
the goal. Although this behavior seems to be a side effect of visitor, it does
give us what we want (avoiding RTTI). Add Comment

The double dispatching in the visitor pattern takes care of determining
both the type of Trash and the type of Visitor. In the following example,
there are two implementations of Visitor: PriceVisitor to both
determine and sum the price, and WeightVisitor to keep track of the
weights. Add Comment

You can see all of this implemented in the new, improved version of the
recycling program. Add Comment

As with DoubleDispatch.py, the Trash class is left alone and a new
interface is created to add the accept() method: Add Comment

c12:trashvisitor:Visitable.py
An class to add visitor functionality
to the Trash hierarchy without
modifying the base class.

class Visitable:
 # The method:
 def accept(self, Visitor v)
:~
Since there’s nothing concrete in the Visitor base class, it can be created
as an interface: Add Comment

c12:trashvisitor:Visitor.py
The base class for visitors.

class Visitor:
 def visit(self, Aluminum a)
 def visit(self, Paper p)
 def visit(self, Glass g)
 def visit(self, Cardboard c)
:~

A Reflective Decorator
At this point, you could follow the same approach that was used for
double dispatching and create new subtypes of Aluminum, Paper,
Glass, and Cardboard that implement the accept() method. For
example, the new Visitable Aluminum would look like this: Add
Comment

c12:trashvisitor:VAluminum.py
Taking the previous approach of creating a
specialized Aluminum for the visitor pattern.

class VAluminum(Aluminum)
 implements Visitable:
 def __init__(self, double wt): .__init__(wt)
 def accept(self, Visitor v):
 v.visit(self)

:~
However, we seem to be encountering an “explosion of interfaces:” basic
Trash, special versions for double dispatching, and now more special
versions for visitor. Of course, this “explosion of interfaces” is arbitrary—
one could simply put the additional methods in the Trash class. If we
ignore that we can instead see an opportunity to use the Decorator
pattern: it seems like it should be possible to create a Decorator that can
be wrapped around an ordinary Trash object and will produce the same
interface as Trash and add the extra accept() method. In fact, it’s a
perfect example of the value of Decorator. Add Comment

The double dispatch creates a problem, however. Since it relies on
overloading of both accept() and visit(), it would seem to require
specialized code for each different version of the accept() method. With
C++ templates, this would be fairly easy to accomplish (since templates
automatically generate type-specialized code) but Python has no such
mechanism—at least it does not appear to. However, reflection allows you
to determine type information at run time, and it turns out to solve many

problems that would seem to require templates (albeit not as simply).
Here’s the decorator that does the trick17: Add Comment

c12:trashvisitor:VisitableDecorator.py
A decorator that adapts the generic Trash
classes to the visitor pattern.

class VisitableDecorator
extends Trash implements Visitable:
 private Trash delegate
 private Method dispatch
 def __init__(self, Trash t):
 delegate = t
 try:
 dispatch = Visitor.class.getMethod (
 "visit", Class[]: t.getClass()
)
 catch (Exception ex):
 ex.printStackTrace()

 def getValue(self):
 return delegate.getValue()

 def getWeight(self):
 return delegate.getWeight()

 def accept(self, Visitor v):
 try:
 dispatch.invoke(v, Object[]{delegate)
 catch (Exception ex):
 ex.printStackTrace()

:~
[[Description of Reflection use]] Add Comment

The only other tool we need is a new type of Fillable adapter that
automatically decorates the objects as they are being created from the
original Trash.dat file. But this might as well be a decorator itself,
decorating any kind of Fillable: Add Comment

17 This was a solution created by Jaroslav Tulach in a design patterns class that I
gave in Prague.

c12:trashvisitor:FillableVisitor.py
Adapter Decorator that adds the visitable
decorator as the Trash objects are
being created.

class FillableVisitor
implements Fillable:
 private Fillable f
 def __init__(self, Fillable ff): f = ff
 def addTrash(self, Trash t):
 f.addTrash(VisitableDecorator(t))

:~
Now you can wrap it around any kind of existing Fillable, or any new
ones that haven’t yet been created. Add Comment

The rest of the program creates specific Visitor types and sends them
through a single list of Trash objects: Add Comment

c12:trashvisitor:TrashVisitor.py
The "visitor" pattern with VisitableDecorators.

Specific group of algorithms packaged
in each implementation of Visitor:
class PriceVisitor(Visitor):
 private double alSum # Aluminum
 private double pSum # Paper
 private double gSum # Glass
 private double cSum # Cardboard
 def visit(self, Aluminum al):
 double v = al.getWeight() * al.getValue()
 print "value of Aluminum= " + v
 alSum += v

 def visit(self, Paper p):
 double v = p.getWeight() * p.getValue()
 print "value of Paper= " + v
 pSum += v

 def visit(self, Glass g):
 double v = g.getWeight() * g.getValue()
 print "value of Glass= " + v
 gSum += v

 def visit(self, Cardboard c):

 double v = c.getWeight() * c.getValue()
 print "value of Cardboard = " + v
 cSum += v

 def total(self):
 print (
 "Total Aluminum: $" + alSum +
 "\n Total Paper: $" + pSum +
 "\nTotal Glass: $" + gSum +
 "\nTotal Cardboard: $" + cSum +
 "\nTotal: $" +
 (alSum + pSum + gSum + cSum))

class WeightVisitor(Visitor):
 private double alSum # Aluminum
 private double pSum # Paper
 private double gSum # Glass
 private double cSum # Cardboard
 def visit(self, Aluminum al):
 alSum += al.getWeight()
 print ("weight of Aluminum = "
 + al.getWeight())

 def visit(self, Paper p):
 pSum += p.getWeight()
 print ("weight of Paper = "
 + p.getWeight())

 def visit(self, Glass g):
 gSum += g.getWeight()
 print ("weight of Glass = "
 + g.getWeight())

 def visit(self, Cardboard c):
 cSum += c.getWeight()
 print ("weight of Cardboard = "
 + c.getWeight())

 def total(self):
 print (
 "Total weight Aluminum: " + alSum +
 "\nTotal weight Paper: " + pSum +
 "\nTotal weight Glass: " + gSum +
 "\nTotal weight Cardboard: " + cSum +

 "\nTotal weight: " +
 (alSum + pSum + gSum + cSum))

class TrashVisitor(UnitTest):
 Collection bin = ArrayList()
 PriceVisitor pv = PriceVisitor()
 WeightVisitor wv = WeightVisitor()
 def __init__(self):
 ParseTrash.fillBin("../trash/Trash.dat",
 FillableVisitor(
 FillableCollection(bin)))

 def test(self):
 Iterator it = bin.iterator()
 while(it.hasNext()):
 Visitable v = (Visitable)it.next()
 v.accept(pv)
 v.accept(wv)

 pv.total()
 wv.total()

 def main(self, String args[]):
 TrashVisitor().test()

:~
In Test(), note how visitability is added by simply creating a different
kind of bin using the decorator. Also notice that the FillableCollection
adapter has the appearance of being used as a decorator (for ArrayList)
in this situation. However, it completely changes the interface of the
ArrayList, whereas the definition of Decorator is that the interface of the
decorated class must still be there after decoration. Add Comment

Note that the shape of the client code (shown in the Test class) has
changed again, from the original approaches to the problem. Now there’s
only a single Trash bin. The two Visitor objects are accepted into every
element in the sequence, and they perform their operations. The visitors
keep their own internal data to tally the total weights and prices. Add
Comment

Finally, there’s no run time type identification other than the inevitable
cast to Trash when pulling things out of the sequence. This, too, could be
eliminated with the implementation of parameterized types in Java. Add
Comment

One way you can distinguish this solution from the double dispatching
solution described previously is to note that, in the double dispatching
solution, only one of the overloaded methods, add(), was overridden
when each subclass was created, while here each one of the overloaded
visit() methods is overridden in every subclass of Visitor. Add
Comment

More coupling?
There’s a lot more code here, and there’s definite coupling between the
Trash hierarchy and the Visitor hierarchy. However, there’s also high
cohesion within the respective sets of classes: they each do only one thing
(Trash describes Trash, while Visitor describes actions performed on
Trash), which is an indicator of a good design. Of course, in this case it
works well only if you’re adding new Visitors, but it gets in the way when
you add new types of Trash. Add Comment

Low coupling between classes and high cohesion within a class is
definitely an important design goal. Applied mindlessly, though, it can
prevent you from achieving a more elegant design. It seems that some
classes inevitably have a certain intimacy with each other. These often
occur in pairs that could perhaps be called couplets; for example,
containers and iterators. The Trash-Visitor pair above appears to be
another such couplet. Add Comment

RTTI considered harmful?
Various designs in this chapter attempt to remove RTTI, which might give
you the impression that it’s “considered harmful” (the condemnation used
for poor, ill-fated goto, which was thus never put into Java). This isn’t
true; it is the misuse of RTTI that is the problem. The reason our designs
removed RTTI is because the misapplication of that feature prevented
extensibility, while the stated goal was to be able to add a new type to the
system with as little impact on surrounding code as possible. Since RTTI
is often misused by having it look for every single type in your system, it
causes code to be non-extensible: when you add a new type, you have to
go hunting for all the code in which RTTI is used, and if you miss any you
won’t get help from the compiler. Add Comment

However, RTTI doesn’t automatically create non-extensible code. Let’s
revisit the trash recycler once more. This time, a new tool will be
introduced, which I call a TypeMap. It contains a HashMap that holds

ArrayLists, but the interface is simple: you can add() a new object, and
you can get() an ArrayList containing all the objects of a particular
type. The keys for the contained HashMap are the types in the associated
ArrayList. The beauty of this design (suggested by Larry O’Brien) is that
the TypeMap dynamically adds a new pair whenever it encounters a new
type, so whenever you add a new type to the system (even if you add the
new type at run time), it adapts. Add Comment

Our example will again build on the structure of the Trash types in
package c12.Trash (and the Trash.dat file used there can be used here
without change): Add Comment

c12:dynatrash:DynaTrash.py
Using a Map of Lists and RTTI
to automatically sort trash into
ArrayLists. This solution, despite the
use of RTTI, is extensible.

Generic TypeMap works in any situation:
class TypeMap:
 private Map t = HashMap()
 def add(self, Object o):
 Class type = o.getClass()
 if(t.has_key(type))
 ((List)t.get(type)).add(o)
 else:
 List v = ArrayList()
 v.add(o)
 t.put(type,v)

 def get(self, Class type):
 return (List)t.get(type)

 def keys(self):
 return t.keySet().iterator()

Adapter class to allow callbacks
from ParseTrash.fillBin():
class TypeMapAdapter(Fillable):
 TypeMap map
 def __init__(self, TypeMap tm): map = tm
 def addTrash(self, Trash t): map.add(t)

class DynaTrash(UnitTest):
 TypeMap bin = TypeMap()

 def __init__(self):
 ParseTrash.fillBin("../trash/Trash.dat",
 TypeMapAdapter(bin))

 def test(self):
 Iterator keys = bin.keys()
 while(keys.hasNext())
 Trash.sumValue(
 bin.get((Class)keys.next()).iterator())

 def main(self, String args[]):
 DynaTrash().test()

:~
Although powerful, the definition for TypeMap is simple. It contains a
HashMap, and the add() method does most of the work. When you
add() a new object, the reference for the Class object for that type is
extracted. This is used as a key to determine whether an ArrayList
holding objects of that type is already present in the HashMap. If so, that
ArrayList is extracted and the object is added to the ArrayList. If not,
the Class object and a new ArrayList are added as a key-value pair. Add
Comment

You can get an Iterator of all the Class objects from keys(), and use
each Class object to fetch the corresponding ArrayList with get(). And
that’s all there is to it. Add Comment

The filler() method is interesting because it takes advantage of the
design of ParseTrash.fillBin(), which doesn’t just try to fill an
ArrayList but instead anything that implements the Fillable interface
with its addTrash() method. All filler() needs to do is to return a
reference to an interface that implements Fillable, and then this
reference can be used as an argument to fillBin() like this: Add
Comment

ParseTrash.fillBin("Trash.dat", bin.filler())
To produce this reference, an anonymous inner class (described in
Chapter 8 of Thinking in Java, 2nd edition) is used. You never need a
named class to implement Fillable, you just need a reference to an object
of that class, thus this is an appropriate use of anonymous inner classes.
Add Comment

An interesting thing about this design is that even though it wasn’t created
to handle the sorting, fillBin() is performing a sort every time it inserts a
Trash object into bin. Add Comment

Much of class DynaTrash should be familiar from the previous
examples. This time, instead of placing the new Trash objects into a bin
of type ArrayList, the bin is of type TypeMap, so when the trash is
thrown into bin it’s immediately sorted by TypeMap’s internal sorting
mechanism. Stepping through the TypeMap and operating on each
individual ArrayList becomes a simple matter. Add Comment

As you can see, adding a new type to the system won’t affect this code at
all, and the code in TypeMap is completely independent. This is certainly
the smallest solution to the problem, and arguably the most elegant as
well. It does rely heavily on RTTI, but notice that each key-value pair in
the HashMap is looking for only one type. In addition, there’s no way
you can “forget” to add the proper code to this system when you add a new
type, since there isn’t any code you need to add. Add Comment

Summary
Coming up with a design such as TrashVisitor.py that contains a larger
amount of code than the earlier designs can seem at first to be
counterproductive. It pays to notice what you’re trying to accomplish with
various designs. Design patterns in general strive to separate the things
that change from the things that stay the same. The “things that change”
can refer to many different kinds of changes. Perhaps the change occurs
because the program is placed into a new environment or because
something in the current environment changes (this could be: “The user
wants to add a new shape to the diagram currently on the screen”). Or, as
in this case, the change could be the evolution of the code body. While
previous versions of the trash sorting example emphasized the addition of
new types of Trash to the system, TrashVisitor.py allows you to easily
add new functionality without disturbing the Trash hierarchy. There’s
more code in TrashVisitor.py, but adding new functionality to Visitor
is cheap. If this is something that happens a lot, then it’s worth the extra
effort and code to make it happen more easily. Add Comment

The discovery of the vector of change is no trivial matter; it’s not
something that an analyst can usually detect before the program sees its
initial design. The necessary information will probably not appear until
later phases in the project: sometimes only at the design or

implementation phases do you discover a deeper or more subtle need in
your system. In the case of adding new types (which was the focus of most
of the “recycle” examples) you might realize that you need a particular
inheritance hierarchy only when you are in the maintenance phase and
you begin extending the system! Add Comment

One of the most important things that you’ll learn by studying design
patterns seems to be an about-face from what has been promoted so far in
this book. That is: “OOP is all about polymorphism.” This statement can
produce the “two-year-old with a hammer” syndrome (everything looks
like a nail). Put another way, it’s hard enough to “get” polymorphism, and
once you do, you try to cast all your designs into that one particular mold.
Add Comment

What design patterns say is that OOP isn’t just about polymorphism. It’s
about “separating the things that change from the things that stay the
same.” Polymorphism is an especially important way to do this, and it
turns out to be helpful if the programming language directly supports
polymorphism (so you don’t have to wire it in yourself, which would tend
to make it prohibitively expensive). But design patterns in general show
other ways to accomplish the basic goal, and once your eyes have been
opened to this you will begin to search for more creative designs. Add
Comment

Since the Design Patterns book came out and made such an impact,
people have been searching for other patterns. You can expect to see more
of these appear as time goes on. Here are some sites recommended by Jim
Coplien, of C++ fame (http://www.bell-labs.com/~cope), who is one of
the main proponents of the patterns movement: Add Comment

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki
http://c2.com/ppr
http://www.bell-labs.com/people/cope/Patterns/Process/index.html
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Also note there has been a yearly conference on design patterns, called
PLOP, that produces a published proceedings, the third of which came out
in late 1997 (all published by Addison-Wesley). Add Comment

Exercises
1. Add a class Plastic to TrashVisitor.py. Add Comment

2. Add a class Plastic to DynaTrash.py. Add Comment

3. Create a decorator like VisitableDecorator, but for the multiple
dispatching example, along with an “adapter decorator” class like
the one created for VisitableDecorator. Build the rest of the
example and show that it works. Add Comment

13: Projects
This chapter has not had any significant translation yet.

A number of more challenging projects for you to solve.
[[Some of these may turn into examples in the book, and
so at some point might disappear from here]] Add Comment

Rats & Mazes
First, create a Blackboard (cite reference) which is an object on which
anyone may record information. This particular blackboard draws a maze,
and is used as information comes back about the structure of a maze from
the rats that are investigating it. Add Comment

Now create the maze itself. Like a real maze, this object reveals very little
information about itself — given a coordinate, it will tell you whether there
are walls or spaces in the four directions immediately surrounding that
coordinate, but no more. For starters, read the maze in from a text file but
consider hunting on the internet for a maze-generating algorithm. In any
event, the result should be an object that, given a maze coordinate, will
report walls and spaces around that coordinate. Also, you must be able to
ask it for an entry point to the maze. Add Comment

Finally, create the maze-investigating Rat class. Each rat can
communicate with both the blackboard to give the current information

and the maze to request new information based on the current position of
the rat. However, each time a rat reaches a decision point where the maze
branches, it creates a new rat to go down each of the branches. Each rat is
driven by its own thread. When a rat reaches a dead end, it terminates
itself after reporting the results of its final investigation to the blackboard.
Add Comment

The goal is to completely map the maze, but you must also determine
whether the end condition will be naturally found or whether the
blackboard must be responsible for the decision. Add Comment

An example implementation by Jeremy Meyer:

c13:Maze.py

class Maze(Canvas):
 private Vector lines # a line is a char array
 private int width = -1
 private int height = -1
 public static void main (String [] args)
 throws IOException:
 if (args.length < 1):
 print “Enter filename“
 System.exit(0)

 Maze m = Maze()
 m.load(args[0])
 Frame f = Frame()
 f.setSize(m.width*20, m.height*20)
 f.add(m)
 Rat r = Rat(m, 0, 0)
 f.setVisible(1)

 def __init__(self):
 lines = Vector()
 setBackground(Color.lightGray)

 synchronized public boolean
 isEmptyXY(int x, int y):
 if (x < 0) x += width
 if (y < 0) y += height
 # Use mod arithmetic to bring rat in line:
 byte[] by =
 (byte[])(lines.elementAt(y%height))
 return by[x%width]==' '

 synchronized public void
 setXY(int x, int y, byte newByte):
 if (x < 0) x += width
 if (y < 0) y += height
 byte[] by =
 (byte[])(lines.elementAt(y%height))
 by[x%width] = newByte
 repaint()

 public void
 load(String filename) throws IOException:
 String currentLine = null
 BufferedReader br = BufferedReader(
 FileReader(filename))
 for(currentLine = br.readLine()
 currentLine != null
 currentLine = br.readLine()) :
 lines.addElement(currentLine.getBytes())
 if(width < 0 ||
 currentLine.getBytes().length > width)
 width = currentLine.getBytes().length

 height = len(lines)
 br.close()

 def update(self, Graphics g): paint(g)
 public void paint (Graphics g):
 int canvasHeight = self.getBounds().height
 int canvasWidth = self.getBounds().width
 if (height < 1 || width < 1)
 return # nothing to do
 int width =
 ((byte[])(lines.elementAt(0))).length
 for (int y = 0 y < len(lines) y++):
 byte[] b
 b = (byte[])(lines.elementAt(y))
 for (int x = 0 x < width x++):
 switch(b[x]):
 case ' ': # empty part of maze
 g.setColor(Color.lightGray)
 g.fillRect(
 x*(canvasWidth/width),
 y*(canvasHeight/height),

 canvasWidth/width,
 canvasHeight/height)
 break
 case '*': # a wall
 g.setColor(Color.darkGray)
 g.fillRect(
 x*(canvasWidth/width),
 y*(canvasHeight/height),
 (canvasWidth/width)-1,
 (canvasHeight/height)-1)
 break
 default: # must be rat
 g.setColor(Color.red)
 g.fillOval(x*(canvasWidth/width),
 y*(canvasHeight/height),
 canvasWidth/width,
 canvasHeight/height)
 break

:~
c13:Rat.py

class Rat:
 static int ratCount = 0
 private Maze prison
 private int vertDir = 0
 private int horizDir = 0
 private int x,y
 private int myRatNo = 0
 def __init__(self, Maze maze, int xStart, int
yStart):
 myRatNo = ratCount++
 print ("Rat no." + myRatNo +
 " ready to scurry.")
 prison = maze
 x = xStart
 y = yStart
 prison.setXY(x,y, (byte)'R')
 Thread():
 def run(self){ scurry()
 .start()

 def scurry(self):
 # Try and maintain direction if possible.
 # Horizontal backward
 boolean ratCanMove = 1
 while(ratCanMove):
 ratCanMove = 0
 # South
 if (prison.isEmptyXY(x, y + 1)):
 vertDir = 1 horizDir = 0
 ratCanMove = 1

 # North
 if (prison.isEmptyXY(x, y - 1))
 if (ratCanMove)
 Rat(prison, x, y-1)
 # Rat can move already, so give
 # this choice to the next rat.
 else:
 vertDir = -1 horizDir = 0
 ratCanMove = 1

 # West
 if (prison.isEmptyXY(x-1, y))
 if (ratCanMove)
 Rat(prison, x-1, y)
 # Rat can move already, so give
 # this choice to the next rat.
 else:
 vertDir = 0 horizDir = -1
 ratCanMove = 1

 # East
 if (prison.isEmptyXY(x+1, y))
 if (ratCanMove)
 Rat(prison, x+1, y)
 # Rat can move already, so give
 # this choice to the next rat.
 else:
 vertDir = 0 horizDir = 1
 ratCanMove = 1

 if (ratCanMove): # Move original rat.
 x += horizDir
 y += vertDir

 prison.setXY(x,y,(byte)'R')
 # If not then the rat will die.
 try:
 Thread.sleep(2000)
 catch(InterruptedException ie):

 print ("Rat no." + myRatNo +
 " can't move..dying..aarrgggh.")

:~
The maze initialization file: Add Comment

#:! c13:Amaze.txt
 * ** * * ** *
 *** * ******* * ****
 *** ***
 ***** ********** *****
 * * * * ** ** * * * ** *
 * * * * ** * * * * **
 * ** * **
 * ** * ** * ** * **
 *** * *** ***** * *** **
 * * * * * *
 * ** * * * ** * *
:~

Other maze resources
A discussion of algorithms to create mazes as well as Java source code to
implement them: Add Comment

http://www.mazeworks.com/mazegen/mazegen.htm

A discussion of algorithms for collision detection and other
individual/group moving behavior for autonomous physical objects:

http://www.red3d.com/cwr/steer/

XML Decorator
Create a pair of decorators for I/O Readers and Writers that encode (for
the Writer decorator) and decode (for the reader decorator) XMLAdd
Comment

	Preface
	Introduction
	The Y2K syndrome
	Context and composition

	A quick course in Python for programmers
	Python overview
	Built-in containers
	Functions
	Strings
	Classes
	Inheritance

	The pattern concept
	What is a pattern?
	Pattern taxonomy
	Design Structures
	Design principles
	The Singleton
	Exercise:

	Classifying patterns
	The development challenge
	Exercises

	2: Unit Testing
	Write tests first
	Simple Python testing
	A very simple framework
	Writing tests
	White-box & black-box tests
	Running tests
	Automatically executing tests
	Exercises

	3: Building application frameworks
	Template method
	Exercises

	4:Fronting for an implementation
	Proxy
	State
	StateMachine
	Table-Driven State Machine
	The State class
	Conditions for transition
	Transition actions
	The table
	The basic machine
	Simple vending machine
	Testing the machine

	Tools
	Exercises

	X: Decorators: dynamic type selection
	Basic decorator structure
	A coffee example
	Class for each combination
	The decorator approach
	Compromise
	Other considerations
	Exercises

	Y: Iterators: decoupling algorithms from containers
	Type-safe iterators

	5: Factories: encapsulating object creation
	Simple Factory method
	Polymorphic factories
	Abstract factories
	Exercises

	6: Function objects
	Command: choosing the operation at run-time
	Strategy: choosing the algorithm at run-time
	Chain of responsibility
	Exercises

	7: Changing the interface
	Adapter
	Façade
	Exercises

	8: Table-driven code: configuration flexibility
	Table-driven code using anonymous inner classes

	10: Callbacks
	Observer
	Observing flowers

	A visual example of observers
	Exercises

	11: Multiple dispatching
	Visitor, a type of multiple dispatching
	Exercises

	12: Pattern refactoring
	Simulating the trash recycler
	Improving the design
	“Make more objects”

	A pattern for prototyping creation
	Trash subclasses
	Parsing Trash from an external file
	Recycling with prototyping

	Abstracting usage
	Multiple dispatching
	Implementing the double dispatch

	The Visitor pattern
	A Reflective Decorator
	More coupling?

	RTTI considered harmful?
	Summary
	Exercises

	13: Projects
	Rats & Mazes
	Other maze resources

	XML Decorator

